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Introduction 

1.1 IMAGE AND VIDEO  COMPRESSION 

The  subject of this  book is  the compression  (‘coding’) of digital  images and video. Within 
the last 5-10 years, image and video coding  have  gone  from being relatively esoteric 
research subjects with few ‘real’ applications to become key technologies  for a wide range of 
mass-market applications, from personal computers  to television. 

Like many other  recent technological developments, the  emergence of video and image 
coding in the mass market is due  to convergence of a number of areas.  Cheap and powerful 
processors, fast network access,  the ubiquitous Internet and a large-scale research and 
standardisation effort have all contributed to the development of image and video coding 
technologies. Coding has enabled a host of  new ‘multimedia’ applications including digital 
television, digital versatile disk (DVD) movies,  streaming  Internet  video,  home  digital 
photography and  video  conferencing. 

Compression  coding bridges a crucial  gap  in  each of these applications: the  gap between 
the user’s demands (high-quality still and  moving images, delivered quickly at a reasonable 
cost)  and the limited capabilities of transmission networks and storage devices. For example, 
a ‘television-quality’ digital video signal requires  216Mbits of storage or transmission 
capacity  for  one second of video. Transmission of this type of signal in real time  is beyond 
the capabilities of most present-day communications networks. A 2-hour movie  (uncom- 
pressed) requires over 194 Gbytes of storage, equivalent to  42 DVDs or 304  CD-ROMs. In 
order  for  digital video to  become a plausible alternative to  its  analogue predecessors 
(analogue television or VHS videotape), it has been necessary to  develop methods of 
reducing or compressing this prohibitively high bit-rate signal. 

The drive to  solve this problem  has taken several decades and massive efforts in research, 
development  and standardisation (and work continues  to  improve existing methods  and 
develop new coding paradigms). However, efficient compression methods are now a firmly 
established component of the new digital media technologies such as digital television and 
DVD-video. A welcome side effect of these developments  is that video  and  image 
compression has enabled  many novel  visual communication applications that would not 
have previously been possible. Some  areas have taken off more quickly than others (for 
example,  the long-predicted boom in video conferencing  has yet to appear), but there is  no 
doubt that  visual compression is here  to stay. Every new PC  has a number of designed-in 
features specifically to support and accelerate  video  compression algorithms. Most devel- 
oped nations have a timetable for  stopping the transmission of analogue television, after 
which all television receivers will need compression technology to  decode and display TV 
images. VHS videotapes are finally being replaced by DVDs which can be played  back on 
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2 INTRODUCTION 

DVD  players  or  on  PCs.  The  heart of all of these  applications  is  the  video  compressor  and 
decompressor;  or  enCOder/DECoder;  or video CODEC. 

1.2 VIDEO CODEC DESIGN 

Video CODEC  technology has in the past been something of a ‘black art’ known only to a 
small  community of academics  and  technical  experts, partly because of the  lack of appro- 
achable,  practical  literature on the  subject.  One view of image  and  video  coding  is as a 
mathematical  process.  The  video  coding field poses a number of interesting  mathematical 
problems  and  this  means  that  much of the  literature  on the subject  is, of necessity, highly 
mathematical.  Such a treatment  is  important  for  developing the fundamental  concepts of 
compression but can be bewildering  for an engineer or developer  who wants to put 
compression  into  practice.  The  increasing  prevalence of digital  video  applications has led 
to the  publication of more  approachable  texts on the  subject:  unfortunately,  some of these 
offer  at best a superficial  treatment of the issues, which can be equally  unhelpful. 

This book aims  to fill a  gap in the market between  theoretical  and  over-simplified  texts on 
video  coding. It is  written  primarily  from  a  design  and  implementation  perspective. Much 
work has been  done  over  the  last  two  decades in developing  a  portfolio of practical 
techniques  and  approaches  to  video  compression  coding  as well as a large body of theoretical 
research. A grasp of these  design  techniques,  trade-offs and performance issues is important 
to  anyone  who  needs to design,  specify  or  interface to video  CODECs.  This book emphasises 
these  practical  considerations  rather than rigorous  mathematical theory and  concentrates on 
the  current  generation of video  coding  systems,  embodied by the MPEG-2,  MPEG-4 and 
H.263  standards. By presenting  the  practicalities of video  CODEC design in an approachable 
way it is  hoped that this book will help to demystify  this  important technology. 

1.3 STRUCTURE OF THIS BOOK 

The book  is  organised  in  three  main  sections  (Figure 1.1). We deal first  with the  fundamental 
concepts of digital  video,  image  and  video  compression  and  the  main  international  standards 
for  video  coding  (Chapters 2-5). The  second  section  (Chapters 6-9) covers  the key compo- 
nents of video  CODECs  in  some  detail. Finally, Chapters 10-14 discuss system design  issues 
and  present  some  design  case  studies. 

Chapter 2, ‘Digital Video’, explains  the  concepts of video  capture,  representation and 
display;  discusses  the way in which we perceive visual information;  compares  methods  for 
measuring  and  evaluate  visual  ‘quality’;  and  lists  some  applications of digital  video. 

Chapter 3, ‘Image  and  Video  Compression  Fundamentals’,  examines  the  requirements  for 
video  and  image  compression  and  describes the components of a ‘generic’  image  CODEC 
and video  CODEC.  (Note:  this  chapter  deliberately  avoids  discussing  technical  or  standard- 
specific  details of image  and  video  compression.) 

Chapter 4, ‘JPEG  and  MPEG’,  describes  the  operation of the  international  standards 
bodies  and  introduces  the IS0  image  and  video  compression  standards:  JPEG,  Motion  JPEG 
and  JPEG-2000  for  images  and  MPEG-I,  MPEG-2  and  MPEG-4  for  moving  video. 
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4 INTRODUCTION 

Chapter 5 ,  ‘H.261,  H.263  and H.26L‘, explains  the  concepts of the  ITU-T  video  coding 
standards  H.261  and  H.263  and  the  emerging  H.26L.  The  chapter  ends  with  a  comparison of 
the  performance of the  main  image  and  video  coding  standards. 

Chapter 6, ‘Motion  Estimation  and  Compensation’,  deals  with the ‘front end’ of a  video 
CODEC.  The  requirements  and  goals of motion-compensated  prediction are explained  and 
the  chapter  discusses  a  number of practical approaches  to  motion  estimation in software  or 
hardware  designs. 

Chapter 7, ‘Transform  Coding’,  concentrates  mainly  on  the  popular discrete cosine 
transform.  The  theory  behind  the  DCT is introduced  and practical algorithms for calculating 
the  forward  and  inverse  DCT are described.  The  discrete  wavelet  transform  (an  increasingly 
popular  alternative  to  the  DCT)  and the process  of  quantisation  (closely  linked to transform 
coding) are discussed. 

Chapter 8, ‘Entropy  Coding’,  explains  the statistical compression  process that forms the 
final step in a  video  encoder;  shows how Huffman  code tables are designed  and  used; 
introduces  arithmetic  coding;  and  describes practical entropy  encoder  and  decoder  designs. 

Chapter 9, ‘Pre- and  Post-processing’,  addresses  the  important  issue of input  and  output 
processing;  shows how pre-filtering can  improve  compression  performance;  and  examines  a 
number  of post-filtering techniques,  from  simple  de-blocking filters to computationally 
complex,  high-performance  algorithms. 

Chapter 10, ‘Rate, Distortion  and  Complexity’,  discusses the relationships  between  com- 
pressed bit rate, visual distortion and  computational  complexity in a ‘lossy’ video  CODEC; 
describes rate control  algorithms  for different transmission  environments;  and  introduces the 
emerging  techniques of variable-complexity  coding that allow the designer to trade 
computational  complexity  against visual quality. 

Chapter 11, ‘Transmission of Coded  Video’,  addresses  the  influence of the  transmission 
environment  on  video  CODEC  design;  discusses  the  quality of service  required by a  video 
CODEC  and  provided by typical transport  scenarios;  and  examines ways  in which  quality of 
service  can  be  ‘matched’  between  the  CODEC  and the network to maximise visual quality. 

Chapter 12, ‘Platforms’,  describes  a  number of alternative platforms for implementing 
practical video  CODECs,  ranging  from  general-purpose  PC  processors to custom-designed 
hardware  platforms. 

Chapter  13,  ‘Video  CODEC  Design’,  brings  together  a  number of the  themes  discussed in 
previous  chapters  and  discusses how they  influence  the  design of video  CODECs;  examines 
the interfaces between  a  video  CODEC  and  other  system  components;  and  presents  two 
design  studies, a software  CODEC  and  a  hardware  CODEC. 

Chapter 14, ‘Future  Developments’,  summarises  some of the recent work in research  and 
development that will influence  the  next  generation of video  CODECs. 

Each  chapter  includes  references to papers  and  websites that are relevant to the topic. The 
bibliography lists a  number of books that may be  useful for further reading  and  a  companion 
web site to the book may be  found at: 

http://www.vcodex.conl/videocodecdesign/ 



Digital Video 

2.1 INTRODUCTION 

Digital  video  is now an integral  part of many aspects of business,  education  and  entertain- 
ment, from  digital  TV to web-based  video news. Before  examining  methods  for  compressing 
and  transporting  digital  video,  it  is necessary to  establish  the  concepts  and  terminology 
relating to video  in  the  digital  domain. Digital  video is  visual  information  represented in 
a discrete  form,  suitable  for  digital  electronic  storage and/or transmission. In this  chapter 
we  describe  and  define  the  concept of digital  video:  essentially a sampled  two-dimensional 
(2-D) version of a  continuous  three-dimensional  (3-D)  scene.  Dealing with colour video 
requires us to  choose  a  colour  space  (a  system  for  representing  colour)  and we discuss  two 
widely used colour  spaces, RGB and YCrCb.  The  goal of a video coding system is  to  support 
video  communications with an ‘acceptable’  visual  quality:  this  depends on the viewer’s 
perception of visual  information,  which in turn  is governed by the  behaviour of the human 
visual  system.  Measuring  and  quantifying  visual  quality  is  a difficult problem  and we 
describe  some  alternative  approaches,  from  time-consuming  subjective  tests  to  automatic 
objective  tests  (with varying degrees of accuracy). 

2.2 CONCEPTS,  CAPTURE AND DISPLAY 

2.2.1  The  Video  Image 

A video  image  is  a  projection of a 3-D  scene  onto  a  2-D  plane  (Figure 2.1). A 3-D  scene 
consisting of a  number of objects  each with depth,  texture  and  illumination  is  projected  onto 
a  plane  to  form  a  2-D  representation of the scene.  The  2-D  representation  contains varying 
texture and  illumination but no depth  information. A still  image is a ‘snapshot’ of the  2-D 
representation at a particular  instant in time whereas a video sequence represents the scene 
over a period of time. 

2.2.2 Digital  Video 

A ‘real’  visual  scene  is  continuous both spatially  and  temporally.  In  order  to  represent  and 
process  a visual scene  digitally  it  is necessary to sample  the real scene  spatially  (typically on 
a  rectangular grid in  the  video  image  plane) and temporally  (typically  as a series of ‘still’ 

Video Codec Design
Iain E. G. Richardson
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l------ 

Figure 2.1 Projection of 3-D scene  onto a video image 

Moving scene 

Spatial  sampling  points  Temporal  sampling 

Figure 2.2 Spatial and temporal sampling 

images orframes sampled at regular intervals in time) as shown in Figure 2.2. Digital video 
is  the  representation of a spatio-temporally sampled  video  scene in digital form. Each spatio- 
temporal  sample  (described as a picture  element  or pixel) is represented digitally as one or 
more numbers  that  describe the brightness (luminance) and  colour of the  sample. 

A digital  video  system is  shown in Figure 2.3. At the  input  to  the  system, a ‘real’ visual 
scene  is  captured, typically with a camera and converted to a sampled digital representation. 

Q>Q= Camera 

Scene 

Digital domain 

/------l 

Transrnlssion 

Figure 2.3 Digital video system: capture, processing and display 
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This  digital  video  signal may  then be  handled in the digital  domain in a  number of  ways, 
including  processing,  storage and transmission. At the  output of  the system, the digital  video 
signal  is  displayed to a  viewer by reproducing  the  2-D  video  image (or video  sequence) on a 
2-D display. 

2.2.3 Video  Capture 

Video is  captured  using  a  camera  or  a  system of cameras.  Most  current  digital  video  systems 
use  2-D  video,  captured with a  single  camera. The  camera  focuses  a  2-D  projection of the 
video  scene  onto  a  sensor,  such as an  array of charge  coupled  devices  (CCD  array). In  the 
case of colour  image  capture,  each  colour  component  (see  Section 2.3) is filtered and 
projected  onto  a  separate  CCD array. 

Figure 2.4 shows  a  two-camera  system  that  captures  two  2-D  projections of  the scene, 
taken  from  different viewing angles.  This  provides  a  stereoscopic  representation of the 
scene:  the  two  images, when  viewed in the left and right eye of the viewer, give an 
appearance of ‘depth’  to the scene.  There  is  an  increasing  interest in the  use of 3-D  digital 
video,  where the video  signal  is  represented and processed in three  dimensions.  This  requires 
the  capture  system  to  provide  depth  information  as well as  brightness  and  colour,  and  this 
may be  obtained  in  a  number of  ways. Stereoscopic  images  can  be processed to extract 
approximate  depth  information  and  form  a  3-D  representation of the  scene:  other  methods of 
obtaining  depth  information  include  processing of multiple  images  from  a  single  camera 
(where  either  the  camera  or  the  objects in the  scene  are  moving)  and  the use  of laser 
‘striping’ to obtain  depth  maps.  In  this  book we will concentrate  on  2-D  video  systems. 

Generating  a  digital  representation of a  video  scene  can  be  considered in two stages: 
acquisition  (converting  a  projection of the  scene  into  an  electrical  signal,  for  example via a 
CCD array)  and  digitisation  (sampling the projection  spatially and temporally and convert- 
ing  each  sample  to  a  number or set of numbers).  Digitisation may  be carried  out using a 
separate  device  or  board (e.g. a  video  capture  card in a PC): increasingly,  the  digitisation 
process  is  becoming  integrated  with  cameras so that  the  output of a  camera  is  a  signal in 
sampled  digital  form. 

2.2.4 Sampling 

A digital  image may  be generated by sampling  an  analogue  video  signal  (i.e.  a  varying 
electrical  signal  that  represents  a  video  image) at regular  intervals. The result is a  sampled 

Figure 2.4 Stereoscopic camera system 
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Figure 2.5 Spatial sampling (square grid) 

version of the  image:  the  sampled  image  is only defined at a series of regularly spaced 
sampling  points.  The  most  common  format  for  a  sampled  image  is  a  rectangle  (often with 
width larger than height)  with  the  sampling  points  positioned on a  square  grid  (Figure 2.5). 
The visual  quality of the  image  is  influenced by the  number of sampling  points.  More 
sampling  points (a higher  sampling  resolution)  give  a ‘finer’ representation of the  image: 
however, more  sampling  points  require  higher  storage  capacity. Table 2.1 lists  some 
commonly used image  resolutions and gives an approximately  equivalent  analogue  video 
quality: VHS video,  broadcast  TV  and  high-definition TV. 

A moving  video  image  is  formed by sampling the video signal  temporally, taking a 
rectangular  ‘snapshot’ of the  signal at periodic  time  intervals.  Playing  back the series of 
frames  produces  the  illusion of motion. A higher  temporal  sampling rate (frame rate) gives a 
‘smoother’  appearance to motion  in  the  video  scene but requires  more  samples  to be 
captured  and  stored  (see Table 2.2). Frame  rates  below 10 frames  per  second  are  sometimes 

Table 2.1 Typical video image resolutions 

Image resolution Number of sampling points Analogue video ‘equivalent’ 

352 x 288 
704 x 576 

1440 x 1152 

101 376 
405 504 

1313 280 

VHS video 
Broadcast television 
High-definition television 

Table 2.2 Video frame rates 

Video frame  rate Appearance 

Below 10 frames per second ‘Jerky’, unnatural appearance to movement 
10-20 frames per second Slow movements appear OK; rapid movement is clearly ‘jerky’ 
20-30 frames per second Movement is reasonably smooth 
SO-60 frames per second Movement is very smooth 
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r 4, @l Upper field 

U Complete  frame 

Lower field 

Figure 2.6 Interlaced  fields 

used for very low bit-rate video  communications  (because the amount of data is relatively 
small): however, motion is clearly jerky  and unnatural at this rate. Between 10 and 20 frames 
per second is more typical for low bit-rate video  communications; 25 or 30 frames per 
second  is standard for television pictures (together with the use of interlacing, see below); 50 
or 60 frames per second is appropriate  for high-quality video (at  the  expense of a very high 
data rate). 

The visual appearance of a temporally sampled  video  sequence  can be improved by using 
interlaced  video, commonly used for broadcast-quality television signals. For example, the 
European PAL video standard operates at a temporal  frame  rate of 25 Hz (i.e. 25 complete 
frames of video per second). However, in order  to  improve  the visual appearance without 
increasing the data rate, the video  sequence is composed  offields at a rate of 50 Hz (50 fields 
per second). Each field contains half of the lines that make up a complete  frame  (Figure 2.6): 
the  odd-  and even-numbered lines from  the  frame  on the left are placed in two  separate 
fields, each  containing half the information of a complete  frame.  These fields are captured 
and  displayed at Moth  of a second intervals and  the result is  an update rate of 50 Hz, with 
the  data rate of a signal at 25 Hz. Video that is captured and  displayed in this way is known 
as interlaced video and generally has a more pleasing visual appearance than video 
transmitted as complete  frames (non-interlaced or progressive video). Interlaced video 
can, however, produce unpleasant visual artefacts when displaying certain textures or types 
of motion. 

2.2.5 Display 

Displaying a 2-D  video signal involves recreating each  frame of video  on a 2-D display 
device. The most common  type of display is  the  cathode ray tube (CRT) in which the  image 



10 DIGITAL VIDEO 

Phosphor coating 

Figure 2.7  CRT display 

is  formed by scanning  a  modulated  beam of electrons  across  a  phosphorescent  screen  (Figure 
2.7). CRT  technology is mature  and  reasonably  cheap  to  produce. However, a CRT suffers 
from  the  requirement to provide  a sufficiently long path  for  the  electron  beam  (making  the 
device  bulky)  and the weight of the vacuum tube.  Liquid  crystal  displays (LCDs) are 
becoming a popular  alternative  to  the CRT for  computer  applications  but  are  not  as  bright; 
other  alternatives  such  as  flat-panel  plasma  displays  are  beginning  to  emerge  but  are  not yet 
available  at  competitive  prices. 

2.3 COLOUR SPACES 

A monochrome  (‘grey  scale’)  video  image may  be represented  using  just  one  number per 
spatio-temporal  sample. This  number  indicates  the  brightness  or  luminance of each  sample 
position:  conventionally, a larger  number  indicates  a  brighter  sample. If a  sample i s  
represented  using n bits, then a  value of 0 may  represent  black  and  a  value of (2” - I )  
may represent  white, with other  values in between  describing  shades of grey. Luminance is 
commonly  represented with 8 bits per sample  for  ‘general-purpose’  video  applications. 
Higher  luminance  ‘depths’ (e.g. 12 bits or more per sample)  are  sometimes used for 
specialist  applications  (such as digitising of  X-ray slides). 

Representing  colour  requires  multiple  numbers per sample.  There  are several alternative 
systems  for  representing  colour,  each of which is known  as a colour space. We will concen- 
trate  here  on  two of the  most  common  colour  spaces  for  digital  image and video  representa- 
tion: RGB (redgreenblue) and  YCrCb  (luminancehed  chrominancehlue  chrominance). 
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2.3.1 RGB 

In the redgreedblue colour  space,  each  pixel  is  represented by three  numbers  indicating  the 
relative  proportions of red,  green  and blue. These are the  three  additive primary colours of 
light:  any  colour may be  reproduced by combining  varying  proportions of red,  green  and 
blue light. Because  the  three  components  have  roughly  equal  importance to the  final  colour, 
RGB systems  usually  represent  each  component  with  the same  precision  (and  hence  the 
same  number of bits). Using 8 bits per  component  is  quite  common: 3 x 8 = 24 bits are 
required  to  represent  each  pixel.  Figure 2.8 shows  an  image  (originally  colour,  but  displayed 
here  in  monochrome!)  and  the  brightness  ‘maps’ of each of its  three  colour  components.  The 
girl’s cap is a bright  pink  colour: this appears  bright  in  the  red  component and slightly  less 
bright  in  the  blue  component. 

1 

t 
J 
I 

(b) 

Figure 2.8 (a) Image, (b) R, (c )  G, (d) B components 
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Figure 2.8 (Continued) 

2.3.2 Y CrCb 

RGB  is  not  necessarily  the  most  efficient  representation of colour. The human  visual  system 
(HVS, see  Section 2.4) is  less  sensitive  to  colour  than  to  luminance  (brightness): however, 
the  RGB  colour  space  does  not  provide an easy way to  take  advantage of this  since  the  three 
colours  are  equally  important  and  the  luminance  is  present  in  all  three  colour  components.  It 
is possible  to  represent a colour  image  more  efficiently by separating  the  luminance  from  the 
colour  information. 

A popular  colour  space of this  type  is Y: Cr : Cb. Y is  the  luminance  component,  i.e.  a 
monochrome  version of the  colour  image. Y is  a  weighted  average of R, G and B: 
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where k are  weighting  factors.  The  colour  information  can be represented  as colour 
difference or chrominance components,  where  each  chrominance  component  is  the  differ- 
ence  between R, G or  B  and  the  luminance Y: 

C r = R - Y  

C b = B - Y  

C g = G - Y  

The  complete  description  is  given by Y (the  luminance  component)  and  three  colour 
differences  Cr,  Cb  and  Cg  that  represent  the  ‘variation’  between the colour  intensity and the 
‘background’  luminance of the  image. 

So far,  this  representation has little  obvious merit: we  now have four  components  rather 
than three.  However,  it  turns  out that the value of Cr + Cb + Cg  is a constant.  This  means that 
only two of the  three  chrominance  components need to be transmitted:  the  third  component 
can  always be found  from  the  other two. In the Y:  Cr : Cb  space, only the  luminance  (Y)  and 
red and  blue  chrominance (Cr, Cb)  are  transmitted.  Figure 2.9 shows the effect of this 
operation on the  colour  image.  The  two  chrominance  components only have significant 
values where  there  is a significant ‘presence’ or ‘absence’ of the  appropriate  colour  (for 
example, the pink hat appears  as an area of relative  brightness  in  the red chrominance). 

The  equations  for  converting an RGB  image  into  the  Y:  Cr : Cb  colour  space  and  vice 
versa  are  given in Equations  2.1  and 2.2. Note that G  can be extracted  from  the Y: Cr : Cb 
representation by subtracting  Cr  and  Cb  from Y. 

Y = 0.299  R + 0.587 G + 0.1 14 B 

Cb = 0.564  (B - Yj 

Cr = 0.713 (R - Yj 

R = Y + 1.402Cr 

G = Y - 0.344Cb - 0.714Cr 

B = Y + 1.772Cb 

The key advantage of Y: Cr : Cb over RGB is that the  Cr  and  Cb  components may be 
represented with a lower resolution than Y because the HVS is  less  sensitive to colour than 
luminance.  This  reduces  the  amount of data  required  to  represent  the  chrominance 
components without having an obvious  effect  on visual quality: to the  casual  observer, 
there  is no apparent  difference  between an RGB image  and  a Y: Cr : Cb  image with reduced 
chrominance  resolution. 

Figure 2.10 shows  three  popular  ‘patterns’  for  sub-sampling  Cr and Cb. 4 : 4 : 4 means that 
the  three  components (Y: Cr : Cb) have the same  resolution  and  hence a  sample of each 
component  exists at every pixel position.  (The  numbers  indicate  the  relative  sampling  rate of 
each  component in the horizontal direction,  i.e.  for every 4  luminance  samples  there  are 4 Cr 
and 4Cb samples.) 4 :   4 :  4  sampling  preserves  the  full fidelity of the  chrominance 
components. In 4 :  2 :  2  sampling,  the  chrominance  components have the  same  vertical 
resolution but half the  horizontal  resolution  (the  numbers  indicate  that  for every 4  luminance 
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c 

l 

(c) Figure 2.9 (a) Luminance, (b) Cr, (c) Cb components 

samples  in  the  horizontal  direction  there are 2 Cr and 2 Cb  samples)  and  the  locations of the 
samples  are  shown  in  the  figure. 4 : 2 : 2 video  is used for  high-quality  colour  reproduction. 

4 : 2 : 0 means  that Cr and Cb  each  have half the  horizontal and vertical  resolution of Y, as 
shown. The  term ‘4 : 2 : 0’ is  rather  confusing:  the  numbers  do  not  actually  have  a  sensible 
interpretation  and  appear  to  have  been  chosen  historically  as  a  ‘code’  to  identify  this 
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Figure 2.10 Chrominance  subsampling  patterns 

particular  sampling  pattern.  4 : 2 : 0 sampling  is  popular  in  ‘mass  market’  digital  video 
applications  such  as  video  conferencing,  digital  television and DVD storage.  Because  each 
colour  difference  component  contains  a  quarter of the  samples of the Y component, 4 : 2 : 0 
video  requires  exactly half as many samples  as  4 : 4 : 4  (or R : G : B)  video. 

Example 

Image  resolution:  720 x 576  pixels 
Y resolution:  720 x 576  samples,  each  represented  with 8 bits 

4 : 4 : 4  Cr, Cb resolution:  720 x 576  samples,  each 8 bits 
Total  number of bits: 720 x 576 x 8 x 3 = 9  953  280  bits 

4 : 2 : 0 Cr,  Cb  resolution:  360 x 288  samples,  each 8 bits 
Total number of bits:  (720 x 576 x 8) + (360 x 288 x 8 x 2) = 4  976 640 bits 

The 4 : 2 : 0 version  requires half as  many  bits  as  the  4 : 4 : 4  version 

To further  confuse  things,  4 : 2 : 0 sampling  is  sometimes  described  as  ‘12  bits  per  pixel’. The 
reason  for this can  be  illustrated by examining  a  group of 4  pixels  (Figure  2.1 1). The  left- 
hand diagram  shows  4 : 4 : 4  sampling:  a  total of 12  samples  are  required,  4  each of Y, Cr and 
Cb,  requiring  a  total of 12 x 8 = 96  bits, i.e. an average of 96/4 = 24  bits  per  pixel. The 
right-hand  diagram  shows  4 : 2 : 0 sampling:  6  samples  are  required,  4 Y and  one  each of  Cr, 
Cb,  requiring  a  total of 6 x 8 = 48 bits, i.e.  an  average of 48/4 = 12  bits  per  pixel. 

0 

0 0  
Figure 2.11 4 pixels: 24 and 12 bpp 
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Figure 2.12 HVS components 

2.4 THE HUMAN VISUAL SYSTEM 

A critical  design  goal  for a digital video  system  is that the visual images produced by the 
system should be ‘pleasing’ to  the viewer.  In order  to achieve this goal  it  is necessary to take 
into  account  the  response of the human  visual  system (HVS). The HVS is the ‘system’ by 
which a human  observer views, interprets  and responds to visual stimuli. The main 
components of the HVS are  shown in Figure 2.12: 

Eye: The  image  is focused by the lens onto the photodetecting area of the  eye,  the retina. 
Focusing and object  tracking  are achieved by the  eye muscles and the iris controls  the 
aperture of the  lens and hence the amount of light  entering the eye. 

Retina: The  retina  consists of an array of cones (photoreceptors sensitive to  colour at 
high  light  levels)  and rods (photoreceptors sensitive to luminance at low light levels). The 
more  sensitive  cones  are  concentrated in a central region (the fovea) which means that 
high-resolution  colour vision is only achieved over a small area at the  centre of the field 
of  view. 

Optic  nerve: This  carries  electrical  signals  from  the retina to  the brain. 

Brain: The human  brain  processes and interprets visual information, based partly on  the 
received information (the  image  detected by the  retina)  and partly on prior learned 
responses  (such as known  object shapes). 

The  operation of the  HVS  is a large and complex  area of study. Some of the  important 
features of the HVS that  have  implications  for digital video  system design are listed in 
Table 2.3. 

2.5 VIDEO QUALITY 

In order  to specify, evaluate  and  compare  video  communication  systems  it  is necessary to 
determine  the  quality of the  video  images displayed to  the viewer. Measuring visual quality 
is a difficult and  often  imprecise art because there are so many  factors  that  can influence the 
results. Visual quality  is  inherently subjective and is therefore influenced by many  subjective 
factors  that  can  make  it difficult to  obtain a completely  accurate  measure of quality. 
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Table 2.3 Features of the HVS 

Feature Implication for digital video systems 

The HVS is more sensitive to luminance detail Colour (or chrominance) resolution may be 
than to colour detail reduced without significantly affecting 

The HVS is more sensitive to high contrast Large changes in luminance (e.g. edges in 
(i.e. large differences in luminance) than an image) are particularly important to 
low contrast the appearance of the image 

The HVS is more sensitive to low spatial It may be possible to compress images by 
frequencies (i.e. changes in luminance discarding some of the less important 
that occur over a large area) than high higher frequencies (however, edge 
spatial frequencies (rapid changes that information should be preserved) 
occur in a small area) 

that persist for a long duration disturbances or artefacts in an image 

by presenting a series of images at a rate of rates of 20 Hz or more for ‘natural’ 
20-30 Hz or more moving video 

individual the quality of a video system 

image quality 

The HVS is more sensitive to image features It is important to minimise temporally persistent 

The illusion of ‘smooth’ motion can be achieved Video systems should aim for frame repetition 

HVS responses vary from individual to Multiple observers should be used to assess 

Measuring visual quality using objective criteria gives accurate,  repeatable results, but as yet 
there are  no  objective measurement systems that will completely reproduce  the subjective 
experience of a human observer watching a video display. 

2.5.1 Subjective  Quality  Measurement 

Several test procedures for subjective quality evaluation are defined in ITU-R  Recommen- 
dation BT.500-10.’ One of the most popular of these quality measures  is  the  double  stimulus 
continuous quality scale (DSCQS) method. An assessor is presented with a pair of images or 
short video  sequences A and B, one  after  the other, and  is asked to  give A and B a ‘score’ by 
marking on a continuous  line with five intervals. Figure 2.13 shows an  example of the rating 
form  on which the assessor  grades  each sequence. 

In a typical test session, the assessor is shown a series of sequence pairs and  is  asked  to 
grade each pair. Within each pair of sequences, one  is an unimpaired ‘reference’ sequence 
and the  other  is  the  same sequence, modified  by a system or process under test. A typical 
example  from the evaluation of video coding  systems  is shown in Figure 2.14: the original 
sequence is compared with the  same sequence, encoded  and  decoded using a video CODEC. 

The  order of the  two  sequences, original and ‘impaired’, is randomised during  the test 
session so that the assessor does not know which is  the original and which is  the  impaired 
sequence. This  helps prevent the assessor from prejudging the  impaired  sequence  compared 
with the reference sequence. At the  end of the session, the  scores are converted to a 
normalised range  and the result is a score  (sometimes  described as a ‘mean opinion score’) 
that indicates  the relative quality of the  impaired  and reference sequences. 
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Test 1 Test 2 

A B A B 

Excellent 

Good 

Fair 

Poor 

Bad 

Test 3 

A B 

Figure 2.13 DSCQS rating form 

The DSCQS test  is  generally  accepted as a realistic  measure of subjective visual quality. 
However,  it  suffers  from  practical  problems.  The  results  can vary significantly, depending on 
the  assessor  and  also  on  the  video  sequence under test.  This  variation  can be compensated 
for by repeating  the  test  with  several  sequences  and  several  assessors. An ‘expert’  assessor 
(e.g.  one  who  is  familiar with the  nature of video  compression  distortions  or  ‘artefacts’) may 
give  a  biased  score  and  it  is  preferable to use ‘non-expert’  assessors. In practice  this  means 
that a large pool of assessors  is  required  because  a  non-expert  assessor will quickly  learn  to 
recognise  characteristic  artefacts in the  video  sequences.  These  factors  make  it  expensive 
and  time-consuming to carry out the DSCQS tests  thoroughly. 

A second  problem  is  that  this  test  is only really  suitable  for short sequences of video. It has 
been  shown2 that the  ‘recency  effect’  means that the viewer’s opinion  is heavily biased 
towards  the  last few seconds of a  video  sequence:  the  quality of this last  section will strongly 
influence  the viewer’s rating  for  the  whole of a  longer  sequence.  Subjective  tests  are  also 
influenced by the viewing conditions: a test  carried  out  in a  comfortable,  relaxed  environ- 
ment will earn  a  higher  rating  than  the  same test carried  out in a less  comfortable  setting. 

U sequence 
Source  video I 

Display 

J I I 

DSCQS testing system 

Y Video 
encoder 

Video 
decoder 

Figure 2.14 
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2.5.2 Objective  Quality  Measurement 

Because of the  problems of subjective  measurement,  developers of digital  video  systems rely 
heavily on  objective measures of visual  quality.  Objective  measures have not yet replaced 
subjective  testing: however, they are considerably  easier  to apply and  are  particularly useful 
during  development  and  for  comparison  purposes. 

Probably the  most widely used objective  measure  is  peak signal to noise ratio  (PSNR), 
calculated using Equation 2.3. PSNR is  measured on a  logarithmic  scale  and  is based on the 
mean  squared  error  (MSE)  between an original  and an impaired  image  or  video  frame, 
relative  to (2” - (the  square of the  highest  possible  signal value in the  image). 

P S N ~ B  = lolog,, 
(2“ - 

MSE 

PSNR can be calculated very easily and is  therefore  a very popular  quality  measure. It is 
widely used as a  method of comparing  the  ‘quality’ of compressed  and  decompressed  video 
images.  Figure  2.15  shows  some  examples:  the first image  (a)  is  the  original  and  (b),  (c)  and 
(d) are  compressed  and  decompressed  versions of the  original  image.  The progressively 
poorer  image  quality  is reflected by a  corresponding  drop in PSNR. 

The PSNR measure  suffers  from  a  number of limitations, however. PSNR requires an 
‘unimpaired’  original  image  for  comparison:  this may not be available in every case and it 
may not be easy to verify that an ‘original’  image has perfect fidelity. A more  important 
limitation  is  that  PSNR  does not correlate well with subjective  video  quality  measures  such 
as  ITU-R 500. For a given image  or  image  sequence,  high  PSNR  indicates  relatively high 
quality  and  low PSNR indicates  relatively low quality. However,  a  particular value of PSNR 
does not necessarily  equate  to an ‘absolute’  subjective  quality. For example,  Figure  2.16 
shows  two  impaired  versions of the  original  image  from  Figure  2.15.  Image  (a)  (with  a 
blurred  background) has a PSNR of 32.7  dB, whereas image  (b)  (with  a blurred foreground) 
has a  higher PSNR of 37.5 dB.  Most viewers would  rate  image  (b)  as significantly poorer 
than image  (a): however, the PSNR measure  simply  counts  the  mean  squared pixel errors and 
by this method  image  (b)  is  ranked  as  ‘better’ than image  (a).  This  example  shows that 
PSNR  ratings  do not necessarily  correlate with ‘true’ subjective  quality. 

Because of these  problems,  there has been  a lot of work  in recent years to try to develop  a 
more  sophisticated  objective test that  closely  approaches  subjective test results. Many 
different  approaches have been p r ~ p o s e d , ~ - ~  but none of these has emerged  as  clear 
alternatives to subjective  tests. With improvements in objective  quality  measurement, 
however, some  interesting  applications  become  possible, such as  proposals  for  ‘constant- 
quality’  video  coding6  (see  Chapter 10, ‘Rate  Control’). 

ITU-R  BT.500-10 (and more recently, P.910) describe standard methods for  subjective 
quality  evaluation: however, as yet there is  no standardised,  accurate system for  objective 
(‘automatic’)  quality  measurement that is  suitable  for  digitally  coded  video. In recogni- 
tion of this, the ITU-T  Video Quality Experts  Group  (VQEG)  are  developing  a  standard 
for  objective  video  quality  evaluation7.  The first step in this  process was to test and  com- 
pare  potential  models  for  objective  evaluation. In March  2000,  VQEG reported on the first 
round of tests  in which 10 competing  systems  were tested under  identical  conditions. 
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Figure 2.15 PSNR examples:  (a) original; (b) 33.2dEi; (c) 31.8dB; (d) 26.5 dB 
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Table 2.4 ITU-R BT.601-5 parameters 

30 Hz frame rate 25 Hz frame rate 

Fields per second 60 50 
Lines per complete frame 525 625 
Luminance samples per line 858  864 
Chrominance samples per line 429 432 
Bits per sample 8 8 
Total bit rate 216 Mbps 216Mbps 
Active lines per frame 480 576 
Active samples per line (Y) 720  720 
Active samples per line (Cr, Cb) 360 360 

Unfortunately,  none of  the 10 proposals was considered  suitable  for  standardisation.  The 
problem of accurate  objective  quality  measurement  is  therefore  likely  to  remain  for  some 
time to come. 

The PSNR measure  is widely  used as an  approximate  objective  measure  for visual quality 
and so we will use  this  measure  for  quality  comparison in this book. However, it is worth 
remembering the limitations of PSNR when comparing  different  systems  and  techniques. 

2.6 STANDARDS FOR REPRESENTING DIGITAL  VIDEO 

A widely used format  for  digitally  coding  video  signals  for  television  production  is  ITU-R 
Recommendation BT.601-5’ (the term ‘coding’ in this context  means  conversion  to  digital 
format  and  does  not  imply  compression). The luminance  component of the  video  signal  is 
sampled at 13.5 MHz  and the chrominance  at  6.75  MHz to produce  a 4 : 2 : 2 Y :  Cr : Cb 
component  signal.  The  parameters of the  sampled  digital  signal  depend  on  the  video  frame 
rate  (either 30  or 25  Hz)  and  are shown in Table 2.4. It  can  be seen that the higher 30 Hz 
frame  rate  is  compensated  for by a lower  spatial  resolution so that the total bit rate  is  the 
same  in  each  case  (216Mbps).  The  actual  area  shown  on  the display, the active area, is 
smaller than  the total  because  it  excludes  horizontal  and  vertical  blanking  intervals  that  exist 
‘outside’ the  edges of  the frame.  Each  sample  has a possible  range of 0-255: however, levels 
of 0 and 255 are  reserved  for  synchronisation. The active  luminance  signal  is  restricted  to  a 
range of 16  (black)  to  235  (white). 

For  video  coding  applications,  video is often  converted  to  one of a  number of 
‘intermediate  formats’  prior to compression and transmission. A set of popular  frame 
resolutions is based  around  the  common  intermediate  format, CIF, in which each  frame  has  a 

Table 2.5 Intermediate formats 

Format Luminance resolution (horiz. x vert.) 

Sub-QCIF  128 x 96 
Quarter CIF (QCIF) 176 x 144 
CIF 352 x 288 
4CIF  704 x 576 
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4CIF  704 x 576 
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CIF 352 x 288 

QClF 176 x 144 

Figure 2.17 Intermediate formats (illustration) 

resolution of 352 x 288 pixels. The resolutions of these  formats  are  listed in  Table 2.5 and 
their  relative  dimensions  are  illustrated in Figure 2.17. 

2.7 APPLICATIONS 

The last  decade  has  seen a rapid  increase in applications  for  digital  video  technology  and 
new, innovative  applications  continue  to  emerge. A small  selection  is  listed  here: 

0 Home video: Video  camera  recorders  for  professional  and  home  use  are  increasingly 
moving  away  from  analogue  tape to digital  media  (including  digital  storage  on  tape and on 
solid-state  media).  Affordable DVD video  recorders will soon be available  for  the  home. 

0 Video  storage: A variety of digital  formats  are now  used for  storing  video  on  disk,  tape 
and  compact  disk  or DVD for  business  and  home  use, both  in compressed and 
uncompressed  form. 

0 Video  conferencing: One of the  earliest  applications  for  video  compression,  video 
conferencing  facilitates  meetings  between  participants in two or  more  separate  locations. 

0 Video  telephony: Often  used  interchangeably  with  video  conferencing,  this usually 
means a face-to-face  discussion  between  two  parties via a video ‘link’. 

0 Remote  learning: There is an  increasing  interest in the  provision of computer-based 
learning to  supplement  or  replace  traditional  ‘face-to-face’  teaching and learning.  Digital 
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video is seen as an important  component of this in the  form of stored  video  material and 
video  conferencing. 

Remote  medicine: Medical  support  provided  at  a  distance,  or  ‘telemedicine’, is another 
potential  growth  area  where  digital  video and images may be used together with other 
monitoring  techniques to provide  medical  advice  at  a  distance. 

Television: Digital  television  is now  widely available and many  countries  have  a  time- 
table  for  ‘switching  off’  the  existing  analogue television service.  Digital  TV is one of the 
most  important  mass-market  applications  for  video  coding  and  compression. 

Video  production: Fully digital video storage, editing and  production  have  been  widely  used  in 
television studios  for  many  years.  The  requirement  for  high  image fidelity often  means 
that the  popular ‘lossy’ compression  methods  described in this book are  not an option. 

Games  and  entertainment: The  potential  for ‘real’ video  imagery in the computer  gaming 
market  is  just  beginning  to be realised with  the convergence of 3-D graphics and ‘natural’ 
video. 

2.7.1 Platforms 

Developers  are  targeting  an  increasing  range of platforms  to  run  the  ever-expanding  list of 
digital  video  applications. 

Dedicated  platforms are  designed to support  a specific video  application and no other. 
Examples  include  digital  video  cameras,  dedicated  video  conferencing  systems,  digital  TV 
set-top  boxes  and DVD players.  In  the  early  days, the high  processing  demands of digital 
video  meant  that  dedicated  platforms  were  the  only  practical  design  solution.  Dedicated 
platforms will continue to be important  for  low-cost,  mass-market  systems but are 
increasingly  being  replaced by more flexible solutions. 

The PC has  emerged  as  a key platform  for  digital video. A continual  increase in PC 
processing  capabilities  (aided by hardware  enhancements  for  media  applications  such  as  the 
Intel  MMX  instructions)  means  that  it  is now possible  to  support  a  wide  range of video 
applications  from  video  editing  to  real-time  video  conferencing. 

Embedded  platforms are  an  important new market  for  digital  video  techniques.  For 
example, the personal  communications  market  is now huge,  driven  mainly by users of 
mobile  telephones. Video services  for  mobile  devices  (running on low-cost  embedded 
processors)  are  seen  as  a  major  potential  growth  area.  This  type of platform  poses many 
challenges  for  application  developers  due to the limited  processing power, relatively  poor 
wireless  communications  channel  and  the  requirement  to  keep  equipment  and  usage  costs  to 
a  minimum. 

2.8 SUMMARY 

Sampling of  an analogue  video  signal, both spatially and temporally,  produces  a  digital 
video signal. Representing  a  colour  scene  requires  at  least  three  separate  ‘components’: 
popular  colour  ‘spaces’  include red/green/blue and  Y/Cr/Cb  (which  has  the  advantage  that 
the chrominance may be  subsampled to reduce  the  information  rate  without significant loss 
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of quality).  The human observer’s response  to visual information affects the way we perceive 
video  quality  and this is notoriously difficult to  quantify accurately. Subjective tests 
(involving ‘real’ observers)  are  time-consuming  and  expensive  to  run;  objective tests range 
from  the  simplistic  (but  widely  used) PSNR measure  to  complex  models of the  human visual 
system. 

The digital video  applications listed above have been made possible by the  development 
of compression or coding technology. In  the next chapter  we  introduce  the basic concepts of 
video and  image compression. 
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Image  and  Video  Compression 
Fundamentals 

3.1 INTRODUCTION 

Representing  video  material in a  digital form requires  a  large  number of bits.  The volume of 
data  generated by digitising  a  video  signal  is  too  large  for most storage and transmission 
systems  (despite  the  continual  increase in storage  capacity and transmission  ‘bandwidth’). 
This means that compression is essential  for most digital  video  applications. 

The ITU-R  601  standard  (described  in  Chapter  2)  describes  a  digital  format  for  video that 
is roughly equivalent  to  analogue  television,  in  terms of spatial  resolution and frame  rate. 
One channel of ITU-R 601 television,  broadcast  in  uncompressed  digital  form,  requires  a 
transmission bit rate of 216Mbps. At this bit rate,  a  4.7  Gbyte DVD could  store  just 
87 seconds of uncompressed video. 

Table 3.1 shows the uncompressed bit  rates of several popular video formats. From this 
table it  can  be  seen that even QCIF at 15 frames  per second (i.e.  relatively  low-quality video, 
suitable  for  video  telephony)  requires 4.6Mbps for  transmission  or  storage. Table 3.2  lists 
typical  capacities of popular  storage media and transmission  networks. 

There  is  a  clear gap between  the high bit rates  demanded by uncompressed video and the 
available  capacity of current  networks and storage  media.  The  purpose of video  compression 
(video  coding)  is to fill this  gap. A video  compression  system  aims to reduce the amount of 
data  required  to  store  or  transmit  video whilst maintaining an ‘acceptable’ level of video 
quality. Most of the  practical  systems and standards  for  video  compression  are  ‘lossy’, i.e. 
the volume of data  is  reduced  (compressed) at the  expense of a loss of visual quality.  The 
quality loss depends  on many factors, but in  general,  higher  compression  results in a  greater 
loss of quality. 

3.1.1 Do We Need Compression? 

The  following  statement  (or  something  similar)  has been made many times  over  the  20-year 
history of image  and  video  compression: ‘Video compression will become  redundant very 
soon,  once  transmission and storage  capacities have increased to a sufficient level to cope 
with uncompressed video.’ It is  true that both storage  and  transmission  capacities  continue to 
increase. However, an efficient and well-designed  video  compression system gives very 
significant performance  advantages  for visual communications  at both low and high 
transmission  bandwidths. At  low bandwidths,  compression  enables  applications that would 
not otherwise be possible, such as basic-quality  video  telephony over a  standard  telephone 
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Table 3.1 Uncompressed  bit  rates 

Luminance  Chrominance  Frames  per  Bits  per  second 
Format  resolution  resolution  second  (uncompressed) 

ITU-R  601 858 x 525  429 x 525 30 216Mbps 
CIF  352 x 288 176 x 144 30  36.5  Mbps 
QCIF  176 x 144 88 x 72 15 4.6 Mbps 

Table 3.2 Typical  transmission / storage  capacities 

Media / network  Capacity 

Ethernet  LAN  (10  Mbps)  Max.  10  Mbps / Typical  1-2  Mbps 
ADSL  Typical  1-2  Mbps  (downstream) 

V.90  modem  56  kbps  downstream / 33  kbps  upstream 
ISDN-2 128 kbps 

DVD-5  4.7  Gbytes 
CD-ROM  640  Mbytes 

connection. At high  bandwidths,  compression  can  support  a much higher  visual  quality. For 
example,  a 4.7 Gbyte  DVD  can  store  approximately 2 hours of uncompressed  QCIF  video  (at 
15 frames  per  second) or 2 hours of compressed ITU-R 601 video  (at 30 frames per second). 
Most users would prefer  to  see  ‘television-quality’  video with smooth motion rather than 
‘postage-stamp’  video with jerky  motion. 

Video compression and video  CODECs will therefore  remain  a vital part of the  emerg- 
ing  multimedia  industry  for  the  foreseeable  future,  allowing  designers to make the most 
efficient  use of available  transmission  or  storage  capacity. In this  chapter we introduce the 
basic  components of an image  or  video  compression  system. We begin by defining the 
concept of an image  or  video  encoder  (compressor) and decoder  (decompressor). We then 
describe  the main functional  blocks of an image  encodeddecoder  (CODEC) and a video 
CODEC. 

3.2 IMAGE  AND  VIDEO  COMPRESSION 

Information-carrying  signals may be compressed, i.e.  converted  to  a  representation or form 
that  requires  fewer  bits  than  the  original  (uncompressed)  signal. A device or program that 
compresses  a  signal  is an encoder and a  device  or program that  decompresses  a signal is  a 
decoder. An enCOderDECoder pair  is  a CODEC. 

Figure 3.1 shows  a  typical  example of a  CODEC  as  part of a  communication  system.  The 
original  (uncompressed)  information  is  encoded  (compressed):  this  is source  coding. The 
source  coded  signal  is then encoded  further to add error  protection (channel  coding) prior to 
transmission over a channel. At the  receiver,  a channel  decoder detects andor corrects 
transmission  errors  and  a source  decoder decompresses the signal.  The  decompressed signal 
may  be identical  to  the  original signal (lossless compression) or it may  be distorted or 
degraded  in  some way (lossy compression). 



IMAGE AND VIDEO COMPRESSION 29 

:------ Channel CODEC ------7 

Figure 3.1 Source  coder,  channel  coder,  channel 

General-purpose  compression  CODECs  are  available that are designed to  encode  and 
compress  data  containing statistical redundancy. An information-carrying signal usually 
contains redundancy, which  means that it may (in theory) be  represented  in a more  compact 
way. For example,  characters within a text file occur with varying frequencies: in English, 
the letters E, T and A occur  more  often than the  letters Q, Z and X. This makes  it  possible  to 
compress a text file by representing  frequently  occurring  characters with short codes and 
infrequently  occurring  characters with longer  codes  (this principle is used in Hufinan coding, 
described in Chapter 8). Compression  is achieved by reducing the statistical redundancy in 
the text file. This type of general-purpose  CODEC  is known as  an entropy CODEC. 

Photographic  images and sequences of video  frames are not amenable  to compression 
using general-purpose CODECs.  Their  contents (pixel values) tend to  be highly correlated, 
i.e. neighbouring pixels have similar values, whereas an entropy  encoder performs best with 
data values that have a certain  degree of independence  (decorrelated  data).  Figure 3.2 
illustrates  the poor performance of a general-purpose  entropy  encoder with image  data. 
The  original  image  (a)  is  compressed and decompressed using a ZIP program to produce 

(c) and  decoded;  (c) P E G  encoded  and  decoded 
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Figure 3.3 Image or video CODEC 

image (b). This  is identical to the original (lossless compression), but the compressed file  is 
only 92% of the size of the original, i.e. there is very little compression. Image  (c)  is 
obtained by compressing and decompressing the original using the JPEG compression 
method. The compressed version is less than a quarter of the size of the original (over 
4 x compression) and the decompressed image looks almost identical to the original. (It is in 
fact slightly ‘degraded’ due  to the lossy compression process.) 

In this example, the JPEG method achieved good compression performance by applying a 
source model to the image before compression. The source model attempts to exploit the 
properties of video or image  data  and to represent it  in a form that can readily be compressed 
by an entropy encoder. Figure 3.3 shows the basic design of  an image or video CODEC 
consisting of a source model and an entropy encoderldecoder. 

Images and video signals have a number of properties that may  be exploited by source 
models. Neighbouring samples (pixels) within an image or a video  frame tend to be highly 
correlated and so there is significant spatial redundancy. Neighbouring regions within 
successive video  frames  also tend to be highly correlated (temporal redundancy). As well 
as these statistical properties (statistical redundancy), a source model may take advantage of 
subjective  redundancy, exploiting the sensitivity of the human visual system to various 
characteristics of images and video. For example, the HVS is much more sensitive to low 
frequencies than to high ones and so it  is possible to compress an image by eliminating 
certain high-frequency components. Image  (c) in Figure 3.2 was compressed by discarding 
certain subjectively redundant components of the information: the decoded image is not 
identical to the original but the information loss is not obvious to the human viewer. 
Examples of image and video source models include the following: 

3.2.1 DPCM (Differential Pulse  Code  Modulation) 

Each  sample or pixel is predicted from one or more previously transmitted samples. The 
simplest prediction is formed  from the previous pixel (pixel A in Figure 3.4). A more 
accurate prediction can be  obtained using a weighted average of neighbouring pixels (for 
example, A, B and C in Figure 3.4).  The actual pixel value X is subtracted from the 
prediction and the difference (the prediction error) is transmitted to the  receiver. The 
prediction error will typically be small due to spatial correlation, and compression can 
be achieved by representing common, small prediction errors with short binary codes and 
larger, less common  errors with longer codes. Further compression may be achieved by 
quantising the prediction error and reducing its precision: this is lossy compression as it 
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Figure 3.4 DPCM 

becomes impossible  to  exactly  reproduce  the original values at the decoder. DPCM may  be 
applied spatially (using adjacent pixels in the same  frame) and/or temporally (using adjacent 
pixels in a previous frame to form the prediction) and  gives  modest compression with  low 
complexity. 

3.2.2  Transform  Coding 

The  image  samples  are transformed into  another  domain (or representation)  and are 
represented  by  transform coeficcients. In  the ‘spatial domain’ (i.e. the original form of the 
image),  samples  are highly spatially correlated.  The  aim of  transform coding  is  to  reduce this 
correlation, ideally leaving  a  small number of visually significant transform coefficients 
(important to the appearance of the  original  image) and a large number of insignificant 
coefficients (that may  be  discarded  without significantly affecting the visual quality of the 
image).  The transform  process itself does not achieve  compression:  a lossy quantisation 
process in which the insignificant coefficients are removed,  leaving  behind a  small number 
of significant coefficients, usually follows it. Transform  coding  (Figure 3.5) forms the basis 
of  most  of the  popular  image and video compression  systems  and is described in more detail 
in this  chapter and in Chapter 7. 

3.2.3  Motion-compensated  Prediction 

Using a  similar principle to DPCM,  the  encoder  forms  a  model of the current  frame based  on 
the  samples of a previously  transmitted frame. The encoder  attempts  to ‘compensate’ for 
motion in a video sequence by translating (moving) or warping the  samples of the previously 
transmitted ‘reference’ frame.  The resulting motion-compensated predicted frame (the 
model of the current  frame)  is subtracted  from the current  frame to produce  a  residual 
‘error’ frame  (Figure 3.6). Further  coding usually  follows motion-compensated prediction, 
e.g. transform coding of the  residual  frame. 

Figure 3.5 Transform coding 
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Figure 3.6 Motion-compensated  prediction 

3.2.4 Model-based  Coding 

The  encoder  attempts  to  create a semantic model of the  video  scene,  for  example by 
analysing  and  interpreting  the  content of the scene. An example  is a ‘talking head’ model: 
the encoder  analyses a scene  containing a person’s head and shoulders  (a  typical  video 
conferencing scene)  and  models  the head as a 3-D object. The  decoder  maintains  its own 
3-D model of the head. Instead of transmitting  information that describes the entire  image, 
the encoder sends only the  animation  parameters  required  to ‘move’ the model, together with 
an error signal that compensates  for  the  difference  between  the modelled scene and the 
actual  video  scene  (Figure 3.7). Model-based coding has the potential  for  far  greater 

original I I reconstructed 

3-D model 3-D model 

Figure 3.7 Model-based  coding 
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compression than the other  source  models described above: however, the computational 
complexity required to  analyse  and synthesise 3-D  models of a video  scene in real time  is 
very high. 

3.3 IMAGE CODEC 

An image  CODEC  encodes and decodes  single  images  or individual frames  from a video 
sequence  (Figure 3.8) and may consist of a transform coding stage followed by guantisation 
and entropy coding. 

3.3.1 Transform Coding 

The transform coding  stage converts (transforms) the  image  from  the  spatial  domain  into 
another  domain in order  to  make it more  amenable  to compression. The transform may be 
applied to discrete  blocks of the  image (block transform) or to the  entire  image. 

Block transforms 

The spatial image  samples  are processed in discrete blocks, typically 8 x 8 or 16 x 16 
samples. Each block is transformed using a 2-D transform to  produce a block of transform 
coefficients. The performance of a block-based transform for  image compression depends on 
how well it can decorrelate the information in each  block. 

The Karhunen-Loeve transform (KLT) has  the ‘best’ performance of  any block-based 
image transform. The coefficients produced  by the KLT are decorrelated and the energy in 
the  block  is  packed  into a minimal  number of coefficients. The KLT is, however, very 
computationally inefficient, and it  is impractical because the functions required to carry out 
the transform (‘basis functions’) must be calculated in advance and transmitted to the 
decoder  for every image. The discrete  cosine transform (DCT)  performs nearly as well as 
the KLT and is much more  computationally efficient. Figure 3.9 shows a 16 x 16 block of 
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Figure 3.8 Image CODEC 
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(b) 

Figure 3.9 (a) 16 x 16 block  of  pixels;  (b) DCT coefficients 
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image samples (a) and the corresponding block of  coefficients produced by the DCT (b).  In 
the original block, the energy is distributed across the 256 samples and the latter are clearly 
closely interrelated (correlated). In the coefficient block, the energy is concentrated into a few 
significant  coefficients (at the top left). The coefficients are decorrelated: this means that the 
smaller-valued coefficients may be discarded (for example by quantisation) without 
significantly affecting the quality of the reconstructed image block at the decoder. 

The 16 x 16 array of coefficients shown in Figure 3.9 represent spatial  frequencies in  the 
original block. At  the top left of the array are the low-frequency components, representing 
the gradual changes of brightness (luminance) in  the original block. At the bottom right of 
the  array are high-frequency components and these represent rapid changes in brightness. 
These frequency components are analogous to the components produced by Fourier analysis 
of a time-varying signal (and in fact the DCT is closely related to the discrete Fourier 
transform) except that here the components are 2-D. The example shown  in Figure 3.9  is 
typical for a photographic image: most of  the  coefficients produced by the DCT are 
insignificant  and can be discarded. This makes the DCT a powerful  tool for image and 
video compression. 

Image transforms 

The DCT  is usually applied to small, discrete blocks of an image, for reasons of practicality. 
In contrast, an image tran.$orm may be applied to a complete video image (or to a large ‘tile’ 
within the image). The most popular transform of this type is the discrete  wavelet  transform. 
A 2-D wavelet transform is applied to the original image in order to decompose it into a 
series of filtered ‘sub-band’ images (Figure 3.10). Image (a) is processed in a series of stages 
to produce the ‘wavelet decomposition’ image (b). This is made  up of a series of components, 
each containing a subset of the spatial frequencies in the image. At  the top left is a low-pass 
filtered version of the original and moving to the bottom right, each component contains 
progressively higher-frequency information that adds the  ‘detail’ of the image. It is clear that 
the higher-frequency components are relatively ‘sparse’, i.e. many  of the values (or 
‘coefficients’)  in these components are zero or insignificant. The wavelet transform is  thus 
an efficient  way  of decorrelating or concentrating the important information into a few 
significant  coefficients. 

The wavelet transform is particularly effective for  still  image compression and has been 
adopted as part of the PEG-2000 standard  and  for  still  image  ‘texture’  coding  in  the  MPEG-4 
standard. Wavelet-based compression is discussed further in Chapter 7. 

Another image transform that has received much attention is the so-called fractal 
transform. A fractal transform coder attempts to represent an image as a set of scaled and 
translated arbitrary ‘basis  patterns’. Fractal-based coding has not, however,  shown  suffi- 
ciently good performance to be included in any of  the international standards for video and 
image coding and so we will not discuss it in detail. 

3.3.2 Quantisation 

The block and image transforms described above do not themselves achieve any compres- 
sion. Instead, they represent the image in a different domain in which the image data is 
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(b) 

Figure 3.10 Wavelet  decomposition of image 
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separated  into  components of varying ‘importance’ to the appearance of the  image.  The 
purpose of quantisation  is  to remove the  components of the  transformed  data  that  are 
unimportant  to the visual  appearance of the  image and to retain  the  visually  important 
components.  Once  removed, the less  important  components  cannot be replaced and so 
quantisation  is  a lossy process. 

Example 

1. The DCT coefficients shown earlier  in  Figure 3.9 are  quantised by dividing  each 
coefficient by an integer. The  resulting  array of quantised  coefficients  is shown in 
Figure 3.1 l(a): the large-value  coefficients  map  to  non-zero  integers and the  small- 
value  coefficients  map to zero. 

2.  Rescaling  the  quantised  array  (multiplying  each coefficient by the same  integer)  gives 
Figure  3.11(b).  The  magnitudes of the  larger coefficients are  similar to the  original 
coefficients; however, the  smaller  coefficients  (set  to  zero  during  quantisation)  cannot 
be recreated  and  remain at zero. 

3. Applying an inverse DCT to  the  rescaled array gives the  block of image  samples shown 
in Figure  3.12: this looks  superficially  similar  to  the  original  image  block but some of 
the information has been lost through quantisation. 

It  is  possible to vary the ‘coarseness’ of the  quantisation  process (using a  quantiser ‘scale 
factor’  or  ‘step  size’).  ‘Coarse’  quantisation will tend to  discard most of the coefficients, 
leaving only the most significant,  whereas ‘fine’ quantisation  will  tend to leave more 
coefficients in the  quantised  block.  Coarse  quantisation usually gives higher  compression at 
the  expense of a  greater loss in  image  quality.  The  quantiser  scale  factor  or  step  size  is  often 
the main parameter used to control  image  quality and compression in an image  or  video 
CODEC.  Figure  3.13 shows a  small  original  image  (left) and the  effect of compression and 
decompression with fine quantisation  (middle) and coarse  quantisation  (right). 

3.3.3 Entropy Coding 

A typical  image  block will contain  a few significant non-zero  coefficients and a  large  number 
of zero  coefficients  after  block  transform  coding and quantisation.  The  remaining  non-zero 
data  can be efficiently compressed using a  statistical  compression method (‘entropy 
coding’): 

1. Reorder the quantised coefficients. The  non-zero  quantised  coefficients of a  typical image 
block tend to be clustered  around  the  ‘top-left  comer’,  i.e.  around the low frequencies 
(e.g.  Figure  3.9).  These  non-zero values can be grouped  together in sequence by 
reordering the 64  coefficients,  for  example in a zigzag scanning  order  (Figure 3.14). 
Scanning through in a  zigzag  sequence from the  top-left (lowest frequency) to the 
bottom-right  (highest  frequency)  coefficients  groups  together  the  significant low- 
frequency  coefficients. 
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Figure 3.11 (a) Quantised DCT coefficients; (b) rescaled 

2. Run-level coding. The  reordered coefficient array is usually  'sparse',  consisting  of  a 
group of non-zero  coefficients  followed by  zeros  (with  occasional  non-zero  higher- 
frequency coefficients). This type of array  may be compactly  represented as a series of 
(run, level) pairs,  as  shown  in  the  example  in  Table 3.3.  The  first  number  in  the  (run, 
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Figure 3.12 Reconstructed  block of image  samples 

level) pair  represents  the  number of preceding zeros and the second number  represents a 
non-zero value (level). For example, (5, 12) represents five zeros followed by 12. 

3. Entropy coding. A statistical  coding algorithm is  applied to the (run,  level) data. The 
purpose of the entropy coding algorithm is to  represent  frequently  occurring  (run,  level) 
pairs with a short code and infrequently  occurring  (run,  level) pairs with a longer  code. In 
this way, the run-level data may be compressed  into a small number of bits. 

Huffman  coding and arithmetic coding are widely used for entropy coding of image  and 
video data. 

Huffman coding replaces  each ‘symbol’ (e.g. a [run,  level] pair) with a codeword  containing 
a variable number of bits. The  codewords  are  allocated based on the statistical distribution of 

Figure 3.13 (a)  Original  image;  (b)  fine  quantisation; (c) coarse  quantisation 
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Figure 3.14 Zigzag  reordering of quantised  coefficients 

the  symbols.  Short  codewords  are  allocated  to common symbols and longer  codewords  are 
allocated to infrequent  symbols.  Each  codeword  is  chosen to be ‘uniquely decodeable’, so 
that a decoder  can  extract  the  series of variable-length  codewords  without  ambiguity. 
Huffman  coding  is well suited to practical  implementation and is widely used  in practice. 

Arithmetic coding maps a series of symbols  to a fractional  number  (see  Chapter 8) that is 
then converted  into a binary  number  and  transmitted.  Arithmetic  coding has the potential  for 
higher  compression than Huffman  coding.  Each symbol may be represented with a fractional 
number of bits  (rather than just an integral  number of bits) and this means that the bits 
allocated  per  symbol may be more accurately matched to the  statistical  distribution of the 
coded  data. 

3.3.4 Decoding 

The output of the entropy encoder is a sequence of binary codes representing the  original  image 
in  compressed  form. In order to recreate  the  image  it  is  necessary to decode  this  sequence 
and  the  decoding  process  (shown  in  Figure 3.8) is  almost  the  reverse of the  encoding  process. 

An entropy  decoder  extracts run-level symbols  from  the bit sequence.  These  are  converted 
to a sequence of coefficients  that  are  reordered  into a block of quantised  coefficients.  The 
decoding  operations up to this  point  are  the  inverse of the equivalent  encoding  operations. 
Each  coefficient  is  multiplied by the  integer  scale  factor  (‘rescaled’).  This  is  often  described 

Table 3.3 Run-level  coding  example 

Reordered  coefficient data 24,3, -9,O, -2 ,0 ,0 ,0 ,0 ,0 ,12 ,0 ,0 ,0 ,2 , .  
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as ‘inverse quantisation’, but in  fact the loss of precision due to quantisation cannot  be 
reversed and so the rescaled coefficients are not identical to the original transform 
coefficients. 

The rescaled coefficients are transformed with an inverse transform to reconstruct a 
decoded  image.  Because of the data loss during quantisation, this image will  not be identical 
to  the original image:  the  amount of difference depends partly on the ‘coarseness’ of 
quantisation. 

3.4 VIDEO CODEC 

A video signal consists of a sequence of individual frames.  Each  frame may be compressed 
individually using an image  CODEC as described above: this is described as intra-frame 
coding, where  each  frame is ’intra’ coded without any reference to other  frames. However, 
better compression performance may be achieved by exploiting the temporal redundancy in 
a video sequence (the similarities between successive video  frames).  This may be achieved 
by adding a ‘front end’  to  the  image CODEC, with two main functions: 

1. Prediction: create a prediction of the current frame based on one or more previously 
transmitted frames. 

2. Compensation: subtract the prediction from the current frame to produce a ‘residual 
frame’. 

The residual frame is then processed using an  ‘image CODEC’. The key to this approach is 
the prediction function: if the prediction is accurate, the residual frame will contain little data 
and  will hence be  compressed  to a very small size by the  image CODEC. In order  to  decode 
the frame, the decoder must ‘reverse’ the compensation process, adding  the prediction to the 
decoded residual frame (reconstruction) (Figure 3.15). This is inter-frame  coding: frames 
are coded based on  some relationship with other video frames, i.e. coding exploits the 
interdependencies of video frames. 

ENCODER  DECODER 

I Create I prediction 
Create 

prediction 

Prevlous 
frame@) 

Prevlous 
frame@) 

Figure  3.15 Video CODEC with prediction 
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3.4.1 Frame  Differencing 

The  simplest  predictor  is  just the previous transmitted frame.  Figure 3.16 shows  the residual 
frame  produced by subtracting the previous frame  from the current  frame in a video 
sequence.  Mid-grey  areas of the  residual  frame  contain zero data:  light and dark areas 
indicate  positive and negative residual  data respectively. It  is  clear that much of the residual 
data is zero: hence, compression efficiency can be  improved by compressing the residual 
frame  rather than the current frame. 

Table 3.4 Prediction  ‘drift’ 

Encoder  Encoder  output/  Decoder 
Encoder  input  prediction  decoder  input  prediction  Decoder  output 

Original  frame 1 Zero Compressed Zero  Decoded  frame 1 

Original  frame 2 Original  frame 1 Compressed Decoded  frame 1 Decoded  frame 2 

Original frame 3 Original  frame 2 Compressed Decoded  frame 2 Decoded  frame 3 

frame 1 

residual  frame 2 

residual  frame 2 
... . . .  
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Figure 3.17 Encoder  with  decoding loop 

The decoder faces a potential problem that can be illustrated as follows. Table  3.4  shows 
the sequence of operations required to encode and decode a series of video frames using 
frame differencing. For  the  first frame the encoder and decoder use no prediction. The 
problem starts with frame 2: the encoder uses the original frame 1 as a prediction and 
encodes the resulting residual. However,  the decoder only has the decoded frame 1 available 
to form the prediction. Because the coding process is lossy, there is a difference between the 
decoded and original frame 1 which leads to a small error in  the prediction of frame 2 at 
the decoder. This error will build up with each successive frame and the encoder and decoder 
predictors will rapidly ‘drift’ apart, leading to a significant drop in decoded quality. 

The solution to this problem is  for the encoder to use a decoded frame to form  the 
prediction. Hence the encoder in the above example decodes (or reconstructs) frame 1 to 
form a prediction for frame 2. The encoder and decoder use the same prediction and drift 
should be reduced or removed. Figure 3.17  shows the complete encoder which now includes 
a decoding ‘loop’  in order to reconstruct its prediction reference. The reconstructed (or 
‘reference’) frame  is stored in the encoder and in the decoder to form the prediction for the 
next coded frame. 

3.4.2 Motion-compensated  Prediction 

Frame differencing gives better compression performance than intra-frame coding when 
successive frames are very similar, but does not perform well  when there is a significant 
change between the previous and current frames. Such changes are usually due to movement 
in  the video scene and a significantly better prediction can be achieved by estimating this 
movement and compensating for  it. 

Figure 3.18 shows a video CODEC that uses motion-compensated prediction. Two new 
steps are required in the encoder: 

1. Motion estimation: a region of the current frame (often a rectangular block of luminance 
samples) is compared with neighbouring regions of the previous reconstructed frame. 
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Figure 3.18 Video  CODEC  with  motion  estimation  and  compensation 

The  motion  estimator  attempts  to find the ‘best match’, i.e. the neighbouring block in the 
reference  frame that gives the smallest residual block. 

2. Motion  compensation: the ‘matching’ region or block from the reference  frame 
(identified by the  motion  estimator)  is  subtracted  from the current region or block. 

The  decoder  carries out the same  motion compensation operation to reconstruct  the 
current frame.  This  means that the encoder  has  to transmit the location of the ‘best’ matching 
blocks to  the  decoder  (typically in the form of a set of motion vectors). 

Figure 3.19 shows a residual  frame  produced by subtracting a motion-compensated 
version of the previous frame  from  the  current frame (shown in Figure  3.16).  The residual 
frame  clearly  contains  less  data than the residual in Figure 3.16. This  improvement in 
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compression  does not come without a  price: motion estimation can be  very computa- 
tionally  intensive. The design of a motion estimation  algorithm  can have a  dramatic  effect on 
the  compression  performance and computational  complexity of a  video CODEC. 

3.4.3 Transform,  Quantisation and Entropy  Encoding 

A block or image  transform is applied  to  the  residual  frame and the  coefficients  are  quantised 
and reordered. Run-level pairs  are  entropy  coded as before  (although  the  statistical 
distribution and hence  the  coding  tables  are  generally  different  for  inter-coded  data). If 
motion-compensated  prediction is used, motion vector  information must be sent in addition 
to the run-level data.  The motion vectors  are  typically  entropy  encoded  in  a  similar way to 
run-level pairs,  i.e.  commonly  occurring motion vectors  are coded with shorter  codes  and 
uncommon vectors  are  coded with longer  codes. 

3.4.4  Decoding 

A motion-compensated  decoder  (Figure 3.18) is usually simpler than the  corresponding 
encoder.  The  decoder  does not need a motion estimation  function  (since  the motion 
information  is  transmitted in the coded bit stream) and it  contains only a  decoding  path 
(compared with the  encoding  and  decoding  paths in the encoder). 

3.5 SUMMARY 

Efficient coding of images and video  sequences involves creating  a model of the  source  data 
that converts  it  into  a  form that can be compressed. Most image and video  CODECs 
developed over the last two decades have been based around  a common set of ‘building 
blocks’.  For motion video  compression,  the first step  is  to  create  a  motion-compensated 
prediction of the frame  to be compressed, based on one  or more previously transmitted 
frames.  The  difference  between this model and the  actual  input  frame  is then coded using an 
image  CODEC.  The  data  is  transformed  into  another  domain  (e.g.  the DCT or wavelet 
domain),  quantised,  reordered and compressed using an entropy encoder. A decoder must 
reverse  these  steps  to  reconstruct  the  frame: however, quantisation  cannot be reversed and so 
the  decoded  frame  is an imperfect copy of the  original. 

An encoder and decoder must clearly use a  compatible set of algorithms in order to 
successfully  exchange  compressed  image or video  data. Of prime  importance  is  the  syntax or 
structure of the  compressed  data. In the past 15 years there has been a  significant  worldwide 
effort to develop  standards  for  video and image  compression.  These  standards  generally 
describe  a  syntax (and a  decoding  process)  to support video or image  communications  for  a 
wide range of applications.  Chapters 4 and 5 provide an overview of the main standards 
bodies and JPEG, MPEG and H . 2 6 ~  video and image  coding  standards. 



Video  Coding  Standards: 
JPEG and MPEG 

4.1 INTRODUCTION 

The majority of video CODECs in use today conform to  one of the international standards 
for video coding. Two standards bodies, the International Standards Organisation (KO) and 
the International Telecommunications Union (ITU), have developed a series of standards 
that have shaped the development of the visual communications industry. The IS0  JPEG and 
MPEG-2 standards have perhaps had the biggest impact: JPEG has become one of the most 
widely used formats for still image storage and MPEG-2 forms the heart of digital television 
and DVD-video systems. The ITU’s H.261 standard was originally developed for video 
conferencing over the ISDN, but H.261 and H.263  (its successor) are now widely used for 
real-time video communications over a range of networks including the Internet. 

This chapter begins by describing the process by which these standards are proposed, 
developed and published. We describe the popular IS0 coding standards, JPEG and P E G -  
2000 for still images, MPEG-1, MPEG-2 and MPEG-4 for moving video. In Chapter 5 we 
introduce the ITU-T H.261,  H.263 and H.26L standards. 

4.2 THE INTERNATIONAL  STANDARDS BODIES 

It was recognised in the 1980s that video coding and transmission could become a  comm- 
ercially important application area.  The development of video coding technology since then 
has been bound up with a series of international standards for image and video coding. Each 
of these standards supports a particular application of video coding (or a set of applications), 
such as video conferencing and digital television. The aim of  an image or video coding 
standard is to support a particular class of application and to encourage interoperability 
between equipment and systems from different manufacturers. Each standard describes a 
syntax or method of representation for compressed images or video. The developers of each 
standard have attempted to incorporate the best developments in video coding technology (in 
terms of coding efficiency and ease of practical implementation). 

Each of the international standards takes a similar approach to meeting these goals. A 
video coding standard describes syntax for representing compressed video data and the 
procedure for decoding this data as well as (possibly) a ‘reference’ decoder and methods of 
proving conformance with the standard. 

Video Codec Design
Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
ISBNs: 0-471-48553-5 (Hardback); 0-470-84783-2 (Electronic)
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In order to provide the maximum flexibility and scope for innovation, the standards do not 
define a video or image  encoder: this is left  to the designer’s discretion. However, in practice 
the syntax elements  and reference decoder limit the scope for alternative designs that still 
meet the requirements of the  standard. 

4.2.1 The Expert Groups 

The most important developments in video coding standards have been due  to two 
international standards bodies: the ITU (formerly the CCITT)’ and the ISO.’ The ITU has 
concentrated on standards  to support real-time, two-way video communications.  The group 
responsible for developing these standards is known as VCEG (Video Coding Experts 
Group) and has issued: 

0 H.261 (1990): Video telephony over constant bit-rate channels, primarily aimed at ISDN 
channels of p x 64 kbps. 

H.263 (1995): Video telephony over circuit- and packet-switched networks, supporting a 
range of channels from low  bit rates (20-30 kbps) to high bit rates (several Mbps). 

0 H.263+ (1998),  H.263++ (2001): Extensions to H.263 to support a wider range of 
transmission scenarios and improved compression performance. 

0 H.26L (under development): Video communications over channels ranging from very  low 
(under 20 kbps) to high bit rates. 

The H . 2 6 ~  series of standards will be described in Chapter 5. In parallel with the ITU’s 
activities, the IS0 has issued standards to support storage and distribution applications. The 
two relevant groups are JPEG (Joint Photographic Experts Group) and MPEG (Moving 
Picture Experts Group) and they have been responsible for: 

0 JPEG (1992)3:  Compression of still images for storage purposes. 

0 MPEG-1 ( 1993)4: Compression of video and audio for storage and real-time play back on 
CD-ROM (at a bit rate of 1.4Mbps). 

0 MPEG-2 (1995)’: Compression and transmission of video and audio programmes for 
storage and broadcast applications (at typical bit rates of 3-5Mbps and above). 

0 MPEG-4 (1998)? Video and audio compression and transport for multimedia terminals 
(supporting a wide range of bit rates from around 20-30 kbps to high bit rates). 

0 JPEG-2000 (2000)7: Compression of still images (featuring better compression perfor- 
mance than the original JPEG  standard). 

Since releasing Version 1 of MPEG-4, the MPEG committee has concentrated on ‘frame- 
work’ standards that are not primarily concerned with video coding: 

0 MPEG-7’: Multimedia  Content Description Interface. This is a standard for describing 
multimedia content data, with  the aim of providing a standardised  system for content-based 
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indexing and retrieval  of multimedia information. MPEG-7 is concerned with access to 
multimedia data rather than the mechanisms for coding and compression. MPEG-7 is 
scheduled to become an international standard in late 2001. 

0 MPEG-219: Multimedia Framework. The MPEG-21 initiative looks beyond coding and 
indexing to the complete multimedia content ‘delivery chain’, from creation through 
production and delivery to ‘consumption’ (e.g.  viewing the content). MPEG-21 will 
define  key elements of this delivery framework, including content description and 
identification, content handling, intellectual property management, terminal and network 
interoperation and content representation. The motivation behind MPEG-21 is to enco- 
urage integration and interoperation between the diverse technologies that are required to 
create, deliver and decode multimedia data. Work on the proposed standard started in 
June 2000. 

Figure 4.1 shows the relationship between the standards bodies, the expert groups and the 
video coding standards. The expert groups have addressed different application areas (still 
images, video conferencing, entertainment and multimedia), but in practice there are many 
overlaps between the applications of the standards. For example, a version of JPEG, Motion 
JPEG, is widely  used for video conferencing and video surveillance; MPEG-1 and MPEG-2 
have been  used for video conferencing applications; and the core algorithms of MPEG-4 and 
H.263 are identical. 

In recognition of these natural overlaps, the expert groups have cooperated at several 
stages and the result of  this cooperation has led to outcomes such as the ratification of 
MPEG-2 (Video) as ITU standard H.262 and the incorporation of ‘baseline’ H.263 into 
MPEG-4 (Video). There is also interworking between the VCEG and MPEG committees and 

Figure 4.1 International  standards bodies 
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other related bodies such as the Internet Engineering Task Force (IETF), industry groups 
(such as the Digital Audio Visual Interoperability Council, DAVIC) and other groups within 
ITU and ISO. 

4.2.2  The  Standardisation  Process 

The development of an international standard for image or video coding is typically an 
involved process: 

1. The scope  and  aims of the standard are defined. For example, the emerging H.26L 
standard is designed with real-time video communications applications in mind and aims 
to improve performance over the preceding H.263 standard. 

2. Potential technologies  for meeting these aims  are evaluated, typically by competitive 
testing. The test scenario and criteria are defined and interested parties are encouraged to 
participate and  demonstrate the performance of their proposed solutions. The  'best' 
technology is chosen based on criteria such as coding performance and implementation 
complexity. 

3. The chosen technology is implemented as a test model. This is usually a software 
implementation that is made available to members of the expert group for experimenta- 
tion, together with a test model document that describes its operation. 

4. The test model is developed further: improvements and features are proposed and 
demonstrated by members of the expert group and the best of these developments are 
integrated into the test model. 

5. At a certain point (depending  on the timescales of the standardisation effort and on 
whether the aims of the standard have been sufficiently met by the test model), the model 
is 'frozen' and the test model document forms the basis of a drafl standard. 

6. The  draft  standard is reviewed and after approval becomes a published international 
standard. 

Officially, the standard is not available in the public domain until the final stage of approval 
and publication. However, because of the fast-moving nature of the video communications 
industry, draft documents and test models can be  very useful for developers and manufac- 
turers. Many of the ITU VCEG  documents and models are available via public FTP." Most 
of the  MPEG working documents  are restricted to members of MPEG itself, but a number of 
overview documents are available at the MPEG website." Information and links about JPEG 
and  MPEG are a ~ a i l a b l e . ' ~ . ' ~  Keeping in touch with the latest developments and gaining 
access to draft standards are powerful reasons for companies and organisations to become 
involved with the MPEG,  JPEG and VCEG committees. 

4.2.3  Understanding  and  Using the  Standards 

Published ITU and I S 0  standards may be purchased from the relevant standards body.'.* For 
developers of standards-compliant video coding systems, the published standard is an 
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essential point of reference as it defines  the syntax and capabilities that a video CODEC 
must conform to in order to successfully interwork with other systems. However, the 
standards themselves are not an ideal introduction to the concepts and techniques of video 
coding: the aim of the standard is to define  the syntax as explicitly and unambiguously as 
possible and this does not make for easy reading. 

Furthermore, the standards do not necessarily indicate practical constraints that a designer 
must take into account. Practical issues and good design techniques are deliberately left to 
the discretion of manufacturers in  order to encourage innovation and competition, and so 
other sources are a much better guide to practical design issues. This book aims to collect 
together information and guidelines for designers and integrators; other texts that may  be 
useful for developers are listed  in the bibliography. 

The test models produced by  the expert groups are designed to facilitate experimentation 
and comparison of alternative techniques, and the test model (a software model with an 
accompanying document) can provide a valuable insight into the implementation of the 
standard. Further documents such as implementation guides (e.g. H.263 Appendix IIII4) are 
produced by  the expert groups to assist with  the interpretation of the standards for practical 
applications. 

In recent years the standards bodies have recognised the need to direct developers towards 
certain subsets of the tools and options available within the standard. For example, H.263 
now has a total  of 19 optional modes and it  is unlikely that any particular application would 
need to implement all of these modes. This has led to the concept of profiles and levels. A 
‘profile’ describes a subset of functionalities that may  be suitable for a particular application 
and a ‘level’ describes a subset of operating resolutions (such as frame resolution and frame 
rates) for certain applications. 

4.3 JPEG  (JOINT  PHOTOGRAPHIC  EXPERTS  GROUP) 

4.3.1 JPEG 

International standard IS0  109183 is popularly known by the acronym of the group that 
developed it, the Joint Photographic Experts Group. Released in 1992, it provides a method 
and syntax for compressing continuous-tone still images (such as photographs). Its main 
application is storage and transmission of still images in a compressed form, and it  is widely 
used in digital imaging, digital cameras, embedding images in web pages, and many more 
applications. Whilst aimed at still image compression, JPEG has found some popularity as a 
simple and effective method of compressing moving images (in the form of Motion JPEG). 

The JPEG standard defines a syntax and decoding process for a baseline CODEC and this 
includes a set of features that are designed to suit a wide range of applications. Further 
optional modes are defined that extend the capabilities of the baseline CODEC. 

The baseline CODEC 

A baseline JPEG  CODEC  is shown in block diagram form  in Figure 4.2. Image data is 
processed one 8 x 8 block at a time. Colour components or planes (e.g.  R,  G, B or Y, Cr, Cb) 
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Figure 4.2 PEG baseline CODEC block diagram 

may be processed separately (one complete  component  at a time)  or  in  interleaved  order (e.g. 
a block  from  each of three  colour  components  in  succession).  Each  block is coded using the 
following steps. 

Level shift Input  data  is shifted so that it is distributed about zero: e.g. an  8-bit  input 
sample  in the range 0 : 255 is shifted to the range - 128 : 127 by subtracting 128. 

Forward DCT An 8 x 8 block transform, described in Chapter 7. 

Quantiser Each of the 64 DCT coefficients C, is  quantised by integer division: 

Cqij = round (2) 
Qv is a quantisation  parameter and Cqu is the quantised coefficient. A larger value of Qv 
gives higher compression (because more coefficients are set to zero after  quantisation)  at the 
expense of increased  distortion in the  decoded  image.  The 64 parameters Qv (one  for each 
coefficient position i j )  are stored in a quantisation  'map'.  The  map is not specified by the 
standard but can be perceptually weighted so that lower-frequency coefficients (DC and low- 
frequency AC coefficients) are quantised  less than higher-frequency coefficients. Figure 4.3 

Low frequencies 

24 ~ ' . . . .  64 78 87 103 121 

33 95 98 1 
High  frequencies Figure 43  PEG quantisation  map 
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gives  an  example of a  quantisation  map:  the  weighting  means that the visually important 
lower  frequencies  (to  the  top  left of the  map)  are  preserved and the less  important  higher 
frequencies  (to  the  bottom  right)  are more highly compressed. 

Zigzag  reordering The 8 x 8 block of quantised  coefficients  is  rearranged in a  zigzag 
order so that the low frequencies  are  grouped  together  at the start of the  rearranged array. 

DC differential  prediction Because  there  is  often  a high correlation  between the DC 
coefficients of neighbouring  image  blocks,  a  prediction of the DC coefficient is  formed  from 
the DC coefficient of the preceding  block: 

The  prediction DCpred is coded and transmitted,  rather than the actual coefficient DC,,,. 

Entropy  encoding The  differential DC coefficients and AC coefficients  are  encoded as 
follows.  The  number of bits  required to represent  the DC coefficient, SSSS, is  encoded using 
a  variable-length  code.  For  example, SSSS=O indicates that the DC coefficient is  zero; 
SSSS = 1 indicates that the DC coefficient is +/- 1 (i.e. it can be represented with 1 bit); 
SSSS=2 indicates that the coefficient is +3, $2,  -2 or -3 (which can be represented with 
2 bits).  The  actual value of the  coefficient, an SSSS-bit number, is appended to the variable- 
length code  (except when SSSS=O). 

Each AC coefficient is coded as a  variable-length  code RRRRSSSS, where RRRR 
indicates the number of preceding  zero  coefficients and SSSS indicates  the  number of bits 
required to represent  the coefficient (SSSS=O is not required).  The  actual value is  appended 
to the variable-length  code as described  above. 

Example 

A run of six  zeros  followed by the value +5 would be coded  as: 

[RRRR=6] [SSSS=3] [Value= $51 

Marker  insertion Marker  codes  are  inserted  into  the  entropy-coded data sequence. 
Examples of markers  include the frame  header  (describing  the  parameters of the  frame 
such as width,  height and number of colour  components),  scan headers (see  below) and 
restart  interval  markers  (enabling  a  decoder  to  resynchronise with the coded sequence if  an 
error  occurs). 

The  result of the encoding  process  is  a  compressed  sequence of bits,  representing  the  image 
data, that may be transmitted or stored. In order  to view the image, it must be decoded by 
reversing the above steps,  starting with marker  detection and entropy  decoding and ending 
with an inverse DCT. Because quantisation  is not a  reversible  process  (as  discussed in 
Chapter 3), the decoded  image  is not identical to the  original  image. 
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Lossless JPEG 

P E G  also defines a lossless  encoding/decoding  algorithm that uses DPCM (described in 
Chapter 3). Each pixel is  predicted  from  up  to  three neighbouring pixels  and  the  predicted 
value is entropy coded  and  transmitted.  Lossless P E G  guarantees  image fidelity at the 
expense of relatively  poor  compression performance. 

Optional modes 

Progressive encoding involves encoding the  image in a series of progressive ‘scans’. The 
first scan  may  be  decoded  to provide a ‘coarse’ representation of the image; decoding each 
subsequent  scan progressively improves the  quality of the image until the final quality  is 
reached. This  can  be  useful  when,  for  example, a compressed  image  takes a long time to 
transmit: the  decoder  can quickly recreate  an  approximate  image  which  is then further 
refined in a series of passes. Two versions of progressive encoding  are supported: spectral 
selection, where  each  scan consists of a subset of the DCT coefficients of every block (e.g. 
(a)  DC  only; (b) low-frequency AC; (c) high-frequency AC coefficients) and successive 
approximation, where  the first scan  contains N most significant bits of each coefficient and 
later  scans  contain the less significant bits.  Figure 4.4 shows an image  encoded and decoded 
using progressive spectral selection. The first image  contains the DC coefficients of each 
block, the second image  contains  the DC  and two lowest AC coefficients and the third 
contains  all 64 coefficients in each block. 

(a) 

Figure 4.4 Progressive  encoding  example  (spectral selection): (a)  DC only; (b) DC + two AC; (c) all 
coefficients 
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Figure 4.4 (Contined) 

Hierarchical encoding compresses an image  as a series of components at different spatial 
resolutions. For example,  the first component may be a subsampled  image  at a low spatial 
resolution, followed by further  components  at successively higher resolutions. Each 
successive component  is  encoded differentially from previous components,  i.e. only the 
differences are encoded. A decoder  may choose to decode only a subset of the  full resolution 
image; alternatively, the successive  components  may be used to progressively refine the 
resolution in a similar way to progressive encoding. 
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The two progressive encoding modes and the hierarchical encoding mode can be thought 
of as scalable coding modes.  Scalable coding will be discussed further in the section on 
MPEG-2. 

4.3.2 Motion JPEG 

A ‘Motion JPEG’ or MJPEG  CODEC  codes a video sequence as a series of JPEG images, 
each corresponding to one  frame of video (i.e. a series of intra-coded frames). Originally, 
the JPEG standard was not intended to be  used  in this way: however, MJPEG has 
become  popular and is used in a number of video communications and storage applica- 
tions. No attempt  is  made to exploit the inherent temporal redundancy in a moving video 
sequence and so compression performance is poor compared with inter-frame CODECs (see 
Chapter 5 ,  ‘Performance Comparison’). However, MJPEG has a number of practical 
advantages: 

0 Low complexity: algorithmic complexity, and requirements for hardware, processing and 
storage are very low compared with even a basic inter-frame CODEC (e.g. H.261). 

0 Error tolerance: intra-frame  coding limits the effect of an error to a single decoded frame 
and so is inherently resilient to transmission errors. Until recent developments in error 
resilience (see Chapter 1 l), MJPEG outperformed inter-frame CODECs in  noisy 
environments. 

0 Market awareness: JPEG  is perhaps the most widely known and used  of the compression 
standards and so potential users are already familiar with the technology of Motion JPEG. 

Because of its poor compression performance, MJPEG is only suitable for high-bandwidth 
communications (e.g. over dedicated networks). Perversely, this means that users generally 
have a good  experience of MJPEG because installations do not tend to suffer from the 
bandwidth and delay problems encountered by inter-frame CODECs used over ‘best effort’ 
networks (such as the Internet) or low bit-rate channels. An MJPEG  coding integrated 
circuit(IC), the Zoran ZR36060, is described in Chapter  12. 

4.3.3  JPEG-2000 

The original JPEG standard has gained widespread acceptance and is now ubiquitous 
throughout computing applications: it is the main format for photographic images on the 
world wide web and it  is widely  used for image storage. However, the block-based DCT 
algorithm has a number of disadvantages, perhaps the most important of which is the 
‘blockiness’ of highly compressed  JPEG  images (see Chapter 9). Since  its release, many 
alternative coding schemes  have been shown to outperform baseline JPEG. The need for 
better performance at high compression ratios led to the development of the JPEG-2000 

The features that JPEG-2000  aims to support are as follows: 

0 Good  compression performance, particularly at high compression ratios. 
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0 Efficient compression of continuous-tone, bi-level and compound images (e.g. photo- 
graphic images with overlaid text: the original JPEG does not handle this type of image 
well). 

Lossless and lossy compression (within the same compression framework). 

0 Progressive transmission (JPEG-2000 supports SNR scalability, a similar concept to 
JPEG’s successive approximation mode, and spatial scalability, similar to JPEG’s 
hierarchical mode). 

Region-of-interest (ROI) coding.  This  feature allows an encoder  to specify an arbitrary 
region within the image that should be treated differently during encoding: e.g. by 
encoding the region with a higher quality or by allowing independent decoding of the 
ROI. 

0 Error resilience tools including data partitioning (see the description of MPEG-2 below), 
error detection and concealment (see Chapter 11 for more details). 

Open architecture. The JPEG-2000 standard provides an open ‘framework’ which should 
make it relatively easy to add further coding features either as part of the standard or as a 
proprietary ‘add-on’ to the standard. 

The architecture of a JPEG-2000 encoder is shown in Figure 4.5. This is superficially similar 
to the JPEG architecture but one important difference is that the same architecture may  be 
used for lossy or lossless coding. 

The basic coding unit of JPEG-2000 is a ‘tile’. This is normally a 2” x 2” region of the 
image, and the image is ‘covered’ by non-overlapping identically sized tiles. Each tile is 
encoded as follows: 

Transform: A wavelet transform is carried out on each tile to decompose it into a series of 
sub-bands (see Sections 3.3.1 and 7.3). The transform may be reversible (for lossless 
coding applications) or irreversible (suitable for lossy coding applications). 

Quantisation: The coefficients of the wavelet transform are quantised (as described in 
Chapter 3) according to the ‘importance’ of each sub-band to the final image appearance. 
There is  an option to leave the coefficients unquantised (lossless coding). 

Entropy coding: JPEG-2000 uses a form of arithmetic coding to encode the quantised 
coefficients prior to storage or transmission. Arithmetic coding can provide better 
compression efficiency than variable-length coding and is described in Chapter 8. 

The result is a compression standard that can give significantly better image compression 
performance than JPEG. For the same image quality, JPEG-2000 can usually compress 
images by at least twice as much as  JPEG. At high compression ratios, the quality of images 

Image  data -1 transform wavelet H Quantiser H Arithmetic -1 
encoder 

Ill I 

Figure 4.5 Architecture of JPEG-2000  encoder 
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degrades  gracefully, with the  decoded  image showing a gradual  ‘blurring’  effect  rather than 
the  more  obvious  blocking  effect  associated with the DCT. These  performance  gains 
are  achieved  at  the  expense of increased  complexity and storage  requirements  during 
encoding and decoding.  One  effect of this  is  that  images  take  longer  to  store and display 
using JPEG-2000  (though  this  should be less of an issue  as  processors  continue to get faster). 

4.4 MPEG  (MOVING  PICTURE  EXPERTS  GROUP) 

4.4.1  MPEG-1 

The first standard  produced by the  Moving  Picture  Experts  Group,  popularly known as 
MPEG- 1, was designed  to  provide  video and audio  compression  for  storage and playback on 
CD-ROMs. A CD-ROM  played  at  ‘single  speed’  has  a  transfer  rate of 1.4 Mbps. MPEG-1 
aims  to  compress  video and audio  to  a bit rate of 1.4  Mbps with a quality that is comparable 
to VHS videotape.  The  target  market was the  ‘video  CD’, a standard CD containing up to 
70 minutes of stored  video  and  audio.  The  video  CD was never a  commercial  success:  the 
quality  improvement over VHS tape was not sufficient to tempt  consumers  to  replace  their 
video  cassette  recorders  and  the  maximum  length of 70 minutes  created an irritating break in 
a feature-length  movie. However, MPEG-1  is  important  for two reasons: it has gained 
widespread use in other  video  storage and transmission  applications  (including CD-ROM 
storage  as  part of interactive  applications and video  playback over the Internet), and  its 
functionality  is used and extended in the popular  MPEG-2  standard. 

The MPEG-1  standard  consists of three  parts. Part 116 deals with system  issues  (including 
the  multiplexing of coded  video and audio),  Part Z4 deals with compressed  video and Part 317 
with compressed  audio.  Part  2  (video) was developed with aim of supporting efficient coding 
of video  for CD playback  applications and achieving  video  quality  comparable  to, or better 
than, VHS videotape at CD bit rates  (around  1.2Mbps  for  video).  There was a  requirement 
to  minimise  decoding  complexity  since most consumer  applications were envisaged  to 
involve  decoding  and  playback only, not encoding.  Hence MPEG- 1  decoding is considerably 
simpler  than  encoding  (unlike  JPEG, where the  encoder and decoder have similar levels of 
complexity). 

MPEG-I features 

The input  video signal to  an  MPEG- 1 video encoder is  4 : 2 : 0 Y :  Cr : Cb format (see Chapter 2) 
with a typical  spatial  resolution of 352 x 288 or 352 x 240  pixels. Each frame of video is 
processed in units of a macroblock, corresponding  to a 16 x 16 pixel area in the  displayed 
frame.  This  area  is  made up of 16 x 16  luminance  samples, 8 x 8 Cr  samples and 8 x 8 Cb 
samples  (because  Cr  and Cb have half the  horizontal and vertical  resolution of the luminance 
component). A macroblock  consists of six 8 x 8 blocks:  four  luminance (Y) blocks,  one  Cr 
block and one Cb block (Figure  4.6). 

Each  frame of video is encoded to produce  a  coded picture. There  are  three main 
types:  I-pictures,  P-pictures and B-pictures.  (The  standard  specifies a fourth  picture type, 
D-pictures, but these  are  seldom used in  practical  applications.) 
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Figure 4.6 Structure of a  macroblock 

l-pictures are  intra-coded  without any motion-compensated  prediction  (in  a  similar way 
to a  baseline  JPEG  image). An I-picture  is used  as a  reference  for  further  predicted  pictures 
(P- and B-pictures,  described below). 

P-pictures are  inter-coded using motion-compensated  prediction  from  a reference picture 
(the  P-picture  or  I-picture  preceding  the  current  P-picture).  Hence  a  P-picture  is  predicted 
using forward prediction and a P-picture may itself be used as  a  reference  for  further 
predicted  pictures (P- and B-pictures). 

B-pictures are  inter-coded using motion-compensated  prediction  from two reference 
pictures,  the P- and/or I-pictures  before and after  the  current  B-picture. Two motion vectors 
are  generated  for  each  macroblock in a  B-picture  (Figure 4.7): one  pointing  to  a  matching 
area in the previous reference  picture  (a forward vector) and one pointing to a  matching  area 

B-picture 

Current  macroblock 

l 
0 

vector 

Backward 
reference 
area 

Forward 
reference 
area 

Figure 4.7 Prediction of B-picture  macroblock using forward  and  backward  vectors 
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Figure 4.8 MPEG-1  group of pictures  (IBBPBBPBB):  display  order 

in the future  reference  picture  (a backward vector). A motion-compensated prediction 
macroblock  can  be  formed  in  three ways: forward prediction using the forward vector, 
backwards  prediction using the  backward  vector  or  bidirectional  prediction (where 
the prediction  reference  is  formed by averaging the  forward and backward  prediction 
references). Typically, an  encoder  chooses  the  prediction  mode  (forward,  backward  or 
bidirectional) that gives the lowest energy in the  difference macroblock. B-pictures  are not 
themselves used as  prediction  references  for  any  further predicted frames. 

Figure 4.8 shows a typical  series of I-, B- and  P-pictures. In order  to  encode a B-picture, 
two neighbouring I- or  P-pictures (‘anchor’ pictures or ‘key’ pictures)  must  be processed and 
stored in the prediction  memory,  introducing a delay of several frames  into  the encoding 
procedure.  Before  frame B2 in Figure 4.8 can  be  encoded,  its  two ‘anchor’ frames 11 and P4 
must be processed and  stored, i.e. frames 1-4 must  be processed before  frames 2 and 3 can 
be coded. In this example, there is a delay of at  least  three  frames  during  encoding  (frames 2, 
3 and 4 must be stored  before B2 can be  coded)  and this delay will be  larger if more B- 
pictures  are used. 

In order  to  limit  the  delay  at  the decoder, encoded  pictures  are reordered before 
transmission, such that all  the anchor pictures required to decode a B-picture  are placed 
before the B-picture. Figure 4.9 shows the same  series of frames,  reordered  prior  to 
transmission. P4  is now placed before B2 and  B3. Decoding proceeds as  shown in Table 
4.1: P4  is  decoded  immediately  after I1 and  is stored by the decoder. B2  and B3 can now be 
decoded  and  displayed  (because  their  prediction  references, I1 and P4, are both  available), 
after  which  P4  is  displayed.  There  is  at  most  one  frame  delay  between decoding and display 
and the  decoder  only needs to  store  two  decoded  frames. This is one  example of 
‘asymmetry’ between  encoder  and decoder: the delay and  storage in the  decoder are 
significantly lower than in the encoder. 

Figure 4.9 MPEG-1 group of pictures:  transmission  order 
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Table 4.1 MPEG-1 decoding  and  display  order 
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I-pictures are useful  resynchronisation  points in  the coded bit stream:  because it is coded 
without prediction, an I-picture may be  decoded  independently of  any other  coded  pictures. 
This  supports  random  access by a  decoder (a decoder may start decoding the bit stream  at any 
I-picture position)  and error  resilience (discussed in Chapter 11). However,  an I-picture has 
poor compression efficiency  because  no  temporal  prediction is used. P-pictures provide 
better compression efficiency due to motion-compensated  prediction  and  can  be  used as 
prediction references.  B-pictures have the highest compression efficiency of each of the three 
picture  types. 

The  MPEG-1 standard does not  actually  define the  design of  an encoder:  instead,  the 
standard  describes the coded  syntax  and a hypothetical ‘reference’ decoder.  In practice, the 
syntax  and  functionality  described  by the standard  mean that a  compliant  encoder has to 
contain certain functions.  The basic CODEC is  similar to Figure 3.18. A ‘front end’  carries 
out  motion estimation and compensation based on  one  reference  frame (P-pictures) or  two 
reference  frames  (B-pictures).  The  motion-compensated residual (or the original picture  data 
in the  case of an I-picture)  is encoded  using  DCT, quantisation, run-level coding and 
variable-length coding. In an I- or P-picture, quantised  transform coefficients are rescaled 
and  transformed  with the inverse DCT to produce a stored reference  frame  for further 
predicted  P-  or  B-pictures.  In the decoder, the coded data  is entropy decoded, rescaled, 
inverse  transformed  and  motion compensated.  The most  complex part of the CODEC is 
often the motion estimator  because bidirectional motion estimation  is  computationally 
intensive. Motion estimation is only  required in the encoder and this is  another  example 
of asymmetry between the  encoder and  decoder. 

MPEG-I syntax 

The syntax  of  an MPEG- 1 coded  video sequence  forms  a  hierarchy  as shown  in Figure 4.10. 
The levels or layers of the hierarchy are as follows. 

Sequence layer This may  correspond to a  complete  encoded  video programme. The 
sequence  starts with a sequence header that describes certain key information about the 
coded sequence including picture resolution  and frame rate. The sequence consists of a 
series of groups ofpictures (GOPs),  the next layer of the hierarchy. 
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I Sequence l 

I Group of Pictures I 

Picture 
. ... . . .. . . 

... I Slice 1 ... 

Figure  4.10 MPEG- 1 synatx  hierarchy 

GOP layer A GOP is  one I-picture followed by a series of  P- and B-pictures (e.g.  Figure 
4.8). In Figure 4.8, the  GOP  contains nine pictures (one I, two  P  and six B) but many other 
GOP  structures  are possible, for example: 

(a) All GOPs contain just one  I-picture, i.e. no motion  compensated prediction is used: this 
is  similar to Motion JPEG. 

(b) GOPs  contain only I- and P-pictures, i.e. no bidirectional prediction is used: compres- 
sion efficiency is relatively poor but complexity  is low (since B-pictures  are more 
complex to generate). 

(c) Large  GOPs:  the  proportion of I-pictures in the  coded  stream  is low  and hence 
compression efficiency is high. However, there are  few synchronisation points which 
may  not be  ideal  for  random  access  and  for  error  resilience. 

(d)  Small  GOPs:  there is a high proportion of I-pictures and so compression efficiency is 
low, however  there  are  frequent  opportunities  for resynchronisation. 

An encoder  need not keep a consistent GOP structure within a sequence. It may be useful to 
vary the  structure occasionally, for  example by starting a new GOP  when a scene change or 
cut  occurs in the  video  sequence. 
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Figure 4.11 Example of MPEG-1 slices 

Picture  layer A picture defines a  single  coded  frame.  The  picture  header  describes  the 
type of coded  picture (I, P, B) and  a temporal reference that defines when the picture should 
be  displayed  in  relation  to  the  other pictures in the sequence. 

Slice  layer A picture is made up  of a  number of slices,  each of which  contains an 
integral  number of macroblocks. In MPEG-l there  is  no  restriction on the size  or 
arrangement of slices  in  a  picture,  except that slices should cover the  picture  in  raster order. 
Figure 4.11 shows  one  possible arrangement: each shaded region in this figure is  a single 
slice. 

A slice  starts with a  slice  header that defines its position. Each  slice may be  decoded 
independently of other  slices within the picture  and this helps the decoder  to recover from 
transmission errors: if an  error  occurs within a  slice,  the  decoder can always  restart  decoding 
from  the next slice header. 

Macroblock layer A slice is made up  of  an integral  number of macroblocks,  each of 
which  consists of six blocks (Figure 4.6). The  macroblock  header  describes  the type of 
macroblock, motion vector(s) and defines which 8 x 8 blocks actually  contain  coded 
transform data. The  picture type (I, P or B) defines the ‘default’ prediction  mode  for  each 
macroblock, but individual macroblocks within P- or  B-pictures may be  intra-coded if 
required (i.e.  coded without any  motion-compensated  prediction).  This  can  be useful if no 
good  match can be found within the  search  area  in the reference  frames  since  it may be  more 
efficient to  code  the  macroblock  without  any  prediction. 

Block layer A block  contains variable-length code(s) that  represent  the  quantised trans- 
form coefficients in  an 8 x 8 block. Each  DC coefficient (DCT coefficient [0, 01) is coded 
differentially  from  the DC coefficient of the previous coded block, to  exploit  the  fact that 
neighbouring blocks tend to have very similar  DC (average) values. AC coefficients (all 
other coefficients) are coded  as  a  (run,  level) pair, where ‘run’ indicates the number of 
preceding  zero coefficients and ‘level’ the value of a non-zero coefficient. 
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4.4.2  MPEG-2 

The next important entertainment application for coded video (after CD-ROM storage) was 
digital television. In order to provide an improved alternative to analogue television, several 
key features were required of the video coding algorithm. It had to efficiently support larger 
frame sizes (typically 720 x S76 or 720 x 480 pixels for ITU-R 601 resolution) and coding 
of interlaced video. MPEG-1 was primarily designed to support progressive video, where 
each  frame  is  scanned as a single unit in raster order.  At television-quality resolutions, 
interlaced video  (where a frame  is  made up of two interlaced ‘fields’ as described in 
Chapter  2) gives a smoother  video image. Because the two fields are captured at separate 
time intervals (typically 1/50 or 1/60 of a second apart), better performance may be achieved 
by coding the fields separately. 

MPEG-2 consists of three main sections: Video (described below), Audio” (based on 
MPEG-1  audio  coding) and Systems” (defining,  in more detail than MPEG-l  Systems, 
multiplexing and transmission of the coded audio/visual stream). MPEG-2 Video is (almost) 
a superset of MPEG-I Video, i.e.  most MPEG-I video sequences should be decodeable by 
an MPEG-2 decoder. The main enhancements added by the MPEG-2 standard are as follows: 

EfJicient coding of television-qualiry video 

The most  important application of MPEG-2  is broadcast digital television. The ‘core’ 
functions of MPEG-2 (described as ‘main profile/main level’) are optimised for efficient 
coding of television resolutions at a bit rate of around 3-S Mbps. 

Support for coding of interlaced video 

MPEG-2  video  has several features that support flexible coding of interlaced video. The two 
fields that make  up a complete interlaced frame can be  encoded as separate pictures (field 
pictures), each of which is  coded as an I-, P- or B-picture. P- and B- field pictures may  be 
predicted from a field  in another frame or from the other field  in the current frame. 

Alternatively, the two fields may be handled as a single picture (a frame picture) with  the 
luminance samples in each macroblock of a frame picture arranged in one of two ways. 
Frame DCT coding is similar to the MPEG-1 structure, where each of the four luminance 
blocks contains  alternate  lines  from both  fields. With $eld DCT coding, the top two 
luminance  blocks contain only samples from the top field, and the bottom two luminance 
blocks contain  samples  from the bottom field. Figure 4.12 illustrates the two coding 
structures. 

In a field picture, the upper and lower 16 x 8 sample regions of a macroblock may  be 
motion-compensated independently: hence each of the two regions has its own vector (or 
two vectors in the case of a B-picture). This adds an overhead to the macroblock because of 
the extra vector(s) that must be transmitted. However, this 16 x 8 motion  compensation 
mode can improve performance because a field picture has half the vertical resolution of a 
frame picture and so there are more likely to be significant differences in motion between the 
top and bottom halves of each macroblock. 
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Figure 4.12 (a)  Frame and (b) field DCT coding 

In dual-prime motion compensation mode,  the  current field (within a field or  frame 
picture)  is  predicted  from  the  two fields of the  reference  frame using a single vector together 
with a transmitted  correction factor. The  correction  factor modifies the  motion vector to 
compensate  for  the small displacement  between  the  two fields in the reference  frame. 

Scalability 

The progressive modes of P E G  described  earlier  are  forms of scalable coding. A scalable 
coded bit stream  consists of a number of layers, a base layer and  one or more enhancement 
layers. The  base  layer can be decoded  to  provide a recognisable  video  sequence that has a 
limited visual quality, and a higher-quality sequence may be produced by decoding the base 
layer plus  enhancement  layer(s), with each  extra  enhancement  layer  improving the quality of 
the decoded  sequence.  MPEG-2  video supports four  scalable  modes. 

Spatial  scalability This  is analogous to hierarchical encoding in the P E G  standard.  The 
base layer is coded  at a low spatial resolution and  each  enhancement  layer, when added  to 
the base layer, gives a progressively higher spatial resolution. 

Temporal  scalability The base layer  is  encoded  at a low temporal resolution (frame  rate) 
and the enhancement  layer (S) are coded  to  provide  higher  frame  rate(s)  (Figure 4.13). One 
application of this mode is stereoscopic  video coding: the base  layer provides a monoscopic 
‘view’  and an enhancement  layer  provides a stereoscopic offset ‘view’. By combining the 
two layers, a full  stereoscopic  image may be decoded. 

S N R  scalability In a similar way to  the  successive approximation mode of P E G ,  the base 
layer is encoded at a ‘coarse’ visual  quality (with high compression). Each  enhancement 
layer, when added  to  the base layer, improves the  video quality. 
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Figure 4.13 Temporal scalability 

Data  partitioning The coded  sequence  is partitioned into two layers. The base layer 
contains  the most ‘critical’ components of the coded sequence such as header information, 
motion vectors and (optionally) low-frequency transform coefficients. The enhancement 
layer  contains all remaining coded  data (usually less critical to successful decoding). 

These scalable modes may be used in a number of ways. A decoder may decode the current 
programme at standard ITU-R 601 resolution (720 x 576 pixels, 25 or 30 frames per second) 
by decoding  just the base layer, whereas a ‘high  definition’ decoder may decode one or more 
enhancement  layer (S) to increase the temporal and/or spatial resolution. The multiple layers 
can support simultaneous  decoding by  ‘basic’  and ‘advanced’ decoders. Transmission of the 
base and enhancement layers is usually more efficient than encoding and sending separate bit 
streams at the lower and higher resolutions. 

The base  layer is the most ‘important’ to provide a visually acceptable decoded picture. 
Transmission errors in the base layer can have a catastrophic effect on picture quality, 
whereas errors in enhancement  layer (S) are likely to have a relatively  minor impact on 
quality.  By protecting the  base layer (for example using a separate transmission channel with 
a low error rate or by adding error correction coding), high visual quality can be maintained 
even when transmission errors occur (see  Chapter 11). 

Profiles and levels 

Most applications require only a limited subset of the wide range of functions supported by 
MPEG-2. In order to encourage interoperability for certain ‘key’ applications (such as digital 
TV), the standard includes a set of recommended projiles and levels that each define a certain 
subset of the MPEG-2 functionalities. Each profile  defines a set of capabilities and the 
important ones are as follows: 

0 Simple: 4 : 2 : 0 sampling, only I- and P-pictures are allowed. Complexity is kept low at 
the expense of poor compression performance. 

0 Main: This includes all of the core MPEG-2 capabilities including B-pictures and 
support for interlaced video. 4 : 2 : 0 sampling is used. 

0 4 ;  2 :  2: As the name suggests, 4 :  2 :  2 subsampling is used, i.e.  the Cr and Cb 
components  have  full vertical resolution and half horizontal resolution. Each macroblock 
contains  eight blocks: four luminance, two Cr and two Cb. 
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0 SNR: As ‘main’ profile, except that an enhancement layer is added to provide higher 
visual  quality. 

0 Spatial: As ‘SNR’ profile, except that spatial scalability may also be used to provide 
higher-quality enhancement layers. 

0 High: As ‘Spatial’ profile, with the addition of support for 4 : 2 : 2 sampling. 

Each level defines spatial and temporal resolutions: 

0 Low: Up to 352 x 288 frame resolution and  up to 30 frames per second. 

0 Main: Up  to  720 X 576 frame resolution and up to 30  frames per second. 

0 High-1440: Up to 1440 x 1152 frame resolution and up to 60 frames per second. 

0 High: Up to 1920 x 1 152 frame resolution and up to 60 frames per second. 

The MPEG-2 standard defines certain recommended combinations of  profiles and levels. 
Main projilellow level (using only frame encoding) is essentially MPEG-l. Main  projilel 
main level is suitable for broadcast digital television and this is the most widely used  profile / 
level combination. Main projile lhigh level is suitable for high-definition  television (HDTV). 
(Originally, the MPEG working group intended to release a further standard, MPEG-3, to 
support coding for HDTV applications. However, once  it became clear that  the MPEG-2 
syntax could deal with  this application adequately, work on this standard was dropped and so 
there is no MPEG-3 standard.) 

In addition to the main features described above, there are some further changes from the 
MPEG-1 standard. Slices in an MPEG-2 picture are constrained such that they  may  not 
overlap from  one row  of macroblocks to the next (unlike MPEG- 1 where a slice may occupy 
multiple rows of macroblocks). D-pictures in MPEG-1 were felt to be of limited benefit  and 
are not supported in MPEG-2. 

4.4.3 MPEG-4 

The MPEG-I and MPEG-2 standards deal with complete video frames, each coded as a 
single unit. The  MPEG-4 standard6 was developed with the aim of extending the capabilities 
of the earlier standards in a number of ways. 

Support  for low bit-rate  applications MPEG-1 and MPEG-2 are reasonably efficient for 
coded bit rates above around 1 Mbps. However, many emerging applications (particularly 
Internet-based applications) require a much lower transmission bit rate and MPEG-1 and 2 
do not support efficient compression at low  bit rates (tens of kbps or less). 

Support  for  object-based  coding Perhaps the most fundamental shift in the MPEG-4 
standard has  been towards object-based or content-based coding, where a video scene can be 
handled as a set of foreground and background objects rather than just  as a series of 
rectangular frames. This type of coding opens up a wide range of possibilities, such as 
independent coding of different objects in a scene, reuse of scene components, compositing 
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(where objects  from a number of sources  are  combined  into a scene) and a high degree of 
interactivity. The basic concept used in MPEG-4 Visual is that of the video  object (VO). A 
video scene (VS) (a sequence of video frames)  is  made up  of a number of  VOs. For example, 
the  VS  shown in Figure  4.14  consists  of a background V 0  and two foreground  VOs. MPEG4 
provides tools  that  enable  each V 0  to be coded independently, opening  up a range of  new 
possibilities. The  equivalent of a ‘frame’ in V 0  terms, i.e. a ‘snapshot’ of a V 0  at a single 
instant in time,  is a video  object  plane (VOP). The  entire  scene may be  coded  as a single, 
rectangular VOP and this is equivalent to a picture in MF’EG-1 and MPEG-2 terms. 

Toolkit-based  coding MPEG-l  has a very limited  degree of flexibility; MPEG-2  intro- 
duced the concept of a ‘toolkit’ of profiles and levels that could be combined in different 
ways for various applications.  MPEG-4  extends this towards a highly flexible set of coding 
tools that enable a range of applications  as well as a standardised framework that allows new 
tools to  be  added  to  the  ‘toolkit’. 

The  MPEG-4  standard  is organised so that new coding tools  and  functionalities may be 
added  incrementally  as new versions of the standard are  developed,  and so the list of tools 
continues  to grow. However,  the  main  tools  for coding of video images can be summarised 
as follows. 

MPEG-4 Visual: very low bit-rate video core 

The  video  coding  algorithms that form  the ‘very low bit-rate video  (VLBV) core’ of MPEG- 
4 Visual are  almost  identical  to the baseline  H.263  video coding standard (Chapter 5) .  If the 
short header mode  is  selected,  frame coding is  completely  identical  to  baseline H.263. A 
video sequence  is  coded  as a series of rectangular  frames (i.e. a single VOP occupying the 
whole  frame). 

Input format Video data  is  expected  to be pre-processed and converted to  one  of the 
picture  sizes  listed in Table 4.2, at a frame  rate of up  to 30  frames per second and in 4 : 2 : 0 
Y: Cr : Cb  format (i.e. the chrominance  components have half the horizontal and vertical 
resolution of the luminance component). 

Picture  types Each  frame  is  coded  as  an I- or P-frame. An I-frame  contains  only  intra- 
coded macroblocks, whereas a P-frame can  contain  either  intra-  or inter-coded macroblocks. 
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Table 4.2 MPEG4  VLBV/H.263 picture  sizes 

Format  Picture  size  (luminance) 

SubQCIF 
QCIF 
CIF 
4CIF 
16CIF 

128 x 96 
176 x 144 
352 x 288 
704 x 576 

1408 x 1152 

Motion  estimation  and  compensation This  is  carried out on 16 x 16 macroblocks or 
(optionally) on 8 x 8 macroblocks. Motion vectors can have half-pixel resolution. 

Transform  coding The motion-compensated residual is  coded with DCT, quantisation, 
zigzag scanning  and run-level coding. 

Variable-length  coding The run-level coded transform coefficients, together with header 
information and  motion vectors, are  coded using variable-length codes. Each non-zero 
transform coefficient is  coded  as a combination of run, level, last (where ‘last’ is a  flag to 
indicate whether this is the last non-zero coefficient in the block)  (see  Chapter 8). 

Syntax 

The syntax of an  MPEG-4 (VLBV) coded bit stream is illustrated in Figure 4.15 

Picture  layer The highest  layer  of  the  syntax  contains  a  complete  coded  picture. The picture 
header indicates the  picture resolution, the type of coded picture (inter  or intra) and includes 
a  temporal  reference  field. This indicates  the  correct  display  time for the  decoder  (relative  to  other 
coded pictures) and can  help  to  ensure that a picture is not displayed  too  early  or  too late. 

Picture Cr I Picture 1 I 

... ... Group of Blocks 

... 1 Macroblock 1 ... 

Figure 4.15 MPEG-4/H.263 layered  syntax 
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GOB 0 (22 macroblocks) 
GOB 1 
GOB 2 

... 

... 

GOB 17 
... 

(a) CIF 

GOB 0 (1 1 macroblocks) 

GOB 6 
GOB 7 
GOB 8 

(b) QCIF 

Figure 4.16 GOBs: (a) CIF and (b) QCIF pictures 

Group of blocks  layer A group of blocks (GOB) consists of one  complete row  of macro- 
blocks  in SQCF, QCIF and CIF pictures  (two  rows in a 4CIF picture  and  four rows in a 16CIF 
picture). GOBs  are similar to slices in MPEG-1 and MPEG-2 in that, if an optional GOB 
header is inserted in the bit stream, the decoder can resynchronise to the start of  the  next 
GOB if an error occurs. However, the size and layout of each  GOB are fixed  by the standard 
(unlike slices). The arrangement of GOBs in a QCIF and CIF picture is shown in Figure 4.16. 

Macroblock  layer A macroblock consists of four luminance blocks and two chrominance 
blocks. The macroblock header includes information about the type of macroblock, ‘coded 
block pattern’ (indicating which of the six blocks actually contain transform coefficients) 
and coded horizontal and vertical motion vectors (for inter-coded macroblocks). 

Block  layer A block consists of run-level coded coefficients corresponding to an 8 x 8 
block of samples. 

The  core  CODEC (based on H.263) was designed for efficient coding at  low  bit rates. The 
use of 8 x 8 block motion compensation and the design of the variable-length coding tables 
make the VLBV  MPEG-4  CODEC more efficient than MPEG-I or MPEG-2 (see Chapter 5 
for a comparison of coding efficiency). 

Other visual coding tools 

The features that make  MPEG-4 (Visual) unique among the coding standards are the range 
of further coding tools available to the designer. 

Shape  coding Shape  coding  is  required  to  specify  the  boundaries of each  non-rectangular  VOP 
in a scene. Shape information may  be binary (i.e. identifying the pixels that are internal  to  the 
VOP, described as ‘opaque’, or external  to the VOP, described as ‘transparent’) or grey scale 
(where  each pixel position within a VOP  is allocated an 8-bit ‘grey scale’ number that iden- 
tifies  the transparency of the pixel). Grey scale information is  more complex and requires 
more  bits to code:  however,  it  introduces  the  possibility of overlapping,  semi-transparent  VOPs 
(similar to the concept of ‘alpha planes’ in computer graphics). Binary information is simpler 
to code because  each  pixel  has  only  two  possible  states,  opaque or transparent.  Figure 4.17 
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Figure  4.17 (a) Opaque  and (b) semi-transparent VOPs 

illustrates  the  concept of opaque and semi-transparent VOPs: in image  (a),  VOP2 (fore- 
ground) is  opaque and completely obscures VOPl  (background), whereas in image  (b) 
VOP2 is partly transparent. 

Binary shape  information is coded in 16 x 16 blocks (binary alpha  blocks, BABs). There 
are three possibilities  for  each block 

1. All pixels are  transparent,  i.e.  the  block  is ‘outside’ the VOP. No shape (or texture) 
information is  coded. 

2.  All pixels  are  opaque, i.e. the  block  is  fully  ‘inside’  the VOP. No shape  information  is 
coded: the pixel values of the block (‘texture’)  are  coded  as  described in the next section. 
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3. Some  pixels  are  opaque and some  are  transparent,  i.e.  the  block  crosses  a boundary of the 
VOP. The binary  shape values of each pixel (1 or 0) are  coded using a  form of DPCM and 
the  texture  information of the  opaque  pixels  is  coded  as  described below. 

Grey  scale  shape  information  produces values in  the  range 0 (transparent) to 255 (opaque) 
that are  compressed using block-based DCT and motion compensation. 

Motion compensation Similar  options  exist to the I-, P- and B-pictures in MPEG-1 and 
MPEG-2: 

1. I-VOP: VOP  is encoded  without any motion compensation. 

2. P-VOP: VOP is  predicted using motion-compensated  prediction  from  a past I- or P-VOP. 

3.  B-VOP: VOP is  predicted  using  motion-compensated  prediction  from  a past and a future 
I- or P-picture  (with  forward,  backward or bidirectional  prediction). 

Figure 4.18 shows  mode (3) ,  prediction of a B-VOP from  a  previous  I-VOP and future 
P-VOP. For  macroblocks  (or 8 x 8 blocks)  that  are  fully  contained within the  current and 
reference VOPs, block-based motion compensation  is used in a  similar way to MPEG- 1 and 
MPEG-2. The motion  compensation  process  is modified for  blocks or macroblocks along the 
boundary of the VOP.  In the  reference VOP, pixels in the 16 x 16 (or 8 x 8) search  area 
are  padded  based  on  the  pixels  along the edge of the VOP. The  macroblock  (or  block) in the 
current VOP is  matched with this  search  area using block matching: however, the  difference 
value (mean  absolute  error  or  sum of absolute  errors)  is only computed  for  those pixel 
positions that lie  within  the VOP. 

Texture coding Pixels  (or  motion-compensated  residual  values) within a VOP are  coded 
as  ‘texture’.  The  basic  tools  are  similar to MPEG-1 and MPEG-2:  transform using the DCT, 
quantisation of the DCT coefficients  followed by reordering and variable-length  coding. To 
further  improve  compression efficiency, quantised DCT coefficients may be predicted from 
previously  transmitted  blocks  (similar  to  the  differential  prediction of  DC coefficients used 
in  JPEG,  MPEG-1 and MPEG-2). 

P B-VOP 

Figure 4.18 B-VOP motion-compensated  prediction 
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A macroblock that covers a boundary  of the VOP will contain both opaque  and transparent 
pixels. In order  to  apply a regular 8 x 8 DCT, it  is necessary to use ‘padding’ to fill up the 
transparent pixel positions. In an  inter-coded VOP, where  the  texture information is  motion- 
compensated residual data,  the transparent positions are simply filled with zeros. In an intra- 
coded VOP, where  the texture is ‘original’ pixel data,  the transparent positions are filled  by 
extrapolating the pixel values along the boundary  of the VOP. 

Error  resilience MPEG-4  incorporates a number of mechanisms that can provide 
improved  performance in the presence of transmission errors (such as bit errors  or lost 
packets). The main tools are: 

1. Synchronisation markers: similar to  MPEG-1 and MPEG-2  slice start codes, except that 
these may optionally be positioned so that each resynchronisation interval contains  an 
approximately equal number of  encoded bits (rather than a constant  number of macro- 
blocks). This  means that errors  are likely to  be evenly distributed among the resynchro- 
nisation intervals. Each resynchronisation interval may  be transmitted in a separate video 
packet. 

2. Data partitioning: similar  to  the  data partitioning mode of MPEG-2. 

3. Header extension: redundant copies of header information are inserted at intervals in the 
bit stream so that if an  important  header (e.g. a picture header) is  lost  due  to  an error, the 
redundant header may be used to partially recover  the  coded scene. 

4. Reversible VLCs: these variable length  codes limit the propagation (‘spread’) of  an 
errored region in a decoded  frame or VOP and are described further in Chapter 8. 

Scalability MPEG-4  supports spatial and  temporal scalability. Spatial scalability applies  to 
rectangular VOPs in a similar way to MPEG-2: the base  layer gives a low spatial resolution 
and  an enhancement  layer may be decoded together with the  base  layer  to give a higher 
resolution. Temporal scalability is  extended  beyond the MPEG-2  approach in that it may be 
applied to individual VOPs. For example, a background VOP may be  encoded without 
scalability, whilst a foreground VOP may be  encoded with several layers of temporal 
scalability. This introduces the possibility of decoding a foreground object at a higher  frame 
rate  and  more static, background  objects at a lower frame rate. 

Sprite  coding A ‘sprite’ is a VOP that is present for the entire duration of a video sequence 
(VS).  A sprite may be encoded  and transmitted once at the  start of the sequence, giving a 
potentially large benefit  in compression performance. A good  example  is a background 
sprite: the background image to a scene is  encoded  as a sprite at the start of the VS. For the 
remainder of the VS, only the foreground VOPs  need to be coded and transmitted since the 
decoder can ‘render’ the background  from the original sprite. If there is  camera  movement 
(e.g. panning), then a sprite that is larger than the visible scene is required (Figure 4.19). In 
order  to  compensate  for  more  complex  camera  movements (e.g. zoom or rotation), it may be 
necessary for the decoder to ‘warp’ the sprite. A sprite is encoded as an I-VOP  as described 
earlier. 

Static  texture An alternative set of tools to the  DCT may be used to  code ‘static’ texture, 
i.e. texture data  that  does not change rapidly. The main application for this is to  code texture 
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Figure 4.19 Example of background sprite and foreground VOPs 

that is mapped  onto a 2-D  or  3-D  surface  (described below). Static  image texture is 
coded efficiently using a wavelet transform. The transform coefficients are  quantised  and 
coded with a zero-tree  algorithm followed by arithmetic  coding. Wavelet coding is described 
further in Chapter 7 and arithmetic  coding  in  Chapter 8. 

Mesh and 3-D model  coding MPEG-4 supports more advanced object-based coding 
techniques including: 

0 2-D mesh coding,  where  an  object  is  coded  as a mesh of triangular patches in a 2-D plane. 
Static  texture (coded as described above) can be mapped  onto  the mesh. A moving  object 
can  be represented by deforming the mesh  and warping the texture  as the mesh  moves. 

0 3-D mesh coding,  where an object is  described  as a mesh in  3-D  space.  This is more 
complex than a 2-D mesh representation but gives a higher degree of flexibility in terms 
of representing  objects within a scene. 

0 Face and  body  model  coding,  where a human  face  or  body  is rendered at  the  decoder 
according  to a face  or body model. The  model  is  controlled  (moved) by changing 
‘animation parameters’. In this way a ‘head-and-shoulders’ video scene may be  coded by 
sending  only  the  animation  parameters required to ‘move’ the model at the decoder. Static 
texture is mapped onto the  model surface. 

These  three  tools  offer the potential  for  fundamental  improvements in video coding 
performance and flexibility: however, their  application  is  currently  limited because of the 
high processing  resources required to  analyse and render even a very simple  scene. 

MPEG-4 visual profiles and levels 

In common with MPEG-2, a number of recommended ‘profiles’ (sets of MPEG-4 tools) and 
‘levels’ (constraints  on bit stream  parameters such as  frame  size  and  rate) are defined in the 
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MPEG-4 standard. Each profile is defined  in terms of one or more ‘object types’, where an 
object type is a subset of the MPEG-4 tools.  Table 4.3 lists the main MPEG-4 object types 
that make up the profiles. The ‘Simple’ object type contains tools for coding of basic I- and 
P-rectangular VOPs (complete frames) together with error resilience tools and the  ‘short 
header’ option (for compatibility with H.263). The ‘Core’ type adds B-VOPs and basic shape 
coding (using a binary shape mask only). The main profile adds grey scale shape coding and 
sprite coding. 

MPEG-4 (Visual) is gaining popularity in a number of application areas such as Internet- 
based video. However, to  date the majority of applications use only the simple object type 
and there has been limited take-up of  the content-based features of  the standard. This is 
partly because of technical complexities (for example, it is  difficult to accurately segment a 
video scene into foreground and background objects, e.g. Figure 4.14,  using  an automatic 
algorithm) and partly because useful applications for content-based video coding and 
manipulation have yet to emerge. At the time of writing, the great majority of video coding 
applications continue to work with complete rectangular frames. However, researchers 
continue to improve algorithms for segmenting and manipulating video The 
content-based tools have a number of interesting possibilities: for example, they make it 

Table 4.3 MPEG-4  video  object  types 

Video  object  types 

Basic Still 
Simple  Animated  animated  scalable  Simple 

Visual  tools  Simple  Core  Main  scalable 2-D mesh  texture  texture  face 

Basic (I-VOP,  P-VOP, 
coefficient  prediction, 
16 x 16 and 8 x 8 
motion  vectors) 

Error  resilience 
Short  header 

P-VOP  with  overlapped 

Alternative  quantisation 
P-VOP based temporal 

scalability 
Binary  shape 
Grey  shape 
Interlaced  video  coding 
Sprite 
Rectangular  temporal 

Rectangular  spatial 

Scalable still texture 
2-D mesh 
Facial  animation  parameters 

B-VOP 

block  matching 

scalability 

scalability 

J J J J  

J J J J  
J J J  

J J J  

J J  
J J  

J J  
J 
J 
J 

J 

J 

J 
J 
J 

J 
J 

J J 

J 

J J J 
J J 

J 
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possible  to  develop ‘hybrid’ applications with a mixture of ‘real’ video  objects (possibly from 
a number of different sources)  and  computer-generated graphics. So-called synthetic natural 
hybrid  coding  has  the  potential to enable a new generation of video applications. 

4.5 SUMMARY 

The I S 0  has issued a number of image and video  coding  standards that have heavily 
influenced the  development of the technology and  market  for  video  coding applications. The 
original JPEG still image  compression  standard is now a ubiquitous method for storing and 
transmitting still images  and  has  gained  some popularity as a simple  and robust algorithm for 
video  compression. The improved subjective and  objective  performance of its successor, 
JPEG-2000, may lead to the  gradual  replacement of the  original JPEG algorithm. 

The first MPEG  standard, MPEG-l, was never a market  success in its target application 
(video  CDs) but is widely used for PC and internet video applications and formed the basis 
for  the  MPEG-2  standard.  MPEG-2  has  enabled a worldwide shift towards digital television 
and  is probably the most successful of the  video  coding  standards in terms of market 
penetration. The MPEG-4 standard offers a plethora of video  coding  tools which  may  in time 
enable many new applications: however, at the present time  the  most popular element of 
MPEG-4 (Visual) is the ‘core’ low bit rate  CODEC that is based on the ITU-T  H.263 
standard. In the  next  chapter we will examine  the H . 2 6 ~  series of coding  standards, H.261, 
H.263 and the emerging  H.26L. 
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5 
Video  Coding  Standards: 
H.261,  H.263  and  H.26L 

5.1 INTRODUCTION 

The IS0  MPEG  video  coding  standards  are  aimed at storage and distribution of video  for 
entertainment  and  have tried to meet  the  needs of providers and consumers in the  ‘media 
industries’. The ITU  has  (historically)  been  more  concerned  about the telecommunications 
industry, and  its  video  coding  standards (H.261,  H.263, H.26L)  have  consequently  been 
targeted  at  real-time,  point-to-point  or  multi-point  communications. 

The first ITU-T  video  coding  standard  to  have a significant  impact, H.26 I ,  was  developed 
during the late  1980s/early 1990s with a particular  application and transmission  channel in 
mind.  The  application was video  conferencing  (two-way  communications via a video ‘link’) 
and  the  channel was N-ISDN.  ISDN  provides a constant bit rate o f p  X 64 kbps,  where p is  an 
integer in the range 1-30: it was  felt  at  the  time  that  ISDN would  be the  medium of choice 
for  video  communications  because of its guaranteed  bandwidth and  low delay. Modem 
channels over  the analogue POTSPSTN (at speeds of less than 9600  bps  at  the  time)  were 
considered  to be too slow for visual communications  and  packet-based  transmission was  not 
considered  to  be  reliable  enough. 

H.261 was  quite  successful  and  continues to  be used in many legacy  video  conferencing 
applications.  Improvements in processor  performance,  video  coding  techniques and the 
emergence of analogue  Modems and Internet  Protocol  (IP)  networks as viable channels led 
to  the  development of its successor,  H.263, in  the mid-1990s. By making a number of 
improvements  to  H.261,  H.263  provided significantly better  compression  performance as 
well as greater flexibility. The original  H.263  standard (Version 1) had four  optional  modes 
which  could  be  switched  on  to  improve  performance  (at  the  expense of greater  complexity). 
These  modes  were  considered  to  be  useful and  Version 2  (‘H.263+’)  added  12  further 
optional  modes. The latest  (and  probably the last)  version  (v3) will contain a total of 19 
modes,  each  offering  improved  coding  performance,  error  resilience  and/or flexibility. 

Version 3 of H.263  has  become a rather unwieldy standard  because of the  large  number of 
options and  the  need to continue  to  support the basic  (‘baseline’)  CODEC  functions. The 
latest  initiative of  the ITU-T  experts  group VCEG is the H.26L  standard  (where ‘L‘ stands 
for ‘long term’).  This  is a new standard  that makes use of some of  the  best features of H.263 
and  aims  to  improve  compression  performance by around 50% at  lower  bit  rates. Early 
indications  are  that  H.26L will outperform H.263+  (but possibly not  by 50%). 

Video Codec Design
Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
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5.2 H.261’ 

Typical  operating bit rates  for  H.261  applications  are  between 64 and  384  kbps. At the  time 
of development,  packet-based  transmission  over the Internet  was  not  expected to be a 
significant  requirement,  and  the  limited  video  compression  performance  achievable  at the 
time  was not considered to be sufficient to support bit rates below 64 kbps. 

A typical  H.261  CODEC is very similar  to the ‘generic’  motion-compensated DCT-based 
CODEC  described in Chapter 3. Video  data is processed  in  4 : 2 : 0 Y: Cr : Cb format. The 
basic unit is  the  ‘macroblock’,  containing  four  luminance  blocks  and  two  chrominance 
blocks  (each  8 x 8 samples)  (see  Figure  4.6). At  the input  to  the  encoder,  16 x 16  macroblocks 
may be  (optionally)  motion  compensated using integer  motion  vectors. The motion- 
compensated  residual  data  is  coded  with  an  8 x 8 DCT  followed by quantisation and zigzag 
reordering. The reordered  transform coefficients are run-level coded  and  compressed with 
an  entropy  encoder  (see  Chapter 8). 

Motion  compensation  performance  is  improved by use of an  optional loop jilter, a  2-D 
spatial filter that  operates  on  each 8 x 8 block in a macroblock  prior to motion  compensation 
(if the filter is switched  on). The filter has the effect of ‘smoothing’  the  reference  picture 
which  can  help to provide  a  better  prediction  reference.  Chapter 9 discusses  loop filters in 
more  detail  (see  for  example  Figures  9.1 1 and 9.12). 

In  addition, a forward  error  correcting  code  is defined in the  standard  that  should  be 
inserted  into  the  transmitted bit stream. In practice,  this  code  is  often  omitted  from practical 
implementations of H.261:  the  error  rate of  an ISDN  channel  is low enough  that  error 
correction  is not normally  required, and  the code specified in the  standard  is not suitable  for 
other  channels  (such as a noisy  wireless  channel  or  packet-based  transmission). 

Each  macroblock  may be coded  in ‘intra’ mode (no motion-compensated  prediction)  or 
‘inter’ mode (with motion-compensated  prediction).  Only  two  frame  sizes  are  supported, 
CIF  (352 x 288  pixels) and QCIF  (176 x 144  pixels). 

H.261  was developed at a  time when hardware  and  software  processing  performance  was 
limited  and  therefore  has  the  advantage of  low complexity.  However,  its  disadvantages 
include  poor  compression  performance  (with  poor  video  quality  at bit rates of  under  about 
100kbps) and  lack of flexibility. It has been  superseded by H.263,  which  has  higher 
compression  efficiency and greater flexibility, but  is  still  widely used in installed  video 
conferencing  systems. 

5.3 H.2632 

In  developing  the  H.263  standard,  VCEG  aimed to improve upon H.261 in a  number of areas. 
By taking  advantage of developments in video  coding  algorithms  and  improvements in  pro- 
cessing  performance, it provides  better  compression.  H.263  provides  greater flexibility than 
H.261:  for  example,  a  wider  range of frame  sizes  is  supported  (listed in Table 4.2). The first 
version of H.263  introduced  four  optional  modes,  each  described  in  an  annex to the  standard,  and 
further  optional  modes  were  introduced in Version 2 of the  standard  (‘H.263f’).  The  target 
application of H.263  is  low-bit-rate,  low-delay  two-way  video  communications.  H.263  can 
support  video  communications  at bit rates below 20 kbps (at a very limited visual quality) 
and  is now widely used both  in  ‘established’  applications  such as video  telephony  and  video 
conferencing  and  an  increasing  number of  new applications  (such as Internet-based  video). 
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5.3.1  Features 

The baseline H.263 CODEC is functionally identical to the MPEG-4 ‘short header’ CODEC 
described in Section 4.4.3. Input frames in 4 : 2 : 0 format are motion compensated (with half-pixel 
resolution motion vectors), transformed with an 8 x 8 DCT, quantised, reordered and entropy 
coded. The main factors that contribute to the improved coding performance over H.26 1 are the use 
of half-pixel motion vectors (providing better motion compensation) and redesigned variable- 
length  code  (VLC)  tables (described further in Chapter 8). Features such as I- and P-pictures, 
more  frame  sizes and optional coding  modes give the  designer  greater flexibility to deal with 
different application  requirements and transmission scenarios. 

5.4 THE H.263 OPTIONAL MODES/H.263+ 

The original H.263 standard (Version 1) included four  optional  coding  modes (Annexes D, 
E, F and G). Version 2 of the standard added 12  further modes (Annexes I to  T) and a new 
release is scheduled with yet more  coding modes (Annexes U, V and W). CODECs  that 
implement  some of the optional modes are  sometimes described as ‘H.263+’ or ‘H.263++’ 
CODECs  depending on which modes  are  implemented. 

Each mode  adds to or modifies the functionality of H.263, usually at the  expense of 
increased complexity. An H.263-compliant CODEC  must support the ‘baseline’ syntax 
described above: the use of optional  modes may be negotiated between an encoder and a 
decoder prior to starting a  video  communications  session. The optional  modes have a 
number of potential benefits: some of the modes improve compression performance,  others 
improve  error  resilience or provide tools that are useful for particular transmission 
environments such as packet-based transmission. 

Annex D, Unrestricted  motion  vectors The optional  mode described in Annex D of 
H.263 allows motion vectors to point outside the boundaries of the picture.  This  can provide 
a  coding  performance gain, particularly if objects  are  moving  into or out of the picture. The 
pixels at the  edges of the  picture are extrapolated to form  a ‘border’ outside the picture  that 
vectors may point to (Figure 5.1). In addition,  the motion vector range  is  extended so that 

Figure 5.1 Unrestricted  motion  vectors 
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Figure 5.2 One or four motion vectors  per macroblock 

longer  vectors  are  allowed. Finally, Annex D contains an optional  alternative  set of VLCs for 
encoding motion vector  data.  These VLCs are reversible, making  it  easier to recover from 
transmission  errors  (see  Chapter 11). 

Annex E, Syntax-based  arithmetic  coding Arithmetic  coding  is used instead of variable- 
length  coding.  Each of the  VLCs defined in the  standard is replaced with a probability value 
that  is used by an arithmetic  coder (see Chapter 8). 

Annex F, Advanced prediction The efficiency of motion estimation and compensation is 
improved by allowing  the use of four  vectors per macroblock (a separate motion vector for 
each 8 x 8 luminance  block,  Figure 5.2). Overlapped  block  motion  compensation (described 
in  Chapter 6) is used to improve motion compensation and reduce ‘blockiness’ in the 
decoded image. Annex F requires  the  CODEC to support unrestricted motion vectors 
(Annex D). 

Annex G, PB-frames A  PB-frame  is a pair of frames coded as a combined unit. The first 
frame is  coded as a ‘B-picture’ and the second as a P-picture. The P-picture is forward 
predicted from  the previous I- or P-picture and the  B-picture  is bidirectionally predicted 
from  the  previous and current I- or P-pictures. Unlike MPEG-I (where  a  B-picture  is coded 
as a separate unit), each  macroblock of the  PB-frame  contains  data  from both the P-picture 
and the  B-picture  (Figure 5.3). PB-frames  can  give an improvement in compression 
efficiency. 

Annex I, Advanced intra-coding This  mode  exploits the correlation between DCT 
coefficients in neighbouring  intra-coded blocks in an image. The DC coefficient and the 
first row or column of  AC coefficients may be predicted from the coefficients of 
neighbouring blocks (Figure 5.4). The zigzag  scan,  quantisation  procedure and variable- 
length code tables  are modified and the  result is an improvement in compression efficiency 
for intra-coded  macroblocks. 

Annex J, Deblocking  filter The edges of each 8 x 8 block  are ‘smoothed’ using a spatial 
filter (described in Chapter 9). This  reduces  ‘blockiness’ in the  decoded  picture and also 
improves  motion  compensation  performance.  When  the  deblocking filter is  switched on, four 
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P macroblock  data B macroblock  data 

Figure 5.3 Macroblock  in  PB-frame 

Annex K, Slice structured mode This mode  provides  support for resynchronisation 
intervals that are  similar to MPEG-1 ‘slices’. A slice  is  a  series of coded  macroblocks 

Prediction  from  above 

Prediction  from  left 

- 
Current block 

Figure 5.4 Prediction of intra-coefficients, H.263 Annex I 
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(a) Raster order (b) Arbitrary  rectangular  slices 

Figure 5.5 H.263 Annex K: slice  options 

starting  with a slice header. Slices  may  contain  macroblocks in raster  order,  or in any 
rectangular  region of the  picture  (Figure 5.5). Slices  may  optionally be sent in an arbitrary 
order.  Each  slice  may  be  decoded  independently of any  other  slice in the  picture  and so slices 
can  be  useful  for  error  resilience  (see  Chapter  11)  since an error in one  slice will not  affect 
the  decoding of any  other  slice. 

Annex L, Supplemental  enhancement  information This  annex  contains  a  number of 
supplementary  codes  that may be  sent by an  encoder to a decoder.  These  codes  indicate 
display-related  information  about  the  video  sequence, such as  picture  freeze  and  timing 
information. 

Annex M, Improved  PB-frames As  the  name  suggests,  this  is  an  improved  version of the 
original  PB-frames  mode  (Annex  G).  Annex M adds  the  options of forward  or  backward 
prediction  for  the  B-frame  part of each  macroblock (as well as the  bidirectional  prediction 
defined in Annex  G),  resulting  in  improved  compression efficiency. 

Annex N, Reference  picture selection This  mode  enables  an  encoder to choose  from  a 
number of previously  coded  pictures  for  predicting  the  current  picture. The use of this  mode 
to limit  error  propagation  in a noisy  transmission  environment  is  discussed in Chapter 1 1 .  At 
the  start of each  GOB  or  slice,  the  encoder may choose the preferred  reference  picture  for 
prediction of macroblocks in that  GOB or slice. 

Annex 0, Scalability Temporal,  spatial  and SNR scalability  are  supported by this  optional 
mode. In a  similar  way  to  the  MPEG-2  optional  scalability  modes,  spatial  scalability  in- 
creases  frame  resolution, SNR scalability  increases  picture  quality and temporal  scalability 
increases  frame  rate. In each  case,  a ‘base layer’  provides  basic  performance and the 
increased  performance is obtained by decoding  the  base  layer  together with  an ‘enhancement 
layer’.  Temporal  scalability  is  particularly useful because it supports  B-pictures:  these  are 
similar to the ‘true’ B-pictures in the  MPEG  standards  (where  a  B-picture is a separate  coded 
unit)  and  are  more  flexible  than  the  combined  PB-frames  described in Annexes G and M. 
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Annex P, Reference  picture  resampling The  prediction  reference  frame used  by  the 
encoder and decoder may be  resampled  prior  to  motion  compensation.  This  has  several 
possible  applications. For example, an encoder  can  change the frame  resolution ‘on  the  fly’ 
whilst continuing to use motion-compensated  prediction.  The  prediction  reference  frame  is 
resampled  to  match  the new resolution  and the current  frame  can  then be predicted  from  the 
resampled  reference.  This  mode may also be  used to  support warping, i.e. the  reference 
picture is warped (deformed)  prior to prediction,  perhaps  to  compensate  for  nonlinear 
camera  movements  such as  zoom  or  rotation. 

Annex Q, Reduced resolution update An encoder may choose  to  update  selected 
macroblocks  at a lower  resolution than the  normal  spatial  resolution of  the frame.  This 
may  be useful,  for  example, to  enable a CODEC  to  refresh  moving  parts of a frame  at  a low 
resolution  using  a  small  number of coded  bits whilst keeping the static  parts of the  frame  at 
the  original  higher  resolution. 

Annex  R,  Independent  segment  decoding This  annex  extends the concept of the  inde- 
pendently  decodeable  slices  (Annex K) or GOBs. Segments of the picture  (where  a  segment 
is one  slice  or an integral  number of GOBs) may  be decoded  completely  independently of 
any  other  segment. In the  slice  structured  mode  (Annex K), motion vectors can  point to areas 
of the  reference  picture  that  are  outside the current  slice;  with  independent  segment 
decoding,  motion  vectors and other  predictions  can  only  reference  areas within the  current 
segment in  the reference  picture  (Figure 5.6). A segment  can  be  decoded  (over  a  series of 
frames)  independently of  the rest of the  frame. 

Annex S, Alternative  inter-VLC The  encoder may  use  an alternative  variable-length  code 
table  for  transform  coefficients in inter-coded  blocks.  The  alternative  VLCs (actually the 
same  VLCs used for  intra-coded  blocks in Annex I) can  provide  better  coding efficiency 
when there  are  a  large  number of high-valued  quantised  DCT coefficients (e.g. if  the coded 
bit rate is high and/or  there  is  a lot of  variation in the video  scene). 

Annex T, Modified  quantisation This  mode  introduces  some  changes  to  the way  the 
quantiser  and  rescaling  operations  are  carried  out.  Annex  T  allows  the  encoder  to  change the 

Figure 5.6 Independent  segments 
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quantiser  scale  factor in a more flexible way during  encoding,  making it possible  to control 
the  encoder  output bit rate  more accurately. 

Annex U, Enhanced  reference  picture selection Annex U modifies the  reference picture 
selection  mode of Annex N to provide  improved  error  resilience and coding efficiency. There 
are a number of changes,  including a mechanism to reduce  the  memory  requirements  for 
storing previously coded pictures and the ability to select a reference picture for motion 
compensation on a macroblock-by-macroblock basis. This means that the ‘best’ match for 
each macroblock  may be  selected  from any of a number of stored previous pictures (also 
known as long-term memory prediction). 

Annex V, Data  partitioned slice Modified from Annex K, this mode improves the 
resilience of slice  structured  data  to transmission errors. Within each  slice,  the macroblock 
data  is rearranged so that all  of the  macroblock  headers  are transmitted first, followed by  all 
of the motion  vectors  and finally  by  all  of the transform coefficient data.  An  error  occurring 
in header or motion  vector  data usually has a more serious effect on  the  decoded picture than 
an  error in transform coefficient data: by rearranging the data in this way, an  error  occurring 
part-way through a slice  should  only affect the less-sensitive transform coefficient data. 

Annex W, Additional  supplemental  enhancement  information Two extra enhancement 
information  items are defined (in addition to those defined in Annex L). The ‘fixed-point 
IDCT’  function  indicates  that  an  approximate inverse DCT  (IDCT) may be used rather than 
the ‘exact’ definition of the  IDCT given in the standard: this can be useful for low-complexity 
fixed-point implementations of the standard. The  ‘picture message’ function allows the 
insertion of a user-definable message  into  the  coded bit stream. 

5.4.1 H.263 Profiles 

It is very unlikely that all 19 optional modes will be required for any one  application. 
Instead, certain combinations of modes may be useful for  particular transmission scenarios. 
In  common with MPEG-2  and  MPEG-4,  H.263 defines a set of recommended projiles (where 
a profile is a subset of the  optional tools) and levels (where a level sets a maximum value on 
certain  coding  parameters  such as frame resolution, frame  rate  and  bit rate). Profiles and 
levels are defined in the final annex of H.263, Annex X. There  are a total of nine profiles, as 
follows. 

Profile 0, Baseline This  is simply the baseline  H.263 functionality, without any optional 
modes. 

Profile 1, Coding  efficiency (Version 2) This profile provides efficient coding using only 
tools available in Versions I and  2 of the standard (i.e. up  to Annex T).  The  selected optional 
modes are Annex I (Advanced Intra-coding), Annex J (De-blocking Filter), Annex L 
(Supplemental  Information: only the full picture freeze  function  is  supported) and 
Annex T (Modified Quantisation).  Annexes I, J and T provide improved coding efficiency 
compared with the  baseline  mode.  Annex J incorporates  the ‘best’ features of the first 
version of the  standard,  four  motion vectors per  macroblock  and unrestricted motion vectors. 
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Profile 2, Coding  efficiency (Version 1) Only  tools  available in  Version  1  of the  standard 
are used  in this profile and in fact only Annex F (Advanced  Prediction)  is  included.  The 
other  three  annexes (D, E, G) from  the  original  standard  are not (with  hindsight)  considered 
to offer sufficient coding  gains to warrant their use. 

Profiles 3 and 4, Interactive  and  streaming  wireless These profiles incorporate efficient 
coding  tools  (Annexes  I, J and T) together with the  slice  structured  mode  (Annex K) and, in 
the  case of Profile 4, the data  partitioned  slice  mode  (Annex V). These  slice  modes can 
support increased  error  resilience  which  is  important  for ‘noisy’ wireless  transmission 
environments. 

Profiles 5,6, 7, Conversational These  three profiles support low-delay, high-compression 
‘conversational’  applications  (such as video  telephony). Profile 5 includes  tools  that  provide 
efficient coding; Profile 6 adds  the  slice  structured  mode  (Annex K) for  Internet  conferen- 
cing; Profile 7 adds  support  for  interlaced  camera  sources  (part of Annex W). 

Profile 8, High  latency For  applications that can tolerate a higher  latency  (delay), such as 
streaming  video, Profile 8 adds  further efficient coding  tools such as B-pictures  (Annex 0) 
and  reference  picture  resampling  (Annex  P).  B-pictures  increase  coding efficiency at the 
expense of a greater delay. 

The  remaining  tools within the  19  annexes  are not included in any profile, either  because 
they are  considered to be too  complex  for  anything  other than special-purpose  applications, 
or  because  more efficient tools have superseded  them. 

5.5 H.26L3 

The  19  optional  modes of H.263  improved  coding efficiency and  transmission  capabilities: 
however, development of H.263  standard  is  constrained by the  requirement  to  continue  to 
support the original  ‘baseline’  syntax.  The  latest  standardisation  effort by the  Video  Coding 
Experts  Group  is  to  develop  a new coding  syntax that offers significant benefits over the 
older  H.261  and  H.263  standards.  This new standard  is  currently  described as ‘H.26L‘, where 
the L stands  for ‘long term’  and  refers to the  fact that this standard was planned as a long- 
term solution  beyond  the  ‘near-term’  additions  to  H.263 (Versions 2 and 3). 

The  aim of H.26L  is to provide a ‘next generation’  solution  for  video  coding  applications 
offering  significantly  improved  coding efficiency whilst reducing  the  ‘clutter’ of the many 
optional  modes in H.263.  The new standard also  aims  to  take  account of the changing 
nature of video coding  applications. Early applications of H.261 used dedicated  CODEC 
hardware  over  the low-delay, low-error-rate  ISDN.  The  recent trend is towards software-only 
or  mixed softwarehardware  CODECs  (where  computational  resources are  limited,  but 
greater flexibility is possible than with a dedicated  hardware  CODEC) and more  challenging 
transmission  scenarios (such as  wireless links with high error  rates  and  packet-based 
transmission over the  Internet). 

H.26L is currently  at the test  model  development  stage and may continue to evolve  before 
standardisation.  The  main  features  can be summarised as follows. 
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Figure 5.7 H.26L blocks in a  macroblock 

Processing units The basic unit is  the  macroblock, as with  the previous standards. 
However,  the  subunit is now a 4 x 4 block  (rather than an 8 x 8 block). A macroblock 
contains  26  blocks in total  (Figure 5.7): 16 blocks  for  the  luminance  (each 4 x 4), four 4 x 4 
blocks  each  for  the  chrominance  components  and  two 2 x 2  ‘sub-blocks’  which  hold  the DC 
coefficients of each of the  eight  chrominance  blocks. It is more efficient to  code  these DC 
coefficients  together  because they are  likely  to be highly  correlated. 

Intra-prediction Before  coding  a 4 x 4 block within an  intra-macroblock,  each pixel  in 
the  block  is  predicted  from  previously  coded pixels. This  prediction  reduces  the  amount of 
data  coded in low-detail  areas of  the picture. 

Prediction  reference  for inter-coding In a  similar  way  to  Annexes N and U of  H.263,  the 
reference  frame  for  predicting  the  current  inter-coded  macroblock may be  selected  from  a 
range of previously  coded  frames.  This  can  improve  coding efficiency and  error  resilience  at 
the  expense of increased  complexity  and  storage. 

Sub-pixel motion  vectors H.26L  supports  motion  vectors  with  pixel and (optionally) 
pixel  accuracy;  $pixel  vectors  can  give an appreciable  improvement in coding efficiency 

over $-pixel vectors  (e.g. H.263, MPEG-4)  and  $-pixel  vectors  can  give  a  small  further 
improvement  (at  the  expense of increased  complexity). 

Motion  vector  options H.26L  offers  seven  different  options  for  allocating  motion vectors 
within  a  macroblock,  ranging  from  one  vector  per  macroblock  (Mode 1 in Figure 5.8) to an 
individual  vector  for  each of the  16  luminance  blocks  (Mode 7 in Figure 5.8). This  makes it 
possible  to  model  the  motion of irregular-shaped  objects  with  reasonable  accuracy.  More 
motion  vectors  require  extra  bits  to  encode  and  transmit  and so the  encoder  must  balance the 
choice of motion  vectors  against  coding efficiency. 

De-blocking  filter The de-blocking filter defined in Annex J of H.263 significantly 
improves  motion  compensation efficiency because  it  improves  the  ‘smoothness’ of the 
reference  frame used for  motion  compensation.  H.26L  includes  an  integral  de-blocking filter 
that  operates  across  the  edges of the 4 x 4 blocks within each  macroblock. 
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Figure 5.8 H.26L motion vector modes 

4 x 4 Block  transform After motion  compensation,  the  residual  data within each block is 
transformed using a 4 x 4 block transform.  This is based on a 4 x 4 DCT but is an integer 
transform  (rather than the  floating-point ‘true’ DCT). An integer  transform avoids problems 
caused by mismatches  between  different  implementations of the  DCT and is well suited to 
implementation in fixed-point arithmetic  units (such as  low-power  embedded  processors, 
Chapter  13). 

Universal  variable-length  code The VLC tables in H.263  are  replaced with a single 
‘universal’  VLC. A transmitted code is created by building  up a regular  VLC  from  the  ‘universal’ 
codeword.  These  codes have two  advantages: they can be implemented efficiently in 
software  without  the  need  for  storage of large  tables  and they are  reversible,  making  it 
easier  to  recover  from  transmission  errors  (see  Chapters 8 and 11 for  further  discussion of 
VLCs and error  resilience). 

Content-based  adaptive  binary  arithmetic  coding This  alternative  entropy  encoder uses 
arithmetic  coding  (described in Chapter 8) to give higher  compression efficiency than variable- 
length  coding. In addition,  the  encoder  can  adapt  to  local  image  statistics,  i.e.  it  can  generate 
and use accurate  probability  statistics  rather than using predefined probability  tables. 

B-pictures These  are  recognised  to be a very useful coding  tool,  particularly  for  applicat- 
ions that are not  very sensitive to transmission  delays.  H.26L  supports  B-pictures in a similar 
way to MPEG-l and MPEG-2,  i.e.  there  is no restriction on the  number of B-pictures that 
may be transmitted  between pairs of I- and/or P-pictures. 

At  the  time of writing it  remains  to be seen whether  H.26L will supersede  the  popular 
H.261  and  H.263  standards. Early indications  are  that  it  offers a  reasonably  impressive 
performance gain over H.263  (see  the  next  section):  whether  these  gains  are sufficient to 
merit a ‘switch’ to the new standard  is not yet clear. 
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5.6 PERFORMANCE OF THE VIDEO CODING STANDARDS 

Each of the  image  and  video  coding  standards  described  in  Chapters 4 and 5 was designed 
for a different  purpose  and  includes  different  features.  This  makes it difficult to compare 
them  directly.  Figure 5.9 compares the PSNR  performance of each of the video  coding 
standards  for  one  particular  test  video  sequence,  'Foreman',  encoded  at QCIF resolution and 
a frame  rate of 10 frames  per  second.  The  results  shown in the figure should be interpreted 
with caution,  since  different  performance will be measured  depending on the video 
sequence,  frame  rate  and so on.  However,  the trend in performance  is  clear.  MJPEG 
performs poorly (i.e.  it  requires a relatively  high  data  rate to support a given picture 
'quality')  because  it  does not use any inter-frame  compression.  H.261  achieves a substantial 
gain  over  MJPEG,  due to the use of integer-pixel  motion  compensation.  MPEG-2  (with  half- 
pixel  motion  compensation)  is  next,  followed by H.263MPEG-4  (which  achieve a further 
gain by using four  motion  vectors  per  macroblock).  The  emerging  H.26L  test  model  achieves 
the best performance of all.  (Note  that  MPEG-l  achieves the same  performance as MPEG-2 
in this  test  because  the  video  sequence  is not interlaced.) 

This  comparison  is not the  complete  picture  because  it  does not take  into  account the 
special  features of particular  standards (for example,  the  content-based  tools of MPEG-4  or 
the  interlaced  video  tools of MPEG-2). Table 5.1 compares  the  standards in terms of coding 
performance  and  features. At the  present  time,  MPEG-2,  H.263  and  MPEG-4  are  each  viable 

Video  coding  performance:  "Foreman",  QCIF, 10 frameslsec 
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Table 5.1 Comparison of the  video  coding  standards 

Target  Coding 
Standard  application  performance Features 

MJPEG Image  coding 1 (worst) 
H.261 Video  conferencing 2 
MPEG- 1 Video-CD 3 (equal) 

MPEG-2  Digital  TV 3 (equal) 

H.263  Video  conferencing 4 (equal) 

MPEG-4  Multimedia  coding  4  (equal) 

H.26L  Video  conferencing 5 (best) 

Scalable  and  lossless  coding  modes 
Integer-pixel  motion  compensation 
I, P, B-pictures,  half-pixel 

As above; field coding,  scalable 

Optimised for low  bit  rates;  many 

Many  options  including  content- 

Full  feature  set  not  yet  defined 

compensation 

coding 

optional  modes 

based  tools 

alternatives  for  designers of video  communication  systems.  MPEG-2  is  a  relatively  mature 
technology  for the mass-market  digital  television  applications;  H.263  offers  good  coding 
performance  and  options to support  a  range of transmission  scenarios;  MPEG-4  provides  a 
large  toolkit with the  potential  for new and  innovative  content-based  applications.  The 
emerging  H.26L  standard  promises to outperform  the  H.263  and  MPEG-4  standards in terms 
of video  compression  efficiency4 but is not yet finalised. 

5.7 SUMMARY 

The ITU-T Video  Coding  Experts  Group  developed  the  H.261  standard  for video conferen- 
cing  applications  which  offered  reasonable  compression  performance with relatively low 
complexity.  This  was  superseded by the  popular  H.263  standard,  offering  better  performance 
through features  such as half-pixel motion compensation  and  improved Variable-length 
coding. Two further  versions of H.263 have been  released,  each  offering  additional  optional 
coding  modes to support  better  compression efficiency and  greater flexibility. The  latest 
version (Version 3) includes 19 optional  modes, but is  constrained by the  requirement  to 
support  the  original,  ‘baseline’  H.263  CODEC.  The  H.26L  standard, under development 
at  the  time of writing,  incorporates  a  number of new coding  tools such as a 4 x 4 
block  transform and flexible motion vector options  and  promises to outperform  earlier 
standards. 

Comparing the performance of the  various  coding  standards  is difficult because  a  direct 
‘rate-distortion’  comparison  does not take  into  account  other  factors such as features, 
flexibility  and market penetration. It seems  clear that the  H.263,  MPEG-2  and  MPEG-4 
standards  each have their  advantages  for  designers of video  communication  systems.  Each of 
these  standards  makes  use of common  coding  technologies:  motion  estimation  and 
compensation, block transformation  and  entropy  coding. In the next section of this  book 
we  will examine  these  core  technologies in detail. 



92 VIDEO  CODING  STANDARDS: H.261, H.263 AND H.26L 

REFERENCES 

1. ITU-T  Recommendation  H.261,  ‘Video  CODEC for audiovisual  services at px64kbit/s’,  1993. 
2. ITU-T  Recommendation  H.263,  ‘Video  coding  for low bit  rate  communication’, Version 2, 1998. 
3. ITU-T  Q6/SG16  VCEG-L45,  ‘H.26L  Test  Model  Long  Term  Number  6  (TML-6)  draft 0’, March 

4.  ITU-T  Q6/SG16 VCEG-MO8, ‘Objective  coding  performance of [H.26L] TML 5.9  and  H.263+’, 
200 1. 

March  200 1. 



Motion  Estimation 
and  Compensation 

6.1 INTRODUCTION 

In the  video  coding  standards  described in Chapters 4 and 5, blocks of image  samples  or 
residual  data are compressed  using  a  block-based  transform  (such  as the DCT)  followed by 
quantisation  and  entropy  encoding.  There is limited  scope  for  improved  compression 
performance in the later stages of encoding  (DCT,  quantisation  and  entropy  coding),  since 
the operation of the  DCT  and  the  codebook for entropy  coding are specified by the  relevant 
video  coding  standard.  However,  there is scope for significant performance  improvement in 
the  design of the first stage of a  video  CODEC  (motion  estimation  and  compensation). 
Efficient motion  estimation  reduces  the  energy in the motion-compensated residual frame 
and  can  dramatically  improve  compression  performance.  Motion  estimation  can be  very 
computationally  intensive  and so this compression  performance may be at the expense of 
high  computational  complexity.  This  chapter  describes  the  motion  estimation  and  compen- 
sation process in detail and  discusses  implementation alternatives and trade-offs. 

The  motion  estimation  and  compensation  functions  have  many  implications  for  CODEC 
performance. Key performance issues include: 

0 Coding  performance  (how efficient is the  algorithm at minimising  the  residual  frame?) 

0 Complexity  (does  the  algorithm  make effective use of computation  resources, how easy is 
it to implement in software  or  hardware?) 

0 Storage  and/or  delay  (does the algorithm  introduce  extra  delay  and/or  require  storage of 
multiple  frames?) 

0 ‘Side’ information  (how much extra  information, e.g. motion vectors, needs to be 
transmitted  to  the  decoder?) 

0 Error resilience (how  does the decoder  perform  when errors occur  during  transmission?) 

These issues are interrelated and are potentially  contradictory (e.g. better coding  perfor- 
mance may lead to increased  complexity  and  delay  and  poor error resilience) and different 
solutions are appropriate for different platforms  and applications. The  design  and  imple- 
mentation of motion  estimation,  compensation  and  reconstruction  can be critical to the 
performance of a  video  coding application. 

Video Codec Design
Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
ISBNs: 0-471-48553-5 (Hardback); 0-470-84783-2 (Electronic)
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6.2 MOTION ESTIMATION AND COMPENSATION 

6.2.1 Requirements for Motion  Estimation  and  Compensation 

Motion  estimation  creates  a model of the current  frame based on available data in  one or 
more previously encoded  frames  (‘reference  frames’).  These  reference  frames may be ‘past’ 
frames (i.e. earlier than the current  frame in temporal  order) or ‘future’ frames (i.e. later in 
temporal  order). The design  goals for a motion estimation  algorithm  are to model the current 
frame as accurately as possible  (since this gives better compression  performance) whilst 
maintaining  acceptable  computational complexity. In  Figure 6.1, the motion estimation 
module  creates  a  model by modifying one  or more  reference  frames to match the  current 
frame  as closely as possible  (according to a  matching  criterion). The current  frame  is motion 
compensated by subtracting the model from the frame to produce  a  motion-compensated 
residual  frame.  This  is  coded and transmitted, along with the  information required for 
the  decoder to recreate  the  model  (typically  a set of motion vectors). At the same  time, the 
encoded  residual is decoded and added to the  model to reconstruct a  decoded  copy of the 
current frame (which may not be identical to the  original frame because of coding  losses). 
This  reconstructed frame  is stored to be used as a  reference frame for  further predictions. 

The residual  frame  (or  displaced  frame  difference,  DFD) is encoded and transmitted, 
together with any ‘side information’  (such as motion vectors) needed to recreate  the model at 
the decoder. The ‘best’ compression  performance  is achieved when the size of the coded 
DFD and coded  side  information  is  minimised. The size of the coded DFD is related to the 
energy  remaining in the DFD after motion compensation.  Figure 6.2 shows a previous, 
current and residual  frame  (DFD) without motion compensation: there is clearly a significant 
amount of energy present around the boundaries of moving  objects  (the girl and the  bicycle 
in this case).  It should be possible to reduce  this  energy (and improve compression 
performance) using motion estimation and compensation. 

Current frame Motion 
compensation Encode residual 

$. 

Reconstructed 
frame Reconstruction 4 d Decode residual 

Figure 6.1 Motion  estimation  and  compensation block diagram 
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( c )  

6.2.2 Block Matching 

Figure 6.2 (a)  Previous  frame; (b) current 
frame; (c) DFD (no motion  compensation) 

In the  popular  video  coding  standards  (H.261,  H.263,  MPEG-1,  MPEG-2  and  MPEG-4), 
motion  estimation  and  compensation  are  carried  out  on 8 x 8 or  16 x 16  blocks in the  current 
frame.  Motion  estimation of complete  blocks is known as block matching. 

For  each  block of luminance  samples  (say  16 x 16)  in  the  current  frame,  the  motion 
estimation  algorithm  searches  a  neighbouring  area of the  reference  frame  for  a  ‘matching’ 
16 x 16  area.  The  best  match  is  the  one  that  minimises  the  energy of the  difference  between 
the  current  16 x 16  block and the matching  16 x 16  area. The  area  in  which  the  search is 
carried  out may  be centred  around  the  position of the  current  16 x 16  block,  because  (a) 
there is likely  to  be  a  good  match  in  the  immediate  area of the  current  block  due  to  the high 
similarity  (correlation)  between  subsequent  frames and (b) it would be  computationally 
intensive  to  search  the  whole of the  reference  frame. 

Figure  6.3  illustrates  the  block  matching  process. The  current  ‘block’  (in  this  case,  3 x 3 
pixels) is shown on the  left and this  block is compared  with  the  same  position  in  the 
reference  frame (shown by the  thick  line in the  centre) and the  immediate  neighbouring 
positions (+/-l pixel  in  each  direction). The mean squared  error (MSE) between  the 
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Current  block  Reference area Positions (x,y) 

Figure 6.3 Current 3 x 3 block and 5 x 5 reference  area 

current  block  and  the  same position in  the  reference  frame (position (0, 0)) is given by 

{(l  - 4)* + ( 3  - 2)2 + (2 - 3)2 + (6 - 4)* + (4 - 2)’ 

+ ( 3  - 2)’ + ( 5  - 4)’ + (4 - 3)’ + (3 - 3)2}/9 = 2.44 

The complete  set of MSE values for  each  search position is listed in Table 6.1 and shown 
graphically in Figure  6.4. Of the  nine  candidate positions, ( -  1, l )  gives the  smallest MSE 
and  hence the ‘best’ match. In this example,  the best ‘model’  for  the  current block (i.e.  the 
best prediction) is the 3 x 3 region in position ( -  l ,  1). 

A video  encoder  carries out this process for  each  block in the  current  frame 

1. Calculate  the  energy of the  difference  between the current block and a set of neighbouring 
regions in the  reference  frame. 

2.  Select  the region that gives  the  lowest error (the ‘matching region’). 

3. Subtract  the  matching region from the current block  to  produce a difference  block. 

4. Encode  and  transmit  the  difference  block. 

5. Encode and  transmit a ‘motion vector’ that  indicates  the position of the  matching region, 
relative to the current block position (in the above  example,  the  motion vector is ( - I ,  1). 

Steps 1 and 2 above  correspond to motion  estimation and  step 3 to motion  compensation. 
The video  decoder  reconstructs  the  block as follows: 

1. Decode  the  difference block and motion vector. 

2. Add  the  difference  block  to  the matching region in the  reference  frame  (i.e. the region 
‘pointed’  to by the motion vector). 

Table  6.1 MSE  values for block matching  example 

Position(x,y) (-1,   -1) (0, - 1 )  (1, - 1 )  ( - 1 , O )  ( 0 , O )  (1, 0) ( -1,  1) (0, 1 )  ( 1 ,  1) 

MSE 4.67 2.89  2.78 3.22  2.44 3.33 0.22 2.56  5.33 
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(b) 

Figure 6.4 MSE map:  (a)  surface  plot; (b) pseudocolour  plot 

6.2.3 Minimising  Difference  Energy 

The name  ‘motion  estimation’  is  misleading  because  the  process  does not necessarily 
identify ‘true’ motion,  instead it  attempts to find a  matching  region  in  the  reference  frame 
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Figure 6.5 16 x 16 block motion vectors 

that  minimises  the  energy of the  difference  block.  Where  there  is  clearly identifiable 
linear  motion,  such as large  moving  objects  or  global  motion  (camera  panning,  etc.), 
motion  vectors  produced in this way should  roughly  correspond to the  movement of blocks 
between  the  reference  and  the  current  frames.  However,  where  the  motion  is  less  obvious 
(e.g.  small  moving  objects  that do not  correspond  to  complete  blocks,  irregular  motion, 
etc.),  the ‘motion vector’ may not indicate  genuine  motion  but  rather  the  position of a good 
match. 

Figure  6.5  shows  the  motion  vectors  produced by motion  estimation  for  each of the 
16 x 16 blocks  (‘macroblocks’) of the frame in Figure  6.2. Most of  the vectors do correspond 
to motion:  the  girl  and  bicycle  are  moving to the left and so the  vectors  point  to  the righr (i.e. 
to  the  region  the  objects  have  movedfrorn).  There  is  an  anomalous  vector in the middle (it is 
larger  than  the  rest  and  points  diagonally  upwards).  This  vector  does  not  correspond  to  ‘true’ 
motion,  it  simply  indicates  that  the  best  match  can  be  found in this  position. 

There  are  many  possible  variations  on  the  basic  block  matching  process,  some of  which 
will be described  later  in  this  chapter.  Alternative  measures of DFD  energy may  be  used 
(to  reduce  the  computation  required to calculate MSE). Varying block  sizes,  or  irregular- 
shaped  regions,  can be more efficient at matching ‘true’ motion than  fixed 16 x 16 blocks. 
A better  match may  be found by searching  within  two  or  more  reference  frames  (rather  than 
just  one).  The  order of searching  neighbouring  regions  can  have a significant effect  on 
matching  efficiency  and  computational  complexity.  Objects do not  necessarily  move by  an 
integral  number of pixels  between  successive  frames  and so a better  match may  be obtained 
by searching  sub-pixel  positions in the  reference  frame. The block  matching  process itself 
only  works  well  for  large,  regular  objects  with  linear  motion:  irregular  objects and non-linear 
motion  (such as rotation or deformation) may be  modelled  more  accurately with other 
motion  estimation  methods  such as object-based  or  mesh-based  estimation. 
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Comparison criteria 

Mean  squared  error  provides  a  measure of the  energy  remaining in the  difference  block. 
MSE  for  a N x N-sample  block  can  be  calculated  as  follows: 

where C, is  a  sample of the  current  block, RV is  a  sample of the  reference  area  and COO, Roo 
are  the  top-left  samples in the  current and reference  areas respectively. 

Mean  absolute  error  (MAE)  provides  a  reasonably  good  approximation of residual  energy 
and  is  easier to calculate than MSE,  since it requires  a  magnitude  calculation  instead of a 
square  calculation  for  each  pair of samples: 

. N - l  N - l  

The  comparison may  be simplified  further by neglecting  the  term l/N2 and  simply 
calculating the sum of absolute  errors  (SAE) or  sum of absolute  differences  (SAD): 

SAE  gives  a  reasonable  approximation  to  block  energy  and so Equation 6.3 is a  commonly 
used matching  criterion  for  block-based  motion  estimation. 

6.3 FULL SEARCH MOTION ESTIMATION 

In order  to find the  best  matching region in the reference  frame, in theory it is necessary  to 
carry out  a  comparison of the  current  block with every  possible  region of  the reference 
frame.  This  is  usually  impractical  because of the  large  number of comparisons  required. In 
practice,  a  good  match  for  the  current  block  can usually  be found in the  immediate 
neighbourhood of the  block  position in  the reference  frame (if a  match  exists).  Hence in 
practical  implementations, the search  for  a  matching  region is limited  to  a  ‘search  window’, 
typically  centred  on  the  current  block position. 

The optimum  size of search window depends on several  factors: the resolution of each 
frame  (a  larger window is  appropriate  for  a  higher  resolution), the type of scene  (high- 
motion  scenes benefit from  a  larger  search window  than low-motion  scenes)  and the 
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(start in centre) 

(a) Raster order (b) Spiral order 

Figure 6.6 Full  search:  (a) raster  and (b) spiral  order 

available  processing  resources  (since  a  larger  search window requires  more  comparison 
operations  and  hence  more  processing). 

Full search motion estimation calculates  the  comparison  criterion  (such  as SAE) at  each 
possible  location  in  the  search window. Full  search  is  computationally  intensive,  particularly 
for  large  search windows. The  locations may be  processed  in  a ‘raster’ order  (Figure  6.6, 
left-hand  diagram)  or  in  a  spiral  order  starting  from  the  centre (0, 0) position  (Figure  6.6, 
right-hand  diagram). The spiral  search  order  has  certain  computational  advantages when 
early  termination  algorithms  are used (see  Section 6.9.1) because  the  best  match  (and  hence 
the  smallest SAE) is  most  likely  to  occur  near  the  centre of the  search  region. 

Figure  6.7  shows  an  example of the  SAE  results  for  a  full  search.  The  figure  shows  the 
current  block  and  the  reference  area (+/-l5 pixels  around  the  current  16 X 16  block 
position)  together  with  a  plot of the SAE values  found  at  each  search  location.  There  are  a 
total of 3 1 x 31 S A E  values  (corresponding  to  integer  steps  from - 15  to + 15 in  the x and y 
directions).  The  smallest SAE value  can  be  found  at  location (x  = 6, y = 1) and  is  marked  on 
the SAE plot. This is  the  global  minimum of the SAE function  in  the  search  region  and  the 
full  search  algorithm  will  select this position  as  the  ‘best’  match.  Note  that  there  are  other, 
local  minima of the S A E  function  (the  dark  ‘patches’  on  the SAE plot):  the  importance of 
these  local  minima  will  become  clear  in  the  next  section. 

The  effect of motion  estimation and compensation is illustrated  in  Figure 6.8. After 
motion  estimation  (using  full  search  block  matching) and compensation,  the  reference  frame 
(shown  in  Figure 6.2) is  ‘reorganised’  to  provide  a  closer  match to  the  current  frame.  The 
motion-compensated DFD shown  in  Figure 6.8  contains  less  energy  than  the  uncompensated 
DFD in  Figure  6.2  and  will  therefore  produce  a  smaller  coded  frame. 
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Figure 6.7 

(c) 

SAD map:  (a) current block; (b) search  area; (c) map with minima 
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Figure 6.8 Residual frame  after full search 
motion  estimation  and  compensation 

6.4 FAST SEARCH 

The  computational  complexity of a  full  search  algorithm  is  often  prohibitive,  particularly  for 
software  CODECs  that  must  operate  in ‘real time’. Many alternative ‘fast search’  algorithms 
have been developed  for  motion  estimation. A fast  search  algorithm  aims  to  reduce  the 
number of comparison  operations  compared with full  search, i.e. a  fast  search  algorithm will 
‘sample’  just  a few of the  points  in  the  SAE map whilst  attempting  to find the  minimum 
SAE.  The  critical  question  is whether  the  fast  algorithm  can  locate  the ‘true’ minimum  rather 
than  a ‘local’ minimum.  Whereas  the  full  search  algorithm  is  guaranteed to find the  global 
minimum SAE, a  search  algorithm  that  samples  only  some of the  possible  locations  in  the 
search  region may get  ‘trapped’  in  a  local  minimum. The result  is  that  the  difference  block 
found by the  fast  search  algorithm  contains  more  energy  than  the  block  found by full  search 
and hence  the  number of coded  bits  generated by the  video  encoder will be  larger. 
Because of this,  fast  search  algorithms  usually  give  poorer  compression  performance than 
full  search. 

6.4.1 Three-Step  Search (TSS)’ 

This  algorithm  is  most  widely  known  in  its  three-step  form,  the  ‘three-step  search’ (TSS), 
but  it  can  be  carried  out  with  other  numbers of steps  (i.e.  N-step  search).  For  a  search 
window of + / - ( 2 N  - 1) pixels,  the TSS algorithm is as  follows: 

1. Search  location (0, 0). 
2. Set S = 2N-’ (the  step  size). 

3. Search  eight  locations +/-S pixels  around  location (0, 0). 

4. From the  nine  locations  searched so far,  pick  the  location  with  the  smallest SAE and 
make  this  the new search  origin. 
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Figure 6.9 Three-step  search  (TSS) 

5. Set S = S/2. 
6.  Repeat  stages 3-5 until S = 1. 

Figure  6.9  illustrates  the  procedure  for  a  search window of +/-7 (i.e. N = 3). The first ‘step’ 
involves  searching  location (0, 0) and  eight  locations +/-4 pixels  around  the  origin. The 
second  ‘step’  searches +/-2 pixels  around  the  best  match  from  the first step  (highlighted  in 
bold) and the  third  step  searches +/-l pixels  around  the  best  match  from  the  second  step 
(again  highlighted). The best  match  from  this  third  step  is  chosen  as  the  result of the  search 
algorithm. With a  search window of +/-7, three  repetitions  (steps)  are  required  to find the 
best  match. A total of (9+8+8) = 25 search  comparisons  are  required  for  the  TSS, 
compared  with (15 x 15) = 225 comparisons  for  the  equivalent  full  search. In general, 
(8N+ 1) comparisons  are  required  for  a  search  area of +/-(2N - 1) pixels. 

6.4.2 Logarithmic  Search’ 

The  logarithmic  search  algorithm  can  be  summarised  as  follows: 

1. Search  location (0,  0). 

2. Search  four  locations  in  the  horizontal and vertical  directions, S pixels away from  the 
origin  (where S is  the  initial  step size). The five locations  make  a ‘ + ’ shape. 

3. Set  the new origin  to  the  best match (of the five locations  tested). If the  best  match  is at 
the  centre of the ‘+’, S = S/2, otherwise S is unchanged. 

4. If S = 1 then  go  to  stage 5 ,  otherwise  go  to  stage 2. 

5. Search  eight  locations  immediately  surrounding  the  best  match. The  search  result is the 
best  match of the  search  origin and these  eight  neighbouring  locations. 



104 MOTION  ESTIMATION AND COMPENSATION 

Figure 6.10 Logarithmic search 

Figure  6.10  shows an example of the  search  pattern with S = 2 initially.  Again,  the  best 
match  at  each  iteration  is  highlighted  in  bold  (note  that  the  bold 3 is  the  best  match  at 
iteration 3 and at  iteration 4). In this  example 20 search  comparisons  are  required:  however, 
the  number of comparisons  varies  depending  on  number of repetitions of stages 2, 3 and 4 
above.  Note  that  the  algorithm will not search  a  candidate  position if it is outside  the  search 
window (+/-7 in  this  example). 

6.4.3 Cross-Search3 

This algorithm is similar  to  the  three-step  search  except  that five points  are  compared  at  each 
step  (forming an X) instead of nine. 

1.  Search  location (0, 0). 

2. Search  four  locations  at +/-S, forming an ‘X’ shape  (where S = 2N-’ as  for  the TSS). 

3. Set  the new origin  to  be  the  best  match of the five locations  tested. 

4. If S > 1 then S = S/2 and go  to  stage 2; otherwise  go  to  stage 5. 

5. If the  best  match is  at  the top left or  bottom  right of the ‘X’, evaluate  four  more  points  in 
an ‘X’ at  a  distance of +/-l; otherwise  (best  match  is  at  the  top  right  or  bottom  left) 
evaluate  four  more  points  in  a ‘ + ’ at  a  distance of +/-l. 

Figure 6.11 shows  two  examples of the  cross-search  algorithm:  in  the first example,  the 
final points are in  the  shape of a ‘X’ and in  the  second, they are  in  the  shape of a ‘ + ’ 
(the  best  match at each  iteration  is  highlighted).  The  number of SAD  comparisons  is 
(4N + 5) for  a  search  area of +/-(2N - 1)  pixels (i.e.  17 comparisons  for  a +/-7 pixel 
window). 
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Figure 6.11 Cross-search 

6.4.4  One-at-a-Time  Search 

This simple  algorithm  essentially  involves  following  the  SAD  ‘gradient’ in the  horizontal 
direction  until  a  minimum is found,  then  following  the  gradient  in  the  vertical  direction to 
find a  vertical  minimum: 

1. Set  the  horizontal  origin  to (0, 0). 

2. Search  the  origin  and  the  two  immediate  horizontal  neighbours. 

3. If the  origin  has  the  smallest  SAD (of the  three  neighbouring  horizontal  points),  then  go 
to stage 5, otherwise. . . . 

4. Set  the new origin  to  the  horizontal  point with the  smallest SAD and search  the 
neighbouring  point  that  has  not  yet been searched. Go to  stage 3. 

5 .  Repeat  stages 2-4 in  the  vertical  direction. 

The  one-at-a-time  search  is  illustrated  in  Figure  6.12.  The  positions  marked 1 are  searched 
and  the  left-hand  position  gives  the  best  match.  Position 2 is searched and gives  the  best 
match.  The  horizontal  search  continues  with  positions 3, 4 and 5 until  position  4 is found  to 
have  a  lower SAD than  position 5 (i.e. a  horizontal  minimum  has been detected).  The 
vertical  search  starts with positions 6: the  best  match  is  at  the  top  and  the  vertical  search 
continues with 7, 8, 9 until  a  minimum is detected  at  position 8. In this  example  only  nine 
searches  are  carried  out:  however,  there  is  clearly  potential  to  be  trapped in a  local  minimum. 

6.4.5  Nearest  Neighbours  Search4 

This algorithm  was  proposed  for H.263 and MPEG-4 (short  header)  CODECs. In these 
CODECs,  each  motion  vector  is  predicted  from  neighbouring  (already  coded)  motion  vectors 
prior  to  encoding  (see  Figure  8.3).  This  makes it  preferable  to  choose  a  vector  close to this 
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Figure 6.12 One-at-a-time  search 

‘median  predictor’  position,  for  two  reasons.  First,  neighbouring  macroblocks  often  have 
similar  motion  vectors (so that  there is a  good  chance  that  the  median  predictor  will  be  close 
to the ‘true’ best  match).  Second,  a  vector  near  the  median  will  have  a  small  displacement 
and  therefore  a  small VLC. 

The  algorithm  proceeds as follows: 

1. 

2. 

3. 

4. 

Search  the (0,  0) location. 

Set  the  search  origin  to  the  predicted  vector  location and search  this  position. 

Search  the  four  neighbouring  positions to the  origin  in  a ‘+ ’ shape. 

If the  search  origin  (or  location 0, 0 for  the first iteration)  gives  the  best  match, this is  the 
chosen  search  result;  otherwise,  set  the new origin  to  the  position of the  best  match and go 
to  stage 3. 

The  algorithm  stops when the  best  match  is  at  the  centre of the ‘ + ’ shape  (or  the  edge of the 
search window has  been  reached). An example of a  search  sequence  is shown in Figure 6.13. 

Figure 6.13 Nearest neighbours search 
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The median predicted vector is ( -  3, 3) and this is shown with an arrow. The (0, 0) point 
(marked 0) and  the first ‘layer’ of positions  (marked 1) are searched: the best match  is 
highlighted. The  layer 2 positions are  searched, followed by layer 3. The best match for  layer 
3 is in the  centre of the ‘ + ’ shape and so the search is terminated. 

This algorithm will perform well  if the  motion vectors are reasonably homogeneous, i.e. 
there are not too  many sudden changes in the  motion vector field. The algorithm  described 
in4  includes  two further features. First, if  the median predictor is unlikely to be accurate 
(because  too  many neighbouring macroblocks  are  intra-coded and therefore  have  no motion 
vectors), an alternative algorithm such as the TSS is used. Second, a cost function is 
proposed to  estimate whether the  computational complexity of carrying out the  next  set of 
searches  is worthwhile. (This will be discussed further in Chapter 10.) 

6.4.6 Hierarchical  Search 

The hierarchical search algorithm (and its variants) searches a coarsely subsampled version 
of the  image first, followed by successively higher-resolution versions until the full image 
resolution is reached: 

1. Level 0 consists of the current and  reference  frames at their full resolutions. 
Subsample level 0 by a factor of 2 in the horizontal and vertical directions to produce 
level 1. 

2. Repeat,  subsampling level 1 to  produce level 2, and so on until the required number  of 
levels are available (typically, three or  four levels are sufficient). 

3. Search  the highest level to find the best match: this is  the initial ‘coarse’ motion 
vector. 

4. Search  the next lower level around the position of the ‘coarse’ motion vector and find the 
best match. 

5 .  Repeat  stage 4 until the best match is found at level 0. 

The  search method used at the highest level may be  full search or a ‘fast’ algorithm such 
as TSS. Typically, at each  lower level only +/-l pixels are searched  around  the  coarse 
vector. Figure 6.14 illustrates the  method with three levels (2 ,  1 and 0) and a window 
of +/-3 positions at the highest level. A full search is  carried  out  at the top level: 
however, the complexity is relatively low because  we are only comparing a 4 x 4 pixel area 
at each level 2 search location. The best match (the  number ‘2’) is used as the  centre of the 
level 1 search, where eight surrounding locations are searched. The best match (number ‘ 1 ’) 
is used as the  centre of the final level 0 search. The equivalent search window is +/-l5 
pixels (i.e. the algorithm can  find a match anywhere within +/-l5 pixels of the origin at 
level 0). 

In total, 49  searches  are carried out at level 2 (each  comparing 4 x 4 pixel regions), 8 
searches at level 1 (each comparing 8 x 8 pixel regions) and 8 searches at level 0 (comparing 
16 x 16 pixel regions). 
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6.5 COMPARISON OF MOTION ESTIMATION ALGORITHMS 

The wide  range of algorithms  available  for  block-based  motion  estimation  can  make it 
difficult to  choose  between  them.  There  are  a  number of criteria  that may help in the  choice: 

1. Matching  performance: how effective is the  algorithm at minimising  the  residual  block? 

2.  Rate-distortion  performance: how  well does the complete  CODEC  perform  at  various 
compressed bit rates? 

3. Complexity: how many  operations are required to  complete  the  matching  process? 

4. Scalability: does  the  algorithm  perform  equally  well for large and  small  search  windows? 

5. Implementation: is the  algorithm  suitable  for  software or hardware  implementation  for 
the  chosen  platform or architecture? 

Criteria 1 and 2 appear  to be identical. If the algorithm is effective at minimising the energy 
in the  motion-compensated  residual  block,  then  it  ought to provide  good  compression 
efficiency (good  image  quality  at  a low compressed bit rate). However,  there are  other  factors 
that  complicate  things:  for  example, every motion  vector  that  is  calculated by the  motion 
estimation  algorithm  must be encoded and transmitted as part of the compressed bit stream. 
As will be  discussed in Chapter 8, larger  motion  vectors are usually  coded  with  more  bits  and 
so an  algorithm that efficiently minimises the residual  frame but produces  large  motion 
vectors may  be less efficient than  an  algorithm  that  is ‘biased’ towards  producing  small 
motion vectors. 

Example 

In the  following  example,  block-based  motion  estimation  and  compensation  were  carried  out 
on five frames of the  ‘bicycle’  sequence (shown  in Figure 6.2). Table 6.2 compares  the 
performance of full  search  motion  estimation  with  a  range of search window sizes.  The  table 
lists  the total SAE of the five difference  frames without motion  compensation (i.e. simply 
subtracting the previous  from  the  current  frame)  and  with  motion  compensation (i.e. block- 
based motion  compensation on 16 x 16 blocks). The final column  lists  the total number of 
comparison  operations  (where  one  operation is the  comparison of two  luminance  samples, 
IC, - R,\), As the  search window increases,  motion  compensation efficiency improves 
(shown by a  smaller  SAE): however,  the number of operations  increases  exponentially  with 
the window size.  This  sequence  contains  relatively  low  movement and so most of the 

Table 6.2 Full search  motion  estimation, five frames:  varying  window  size 

Search  Total SAE Total SAE Number of 
window  (uncompensated) (compensated) comparison  operations 

+/-l 1 326  783 1 278 610 1.0 x lo6 
+/-3 ... 1 173 060 5.2 x lo6 
+/-7 . . .  898  581  23.4 x 10‘ 

+ / - l5  . . .  897 163  99.1 x 10‘ 
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Table 6.3 Motion estimation algorithm  comparison, five frames:  search  window = +/-l5 

Total SAE Total SAE Number of 
. Algorithm  (uncompensated)  (compensated)  comparison  operations 

Full  search 1  326  783  897  163  99.1 x lo6 
Three-step  search ... 914  753  3.6 x lo6 

performance  gain  from  motion  estimation is achieved with a  search window of +/-7 
samples.  Increasing  the window to +/-l5 gives  only  a  modest  improvement  in SAE at  the 
expense of a  fourfold  increase  in  computation. 

Table  6.3  compares  the  performance of full  search  and  three-step  search with a  search 
window of +/-l5 pixels.  Full  search  produces  a  lower SAE and  hence  a  smaller  residual 
frame  than  TSS.  However, the slight  increase  in SAE produced by the TSS algorithm is 
offset by a substantial  reduction  in  the  number of comparison  operations. 

Figure 6.15 shows how a  fast  search  algorithm  such  as  the  TSS may fail to  find the 
best  possible  match.  The  three-step  search  algorithm  starts by considering  the  positions 
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Figure 6.15 SAE map showing three-step  search  ‘trapped’  in local minimum 
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+/-8 pixels  around  the  origin. The best  match  at  the first step  is  found  at (- 8 , O )  and this  is 
marked  with  a  circle  on  the  figure. The  next  step  examines  positions  within +/-4 pixels of 
this point  and  the  best of these is found  at (- 12, - 4). Step  3  also  chooses  the  point (- 12, 
-4) and the final step  selects ( - 13, - 3)  as  the  best  match  (shown  with  a ‘ + ’). This  point is 
a local minimum  but not the global minimum. Hence  the residual  block  after  motion 
compensation  will  contain  more  energy  than  the  best  match  found by the  full  search 
algorithm  (point 6, 1 marked with an  ‘X’). 

Of the other  search  algorithms  mentioned  above,  logarithmic  search,  cross-search and 
one-at-a-time  search  provide low computational  complexity  at  the  expense of relatively  poor 
matching  performance.  Hierarchical  search  can  give  a  good  compromise  between  perfor- 
mance  and  complexity  and  is well suited  to  hardware  implementations.  Nearest-neighbours 
search, with its in-built  ‘bias’  towards  the  median-predicted  motion  vector, is reported to 
perform  almost as well as full  search,  with  a  very  much  reduced  complexity.  The  high  perfor- 
mance is achieved  because the ‘bias’  tends  to  produce very small  (and  hence very efficiently 
coded)  motion  vectors  and  this  efficiency  offsets  the  slight  drop  in SAE performance. 

6.6 SUB-PMEL MOTION  ESTIMATION 

So far, we have  assumed  that  the  best  match  can  be  found  at  a  region  offset  from  the  current 
block by an integer  number of pixels. In fact,  for  many  blocks  a  better  match  (and  hence  a 
smaller DFD) can be obtained by searching  a  region  interpolated  to  sub-pixel  accuracy.  The 
search  algorithm  is  extended  as  follows: 

1. Interpolate  between  the  samples of the  search  area  in  the  reference  frame  to  form  a 
higher-resolution  interpolated  region. 

2. Search  full-pixel and sub-pixel  locations  in  the  interpolated  region  and find the  best 
match. 

3.  Subtract  the  samples of the  matching  region  (whether  full-  or  sub-pixel)  from  the  samples 
of the  current  block  to  form  the  difference  block. 

Half-pixel  interpolation  is  illustrated  in  Figure 6.16. The  original  integer  pixel  positions ‘a’ 
are  shown  in  black.  Samples  b  and  c  (grey) are formed  by  linear  interpolation  between  pairs 

@ a:  original  integer samples 

43 
b,c,d: interpolated samples 

Arrows  indicate  direction of 

@ @ B @  
interpolation 

Figure 6.16 Half-pixel  interpolation 
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of integer  pixels, and samples  d  (white)  are  interpolated  between  four  integer  pixels  (as 
indicated by the  arrows).  Motion  compensation with half-pixel  accuracy  is  supported by the 
H.263 standard,  and  higher  levels of interpolation ($ pixel  or  more)  are  proposed  for  the 
emerging H.26L standard.  Increasing  the  ‘depth’ of interpolation  gives  better  block 
matching  performance  at  the  expense of increased  computational  complexity. 

Searching  on  a  sub-pixel  grid  obviously  requires  more  computation  than  the  integer 
searches  described  earlier.  In  order  to  limit  the  increase  in  complexity,  it  is  common  practice 
to find the  best  matching  integer  position  and  then  to  carry  out  a  search  at  half-pixel 
locations  immediately  around  this  position.  Despite  the  increased  complexity,  sub-pixel 
motion  estimation  and  compensation  can  significantly  outperform  integer  motion  estimation/ 
compensation.  This  is  because  a  moving  object  will not necessarily  move by an  integral 
number of pixels  between  successive  video  frames.  Searching  sub-pixel  locations as well as 
integer  locations  is  likely  to find a  good  match  in  a  larger  number of cases. 

Interpolating  the  reference  area  shown  in  Figure 6.7 to  half-pixel  accuracy and comparing 
the  current  block  with  each  half-pixel  position  gives  the SAE map  shown  in  Figure 6.17. The 
best  match (i.e. the  lowest S A E )  is  found  at  position (6,0.5). The  block  found  at  this  position 

2 4 6 8 10 
Figure 6.17 SAE map (half-pixel interpolation) 
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in  the interpolated reference  frame gives a better match than position (6, 1) and hence better 
motion  compensation  performance. 

6.7 CHOICE OF REFERENCE  FRAMES 

The most ‘obvious’ choice of reference  frame  is  the previous coded  frame,  since this should 
be reasonably similar  to  the current frame and is available in the  encoder  and decoder. 
However, there can be advantages in choosing  from one  or  more  other  reference  frames, 
either  before or  after  the current frame in temporal order. 

6.7.1 Forward Prediction 

Forward prediction involves using an ‘older’ encoded  frame  (i.e. a preceding frame in 
temporal order) as prediction reference  for  the current frame. Forward prediction performs 
poorly in certain cases,  for  example: 

1. when there is a significant time  difference  between  the  reference  frame  and  the current 
frame  (which may mean that  the  image  has  changed significantly); 

2. when a scene  change  or ‘cut’ occurs; 

3.  when a moving object uncovers a previously hidden area of the  image (e.g. a door opens): 
the hidden area  does not exist  in  the  reference  frame  and so cannot be efficiently 
predicted. 

6.7.2 Backwards  Prediction 

The prediction efficiency for  cases (2) and (3) above can be improved by using a 
‘future’ frame  (i.e. a later  frame in temporal order) as prediction reference. A frame 
immediately  after a scene cut,  or an uncovered object,  can  be  better predicted from a future 
frame. 

Backwards prediction requires the  encoder  to buffer coded  frames  and  encode 
them out of temporal order, so that the future reference frame  is  encoded  before  the current 
frame. 

6.7.3 Bidirectional  Prediction 

In some  cases, bidirectional prediction may outperform forward or backward prediction: 
here, the prediction reference is formed by ‘merging’ forward and backward references. 

Forward,  backward  and  bidirectional  predictions are all  available for encoding an MPEG-1 
or  MPEG-2 B-picture. Typically, the  encoder  carries  out  two motion estimation searches  for 
each macroblock (16 x 16 luminance samples), one based on the previous reference picture 
(an I- or P-picture) and  one based on  the  future  reference picture. The encoder finds the 
motion vector that gives the best match (i.e. the  minimum  SAE)  based  on  (a) the previous 
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reference  frame  and  (b)  the  future  reference  frame.  A third SAE value (c) is  calculated by 
subtracting  the  average of the  two  matching  areas  (previous  and  future)  from the current 
macroblock.  The  encoder  chooses  the  ‘mode’ of the  current  macroblock based on the 
smallest of these  three  SAE  values: 

(a)  forward  prediction 

(b)  backwards  prediction,  or 
(c) bidirectional  prediction. 

In this way, the  encoder  can find the  optimum  prediction  reference  for  each  macroblock  and 
this  improves  compression  efficiency by  up to 50% for  B-pictures. 

6.7.4 Multiple  Reference  Frames 

MPEG-1  or  MPEG-2  B-pictures  are  encoded using two  reference  frames.  This  approach may 
be extended  further by allowing  the  encoder to choose  a  reference  frame  from  a  large 
number of previously  encoded  frames.  Choosing  between  multiple  possible  reference  frames 
can be a  useful  tool in improving  error  resilience  (as  discussed in Chapter 11). This  method 
is supported by the H.263 standard (Annexes N and U, see Chapter 5) and  has  been  analysed  in.5 

Encoder  and  decoder  complexity and storage  requirements  increase  as  more  prediction 
reference  frames  are  utilised.  ‘Simple’  forward  prediction  from the previous  encoded  frame 
gives  the  lowest  complexity  (but  also  the  poorest  compression  efficiency), whilst the  other 
methods  discussed  above  add  complexity  (and  potentially  encoding  delay) but give 
improved  compression efficiency. 

Figure 6.18 illustrates  the  prediction  options  discussed  above,  showing  forward and 
backwards  prediction  from past and  future  frames. 

Fonvard prediction 

/ 
/ 

/ 

/ 
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/ 
/ 

/ 

Backward prediction 

Figure 6.18 Reference  frame  prediction  options 
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6.8 ENHANCEMENTS TO THE MOTION MODEL 

Bidirectional prediction and multiple reference  frames (described above) can  increase 
compression efficiency because they improve the motion model, allowing a  wider range 
of prediction options  for  each coded macroblock than a  simple  forward prediction from the 
previous encoded  frame.  Sub-pixel interpolation of the reference  frame  also  improves  the 
motion model by catering  for  the  case when motion does not map neatly onto integer-pixel 
locations. There are a  number of other ways in which the motion model may be enhanced, 
some of which are listed here. 

6.8.1 Vectors  That  can  Point  Outside  the  Reference  Picture 

If movement occurs  near  the  edges of the picture, the best match for an edge block may 
actually  be offset slightly outside  the  boundaries of the  reference picture. Figure 6.19 shows 
an example:  the ball that has appeared in the current  frame is partly visible  in  the  reference 
frame and part of the best matching block will be found slightly above the boundary of the 
frame. The match may be improved by extrapolating  the pixel values at the  edge of the 
reference picture. Annex D of H.263 supports this type of prediction by simple linear 
extrapolation of the edge pixels  into the area around the frame boundaries (shown in Figure 
6.19).  Block  matching efficiency and hence  compression efficiency is slightly improved for 
video  sequences  containing motion near the edges of the picture. 

6.8.2 Variable  Block Sizes 

Using a  block size of 16 x 16 for motion estimation and compensation gives a  rather ‘crude’ 
model of image  structure and motion.  The  advantages of a  large  block size are simplicity and 
the limited number of vectors that must be  encoded and transmitted. However, in areas of 
complex spatial  structure and motion, better  performance can be achieved with smaller block 
sizes. H.263 Annex F  enables an encoder to switch between a block size of 16 x 16 (one 

I 

Reference  frame  Current  frame 

Figure 6.19 Example of best  match  found  outside  the  reference  picture 
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motion  vector  per  macroblock)  and 8 x 8 (four  vectors per macroblock) : the small  block 
size  is  used  when  it  gives  better  coding  performance  than  the  large  block  size.  Motion 
compensation  performance  is  noticeably  improved  at the expense of  an increase in 
complexity:  carrying  out 4 searches per macroblock  (albeit  on  a  smaller  block  size with 
only 64 calculations  per  SAE  comparison)  requires  more  operations. 

The  emerging H.26L standard  takes  this  approach  further  and  supports  multiple  possible 
block  sizes  for  motion  compensation  within  a  macroblock.  Motion  compensation may  be 
carried  out  for  sub-blocks  with  horizontal or vertical  dimensions of any  combination of 4, 8 
or 16  samples.  The  extreme  cases are 4 x 4 sub-blocks  (resulting in 16 vectors per 
macroblock)  and 16 x 16  blocks  (one  vector per macroblock) with many  possibilities in 
between (4 x 8, 8 x 8, 4 x 16  blocks,  etc.).  This flexibility gives  a  further  increase in 
compression  performance  at  the  expense of higher  complexity. 

6.8.3 Overlapped Block Motion  Compensation  (OBMC) 

When  OBMC  is  used,  each  sample of the  reference  block  used  for  motion  compensation is 
formed by combining  three  predictions: 

1. a  sample  predicted  using  the  motion  vector of the  current  block (Ro); 

2.  a  sample  predicted  using  the  motion  vector of the  adjacent  block  in  the  vertical  direction 
(i.e. the  nearest  neighbour  block  above  or  below) ( R I ) ;  

3. a  sample  predicted  using  the  motion  vector of the  adjacent  block in the  horizontal 
direction  (i.e.  the  nearest  neighbour  block  left  or  right) (Rz). 

The final sample  is  a  weighted  average of  the three values. R0 is given the  most  weight 
(because  it  uses  the  current  block’s  motion  vector). R1 and R2 are given more  weight when 
the  current  sample  is  near  the  edge of  the block,  less  weight when it is in  the  centre of  the 
block. 

The result of OBMC is to ‘smooth’ the prediction  across  block  boundaries in the  reference 
frame.  OBMC  is  supported by Annex F of H.263  and  gives  a  slight  increase in motion 
compensation  performance (at the expense  of  a  significant  increase in Complexity). A similar 
‘smoothing’  effect  can  be  obtained by applying  a filter to the  block  edges in the reference 
frame  and  later  versions of H.263 (H.263 + and H.263 ++) recommend using a  block filter 
instead of OBMC  because  it  gives  similar  performance  with  lower  computational  complex- 
ity. OBMC  and filtering  performance have been  discussed  elsewhere,6 and filters are 
examined in more  detail  in  Chapter 9. 

6.8.4 Complex  Motion  Models 

The motion  estimation  and  compensation  schemes  discussed so far have assumed  a  simple 
translational  motion  model,  i.e.  they work best when all movement in a  scene  occurs in a 
plane  perpendicular  to  the viewer.  Of course,  there  are  many  other  types of movement  such 
as rotation,  movements  towards  or  away  from  the  viewer  (zooming)  and  deformation of 
objects  (such as a  human  body).  Better  motion  compensation  performance may  be achieved 
by matching  the  current  frame to a  more  complex  motion  model. 

In the  MPEG-4  standard,  a  video  object  plane may be  predicted  from the pixels  that  exist 
only  within  a  reference VOP. This is a  form of region-based  motion compensation, where 
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Before  warping  After  warping 

Figure  6.20 Triangular mesh before  and  after  deformation 

compensation is carried  out  on  arbitrarily  shaped  regions  rather than  fixed rectangular 
blocks.  This  has the capability to provide  a  more  accurate  motion  model  for ‘natural’ video 
scenes  (where  moving  objects  rarely  have ‘neat’ rectangular  boundaries). 

Picture  warping involves  applying  a  global  warping  transformation  to the entire  reference 
picture  for  example  to  compensate  for  global  movements  such  as  camera zoom or  camera 
rotation. 

Mesh-based  motion  compensation overlays  the  reference  picture with a  2-D mesh  of 
triangles.  The  motion-compensated  reference  is  formed by moving  the  corners of each 
triangle  and  deforming the reference  picture  pixels  accordingly  (Figure  6.20  shows  the 
general  approach). A deformable mesh can model a  wide  range of movements,  including 
object  rotation,  zooming and limited  object  deformations. A smaller  mesh will give  a  more 
accurate  motion  model  (but  higher  complexity). 

Still  more  accurate  modelling  may be achieved using object-based  coding where  the 
encoder  attempts to maintain  a  3-D  model of the  video  scene.  Changes  between  frames 
are  modelled by moving  and  deforming  the  components of  the 3-D  scene. 

Picture  warping  is significantly more  complex than ‘standard’  block  matching.  Mesh- 
based  and  object-based  coding  are  successively  more  complex  and  are not suitable  for  real- 
time  applications with current  processing technology.  However,  they offer  significant 
potential  for  future  video  coding  systems when more  processing  power  becomes  available. 
These and other  motion  models  are  active  areas  for  research. 

6.9 IMPLEMENTATION 

6.9.1 Software Implementations 

Unless  dedicated  hardware  assistance  is  available (e.g. a  motion  estimation  co-processor), 
the  key  issue in a  software  implementation of motion  estimation  is  the trade-off between 
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computational  complexity (the total number of processor  cycles required) and compression 
performance.  Other  important  considerations  include: 

e The  eflciency of the  mapping  to  the  target  processor. For  example, an algorithm that fully 
utilises the instruction pipeline of the processor is preferable to an algorithm that 
introduces  data  dependencies and ‘stalls’ into  the pipeline. 

Data  storage  and  delay  requirements. For  example, there may be advantages to carrying 
out motion estimation for  the  entire  frame before further  encoding takes place: however, 
this  requires  more storage and can introduce  more delay than an implementation where 
each macroblock is estimated,  compensated,  encoded and transmitted before moving  onto 
the next macroblock. 

Even with the use of fast search algorithms, motion estimation  is often the most 
computationally intensive operation in a software  video CODEC and so it is important to 
find ways to speed up the process. Possible approaches to optimising  the  code include: 

1. Loop unrolling. Figure 6.21 lists pseudocode for two possible versions of the SAE 
calculation (Equation 6.3) for a 16 x 16 block. Version (a) is a direct,  compact 
implementation of the equation. However, each of the  16 x 16 = 256 calculations  is 
accompanied by incrementing and checking  the  inner  loop  counter i. Version (b) ‘unrolls’ 

:a) Direct  implementation: 

t i  Current  position: i,j Offset in reference  frame:  ioffset,  joffset 

.OtdlSAE = 0; 

for  j = 0 to 15 { / /  ROW counter 
for  i = 0 to 15 { / /  Column counter 

1 
totalSAE = totalSAE + abs(C[i,jl - R[i+ioffset,j+joffsetl); 

1 
[b) Unrolled  inner loop: 
/ /  Current  position: i,j Offset in  reference  frame:  ioffset,  joffset 

IotalSAE = 0; 

€or j = 0 to 15 { / /  Row counter 
totalSAE = totalSAE + abs(C[O,jl - R[O+ioffset,j+joffsetI); 
totalSAE = totalSAE + abs(C[l. jl - R[l+ioffset,  j+joffsetl); 
totalSAE = totalSAE + abs(C[Z,jl - R[Z+ioffset,j+joffsetl); 

totalSAE = totalSAE + abs(C[4,jl - R[4+ioffset,j+joffsetl); 
totalSAE = totalSAE + abs(C[3, jl - R[3+ioffset,  j+joffsetl) ; 

totalSAE = totalSAE + abs(C[5,jl - R[5+ioffset,j+joffsetl); 
totalSAE = totalSAE + abs(C[6,jl - R[ti+ioffset,j+joffsetI); 
totalSAE = totalSAE + abs(C[7,jl - R[7+ioffset,j+joffsetI); 
totalSAE = totalSAE + abs(C[8,jl - R[8+ioffset,j+joffsetI); 
totalSAE = totalSAE + abs(C[9,jl - R[9+ioffset,j+joffsetl); 
totalSAE = totalSAE + abs(C[lO,jl - R[lO+io€fset,j+joffsetl); 
totalSAE = totalSAE + abs(C[Ll,jl - R[ll+ioffset,j+joffsetl); 
totalSAE = totalSAE + abs(C[lZ.j] - R[lZ+ioffset,j+joffsetl); 
totalSAE = totalSAE + abs(C[13,jl - R[13+ioffset,j+joffsetI); 
totalSAE = totalSAE + abs(CL14,jl - R[14+ioffset,j+joffsetI); 
totalSAE = totalSAE + abs(CL15,jl - R[15+ioffset,j+joffsetI); 

l 

Figure 6.21 Pseudocode for two versions of SAE calculation 
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the inner  loop and repeats the calculation  16  times.  More  lines of code  are  required  but, 
on  most  platforms, version (b) will run faster  (note  that  some  compilers  automatically 
unroll  repetitive  loops,  but  better  performance  can  often  be  achieved by explicitly 
unrolling  loops). 

2. ‘Hand-coding’ of critical  operations. The SAE calculation  for  a  block  (Equation  6.3) is 
carried  out  many  times  during  motion  estimation  and  is  therefore  a  candidate  for  coding 
in assembly  language. 

3. Reuse of calculated  values. Consider  the final stage of the TSS algorithm  shown in Figure 
6.9:  a total of nine SAE matches are compared,  each 1 pixel apart.  This  means  that  most 
of the  operations of each SAE match  are  identical  for  each  search  location.  It may 
therefore be possible  to  reduce the number of operations by reusing  some of the 
calculated values lCg - Rql between  successive SAE calculations. (However, this may 
not  be  possible if multiple-sample  calculations  are  used,  see below.) 

4. Calculate  multiple  sample  comparisons  in  a  single  operation. Matching is typically 
carried  out  on  8-bit  luminance  samples  from  the  current  and  reference  frames. A single 
match  operation IC, - R01 takes as its  input  two  8-bit values  and produces an 8-bit  output 
value. With a  large word  width (e.g. 32 or 64 bits) it may  be possible  to  carry out several 
matching  operations  at  once by packing  several  input  samples  into  a  word. 

Figure 6.22  shows the  general idea: here,  four  luminance  samples  are  packed  into  each 
of two  input  words  and  the  result of IC, - Rql for  each  sample  are  available  as  the 4 bytes 
of an output  word.  Care  is  required with this  approach: first, there  is an overhead 
associated  with  packing  and  unpacking  bytes  intolout of words,  and  second,  there may  be 
the  possibility  for overflow during  the  comparison  (since  the  result of Cij - RV is  actually 
a  9-bit  signed  number  prior  to  the  magnitude  operator 1 1 ) .  

These  and  further  optimisations  may be applied to significantly  increase  the  speed of  the 
search  calculation. In general,  more  optimisation  leads to more  lines of code  that may  be 
difficult to maintain  and may only  perform  well  on  a  particular  processor  platform. However, 
increased  motion  estimation  performance  can  outweigh these disadvantages. 

Reference:  Current: 

sample 1 sample  4  sample 3 sample 2 

+ 
1 byte 

sample 1 sample  4  sample 3 sample 2 

1 Icurrent-reference1 

res& 1 result4 result 2 res& 3 

Figure 6.22 Multiple SAE comparisons in parallel 
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Reduced complexity matching  criteria 

The fast search  algorithms  described in Section 6.4 reduce  the  complexity of motion 
estimation by attempting  to  subsample  the  number of points  in  the  SAE  map that require  to 
be tested. At each comparison  point,  Equation  6.3 must be evaluated  and this requires N x N 
calculations  (where N is  the  block  size). However, it  is  possible  to reduce the number of 
calculations  for  each  matching  point in several ways. 

Early  termination In many  cases,  the  outcome of the SAE  calculation will be an SAE  that 
is  larger than the  previous  minimum  SAE. If we know  that  the  current matching position will 
not produce  the  smallest SAE, we do not need to finish the  calculation. If this is  the  case,  the 
value  total SAE  in Figure  6.21 will exceed the previous minimum  SAE at some  point before 
the  end of the  calculation. A simple way  of reducing  complexity is to check for  this,  e.g.: 

i f  ( t o t a l S A E > m i n S A E )   b r e a k f r o m t h e l o o p .  

This  check itself takes  processing time and so it is not efficient to test after every single 
sample  comparison:  instead, a good  approach is  to  include  the  above  check  after  each  inner 
loop  (i.e.  each row of 16 comparisons). 

Row and column  projections A projection of each row and column in  the current and 
reference  blocks  is  formed.  The projection is  formed by adding all the  luminance values in 
the  current row or column: for a 16 x 16 block, there are  16 row projections and 16 column 
projections. Figure  6.23 shows the  projections  for  one  macroblock. An approximation to 
SAE  is  calculated as follows: 

N-l N-I  

SAE,,,,, = c Ccol; - Rcoli + c Crowj - Rrow; 
i = O  ;=0 

Current  macroblock 

Row 
projections 
Crow 

Figure 6.23 Row and column 
projections 
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SAE value 

I Pixel position (x-axis) 

-2 -1 0 0.5 1 1.5 2 

Figure  6.25 SAE interpolation to estimate  half-pixel  results 

6.9.2 Hardware  Implementations 

The design of a  motion  estimation unit in  hardware  is  subject to a  number of (potentially 
conflicting)  aims: 

1. Maximise  compression  performance. A full search  algorithm usually achieves the best 
block  matching  performance. 

2. Minimise cycle count  (and  hence  maximise  throughput). 

3. Minimise gate count. 

4. Minimise  data flow to/from the motion estimator. 

Example: Full search block matching unit 

A ‘direct’ implementation of the full  search  algorithm involves evaluating Equation 6.3 
(SAE calculation) at each position in  the  search  region. There are several ways in which the 
implementation  can  be  speeded up (typically at the expense of matching efficiency and/or 
size of the  design),  including  parallelisation  (calculating  multiple results in parallel), 
pipelining  and  the use of fast  search  algorithms. 

Parallelization of full search 

The full search  algorithm  is highly regular and repetitive and there are no interdependencies 
between  the  search  results (i.e. the  order of searches  does not affect the final result). It is 
therefore  a  good  candidate for parallelisation and a  number of alternative  approaches  are 
available. Two popular  approaches  are as follows: 

1. Calculate  search results in parallel. Figure  6.26 shows the  general  idea: M processors are 
used,  each of which  calculates  a  single SAE result. The smallest SAE of the M results is 
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Figure  6.26 Parallel  calculation of search  results 
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Figure  6.26 Parallel  calculation of search  results 

chosen  as  the best match (for that particular  set of calculations).  The  number of cycles  is 
reduced  (and  the  gate  count of the  design  is  increased) by a factor of approximately M. 

2. Calculate partial SAE results for each  pixel position in parallel. For  example, the SAE 
calculation  for  a 16 x 16 block may be speeded up  by using 16 processors,  each of which 
calculates  the  SAE  component  for one column of pixels in the  current  block.  Again,  this 
approach has the potential to speed  up  the  calculation by approximately M times (if M 
parallel  processors  are  used). 

Fast search 

It may not be feasible  or  practical  to  carry out a  complete  full  search  because of gate  count  or 
clock  speed  limitations. Fast search  algorithms can perform almost as well  as full  search 
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Table 6.4 Pipelined  operation: three step  search 

Step 1 Step 2 Step 3 

Block 1 
Block 2 Block 1 
Block 3 Block 2 Block 1 
Block 4 Block 3 Block 2 

with many  fewer  comparison  operations  and so these are  attractive  for  hardware as well as 
software  implementations. 

In a dedicated  hardware  design  it may be necessary to  carry  out  each  motion  estima- 
tion search in a fixed number of cycles (in order  to ensure that all the processing units within 
the  design are fully utilised during  encoding). In this case algorithms  such as  logarithmic 
search  and nearest neighbours  search  are not ideal because the total number of comparisons 
varies from block  to block. Algorithms such as the  three-step  search  and hierarchical search 
are  more useful because  the  number of operations  is  constant  for every block. 

Parallel computation  may be employed  to  speed up  the  algorithm  further, for example: 

1. Each SAE  calculation  may be speeded up by using parallel processing units (each 
calculating  the  SAE  for  one  or  more  columns of pixels). 

2.  The comparisons at  one ‘step’ or level of the  algorithm may be computed in parallel 
(for example, one ‘step’ of the  three-step search or one level of the hierarchical 
search). 

3. Successive  steps of the  algorithm  may be pipelined to  increase  throughput. Table 6.4 
shows an example  for  the  three-step  search.  The first nine  comparisons (step 1) are 
calculated  for  block 1. The next eight  comparisons  (step 2)  for block 1 are  calculated 
by another  processing unit (or set of units), whilst step  1  is  calculated  for block 2, and 
so on. 

Note that the  steps  or  levels  cannot be calculated in parallel: the  search  locations  examined 
in step 2 depend  on  the result of step 1  and so cannot be calculated until the outcome of step 1 is 
known. 

Option 3 above  (pipelining of successive steps) is useful for sub-pixel motion estimation. 
Sub-pixel  estimation  is usually carried out on the sub-pixel positions around the best integer 
pixel  match  and this estimation  step may also be pipelined. Figure 6.27 shows an 
example  for a three-step  search  (+/-7 pixels) followed by a half-pixel estimation step. 
Note  that memory bandwidth may an  important  issue with this type of design. Each step 
requires  access  to  the  current  block and reference area and this can lead to an unacceptably 
high level of memory  accesses.  One  option  is  to  copy the current  and reference areas  to 
separate local memories for  each processing stage but this requires  more local memory. 

Descriptions of hardware  implementations of motion  estimation  algorithms can be found 
elsewhere.’&’* 
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Figure 6.27 Pipelined  motion  estimation:  three  integer  steps + half-pixel  step 

6.10 SUMMARY 

Motion estimation is used in  an inter-frame  video  encoder  to  create a ‘model’ that matches 
the  current  frame  as  closely  as possible, based on one  or more previously transmitted frames 
(‘reference  frames’).  This model is subtracted from  the current frame (motion compensation) 
to  produce a motion-compensated residual frame.  The decoder recreates the model (based on 
information sent by the encoder) and adds  the residual frame  to reconstruct a copy of the 
original frame. 

The  goal of motion estimation design is  to  minimise the amount of coded information 
(residual frame  and model information), whilst keeping the computational complexity of 
motion  estimation  and  compensation  to  an  acceptable  limit. Many reduced-complexity 
motion estimation methods  exist (‘fast search’ algorithms), and these allow the designer  to 
‘trade’ increased computational efficiency against reduced  compression performance. 

After  motion  estimation and compensation, the next problem  faced by a video CODEC is 
to efficiently compress the residual frame.  The most popular  method  is transform coding and 
this is discussed in  the next chapter. 
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Transform  Coding 

7.1 INTRODUCTION 

Transform  coding  is  at the heart of the  majority of video  coding  systems  and  standards. 
Spatial  image  data  (image  samples or motion-compensated residual samples)  are  trans- 
formed  into a different  representation, the transform  domain.  There  are good reasons  for 
transforming  image  data in this way. Spatial  image  data  is  inherently ‘difficult’ to  compress: 
neighbouring  samples  are  highly  correlated  (interrelated)  and  the  energy  tends  to be evenly 
distributed  across an image,  making it difficult to  discard  data or reduce  the  precision of data 
without  adversely  affecting  image quality. With a suitable  choice of transform,  the  data is 
‘easier’  to  compress in the transform domain.  There  are several desirable  properties of a 
transform  for  compression. It should  compact  the  energy in  the image  (concentrate  the 
energy  into a small  number of significant values); it  should  decorrelate the data (so that 
discarding ‘insignificant’ data  has a minimal  effect  on  image  quality); and it should be 
suitable  for  practical  implementation in software and hardware. 

The two most  widely  used image  compression  transforms  are  the  discrete  cosine  trans- 
form  (DCT) and  the discrete  wavelet  transform  (DWT).  The  DCT is usually  applied  to  small, 
regular  blocks of image  samples  (e.g. 8 x 8 squares) and the  DWT  is usually applied  to 
larger  image  sections  (‘tiles’) or to complete  images. Many alternatives have been  proposed, 
for  example  3-D  transforms  (dealing with spatial and temporal  correlation), variable  block- 
size  transforms,  fractal  transforms,  Gabor  analysis. The  DCT has  proved particularly  durable 
and is at the  core of most  of the  current  generation of image and video  coding  standards, 
including  JPEG, H.261, H.263,  H.263+, MPEG-l,  MPEG-2 and  MPEG-4.  The DWT is 
gaining  popularity  because it can  outperform the DCT  for still image  coding and so it is used 
in  the  new JPEG  image  coding standard (JPEG-2000) and for still ‘texture’ coding in MPEG-4. 

This  chapter  concentrates on the  DCT. The theory and  properties of the  transforms  are 
described first, followed by an  introduction  to  practical  algorithms  and  architectures  for the 
DCT. Closely  linked with  the DCT is the process of quantisation and  the chapter  ends with a 
discussion of quantisation  theory and practice. 

7.2 DISCRETE COSINE TRANSFORM 

Ahmed,  Natarajan and Rao originally  proposed  the  DCT in 1974.’  Since then, it has  become 
the  most  popular  transform  for  image  and  video  coding.  There  are  two  main  reasons  for its 
popularity: first, it is effective  at  transforming  image  data  into  a  form that is easy  to  compress 
and  second, it can be efficiently implemented in software and hardware. 

Video Codec Design
Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
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Figure 7.1 l-D and 2-D discrete  cosine  transform 

The forward DCT (FDCT) transforms a set of image  samples  (the ‘spatial domain’)  into a 
set of transform coefficients (the ‘transform domain’). The transform is reversible: the 
inverse  DCT  (IDCT)  transforms a set of coefficients into a set of image  samples. The 
forward and inverse transforms are  commonly used  in l-D or 2-D forms for image  and video 
compression. The l-D version transforms a l-D array of samples  into an a 1 -D array of 
coefficients, whereas  the 2-D version transforms a 2-D array (block) of samples  into a block 
of  Coefficients. Figure 7.1 shows the two  forms of the DCT. 

The  DCT  has two useful properties  for  image  and  video  compression, energy compaction 
(concentrating  the  image  energy  into a small number of coefficients) and decorrelution 
(minimising the interdependencies between coefficients). Figure 7.2 illustrates the energy 
compaction property of the DCT. Image (a) is an 80 x 80 pixel image  and  image (b) plots the 
coefficients of the  2-D DCT. The energy in the transformed coefficients is concentrated 
about the top-left comer of the  array of coefficients (compaction). The top-left coefficients 
correspond to low frequencies: there is a ‘peak’ in energy in this area and the coefficient 
values rapidly  decrease to  the bottom right of the array (the higher-frequency coefficients). 
The  DCT coefficients are decorreluted which means that many of the coefficients with small 
values can be discarded  without significantly affecting image quality. A compact array of 
decorrelated coefficients can be compressed much more efficiently than an array of highly 
correlated  image  pixels. 

The  decorrelation  and  compaction  performance of the  DCT  increases with block size. 
However, computational  complexity also increases  (exponentially) with block size. A block 
size of 8 x 8 is  commonly used in image and video  coding applications. This size gives a good 
compromise  between  compression efficiency and computational efficiency (particularly as 
there are a number of efficient algorithms  for a DCT of size 2”’ x 2”’, where m is an  integer). 

The forward  DCT for an 8 x 8 block of image  samples is given by Equation 7. I : 
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‘ 0  i- 

Figure 7.2 (a) 80 x 80 pixel image; (b) 2-D DCT 

fi,j are  the 64  samples ( i J )  of the  input  sample  block,  are  the  64 DCT coefficients (x,y) 
and C(x), C ( y )  are  constants: 

The  labelling of samples V;:,j) and  coefficients (Fx,?) is  illustrated  in  Figure 7.1. 
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The  DCT  represents  each  block of image  samples  as  a  weighted  sum of  2-D cosine 
functions  (‘basis  functions’).  The  functions are plotted  as  surfaces  in  Figure 7.3 and as 8 x 8 
pixel  ‘basis  patterns’  in  Figure 7.4. The top-left  pattern  has  the  lowest  ‘frequency’ and is just 
a  uniform  block.  Moving to  the  right,  the  patterns  contain an increasing  number of ‘cycles’ 
between  dark and light  in  the  horizontal  direction:  these  represent  increasing  horizontal 
spatial  frequency.  Moving  down,  the  patterns  contain  increasing  vertical  spatial  frequency. 
Moving  diagonally  to  the  right  and  down,  the  patterns  contain  both  horizontal  and  vertical 
frequencies.  The  block of samples may be reconstructed by adding  together  the 64 basis 
patterns,  each  multiplied by a  weight  (the  corresponding  DCT  coefficient FX,J. 

The inverse  DCT  reconstructs  a  block of image  samples  from  an  array of DCT 
coefficients. The  IDCT  takes  as  its  input a  block of 8 x 8 DCT  coefficients Fx,y and 
reconstructs  a  block of 8 x 8 image  samples Aj (Equation 7.2). 

C(x) and C( y) are  the  same  constants  as  for  the FDCT. 

Figure 7.3 DCT basis  functions  (plotted as surfaces) 
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Figure 7.4 DCT  basis  patterns 

Example: DCT of an 8 x 8 block of samples 

Figure 7.5 shows an 8 x 8 block of samples  (b)  taken  from  image  (a). The block is 
transformed with a 2-D DCT to produce  the  coefficients shown in  image  (c).  The six most 
significant  coefficients are: (0, 0), (1, O), (1, l), (2, 0), (3, 0) and (4, 0) and these  are 
highlighted  on  the  table of coefficients (Table 7.1). 

Figure 7.5 (a) Original  image; (b) 
8 x 8 block  of  samples; (c) 2-D  DCT 
coefficients 
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DCT coefficients 

Figure 7.5 (Continued) 
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Table 7.1 DCT coefficients 
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1 -7.61-8.4 1 0.8 1 y:: 1 0.6 1-1.9 1 0.1 1 
-14.7 1.4 4.1 0.0 -0.3 -0.2 

-22.3 -0.3 0.2 -0.5 -0.6 1.3  4.3  5.0 

A reasonable  approximation  to the original  image  block  can be reconstructed from just 
these six coefficients, as shown in Figure 7.6. First, coefficient (0, 0) is  multiplied by a 
weight of 967.5  and  transformed  with the inverse DCT. This coefficient represents  the 
average  ‘shade’ of the  block (in this  case,  mid-grey)  and  is  often  described as the ‘DC 
coefficient’ (the DC coefficient is usually  the  most significant in any  block).  Figure 7.6 
shows  the  reconstructed  block  formed by the DC coefficient  only  (the  top-right  block in the 
figure). Next, coefficient (1, 0) is  multiplied by a weight  of - 163.4 (equivalent  to 
subtracting its  basis  pattern). The weighted basis  pattern is shown in the  second row  of 
Figure 7.6  (on  the left) and  the sum of the first two  patterns  is  shown  on  the right. As each of 
the further  four basis patterns  is  added to the  reconstruction,  more  detail  is  added  to the 
reconstructed  block.  The final result  (shown on  the bottom  right of Figure 7.6 and produced 
using just  6  out of  the 64 coefficients) is a good  approximation of  the original.  This  example 
illustrates  the two  key properties of  the  DCT: the significant coefficients are  clustered  around 
the DC coefficient (compaction)  and the  block  may  be reconstructed using only  a  small 
number of coefficients (decorrelation). 

7.3 DISCRETE WAVELET TRANSFORM 

The DCT described  above  operates  on a block of samples  (usually 16 x 16, 8 x 8 or smaller) 
and decomposes  these  samples  into a set of spatial  frequency  components. A wavelet 
transform  also  decomposes  spatial  image  data  according  to  frequency  and  wavelet-based 
compression  has  been  shown  to  outperform DCT-based compression  for still images. 
Because of this, the  new  version  of  the JPEG image  compression  standard, JPEG-2000, is 
wavelet-based  rather than  DCT-based. 

One of the key differences  between the application of wavelet  and  discrete  cosine 
transforms  is  that a wavelet transform is typically  applied  to  a  complete  image  or a large 
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9 Figure  7.6 Reconstruction of image 
block from six basis patterns 

rectangular  region  (‘tile’) of the  image,  in  contrast with the  small  block  size  chosen  for  DCT 
implementations.  The  DCT  becomes  increasingly  complex  to  calculate  for  larger  block 
sizes,  whilst  the benefits of larger  blocks  rapidly  diminish  above 8 X 8 or 16 x 16 samples, 
whereas  a  wavelet  transform  may  be  more efficiently applied  to  large  blocks  or  complete 
images  and  produces  better  compression  performance  for  larger  blocks. 

A single-stage  wavelet  transformation  consists of a filtering operation  that  decomposes an 
image  into  four  frequency  bands  as  shown  in  Figure 7.7. Image  (a)  is  the original;  image (b) 
is  the  result of a  single-stage  wavelet  transform.  The  top-left comer of the  transformed  image 
(‘LC) is  the  original  image,  low-pass filtered and  subsampled  in  the  horizontal  and  vertical 
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(b) 

Figure 7.7 (a)  Original image; (b) single-stage wavelet decomposition 
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dimensions. The top-right comer (‘W) consists of residual  vertical  frequencies (i.e. the 
vertical  component of the  difference  between  the  subsampled ‘LL‘ image and the  original 

’ image). The bottom-left comer ‘LH’ contains  residual  horizontal  frequencies  (for  example, 
the  accordion  keys are very  visible  here),  whilst  the  bottom-right  comer ‘HH’ contains 
residual  diagonal  frequencies. 

This decomposition  process  may  be  repeated  for  the ‘LL‘ component  to  produce  another 
set of four  components:  a new  ‘LL‘ component  that  is  a  further  subsampled  version of the 
original  image,  plus  three  more  residual  frequency  components.  Repeating  the  decomposi- 
tion  three  times  gives  the  wavelet  representation  shown  in  Figure  7.8.  The  small  image in the 
top  left  is  the  low-pass  filtered  original and the  remaining  squares  contain  progressively 
higher-frequency  residual  components. This process may be  repeated  further if desired 
(until,  in  the  limit,  the  top-left  component  contains  only 1 pixel  which  is  equivalent  to  the 
‘DC’ or  average  value of the  entire  image).  Each  sample  in  Figure  7.8  represents  a  wavelet 
transform coeflccient. 

The wavelet  decomposition  has  some  important  properties.  First,  the  number of wavelet 
‘coefficients’  (the  spatial  values  that  make up Figure  7.8)  is  the  same  as  the  number of pixels 
in  the  original  image and so the  transform is not  inherently  adding  or  removing  information. 
Second,  many of the  coefficients of the  high-frequency  components (‘HH’, ‘HL‘ and ‘LH’ at 
each  stage)  are  zero  or  insignificant.  This  reflects  the  fact  that  much of the  important 
information  in  an  image  is  low-frequency.  Our  response  to  an  image  is  based  upon  a  low- 
frequency  ‘overview’ of the  image  with  important  detail  added by higher  frequencies  in  a 
few  significant  areas of the  image.  This  implies  that it should  be  possible  to  efficiently 

Figure 7.8 Three-stage wavelet decomposition 
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l ayer  1 Layer 2 

Figure 7.9 Relationship  between  ‘parent’ 
and ‘child’ regions 

compress  the  wavelet  representation  shown in Figure 7.8 if we can  discard  the insignificant 
higher-frequency coefficients whilst  preserving  the  significant  ones.  Third,  the  decomposi- 
tion is not restricted by  block boundaries  (unlike the DCT) and hence  may be a more flexible 
way  of decorrelating  the  image  data  (i.e.  concentrating  the significant components  into a few 
coefficients) than the  block-based DCT. 

The  method of representing significant coefficients whilst  discarding insignificant coeffi- 
cients is critical  to  the  use of wavelets in image  compression. The embedded  zero  tree 
approach  and,  more  recently, set partitioning  into  hierarchical  trees  (SPIHT)  are  considered 
by some  researchers  to be the  most  effective way  of .doing t h k 2  The wavelet  decomposition 
can be thought of as a ‘tree’, where  the ‘root’ is the top-left LL component and its  ‘branches’ 
are  the successively  higher-frequency  LH, HL and HH components at each  layer.  Each 
coefficient in a  low-frequency  component  has a number of corresponding  ‘child’ coefficients 
in higher-frequency  components.  This  concept  is  illustrated in Figure 7.9, where a single 
coefficient at  layer 1 maps to four  ‘child’ coefficients in  each  component  at  layer 2. Zero- 
tree  coding  works on the principle  that if a parent coefficient is  visually insignificant then its 
‘children’  are unlikely to be significant. Working from the top  left,  each coefficient and 
its  children  are  encoded as a ‘tree’. As soon as the  tree  reaches a coefficient that is 
insignificant,  that  coefficient and all its children  are  coded as a ‘zero  tree’. The decoder will 
reconstruct the significant coefficients and  set  all coefficients in a ‘zero tree’ to  zero. 

This  approach  provides a flexible and  powerful method of image  compression. The 
decision as to whether a coefficient is ‘significant’ or ‘insignificant’ is  made by comparing it 
with a threshold.  Setting a high  threshold  means  that  most of the coefficients are  discarded 
and  the image  is  highly  compressed;  setting a low threshold  means  that  most coefficients are 
retained,  giving low compression and high  image fidelity. This  process is equivalent to 
quantisation of the wavelet Coefficients. 

Wavelet-based  compression  performs  well for still images (particularly in  comparison  with 
DCT-based compression) and can be implemented  reasonably efficiently. Under  high  com- 
pression,  wavelet-compressed  images do not  exhibit the blocking  effects  characteristic of the 
DCT. Instead,  degradation  is  more  ‘graceful’ and leads  to a gradual  blurring of  the image as 
higher-frequency coefficients are  discarded.  Figure  7.10  compares  the  results of compression 
of the  original  image (on the  left)  with a DCT-based algorithm  (middle  image,  JPEG  com- 
pression) and a wavelet-based  algorithm  (right-hand  image,  JPEG-2000  compression). In 
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l !l 
Figure 7.10 (a)  Original; (b) compressed  and  decompressed (DCT); (c)  compressed  and  decompre- 
ssed  (wavelet) 

each  case,  the  compression  ratio  is 16x.  The decompressed P E G  image  is  clearly  distorted 
and  ‘blocky’,  whereas  the  decompressed PEG-2000 image  is  much  closer  to  the  original. 

Because of its  good  performance  in  compressing  images,  the  DWT is used in  the new 
PEG-2000 still  image  compression  standard  and  is  incorporated as a  still  image  compres- 
sion  tool  in  MPEG-4  (see  Chapter 4). However, wavelet  techniques  have not yet  gained 
widespread  support  for  motion  video  compression  because  there  is  not an easy way to  extend 
wavelet  compression  in  the  temporal  domain.  Block-based  transforms  such  as  the  DCT work 
well with  block-based  motion  estimation  and  compensation,  whereas  efficient,  computa- 
tionally  tractable  motion-compensation  methods  suitable  for  wavelet-based  compression 
have not yet  been  demonstrated.  Hence,  the  DCT  is  still  the  most  popular  transform  for  video 
coding  applications. 

7.4 FAST  ALGORITHMS  FOR THE DCT 

According to  Equation 7.1, each of the 64 coefficients  in  the  FDCT  is  a  weighted  function of 
all 64 image  samples. This means  that 64  calculations,  each  involving  a  multiplication and 
an accumulation  (‘multiply-accumulate’)  must  be  carried  out  for  each  DCT  coefficient. A 
total of 64 x 64 = 4096  multiply-accumulate  operations  are  required  for  a  full 8 x 8 FDCT. 
Fortunately,  the  DCT  lends itself to  significant  simplification. 

7.4.1 Separable  Transforms 

Many practical  implementations of the  FDCT  and  IDCT use the  separable  property of the 
transforms  to  simplify  calculation. The 2-D FDCT  can  be  calculated by repeatedly  applying 
the l-D DCT. The l-D FDCT  is given by Equation 7.3: 
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8 x 8 samples (i, j )  l-D FDCT on rows l-D FDCT  on  columns 8 x 8 coefficients (x, y) 

3 c 

Figure 7.11 2-D DCT via two l-D transforms 

Equation  7.1 may be  rearranged as follows  (Equation  7.4): 

3 

where F, is the l-D DCT  described by Equation 7.3. In  other  words,  the  2-D  DCT  can be 
represented as: 

F x . y  = 1-D DCTy-direction (1-D DCTx-direct~on) 

The 2-D DCT of  an 8 x 8 block  can  be  calculated in two  passes:  a l-D DCT of each row, 
followed by a l-D DCT  of  each  column (or vice versa). This  property is known as 
separability  and is shown  graphically in Figure  7.11. 

The  2-D  IDCT  can be calculated  using  two l-D IDCTs in a  similar way. The  equation for 
the l-D IDCT is given by Equation  7.5: 

This  separable  approach  has  two  advantages. First, the number of operations is reduced:  each 
‘pass’ requires 8 x 64 multiply-accumulate  operations, i.e. the total number of operations is 
2 x 8 x 64 = 1024.  Second,  the l-D DCT  can  be  readily  manipulated to streamline  the 
number of operations further or  to  otherwise  simplify calculation. 

Practical implementations of the  FDCT  and  IDCT fall into two  main categories: 

1. Minimal  computation:  the  DCT  operations  (1  -D  or  2-D) are reorganised to exploit  the 
inherent  symmetry of cosine  operations in order to minimise  the  number of multi- 
plications and/or additions. This  approach is appropriate for software  implementations. 

2. Maximal regularity: the l-D  or 2-D  calculations are organised to regularise the data flow 
and  processing order. This  approach is suitable for dedicated  hardware  implementations. 

In general, l-D implementations  (using  the  separable  property  described  above) are less 
complex  than  2-D  implementations,  but it is possible to achieve  higher  performance by 
manipulating  the  2-D  equations directly. 
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7.4.2 Flowgraph  Algorithms 

The computational  requirements of the l-D DCT may  be reduced significantly by exploiting 
the  symmetry of the  cosine  weighting factors. We show how the  complexity of the DCT  can 
be reduced in the  following  example. 

Example:  Calculating l - D  DCT coeficient F2 

From  Equation  7.3: 

The  following  properties of the  cosine  function can be  used  to  simplify  Equation 7.7: 

and 

cos(?) = - c o s ( F )  = -cosr$) =cos($) 

These  relationships are shown  graphically in Figure  7.12  where cos(7r/8), cos(7n/8), etc. are 
plotted as circles ( 0 )  and  cos(37r/8), cos(57r/8), etc. are plotted as stars (*). 
Using  the  above  relationships,  Equation 7.7 can be rewritten as follows: 

F2 = -  [.cos(;) + f l  cos(?) - h c o s ( 3  - f 3 c o s ( 3  - f.cOs(;) 
1 
2 

- f5 cos (g) + f6 cos (g) + f7 cos(;)] 

hence: 
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Figure 7.12 Symmetries of cosine  function 

The calculation for F2 has been reduced from eight multiplications and  eight additions 
(Equation 7.7)  to two multiplications and eight additions/subtractions (Equation 7.9). 

Applying a similar process to F6 gives 

The  additions and subtractions  are clearly the  same as in Equation 7.9. We can therefore 
combine  the  calculations of F2 and Fh as follows: 

Step 2 : calculate 2F2 = bl cos (i) + D2 cos (g)] and 

In total,  the two steps  require X additions  or  subtractions and 4 multiplications, compared 
with 16 additions and 16 multiplications for  the full calculation. The combined  calculations 
of F2 and Fh can be graphically represented by ajowgraph as shown in Figure  7.13.  In this 
figure, a circle represents addition and a square represents multiplication by a scaling factor. 
For clarity, the  cosine  scaling  factors  are represented as ‘cX’, meaning ‘multiply by 
cos (Xn/16)’. Hence, cos(r/X) is represented by c2 and cos(3r/X) is represented by c6. 

This  approach  can be extended to simplify the calculation of F. and F4, producing the top 
half of the flowgraph shown in Figure 7.14. Applying basic cosine  symmetries  does not give 
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Figure 7.13 Partial FDCT flowgraph (F2 and F6 outputs) 
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such a useful result for  the  odd-numbered  FDCT coefficients ( I ,  3 ,  5 ,  7). However, further 
manipulation of the  matrix of cosine weighting factors  can simplify the calculation of these 
coefficients. Figure 7.14 shows a widely used example of a ‘fast’ DCT algorithm,’ requiring 
only 26  additionskubtractions and 20 multiplications (in fact,  this  can  be reduced to 16 
multiplications by combining some of the multiplications by c4).  This is considerably 
simpler than the 64 multiplies  and  64  additions of the ‘direct’ l-D DCT. Each multiplication 
is by a constant  scaling  factor  and these scaling factors may be pre-calculated to speed up 
computation. 

In Figure 7.14, eight  samples fo . . . f, are input at the left and  eight  DCT coefficients 
2Fo . . .2F7 are  output at  the right. A I-D IDCT may be carried out by simply reversing the 
direction of the graph, i.e. the coefficients 2Fo.  . .2F7 are now inputs and the samplesfo . . .,f, 
are  outputs. 

By manipulating the transform  operations in different ways, many other flowgraph 
algorithms  can be obtained.  Each  algorithm  has  characteristics that may make it suitable 
for a particular  application:  for  example,  minimal  number of multiplications (for processing 
platforms  where  multiplications are particularly expensive),  minimal total number of 
operations  (where  multiplications  are not computationally  expensive), highly regular data 
flow, and so on. Table 7.2 summarises the features of some  popular l-D ‘fast’ algorithms. 
Arai’s algorithm  requires  only five multiplications, making it  very efficient for most 
processing  platforms; however, this algorithm results in incorrectly scaled coefficients and 
this must be compensated  for by scaling  the quantisation algorithm (see Section 7.6). 
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Figure 7.14 Complete  FDCT  flowgraph  (from  Chen,  Fralick  and  Smith) 

These  fast l-D algorithms  exploit  symmetries of the l-D DCT  and there are  further 
variations on  the fast l-D DCT .738 In  order  to  calculate a complete  2-D DCT, the l-D 
transform is applied independently to the rows and then to the columns of the  block of data. 
Further reductions in the  number of operations may be achieved by taking advantage of 
further  symmetries in the  'direct'  form of the  2-D  DCT  (Equation 7.1). In general, it is 
possible to  obtain better performance with a direct  2-D algorithmg3" than with separable l-D 
algorithms. However, this improved performance comes at the  cost of a significant increase 
in  algorithmic complexity. In many practical applications, the relative simplicity (and 
smaller software code  size) of the l-D transforms is preferable to the higher  complexity 

Table 7.2 Comparison of l-D DCT algorithms  (S-point  DCT) 

Source Multiplications 
~~ 

Additions 

'Direct' 
Chen3 
~ e e ~  
~oeff ler~ 
Arai6 

64 
16 
12 
11 
5 

64 
26 
29 
29 
28 
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of direct  2-D  algorithms.  For  example, it is  more  straightforward  to  develop a highly efficient 
hand-optimised l-D function  than to carry  out  the  same  software  optimisations with a larger 
2-D  function. 

7.4.3 Distributed Algorithms 

The ‘flowgraph’ algorithms  described  above  are  widely used in  software  implementations of 
the DCT but  have  two  disadvantages  for  dedicated  hardware  designs.  They tend to be 
irregular (i.e. different  operations  take  place  at  each  stage of the flowgraph)  and  they require 
large  multipliers  (which  take  up  large  areas of silicon  in an IC). It  is useful to develop 
alternative  algorithms  that  have a more  regular  structure  and/or do not require  large  parallel 
multipliers. 

Equation 7.3  (l-D FDCT) may  be written as a ‘sum  of products’: 

7 

F, = c Ci,,fi where Ci.x = - 
(2i + 1 ) X T  

i = O  2 
(7.1 1 )  

The  l-D  FDCT is  the  sum of eight  products,  where  each  product  term  is  formed by 
multiplying  an  input  sample by a constant  weighting  factor Ci,*. The first stage of  Chen’s fast 
algorithm  shown in Figure  7.14  is a series of additions  and  subtractions  and  these  can be 
used to  simplify  Equation  7.1 1. First,  calculate  four  sums (U) and  four  differences ( v )  from 
the  input  data: 

Equation  7.11  can  be  decomposed  into  two  smaller  calculations: 

(7.12) 

(7.13) 

(7.14) 
i = O  

In this  form,  the  calculations  are  suitable  for  implementation using a technique known as 
distributed  arithmetic (first proposed  in  1974  for  implementing  digital  filters”).  Each 
multiplication  is  carried  out a bit at a time,  using a look-up  table  and an accumulator 
(rather  than a parallel  multiplier). 

A B-bit twos  complement  binary  number n can be represented as: 

(7.15) 
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H’ is  the  most significant bit (MSB) of n (the sign bit) and n j  are  the  remaining ( B -  1) bits 
of n. 

Assuming that each  input U, is a B-bit binary number  in  twos  complement  form, Equation 
7.13  becomes 

Rearranging gives 

(7.16) 

(7.17) 

or 

D,!&) is a function of the bits at position j in each of the four input values: these bits are ub, 
U<, U/ and ud. This  means that there are only 24 = 16  possible  outcomes of D, and these 16 
outcomes may be pre-calculated and stored in a look-up table. The FDCT describe by 
Equation 7.18 can  be  carried  out by a series of table  look-ups ( D J ,  additions (c) and shifts 
(2 -3 .  In this form, no multiplication is required and this  maps efficiently to hardware 
(see Section 7.5.2).  A  similar  approach  is  taken to calculate the four odd-numbered 
FDCT coefficients F 1 ,  F3, F5 and F7 and the distributed form may also be applied to the 
l-D IDCT. 

7.4.4 Other DCT Algorithms 

The popularity of the DCT has led to the development of further algorithms. For example, a 
l-D DCT in the  form of a finite difference equation has been presented.” Using this  form, 
the DCT coefficients may be calculated recursively using an infinite impulse response (IIR) 
filter. This has several advantages: the algorithm is very regular and there are a number  of 
well-established methods  for  implementing IIR filters in hardware and software. 

Recently, approximate  forms of the  DCT have been proposed. Each of the DCT-based 
image and video  coding  standards specifies a minimum accuracy for  the inverse DCT and in 
order to meet this specification it is necessary to use multiplications and fractional-precision 
numbers. However, if accuracy and/or  complete  compatibility with the  standards  are of 
lesser importance,  it  is possible to calculate the DCT and IDCT using one of several 
approximations. For example, an approximate  algorithm has been proposed13 that requires 
only additions and shifts (i.e. there are no multiplications).  This  type of approximation may 
be suitable  for low-complexity software or hardware  implementations where computational 
power is very limited. However, the  disadvantage  is that image quality will be reduced 
compared with an accurate  DCT  implementation. An interesting trend is shown in the H.26L 
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draft  standard  (see  Chapter 5) ,  where an integer  DCT  approximation  is defined as  part of the 
standard to facilitate  low-complexity  implementations whilst retaining  compliance with the 
standard. 

7.5 IMPLEMENTING THE DCT 

7.5.1 Software DCT 

The  choice of ‘fast’  algorithm  for  a  software  video  CODEC  depends on a  number of factors. 
Different  processing  platforms  (see  Chapter  12) have different  strengths  and  weaknesses and 
these  may  influence  the  choice of DCT/IDCT  algorithm.  Factors  include: 

0 Computational  ‘cost’ of multiplication.  Some  processors  take  many  cycles  to  carry  out a 
multiplication,  others  are  reasonably  fast. Alternative flowgraph-based algorithms allow the 
designer  to  ‘trade’  the  number of multiplications  against  the  total  number of operations. 

0 Fixed vs. floating-point  arithmetic  capabilities.  Poor  floating-point  performance may be 
compensated  for by scaling  the  DCT  multiplication  factors to integer values. 

0 Register  availability. If the  processor  has  a  small  number of internal  registers then temp- 
orary  variables  should be kept  to  a  minimum  and reused where  possible. 

0 Availability of dedicated  operations,  ‘Custom’  operations  such  as  digital signal processor 
(DSP)  multiply-accumulate  operations and the  Intel  MMX  instructions may be used to 
improve  the  performance of some  DCT  algorithms  (see  Chapter  12). 

Because of the  proliferation of ‘fast’  algorithms,  it  is usually possible  to  choose  a  ‘shortlist’ 
of two  or  three  alternative  algorithms  (typically  flowgraph-based  algorithms  for  software 
designs)  and  to  compare  the  performance of each  algorithm  on  the  target  processor  before 
making  the final choice. 

Example 

Figure 7.15 lists  pseudocode  for Chen’s algorithm  (shown  in  Figure 7.14). (Only  the top-half 
calculations  are  given  for  clarity).  The  multiplication  factors  CX  are  pre-calculated  constants. 
In this  example,  floating-point  arithmetic is used: alternatively,  the  multipliers  CX may be 
scaled up to  integers  and  the  entire  DCT  may be carried  out  using  integer  arithmetic (in 
which  case,  the final results  must be scaled  back  down  to  compensate).  The  cosine 
multiplication  factors never change  and so these may be pre-calculated (in this case as 
floating-point  numbers). A  l-D DCT  is  applied  to  each row  in turn, then to each  column. 
Note  the  use of a  reasonably  large  number of temporary  variables. 

Further  performance  optimisation  may be achieved by exploiting  the  flexibility of a 
software  implementation.  For  example,  variable-complexity  algorithms  (VCAs) may be 
applied to reduce  the  number of operations  required  to  calculate  the  DCT  and  IDCT  (see 
Chapter 10 for  some  examples). 



IMPLEMENTING  THE DCT 

constant c4 = 0.707107 

constant c2 = 0.923880 

constant c6 = 0.382683 

/ /  (similarly for  cl,  c3, c5 and c7) 

€or (every row) { 

io = fO+f7 

il = fl+f6 

i2 = fZ+f5 

i3 = f3+f4 

i4 = f3-f4 

i5 = fZ-f5 

i6 = fl-f6 

i7 = fO-f7 

j0 = io + i3 

jl = il+ i2 

j2 = il - i2 
j3 = io - i3 

/ /  First stage 

/ /  Second stage 

I 

/ /  (similarly for j4..j7) 

kO = (j0 + jl) c4 / /  Third stage 

kl = (j0 - jl) c4 

k2 = (j2*c6) + (j3*c2) 
k3 = (j3*c6) - (j2*c2) 
/ /  (similarly for k4..k7) 

PO = k0>>1 

F4 = kl>>l 

F2 = k2>>1 

F6 = k3>>1 

/ /  (Fl..F7 require another stage of multiplications and additions) 

I 

/ /  end of row calculations 

ior (every column) { 

/ /  repeat above steps on the columns 

147 

Figure 7.15 Pseudocode for Chen’s algorithm 
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Figure 7.16 2-D DCT architecture 

7.5.2 Hardware DCT 

Dedicated  hardware  implementations of  the FDCT/IDCT  (suitable  for  ASIC  or FPGA 
designs,  for  example)  typically  make  use of separable l-D transforms  to  calculate  the  2-D 
transform. The two  sets of row/column  transforms  shown in Figure 7.1 1 may be  carried  out 
using a single l-D transform  unit by transposing  the 8 x 8 array  between  the  two I-D 
transforms. i.e. 

Input  data +l-D transform  on  rows + Transpose  array 
-+ l-D transform on columns + Output  data 

An 8 x 8 RAM (‘transposition  RAM’)  may be  used to carry  out  the  transposition.  Figure 7.16 
shows  an  architecture  for  the  2-D  DCT  that uses a l-D transform  ‘core’  together with a 
transposition RAM. The following  stages  are  required  to  calculate a complete  2-D  FDCT 
(or  IDCT): 

1. Load  input  data in row order;  calculate l-D DCT of each  row;  write  into  transposition 
RAM in row order. 

2.  Read  from RAM in column  order;  calculate l-D DCT of each  column;  write  into  RAM in 
column order. 

3. Read  output  data  from  RAM  in row order. 

There  are a number of options  for  implementing the l-D FDCT  or  IDCT  ‘core’.  Flowgraph 
algorithms  are  not  ideal  for  hardware  designs:  the  data flow is  not  completely  regular  and it 
is  not  usually  possible to efficiently reuse  arithmetic  units  (such as adders  and  multipliers). 
Two  popular  and  widely  used  designs  are the parallel  multiplier and distributed  arithmetic 
approaches. 
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Figure 7.17 Distributed  arithmetic  ROM-accumulator 

Parallel  multiplier 

This  is  a  more or less  direct  implementation of Equations  7.13  and  7.14  (four-point  sum of 
products).  After  an  initial  stage  that  calculates the four  sums (U) and  differences (v) (see 
Equation  7.12),  each  sum-of-products  result is calculated.  There  are 16 possible  factors Ci,, 
for  each of the  two  4-point  DCTs,  and  these  factors  may  be  pre-calculated  to  simplify  the 
design.  High  performance may  be achieved by carrying  out the four  multiplications  for  each 
result in parallel; however, this requires four large  parallel  multipliers  and may  be expensive 
in terms of logic  gates. 

Distributed  arithmetic 

The basic  calculation of the  distributed  arithmetic  algorithm is given  by Equation 7.18. This 
calculation  maps to the hardware  circuit  shown in Figure 7.1 7, known as a ROM- 
Accumulator circuit.  Calculating  each coefficient F, takes  a  total of B clock  cycles  and 
proceeds  as  follows (Table 7.3). The  accumulator  is  reset to zero  at  the  start.  During  each 

Table 7.3 Distributed  arithmetic:  calculation of one  coefficient 
- ~ 

Bit 
~~ ~ 

position ROM input 
ROM 

output  Accumulator  contents 

B -  1 - 1 (i.e. bit ( B -  1)  of D,(UB - l )  D,(uB - l )  

(i.e. bit ( B  - 2 )  of D & P 2 )  D,(uB-2) + [D,(uB- l )  >> l ]  
M O ,  M I ,  u2 and u3) 

M O .  MI, u2 and u3) 

B - 2  - 2 

. .  
. . .   . . .  

1 U' (i.e. bit 1 of uo, U], u2 and u3) D,(ul) D,(u') + (previous  contents >> 1 )  
0 uo (i.e. sign  bit of uo, uI .  u2 and u3) D,(uo) -D,(uo) + (previous  contents >> 1) 



150 TRANSFORM CODING 

clock  cycle,  one  bit  from  each  input u (or  each  input v if F, is  an  odd-numbered  coefficient) 
selects  a  pre-calculated  value D, from  the ROM. The ROM output D, is  added  to  the 
previous  accumulator  contents  (right-shifted by I bit,  equivalent to multiplication by 2-  l ) .  

The final output D,(uo) is  subtracted  (this  is the sign  bit  position).  After B clock  cycles, the 
accumulator  contains  the final result F,. 

The  ROM-Accumulator is a reasonably  compact  circuit  and it is possible  to  use  eight of 
these in parallel  to  calculate all eight coefficients F, of a l-D  FDCT or  IDCT in B cycles. The 
distributed  arithmetic  design  offers  good  performance with a  modest  gate  count. 

There  have  been  examples of multiplier-based  DCT designs,’4915 filter-based 
and  distributed  arithmetic A hardware  architecture  has  been  presented”  based 
on a  ‘direct’  2-D  DCT  implementation. 

7.6 QUANTISATION 

In a  transform-based  video  CODEC,  the  transform  stage  is usually followed by a  quantisa- 
tion  stage. The transforms  described in this chapter  (DCT  and  wavelet)  are  reversible i.e. 
applying  the  transform  followed by its  inverse  to  image  data  results  in  the  original  image 
data.  This  means  that  the  transform  process  does not remove  any  information; it simply 
represents  the  information  in  a  different  form. The quantisation  stage  removes  less 
‘important’  information  (i.e.  information  that  does  not  have  a  significant  influence  on the 
appearance of the  reconstructed  image),  making it possible to  compress the remaining  data. 

In the  main  image  and  video  coding  standards  described in Chapters 4 and 5, the 
quantisation  process  is  split  into  two  parts,  an  operation  in  the  encoder  that  converts 
transform  coefficients  into levels (usually  simply  described as quantisation) and  an operation 
in the  decoder  that  converts  levels  into  reconstructed  transform  coefficients  (usually 
described  as  rescaling  or  ‘inverse  quantisation’).  The key to this  process is that, whilst  the 
original  transform  coefficients may take  on  a  large  number of possible  values  (like an 
analogue,  ‘continuous’  signal),  the  levels  and  hence  the  reconstructed coefficients are 
restricted to a  discrete  set of values. Figure 7.18 illustrates  the  quantisation  process. 
Transform  coefficients  on  a  continuous  scale  are  quantised  to  a  limited  number of possible 
levels. The levels  are  rescaled  to  produce  reconstructed  coefficients  with  approximately the 
same  magnitude  as  the  original  coefficients but a  limited  number of possible values. 

- 

- 
Coefficient value 
may be anywhere 

in this range 

Coefficient may  only 

- 

Origlnal coeffioents 
- 

Quantised values Rescaled coefficients 

Figure 7.18 Quantisation  and  rescaling 
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Quantisation  has  two benefits for  the  compression process: 

If the  quantisation  process is correctly  designed,  visually significant coefficients (i.e. 
those  that  have  a  significant  effect on the  quality of the  decoded  image)  are  retained 
(albeit  with  lower  precision), whilst insignificant coefficients are  discarded.  This  typically 
results  in  a  ‘sparse’  set of quantised  levels,  e.g.  most of the 64 coefficients in an 8 x 8 
DCT  are  set  to  zero by  the quantiser. 

A sparse  matrix  containing  levels with a  limited  number of discrete  values  (the  result of 
quantisation)  can  be efficiently compressed. 

There  is, of course,  a  detrimental  effect to image  quality  because  the  reconstructed 
coefficients are not identical to the original  set of  coefficients  and hence the decoded  image 
will not  be identical to the  original. The amount of compression  and the loss of image  quality 
depend on the  number of levels  produced by the  quantiser. A large  number of levels  means 
that  the coefficient precision  is  only  slightly  reduced and compression  is  low;  a  small  number 
of levels  means  a significant reduction in coefficient precision  (and  image  quality)  but 
correspondingly high compression. 

Example 

The  DCT coefficients from Table 7.1  are  quantised  and  rescaled  with  (a)  a ‘fine’ quantiser 
(with the  levels  spaced  at  multiples of 4) and (b)  a ‘coarse’ quantiser  (with  the  levels  spaced 
at  multiples of 16). The results  are  shown in Table 7.4. The finely quantised coefficients (a) 
retain  most of the  precision of the  originals  and 21 non-zero coefficients remain  after 
quantisation.  The  coarsely  quantised coefficients (b)  have  lost  much of their  precision  and 
only  seven  coefficients  are  left  after  quantisation  (the six coefficients illustrated in Figure 7.6 
plus [7, 01). The finely quantised  block will produce  a  better  approximation of the  original 
image  block  after  applying the IDCT; however, the  coarsely  quantised  block will compress 
to a  smaller  number of bits. 

Table 7.4 Quantised  and  rescaled  coefficients: (a) fine  quantisation, (b) coarse  quantisation 
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Figure 7.19 Linear  quantiser 

7.6.1 Types of Quantiser 

The  complete quantisation  process  (forward  quantisation  followed by rescaling)  can be 
thought of as a  mapping  between  a  set of input  values  and  a  (smaller)  set of output values. 
The  type  of  mapping  has  a  significant  effect  on  compression  and  visual quality. Quantisers 
can  be categorised as linear or nonlinear. 

Linear 

The set of input  values  map to a  set of evenly  distributed  output  values  and  an  example  is 
illustrated in Figure 7.19. Plotting  the  mapping  in this way produces  a  characteristic 
‘staircase’. A linear  quantiser  is  appropriate when it is required  to retain the  maximum 
precision  across  the  entire  range  of  possible  input values. 

Nonlinear 

The  set of output  values  are  not  linearly  distributed; this means  that  input values are  treated 
differently  depending on  their  magnitude. A commonly  used  example  is  a  quantiser with a 
‘dead  zone’  about  zero, as shown  in  Figure 7.20. A disproportionately  wide  range of low- 
valued  inputs  are  mapped to a  zero  output.  This  has  the  effect of ‘favouring’  larger  values  at 
the expense  of  smaller  ones, i.e. small  input values  tend to be quantised to zero, whilst larger 
values  are  retained.  This  type of nonlinear  quantiser may be  used,  for  example,  to  quantise 
‘residual’  image  data in an  inter-coded  frame. The residual  DCT coefficients (after  motion 
compensation  and  forward  DCT)  are  distributed  about  zero. A typical coefficient matrix will 
contain  a  large  number of near-zero  values  (positive  and  negative) and a  small  number of 
higher  values  and  a  nonlinear  quantiser will remove  the  near-zero  values whilst retaining the 
high  values. 
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Figure 7.20 Nonlinear  quantiser  with  dead  zone 

Figure 7.21 shows  the  effect of applying  two  different  nonlinear  quantisers  to  a  sine  input. 
The figure shows  the  input  together  with  the  quantised  and  rescaled  output;  note  the  ‘dead 
zone’  about  zero.  The  left-hand  graph  shows  a  quantiser  with 11 levels and  the right-hand 
graph  shows  a ‘coarser’ quantiser  with  only 5 levels. 

7.6.2 Quantiser Design 

The design of  the quantisation  process  has  an  important  effect on compression  performance 
and  image quality. The fundamental  concepts of quantiser  design  were  presented  else- 
where.20 In  order  to  support  compatibility  between  encoders  and  decoders, the image  and 
video  coding  standards  specify  the levels produced by  the encoder  and the set of 
reconstructed coeflcients. However,  they do not  specify  the forward quantisation  process, 
i.e. the  mapping  between the input coefficients  and the  set of levels.  This  gives  the  encoder 
designer flexibility to  design  the  forward  quantiser to give  optimum  performance  for 
different  applications. 

For  example, the MPEG-4 rescaling  process is as  follows  for  inter-coded  blocks: 

IRECl = QUANT. ( 2 .  lLEVELl+ 1 )  (if QUANT is  odd  and LEVEL # 0) 

(RECI = QUANT. (2 .  (LEVEL( + 1) - 1 (if QUANT is even  and LEVEL # 0) (7.19) 

REC = 0 (if LEVEL = 0) 

LEVEL is  the  decoded  level  prior  to  rescaling  and REC is  the  rescaled coefficient. The sign 
of REC is  the  same as the sign of LEVEL. QUANT is  a  quantisation ‘scale factor’ in the 
range 1-31. Table 7.5 gives  some  examples of reconstructed coefficients for  a  few of 
the  possible  combinations of LEVEL and QUANT. The QUANT parameter  controls the step 



154 TRANSFORM CODING 

25 

-25 ‘ I 

(b) 

Figure 7.21 Nonlinear  quantisation of sine  wave: (a) low quantisation; (b) high quantisation 

size of the  reconstruction  process:  outside  the ‘dead zone’  (about  zero), the reconstructed 
values  are  spaced  at  intervals of (QUANT * 2). A larger value of QUANT means  more widely 
spaced  reconstruction  levels  and  this  in turn gives higher  compression  (and poorer decoded 
image  quality). 

The  other  ‘half’ of the  process,  the  forward  quantiser, is not defined by the  standard.  The 
design of the  forward  quantiser  determines  the  range of coefficients (COEF) that  map to 
each of the  levels.  There  are  many  possibilities  here:  for  example,  one  option  is  to  design the 
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Table 7.5 MPEG-4 reconstructed coefficients 

1 Levels 

I QUANT ... I -2 -1 

-19 -11 0 11 19  27 35 4 

-15 -9 0 9 15  21  27 3 

-9 - 5  0 5 9  13 17 2 

... - 5  -3 0 3 5 7 9 ... 1 

. . .  4 3 2 1 0 

... 

quantiser so that  each of the  reconstructed  values  lies  at  the  centre of a  range of input values. 
Figure 7.22 shows an example  for QUANT = 4. After  quantisation and rescaling,  original 
coefficients  in  the  range (- 7 < COEF < 7)  map to 0 (the  ‘dead  zone’);  coefficients  in  the 
range(7<COEF<15)maptoll;andsoon.. 

However,  the  quantiser  shown  in  Figure 7.22 is not necessarily  the  best  choice for inter- 
coded  transform  coefficients.  Figure  7.23  shows  the  distribution of DCT coefficients  in an 
MPEG-4  coded  sequence:  most of the  coefficients  are  clustered  about  zero. Given a 
quantised  coefficient c’, the  original  coefficient  c  is  more  likely  to  have  a low value  than 

> - 27 

>- 19 

15 
>- 11 

7 

-7 L 
-1 5 4 
-23b -31  

>- 0 

>- -11 

=-- -19 

W - -27 

I 
Original  coefficient  Quantised  and Figure 7.22 Quantiser (1): REC 

Values  rescaled  Values in centre of range 
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Figure 7.23 Typical distribution of INTER coefficients 

a high value. A better  quantiser  might ‘bias’ the  reconstructed coefficients towards zero; this 
means that, on average,  the  reconstructed values will be closer  to  the original values (for 
original coefficient values that are  concentrated about zero).  An  example of a ‘biased’ 
forward  quantiser  design  is given in Appendix I11 of the H.263++ standard: 

ILEVELl = (ICOEFI - QUANT/2)/(2 * QUANT)  (7.20) 

The  positions  of  the  original  and reconstructed coefficients for QUANT = 4 are shown in 
Figure 7.24. Each  reconstructed coefficient value (REC) is  near  the  lower  end of the  range of 
corresponding  input coefficients. Inputs in the range ( -  10 < COEF< 10) map to 0; the 
range(10<COEF<18)mapsto11,(-18<COEF<-10)mapsto -11,andsoon.For  
coefficients with a Laplacian probability distribution (i.e. a similar distribution to  Figure 
7.23), this quantiser design means that, on  average,  the reconstructed coefficients are  closer 
to  the  original coefficients. This in turn reduces  the  error introduced by the quantisation 
process. Depending on  the source  video material, the  transform coefficient may have 
different  distributions.  It  is possible to ‘redesign’ the  quantiser  (i.e.  choose the range that 
maps  to  each  reconstruction value) to suit a particular  set of input  data  and  achieve  optimum 
image quality. This  is a computationally  intensive  process and is a good  example of the 
trade-off between  computation  and  compression  performance:  applying  more  computation 
to  the  choice of quantiser  can  lead  to better compression  performance. 

7.6.3 Quantiser  Implementation 

Forward  quantisation  maps  an  input coefficient to  one of a set of possible levels, depending 
on  the  value of a parameter QUANT. As Equation 7.20 implies, this can usually be 
implemented as a division (or as a multiplication by an inverse parameter). The rescaling 
process (e.g. Equation 7.19) can be implemented as a multiplication. 
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These  operations  are  reasonably  straightforward  in  software  or  hardware;  however,  in 
some  architectures  division  may  be  ‘expensive’,  for  example  requiring many processor 
cycles  in  a  software  CODEC  or  requiring  a  large  multiplier  circuit  in  a  hardware  architecture. 
Rescaling may lend  itself  to  implementation  using  a  look-up  table.  For  example,  the  MPEG- 
4 rescaling  operation  for ‘inter’ coefficients  (Equation 7.19) has  a  limited  number of possible 
outcomes:  there  are  3 1 QUANT values  and  the  value of ILEVELI may be in the  range  0-128 
and so there  are  (31 * 129 =) 3999  possible  reconstructed  values.  Instead of directly 
calculating  Equation 7.19, the  3999  outcomes may be  pre-calculated  and  stored  in  a  look- 
up table which the  decoder  indexes  according  to QUANT and LEVEL. This  is  less  practical 
for  the  forward  quantiser:  the  magnitude of COEF may be  in  the  range  0-2048 and so 
(2049 * 31 = ) 63  519  possible LEVEL outcomes need to  be  stored  in  the  look-up  table. 

7.6.4 Vector  Quantisation 

In the  examples  discussed  above,  each  sample (e.g. a  transform  coefficient) was quantised 
independently of all  other  samples (scalar quantisation). In  contrast,  quantising  a  group of 
samples  as  a ‘unit’ (vector quantisation) can  offer  more  scope  for  efficient  compression.21  In 
its  basic form, vector  quantisation  is  applied  in  the  spatial  domain (i.e. it  does not involve  a 
transform  operation). The  heart of a  vector  quantisation (VQ) CODEC  is a codebook. This 
contains  a  predetermined  set of vectors, where  each  vector  is  a  block of samples  or  pixel. A 
VQ CODEC  operates  as  follows: 



158 TRANSFORM CODING 

Encode Decode 

Find best 
block Transmit 

Codebook 

Vector 1 
Vector 2 

Vector N 

Codebook 

Vector 1 
Vector 2 

Vector N 

+ output 
block 

Figure 7.25 Vector quantisation CODEC 

1. Partition  the  source  image  into  blocks  (e.g. 4 x 4 or 8 x 8 samples). 

2 .  For each block, choose  a  vector  from the codebook that matches  the block as closely as 
possible. 

3. Transmit an index that identifies the chosen vector. 

4. The  decoder  extracts the appropriate  vector  and uses this to  represent the original  image 
block. 

Figure 7.25 illustrates  the  operation of a basic VQ  CODEC.  Compression  is achieved by 
ensuring that the index takes  fewer  bits  to  transmit than the  original  image block itself. VQ is 
inherently  lossy  because,  for most image blocks, the chosen vector will not be an exact 
match  and  hence  the  reconstructed  image  block will  not be identical to the original.  The 
larger the number of vectors (predetermined  image  blocks) in the codebook,  the  higher the 
likelihood of obtaining  a  good  match.  However,  a  large  codebook  introduces  two  difficulties: 
first, the problem of storing the codebook  and  second,  the  problem of searching  the 
codebook  to find the  optimum  match. 

The  encoder  searches  the  codebook  and  attempts  to  minimise  the  distortion  between  the 
original  image  block x and  the  chosen  vector x, according to some  distortion metric (for 
example, mean squared  error: I(x - x ( l  ). The  search  complexity  increases with the  number 
of vectors in the  codebook N ,  and  much of the  research  into  VQ  techniques has concentrated 
on methods of minimising  the  complexity of the  search  whilst  achieving  good  compression. 

Many modifications to the basic VQ  technique  described  above  have  been  proposed, 
including the following. 

2 

Tree search VQ 

In order to simplify the search  procedure in a VQ encoder, the codebook  is  partitioned  into  a 
hierarchy. At  each  level of the  hierarchy, the input  image  block  is  compared with just  two 
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Input block 

1, Level 0 

Level 1 

Level 2 

... ... 

Figure 7.26 Tree-structured  codebook 

possible vectors and the best match  is  chosen. At the next level down, two  further  choices  are 
offered (based on  the  choice at the previous level), and so on.  Figure 7.26 shows the basic 
technique: the  input block is first compared with two ‘root’ vectors A and B (level 0). If A is 
chosen, the next comparison  is with vectors C and D; if B is chosen,  the next level chooses 
between E and F; and so on. In total, 2logzN comparisons are required  for a codebook of 
N vectors. This reduction in complexity is offset against a potential loss of image  quality 
compared with a ‘full’ search of the codebook,  since  the  algorithm  is not guaranteed to find 
the best match out of  all possible vectors. 

Variable  block  size 

In its  basic  form, with blocks of a constant size, a VQ  encoder must transmit an index for 
every block of the  image. Most images  have  areas of high and low spatial detail and  it can be 
advantageous  to use a variable block size for partitioning the image, as shown in Figure  7.27. 
Prior to quantisation, the  image  is partitioned into non-overlapping blocks of varying sizes. 
Small  blocks  are  chosen  for  areas of the image  containing  important detail; large blocks 
are used where there is less detail in  the image. Each block is matched with a vector from the 
codebook  and  the  advantage of this method is  that a higher density of vectors (and hence 
better image reproduction) is achieved for detailed areas of the  image, whilst a lower density 
(and hence fewer transmitted bits) is chosen for less detailed areas. Disadvantages include 
the extra complexity of the initial partitioning stage  and  the  requirement  to transmit a ‘map’ 
of the partitioning structure. 

Practical  considerations 

Vector quantisation is highly asymmetrical in terms of computational complexity. Encoding 
involves an intensive search operation for every image block, whilst decoding involves a 
simple  table look-up. VQ (in its basic form) is therefore unsuitable for  many two-way video 
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Figure 7.27 Image partitioned into varying block sizes 

communication  applications  but  attractive  for  applications  where low decoder  complexity  is 
required.  At  present,  VQ  has  not  found  its way into  any of the  ‘mainstream’  video  and  image 
coding  standards.  However,  it  continues  to  be an active  area  for  research and increasingly 
sophisticated  techniques  (such as fast  codebook  search  algorithms  and  VQ  combined with 
other  image  coding  methods) may lead to increased  uptake in the  future. 

7.7 SUMMARY 

The most  popular  method of compressing  images  (or  motion-compensated  residual  frames) 
is by applying a transform  followed by quantisation. The purpose of  an image transform is  to 
decorrelate  the  original  image  data and to  ‘compact’  the  energy of the  image.  After 
decorrelation  and  compaction,  most of  the image  energy  is  concentrated  into  a  small 
number of coefficients  which are ‘clustered’ together. 

The  DCT is usually  applied  to 8 x 8 blocks of image  or  residual  data. The basic  2-D 
transform  is  relatively  complex to implement,  but  the  computation  can be significantly 
reduced first by  splitting  it  into  two l-D transforms and second by exploiting  symmetry 
properties  to  simplify  each 1 -D transform.  ‘Flowgraph’-type  fast  algorithms  are  suitable for 
software  implementations  and a range of algorithms  enable  the  designer  to tailor the choice 
of FDCT  to  the  processing  platform.  The  more  regular  parallel-multiplier  or  distributed 
arithmetic  algorithms  are  better  suited to dedicated  hardware  designs. 

The design of the  quantiser  can  have an important  contribution  to  image  quality in  an 
image  or  video  CODEC.  After  quantisation,  the  remaining significant transform coefficients 
are  entropy  encoded  together with side  information  (such as headers  and  motion  vectors) 
to  form a compressed  representation of the  original  image or video  sequence. The next 
chapter will examine  the  theory  and  practice of designing efficient entropy  encoders and 
decoders. 
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Entropy Coding 

8.1 INTRODUCTION 

A video  encoder  contains  two  main  functions:  a source  model that attempts to represent  a 
video  scene  in  a  compact  form  that is easy to compress  (usually  an  approximation of the 
original  video  information)  and  an entropy  encoder that compresses  the  output of the  model 
prior to  storage  and  transmission.  The  source  model  is  matched to the  characteristics of the 
input  data  (images or  video  frames),  whereas  the  entropy  coder  may  use  ‘general-purpose’ 
statistical compression  techniques that are  not  necessarily  unique  in  their  application to 
image  and  video  coding. 

As with  the  functions  described  earlier  (motion  estimation  and  compensation,  transform 
coding,  quantisation),  the  design of  an entropy  CODEC  is  affected  by  a  number of 
constraints  including: 

1. Compression eficiency: the  aim  is to represent  the  source  model  output  using as few bits 
as possible. 

2.  Computational eficiency: the  design  should  be  suitable  for  implementation  on  the 
chosen  hardware  or  software  platform. 

3. Error robustness: if transmission  errors  are likely, the  entropy  CODEC  should  support 
recovery  from  errors  and  should (if possible)  limit  error  propagation at decoder (this 
constraint  may conflict with (1) above). 

In a  typical  transform-based  video  CODEC,  the  data to be  encoded by the  entropy  CODEC 
falls  into  three  main  categories:  transform  coefficients (e.g. quantised  DCT coefficients), 
motion  vectors  and ‘side’ information  (headers,  synchronisation  markers,  etc.).  The  method 
of coding  side  information  depends  on  the  standard.  Motion  vectors  can  often  be  represented 
compactly in a differential form  due to the  high  correlation  between  vectors  for  neighbouring 
blocks or macroblocks.  Transform  coefficients  can  be  represented efficiently with  ‘run- 
level’ coding,  exploiting  the  sparse  nature of the  DCT  coefficient array. 

An entropy  encoder  maps  input  symbols  (for  example, run-level coded coefficients) to  a 
compressed  data  stream. It achieves  compression  by  exploiting  redundancy in the  set of 
input  symbols,  representing  frequently  occurring  symbols  with  a  small  number of bits and 
infrequently occumng  symbols with  a  larger  number of bits. The  two most  popular  entropy 
encoding  methods  used  in  video  coding  standards  are  Huffman  coding  and  arithmetic 
coding.  Huffman  coding (or ‘modified’  Huffman  coding)  represents  each  input  symbol 
by a  variable-length  codeword  containing an integral  number of bits. It is relatively 
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straightforward  to  implement,  but  cannot  achieve  optimal  compression  because of the 
restriction  that  each  codeword  must  contain an integral  number of bits.  Arithmetic  coding 
maps an  input  symbol  into  a  fractional  number of bits,  enabling  greater  compression 
efficiency at the  expense of higher  complexity  (depending on the  implementation). 

8.2 DATA SYMBOLS 

8.2.1 Run-Level  Coding 

The  output of the  quantiser  stage  in  a  DCT-based  video  encoder  is  a  block of quantised 
transform  coefficients.  The  array of coefficients  is  likely  to  be  sparse: if the  image  block  has 
been  efficiently  decorrelated by the DCT, most of the  quantised  coefficients in a typical 
block are zero.  Figure 8.1 shows  a  typical  block of quantised  coefficients  from  an MPEG-4 
‘intra’  block.  The  structure of the  quantised  block is fairly  typical. A few non-zero 
coefficients  remain  after  quantisation,  mainly  clustered  around  DCT  coefficient (0,O): this 
is  the  ‘DC’  coefficient  and  is  usually  the  most  important  coefficient  to  the  appearance of the 
reconstructed  image  block. 

The  block of coefficients  shown  in  Figure 8.1 may  be  efficiently  compressed  as  follows: 

1. Reordering. The  non-zero values  are  clustered  around  the  top  left of the  2-D  array  and 
this  stage  groups  these  non-zero  values  together. 

2. Run-level coding. This  stage  attempts  to find a more  efficient  representation  for  the  large 
number of zeros (48 in  this  case). 

3. Entropy coding. The  entropy  encoder  attempts  to  reduce  the  redundancy of the  data  symbols. 

Reordering 

The  optimum  method of  reordering  the  quantised  data  depends  on  the  distribution of the 
non-zero  coefficients. If the  original  image  (or  motion-compensated  residual)  data  is  evenly 

DC 

Figure 8.1 Block of quantised  coefficients 
(intra-coding) 
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distributed  in the  horizontal and  vertical  directions (i.e. there  is not a  predominance of 
‘strong’ image  features  in  either  direction),  then  the  significant  coefficients will also  tend  to 
be evenly  distributed  about  the  top  left of the array  (Figure  8.2(a)). In this  case,  a  zigzag 
reordering  pattern  such  as Figure 8.2 (c)  should  group  together  the  non-zero  coefficients 

Typical  coefficient map: frame  coding 

8000 - 
6000. 

4000. 

2000 - 
O L  0 

Typical  coefficient map: field  coding 

i P o  2 

2000 j 
O b  0 

2 2 

8 8  

(b) 

Figure 8.2 Typical  data  distributions  and  reordering  patterns:  (a)  even  distribution;  (b)  field 
distribution; (c) zigzag;  (d)  modified  zigzag 
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efficiently.  However, in some  cases an alternative  pattern  performs better. For  example,  a 
field of interlaced  video  tends  to  vary  more  rapidly in the vertical than  in the horizontal 
direction  (because  it  has  been  vertically  subsampled). In this case  the non-zero  coefficients 
are  likely to be  ‘skewed’ as  shown  in  Figure  8.2(b):  they  are  clustered  more  to  the  left of the 
array  (corresponding  to  basis  functions  with  a  strong  vertical  variation,  see  for  example 
Figure 7.4). A modified  reordering  pattern  such  as  Figure 8.2(d) should  perform  better  at 
grouping  the  coefficients  together. 

Run-level coding 

The  output of the  reordering  process  is  a  linear  array of quantised  coefficients.  Non-zero 
coefficients  are  mainly  grouped  together  near  the  start of the  array  and  the  remaining  values 
in  the array are  zero.  Long  sequences of identical  values  (zeros  in  this  case)  can be 
represented  as  a  (run,  level)  code,  where  (run)  indicates  the  number of zeros  preceding  a 
non-zero  value  and  (level)  indicates  the  sign  and  magnitude of the  non-zero  coefficient. 

The  following  example illustrates  the  reordering  and run-level coding  process. 

Example 

The  block of coefficients  in  Figure 8.1 is  reordered  with  the  zigzag scan shown in 
Figure  8.2  and  the  reordered  array  is run-level coded. 

Reordered  array: 
[102, -33, 21, -3,  -2, -3, -4, -3 ,0 ,2 ,  1,0, 1,0, -2, - 1, -1,0, 0,0, -2, 0,0, 0, 
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0  . . . l  

(0, 102) (0, -33) (0, 21) (0, -3) (0, -2) (0, -3) (0, -4) (0, -3) (1, 2) (0, 1 )  (1, 1 )  
(1, -2) (0, - 1) (0, -1) (4, -2) (11, 1) 

Run-level coded: 
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Two special  cases  need to be  considered.  Coefficient (0,  0) (the ‘DC’ coefficient)  is  impor- 
tant  to  the  appearance of the  reconstructed  image  block and has  no  preceding  zeros. In an 
intra-coded  block (i.e. coded  without  motion  compensation),  the  DC  coefficient  is  rarely 
zero  and so is  treated  differently  from  other  coefficients. In an  H.263  CODEC,  intra-DC 
coefficients  are  encoded  with  a fixed, relatively  low  quantiser  setting  (to  preserve  image 
quality)  and  without  (run,  level)  coding.  Baseline  JPEG  takes  advantage of the  property  that 
neighbouring  image  blocks  tend  to  have  similar  mean  values  (and  hence  similar DC 
coefficient  values)  and  each  DC  coefficient  is  encoded  differentially  from  the  previous 
DC  coefficient. 

The second  special  case  is  the final run of zeros  in  a  block.  Coefficient (7, 7) is usually 
zero  and so we need  a  special  case to  deal with  the final run of zeros  that  has no terminating 
non-zero  value.  In  H.26 1 and  baseline  JPEG,  a  special  code  symbol, ‘end  of block’ or  EOB, 
is  inserted  after  the  last  (run,  level) pair. This  approach  is  known  as  ‘two-dimensional’ run- 
level  coding  since  each  code  represents just two  values  (run  and  level). The  method  does not 
perform well under  high  compression:  in  this  case,  many  blocks  contain  only  a DC 
coefficient  and so the  EOB  codes  make  up  a  significant  proportion of the  coded  bit  stream. 
H.263  and  MPEG-4  avoid  this  problem by encoding  a flag along  with  each  (run,  level) pair. 
This ‘last’ flag signifies  the final (run,  level)  pair  in  the  block  and  indicates  to the  decoder 
that  the  rest of the  block  should  be filled with  zeros.  Each  code now represents  three 
values  (run,  level,  last)  and so this  method is known as ‘three-dimensional’ run-level-last 
coding. 

8.2.2 Other Symbols 

In addition  to run-level coded  coefficient  data,  a  number of other  values  need  to  be  coded 
and  transmitted  by  the  video  encoder. These include  the  following. 

Motion vectors 

The vector  displacement  between  the  current  and  reference  areas (e.g. macroblocks)  is 
encoded  along  with  each  data unit. Motion  vectors  for  neighbouring  data  units  are  often very 
similar,  and  this  property may be used  to  reduce  the  amount of information  required to  be 
encoded.  In an  H.261 CODEC,  for  example,  the  motion  vector  for  each  macroblock is 
predicted  from  the  preceding  macroblock. The difference  between  the  current  and  previous 
vector  is  encoded  and  transmitted  (instead of transmitting  the  vector  itself). A more 
sophisticated  prediction  is  formed  during  MPEG-4/H.263  coding:  the  vector  for  each 
macroblock  (or  block if the  optional  advanced  prediction  mode  is  enabled)  is  predicted 
from  up  to three  previously  transmitted  motion  vectors.  This  helps to  further  reduce  the 
transmitted  information. These  two  methods of predicting  the  current  motion  vector are 
shown  in  Figure 8.3. 

Example 

Motion  vector of current  macroblock: x = +3.5, y = +2.0 
Predicted  motion  vector  from  previous  macroblocks: x = f3.0, y = 0.0 
Differential  motion  vector: dx = +0.5, dy = -2.0 
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Current 
macroblock 

Current 
macroblock 

H.261: predict MV from previous H.263/MPEG4: predict MV from three previous 
macroblock vector MV1 macroblock vectors MV1,  MV2 and MV3 

Figure 8.3 Motion vector prediction (H.261, H.263) 

Quantisation  parameter 

In  order  to  maintain  a  target  bit  rate,  it  is  common  for a video  encoder  to  modify  the 
quantisation  parameter  (scale  factor  or  step  size)  during  encoding.  The  change  must be 
signalled  to  the  decoder. It is  not  usually  desirable  to  suddenly  change  the  quantisation 
parameter by a  large  amount  during  encoding of a  video  frame  and so the  parameter may be 
encoded  differentially  from  the  previous  quantisation  parameter. 

Flags  to  indicate  presence of coded  units 

It is  common  for  certain  components of a  macroblock  not  to  be  present.  For  example, 
efficient  motion  compensation  and/or  high  compression  leads  to  many  blocks  containing 
only  zero  coefficients  after  quantisation.  Similarly,  macroblocks  in  an  area  that  contains no 
motion  or homogeneous motion  will tend to  have  zero  motion  vectors  (after  differential 
prediction as described  above). In some  cases,  a  macroblock may contain no coefficient  data 
and a  zero  motion  vector,  i.e.  nothing  needs  to  be  transmitted.  Rather  than  encoding  and 
sending  zero  values,  it  can  be  more  efficient  to  encode  flag(s)  that  indicate  the  presence  or 
absence of these  data  units. 

Example 

Coded block  pattern  (CBP)  indicates  the  blocks  containing  non-zero  coefficients in an 
inter-coded  macroblock. 

INumber of non-zero  coefficients in each  block I I 
I I I 

YO CBP I Cb Cr Y3 Y2 Yl  

2 llO100  0  0 7 0 1 
I I I I I I 

0 011111 3 1 1 9 6 
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Synchronisation  markers 

A video  decoder  may  require  to  resynchronise  in  the  event of an  error  or  interruption  to  the 
stream of coded  data.  Synchronisation  markers  in  the  bit  stream  provide  a  means of doing 
this.  Typically,  the  differential  predictions  mentioned  above  (DC  coefficient,  motion  vectors 
and  quantisation  parameter)  are  reset  after  a  synchronisation  marker, so that  the  data  after  the 
marker  may  be  decoded  independently of previous  (perhaps  errored)  data.  Synchronisation  is 
supported  by  restart  markers  in  JPEG,  group of block  (GOB)  headers in baseline  H.263  and 
MPEG-4  (at fixed intervals  within  the  coded  picture)  and  slice  start  codes  in  the  MPEG-1, 
MPEG-2  and  annexes  to  H.263  and  MPEG-4  (at  user  definable  intervals). 

Higher-level  headers 

Information  that  applies  to  a  complete  frame  or  picture  is  encoded  in  a  header  (picture 
header).  Higher-level  information  about  a  sequence of frames  may  also  be  encoded  (for 
example,  sequence  and  group of pictures  headers in  MPEG-1  and  MPEG-2). 

8.3 HUFFMAN CODING 

A Huffman  entropy  encoder maps  each  input  symbol  into  a  variable  length  codeword  and 
this  type of coder  was first proposed  in  1952.’ The  constraints  on  the variable  length 
codeword  are  that it must (a)  contain  an  integral  number of bits  and  (b) be uniquely 
decodeable (i.e. the  decoder  must  be  able  to  identify  each  codeword  without  ambiguity). 

8.3.1 ‘True’  Huffman  Coding 

In order  to  achieve  the  maximum  compression of a  set of data  symbols  using  Huffman 
encoding,  it  is  necessary  to  calculate  the  probability of occurrence of each  symbol. A set of 
variable  length  codewords  is  then  constructed for this  data  set. This process  will  be 
illustrated by the  following  example. 

Example: H u f i a n  coding,  ‘Carphone’  motion  vectors 

A video  sequence,  ‘Carphone’,  was  encoded  with  MPEG-4  (short  header  mode).  Table 8.1 
lists  the  probabilities of the  most  commonly  occurring  motion  vectors  in  the  encoded 

Table 8.1 Probability of occurrence of motion vectors 
in  ‘Carphone’  sequence 

Vector  Probability P log2(l/P) 

- 1.5 
- 1  
- 0.5 

0 
0.5 
1 
1 .S 

0.014 
0.024 
0.117 
0.646 
0.101 
0.027 
0.0 16 

6.16 
5.38 
3.10 
0.63 
3.31 
5.21 
5.97 



170 

1 

0.9 

0.8 

0.7 

0.6 

._ - .- L. 

2 0.5 
a 2 

a 

0.4 

0.3 

0.2 

0.1 

ENTROPY CODING 

Probability distribution of motion vectors 

O L  
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MVX or MVY 

Figure 8.4 Distribution of motion  vector  values 

sequence  and  their information content, 10g2(1/P). To achieve  optimum  compression,  each 
value  should  be  represented  with  exactly  10g2(llP)  bits. 

The  vector  probabilities  are  shown  graphically in Figure 8.4 (the  solid  line). ‘0’ is  the  most 
common  value  and the  probability  drops  sharply  for  larger  motion  vectors.  (Note  that  there 
are  a  small  number of vectors  larger  than +/ - 1.5 and so the  probabilities in the  table  do not 
sum  to l.) 

1. Generating  the HufSman code  tree 

To generate  a  Huffman  code  table  for  this  set of data,  the  following  iterative  procedure  is 
carried  out  (we  will  ignore  any  vector  values  that  do  not  appear in Table 8.1): 

1. Order  the  list of data in increasing  order of probability. 

2. Combine  the  two  lowest-probability  data  items  into  a  ‘node’ and assign  the  joint 
probability of the  data  items  to  this  node. 

3. Reorder  the  remaining  data  items  and  node(s) in increasing  order of probability  and 
repeat  step 2. 



HLTFFMAN CODING 171 

U 

Figure 8.5 Generating the Huffman code  tree:  ‘Carphone’  motion  vectors 

The  procedure  is repeated  until  there is a  single  ‘root’  node  that  contains  all  other  nodes  and 
data  items  listed  ‘beneath’  it.  This  procedure  is  illustrated  in  Figure 8.5. 

0 Original list: The  data  items  are shown as  square  boxes. Vectors ( - 1 S )  and (1 S )  have 
the  lowest  probability  and  these  are  the first candidates  for  merging  to  form  node ‘A’. 

0 Stage 1: The newly  created  node ‘A’ (shown as a  circle)  has  a  probability of 0.03 (from 
the  combined  probabilities of ( -  1.5) and (1.5)) and  the  two  lowest-probability  items  are 
vectors ( -  l )  and (1). These will be  merged  to  form  node ‘B’. 

0 Stage 2:  A and B are  the  next  candidates  for  merging  (to  form  ‘C’). 

0 Stage 3: Node C and  vector (0.5) are  merged  to  form ‘D’. 

0 Stage 4: (-0.5) and D are merged  to form ‘E’. 

0 Stage 5: There  are  two  ‘top-level’  items  remaining:  node E and  the  highest-probability 
vector (0). These  are  merged  to  form ‘F’. 

0 Final  tree: The  data  items have  all  been  incorporated  into  a  binary  ‘tree’  containing  seven 
data  values and six  nodes.  Each  data  item  is  a  ‘leaf’ of the  tree. 

2. Encoding 

Each  ‘leaf’ of the  binary  tree  is  mapped to a  VLC.  To find this  code,  the  tree  is  ‘traversed’ 
from  the  root  node (F in  this  case)  to  the  leaf  (data  item).  For  every  branch,  a 0 or 1 is 
appended  to  the  code: 0 for  an  upper  branch, 1 for  a  lower  branch  (shown  in  the final tree of 
Figure 8.5). This  gives  the  following  set of codes  (Table 8.2). Encoding  is  achieved  by 
transmitting  the  appropriate code  for  each  data  item.  Note that  once  the  tree has been 
generated,  the  codes  may  be  stored  in  a  look-up  table. 
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Table 8.2 Huffman codes: ‘Carphone’  motion  vectors 

Vector  Code  Bits (actual) Bits (ideal) 

0 1 1 
- 0.5 00 2 

0.5 01 1 3 
- 1.5 0 1 000  5 

1 .S 01001 5 
-1  01010 5 

1 0101 l 5 

0.63 
3.1 
3.3 1 
6.16 
5.97 
5.38 
5.21 

Note  the  following  points: 

1.  High  probability data  items  are  assigned  short  codes (e.g. 1  bit  for  the  most  common 
vector ‘0’). However,  the  vectors ( - 1.5,  1.5, - 1 ,  1)  are  each assigned  5-bit  codes 
(despite  the  fact  that - 1 and - 1  have  higher  probabilities  than 1.5 and 1.5). The  lengths 
of the  Huffman  codes  (each  an  integral  number of bits) do not  match  the  ‘ideal’  lengths 
given  by log,( l/P). 

2. No  code  contains  any  other  code  as  a  prefix, i.e. reading  from  the  left-hand  bit,  each  code 
is  uniquely  decodable. 

For  example,  the  series of vectors  (1, 0, 0.5) would be transmitted as follows: 

3. Decoding 

In  order  to  decode  the  data,  the  decoder  must  have a local  copy of the  Huffman code  tree  (or 
look-up  table).  This  may  be  achieved  by  transmitting  the  look-up  table  itself, or sending  the 
list  of data  and  probabilities,  prior  to  sending the coded  data.  Each  uniquely  decodable  code 
may then be read and  converted  back  to  the  original  data.  Following  the  example  above: 

01011 is decoded as (1) 
1  is  decoded  as (0) 
01 1 is  decoded  as (0.5) 

Example: Hu@nan coding,  ‘Claire’  motion  vectors 

Repeating  the  process  described  above  for  the  video  sequence  ‘Claire’  gives  a  different 
result. This  sequence  contains less motion  than  ‘Carphone’  and so the  vectors  have  a 
different  distribution  (shown  in  Figure 8.4, dotted  line). A much  higher  proportion of vectors 
are  zero  (Table 8.3). 

The  corresponding  Huffman  tree  is given  in  Figure 8.6. Note  that  the  ‘shape’ of the  tree 
has  changed  (because of the  distribution of probabilities)  and  this  gives  a  different  set of 
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Table 8.3 Probability  of  occurrence  of  motion  vectors 
in ‘Claire’  sequence 

- 1.5  0.001  9.66 
- 1  0.003  8.38 
- 0.5 0.0 18  5.80 

0 0.953  0.07 
0.5  0.021  5.57 
1  0.003  8.38 
1.5 0.001 9.66 

Figure  8.6 Huffman  tree  for  ‘Claire’  motion  vectors 

Huffman  codes  (shown  in  Table 8.4). There  are  still  six  nodes  in  the  tree,  one  less  than  the 
number of data  items  (seven):  this  is  always  the  case  with  Huffman  coding. 

If the  probability  distributions  are  accurate,  Huffman  coding  provides a relatively  compact 
representation of the  original  data.  In  these  examples,  the  frequently  occurring (0) vector  is 
represented very efficiently as a single  bit.  However,  to  achieve  optimum  compression, a 

Table 8.4 Huffman  codes:  ‘Claire’  motion  vectors 

Vector  Code  Bits  (actual)  Bits  (ideal) 

0 1 1 0.07 
0.5 00 2 5.57 

- 0.5 01 1 3  5.8 
1  0100 4 8.38 

-1 0101 1 5  8.38 
- 1.5 010100 6  9.66 

1 .S  010101 6  9.66 
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separate  code  table  is  required  for  each of the  two  sequences  ‘Carphone’  and  ‘Claire’.  The 
loss of potential  compression  efficiency  due  to  the  requirement  for  integral  length  codes  is 
very  obvious  for  vector  ‘0’  in  the  ‘Claire’  sequence:  the  optimum  number of bits  (information 
content)  is  0.07  but  the  best  that  can  be  achieved  with  Huffman  coding  is  1  bit. 

8.3.2 Modified Huffman Coding 

The Huffman  coding  process  described  above  has two  disadvantages  for  a  practical  video 
CODEC. First,  the  decoder  must  use  the same  codeword  set  as  the  encoder.  This  means  that 
the  encoder  needs  to  transmit  the  information  contained  in  the  probability  table  before  the 
decoder  can  decode  the  bit  stream, an extra  overhead  that  reduces  compression  efficiency. 
Second,  calculating  the  probability  table  for  a  large  video  sequence  (prior  to  generating  the 
Huffman  tree)  is  a  significant  computational  overhead  and  cannot  be  done until after  the 
video  data is encoded.  For  these  reasons,  the  image  and  video  coding  standards  define  sets of 
codewords  based  on  the  probability  distributions of a  large  range of video  material.  Because 
the  tables  are  ‘generic’,  compression  efficiency is lower  than  that  obtained by pre-analysing 
the  data  to  be  encoded,  especially if the  sequence  statistics  differ  significantly  from  the 
‘generic’  probability  distributions. The  advantage of  not requiring  to  calculate  and  transmit 
individual  probability  tables  usually  outweighs  this  disadvantage.  (Note:  Annex  C of the 
original  JPEG  standard  supports  individually  calculated  Huffman  tables,  but  most  practical 
implementations  use  the  ‘typical’  Huffman  tables  provided in Annex K of the  standard.) 

8.3.3  Table Design 

The  following  two  examples of VLC  table  design  are  taken  from  the  H.263  and  MPEG-4 
standards.  These  tables  are  required  for  H.263  ‘baseline’  coding  and  MPEG-4  ‘short  video 
header’  coding. 

H.263/MPEG-4 transform coeficients (TCOEF) 

H.263  and  MPEG-4  use  ‘3-dimensional’  coding of quantised  coefficients,  where  each 
codeword  represents  a  combination of (run,  level,  last) as  described  in  Section  8.2.1. A 
total of 102  specific  combinations of (run,  level,  last)  have VLCs assigned to them.  Table 8.5 
shows  26 of these  codes. 

A further 76  VLCs  are defined, each  up  to  13 bits  long.  Note  that  the  last bit of each 
codeword  is  the  sign bit ‘S’, indicating  the  sign of the  decoded  coefficient  (O=positive, 
1 = negative).  Any  (run,  level,  last)  combination  that  is not listed in the  table  is  coded using 
an  escape  sequence, a  special  ESCAPE code  (000001 1 )  followed by a  13-bit fixed length 
code  describing  the  values of run,  level  and  last. 

The  codes shown  in  Table 8.5 are  represented in ‘tree’ form in  Figure 8.7. A codeword 
containing  a  run of more  than  eight  zeros  is  not  valid, so any  codeword  starting  with 
000000000. . . indicates  an  error  in  the bit stream  (or  possibly  a  start  code,  which  begins 
with  a  long  sequence of zeros,  occurring  at an unexpected  position in the  sequence). All 
other  sequences of bits  can be  decoded  as  valid  codes.  Note  that  the  smallest  codes  are 
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Table 8.5 H.263MPEG4  transform  coefficient  (TCOEF) 
VLCs (partial, all codes 9 bits) 

Last Run Level  Code 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

ESCAPE 

0 
1 
2 
0 
0 
3 
4 
5 
0 
l 
6 
7 
8 
9 
1 
2 
3 
4 
0 

10 
11 
12 
5 
6 
7 
8 

. . .  

1 
1 
1 
2 
1 
1 
l 
1 
3 
2 
1 
1 
1 
1 
1 
1 
1 
1 
4 
1 
1 
1 
1 
1 
1 
1 

10s 
110s 

1110s 
1111s 
0111s 

01  101s 
01 loos 
0101  1s 

010101s 
010100s 
01001  1s 
0l0010s 
010001s 
0 10000s 
001111s 
001110s 
001101s 
001 loos 

00101  11s 
0010110s 
0010101s 
00lOlO0s 
0010011s 
0010010s 
0010001s 
00 10000s 
000001  1s 

. . .  

allocated  to  short  runs  and  small  levels  (e.g.  code  ‘10’  represents a run of 0 and a level of 
+/- l), since  these  occur  most  frequently. 

H.263/MPEG-4  motion  vector  difference  (MVD) 

The  H.263MPEG-4  differentially  coded motion  vectors (MVD)  described in Section  8.2.2 
are  each  encoded  as  a  pair of VLCs,  one  for  the  x-component and one  for  the  y-component. 
Part of the  table of VLCs  is  shown in Table  8.6 and in ‘tree’  form in Figure  8.8. A further 
49  codes (8-13 bits  long)  are not shown here.  Note  that  the  shortest  codes  represent  small 
motion  vector  differences  (e.g. MVD = 0 is  represented by a  single bit code ‘l’). 

H.26L  universal  VLC (UVLC) 

The  emerging  H.26L  standard  takes  a  step  away  from  individually  calculated  Huffman  tables 
by using a ‘universal’  set of VLCs  for  any  coded  element.  Each  codeword  is  generated  from 
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000000000X (error) 

000001 1 (escape) 

1D 

... 19 codes 

0010000 (1,8,1) 

0010001 (1,7,1) 

0010010 (1,6,1) T D 001001 1 (1,5,1) 
0010100 (O,lZ,l) 

0010101 (0,l l . l)  
m 0010110(0,10,1) 

00101  11 (0,0.4) 

001100 (1,4,1) 

001101 (1,3,1) 
1 001110(1.2,1) 

001111 ( l , l , l )  

0 

Start ~ 

1 

0 

B 
1 

- ti- 010000 (0,9,1) 

010001 (0,8,1) 

010010 (0,7,1) 

010011 (0,6,1) 

010100 (0,1.2) 

010101 (0,0,3) 

0101 1  (0,5,1) 

if- 01 100 (0,4,1) 

01  101 (0,3.1) 

‘ . 1 : : : 9  
0111 (l,O,l) 

10 (O,O, 1 ) 

110 (O,l,l) 

Figure 8.7 H.263/MPEG-4  TCOEF  VLCs 
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Table 8.6 H.263/MPEG-4  motion  vector 
difference  (MVD)  VLCs 

MVD  Code 

0 
f0.5 
- 0.5 
+ l  
-1  
+ 1.5 
- 1.5 
+2 
-2 
+ 2.5 
- 2.5 
+3 
-3 
+ 3.5 
- 3.5 
. . .  

1 
010 
01 1 

0010 
001 1 

00010 
0001 1 

00001 10 
00001 1 1  

00001010 
00001011 
0000 1000 
0000 100 1 
00000 1 10 
000001 11 

. . .  

the following  systematic list: 

. . .  

where xk is  a  single bit. Hence there is  one l-bit codeword;  two  3-bit  codewords;  four  5-bit 
codewords;  eight  7-bit  codewords;  and so on. Table 8.7 shows the first 12 codes and  these  are 
represented in tree form in Figure 8.9. The highly  regular  structure of the  set of codewords 
can  be seen in this figure. 

Any data element to be  coded (transform  coefficients,  motion  vectors,  block  patterns,  etc.) 
is  assigned a code from  the  list of UVLCs. The  codes are  not  optimised for a specific data 
element (since  the same set of codes is used for  all  elements): however, the  uniform,  regular 
structure  considerably simplifies encoder and  decoder  design  since the same methods can be 
used to encode  or  decode  any  data  element. 

8.3.4 Entropy  Coding  Example 

This  example follows the process of encoding and decoding a block of quantised coefficients 
in an MPEG-4 inter-coded  picture.  Only six non-zero coefficients remain in the block: this 
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Table 8.7 H.26L universal VLCs 

Index x2 X1 X0 Codeword 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
. . .  . . .  . . .  

NIA 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
. . .  

1 
00 1 
01 1 

0000 1 
0001 1 
01001 
0101 1 

O O o o o O 1  
00000 1 1 
0001001 
000101 1 
0 10000 1 

. . .  

0 
Start ~ 

1 
i 

i 

... 39 codes 

... 10 codes 

A 

T ooooo11o (3.5) 
om001 1 1  (-3.5) 

a oooO1ooO  (3) 
oooo1001  (-3) 

- b 
1 

T oooO1010  (2.5) 
ooO01011 (-2.5) 

A ooo0110 (+2) 
m 1 1 1  (-2) 

ooO10  (+l  .5) 

o o O 1 1  (-1.5) 

010 (+0.5) 

011  (-0.5) 

Figure 8.8 H.263iMPEG-4 MVD  VLCs 
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... etc 

0000001 (7) 

... etc 

0000011 (8) 

... etc 

0001001 (9) 

... etc 

ooo1011  (10) 

0001 1 (4) - 001  (1) c ... etc 

01oooo1 (1 1) 

1 
... etc 

O l o o o l l  (12) 

01001 (5) 

... etc 

0101001 (13) 

... etc 

0101011 (14) 

0101 1 (6) - 011 (2) 

- 1 (0) 

Figure 8.9 H.26L universal VLCs 
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would  be  characteristic of either  a  highly  compressed  block  or  a  block  that  has  been 
efficiently  predicted by motion  estimation. 

Quantised  DCT  coefficients  (empty  cells  are ‘0’): 

Zigzag  reordered  coefficients: 

4 - 1 0  o . . .  1 0  0 0 0 - 1 0  0 0 0 2 - 3 0  

TCOEF  variable  length  codes:  (from Table 8.5: note  that  the  last  bit  is  the  sign) 
00101110;  101; 0101000; 0101011;  010111;  0011010 

Transmitted  bit  sequence: 
001011101010101000010l01l01011I00l10l0 

Decoding of this  sequence  proceeds  as  follows.  The  decoder  ‘steps’  through  the  TCOEF  tree 
(shown  in  Figure 8.7) until  it  reaches  the  ‘leaf’  00101 11. The next  bit (0) is decoded  as  the 
sign  and  the  (last,  run,  level)  group (0, 0, 4) is  obtained.  The  steps  taken by the  decoder  for 
this first coefficient  are  highlighted in Figure 8.10. The  process is repeated  with  the  ‘leaf’ 10 
followed by sign  (1)  and so on  until  a  ‘last’  coefficient  is  decoded. The  decoder  can now  fill 
the  coefficient  array  and  reverse  the  zigzag  scan  to  restore  the  array of 8 x 8 quantised 
coefficients. 

8.3.5 Variable  Length  Encoder  Design 

Sofiware design 

A general  approach  to  variable-length  encoding in software  is as follows: 
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0 

Start 

001OOOO  (1,8,1) 

0010001  (1,7,1) 
0010010(1,6,1) 

0010011  (1,5,1) 

0010100  (0,12,1) 

0010101  (O,ll,l) 

0010110  (O,lO,l) 
00101 11 (0,0,4) 

Figure  8.10 Decoding of codeword OOlOllls 

f o r  e a c h d a t a s y m b o l  
f i n d t h e c o r r e s p o n d i n g V L C v a l u e a n d l e n g t h  ( i n b i t s )  
p a c k t h i s V L C i n t o a n o u t p u t r e g i s t e r R  
i f  t h e   c o n t e n t s   o f   R e x c e e d L b y t e s  

w r i t e L   ( l e a s t   s i g n i f i c a n t )   b y t e s t o t h e o u t p u t s t r e a m  
s h i f t  R by L b y t e s  

Example 

Using the entropy  encoding  example  above, L = 1 byte, R is empty at  start of encoding: 
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The  following  packed  bytes  are  written to  the  output  stream:  00101110,  01000101, 
10101  101,00101 11 1.  At  the  end of the  above  sequence,  the  output  register R still contains 
6  bits  (001 101). If encoding  stops  here,  it  will be necessary  to  ‘flush’  the  contents of R to 
the  output  stream. 
The  MVD  codes  listed  in Table  8.6  can  be  stored in a simple  look-up  table.  Only 64 valid 

MVD  values  exist and  the  contents of the  look-up  table  are as follows: 

[ index 1 [vlc] [ length ] 

where [index] is  a  number in  the range 0 .  . .63 that is derived directly  from MVD,  [vlc]  is  the 
variable  length  code  ‘padded’ with zeros  and  represented with a fixed number of bits  (e.g. 16 
or 32 bits)  and  [length]  indicates  the  number of bits  present  in  the  variable  length  code. 

Converting  (last,  run,  level)  into  the  TCOEF  VLCs  listed in Table 8.5  is  slightly  more 
problematic.  The 102 predetermined  combinations of (last,  run,  level)  have  individual VLCs 
assigned  to  them  (these  are  the  most  commonly  occurring  combinations) and any  other 
combination  must  be  converted  to an Escape  sequence.  The  problem is that  there  are  many 
more  possible  combinations of (last,  run,  level)  than  there  are  individual  VLCs. ‘Run’ may 
take  any  value  between 0 and  62;  ‘Level’ any value  between 1 and  128; and ‘Last’  is 0 or 1. 
This  gives 16 002 possible  combinations of (last,  run,  level).  Three  possible  approaches  to 
finding  the  VLC are as follows: 

1.  Large  look-up  table  indexed by (last,  run,  level).  The  size of this  table may be reduced 
somewhat  because  only  levels  in the  range 1-12 and runs in the  range 0-40 have 
individual  VLCs.  The  look-up  procedure  is as follows: 

i f   ( \ l e v e l ]   < 1 3 a n d r u n <  3 9 )  
l o o k u p t a b l e b a s e d o n  ( l a s t ,  r u n ,   l e v e l )  
r e t u r n i n d i v i d u a l V L C o r   c a l c u l a t e E s c a p e   s e q u e n c e  

c a l c u l a t e   E s c a p e   s e q u e n c e  
e l s e  

The  look-up  table  has ( 2 x 4 0 ~  12) = 960 entries; 102 of these  contain  individual  VLCs 
and  the  remaining  858  contain a flag  indicating  that  an  Escape  sequence  is  required. 

2. Partitioned  look-up  tables  indexed by (last,  run,  level).  Based on the  values of last,  run and 
level,  choose a smaller  look-up  table  (e.g. a table  that  only  applies when last =O) .  This 
requires  one  or  more  comparisons  before  choosing  the table but allows  the  large  table  to be 
split  into a number of smaller  tables  with  fewer  entries  overall.  The  procedure  is as follows: 

i f  ( l a s t ,  r u n ,   l e v e l )  E { s e t  A} 
l o o k  up t a b l e  A 
r e t u r n V L C o r   c a l c u l a t e E s c a p e   s e q u e n c e  

l o o k  up t a b l e  B 
r e t u r n V L C o r   c a l c u l a t e E s c a p e s e q u e n c e  

e l s e  i f  ( l a s t ,  r u n ,   l e v e l )  E { s e t  B }  

e l s e  
.... 

c a l c u l a t e   E s c a p e   s e q u e n c e  
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For example,  earlier  versions of the H.263 ‘test  model’  software used this  approach  to 
reduce the number of entries in the partitioned  look-up  tables  to 200 (i.e. 102 valid VLCs 
and 98 ‘empty’  entries). 

3. Conditional  expression  for  every valid combination of (last, run,  level).  For  example: 

s w i t c h  ( l a s t ,  r u n ,   l e v e l )  
c a s e  {A} : v l c  = v A ,  l e n g t h  = 1 A  

c a s e  { B }  : v l c  = v B ,   l e n g t h  = lB 
. . . ( 100 mor e c a s e s )  . . . 
d e f a u l t  : c a l c u l a t e E s c a p e s e q u e n c e  

Comparing the three  methods,  method  1  lends itself to  compact code, is easy to modify (by 
changing  the  look-up  table  contents)  and  is  likely  to be computationally efficient; however, it 
requires  a  large  look-up  table,  most of which is  redundant.  Method 3, at  the  other  extreme, 
requires  the  most code and is the  most difficult to change  (since  each valid combination is 
‘hand-coded’)  but  requires  the  least  data  storage.  On some platforms  it may be the slowest 
method.  Method  2  offers  a  compromise  between the other  two  methods. 

Hardware  design 

A  hardware  architecture for variable  length  encoding  performs  similar  tasks to those 
described  above  and an example  is shown in Figure 8.1 1  (based on a  design  proposed by 
Lei  and Sun’). A  ‘look-up’ unit finds the length  and  value of the  appropriate  VLC  and  passes 
these  to  a  ‘pack’  unit. The pack  unit  collects  together  a fixed number of bits (e.g. 8, 16 or 
32 bits) and  shifts  these  out  to  a  stream buffer. Within the  ‘pack’  unit,  a  counter  records  the 
number of bits in the output register. When  this  counter overflows, a data word is  output  (as 
in the example above) and the remaining  upper  bits in the output  register are shifted down. 

The design of the  look-up unit is  critical to the size, efficiency and adaptability of the 
design.  Options  range  from  a ROM or  RAM-based  look-up  table  containing all valid codes 
plus  ‘dummy’  entries  indicating  that  an Escape sequence  is  required,  to  a ‘Hard-wired’ 
approach  (similar to the ‘switch’ statement  described  above) in which each valid combina- 
tion is  mapped to the  appropriate  VLC and length fields. This approach  is  sometimes 
described as a  ‘programmable  logic array’ (PLA)  look-up table. Another example of a 
hardware VLE is presented e l~ewhere .~  

byte or 
word  stream 

calculate VLC select  VLC  table  length 

Figure 8.11 Hardware VLE 
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8.3.6 Variable  Length  Decoder  Design 

Software design 

The  operation of a decoder  for  VLCs  can  be  summarised as follows: 

s c a n t h r o u g h b i t s   i n a n i n p u t   b u f f e r  
i f   a v a l i d V L C   ( l e n g t h L )  is  d e t e c t e d  

r e m o v e L b i t s f r o m b u f f e r  
r e t u r n c o r r e s p o n d i n g d a t a u n i t  

i f i n v a l i d V L C i s d e t e c t e d  
r e t u r n a n e r r o r   f l a g  

Perhaps  the  most  straightforward way of finding a valid  VLC  is  to  step  through  the  relevant 
Huffman  code  tree.  For  example, a H.263 / MPEG-4  TCOEF  code may be  decoded by 
stepping  through  the  tree  shown  in  Figure 8.7, starting  from  the  left: 

i f   ( f i r s t   b i t  = 1) 
i f   ( s e c o n d b i t  = 1) 

i f   ( t h i r d b i t  = 1) 
i f   ( f o u r t h b i t = l )  

e l s e  
r e t u r n  (0,0,2) 

r e t u r n  (0,2,1) 
e l s e  

r e t u r n  (O,l,l) 
e l s e  

r e t u r n  (0,0,1) 
e l s e  

_ _ _  decode a l l  V L C s  s t a r t i n g w i t h  0 

This  approach  requires a large  nested i f .  . . else  statement  (or  equivalent)  that  can  deal  with 
104  cases  (102  unique  TCOEF  VLCs,  one  escape  code,  plus  an  error  condition).  This 
method  leads  to a large  code  size, may be  slow  to  execute and is  difficult  to  modify  (because 
the  Huffman  tree  is  ‘hand-coded’  into  the  software); however,  no  extra  look-up  tables  are 
required. 

An alternative  is  to use one  or more  look-up  tables.  The  maximum  length of TCOEF VLC 
(excluding  the  sign  bit  and  escape  sequences) is 13  bits. We can  construct a look-up  table 
whose  index  is a 13-bit  number  (the  13 Isbs of the  input  stream).  Each  entry of the  table 
contains  either a (last,  run,  level)  triplet  or a flag  indicating  Escape  or  Error; 213 = 8192 
entries  are  required,  most of which  will  be  duplicates of other  entries.  For  example,  every 
code  beginning with ‘10. . .’ (starting with the Isb) decodes  to  the  triplet (0, 0, 1). 

An initial  test of the  range of the  13-bit  number  may be used  to  select  one of a number of 
smaller  look-up  tables.  For  example,  the  H.263  reference  model  decoder  described  earlier 
breaks  the  table  into  three  smaller  tables  containing  around  300  entries  (about  200 of which 
are  duplicate  entries). 
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one or 
input inputd Shift 1 Ezrrbi ts  4 Find VL  code 
bitstream  register 1:: data unit 

Figure 8.12 Hardware VLD 

The  choice of algorithm may depend on the capabilities of the  software  platform. If 
memory  is  plentiful  and array access  relatively  fast,  a  large  look-up  table may be the best 
approach for speed  and flexibility. If memory  is  limited  and/or array access is slow, better 
performance may be achieved  with  an ‘if. . . else’ approach  or  a  partitioned  look-up  table. 

Whichever  approach  is  chosen, VL decoding  requires  a significant amount of bit-level 
processing  and  for  many  processors  this  makes it a  computationally  expensive  function.  An 
interesting  development in recent  years  has  been the emergence of dedicated  hardware 
assistance for software  VL  decoding. The Philips  TriMedia and EquatodHitachi  MAP 
platforms,  for  example,  contain  dedicated variable length  decoder  (VLD)  co-processors that 
automatically  decode  VL  data in an input buffer, relieving  the  main  processor of the burden 
of variable  length  decoding. 

Hardware  design 

Hardware  designs for variable length  decoding  fall  into  two  categories:  (a)  those  that decode 
n bits from the input  stream every m cycles (e.g. decoding  1  or  2 bits per cycle)  and  (b)  those 
that decode n complete VL  codewords  every m cycles  (e.g.  decoding  1  codeword in one or 
two  cycles). The basic  architecture of a  decoder  is  shown in Figure 8.12 (the  dotted  line 
‘code  length L is  only  required for category (b) decoders). 

Category  (a), n bits per m cycles This  type of decoder  follows  through the Huffman 
decoding tree. The simplest  design  processes one level of the tree every cycle: this is 
analogous  to  the  large ‘if. . .else’ statement  described  above. The shift  register shown in 
Figure 8.12 shifts  1 bit per cycle to the ‘Find VL  code’ unit. This unit steps  through  the  tree 
(based  on the value of each  input bit) until a valid code (a  ‘leaf’)  is  found  and can be 
implemented with a finite state  machine  (FSM)  architecture. For example, Table 8.8 lists part 
of the  FSM  for  the TCOEF tree  shown in Figure 8.7. Each  state  corresponds to a  node of the 
Huffman  tree  and the nodes in the  table  are  labelled  (with  circles) in Figure 8.13 for 
convenience. 

There  are  102  nodes  (and  hence  102  states in the FSM) and 103 output values. To decode 
l 1  10, for  example, the decoder  traces the following  sequence: 

State 0 + State  2 + State 5 + State 6 + output (0, 2, 1) 

Hence  the  decoder  processes 1 bit per cycle (assuming  that  a  state  transition  occurs per clock 
cycle). 
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Table 8.8 Part of state table for TCOEF decoding 

State  Input  Next  state or output 

0 0 
1 

1 0 
1 

2 0 
1 

3 0 
1 

4 0 
1 

5 0 
1 

6 0 
1 

This  type of decoder  has  the  disadvantage  that  the  processing  rate  depends on the 
(variable)  rate of the  coded  stream. It is often  more  useful  to  be  capable of processing  one  or 
more  complete  VLCs  per  clock  cycle  (for  example,  to  guarantee  a  certain  codeword 
throughput),  and  this  leads  to  the  second  category of decoder  design. 

Category (b), n codewords  per m cycles This  is  analogous  to  the  ‘large  look-up  table’ 
approach  in  a  software  decoder. K bits  (stored in the  input  shift  register)  are  examined  per 
cycle,  where K is  the  largest  possible  VLC  size  (13,  excluding  the  sign  bit, in the  example of 
H.263MPEG-4  TCOEF).  The ‘Find  VL  code’  unit in Figure  8.12  checks  all  combinations of 
K bits  and  finds  a  matching  valid  code,  Escape  code  or  flags  an  error.  The  length of the 
matching  code (L bits)  is  fed  back  and  the  shift  register  shifts  the  input  data by L bits  (i.e. 
L bits  are  removed  from  the  input  buffer).  Hence  a  complete  L-bit  codeword  can be 
processed in one  cycle. 

The  shift  register  can  be  implemented using a barrel  shifter  (a  shift-register  circuit  that 
shifts  its  contents by L places  in  one  cycle).  The  ‘Find  VL  code’ unit may be implemented 
using  logic (a PLA).  The  logic  array  should  minimise  effectively  since most of the  possible 
input  combinations  are  ‘don’t  cares’. In the  TCOEF  example, all 13-bit  input  words 
‘IOXXXXXXXXXXX’  map  to  the  output (0, 0, l). It is  also  possible  to  implement  this 
unit as a ROM  or RAM  look-up  table with 213 entries. 

A decoder  that  decodes  one  codeword  per  cycle  is  described by Lei  and  Sun2 and Chang 
and Me~serschmitt~ examine  the  principles of concurrent  VLC  decoding.  Further  examples 
of VL  decoders  can  be  found  elsewhere.526 

8.3.7 Dealing with Errors 

An error  during  transmission may cause  the  decoder  to  lose  synchronisation  with  the 
sequence of VLCs  and  this  in  turn  can  cause  incorrect  decoding of subsequent  VLCs.  These 
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Figure 8.13 Part of TCOEF tree showing state labels 

decoding  errors may continue  to  occur  (propagate)  until  a  resynchronisation  point  occurs in 
the  bit  stream. The  synchronisation  markers  described in Section  8.2.2  limit  the  propagation 
of errors at the  decoder.  Increasing  the  frequency of synchronisation  markers  in  the  bit 
stream  can  reduce  the  effect of an  error  on  the  decoded  image:  however,  markers  are 
‘redundant’  overhead and so this  also  reduces  compression  efficiency.  Transmission  errors 
and  their  effect on coded  video  are  discussed  further in Chapter 11. 

Error-resilient  alternatives  to  modified  Huffman  codes  have  been  proposed.  For  example, 
MPEG-4 (video)  includes  an  option  to use reversible  variable  length  codes (RVLCs), a  class 
of codewords  that may be successfully  decoded in either  a  forward  or  backward  direction 
from a  resynchronisation  point.  When an error  occurs,  it  is  usually  detectable by the  decoder 
(since  a  serious  decoder  error  is  likely  to  violate  the  encoding  syntax).  The  decoder  can 
decode  the  current  section of data in both  directions,  forward  from  the  previous  synchro- 
nisation  point  and  backward  from  the  next  synchronisation  point.  Figure  8.14  shows  an 
example.  Region  (a) is decoded and then an error is identified.  The  decoder  ‘skips’  to  the 
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Figure 8.14 Decoding  with  RVLCs  when an error is detected 

next  resynchronisation point and  decodes  backwards from there  to  recover  region  (b). 
Without  RVLCs,  all of region (b) would be lost. 

An  interesting  recent  development  is  the  use of 'soft-decision'  decoding of VLCs, utilising 
information  available from the  communications  receiver  about the probability of error in 
each  codeword to improve  decoding performance in the presence of channel n ~ i s e . ~ - ~  

8.4 ARITHMETIC CODING 

Entropy coding  schemes based  on  codewords  that  are an integral number of bits  long  (such 
as  Huffman coding  or  UVLCs)  cannot achieve  optimal  compression of every  set of data. 
This is because the  theoretical optimum number of bits  to  represent  a  data  symbol  is usually 
a fraction  (rather  than  an  integer). This optimum number of bits  is  the  'information  content' 
logz( UP),  where P is  the  probability of occurrence of each data symbol. In Table 8.1, for 
example,  the motion  vector '0.5' should be represented  with 3.31 bits for  maximum 
compression.  Huffman coding produces  a  5-bit  codeword  for this motion  vector and so 
the compressed bit stream  is  likely to  be larger than the  theoretical  maximally  compressed 
bit stream. 

Arithmetic coding  provides  a  practical  alternative  to  Huffman coding and can more 
closely  approach  the  theoretical  maximum  compression.'' An arithmetic encoder converts a 
sequence of data symbols  into a single  fractional  number. The  longer the  sequence of 
symbols, the  greater  the  precision  required  to  represent  the  fractional  number. 

Example 

Table 8.9 lists five motion  vector  values ( - 2 ,  - 1, 0, 1, 2 ) .  The probability of occurrence of 
each vector  is  listed in the second  column.  Each vector is assigned  a subrange within the 

Table 8.9 Subranges 

Vector  Probability Iogd 1 / P )  Subrange 

- 2  0.1 3.32 0-0.1 
- 1  0.2 2.32 0.1-0.3 

0 0.4 1.32  0.3-0.7 
1 0.2 2.32  0.7-0.9 
2 0.1 3.32  0.9-1 .O 



ARITHMETIC CODING 189 

range 0.0-1.0, depending on its  probability of occurrence. In this example, ( -  2) has  a 
probability of 0.1 and  is given the subrange 0-0.1 (i.e. the first 10% of the total range 0-1 .O). 
( -  1) has  a  probability of 0.2 and is given the  next 20% of the total range, i.e. the subrange 
0.14.3. After  assigning  a  subrange  to  each vector, the  total  range 0-1.0 has been ‘divided’ 
amongst the data  symbols  (the  vectors)  according  to  their  probabilities. The subranges  are 
illustrated in Figure 8.15. 

The encoding  procedure  is  presented below, alongside  a  worked  example  for  the  sequence 
of vectors: (0, - l ,  0, 2) .  

Encoding  procedure 

Range  Subrange 
Encoding  procedure (L + H) Symbol (L + H) Notes 

1. Set  the  initial  range 
2. For the  first  data 

symbol,  find  the 
corresponding  subrange 
(low  to  high). 

3.  Set  the  new  range (1) 
to  this  subrange 

4. For the  next  data  symbol, 
find  the  subrange L to H 

5. Set  the  new  range  (2) to 
this  subrange  within  the 
previous  range 

6. Find  the  next  subrange 
7. Set  the  new  range (3) 

8. Find  the  next  subrange 
9.  Set  the new  range  (4) 

within  the  previous  range 

within  the  previous  range 

0 + 1.0 
(0) 0.3 + 0.7 

0.3 + 0.7 

( -  1)  0.1 + 0.3 

0.34 + 0.42 

(0) 0.3 + 0.7 
0.364 + 0.396 

(2)  0.9 + 1.0 
0.3928 + 0.396 

This  is  the  subrange 
within  the  interval 0-1 
0.34  is 10% of the  range; 
0.42 is 30% of the  range 

0.364  is  30% of the  range; 
0.396  is  70% of the  range 

0.3928  is  90% of the  range; 
0.396  is  100% of the  range 

Each time  a  symbol  is  encoded,  the  range (L to H) becomes  progressively  smaller. At the  end 
of the encoding  process  (four  steps in this example),  we  are  left with a final range (L to H). 
The entire  sequence of data  symbols  can be fully  represented by transmitting  a  fractional 
number  that  lies  within  this final range. In the example above,  we  could  send any number in 

Total  range 

t 
0 0.1  0.3  0.7  7.9 1 
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the  range  0.3928-0.396: for  example,  0.394.  Figure  8.16  shows  how  the  initial  range (0-1) is 
progressively  partitioned  into  smaller  ranges as each  data  symbol  is  processed.  After 
encoding  the first symbol  (vector 0), the new range is (0.3, 0.7). The next symbol  (vector  -1) 
selects  the  subrange  (0.34,  0.42)  which  becomes  the  new  range,  and so on.  The final symbol 
(vector +2) selects  the  subrange  (0.3928,  0.396)  and  the  number  0.394 (falling within  this 
range)  is  transmitted.  0.394  can  be  represented as a fixed-point  fractional  number  using  9 
bits, i.e. our  data  sequence (0, - l ,  0, 2) is  compressed to a 9-bit  quantity. 

Decoding procedure 

The  sequence of subranges  (and  hence  the  sequence of data  symbols)  can  be  decoded  from 
this  number as follows. 

0.34 4 0.42 

Decoding  procedure Range  Subrange  Decoded  symbol 

1 .  Set  the  initial  range 0 + 1  
2.  Find  the  subrange  in  which  the 0.3 ---t 0.7 (0) 

received  number  falls.  This  indicates 
the  first  data  symbol 

3.  Set  the  new  range (1) to this  subrange  0.3 4 0.7 
4. Find  the  subrange of the new 

range in  which  the  received 
number  falls.  This  indicates 
the  second  data symbol 

5.  Set  the  new  range ( 2 )  to this 
subrange  within  the  previous  range 

6.  Find  the  subrange  in  which  the 
received  number  falls  and  decode 
the  third  data  symbol 

within  the  previous  range 

received  number  falls  and  decode 
the  fourth  data  symbol 

7. Set the  new  range  (3) to this  subrange  0.364 ---f 0.396 

8. Find  the  subrange  in  which  the  0.3928 4 0.396 ( 2 )  

0.34 -+ 0.42 

0.364 4 0.396 

The  principal  advantage of arithmetic  coding  is  that  the  transmitted  number  (0.394 in this 
case,  which  can  be  represented as a fixed-point  number  with sufficient accuracy  using  9  bits) 
is  not  constrained to an  integral  number of bits for  each  transmitted  data  symbol. To achieve 
optimal  compression,  the  sequence of data  symbols  should  be  represented  with: 

In  this  example,  arithmetic  coding  achieves  9 bits which is close  to  optimum. A scheme 
using an integral  number of bits  for  each  data  symbol  (such as Huffman  coding)  would  not 
come so close to the  optimum  number of bits and in general,  arithmetic  coding  can 
outperform  Huffman  coding. 
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0 0.1 0.9 1 

0.3 0.34 0.42 4 1, 

(2) 

Figure  8.16 Arithmetic  coding  example 

8.4.1 Implementation Issues 

A number of practical issues need to be taken  into  account when implementing  arithmetic 
coding in software  or  hardware. 

Probability  distributions 

As with Huffman  coding,  it  is not always  practical  to  calculate  symbol  probabilities  prior to 
coding.  In  several  video  coding  standards (e.g. H.263, MPEG-4, H.26L),  arithmetic  coding  is 
provided as an  optional  alternative  to  Huffman  coding  and  pre-calculated  subranges 
are defined by the  standard  (based  on  ‘typical’  probability  distributions).  This has the 
advantage of avoiding the need to  calculate  and  transmit  probability  distributions,  but  the 
disadvantage that compression will be suboptimal  for  a  video  sequence  that  does not exactly 
follow  the  standard  probability  distributions. 

Termination 

In our  example,  we  stopped  decoding  after  four  steps. However, there  is  nothing  contained in 
the transmitted  number (0.394) to  indicate the number of symbols  that  must be decoded: it 
could  equally be decoded  as  three  symbols or five. The decoder  must  determine when to stop 
decoding by some other means. In the  arithmetic  coding  option specified in H.263, for 
example, the decoder can determine  the  number of symbols  to  decode  according  to  the 
syntax of the coded  data.  Decoding of transform coefficients in a block  halts when an end-of- 
block code is  detected.  Fixed-length codes (such as picture  start  code)  are  included in the bit 
stream  and these will  ‘force’  the  decoder to stop  decoding  (for  example, if a transmission 
error has occurred). 
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Fixed-point  arithmetic 

Floating-point  binary  arithmetic  is  generally  less  efficient  than  fixed-point  arithmetic  and 
some  processors do not  support  floating-point  arithmetic  at  all. An efficient  implementation 
with  fixed-point  arithmetic  can be achieved by specifying  the  subranges  as  fixed-precision 
binary  numbers.  For  example,  in  H.263,  each  subrange  is  specified  as an unsigned  14-bit 
integer  (i.e.  a  total  range of 0-16383). The  subranges  for  the differential  quantisation 
parameter DQUANT are  listed  as  an  example: 

H.263 DQUANT value Subrange 

2 0-4094 
1 4095-8  19 1 

- 1  8192-12286 
-2 12287-16383 

Incremental  encoding 

As  more  data  symbols  are  encoded, the  precision of the  fractional  number  required  to 
represent  the  sequence  increases.  It  is  possible  for  the  number  to  exceed  the  precision of the 
processor  after  a  relatively  small  number of data  symbols  and  a  practical  arithmetic  encoder 
must  take  steps to ensure  that  this  does not occur. This  can be  achieved by incrementally 
encoding  bits  of  the  fractional  number  as  they  are  identified  by  the  encoder. In our  example 
above,  after  step  3,  the  range  is 0.364-0.396.  We know  that  the final fractional  number will 
begin  with ‘0.3.. . ’ and so we can send  the  most  significant  part (e.g. 0.3,  or its  binary 
equivalent)  without  prejudicing  the  remaining  calculations. At the  same  time,  the  limits of 
the  range  are  left-shifted  to  extend  the  range. In this way, the  encoder  incrementally  sends 
the  most  significant  bits of the  fractional  number  whilst  continually  readjusting  the 
boundaries of the  range  to  avoid  arithmetic overflow. 

Patent  issues 

A number of patents  have  been filed that  cover  aspects of arithmetic  encoding  (such  as 
IBM’s  ‘Q-coder’  arithmetic  coding algorithm”). It is not entirely  clear  whether  the 
arithmetic  coding  algorithms  specified in the  image  and  video  coding standards  are  covered 
by patents. Some  developers of commercial  video  coding  systems  have  avoided  the use  of 
arithmetic  coding  because of concerns  about  potential  patent  infringements,  despite  its 
potential  compression  advantages. 

8.5 SUMMARY 

An entropy  coder  maps  a  sequence of data  elements  to  a  compressed  bit  stream,  removing 
statistical  redundancy  in  the  process. In a  block  transform-based  video CODEC, the  main 
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data  elements are  transform coefficients (run-level coded to efficiently represent  sequences 
of zero coefficients), motion vectors (which may be differentially  coded)  and  header 
information.  Optimum  compression  requires the probability  distributions of the data  to be 
analysed  prior to  coding;  for practical reasons,  video  CODECs use standard  pre-calculated 
look-up  tables  for  entropy  coding. 

The two most popular  entropy  coding  methods  for video CODECs  are ‘modified’ 
Huffman coding (in which  each  element  is  mapped  to  a  separate VLC) and arithmetic 
coding  (in which a series of elements are  coded to form  a  fractional  number). Huffman 
encoding may be carried using a series of table  look-up  operations; a Huffman  decoder 
identifies each VLC and this is possible  because the codes are  designed such that no code 
forms  the prefix of any other. Arithmetic  coding is carried  out by generating and encoding a 
fractional number to  represent  a  series of data  elements. 

This concludes the discussion of the main internal  functions of a  video  CODEC (motion 
estimation and compensation, transform coding and entropy  coding). The performance of a 
CODEC in a  practical  video  communication  system  can often be dramatically improved by 
filtering the source  video (‘pre-filtering’) and/or the decoded  video  frames  (‘post-filtering’). 
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Pre-  and  Post-processing 

9.1 INTRODUCTION 

The visual quality at the output of a video coding system depends  on  the performance of the 
‘core’  coding  algorithms  described  in  Chapters 6 8 ,  but  can  also  be  significantly  influenced by pre- 
and post-processing (dealt with in  this chapter) and bit-rate control (covered  in Chapter IO). 

In a practical video application, the source image is often far from perfect. Imperfections 
such as  camera noise (introduced during image capture), poor lighting and camera shake 
may all affect the original images. Figure 9.1 shows a typical  example  of  an  image captured 
by a low-cost ‘webcam’. Imperfections such as  camera noise can produce variation and high- 
frequency activity in otherwise static parts of the video scene. These variations are likely to 
produce an increased number  of transform coefficients  and can significantly increase the 
amount of transmitted data  (hence reducing compression performance). The  aim of pre- 
$filtering is to reduce these input impairments and  improve compression efficiency  whilst 
retaining the important features of the original image. 

Quantisation leads to discontinuities and distortions in the transform coefficients  that  in 
turn produce artefacts (distortion patterns) in the decoded video images. In general, higher 
compression ratios require ‘coarser’ quantisation and introduce more obvious distortion. 
These artefacts are closely related to the block-based structure of  transform coding and  it is 
possible to detect and  compensate  using post-filtering. A significant improvement  in 
subjective quality can be achieved by  using  filters designed to remove coding artefacts, in 
particular blocking and ringing. The aim of post-filtering  is to reduce coding artefacts whilst 
retaining visually important image features. 

Figure 9.2 shows the locations of pre- and  post-filters  in a video CODEC. In this chapter 
we investigate the causes of input variations and decoder artefacts and  we examine a number 
of  methods for improving subjective quality and compression efficiency  through  the  use  of 
filters. 

9.2 PRE-FILTERING 

DCT-based compression algorithms can perform well for smooth, noise-free regions 
of images. A region  with  flat texture or a gradual variation  in texture (like the face area 
of the image  in Figure 9.3) produces a very small number of significant DCT coefficients  and 
hence is  compressed  efficiently.  However, to generate a ‘clean’ video image like Figure 9.3 
requires good lighting, an expensive camera and a high-quality video capture system. For 
most applications, these requirements are impractical. A typical desktop video-conferencing 
scenario might involve a low-cost camera 011 top of the user’s monitor, poor lighting and a 
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Figure 9.1 Typical image from a low-cost ‘webcam’ 

‘busy’ background, and all of these  factors can be  detrimental  to the quality of the final 
image. A typical  source  image  for this type of application is shown in Figure 9.1.  Further 
difficulties can  be caused for motion video compression:  for  example, a hand-held camera  or 
a motorised surveillance  camera are susceptible  to  camera shake which can significantly 
reduce  the efficiency of motion estimation and compensation. 

9.2.1 Camera Noise 

Low-level noise with a uniform distribution is added to Figure  9.3 to produce Figure  9.4. The 
image now contains high-frequency variation which is not obvious but which  will affect 
compression  performance.  After  applying a DCT, this variation produces a number of high- 
frequency ‘AC’ coefficients, some of which remain after quantisation. This means that more 
bits will remain after  compressing  Figure  9.4 than after  compressing  the ‘clean’ image 
(Figure 9.3). After JPEG compression (with the same quantiser  scale),  Figure  9.3  com- 
presses to 321 1 bytes and Figure  9.4  compresses  to  4063  bytes.  The noise added to  Figure 
9.4 has decreased  compression efficiency by over 25% in this example.  This is typical of the 
effect produced by camera  noise (i.e. noise introduced by the  camera  and/or analogue to 

Transmit 

Camera 

Figure  9.2 Re- and post-filters in a video CODEC 
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I Figure 9.3 Noise-free  source  image 

digital conversion). All cameraskapture  systems  introduce  noise, but it  is more of a problem 
for lower-cost cameras (such as ‘webcams’). 

Re-filtering  the  image data before  encoding can improve compression efficiency. The aim 
of a pre-filter is  to  increase  compression  performance without adversely affecting  image 
quality,  and a simple  filter  example is illustrated  by  Figure 9.5. The ‘noisy’  image  (Figure 9.4) 
is filtered with a Gaussian 2-D spatial filter to produce Figure 9.5. This  simple low-pass filter 
successfully reduces  the noise. After P E G  compression,  Figure 9.5 requires 3559 bytes (i.e. 
the compression efficiency is only 10% worse than the  noise-free  image). However, this 
compression  gain  is  at the expense of a loss of image  quality:  the filter has ‘blurred’ some of 
the sharp  lines in the  image  because  it  does not discriminate between high-frequency noise 
and ‘genuine’ high-frequency components of the image. With a more sophisticated pre-filter 
it  is  possible  to minimise the noise whilst retaining important image features. 

I Figure 9.4 Image with noise 
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Figure 9.5 ‘Noisy’ image after Gaussian filtering 

9.2.2 Camera  Movement 

Unwanted camera movements (camera ‘shake’ or  ‘jitter’)  are  another  cause of poor 
compression efficiency. Block-based motion estimation performs best when the camera  is 
fixed in one position or when it undergoes smooth linear movement (pan or  tilt). In the case 
of a hand-held camera, or a motorised padtilt operation  (e.g.  as a surveillance  camera 
‘sweeps’ over a scene), the image  tends  to  experience random ‘jitter’ between successive 
frames. If the motion search  algorithm does not detect this jitter correctly, the  result is a large 
residual  frame  after motion compensation. This in turn  leads to a larger number of bits in 
the  coded  bit  stream and hence  poorer compression efficiency. 

Example 

Two versions of a short 10-frame video sequence (the first frame  is shown in  Figure 9.6) 
are  encoded with MPEG-4 (simple profile, with half-pixel  motion  estimation and 
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compensation). Version l (the original sequence) has a fixed camera position. Version 2 is 
identical  except  that 2 of the 10 frames  are  shifted  horizontally or vertically  by  up to 2 pixels (to 
simulate camera shake). The sequences are coded  with H.263, using a fixed quantiser step 
size (10) in each case. For Version l (the original), the encoded sequence is 18 703 bits. 
For Version 2 (with ‘shaking’ of two frames), the encoded sequence is 29 080 bits: the 
compression efficiency drops by  over 50% due to a small displacement within 2 of the 
10 frames. This  example shows that camera shake can  be very detrimental to video 
compression performance (despite the fact that the encoder attempts to compensate for the 
motion). 
The compression efficiency  may be increased (and the subjective appearance of the video 

sequence improved) with automatic camera stabilisation. Mechanical stabilisation is used 
in  some hand-held cameras, but  this adds weight and bulk to the system. ‘Electronic’ image 
stabilisation can be achieved without extra hardware (at the expense of extra processing). For 
example, one  method’ attempts to stabilise the video frames prior to encoding. In this 
approach, a matching algorithm is  used to detect global motion  (i.e.  common motion of all 
background areas, usually due to camera movement). The matching algorithm examines 
areas near the boundary of each image  (not  the centre of the image-since the centre usually 
contains foreground objects). If global motion is detected, the image is shifted to compensate 
for small, short-term movements due to camera shake. 

9.3 POST-FILTERING 

9.3.1  Image Distortion 

Lossy image or video compression algorithms (e.g.  JPEG, MPEG and H.26~)  introduce 
distortion into video information. Higher compression ratios produce more distortion in  the 
decoded video frames. The nature and appearance of the distortion depend  on the type of 
compression algorithm. In a DCT-based CODEC, coding distortion is due to quantisation of 
DCT  coefficients. This has  two  main effects on  the  DCT  coefficients: those with smaller 
magnitudes (particularly higher-frequency AC coefficients) are set to zero, and the remain- 
ing coefficients (including the low-frequency and  DC  coefficients) lose precision due to 
quantisation. These effects lead to characteristic types of distortion in  the  decoded image. 
Figure 9.7 shows the result of encoding Figure 9.3 with baseline JPEG, at a compression 
ratio of 1 8 . 5 ~  (i.e. the compressed  image  is 18.5 times smaller than  the original). Figure 9.8 
highlights three types of distortion in a close-up of this image, typical of  any  image or video 
sequence compressed  using a DCT-based algorithm. 

Blocking 

Often, the most obvious distortion or artefact is the appearance of regular square blocks 
superimposed on the image. These blocking artefacts are a characteristic of block-based 
transform CODECs,  and their edges are aligned with the 8 x 8 regions processed via the 
DCT. There are two causes of blocking artefacts: over-quantisation of the DC coefficient  and 
suppression or over-quantisation of  low frequency AC coefficients. The  DC coefficient 
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I Figure 9.7 Image compressed 18x (JPEG) 

corresponds  to  the  average (mean) value of each 8 x 8 block. In areas of smooth shading 
(such as  the  face  area in Figure  9.7), over-quantisation of the DC coefficient means that there 
is a large  change  in  level between neighbouring blocks. When two blocks with similar 
shades are quantized to  different  levels,  the reconstructed blocks can have a larger ‘jump’ in 
level and hence a visible  change of shade. This  is most obvious  at the block boundary, 
appearing  as a tiling  effect on smooth areas of the image. A second cause of blocking  is 
over-quantisation or  elimination of significant AC coefficients. Where  there should be a 
smooth transition  between  blocks, a ‘coarse’ reconstruction of low-frequency basis patterns 
(see Chapter 7) leads  to  discontinuities between block edges.  Figure  9.9  illustrates  these two 
blocking effects in one dimension. Image  sample  amplitudes  for a flat region are shown on 
the left and for a smoothly varying region  on  the right. 

Ringing 

High quantisation  can have a low-pass filtering effect, since higher-frequency AC coeffi- 
cients tend to  be removed during quantisation. Where there are strong edges  in  the  original 
image, this low-pass effect can cause ‘ringing’ or ‘ripples’ near  the  edges.  This  is  analogous 
to  the  effect of applying a low-pass filter to a signal with a sharp change in amplitude: low- 
frequency ringing  components  appear  near  the  change position. This effect appears in 
Figure 9.8  as ripples near the edge of the hat. 

Basis pattern breakthrough 

Coarse  quantisation of  AC coefficients can eliminate many of the original coefficients, 
leaving a few ‘strong’ AC coefficients in a block. After the inverse DCT, the basis pattern 
corresponding to a strong AC coefficient can  appear in the reconstructed  image block (‘basis 
pattern breakthrough’). An example  is highlighted in  Figure  9.8: the block in question 
appears to be overlaid  with  one of the DCT basis  patterns. Basis pattern breakthrough also 
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Figure 9.8 Close-up showing typical  artefacts 

contributes to  the  blocking  effect (in this case,  there  is a sharp  change between the strong 
basis pattern and the neighbouring blocks). 

These three distortion  effects degrade the appearance of decoded images or  video frames. 
Blocking is particularly obvious because the large 8 x 8 patterns  are  clearly  visible in highly 
compressed frames. The  artefacts can also affect the  performance of motion-compensated 
video coding. A video  encoder that uses motion-compensated prediction forms a recon- 
structed (decoded) version of the  current  frame  as a prediction  reference  for  further encoded 
frames: this ensures that the  encoder and decoder use identical  reference  frames and prevents 
'drift'  at the decoder. However, if a high  quantiser  scale  is used, the  reference  frame at the 
encoder will contain  distortion  artefacts that were not present in the original frame. When 
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(a) DC coefficient  quantisation (b) AC coefficient  quantisation 
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Figure 9.9 Blocking effects (shown in one dimension) 

the reference frame (containing distortion) is subtracted from the next input frame (without 
distortion), these artefacts will  tend to increase the energy in the motion-compensated 
residual frame, leading to a reduction in compression efficiency. This effect can produce a 
significant residual component even when there is  no change between successive frames. 
Figure 9.10 illustrates this effect. The distorted reference frame (a) is subtracted from  the 
current frame (b). There is no  change in the image content but the difference frame (c) 
clearly contains residual energy (the ‘speckled’ effect). This residual energy will  be  encoded 
and transmitted, even though there is no  real change in the image. 

It is possible to design post-filters to reduce the effect of these predictable artefacts. 
The goal is to reduce the ‘strength’ of a particular type of artefact without adversely 
affecting the important features of  the  image (such as edges). Filters can be classified 
according to the  type of artefact they are addressing (usually blocking or ringing), their 
computational complexity and whether they are applied inside or outside the coding ‘loop’. 
A filter applied after decoding (outside the loop) can be made independent of  the CODEC: 
however, good performance can be achieved by  making  use  of parameters from the video 
decoder. A filter applied to the reconstructed frame within the encoder (inside the loop) has 
the advantage of improving compression efficiency (as described above) but must also be 
applied within the decoder. The use of in-loop filters is limited to non-standard CODECs 
except in the case of loop filters  defined  in the coding standards. Post-filters can be 
categorised as follows, depending on their position in the coding chain. 

( a )  In-loop filters 

The filter is applied to the reconstructed frame both  in the encoder and  in  the  decoder. 
Applying the filter within the  encoder  loop  can improve  the quality of the reconstructed 



(c) (c)  difference  frame 
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Decoding  parameters 

Video  decoder Post-filter Filtered 
frame 

Figure 9.12 Decoder-dependent filter 

reference  frame, which in turn improves the accuracy of motion-compensated prediction  for 
the next encoded  frame  since the quality of the prediction reference  is improved. Figure 9.11 
shows the position of the filter within the encoder and decoder, immediately prior to motion 
estimation  or  reconstruction. Placing the filter within the coding loop  has two advantages: 
first, the decoder  reference  frame  is  identical  to the encoder  reference  frame (avoiding 
prediction ‘drift’ between encoder and decoder) and second, the quality of the decoded 
frame  is improved. The disadvantage of this approach  is that the  encoder and decoder must 
use an identical filter and this limits  interoperability between CODECs (unless standardised 
filters are used, such as H.263 Annex J). 

(b) Decoder-dependent  filters 

In the second category, the filter is applied after the  decoder and makes use of decoded 
parameters. A good example of a useful decoder parameter is the quantiser  step  size: this can 
be used to predict the expected level of distortion in  the  current  block,  e.g. more distortion  is 
likely  to  occur when the quantiser  step  size  is high than when it  is low. This  enables  the 
decoder to  adjust  the ‘strength’ of the filter according to the expected  distortion. A ‘strong’ 
filter may be applied when the quantiser  step size is  high,  reducing  the relevant type of 
distortion. A ‘weak’ filter is  applied when the step  size  is low, preserving detail in blocks 
with lower  distortion. Good performance  can  be achieved with this type of filter;  however, 
the filter must be incorporated in the decoder  or  closely  linked  to  decoding  parameters.  The 
location of the  decoder-dependent filter is shown in Figure 9.12. 

(c )  Decoder-independent  filters 

In order  to  minimise  dependence on the decoder, the filter may be applied  after decoding 
without any ‘knowledge’ of decoder  parameters,  as  illustrated in Figure 9.13. This approach 
gives the maximum flexibility (for  example, the decoder and the filter may  be treated as 
separate ‘black boxes’ by the system  designer). However, filter performance  is  generally not 

Video  decoder Post-filter Filtered 
frame 

Figure 9.13 Decoder-independent filter 
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Figure 9.14 H.263+ Annex J deblocking filter 

as  good  as  decoder-dependent filters, since the filter has no information about the coding of 
each  block. 

9.3.2 De-blocking  Filters 

Blocking artefacts  are usually the most obvious and therefore the most important to 
minimise  through filtering. 

In-loop  jilters 

It  is possible to  implement  a non-standard in-loop  de-blocking filter,  however, the use of 
such a filter is  limited  to proprietary systems. Annex J of the H.263+ standard defines an 
optional de-blocking filter that  operates within the encoder and decoder  ‘loops’.  A l-D filter 
is applied across  block boundaries as shown in Figure 9.14. Four pixel positions at  a  time are 
smoothed across the  block boundaries, first across the horizontal  boundaries and then across 
the  vertical boundaries. The ‘strength’ of the filter (i.e. the amount of smoothing applied to 
the pixels) is chosen depending on the quantiser value (as  described  above).  The filter is 
effectively disabled if there is a strong discontinuity between the values of A and B or 
between the values of C and D: this helps to prevent filtering of ‘genuine’ strong horizontal 
or  vertical  edges  in  the  original  picture.  In-loop de-blocking filters have been compared2 and 
the authors conclude that the best performance  is given by POCS algorithms (described 
briefly below). 

Decoder-dependent and decoder-independent jilters 

If the filter is  implemented  only in the  decoder (not in the  encoder), the designer has 
complete flexibility and a wide range of filtering methods have been proposed. 

Annex F of MPEG-4 describes an optional de-blocking filter that operates  across  each 
horizontal and vertical  block boundary as above. The ‘smoothness’ of the  image  in  the  region 
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Horizontal  block  boundary 

Vertical  block  boundary 

Figure 9.15 MPEG-4 deblocking filter 

of the  boundary is estimated  based  on  the  values of 10 pixels (A to J in Figure 9.15). If the image 
is not deemed to  be ‘smooth’, a default l-D filter is  applied  to the two pixels on either  side of 
the boundary (E and F). If the  image is ‘smooth’ in this  region, then a more sophisticated 
filter is required to  reduce  blocking whilst preserving  the smooth texture: in this case, 
8 pixels (B to I) are filtered. The filter parameters depend on the quantiser  step  size. By 
adapting the filter in this way, a more powerful (but more computationally complex) filter is 
applied where it  is needed in smooth regions whilst a less complex filter is applied 
elsewhere. 

Many alternative  approaches can be  found in the These range from highly 
complex algorithms  such  as  Projection  Onto Convex Sets (POCS), in which many candidate 
images  are  examined  to find a close approximation to  the decoded image  that  does not 
contain  blocking  artefacts,  to  algorithms such as  the MPEG-4 Annex F filter that are 
significantly less  complex.  The best image  quality  is usually achieved at  the  expense of 
computation:  for  example, POCS algorithms  are  iterative and may be  at  least 20x more 
complex than the  decoding  algorithm  itself. Decoder-dependent algorithms can often 
outperform decoder-independent  algorithms because the extra  information about the coding 
parameters makes it  easier  to distinguish ‘true’ image  features  from blocking distortions. 

9.3.3 De-ringing  Filters 

After blocking, ringing  is  often  the  next most obvious type of coding artefact.  De-ringing 
filters receive somewhat less  attention than de-blocking filters. MPEG-4 Annex F describes 
an optional post-decoder de-ringing filter. In this algorithm, a threshold thr is set for  each 
reconstructed block based on the mean pixel value in the block. The pixel values within the 
block are compared with the threshold and 3 x 3 regions of pixels that are all  either above or 
below the threshold are filtered using a 2-D spatial filter. This has the effect of smoothing 
homogeneous regions of pixels on either  side of strong image  edges whilst preserving the 
edges themselves: it  is  these regions that are  likely  to  be affected by ringing.  Figure 9.16 
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Figure 9.16 Application of IWEG-4 de-ringing filter 

shows an example of regions of pixels that may be filtered in  this way in a block containing a 
strong edge. In  this  example, pixels adjacent  to  the  edge will be ignored by the filter (hence 
preserving the  edge  detail).  Pixels  in relatively ‘flat’ regions on either  side of the edge (which 
are  likely  to  contain  ringing) will be filtered. 

9.3.4 Error  Concealment  Filters 

A final category of decoder  filter  is that of error  concealment filters. When a decoder  detects 
that a transmission error  has  occurred,  it is possible to  estimate the area of the frame that is 
likely  to be corrupted by the error. Once the  area is known, a spatial or  temporal filter may  be 
applied to  attempt  to  conceal  the error. Basic error  concealment filters operate by 
interpolating  from neighbouring error-free regions (spatially and/or temporally)  to ‘cover’ 
the damaged area. More advanced methods (such as POCS filtering, mentioned above) 
attempt to  maintain  image  features  across the damaged region.  Error  concealment  is 
discussed fuaher in Chapter 11. 

9.4 SUMMARY 

Re- and post-filtering can be valuable tools  for a video CODEC designer. The goal of a pre- 
filter is  to ‘clean up’ the  source  image and compensate  for  imperfections such as  camera 
noise and camera  shake whilst retaining visually important  image  features. A well-designed 
pre-filter can significantly improve compression efficiency by reducing the number of bits 
spent on coding noise. Post-filters are designed to  compensate  for  characteristic  artefacts 
introduced by block-based transform  coding such as blocking and ringing effects. A post- 
filter can greatly improve subjective visual quality, reducing obvious  distortions whilst 
retaining important  features in the image.  There  are  three main classes of this type of filter: 
loop filters (designed to  improve motion compensation performance  as well as  image  quality 
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and  present  in  both  encoder  and  decoder),  decoder-dependent  post-filters  (which  make use of 
decoded  parameters to improve  filtering  performance)  and  decoder-independent  post-filters 
(which  are  independent  of  the  coding  algorithm  but  generally  suffer  from  poorer  perfor- 
mance  than  the  other  types). As with many other  aspects  of  video CODEC design,  there  is 
usually a trade-off  between  filter  complexity  and  performance  (in  terms of bit  rate  and image 
quality).  The  relationship  between  computational  complexity,  coded  bit  rate  and  image 
quality  is  discussed  in  the  next  chapter. 
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l 0  
Rate,  Distortion  and  Complexity 

10.1 INTRODUCTION 

The  choice of video  coding algorithm and encoding  parameters affect the coded bit rate and 
the quality of the decoded  video  sequence  (as well as the  computational  complexity of the 
video  CODEC). The precise  relationship between coding  parameters, bit rate and visual 
quality varies depending on the  characteristics of the video sequence (e.g. ‘noisy’ input vs. 
‘clean’ input; high detail  vs. low detail;  complex motion vs. simple motion). At the  same 
time, practical  limits  determined by the processor and the transmission environment put 
constraints on the bit rate and image quality that may be achieved. It is  important to control 
the  video  encoding process in order to maximise  compression  performance (i.e. high 
compression and/or good image  quality) whilst remaining within the practical constraints 
of transmission and processing. 

Rate-distortion optimisation  attempts to maximise  image quality subject to transmission 
bit rate constraints.  The best optimisation  performance  comes at the expense of impractically 
high computation.  Practical  algorithms for the  control of bit rate can  be  judged  according to 
how closely they approach  optimum performance. Many alternative rate control  algorithms 
exist;  sophisticated algorithms can  achieve  excellent rate-distortion performance, usually at 
a  cost of increased computational complexity. The careful selection and implementation of a 
rate  control algorithm can make  a big difference to video  CODEC performance. 

Recent trends in software-only CODECs and video  coding  in power-limited environments 
(e.g. mobile computing) mean that computational complexity is an important  factor  in  video 
CODEC  performance.  In many application scenarios,  video  quality is constrained by 
available  computational  resources as well as or instead of available bit rate. Recent 
developments in variable-complexity algorithms (VCAs) for  video  coding  enable  the 
developer to manage  computational  complexity and trade processing resources for image 
quality. This leads to situations in which rate, complexity and distortion are interdependent. 
New algorithms  are  required to jointly  control bit rate and computational complexity whilst 
minimising distortion. 

In this chapter we examine the factors  that influence rate-distortion performance in a 
video  CODEC and discuss how these factors  can  be  exploited to efficiently control coded bit 
rate. We describe  a  number of popular algorithms  for  rate control. We discuss the relation- 
ship between computation, rate and distortion and show how new VCAs  are beginning to 
influence the design of video CODECs. 

Video Codec Design
Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
ISBNs: 0-471-48553-5 (Hardback); 0-470-84783-2 (Electronic)
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10.2 BIT RATE AND DISTORTION 

10.2.1 The Importance of Rate Control 

A practical  video  CODEC  operates within an  environment that places  certain  constraints  on 
its  operation.  One of the  most  important  constraints  is the rate at which the  video  encoder is 
‘allowed’ to  produce  encoded  data. A source of video  data usually supplies  video  data at a 
constant bit rate (a constant  number of bits per  second)  and a video  encoder processes this 
high,  constant-rate  source  to  produce a compressed stream of bits at a reduced bit rate. The 
amount of compression  (and  hence the compressed bit rate) depends  on a number of factors. 
These may include: 

1. The encoding  algorithm (intra-frame or  inter-frame,  forward or bidirectional prediction, 
integer  or  sub-pixel motion  compensation,  DCT or wavelet, etc.). 

2. The type of video  material  (material  containing lots of spatial detail and/or rapid 
movement  generally  produces  more bits than material  containing  little detail and/or 
motion). 

3. Encoding  parameters  and  decisions  (quantiser  step  size, picture or macroblock  mode 
selection,  motion vector search  area, the number of intra-pictures, etc.). 

Some examples of bit rate ‘profiles’ are given below. Figure  10.1 plots the number of bits in 
each frame for a video  sequence  encoded using Motion JPEG.  Each  frame  is  coded 
independently  (‘intra-coded’)  and  the  bit rate for  each frame  does not change significantly. 
Small variations in bit rate  are  due  to  changes in the  spatial  content of the  frames in the 
10-frame  sequence.  Figure 10.2 shows the bit rate variation for  the  same  sequence  coded 
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Figure 10.1 Bit-rate profile: Motion JPEG 
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Figure 10.2 Bit-rate  profile: H.263 (baseline) 

with H.263. The first frame is an  intra-frame  and  following  frames  are  P-pictures.  The 
compression efficiency for  a  P-picture  is  approximately 10 x higher than for  an  I-picture  in 
this  example  and  there  is  a  small variation between  P-pictures  due to  changes in detail and 
in  movement.  Coding  the  same  sequence using MPEG-2  gives the bit rate profile shown in 
Figure 10.3. In this example,  the  initial  I-picture  is  followed by the  following  sequence of 
picture  types: B-B-P-B-B-P-B-B-I. There is clearly  a  large variation between  the  three 
picture  types, with B-pictures giving  the  best compression  performance.  There  is  also  a 
smaller  variation  between  coded  pictures of the same  type (I, P  or B) due  to  changes in detail 
and motion  as  before. 
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Figure 10.3 Bit-rate  profile: MPEG-2 
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These examples  show that the  choice of algorithm  and the content of the  video 
sequence affect the  bit  rate  (and  also the visual quality) of the coded sequence. At the 
same  time,  the  operating  environment  places  important  constraints  on  bit rate. These may 
include: 

1. The mean  bit  rate that may be transmitted or  stored. 

2.  The maximum bit rate  that  may  be transmitted or stored. 

3. The maximum variation in bit rate. 

4. The requirement to avoid underflow or overflow of storage buffers within the  system. 

5. A requirement  to  minimise latency (delay). 

Examples: 

DVD-video The mean bit rate  is  determined by the  duration of the  video material. For 
example, if a 3-hour movie  is  to  be stored on a single 4.7 Gbyte DVD, then the mean bit rate 
(for the  whole  movie) must not exceed  around 3.5 Mbps. The maximum bit rate is 
determined by the  maximum  transfer  rate  from  the DVD and  the throughput of the  video 
decoder. Bit-rate variation (subject  to these constraints) and latency are not such important 
issues. 

Video  conferencing  over  ISDN The ISDN channel  operates at a constant bit rate (e.g. 
128 kbps). The encoded bit rate must match this channel  rate exactly, i.e. no variation is 
allowed. The output of the  video  encoder is constant bit rate  (CBR)  coded video. 

Video  conferencing over a packet-switched  network The situation here is more 
complicated. The  available mean  and  maximum bit rate  may vary, depending  on the network 
routeing  and  on  the  volume of other traffic. In some situations, latency and  bit  rate may be 
linked,  i.e. a higher  data  rate  may cause  increased  congestion  and  delay  in the network. The 
video  encoder  can  generate CBR  or variable bit rate  (VBR)  coded  video, but the mean and 
peak  data  rate  may  depend on  the  capacity of the  network  connection. 

Each of these application  examples  has different requirements in terms of the rate of 
encoded  video data. Rate control, the process of matching  the  encoder  output  to  rate 
constraints,  is a necessary  component of the majority of practical video  coding applications. 
The  rate  control  ‘problem’  is defined below in Section 10.2.3. There  are  many different 
approaches to  solving  this problem  and in a given situation,  the  choice of rate  control  method 
can significantly influence video  quality  at  the decoder. Poor rate control may cause a 
number of problems  such as low visual quality, fluctuations in visual quality  and  dropped 
frames  leading to ‘jerky’ video. 

In the  next  section  we will examine  the  relationship  between  coding parameters, bit rate 
and visual quality. 
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10.2.2 Rate-Distortion  Performance 

A lossless compression  encoder  produces a reduction  in  data rate with  no loss of  fidelity  of  the 
original  data. A lossy encoder, on the other  hand,  reduces  data  rate at the expense of a loss of 
quality. As discussed  previously, significantly higher  compression  of  image  and video  data  can  be 
achieved using  lossy methods than with  lossless  methods. The output of a lossy  video  CODEC 
is a sequence of images that are of a lower quality than  the original images. 

The rate-distortion petformance of a video  CODEC  provides  a  measure of the  image 
quality  produced  at a range of coded bit rates.  For  a given compressed bit rate, measure 
the distortion of  the decoded  sequence  (relative  to the original  sequence).  Repeat  this  for a 
range of compressed bit rates  to  obtain  the rate-distortion curve such  as  the  example  shown 
in Figure 10.4. Each  point  on  this  graph is generated by encoding a video  sequence using an 
MPEG-4  encoder with a different  quantiser  step  size Q. Smaller  values of Q produce a 
higher  encoded bit rate and lower  distortion;  larger values of Q produce  lower bit rates  at  the 
expense of higher  distortion. In this figure, ‘image  distortion’ is measured by  peak signal  to 
noise  ratio  (PSNR),  described in Chapter 2. PSNR is  a  logarithmic  measure,  and a high  value 
of PSNR indicates low distortion.  The  video  sequence  is a relatively static,  ‘head-and- 
shoulders’  sequence  (‘Claire’). The shape of the  rate-distortion  curve  is very typical: better 
image  quality  (as  measured by PSNR)  occurs  at  higher bit rates,  and the quality  drops 
sharply once the bit rate is below a  certain  threshold. 

The rate-distortion  performance of a  video  CODEC may be  affected by  many factors, 
including the following. 

Video material 

Under  identical  encoding  conditions,  the  rate-distortion  performance may  vary considerably 
depending  on the video  material  that  is  encoded.  Figure 10.5 compares  the  rate-distortion 
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‘Clalre’  and  ‘Foreman’  encoded using WEG-4 (simple prohle) 
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performance of two sequences,  ‘Claire’  and ‘Foreman’, under identical  encoding conditions 
(MPEG-4, fixed quantiser  step  size varying from 4 to 24). The ‘Foreman’ sequence  contains 
a lot of movement and  detail  and  is therefore more ‘difficult’ to compress than ‘Claire’. At 
the  same value of quantiser, ‘Foreman’ tends  to  have a much  higher  encoded bit rate and a 
higher distortion (lower PSNR) than ‘Claire’. The shape of the rate-distortion curve  is 
similar but the  rate  and  distortion values are very different. 

Encoding parameters 

In a DCT-based CODEC, a number of encoding  parameters (in addition to  quantiser  step 
size) affect the encoded bit rate. An efficient motion estimation algorithm produces a small 
residual  frame  after  motion  compensation  and  hence a low coded bit rate; intra-coded 
macroblocks usually require  more bits than inter-coded  macroblocks; sub-pixel motion 
compensation  produces a lower  bit  rate than integer-pixel compensation;  and so on. Less 
obvious  effects  include, for example,  the intervals at which  the  quantiser step size is  varied 
during  encoding.  Each time  the  quantiser  step size changes,  the new value (or  the  change) 
must be  signalled  to  the  decoder  and this takes more bits (and hence increases the coded 
bit rate). 

Encoding algorithms 

Figures 10.1-10.3 illustrate how the coded bit rate  changes  depending  on  the compression 
algorithm. In each of these figures, the  decoded image  quality  is  roughly  the  same but there 
is a big  difference in compressed bit rate. 

Rate control algorithms 

A rate control algorithm  chooses  encoding  parameters  (such as those listed above) in order 
to try and achieve a ‘target’ bit rate. For a given bit rate, the  choice of rate control 
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algorithm  can  have a significant effect on rate-distortion performance, as discussed  later in 
this chapter. 

So far  we  have discussed only spatial distortion (the variation in quality of individual frames 
in the decoded  video  sequence). It is  also  important  to  consider temporal distortion, i.e. the 
situation where  complete  frames  are ‘dropped’ from  the original sequence in order  to 
achieve  acceptable performance. The curves shown in Figure 10.5 were generated  for video 
sequences  encoded at 30 frames per second. It would be possible to obtain lower spatial 
distortion by reducing the  frame rate to 15 frames per second (dropping every second frame), 
at the  expense of an  increase in temporal distortion (because  the frame rate has been 
reduced). The effect of this type of temporal distortion is apparent as ‘jerky’ video. This  is 
usually just  noticeable  around 15-20 frames per second and very noticeable below 10 frames 
per second. 

10.2.3 The Rate-Distortion Problem 

The trade-off between coded  bit  rate and image distortion is  an  example of the  general rute- 
distortion problem in communications engineering. In a lossy communication  system, the 
challenge  is  to  achieve a target data rate with minimal distortion of the transmitted signal (in 
this case,  an  image  or  sequence of images).  This problem may be described as follows: 
‘Minimize distortion (D) whilst maintaining a bit rate R that does not exceed a maximum bit 
rate R,,,, or 

min{D} s.t. R 5 R,,, (10.1) 

(where s.t. means ‘subject to’). 
The  conditions of Equation 10.1 can be met by selecting  the  optimum  encoding 

parameters to give the ‘best’ image  quality  (i.e. the lowest distortion) without exceeding 
the target bit rate. This process can be viewed as follows: 

1. Encode a video sequence with a particular set of encoding parameters (quantiser step 
size, macroblock  mode selection, etc.) and measure  the  coded bit rate  and  decoded  image 
quality (or distortion). This gives a particular combination of rate (R) and distortion (D), 
an R-D operating point. 

2 .  Repeat  the  encoding process with a different set of encoding  parameters to obtain another 
R-D operating point. 

3. Repeat for  further  combinations of encoding parameters. (Note  that  the  set of possible 
combinations of parameters is very large.) 

Figure 10.6 shows a typical set of operating points plotted on a graph. Each  point represents 
the mean bit rate and distortion achieved for a particular set of encoding parameters. (Note 
that distortion [D] increases as  rate [R] decreases). Figure 10.6 indicates that there are ‘bad’ 
and ‘good’ rate-distortion points. In this example,  the  operating points that give the best rate- 
distortion performance  (i.e.  the lowest distortion for a given rate R) lie  close  to  the dotted 
curve. Rate-distortion theory tells us that this curve is convex (a convex hull). For a given 
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target rate R,,,, the  minimum distortion D occurs at a point on this convex curve. The aim of 
rate-distortion optimisation is  to find a set of coding parameters that achieves  an operating 
point as close as possible to this optimum curve.’ 

One way to find the position of the hull and hence achieve this optimal  performance  is by 
using Lagrangian  optimisarion. Equation IO. I is difficult to minimise directly and a popular 
method is  to  express it in a slightly different way as follows: 

min{J = D + XR} (10.2) 

J is a new function that contains D and R (as before) as well as a Lagrange multiplier, X. J is 
the  equation of a straight line D + A R ,  where X gives the  slope of the line. There is a solution 
to  Equation 10.2 for every possible multiplier X, and  each solution is a straight line  that 
makes a tangent to the convex hull described earlier. The procedure may be summarised as 
follows: 

1. Encode  the  sequence  many  times, each time with a different set of coding parameters. 

2. Measure  the coded bit rate ( R )  and distortion (D)  of each coded sequence. These 
measurements are  the ‘operating points’ ( R ,  D). 

3. For each value of X, find the  operating  point (R ,  D )  that gives  the  smallest value J ,  where 
J = D + XR. This gives one  point  on the convex hull. 

4. Repeat  step (3) for a range of X to find the ‘shape’ of the convex hull. 

This procedure is illustrated in Figure 10.7. The (R ,  D )  operating points are plotted as before. 
Three values of X are shown: X,, X*. and X3. In each  case, the solution to J = D + ;\R is a 
straight  line  with  slope X. The operating  point (R,  D )  that  gives  the  smallest J is  shown  in  black, 
and these points occur  on  the  lower boundary (the convex hull) of all the  operating points. 

The Lagrangian method will find the set (or sets) of encoding parameters that give the best 
performance and these parameters may then be applied to the video  encoder  to  achieve 
optimum rate-distortion performance. However, this is usually a prohibitively complex 
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process.  Encoding  decisions  (such as quantiser  step  size,  macroblock  type, etc.) may  change 
for  every  macroblock  in  the  coded  sequence and so there  are an extremely  large  number of 
combinations of encoding  parameters. 

Example 

Macroblock 0 in  a  picture  is  encoded  using MPEG-4 (simple  profile)  with  a  quantiser  step 
size Q0 in  the  range 2-31. The  choice of Q1 for  macroblock 1 is constrained  to Q. +/- 2. 
There  are 30 possible  values of Qo; (almost) 30 x 5 = 150 possible  combinations of Q. 
and Q,;  (almost) 30 x 5 x 5=750 combinations of Qo, Ql and Q2; and so on. 

The  computation  required  to  evaluate all possible  choices of encoding  decision  becomes 
prohibitive  even  for  a  short  video  sequence.  Furthermore,  no  two  video  sequences  produce 
the  same  rate-distortion  performance  for  the  same  encoding  parameters and so this  process 
needs  to  be  carried  out  each  time  a  sequence is to  be  encoded. 

There  have  been  a  number of attempts  to  simplify  the  Lagrangian  optimisation  method  in 
order  to  make  it  more  practically useful.24 For  example,  certain  assumptions may be  made 
about  good and bad choices of encoding  parameters  in  order  to  limit  the  exponential  growth 
of complexity  described  above. The  computational  complexity of some of these  methods is 
still  much  higher  than  the  computation  required  for  the  encoding  process  itself:  however,  this 
complexity may be  justified  in  some  applications,  such  as  (for  example)  encoding  a  feature 
film  to  obtain  optimum  rate-distortion  performance  for  storage  on  a DVD. 

An alternative  approach  is  to  estimate  the  optimum  operating  points  using  a  model of 
the  rate-distortion character is ti^.^ Lagrange-based  optimisation  is first carried  out  on 
some  representative  video  sequences  in  order to  find the 'true' optimal  parameters  for 
these sequences. The authors propose a simple model of the  relationship between encoding mode 
selection  and X and the  encoding  mode  decisions  required  to  achieve  minimal  distortion  for  a 
given  rate  constraint R,, can  be  estimated  from  this  model.  The  authors  report  a  clear 
performance  gain  over  previous  methods with minimal  computational  complexity.  Another 
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attempt has been made6  to define an  optimum partition between the coded bits representing 
motion  vector  information  and  the  coded bits representing displaced frame  difference  (DFD) 
in an  inter-frame  CODEC. 

10.2.4 Practical  Rate  Control  Methods 

Bit-rate  control  in a real-time  video  CODEC  requires a relatively low-complexity algorithm. 
The  choice of rate  control  algorithm  can have a significant effect on video  quality and many 
alternative  algorithms  have been developed. The choice of rate control algorithm is not 
straightforward  because a number of factors  are involved, including: 

0 the  computational  complexity of the algorithm 

0 whether  the  rate  control ‘model’ is  appropriate  to  the  type of video material to be encoded 
(e.g. ‘static’ video-conferencing  scenes  or fast-action movies) 

0 the  constraints of the  transmission  channel (e.g. low-delay real-time  communications or 
offline storage). 

A selection of algorithms  is  summarised here. 

Output buffer feedback 

One of the  simplest  rate  control  mechanisms  is  shown  in  Figure 10.8. A frame of video i is 
encoded to produce bi bits. Because of the variation in  content of a video  sequence, bi is 
likely to vary from  frame  to frame,  i.e.  the  encoder output bit rate  is variable, R,. In Figure 
10.8  we  assume that the  channel  rate is constant, R, (this  is the case  for  many practical 
channels). In order  to match  the variable rate R, to  the  constant  channel rate R,, the  encoded 
bits  are  placed in a buffer, filled at  rate R, and  emptied at rate R,. 

Figure 10.9 shows how the buffer contents vary during  encoding of a typical video 
sequence. As each  frame  is encoded,  the buffer fills at a variable rate  and  after  encoding of 
each  frame, a fixed number of bits b, are  removed  from  the buffer. With  no  constraint  on the 
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Figure 10.8 Buffer  feedback  rate  control 
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variable rate R,, it  is  possible  for the buffer contents  to  rise  to a point at which the buffer 
overflows (B,,, in the figure). The black line shows the unconstrained case: the buffer 
overflows in frames 5 and 6. To avoid this happening, a feedback constraint is required, 
where  the buffer occupancy B is ‘fed back’ to control the  quantiser  step size Q. As B 
increases, Q also  increases which has  the effect of increasing compression and reducing the 
number of bits per  frame bi. The grey line in Figure 10.9 shows that with feedback, the buffer 
contents  are never allowed to rise above about 50% of B,,,. 

This method  is  simple and straightforward but has several disadvantages. A sudden 
increase in activity in the video  scene may cause B to  increase  too rapidly to be effectively 
controlled by the  quantiser Q, so that the buffer overflows, and in this case  the only course of 
action is  to  skip  frames, resulting in a variable frame rate. As Figure 10.9 shows, B increases 
towards the  end of each encoded  frame  and this means that Q also tends to  increase towards 
the  end of the frame. This can lead to  an effect whereby the  top of each  frame is encoded 
with a relatively high quality whereas the foot of the  frame  is highly quantised and  has  an 
obvious  drop in quality, as shown in Figure 10.10. The basic buffer-feedback method tends 
to  produce  decoded video with obvious quality variations. 

MPEG-2 Test Model 57 

Version 5 of the MPEG-2  video Test Model (a  reference design for  MPEG-2  encoding and 
decoding)  describes a rate  control  algorithm  for CBR encoding that takes account of the 
different properties of the three coded  picture types (I, P  and B-pictures). The algorithm 
consists of three steps: bit allocation, rate control and modulation. 
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allocation: 
assign  a  target  number of bits  to  the  current GOP (based  on  the  target  constant  bit 
rate); 
assign  a  target  number of bits T to the  current  picture  based on: 
- the  ‘complexity’ of the  previous  picture of the  same  type (I, P, B) (i.e. the  level of 

- the  target  number of bits for the GOP. 
temporal  and/or  spatial  activity); 

2. Rate  control: 

so far, d; 

to try and  meet  the  target T. 

(a)  during  encoding of the  current  picture,  maintain  a  count of the  number of coded  bits 

(b)  compare d with  the  target  total  number of bits  Tand  choose  the  quantiser  step  size Q 

3. Modulation: 
(a)  measure  the  variance of the  luminance data in  the  current  macroblock; 
(b) if the  variance  is  higher  than  average (i.e. there  is  a  high  level of detail  in  the  current 

region of the  picture),  increase Q (and  hence  increase  compression). 

The aim of this rate  control  algorithm is to: 

0 achieve  a  target  number of coded  bits  for  the  current GOP; 

0 deal  with I, P and  B-pictures  separately; 

0 quantise  areas of high  detail  more  ‘coarsely’. 
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This  last  aim  should  give  improved  subjective  visual  quality  since  the  human  eye  is  more 
sensitive  to  coarse  quantisation  (high  distortion) in areas of  low detail  (such as a smooth 
region of  the picture). 

H.263 Test Model 88 

Version 8 (and  later  versions) of  the  H.263  Test Model  use a rate  control  algorithm  that 
consists of frame-level  rate  control  (determines  whether  to  skip or  code the current  frame) 
and macroblock-level  rate  control  (calculate  the  quantisation  step  size  for  each  macroblock). 

Frame level control Each  encoded  frame  adds  to  the  encoder  output  buffer  contents;  each 
transmitted  frame  removes  bits  from  the  output buffer. If the  number of bits in the  buffer 
exceeds a threshold M, skip  the  next  frame;  otherwise  set a target  number of bits B  for 
encoding  the  next  frame. A higher  threshold M means  fewer  skipped  frames, but a larger 
delay  through  the  system. 

Macroblock level control This is based  on a model  for  the  number of bits Bi required  to 
encode  macroblock i (Equation 10.3): 

(10.3) 

A is  the  number of  pixels  in a macroblock, oi is the standard  deviation of luminance  and 
chrominance in  the residual  macroblock (i.e. a measure of variation within the  macroblock), 
Qi is the quantisation  step  size  and K and C are  constant  model  parameters. The following 
steps  are  carried out for each macroblock i :  

1. Measure oi. 

2.  Calculate Qi based  on B, K,  C, oi and a macroblock  weight ai. 

3. Encode  the  macroblock. 

4. Update  the model parameters K and C based on  the  actual  number of coded  bits  produced 
for  the  macroblock. 

The weight ai controls  the  ‘importance’ of macroblock i to the subjective  appearance of the 
image: a low  value  of a; means  that  the  current  macroblock is likely  to be highly  quantised. 
In  the test model,  these  weights  are  selected  to  minimise  changes in Qi at  lower bit rates 
because  each  change involves sending a modified quantisation  parameter DQUANT which 
means  encoding an extra 5 bits per  macroblock.  It  is  important  to  minimise the number of 
changes  to Qi during  encoding of a frame  at low bit rates  because the extra 5 bits in a 
macroblock may become  significant;  at  higher bit rates, this DQUANT overhead is less 
important and we may change Q more  frequently  without significant penalty. 

This  rate  control  method  is  effective  at  maintaining  good visual quality with a  small 
encoder  output  buffer  which  keeps  coding  delay  to a minimum  (important  for  low-delay 
real-time  communications). 
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Figure 10.11 Bit-rate profile: H.263 TM8 

Example 

A 200-frame  video  sequence,  ‘Carphone’,  is  encoded  using  H.263  with  TM8  rate  control. 
The original  frame  rate  is 30 frames per second, QCIF resolution,  and  the  target bit rate is 
64 kbps.  Figure 10.1 I shows  the  bit-rate variation during  encoding. In order to achieve 
64 kbps  without  dropping  any  frames,  the  mean  bit  rate  should  be  2  133  bits per frame, and 
the  encoder  clearly  manages  to  maintain  this bit rate  (with  occasional  variations of about 
+/- 10%). Figure  10.12  shows  the PSNR of each  frame in the  sequence  after  encoding and 
decoding.  Towards  the  end of the  sequence, the movement in the  scene  increases and it 
becomes  ‘harder’ to  code efficiently. The rate  control  algorithm  compensates  for this by 
increasing  the  quantiser  step  size  and  the PSNR drops  accordingly.  Out of the  original 200 
frames,  the  encoder  has  to  drop 6 frames  to avoid buffer overflow. 

MPEG-4  Annex L 

The  MPEG-4  video  standard  describes  an  optional  rate  control  algorithm in  Annex L. I ,  
known as the Scalable  Rate  Control  (SRC)  scheme.  This  algorithm  is  appropriate for a single 
video  object  (i.e. a rectangular V 0  that  covers  the  entire  frame)  and a range of bit rates  and 
spatial/temporal  resolutions. The  scheme  described in Annex L offers  rate  control at the 
frame-level  only  (i.e. a single  quantiser  step  size is chosen  for a complete  frame). The SRC 
attempts  to  achieve a target bit rate  over a certain  number of frames  (a  ‘segment’ of frames, 
usually  starting with an  I-picture). 
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Carphone: H.263 TMN-8 rate control, 64kbps 
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Figure 10.12 PSNR profile: H.263 TM8 

The  SRC  scheme  assumes  the  following model for  the  encoder  rate R: 

(1 0.4) 

Q is the  quantiser step size, S is the  mean  absolute  difference  of  the residual frame after motion 
compensation and XI, X, are  model  parameters. S provides  a  measure of frame  complexity 
(easier  to  compute than  the standard  deviation c used in the H.263 TM8 rate  control  scheme 
because the absolute  difference, SAE, is calculated  during  motion  estimation). 

Rate  control  consists of  the following  steps  which  are  carried  out  after  motion  compensa- 
tion and before  encoding of each  frame i: 

1 .  Calculate  a  target bit rate Ri, based on the number of frames in the segment,  the  number 
of bits that  are  available  for  the  remainder of the  segment,  the  maximum  acceptable 
buffer contents  and the estimated  complexity of frame i. (The  maximum buffer size 
affects  the  latency  from  encoder  input  to  decoder  output. If the  previous  frame was 
complex, it is  assumed that the  next  frame will be complex and should  therefore be 
allocated  a  suitable  number of bits: the algorithm  attempts  to  balance this requirement 
against the limit on  the total number of bits  for  the  segment.) 

2.  Compute  the  quantiser  step  size Q; (to be applied  to  the  whole  frame),  calculate S for  the 
complete residual frame and solve  Equation 10.4 to find Q. 

3. Encode the frame. 
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4.  Update the model  parameters X , ,  X ,  based on  the  actual  number of bits generated for 
frame i. 

The  SRC algorithm differs from H.263  TM8 in two significant ways: it  aims  to  achieve a 
target bit rate  across a segment of frames  (rather than a sequence of arbitrary length)  and it 
does not modulate  the  quantiser  step  size within a coded frame  (this  can give a more uniform 
visual  appearance within each frame but makes it difficult to maintain a small buffer size and 
hence a low  delay).  An  extension  to  the  SRC  is  described in Annex  L.3 of MPEG-4 which 
supports  modulation of the  quantiser  step size at  the  macroblock level and is therefore more 
suitable  for  low-delay  applications.  The  macroblock  rate control extension (L.3) is similar to 
H.263 Test Model 8 rate control. 

The  SRC algorithm  is  described in  some  detail  in  the  MPEG-4  standard; a further 
discussion of MPEG-4  rate  control issues can be found elsewhere.’ 

10.3 COMPUTATIONAL  COMPLEXITY 

10.3.1 Computational  Complexity  and  Video  Quality 

So far  we have  considered  the trade-off between bit rate and  video quality. The discussion of 
rate distortion in Section  10.2.3 highlighted another trade-off between computational 
complexity  and  video quality. A video  coding  algorithm that gives excellent rate-distortion 
performance  (good  visual  quality for a given bit rate) may be impractical because it requires 
too much  computation. 

There  are a number of cases  where it is possible to achieve  higher visual quality at the 
expense of increased  computation. A few examples  are listed below: 

0 DCT block size: better  decorrelation  can be achieved with a larger  DCT block size, at the 
expense of higher  complexity.  The 8 x 8 block  size  is  popular  because  it achieves 
reasonable  performance with manageable  computational complexity. 

0 Motion  estimation  search  algorithm: full-search  motion  estimation  (where every possible 
match  is  examined within the search area) can outperform most reduced-complexity 
algorithms. However, algorithms  such as the ‘three step search’ which sample only a few 
of the possible  matches  are widely used because they reduce  complexity at the  expense of 
a certain loss of performance. 

Motion  estimation  search area: a good  match (and hence  better rate-distortion perfor- 
mance) is  more likely if the motion  estimation search area is large. However, practical 
video  encoders  limit the  search  area  to  keep  computation  to  manageable levels. 

e Rate-distortion  optimisation: obtaining  optimal  (or even near-optimal) rate-distortion 
performance  requires  computationally  expensive  optimisation of encoding parameters, 
i.e.  the  best  visual  quality for a given  bit  rate is achieved at the  expense of high  complexity. 

Choice offrame rate: encoding and decoding  computation increases with frame  rate and 
it  may be necessary to  accept a low frame  rate (and ‘jerky’ video) because of 
computational  constraints. 



COMPUTATIONAL, COMPLEXITY 227 

These  examples show that  many  aspects of video  encoding  and  decoding  are  a  trade-off 
between  computation  and  quality.  Traditionally,  hardware  video  CODECs  have  been 
designed with a fixed level of computational  performance.  The  architecture  and  the  clock 
rate  determine  the  maximum  video  processing rate. Motion  search  area,  block  size  and 
maximum  frame  rate  are  fixed by the  design  and  place  a  predetermined  ‘ceiling’ on the  rate- 
distortion  performance of the CODEC. 

Recent  trends  in  video  CODEC  design, however, require  a  more  flexible  approach to these 
trade-offs  between  complexity and quality. The following  scenarios  illustrate  this. 

Scenario I :  Soware video CODEC 

Video is  captured  via  a  capture  board  or  ‘webcam’.  Encoding,  decoding and display  are 
carried  out  entirely  in  software. The ‘ceiling’  on  computational  complexity  depends  on  the 
available  processing  resources.  These  resources  are  likely  to vary from  platform  to  platform 
(for  example,  depending  on  the  specification of a PC) and may also vary depending  on  the 
number of other  applications  contending  for  resources.  Figure 10.13 compares  the  resources 
available  to  a  software  CODEC  in  two  cases: when it  is  the  only  intensive  application 
running,  the  CODEC  has  most of the  system  resources  available,  whereas when the  CODEC 
must  contend with other  applications,  fewer  processing  cycles  are  available  to it. The 
computational  resources  (and  therefore  the  maximum  achievable  video  quality)  are no 
longer fixed. 

Scenario 2: Power-limited video CODEC 

In a  mobile  or  hand-held  computing  platform,  power  consumption  is  at  a  premium.  It  is now 
common  for  a  processor  in  a  portable  PC  or  personal  digital  assistant  to  be  ‘power-aware’, 
e.g. a  laptop PC may change  the  processor  clock  speed  depending  on  whether  it  is  running 
from  a  battery or  from  an AC supply. Power  consumption  increases  depending  on  the 
activity of peripherals, e.g. hard  disk  accesses,  display  activity,  etc.  There  is  therefore  a need 
to  manage  and  limit  computation  in  order  to  maximise  battery  life. 

Video  CODEC 
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Figure 10.13 Available  computational 
resources 
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These  scenarios  illustrate  the  need  for  a  more flexible approach  to  computation in a  video 
CODEC. In this  type of scenario,  computation  can no longer be considered to be a 
‘constant’. CODEC  performance  is now a  function of three  variables:  computational 
complexity,  coded bit rate  and  video  quality.  Optimising  the  complexity, rate and  distortion 
performance of a  video  CODEC  requires flexible control of computational  complexity  and 
this has led to the development of variable complexity algorithms  for  video  coding. 

10.3.2 Variable  Complexity  Algorithms 

A variable  complexity  algorithm  (VCA)  carries  out  a  particular  task with a controllable 
degree of computational  overhead. As discussed  above,  computation  is  often related to 
image  quality  and/or  compression  efficiency: in general,  better  image  quality  and/or  higher 
compression  require  a  higher  computational  overhead. 

Input-independent VCAs 

In this  class of algorithms,  the  computational  complexity of the  algorithm is independent of 
the  input  data.  Examples of input-independent  VCAs  include: 

Frame skipping: encoding  a  frame  takes  a  certain  amount of processing  resources and 
‘skipping’  frames  (i.e. not coding  certain  frames in the  input  sequence) is a  crude but 
effective way  of reducing  processor  utilisation.  The  relationship  between  frame  rate and 
utilisation  is not necessarily  linear in an inter-frame  CODEC: when the  frame rate is low 
(because of frame  skipping),  there is likely to be a larger  difference  between  successive 
frames  and  hence  more  data to code in the  residual  frame.  Frame  skipping may lead to a 
variable  frame  rate  as  the  available  resources  change  and  this  can be  very distracting  to 
the viewer. Frame  skipping  is widely used  in software  video  CODECs. 

Motion  estimation  (ME)  search window: increasing or decreasing the ME search window 
changes the computational overhead of motion estimation. The relationship between  search 
window  size  and  computational  complexity  depends  on  the  search  algorithm. Table 10.1 
compares  the  overhead of different  search  window  sizes  for  the  popular  n-step  search 
algorithm.  With no search,  only  the (0, 0) position is matched; with a  search window of 
+/-  1, a total of nine positions  are  matched; and so on. 

Table 10.1 Computational  overhead for n-step  search  (integer  search) 

Search  window 
Number of 

comparison  steps 
Computation 
(normalised) 

0 
+l-  1 
+ l - 3  
+ l - 7  

+l- 15 

1 
9 

17 
25 
33 

0.03 
0.27 
0.5 1 
0.76 
1 .o 
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Figure 10.14 Pruned DCT 

Pruned DCT: a  forward  DCT  (FDCT)  processes  a  block of samples  (typically 8 x 8) and 
produces  a  block of coefficients.  In  a  typical  image  block,  many of the  coefficients  are 
zero  after  quantisation  and  only  a few non-zero  coefficients  remain to be  coded  and 
transmitted.  These  non-zero  coefficients  tend  to  occupy  the  lower-frequency  positions in 
the  block. A 'pruned'  DCT  algorithm  only  calculates  a  subset of the 8 x 8 DCT 
coefficients  (usually  lower  frequencies),  reducing  the  computational  overhead of the 
DCT."." Examples of possible  subsets  are shown in  Figure 10.14: the  'full' 8 x 8 DCT 
may be  reduced  to  a 4 x 4 or 2 x 2 DCT, producing  only  low-frequency  coefficients. 
However, applying  a  pruned  DCT  to all blocks  means  that  the  small  (but  significant) 
number of high-frequency  coefficients  are  lost and this  can  have  a very visible  impact  on 
image  quality. 

Input-dependent  algorithms 

An input-dependent  VCA  controls  computational  complexity  depending  on  the  character- 
istics of the  video  sequence  or  coded  data.  Examples  include  the  following. 

Zero  testing in IDCT In a DCT-based CODEC  operating  at  medium  or low bit  rates, many 
blocks  contain  no AC coefficients  after  quantisation (i.e. only  the  DC  coefficient  remains,  or 
no  coefficients  remain). This may be  exploited  to  reduce  the  complexity of the IDCT (which 
must be  calculated  in  both  the  encoder and the  decoder  in an inter-frame  CODEC).  Each row 
or  column of eight  coefficients  is  tested  for  zeros. If the  seven  highest  coefficients  are all 
zero,  then  the row or column  will  contain  a  uniform  value  (the  DC  coefficient)  after  the 
IDCT. In this  case,  the  IDCT  may  be  skipped  and  all  samples  set  to  the DC value: 

if ( F 1  = F2 = F3 = F4 = F5 = F6 = F7 = 0 )  { 
f O  = f l = f 2  = f 3  = f 4   = f 5   = f 6 = f 7   = F 0  

} else { 

> 
[ c a l c u l a t e  the IDCT..] 



230 RATE,  DISTORTION  AND  COMPLEXITY 

There  is a small overhead associated with testing for zero: however, the  computational 
saving  can be very significant and there is no loss of quality. Further input-dependent 
complexity  reductions can be applied to  the IDCT.I2 

FDCT complexity reduction Many blocks contain few non-zero coefficients after 
quantisation (particularly in  inter-coded  macroblocks).  It is possible to predict the occur- 
rence of some of these  blocks  before  the  FDCT  is  carried out so that the  FDCT  and 
quantisation  steps  may  be  skipped,  saving  computation. The sum  of  absolute differences 
(SAD  or  SAE)  calculated during  motion estimation can  act as a useful predictor for these 
blocks.  SAD  is proportional to the  energy  remaining in the  block  after motion compensation. 
If SAD  is low, the  energy in the residual block is low and it is likely that the  block will 
contain  little  or  no  data  after  FDCT  and quantisation. Figure 10.15 plots the probability that a 
block  contains  no coefficients after  FDCT and quantisation, against SAD.  This implies that it 
should be  possible  to  skip  the  FDCT and quantisation steps for  blocks with an SAD of less 
than a threshold value T :  

if ( S A D < T )  { 

} e l s e  { 

} 

s e t b l o c k   c o n t e n t s t o   z e r o  

c a l c u l a t e  t h e  FDCT a n d   q u a n t i z e  

If we  set T = 200 then any  block with SAD < 200 will not be coded.  According  to the 
figure, this ‘prediction’ of zero coefficients will be correct 90% of the  time. Occasionally 
(10% of the  time in this case),  the prediction will fail, i.e. a block will be skipped that should 
have been encoded.  The reduction in complexity due  to skipping  FDCT  and quantisation for 
some blocks  is  therefore offset by an  increase in distortion due to incorrectly skipped 

0 x l 
200 400 600 800 1000 Figure 10.15 Probability of zero 

Sum of Absolute Differences block vs. SAD 



COMPUTATIONAL, COMPLEXITY 231 

Input-dependent  motion  estimation A  description  has  been given15  of a  motion  estima- 
tion  algorithm with variable  computational  complexity.  This  is  based  on  the  nearest 
neighbours  search (NNS) algorithm  (described  in  Chapter 6) ,  where  motion  search  positions 
are examined  in  a  series of ‘layers’  until  a  minimum is  detected.  The NNS algorithm is 
extended  to  a  VCA by adding  a  computational  constraint  on  the  number of layers  that  are 
examined  at  each  iteration of the  algorithm. As with  the SAD  prediction  discussed  above, 
this  algorithm  reduces  computational  complexity at the  expense of increased  coding 
distortion.  Other  computationally  scalable  algorithms  for  motion  estimation  algrithms are 
described el~ewhere.’~’’~ 

10.3.3 Complexity-Rate  Control 

The VCAs described  above  are  useful  for  controlling  the  computational  complexity of video 
encoding and decoding. Some  VCAs  (such  as  zero  testing  in  the  IDCT)  have  no  effect on 
image  quality;  however,  the  more  flexible and powerful  VCAs  (such  as  zero  DCT  prediction) 
do  have an effect  on  quality.  These  VCAs  may.also  change  the  coded  bit  rate:  for  example, if 
a  high  proportion of DCT  operations  are  ‘skipped’,  fewer  coded  bits  will  be  produced and the 
rate  will  tend  to  drop.  Conversely,  the ‘target’ bit  rate  can  affect  computational  complexity if 
VCAs  are  used.  For  example,  a  lower  bit  rate and higher  quantiser  scale will tend  to  produce 
fewer  DCT  coefficients  and  a  higher  proportion of zero  blocks,  reducing  computational 
complexity. 

Complexity - Rate - Distortion Surface 

0.5 0 Rate (kbps) 

Figure 10.16 Complexity-rate-distortion surface 
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It  is  therefore not necessarily correct  to treat complexity  control  and  rate control 
as  separate issues. An  interesting recent development is  the emergence of complexity- 
distortion theory.” Traditionally, video  CODECs  have been judged by their rate-distortion 
performance as described in Section 10.2.2. With  the introduction of VCAs,  it  becomes 
necessary to  examine performance in three axes: complexity, rate  and distortion. The 
‘operating point’ of a video  CODEC  is no longer restricted to a rate-distortion curve 
but  instead  lies  on a rate-distortion-complexity su@zce, like  the  example shown in 
Figure 10.16. Each  point  on this surface  represents a possible set of encoding parameters, 
leading  to a particular  set of values for  coded bit rate, distortion and  computational 
complexity. 

Controlling  rate involves moving the  operating point along this surface in the rate- 
distortion plane; controlling  complexity  involves  moving  the  operating  point  in  the  complexity- 
distortion plane. Because of the  interrelationship  between  computational  complexity and bit 
rate, it may be  appropriate  to  control  complexity  and  rate at the  same  time.  This new area of 
complexity-rate  control  is at a very early  stage and some preliminary results can be found 
elsewhere.14 

10.4 SUMMARY 

Many  practical  video  CODECs  have to operate in a rate-constrained environment. The 
problem of achieving  the best possible rate-distortion performance is  difficult to  solve 
and  optimum  performance  can only be obtained at the  expense of prohibitively high 
computational cost. Practical rate control algorithms  aim  to  achieve  good,  consistent  video 
quality within the constraints of rate,  delay  and complexity. Recent  developments in variable 
complexity  coding  algorithms enable a further trade-off between  computational complexity 
and distortion and  are likely to  become important  for  CODECs with limited computational 
resources  andlor  power  consumption. 

Bit  rate  is  one of a number of constraints  that  are  imposed by the transmission or storage 
environment. Video CODECs  are  designed  for use in communication  systems  and these 
constraints must be taken  into  account. In the next chapter we examine  the key ‘quality of 
service’  parameters  required by a video  CODEC and provided by transmission channels. 
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l 1  
Transmission of Coded  Video 

11.1 INTRODUCTION 

A video  communication  system  transmits  coded  video  data  across  a  channel or network  and 
the  transmission  environment  has  a  number of implications  for  encoding  and  decoding of 
video. The capabilities  and  constraints of the  channel  or  network vary considerably,  for 
example  from  low  bit  rate,  error-prone  transmission  over  a  mobile  network  to  high  bit  rate, 
reliable  transmission  over  a  cable  television  network.  Transmission  constraints  should  be 
taken  into  account  when  designing  or  specifying  video CODECs;  the  aim  is not simply  to 
achieve  the  best  possible  compression  but  to  develop  a  video  coding  system  that  is  well 
matched  to  the  transmission  environment. 

This  problem of ‘matching’  the  application  to  the  network  is  often  described as a  ‘quality 
of service’ (QoS) problem.  There  are two  sides  to  the  problem:  the QoS required by the 
application  (which  relates  to  visual  quality  perceived  by  the  user)  and  the QoS ofleered by the 
transmission  channel or network  (which  depends  on  the  capabilities of the network).  In  this 
chapter  we  examine QoS from  these  two  points of  view and  discuss  design  approaches  that 
help  to  match  the  offered  and  required QoS. We describe  two  examples of transmission 
scenarios  and  discuss  how  these  scenarios  influence  video  CODEC  design. 

11.2 QUALITY OF SERVICE REQUIREMENTS 
AND CONSTRAINTS 

11.2.1 QoS Requirements for Coded Video 

Successful  transmission of coded  video  places  a  number of demands  on  the  transmission 
channel  or  network.  The  main  requirements (‘QoS requirements’)  for  real-time  video 
transmission  are  discussed below. 

Data rate 

A video  encoder  produces  coded  video  at  a  variable  or  constant  rate  (as  discussed  in 
Chapter 10). The key  parameters for transmission  are  the mean bit  rate  and  the variation of 
the  bit  rate. 

Video Codec Design
Iain E. G. Richardson
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The  mean  rate  (or  the  constant rate  for CBR video)  depends on the  characteristics of the 
source  video  (frame  size,  number of bits  per  sample,  frame  rate,  amount of motion,  etc.)  and 
on  the  compression  algorithm.  Practical  video  coding  algorithms  incorporate a degree of 
compression  control  (e.g.  quantiser  step  size  and  mode  selection)  that  allows  some  control of 
the  mean  rate  after  encoding.  However,  for  a  given  source  (with a particular  frame  size  and 
frame rate)  there is  an  upper  and lower  limit  on  the  achievable  mean  compressed  bit  rate. For 
example,  ‘broadcast TV quality’  video  (approximately 704 x S76 pixels  per  frame,  25  or 
30 frames  per  second)  encoded  using  MPEG-2  requires  a  mean  encoded  bit  rate of around 
2-5 Mbps  for  acceptable  visual  quality. In order  to  successfully  transmit  video  at  ‘broadcast’ 
quality,  the  network or  channel  must  support at  least  this bit rate. 

Chapter IO explained how the  variation  in  coded  bit  rate  depends  on  the  video  scene 
content  and on the  type of rate  control  algorithm used. Without  rate  control,  a  video CODEC 
tends  to  generate  more  encoded  data when  the  scene  contains  a  lot of spatial  detail  and 
movement  and  less  data  when  the  scene is relatively  static.  Different  encoding  modes  (such 
as I, P or  B-pictures  in  MPEG  video)  produce  varying  amounts of coded  data. An output 
buffer  together  with a rate  control  algorithm  may  be  used  to  ‘map’  this  variable  rate  to  either 
a constant  bit  rate  (no  bit  rate  variation)  or  a  variable bit rate  with  constraints  on  the 
maximum  amount of variation. 

Distortion 

Most of the  practical  algorithms  for  encoding of real-time  video  are  lossy, i.e. some 
distortion  is  introduced  by  encoding  and  the  decoded  video  sequence  is not identical to 
the  original  video  sequence. The  amount of distortion  that  is  acceptable  depends on the 
application. 

Example 1 

A movie  is  displayed on a  large,  high-quality  screen at  HDTV resolution.  Capture  and 
editing of the  video  material  is of a very high  quality  and  the  viewing  conditions  are  good. 
In  this  example,  there  is  likely  to  be a low  ‘threshold’ for distortion  introduced by the 
video  CODEC,  since any  distortion  will  tend to  be  highlighted by the  quality of the 
material  and  the  viewing  conditions. 

Example 2 

A small  video  ‘window’  is  displayed  on a PC as part of a  desktop  video-conferencing 
application.  The  scene  being  displayed  is poorly  lit;  the  camera  is  cheap  and  placed at an 
inconvenient  angle;  the  video  is  displayed  at a low  resolution  alongside a number of other 
application  windows. In this  example, we might  expect  a  relatively  high  threshold  for 
distortion.  Because of the  many  other  factors  limiting  the  quality of the  visual  image, 
distortion  introduced  by  the  video  CODEC  may not be  obvious  until it reaches  significant 
levels. 
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Ideally,  distortion due  to  coding should  be  negligible, i.e. the  decoded  video  should  be 
indistinguishable  from  the  original  (uncoded)  video.  More  practical  requirements for 
distortion  may  be  summarised as follows: 

1. 

2. 

Distortion  should  be  ‘acceptable’  for  the  application.  As  discussed  above,  the  definition 
of ‘acceptable’ vanes  depending  on  the  transmission  and  viewing  scenario:  distortion  due 
to  coding  should  preferably not be the  dominant  limiting  factor  for  video  quality. 

Distortion  should be near  constant  from  a  subjective  viewpoint.  The  viewer will quickly 
become  ‘used’ to a  particular  level of video  quality.  For  example,  analogue VHS video  is 
relatively  low  quality  but  this  has  not  limited  the  popularity of the  medium  because 
viewers  accept  a  predictable  level of distortion.  However,  sudden  changes in quality  (for 
example,  ‘blocking’  effects  due  to  rapid  motion  or  distortion due  to transmission  errors) 
are  obvious to the  viewer  and  can  have  a  very  negative  effect on perceived quality. 

Delay 

By its  nature,  real-time  video is sensitive  to delay. The QoS requirements  in  terms of delay 
depend  on  whether  video  is  transmitted  one  way (e.g. broadcast  video,  streaming  video, 
playback  from a storage  device) or two  ways  (e.g.  video  conferencing). 

Simplex (one-way)  video  transmission  requires  frames of video  to  be  presented  to  the  viewer 
at  the  correct  points in time.  Usually,  this  means  a  constant  frame  rate; in the  case  where  a 
frame is not  available  at  the  decoder  (for  example,  due  to  frame  skipping  at  the  encoder),  the 
other  frames  should  be  delayed  as  appropriate so that  the  original  temporal  relationships 
between  frames  are  preserved.  Figure 11.1 shows  an  example:  frame 3 from  the  original 
sequence  is  skipped by the  encoder  (because  of  rate  constraints)  and  the  frames  arrive  at  the 
decoder in order I ,  2 ,4 ,5 ,6 .  The  decoder  must ‘hold’  frame 2 for  two  frame  periods so that 
the  later  frames (4, 5 ,  6) are not displayed  too  early  with  respect to  frames l and 2. In effect, 
the CODEC maintains  a  constant  delay  between  capture  and  display of frames. Any 
accompanying  media that is ‘linked’ to  the video  frames  must  remain  synchronised:  the 
most  common  example  is  accompanying  audio,  where  a loss of synchronisation of more  than 
about 0.1 S can  be  obvious  to  the viewer. 

[ T I  F/ skip 151 18) Encoded frames frame 3 
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Figure 11.1 Preserving  temporal  relationship  between  frames 
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Duplex (two-way)  video  transmission  has  the  above  requirements  (constant  delay  in  each 
direction,  synchronisation  between  related  media)  plus  the  requirement  that  the  total  delay 
from  capture to display  must be  kept low. A ‘rule of thumb’  for  video  conferencing is to  keep 
the  total  delay  less  than 0.4 S.  If the  delay is longer  than  this,  normal  conversation  becomes 
difficult  and  artificial. 

Interactive  applications,  in  which  the viewer’s actions  affect  the  encoded  video  material, 
also  have a requirement of  low delay. An example  is  remote ‘VCR’ controls (play, stop,  fast 
forward,  etc.)  for a streaming  video  source. A long  delay  between  the user action (e.g. 
fast  forward  button)  and  the  corresponding  effect  on  the  video  source  may  make  the 
application  feel  ‘unresponsive’. 

Figure 11.2 illustrates  these  three  application  scenarios. 

Encoder  Decoder 
Capture U -  - 
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Figure 11.2 Delay scenarios 
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11.2.2 Practical QoS Performance 

The previous  section  discussed  the QoS requirements for  coded  video  transmission;  the  other 
side of the  equation  is  the QoS that  can  be provided by  practical  transmission  environments. 

Data rate 

Circuit-switched  networks such  as  the  PSTN/POTS  provide a  constant  bit  rate  connection. 
Examples  include  33.6  kbps  for  a  two-way  modem  connection  over an analogue  PSTN  line; 
56 kbps  ‘downstream’  connection  from an Internet  service  provider  (ISP)  over an analogue 
PSTN  line; 128 kbps  over  basic  rate  ISDN. 

Packet-switched networks such  as  Internet  Protocol (IP) and  Asynchronous  Transfer  Mode 
(ATM) provide  a  variable  rate  packet  transmission  service. This  implies  that  these  networks 
may  be  better  suited  to  carrying  coded  video  (with  its  inherently  variable  bit  rate).  However, 
the  mean  and  peak  packet  transmission  rate  depend  on  the  capacity of the  network  and may 
vary depending  on  the  amount of other traffic in the  network. 

The data  rate of a digital  subscriber line connection  (e.g.  Asymmetric  Digital  Subscriber 
Line, ADSL) can  vary  depending  on  the  quality of the  line  from  the  subscriber  to  the  local 
PSTN  exchange  (the ‘local loop’). The end-to-end  rate  achieved  over  this  type of connection 
may  depend  on  the ‘core’ network  (typically  IP)  rather  than  the  local ADSL connection  speed. 

Dedicated  transmission  services such  as  satellite  broadcast,  terrestrial  broadcast  and  cable 
TV provide  a  constant  bit  rate  connection  that is matched  to  the QoS requirements of 
encoded  television  channels. 

Errors 

The circuit-switched PSTN and  dedicated  broadcast  channels  have  a  low  rate of bit  errors 
(randomly  distributed,  independent  errors,  case  (a)  in  Figure 11.3). Packet-switched 

I I I 

\\ / 
Transmitted  bit 
sequence 

(a) Bit  errors 

(b) Lost packets 

(c) Burst  errors 

Figure 11.3 (a) Bit errors; (b) lost packets; (c) burst errors 
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networks such as IP usually have a low bit error  rate  but  can  suffer from packet  loss  during 
periods of network  connection  (loss of the data  ‘payload’ of a complete network  packet, 
case (b) in Figure 11.3). Packet  loss  is  often  ‘bursty’, i.e. a  high  rate of packet  loss may be 
experienced  during a particular  period  followed by a  much  lower  rate of loss. Wireless 
networks  (such as wireless LANs and  personal communications networks)  may  experience 
high bit error  rates  due  to  poor propagation  conditions.  Fading of the  transmitted  signal can 
lead to bursts of bit errors in this  type of network  (case  (c) in Figure  l 1.3, a  sequence of bits 
containing  a  significant number of bit errors).  Figure 11.4 shows  the  path loss (i.e. the 
variation in received  signal  power)  between  a  base  station  and  receiver in a  mobile  network, 
plotted as a function of distance. A  mobile  receiver  can  experience  rapid  fluctuations in 
signal  strength (and hence in error  rates) due to  fading  effects  (such as the variation with 
distance  shown in the  figure). 

Delay 

Circuit-switched  networks  and  dedicated  broadcast  channels  provide  a  near-constant, 
predictable  delay.  Delay  through  a  point-to-point  wireless  connection is usually predictable. 
The  delay through  a  packet-switched  network may be highly  variable,  depending on the  route 
taken by the  packet  and the  amount of other traffic. The delay  through  a  network node, for 
example, increases  if the traffic arrival rate is higher than the processing  rate of the node. 
Figure 11.5 shows how two  packets may experience very different  delays as they traverse  a 
packet-switched  network. In this  example,  a  packet  following  route A passes  through  four 
routers  and  experiences  long queuing delays  whereas  a  packet  following  route B passes 
through two routers with very little  queuing time.  (Some improvement may be gained by 
adopting  virtual  circuit  switching  where  successive  packets from the same source  follow 
identical  routes.)  Finally,  automatic  repeat  request  (ARQ)-based  error  control  can  lead  to 
very variable  delays  whilst  waiting for packet  retransmission, and so ARQ  is not  generally 
appropriate  for  real-time  video  transmission  (except in certain  special cases for  error 
handling,  described  later). 
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Figure 11.4 Path loss variation with  distance 
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Figure 11.5 Varying delays within a packet-switched network 

11.2.3 Effect of QoS Constraints  on  Coded  Video 

The practical QoS constraints  described  above  can  have a significant  effect  on  the  quality 
and  performance of video  applications. 

Data rate 

Most  transmission  scenarios  require some form of rate  control  to  adapt  the inherently 
variable  rate  produced  by a video  encoder  to a  fixed or  constrained  bit  rate  supported by  a 
network  or  channel. A rate  control  mechanism  generally  consists of an  output  buffer  and a 
feedback  control  algorithm;  practical  rate  control  algorithms  are  described  in  Chapter 10. 

Errors 

A bit error in a  compressed  video  sequence can  cause a  ‘cascade’  of effects that may  lead to severe 
picture  degradation. The following example illustrates the potential effects of a  single bit error: 

1. A single  bit  error  occurs  within  variable-length  coded  transform  coefficient  data. 

2.  The coefficient  corresponding  to  the  affected VLC is  incorrectly  decoded.  Depending on 
the  magnitude of the  coefficient,  this  may  or  may not have a visible  effect  on  the  decoded 
image.  The  incorrectly  decoded  coefficient  may  cause  the  current 8 x 8 block  to  appear 
distorted. If the  current  block is a luminance  block,  this will affect 8 x 8 pixels  in  the 
displayed  image; if the  current  block  contains  chrominance  data,  this will affect 16 x 16 
pixels  (assuming 4 : 2 : 0 sampling of the  chrominance). 

3. Subsequent  VLCs  may  be  incorrectly  decoded  because  the  error  changes a  valid VLC 
into  another valid (but  incorrect)  VLC.  In  the  worst  case, the  decoder  may  be  unable  to 
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4. 

regain synchronisation with the correct  sequence of syntax elements.  The  decoder  can 
always recover  at  the next resynchronisation  marker  (such  as  a  slice  start code [MPEG-21 
or GOB header [MPEG-4/H.263]). However,  a  whole  section of the current  frame may be 
corrupted  before  resynchronisation  occurs. This effect  is  known as spatial erwr propaga- 
tion, where  a  single  error  can  cause  a  large  spatial  area of the  frame  to  be  distorted. 
Figure 11.6 shows an example: a  single  bit  error  affects  a  macroblock  in  the  second-last 
row in  this  picture  (coded  using MPEG-4). Subsequent  macroblocks are  incorrectly 
decoded  and  the  errored region propagates until  the  end of the row of macroblocks 
(where a GOB header  enables  the  decoder  to  resynchronise). 

If the  current  frame  is used as a prediction  reference  (e.g. an I- or  P-picture in MPEG or 
H.263), subsequent  decoded  frames are predicted  from the  distorted  region.  Thus  an 
error-free  decoded  frame  may  be  distorted  due  to  an  error  in  a  previous  frame  (in 
decoding  order):  the  error-free  frame  is  decoded  to  produce  a  residual  or  difference  frame 
which is then  added  to  a  distorted  reference  frame  to  produce  a new distorted  frame.  This 
effect  is tewporal  error  propagation and  is  illustrated  in  Figure 11.7. The  two  frames 

(a)  (b) 
Figure 11.7 Example of temporal  error  propagation 
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(a) Error  in frame 1 
(b) Error  spreads  into  neighbouring  macroblocks 
in  frame 2 due to motion  compensation 

Figure  11.8 Increase in errored  area  during  temporal  propagation 

here  were  predicted  from  the  errored  frame  shown  in  Figure 11.6: no further  errors  have 
occurred, but the  distorted  area  continues  to  appear  in  further  predicted  frames.  Because 
the  macroblocks of the  frames  in  Figure 1 1.7 are  predicted  using  motion  compensation, 
the  errored  region  changes  shape. The corrupted  area  may  actually  increase in  subsequent 
predicted  frames,  as  illustrated in Figure 11.8: in  this  example,  motion  vectors  for 
macroblocks  in  frame 2 point  ‘towards’ an errored  area in frame 1 and so the  error 
spreads  out in frame 2.  Over  a  long  sequence of predicted  frames, an errored  region  will 
tend to  spread out  and  also to  fade as it is  ‘added  to’ by successive  correctly  decoded 
residual  frames. 

In practice,  packet  losses  are  more  likely  to  occur  than bit errors  in  many  situations.  For 
example,  a  network  transport  protocol  may  discard  packets  containing  bit  errors.  When  a 
packet  is  lost,  an  entire  section of coded  data is discarded. A large  section of at least  one 
frame  will  be  lost  and  this  area  may  be  increased  due  to  spatial  and  temporal  propagation. 

Delay 

Any  delay  within  the  video  encoder  and  decoder  must  not  cause  the  total  delay  to  exceed  the 
limits  imposed  by  the  application (e.g. a total  delay of 0.4s for  video  conferencing). 
Figure  11.9  shows  the  main  sources of delay  within  a  video  coding  application:  each of the 
components  shown  (from  the  capture  buffer  through  to  the  display  buffer)  introduces  a  delay. 
(Note  that  any multiplexing/packetising delay is assumed  to be included in the  encoder 
output  buffer  and  decoder  input buffer.) 

Capture  Output  Input  Dlsplay  Dlsplay 
buffer buffer buffer 

Figure  11.9 Sources of delay in a video CODEC application 
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The delay  requirements place a  constraint  on  certain  aspects of the CODEC, including 
bidirectional  prediction  and output buffering.  B-pictures  (supported by the  MPEG  and  H.263 
standards) are predicted from two  reference frames,  one past,  one  future. The use of 
B-pictures introduces  an  extra delay of one frame in the  decoder and at  least  one frame in the 
encoder (depending on  the  number of B-pictures  between  successive  reference  pictures) and 
so the improved  compression efficiency of B-pictures  needs to  be balanced with delay 
constraints.  A  large encoder  output buffer makes it easier  to  ‘smooth’  variations in encoded 
bit rate  without  rapid changes  in quantisation  (and  hence  quality): however, delay through 
the CODEC increases as  the buffer  size  increases  and so delay  requirements  limit the size of 
buffer that may be used. 

11.3 DESIGN FOR OPTIMUM QoS 

The problem of providing acceptable quality video over  a channel with QoS constraints  can 
be addressed by considering  these  constraints in the design  and  control of a  video CODEC. 
There  are a number of mechanisms  within  the  video coding standards  that may be exploited 
to maintain acceptable  visual  quality. 

11.3.1 Bit Rate 

Many  different approaches to  video  rate  control  have  been  proposed and video  quality may 
be maximised by careful choice of a  rate  control  algorithm to match the type of video 
material  and  the  channel  characteristics. Chapter 10 discusses  rate  control in detail: the aims 
of a  rate  control  algorithm  (often  conflicting)  are  to  maximise  quality  within  the bit rate and 
delay  constraints of the channel  and the application. Tools that  may be used to achieve  these 
aims  include quantisation control, encoding  mode  selection  and (if necessary)  frame  skipp- 
ing. Further  flexibility in the  control of encoder bit rate  is  provided by some of the optional 
modes of H.263+ and MPEG-4,  for example: 

0 Reference picture  resampling (H.263+ Annex P) enables an encoder  to  change  frame 
resolution ‘on the fly’. With this optional mode, a picture encoded at the new resolution may be 
predicted from a  resampled  reference  picture  at  the  old  resolution.  Changing  the  spatial 
resolution can significantly change the encoded bit rate without interrupting the flow of frames. 

0 Object-based coding (MPEG-4)  enables  individual  ‘objects’  within  a  video  scene  (for 
example, foreground  and  background)  to be encoded  largely  independently. This can 
support flexible rate  control by, for  example, reducing  the  quality  and frame update  rate of 
less important background  objects  whilst  maintaining high quality and update  rate  for 
visually  significant  foreground  objects. 

11.3.2 Error Resilience 

Performance in the  presence of errors can be improved  at  a  number of stages in the CODEC 
<chain> 1-3 ’ , including  the  following. 
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Encoder 

Resynchronisation  methods  may  be  used to limit error  propagation.  These  include restart 
markers (e.g. slice start code,  GOB  header)  to limit spatial  error  propagation,  intra-coded 
pictures  (e.g.  MPEG I-pictures) to limit temporal  error  propagation  and  intra-coded  macro- 
blocks to ‘force’ an error-free update of a  region of the p i ~ t u r e . ~  Splitting  an  encoded  frame 
into  sections that may  be  decoded  independently  limits  the  potential  for  error  propagation 
and  H.263+  Annex  R  (independent  segment  decoding)  and  the  video  packet  mode of 
MPEG-4  support this. A  further  enhancement of error  resilience  is  provided by the  optional 
reversible  variable  length  codes  (RVLCs)  supported by MPEG-4  and  described in Chapter 8. 
Layered  or  scalable  coding  (such as the  four  scalable  modes of MPEG-2)  can  improve 
performance in the  presence of errors. The ‘base’ layer in a  scalable  coding  algorithm is 
usually  more  sensitive to  errors  than  the  enhancement  layer (S), and  some  improvement in 
error  resilience  has  been  demonstrated  using unequal  error  protection, i.e. applying 
increased  error  protection to the  base layer.3 

Channel 

Suitable  techniques  include  the  use of error  control  coding536  and ‘intelligent’ mapping 
of coded  data  into  packets. The  error  control  code  specified in H.261  and  H.263 (a  BCH 
code)  cannot  correct  many  errors.  More  robust  coding  may  be  more  appropriate (for 
example,  concatenated  Reed-Solomon  and  convolutional  coding  for  MPEG-2 terrestrial or 
satellite  transmission,  see  Section 11.4.1). Increased  protection  from  errors  can  be  provided 
at the  expense of higher  error  correction  overhead in transmitted  packets.  Careful  mapping 
of encoded  data  into  network  packets  can  minimise  the  impact of a  lost  packet.  For  example, 
placing  an  independently  decodeable  unit  (such as an  independent  segment  or  video  packet) 
into  each  transmitted  packet  means that a lost packet will affect  the  smallest  possible  area of 
a decoded  frame (i.e. the  error will not  propagate spatially beyond  the  data  contained  within 
the  packet). 

Decoder 

A transmission  error  may  cause  a ‘violation’ of the  coded  data  syntax  that  is  expected at the 
decoder.  This  violation  indicates the  approximate  location of the  corresponding  errored 
region  in  the  decoded  frame.  Once  this is known,  the  decoder  may  implement error 
concealment to minimise  the  visual  impact of the error. The  extent of the  errored  region 
can  be  estimated  once  the  position of the  error  is  known,  as  the  error will usually  propagate 
spatially up to the  next  resynchronisation  point  (e.g.  GOB  header or slice start code).  The 
decoder  attempts to conceal  the  errored  region  by  making  use of spatially and  temporally 
adjacent  error-free  regions. A number of error  concealment  algorithms exist and  these 
usually  take  advantage of the  fact that a  human  viewer  is  more  sensitive to low-frequency 
components  in  the  decoded  image. An error  concealment  algorithm  attempts to restore  the 
low-frequency  information  and (in some  cases)  selected  high-frequency  information. 

Spatial error concealment repairs  the  damaged  region by interpolation  from  neighbouring 
error-free  pixels.’  Errors  typically affect a ‘stripe’ of macroblocks  across  a  picture  (see  for 
example  Figure 11.6) and so the  best  method of interpolation  is to use  pixels  immediately 
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1 st errored 1 macroblock 

Figure 11.10 Spatial  error  concealment 

above and below  the damaged  area  as shown in Figure 1 1.10. A spatial  filter may be used to 
‘smooth’  the  boundaries of the  repaired  area.  More  advanced  concealment  algorithms 
attempt  to  maintain  significant  features  such as edges  across  the  damaged  region.  This 
usually  requires  a  computationally  complex  algorithm,  for  example  using  projection  onto 
convex  sets  (see  Section 9.3, ‘Post-filtering’). 

Temporal error concealment copies  data  from  temporally  adjacent  error-free  frames  to 
hide  the  damaged a ~ - e a . ~ , ~  A simple  approach  is  to  copy  the  same  region  from  the  previous 
frame  (often  available  in  the  frame  store  memory  at  the  decoder). A problem  occurs when 
there  is a change  between  the  frames  due  to  motion:  the  copied  area  appears  to be ‘offset’ 
and  this  can  be  visually  disturbing.  This  effect  can  be  reduced by compensating  for  motion 
and  this  is  straightforward if motion  vectors  are  available  for  the  damaged  macroblocks. 
However, in many  cases  the  motion  vectors  may  be  damaged  themselves  and must be 
reconstructed,  for  example by interpolating  from  the  motion  vectors of undamaged  macro- 
blocks.  Good  results  may  be  obtained by re-estimating  the  motion  vectors in the  decoder, but 
this  adds  significantly  to  the  computational  complexity. 

Figure 1 1. l 1 shows how the  error-resilient  techniques  described  above may be applied  to 
the  encoder,  channel  and  decoder. 

Combined approach 

Recently,  some  promising  methods  for  error  handling  involving  cooperation  between 
several  stages of the  transmission  ‘chain’  have  been  proposed.9-”  In  a  real-time  video 

t 
Synchronisation  markers  Error  control  coding  Error  detection 

Intra-coding  Packetisation  Spatial  concealment 
Reversible VLCs Temporal  concealment 

Unequal error protection 

Figure 11.11 Application of error-resilient  techniques 
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communication  system it is not usually possible  to  retransmit  damaged or lost  packets due  to 
delay  constraints: however, it  is  possible  for  the decoder  to signal  the  location of a lost 
packet  to  the  encoder. The  encoder can  then determine the  area of the  frame  that  is  likely  to 
be affected by the error (a larger  area  than  the  original  errored  region due  to motion- 
compensated  prediction  from the errored  region)  and encode macroblocks in this area using 
intra-coding. This will have  the  effect of ‘cleaning up’ the  errored  region once the  feedback 
message  is  received. Alternatively, the  technique of reference  picture  selection  enables the 
encoder (and  decoder)  to  choose  an  older,  error-free frame for  prediction of the  next  inter- 
frame  once the position of the error  is  known.  This  requires both encoder and decoder  to 
store  multiple  reference  frames. The reference  picture  selection  modes of H.263 + (Annex N 
and  Annex U) may be used for this purpose. 

These two  methods of incorporating  feedback  are  illustrated in Figures  11.12 and 11.13. 
In  Figure  11.12,  an  error  occurs  during  transmission of frame 1. The decoder  signals the 
estimated  location of the  error  to the encoder:  meanwhile,  the  error  propagates  to  frames  2 
and 3 and  spreads  out due to  motion  compensation. The  encoder estimates the likely  spread 
of the damaged  area and intra-codes  an  appropriate  region of frame 4. The intra-coded 
macroblocks  halt the temporal  error  propagation and ‘clean up’ decoded  frames 4 and 
onwards. In Figure 1 1.13, an  error  occurs in frame 1 and  the  error is signalled  back  to  the 
encoder by the decoder. On  receiving  the notification, the encoder  selects a known ‘good’ 
reference  frame  (frame 0 in this case) to  predict  the  next frame (frame 4). Frame 4 is  inter- 
coded by motion-compensated  prediction  from frame 0 at  the  encoder. The decoder  also 
selects frame 0 for  reconstructing  frame 4 and  the  result  is an error-free frame 4. 

11.3.3 Delay 

The components shown in Figure  1 1.9 can  each  add to the  delay  (latency)  through  the  video 
communication  system: 

Encoder intr acode  this atea 

Decoder initial error  temporal  propagation  error‘cleaned  up’ 

Figure 11.12 Error tracking  via  feedback 
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predict from  older  reference frame 

predict  from  older  reference  frame 

Decoder 
Figure  11.13 Reference picture  selection 

0 Capture  buffer: this  should  only  add  delay if the  encoder  ‘stalls’, i.e. it takes  too  long to 
encode  incoming  frames.  This  may  occur  in  a  software  video  encoder  when  insufficient 
processing  capacity  is  available. 

Encoder: I- and  P-frames  do not  introduce  a  significant  delay:  however,  B-picture  coding 
requires  a  multiple  frame  delay  (as  discussed  in  Chapter  4)  and so the  use of B-pictures 
should  be  limited  in  a  delay-sensitive  application. 

0 Output bufleer: the  output  buffer  adds  a  delay  that  depends  on  its  maximum  size  (in  bits). 
For  example, if the  channel  bit  rate is 64 kbps,  a  buffer of 32  kbits  adds  a  delay of 0.5 S. 

Keeping  the  buffer  small  minimises  delay,  but  makes it difficult to maintain  consistent 
visual  quality  (as  discussed in Chapter 10). 

NetworWchannel: if a  resource  reservation  mechanism  (such as those  provided  by  RSVP 
[resource  reservation  protocol] in  the  Internet,  see  Section  11.4.2)  is  available, it may  be 
possible  to  reserve a  path  with  a  guaranteed  maximum  delay.  However,  many  practical 
networks  cannot  guarantee  a  particular  delay  through  the  network.  The  best  alternative 
may be  to use a  ‘low  overhead’  transport  protocol  such  as  the  user  datagram  protocol 
(UDP), perhaps in conjunction  with  a  streaming  protocol  such  as  the  real  time  protocol 
(RTP)  (see  Section  11.4.2). 

0 Input  buffer: the  decoder  input  buffer  size  should  be  set  to  match  the  encoder  output 
buffer. If the  encoder  and  decoder  are  processing  video  at  the  same  rate  (i.e.  the  same 
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number of frames  per  second),  the  decoder  input  buffer  does not add  any  additional delay. 
(It can be shown12 that  the sum of the encoder buffer contents  and  decoder  buffer  contents 
is a  constant if network  delay  is  constant). 

0 Decoder: the  use of B-pictures  adds at most one frame’s  delay  at the decoder  and so this 
is not such a  critical  issue as  at the encoder. 

0 Display  buffer: as with  the  capture buffer, the display buffer should not add  a significant 
delay  unless  a queue of decoded  frames  is  allowed to build up due to  variable  decoding 
speed.  In  this  case, the decoder  should  pause until the  correct  time for decoding  a  frame. 

11.4 TRANSMISSION SCENARIOS 

The design  constraints  and  performance  goals for a  video CODEC are very dependent on the 
communications  environment for which it is intended.  Transmission  scenarios  for  video 
communications  applications  range  from  high bit rate,  high  integrity  transmission  (e.g. 
television  broadcasting) to low bit rate,  unreliable  environments (e.g. packet-based  transmis- 
sion  over  the Intemetl3). A  number of ‘framework’  protocols have been  developed to 
support  video  and  audio  transmission  over  different  environments  and  some  examples  are 
listed in Table 11.1. 

In this  section  we  choose  two  popular  transmission  environments  (digital television and 
LANAntemet)  and  describe the protocols used for  video  transmission  and  their  impact  on the 
design of video  CODECs. 

11.4.1 Digital  Television  Broadcasting: MPEG-2 Systems/Transport 

The  MPEG-2 family of standards was developed with the aim of supporting  ‘television- 
quality’  digital  transmission of video and audio programmes. The video  element  is  coded 
using MPEG-2 (Video)  (described in Chapter 4) and the audio  element  is  typically  coded 
with MPEG-2 (Audio)  Layer 3 (‘MP3’). These elements are combined  and  transmitted via 
the MPEG-2 ‘Systems’ framework. 

MPEG-2 transmission  is  currently used in a  number of environments  including  terrestrial 
radio  transmission,  direct  broadcasting via satellite  (DBS)  and cable  TV (CATV). MPEG-2 
is  also  the  chosen  standard  for  video  storage  and  playback  on  digital  versatile  disk (DVD). 
These transmission  environments have a  number of differences  but they typically  have  some 
common  characteristics:  a fixed, ‘guaranteed’ bit rate,  a  predictable  transmission  delay and 
(usually)  predictable  levels of noise  (and  hence  errors). 

Table 11.1 Transmissiodstorage  environments  and  protocols 

Environment  Protocols  Notes 

PSTNASDN H.320,I4 H.32415 Constant bit rate, low  delay  networks 
LANAP H.323I6 Variable packet rate, variable  delay, 

Digital  television  broadcasting MPEG-2  Systems” Constant  bit rate, error  rates  depend  on 
unreliable  transmission 

transmission  medium 
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MPEG-2  (Systems)  describes  two  methods of multiplexing  audio,  video  and  associated 
information,  the  program  stream  and  the  transport  stream.  In  each  case,  streams of coded 
audio,  video,  data  and  system  information  are first packetised  to  form  packetised  elementary 
stream  packets (PES packets). 

The program stream 

This  is  the  basic  multiplexing  method,  designed  for  storage  or  distribution in a (relatively) 
error-free  environment. A program  stream  carries  a  single program (e.g.  a  television 
programme) and  consists of a  stream of PES  packets  consisting of the  video,  audio  and 
ancillary  information  needed  to  reconstruct  the  program.  PES  packets may be of variable 
length  and  these  are  grouped  together in pucks, each of which  starts  with  a  pack  header. 

Accurate  timing  control is essential  for  high-quality  presentation  of  video  and  audio  and 
this is achieved by a  system of time  references and time  stamps. A decoder  maintains  a  local 
system  time  clock  (STC).  Each  pack  header  contains  a  system  clock  reference (SCR) field 
that  is  used  to  reset  the  decoder STC prior  to  decoding of the  pack.  PES  packets  contain  time 
stamps and the  decoder  uses  these  to  determine  when  the  data  in  each  packet  should be 
decoded  and  presented. In this way, accurate  synchronisation  between  the  various  data 
streams is achieved. 

The transport stream 

The transport  stream  (TS)  is  designed  for  transmission  environments  that  are  prone  to  errors 
(such  as  terrestrial or  satellite  broadcast).  The  basic  element of the TS is the  PES  packet. 
However,  variable-length  PES  packets  are  further  packetised  to  form fixed length TS packets 
(each  is 188 bytes)  making it easier  to  add  error  protection  and  identify  and  recover  from 
transmission  errors. A  single  TS may carry  one or more  programs  multiplexed  together. 
Figure 11.14 illustrates  the way in which  information  is  multiplexed  into  programs  and  then 
into  TS packets. 

Program 
.............................................................................. 

System, 
other data 

........................................... 

Modulate 
and 

transmit PES packets 
from other L 
programs 

TS 
packets 

Figure 11.14 Transport stream multiplexing 
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Figure 11.15 Transport  stream demultiplexing 

Two levels of error  correcting  coding  provide  protection  from  transmission  errors.  First, 
16  parity  bytes  are  added  to  each  188  byte  TS  packet  to  form  a  204-byte  Reed-Solomon 
codeword and the  stream of codewords  are  further  protected  with  a  convolutional  code 
(usually  a 718 code,  i.e.  the  encoder  produces  8  output  bits  for  every  7  input  bits).  The  total 
error  coding  overhead is approximately  25%.  The  ‘outer’  convolutional  code  can  correct 
random  bit  errors  and  the  ‘inner’ Reed-Solomon  code  can  correct burst  errors  up  to  64  bits in 
length. 

Figure 1 l .  15 illustrates  the  process of demultiplexing and decoding  an  MPEG-2  TS.  After 
correcting  transmission  errors,  the  stream of TS  packets  are  demultiplexed  and  PES  packets 
corresponding  to  a  particular  program  are  buffered  and  decoded.  The  decoder  STC  is 
periodically  updated when a  SCR  field  is  received  and  the  STC  provides  a  timing  reference 
for  the  video  and  audio  decoders. 

Implications for video CODEC design 

The  characteristics of a  typical  MPEG-2  program  are  as  follows: 

ITU-R  601  resolution  video, 25 or 30 frames  per  second 

0 Stereo  audio 

Video  coded  to  approximately 3-S Mbps 

Audio  coded  to  approximately 300 kbps 

0 Total programme bit  rate  approximately  6Mbps 

An MPEG-2  video  encodertdecoder  design  aims  to  provide  high-quality  video  within  these 
transmission  parameters.  The  channel  coding  (Reed-Solomon and convolutional  ECC)  is 
designed  to  correct  most  transmission  errors  and  error-resilient  video  coding  is  generally 
limited  to  simple  error  recovery  (and  perhaps  concealment) at the  decoder  to  handle  the 
occasional  uncorrected  error.  The  STC and the use of time  stamps in each  PES  packet 
provide  accurate  synchronisation. 
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11.4.2 Packet Video: H.323 Multimedia  Conferencing 

H.323  is  an  ITU-T  ‘umbrella’  standard,  describing  a  framework  for  multimedia  commu- 
nications  over  local area  networks (LANs) and  IP-based  networks  that  do not support 
guaranteed  QoS.  Since  its  release  in  1996,  H.323  has  gained  popularity  in  Internet-based 
video  and  audio  applications. 

H.323  defines basic  audio  and  video  coding  functionalities so that  H.323-compliant 
devices  and systems  should  be  able  to  inter-operate with at least  a  minimum set of communi- 
cation  capabilities.  H.323  provides  independence  from  a  particular  network  or  platform  (for 
example, by supporting translation  between  protocol  frameworks  for  different  network 
environments).  It  can  assist  with  call  set-up  and  management within  a controlled ‘zone’  and 
it  can  support  multi-point  conferencing  (three  or  more  participants)  and multi-cast  (trans- 
mission  from  one  source  to  many  receivers). 

H.323 components 

Terminal This is the basic  entity  in  an  H.323-compliant  system. An H.323 terminal 
consists of a  set of protocols and functions  and  its  architecture  is  shown in Figure 11.16. The 
mandatory  requirements  for  an  H.323  terminal  (highlighted  in  the figure)  are audio  coding 
(using  the  G.711, G.723 or G.729 audio  coding  standards)  and  three  control  protocols: 
H.245 (channel  control), 4.93 1  (call  set-up  and  signalling)  and registration/admission/status 
( M S )  (used  to  communicate  with  a  gatekeeper, see  below). Optional  capabilities  include 
video  coding (H.261, H.263),  data  communications (using  T.120)  and  the  real time  protocol 
(RP) for  packet transmission over JP networks. All H.323  terminals  support point-to-point 
conferencing (i.e.  one-to-one communications),  support  for  multi-point  conferencing  (three 
or  more  participants)  is  optional. 

System  control Data  Video I/O Audio I10 

RAS Control 
Interface H245 

Data  Audio  CODEC 
interface :El YEp2’6: G.711 l G.723 l 

T. 120 G.729 
A A A A 

$ 
RTP 

_ _ _  .._._..._._.._.__._.___... _..-_ .-.--.-.---.- ~ .-.. _.._-.------------ 
V V V V 

LAN Interface 

H323 
terminal 

components 
Required 

Figure 11.16 H.323 terminal architecture 
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Figure 11.17 H.323 multi-point conferences 

Gateway An H.323  gateway  provides  an  interface to  other conferencing  protocols  such as 
H.320  (ISDN-based  conferencing),  H.324  (PSTN-based  conferencing)  and  also  analogue 
telephone  handsets  via the PSTN. 

Gatekeeper This  is  an  optional  H.323  entity  that  manages  communications within a 
‘zone’ (a defined set of H.323  components within the  network).  Gatekeeper  functions 
include  controlling the set-up  and  routeing of conferencing ‘calls’ within  its  zone. The 
gatekeeper  can  manage  bandwidth  usage  within  the zone by tracking  the  number of active 
calls  and the bandwidth usage of each and barring new calls once the network  has  reached 
saturation. 

Multi-point control unit (MCU) This  entity  facilitates  multi-point  conferencing within 
H.323. The two  main  types of multi-point  conference  are centralised and decentralised 
(shown in Figure 11.17). In a  centralised  conference,  all  calls in the conference  are routed 
through the  MCU:  hence  each  terminal  only  has to deal with point-to-point (‘unicast’) 
communications. This places  a  heavy  processing  burden on the MCU but is  guaranteed to 
work with  all  H.323  terminals. A decentralised  conference  requires H.323 terminals that 
support  ‘multi-cast’  communications:  each  terminal  multi-casts  its data to all other  terminals 
in the  conference  and  the  MCU’s  role is to set up the  conference  and  provide  control  and 
status  information  to  each  participant. 

Video  coding in the H.323 environmem 

If an  H.323  terminal  supports video communication,  it  must be capable of using H.261 
coding at  QCIF resolution (see  Chapter 5). Optionally,  it may support H.263 coding and 
other  resolutions (e.g. CIF, 4CIF). The capabilities of each terminal in a  conference are 
signalled via the  H.245  protocol: in a typical session,  the  terminals will choose the ‘lowest 
common  denominator’ of video  support. This could be H.261  (the  minimum  support),  H.263 
(baseline) or H.263 with optional  modes. 

H.323  is  becoming  popular  for  communications  over  the  Internet. The Internet is 
inherently  unreliable and this influences  the  choice of video  coding  tools  and  transmission 
protocols. The basic  transport  protocol  is the unreliable  datagram  protocol (UDP): packets 
are  transmitted  without  acknowledgement  and  are not guaranteed to reach their  destination. 
This  keeps  delay  to  a  minimum  but  packets may arrive  out of order,  late  or  not  at  all. 
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Figure 11.18 Packet  sequencing using RTP 

RTP may be used  ‘on  top’ of UDP  for transmission of coded  video  and  audio.  RTP  adds 
time  stamps  and  sequence  numbers  to  UDP  packets,  enabling a decoder  to  identify  lost, 
delayed or out-of-sequence  packets. If possible,  a  receiver  will  reorder  the  packets  prior  to 
decoding; if a packet  does  not  arrive  in  time,  its  position  is  signalled  to  the  decoder so that 
error  recovery  can  be  carried  out.  Figure 11.18 illustrates  the way in  which  RTP  reorders 
packets  and  signals  the  presence of lost  packets.  Packet 4 from  the  original  sequence is lost 
during  transmission  and  the  remaining  packets  are  received  out of order.  Sequence 
numbering  and  time  stamps  enable  the  packets  to  be  reordered  and  indicate  the  absence 
of  packet 4. 

The real  time control protocol (RTCP) may be used to  monitor  and control an RTP 
session.  RTCP  sends  quality  control  messages to  each participant  in  the  session  containing 
useful QoS information  such as the  packet  loss  rate. 

The resource reservation protocol (RSVP) enables  terminals  to  request a ‘guaranteed’ 
transmission  bandwidth  for  the  duration of the  communication  session.  This  improves  the 
available QoS for  real-time  video  and  audio  communications  but  requires  support  from  every 
switch  or  router  in the  section of network  traversed  by  the  session. 

Implications for video CODEC  design 

Video  coding  for  two-way  conferencing  in an H.323 environment  should  support low delay 
and low  bit-rate  coding.  Coding  tools  such as B-pictures  that  add  to  encoding  delay  should 
probably be. avoided.  Depending  on  the  packet loss rate  (which  may  be  signalled by the 
RTCP  protocol),  an  encoder  may  choose to implement  error-resilient  features  such as 
increased  intra-coding  and  resynchronisation  markers  (to  limit  spatial  and  temporal  error 
propagation)  and  the  use of slice-structured  coding (e.g. Annexes K and V of H.263) to  map 
coded  video  to  equal-sized packets. A video  decoder  can  use  the  information  contained 
within  an  RTP  packet  header to  determine  the  exact  presentation  time of each  decoded  packet 
and  to  implement  error  handling  and  error  concealment  when a lost  packet  is  detected. 

11.5 SUMMARY 

Successful  video  communications  relies  upon  matching  the QoS required by an  application 
with the QoS provided by the  transmission  network. In this  chapter  we  discussed key QoS 
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parameters  from  the  point of view of the video CODEC and  the  network.  Removing 
subjective  and  statistical  redundancy  through  the  video  compression  process  has  the 
disadvantage  that  the  compressed  data  becomes  sensitive  to  transmission  impairments 
such  as  delays  and  errors. An effective  solution to the QoS problem  is  to  deal  with  it 
both in the  video  CODEC  (for  example by introducing  error-resilient  features  and  matching 
the  rate  control  algorithm  to  the  channel)  and in the  network  (for  example by adopting 
protocols  such  as  RTP). We described two popular  transmission  scenarios,  digital  television 
broadcast  and IP video  conferencing,  and  their  influence  on  video  CODEC  design. The result 
of taking  the  transmission  environment  into  account  is a distinctly  different  CODEC in 
each  case. 

Video  CODEC  design is also  heavily  influenced by the  implementation  platform  and in 
the  next  chapter  we  discuss  alternative  platforms  and  their  implications  for  the  designer. 
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Platforms 

12.1 INTRODUCTION 

In the  early  days of video  coding technology, systems  tended  to  fall  into  two  categories, 
dedicated  hardware  designs  for  real-time  video  coding (e.g. H.261 videophones) or software 
designs  for  ‘off-line’ (not real-time)  image  or  video  coding (e.g. JPEG  compressioddecom- 
pression  software).  The  continued  increases in processor  performance,  memory  density and 
storage  capacity  have  led  to  a  blurring of these  distinctions and video  coding  applications  are 
now implemented  on  a wide range of processing  platforms.  General-purpose  platforms  such 
as personal computer  (PC)  processors  can  achieve  respectable  real-time  coding  performance 
and benefit from  economies of scale  (i.e.  widespread  availability,  good  development  tools, 
competitive  cost).  There  is  still  a  need  for  dedicated  hardware  architectures in certain  niche 
applications, such as high-end  video  encoding  or very  low power  systems. The ‘middle 
ground’  between  the  general-purpose  platform and the  dedicated  hardware  design  (for 
applications  that  require  more  processing  power than a  general-purpose  processor  can 
provide  but  where  a  dedicated  design  is not feasible) was, until recently, occupied by 
programmable  ‘video  processors’.  So-called  ‘media  processors’,  providing  support  for wider 
functionalities  such  as  audio  and  communications  processing,  are  beginning  to  occupy this 
market.  There  is  currently  a  convergence of processing  platforms, with media  extensions 
and features  being  added  to  traditionally  distinct  processor  families  (embedded, DSP, 
general-purpose) so that  the  choice of platform  for  video  CODEC  designs is wider than 
ever  before. 

In this chapter we attempt  to  categorise  the main platform  alternatives  and  to  compare 
their  advantages and disadvantages  for the designer of a  video  coding  system. Of course, 
some of  the information in this chapter will be out of date by  the time  this  book  is  published, 
due to the  rapid  pace of development in processing  platforms. 

12.2 GENERAL-PURPOSE PROCESSORS 

A desktop PC contains  a  processor  that  can  be  described  as  ‘general-purpose’. The processor 
is  designed  to  provide  acceptable  performance  for  a  wide  range of applications  such as 
office, games  and  communications  applications.  Manufacturers  need  to  balance  the user’s 
demand  for  higher  performance  against  the need to  keep  costs  down  for  a  mass-market 
product. At the  same  time,  the  large  economies of scale in the PC market  make it possible  for 
the  major  manufacturers  to  rapidly  develop  and  release  higher-performance  versions of  the 
processors. Table 12.1 lists some of the  main players in the  market  and  their  recent  processor 
offerings  (as of August 2001). 
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Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
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Table 12.1 Popular  PC  processors 

Manufacturer  Latest  offering  Features 

Intel  Pentium 4 Clock  speed  up  to 2 GHz;  highly  pipelined; 128-bit single 

Motorola  PowerPC  G4 Clock  speed  up  to  about 1 GHz;  128-bit  vector  processing 
AMD  Athlon Clock  speed  up  to 1.4 GHz;  multiple  integer and floating- 

instruction  multiple  data  (SIMD) 

point  execution units; SIMD  processing 

12.2.1  Capabilities 

PC  processors  can  be loosely characterised  as follows: 

0 good  performance at running ‘general’ applications; 

0 not  optimised for any  particular  class of application (though the recent trend is to  add 
features  such as SIMD  capabilities  to support multimedia  applications); 

0 high power  consumption  (though  lower-power versions of the  above processors are 
available for mobile  devices); 

0 support word  lengths of 32 bits or more, fixed and floating point arithmetic; 

0 support for SIMD  instructions (for example  carrying  out the same operation on 4 x 32-bit 
words). 

The popular  PC  operating  systems  (Windows  and  Mac O/S) support multi-tasking applica- 
tions  and offer good  support for external hardware  (via plug-in cards  or interfaces such as 
USB). 

12.2.2 Multimedia  Support 

Recent  trends  towards  multimedia  applications  have led to increasing support for real- 
time  media.  There  are  several ‘frameworks’ that may be used within the Windows O/S, 
for example, to assist  in the rapid  development  and  deployment  of  real-time applications. 
The DirectX  and  Windows  Media  frameworks  provide  standardised interfaces and tools to 
support efficient capture,  processing,  streaming  and display of video and audio. 

The  increasing usage of multimedia has driven processor manufacturers  to  add  architec- 
tural and instruction  support  for typical multimedia processing operations.  The three 
processor  families listed in Table 12.1 (Pentium,  PowerPC,  Athlon)  each support a version 
of ‘single instruction,  multiple  data’  (SIMD) processing. Intel’s MMX  and SIMD  exten- 
sions’.* provide a number of instructions  aimed at media  processing. A SIMD instruction 
operates on multiple  data  elements  simultaneously (e.g. multiple 16-bit words within a 64- 
bit or 128-bit register). This  facilitates  computationally  intensive, repetitive operations  such 
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Figure 12.1 SAD calculation using SIMD instruction 

as motion estimation (e.g. calculating  sum of absolute differences, SAD) and DCT  (e.g. 
multiply-accumulate operations). Figure 12.1 shows how the Intel instruction p sadbw 
may be used to  calculate  SAD  for  eight pairs of input  samples (Ai,  Bi)  in parallel, leading  to a 
potentially large  computational saving. 

Table 12.2 summarises  the main advantages and disadvantages of PC platforms for video 
coding applications. The large user base  and  comprehensive development support make  it an 
attractive platform for applications such as desktop  video conferencing (Figure 12.2) in 
which a video  CODEC is combined with a number of other  components  such as audio 
CODEC,  chat  and  document sharing to  provide a flexible, low-cost video  communication 
system. 

Table 12.2 Advantages and disadvantages of PC platform 

Advantages Disadvantages 

High market penetration, very large potential Computationally intensive video coding functions 
user base must be camed out in software 

Availability of efficient compilers and Medium to high power consumption 
powerful development tools 

Multimedia extension functions to improve Use of ‘special’ instructions such as SIMD limits 
video processing performance the portability of the video coding application 

Efficient multi-tasking with other applications Processor resources not always available (can be 

Availability of multimedia application 
problematic for real-time video) 

development frameworks 
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Figure 12.2 PC-based  video  conferencing 

12.3 DIGITAL  SIGNAL PROCESSORS 

Digital  signal  processors  (DSPs)  are  designed  to  efficiently  handle  applications  that  are 
based  around  computationally  intensive  signal  processing  algorithms.  Typical  applications 
include  audio  processing (e.g. filtering  and  compression),  telecommunications  functions 
(such  as  modem  processing,  filtering  and  echo  cancellation)  and  signal  conditioning 
(transformation,  noise  reduction,  etc.).  Mass-market  applications  for  DSPs  include PC 
modems,  wireless and hand-held  communications  processing,  speech  coding and image 
processing.  These  applications  typically  require  good  signal  processing  performance  in  a 
power,  cost andor space-limited  environment. DSPs can  be  characterised  as  follows: 

0 high  performance  for  a  selected  range of signal  processing  operations; 

0 lowlmedium  power  consumption; 

0 lowlmedium  cost; 

0 fixed or  point  arithmetic  capability; 

e limited  on- and off-chip  code  and  data  storage  (depending on the  available  address 
space); 

0 16- or  32-bit  wordlength. 

Table 12.3  lists  a  few  popular  DSPs and compares  their  features:  this is only  a  small 
selection of the  wide  range of DSPs  on  the  market. As well as these  discrete ICs, a  number of 
manufacturers  provide  DSP  cores  (hardware  architectures  designed  to  be  integrated with 
other  modules on a  single  IC). 
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Table  12.3 Popular DSPs 

Manufacturer Device Features 

Texas Instruments C5000 series Low power, 16-bit, up to 500MIPS [instructions per 
second), optimised for portable devices and com- 
munications 

C6000 series Medium power, 16 or 32-bit, 1OOG4000 MIPS, fixed 
or floating-point arithmetic, optimised for broadband 
communications and image processing 

Analog Devices ADSP-218x and Low power, 16-bit, over 300MIPS 
219x series 

SHARC 32-bit, fixed and floating-point arithmetic, SIMD 

Motorola DSP563xx 24-bit, fixed-point, up to 200 MIPS, PC1 bus interface 
DSP568xx 16-bit, fixed-point, combines DSP and microcontroller 

instructions, 600 MOPS (operations per second) 

features 

A key feature of DSPs is the ability to efficiently carry out repetitive processing 
algorithms such as filtering and transformation. This means that they are well suited to 
many of the  computationally intensive functions required of a typical DCT-based video 
CODEC,  such  as motion estimation, DCT  and  quantisation,  and  some promising perfor- 
mance results have been r e p ~ r t e d . ~ . ~  Because a DSP is specifically designed for this type of 
application, this performance usually comes without the penalty of high power consumption. 
Support for related video processing functions (such as video  capture, transmission and 
rendering)  is likely to  be limited. The choice of application development  tools is  not as wide 
as for the PC platform and high-level language support is often limited to  the C language. 
Table 12.4 summarises the advantages  and disadvantages of the DSP platform for video 
coding applications. 

In a typical DSP  development  scenario,  code  is developed on a host PC in C, cross- 
compiled  and  downloaded to a development  board  for testing. The development  board 
consists of a DSP  IC  together with peripherals such as memory, A/D converters and other 
interfaces. To summarise, a DSP platform can  provide  good  performance with low power 
consumption but operating system and development support is often limited. DSPs may be a 
suitable platform for low-power, special-purpose applications (e.g. a hand-held videophone). 

Table  12.4 Advantages and disadvantages of DSP platform 

Advantages Disadvantages 

Low power consumption Less well suited to ‘higher-level’ complex aspects 

Relatively high computational performance Limited development support 
Low price Limited operating system support 
Built-in telecommunications support (e.g. Limited support for external devices [e.g. frame 

of processing 

modem functions, AID conversion) capture and display) 
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12.4 EMBEDDED  PROCESSORS 

The term  ‘embedded processor’ usually refers to a processor or  controller that is “embed- 
ded”  into a larger  system, in  order  to  provide  programmable  control  and  perhaps processing 
capabilities  alongside  more  specialist,  dedicated devices. Embedded processors are widely 
used in communications  (mobile  devices,  network  devices,  etc)  and  control applications (e.g. 
automotive  control). Typical characteristics are: 

0 low  power  consumption; 

0 low cost; 

0 limited  processing  and  addressing  capabilities; 

0 limited word  lengths; 

0 fixed-point arithmetic. 

Until recently, an  embedded processor would not have been considered suitable  for  video 
coding  applications  because of severely limited processing capabilities. However, in common 
with  other  types of processor, the processing ‘power’ of  new generations of embedded 
processor  continues to  increase. Table 12.5 summarises the features of some popular em- 
bedded  processors. 

The popular ARM  and MIPS  processors  are  licensed as cores  for integration into third- 
party systems.  ARM  is actively targeting low-power video  coding applications, demonstrat- 
ing 15 frames per  second  H.263  encoding and decoding (QCIF resolution) on an ARM9s  and 
developing  co-processor  hardware to  further improve  video  coding performance. 

Table 12.6 summarises  the  advantages  and  disadvantages of embedded processors 
for  video  coding  applications.  Embedded processors are of interest because of their large 
market  penetration (for example, in the high-volume  mobile  telephone market). Running 
low-complexity  video  coding  functions in software on  an  embedded processor (perhaps with 
limited  dedicated  hardware  assistance) may be a cost-effective way  of bringing video 
applications  to  mobile  and wireless platforms. For  example, the hand-held videophone is 
seen as a key application  for  the  emerging ‘3G’ high bit-rate mobile networks. Video coding 
on low-power  embedded or DSP processors may be a key enabling technology for this type 
of device. 

Table 12.5 Embedded processor features 

Manufacturer Device Features 

MIPS 4K series Low power, 32-bit, up to approx. 400 MIPS, 

ARM ARM9 series Low power, 16-bit, up to 220 MIPS 
ARMnntel StrongARM series Low power, 32-bit, up to 270 MIPS 

multiply-accumulate support (4KM) 
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Table 12.6 Advantages  and  disadvantages of embedded  processors 

Advantages  Disadvantages 

Low power  consumption 
Low price 
High market  penetration 
Good development tool support 
Increasing  performance 

Limited  performance 
Limited word lengths,  arithmetic,  address  spaces 
(As  yet) few features to support  video  processing 

12.5 MEDIA PROCESSORS 

DSPs  have  certain  advantages  over  general-purpose  processors  for  video  coding  applications; 
so-called  ‘media  processors’  go  a  step  further by providing  dedicated  hardware  functions 
that  support  video and audio  compression  and  processing.  The  general  concept of a  media 
processor  is  a  ‘core’  processor  together  with  a  number of dedicated  co-processors  that  carry 
out  application-specific  functions. 

The  architecture of the  Philips  TriMedia  platform  is shown in  Figure  12.3.  The  core of the 
TriMedia  architecture  is  a very long  instruction word (VLIW)  processor. A VLIW processor 
can  carry  out  operations  on  multiple  data words (typically  four  32-bit  words  in  the  case of 
the  TriMedia) at  the  same  time.  This  is  a  similar  concept  to  the SIMD instructions  described 
earlier  (see  for  example  Figure 12.1) and is  useful  for  video  and  audio  coding  applications. 
Computationally  intensive  functions  in  a  video  CODEC  such  as  motion  estimation  and  DCT 
may  be  efficiently  carried  out  using  VLIW  instructions. 

I I Timers m Audio V0 p 
l I 4 

System bus 

Figure 12.3 TriMedia  block  diagram 
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Table 12.7 Advantages and disadvantages of media processors 

Advantages Disadvantages 

Good performance for video coding Application-specific features may not support future 

Application-specific features (e.g. Good performance requires extensive code optimisation 

High-level language support Limited development tool support 
Medium power consumption and cost Limited market penetration 

coding standards 

co-processors) 

The co-processors  in  the  TriMedia  architecture  are  designed to  reduce  the  computational 
burden on  the  ‘core’ by carrying  out  intensive  operations  in  hardware. Available co- 
processor  units,  shown in Figure 12.3, include  video  and  audio  interfaces,  memory  and 
external  bus  interfaces,  an  image  co-processor  and  a  variable-length  decoder  (VLD). The 
image  co-processor is useful  for pre- and  post-processing  operations  such as scaling  and 
filtering,  and  the  VLD  can  decode an  MPEG-2  stream in hardware  (but  does not currently 
support  other  coding  standards).  With  careful  software  design  and  optimisation,  a  video 
coding  application  running  on  the  TriMedia  can  offer good performance  at  a  modest  clock 
speed  whilst  retaining  some of the benefits  of a  general-purpose  processor  (including the 
ability to program  the  core  processor in C or  C++ software).6 

The  MAP processor  developed by Equator and Hitachi is another  media  processor  that  has 
generated  interest  recently.  The  heart of  the processor  is  a VLIW core,  surrounded by 
peripheral  units  that  deal  with  video I/O, communications,  video filtering and  variable-length 
coding.  According  to  the  manufacturer, the MAP-CA  can  achieve  impressive  performance 
for  video  coding  applications,  for  example  encoding  MPEG-2  Main Profile/Main  Level 
video  at  30  frames per  second using 63% of  the available  processing  resource^.^ This is 
higher  than  the  reported  performance of similar  applications on the TriMedia. 

Media  processors  have yet to  capture  a significant part  of  the market,  and it is not  yet clear 
whether  the  ‘halfway  house’  between  dedicated  hardware and general-purpose  software 
platforms will be  a  market  winner.  Table 12.7 summarises  their  main  advantages and 
disadvantages  for  video  coding. 

12.6 VIDEO SIGNAL PROCESSORS 

Video  signal  processors  are  positioned  between  media  processors  (which  aim to process 
multiple  media  efficiently)  and  dedicated  hardware  CODECs  (designed  to  deal with one 
video  coding  standard  or  a  limited  range of standards). A video  signal  processor  contains 
dedicated  units  for  carrying  out  common  video  coding  functions  (such as motion  estimation, 
DCT/IDCT  and VLENLD) but  allows  a  certain  degree of programmability,  enabling  a 
common  platform  to  support  a  number of standards  and  to be at  least partly ‘future  proof’ 
(i.e.  capable of supporting  future  extensions and  new standards). An example is the  VCPex 
offered by 8 x 8 Inc.:  this  is  aimed at video  coding  applications  (but  also has audio  coding 
support). The VCPex  architecture  (Figure 12.4) consists of two 32-bit data  buses,  labelled 
SRAM and DRAM. The  SRAM  bus  is  connected  to  the  main  controller  (a  RISC  processor), 
a  static  RAM  memory  interface  and  other  external  interfaces.  This ‘side’ of the VCPex deals 
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Figure 12.4 VCPex architecture 

with lower  bit-rate  data  such  as  compressed  video,  graphics  and  also  coded  audio.  The 
DRAM bus is connected to a  dedicated  video  processor  (the VP6), a  dynamic RAM interface 
and video  input  and  output  ports.  The DRAM ‘side’  deals  with  high  bit-rate,  uncompressed 
video and with  most of the  computationally  intensive  video  coding  operations.  Variable- 
length  encoding  and  decoding  are  handled by dedicated  VLE and VLD modules. This 
partitioned  architecture  enables  the VCPex to  achieve  good  video  coding and decoding 
performance with relatively low power  consumption.  Computationally  intensive  video 
coding  functions  (and  pre- and post-processing)  are  handled by dedicated  modules, but at 
the  same  time the MSC and VP6  processors may be  reprogrammed  to  support  a  range of 
coding  standards. 

Table 12.8 summarises  the  advantages and disadvantages of this  type of processor. Video 
signal  processors  do not appear  to  be  a  strong  force  in  the  video  communications  market, 

Table 12.8 Advantages and disadvantages of video signal processors 

Advantages Disadvantages 

Good performance for video coding Application-specific features may not support 
future coding standards (but generally more 
flexible than dedicated hardware) 

Application-specific features Reprogramming likely to require high effort 
Limited programmability Limited development tool support 

Cost tends to be relatively high for mass market 

Dependent on a single manufacturer 
applications 
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perhaps  because  they  can  be  outperformed by a  dedicated  hardware  design  whilst they do not 
offer  the same flexibility  as  a  media  processor or  general-purpose  processor. 

12.7 CUSTOM HARDWARE 

General-purpose  processors and (to  a  lesser  extent)  media and video  signal  processors 
sacrifice  a  certain  amount of performance  in  order  to  retain  flexibility and programmability. 
A dedicated  hardware  design,  optimised  for  a  specific  coding  standard, is likely  to  offer  the 
highest  performance  (in  terms of video  processing  capacity and power consumption)  at  the 
expense of inflexibility. 

The  Zoran  ZR36060  is  a  dedicated P E G  CODEC  on  a  single  chip  capable of encoding or 
decoding ITU-R 601 video at  25 or 30 frames per second using Motion P E G  (see Chapter 4). 
A block  diagram of the  IC  is  shown  in  Figure  12.5.  During  encoding,  video  is  captured by a 
dedicated  video  interface and stored  in  a ‘strip buffer’  that  stores  eight  lines of samples  prior 
to  block  processing.  The P E G  core  carries  out  JPEG  encoding  and  the  coded  bit  stream  is 
passed  to  a first in first out (FIFO) buffer  prior  to  output  via  the  CODE  interface.  Decoding 
follows  the  reverse  procedure.  Control  and  status  interfacing  with  a  host  processor  is 
provided  via  the  HOST  interface. The  chip  is  designed  specifically  for P E G  coding: 
however, some programmability of encoding  and  decoding  parameters and quantisation 
tables  is  supported  via  the  host  interface. 

Toshiba’s  TC35273  is  a  single-chip  solution  for  MPEG-4  video and audio  coding 
(Figure 12.6). Separate  functional  modules  (on  the  left of the  figure)  handle  MPEG-4  video 
coding  and  decoding  (simple  profile),  audio  coding  and  network  communications,  and  each 
of these  modules  consists of a  RISC  controller and dedicated  processing  hardware. Video 

Video Video 

JPEG 
CODEC 

l 
Controller 

‘Odd 4 Data and  Host  Interface  Host Data ’ Figure 12.5 ZR36060 block diagram 
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Figure 12.6 Toshiba  TC35273  block  diagram 

capture,  display and filtering are handled by co-processing  modules.  The  IC  is  aimed  at low- 
power, low bit-rate  video  applications  and  can  handle  QCIF  video  coding  and  decoding at 15 
frames  per  second  with  a  power  consumption of 240 mW. A reduced-functionality  version of 
this  chip,  the  TC35274,  handles  only  MPEG-4  video  decoding. 

Table 12.9  summarises the advantages and disadvantages of dedicated  hardware  designs. 
This type of CODEC  is  becoming  widespread  for  mass  market  applications  such  as  digital 
television  receivers  and DVD players.  One  potential  disadvantage  is  the  reliance  on  a  single 
manufacturer  in  a  specialist  market; this is  perhaps  less  likely  to  be  a  problem  with  general- 
purpose  processors and media  processors as they are  targeted  at  a  wider  market. 

12.8 CO-PROCESSORS 

A co-processor  is  a  separate  unit  that  is  designed  to  work with a  host  processor  (such as a 
general-purpose  PC  processor). The  co-processor  (or  ‘accelerator’)  carries  out  certain 
computationally  intensive  functions  in  hardware,  removing  some of the  burden  from  the 
host. 

Table 12.9 Advantages  and  disadvantages of dedicated  hardware  CODECs 

Advantages  Disadvantages 

High  performance  for  video  coding No support  for  other  coding  standards 
Optimised  for  target  video  coding  standard Limited  control  options 
Cost-effective  for  mass-market  applications Dependent  on  a  single  manufacturer 
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PC video  display  card  manufacturers  have  begun  to  add support for  common  video  coding 
functions  to the display  card  hardware  and a recent  attempt  to  standardise the interface to 
this type of co-processor has led to  the DirectX VA standard.* This aims  to provide a 
standard API between a video  decoding  and display ‘accelerator’ and a host PC processor. 
The  general  architecture  is  shown in Figure 12.7. Complex, standard-specific functions such 
as variable-length decoding  and  header parsing are  carried  out by the host, whilst 
computationally  intensive  functions (but relatively regular and  common to most standards) 
such as IDCT  and  motion  compensation  are ‘offloaded’ to the accelerator. The basic 
operation of this type of system is  as follows: 

1. The host decodes  the  bit  stream  and  extracts rescaled block coefficients, motion vectors 
and  header  information. 

2. This information  is  passed to the accelerator  (using a standard API) via a set of data 
buffers. 

3. The  accelerator  carries out IDCT  and motion compensation and writes the reconstructed 
frame to a display buffer. 

4. The display buffer is displayed  on  the  PC screen and is also used as a prediction for 
further  reconstructed  frames. 

Table 12.10 lists the advantages  and  disadvantages of this type of system. The flexibility 
of software  programmability  together with dedicated  hardware support for key functions 
makes it  an attractive  option for PC-based  video  applications. Developers should benefit 
from  the  large  PC  market  which will tend to ensure  competitive pricing and performance  for 
the technology. 
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Table 12.10 Advantages  and  disadvantages  of  co-processor  architecture 

Advantages  Disadvantages 

Flexible  support  for  computationally Dependent  on  specific  platform  and  API 

Supports  all  current  DCT-based  standards Some  intensive  functions  remain  with host 

‘Front  end’  of  decoder  remains in software Currently  supports  video  decoding only 
Large  market  for  video  display  cards  should 

intensive  decoding  functions 

(e.g.  VLD) 

lead to a number  of alternative  suppliers  for 
this  technology 

12.9 SUMMARY 

Table 12.1 1 attempts  to  compare  the merits of the processing platforms discussed in this 
chapter. It should be emphasised that the rankings in this table  are not exact and there will be 
exceptions in a number of cases (for example, a high-performance DSP that consumes more 
power than a media processor). However, the  general  trend  is probably correct: the best 
coding  performance per milliwatt of consumed power should be achievable with a dedicated 
hardware  design, but on the other hand PC  and  embedded  platforms  are likely to offer the 
maximum flexibility and the best development support due to their widespread usage. 

The  recent trend is  for a convergence between so-called ‘dedicated’ media processors and 
general-purpose processors, for  example  demonstrated by the  development of SIMD/ VLIW- 
type functions  for all the  major PC processors. This trend is likely to  continue as multimedia 
applications and services become increasingly important. At the  same time, the latest 
generation of video  coding standards (MPEG-4,  H.263-t and H.26L) require relatively 
complex processing (e.g.  to support object-based coding  and  coding  mode decisions), as 
well as repetitive signal processing functions such as block-based motion estimation and 

Table 12.11 Comparison  of  platforms  (approximate) 

Video  coding  Power  Development 
performance  consumption  Flexibility  support 

Best  Dedicated 
hardware 

Video  signal 
processor 

Media  processor 

PC  processor 

Digital  signal 
processor 

Worst  Embedded 
processor 

Dedicated 

Embedded 
processor 

Digital  signal 
processor 

Video  signal 
processor 

Media  processor 

hardware 

PC  processor 

PC  processor 

Embedded 
processor 

Digital  signal 
processor 

Media  processor 

Video  signal 
processor 

Dedicated 
hardware 

PC  processor 

Embedded 
processor 

Digital  signal 
processor 

Media  processor 

Video  signal 
processor 

Dedicated 
hardware 
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transform  coding.  These  higher-level  complexities  are  easier to handle in software than in 
dedicated  hardware,  and it may be  that  dedicated  hardware  CODECs will become  less 
important  (except  for  specialist,  ‘high-end’  functions such as studio  encoding)  and that 
general-purpose  processors  will  take  care of mass-market  video  coding  applications  (perhaps 
with  media  processors or co-processors to handle  low-level  signal  processing). 

In the  next  chapter  we  examine  the main issues  that  are  faced by the  designer of a software 
or  hardware  video  CODEC,  including  issues  common  to both (such as interface require- 
ments)  and  the  separate  design  goals  for  a  software  or  hardware  CODEC. 
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Video  CODEC  Design 

13.1 INTRODUCTION 

In this  chapter we bring  together  some of the  concepts  discussed  earlier and examine  the 
issues  faced by designers of video CODECs and systems that interface to video  CODECs. 
Key issues  include  interfacing  (the  format of the  input and output  data,  controlling  the 
operation of the CODEC),  performance  (frame  rate,  compression,  quality),  resource usage 
(computational  resources,  chip  area) and design  time.  This  last  issue  is  important  because of 
the  fast  pace of change in the  market for multimedia  communication  systems. A short  time-to- 
market is  critical  for video coding  applications and we discuss methods of streamlining the 
design flow. We present design strategies  for two types of video  CODEC,  a  software 
implementation  (suitable  for  a  general-purpose  processor) and a  hardware  implementation 
(for FPGA or  ASIC). 

13.2 VIDEO  CODEC  INTERFACE 

Figure 13.1 shows the main interfaces  to  a  video  encoder and video  decoder: 

Encoder  input:  frames of uncompressed video (from  a  frame  grabber or other  source); 
control  parameters. 

Encoder  output:  compressed  bit  stream  (adapted  for  the  transmission  network,  see 
Chapter 11); status  parameters. 

Decoder  input:  compressed bit stream;  control  parameters. 

Decoder  output:  frames of uncompressed  video  (send  to  a  display  unit);  status 
parameters. 

A video  CODEC  is  typically  controlled by a  ‘host’  application  or  processor that deals with 
higher-level  application and protocol  issues. 

13.2.1 Video In/Out 

There  are many options  available  for the format of uncompressed  video  into the encoder or 
out of the  decoder and we list some examples here. (The  four-character  codes  listed  for 
options  (a) and (b)  are ‘FOURCC’ descriptors  originally defined as part of the AV1 video file 
format.) 

Video Codec Design
Iain E. G. Richardson

Copyright q 2002 John Wiley & Sons, Ltd
ISBNs: 0-471-48553-5 (Hardback); 0-470-84783-2 (Electronic)
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Figure 13.1 Video encoder (a) and decoder (b) interfaces 

YUY2 (4 : 2 : 2). The structure of this format is shown in Figure 13.2. A sample of  Y 
(luminance)  data is followed by a sample of Cb (blue colour difference), a second 
sample of Y, a sample of Cr (red  colour  difference),  and so on.  The result is that the 
chrominance  components  have the same vertical resolution  as  the  luminance  compo- 
nent  but half the horizontal resolution (i.e. 4 : 2 : 2 sampling as described in  Chapter 2). 
In the  example  in  the figure, the  luminance resolution is 176 x 144 and the  chromi- 
nance  resolution  is 88 x 144. 

YV12 (4 : 2 : 0) (Figure 13.3). The  luminance  samples  for  the current frame  are stored 
in  sequence,  followed by the Cr samples  and then the  Cb samples. The  Cr and Cb 
samples  have half the  horizontal  and vertical resolution of the Y samples.  Each  colour 
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... 

... 
Figure 13.2 YUY2 (4 : 2 : 2) 

pixel in the  original  image  maps  to an average of 12  bits (effectively 1 Y sample, i Cr 
sample  and  Cb  sample),  hence the name ‘W12’. Figure 13.4 shows  an  example of a 
frame stored in  this  format, with the  luminance  array first followed by the half-width 
and half-height  Cr  and  Cb arrays. 

(c)  Separate buffers for  each  component (Y, Cr, Cb). The  CODEC  is passed a pointer to the 
start of each buffer prior  to  encoding  or  decoding a frame. 

As well as  reading the source  frames (encoder) and writing the  decoded  frames  (decoder), 
both encoder and  decoder  require  to  store  one  or  more reconstructed reference  frames  for 
motion-compensated  prediction.  These  frame  stores may be  part of the  CODEC (e.g. 
internally  allocated  arrays  in a software  CODEC)  or  separate  from  the  CODEC (e.g. 
external RAM in a hardware CODEC). 

Y (frame 1) 

... Figure 13.3 W 1 2  (4 : 2 : 0) 
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i Figure 13.4 Example of W12 data 

Memory bandwidth may  be  a  particular  issue  for  large  frame  sizes  and high frame  rates. 
For  example, in order  to  encode  or  decode  video  at ‘television’ resolution (ITU-R 601, 
approximately 576 x 704 pixels per frame, 25 or  30  frames per second), the encoder  or 
decoder  video  interface  must  be  capable of transferring  216  Mbps.  The  data  transfer  rate 
may be higher if the  encoder  or  decoder  stores reconstructed frames  in  memory  external  to 
the CODEC. If forward prediction  is used, the encoder  must  transfer  data corresponding to 
three complete  frames  for  each  encoded  frame,  as  shown in Figure 13.5: reading a new input 
frame, reading a stored frame  for  motion  estimation and compensation and writing a 
reconstructed frame.  This  means that the  memory  bandwidth at the  encoder input is  at  least 
3 x 216 = 648  Mbps for  ITU-R 601 video. If two or  more  prediction  references  are used for 
motion  estimatiodcompensation  (for  example, during MPEG-2 B-picture encoding),  the 
memory  bandwidth  is  higher  still. 

13.2.2 Coded Data IdOut 

Coded  video  data  is  a  continuous sequence of bits  describing the syntax elements of coded 
video, such as  headers, transform coefficients and motion vectors. If  modified Huffman 
coding is used, the bit sequence  consists of a  series of variable-length codes  (VLCs)  packed 
together; if arithmetic  coding  is used, the bits describe  a  series of fractional  numbers  each 
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representing  a  series of data  elements  (see  Chapter 8). The  sequence of bits must be mapped 
to a  suitable  data unit for  transmissiodtransport,  for  example: 

1. Bits: If the transmission  channel is capable of dealing with an arbitrary  number of bits, 
no special mapping is  required.  This may be the case  for  a  dedicated  serial  channel but is 
unlikely to be appropriate  for most network  transmission  scenarios. 

2. Bytes or words: The bit sequence  is mapped to an integral  number of bytes (8 bits)  or 
words (16 bits, 32 bits, 64  bits,  etc.).  This  is  appropriate  for many storage or transmission 
scenarios where data  is stored in multiples of a  byte.  The end of the  sequence may require 
to be padded in order to  make up an integral  number of bytes. 

3. Complete  coded  unit: Partition  the coded stream  along  boundaries that make up coded 
units within the video  syntax.  Examples of these coded units include  slices  (sections of a 
coded  picture  in MPEG-l, MPEG-2, MPEG-4  or  H.263+),  GOBS (groups of blocks, 
sections of a  coded  picture in H.261 or  H.263)  and  complete coded pictures.  The integrity 
of the coded unit  is  preserved  during  transmission,  for  example by placing  each coded 
unit in a network packet. 
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Figure 13.6 GOB locations in a frame and variable-size coded units 

Figure 13.6 shows  the  locations  of GOBS  in a  frame  coded  using  H.263iMPEG-4.  The  coded  units 
(GOBs  in  this  case)  correspond  to  regular  areas of the  original  frame:  however,  when  encoded, 
each  GOB  generates a different number of coded bits (due to variations in content within  the 
frame). The result is that  the GOBs generate  the  variable-size  coded  units  shown  in  Figure  13.6. 

An alternative is to use irregular-sized slices (e.g. using the slice structured mode in 
H.263+,  video packet mode  in  MPEG-4). Figure 13.7 shows slice boundaries that cover 
irregular numbers of macroblocks  in the original frame and are chosen such that, when 
coded,  each  slice  contains a similar number of coded bits. 

13.2.3 Control Parameters 

Some of the more  important control parameters are listed here (CODEC application 
programming interfaces [APIs] might not provide access to all of these parameters). 

0 

Picture 

4 

-a- 
0 5 4 3 2 1 

Coded data 

Figure  13.7 Slice boundaries in  a picture and constant-size coded units 



VIDEO  CODEC  INTERFACE 277 

Encoder 

Frame  rate May  be specified as a number of frames per second or as a proportion of 
frames to skip  during  encoding (e.g. skip every second  frame). If the  encoder  is  operating in 
a  rate-  or  computation-constrained  environment  (see  Chapter lo), then this will  be a target 
frame  rate  (rather than an absolute  rate)  that may or may not be achievable. 

Frame  size For example, a ‘standard’  frame  size (QCIF, CIF, ITU-R 601,  etc) or a non- 
standard  size. 

Target  bit  rate Required  for  encoders  operating  in a rate-controlled  environment. 

Quantiser  step  size If rate  control  is not used, a fixed quantiser  step  size may be specified: 
this will give near-constant  video  quality. 

Mode  control For  example  ‘inter’ or ‘intra’  coding mode. 

Optional  mode  selection MPEG-2, MPEG-4 and H.263  include  a  number of optional 
coding  modes (for improved  coding efficiency, improved error  resilience,  etc.). Most 
CODECs will only support a subset of these modes, and the choice of optional modes to 
use (if any) must be signalled  or  negotiated between the  encoder and the  decoder. 

Starvstop  encoding A series of video  frames. 

Decoder 

Most of the  parameters  listed  above  are  signalled to the  decoder within the coded bit stream 
itself.  For  example,  quantiser  step  size  is  signalled in frame/picture  headers and (optionally) 
macroblock  headers;  frame  rate  is  signalled by means of a timing reference in each  picture 
header; mode selection is signalled  in  the  picture  header;  and so on.  Decoder  control may be 
limited to ‘start/stop’. 

13.2.4 Status Parameters 

There  are many aspects of CODEC operation that may  be useful as status  parameters 
returned to the host application.  These may include: 

0 actual  frame  rate (may differ  from  the  target  frame  rate  in rate- or  computation- 
constrained environments); 

0 number of coded bits in each  frame; 

0 macroblock mode statistics  (e.g.  number of intrdinter-macroblocks); 

0 quantiser  step  size  for  each  macroblock  (this may be useful for  post-decoder  filtering,  see 
Chapter 9); 
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0 distribution of coded bits  (e.g.  proportion of bits allocated to coefficients, motion vector 
data,  header  data); 

0 error  indication  (returned by the  decoder when a  transmission  error has been detected, 
possibly with the estimated  location of the error in  the decoded  frame). 

13.3 DESIGN  OF A SOFTWARE  CODEC 

In this section we describe the design  goals and the main steps  required to develop  a video 
CODEC for  a  software  platform. 

13.3.1 Design Goals 

A real-time  software  video  CODEC has to operate under a  number of constraints, perhaps 
the most important of which are  computational  (determined by the  available  processing 
resources) and bit rate (determined by the  transmission or storage  medium). Design goals for 
a  software  video CODEC may include: 

1. Maximise  encoded  frame  rate. A suitable  target  frame  rate  depends  on  the  application,  for 
example, 12-15 frames  per second for  desktop  video  conferencing and 25-30 frames  per 
second for  television-quality  applications. 

2. Maximise  frame  size  (spatial  dimensions). 

3. Maximise  ‘peak’ coded bit rate.  This may seem an unusual goal  since  the aim of a 
CODEC is to compress  video: however, it  can be useful to  take  advantage of a high 
network transmission rate  or  storage  transfer  rate  (if  it  is  available) so that video can be 
coded at a high quality.  Higher coded bit rates  place  higher  demands on the processor. 

4. Maximise  video quality (for  a given bit  rate). Within the constraints of a  video  coding 
standard, there are usually many opportunities to ‘trade  off’  video  quality  against 
computational complexity, such as  the  variable  complexity  algorithms  described in 
Chapter 10. 

5. Minimise delay (latency) through the CODEC.  This  is  particularly  important  for two-way 
applications (such as  video  conferencing) where low delay is  essential. 

6. Minimise  compiled  code and/or data  size.  This  is  important  for  platforms with limited 
available memory (such  as  embedded  platforms).  Some  features of the popular video 
coding  standards  (such  as the use of B-pictures) provide high compression efficiency at 
the  expense of increased  storage  requirement. 

7. Provide  a flexible API, perhaps  within  a  standard  framework such as DirectX (see 
Chapter 12). 

8. Ensure that code  is  robust  (i.e.  it  functions  correctly  for any video sequence,  all  allowable 
coding  parameters and under  transmission  error  conditions),  maintainable and easily 
upgradeable (for example  to add support  for  future  coding  modes and standards). 
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Figure 13.8 Trade-off of frame size and frame rate in a software CODEC 

9. Provide  platform  independence where possible.  ‘Portable’  software that may be executed 
on a number of platforms can have advantages  for  development,  future  migration to other 
platforms and marketability. However, achieving maximum performance may require some 
degree of platform-specific  optimisation  (such  as the use  of SIMDNLIW instructions). 

The first four  design  goals  listed  above may be mutually exclusive.  Each of the goals 
(maximising  frame  rate,  frame  size, peak bit rate and video  quality)  requires an increased 
allocation of processing  resources. A software video CODEC is usually constrained by the 
available  processing  resources andor the  available  transmission bit rate. In a  typical 
scenario,  the number of macroblocks of video that a  CODEC can process  is roughly 
constant  (determined by either  the  available bit rate or the available  processing  resources). 
This means that increased  frame rate can only be achieved at the  expense of a  smaller  frame 
size and vice  versa.  The graph in  Figure 13.8 illustrates  this trade-off between  frame  size and 
frame  rate in a  computation-constrained  scenario.  It may, however, be possible to ‘shift’  the 
line to the right (i.e.  increase  frame  rate without reducing  frame  size  or  vice  versa) by 
making  better use of the  available  computational  resources. 

13.3.2 Specification and Partitioning 

Based on the  requirements of the  syntax  (for  example, MPEG-2, MPEG-4 or H.263), an 
initial  partition of the  functions  required  to  encode and decode  a  frame of video can be made. 
Figure 13.9 shows a simplified flow diagram  for  a  blocklmacroblock-based  inter-frame 
encoder  (e.g.  MPEG-1, MPEG-2, H.263  or MPEG-4) and Figure 13.10 shows the  equivalent 
decoder flow diagram. 

The  order of some of the operations  is fixed  by the  syntax of the  coding  standards. It is 
necessary to carry  out  DCT and quantisation of each block within a  macroblock before 
generating  the VLCs for the macroblock  header:  this  is  because  the  header  typically  contains 
a ‘coded block pattern’ field that indicates which of the six blocks  actually  contain  coded 
transform  coefficients.  There is greater  flexibility  in  deciding the order of some of the  other 
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Figure 13.11 Encoder  and decoder interoperating points 

operations. An encoder may choose to  cany out motion estimation and compensation for the 
entire  frame before carrying  out the  block-level operations (DCT, quantise, etc.), instead of 
coding  the blocks immediately after motion compensating the macroblock. Similarly, an 
encoder or decoder may choose to reconstruct each motion-compensated macroblock either 
immediately after decoding the residual blocks or after the entire residual frame has been 
decoded. 

The following principles can help to decide the structure of the software program: 

1. Minimise interdependencies between coding functions in  order to keep the software 
modular. 

2. Minimise  data copying between functions (since each  copy  adds computation). 

3. Minimise function-calling overheads. This may involve combining functions, leading to 
less modular  code. 

4. Minimise latency. Coding and transmitting each macroblock immediately after motion 
estimation and compensation  can reduce latency. The coded data may  be transmitted 
immediately, rather than waiting until  the entire frame has been motion-compensated 
before coding and transmitting the residual data. 

13.3.3 Designing the Functional Blocks 

A good approach is to start with the simplest possible implementation of each algorithm (for 
example, the basic form of the  DCT shown in Equation 7.1) in  order to develop a functional 
CODEC as quickly as possible. The first  ‘pass’ of the design will result in a working, but 
very inefficient, CODEC and the performance can then be improved by replacing the basic 
algorithms with ‘fast’ algorithms. The first version of the design may be used as a 
‘benchmark’ to ensure that later, faster versions still meet the requirements of the coding 
standard. 

Designing the encoder and decoder in tandem and taking advantage of ‘natural’ points at 
which the two  designs  can interwork may further ease  the design process. Figure 13.11 
shows some  examples of interworking points. For  example, the residual frame produced 
after encoder motion compensation may be ‘fed’ to the decoder motion reconstruction 
function and the decoder output frame should match the encoder input frame. 
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13.3.4 Improving Performance 

Once  a basic  working CODEC has  been developed,  the  aim  is  to improve the  performance in 
order to meet  the design goals  discussed above. This may  involve some  or all of the 
following steps: 

1.  Carry  out software profiling to measure  the  performance of individual functions.  This  is 
normally carried  out  automatically by the compiler inserting timing code  into  the 
software and measuring  the  amount of time spent  within each  function.  This process 
identifies ‘critical’ functions, i.e. those  that take the most  execution  time. 

2.  Replace  critical  functions with ‘fast’ algorithms. Typically,  functions  such as motion 
estimation, DCT and  Variable-length  coding are  computationally  critical.  The  choice of 
‘fast’ algorithm depends on the platform  and to  some extent the design structure of the 
CODEC. It is often  good practice  to  compare several alternative algorithms and to choose 
the  best. 

3.  Unroll loops. See  Section 6.8.1 for an example of  how a motion estimation function  may 
be  redesigned to reduce  the overhead due to incrementing  a  loop counter. 

4. Reduce  data  interdependencies. Many processors have the ability to execute multiple 
operations in parallel (e.g. using SIMDNLIW instructions); however, this  is only  possible 
if the operations are working  on independent  data. 

5. Consider  combining functions to  reduce function calling  overheads and data  copies.  For 
example,  a  decoder  carries  out inverse  zigzag ordering of a  block followed  by  inverse 
quantisation. Each operation involves a movement  of data  from  one array into another, 
together with the overhead  of calling and returning  from  a  function. By combining  the 
two  functions,  data movement  and function  calling overhead is  reduced. 

6. For computationally critical operations (such as motion estimation),  consider using 
platform-specific optimisations such as  inline  assembler  code,  compiler  directives or 
platform-specific library  functions (such as Intel’s image processing library). 

Applying some  or all of  these  techniques  can dramatically improve  performance.  However, 
these approaches can  lead to increased  design time, increased compiled  code size (for 
example,  due to unrolled loops) and complex  software  code that is difficult to maintain  or 
modify. 

Example 

An  H.263 CODEC was  developed for  the  TriMedia TMlOOO platform.’  After the ‘first 
pass’ of the software  design process (i.e. without detailed  optimisation),  the CODEC ran 
at the unacceptably  low rate of 2 CIF frames per second. After  reorganising the software 
(combining functions  and  removing interdependencies between data), execution  speed 
was increased to 6 CIF frames per second. Applying  platform-specific  optimisation of 
critical functions  (using  the  TriMedia VLIW instructions) gave  a  further  increase to 15 
CIF frames per second  (an  acceptable  rate  for video-conferencing applications). 
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13.3.5 Testing 

In addition  to  the normal requirements  for  software  testing,  the  following  areas  should be 
checked  for  a  video  CODEC  design: 

0 Interworking  between  encoder and decoder (if both are  being  developed). 

0 Performance with a  range of video  material  (including ’live’ video if possible),  since 
some  ‘bugs’ may only show up under  certain  conditions  (for  example, an incorrectly 
decoded VLC may only  occur  occasionally). 

0 Interworking with third-party  encoder(s) and decoder(s).  Recent  video  coding  standards 
have software  ‘test  models’  available  that  are  developed  alongside  the  standard and 
provide  a  useful  reference  for  interoperability  tests. 

0 Decoder  performance  under  error  conditions, such as random bit errors and packet  losses. 

To aid in debugging,  it  can be useful to provide  a  ‘trace’ mode in which each of the main 
coding  functions  records its data  to  a  log file. Without this  type of mode,  it can be  very 
difficult to  identify  the  cause of a  software  error  (say) by examining the stream of coded bits. 
A real-time  test  framework which enables ‘live’ video  from  a  camera to be coded and 
decoded  in  real  time using the  CODEC  under  development  can be  very useful for  testing 
purposes, as can be bit-stream  analysis  tools  (such as ‘MPEGTool’) that provide  statistics 
about  a  coded  video  sequence. 

Some  examples of efficient  software  video  CODEC  implementations have been dis- 
Opportunities have been examined  for  parallelising  video  coding  algorithms  for 

multiple-processor  platform^,^-^ and  a method has been  described  for  splitting  a CODEC 
implementation  between  dedicated  hardware and software.8 In the  next  section we  will 
discuss  approaches to designing  dedicated VLSI video  CODECs. 

13.4 DESIGN OF A HARDWARE CODEC 

The  design  process  for  a  dedicated  hardware  implementation is somewhat  different, though 
many of the  design  goals  are  similar  to those for  a  software  CODEC. 

13.4.1 Design Goals 

Design  goals  for  a  hardware  CODEC may include: 

1. Maximise  frame  rate. 

2.  Maximise  frame  size. 

3.  Maximise peak coded  bit  rate. 

4. Maximise  video  quality  for  a  given  coded  bit  rate. 

5. Minimise  latency. 

6. Minimise  gate  countldesign  ‘area’,  on-chip memory and/or power consumption. 
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7. Minimise  off-chip  data  transfers  (‘memory  bandwidth’) as these  can  often  act  as  a 
performance  ‘bottleneck’  for  a  hardware  design. 

8. Provide  a flexible interface to the host system (very often  a  processor running higher-level 
application  software). 

In a  hardware  design,  trade-offs  occur  between  the first four  goals  (maximise  frame  rate/ 
frame  size/peak bit rate/quality) and numbers (6) and (7)  above  (minimise  gate  count/power 
consumption and memory bandwidth). As discussed in Chapters 6-8, there  are many 
alternative  architectures  for  the key coding  functions  such  as motion estimation, DCT and 
variable-length  coding,  but  higher  performance often requires  an  increased  gate  count. An 
important  constraint  is  the cycle budget for  each  coded  macroblock.  This can be calculated 
based on the  target  frame rate and frame  size and the  clock speed of the  chosen  platform. 

Example 

Target frame  size:  QCIF  (99  macroblocks  per  frame, H.263MPEG-4 coding) 
Target frame  rate:  30  frames  per  second 
Clock  speed: 20 MHz 

Macroblocks  per  second: 99 X 30 = 2970 
Clock  cycles per macroblock: 20 x 106/2970 = 6374 

This  means that all macroblock  operations must be completed within 6374  clock  cycles. 
If the various operations  (motion  estimation,  compensation, DCT, etc.)  are  carried out 
serially then the sum total for  all  operations must not exceed  this  figure; if the operations  are 
pipelined  (see below) then any one  operation must not take more than 6374  cycles. 

13.4.2 Specification and Partitioning 

The  same  sequence of operations  listed in Figures 13.9 and  13.10 need to be carried out by a 
hardware  CODEC.  Figure  13.12 shows an example of a  decoder that uses a ‘common bus’ 
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Figure 13.12 Common bus architecture 
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architecture. This type of architecture may be flexible and adaptable but the performance 
may be constrained by data transfer over the bus and scheduling of the  individual  processing 
units. A fully  pipelined  architecture  such as the  example  in  Figure 13.13 has the potential to give 
high performance  due to pipelined execution by the separate functional units.  However, this 
type of architecture may require significant redesign in order to support a different coding 
standard or a new optional coding mode. 

A further consideration for a hardware design is the partitioning between the dedicated 
hardware and the ‘host’ processor. A ‘co-processor’ architecture such as that described in  the 
DirectX VA framework (see Chapter 13) implies close interworking between the host  and 
the hardware on a macroblock-by-macroblock basis. An alternative approach is to move 
more operations into hardware, for  example by allowing the hardware to process a complete 
frame of video independently of the host. 

13.4.3 Designing the Functional Blocks 

The choice of design for  each functional block depends on the design goals (e.g. low area 
and/or power consumption vs. high performance) and to a certain extent on the choice of 
architecture. A ‘common bus’-type architecture may lend itself to the reuse of certain 
‘expensive’ processing elements. Basic operations such as multiplication may  be  reused  by 
several functional blocks (e.g. DCT and quantise). With the ‘pipelined’ type of architecture, 
individual modules do not usually share processing elements and the aim is to implement 
each function as efficiently as possible, for  example using slower, more compact distributed 
designs  such as the distributed arithmetic architecture described in Chapter 7. 

In general, regular, modular  designs are preferable both for ease of design and efficient 
implementation on  the target platform. For example, a motion estimation algorithm that 
maps to a regular hardware design (e.g. hierarchical search) may be preferable to less regular 
algorithms  such as nearest-neighbours search (see Chapter 6). 

13.4.4 Testing 

Testing and verification of a hardware CODEC  can  be a complicated process, particularly 
since  it may be difficult to test with  ‘real’ video inputs until a hardware prototype is 
available. It may be useful to develop a software model that matches the hardware design to 
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assist in  generating test vectors  and checking  the results. A real-time test bench,  where a 
hardware  design is implemented  on a reprogrammable FPGA in conjunction  with a host  system 
and  video capture/display capabilities, can  support testing with a range of  real  video  sequences. 

VLSI video CODEC design approaches and examples have  been  reviewed9-’*  and two 
specific design  case  studies  presented.’ ‘ , I 2  

13.5 SUMMARY 

The design of a  video CODEC depends on the target platform,  the transmission  environment 
and the user  requirements.  However, there are  some  common  goals and  good  design 
practices  that may  be  useful for  a  range of designs.  Interfacing to a video CODEC is an 
important  issue,  because of the need to efficiently handle a high  bandwidth  of video  data in 
real time and because flexible control of the CODEC can make  a significant difference to 
performance.  There  are many options  for  partitioning the design into functional blocks and 
the  choice of partition will affect the  performance and  modularity of the system. A large 
number of alternative  algorithms and  designs exist  for  each of the main  functions in  a video 
CODEC. A good design  approach is to use simple  algorithms where  possible  and to  replace 
these  with more  complex,  optimised  algorithms in  performance-critical areas of the design. 
Comprehensive testing with a range of video  material  and operating parameters is essential 
to ensure that all modes of CODEC operation are working correctly. 
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Future  Developments 

14.1 INTRODUCTION 

This  book  has concentrated on the  design of video CODECs that are compatible with current 
standards (in particular,  MPEG-2, MPEG-4 and  H.263) and on the current  ‘state of the  art’ in 
video  coding  technology.’ Video coding  is  a  fast-moving  subject and current  research in the 
field moves  beyond the bounds of the international  standards; at the same time,  improve- 
ments in processing  technology will soon make it  possible  to  implement  techniques that 
were previously considered  too  complex. This final chapter reviews trends in video  coding 
standards,  research and platforms. 

14.2 STANDARDS  EVOLUTION 

The I S 0  MPEG organisation  is at present  concentrating on two main  areas:  updates to 
existing  standards  and  a new standard,  MPEG-21. MPEG-4 is  a  large and complex  standard 
with many functions  and  tools  that go well  beyond  the basic H.263-like  functionality of the 
popular  ‘simple profile’ CODEC. It was originally  designed with continual  evolution in 
mind: as new techniques  and  applications become mature,  extra  tools  and profiles continue 
to be added  to  the  MPEG-4  set of standards.  Recent  work,  for  example,  has  included new 
profiles that  support  some of the emerging  Internet-based  applications  for  MPEG-4. Some of 
the more  advanced  elements of MPEG-4 (such  as  sprite  coding  and  model-based  coding) are 
not yet widely used in practice, partly for  reasons of complexity. As these  elements  become 
more  popular  (perhaps due  to increased  processor  capabilities), it may be that  their 
description in the standard will need to be modified and  updated. 

MPEG-2 I * builds on the  coding  tools of MPEG-4 and the content  description  tools of the 
MPEG-7  standard  to  provide  a  ‘framework’  for  multimedia  communication. The  MPEG 
committee has moved beyond the details of coding  and  description  to an ambitious effort 
to  standardise  aspects of the  complete  multimedia ‘delivery chain’,  from  creation  to 
‘consumption’  (viewing  or  interacting with the data).  This process may include the 
standardisation of  new coding and compression  tools. 

The Video Coding Experts Group of the  ITU continues  to develop  the H . 2 6 ~  series of 
standards. The recently  added  Annexes V, W and X of H.263 are expected  to be the  last 
major  revisions  to this standard. The main ongoing  effort has to finalise the first version of 
H.26L: the  core  tools of the standard  (described in Chapter 5 )  are  reasonably well defined, 
but  there is further work required to convert these into a  published  international  standard. 
The technical aspects of H.26L were  scheduled to be finalised during  2001. However, there 
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is now an  initiative  between  MPEG  and  VCEG  to  jointly  develop  a new coding  standard 
based on H.26L3. 

14.3 VIDEO CODING RESEARCH 

Video  coding  technology  remains a very active  area  for  researchers.  Research in this field 
falls  into  two  main  categories,  ‘applied’  research  into  the  practical  implementation of 
established  video  coding  techniques  and  ‘speculative’  research  into new and emerging 
coding  algorithms. As a guide  to  the  subjects  that  are  currently  popular in the  research 
community,  it  is  interesting  to  examine  the  papers  presented at the 2001 Picture  Coding 
Symposium (a specialist  forum  for  image  and  video  coding  research).  The total of 110 
papers  included: 

0 22 papers  on  the  implementation  and  optimisation of the  popular  block  DCT-based  video 
coding  standards; 

0 l 1  papers on transmission  issues; 

0 7 papers on quality  measurement  and  quality  metrics; 

0 22 papers on content-based  and  object-based  coding  (including  MPEG-4  object-based 
coding); 

0 5 papers  on  wavelet-based  coding of video  sequence; 

0 5 papers on coding  of  3D/multi-view  video. 

(Note  that  some  papers  were  difficult  to  categorise.)  This  cross-section of topics  implies  that 
much of the  current  research  effort  focuses on practical  implementation  issues  for  the 
popular  block-based  coding  standards.  The  object-based  functions of the  MPEG-4  standard 
attract a lot of research  interest  and  the  feeling  is  that  there  are still a  number of practical 
problems  to  solve  (such as reliable,  automatic  segmentation of video  scenes  into  video  object 
planes)  before  these  tools  become  widely  adopted by the  multimedia  industry. A surprisingly 
small  number of papers  were  presented on ‘blue  sky’  research  into novel coding  methods. It 
is  important  to  research  and  develop  the  next  generation of video  coding  algorithms; at the 
same  time,  there  is  clearly a lot of scope  for  improving  and  optimising  the  current  generation 
of coding  technology. 

14.4 PLATFORM TRENDS 

Chapter 12 summarised  the key features of a range of platforms  for  video  CODEC 
implementation.  There  is  some  evidence of convergence  between  some of these  platforms; 
for  example, PC processor  manufacturers  continue  to  add  instructions  and  features  that  were 
formerly  encountered in special-purpose  video  or  media  processors.  However, it is likely  that 
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there will continue  to be distinct  classes of platform  for  video  coding,  possibly  along the 
following  lines: 

1. PC processors  with  media  processing  functions  and  increasing use of hardware  co- 
processing  (e.g. in video  display  cards). 

2. More  ‘streamlined’  processors (e.g. embedded  processors with internal or external 
multimedia  support, or media  processors)  for embedded multimedia  applications. 

3. Dedicated  hardware CODECs (with  limited  programmability) for efficient implementa- 
tion of ‘mass-market’  applications such as digital TV decoding. 

There  is  still a place in the market  for  dedicated  hardware  designs  but  at  the same time  there 
is  a  trend  towards flexible, embedded  designs for new applications  such  as  mobile  multi- 
media. The increasing  use of ‘system  on  a  chip’  (SoC)  techniques, with which  a  complex  IC 
design  can be rapidly  put  together  from  Intellectual  Property  building  blocks,  should make it 
possible  to  quickly  reconfigure and redesign  a  ‘dedicated’  hardware CODEC.  This will be 
necessary if dedicated  designs  are  to  continue to compete with the flexibility of embedded or 
general-purpose  processors. 

14.5 APPLICATION  TRENDS 

Predicting  future  directions  for  multimedia  applications is notoriously difficult. Few of the 
‘interactive’  applications that were proposed in the  early 1990s, for  example,  have  gained a 
significant market  presence. The largest  markets for video  coding at present  are  probably 
digital  television  broadcasting and DVD-video (both utilising MPEG-2 coding).  Internet 
video  is  gaining popularity, but is hampered by the limited  Internet  connections  experienced 
by most users. There are  some  signs  that  MPEG-4  coding  for  video  compression,  storage and 
playback may experience  a boom in popularity  similar  to MPEG Layer  3  Audio  (‘MP3’ 
audio). However, much work needs  to be done  on the management  and protection of 
intellectual  property  rights  before  this  can  take  place. 

Video  conferencing via the  Internet  (typically  using  the  H.323  protocol  family)  is 
becoming  more widely used and may gain  further  acceptance with increases in processor 
and  connection  performance.  It has yet to  approach  the  popularity of communication via 
voice,  e-mail and text  messaging. There are  two  application areas that  are  currently of 
interest  to  developers  and  communications providers, at opposite  ends of the bandwidth 
spectrum: 

1. Very low power, very low bandwidth  video  for  hand-held  mobile  devices  (one of 
the  hoped-for ‘killer applications’ for the costly third-generation mobile  networks). The 
challenge  here is to  provide  usable,  low-cost  video  services  that  could  match  the 
popularity of mobile telephony. 

2. High  bandwidth,  high  quality  video  coding  for  applications  such as: 
(a) ‘Immersive’  video  conferencing,  for  example  displaying  conference  participants  on  a 

video ‘wall’ as if they  were  sitting  across  a  table from each other. The eventual goal 
is  a  video  conference  meeting that is almost  indistinguishable from a  face-to-face 
meeting. 
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(b)  High  definition  television (HDTV, approximately  twice  the  resolution of ITU-R 
601 ‘standard’  digital  television).  Coding  methods  (part of MPEG-2)  have  been 
standardised  for  several  years but this  technology  has not yet taken hold in the 
marketplace. 

(c)  Digital  cinema  offers  an  alternative  to  the  reels of projector film that  are  still  used  for 
distribution  and  display of cinema films. There  is currently an effort by the  MPEG 
committee  (among  others)  to  develop standard(s)  to  support  cinema-quality  coding 
of video  and  audio.  MPEG’s  requirements  document  for  digital  cinema4  specifies 
‘visually  lossless’  compression  (i.e. no loss should be  discernible by a human 
observer  in a movie  theatre) of frames  containing up to 16 million  pixels  at  frame 
rates  of  up  to 150 Hz.  In  comparison,  an  ITU-R 601 frame  contains  around 
0.5 million  pixels.  Coding and  decoding  at  cinema fidelity are  likely to be  extremely 
demanding  and will pose  some  difficult  challenges  for CODEC developers. 

An  interesting  by-product of the  ‘mainstream’  video  coding  applications  and  standards  is 
the  growing  list  of new and  innovative  applications  for  digital  video.  Some  examples  include 
the  use of ‘live’  video in  computer  games;  video  ‘chat’  on a large  scale  with  multiple  part- 
icipants;  video  surveillance  in  increasingly  hostile  environments  (such as in  an  oil well or 
inside  the  body of a patient);  3-D  video  conferencing;  video  conferencing  for  groups  with 
special  requirements  (for  example  deaf  users);  and  many  others. 

Early  experiences  have  taught  designers of digital  video  applications that an application 
will  only be  successful if users find it  to be a usable,  useful  improvement  over  existing 
technology.  In  many  cases  the  design of the  user  interface  is as important as, or  more 
important  than,  the  efficiency of a video  coding  algorithm.  Usability  is a vital but often 
overlooked  requirement  for  any new video-based  application. 

14.6 VIDEO CODEC DESIGN 

The  aim of this  book  has  been  to  introduce  readers to the  concepts,  standards,  design  tech- 
niques  and  practical  considerations  behind  the  design of video  coding  and  communication 
systems. A question  that  is  often  raised is whether  the  huge  worldwide  effort  in  video  coding 
research  and  development  will  continue  to be necessary,  since  transmission  bandwidths  may 
perhaps  reach  the  point  at  which  compression  becomes  unnecessary. 

Video  and  multimedia  applications  have  only  begun  to  make a significant  impact on 
businesses  and  consumers  since  the  late 1990s. Despite  continued  improvements  in 
resources  such as processing  power,  storage  and  bandwidth,  these  resources  continue  to 
be  stretched by increasing  demands  for  high-quality,  realistic  multimedia  communications 
with  more  functionality. There  is still a large  gap between  the  expectations of the user and 
the  capabilities of present-day  video  applications  and  this  gap  shows no sign of diminishing. 
As digital  video  increases  its  share of the  market,  consumer  demands  for  higher-quality, 
richer  multimedia  services will continue to increase.  Bridging  the gap (providing  better 
quality  and  functionality  within  the  limits of bandwidth  and  processing  power)  requires, 
among  other  things,  continued  improvements  in  video  CODEC  design. 

In the  past,  market  researchers  have  overestimated  the  rate of take-up of multimedia 
applications  such as digital  TV  and video  conferencing  and it remains  to  be seen  whether 
there  is a real  demand  for  some of the  newer  video  services  such as mobile  video. Some 
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interesting  trends (for example,  the  continued  popularity of MJPEG  video CODECs because 
of their  design  simplicity  and  inherent  error  resilience)  imply  that  the  video  communications 
market  is  likely to  continue  to  be  driven  more  by  user  needs  than by impressive  research 
developments.  This in turn  implies  that  only  some of the  recent  developments in video 
coding  (such  as  object-based  coding,  content-based tools, media  processors  and so on) will 
survive.  However,  video  coding will remain  a  core  element of the  growing  multimedia 
communications  market.  Platforms,  algorithms  and  techniques  for  video  coding will 
continue to change  and  evolve. It is  hoped that this  book will help to make  the  subject of 
video CODEC design  accessible to a  wider  audience of designers,  developers,  integrators 
and users. 
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4 : 2 : 0 (sampling) 

4 : 2 : 2 (sampling) 

4 : 4 : 4 (sampling) 

API 
arithmetic coding 
artefact 
BAB 
baseline (CODEC) 
block matching 
blocking 
B-picture 
channel coding 
chrominance 
CIF 
CODEC 
colour space 
DCT 
DFD 
DPCM 
DSCQS 

DVD 
DWT 
entropy coding 
error concealment 

field 
flowgraph 
full search 
GOB 
GOP 
H.261 
H.263 
H.26L 
HDTV 
Huffman coding 

sampling method : chrominance components have half the horizontal 

sampling method : chrominance components have half the horizontal 

sampling method : chrominance components have same resolution as 

application programming interface 
coding method to reduce redundancy 
visual distortion in an image 
binary alpha block, indicates the boundaries of a region (MPEG-4 Visual) 
a codec implementing a basic set of features from a standard 
motion estimation carried out on rectangular picture areas 
square or rectangular distortion areas in an image 
coded picture predicted using bidirectional motion compensation 
error control coding 
colour difference component 
common intermediate format, a colour image format 
COderlDECoder pair 
method of representing colour images 
discrete cosine transform 
displaced frame difference (residual image after motion compensation) 
differential pulse code modulation 
double stimulus continuous quality scale, a scale and method for subjective 

quality measurement 
digital versatile disk 
discrete wavelet transform 
coding method to reduce redundancy 
post-processing of a decoded image to remove or reduce visible 

odd- or even-numbered lines from a video image 
pictorial representation of a transform algorithm (or the algorithm itself) 
a motion estimation algorithm 
group of blocks, a rectangular region of a coded picture 
group of pictures, a set of coded video images 
standard for video coding 
standard for video coding 
‘Long-term’ standard for video coding 
high definition television 
coding method to reduce redundancy 

and vertical resolution of luminance component 

resolution of luminance component 

luminance component 

error effects 
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HVS 

inter-frame  (coding) 
interlaced (video) 
intra-frame  (coding) 
IS0  
ITU 
ITU-R 601 
JPEG 

JPEG-2000 
KLT 
latency 
loop filter 
MCU 
media processor 
memory bandwidth 
MJPEG 
motion compensation 
motion estimation 
motion vector 

MPEG 
MPEG- 1 
MPEG-2 
MPEG-4 
objective quality 
OBMC 
profile 
progressive (video) 
pruning (transform) 
PSNR 
QCIF 

quantise 
rate control 
rate-distortion 
RGB 
ringing (artefacts) 
RTP 
RVLC 
scalable  coding 
short header 

QoS 

(MPEG-4) 
SIMD 
slice 
statistical redundancy 
subjective quality 
subjective redundancy 
sub-pixel (motion 

compensation) 

human visual system, the system by which humans percieve and interpret 

coding of video  frames using temporal prediction or compensation 
video  data represented as a series of fields 
coding of video frames without temporal prediction 
International Standards Organisation 
International Telecommunication Union 
a colour video image format 
Joint Photographic Experts Group, a  committee of ISO; also an image 

an image coding standard 
Kamuhen-Loeve transform 
delay through a communication system 
spatial filter placed within encoding or decoding feedback loop 
multi-point control unit, controls a multi-party conference 
processor with features specific to multimedia coding and processing 
Data transfer rate to/from RAM 
System of coding a video sequence using JPEG intra-frame compression 
prediction of a video frame with modelling of motion 
estimation of relative motion between two or more video frames 
vector indicating a displaced block or region to be used for motion 

Motion Picture Experts Group, a committee of IS0  
a video coding standard 
a video coding standard 
a  video coding standard 
visual quality measured by algorithm(s) 
overlapped block motion compensation 
a set of functional capabilities (of a video CODEC) 
video data represented as a series of complete frames 
reducing the number of calculated transform coefficients 
peak signal to noise ratio, an objective quality measure 
quarter  common intermediate format 
quality of service 
reduce the precision of a scalar or vector quantity 
control of bit rate of encoded video signal 
measure of CODEC performance (distortion at a range of coded bit rates) 
red/green/blue colour space 
‘ripple’-like artefacts around sharp edges in a decoded image 
real-time protocol, a transport protocol for real-time data 
reversible variable length code 
coding  a signal into a number of layers 
a coding mode that is functionally identical to H.263 (‘baseline’) 

visual images 

coding standard 

compensation 

single instruction multiple data 
a region of a coded picture 
redundancy due to the statistical distribution of data 
visual quality as perceived by human observer(s) 
redundancy due to components of the data that are subjectively insignificant 
motion-compensated prediction from a reference area that may be formed 

by interpolating between integer-valued pixel positions 
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test model 

TSS 
VCA 
VCEG 
video packet 

video processor 
VLC 
VLD 
VLE 
VLIW 
VLSI 
V 0  (MPEG-4) 
VOP (MPEG-4) 

(MPEG-4) 

VQEG 
YCrCb 

a software model and document that describe a reference implementation 
of a video coding standard 

three-step search, a motion estimation algorithm 
variable complexity algorithm 
Video Coding Experts Group, a committee of ITU 
coded unit suitable for packetisation 

processor with features specific to video coding and processing 
variable length code 
variable length decoder 
variable length encoder 
very long instruction word 
very large scale integrated circuit 
video object 
video object plane 
Video Quality Experts Group 
luminance/red chrominancehlue chrominance colour space 
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