Brought to You by

Like the book? Buy it!

S ——
XML

in Theory and Practice

features

@ Java

@ DTD

@ Navigation
@ Schema
@ Cs5

@ xsUT

@ XSL-FO
@ Sax

@ Dom

@ DocBook
@ Web Services
@ S0aAP

@ XuL

Chris Bates

XML in Theory and Practice

This page intentionally left blank

XML in Theory and Practice

Chris Bates

Sheffield Hallam University

WILEY

Copyright ©2003 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the
Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90
Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the publication. Requests to the Publisher should be addressed to the Permissions Department, John Wiley &
Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk.
or faxed to (+44) 1243 770620.

Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occasioned to any
person or property through using the material, instructions, methods or ideas contained herein, or acting or freraining from
acting as a result of such use. The authors and publisher expressly disclaim all implied warranties, including merchantability
or fitness for any particular purpose. There will be no duty on the authors or publisher to correct any errors or defects in the
software.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John
Wiley & Sons, Ltd is aware of a claim, the product names appear in capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and registration.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It
is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or
other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84344-6

Typeset from author-supplied PDF files.

Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are
planted for each one used for paper production.

1 Introduction

Part] Extensible Markup Language

2 Writing XML

W

21
2.2
23
24
25
2.6

A First Example

Why Not Use HTML?
The XML Rules
Parsing XML Files
The Recipe Book

The Business Letter

Document Type Definitions

3.1
32
3.3
34

Structure
Elements
Attributes
Entities

Contents

13
14
15
18
29
34
38

43
44
45
47
48

vi

3.5
3.6
3.7
3.8

CONTENTS

Notations

Using DTDs
The Recipe Book
Business Letter

4 Specifying XML Structures Using Schema

4.1
4.2
4.3
44
4.5
4.6

Namespaces
Using Schemas
Defining Types
Data In Schema
Compositors
Example Schema

PartII Formatting XML for Display and Print

5 Cascading Style Sheets

51
52
53
54
5.5

CSS and HTML

CSS and XML

Defining Your Own Styles
Properties and Values in Styles

A Stylesheet For The Business Letter

6 Cascading Style Sheets Two

6.1
6.2
6.3
6.4

The Design Of CSS2
Styling For Paged Media
Using Aural Presentation
Counters And Numbering

7 Navigating within and between XML Documents

7.1
7.2
7.3

XPath
XLink
XPointer

8 XSL Transformation Language

51
52

57

61
63

71
78
82
90

103
104
108
110
113
119

123
124
126
130
134

139
140
154
166

169

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

CONTENTS

Introducing XSLT
Starting the Stylesheet
Templates

XSL Elements

XSL Functions

Using Variables
Parameter Passing
Modes

Handling Whitespace

9 XSLT in Use

9.1
9.2

The Recipe Book
The Business Letter

10 XSL Formatting Objects
10.1 Document Structure
10.2 Processing XSL-FO
10.3 Formatting Object Elements
10.4 The Recipe Book

Part I Handling XML in Your Own Programs

11 Java and XML
11.1 Java Packages for Processing XML

12 The Document Object Model
12.1 The W3C Document Object Model
12.2 The Xerces DOM API
12.3 Using the DOM to Count Nodes
12.4 Using the DOM to Display a Document

13 The Simple API for XML
13.1 The SAX API
13.2 A Sax Example

vii

170
174
175
177
179
182
184
186
187

197
198
208

219
221
224
227
250

263
267

275
276
279
283
286

289
291
299

viii CONTENTS

Part IV Some Real-World Applications of XML

14 Introducing XHTML 309
14.1 XHTML Document Type Definitions 311
14.2 An XHTML Primer 312
14.3 The Rules Of XHTML 325

15 Web Services — The Future of the Web? 329
15.1 Some Typical Scenarios 330
15.2 Semantic Web 333
15.3 Resource Description Framework 335
154 Web Services 340

16 Distributed Applications with SOAP 351
16.1 An Overview of SOAP 352
16.2 Programming SOAP in Java 362
16.3 Accessing Recipes 372

17 DocBook 381
17.1 Introducing DocBook 382
17.2 Creating DocBook Documents 383
17.3 Styling DocBook Documents Using DSSSL 395
17.4 Styling DocBook Documents Using XSL 399

18 XUL 403
18.1 Introducing XUL 404
18.2 The XUL Widgets 407
18.3 Using XUL 417

References 421

Appendix A Business Letter in XML 425

Appendix B Recipe Book in XML 429

CONTENTS

Appendix C Business Letter Schema

Appendix D Recipe Book Schema

Appendix E Business Letter Formatting Object Stylesheet
Appendix F Recipe Formatting Object Stylesheet

Index

ix

437

443

447

455

461

Preface

If you are an outsider to the computer industry, it might seem like a sober suited, straight-
laced sort of place. If you work in the industry or deal with it on a regular basis then you
will know that IT, perhaps more than any other industry, is driven by fashion. Computer
technology is in a state of perpetual revolution, with old technologies, often simply last
year’s model, being swept away and replaced with the latest thing. The new technology
isn’t always better but it does have the benefit of being newer. You might think that since
the development and implementation of software and systems is a logical and ordered
activity, those who use IT would act based on cold facts and hard evidence but too often
they don’t.

There are massive pressures on corporate IT departments from the rest of the organiza-
tion. IT is expected to bring competitive advantage, to create instant results and to maximize
profitability. Yet when IT goes wrong, it often does so spectacularly. If a store gets broken
into, physical goods are stolen; if an e-commerce Web site is broken into then financial
details of all the company’s customers may be stolen. Business managers often fail to
understand the pressures that they put on IT departments; all too often they assume that
implementing a new system is just like buying a new car. Simply choose the one you
want, put your things in it and off you go. Because of this lack of understanding, there is
a tendency to look at what competitors are doing and try to do the same. Basing a busi-
ness around the Web has been just such a fashion. Many businesses created e-commerce
offshoots because everyone else was doing it — with predictable consequences.

xi

In the dotcom boom of the late 1990s many self-styled business experts were predicting
that everything would soon be done on the Web. Customers would place orders through
Web sites, then track the progress of their orders online. Businesses would exchange data
exclusively using Web protocols. The companies that make the infrastructure of the Web
became phenomena beyond imagining. Hardware manufacturers who were selling large
volumes of routers, switches or cables were treated by investors as of they were IBM or
General Electric. The software houses whose products would process all the data that
pundits were expecting received huge levels of financial investment. Many of these com-
panies would never have been able to pay off all of their borrowings, or satisfy investors
with a decent return. The problem was that the customers simply weren’t there. Since
the turn of the millennium a harsh wind of reality has replaced that earlier optimism. In-
vestors, manufacturers and customers are starting to examine the intrinsic worth of Web
businesses and the technologies that support them. Many will disappear but a few will
survive and succeed.

Many useful technologies have been created to assuage the continual desire for some-
thing new or revolutionary. As more people tried to run online organizations, the limi-
tations of HTML became apparent. Also apparent was the ease of use of the HTML tag
system. Why not, therefore, combine simple and readable tags with a set of rules which
let document authors target meaning rather than presentation? That is exactly what XML
does. You can use XML to describe almost any data; that description is platform inde-
pendent, as is the data. Hey presto, the limitations of the Web start to disappear, to be
replaced with a raft of new applications.

This book is an introductory guide to the world of XML. Not just what it is and how to
write XML documents, but also an overview of many of the technologies that surround
XML and are required to make it usable. It’s also based on practical examples and, in Part
Four, demonstrates how XML is really used.

Acknowledgments

Although this book is my baby, it didn’t appear without help from numerous other peo-
ple. I'd like to thank Gaynor Redvers-Mutton, my editor for suggesting I write this book
in the first place and then for making it happen. I must also mention her assistant Jonathan
Shipley, Robert Hambrook who has supervised the production of the book at John Wiley
and Sons, and copy editor Annette Abel. I'd also like to thank the technical reviewers,
especially Bruce Donald Campbell whose comments and suggestions made the book far
better than it might otherwise have been.

xii

Most importantly I'd like to thank my family: my parents for giving me self-belief and
for their love; my wife Julie and our daughters Sophie and Faye. Living with an author
isn’t easy and they do an admirable job of it. It's now time to devote some time to them.

Contacting the Author

I would be delighted to hear from readers of this book. There are bound to be mistakes
and those can only be rectified if readers point them out, and I'm sure there are things that
I can improve in the future. Anyone who teaches will tell you that education is a dialog
in which teacher can learn from pupil just as pupil learns from teacher. Not everything
in this book will make sense; you may have problems with exercises or with changing
technologies and standards. I'd be happy to discuss those things with you. I have a Web
site which contains material related to this book at:

http://homepages.shu.ac.uk/~cmscrb

More information, exercises and errata will appear there. If you want to send me e-mail
I'll try to respond as quickly and accurately as I can. My email address is c.d.batese@
shu.ac.uk

CHRIS BATES

Sheffield, UK

Chapter

Introduction

Data. Probably the most important thing about any piece of software or computer system
is the data that it manipulates. Whether playing games, using Internet chat rooms or per-
forming financial transactions, everything that we use computers for has data somewhere
near its heart. Data can be pretty complicated. You might think that your name and ad-
dress are quite simple things, but try developing a computer storage format for them that
is simple to use, efficient, that allows you to manipulate the data exactly as you want to,
and that you will still understand in 20 years. Suddenly that simple data becomes more
complex and interesting. Now scale the problem so that instead of data for one person
you are storing and manipulating many millions of data records. If the data format is
too complex, the system may struggle to work through the data when it is asked to make
changes to it. If the format is too simple, important information may be difficult to extract.

Anyone who has used computers for a few years will have faced one particular prob-
lem. It doesn’t matter how much you know about IT or how much experience you have,
you are almost guaranteed to face this problem at some point. The data that most PC
users create is stored in proprietary formats. The software developers who create typical
PC applications all invent their own data structures, and when a user saves data to a file
it is stored in that unique format. Often data, even plain text, is saved in a binary format
such that when looking at the contents of the file, finding the actual data within a mess
of control codes is impossible. While the application that created it still exists, the data
remains usable. But over time users upgrade operating systems, delete applications that

2 Chapter 1: Introduction

they are unable to reinstall or change the type of computer they use. Eventually users
have important data stored on disk but are unable to use it. Sometimes they are even
unable to access the physical medium — who, these days, has a 51 inch floppy disk drive
available?

Some applications can import data that was created in another piece of software. For
instance, the open-source word processor OpenOffice.org can import data created using
various versions of Microsoft Word. However, there is no guarantee that a particular for-
mat will be supported by any other application. The solution might be to reverse engineer
the data format. Reverse engineering is the process of looking at the data and trying to fig-
ure out how the data and formatting are encoded within the file so that the data itself can
be extracted. The only problem here is that doing so may be illegal. The Digital Copyright
Millennium Act, DCMA, passed by the United States Congress makes the reverse engi-
neering of copyrighted material illegal in the USA. As I write this, the European Union
is seeking to impose similar legislation on its member states. The result may be that the
possession of data remains legal but using it at some arbitrary point in the future may
require illegal actions.

If the data had been saved in a format that was both freely available and readable
none of this would matter. A cynic might suggest that the reason for proprietary binary
data formats is that the software manufacturer is then able to sell updated versions of
their programs to users on a regular cyclical basis. If users could use any word processor
to read and write their letters, they would choose the ones that were easiest to use and
available at a price they liked.

Big business has an even more pressing problem. Large organizations often have gi-
gabytes of data which they have created over time and which is stored on systems that
have reached the end of their working lives. Moving that data to new systems cannot be
achieved simply by loading the tapes onto a different piece of hardware. Imagine the same
problems that PC users have multiplied a thousand fold. Then imagine that the data is
mission critical — without it there is no business. That’s the exact position in which banks,
government agencies and retailers all over the world find themselves. Many continue to
run mainframe systems which are decades old simply because the cost and difficulty of
moving old data to new systems are prohibitive.

One way of solving these problems is to structure data using a simple grammar. XML
is a universally available language which provides just such a grammar. If all data were
in XML, structuring problems would still exist but solving them using the technologies
described in this book would be a relatively simple task.

How the Web Changed Everything

The problems presented by data formats are important but would have remained the
preserve of a small minority of computer scientists if the World Wide Web had not been
invented. The Web really changed everything in computing. If anyone can connect to any
piece of data, that data had better be available in a format that they can all use. At the
very least, that format needs to be well publicized; ideally it should be open source. The
common data formats on the Web are HTML and PDE. HTML is open, anyone can read
the specification, no one owns HTML and no individual or corporation controls how it
will develop in the future. PDF is owned by Adobe, but they publish the specification so
that anyone who has sufficient skill and knowledge can write software that manipulates
it.

Both HTML and PDF are presentational formats: they describe how data should look
either on screen or on a printed page. They have nothing to say about what the data
actually means. When search engines such as Google build indexes of Web pages, they
attempt to do so based upon the meaning of the data contained within the page. If that
data is identified only as headings, cells in tables or paragraphs, finding what it means
is almost impossible to do using software. You might be thinking that HTML tags which
defines headings are adding meaning to data. Intuitively a level one heading, <h1>, iden-
tifies a major section of a document, whilst level two, <h2 >, identifies a subsection. That
might be intuitive but it isn’t necessarily correct. HTML tags specify the formatting of
content, so that an <h2> element can be used to highlight or emphasize text rather than
to carry the meaning subsection. What is needed is a way of formatting data based upon
meaning, and some method of converting that formatted data into other forms which are
suitable for presentation to humans rather than to software.

XML provides a solution to the first problem since it structures data based upon mean-
ing, not appearance. Indexing can, therefore, be done more easily, with results which are
more useful. If a document is structured using XML, viewing it in a Web browser is likely
to be near impossible, too. What's needed is a way to convert meaningful data struc-
tures into presentational structures. In the XML field that is done using the Extensible
Stylesheet Language, XSL.

There’s one more way in which the Web changes things. If data has meaning and can
be accessed using URIs, then why can’t applications access that data directly? Why do
they need to be controlled by humans? This is a problem which has attracted interest
from researchers in Al and distributed systems for years. XML seems to provide at least
part of the solution here too.

4 Chapter 1: Introduction

SGML, The Origins of XML

XML didn’t magically appear from nowhere. It grew out of dissatisfaction with HTML
which simply lacks the expressive power that many applications developers require. Both
HTML and XML are simplified subsets of SGML, the Standardized General Markup Lan-
guage. SGML grew from a number of pieces of work, notably that of Charles Goldfarb,
Edward Mosher and Raymond Lorie at IBM who created a General Markup Language in
the late 1960s. In 1978 The American National Standards Institute (ANSI) set up a com-
mittee to investigate text processing languages. Charles Goldfarb joined that committee
and led a project to extend GML. In 1980 the first draft of SGML was released and after a
series of reviews and revisions became a standard in 1985.

The use of SGML was given impetus by the US Department of Defense. By the early
1970s the DOD was already being swamped by electronic documentation. Their problem
arose not from the volume of data, but from the variety of mutually incompatible data
formats. SGML was a suitable solution for their problem — and for many others over the
years.

The development of XML and related technologies is undertaken by the World Wide
Web Consortium, W3C. This a cooperative organization of interested parties, usually in-
dustrial and academic experts, who produce Recommendation documents which are de facto
standards for the Web. W3C Recommendations are produced by working groups in areas
such as data structuring, protocol definition and data transformation.

The design goals for XML, as set out in its Recommendation document, were:

e XML shall be straightforwardly usable over the Internet.

e XML shall support a wide variety of applications.

o XML shall be compatible with SGML.

e It shall be easy to write programs that process XML documents.

e The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

e XML documents should be human-legible and reasonably clear.
e The XML design should be prepared quickly.
o The design of XML shall be formal and concise.

o XML documents shall be easy to create.

Terseness in XML markup is of minimal importance.

I'm not going to provide a critical commentary on the XML Recommendation, or any
of the others that I discuss. Once you've worked through the book, you can look back at
that list and see for yourself how close XML is to its original design goals. You may also
like to ponder on whether those goals were appropriate in the first place.

Target Audience

The world is awash with books about XML. Not just XML, though, that’s just the begin-
ning. If you want to develop an XML application you are likely also to need to be able
to define a document structure and convert XML into other forms. You may also need
to handle XML in programs you write in Java or C++. Every XML téchnology, and there
are many of them, seems to be described in its own 1,000-page book. Every technical
publisher has its own set of XML books available. Where does the XML novice begin?

Many novices try to use the Web for research and tuition, where they meet two types
of Web page. Firstly, there are dozens of Web developer reference sites that include a few
words about XML and some small snippets of code. Generally that code is relevant only
to a particular application and is not explained in detail. Learning XML, XSLT or XML
Schema from Web sites like these is impossible. The second type of Web document is
the W3C Recommendations. These are comprehensive but not necessarily comprehensi-
ble. Generally written for people who understand XML, these are more likely to confuse
beginners than help them.

This book is an attempt to fill some of these gaps. It's not a comprehensive reference
guide but it does include some reference information. Instead, I've tried to introduce the
key XML technologies and demonstrate how they relate to each other. There is also lots of
code which is used both to help the explanations, and to give you a starting point in your
own development work.

I imagine that the typical readers of this book will already have plenty of technical
savvy. They may be students, probably in the final year of an undergraduate degree or
doing postgraduate study. They will be using XML but it’s not their primary focus. These
readers want complete answers quickly and from a single source. The second type of
reader is likely to be a programmer or software designer who has to get up to speed on
all of the XML technologies quickly. These readers will not want to read a lot of large
reference books until they understand just what it is that thy need to know.

6 Chapter 1: Introduction

Preparing the Book

Writing about a technology implies that the author has faith in that technology. Going to
all the trouble of producing a textbook while simultaneously thinking that the technology
is useless or has no future would be perverse to say the least. I have great faith in XML. I
firmly believe that it helps simplify some pretty intransigent problems in distributed com-
puting. Interoperability has long been a dream and some XML technologies are helping
to make that dream into a reality — at relatively low cost. Having said which, I haven’t
used XML to produce this book.

Ideally I would have created the text of this book using my favorite XML editor, written
a stylesheet and converted directly from XML to PDE. When I started writing that was
actually the path I tried to take. Two obstacles lay before me.

First, I needed to find a suitable DTD or schema to provide a definition of the structure
of a textbook. That was easily solved since this is a technical book. DocBook met my
needs. Secondly, there was the process of transforming to PDF. There are two choices
here: DSSSL and XSL Formatting Object, XSL-FO. DSSSL is a well-established technology
which has been used with SGML documents for a number of years now. DSSSL is not
an XML technology and the output it produces, while generally of decent quality, is not
acceptable for a textbook. XSL-FO is an immature technology although it is defined by
a W3C Recommendation. No processor exists which supports the full Recommendation
and the output of those processors that do exist is, frankly, rather ugly. I have no doubt
that in the near future XSL-FO processors that can do an excellent job will appear, but that
won'’t be any help to me in producing this particular book.

Some textbooks have been written in XML. Their authors, or more usually their pub-
lishers, import the XML into an application such as FrameMaker and use that to typeset
the book. Some of the applications that publishers use can import, and export, XML.
Some even have some ability to understand complex DTDs like DocBook. However, the
conversion between the author’s XML source and the completed book leads to many po-
tential problems. To avoid all of these difficulties I have written the book using the tried
and tested KXTRX typesetting language. This gives excellent, high quality results. Because
I've used it for a number of years now for most of my document preparation I know what
it will do and can bend it to my will. In writing a textbook, pragmatism sometimes has to
overcome idealism, unfortunately.

Structure of the Book

This is a book in four parts. Each can be read in isolation, although later parts require a
lot of the knowledge from the earlier ones.

Part One is concerned with the basic technologies of XML. These include a description
of what XML is and how to write it, and how to navigate through documents using XPath
and XLink. I also look at how to formally define XML documents using Document Type
Definitions which are increasingly obsolete but widely supported and how to use XML
Schema which is one of the replacements for DTDs.

Part Two describes how XML documents can be converted into formats that can be dis-
played on screen or printed as hard copy. This part starts with Cascading Stylesheets, CSS,
which should be familiar to you if you've done any HTML development. CSS is a way
of providing information about how HTML elements should be displayed on screen: the
font to be used, their color and placing etc. CSS stylesheets can be used with small XML
documents so that some Web browsers, notably Internet Explorer and Mozilla, are able
to display them. CSS is not an XML-based technology and is rather limited. For serious
applications and power users they have been supplemented with Extensible Stylesheet
Language, XSL. This has two variants: XSL Transforms, XSLT, which is used to transform
XML for on-screen display; and XSL Formatting Object, XSL-FO, which is used to provide
high quality printed documents. I'll look at both of these, showing how XPath expressions
can be used to extract and process subsets of complex documents.

Part Three looks at using XML in your own applications. How do you develop appli-
cations that can read and write XML documents? I give plenty of code that does both.
There are two programmatic interfaces to XML: the Document Object Model, DOM; and
the Simple API for XML Processing, SAX. In Part Three both get a thorough airing. The
code here is all written in Java. DOM and SAX libraries are available for just about any
programming language that you care to name. I have used Java because it’s powerful yet
syntactically relatively simple, many programmers and students know the language, and
it’s widely used for server-side applications. The stuff that you learn here should, though,
give you a leg-up if you're coding in Visual Basic, Perl or even C++.

In Part Four, I look at real uses of XML. I have chosen four different types of applica-
tion. DocBook is used to format technical documentation. Although it has been around
for a few years, interest in DocBook has been sparked since its adoption by the Linux
Documentation Project as their standard data format. If you are a programmer or an
IT student, chances are that you will need to write technical documents at some point
and DocBook is an excellent starting point. Web Services are widely seen as the coming
thing of the Web. E-commerce and business-to-business transactions will be important in
driving the development of next-generation Web applications. I look at the technologies
that underpin these developments: Resource Description Framework, RDF, Web Services
Description Language, WSDL, and Universal Description, Discovery and Integration lan-
guage, UDDIL Then I examine how applications can be plumbed together across the Web
using a networking technology called SOAP. Finally, I examine something slightly dif-

8 Chapter 1: Introduction

ferent. The Mozilla browser can be used as the basis of other applications. It contains a
language called XUL which is used to describe application interfaces. Although XUL is
slightly off-the-wall and definitely not the normal type of XML application, I've included
it because it shows that the possible uses of XML are limited only by the imaginations of
users.

Throughout the book two applications are used to demonstrate how the technologies
can be used. One is a simple business letter which is structured using XML, transformed
into HTML and PDF and manipulated with Java programs. The other is a small file of
recipes which acts as a simple XML database. As well as transformations and Schema
development, the database can be searched with just some recipes retrieved. Taking the
code from these applications won't give you a complete, functional suite of programs but
it should show how the same set of data can be used in many different ways.

Typography

I have used a number of different fonts throughout this book. Each has a particular mean-
ing. I've also structured some parts of the book, especially definitions of code, to clarify
the meaning of the content. It's important that you understand what I've done, otherwise
you may end up writing code that doesn’t work.

First, all code is written in a monospaced Courier font. This is done to distinguish
it from the descriptive text within the book. Here’s a simple example:

<?xml version="1.0"?>

<greeting style="informal">
<from>Chris Bates</from>
<to>Mr. M. Mouse</to>
<message>Hi, how’'re ya doin’?</message>
<signature />
</greeting>

Notice that the XML tags are highlighted. Throughout the book I highlight those tags
that are part of the particular language or grammar under discussion. Code samples
like this can usually be used directly in functional programs, although longer listings are
interspersed with descriptive text.

Definitions of terms appear as bold monospaced Courier. Again, these stand out
from the text but the use of bold text indicates that they are not functional code. You
cannot type the definitions straight into a program and expect them to work. Here’s a
definition of a typical XSLT element followed by part of its explanation:

<output

method="xml" | *html" | “text"
version="nmtoken"
encoding="string"
omit-xml-declaration="yes" | "no"
standalone="yes" | "no"
doctype-public="gtring"
doctype-system="string"
indent="yes" | "no"

media-type="string" />
The XSLT processor has no way of knowing what output format it should use for a

transformation. Processors default. ..

e XML tags are all surrounded by angled brackets (< and >). Where you see these
brackets used in HTML they are part of the code and must be reproduced in your
programs.

o Tags that close XML elements always include a slash (/).

e Many elements in XML, XSLT and the other programming languages used here have
optional attributes. Because these are optional you can choose to use one of them
if you so desire. Throughout this book these optional attributes are listed inside
square brackets ([1). The square brackets are not part of the HTML code and must
be omitted from your pages.

o Optional items in lists are always separated by short vertical lines (|). These lines
are not part of the code and must be omitted from your programs.

¢ The values given to attributes of XML elements are always placed in inverted com-
mas.

» Many of the element definitions include an ellipsis (...). These are used to indicate
places where you should add your own text. For instance <hl>...</hl> might
become <h1>A HEADING</h1l> in your document.

o The letter n is used to indicate a place where you must enter a numerical value, usu-
ally in the definitions of XSL expressions and programming functions that require
parameters.

This page intentionally left blank

Extensible
Markup
Language

This page intentionally left blank

Chapter

Writing XML

Before diving into the process of learning XML, one common misconception needs to be
cleared up. XML is not a programming language. In the early chapters of this book you
will not be learning to program. XML is a grammar which is used to define and describe
data structures. All that we are interested in at the moment is the structure of data and
how it is used. We're not thinking about the development of applications that can process
data. That sort of development is introduced in Part Three when I examine how the Java
programming language can be used to manipulate XML structured data.

Although the XML Recommendation from W3C, the World Wide Web Consortium, is
moderately long and complex, the language itself can be very simple. XML documents
must follow a number of rules; fortunately, though, understanding and applying those
rules are not difficult tasks. In this chapter I'll show you how to write simple XML struc-
tures and explain the rules of the language. Once you've read through, and understood,
this material, you will be able to write your own XML and, just as importantly, read other
people’s. This chapter won't turn you into an XML expert; before that can happen you
will need to digest the more complex material in later chapters, but it will give you enough
information to start using XML in your own applications.

The first thing you need to know before you can start to understand XML is just what
the language is like. If you come from a programming background you’ll be used to the
idea that computer languages are limited vocabularies used to describe the operation of a
program. Computer programs usually consist of a set of instructions and some data. The

14 Chapter 2: Writing XML

instructions tell the computer how it must manipulate the data, although the selection
of individual parts of the program is often controlled by a user. Computer scientists call
such languages declarative since variables and instructions are explicitly declared by the
programmer. Declarative languages include, among others, C++, Java and Visual Basic.

Most of the software that you'll use today was written using a declarative language,
but not all of it. There’s an alternative' called functional programming. In programs written
in functional languages, the developers state what they want from the program rather
than how to achieve it. In a functional language the programmer has no control over the
order in which the instructions in a program are executed and is unable to use techniques
such as assignment to dynamic variables. Languages that operate in this way include
Scheme, ML, Haskell, and, of course, Lisp which has been used since the 1950s. You'll see
in Chapter 8 that functional programming is important for XML developers since some of
our core technologies are based on it.

Broadly speaking, XML is functional in intent. It describes the structures of data sets
but has no consideration of how those structures are to be created or manipulated. In fact,
XML isn’t a programming language. XML is used to define data structures, yet devel-
opers and users often refer to XML programs rather than the more correct structures. The
difference is important because we can write programs that manipulate XML structured
data sets using standard programming techniques, as described in Chapters 13 and 12, or
functional languages as in Chapter 8.

This gets us no nearer to understanding what XML actually looks like. If you've ever
written a Web page, or looked at the source code of one, you'll have seen something that
is almost XML. In fact, to the untutored eye, spotting the differences between HTML and
XML can be very difficult. XML has two components: tags which are used to mark the
structure of the data; and the data itself. This will make most sense when you’ve seen an
example.

2.1 A FIRST EXAMPLE

Throughout the book I'm going to present a couple of different XML applications. The
applications are a business letter, which could be easily adapted to provide a simple memo
structure, and a recipe book. Each of the technologies that I introduce in the book is going
to be used on these two applications. You'll see many of the different ways one can use
XML being applied to these two data structures. Both are fairly complex so I'm not going

! Actually there are many alternatives but the others aren’t important right now.

Section 2.2: Why Not Use HTML? 15

to introduce them until you know a bit more about XML. Instead I'll begin with a much
simpler structure.

Whilst Listing 2.1 is definitely not the most complex piece of XML code you'll ever see,
it does show some of the major features of the language. Take a moment to read through
the code and try to spot its key features before you read on.

Listing 2.1 A Sample XML Structure

<?xml version="1.0"7?>

<greeting style="informal">
<from>Chris Bates</from>
<to>Mr. M. Mouse</to>
<message>Hi, how’re ya doin’?</message>
<signature />
</greeting>

You should have noticed that XML tags tend to occur in pairs, that they are surrounded
by angle brackets and that tags are used to describe the structure of the data. I'll describe
the exact rules for the structure of XML files in detail in Section 2.3.

2.2 WHY NOT USE HTML?

If you've done any Web development using HTML, you may be wondering why it can’t
be used instead of XML. HTML tags are just like XML tags; they contain content and
have attributes,? and plenty of applications understand HTML. The latter point is really
important. As I write this, relatively few pieces of software can display XML, and not
many more can be used to edit it. HTML viewers, usually Web browsers, are widely
available, in fact most PCs and handheld devices such as PDAs have one installed. HTML
editors are now commonplace, there are dedicated pieces of professional software such as
Macromedia Dreamweaver, and even common applications like Microsoft Word can save
files in HTML format.

What about XML tools? Some Web browsers such as Mozilla and Netscape 6 can dis-
play raw XML, but only Internet Explorer> does a good job of it. User-friendly XML
editors are rare and tend to be expensive. If you want to parse XML files, that is, run them
through pieces of software that can understand their structure, or transform them into
other structures using XSL, you need to install additional software. Often these require

“Don’t worry if you are confused by some of the terminology. It will soon become clear.
3You may need to install additional pieces of software before this works for you.

16 Chapter 2: Writing XML

a Java environment on your machine, which may mean downloading a large file from
the Internet. Installing such an environment may also require skills and knowledge that

many users may not have.

The effect of opening the sample XML file from Listing 2.1 in Internet Explorer and in
Mozilla 1.0 is shown in Table 2.1. Notice that, although both of them can clearly parse
XML and separate content and tags, only Internet Explorer presents it in a meaningful

way.

Table 2.1 XML in Internet Explorer and Mozilla

Internet Explorer Mozilla
_ 2 A:\bnukZﬂsamﬁl&.érﬁij Mlcrosoft ol x Mozilla (Build 1D: ;. IR
|| Eile Edit View File Edit View Search Go |

Chris Batés Mr, M, Mouée Hgi,
how're ya doin'?

style="informal"=
<from=Chris
Bates</from>
<to>Mr. M.
Mouse</tox
<message=Hi,
how're ya doin'?
</message>
<sighature />
</greeting>

"%ﬁ%&@? :%?;

This seems like a no-brainer, doesn’t it? HTML holds all of the aces when it comes to
availability and quality of software, yet XML is clearly the better technology. Let’s try
formatting the sample XML file in Listing 2.1 as HTML. The result is shown in Listing 2.2.

Listing 2.2 The XML Sample Written in HTML

<html >
<head>
<title>The XML Sample Written in HTML</title>
</head>
<body>
<h2>Chris Bates</h2>

Section 2.2: Why Not Use HTML? 17

<h2>Mr. M. Mouse</h2>
<p>Hi, how're ya doin’'?</p>
</body>
</html>

Although the HTML version can be displayed neatly formatted in a Web browser,
much useful information from the XML version has been lost. Sure, it still contains the
same data, but the meaning of that data has totally disappeared. For instance it is clear
that this code indicates where the greeting originates:

<from>Chris Bates</from>
whereas

<h2>Chris Bates</h2>
conveys nothing about the role of the content within the greeting. Remember, HTML
elements such as <h2> don’t even carry simple meaning such as heading level two. They’re
just a set of instructions about font, color, typeface and spacing which must be applied to
their content. It is this ability to convey the meaning of data that makes XML so important.
Sure, using HTML you can present your data in Web pages, but only through XML can
you turn that data into information. The difference between data and information is simple:
information is data presented within a particular context. The string Chris Bates is
data, but what does it mean? The XML element:

<from>Chris Bates</from>
is information because we now know the meaning of the string.

Which is, of course, all very well. But surely no one expects users to look at raw XML.
The modern computer user rightly expects that the things they view on screen will look
good. XML has a number of solutions. Firstly, Web browsers are becoming XML browsers
too. Internet Explorer leads the way here. It can display raw XML in tree structures,
whereas browsers like Mozilla simply display the content of an XML file without any
structure. Soon, though, all Web browsers will be able to handle XML. Secondly, all mod-
ern browsers can use Cascading Stylesheets, CSS, to format XML. Finally, XML can be
converted into HTML for display purposes using XSLT. I'll examine CSS and XSLT in
Chapters 5 and 8.

Note:

XML only has meaning if you understand the language in which the tags are
written. | can't read ltalian, so XML marked up in that language would be mean-
ingless to me. Meaning also requires context. If the context of the tag is clear,
there’s more chance that it will make sense to a reader.

18 Chapter 2: Writing XML

2.3 THE XML RULES

Computer languages need to be formally defined in some way. Developers need to know
what facilities are available in a language and that those facilities will work in the same
way in all implementations. Languages are usually standardized by an international body
such as the International Standards Organization, ISO, or the Institute of Electrical and
Electronic Engineers, IEEE. For those languages that have defined standards, all compil-
ers or interpreters must adhere to the standard: if a C++ compiler doesn’t work according
to the ANSI/ISO C++ standard then it really isn’t a C++ compiler. Often these standards
are minimum requirements which will be available in all products and on all platforms.
Manufacturers of compilers are free to extend the language by adding their own propri-
etary features, although this does mean that the extended version will no longer be stan-
dard. Often large or powerful companies try to force their extensions into the standards.
This can be extremely beneficial when it leads to improvements — too often standardized
languages are developed by committees and become lowest common denominator lan-
guages. New extensions may only be available on one platform. If developers wish to
write code on a Linux box but later compile and execute it on an Apple Macintosh, they
can only do this if no extensions have been used. Problems like this tend to force people
either to adhere rigidly to the standard or to work exclusively for a subset of all available
platforms. When developing for heterogeneous systems such as the Web, adherence to
the standard is clearly the preferred option.

XML requires a common set of rules. In fact, since any Web technology must work on
every platform in a plethora of software applications, standardization is even more im-
portant than for programming languages. Perhaps surprisingly, XML, like HTML, isn’t
actually an international standard. It's a Recommendation of the World Wide Web Consor-
tium (W3C). W3C Recommendations have much of the force of international standards
but the process of creating them is far more flexible and far faster than standardization.

The current XML Recommendation is Version 1.0 (second edition). It can be viewed on-
line at http://www.w3.0rg/TR/2000/REC-xml-20001006 or downloaded in a va-
riety of formats. The second edition makes no major changes to the first edition of the
Recommendation but does incorporate all of its errata. Most standards documents are
necessarily complex. They don’t make for an easy read, and the XML Recommendation is
no exception. If you want to know just how much thought went into the design of XML,
download a copy of the Recommendation and spend a few minutes leafing through it.

2.3.1 XML Tags

XML documents are composed of elements. An element has three parts: a start tag, an end
tag and, usually, some content. Elements are arranged in a hierarchical structure, similar

Section 2.3: The XML Rules 19

to a tree, which reflects both the logical structure of the data and its storage structure. A
tag is a pair of angled brackets, <... >, containing the name of the element, and pairs of
attributes and values. An end tag is denoted by a slash, /, placed before the text. Here are
some XML elements:

<book>The Lord Of The Rings</book>
<chapter>Helm’s Deep</chapter>
<name>Professor J. R. R. Tolkien</name>

XML elements must obey some simple rules:

¢ An element must have both a start tag and an end tag unless it is an empty element.
e Start tags and end tags must form a matched pair.

e XML is case-sensitive so that name does not match nAme. You can, though, use both
upper and lower-case letters inside your XML markup.

¢ Tag names cannot include whitespace.
Here are those same elements with introduced errors:

<book>The Lord Of The Rings</Book>
«<cha pter>Helm’s Deep</chapter>
<name>Professor J. R. R. Tolkien</n>

2.3.1.1 Nesting Tags Even very simple documents have some elements nested inside
others. In fact, if your document is going to be XML it has to have a root element which
contains the rest of the document. Tags must pair up inside XML so that they are closed
in the reverse order to that in which they were opened.

The code in the left column of Table 2.2 is not valid XML since the ordering of the start
and end tags has become confused. The correct version is shown on the right side of the
same table.

2.3.1.2 Empty Tags Sometimes an element that could contain text happens not to.
There may be many reasons for this — the attributes of the element may contain all the
necessary information, or the element may be required if the document is to be valid.
These empty elements can be represented in two ways:

<book>The Lord Of The Rings</book>
<book></book>
<book />

The empty element can be included by placing an end tag immediately after the start
tag. More simply, a tag containing the name of the element followed by a slash can be used.

20 Chapter 2: Writing XML

Table 2.2 Nesting Elements

Incorrect Correct

<?xml version="1.0"?> <?xml version="1.0"?>

<greeting style="informal"> <greeting style="informal">
<from>Chris Bates <from>Chris Bates</from>
<to>Mr. M. Mousec</to> <to>Mr. M. Mousec</to>
</from> <message>
<message> Hi, how’re ya doin’?

Hi, how’re ya doin’? </message>

</greeting> </greeting>

</message>

2.3.1.3 Characters in XML When the XML Recommendation talks about characters, it
means characters from the Unicode and ISO 10646 character sets. Until relatively recently
most computing applications used a relatively small set of characters, typically the 128
letters of the ASCII character set which could be represented using seven bits. The ASCII
character set, defined in ISO/IEC 646, only allowed users to enter those letters typically
found in the English language.

In a multilingual world this is clearly an impractical limitation which led to the de-
velopment of many alternative character sets. Web applications typically use ISO 8859
which uses 8 bits for each character and which defines a number of alphabets. These in-
clude the standard Latin alphabet used as default by most Web browsers. Unicode goes
further and uses two bytes to represent each character. This means that Unicode includes
65,536 different characters, insufficient for Chinese but suitable for most uses. 1SO 20646
extends the Unicode idea by using four bytes for each character, giving approximately 2
billion possible characters. Unicode is implemented as the default encoding in Microsoft
Windows and the Java programming language, among others. But it clearly needs ex-
tending to access those extra characters, and has been. Version 2.1 of Unicode includes
some facilities that give access to the ISO 10646 character set.

Using ISO 10646 to represent ASCII data is highly inefficient — effectively three bytes
of memory are wasted. Even though computer memory and storage are extremely cheap
today, such inefficiency is expensive if an application is handling gigabytes of data. There-
fore applications use encoding schemes to store data more efficiently. Applications that

Section 2.3: The XML Rules 21

process XML must support two of these: UTF-8 and UTF-16. UTF-8, for instance, uses a
single byte for ASCII data and two to six bytes for extended characters.

Note:

XML applications support extended character sets. These allow up to 2 billion
different characters. When you develop using XML you can use any language
and character set that you need to in your applications. You are not restricted
to the English language or to the set of languages supported on a particular
operating system.

It's worth noting that everything in an XML document that is not markup is considered
to be character data. Markup* consists of:

o start tag,

s end tag,

e empty tag,

e entity reference,

o character reference,

e comments,

o delimiters for CDATA sections,
o document type declarations,

e processing instructions,

¢ XML declarations,

e text declarations.

The final, important thing about characters is that some of them have special meaning
or cannot be easily represented in your source text using a conventional keyboard. Most
of the characters in ISO 10646 clearly fall into this category. Some mechanism is therefore
required to permit the full range of characters to be included in documents. This is done
through character references. To demonstrate the use of character references, I'll look at
those characters that can have special meaning inside markup. Characters such as <,>,” "
are used as part of the markup of the document. If they're encountered by the parser

“You'll meet each of these components as you read through this book.

22 Chapter 2: Writing XML

inside an XML file, it assumes that they are control characters which have special mean-
ing to it, and it then acts accordingly. The obvious example of this behavior is found in
handling attributes. The following two examples would be illegal in XML:

<message src="here is the "source" of the message" />
<message src='here is the ’'source’ of the message’ />

In each case, the parser will assume that the content of the src attribute starts at the
first apostrophe or set of quotation marks, and stops at the second. Attribute content
following this point cannot be parsed since it is not valid XML.

Table 2.3 Character References

Character Sequence
< <

> >

’ '

& &

" "

What happens when the file should legitimately contain < as part of its character data?
The appropriate character reference is entered instead.> Table 2.3 shows the references
which must be entered in an XML document if you want a particular character. Here’s
the previous example reworked to be valid XML:

<message src="here is the "source" of the message" />
<message src='here is the 'source' of the message’ />

Listing the complete set of character entities is beyond the scope of this book. If you
want to see them all, look on the Web where there are comprehensive listings. If you are
using a fully featured commercial editor the list may be available in its help system.

2.3.2 Attributes

Associating information with an element without making that information into a separate
element is sometimes important. This can be seen on the HTML tag:

<img src="../images/uncle_ fred.png"

SCDATA sections may also be used.

Section 2.3: The XML Rules 23

height="120"
width="34"
alt="Uncle Fred at the beach" />

Each piece of information is an attribute of the element. Making those attributes into
elements doesn’t add clarity, rather it adds a little complexity, as Listing 2.3 demonstrates.
The choice of using attributes or creating additional elements is left up to you. It may be
that some technologies or particular parsers work better with extra elements. If you are
presenting your XML in raw form for human readers, attributes might be easier. Some
elements need to be empty. One example of that is the HTML which is a reference
to another file and has no content. There are, as so often, no hard and fast rules to help
you.

Listing 2.3 Separating HTML Attributes into Elements

<src>../images/uncle fred.png</src>
<height>120</height>
<width>34</width>
<alt>Uncle Fred at the beach</alt>

2.3.3 Comments

Here is a firm rule: all program files should contain comments. Comments are pieces of
descriptive text placed inside the source code of programs as annotations. They describe
the structure and functionality of the code. If you have relatively little programming
experience, you may wonder why the code itself can’t provide this information. After all,
code is supposed to be written and read by humans, isn’t it? Unfortunately, the answer to
that is both yes and, at the same time, no. Programming languages and programs are now
so complex that they are rarely self-documenting. XML files, in particular, have a tendency
to be both large and verbose. The structure may not be clear, and the meaning certainly
isn’t likely to be. It's important to place comments inside your markup so that you, or
whoever has the job of maintaining your code in the future, can understand its intent.
XML comments are nice and straightforward. Here’s an example:

<greeting>
<from>Chris Bates</from>
<!-- The <from> element denotes the
sender of the message

-->

24 Chapter 2: Writing XML

</greeting>

Comments start with the character sequence <! -- and end with -->. They may be
just one line long or may span a number of lines. You don’t need to place any sort of
continuation character at the start of multi-line comments.

2.3.4 Entities

The XML Recommendation lets an author separate an XML document into a number of
components. Each of these components is called an entity, each of which is identified by a
unique name. Entities are used for a number of reasons, including:

¢ The document is large and must be split apart for practical reasons.

¢ Some content needs to be used in a number of places within the document. Du-
plication of the section would be difficult, time-consuming or lead to transcription
errors.

o Different systems may render the same content in different ways.

An entity may be internal, in which case it is defined alongside the source of the main
document, or external. External entities are, not surprisingly, defined in separate files.

2.3.4.1 Character Entities Perhaps the commonest use of entities is to include in a
document characters that cannot be entered from a normal input device. Using a key-
board only a limited set of characters can be typed; however, the ISO 10646 standard
allows for approximately two billion different characters. All of those characters can be
entered in an XML document through the use of character entities. References to char-
acter entities take the form &#; or &#n;. In the former case a decimal representation of
the character’s value is given, in the latter the representation is in hexadecimal format. All
character references start with ampersand, &, and end with a semi-colon, ;. The sequences
in Table2.3 are typical of character entities.

Those letters and symbols that are not available in ASCII all have standard ISO values.
If you want to use one of these characters, it will have to be defined on your system and
available to your XML parser. You can define character entities at the top of your XML
files. For instance to define the character E, you would use:

<!ENTITY Egrave "È">

If you need to use more than a few characters, defining all of them for yourself is a very
tedious task. Much better to get hold of the standard definitions from elsewhere. Sets
of ISO character definitions are widely available for download from around the Web.®

6Perform a Web search using the term ISO entity set to find lots of examples.

Section 2.3: The XML Rules 25

You'll need to make those entity sets that you are planning to use available to your XML
parser. Each parser works in a different way so be sure to spend some time reading the
documentation with yours. Parsers that have an SGML heritage will generally be happy
if you create a catalog file. This file simply relates the name of each entity set to a particular
file on your system. The parser will use these relationships when handling your XML.

XML parsers treat whitespace differently depending upon its context and how they
are being used. There is a discussion of this in Section 2.4.3. All you need to know for
now is that if you want to make sure you get a single whitespace character output by the
parser you must put the character reference inside your XML source. I mention this now,
because, while your parser may understand , there is no guarantee that it will. If
your parser has problems, you will need to get hold of entity set ISOnum.

I shall discuss how to configure your system, set up catalogs and handle entity sets in
Chapter 17.

2.3.4.2 External Entities An entity may be stored outside of the current document.

The document then needs to be able to refer to these entities. This is done by creating a

reference to the file that contains the entity. The following example points to an image file:
<!ENTITY logo SYSTEM "./images/logo.png" NDATA png>

The creates an entity called 1logo which is actually a pointer to a file. In this case the
entity is a binary file. The location of the external file is given using a URI. An application
that processes the XML needs to know where the entity is and how to process it. Typi-
cally, processing of binary data such as images will be performed by other applications.
That’s how Web browsers work. They get so-called helper applications to handle complex
formats such as streamed radio broadcasts. The NDATA attribute will be examined in the
discussion of Document Type Definitions in Chapter 3. It refers to a NOTATION which is
used to identify an application that can process this particular data type.

The keyword SYSTEM indicates that the entity is defined within a particular organiza-
tion or by an individual. The definition of the entity is usually stored locally and may not
be available outside the organization that created it. If an entity is defined by a standards
body or is widely needed, the word SYSTEM is replaced with PUBLIC:

<1ENTITY logo PUBLIC "-//Smiggins Inc//Images//EN"
"http://www.smiggins.com/images/logo.png" NDATA png>

Although the URI remains, an additional item has been added to the entity definition. The
string "-//Smiggins Inc//Images//EN" isasystem-independent way of identifying
an entity. It points to a catalog entry which some applications are able to use to help them
resolve and locate the entity.

26 Chapter 2: Writing XML

2.3.4.3 Defining Entities An entity definition consists of the name of the entity and a
value associated with it. The value may be a numerical value which represents a character,
a piece of text or the name of a file. Whenever the parser encounters the name of the
entity, it substitutes the content for the name. In Listing 2.4, an entity called signature
is defined and used.

Listing 2.4 Defining Internal Entities

<?xml version="1.0"7?>
<!ENTITY signature "Yours Sincerely, Chris Bates">

<greeting style="informal"s
<from>Chris Bates</from>
<to>Mr. M. Mouse</to>
<megsage>Hi, how’re ya doin’?</message>
&signature;
</greeting>

Entities are defined using a special type of tag. Many of the control tags you need to
use in XML break the XML rules. This one is no exception. The ENTITY element doesn’t
have an end tag, and it doesn’t require a closing slash. Always use it like this:

<!ENTITY signature "Yours Sincerely, Chris Bates">

You'll see more declarations of this form when I discuss Document Type Definitions
(DTDs) in Chapter 3. Notice that the signature entity is referenced using the same
construction that I showed you for character entities. The name is preceded by & and
followed by ; which gives constructs such as &signature;.

2.3.5 Processing Instructions

You may have noticed the line

<?xml version="1.0" ?>
at the start of Listing 2.1, which is a Processing Instruction. Processing instructions contain
information which must be passed to applications that are processing the XML source.
Processing instructions are not really part of the markup; to differentiate them they are
delimited by <2 and ?>.

The content of a PI depends upon the application that will be processing it. Generally
it starts with a keyword which may be used to identify the application, this is followed
by content which has meaning to that application and which is formatted for it. The
following example would include an XSL stylesheet with the XML document. A parser

Section 2.3: The XML Rules 27

capable of performing XML transformations would then be able to transform the XML
document according to the rules in the stylesheet.
<?xml-stylesheet type="text/xsl" href="./styles.xsl"?>

The XML Declaration What about the first example:

<?xml version="1.0" ?>
That is an XML Declaration. This should be included at the start of all of your XML.” It has
three parts, two of which are optional:

<?xml version="1.0" encoding="UTF-8" standalone="no"?:>

If you include an XML declaration, you must state what version of XML it corresponds
to. Current applications understand only version 1.0, so always use this version. The
encoding parameter indicates which encoding scheme was used to create the document.
If it is absent, UTF-8 is assumed. Finally, the standalone parameter indicates if an external
file contains declarations that may affect this document. If you use external entities this
should be set to no.

2.3.6 Formally Defining XML Structures

Adhering to the rules about elements and content and ensuring that you use valid ISO
10646 entities throughout your documents will mean that you are creating good XML. It
won't give your files any meaning. The structure of your document depends upon the
hierarchy of elements inside it, the content of those elements and their relationships to
each other. The structure of your particular XML application is usually defined in an
external file that the parser can access if it is validating your document. These external
files take one of two forms: Document Type Definitions, more commonly called DTDs, or
schemas, which will usually be XML Schema.

I'll describe the contents of both types of file in Chapters 3 and 4. At the moment I'll
just show you how to include these elements in your XML files. It’s unlikely that you'll
need to include them before you know what they are, but in reading XML code written
by other people you’ll certainly come across examples of their usage.

"The XML Declaration is optional in Version 1.0, but is not guaranteed to remain so.

28 Chapter 2: Writing XML

Note:
1 Study as many XML documents as you can. Examining other developers’ XML is
sure to help you improve your own. Much of the code you'll come across is likely
to be poor quality or relatively simple, but it can still teach you things if it makes
‘ you ask questions. When reading other people’s code always refer to formal defi-
|

nitions of their documents, if available, and the relevant W3C Recommendations.

2.3.6.1 Document Type Declarations The Document Type Definition file is really a
return to the SGML roots of XML. DTDs have their own syntax which allows for limited
expressiveness. Although many XML developers and gurus recommend replacing DTDs
with XML Schemas, this is happening very gradually. It’s likely that for the foreseeable
future, XML developers will need to understand how to use DTDs.

Listing 2.5 Using a Document Type Declaration

<?xml version="1.0"?>
<!DOCTYPE greeting SYSTEM "greets.dtd">

<greeting style="informal"s>
<from>Chris Bates</from>
<to>Mr. M. Mouse</to>
<message>Hi, how’'re ya doin’ ?</message>
&signature;
</greeting>

Including a DTD is really simple. Listing 2.5 shows how it is done. The code that
includes a DTD is called a Document Type Declaration. Beware the terminology here: the
declaration includes the definition. Let’s examine the declaration statement:

<!DOCTYPE greeting SYSTEM "greets.dtd"s>

This is another element that doesn’t follow the rules of XML. The tag starts with <!
and ends with >. The content of the tag has four components. The first is the keyword
DOCTYPE which is an instruction to the parser. The second word is the name of the root
node of the document. The third word is either SYSTEM or PUBLIC. SYSTEM is used when
the DTD is local to a specific individual or organization, PUBLIC when it is published by
a standardizing body or is available to the public. The final piece of content, a system
identifier, is the URI, address, of the DTD file.

Section 2.4: Parsing XML Files 29

2.3.6.2 XML Schema Using XML Schema, the definition of an XML structure is done
using another, valid, XML document. The definition and use of schemas are complex
topics which are covered in detail in Chapter 4. At this stage I'll just show you an example
of a reference to a schema from within an XML document. Schemas define namespaces as
well as XML structures. The use of namespaces is covered in Section 4.1; all that you need
to know right now is that a namespace is a way of ensuring the uniqueness of variable
names. This is vitally important in complex documents that are made available across
networks.

Some possible names for XML elements, such as user, may occur in hundreds of XML
documents, and have different meanings in many of them. It’s really important that pro-
cessing software separates user in document A from user in document B.

Schemas are included using normal XML tags to associate a document with a name-
space, and the namespace with a schema definition:

<my namespace
xmlns=‘urn:my-schema’
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance’
xs1:schemalocation='urn:my-schema
http://myserver.org/my-schema.xsd’ />

Don’t worry about the meaning of that code. There’s a lot more to understand before
it will start to make much sense. The xsi:schemaLocation attribute indicates the lo-
cation of a schema document and defines a namespace prefix for it. The schema can be
loaded automatically by schema-aware parsers when they handle the XML source.

2.4 PARSING XML FILES

Applications that manipulate XML need to be able to move through the data structure,
finding elements, tags and content. Processing data to extract meaning from it is called
parsing in computing. The same term is used to describe the processing of sentences in
human languages to extract their meaning. The idea, in both cases, is the same. Few
developers choose to write their own XML parsers. Although the rules of the grammar
are relatively simple, writing fast and accurate parsers is a difficult task. Most people use
a parser written by someone else. Many XML parsers are freely available; the choice of
which you use tends to depend upon your system and the language that you are devel-
oping in. Two popular choices are MSXML from Microsoft, which can be programmed
using C++ or Visual Basic, and Xerces from the Apache Foundation. Xerces comes in Java,
C++ and Perl versions and can be used on many different operating systems. Both these
parsers can be used directly from the command line or called from within applications.

30 Chapter 2: Writing XML

Once you have installed MSXML on your system, it is automatically available within In-
ternet Explorer. This means that you can, for instance, open XML files in Explorer and
view them as tree structures.

As you read through this book, you'll find that XML parsers can do lots of interesting
things with your XML. One of the most useful is to check if the XML you have written
is correct, and if it adheres to the rules set out in the DTD or schema for that particular
document.

2.4.1 Valid or well-formed?

XML documents may be either valid or well-formed. The two terms relate to differing lev-
els of conformance with the XML Recommendation, the DTD, or schema, and the basic
structure of the XML. All XML documents must be well-formed. Tags should be paired,
elements should be properly nested, the document should have an XML declaration. En-
tities should be properly formed. Any application which can handle XML will be able to
cope with a well-formed document. A valid document takes conformance rather further.
To be valid, a DTD or schema should be identified for the XML data. The data must meet
the rules set out in that document.

All XML parsers are able to check that a document is well-formed. For some such as
MSXML, this is where their capabilities end. Other parsers such as Xerces are able to
validate an XML document against a DTD. At the time of writing, Schema support in
Xerces is in the alpha stage of development. That means it’s far from ready for the big
time — but it is being implemented. XML is a new technology, it’s evolving rapidly and
tool support does tend to lag slightly behind. In the near future, though, the tools will
be available to use XML Schema as well as DTDs. It's at that stage that we’ll start to see
DTDs becoming less popular with developers.

Figure 2.1 shows what happens when some invalid XML is loaded into the Mozilla
Web browser.

2.4.2 Unparsed Character Data

Most of the content in an XML file will be handled by the parser. Generally elements and
entities contain text that has some meaning. The content will not include characters such
as < which have special meaning to the parser, and when it does contain them, those char-
acters are usually entered as character entities. Sometimes a document will include large
numbers of these characters. In such cases using entities may be impractical. The XML
standard allows for this. Your document can include sections of CDATA, unparsed char-
acter data. All characters inside a CDATA section are assumed to be content, rather than

Section 2.4: Parsing XML Files 3

T —— . S

e Edit View Search Go Bookmarks Tasks Help Debug OA

. Eil

by e

|wntitted) |

QXML Parsing Error: mismatched tag. Expected: </message>
|Location: file:///home/fred/xmlbook/code/sample.xml |
rUne Number 6, Column 35:

&

IS

r <mesgage>Hi, how're va doin'?</mesage>
E = v . « M
i

L

i

o P T e o

' [| Document: Done (0.236 secs)

Figure 2.1 Invalid XML in Mozilla

markup. A section of CDATA is started with the string <! [CDATA] and ended with 1] >
as shown in Listing 2.6. You'll meet CDATA again in the discussion of DTDs in Chapter 3.

Listing 2.6 CDATA Sections

<?xml version="1.0"?>

<greeting style="informal">
<from>Chris BRates</from>
<to>Mr. M. Mouse</to>
<mesgsage>Hi, how're ya doin’?</message>
<! [CDATA[The text in << here can contain & markup >
characters until the end of the section is reached
11>

</greeting>

2.4.3 Whitespace

When the parser moves through content it normalizes it. Normalization is the process of
removing excess whitespace from the data. The rules for the removal of whitespace char-

32 Chapter 2: Writing XML

acters by XML parsers are clearly defined in the XML Recommendation. In this section
I'm going to describe those rules and the effect they have upon your documents.

Table 2.4 XML Whitespace Characters

Character Unicode Value
tab #x9

newline #xA

carriage returmn #xD

space #x20

Whitespace is defined in XML as being one of the four characters shown in Table 2.4.
Combinations of linefeed and new line are used by operating systems to position the
cursor at the start of the next line. Apple’s Mac OS uses carriage return, CR, Unix
systems use linefeed, LF, and Microsoft Windows uses carriage return followed
by linefeed, CR LF.

When creating XML that is intended for human readers, for instance the sample code
in this book, most authors indent elements to represent the structure of the data. This
indentation is created using either tabs or spaces. Each new element tends to appear on a
new line and content may span several lines. None of this formatting means anything to
the parser. Indeed, XML created for the use of computers by software on other computers
won't usually be formatted. When XML is parsed, all the whitespace, which humans like,
is removed and the document treated as if it were created by a machine.

The problem that whitespace causes for application developers is that the parser must
know which whitespace characters are significant. These characters should be made avail-
able to stylesheets and other publishing applications. Whitespace that the application
must receive from the parser is called significant or preservable whitespace. Whitespace
that the parser can strip out and not pass to the application is called ignorable whitespace.

2.4.3.1 Preserving Whitespace Sometimes data has to be formatted in a particular
way. The formatting conveys meaning as well as aiding legibility. An example of this
might be the inclusion of a program listing inside an XML document. Listing 2.7 shows
code being included within XML.

Listing 2.7 Including Source Code

<?xml version="1.0"?>

<program language="Java'">
<metadata>

Section 2.4: Parsing XML Files 33

<author>Chris Bates</author>

<date>16/01/02</date>

<vergion>1.0</version>
</metadata>

<code xml:space="preserve'>
import java.io.*;

class Hello {
public static void main(String[] args) {
System.out.println("Hello everybody!");
System.exit (0) ;

}
</code>
</programs>

The default behavior in XML is for whitespace to be normalized. When runs of more
than one whitespace character occur, these are converted to a single space character. This
is said to collapse the space. As a rule this behavior is desirable. If you load the previous
example into a browser such as Mozilla, the text is collapsed onto a single line. This
seems at odds with the idea that the parser should preserve whitespace. In fact, though, it
may do so but when it passes the result to the HTML rendering engine for display it will
collapse the whitespace. Two different and contradictory behaviors are being exhibited
by the same application, yet both are correct.

The easiest way of making the parser preserve whitespace is to use the xml:space
attribute. This can be applied to any element and given one of two values. The value
of the attribute may be default or preserve. When set to preserve, the parser will
leave all whitespace characters inside the element. When set to default, in most situ-
ations, the whitespace inside the element is normalized. You'll see throughout the book
that developers can control the presentation of whitespace in the output of XSLT transfor-
mations. For straightforward XML applications, the whitespace is either there or it isnt.
To use xml : space easily, it should be declared in a DTD. Without introducing any of the
complexity of DTDs, here’s a simple example:

< |ELEMENT code (#PCDATA) >
<!ATTRIBUTE code xml:space #FIXED "preserve"s

When this DTD document is available alongside the XML document, all whitespace is
left inside code elements. It would also be preserved in subelements of code, if that ele-

34 Chapter 2: Writing XML

ment had any. Because the attribute has been explicitly declared in the DTD and assigned
a default value, it does not have to be used in the XML document. Thus the code below is
equivalent output to Listing 2.7.

<?xml version="1.0"?>

<program language="Java">
<metadata>
<author>Chris Bates</author>
<date>16/01/02</date>
<version>1.0</version>
</metadatas>

<code>
import java.io.*;

class Hello {
public static void main(String[] args) {
System.out.println("Hello everybody!");
System.exit (0) ;

}

</code>
</program>

I'll discuss how to add whitespace to an output document using XSLT in Chapter 8.

2.5 THE RECIPE BOOK

XML can be used in many different ways. These could be demonstrated using a series of
trivial examples. Unfortunately, unless small examples are very well defined, they often
fail to include all of the key points that need discussing. Throughout this book I'm going
to take an alternative approach and use two substantial, and realistic, XML applications.
Each has a different style and approach. Using the two examples will demonstrate many
of the practical aspects of XML and related technologies.

The first XML application is a simple recipe book. XML is often used to create struc-
tured, hierarchical data sets. A recipe book is one common example of this type of data.
Recipes are organized into categories, although these may sometimes be quite arbitrary.
For instance a beef chilli may be placed into categories such as Meat Recipes, Beef, Chilli,

Section 2.5: The Recipe Book 35

Mexican Food, Spicy Food or Main Meals. A vegetarian chilli would fit into a different,
but overlapping, set of categories, as shown in Figure 2.2.

Beef Recipes

Chilis Vegetarian

Main Meals

Meat Recipes Spicy Meals

Mexican Food

tan Chilli

Figure 2.2 Sets Containing Types of Chilli

This demonstrates one of the great things about XML: flexibility. Each developer is
free to choose their own approach. Even if two developers are working from the same
document structure, each of their applications can be created to work in its own way. This
flexibility is also one of the worst things about XML. When applications are exchanging
data no assumptions can be made about the meaning or content of that data. In the Recipe
Book example in Listing 2.8, categories of recipe are found below the document root.
Each category has at least one title and a set of recipes. There’s no restriction on what
categories are available. When applications are developed to handle this XML, they must
assume that all categories are equally valid. Provided documents follow the rules of XML
and of the DTD for this application, the content they hold will be processed. There are
ways of restricting the set of values that attributes can hold. These will be demonstrated
in Chapter 3 but they are not really suitable for situations where hundreds of possible
values may be permitted.

In some situations, the flexible rules can lead to confusion. For instance in a Recipe
Book, a vegetarian recipe might also be found in a category such as meat-free. Being
meat-free doesn’t make a meal vegetarian. Vegetarian meals are a particular subset of
both meat-free and fish-free meals. Applications creating or handling this data must allow
for all of the cultural and linguistic nuances which are carried with it.

36 Chapter 2: Writing XML

} Note:

‘ XML documents are sometimes called self-documenting. As we can see when
discussing recipes, they are not. You must comment your XML so that it is prop-

erly documented.

Listing 2.8 A Recipe Book

<?xml version="1.0"?>

<cookbook>
<category>
<title>bread</title>
<recipe>

<name>The Basic Loaf</names

<ingredient>
<quantity amount="825" unit="ml" />
<name>Warm water</name>

</ingredient>

<ingredient>
<quantity amount="20" unit="g" />
<name>Granulated Dried Yeast</name>

</ingredient>

<ingredient>
<quantity amount="20" />
<name>Sugar</name>

</ingredient>

<ingredient>
<quantity amount="450" />
<name>Stoneground wholemeal flour</name>

</ingredient>

<ingredient>
<quantity amount="900" />
<name>Strong white bread flour</name>

</ingredient>

<ingredient>
<quantity amount="20" />
<name>Salt</name>

</ingredient>

<ingredient>

Section 2.5: The Recipe Book 37

<guantity amount="55" />
<name>Fresh Lard</name>
</ingredient>
<cooking>
<note>Bake at gas number 8 for 15 minutes</note>
<note>Bake at 230c for 15 minutes</note>
</cooking>
<method>
<instruction>Add the yeast and sugar to the warm water
and leave to activate</instruction>
<instruction>Sieve the flour and salt into a large bowl
</instruction>
<instruction>Crumble the lard into the flour until it
has a "breadcrumb" texture</instruction>
<instruction>Mix all of the liquid into the flour</
instruction>
<instruction>Turn onto floured surface and knead for
300 strokes</instructions>
<instruction>Form into a ball, place in a warm place
until doubled in size</instruction>
<instruction>Knead the dough once more. This time for
100 strokes</instruction>
<instruction>Form into a ball, place in a warm place
until doubled in size</instruction>
<instruction>Form into five loaves and leave to rise for
30 minutes</instruction>
<instructions>Bake!</instruction>
</method>
</recipe>
</category>
</cookbook>

The code for the Recipe Book is, on the whole, straigh’cforward.8 Notice that the
quantity element is always empty. I could have made it into a container, then made
amount and unit into subelements of it. In my opinion they work better as attributes;
certainly the structure of this XML is simpler because they are used that way.

I spent some time thinking about how to design the following section:

81 haven’t commented it simply because that takes too much space for inclusion in a textbook.

38 Chapter 2: Writing XML

<cooking>
<note>Bake at gas number 8 for 15 minutes</note>
<note>Bake at 230c for 15 minutes</note>
</cooking>

Most recipes have some information about cooking times, temperatures and so on.
These differ between oven types and are not always complete. Indeed, they may differ
between countries. When using this example structure in the past, I have built complex
element trees to try to encapsulate cooking instructions. These efforts have not really been
successful which is why I'm including the <note></note> element here. This is meant
to be a free format text field in which any type of information can be entered. The main
limitation of this approach is that this part of the document can no longer be searched.
That’s not a great problem, as few cooks will ever hunt through their recipes looking for
meals which can be baked at 230 Celsius. The notes field also has the advantage that it
can be used to provide more complex information. For instance, a <note> can be used in
a recipe for Tarte Tatin where the food is cooked in a pan on the hob and the whole thing,
including the pan, transferred to the oven.

When the Recipe Book is turned into a full database with large numbers of recipes
in many different categories, it can easily be made into a fully searchable, Web-enabled
application. By the end of this book, much of the necessary work will have been outlined
for you.

2.6 THE BUSINESS LETTER

The Recipe Book is a good example of the use of XML to structure hierarchical data. XML
can also be used for much simpler data structures. One use for markup is to identify the
component parts of a document. This may be done so that the document can be typeset
and printed, as in the KTgX typesetting system, or so that the document can be archived,
indexed and later retrieved. The latter type of markup is increasingly required on cor-
porate intranet systems where memos and reports are created, transmitted and stored
electronically.

XML has a role to play whether the finished document will be typeset or indexed.
The origins of XML within the SGML community fit exactly into these applications, and
make XML a good solution to both problems. You may wonder why documents which
will eventually be printed can’t be prepared in a common application such as a word
processor. The standard SGML/XML answer is that they can but doing so may lead to
difficulties in the future. The largest problem in the field is the obsolescence of software.
Large organizations around the world have gigabytes of document data which was cre-

Section 2.6: The Business Letter 39

ated using software packages that are no longer available. Often these packages run on
systems which have, themselves, been consigned to history. Yet the content of the doc-
uments, which in truth is why they were created, may remain important today - even if
it cannot be accessed. XML offers a solution to these problems. Because XML is a plain
text format, based on open standards, data structured using it will be available for the
foreseeable future.

The Business Letter is a typical application of XML. The following code gives an exam-
ple of just such a letter.

Listing 2.9 A Business Letter in XML

<?xml version="1.0"?>

<letter title="Your complaint of 03/03/00">
<header>
<metadata>
<keyword value="complaint" />
<keyword value="trouser press" />
<keyword value="waffle maker" />
</metadata>
<sender>
<name>
<title>Mr.</title>
<firgtname>William</firstname>
<firgtname>James</firstname>
<surname>Smiggins</surname>
</name>
<address>
<linel>Bill Smiggins Incorporated</linel>
<line2>Unit 5</line2>
<line3>Tax Havens Industrial Park</line3>
<city>Enterprise City</city>
<state>California</state>
<code>CA 11223</code>
</address>
</sender>
<recipient>
<name >
<firstname>Bill</firstname>
<gurname>Gates</surname>

40 Chapter 2: Writing XML

</name>
<address>
<linel>Microsoft Inc.</linel>
<city>Seattle</city>
<country>United States</country>
</address>
</recipient>
<date>
<dayname>Thursday</dayname>
<day>27</day>
<month>December</month>
<year>2001</year>
</date>
<signature>
<greeting type="formal"/>
<name>
<firstname>Bill</firstname>
</name>
</signature>
</header>

<content>
<para>Here at Bill Smiggins Inc. we’re really proud of our
ten-year reputation for the development of quality
products. We'’re sorry to hear that you were unhappy
with the Combined Trouser Press and Waffle Maker that
you recently purchased from us. I can only restate that
it was in full working order when we shipped, and the
presence of fluff in your breakfast waffles was as much
of a shock to us, as we’re sure it was to you.</para>

<para>If you return the Combined Trouser Press and Waffle
Maker in its original packaging, we’ll arrange a full
refund<footnote><para>Please note, we will not pay the
cost of shipping goods back to us.</para></footnote>.</
para>

Section 2.6: The Business Letter 41

<para>Bill Smiggins Inc. Giving you the <emphasis>quality
</emphagis> of service you deserve.</para>
</content>

</letter>

The business letter has two sections. The header holds information about the letter
such as who wrote it, and to whom it was sent. The content section of the letter holds
the actual data intended for the recipient. These are placed inside para elements. Con-
ventionally each of these would hold a paragraph of text, some of which can be modified
by placing it inside emphasis elements. When rendered for printing, the content of the
emphasis elements would probably be formatted in an italic or bold font. Since this
Business Letter is only an example, it has few refinements, although it does allow for the
presence of footnotes within the letter. We'll see in Chapter 9, that not only can these be
presented at the bottom of the letter, they can also be numbered. Including tables, lists or
images in the content section would be useful additions. The sender’s address would be
required in many different letters, therefore it could profitably be an external entity. Using
external entities for common content will lead to fewer transcription errors and make for
a more robust set of documents.

The structure of the Business Letter is designed with two goals in mind. Firstly, it needs
to include all of the data that is necessary for indexing and retrieval. Years after writing
a series of letters, you may need to find all of those that relate to a particular product
or event. To allow for this eventuality, I have included a metadata section which holds
keyword elements. Each letter would be stored in a separate file so this XML structure
is not suitable for use as a database. With many XML applications, developers can create
database-style facilities without a significant overhead. This is no exception. Faced with
many letters spread around an intranet, retrieving those that are relevant is straightfor-
ward.

Exercises

1. Write an XML document which contains your name and address. Open the file in as
many Web browsers as you can. Which ones provide meaningful or usable output?
Which do nothing useful?

2. Why does XML require adherence to such a rigorous set of rules to control the struc-
ture and form of documents?

42

10.

Chapter 2: Writing XML

. XML and HTML share a common ancestor in SGML. HTML documents work in

Web browsers even if badly, or incorrectly, formatted. Why don’t Web browsers
require compliance with the language?

. List some of the differences between programming languages such as Pascal, and

markup languages such as XML.

. XML is a Recommendation of the W3C not an internationally agreed standard.

What advantages are there to the W3C approach?
Why must XML tags be properly nested?

XML supports Unicode data. Why is Unicode more suitable for Web applications
than ASCII or EBCDIC? How does Unicode solve one of the problems that you
might have identified with ASCII?

. What are character entities? Try to find a comprehensive list of those which can be

used in XML documents.

. Enter the XML code for the business letter application. Try loading it into a modern

Web browser, does it display properly?

Can you find any ways in which the structure of the business letter might be im-
proved? Make those changes then view you new document in a browser.

Chapter

Document Type
Definitions

Deciding on an XML structure is only part of the process of developing an XML applica-
tion. Developers and users need to be able to create documents that conform to a fixed
structure. XML documents need to be written against a formal set of rules which can be
used to guarantee their structure. Validating parsers can check that the XML conforms
to these rules. If the rules are made available whenever, and wherever, the document is
used, any processing performed by any application on that document is likely to be more
accurate. Two technologies exist for defining XML grammars: Document Type Defini-
tions (DTDs) and XML Schema. XML Schema is the newer technology, one that is often
called a pure XML solution. It’s certainly both fully featured and complex. I'll be examin-
ing XML Schema in detail in Chapter 4. It's worth noting that when you need to validate
a document, you will currently need to supply a DTD since few tools have support for
XML Schema. This is starting to change, more tools are being developed, but DTDs will
have a place and a purpose for the foreseeable structure.

Document type definitions, DTDs, have been in use for as long as SGML has. In fact,
DTDs are probably the most important aspect of SGML left in XML. A DTD describes
the formal rules of the structure of the document. It lists those elements, attributes and
entities that can be used in a document and shows how they may be used in relation to

44 Chapter 3: Document Type Definitions

each other. The structure of an XML document is, logically, a tree. The DTD outlines that
tree structure, although it is not, itself, a tree. Within the document, each element may
be compulsory, optional, occur just once or be repeated a number of times. Elements can
also be reused and may occur throughout a document in a variety of contexts.

A DTD is primarily a hierarchy of elements. It defines their relationships to each other,
their attributes and their contents. DTDs are not XML applications, and do not use the
XML syntax. They have their own structure and syntax which are easily mastered. That’s
not to say that writing DTDs is easy. Once you have created a suitable document structure;
putting it into DTD syntax is not hard, but developing the structure in the first place can
be a challenging task. A good document structure can only be created following detailed
analysis of requirements and of existing structures and best practice. DTDs exist for many
different applications and the best solution for a particular problem may be to use one of
these. The DTD that you are basing your work on may need to be extended or modified.
Why not always build a DTD from the ground up? If you get a system into production
and the DTD has to be changed, you may find parts of the system simply stop working.
You need to be sure in advance that the DTD you are using is solid and accurate. When |
discuss the DTDs I wrote for the Business Letter and Recipe Book, you'll see some of the
design decisions, and compromises, that have to be made. Remember those are just trivial
examples. Unlike a Web business, I don’t have millions of dollars, euros or yen worth of
business riding on them.

I'm going to show you how to structure a DTD and demonstrate each of the compo-
nents that you might use in one. I'll then show you the DTDs for the Business Letter
and Recipe Book applications and describe their structure. I'll also look at some of the
decisions I took when designing them.

3.1 STRUCTURE

The DTD is a series of declarations. Each declaration takes the form:
<! >

and contains one of four keywords. These are:
e ELEMENT which defines a tag,
e ATTRIBUTE which defines an attribute of an ELEMENT,

e ENTITY which is used to define an ENTITY,

e NOTATION which defines a data type.

Section 3.2: Elements 45

The easiest way to understand the structure of a DTD is to look at a simplified one.
Rather than create a novel structure, I'm going to use part of the DTD for the Business
Letter. This is shown in Listing 3.1.

Listing 3.1 Partial DTD for the Business Letter

<!DOCTYPE letter [
< !ELEMENT letter (address) >
< |BLEMENT address (linel, line2?, line3*, city, (county\state)

?, country?, code?)>

< !ELEMENT linel (#PCDATA) >
< ! ELEMENT line2 (#PCDATA) >
<! ELEMENT line3 (#PCDATA) >
< {ELEMENT city (#PCDATA) >
< | ELEMENT county (#PCDATA) >
< | ELEMENT state (#PCDATA) >
< | ELEMENT country (#PCDATA) >
< |ELEMENT code (#PCDATA) >

1>

The DTD describes the structure of the XML document, starting with the root node. All
XML documents must have a single root node which holds all their content and which
has the same name as the top-level name in the Doctype element of the DTD. In this case,
the root node is let ter. Look back at Listing 2.9 if you need to confirm this structure.

3.2 ELEMENTS

Each tag in the XML structure is declared as an ELEMENT. Each element may contain either
data or further elements, and may also have attributes. Starting at the beginning of the
document, although the root node has already been used, its structure must be declared
as the first element:

<!ELEMENT letter (address)>

I've changed this declaration slightly. The full DTD for the Business Letter is rather
more complex than this example, as you'll see if you skip ahead to Section 3.8. The content
of the ELEMENT follows its name and is placed into parentheses as shown above. The
content forms a set of items separated using either commas or the pipe character, |. In the
previous example that set contained just one item, address. Items within the set may
include: elements, sets of other elements from which only one item may be present in the
document, and content. This set is called a content model.

In the example, the 1let ter element, the root node, has another element as its content;

46 Chapter 3: Document Type Definitions

<!ELEMENT letter (address)>

3.2.1 Sequence and Selection

In turn, the address element contains all of the components that we would expect to find
there.! The symbols in the following example are described in Table 3.1.

< !ELEMENT address (linel, line2?, line3*, city, (county|state)?,
country?, code?)>

Inside the parentheses is an unordered list of element names. Each is separated by a
comma. The comma means that all of these items may be present in the XML document.
Their presence, or absence, is controlled by the symbol that appears after the element
name. Elements can appear in any order in the XML itself, provided that they follow the
<address> tag, appear before </address> and are properly nested within the element.
From a maintenance point of view, putting the elements in their logical order is probably
a good idea, though.

The nesting of elements within the XML document is important since it provides struc-
ture. Element ordering is not important since it has no structural implications. To a hu-
man reader, having city appear before 1inel in an address might seem peculiar, but
that does not mean that those elements cannot be stored in either possible order. It just
means that applications that process the XML need to be written to take account of the
needs of the user. If 1ine1l has to appear before city, the application extracting the data
needs to make that happen. The application that created the data probably doesn’t need
to care.

In the middle of the content of the address element, you should have noticed:

(county | state) ?

The vertical bar, the pipe character, means OR. It is used to separate items in groups
where only one of those items can appear in the XML document. The parentheses are
used in this case because the set of optional items occurs inside another set. They are used
for grouping, if those parentheses were absent then the meaning of the code would alter.
In fact, in this case, it wouldn’t make sense. If all of the content of the element forms a set
of options only one pair of parentheses is needed:

<!ELEMENT address (linel | line2 | 1line3 | city)>

Remember about context and meaning? In this context address means a location, not a public oration.

Section 3.3: Attributes 47

3.2.2 Text Content

So far I've looked at elements that contain other elements. There comes a point, though, at
which elements must contain data. The data inside an element will be parsed character data.
This is data comprised of characters which will be passed through XML parsers. Because
the data is being parsed it cannot contain characters such as < which form part of XML
markup. Such characters must be replaced with character entities. Parsed character data
is shown in this example:

< | ELEMENT linel (#PCDATA) >

Some elements may contain either character data or other elements. This is known as
a mixed content model. Here is an example in which the element may contain character
data, or a house_number element or a street_name element.

<!ELEMENT linel (#PCDATA | house_number | street_name) *>

Mixed content always takes the same form. The first item in the list must be # PCDATA.
The content must be a list of options, separated by a pipe and followed with an asterisk
indicating that zero or more instances of the element may be present. This is part of the
XML standard, so if you don’t obey this rule your parser will complain. Loudly.

3.2.3 Repetition

Some elements occur just once, others occur more often. Some may not appear at all.
The DTD author needs to be able to specify how often each element will appear in the
document. Since the exact content of the XML document is not known when the DTD
is written, specifying that an element appears, for instance, four times is not possible.
Instead, authors just state that an element repeats. Repetition can happen in two cases.
In the first, an element may appear at least once. In the second case elements may appear
multiple times or not at all. Notice that the latter also lets the item appear just once. In
DTDs there are often several ways of writing the same thing. Just because your DTD is
different to one someone else may write for the same application doesn’t mean that one
is right and the other wrong. Table 3.1 shows the symbols that you can use in your DTD
—and what they mean. You can see these being used in Section 3.7.

3.3 ATTRIBUTES

Some XML elements have attributes. Attributes give additional information about the
element or its content, which is not, itself, part of the element. Each attribute must be
declared separately and associated with an element. The attribute declaration is identified
by the keyword ATTLIST.

48 Chapter 3: Document Type Definitions

Table 3.1 Symbols Used in DTDs

Symbol Example Meaning

Asterisk item* The item appears zero or more times.

Comma (iteml, item2, item3) Separates items in a sequence in the order in
which they appear.

None item Item appears exactly once.

Parentheses (iteml, item2) Encloses a group of items.

Pipe (iteml | item2) Separates a set of alternatives. Only one may
appear.

Plus item+ Item appears at least once.

Question item? The item appears once or not at all.

Mark

<!ATTLIST element attribute type default>
The element is the name of the element to which the attribute applies. This is fol-
lowed by the attribute name. The type is an XML data type taken from the attribute
being declared. Attribute types are listed in Table 3.2. Finally the default value for
the attribute is given. Possible defaults are listed in Table 3.3.

The fragment of DTD given in Listing 3.1 doesn’t have any attributes. The following
code modifies the count ry element to include some attributes:

<! ELEMENT country (#PCDATA) >
<!ATTLIST country
continent (Europe | Asia | Africa | North America) "Asia"
language CDATA #IMPLIED>

Two attributes have been added to the element. The cont inent attribute has an enu-
merated list of possible values. A default value, Asia, is given. If the continent at-
tribute is omitted, this default value is assumed to apply. The second new attribute is
language. This takes text, CDATA, as its value. The 1anguage attribute has the default
value IMPLIED. This means that it is optional and may be left out of the XML.

3.4 ENTITIES

In Section 2.3.4 I discussed the role of entities within XML documents. Entities have to be
defined in the DTD before they can be used in an XML document. Once an entity has been
defined it can be referenced as the value of an attribute. The attribute becomes, in effect,

Section 3.4: Entities 49

Table 3.2 XML Attribute Types

Type Usage

CDATA The attribute can only accept character data. This data will not
be parsed.

ENTITY The value of the attribute is a reference to an entity. The entity
must be declared elsewhere in the DTD.

ENTITIES Multiple entities can be referenced. They must be separated,
within the list, by whitespace.

ID The attribute uniquely identifies a location within the document.

IDREF The attribute references an ID which is declared elsewhere in the
DTD. IDs may be used for hyperlinking within an XML docu-
ment.

IDREFS Works like IDREF but a list of IDs can be linked to. Items in the
list must be separated by whitespace.

NMTOKEN The attribute value can be any word or token. The value may
contain any combination of numbers, letters, periods, dashes,
colons or underscores.

NMTOKENS A list of space-separated NMTOKEN values.

NOTATION The value of the attribute is a NOTATION which is declared else-
where in the DTD.

Enumeration A list of possible values is given. The list must be in parentheses
with its items separated by pipes. The value of the attribute must
be one of the items in the list.

Table 3.3 XML Attribute Defaults

Default Usage

#REQUIRED A value must be given for each element that has this attribute.

#IMPLIED The attribute is optional; no value has to be given.

#FIXED value The attribute has to have the value given. If the attribute is omit-
ted from the element, it is assumed to be equal to the value.

Default A default value is given for the attribute. Other values may be

given in the XML document, but if the attribute is omitted it is
assumed to have the default value.

50 Chapter 3: Document Type Definitions

an entity reference. When manipulating the XML, the attribute is replaced with the value
of the entity. Entities do not have to be specified as part of an attribute. XML documents
can contain both internal and external entities as described in Section 2.3.4. Before an
entity can be used, it has to be declared in the DTD. An ENTITY may be declared in a
number of different ways:

<!ENTITY name definition>
<!ENTITY name SYSTEM system identifier [NOTATION]>
<!ENTITY name PUBLIC [public_identifier] system identifier

[NOTATION] >
The simplest definition is for an internal entity. Both the entity and its content are

declared in the DTD. Wherever the entity is referenced in the XML document, the
content specified in the DTD will be substituted for the reference. In defining an
internal entity reference, the keyword ENTITY is followed by the name of the entity
and then its content.

An entity may also be an external reference. Here the entity refers to content held
outside of both the DTD and the XML file. External entities may be held on the
same system as the XML file or on a remote system. Dealing with the easier case
first, where the entity was developed by an individual or organization such as a
company: following the keyword ENTITY and the name of the entity, the keyword
SYSTEM is given. The location of the entity is then specified using a Uniform Re-
source Identifier, URI. The URI is an address for the file that holds the entity; it may
be local or remote. When you surf the Web or if you've worked with HTML you
will be familiar with URLs. A URI is effectively the same thing. A NOTATION may
follow the URI. Notations are described in Section 3.5.

If the DTD was developed using an established standard, for instance from ISO or
W3C, the keyword PUBLIC should be used instead of SYSTEM. A public identifier
may then be given.? The public identifier may be used by applications that un-
derstand SGML catalogs to help them resolve the public identifier. If a library of
standards is available, the processor will use this to identify the entity. Next a URI
for the entity is given. If the public identifier could not be used to identify the entity,
the URI will be used. Finally, an optional notation may be given.

Again, a simple modification to the sample DTD demonstrates the use of an ENTITY.

<!ENTITY locationmap SYSTEM "./images/home.png" NDATA PNG>
< ! ELEMENT country (#PCDATA) >
<!ATTLIST country

2The use of square brackets. [. . .], indicates optional content.

Section 3.5: Notations 51

continent (Europe | Asia | Africa | North America) "Asia
language CDATA #IMPLIED
location ENTITY &locationmap; >

In this example, the external entity references an image file. The entity is used as an
attribute of the country element. When entities are used within XML documents or ref-
erenced in DTDs, they follow the same standard syntax: the name of the entity is preceded
by an ampersand and followed by a semi-colon.

3.4.1 Parameter Entities

If a complex part of a DTD is repeated in a number of places, it may be replaced with a
parameter entity. Once declared, the parameter entity can be referenced throughout the
DTD. Using parameter entities can make DTDs easier to read, and easier to author.

<!ENTITY locationmap SYSTEM "./images/home.png" NDATA PNG>
<!ENTITY % continent " (Europe | Asia | Africa | North America)"'>

< | ELEMENT country (#PCDATA) >
<!ATTLIST country
continent %continent; "Asia"
language CDATA #IMPLIED
location ENTITY &locationmap; >

The parameter entity introduces a new symbol into the DTD. In the declaration, a per-
centage sign, %, is placed between the keyword ENTITY and the entity name. When the
entity is referenced % is used instead of the normal reference symbol of ampersand, & The
semi-colon remains after the entity name.

3.5 NOTATIONS

When an entity contains non-XML data, the processor needs to know the object type and
how to embed it in a document or otherwise deal with it. While a NOTATION declara-
tion usually specifies an application to process the data, this is not required by the XML
recommendation. Even if an application is specified, there is no requirement that it is ac-
tually able to handle the data. Here’s a simple example of a NOTATION which identifies
an application that can handle the image file in the last example:

<INOTATION PNG SYSTEM "/usr/bin/display“>

52 Chapter 3: Document Type Definitions

3.6 USING DTDS

A DTD may be declared in the same file as the XML. This isn’t very convenient since
you will usually want to use the same DTD for many documents, but is useful during
development or if the DTD would otherwise be inaccessible. A DTD used like this is
called an internal DTD. When they are located within the XML file, all Document Type
Definitions begin in the same way. The content of the DTD is placed inside a declaration
soitis surrounded by <! >. The DTD starts with the keyword DOCTYPE, then the name
of the root element of the document. Following the root node, the elements that make up
the document are placed within []. All internal DTDs, therefore, are enclosed inside:

< !DOCTYPE rootnode |

1>

3.6.1 External DTDs

When a DTD is to be reused, it should be placed in its own file which is placed on a system
somewhere so that it will be accessible from many XML files. The structure of the DTD
changes slightly as shown in Listing 3.2. By convention, Document Type Definitions are
stored in files that have the extension dtd.

Listing 3.2 An External DTD

<?xml version="1.0" ?>

< !ELEMENT letter (address)>

<!ELEMENT address (linel, line2?, line3*, city, (county|state)?,
country?, code?)>

< |ELEMENT linel (#PCDATA) >

< !ELEMENT line2 (#PCDATA) >

< !|ELEMENT line3 (#PCDATA) >

<!ELEMENT city (#PCDATA) >

< !{ELEMENT county (#PCDATA) >

< !ELEMENT state (#PCDATA)>

< | ELEMENT country (#PCDATA) >

< |ELEMENT code (#PCDATA) >

<!DOCTYPE rootnode SYSTEM|PUBLIC ([public_identifier] URI>
The external DTD needs to be referenced from the XML file. This is done using the
Document Type Declaration. The declaration is placed inside <! > and starts with

Section 3.6: Using DTDs 53

the keyword DOCTYPE. This is followed by the name of the root node of the docu-
ment. If the DTD is local to an individual or an organization, the keyword SYSTEM
should appear next. If it is a standard, the keyword PUBLIC is used instead. Finally
the URI of the DTD is given.

<?xml vergion="1.0" standalone="no" ?>

< !DOCTYPE letter SYSTEM "letter.dtd">
<!-- Rest of XML file here -->

If a validating parser, or an application capable of validating XML, is used, the parser
may not be required to check the document against the DTD. If the XML document can
stand on its own, the XML declaration should be modified to reflect this. The XML decla-
ration has a standalone parameter which can be set to either yes or no.

3.6.2 Customizing DTDs

Sometimes you will want to use an existing DTD suitably modified to meet your needs.
This is done through inheritance. Your DTD can reuse another one, called a base DTD, and
adapt it. This has many advantages. If you are working within a business, for instance,
you can create a global DTD for the whole company. This can be altered, ideally by adding
elements, so that it meets the specific needs of individual departments or projects. The
base DTD can thus be kept relatively simple. Listing 3.3 shows how the partial DTD from
Listing 3.1 might be altered to add entities and attributes to the country element.

Listing 3.3 Modifying a Base DTD

<?xml version="1.0" ?>

<! DOCTYPE letter SYSTEM "letter.dtd" [
<!ENTITY locationmap SYSTEM "./images/home.png" NDATA PNG>
<IENTITY % continent " (Europe | Asia | Africa | North America)

LSS

< !ELEMENT country (#PCDATA) >
<!ATTLIST country
continent %continent; "Asia"
language CDATA #IMPLIED
location ENTITY &locationmap; >

54 Chapter 3: Document Type Definitions

<letter>
<!-- The XML goes here -->
</letter>

3.7 THE RECIPE BOOK

Designing a DTD is a non-trivial exercise, with a number of factors affecting the finished
structure. These may include the amount of complexity that designers and users are will-
ing to deal with, the tool support available and the nature of the problem domain. Let’s
consider each of those in turn. Firstly, complexity. XML is not just a grammar for defining
languages that only machines ever encounter. The historical roots of XML, and some of its
most common applications, lie in human-edited documents. The DocBook specification,
discussed in Chapter 17, is used throughout the world to create technical documenta-
tion. It's possible that because of the adoption of DocBook by many Open Source projects,
it is one of the most widely encountered XML applications currently in use. Generally,
when working with an application such as DocBook, or when using XML in editors such
as Framemaker, the user will need to select tags from lists and menus. The editor will
make only those tags available which the DTD says are valid at a given point in the XML
document. Figure 3.1 shows a composite image of how this works in Xemacs.?

If your XML documents are going to be edited by hand, you’ll want to keep the DTD
relatively simple. The reference for DocBook DTD, for instance, is over 400 pages long.
Few users will ever be able to understand such complex documents. If your users are
going to edit by hand, such long DTDs are completely impractical.

Increasingly, good tool support will be provided for XML development. Many com-
panies that develop desktop applications are moving to XML for their storage format.
Applications such as Microsoft Office are moving to XML as their standard format. With
programs like those found in office suites, the user will never see the XML. Often, they
won’t even be aware that the application they are using is based on XML. Therefore, the
DTD can be far more complex.

Finally, there is the application domain. Again, a more complex domain will require
more complex data structures.

The Recipe Book has a straightforward structure. A recipe contains basically two types
of information: a list of ingredients and a list of instructions. The Recipe Book extends this
structure slightly. Recipes can be organized into categories as shown in Figure 2.2. This
presents the first challenge to a document designer. The recipe appears at first sight to be

3For Emacs/Xemacs users, I'm using PSGML mode.

Section 3.7: The Recipe Book 55

r‘ Eﬁwacs:"recipe.xml -
.ll_-‘lle Edit View OCmds Tools Options Buffers SGML Modify Mo

Irecipe.xml
Zingredients L

quantity amount="2a"

riame>Sugar</name :
Fregiraents r
<ingredient: ‘
gquant ity amount="45¢"
“name>Stoneground wholemeal flour</2

ame »
Aingredients

n gre dient>

<quantity amount="9ga"
<name>Strong white bread flour</ram®

</ingredient> Elernent
redient > ee—

11ty amoun] hame

name>3al t</ nam guantity Atirib

oL

<1n

et s amount >

“9UENE [Set attribute value UMY h v

[cookbook] Fill

————— #Emacs: recipe

Default: g

Figure 3.1 Editing XML in Xemacs

an element of category. A recipe for Vegetable Broth would clearly belong in the category
soup but not all choices are so clear cut. Consider a recipe for Chicken Korma. This may
fit into several categories, including: Curry, Poultry, Spicy, Main Meals, Indian Food. If
recipe is an element of category, Chicken Korma can only go into one of those categories.

Is there an alternative? Of course there is. Why not make category an attribute or
subelement of recipe? If that is done, all recipes stand alone; they are not organized into
any form of hierarchy. If the category subelement is allowed to repeat, the recipe can be
linked to many different categories. This is immediately appealing, but the hierarchical
structure maps onto traditional cookbooks. It also means that each category could be kept
in a separate file. The Recipe Book would be built by assembling these individual files
into a single document. In the DTD in Listing 3.4 I have used the hierarchical approach

56 Chapter 3: Document Type Definitions

both because I prefer its structure, and because it maps on to the way cookery books tend
to be ordered.

Listing 3.4 The Document Type Definition For The Recipe Book

< !DOCTYPE cookbook |
< ! ELEMENT cookbook (category+)>
< ELEMENT category (title+, recipe+) >
<!ELEMENT title (#PCDATA)>
< | ELEMENT recipe (name, ingredient+, cooking*, serves?, method)
>
< ! ELEMENT name (#PCDATA) >
< !ELEMENT ingredient (quantity*, name)>
< !ELEMENT quantity (#PCDATA)>
<!ATTLIST quantity
amount CDATA #REQUIRED
unit CDATA "g'">
< !|ELEMENT unit (#PCDATA)>
< !|ELEMENT amount (#PCDATA) >
<! ELEMENT name (#PCDATA) >
< |ELEMENT cooking (note+) >
< !ELEMENT note (#PCDATA) >
<!ELEMENT serves (#PCDATA) >
< !ELEMENT method (instruction+)>
< !ELEMENT instruction (#PCDATA) >
1>

In this DTD, a cookbook is made from multiple categories. The category element has
to appear at least once, as indicated by the + sign. This places a restriction on the way that
the DTD can be used. I am forcing users to put all recipes inside a category. This might
be regarded as an unreasonable assumption; after all, I've just said that the category could
be an attribute of the recipe. Here the DTD designer is faced with another facet of DTD
development. By creating a set of rules to define the structure of the document, restrictions
are being imposed upon the developers who will use these structures.

A category comprises at least one title and at least one recipe. The number if inclusions
of the recipe element could have been indicated with an asterisk. That symbol means that
the element can be present as often as needed, including zero. There’s no point having a
category that doesn’t hold any recipes, therefore I force each category to have at least one.
Again, here’s a restriction which dictates how applications must process the document.
If I allowed zero or more recipes in a category, a template application could be set up in
which all potential categories were already present. Recipes could be added as required.

Section 3.8: Business Letter 57

In my version, when an application tries to add a recipe to a non-existent category, a new
one must be created.

Moving along, each ingredient has zero or more quantity elements and exactly one
name. Multiple quantities are allowed since weights and measures might be specified
using Imperial, Metric or some other system. In the UK, weights are often specified in
pounds and ounces. Throughout most of the world, grams and kilograms are used. In
North America, recipes often specify cups rather than weights. Ideally, any recipe would
specify each of the different systems for weights and measures. Each user could then be
shown the one most appropriate to their locale. The quantity has two attributes: one for
the unit being used, and one for the amount. These could be subelements but, since they
are really properties of the quantity, they work better as attributes.

3.8 BUSINESS LETTER

The Business Letter is a much simpler proposition than the Recipe Book. Each letter stands
alone. I'm not imposing any database-style features here. I don’t feel that there is much
sense in storing all letters under a single structure since they tend to be independent items.
This could be questioned; surely all letters sent to, or received from, one person could
profitably be stored in a single file. Of course this structure would be useful in some
circumstances. Generally, though, I don’t think it would be very useful.

Why might letters be stored? Retrieving and reviewing letters after they are written, of-
ten years later, is important to many people but this doesn’t, necessarily, need a database.
When a system has to manipulate large numbers of text documents, one effective tech-
nique is to store each document in its original file and to create an index which peints to
those files. Consider an archive of letters. Indexes could be created based upon keywords,
sender, recipient or the date that the letter was written. Using XML to structure the letters
makes building indexes relatively trivial.4

The Document Type Definition for the Business Letter application is shown in Listing
3.5. A letter has two components. Firstly, there’s a header which holds information such
as the addresses of the sender and recipient. The header includes a date element which is
broken down into optional subelements. The date is broken down because it can then be
stored and manipulated in different ways.

Listing 3.5 The Document Type Definition for the Business Letter

< IDOCTYPE letter|
< !ELEMENT letter (header, content)>

“Large systems, such as corporate intranets, require the additional facilities a database provides.

58 Chapter 3: Document Type Definitions

<!ATTLIST letter title CDATA #IMPLIED>
< ! ELEMENT
< ! ELEMENT
< ! ELEMENT

< | ELEMENT
?

address?) >
address?) >
surname) >

sender (name,
recipient (name,
name (title?,
address (linel, line2?,

firstname*,

line3*, city, (county|state)

, country?, code?)>

< | ELEMENT date (dayname?, day?, month?, year?)>

<! ELEMENT signature (greeting, (name | firstname))>

< !ELEMENT header (metadata*, sender, recipient, date, signature
) >

< !ELEMENT content (para+, footnote*)>

< | ELEMENT
< | ELEMENT
< ! ELEMENT
< | ELEMENT
< | ELEMENT
< | ELEMENT
< ! ELEMENT
< | ELEMENT
< | ELEMENT
< ! ELEMENT
< ! ELEMENT
< ! ELEMENT
< ! ELEMENT
< ! ELEMENT
< ! ELEMENT
< ! ELEMENT
< | ELEMENT
< | ELEMENT
< | ELEMENT
<!ATTLIST

para (#PCDATA | emphasis)*>
footnote (para+)>
title (#PCDATA) >
firstname (#PCDATA) >
surname (#PCDATA) >
linel (#PCDATA)>
(#PCDATA) >
(#PCDATA) >
city (#PCDATA) >
county (#PCDATA) >
state (#PCDATA)>
country (#PCDATA) >
code (#PCDATA) >
dayname (#PCDATA) >
day (#PCDATA) >

month (#PCDATA) >
year (#PCDATA) >
emphasis (#PCDATA) >
greeting (#PCDATA) >
greeting

line2
line3

type (formal | informal | other) "formal"s>
< | ELEMENT metadata (keyword+) >
< ! ELEMENT keyword (#PCDATA) >

<!ATTLIST keyword value CDATA #REQUIRED>

1>

The header section of the letter includes a signature element. All letters have to end
with a salutation. In English this might be Yours Sincerely or Yours Faithfully. We don't

Section 3.8: Business Letter 59

want to include this in the text of every letter. A much easier solution is to make this
information part of the header and let the processing application place the information
correctly. The header also includes optional metadata, which is made from keywords and
associated values. Metadata simplifies the process of indexing and archiving the letters.

Letter content is made from paragraphs and footnotes. While few personal letters actu-
ally use footnotes, they can be useful in business. This is a very simplistic structure for the
content of a letter. Useful extensions to it might include provision for lists, tables or images
within the content. I've omitted these for the sake of clarity. If you wanted to extend this
structure, | would recommend looking at the way that DocBook, as described in Chapter
17, handles them. A further refinement would be to make the addresses, greeting and
salutation into external entities. These could then be used in any number of documents
without the need to enter the same information repeatedly in each.

Exercises

1. Write a DTD for the name and address structure which you created at the end of
Chapter 2. If you are unable to make your DTD match the structure of your docu-
ment, modify the document so that it is simpler.

2. Why is it necessary to create a formal definition for the structure of XML documents.

3. Describe three advantages and three disadvantages which DTDs have when com-
pared to alternatives such as XML Schema.

4. Research the structures used for addresses in the US, Japan and Brazil. Can you
modify your DTD so that it supports all of those forms?

5. Why do DTD files use their own syntax and structure rather than being written as
XML documents?

6. What is the difference between PCDATA and CDATA?
7. Why are entities used in DTDs?

8. Try to find software which can be used to validate XML documents against their
DTDs. Is you name and address structure valid?

9. If you modified the business letter at the end of Chapter 2, modify the DTD to match
the new structure.

This page intentionally left blank

Chapter

Specifying XML
Structures Using
Schema

We’ve already seen that XML documents can be described using Document Type Defini-
tions, DTDs. DTDs originated with SGML and show those origins all too visibly. XML
documents are far more complex and varied than their SGML cousins because XML is
used in far more ways than SGML. This creates a problem. While DTDs are perfectly
suitable for SGML, where they have been used successfully for many years, they are in-
appropriate for the newer technology of XML. DTDs cannot be processed by XML-only
applications. Developers need to learn two relatively complex languages to use DTDs and
they cannot be validated using XML validators. XML has more data types than can be ex-
pressed in DTDs, and is generally far richer. Basically DTDs cannot be used to express
XML documents.

To remedy this situation, W3C has created a language called XML Schema which can
be used to define XML structures. A number of different schema languages exist. In this
chapter I will be writing specifically about XML Schema because it is a Recommendation

62 Chapter 4: Specifying XML Structures Using Schema

of W3C. I'll be using the terms XML Schema and schema interchangeably — my choice be-
ing based purely upon which reads better in a given context. If I wanted to be precise all of
the time I would use XML Schema when referring to the language and Recommendation,
and schema when referring to a particular document that uses the language.

As I write this, far more tools exist to handle DTDs than XML Schema. This situation is
changing rapidly since everyone sees the advantages of using schemas. DTDs are really
a technical dead-end, although understanding them will remain important since so many
exist. It's likely that when you are using older documents, they’ll continue to be described
using DTDs. New documents should always be described using XML Schema.!

The most important omission in the DTD is the idea of a data type. SGML documents
tend to contain mostly plain text. Almost all data in an SGML application can be treated
as strings of characters in definitions and applications. XML documents require a far
richer set of data types, including strings of characters, numbers, both whole and dec-
imal, and complex types such as dates and times. XML Schema introduces data types
which, in turn, leads to more tightly defined XML structures which can be used with
current database technologies or in conventional applications written in general-purpose
programming languages. Other new, and useful, features in the XML Schema Recom-
mendation include:

e a simple pattern matching grammar which might be used, for example, to define
the structure of an order code,

¢ defined ordering of subelements so that document structure can be tightly con-
trolled,

e selection between different elements so that documents can share a schema without
having identical structure.

DTDs are described using their own, unique, syntax. Using them means having to
learn, and apply, two sets of syntactic rules in one application. While DTDs are not the
most complex documents imaginable, it is vital that developers define them correctly.
Equally as important, parsing and manipulating DTDs within applications requires spe-
cial libraries. XML Schema documents can be handled much more easily because they are
fully compliant XML documents in their own right. What does this mean in practice? The
tools that you use to develop, parse and manipulate your XML can also be used for your
schemas. Developers need learn only one set of rules for schema and document, and both
could be created using the same pieces of editing software.

! Although pragmatic realities such as organizational politics, historical preferences or the tools you have available may
force you to use DTDs.

Section 4.1: Namespaces 63

Using XML Schema requires an understanding of namespaces. Schema definitions al-
ways use namespaces, so much so that namespaces are one of the cornerstones of schema
technology. I've mentioned namespaces before; now is the time to examine them in detail
and learn how to use them.

4.1 NAMESPACES

Many situations arise during XML development in which different elements or attributes
have the same name. In any reasonably complex document all obvious names soon get
used. Resorting to cryptic names or names that are overly long and complex is unsatisfac-
tory since it makes the document harder to read and to parse. Many programs, especially
those in the Web applications domain, pull together data from a multitude of sources
and combine it into a single global whole. One key question in all of these areas is how
the unique names from each document can be preserved. Let us consider an illustrative
example.

Bill Smiggins Inc. is a leading supplier of custom-made widgets. They have started
to trade electronically with their suppliers and customers. Since each company has their
own systems and structures, Smiggins have decided that they will accept and provide all
data in XML format. Two of their suppliers, MegaCorps Industries, a multinational con-
glomerate, and Ray Jones, a typical mom and pop business, are among the first to start using
XML. Each supplier provides details of parts, unit costs, order sizes and so on. The part
details typically include a part number and a textual description. MegaCorps uses com-
plex part numbers such as 12-07-abcd- 3, while Ray Jones uses simple integers such as
235 to identify his products. When these numbers are being processed at Smiggins Inc.
the systems need to be able to identify each type of part number and use the appropriate
ones on order forms. A number of possible XML structures can be envisaged:

<part number>
<supplier>MegaCorps</supplier>
<number>12-07-abcd-3</number>
</part_number>

uses elements to denote each part of the data. The same thing could be achieved using
attributes:
<part_number supplier="MegaCorps">12-07-abcd-3</part_numbers>
Both of these schemes suffer from the same problems. The XML becomes somewhat
messy and difficult to manage. If each element that refers to MegaCorps has to specifically
state its origin either through an attribute or a subelement, the document will soon grow

64 Chapter 4: Specifying XML Structures Using Schema

out of control. There is also a danger that if Smiggins start to deal with another supplier
called MegaCorps, they must somehow identify two identically named organizations.

Being able to relate each element uniquely back to its origin is vital. The W3C recog-
nized this and developed a Recommendation for Namespaces. A namespace is a unique
identifier for a set of names within an XML document. The Recommendation document
states that they were developed to avoid the problem of collisions among element and at-
tribute names where more than one markup vocabulary is used in a document. Essentially
this is exactly the problem outlined above.

Here is an XML fragment in which element names are qualified by the use of name-
spaces.

<smiggins:part_number>
<smiggins:supplier>MegaCorps</smiggins:suppliers
<smiggins:number>12-07-abcd-3</smiggins:numbers>
</smiggins:part numbers

4.1.1 Declaring Namespaces

An XML namespace is identified by a URI. The URI is associated with a prefix. The prefix
is attached to the front of element and attribute names in the XML document so as to asso-
ciate them with the namespace. Where more than one namespace is used in a document
they may be unique. If two namespace have exactly the same combination of characters in
their URISs they are considered identical, that is, they are the same namespace. It is worth
noting that two namespace URIs may be different, yet may identify the same thing and,
hence, be functionally the same.

The association between prefix and URI is created using an attribute, xmlns, which is
specially reserved for this purpose. Here’s an example:

<recipe xmlns="http://www.foodlinks.org">

This code creates a default namespace for the recipe document. A default namespace
applies to all elements in the document but doesn’t have to be expressly stated. The
recipe element and all of its subelements are associated with the default namespace.
Actually, that’s not quite true. Any elements that appear as subelements of recipe and
which have a namespace prefix are part of the namespace associated with their prefix.
Here’s an example in which a namespace is declared and given a prefix:

<recipe xmlns:food="http://www.foodlinks.org">

To associate elements and attributes with the namespace, its prefix, food, must be
concatenated to the front of their name with a colon separating the two parts:

<food:ingredient />

Section 4.1: Namespaces 65

The three parts of the name become the namespace, the prefix and the local name of
the element or attribute. The local name is, fairly obviously, the name that the element or
attribute has in the current document.

Although the namespace is identified by a URI, the Recommendation does not specify
that the URI point to an actual document or location. If that statement is simply taken at
face value, it seems most peculiar. Surely a URI ought to identify a document; there must
be something that gives meaning to the URIL Actually, the answer is no. In this case the URI
is really identifying a domain which is globally unique and hence creates a set of unique
names. When a URI is specified for a namespace there can only ever be one instance of
that domain so that elements can be uniquely identified. This identification is unique
across all XML documents that exist, not just those being used by the current application.
Clearly, guaranteeing this is not the easiest thing. To make sure that the process works as
intended, wherever possible the domain that you use for your namespaces should be one
to which you actually own the rights to.

Note:
When creating a prefix, you cannot use any combination of the three letters x, m
and I.

4.1.2 Applying Namespaces

If creating, or defining, namespaces is not difficult, using them is even more straightfor-
ward. Any element, or attribute, that belongs to a particular namespace is renamed so
that the prefix and local name become one identifier:

<food:ingredient />

The namespace is then in use throughout a particular instance of the element. The rules
that define when a particular namespace is being used are called scoping rules. The basic
principle is that when a namespace is applied to an element, all subelements of it belong
to the same namespace. If, for a particular element, no prefix is used, that element belongs
to the default namespace. Elements can each belong to their own namespaces provided
that the namespace has been declared and the appropriate prefix is used in the element
name. Listing 4.1 shows how namespaces can be used in XML documents.

Listing 4.1 Using Namespaces

<?xml versgion="1.0"?>

<letter title="Your complaint of 03/03/00">
<header xmlns:from="http://www.sniggins.con"
xmlns:to="http://www.microsoft.com">

66 Chapter 4: Specifying XML Structures Using Scherma

<from: sender>
<from:name>
<from:title>Mr.</from:title>
<from: firstname>William</from: firstname>
<from: firstname>James</from: firstname>
<from: surname>Smiggins</from: surname>
</from:name>
</from: sender>
<from:recipient>
<to:name>
<to:firstname>Bill</to:firstname>
<to:surname>Gates</to:surname>
</to:name>
</from:recipient>
<from:signature>
<from:greeting type="formal"/>
<from:name>
<from:firstname>Bill</from: firstname>
</from:name>
</from:signature>
</header>
</letter>

Two separate namespaces are declared. Notice that more than one namespace can be
declared at the same point in the document. Both will remain in scope for the same portion
of the document, which in the example is the header element. The namespaces can be
applied to appropriate elements. In the example, the sender and recipient elements
have identically named subelements. Since these might contain different data or have
different meanings, a different namespace is applied to each. The recipient element
is part of the document created by Smiggins Inc. and so belongs in their namespace. Its
content comes from the actual recipient and so belongs in their namespace.

4.2 USING SCHEMAS

Two documents are required to actually use XML Schema. One contains the schema def-
inition, the other is an XML instance document. While at least one schema is required if a
document is going to be validated, an XML document can use elements from more than
one. When a compound document is built from a number of XML documents, as might

Section 4.2: Using Schemas 67

happen during transformation, or a document uses elements from multiple sources, a
number of different schemas will usually be needed. Schema documents must use the
schema namespace http://www.w3.0rg/2001/XMLSchema which is normally associ-
ated with the prefix xsd. The following code shows how to use the namespace declara-
tion:

<?xml version="1.0"7?>

<xg8d:schema xmlns:xs8d="http://www.w3.0rg/2001/XMLSchema">
<x8d:element name="letter">
</%8d:element>

</x%x8d:schema>

Mostly the content of a schema consists of element definitions. Elements may contain
other elements, so-called subelements, data content which might be strings or numbers,
or a mixture of both. Those elements that contain only data are called simple types, the
others are called complex types. Rather than begin an abstract discussion of schemas, let’s
look at a more concrete example. Listing 4.2 is a schema for the address component of the
Business Letter.

Listing 4.2 Simplified Letter Schema

<?xml version="1.0"7?>
<x8d:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="header">
<x8d:complexType>
<x8d:sgequence>
<x8d:element name="name">
<xs8d:complexType>
<xsd:sequence>
<x8d:element name="title" type="xs8d:string"
maxOccurs="1"/>
<xs8d:element name="firstname" type="xsd:string
H />
<x8d:element name="surname" type="xsd:string" />
</xsd:sequence>
</x8d:complexType>
</xs8d:element>
<x8d:element name="address">
<xs8d:complexType>
<xs8d: sequence>
<xs8d:element name="linel" type="xsd:string" />

68 Chapter 4: Specifying XML Structures Using Schema

<xs8d:element name="line2" type="xsd:string" />
<xsd:element name="line3" type="xsd:string" />
<xs8d:element name="city" type="xsd:string" />
<xsd:choice>
<xsd:element name="state" type="xsd:string" />
<xsd:element name="county" type="xsd:string" />
</x8d:choice>
<xs8d:element name="linel" type="xs8d:string" />
<xsd:element name="line2" type="xsd:string" />
<x8d:element name="country" type="xsd:string" />
<x8d:element name="code" type="xsd:string"”
minOccurs="1" maxOccurs="1"/>
</x8d:sequence>
</x%8d:complexType>
</x8d:element>
</x8d:sequence>
<x8d: /complexType>
</x8d:element>
</x8d:schema>

Schemas can be developed in a number of ways. Intellectually, the simplest approach
is to mimic the structure of the original XML document. That’s what I’'ve done in Listing
4.2. Elements and subelements occur in the same order and with the same nesting that
they do in the original document. A slightly more complicated approach is to define the
elements and attributes first and to reference them from the structure of the document.
This approach is demonstrated in Section 4.3.4. The third common approach is to define
data types based upon the contents of both complex and simple elements, and then to
use those types to define the elements and attributes in the document. This approach is
demonstrated in Section 4.3.1.

Seeing a piece of code is one thing, understanding what it means is a totally different
matter. Let me explain the structure shown in Listing 4.2. Following the usual XML pro-
cessing instruction, the namespace is declared and bound to the prefix xsd. The XML
document starts with the letter element but that makes for a far longer example.? In-
stead I'll concentrate on the sender section which must be defined first. It's a complex
type which is composed from a set of elements. DTDs allow you to specify nesting but not
to impose order on subelements. Not so schemas. The sender element contains ordered

2See Section 4.6 for the whole thing.

Section 4.2: Using Schemas 69

data. In XML Schema ordered sets of elements are created inside a sequence element. In
this example, the sender contains two complex types, the name and address.

The name is another complex type which contains a sequence of elements. Each of the
elements inside the sequence is simple. Since these are simple elements, they hold con-
tent which can be given a particular data type. The data type is declared using the type
attribute. Notice that because the data types are part of the XML Schema Recommenda-
tion, the namespace prefix is used as part of the attribute value. The data types that are
automatically available in XML Schema are described in Section 4.4. Defining your own
data types is possible in XML Schema. This is also covered in Section 4.4. All of the simple
elements in the Business Letter accept character strings, but the Recipe Book schema in
Section 4.6 uses some other data types.

Elements in schemas can have a number of different attributes. The title element
shows the use of one of these. The maxOccurs element specifies the maximum num-
ber of times that a particular element can appear at a given point in the XML document.
And, yes, if you were wondering, there is a minOccurs attribute which controls the min-
imum number of times that the element must appear. It's used in the code element of the
address.

Finally, notice the <xsd: choice> element. Depending where you are in the world, a
city may belong to a state or a county.? It would be convenient if all of the possible options
could be specified in the schema and just one used in the finished document. This is the
role of the choice element. Any number of elements can be defined as subelements of a
choice but only one may be used in the instance document.

4.2.1 Validating Schemas

XML is still a relatively new concept. Sure, SGML has been around for twenty years
or so, but its user base was always relatively small. XML is in a period of explosive
growth at the moment. New applications for XML are being developed all the time and
it's moving into a diversity of domains, from graphics, through networking and on to
artificial intelligence. Wherever software is used, someone is trying to replace* existing
data structures with XML.

New schemas and applications are pouring out of the developer community, but what
about software to handle it? Plenty of XML parsers are now available as libraries in pro-
gramming languages such as Java, and embedded in applications such as Internet Ex-
plorer. That wasn't the situation even two or three years ago, and itisn't the situation right
now for XML Schema. The Recommendations and applications need to be in place before

3Q0r a province or region or I'm trying to keep this simple, though, which is why I’ve not included them all.
“Or supplement.

70 Chapter 4: Specifying XML Structures Using Schema

the processing software is developed. That might seem paradoxical, but consider XML
Schema. Developers were using DTDs with all their attendant limitations. Until W3C
had produced a stable Recommendation and a body of support had coalesced around it,
no one would undertake the long process of writing the software. That situation is going
to change. Limited XML Schema support is starting to appear in some applications.

Once you've created a schema, it needs to be validated. The rules of XML Schema are
pretty complicated. There’s little point in writing a schema if it breaks the rules since
doing so will automatically invalidate your XML documents. Software support is essen-
tial. A quick search of the Web reveals the existence of a few XML Schema validators. In
preparing this chapter, I chose to use IBM’s Schema Quality Checker version 2.0 (SQC2).
This is a pure Java product, bundled with which are all the necessary libraries.

Installing Java applications can be something of a pain. If you have a recent’® Java run-
time environment or software development kit installed on your machine, you should be
able to configure it to run SQC2. Typically, Java installations set a number of environment
variables which must be modified when products such as SQC2 are added to the system.
Modifying the environment for every Java application that you need is, frankly, not ad-
visable. If you make an error you're likely to break your existing configuration. A much
better solution is to use batch files to initiate all of your Java applications.

SQC2 comes with two batch files which can be used to run it. SQC . bat is for Microsoft
Windows systems, SQC. sh for Unix-type systems. My approach to working with batch
files like these is the same under both Windows 2000 and GNU/Linux. I have a directory
called bin in my GNU/Linux home directory and on my Windows c: drive. Both these
directories are added to the PATH environment variable. I edit SQC.sh or SQC.bat to
suit my system, then add a batch file to bin which fires off the SQC file. In the following
examples there are long lines of code which will wrap strangely on the page. If you can’t
make sense of them as printed here, use the examples supplied with SQC2 to help you
format yours properly. Here are the changes under Windows:

In c:\bin I create SQC.bat:

c:\8QC2.0\SQC.bat
with the SQC . bat that came with the product, changed to:

java -classpath ¢:\SQC2.0\xmlParserAPIs.jar;c:\SQC2.0\xercesImpl.
jar;c:\SQC2.0\xschemaREC. jar;c:\SQC2.0\xml4j.jar;c:\SQC2.0\
mofrt.jar;c:\8QC2.0\regx4j.jar;c:\SQC2.0\mail.jar;c:\jdkl.3\
jre\lib;.

com.ibm.sketch.util.SchemaQualityChecker %1 %2 %3 %4 %5

Under GNU/Linux, it's the same thing. I create a batch file called SQC, which contains:

5At least Java version 2, release 1.2.

Section 4.3: Defining Types 71

#!/bin/sh
/opt/SQC/SQC.sh $*

The batch file needs to be made executable using:
chmod 700 ~/bin/SQC
The SQC. sh file supplied with the product is changed to:

java -classpath /opt/SQC/xmlParserAPIs.jar:/opt/SQC/xercesImpl.
jar:/opt/SQC/xschemaREC. jar:/opt/SQC/xml4j.jar:/opt/SQC/mofrt.
jar:/opt/SQC/regx4j.jar:/opt/SQC/mail.jar:/opt/jbuilder5/jdkl
.3/jre/1lib com.ibm.sketch.util.SchemaQualityChecker $*

Of course, the paths are specific to my system. They’ll need to be changed to suit your
installations.

4.3 DEFINING TYPES

I've already mentioned that elements may be simple or complex. The distinction is clear:
complex elements may contain other elements, may contain content and may have at-
tributes. Simple types may only contain content, cannot contain other elements and can-
not have attributes.

Although building a schema that follows the structure of the intended instance docu-
ment is straightforward, it’s not necessarily efficient. A much easier approach is to define
a series of data types that express the pieces of the document. The actual definition can
then be based upon these. An example of this is shown in Section 4.3.1. The following
discussion assumes the use of user-defined data types but can also be applied to simpler
structures such as the one in Listing 4.2.

4.3.1 Simple Types

The simplest form of XML element is assigned one of the default data types which are
listed in Section 4.4. These include such standard programming data types as strings,
integer numbers and decimal numbers. These provide much of the functionality that is
required in schemas but not all of it. Remember that a simple type is used for an element
that contains only document content. This content may be something straightforward
such as a character string, but it may be more complicated. The content of the element may
be an integer value within a particular range, a string that matches a particular pattern or
a date chosen from a list of items. All of these can form the content of a simple type

72 Chapter 4: Specifying XML Structures Using Schema

in XML. The following example shows two elements which each take one of the built-in
simple types as content:

<?xml version="1.0"?>

<x8d:schema xmlns:xsd="http://www.w3.0org/2001/XMLSchema">
<x8d:element name="today" type="xsd:date" />
<x8d:element name="user" type="xsd:string" />
</x8d:schema>

Creating new data types based on the built-in types is a straightforward process - al-
though many different XML Schema constructs may be used. Let’s change the previ-
ous example so that the date is chosen from a set of four possibilities and the user name
matches a predefined pattern:

<?xml version="1.0"?7>

<xs8d:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<x8d:element name="today" type="dateSet" />
<x8d:element name="user" type="userType" />

<xs8d:simpleType name="dateSet">
<x8d:restriction base="xsd:date">
<xs8d:enumeration value="1785-03-29">
<xs8d:enumeration value="2002-10-17">
<xs8d:enumeration value="2001-12-02">
<x8d:enumeration value="1895-04-02">
</x8d:restriction>
</x8d:simpleType>

<xs8d:simpleType name="userType">
<xs8d:restriction base="xsd:string">
<xsd:pattern value="U\w{2,6}\d{2}" />
</xsd:restriction>
</x8d:simpleType>

</x8d:schema>

Two new data types are created. The exact details don’t need to detain us for long since
they’ll be covered later. Initially it is more important to know what is happening before
getting caught up in the details of how it happens. The new data types are called dateSet

Section 4.3: Defining Types 73

and userType. Elements that contain content in these new types are declared with their

type attribute set to the name of the new type. When setting an attribute to one of the

built-in data types, the qualified name of the type is used, prefix plus local name. When

user-defined types are being assigned only the local name is generally needed:
<xsd:element name="today" type="dateSet" />

In my example, the type definitions follow the element declarations. The Recommen-
dation doesn’t specify whether the definition of types should happen before or after their
use. Since the W3C give some examples of usage in which the types are defined after they
are first used, following this convention seems pretty safe. Difficulties would arise if tool
and library vendors implement systems that require types to be defined before they are
used, but you've done the opposite. Following the practice of the W3C means you are
safe from this.

Defining simple types is done by taking an existing simple type and applying a restric-
tion to it using facets. Facets are rules which are applied to the base type to change it in
some way. The existing type may be built-in or a user-defined type that you created pre-
viously. The restriction changes the meaning of the simple type which it takes as its base
attribute:

<xgsd:restriction base="xsd:date">

That’s all there is to creating a simple type: take an existing simple type and modify it
to suit your needs.

4.3.2 Complex Types

A complex type is defined using the complexType element. Complex types may include
subelements, element content and attributes, which makes designing their definitions nec-
essarily more difficult than for simple types. A complexType element does not define a
data type per se, rather it creates an association between a set of elements, each of which
may be either complex or simple.

<x8d:complexType name="name">
<x8d:sequence>
<xgd:element name="title" type="xsd:string" maxOccurs="1"/>
<x8d:element name="firstname" type="xsd:string" />
<x8d:element name="surname" type="xsd:string" />
</x8d:sequence>
</x8d:complexType>

The preceding code fragment is very similar to the one used in Listing 4.2. It creates
a complex data type which is given a name and can be used elsewhere in the program
through its name. The complex type is used like this:

74 Chapter 4: Specifying XML Structures Using Schema

<element name="from" type="name"/>

Wherever the data type name is used in the instance document, the structure must
include all elements from the schema that are not defined as part of a group from which
just one item is selected. In the example this means at most one title and possibly a
firstname and a surname.

Controlling how often an element appears in the instance document is done through
attributes:

minOccurs
The minimum number of times that the element must appear in the document. This
defaults to 1.

maxOccurs
The maximum number of times that the element must appear in the document. This
defaults to 1.

default
Assigns a default value to both elements and attributes. When an attribute has a de-
fault value, this value will be used in the instance document if the attribute is not
explicitly used. Elements are treated slightly differently. If an element is given a
default value using this attribute but has content in the instance document, its value
is set to the content. If the element is empty in the instance document, it is given the
value of the default.

use
Attributes must appear no more than once in a given element. Controlling how they
appear is done through the use attribute in the schema document. This attribute
takes one of three values: required, optional or prohibited.

fixed
To force a particular value for either an element or attribute in the instance docu-
ment, the fixed attribute is supplied in the schema.

This code shows the use of some of these attributes:

<x8d:complexType name="name">
<x8d:sequence>
<xs8d:element name="title" type="xsd:string" maxOccurs="1"
default="Miss"/>
<xs8d:element name="firstname" type="xsd:string" minOccurs
="2"/>
<xsd:element name="surname" type="xsd:string" />

Section 4.3: Defining Types 75

</x8d:sequence>
</x8d:complexType>

The partial schema for the Business Letter can be rewritten using defined types as
shown in Listing 4.3.

Listing 4.3 The Letter Schema Using Complex Types

<?xml version="1.0"7>
<x8d:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xs8d:element name="header">
<xs8d:complexType>
<xs8d:sequence>
<x8d:element name="name" type="nameType"/>
<x8d:element name="address" type="addressType"/>
</x8d:sequence>
<x8d: /complexType>
</x8d:element>

<x8d:complexType name="nameType">
<x8d:sequence>
<x8d:element name="title" type="xsd:string" maxOccurs
="1"/>
<x8d:element name="firstname" type="xgd:string" />
<x8d:element name="surname" type="xsd:string" />
</xs8d:sequence>
</x8d:complexType>

<x8d:complexType name="addressType'">
<x8d: sequence>
<x8d:element name="linel" type="xsd:string" />
<xsd:element name="line2" type="xsd:string" />
«x8d:element name="line3l" type="xsd:string" />
<x8d:element name="city" type="xsd:string" />
<x8d:choice>
<x8d:element name="gstate" type="xsd:string" />
<xs8d:element name="county" type="xsd:string" />
</x8d:choice>
<xs8d:element name="country" type="xsd:string" />

76 Chapter 4: Specifying XML Structures Using Schema

<xs8d:element name="code" type="xs8d:string" minOccurs="1"
maxOccurs="1"/>
</x8d:sequence>
</x8d:complexType>

</x8d:schema>

4.3.3 Attributes

Attributes are defined within a complexType element. The definition of attributes comes
after the definitions of the elements and before the closing tag of the element. Defining
an attribute is very similar to defining simple types except that they occur in attribute
tags. Here’s an example:

<x8d:complexType name="name">
<xs8d:sequence>
<x8d:element name="title" type="xsd:string" maxOccurs="1"
default="Miss"/>
<x8d:element name="firstname" type="xsd:string" minOccurs
=n"2n/>
<x8d:element name="surname" type="xsd:string" />
</x8d:sequence>
<xs8d:attribute name="gender" type="xsd:string" default="female
n/s
</x8d:complexType>

4.3.4 References

One more method of defining XML Schemas is to create named elements that contain a
complexType. Explicit references to those elements are used to build the schema docu-
ment. The references are created using the ref attribute. Rather than spend a lot of time
discussing this technique, since it’s straightforward, Listing 4.4 gives an example.

Listing 4.4 The Letter Schema Using References

<?xml version="1.0"?>
«<x8d:schema xmlnsg:xsd="http://www.w3.0rg/2001/XMLSchema">

<x8d:element name="header">
<x8d:complexType>
<x8d: sequence>

Section 4.3: Defining Types

<x8d:element ref="name"/>
<x8d:element ref="address"/>
</x8d:sequence>
<x8d: /complexType>
</x8d:element>

<xs8d:element name="name">
<xs8d:complexType>
<x8d:sequence>
<xs8d:element name="title" type="xsd:string" maxOccurs
="1"/>
<x8d:element name="firstname" type="xsd:string" />
<x8d:element name="surname" type="xsd:string" />
</xs8d:sequence>
</x8d:complexType>
</x8d:element>

<xs8d:element name="address">
<xgd:complexType name="addressType">
<x8d:sequence>
<x8d:element name="linel" type="xs8d:string" />
<xg8d:element name="line2" type="xsd:string" />
<x8d:element name="line3" type="xg8d:string" />
<x8d:element name="city" type="xsd:string" />
<x8d:choice>
<xsd:element name="state" type="xsad:string" />
<x8d:element name="county" type="xsd:string" />
</x8d:choice>
<xs8d:element name="country" type="xsd:string" />
<xs8d:element name="code" type="xsd:string" minOccurs
="1" maxOccurs="1"/>
</x8d:sequence>
</x8d:complexType>
</x8d:element>

</x8d:schema>

78 Chapter 4: Specifying XML Structures Using Schema

4.4 DATA IN SCHEMA

So far I've demonstrated how you can create your own data types in XML Schema. The
end point of every complex type that you create is a set of simple types. Each of these
simple types will either use or extend a built-in XML data type. One of the tremendous
advantages that schemas of all types have when compared to DTDs is the richness of their
data model. XML Schema, in particular, provides numerous useful data types which can
be modified to meet specific requirements. Since the underlying model is standardized,
any processing application will be able to manipulate your data. At the most primitive
level your complex types are all, eventually, convertible to a set of built-in primitive XML

data types.
Table 4.1: XML Schema Data Types
Type Example or Explanation
string A string of characters
normalizedString Tab, return and newline characters are converted to spaces
token A normalizedString with whitespace characters col-
lapsed so that runs of more than one whitespace character
become a single character
byte -1,125
unsignedByte 1,125
base64Binary Binary data in Base 64 format
hexBinary Binary data in hexadecimal format
integer -126789, 0, 126789
positivelnteger 1, 126789
negativelnteger -126789, -1
nonNegativeInteger 0,1,126789
nonPositiveInteger 0,-1,-126789
int -1, 126789675
unsignedInt 1, 126789675
long -1, 12678967533214
unsignedLong 1, 12678967533214
short -1, 12678
unsignedShort 1, 12678
decimal -1.23,0, 123.4, 78.0
float 32-bit floating-point numbers such as -1E4, 0, 12.3E5, NaN

Section 4.4: Data In Schema 79

Table 4.1: XML Schema Data Types

Type Example or Explanation

double 64-bit floating-point numbers such as -1E4, 0, 12.3E53,
NaN

boolean true, false, 1,0

time 10:35:00.00 ¢

dateTime 2002-02-16T10:35:00.00 which is 10:35 a.m. on February 16,
2002.

duration P23Y4M2DT01H15M5S means 23 years, 4 months, 2 days,
1 hour, 15 minutes and 5 seconds

date 2002-02-16 which means February 16, 2002

gMonth’ — — 02 — — means February

gYear 2002

gYearMonth 2002-02

gDay — — —16 is the 16th day

gMonthDay — — 02 — 16 is February 16

Name The XML name type, e.g., recipe

QName A qualified name such as from: sender

NCName The QName without its prefix: sender

anyURI http://www.smiggins.com

language Values which are valid for xml : 1ang such as en-GB

ID An XML 1D attribute

IDREF An XML IDREF attribute

IDREFS An XML IDREFS attribute

ENTITY An XML ENTITY attribute

ENTITIES An XML ENTITIES attribute

NOTATION An XML NOTATION attribute

NMTOKEN An XML NMTOKEN attribute

NMTOKENS An XML NMTOKENS attribute

Table 4.1 lists the primitive XML Schema data types. It's important to notice that these

are not the same data types that you would find in a programming language such as C.

SXML Schema uses Universal Coordinated Time which is also known as Greenwich Mean Time. Offsets are expressed
after the time: 10:35:00.00-05:00
"The prefix g is used to denote the Gregorian calendar.

80 Chapter 4: Specifying XML Structures Using Schema

Although common data types such as unsigned integers and bytes are available, much
richer types such as dates and durations are provided.

4.4.1 Regular Expression Language

The simple data types can be modified using facets. The complete set of facets is described
in Section 4.5.4. One of the facets, pattern, has a simple regular expression language.
The language is used to select strings and substrings and is based on the regular expres-
sion facilities in the programming language Perl. If you've programmed in Perl, you'll
notice one key difference between the two languages. In Perl, the characters " and $ can
be used to represent the start and end of strings. In XML Schema, patterns are applied to
the entire content of an element and hence ~ and $ are not used. The character ~ is still
used, but here it indicates a logical not in character sets.

Table 4.2: XML Schema Regular Expressions

Expression

Example

Explanation

\d

\d{}

recipe

Espanñl;o0la

\dg

\d{3}g

Simple strings of characters are matched exactly. Here
the string recipe will give a successful match even if it
occurs as a substring. For instance, the string recipes
will match. All Unicode character is valid in these ex-
pressions, provided, of course, the encoding for the
document supports it.

This shows how character entities can be used to rep-
resent Unicode characters. It will match the string Es-
pafiola.

Matches a single digit. In the example any digit fol-
lowed by the letter g is matched.

A number in curly braces controls repetition in the
match. The example matches three digits followed by
a single letter g.

Section 4.4: Data In Schema 81

Table 4.2: XML Schema Regular Expressions

Expression

Example

Explanation

\D

\s

\w

\W

\p{Lu}

\P{Lu}
\p{IsGreek}

\P{IsGreek}

\d{3}\sg

\d{3}\w

\d{3}\w{2}

c*b

c?b

c+b

Any non-digit. The uppercase version of a control char-
acter negates the meaning. More examples are given
below.

Matches any single whitespace character. As ever in
XML, whitespace is any of the characters space, tab,
newline or carriage return. In the example, three digits
followed by a single space then the letter g will match

successfully.

Matches any single word character. A word character is
any letter or digit.

Matches all non-word characters. The example matches
any three digits followed by two non-word characters.

Matches any uppercase character. Lu is defined within
Unicode.

Any non-uppercase character.

Any Greek Letter

Any non-Greek Letter

Matches the preceding character zero or more times.
The example will match any of the following: b, cb,

cchb.

Matches the preceding character zero or one time. The
example matches b or cb.

Matches one or more times: cb, ccb and so on.

82 Chapter 4: Specifying XML Structures Using Schema

Table 4.2: XML Schema Regular Expressions

Expression Example Explanation

| c|b Separates optional items. This example matches either
borec.

[] [a,b,c,d] Creates a character set. Any of the characters in the set
may match.

[-1 (a-q] Ranges can be used in creating character sets. The ex-

ample includes all letters from a to q.

“ ["a-ql Negates the meaning of the expression. In the exam-
ple, everything except the characters a through q will
match.

Matches any character.

{,} \d{2,4} The comma is used to create a range. In the example the
pattern will match at least two and at most four digits.

Approximately 100 languages can be specified in statements of the type \p{ IsGreek }.
The language name replaces Greek after Is in the example. Available languages include
such diverse character sets as basic Latin, Thai, Cherokee and Byzantine musical symbols.

4.5 COMPOSITORS

Building complex types from elements and attributes is done through composition. XML
Schema includes three different composition mechanisms: sequence, all and choice.
The three can be mixed in any combination to build different types of structure. In addi-
tion, the attributes minOccurs and maxOccurs can be applied to all of them.

451 Sequence

The sequence compositor is used to build ordered sequences of elements and attributes.
Each element in the sequence can include further subelements.

Section 4.5: Compositors 83

<?xml version="1.0"?>
«<x8d:schema xmlns:xs8d="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="name">
<x8d:complexType>
<x8d: sequence>
<x8d:element name="title" type="xsd:string" maxOccurs
=n1"/>
<xsd:element name="firstname" type="xsd:string" />
<xgd:element name="surname" type="xsd:string" />
</x8d:sequence>
</x8d:complexType>
</xsd:element>

</x8d:schema>

452 Al

When an unordered set of elements is needed, the all composition should be used. This
example creates a complex type to hold a name. The title, firstname and surname
elements can appear in any order in the type. Since much data is inherently unordered,
or has an implicit order which can be ignored, the all compositor has many uses.

<?xml version="1.0"?>

<x8d:schema xmlng:xsd="http://www.w3.0rg/2001/XMLSchema" >

<xs8d:element name="name">
<x8d:complexType>
<xsd:all>
<xsd:element name="title" type="xsd:string" maxOccurs
="iv/>
<x8d:element name="firstname" type="xad:string" />
<xs8d:element name="surname" type="xsd:string" />
</xgd:all>
</xsd:complexType>
</xsd:element>
</%8d:schema>

84 Chapter 4: Specifying XML Structures Using Schema

4.5.3 Choice

The choice compositor creates a set of optional elements. Only one of the options may
be present in the XML document. In the following example, the name may contain either
a firstname or a surname.

<?xml version="1.0"?>
<x8d:schema xmlng:xsd="http://www.w3.0rg/2001/XMLSchema">

<x8d:element name="name" >
<xs8d:complexType>
<x8d:choice>
<x8d:element name="firstname" type="xs8d:string" />
<x8d:element name="surname" type="xsd:string" />
</x8d:choice>
</x8d:complexType>
</x8d:element>
</x8d:schema>

4.5.4 Restriction

The creation of user-defined simple types is done using restriction of base types. The base
types have certain inherent properties; for instance, an integer holds a particular range of
values. If you need a special data type which holds only whole numbers in the range 7 to
3,000, you can create this by restricting the base integer type:

<x8d:simpleType name="myNumber">
<xs8d:restriction base="xsd:integer">
<x8d:minInclusive value="7" />
<xsd:maxInclusive value="3000" />
</xsd:restriction>
</x8d:simpleType>

To create a new string type, for instance for a catalog number, matching a pattern such
as: the string “PC”, 3 integers, a hyphen then at least 3 and at most 5 letters:

<x8d:simpleType name="partCode">
<x8d:restriction base="xs8d:string">
<xs8d:sequence>
<x8d:enumeration value="PC" />
<xsd:pattern value="\d{3}" />

Section 4.5: Compositors 85

<x8d:enumeration value="-" />
<xs8d:pattern value="[a-zA-Z]{3,5}" />
</x8d:sequence>
</x8d:restriction>
</x8d:simpleType>

That might also be expressed as a simple pattern:

<x8d:simpleType name="partCode">
<xsd:restriction base="xsd:string">
<xgd:pattern value="pPC\d{3}-[a-2zA-Z]{3,5}" />
</xsd:restriction>
«</%xs8d:gimpleType>

The restriction of each data type happens through facets. Each data type can be altered
in different ways. It makes sense to set a minimum length for a character string, whereas
doing the same for a byte has no meaning. While most facets are pretty self-explanatory,
a short description of each might be useful.

length
This facet determines the length of the data type. For data types based on string, this
is the number of characters they contain. For binary data such as base64Binary, it
is the number of octets. If the fixed attribute of the facet is set to true, data types
derived from this type cannot specify another value for their length. The example
creates a partCode which contains a maximum of 10 characters:

<x8d:s8impleType name="partCode'">
<xsd:restriction base="xsd:string">
<x8d:length value="10" fixed="true"/>
</x8d:restriction>
</x8d:simpleType>

minLength
Like the 1ength facet, but sets the minimum length of the data type. Where both
minLength and maxLength are specified, minLength must be less than or equal
to maxLength.

maxLength
Like the 1ength facet, but sets the maximum length of the data type.

pattern
Specifies a regular expression which the element content must match. The XML
Schema regular expression language is described in Table 4.2.

86 Chapter 4: Specifying XML Structures Using Schema

enumeration
An enumeration facet contains a set of values. Elements using an enumerated
data type may only contain values which are present in the enumeration. The set
of values specified in this way is not ordered. The example shows a user-defined
data type which can take any one of three different values:

<x8d:simpleType name="partCode">
<xs8d:restriction base="xsd:string">
<x8d:enumeration value="10" />
<xs8d:enumeration value="20" />
<x8d:enumeration value="Part Code" />
</x8d:restriction>
</x8d:simpleType>

whiteSpace
The whiteSpace facet controls how the processor should treat whitespace charac-
ters in the XML document. Three values are allowed.®

preserve
Normalization is not performed. The whitespace characters found in the doc-
ument are preserved. This is compulsory for XML element content.

replace
The characters tab, #x9, newline, #xa, and carriage return, #xD, are replaced
with space, #x20.

collapse
Sequences of more than a single space, #x20, are replaced with a single space
character.

This example is taken from Part Two of the XML Schema Recommendation, which
is why I haven’t added the xsd prefix:

<simpleType name='token’>
<restriction base='normalizedString’>
<whiteSpace value='collapse’/>
</restriction>
</simpleType>

8 Although you can only use one in creating a particular data type.

Section 4.5: Compositors 87

maxInclusive
Sets an upper bound for values using the data type. The value given as an attribute
is included in the set. In this example a new data type is created which restricts an
order to 765 items or fewer:

<x8d:simpleType name="orderSize>
<xsd:restriction base="xsd:integer>
<xgd:maxInclusive value='765' />
</xed:restriction>
</%x8d:gimpleType>

minInclusive
Sets a lower bound for values using the data type. The value given as an attribute is
included in the set.

maxExclusive
Sets an upper bound for values using the data type. The value given as an attribute
is not included in the set.

minExclusive
Sets a lower bound for values using the data type. The value given as an attribute is
not included in the set.

totalDigits
For data types derived from the decimal base type, this facet determines how many
digits the data type may have. If the fixed attribute is set to true, data types
derived from this may not change the value set by the facet.

fractionDigits
Sets the number of digits appearing in the fractional part of a data type derived from
the decimal base type. This example creates a decimal number containing up to 6
digits, one of which is the fractional part:

<x8d:simpleType name="partLength">
<xs8d:restriction base="xsd:decimal">
<x8d:totalDigits value="6" />
<xsd:fractionDigits value="1" />
</xs8d:restriction>
</x8d:simpleType>

Possible values for this data type might include 23.4, 56781.9 or 0.0.

88 Chapter 4: Specifying XML Structures Using Schema

4.5.5 List

Alongside basic data types, XML Schema has a construct to define lists of values. Data in
a basic type cannot be divided. The words in a character string will always be treated as a
single entity. Lists are made from sequences of basic data types. The individual elements
in the list have meaning on their own and can be separated out. An NMTOKEN is an atomic
unit which cannot be split apart; NMTOKENS, on the other hand, is a built-in list which can
be split apart into individual NMTOKEN items.

XML Schema has three of these built-in list types: NMTOKENS, IDREFS and ENTITIES.
It also provides a mechanism through which user-defined list types can be created. User-
defined lists contain elements which are derived from the basic types but not from existing
lists or complex types. A number of different facets make sense when applied to lists.
Specifically these are 1ength, minLength, maxLength and enumeration.

<?xml version="1.0"?>
<x8d:schema xmlns:xsd="http://www.w3.0org/2001/XMLSchema">

<x8d:simpleType name="recipeListItem">
<x8d:list itemType="xsd:string />
</x8d:simpleType>

<x8d:s8impleType name="recipeList">
<xs8d:restriction base="recipelListItem>
<x8d:minLength value="2" />
«<xsd :maxLength value="8" />
</x8d:restriction>
</xs8d:simpleType>

</x8d:schema>

The preceding piece of code creates a list of ingredients for a recipe. The list contains
between 2 and 8 items. The items themselves are derived from the string base type.
Notice that the xsd:1ist element is used to create a data type which will hold the el-
ements of the list. When creating a list based on the string type, whitespace becomes
a consideration. The items in the list will be separated by whitespace, which means that
none of them can contain space. Here’s a legal three-item list and one that would fail.

Valid: Flour Salt Butter

Invalid: Flour Salt Olive 0il

Section 4.5: Compositors 89

45.6 Union

If you don’t have much experience of the ways in which programmers sometimes see the
world, a union will seem like a strange data type. The union lets an element or attribute
hold data derived from more than one type. Actually, it has that potential, but only one
data type will be used in a particular element or attribute. Here’s how it works. The union
contains a list of data types. Each of those types is appropriate for particular elements, al-
though different types will be used in different situations. When an element, or attribute,
is instantiated, it will contain data which conforms to just one of the types in the union.

You might wonder why anyone would bother with this complexity. Consider a situa-
tion in which a piece of data might be represented by a string of characters or a code. An
identifier for a product in a manufacturing application is a clear example of this. Some ap-
plications, or users, might refer to a 4mm left-handed widget tensioner, others might call the
same thing PC-4532-QW. Rather than have XML elements for product name and product
code, you might want to use a single element type to hold the product identifier.

<x8d:simpleType name="partCode">
«xgd:union>
<xgd:simpleType>
<xs8d:restriction base="xsd:string">
<xs8d:pattern value="pPC\d{3}-[a-zA-2}{3,5}" />
</xs8d:restriction>
</x8d:simpleType>
<xs8d:simpleType>
<xsd:element type="xsd:string" />
</x8d:simpleType>
</xs8d:union>
</x8d:simpleType>

The same thing could be represented more simply by using the memberTypes attribute
of the union element. This takes a space-separated list of data types as its value. Here I
declare a type to hold part codes and then use it as part of the union:

<xs8d:simpleType name="partCodeType">
<xs8d:restriction base="xsd:string">
<xsd:pattern value="PC\d{3}-[a-zA-2Z]{3,5}" />
«</x8d:restriction>
</xsd:simpleType>

<x8d:simpleType name="partCode">
<xs8d:union memberTypes="partCodeType xg8d:string" />

90 Chapter 4: Specifying XML Structures Using Schema
</x8d:simpleType>

4.5.7 Group

It’s possible in XML Schema to define groups of attributes or elements which can be
treated as a single item. For example, a group of attributes may be created so that they
can be used in any number of elements without having to repeat lots of code. Similarly,
a group of elements may be used to create a number of different complex types. I don’t
want to dwell on the idea, so here’s some code that shows it in action:

<xsd:attributeGroup name="userAttributes">
<x8d:attribute name="username" type="xsd:string" />
<xsd:attribute name="gender" type="xsd:string" default="female
"/
<x8d:attribute name="age" type="xsd:integer" />
</xsd:attributeGroup>

<xsd:group name="room">
<xsd:sequence>
<xs8d:element name="floor" type="string" />
<x8d:element name="roomNumber" type="string" />
<x8d:element name="area" type="decimal" />
</x8d: sequence>
</x8d:group>

<xs8d:complexType name='"user">
<xs8d: sequence>
<xsd:group ref="room" />
</x8d:sequence>
<xsd:attributeGroup ref="userAttributes" />
</x8d:complexType>

4.6 EXAMPLE SCHEMA

Since an XML Schema is potentially far richer than a DTD for any given application, it is
also likely to be both longer and more complex. Even the relatively simple examples that
I have shown throughout this chapter contain almost as much code as the complete DTDs
shown in Chapter 3. The complete XML Schemas for the Recipe Book and Business Letter

Section 4.6: Example Schema a1

are an order of magnitude larger.’ If both were included at this point, with explanatory
text, the book would become almost unreadable. Rather than include ten pages of code
and another five of explanation, I've included just the schema for the Business Letter. The
Recipe Book is provided in Appendix D, although without explanation. Since that schema
is relatively simple, you ought to be able to figure out why it has the structure it does just
from the code. Before you go off and try to do that, read through the rest of this chapter.
Seeing a full schema explained will give you a good start in reading others.

4.6.1 The Business Letter Schema

The complete XML Schema for the Business Letter is available, as a single piece of code, in
Appendix C. Since it is so long,!? I've split it into logical sections for this explanation. It's
important to realize, at this stage, that schemas are not a drop-in replacement for DTDs.
When converting a DTD into a schema, which is what I did here, some changes may
need to be made to the structure of the original document. Clearly, if existing documents
use the DTD, you may need to run the two definitions side-by-side for some time. With
large XML structures some inconsistencies are inevitable. Taking the time and effort to
minimize them will prove beneficial in the long run.

The schema starts with the XML processing instruction and a namespace definition. As
I've done throughout this chapter, I'm going to use the prefix xsd for the namespace here.
It is associated with the standard namespace for schemas. Remember, though, that there
isn’t an actual document at the end of this URI. There is a set of Recommendation docu-
ments which define XML Schema but the processing application won't be going away to
tind one.
<?xml version="1.0"?>
<x8d:schema xmlns:xs8d="http://www.w3.0rg/2001/XMLSchema">

At the top of the schema, I define the document itself:

<!-- Define the actual document -->
<x8d:complexType name="letter">
<x8d:sequence>
<xs8d:element ref="header" />
<x8d:element ref="content" />
«/x8d: sequence>
<xs8d:attribute name="title" type="xad:string" />
</x8d:complexType>

9K you’H allow me a little poetic license.
W1p’s actually over 120 lines of code.

92 Chapter 4: Specifying XML Structures Using Schema

The whole document forms a single complex type called letter. This contains a se-
quence of elements and can take a single attribute. The sequence must be defined before
the attribute because attributes are always the last thing in a type definition. However,
since the attribute is simple, let’s get it out of the way now. The letter can be given a
title using the attribute of that name. The title, itself, is a character string of indeterminate
length. Although titles are likely to be relatively short, no restriction is imposed on the
string type, since doing so might cause occasional problems for users.

The letter element contains two subelements: header and content. I could have
defined these as types and created elements using those types. Since this application uses
that technique everywhere else, I've used an alternative approach. I define two elements
called content and header and access them using the ref attribute.

<!-- Define elements which are referred to --»>
<x8d:element name="content">
<xsd:complexType mixed="true" >
<xsd: sequence>
<x8d:element name="emphasis" type="xsd:string" />
</x8d:sequence>
</x8d:complexType>
</x8d:element>

<xs8d:element name="header">
<xs8d:complexType>
<xs8d:sequence>
<xs8d:element ref="metadata" />
<x8d:element name="sender" type="personType" />
<x8d:element name="recipient" type="personType" />
<xsd:element name="date" type="dateType" />
<xs8d:element name="signature" type="signatureType" />
</x8d:sequence>
</x8d:complexType>
</x8d:element>

The header and content elements can be considered the top level of the document.
The letter element is the root below which all of the content occurs. Each of these top-
level elements defines a logical section of the letter. The content element can hold mixed
content. Mixed content can be either data, in DTD terms this would be PCDATA, or more
elements. In this case, words or phrases in the body of the letter can be stressed using
the emphasis element. Mixed content presents a topological problem if you view XML
documents strictly as trees. An emphasized word isn’t a subelement of the paragraph that

Section 4.6: Example Schema 93

contains it. It's part of that paragraph but a tree structure doesn’t really let you concep-
tualize it in that way. The leaf at the end of a branch of elements will be data, but mixed
content lets the final element have more than one leaf, and lets those leaves be of different
types.

The header is far more straightforward. It contains a sequence of five elements. One,
metadata, is a reference to an existing element. The others are elements that instantiate
complex types. The important thing here is that you can mix references and elements
inside the same structure. The decision on which to use often depends upon your own
preferences. If you are going to modify the definition of an element in defining others,
then it needs to be a type. If you always use the element as is, then it can be defined either
as a type or as a reference.

<x8d:element name="metadata">
<x8d:complexType>
<x8d: sequence>
<x8d:element name="keyword" type="xsd:string" />
</x8d: sequence>
<xgd:attribute name="value" type="xsd:string" />
</x8d:complexType>
</x8d:element>

Although metadata is included through a reference, it's an ordinary element. Since
it includes subelements and attributes a complex type is used. When defining a complex
type as a type, the subelements are placed inside a complexType element. You'll see this
in a moment. The metadata element contains complex data, but is not, itself, a new type.
Despite metadata having just a single subelement, keyword, it still needs to contain a
sequence. Subelements are always placed inside a container, which may be sequence,
all or one of the others. This might seem like unnecessary verbiage since the structure is
usually obvious to a reader. XML Schema documents are usually going to be processed
mechanically, and machines need every little detail spelt out.

Once the major sections have been defined, it’s time to define the types that they use.
This sounds like top-down design. Those of us who teach Computer Science and related
disciplines tell our students to try to work like this. Get the structure, the big picture, be-
fore starting to fill in the detail. Did I design this schema like that? No way. I defined parts
of it from the top, working down, and other parts from the basement working upwards.
Academic theories are very nice, and often make life easier, but sometimes you just have
to be pragmatic. I mention this because this document has a neat top-down structure
which yours might not. Don’t worry if you're creating a mix of references, simple types
and complex types as you go along. Once the schema is completed and validated, you

94 Chapter 4: Specifying XML Structures Using Schema

can put the pieces together more tidily. You'll want the finished thing to be neat and tidy,
especially if you're the one who's going to have to maintain it.

<!-- define complex types -->
<x8d:complexType name="dateType">
<x8d:sequence>
<x8d:element name="dayname" type="daynameType" />
<x8d:element name="day" type="xsd:gDay" />
<x8d:element name="month" type="xsd:gMonth" />
<xs8d:element name="year" type="xsd:gYear" />
</xs8d:sequence>
</x8d:complexType>

The dateType has four subelements. The first of these, dayname, takes a user-defined
type. The others are all built-in types based on the Gregorian calendar. This schema
was developed after the XML document and its original DTD. This structure which splits
the date into pieces was already established before the schema. If I had started afresh
with XML Schema, I would have used the built-in date type“ for the whole thing. That
wouldn’t have included the name of the day, but letters still make sense without that
particular piece of data.

<x8d:complexType name="personType">
<xs8d:sequence>
<xs8d:element name="name" type="fullNameType"
minOccurs="1" maxOccurs="1"/>
<x8d:element name="address" type="addressType"
maxOccurs="1" />
</x8d:sequence>
</x8d:complexType>

<x8d:complexType name="fullNameType">
<xs8d:sequence>

<xs8d:element name="title" type="titleType"
minOccurs="1" maxOccurs="1"/>

<x8d:element name="firstname" type="nameType"
minOccurs="0" maxOccurs="unbounded" />

<x8d:element name="surname" type="nameType"
maxOccurs="1" />

'See Table 4.1.

Section 4.6: Example Schema 95

</x8d:sequence>
</x8d:complexType>

Next up, the elements that hold data about either the sender or the recipient are de-
fined. Both are, of course, people. We need the same data for each of them, basically
name and address, so we can use the same structures. The personType contains a name
element and an address element. The name element can only appear once. This is deter-
mined by setting both the minOccurs and maxOccurs attributes. In this schema a person
has, at most, one address. By leaving minOccurs unset, the user doesn’t have to provide
data for the address. Similar constraints cover the structure of the ful 1NameType.

<x8d:complexType name="addressType'>
<xs8d:sequence>
<x8d:element name="linel" type="addressLineType" maxOccurs

=nmn / >

<x8d:element name="1line2" type="addressLineType" maxOccurs
=nn / >

<x8d:element name="line3" type="addressLineType" maxOccurs
=tn / >

<xs8d:element name="city" type="addressLineType" maxOccurs
=t / >

<xs8d:choice>
<x8d:element name="county" type="addressLineType"
maxOccursg="1" />
<x8d:element name="state" type="addressLineType"
maxOccurg="1" />
</x8d:choice>
<xsd:element name="code" type="xs8d:string" minOccursg="1"
maxOccurs="1"/>
<xs8d:element name="country" type="countryType" maxOccurs
="l />
</x8d:sequence>
</%8d:complexType>

The address is more complex than anything seen so far. Since addresses differ in format
and content between countries, providing a truly internationalized address structure is
extremely hard. Probably the best way to do it is to create a type to define addresses
for each country that you need. A single global address type could be created through a
union of all the localized versions.

I've not done anything so grand. I've created an amalgamated addressType which
is basically UK format with one change to show more aspects of XML Schemas. The UK

96 Chapter 4: Specifying XML Structures Using Schema

is divided into counties!? for either administrative purposes or historical reasons. Other
nations are divided into states, regions or provinces. In giving an address, the region is
usually included. So that I can select the appropriate regional type, a choice element is
created. This contains elements that define all of the regional variants that I'm interested
in. XML instance documents can use any of the subelements that are placed here. Using a
choice even means that different data types can be used at the same place in a document if
necessary. Perhaps paradoxically, instance documents will be simpler because the schema
is more complex.

The signatureType contains another choice. This time the instance document may
contain either the full name or just the first name of the sender:

<x8d:complexType name="signatureType">
<xs8d: sequence>
<xgd:element name="greeting" type="greetingType" maxOccurs
="1"/>
<xs8d:choice>
<xsd:element name="firstname" type="nameType" />
<x8d:element name="name" type="fullNnameType" />
</xs8d:choice>
</x8d:sequence>
</x8d:complexType>

<x8d:complexType name="greetingType">
<x8d: sequence>
<xs8d:element name="greeting” type="xsd:string" />
</x8d:sequence>
<xs8d:attribute name="type">
<xs8d:simpleType>
<xsd:restriction base="xsd:NMTOKEN">
<xs8d:enumeration value="formal" />
<xs8d:enumeration value="informal" />
<x8d:enumeration value="other" />
</x8d:restriction>
</x8d:simpleType>
</xsd:attribute>
</x8d:complexType>

12 And countries but I'm trying not to over-complicate these structures.

Section 4.6: Example Schema 97

The greetingType which defines the salutation at the end of the letter is another
interesting structure. The actual salutation varies between letters. In the UK it might
be Yours Sincerely or Yours Faithfully for formal letters, or something more personal. The
greeting could be included in every letter but that leads to a lot of redundant information
being stored on the system. I've chosen to create an attribute which defines which type
of salutation to use but leaves creating it to the processing application. The different
salutations are selected using a token which is a restriction of the built-in NMTOKEN type.
Possible values for the attribute are given in an enumeration.

<!-- define simple types -->
<x8d:simpleType name="nameType">
<x8d:restriction base="x8d:string">
«x8d:maxLength value="32" />
</x8d:restriction>
</xs8d:simpleType>

<x8d:simpleType name="daynameType" >
<xs8d:restriction base="xsd:string">
<xgd:maxLength value="9" />
</xs8d:restriction>
</x8d:simpleType>

<xs8d:simpleType name="titleType">
<x8d:restriction base="xsd:string">
<xsd:max1.ength value="4" />
</%8d:restriction>
</%8d:simpleType>

<xs8d:simpleType name="addressLineType">
<xs8d:restriction base="xsd:string">
<xs8d:maxLength value="48" />
</x8d:restriction>
</x8d:simpleType>

Most of the complex types and elements described so far contain user-defined data
types. These simple types are mostly self-explanatory. The countryCodes type is worth
highlighting since, like the greetingType, it uses an enumeration to restrict the values
it can contain. In greetingType, the enumeration was applied to an attribute. For
countryCodes, it is applied to an element.

<x8d:simpleType name="countryCodes">

98 Chapter 4: Specifying XML Structures Using Schema

<xs8d:restriction base="xsd:NMTOKEN">
<xs8d:enumeration value="FR" />
<x8d:enumeration value="UK" />
<x8d:enumeration value="USA" />
<x8d:enumeration value="OTHER" />
</x8d:restriction>
</xs8d:simpleType>

<xsd:simpleType name="countryType'>
<x8d:union memberTypes="x8d:string countryCodes" />
</xe8d:simpleType>

The actual country used in the address may be either the name of the country or one
of the codes defined in countryCodes. Since both these are data types, one built-in and
one user-defined, I'm using a union to select between them. The union element takes a
space-separated list of data types as the value of its memberTypes attribute. Any type in
the list is valid content for the element.

Finally, even XML Schema documents need to be ended properly:

</x8d:schema>

Note:

That's all there is to defining a non-trivial document using XML Schema. Many
examples that you'll find, either in other books or on the Web, are really rather
simple. They won't use the full range of possibilities that XML Schema provides.
They also tend not to mix structures in the way that | have. Remember, this is a
flexible technology which you can use in your own way. That's part of its beauty.

Exercises

1. Describe three advantages and three disadvantages which XML Schema have when
compared to DTDs.

2. What are namespaces, and why are they needed for complex XML structures?

3. If you created the name and address document at the end of Chapter 2, write an
XML Schema for the document.

Section 4.6: Example Schema 99

. Write a Schema for the name and address structure which you created at the end
of Chapter 2. If you are unable to make your schema match the structure of your
document, modify the document so that it is simpler.

. Find software which can be used to validate documents against XML Schemas. Is
your document valid?i

. Research the structures used for addresses in the US, Japan and Brazil. Can you
modify your schema so that it supports all of those forms?

. If you modified the business letter, now modify the XML Schema so that it matches
your new structure.

This page intentionally left blank

Formatting XML
for Display and
Print

This page intentionally left blank

Chapter

Cascading hStyle
eets

XML is primarily used to define formats for data structures used within applications or
for the storage or transmission of data. Large XML files can look pretty fearsome. There
are very few applications in which a developer would want to let users anywhere near the
XML. This is a classic dilemma: the presentation of the data needs to be separated from its
storage and manipulation. Applications might see XML trees but, to a user, the same data
might be a document inside a word processor, an image or an email message. There’s
really nothing new here. Try opening a document created in a word processor such as
Microsoft Word 97 inside a plain text editor such as Notepad. You'll see lots of strange
characters which control the way the document looks inside Word, and somewhere deep
inside the file you'll see your words.

XML presents one additional complexity that’s not present with a word processor.
When Microsoft developed Word 97 they were able to define what the application would
do, and how it would do it. The data structure and presentation were developed side-by-
side and tightly coupled to each other. The same approach could be used in XML. Define
a data structure and write some code which presents that data inside your application.
This immediately negates one of the benefits we get from XML since the presentation of
the data now requires a particular piece of software.

104 Chapter 5: Cascading Style Sheets

What XML really needs is a platform-independent way of formatting data for presen-
tation. Since there are different types of presentation, the XML developer has a number
of technologies available. Firstly, there’s Cascading Style Sheets which can be used to
present XML structures in some Web browsers. Secondly, there is XSL, the Extensible
Stylesheet Language. This has two aspects of its own. The first is XSLT, XSL Transfor-
mations, which is used to transform one XML structure into another. Thus, for example,
a complex XML file can be converted into a set of XHTML pages for use on the Web.
Unfortunately, Web pages don’t print very well — especially in situations like book pub-
lishing where extremely high quality output’ is the norm. The second part of XSL has
been created to produce print quality output. XSL-FO, XSL Formatting Objects, defines
transformations which can be used to produce output in PDF, PostScript, Microsoft RTF
and even TgX formats. I'll cover XSLT and XSL-FO in subsequent chapters. For now, I'm
going to concentrate on the simplest of the three: CSS.

5.1 CSS AND HTML

Cascading Style Sheets is an HTML technology which has been found to be compatible
with XML. Although CSS became a W3C Recommendation in late 1996, it’s not used as
widely as it ought to be. Many Web authors prefer to embed formatting information
inside their HTML files using tags. Others don't realize that this is
happening, it's simply what the tools they use do. There’s no guarantee that tags
will be rendered the same in all browsers, and if a browser doesn’t understand them,
downloading the document was a waste of bandwidth. Stylesheets should work in the
same way in all browsers, and since they are separate documents, only browsers that can
actually use them will download them.

Older Web browsing software won’'t understand XML and may struggle with CSS even
when used in HTML pages. Fortunately, most people regularly update their browsers so
this isn’t a long-term problem. As we’ll see in Chapter 8, the use of XSLT on the Web is not
straightforward. As a medium-term method of presenting XML in Web browsers, CSS is
a good strategy to adopt. Before examining the use of CSS with XML data, let’s examine
how it works with HTML.

The extremely high quality output required for books has a resolution of several thousand dots per inch. compared to the
several hundred dots per inch a good laser printer produces.

Section 5.1: CSS and HTML 105

5.1.1 Using Styles: Simple Examples

Unfortunately, you can’t really learn about stylesheets in a gradual or incremental fashion.
You need to use a resource such as the list of tags in this book and then dive straight in.
The following examples are just about as simple as the use of styles can get.

5.1.1.1 Changingh1 In this first example the <h1> tag is redefined. The text is colored
in red, centered on the screen and has a thin border placed around it. Figure 5.1 shows
the effect that this produces in the Konqueror browser.

Locatmn Ed|t Vlew Go Boukmarks Tuols
__s,etnngs ,w,mdow l,:ielp :

Simple Stylesheet |

___ Loading complete

Figure 5.1 Changing h1

<html>
<head>

<title>Simple Stylesheet</title>

<style>

<! -=

hi{

color: red;
border: thin groove;
text-align: center;

106 Chapter 5: Cascading Style Sheets

</style>
</head>
<body>
<hl>Simple Stylesheet<«/hl>
</body>
</html>

Notice that I'm declaring the style in the head of the document using the style tag.
I place the actual style definition inside an HTML comment so that it will be ignored by
browsers that don’t support styles. The declaration has the name of the element that is
being changed and then a definition which is placed inside braces. The attributes that
are being changed are placed in a list with each term separated by a semi-colon. I usually
place each attribute on a new line so that the definition is easier to read and maintain. Each
definition is made from the attribute and a list of values which are separated by a colon.
You might expect the values to be surrounded by double quotes in the same way that the
attributes of HTML tags are. Don’t do this: it isn’t needed and, actually, the browser won't
be able to handle the code if you include them. There are, as ever, exceptions to this. If
you use a hexadecimal value to declare a color or if you use a font name that includes
spaces then you can use either single quotes or quotation marks around it.

5.1.1.2 Changing More Styles This example goes slightly further by altering both h1
and a paragraph. The paragraph is moved slightly to the right by giving it a left margin,
has a colored background and a ridged border. The resulting Web page is shown in Figure
5.2.

<html>
<head>
<title>Simple Stylesheet</title>
<style>
<t--
hi{
color: red;
border: thin groove;
}
-=>
</style>
</head>
<body>

<hl1>Simple Stylesheet</hl>
<p>The first paragraph is left unaltered.</p>

Section 5.1: CSS and HTML 107

Simple Stylesheet

The first paragraph is left unaltered.

:B'I-.lt this paragraphﬁﬁr;dergues some faizliv e

alte rations

And we finish with an unaltered paragraph.

Figure 5.2 Declaring Styles Inline and in the Head

<p style="margin-left: 10%; border: ridge;
background: #ffffcc">
But this paragraph undergoes some fairly radical
alterations.</p>
<p>And we finish with an unaltered paragraph.</p>
</body>
</html>

The syntax of the style definition changes when it is done inside an HTML tag. The
definition becomes an attribute, named style, of the tag. The description of the style is
passed as the value of the attribute and so must follow an equals sign. The definition is
placed inside quotation marks but otherwise uses the same syntax that we saw a moment
ago.

Redefining elements as I've done with the paragraph in the example is unsatisfactory.
There is no separation between the processing of an element and the definition of that
element. Remember the markup should be logical; any physical changes, such as new
formats, should appear outside of that markup.

108 Chapter 5: Cascading Style Sheets

5.2 CSS AND XML

Writing cascading stylesheets and applying them to XML documents is not very different
to applying them to HTML documents. Just like HTML, the styles can go into the same
file as the document. Unlike HTML, where this is useful when styles need to be cascaded,
it doesn’t provide any benefits to the XML author. If you need to know how to mix styles
and XML, there are examples on the W3C Web site so I won't cover it here.

The following listing shows a simple XML document:

Listing 5.1 "Linking XML to Cascading Stylesheet”

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="simple.css"?>

<document >
<title>Simple Stylesheet</title>
</document >

The second line contains the link to the stylesheet file. The <?xml-stylesheet?>
processing instruction is used to include XSL stylesheets as well as the CSS variety. It has
a number of optional parameters, most of which work like those of the HTML <1ink>
tag, if you're familiar with that.

href="URI"
This is the URI of the stylesheet. The URI can contain a fragment identifier which
points to part of the UR]I, thus letting the same URI contain a number of stylesheets.
URISs used here can be either absolute or relative but must be accessible. If the pro-
cessor is unable to access the stylesheet, the XML document will be displayed as
plain text with the tags removed.

type="text/css"
The MIME type for cascading stylesheets must be supplied as a value to the type
attribute. The processor will not assume this as a default value and cannot be guar-
anteed to behave properly if you leave it out.

title="string"
A stylesheet can be given a title if you wish.

media="string"
Your XML document might be processed for many different targets. These can in-
clude Web browsers, audio devices, printers, televisions. Each will display the doc-
ument differently. Specifying the output media won’t guarantee sensible behavior
but it might help.

Section 5.2: CSS and XML 109

charset="atring"
If you use an extended character set in your XML document, you'll need to specify
it here. This should be the same as the encoding given in the <?xml ?> processing
instruction.

alternate="yes|no"
If you are providing alternate stylesheets with your document, this attribute should
be set to yes. It defaults to no. Alternate stylesheets are provided so that the docu-
ment can be processed differently by different applications. For example, if the XML
document contains:

<?xml-stylesheet type="text/css" href="gimple.css" title="
normal" alternate="yes"?>

<?xml-stylesheet type="text/css" href="larger.css" title="
large fonts" alternate="yes"?>

the processing application is able to choose the set of styles that are most appropriate
for a particular situation.

The cascading stylesheet associated with the XML file in Listing 5.1 is shown below:

title {
color:red;
border:thick groove;
font-size: 24pt;
text-align: right;
margin-top: 24pt;
margin-left: 24pt;

Different browsers will render this in different ways. I've tried a wide variety. Kon-
queror running on Linux wouldn’t render the document at all; Mozilla 1.0 and Opera 6
both ignored the top margin and failed to align the text to the right. Figure 5.3 shows
how Internet Explorer 5.5 displayed the document. The difficulty that browsers have is
that their page rendering engines are designed for HTML pages. An XML file lacks the
structure of head and body sections that HTML has. When rendering XML, there’s no
concept of screen width or height. Treat this as a warning. You might not get what you
expect. If the combination of XML and CSS doesn’t work for you, use XSLT to convert
your XML document into XHTML and supply a stylesheet to display that.

110 Chapter 5: Cascading Style Sheets

@ D:\smibookhcodehcss1.xml - Microsoft Intemet Explorer
- : i i 7 »

' =
Simple Stylesheet|

H
Z

€] Done MR

Figure 5.3 Formatting XML File Using Cascading Stylesheets

| |3 My Computer

5.3 DEFINING YOUR OWN STYLES

Styles are defined by simple rules. A style can contain as many rules as you want and, as
with processing HTML, if something doesn’t make sense it will be ignored.

5.3.1 Cascading Styles

Conventionally, styles are cascaded. This means that you do not have to use just a single
set of styles inside a document — you can import as many stylesheets as you like. This is
useful if you define a set of organizational styles that can be modified by each department.
The only difficulty with importing multiple stylesheets is that they cascade. This means
that the first is overridden by the second, the second by the third, and so on. Of course the
overriding only happens if a later stylesheet contains a definition of a style that is already
defined. You can also override styles by defining styles within the body of the page as I
showed in Section 5.1.1.

5.3.2 Rules

A style rule has two parts: a selector and a set of declarations. The selector is used to create
a link between the rule and the HTML tag. The declaration has two parts: a property and
a value. Selectors can be placed into classes so that a tag can be formatted in a variety of
ways. Declarations must be separated using colons and terminated using semicolons.

Section 5.3: Defining Your Own Styles 111

selector {property: value; property: value ...}
This form is used for all style declarations in stylesheets. The declaration has three
items: the property, a colon, and the value. If you miss the colon or fail to put the
semicolon between declarations, the style cannot be processed. Rules do not have to
be formatted as I've shown — as with HTML, you can lay the text out however you
like. The rule will be more readable if you put each declaration on its own line. This
is an example of a simple rule, followed by a more complex one:

body {
background-color: #eebd2;

hil {
color: #eeebd2;
background-color: #d8a29b;
font-family: "Book Antiqua", Times, serif;
border: thin groove #9baab2;

}

The detail of these style attributes will be discussed in Section 5.4.

5.3.3 Classes

The method shown above applies the same style to all examples of a given tag. That is
fine if you want every paragraph equally indented or every level-one heading in the same
font. If you only want to apply a style to some paragraphs, for instance, you have to use
classes:

selector.classname {property: value; property: value}

<gelector clags=classname>
These examples show how classes should be used. In the stylesheet itself the rule is
slightly modified by giving the style a unique name which is appended to the selec-
tor using a dot. In the HTML document, when you want to use a named style the
tag is extended by including class= and the unique name.

hil.fred {
color: #eeebd2;
background-color: #d8a29b;
font-family: "Book Antiqua", Times, serif;
border: thin groove #9baab2;

112 Chapter 5: Cascading Style Sheets

<hl class="fred">A Simple Heading</hl>

The benefit of classes is that they can provide a lot of variety. They are especially good
if you want to redefine the paragraph style so that your introductions look different from
your content.

5.3.3.1 Anonymous Classes Sometimes you want to apply a piece of formatting to
many different elements within a page but not necessarily to the entire page. You could
redefine every element in a stylesheet to make it use your formatting, and then redefine
individual elements back to their defaults as you needed to. This is a rather awkward
approach and would inevitably lead to a lot of duplication of effort. Cascading stylesheets
provides a way of defining styles within reusable classes. The following code and Figure
5.4 show how this works.

Q- 7 Anonymous Classes - Kongueror
Location Edit vlew Gu ﬂcnkmarks Tools
Settings jﬁlndow J;!elp :

Loading complete

Figure 5.4 Using Classes of Style

<html>
<head>
<title>Anonymous Classes</title>
<style>

<l--

Section 5.4: Properties and Values in Styles 113

.fred {
color: #eeebd2;
background-color: #d8a29b;
font-family: "Book Antiqua", Times, serif;
border: thin groove #9baab2;
1
-
</style>
</head>
<body>
<hl class="fred">A Simple Heading</hl>
<p class="fred">Applying the style fred to a
paragraph of text</p>
</body>
</html>

5.4 PROPERTIES AND VALUES IN STYLES

A number of properties of the text can be altered. These can be grouped together. I'll list
the properties in useful groups and give some of the options that you can alter. The best
way of discovering how styles work is to play around with some of these properties. Try
giving absurd values to elements and see what happens.

Rule of Thumb:

Don’t change too many options. You're trying to present information, not give a
lesson in typography and colors. Be careful, as ever, and make sure that your key
changes are available to your target audience. Don’t rely too heavily on styles yet
— within a year or two they may be everywhere but at the moment Web surfers
have to wait for the next revision of their browsers.

In the tollowing descriptions of the properties 1 won't give examples; there 1s a large
and fairly comprehensive example later in this section.

5.4.1 Formatting Elements

Styles cannot be haphazardly applied to elements, whether in XHTML or XML docu-
ments. If documents are going to be presented in a relatively uniform manner across pro-
cessing agents, some rules are required which define how elements are styled. Cascading
stylesheets use a box model to set out each element. Figure 5.5 shows this model.

114 Chapter 5: Cascading Style Sheets

Margin

Border
Padding

Content

Figure 5.5 The Box Model for CSS Elements

For block-level elements, the size of the margin, padding and border can be set us-
ing CSS elements which are detailed later. Although the color of the border can be set
and the padding uses the same background as the element content, the margin is always
transparent.

display: none|block|inline|list-item

Many XHTML elements are defined as block or inline in the XHTML Recommenda-
tion. Headings and paragraphs, <h1> and <p>, for example, are always blocks. An
element such as will be inline. When defining styles for XML elements, it’s
necessary to specify if the element is a block or an inline element so that the browser
can format it correctly. Figure 5.6 shows the effect of setting the display property
to block.

By default the width of a block is not set. When formatting XML, I've found that
different browsers take radically different approaches to wrapping text. Mozilla
appears to not wrap text, while other browsers wrap it at the width of the browser
on screen. If the width property of the block is set, the text will be wrapped in all
browsers.

5.4.2 Fonts

font-family: <family name> [<generic family>]
Fonts are identified by giving the name of a specific font. Many Microsoft Windows

Section 5.4: Properties and Values in Styles 115

and Apple systems have similar sets of TrueType fonts. Unfortunately, Unix sys-
tems use Type 1 and PostScript fonts. Therefore it is unlikely that a reader on one
of those computers will have access to the fonts from your PC. The TrueType fonts
look better than Type 1 fonts and the user-base of Web surfers with access to true
type is far greater.

You should try to use TrueType fonts in your Web pages but provide an option for
users who don’t have these fonts. This can be done in two ways. First, you may spec-
ify as many fonts as you like for each style in the hope that most people will have at
least one of them. Second, you can specify a default generic font which all browsers
on all systems can handle. Five generic fonts are specified: serif (times), sans-serif (ar-
ial), cursive, fantasy, monospaced (courier). Font names that include whitespace should
be placed in quotes. Generally a list of fonts is provided, and the browser will try to
use each in turn until it finds one that it recognizes:

p {
font-family: "Bookman Old Style",

"Times New Roman", Times, serif;

font-style: normal|italic|oblique
Fairly straightforward. Oblique fonts are slanted, italic do not have to be.

font-weight: normal|bold|bolder|lighter|100|200|

300|400|500|600|700|800]900
The weight of any font can be altered. The first four options are relative while the

numbered values give absolute weights. Not all fonts support all possible weights
and you may want to be careful using absolute weights. The line break here is sim-
ply so that the code fits onto the page.

font-size: [small|medium|large] |[smaller|larger] |

<length> | <percentage>
As well as changing the weight you can alter the size. Again, a choice of relative

sizes is possible. Font lengths should be given in appropriate units such as pt. A
discussion of units is given in Section 5.4.6. Absolute sizes include small, large, and
so on, while relative sizes are larger or smaller.

font-variant: normal|small-caps
Some fonts are available in small capitals. When the variant is set to small-caps,
capital letters appear as normal. Where lower-case letters would normally appear,
capital letters are substituted at the same height as a lower-case vowel.

116 Chapter 5: Cascading Style Sheets

5.4.3 Backgrounds and Colors

color: <value>
background-color: <value>|transparent

background-image: URL|none
The color of any attribute can be changed. Values should be given as hexadecimal

values. Backgrounds for the whole page or individual elements can have their
color set from the stylesheet. Elements can also have transparent backgrounds.
Instead of a color an image can be used, identified by its URL. If you set the
background-color you should set the background- image to none.

background-repeat: repeat|repeat-y|repeat-x|no-repeat
When background- image is being used, the image may be tiled across the screen.
The repetition is controlled by background-repeat. When set to repeat the
image is tiled both horizontally and vertically. When set to repeat -x it is only
tiled horizontally and when set to repeat -y only vertical tiling is used. Using
no-repeat switches tiling off.

background-position: [percentage|length]{1,2}|

[top|center|bottom] | [left |center|right]

When a background-image has been specified, its initial position on the screen
can be set. The position of the top-left corner of the image is specified relative to the
top-left corner of the screen, with a default value of 0%, 0%. If the value 100%,100%
is given, the bottom-right corner of the image is placed at the bottom-right corner
of the screen. A value such as 25%, 33% will place the pixel at location 25%, 33%
across the image at the same relative location on the screen. Similar considerations
apply to absolute length. When only a single value is given, it applies only to the
horizontal positioning of the image. Finally, individual keywords or pairs of words
can be given. When a pair of words is used, one is taken from each set shown in the
definition, for instance top left is OK,but left right is not.

5.4.4 Text

text-decoration: none|underline|overline|line-through
Any piece of text can be decorated.

text-transform: none|capitalize|uppercase|lowercase
Allows you to set the case of text. This can be useful if you can’t be sure that text will
be entered appropriately. For instance if you are listing countries by their initials,
create a capitalized style.

Section 5.4: Properties and Values in Styles 117

text-align: left|right|center|justify
One of the most useful text styles. Allows you to fully justify text in paragraphs,
which many people like. By default HTML uses ragged right margins.

text-indent: length|percentage
Beforestylesheets were devised text could not be indented on the left side. Many
people like their text indented, as this paragraph is, and would use small transpar-
ent GIFs to achieve it. Using the style is much better, as it downloads along with the
text and it is flexible. Use a percentage and the amount of space will scale nicely if
the browser window is resized.

word-spacing: normal|<length>
Specifies a distance to be added to the spacing between words. The 1ength may be
negative.

letter-spacing: normal|<length>
Specifies a distance to be added to the spacing between letters within words.

vertical-align: baseline|sub|super|top|text-top]

middle|bottom|text-bottom|<percentage>
Moves the element relative to its parent. The element may be aligned against the

whole of the parent element or against the current line depending upon the value
chosen. It's worth experimenting with this property — especially if you want to for-
mat mathematical expressions and don’t want to investigate MathML.

line-height: normal|<number>|<length>|<percentage>
Changes the distance between the bottom, or baseline, of adjacent lines.

5.4.5 Boxes

Many items can be encased in boxes. This can give some very good effects although care
needs to be taken. If the boxes become overwhelming or are used too much they can start
to look rather odd.

margin: length|percentage|auto {1,4}
border-width: thin|thick|medium|length {1,4}

padding: length|percentage {1,4}
Any of the margins of a box can be changed. This time it may often be better to

specify an absolute length — if you use a percentage the margins may become overly
crowded when the window is resized. You can specify 1, 2, or 4 margin values. If
you specify 4 they are applied in the order: top, right, bottom, and left. Specify just
one value and it is applied to all four margins. Specify two values and the first will
be applied to top and bottom, the second to left and right margins. As with margins,

118 Chapter 5: Cascading Style Sheets

you can specify the amount of whitespace within an element. Padding and border
width are applied in the same way as margins.

Individual values can be applied using attribute names built from Table 5.1. To build
a name, concatenate the property name in the left column with one of the names in
subsequent columns. Separate the names using hyphens, for instance, margin-top
or border-top-width.

Table 5.1 Margin, Padding and Border Names

margin top bottom right left
padding top bottom right left
border top-width bottom-width left-width right-width
border top bottom right left

border-color: value {1,4}
border-style: none|dotted|dashed|solid|double)groove]

ridge {1,4}
This sets the color of the border around the element. Up to four different colors can

be specified. They are applied to the borders in the same order as margins. Each
edge of the border can have a different style.

width: length|percentage|auto

height: 1length|auto
Anyblock-level element can be given a specific width or height. As with so many

items, it is better to specify the width as percentages to allow for resizing of the
browser window. The height must be specified as an absolute size.

float: none|left|right
Moves the element within the page. The value none leaves its position unaltered,
left moves it to the left and right moves it to the right. Floating elements are
treated as block-level elements even if they are not specified as such.

clear: none:left:right:both
Specifies on which side, if any, the element allows floating. When set to left, for
example, the element will be moved below any floating elements which are placed
to its left.

5.4.6 Units, URLs and Colors

These can be either absolute or relative. A relative length can be either positive or nega-
tive, which is indicated by preceding the value with an optional + or —.

Section 5.5: A Stylesheet For The Business Letter 119

Relative units that can be used are:

e em: the height of the font for this element

o ex: the height of the letter “x” in the current font
s px: pixels
Allowable absolute units are:

e in: size in inches

e cm: size in centimeters

e mm: size in millimeters

e pt: points where 1 pt equals 1/72 inch

e pc: picas where 1 pc =12 pt

URLs can be used in stylesheets just as they can in HTML documents. The format of
the URL reference is:

url (location)

URLs can optionally be quoted and may be either absolute or relative. If a URL is
partial it is considered to be relative to the location of the stylesheet source, not the HTML
document source.

Colors are specified using either the name of the color or a numerical value in RGB
form. RGB, of course, specifies a value for the amounts of red, green and blue in the
desired color. RGB values can be given using either decimal or hexadecimal notation, or
as percentages. Here are some examples:

#ff00Fff, rgb(234,45,01), rgb(45%, 0%, 55%)

5.5 A STYLESHEET FOR THE BUSINESS LETTER

Cascading stylesheets can easily be used to format XML for presentation within a Web
browser. At the time of writing this chapter, it’s not really a match made in heaven. The
current generation of Web browsers have great trouble making an XML file look anything
other than ugly. Although CSS helps, it’s not a long-term solution. The more sensible
approach is to convert the XML into XHTML using XSLT and to style the XHTML using
(SS.? There are going to be times when presenting small quantities of XML direct to a

2I'm really sorry about all of those acronyms, but the real names would have turned the sentence into a paragraph.

120 Chapter 5: Cascading Style Sheets

Web browser is a good idea. In this section I'm going to present a rudimentary stylesheet
for the Business Letter and show you what Opera 6 makes of it.

@?@ D'=k:’:.?)g[;é;"fr'éd!xmlbuok.-’codefletter.xml #|Go

Mr. William James SMIgging

BILL SMIcoINs INCoRPORATED UNIT 5 Tax HAVENS
INDUSTRIAL PaRK ENTERPRISE CITY CaALIFORNIA CO 11223
Bill Gates

MIcroSOFT INC. SEATTLE UNITED STATES

Thursday 27 December 2001 Bill =

Here at Bill Smiggins Inc. we're really proud of our| |
ten-year reputation for the development of quality |
products. We're sorry to hear that you were

unhappy with the Combined Trouser Press and
Waffle Maker that you recently purchased from [
us. I can only state that it was in full working order -

when we shipped, and the presence of fluff in your
breakfast waffles was as much of a shock to us

as we're sure it was to you.

Figure 5.6 Business Letter Styled With CSS

I'm just going to style the name, address and para elements. Interestingly, styling an
element such as name, which acts as a container, has the effect of applying the style to all of
its subelements. Figure 5.6 demonstrates the result. Overriding the style inherited from
the containing element is easy. Simply define a new style for each individual element
you want to vary. Notice in the following code that the surname element inherits the
properties of the name element. Some of these are then modified.

Listing 5.2 Stylesheet for the Business Letter

name {
font-family: Times New Roman;
font-size: 12pt;
font-style: italic;
color: blue;

Section 5.5: A Stylesheet For The Business Letter 121

surname {
font-style: bold;
font-size: 16pt;
display: inline;

address {
font-family: fixed;
font-size:12pt;
font-variant: small-caps;
color: green;
display: block;
width: 10cm;

para {
font-family: times new roman;
font-size: 1l4pt;
margin-left: 20pt;
margin-top: 10pt;
text-decoration: underline;
display: block;
width: 10cm;

There are a couple of important things to notice when comparing the code with the
screenshot. The XML elements are presented by the browser in the order in which they
appear in the source document. This will often be desirable behavior when the order
of the elements in the XML document matches their relative positions. For the Business
Letter, there is no correspondence between the position of an element in the XML and its
position in a real letter. For example, the signature element is found in the header
section of the XML file, yet a signature in a letter must be appended to the bottom. Where
elements must be moved, or modified before presentation, XSLT is the correct approach
to take.

The second important thing to notice is that the date and signature elements appear
in the finished XML document in Opera yet no styles have been defined for them. CSS
cannot be used to filter XML documents in any way. If it’s in the document it will appear
in the browser — except for comments, of course.

122 Chapter 5: Cascading Style Sheets

Exercises

1. What do Web designers mean when they talk about a style?

2. Although stylesheets have been a W3C recommendation for several year some
browsers do not yet support them fully. How should a browser behave if it en-
counters formatting that it cannot handle?

3. Describe the different ways that styles can be added to an XML document.

4. What happens if you specify a formatting instruction that is unavailable?

Chapter

Cascading Style
Sheets Two

Cascading stylesheets have proven themselves as a robust, developer-friendly technology.
They are applicable to both XHTML and XML data files, they are lightweight and they
work well. As defined in the Cascading Stylesheets Recommendation of 1996, and its
later update in 1999, CSS is intended purely for display of data on screen. Although
the Recommendation uses the term user-agent throughout, the fact that this means Web
browser is implicit in the document. The Web has changed in any number of ways since
1996:

¢ Millions more people now use the Web every day.

The technologies that underpin it, such as HTTP, are being put to a changing set of
uses in areas like intranets and messaging systems.

Web data has changed from simple HTML to XHTML and XML.

Whole new types of application such as Web Services are being developed.

The Web is now truly world-wide, accessed continually from every continent.

124 Chapter 6: Cascading Style Sheets Two

e Many pages contain a mixture of fonts and character sets.

One of the most intriguing things, from a developer’s point of view, is that Web data
is no longer just viewed on a computer screen. Data originating in XHTML or XML may
be accessed through mobile phones or television screens, used in presentations, printed
in paper documents or presented aurally. The original CSS technology doesn’t allow for
these myriad uses. It focused solely upon the presentation of data in a Web browser.

The Cascading Stylesheets Two, CSS2, Recommendation of May 1998 addressed the
limitations of the original Cascading Stylesheets Recommendations. In particular, prop-
erties were added to:

¢ format printed documents,

support the aural presentation of data,

¢ include formatting specifically of tables,

aid the presentation of data to disabled users,

allow the scripting of stylesheet properties using languages such as JavaScript.

Although the primary developer community using CSS2 is going to be Web authors
working in XHTML, many aspects of CSS2 are important for other XML applications. In
particular, enhancements have been made to the way that stylesheets work while remain-
ing totally backwards compatible and usable in a variety of media. CS52 is another one of
those technologies where the specification has a significant lead over the software. At the
time of writing, few, if any, applications have been developed that support more than a
relatively tiny subset of CSS2. Perhaps this is not surprising since an application that uses
the aural stylesheets may never need to format XML for display. It's worth remembering
that CSS-compatible applications will come in a number of different types. Unfortunately,
many applications do not, as yet, implement all of the properties that they could use. Most
Web browsers don'’t even include all of the visual properties, partly due to the complexity
of implementing them all, and partly due to lack of demand.

6.1 THE DESIGN OF CSS2

Cascading Stylesheets Two follows many of the same design principles that underpin the
original CSS. Most importantly for developers who want to start using CSS2, the standard
is totally backwards compatible with CSS. This means that browsers that only support
CSS can load CSS2 stylesheets and ignore those elements that they do not understand.
Since CSS2 is a super-set of CSS, any CS52-compliant browser is also able to load CSS

Section 6.1: The Design Of CSS2 125

styles pages and render them as intended. Any user-agent such as a browser that is unable
to manipulate stylesheets should be able to display the content of the file without styling
it. This is more of an issue for XHTML developers than it is for XML developers. Any of
the current browsers that can parse XML can also handle cascading stylesheets.

Separating the style and display information from the content brings several bene-
fits. Different stylesheets can be created for different uses. This makes systems more
maintainable, provides better utilization of network resources since browsers only down-
load stylesheets that they can handle, and it works without affecting the structure of the
markup in the XML file.

CSS2 has been designed to be simple to use. Since more properties have been added to
those which are available in CSS, there has been a necessary increase in complexity. The
syntax of the CSS language remains both clear and simple. Because properties have been
added, the CSS2 model is extremely feature rich. Many features that Web designers had
been asking for were added to CSS2. It’s just a little unfortunate that the richness of the
Recommendation is not equaled by the richness of use of CS52 on the Web.

(CSS2 adds many properties which are specifically designed to make content more ac-
cessible to those with disabilities. Specifically:

e the appearance of fonts can be controlled so that bitmaps which are difficult to read
are eliminated,

e layout is controlled through CSS2 properties rather than through the use of tricks
such as invisible images,

e using ! important rules means that users can override aspects of stylesheets,
¢ media support is now provided for braille, embossed and tty terminals,

¢ voice and audio output can be styled using aural properties,

e attribute selectors provide alternative content within stylesheets,

s counters and numbering can be used to make document navigation easier on braille
terminals.

6.1.1 Media Types

Cascading Stylesheets Two defines a number of different media types on which content
might be displayed. These are given as attribute values in the <xml-stylesheet> ele-
ment when the relationship between the XML file and stylesheet is established. The list
of devices that is given in the Recommendation, and reproduced below, is not compre-
hensive. New devices will always appear so this list will inevitably grow as technologies
change.

126 Chapter 6: Cascading Style Sheets Two

all
The content is suitable for all applications.

aural
Content is designed for speech synthesis software.

braille
The data will be formatted for tactile braille readers.

embossed
The data will be formatted for paged braille readers.

handheld
Formatting for handheld devices, such as PDAs and mobile phones, which have ex-

tremely small screens.

print
The document will be printed conventionally on paper.

projection
The output will be displayed on a projection device or printed onto transparencies
for display on a large screen.

screen
Output will appear on a typical computer monitor capable of displaying colored
output.

tty
The output will be shown on a terminal or other device which can only display fixed
fonts.

tv
Output which will be used on a television screen.

6.2 STYLING FOR PAGED MEDIA

When information is displayed on a computer screen, it's usually available as a single
long document. On modern systems, the document may be split into a series of files
which are connected by hyperlinks or embedded within each other.! The computer pro-
vides a scrolling window onto the data within which the content is moved up or down to

!For instance using OLE or COM on Windows.

Section 6.2: Styling For Paged Media 127

access different areas. Computer systems don’t have the concept of paging, chunking data
into screen-sized pieces and displaying a screenful at a time. That's the way that printed
media works, though. Whether a newspaper, bound report, book or set of slides for a
presentation, the content is split into page-sized chunks. When styling an XML file using
CSS2, we don't necessarily know if the data will always be viewed on a computer screen
or if it will be printed out. Fortunately, CSS2 includes properties which are designed to
provide some, admittedly rather primitive, paging facilities.

(CSS52 extends the box model, shown in Figure 5.5, and introduces a page box model.
The page box is an abstract rendition of a page of the document in which page size, mar-
gins and layout can be specified. It does not necessarily map directly onto a physical
piece of paper. Instead, once the author has defined the page layout and specified the
page breaks, the processing software should be able to transfer the page boxes onto sheets
of paper. C552 does not get involved in the details of the transfer process but the Recom-
mendation does list the following possibilities:

e One page box is transferred to each sheet of paper. This is sometimes called simplex
printing.

o Two page boxes are transferred to each sheet of paper. One is printed on each side
of the paper. This is sometimes called duplex printing.

¢ A number of page boxes are transferred to the same side of a sheet of paper. This
may be called n-up printing.

s A single page box is transferred across a number of sheets of paper.

e Pages may be printed on a single sheet in such order that, when the sheet is folded
and cut, a book of correctly ordered pages is produced.

¢ A single page box or document may be printed simultaneously on a number of
output devices.

o The formatted document may be written to a file in printable form.
Defining a page box involves defining the page and specifying its margins. Unlike the
CSS box model, the padding and border properties do not apply to page boxes.

6.2.1 Page Rules

Page boxes are defined using the @page rule. This is then applied to pseudo-elements
which represent the first page, all left pages, all right pages, named pages or, by default,
all pages in the document. The following code defines a page box equivalent to an A4
sheet, with a 20mm margin on all four sides:

128 Chapter 6: Cascading Style Sheets Two

@page { size: 210mm 294mm; margin: 20mm; }

The printed area of the page is equal to the area of the page box minus the margins. The
margin can be broken down and specified differently for each side of the page as shown
here:

@page {
size: 210mm 294mm;
margin-left: 30mm;
margin-right: 20mm;
margin-top: 20mm;
margin-bottom: 25mm;

The page size doesn’t have to be defined using exact measurements. Instead it can be
set to:

auto
Which sets the size and orientation of the page box to the same as the target sheet.

portrait
The page box will be in portrait format, regardless of the format of the target.

landscape
The page box will be in landscape format, regardless of the format of the target.

When printing in book format the left and right margins change between the left and
right pages. The outer margin is always set to be wider than the inner one. The CSS2 page
box allows for this by letting the designer create left and right pseudo-elements which are
configured differently:

@page {
size: 210mm 294mm;
margin-top: 20mm;
margin-bottom: 20mm;

}

@page:left {
size: 210mm 294mm;
margin-left: 30mm;
margin-right: 20mm;

}

Section 6.2: Styling For Paged Media 129

@page:right {
margin-left: 20mm;
margin-right: 30mm;

i

This code sets the page size and the margins at top and bottom of the page, for all
pages in the document. It then sets different left and right margins for left and right
pages. Managing the pagination so as to decide which pages are left and which are right
is left to the processing application. Setting a different page box for the first page is done
through the : first pseudo-element.

6.2.2 Page Breaks

Although the processor will manage pagination throughout the document, there will be
times when you need to force a page break. For example, if you are styling your XML
so that it can be printed as a book, you will probably want to start each chapter on the
right-hand page.

page-break-before: always|left|right|avoid|auto|inherit
page-break-after: always|left|right|avoid|auto|inherit
page-break-inside: avoid|auto|inherit

The values shown for these properties mean:
¢ auto Page breaks are neither forced nor inhibited.
» always A page break is always forced either before, or after, this element.

e avoid A page break is never allowed either before, or after, this element.

s left Page breaks are forced so that the next page will be a left-hand page.

right Page breaks are forced so that the next page will be a right-hand page.

page: <name>|inherit
Use this property to give a unique identifying name to a page.

orphans: integer|inherit

widows: integer|inherit
These properties specify the minimum number of lines that must be present in a

paragraph. Orphans are lines at the bottom of a page, widows are lines at the top.
It's generally regarded as a bad thing to have one or two lines of a paragraph dan-
gling in isolation from the rest of it. Formatting text so that widows and orphans
are avoided is extremely difficult. Even well-established typesetting systems such

130 Chapter 6: Cascading Style Sheets Two

as TgX get it wrong. Using these two properties will, at least, give your software a
start on the problem.

6.3 USING AURAL PRESENTATION

Presenting computer documents in aural form is a relatively immature technology, but
one that has developed rapidly. In particular, applications intended for use by the blind
or visually impaired, or others who have difficulty with text and printed material, are
now widely available. Such software usually relies upon a speech synthesizer reading the
content of the document to the user. The conversion of text into a form that a speech
synthesizer can use often involves the removal of all formatting instructions so that the
synthesizer receives plain text.

Clearly this is not a desirable situation, although it is preferable to having no access to
the document. Structuring information conveys important meaning about the document
and its content. Documents may be structured using such features as titles, sectional
headers, lists or emphasized passages. Structuring a document in XML, which is basi-
cally text, and using stylesheets to format it means that both the structure and meaning
of the document are preserved and can be used to aid the aural presentation of the mate-
rial. Changing tone, adding sound effect and other aural icons can massively improve the
listener’s range of responses to the material.

Note:

Data may need to be presented aurally in a number of situations. Although the
primary motivation is access for the disabled, access to data in situations in which
reading is not possible also benefits. These may include access while driving, at
work where access is restricted or in some educational situations.

6.3.1 Properties

The CSS2 properties that deal with the aural presentation of data include the ability to
change sounds, volume or pitch. Sounds can be presented in three-dimensional space or
spread out temporally so that one sound follows another.

volume: <number>|<percentage>|silent|x-soft|soft|

medium|loud|x-loud|inherit
The relative volume of the output is set using the volume property. The volume re-

ferred to is the median value of the waveforms, at some points it may be far louder
or far quieter than this median value. Its absolute volume will be determined by
the settings of the output device. The dynamic range of output devices will vary

Section 6.3: Using Aural Presentation 131

greatly. Auditory output in an office environment will need to be relatively quiet,
while a device such as a television will have to produce louder sounds. Therefore
the CSS2 Recommendation states that the user should be able to control the setting
for the volume from their output device. The parameters of the volume property
have the following meanings:

¢ <number> An integer between 0 and 100. At first sight you might expect 0 to
mean that the sound was off and 100 was as loud as the output device could
manage. In fact, 0 means the minimum audible volume, which will be ap-
proximately as loud as whispered speech. 100 means the loudest comfortable
volume — quieter than shouted speech or a rock concert.

e <percentage> The volume setting, which may be inherited from the contain-
ing element, is moderated by this percentage which is then converted to an
integer in the 0 to 100 range.

e silent Nosound is transmitted at all. Obviously this is not the same as setting
the volume to 0.

e x-soft Same as 0.

¢ soft Same as a value of 25.
¢ medium The same as 50.

e loud As for 75.

¢ x-loud Equivalent to a volume of 100.

speak: normal|none|spell-out|inherit
Specifies how the text will be rendered aurally. The normal setting uses language-
dependent rules to read the text; none means that the content is not rendered au-
rally. Finally, spell-out spells the text one letter at a time.

When the volume is set to silent, the content is still rendered but no sound is
generated. Doing so takes the same length of time as outputting the text at an au-
dible volume. The time taken includes any breaks or pauses set before or after the
text. Setting the speak property to none means that the text is not rendered and,
therefore, no time elapses.

pause-before: <time>|<percentage>|inherit
pause-after: <time>|<percentage>|inherit

pause: [<time>|<percentage>]{1,2}|inherit
A delay can be introduced before or after the content of the element is read. The

t ime attribute sets the absolute delay in milliseconds or seconds. The percentage
sets a delay which is relative to the speech-rate property. If the speech-rate

132 Chapter 6: Cascading Style Sheets Two

is 60 words per minute, a delay of 100% will give a pause of one second. Generally,
using relative pauses is preferred since it makes the stylesheet more transferable.

The pause property is a form of shorthand for pause-before and pause-after.
It can receive either one or two values. If one is given, it will be applied to
pause-before; if two are given, the second will be applied as pause-after.

cue-before: <uri>|none|inherit
cue-after: <uri>|none|inherit

cue: [<cue-before><cue-after] |inherit
These properties determine which, if any, auditory icons will be played. Auditory

icons are sounds which are used to distinguish or emphasize pieces of speech. The
URI must point to a valid sound file. If it points to something that cannot be handled
by the application, it should be treated as if the property had the value none. The
cue property works in the same way as pause. If it gets one UR], that is used for
cue-before; if it gets two, the second is used for cue-after.

play-during: [uri [mix] [repeat]]|auto|none|inherit
A sound may be played in the background as text is being read. The uri must be
a valid sound file. The optional mix value mixes sounds inherited from the parent
element with the sound from the uri. The optional repeat value indicates that if
the sound is shorter than the content of the element, it will be repeated for as long
as required. The auto property indicates that the sound from the parent element
continues.

azimuth: <angle>|[left-side|far-left|left|center-left|
center|center-right|right|far-right|right-sidelbehind |

leftwards|rightwards|inherit
Many systems that can give the illusion of playing sound in three dimensions are

now available. Some systems, such as those for home-cinema or multi-speaker
computer game systems, really do play sounds from all around the listener. The
azimuth property is used to move sound through the horizontal plane around the
listener.

e <angle> Indicates the position of the sound in the range —360 deg to 360 deg.
A value of 0 indicates that the sound plays from directly in front of the listener.

e left-side Equivalent to a value of 270 deg. The directional properties can be
combined with behind to change their value. If behind left-side is used,
the sound plays from an angle of 270 deg.

e far-left An angle of 300 deg. With behind this is 240 deg.
e left Anangle of 320 deg. With behind this is 220 deg.

Section 6.3: Using Aural Presentation 133

e center-left An angle of 340 deg. With behind this is 200 deg.

e center An angle of 0 deg. With behind this is 180 deg.

e center-right An angle of 20 deg. With behind this is 160 deg.

e right An angle of 40 deg. With behind this is 140 deg.

e far-right An angle of 60 deg. With behind this is 120 deg.

e right-side An angle of 90deg. With behind this is 90 deg.

e leftwards Moves the sound to the left of the current angle by 20 deg.

e rightwards Moves the sound to the right of the current angle by 20 deg.

elevation: <angle>|below|level|above|higher|lower|inherit
Moves the sound in a vertical plane. Combining this with azimuth gives three-
dimensional movement. The value of <angle> specifies the angle relative to the
horizontal. A value of 0deg is horizontal with movement in the range —90 deg to
90deg. Using below is equivalent to —90 deg, above is equal to 90 deg and level
is 0 deg. higher adds 10 deg to the current elevation, while lower subtracts 10 deg
from it.

speech-rate: <number>|x-slow|slow|medium|fast|x-fast|

faster|slower|inherit
The speaking rate can be set for individual elements. Think of this rather as you

might think of font size. Both relative and absolute values can be set:

e <number> The rate in words per minute. This may be language and applica-
tion dependent. For example, software to help language learners may need to
use both extremely slow and more normal speeds.

e x-slow 80 words per minute.

e slow 120 words per minute.

e medium In the range 180 to 200 words per minute.

e fast 300 words per minute.

e x-fast 500 words per minute.

e faster Adds 40 words per minute to the current rate.

e slower Subtracts 40 words per minute from the current rate.
voice-family: [<specific>|<generic>]|inherit

This is a comma-separated list of voices that might be used to speak the text. These

are analogous to font-families. Whilst the exact meanings are likely to be application
dependent, possible values for generic include male, female or child.

134 Chapter 6: Cascading Style Sheets Two

pitch: <frequency>|x-low|low|medium|high|x-high|inherit
Specify the average pitch of the speaking voice. The relative values are application
dependent.

pitch-range: <numbers>|inherit
Specifies the variation in the average pitch of the speaking voice. This will help to
add inflection and meaning to the spoken text. Values between 0 and 100 are al-
lowed. A value of 0 gives a monotonic voice, 50 gives a normal voice.

stress: <number>|inherit
Spoken languages use stressed words to emphasize meaning. This property, in the
range 0 to 100, specifies how much stress should be put into the voice.

richness: <number>|inherit
Adding richness to the voice will make it penetrate and carry better. Values in the
range 0 to 100 are permitted.

speak-punctuation: code|none|inherit
When set to code, punctuation marks are spoken. When set to none, they are ren-
dered as natural pauses.

speak-numeral: digits|continuous|inherit
If set to digits, the individual digits within a number are read as separate words.
When set to cont inuous, the entire number is read as a single unit.

6.4 COUNTERS AND NUMBERING

It’s sometimes necessary to generate additional content as a document is being rendered.
The most obvious example of this is probably the creation of a table of contents and as-
sociated sectional numbering, or creating lists of numbered items. The XML document
cannot, by its very nature, include such information. XML has structure, it’s all about
structure, but its structure is to do with the nature of the data. Numbering sections or lists
is a presentational matter. This sort of content is as distinct from the raw XML as the color
in which it is printed.

:before

cafter
These are pseudo-elements, not properties. They are applied to existing elements to

modify their behavior before styling is applied. They control the way in which gen-
erated content is added to the element as it is displayed.

Section 6.4: Counters And Numbering 135

Here’s a quick example. I'm going to modify the stylesheet from Listing 5.2 in Sec-
tion 5.5 so that the word NamE appears in red, small capitals before any name fields.
This is done by adding a new element to the stylesheet specifying the text that must
be added:

name : before{
content: "Name";
color: red;
font-style: normal;
font-variant: small-caps;

}
The result as displayed by Mozilla is shown in Figure 6.1.

NAME My, William James SigEIns =
B1LL SMIczINs INcorPoRATED UNIT 5 Tax Havens |
TNDUSTRIAL Park EnTERPRISE CITy CnLIFDRNm Ca
Wame Bili Gates -

PMrcrosorT Inc, Seatrie UNITED STATES
dThursday 27 December 2001 Bill

sy,

Here at Bill Smiggins Inc. we're really pr
our ten-vear reputation for the developm

,..__..'l ! — ..'I......l... 117-!._.. e PO © _J

Figure 6.1 Adding Content with CS52

content: [<string>|<uri>|<counters>|attr() |open-quote|

close-quote |no-open-quote|no-close-quotel +|inherit
The content property is used with the :before and :after pseudo-elements to

add material into the displayed version of a document. The optional values shown
in the description can be mixed and repeated as needed to create the desired effect.
For instance, putting quotes around the Name string could be done with:

content: open-gquote "Name" close-quote;

136 Chapter 6: Cascading Style Sheets Two

e <string> Adds text content in string format.

¢ <uri> The URI points to an external resource. If the processing application
cannot handle the content there, it is ignored. Otherwise it is added to the
document. This is especially useful for adding boiler-plate text to the content of
an XML document.

e <counter> Adds a counter. Counters are described in detail in Section 6.4.1.

¢ open-quote and close-quote are replaced with the appropriate characters.
These characters are likely to be application and locale specific.

e no-open-quote and no-close-quote Nothing is inserted; levels of inden-
tation appropriate to the use of quotes are applied.

e attr () An attribute is given as the parameter to this function. Its content is
used as the content of content.?

6.4.1 Counters

Cascading Stylesheets Two supports the automatic generation of counter values as part
of the generation of content. Developers can define the counter, the elements with which
it is associated and when it should be incremented. Counters have two properties:

counter-increment [identifier [integer]] |none|inherit
The counter whose name is given as the identifier property is incremented
by one. To increment by other amounts, including negative values, an optional
integer parameter can be supplied.

counter-reset [identifier [integer]] |none|inherit
The value of the counter can be reset to 0, or to any other value which is given in the
optional integer parameter.

name :before
counter-increment: name;
content: open-quote "Name " counter(name) close-quote;
color: red;
font-style: normal;
font-variant: small-caps;

2If you see what I mean.

Section 6.4: Counters And Numbering 137

38! [pcalhost‘home/fred/xmlibook/code

NaME 1" Mr. William James SMIGEINS

3ILL SMIGGINS INCORPORATED UNIT 5 Tax HAVENS
[NDUSTRIAL PaRr ENTERPRISE CITY Carirornia CR 11223
‘Name 2 Bill Gates

AICROSOFT INC. SEATTLE UNITED STATES

Thursday 27 December 2001 Bill

Here at Bill Smiggins Inc. we're really proud of «

tenavear ranntatinn for the davslanment nf Analil

Figure 6.2 Dynamic Counters

In this code sample, a counter value now appears after the word Name. The result,
as displayed by Opera 6, is shown in Figure 6.2. Counters can be nested and modified.
Nesting counters is trivial. The only thing to remember is that nested sectional counters
need resetting when the outer section increments. Counters can be modified using the
same properties as for bullets used with list elements. The style of counter you're using
can be altered. To get a style other than the default, use counter (name, <styles)
where the <style> parameter is taken from the following list:

e decimal

¢ decimal-leading-zero
e lower-roman

e upper-roman

e hebrew

e georgian

e armenian

e cjk-ideographic

e hiragana

e katakana

138 Chapter 6: Cascading Style Sheets Two

e hiragana-iroha
e katakana-iroha
e lower-latin
e lower-alpha
e upper-latin
e upper-alpha

e lower-greek

Exercises

1. What shortcomings of Cascading Stylesheets does CSS2 address?

2. When might you need to present data in non-textual forms such as might be found
in an auditory application?

3. What are pseudo-elements? Give examples of how you might use them in preparing
a document.

Chapter

Navigating within
and between
XML Documents

If there’s one reason that use of the Web and markup in HTML are so popular, it must be
the hyperlink. The ability to move between sections of documents or between documents
that may be physically several thousand miles apart is incredibly useful to both readers
and authors. HTML wasn't the first hyperlink system, it wasn't the first to become widely
popular - that honor probably goes to Apple’s Hypercard system. The reasons that HTML
became very popular, very quickly include:

e Writing HTML hyperlinks is incredible simple.

¢ many different file types can be linked to.

e HTML is an open standard which anyone can implement in their software.
e HTML is a platform-neutral technology.

Whether writing for the Web or for traditional media, authors often need to refer read-
ers to different sections of their document or to other documents. In traditional books this

140 Chapter 7: Navigating within and between XML Documents

might be done through a table of contents, a bibliography and citations. An HTML author
uses the address tag to create links directly to the referenced location:

To link to sections
or documents .

HTML links are explicit and hard coded into the document. The document has a logical
structure defined through the HTML Document Object Model, DOM. Navigation through
an HTML document using the DOM is the established method of finding nodes and val-
ues within JavaScript applications. Elements and structures within XML documents are
also addressed using a DOM.

XML has two distinct types of navigation. Movement within a document is described
in the XPath recommendation, movement between documents is covered by XPointer and
XLink. I'll look at all three of these in this chapter. Before working with these technologies,
you should be aware that some of them are currently in a state of flux and are likely to
continue to change until significant applications arrive using particular versions.

XPath is a well-established Recommendation which is implemented in any number of
XSL processing applications. Unfortunately it is not always fully implemented in these
products, which means that your carefully crafted code may never be universal.” You
will need to read the documentation of the library or processor that you are using to
check how completely it conforms to the XPath Recommendation. In addition, navigating
arbitrary XPath expressions is difficult. Not all processors are equally efficient at this task.
Benchmarks are notoriously unreliable indicators of true performance, but if your XPath
application seems sluggardly you should first check that your code is optimized. If this
doesn’t improve things, try a different processor and see if that does.

As for the other two, XLink is a Recommendation of the W3C, but is not yet widely
implemented. XPointer is a Candidate Recommendation as I write. This means that it re-
mains under development but there are unlikely to be major changes between the version
I'll describe in this chapter and the full Recommendation when it is published.

7.1 XPATH

XPath is an attempt to provide a universal syntax for navigation through arbitrary XML
documents. The universality of XPath means that it is used as the basis of XPointer and
of movement within XSLT. XPath is arbitrary since it operates on the general structure
of XML documents rather than the syntax and structure of specific documents. This is
a big advantage to developers as it means they do not have to construct new forms of
movement for each application. They can specify XPath expressions for each and leave
the problem of actually moving through the document to standard processors. Navigation

Section 7.1: XPath 141

through documents is complex and XPath includes data types and functions to support
its main purpose.

The syntax used by XPath is unique, relatively straightforward but, as with DTDs,
it is not XML. You may worry about this since you can easily find yourself using the
different syntaxes of XML, DTD and XPath in the same project. There’s no easy solution.
XML developers somehow have to get used to the idea that they need to be experts in
everything. Since XPath is used to address individual elements within an XML document,
it can also be used as a way of comparing nodes when manipulating documents.

Generally, you will find XPath functionality hidden inside XSLT processors. Some of
these expose their XPath methods as part of their API, others do not. Some DOM process-
ing libraries include classes and methods that let you build applications that can perform
any subset of the tasks normally performed by XSLT processors. Using these libraries you
can embed XPath expressions in your C++, Java or Perl code.

7.1.1 Introducing XPath Constructs

XPath is based on some difficult concepts. As with many XML technologies, it brings
together a variety of computer science and software engineering ideas under a single
umbrella. Before examining the intricacies of XPath, it's important to have some under-
standing of these fundamentals.

7.1.1.1 Nodes In XPath, a document is represented as a tree structure made of nodes.
The elements, attributes and content in the original XML document become element
nodes, attribute nodes or text nodes. Nodes can contain other nodes, each of which can
be treated as if it were the root of a subtree which might be extracted and manipulated
separately. Each node can be converted to an equivalent string-value. For some nodes this
is straightforward since the value will be part of the node. For other nodes the value is
calculated by computing the values of all of the nodes below it in the tree. Each node may
have a name. Since XPath supports XML Namespaces, which are described in Section 4.1,
the name is actually the local name plus the namespace. The namespace part may be null
if no namespace has been declared for the element.

7.1.1.2 Expressions Most of the work that is done in XPath is writing expressions. An
expression can be thought of as a path through the document which terminates at another
part of the document. XPath expressions are made from nodes, variables which hold
values taken from nodes, functions and their return values. The value of the termination
point is returned as the result of the expression. This value may be one of the four XPath
data types:

142 Chapter 7: Navigating within and between XML Documents

e Node-set. This is an unordered collection of unique nodes. Duplicates are not put
into the set and there is no sense in which the first item in the set is more important
than the last.

e Boolean value representing true or false.
¢ Floating-point number.
¢ A string of Unicode characters.

Node-sets are by far the most important of the XPath data types. A node-set is formed
when an XPath expression is applied to part of a document. If the expression is true for an
individual node, then that node is placed into a node-set. That node-set is returned as the
result of the expression and becomes available for further processing. XPath expressions
can be applied to these node-sets to further refine them. If you read the XSLT and XSL-FO
examples in this book, you’ll notice lots of situations in which a node-set is used, refined
and reused.

Evaluation of an XPath expression starts at a particular point in the document and re-
turns a result which is relative to that point. If an expression is evaluated from a different
starting point, it will give a different result even though it's being used on just one doc-
ument. The point at which evaluation begins is called the context and thus the result of
evaluating an XPath expression is always given relative to a particular context. XPointer
and XSLT have their own views on how a context should be determined but, briefly, the
context is composed of:

o An individual node, called the context node.
¢ Two numbers which define the position and size of the context within the document.

A set of bindings which link variable names to variable values. The type of a vari-
able may be any of the valid types for the evaluation of an XPath expression.

A mapping of function names to individual functions.

The set of valid namespaces for the current expression. The bindings in this set map
namespace prefixes to URIs. Namespaces are discussed in detail in Section 4.1.

7.1.1.3 Functions XPath functions take one or more parameters and return single val-
ues. The value of a function is equal to its return value. A common set of functions which
must be provided by all XPath implementations is described in Section 7.1.3. Individual
implementations may, of course, extend this library. The parameters and arguments, for
functions in this library, belong to the four basic types for XPath.

Section 7.1: XPath 143

The functions in the library are used to manipulate the four basic data types. In fact,
the functions provided by XPath seem most clearly analogous to those provided by recent
ECMAScript libraries. The popular Web scripting languages JavaScript and JScript are
both implementations of ECMAScript. You'll certainly be familiar with them if you've
used either of those languages to manipulate the DOM of an HTML document.

Those which operate on node-sets, for instance, permit movement across the set or
the selection of items from it. The string functions in the library are familiar from most
modern programming languages. They permit selection of substrings, concatenation and
so on. The Boolean functions give simple access to basic logical manipulations, while the
number functions give limited facilities for working with numerical objects.

7.1.2 Location Paths

XPath expressions are used to identify one of the four basic XPath data types, (node-sets,
strings, Boolean or number) in the document. They are evaluated relative to either the
current context or the root node of the document. An XPath expression is commonly a
location path. Location paths that start at the root node are called absolute paths, those that
start anywhere else in the document are called relative paths. An absolute path starts with
a forward slash, /, relative paths start with the name of a node. Items within the path are
separated using forward slashes. The syntax used to describe location steps in XPath is
quite simple but applying it to a complex document can be much more difficult. Location
steps can be specified using either a verbose form or an abbreviated one. Generally the
abbreviated form is used since it is much shorter and hence far easier to read and write.
I'm going to begin by examining the longer form since understanding it is vital if you
are going to use XPath successfully. Any decent XSLT reference manual will supply an
in-depth treatment of the shorter form.

axis::node test[predicate [predicate]]

The verbose form of the location step has three components. Each step starts with
an axis taken from the list in Table 7.1. This is separated by two colons from a node
test which is optionally followed by one or more predicates. Since the predicates are
optional you don’t have to use them. The axis will identify a node-set, although this
may be empty if the axis doesn’t identify part of the document, or contain a single
node. The node-set is refined by the node test which filters nodes based on either
name or type, placing those that match into it. Finally the predicates add further
refinement. Predicates are Boolean expressions which all nodes in the node-set are
tested against. Only those nodes that evaluate to true against the predicate remain
in the node-set.

144 Chapter 7: Navigating within and between XML Documents

Table 7.1: XPath Axes

Name

Description

child

descendent

parent

ancestor

following-sibling

preceding-sibling

following

Contains all children of the context node. Child nodes are
those directly below the context node if the XML document
is visualized as a tree structure.

Contains all descendents of the context node. Descendents in-
clude child nodes, their children and onwards down the tree.
This axis will not select attribute or namespace nodes.

Contains the parent of the context node. Each node has exactly
one parent, although a parent node may have many children.

Contains all ancestors of the context node. The ancestors in-
clude the parent node, its parent and so on back up the tree.
Ancestor nodes always include the root node of the document
unless the context node is the root node.

Holds all siblings of the context node that follow it in the node-
set. Sibling nodes share a parent with the context node and
appear in the node-set in the order in which they appear in
the original document. Note that if the context node is either
an attribute or namespace node, the result of the following-
siblings axis will be an empty set.

Holds all siblings of the context node that precede it in the
node-set. The result of this axis is empty if the context node
is either an attribute or namespace node.

This holds all nodes that are in the same document as the con-
text node and occur after it. The ordering of nodes is the same
as in the original document. The result here does not include
descendent, attribute or namespace nodes.

Section 7.1: XPath 145

Table 7.1: XPath Axes

Name Description

preceding This holds all nodes that are in the same document as the con-
text node and occur before it. The ordering of nodes is the same
as in the original document.

attribute Contains the attribute nodes, if any, of the context node.

namespace Contains the namespace nodes of the context, but only if the
context is an element node.

self Holds the context node.
descendent -or-self Holds the context node and its descendents.

ancestor-or-self Holds the context node and its ancestors.

7.1.2.1 Axes XPath specifies a number of axes which are used to move through the
document. Each axis returns a node-set which contains all nodes found at a particular
location. The axes are listed in Table 7.1.

Simply listing the XPath axes doesn’t help to understand how they are used when
building location steps. Working through an example provides much more useful infor-
mation. Figure 7.1 shows a tree structure which partially represents the Business Letter
application from Section 2.6. I've not drawn up a tree for the full Letter simply because it
would be far too large and complicated to fit onto the page of a book. Working from that
diagram, let’s assume that the Name of the Recipient of the letter is the context node. If
you want to see the differences, applying the axes to the full document is a useful exercise
when you have a few spare minutes. Use paper and pencil and try to calculate the result
you would get by applying an arbitrary XPath expression to each node in your document.

The following list gives the content of the node-set when each of the XPath axes is
applied. I'm only listing nodes as they appear in the tree in Figure 7.1. This gives a subset
of the result that applying the axes to the full document would give.

e child contains Title, Firstname and Surname.

¢ descendent contains Title, Firstname and Surname. None of these nodes
have children; the set here is therefore the same as for the child axis.

146 Chapter 7: Navigating within and between XML Documents

header
metadatay sender recipient date signaturey
keyword I
[[1
name address name address

G

Figure 7.1 XML Tree Structure For The Business Letter Application

e parent contains Recipient.

e ancestor contains Letter, Header and Recipient.

e following-sibling contains Address. Only one node shares a parent with the
Name node. The Address node follows the Name node in document order.

¢ preceding-sibling is an empty set since no siblings precede the Name node in

document order.

e following contains Address, Date, Signature and Content. All these nodes
follow the context node in this restricted document but none are its descendents.

e preceding contains the Address of the sender, the Name of the sender and their
Title, Firstname and Surname, theSender node, the Metadata node and, fi-
nally, the Keyword. Notice that none of these nodes are ancestors of the context

node.

e attribute is an empty set since the context node has no attributes.

e namespace is empty since no namespace has been specified for the context node.

e self contains just the Name node.

Section 7.1: XPath 147

¢ descendent-or-self contains Name, Title, Firstname and Surname nodes.

e ancestor-or-self contains Letter, Header, Recipient and Name.

7.1.2.2 Node tests The node test provides a simple mechanism for filtering the node-
set found using the axes. The node test filters based upon the name or type of node. Only
those nodes for which the test is t rue remain in the node-set after the node test has been
applied. Evaluation of node tests is straightforward. The test is applied to each node in
turn and is true only if the node has the same type as the principle node type of the axis
and it has the same name as that specified in the test.

Phew! A lot of jargon was introduced there. This is, unfortunately, one of those times
where you need to meet the jargon before the explanation makes sense.

The principal node type is defined for every axis.

e Those axes that can contain elements have a principal node type of element.
¢ An attribute axis has a principal node type of axis.

* A namespace axis has namespace as its principal node type.

Syntax and examples Some examples will clarify how node tests work. Consider the
Business Letter once again. If the Name element of the Recipient is used as the context
node, the axis child contains the Title, Firstname and Surname nodes. Using the
node test

child: :Title
will select just the Title node from the node-set. If the Header node were the context
node, the expression

child::*/Name/Title
would select the Title nodes for both the Sender and the Recipient elements. This
second example is slightly more complex. The test has two components which are sep-
arated by a slash. Think of these components as steps like those you might encounter
in a URL or directory listing. The asterisk is used to select all nodes that have the same
type as the principal node type. In this case, all nodes that are children of the Header
node are selected. Five nodes match this: Metadata, Sender, Recipient, Data and
Signature. Further steps in the path are separated using forward slashes. The next step
selects those nodes, in this set, that contain Name nodes as children. This step matches the
Sender and Recipient nodes. Finally the Title nodes for each of these are selected
and remain in the node-set.

The example demonstrates that navigation through the tree is straightforward. The axis
selects a region of the tree or a sub-tree, the node test selects those nodes in this sub-tree
that match your criteria.

148 Chapter 7: Navigating within and between XML Documents

Node tests can also be used to select for particular types of content. The test
child::text () is a call to an XPath function which will select all text nodes that
are children of the context node. The comment () function selects all comments and
processing-instruction() is true for all nodes that are processing instructions.

7.1.2.3 Predicates The final filter in building a location path is a predicate. Predicates
are optional and you can include as many, or as few, as you need. Each predicate is
evaluated in turn against each node on the node set. During evaluation of the predicate,
the node being tested becomes the context node and the context size is set to the number
of items in the node-set. Once the entire node-set has been tested, the context returns to its
prior state. Nodes only remain in the node-set if the predicate evaluates to true. Strictly,
a new node-set is created which contains only those nodes for which the predicate is
true, but since the original node-set is discarded after evaluation the difference is really
semantic.

Predicates often use XPath functions, but they don’t have to. Here’s a simple example
which selects the second child from the context node:

child (2]

The predicate is placed in square brackets. Working from the root node of the Business
Letter, the expression:

child: : */header/descendent: :* [1line2] /code
selects the zip code' below any header element that has a 1ine2 element. Work-
ing through the expression, child: : * selects all child nodes of the root. The subpath
/header/descendent : : * will leave just the descendents of the header in the node
set. The predicate [1ine2] selects only those nodes that have an element called 1ine2.
That’s definitely not the easiest XPath expression, but it does show that complex selec-
tions can be made using a set of logical steps. The whole expression could also be written
more simply using either of these:

/descendent: : */code
//code

A predicate can be written to filter based on the presence or value of attributes rather
than elements. An attribute is specified by giving its name but preceding it with an am-
persand:

child: : */header/descendent: : {@length]

7.1.2.4 Examples The previous section contained a few examples of location paths.
You'll probably need to see more of them before they begin to make sense. Table 7.2 shows

1Or post code.

Section 7.1: XPath 149

Table 7.2 Sample Location Paths

Verbose Abbreviated Selection

child::title title The title element nodes that are
children of the context node. The
child:: step is always optional.

child::* * The context nodes that are element
nodes.

child: :node () node () The context node, regardless of node
type.

attribute: :type @type The type attribute of the context node.

/descendent: :title //title All title nodes below the root node.

child: :para < paral[2] The second para node that is a

[position()=2] child of the context node.

attribute: :type « @type="formal" All type attributes of the context

="formal" node that have the value formal.

some location paths in both verbose and abbreviated forms alongside an explanation of
the path.”

The XPath Recommendation contains numerous similar examples of both verbose and
concise paths which are worth reading if you need to know more. I'll be using XPaths
in later chapters, so you'll get an opportunity to see them used in real applications. In
particular, I'll be demonstrating how to use XPath inside XSLT and XSL-FO scripts to
select node-sets in document transformations.

7.1.3 Function Library

XPath expressions include functions alongside location steps. Functions are used as part
of the predicate expression and are necessary to provide the right amount of control. Func-
tions that operate on each of the XPath data types are provided .

7.1.3.1 Working With Node-sets
number count (node-set)

Returns the number of items in the node-set given as a parameter.

>The « symbol is used in Table 7.2 to show a break in code to fit it into the table. Don’t break your code at the arrow.

150 Chapter 7: Navigating within and between XML Documents

node-set id(object)
Selects items using their unique ID. The result is returned as a node-set. The param-
eter to the id () function may be a node-set, in which case the result is created by
converting each item to its string value and applying id () to that. If the parameter
is of any other type, it is converted to a string. This string is treated as a whitespace-
separated sequence of tokens. Nodes are placed into the resulting node-set if they
have a unique ID which matches any of those tokens.

number last()
Returns a number which is equal to the context size. This may be the number of

items in the node-set, for example.

string local-name([node-set])
Some nodes have expanded names which consist of a local name and a URI. This
function will return the local part of the expanded name. If the argument is omitted,
the parameter defaults to being just the context node.

string name ([node-set])
Returns the expanded name, the local name plus the URI, of the item in the node-set
that occurs first in document order. When the argument is omitted, it defaults to the
context node.

string namespace-uri ([node-set])
Returns the namespace URI part of the expanded name of the first item in the node-
set in document order. If the parameter is omitted, the context node is used as
default.

number position()
Returns a number which is equal to the context position. For example, this could be
the position of a particular item in a node-set.

Document order simply means the order in which elements occur in the source docu-
ment. This may be different to the order in which they are processed and may have no
relationship to their semantic order. If we are thinking about customer addresses, for ex-
ample, we normally think about the zip code after the name of the town or city in which
the customer lives. That’s the semantic order, it has real meaning, and will be specified in
a DTD or XML Schema. If our document doesn’t have a schema, the zip code might be
stored after the customer’s name and just before their telephone number. When searching
the document with XPath those nodes will be returned in their stored order. If an appli-
cation needs them in a different order, it will have to move the retrieved data around.

Section 7.1: XPath 151

7.1.3.2 String Manipulation

string concat(string, string, [string]
Returns the string by concatenating the arguments given to the function.

boolean contains(string, string)
Returns true if the first argument contains the second. False otherwise.

string normalize-space([stringl)
Normalizes the whitespace in the string by collapsing multiple whitespace charac-
ters to a single space. The normalized string is returned.

boolean starts-with(string, string)
Returns true if the string given as the first argument starts with the string given as
the second one, or false otherwise.

string string([object])
Converts the value of the object given as a parameter to a string which is returned.
If the object is a node-set, string () returns the string value of the first item in the
node-set in document order. The string value of a node may be explicitly declared.
Otherwise it is calculated by converting each descendent node to a string value.

number string-length(string)
Returns the length of the string.

string substring(string, number, ([number])
Returns the substring of the first argument which starts at the location given by the
second. If the, optional, third argument is given the substring will stop at that posi-
tion. If the third argument is omitted, the substring will continue to the end of the
string. In XPath, unlike languages such as Java or C++, string positions start from 1.

string substring-before(string, string)
Returns the substring of the first argument which occurs before the first occurrence
of the second argument.

string substring-after(string, string)
Returns the substring of the first argument which occurs after the first occurrence of
the second argument.

string translate(string, string, string)
Returns a copy of the first argument with occurrences of the characters in the second
string replaced by the corresponding character in the third string, For example:

translate ("A sample string", "abcde", "ghijk")

would return the string A sgmplk string".

152 Chapter 7: Navigating within and between XML Documents

7.1.3.3 Boolean Functions

boolean boolean(object)
Converts its argument to either true or false.

boolean false ()
Returns false.

boolean not (boolean)
Returns false if the argument is true, true otherwise.

boolean true/()
Returns true.

7.1.3.4 Numerical Functions

number ceiling(number)
Returns the largest integer value that is not smaller than, or equal to, the argument.

number floor (number)
Returns the largest integer value that is not larger than, or equal to, the argument.

number number ([object])
Converts the argument to a number. If the argument is omitted, the context node is
used. If the argument is a node-set, the first item in the node-set in document order
is converted.

number round (number)
Returns the nearest integer value to the argument.

number sum(node-set)
Returns the sum of the values in the node-set. Each item in the node-set is converted
to its string value which is then converted to a numerical value.

7.1.4 Data Types

The data types used in XPath include some common ones which are used in most pro-
gramming languages, alongside unique types such as node and node-set. The details of
how nodes and node-sets are designed and work are really only required if you plan to
implement software that manipulates XPath expressions. If you are just using software
such as libraries which others have written, these details can safely be ignored. It’s im-
portant to take a quick look at the more common data types so that you can see how they
relate to data types which you may know from languages such as C++ or Java.

Section 7.1: XPath 153

7.1.4.1 The Boolean Data Type Boolean objects take the values true and false. As
you would expect, an object can either be true or false at any one moment. Boolean
objects cannot exist in both states at the same time. The Boolean data type is supported
by a number of logical operators.

expression and expression
Each expression is converted to a Boolean value. The result is t rue if both expres-
sions are true, otherwise it is false. Note that if the left-hand side evaluates to
false, the right-hand side is not converted to a Boolean.

expression or expression
Each expression is converted to a Boolean value. The result is t rue if either expres-
sion is true, otherwise it is false.

=, l=, <=, <, >=, >
Operators are supplied for standard Boolean comparisons. The expressions being
evaluated are converted to common types where possible. If node-sets are involved
the comparisons become somewhat more complex. If both operands are node-sets,
the result is true if there are items in each node-set whose string values are equal.
If one item is a node-set, the other is converted to a string value and the result is
true if that value equals the string value of any item in the node-set.

A more comprehensive description of these comparisons, including some detailed
examples, can be found in the XPath Recommendation. Broadly, though, these
Boolean operators work just as you would expect from using more conventional
languages.

7.1.4.2 The String Data Type XPath strings are one or more characters, where a char-
acter is as defined in the XML Recommendation. These characters are abstractions of
Unicode characters rather than standard Unicode values.

7.1.4.3 The Number Data Type The XPath number type is a floating-point number.
There is a special number value, NaN, which represents those data items that are Not a
Number. Conventional numerical operators are supplied. These convert their operands to
the number type.

+

Adds the operands.

Subtracts the operand on the right-hand side from the one on the left.

154 Chapter 7: Navigating within and between XML Documents

Multiplies the two operands.

div
Performs floating-point division of the left-hand side by the value on the right side

mod
Returns the remainder from an integer division. Floating-point operands are con-

verted to integers internally.

7.2 XLINK

The XML Linking Language, XLink, is used to specify links from one XML document
to another. It uses pure XML to supply functionality that extends far beyond the sort of
hyperlink that is found in HTML documents. The conventional HTML hyperlink is uni-
directional. It starts from one document, or location within a document, and terminates
at another. Hyperlinks are usually controlled by the person reading or viewing the doc-
ument through a mouse click. Some hyperlinks are followed automatically by browser
software as it loads pages, for instance when fetching images or stylesheets.

While the HTML hyperlink generally provides sufficient expressiveness and power,
there are times when more complex linking schemes are desirable. Since XML does not
rely upon a particular implementation, and does not make assumptions about what tech-
nology can actually achieve, XLink can be used to describe far more complex linking
schemes.

In XLink, a link is more than a simple connection between two documents. Links can
be used to express relationships between multiple resources, metadata can be associated
with each link and links can be separated from the documents to which they apply. There
is no assumption built into XLink that a defined link will be implemented as a hyperlink
to be followed dynamically. The use of links in XML documents, how they are processed
and followed is really left to an individual implementation. Some generic functionality
is desirable, and tools are starting to appear which can be used to move across links and
access the documents to which they point. These types of tool do not attempt to access
the underlying richness of the link within individual applications. For example, data
at the end of a link may never be accessed directly by users, they may simply need to
know that the data exists. An application which uses this link may do so by querying the
application at the other end in a manner similar to a traditional programmatic structure
such as a remote procedure call.

Examples of different uses of links include:

Section 7.2: XLink 155

¢ A link may be followed when a static document is built from a set of XML sources
with links followed just once.

e Where data is being transmitted between remote applications, links may refer to
resources or applications which are necessary before the data can be properly pro-
cessed.

e A link may perform the same role as a foreign key in a relational database.

So what is a link? At the most basic level, an XML link is a relationship between two
resources. A resource is anything that can be addressed by a URI. While we are used to
the idea of a resource as a text file, often in HTML, or an image, it may also be something
diverse such as a program or a dynamically created data set.

Applications that are to process links need to be able to recognize them. To guarantee
this recognition, XLink specifies the use of a particular namespace. The namespace to be
used with XLink is:

http://www,.w3.0rg/1999/xlink

This namespace must always be declared in documents that use XLink; see Section 4.1
for more information on using and defining namespaces.

XLink is used to express relationships between resources. A relationship might be used
for something as simple as the citation of a reference, where the cited document is not
going to be accessed by the reader. On the other hand, the link might involve the remote
processing of data from a number of sources, its downloading and presentation. How
is the local application to know when data should be downloaded and when the link is
simply for reference? The answer is in the XLink concept of an arc.

The HTML hyperlink has a single starting point, the source, and a single destination,
the target, which might be a document or a location inside a document. Since XLink
simply describes a relationship between resources, it does not permit the notions of source
and target. Moving across links, a process called traversal, is a different thing altogether.
In XPath this is described using arcs. Each link can have zero or more arcs, each of which
may lead to a different target resource. Thus a node can be at the center of a Web of
links, each of which means something different and is processed differently. No software
currently exists to harness more than a fraction of this expressivity.

7.2.1 An XLink Scenario

Spending a few moments thinking about how XLink might be used is a useful exercise.
Once you've seen a few examples I'm sure you'll be able to dream up scenarios of your
own. Here’s one from me to get you started. I'm going to keep away from code, and

156 Chapter 7: Navigating within and between XML Documents

just imagine how inter-document links might be used. Implementation® of these ideas in
XLink may not even be possible ~ that depends upon the expressive power of the lan-
guage. Implementation of the whole thing in a development language may be even less
feasible. Let’s start by dreaming up the ideas and worry about the details later.

Imagine someone reading a computer-based recipe book. The recipes may be stored
locally on the same machine, on a near-by server, probably on a local network, or remotely
to be accessed across the Internet. The “computer” being used to read the recipes might
be a desktop machine, a laptop with wireless networking, a PDA or even a conventional
household TV set. Our budding chef starts by selecting a recipe. This is conventionally
done using a search system or a series of menus. Let’s assume the latter, in this case. The
chef moves down the menu but is unsure about the meaning of some of the entries. He or
she notices that when the menu items are being viewed they display in a different color.
If the chef waits for a short time on each menu item, some text is presented as an overlay
on the screen, which describes the menu item in more detail. This text can be navigated
and some of the words and images within it bring up yet more overlays.

Having eventually chosen a recipe, the chef starts to read through it. Some unfamiliar
ingredients are listed. Fortunately, the system displays descriptive text for each item.
But where can the chef purchase these ingredients? By selecting each item, a list of local
suppliers appears, and where no supplier is known, an alternative ingredient is shown.

Different types of link are happening here. The menu system may be using simple links
with each item linking to one other. The descriptive information which appears when the
user hovers over the ingredients is another form of simple link. Both will be familiar to
Web users as they can be implemented using conventional HTML and JavaScript tech-
niques, and in fact these often are used.

More complex ideas are needed to create additional links from the descriptive text in
the menu system. There are many ways that this might be implemented, but XLink can
also be used to create dynamic links while the user is accessing the document. Finally,
bringing up lists of suppliers requires knowledge about the chef and his or her needs and
data about the recipes.

All of this functionality could be provided using technologies such as HTML, JavaScript
and CGI. One problem that developers would face today would be simply expressing
the relationships between all of the different data items. This is where XLink comes in.
Complex, possibly unique, relationships among disparate data items can be described
succinctly. Building software implementations that can manipulate those relationships is,
of course, a different, and far more complex, proposition.

3 A wise man once told me that any implementation is mere detail. While I don’t agree, getting the ideas right before you
start to develop is certainly important in the long run!

Section 7.2: XLink 157

7.2.2 XLink Attributes

Writing an XLink is not simply a matter of adding a new tag to a document. If XLink
worked in a similar way to the HTML <a> tag, which is used to create hyperlinks, some-
thing like the following code might be used:

<ingredient:>

<name>Sugar</name>

<quantity amount="20" />

<x1link href="http://foodlink.org/ingredient/sugar.xml" />
</ingredient>

This would simply add an x1ink element to the document. In fact, this isn't how
XLink works. Since links have to carry more information than just an address, the struc-
ture of the linking element becomes a little more complex.

<ingredient xmlns:xlink="http://www.w3.0rg/1999/x1link">
<name
xlink:href="http://foodlink.org/ingredient/sugar.xml"
xlink:type="locator" >
Granulated Sugar
</name>
<quantity amount="20" />
</ingredient>

Firstly, notice that the ingredient tag has changed. I've added a namespace declara-
tion. This can be done at the root of the document, if you're going to be using the same
namespace in many places, or, as here, it can be done to declare a namespace for part of a
document. The link itself is not a separate element in the document. Instead the link, and
associated information become attributes of an existing element. You could add a new
element to the document to contain this information, but it usually makes sense to alter
an existing one. Here the name element becomes the source of the link. The link itself is
a straightforward declaration of a URIL XLink provides a set of attributes which can be
added to elements to provide varying degrees of functionality.

Note:

Before the XLink attributes can be used in a document, the XLink namespace,
http://www.w3.org/1999/x1ink, must be declared. Only if the namespace
is used will applications recognize the attributes as part of an XLink.

actuate="onLoad|onRequest |other |none"
Applications need to know when to traverse an arc.

158 Chapter 7: Navigating within and between XML Documents

e onLoad The application should traverse the arc as soon as the document that
contains the link is loaded. When one source links to several targets, applica-
tion behavior is not defined by the XLink Recommendation. This leaves imple-
mentors to find their own way of handling the data from all the targets.

e onRequest The arc is only traversed following some action from the user. For
instance, the user may click on a link using a mouse to initiate the traversal.

¢ other The way that the application handles the traversal is defined elsewhere.
The application must hunt for that definition itself.

¢ none No behavior is defined for the traversal of the arc. Since the document
does not help the application decide how to proceed, it is likely that a default
behavior will be used, although that behavior will have to be built into the
processing software.

arcrole
This is an absolute URI that identifies a resource. The resource should describe the

property in a form which the processing application can use.

from
The from attribute identifies the source of the link. The value given to this attribute
must correspond to the value of the 1abel attribute in the source document.

href
This attribute provides addressing for remote resources. It is optional for links of
type simple and mandatory for those of extended type. The value of the href
must be a URIL. The URI may be absolute or relative, but relative URIs will be com-
puted by the processor before they are used.

label
Provides a textual label which identifies the link. Unlike the title attribute, the

label is not necessarily descriptive.

role
Identical to the arcrole attribute but used in different types of link.

show="new|embed |other | replace |none"
This attribute defines how the target resource should be presented once the traversal
has been completed. The attribute values have the following effects:

o new The target resource is presented as a separate item. This may mean open-
ing a new window on the desktop, a new pane within an application, or start-
ing a new page in a printed document. The exact details will depend upon the
nature of the application and of the target data.

title

Section 7.2: XLink 159

embed The target resource replaces the link definition in the presentation of
the source document. The target data is usually presented inline within the
document, for instance as a new paragraph.

other The application must look for additional instructions within the
markup on how it is to process the data.

replace The target resource replaces the existing resource in the window or
frame or other presentational device.

none No guidance is given to the application on how it should process the
target data.

Provides a human-readable label which describes the link. The label should be a text
string rather than an image or other resource.

to

The to attribute identifies the target of the link. The value given to this attribute
must correspond to the value of the 1abel attribute in the target document.

type="simple|extended|locator|arc|resource|title|none"
This attribute must be used when the XLink namespace is used. The type identifies
which of the various types of link this one is. Each type offers a different level of
functionality:

simple These links describe a relationship between exactly two resources.
One resource is the source and the other the target. Simple links are always
outward from the source document, which contains the link element, to the
target.

extended Links of this type may use the full functionality of XLink. They can
have complex structures since they may be describing many-to-many relation-
ships among remote and local resources.

locator These links provide addressing for remote resources.

arc Provides rules defining how traversal among the resources for this link
occurs.

resource Provides addressing for local resources.

title Gives a label for the link in a human-readable form.

The chosen type restricts which of the other attributes can be used in the link. Table
7.3 shows the permitted combinations.

160 Chapter 7: Navigating within and between XML Documents

Table 7.3 Relationships Between XLink Attributes

Simple Extended Locator Arc Resource Title

title Required Required Required Required Required Required

href Optional Required

role Optional Optional Optional Optional
arcrole Optional Optional

title Optional Optional Optional Optional Optional
show Optional Optional

actuate Optional Optional

label Optional Optional
from Optional

to Optional

7.2.3 Simple Links

A unidirectional point-to-point relationship, similar to an HTML hyperlink, is called a
simple link in XLink. Generally a simple link consists of an href and title, although
the latter may be omitted. In some circumstances the title may be implied from the
context, for instance the content of the element may be used as the title. This implicit
relationship should be specified in the DTD or XML Schema associated with the XML
document.

7.2.3.1 The Business Letter To demonstrate how simple links might be used, I'm
going to show some possible modifications to the Business Letter from 2.6. A somewhat
simplified tree structure for this application is shown in Figure 7.1. The letter comprises a
header section, which holds control data such as the names and addresses of the sender
and recipient, and a content section which holds a series of paragraphs of text. If the
Business Letter had been developed for presentation on the screen of a networked device,
its structure could be modified to link to external resources. These modifications would
simplify the structure of the document, while making the processing of the document
more complex. At the moment we can be more concerned with the structure than the
processing — that will be examined later.

The header of the document contains three elements which might profitably be re-
placed with links:

e metadata Each of the keyword elements within the metadata could become a link
to a resource which gives an explanation of it. The target would only be presented

Section 7.2: XLink 161

following some action from the user such as selecting a highlighted word in the
document.

e sender Why place the name and address of the author in every letter? That infor-
mation is common to many documents and could be held in an external resource.
When the reader accesses the letter, this resource is accessed automatically. The
reader will not know that these details are being pulled from a different document
to the one that holds the content of the letter.

e recipient If each author has a file that contains their details, that data can be used
to create the content for the recipient element. Rather than storing the data lo-
cally on the author’s system, it could be accessed dynamically from the recipient’s
own system. One thing to note about this is that the address will always be cur-
rent. For archival, the address to which the letter was originally sent would be more
important than the current address. Since I'm simply outlining a possible scenario
here, such problems do not concern me.

The metadata element might change to something like the following:

<metadata>
<keyword
xlink:href="http://smiggins.com/products.asp?waffle%20maker
xlink:actuate="onRequest"”
value="waffle maker" />
</metadata-

The alterations there are quite limited. Basically a couple of new attributes have been
added to the existing element. No other changes are made to the overall structure of the
document and it can still be processed perfectly without access to the target resource. The
changes to sender and recipient would necessarily be more drastic since they require
access to the target resources if the document is to remain coherent. Here they are:

<header>
<sender
xlink:href="http://smiggins.com/signatures/billsmig.xml"
xlink:actuate="onLoad" />
<recipient
xlink:href="http://microsoft.com/signatures/billg.xml"
xlink:actuate="onLoad" />
</header>

162 Chapter 7: Navigating within and between XML Documents

7.2.4 Extended Links

A link that carries more information than a simple relationship is called an extended link.
Extended links may involve multiple resources, be at least bidirectional, and contain in-
formation that controls how they are processed.

7.2.4.1 The Recipe Book The simple links demonstrated for the Business Letter could
easily be applied to the Recipe Book from Section 2.5. The Recipe Book lends itself to more
complex relationships between data items. In Section 7.2.1 I outlined a scenario in which
a chef was using an online system to access recipes.

<supplier
xlink: type="locator"
xlink:href="http://foodsRus.com"
xlink:role="http://foodsRus.com/supplier"
xlink:label="foodsRus" />

<description
xlink: type="1locator"
xlink:href="http://foodlink.org/ingredient.xml#xpointer(//
sgflour)"
xlink:label="sgflour-def"
xlink:role="http://foodlink.org/descriptions" />

<ingredient
xlink:label="sgflour"
xlink: type="extended">
<quantity amount="450" />
<name
xlink:type="locator"
xlink:label="sgflour-name">
Stoneground Wholemeal Flour
</name>
</ingredient>

<go
xlink:type="arc"
xlink: from="sgflour"
xlink:to="foodRus"
xlink:arcrole="suppliers.xml"

Section 7.2: XLink 163

xlink:actuate="onRequest" />

<go
xlink:type="arc"
xlink: from="sgflour-name"
xlink:to="sgflour-def"
xlink:arcrole="definitions.xml"
xlink:actuate="onRequest" />

That XML fragment is significantly more complex* than the original code which looked
like:

<ingredient>
<quantity amount="450" />
<name>Stoneground wholemeal flour</namex>
</ingredient>

It also has vastly more functionality. The XLink code defines two relationships for
the ingredient. Firstly, two new elements are added to the document which define a
supplier and a description. These could be used throughout the recipe, so the ad-
ditional overhead is not too great at this stage. Both supplier and description point
to remote resources but their use isn’t clear. So that the processing application knows
how to handle these resources, I have included role attributes for both. These direct
the application to resources, probably programs such as Java Servlets, on remote servers.
These resources would provide information on the role of the resource when processing
the document.

Each target resource has an address specified as a URI. The description has an ex-
tended URI which includes an XPointer expression:
xlink:href="http://foodlink.org/ingredient .xml#xpointer (//sgflour)
pointing to a fragment of the document. XPointer is an implementation of XPath and
has broadly the same syntax and semantics. If I wanted to use the same description
element for multiple ingredient names, I would find a different way of expressing this
relationship. Using the current structure, a new description must be added to the
document for each name. The ingredient and name elements in the original document
have been modified with some XLink attributes. The ingredient becomes an extended
link, and both are given identifying labels. Finally I include two elements called go. Each
of these defines an arc from the local document to a remote resource. The ingredient
element is linked to the supplier, and the name is linked to the description.

“1 could have written less code but it might not have been as clear as this sample.

164 Chapter 7: Navigating within and between XML Documents

In a real application, each ingredient would probably be linked to a number of suppli-
ers. If the first was too expensive or didn’t have the item in stock, the user could then
order from the next one in the list. This is easily achieved. A new supplier element is
added for each supplier, and a go element for every ingredient-supplier relationship that
needs to be established.

7.2.5 Linkbases and Generic Links

There are time when readers would like to be able to annotate documents but can’t be-
cause those documents are read-only. Annotations could be used in many ways. They
might be useful for all readers or just for the person who made them, they might be ed-
itable or read-only, they might be hidden or always visible. Adding and using annotations
is an incredibly useful facility, but it’s not one that is available with current systems. XLink
provides a mechanism by which such annotations can at least be described. Implementing
them is a different problem. ..

When a document is read-only, annotations cannot be added into it directly. The so-
lution here is to store the annotations in a separate file, which is usually called a linkbase,
and have the processing software include them as it displays the original document. The
application needs to be able to find the linkbase, which cannot be directly linked from the
source document. Many different schemes can be imagined, ranging from using a default
linkbase, analogous to the Web browser bookmark file, through to asking the user for the
URI of the file they wish to use. These are application-specific problems which, again,
need not detain us here.

The XLink version of the Recipe Book provides a suitable application to demonstrate
how a linkbase might be used. The Recipe Book needs to be returned to its original form.
A linkbase is created which looks something like the following;:

<!xml version="1.0"?>
<definitions>
<xref type="extended"
<ingredient
xlink:type="locator"
xlink:href="#xpointer (string-range (//name, ’'Stoneground
wholemeal
flour’))"
xlink:label="sgflour-name" />
<description
xlink:type="locator"

Section 7.2: XLink 165

xlink:href="http://foodlink.org/ingredient . .xml#xpointer (//
sgflour)"
xlink:label="sgflour-def" />

<go
xlink:type="arc"
xlink: from="sgflour-name"
xlink:to="sgflour-def"
xlink:arcrole="definitions.xml"
xlink:actuate="onRequest" />

</xref>
</definitions>

This code creates a relationship between the ingredient name and the definition. The
application is able to find individual names because they are expressed using XPointer.
This could be implemented as a regular expression search or using SAX events depending
upon the internal representation of the document that the application used. Whenever the
application finds the text string Stoneground wholemeal flour in the document, it
creates an arc to the appropriate definition.

The linkbase concept is useful when building systems that support generic links. A
generic link is created by defining a set of conditions which, if met, are used to establish
a relationship. The conditions are described using XPointer expressions just as in the last
example, but they can be much less precise. For instance, XPointer would allow selection
based upon:

» the element type,
e the value of particular attributes of given elements,
e pattern matching within element names.

The node-set which is created from the XPointer expression can have multiple entries.
If these are extended XLinks, they can be sources or targets for the arc, which means that
very complex relationships can be built almost automatically. Why automatically? The
developer will not know what relationships are going to arise when the code is written.
The creation of those relationships depends upon the application software, although the
developer may have a good idea what the result will be. Imagine how complex these
generic relationships might become in, for example, technical documentation where sets
of elements are being linked to other sets. Such documents truly become webs of infor-
mation.

166 Chapter 7: Navigating within and between XML Documents

7.3 XPOINTER

The XPath recommendation describes a generic set of facilities which can be used to nav-
igate through XML documents. XPath is not intended to be used as is, instead it forms
the basis of other languages. Common uses of XPath include XSLT, XSL-FO and XPointer.
XPointer adds facilities to XPath so that complex expressions can be built and fragments
of documents, for instance over a range of nodes, addressed. XPointer expressions are
commonly used with extended XLink links to address fragments of remote documents.
This can be done because XPointer is able to select based upon string comparisons, ele-
ment names and attributes even when those items do not have specific IDs.

Note:

This discussion of XPointer is based upon the Candidate Recommendation pub-
lished in September, 2001. By the time you read this, the Recommendation will
have been released — but it will be broadly the same.

XPointer extends XPath in three important ways:

» XPointer expressions can be appended to URIs to address fragments of remote doc-
uments.

¢ Ranges of elements and individual points within a document can be addressed.

e XPointer includes facilities for matching with character strings.

In XPointer, a point is an individual location within an XML document. The addressing
scheme allows for selection of points before or after any individual node or character. The
location of a point is an integer position within a node or string. Given that both XPath
and other XPointer functions number from one, it is somewhat surprising that points
number from zero. XPointer expressions can address fragments of XML documents where
those fragments span across a range. A range is defined as being all of the XML between
two points. The XPath concept of a node is extended in XPointer to become a location.
Location is a more flexible concept since it subsumes nodes, points and ranges into a
single idea.

Since XPointer is based upon XPath, evaluation of expressions must take place within
a context. When addressing a fragment of a resource which is identified through a URI,
the context is taken from the root node of the remote resource.

XPointer provides some additional functions beyond those supplied by XPath.

location-set range-to(location-set)
This function operates on each node in the current context. It returns a range for the

Section 7.3: XPointer 167

location. The start of the range is determined by calling the start-point () func-
tion, the end by calling the end-point () function. The following code fragment,
which is based on an example in the XPointer Recommendation, finds the range
from the start of the Sugar element to the end of the Salt element.

xpointer (id ("Sugar") /range-to (id("Salt")))

location-set string-range(location-set, string, [number],

[number]) .
This function works on each element in the location-set given as first argument. The

location is converted to a string value which is searched for the substring given in
argument two. The third argument, which is optional, selects part of the string.
The final argument will select the end of this part. For instance, in the following
example, the string Stoneground wholemeal flour is matched in an ingredient name.
The result is truncated to start before the letter at position 7 and terminate after the
character at position 14.

string-range (//ingredient /name, "Stoneground wholemeal flour",

which results in round wh.

location-set range(location-set)
This returns ranges for each location in the location-set given as a parameter.

location-set range-inside (location-set)
Returns locations for all the contents of the location-set given as an argument.

location-set start-point (location-set)
Returns the starting point of each location in the location-set given as an argument
to the function.

location-set end-point(location-set)
Returns the end point of each location in the location-set given as an argument to
the function.

location-set here()
Returns the location of the node that contains the XPointer. If the XPointer is inside
a text node, the location of the element that contains that text node is returned.

location-set origin()
This function returns a single location which is the element from which traversal to
the current location was initiated.

7,

14)

168 Chapter 7: Navigating within and between XML Documents

Exercises

1. Briefly describe the purpose of XPath, XLink and XPointer.

2. Why is a dedicated navigation language needed for the traversal of XML docu-
ments? Why not simply use the techniques which are available in languages such
as Java?

3. What is meant by the context of an XPath expression?
4. What is a node-set?

5. Download the XPath Recommendation from the W3C Website. Using it, list and
describe the functions which XPath provides.

6. What do the following XPath axes mean? Give suitable supporting examples:

e child
® parent
e following
e preceding-sibling
e self
7. Write an XPath expression which returns the third ingredient of the fourth recipe in

the second category of the recipe book. Can you find an alternative way of navigat-
ing the same path?

Chapter

XSL
Transformation
Language

As you've already seen in this book, XML is a powerful way of structuring data. It is rela-
tively simple and, thanks to its verbosity, very easy to read and write. Data rarely just sits
unused on a forgotten and neglected system. Even if the values don’t change, the data set
will be queried and tested over time. Often this involves sharing data between applica-
tions, although it’s rare for both applications to need exactly the same data. Usually one
application will require just a subset of the data available to the other. For example, an
application that is creating an invoice will not need to know the details of every customer
in the database, just the one being billed. When applications share data, they may use
different structures to meet their differing needs. Sometimes data may even be added, or
removed, from a structure as it is processed.

On other occasions the application may need to present data to a human reader. Al-
though XML is moderately readable, few end-users would be happy seeing it on their
screens. When data is going to be displayed on screen it may be formatted using cascad-
ing stylesheets, as we’ve seen. This is only a partial solution since the entire data set must

170 Chapter 8: XSL Transformation Language

be presented to the user and we are relying upon the browser software performing the
transformation correctly. A better alternative is to convert just the required parts of the
XML into a format such as XHTML or Adobe’s PDF which can be viewed on screen or
printed out.

The process of changing the structure of an XML document is called transformation and
is done using the Extensible Stylesheet Language, XSL. Originally XSL was envisaged as
a single language which could perform all possible transformations. This was impractical
as the language would have been exceptionally complex. In software development com-
plexity is often the enemy of usefulness — once languages reach a certain level of complex-
ity developers will prefer to find other, simpler solutions. The solution to the complexity
of XSL was to split it into two smaller, though still pretty complex, languages. XSLT, the
XSL Transformation language, was developed for the purposes of transforming between
XML structures. The XSL Formatting Objects, XSL-FO, language was developed for trans-
formations into printed or aural forms. I examine XSL-FO in Chapter 10; this chapter will
concentrate on XSLT.

Note:

Since XHTML is an XML application, transformations into Web pages are usually
done through XSLT rather than XSL-FO. Web browsers can display XHTML, thus
in common with most XML books, the examples here will transform from XML to
XHTML.

8.1 INTRODUCING XSLT

Transformations require a source document, in XML, and an XSLT stylesheet. These are
given as input to the XSLT processor which outputs a new XML document. Figure 8.1
shows how this works.

The XSLT processing software includes an XML parser which transforms the two in-
put documents into an internal representation. The parser may use either DOM or SAX
technologies and the internal format may be a tree, a list or something more exotic. Most
commonly, tree structures are used since they mirror the logical structure of the XML doc-
ument, but parsers written in Lisp, or its variants such as Scheme, are more likely to use
list structures. The XSL Recommendation describes the handling of XSL as a process of
transforming between tree structures and, conceptually, this is the easiest way of under-
standing the process.

When writing XSLT code, you’ll process node-sets using XPath expressions. The node-
set will often contain part of the XML tree but visualizing it as such won’t help you develop
the correct expressions. If you think about node-sets, parent nodes, child nodes and so on,

Section 8.1: Introducing XSLT 171

XML Parser New XML
3 and Document
XSLT Processor
XSL
Stylesheet

Figure 8.1 XML plus XSLT Produces XML

you'll find writing XPath easier. Look at Chapter 7 for a detailed explanation of how to
navigate within XML documents.

8.1.1 Why Use XSLT?

Developers who are new to XML often wonder why they need to use XSLT. Given the exis-
tence of APIs such as SAX, discussed in Chapter 13, or DOM, which is outlined in Chapter
12, why not write custom applications? Imagine this scenario: You spend weeks writing
an application which transforms your XML structure, works quickly and effectively and
uses some neat programming tricks. Days before the system goes live the system architect
adds a new XML element and three new attributes to the structure you are working with.
Suddenly, your code doesn’t work and you have to restart the whole development pro-
cess. Six months after rolling out the system, your company gets a new supplier who will
provide XML data in a new format. You have to rewrite your application yet again. Once
you've sorted that little lot out, the IT director decides that you need to move from Java
Enterprise Beans to the .Net framework. Yet again all of the transformation code has to
be altered and now neither the user documentation' nor the design matches the running
system.

How would XSLT help? Firstly, XSLT processors are designed to be generic applica-
tions which all comply with the same W3C Recommendation. If the underlying system
changes, you ought to be able to plugin a new processor and carry on running without
too much change to the stylesheets.

Secondly, because XSLT systems are generic and extensible, if you need to handle a new
structure, you can. Easily. All you need do is to write a new stylesheet which you then
feed into your system. When the company changes supplier, your system can handle

"You did write documentation, didn’t you?

172 Chapter 8: XSL Transformation Language

their data with minimal effort. How does this work? XSLT is one of many declarative
languages. The programmer specifies what they want from their application, not how the
application should work. Effectively your stylesheet simply says that given a particular
XML structure as input, you'd like a different one as output. Changing a transformation
is achieved by rewriting the stylesheets without altering any of the application programs.

Note:

Many XSLT processors let you write your own extension functions or provide li-
braries of functions which extend beyond the XSLT Recommendation. If you use
these, you won't be able to change processor very easily.

8.1.2 An Example Transformation

The best way to learn about any new language is to see it in action. Classically, the ex-
ample programming tutorials always start with is the display of the message Hello World.
That'’s just where I'm going to start with XSLT. In Listing 2.1, I showed you a simple XML
file. I'm going to use an even simpler file this time so that I can create the most straight-
forward of transformations.

Listing 8.1 Hello World in XML
<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="hello.xsl"?>
<mesgage>Hello World</message>

That’s a one-element XML file which contains a simple message. The second line is
a processing instruction which tells the processor to use the stylesheet hello.xsl1 to
transform the file. Listing 8.2 shows the XSLT stylesheet that will transform the XML
shown in Listing 8.1.

Listing 8.2 Hello World

<?xml version="1.0"?>

<x8l:stylesheet
xmlng:xgl="http://www.w3.0rg/1999/XSL/Transform”
version="1.0">

<xs8l:template match="/message">
<html>
<head><title>Test</title></head>
<body>

Section 8.1: Introducing XSLT 173

<hl><xsgl:value-of select="."/></hl>
</body>
</html>
</x8l:template>

</x8l:s8tylesheet>

The essence of this script is to place the code for an XHTML file inside an XSLT tem-
plate. As the template is processed, the contents of elements from the original XML docu-
ment are placed inside the XHTML tags. Once processing has been completed, the HTML
is output. The details of the XSLT will become clear throughout this chapter. The tags that
start with the namespace prefix xs1: are XSLT tags, the other tags are XHTML tags. The
two attributes match and select are XPath expressions which are selecting the parts of
the document that are going to be processed. The result of applying that stylesheet to the
XML file is shown in Figure 8.2.

Mozilla {i) [X]
| file Edit View Search Go

T€-9 -5 X[* 1] searc

]

Hello World

Figure 8.2 Hello World Transformed

In a production environment? the results of an XSLT transformation are likely to be
either:

¢ passed to another application for further processing,
e saved in a file or database,
e or streamed across a network as XHTML, for display in a Web browser.

The examples in this book are handled rather differently. All the transformations that
I'll show convert XML into XHTML. Some modern Web browsers, such as Mozilla and In-
ternet Explorer, include both XML parsers and XSLT transformation engines. This means

“Often referred to as the real world.

174 Chapter 8: XSL Transformation Language

that given an XML file and an XSLT stylesheet, they can display the result of the transfor-
mation. Since I use Linux, I'll be showing the result of using Mozilla,? but you should get
similar results from Internet Explorer.

8.2 STARTING THE STYLESHEET

An XSLT stylesheet is a valid XML document. This simple fact cannot be stated too of-
ten or too clearly. Everything that applies to the XML files that you, yourself, write also
applies to XSLT stylesheets. At the top of the file, therefore, you will find an XML decla-
ration. Also at the top of the file, there is a namespace declaration:

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

The namespace for XSLT version 1.0 stylesheets must be:

http://www.w3.0rg/1999/XSL/Transform

This is defined in the XSLT Recommendation and can only be altered if you use a later
version of XSLT. The namespace can only be used for XSLT documents; it cannot be used
in XML source documents.

XSLT is a large and complex language which contains many different elements. It’s
highly probable that large stylesheets in complex systems will use XSLT tags which are
the same as elements within either the source or target documents. This makes the use
of a namespace prefix vitally important. Even if you are working exclusively with small
documents, using a prefix is a good habit to get into. Other authors will use them, and if
you do the same, reading their code will be much easier.

In programming, life is often easier if you stick to idiomatic structures. An idiomatic
structure is one that all programmers use and recognize instantly. By using well-known,
established forms, code is clearer and easier both to read and to write. Namespace pre-
fixes are a little like that. The use of xs1 as the prefix for XSLT elements has rapidly
become established as the de facto standard. This is probably both because it is the prefix
used in the XSLT Recommendation and because it’s obvious and memorable. Each devel-
oper could invent their own prefix but that would be yet another piece of information to
remember when reading a stylesheet. Psychologists tell us that most people can manage
and manipulate five pieces of information at one time.* If you use a prefix other than xs1,
that’s just one more thing to be remembered by anyone reading your code to maintain,

3Which is available for many different operating systems and hardware platforms.
4The normal range is said to be from three to seven.

Section 8.3: Templates 175

verify or improve it. On small projects that person is likely to be you, and you're likely to
use different prefixes on different projects. Be boring and normal. Don’t try to be clever.
Use the xs1 prefix and save everyone’s sanity.

The elements that follow the stylesheet element are called top-level elements. Any
of the following are permitted:

e attribute-set,
e decimal-format,
e import,

e include,

® key,

e namespace-alias,
e output,

e param,

® preserve-space,
e strip-space,

e template,

variable.

This book is an introductory guide which gives an overview of the capabilities of many
different technologies, so that you can start writing code straight away. If each technology
were comprehensively described, the book would be a thousand pages too long and three
years late. I'm not, therefore, going to discuss every XSLT element. Once you understand
how XSLT works, you can learn more from reading the Recommendation or a compre-
hensive reference work. This is all a round-about way of saying that I won't be looking
at all of those elements. I make no apologies for not even mentioning some of them after
this section.

8.3 TEMPLATES

XSLT stylesheets are made of templates. A template contains an XPath expression which
is used to select elements from the source document, and a set of transformations which

176 Chapter 8: XSL Transformation Language

are applied to the selected elements. Since element selection is performed using XPath
expressions, the results are held in node-sets which contain matched elements plus their
subelements. Logically, these form a set of partial tree structures to which further matches
can be applied. Patterns are applied within a particular context which will be the node
that is being evaluated or one of its ancestors. The expression will not be applied to
nodes that are outside the context. This is one of the commonest causes of problems
when writing XSLT: the expression may appear to be correct, but if the context is wrong
at runtime, results will be incorrect.

Using a series of templates and pattern matches it is possible to drill down into the source
document searching for particular nodes and performing transformations along the way.

<template match="expression™ name="gname" priority="n"

mode="gname" />
Templates must be defined before they can be used. Template definitions are placed

inside template elements. A template element has a number of attributes. Usu-
ally the template will contain a rule which can be matched against the content of the
XML document. The rule is described using the match attribute which accepts an
XPath expression as its value.

In a completely declarative programming style, templates would be selected solely
because the value of their match attribute was successfully matched against content
in the source document. In reality, though, there are many occasions on which this
is not possible. Stylesheets can be made much tidier if the author controls the order
in which templates are used. This level of control also means that the structure of
the output document is not dependent upon the structure of the source document.
Elements can be transformed in the order in which they are eventually required.
Templates can be identified using the name attribute which accepts a valid XML
name as its value.

Sometimes the same content must be processed several times, in different ways. The
templates that are used for this sort of processing will all match the same pattern
which means that the processor needs to decide which template to use at a partic-
ular time. This is where the mode attribute is used. Each of the templates that will
match a particular expression is given a different identifier as the value of the mode
attribute. The processor uses the value of mode to select the correct template. You'll
see examples of the different ways that templates can be used later in this chapter.

<apply-templates select="expression" mode="gname" />
Defining templates is only part of the story. The processor needs to be told
which templates to use. This is done through two different XSLT elements. The
apply-templates element is used to process the children of the context node. The
value of the select attribute is an expression which creates a node-set of matching

Section 8.4: XSL Elements 177

elements. The rules inside the apply-templates element will be applied to each
element in the node-set in turn.

<call-template name="gname" />

8.4

Named templates can be invoked using the call-template element. This has a
single attribute which is the name of the target template. It's important to note that
templates do not have to be named. When the call-template element is used, it
overrides the match and mode attributes of the template element.

XSL ELEMENTS

XSL specifies many different elements. There isn’t space here to describe them all, instead
I'll just look at some of those that you are likely to use on a regular basis. The template
element contains a small tree of nodes which are used to generate content and control

how it is generated.

<for-each select="expression" />

<if

Given a node-set containing elements of a single type, or identically structured sub-
trees, the same processing can be applied to all of its elements. In a typical program-
ming language such as Java, iteration across a set of values is normally achieved
using the for loop. In XSLT the same effect is achieved using the for-each ele-
ment. This takes an expression as its parameter, which may match the context node
or any of its subelements, and applies transformations to all matching elements.

The following code fragment is taken from a stylesheet, presented in Chapter 9,
which is used to transform the Business Letter application. The code finds all
firstname elements that are subelements of the element contained in the variable
$nom. Matching elements are then placed in the output document.

<xsl:for-each select="$nom/firstname">
<xsl:value-of select="." />
</xs8l:for-each>

test="boolean expresgion" />

The if element has a single test attribute. This attribute takes an expression as its
value. Once the expression has been evaluated, its result is converted to a Boolean
value. For those nodes for which the expression evaluates to true, the processing
contained in the template is performed.

The following fragment is, once again, taken from the stylesheet for the Business
Letter. It shows nested if elements performing string comparisons:

178 Chapter 8: XSL Transformation Language

<xsl:if test="$tmp='informal’">
<xsl:if test="Smsg='"'">
Yours Sincerely,
</xsl:1if>
</xsl:1if>
<output
method="xml" | "html" | "text"
version="nmtoken"
encoding="string”
omit-xml-declaration="yes® | "no"
standalone="yes” | "no”
doctype-public="string"®
doctype-system="string"
indent="yes™ | "no"

media-type="string" />
The XSLT processor has no way of knowing what output format it should use for

a transformation. Processors default to producing XHTML, but where a different
format, such as XML, is required, the cutput element should be used. This is a top-
level element which should be placed after the stylesheet element and before
any templates. Using the output element gives tight-grained control over exactly
how the output will be presented so that, for example, your input document might
be in UTF-8 and the output in UTF-16.

<param name="gname" select="expression" />
A param element binds a value to an identifying name so that it can be passed to a
template or stylesheet. Parameters may hold data of any type that can be returned
from an XSLT or XPath expression. The parameter element must be have a value
assigned to its name attribute.

<preserve-space elements="tokens” />

<strip-space elements="tokens” />
These two elements provide partial control over the handling of whitespace within

source documents by the XSLT processor. Whitespace handling in XSLT is discussed
in Section 8.9.

<text disable-output-escaping="yes” | "no” />
When text that does not occur in the source document has to be written to the out-
put, it can originate directly from the XSLT. This may give unpredictable or un-
expected results where whitespace characters are concerned. To ensure that what
appears in the output is exactly what is intended, the text can be placed inside a

text element.

Section 8.5: XSL Functions 179

<with-param name="gname" select="expression" />
The with-paramelement is used to pass parameters into templates and stylesheets.
The parameters must be declared and have values assigned to them before
they are passed. Parameters can be passed in either apply-templates or
call-template elements. The parameter value can be chosen either using the
name of the parameter, or using the select attribute. Using named parameters
will be more familiar to most programmers, and is easier to read.

<value-of select="expression"

disable-output-escaping=["yes"|"no"] />
This element is used to create a text node in the output document. The result of the

expression given to the select attribute is converted to a string and placed directly
into the output.

<variable name="gname" select="expression" />
A variable element binds a value to an identifying name. Variables can hold data
of any type that can be returned from an XSLT or XPath expression. The variable
must be given a value for its name attribute.

8.5 XSL FUNCTIONS

XPath and XSLT provide a number of functions which can be used in expressions. The
XPath functions were described in Section 7.1.3. I'll highlight some of the ones that you
are most likely to use in XSLT, in this Section. Comprehensive details can be found in that
earlier section.

boolean ()
This function converts its argument to a Boolean value. Conversions are based upon
four simple rules:

o The number zero is converted to false. All other numbers are converted to
true.

o A string of length zero becomes false. All other strings are converted to
true.

» Boolean values pass through the function unchanged.
o An empty node-set is converted to false. All other node-sets become true.
ceiling()

Given a numeric argument, this function returns the smallest integer that is equal
to, or greater than, its argument.

180 Chapter 8: XSL Transformation Language

concat ()
Takes two or more arguments, converts each to a string and returns a new string
which is the result of concatenating the converted strings.

count ()
Given a node-set as its parameter, this function will return the number of nodes
which it contains.

floor ()
When given a numeric argument, this function returns the largest integer that is
equal to, or smaller than, the argument.

last ()
Returns the number of nodes in the current context.

name ()
Returns a qualified name, a Qname, which represents the name of a node. Generally,
this will be the name that the node has in the XML document.

normalize-space ()
Takes a string as its argument, removes leading and trailing whitespace, and re-
places all internal sequences of whitespace characters with a single space.

not ()
Negates the Boolean value of its argument and returns this value. If given the value
true, this function will return false.

number ()
Converts its argument to a number using the following simple rules:

e When given a Boolean value, false is converted to zero and true to one.
o If given a number, it is unaltered.

¢ When given a string, leading and trailing whitespace is removed. If the string
is then an XPath number, optionally preceded by a minus sign, its value is
returned. If the value of the string is not an XPath number, NaN is returned.

If given a node-set as an argument, the node-set is converted to a string and
then processed as for string arguments.

position()
Returns a number that represents the current position in the context. Nodes in the

context are numbered from one.

Section 8.5: XSL Functions 181

round ()
Returns the integer value that is closest to the value of its, numeric, argument.

string()
Converts its argument to a string which it returns. The following rules apply:

» The Boolean value false is converted to the string false. The value true is
converted to the string true.

o The number NaN’ is converted to the string NaN. The value zero is converted
to 0, infinity to the string infinity. All other numeric values are converted to
strings which are valid XPath numbers. The conversions happen exactly as
you would expect.

¢ Strings are returned unchanged.
o The rules for processing node-sets are rather complicated.

- An empty node-set becomes an empty string.

- A non-empty node-set is represented by the value of its first node, in doc-
ument order.

- A text node is converted to a string equal to its content.

- A comment node becomes a string which is the same as the comment.

- A processing instruction becomes a string which represents its data part.

— A namespace node becomes a string representing the namespace URL

- An attribute node becomes the value of the attribute.

- A root node, or element node, becomes a string which represents the con-
catenation of all of its descendent text nodes in document order.

substring(value, start[, length])
Returns a substring of the parameter value. The start of the substring is the char-
acter at position start, with the first character of the string having position one.
An optional 1length attribute specifies how many characters the substring should
include. If this number is greater than the length of value, the substring terminates
at the end of the original string.

translate(string, from, to)
The translate () function changes characters within a string. It takes three pa-
rameters, the first of which is the string that will be changed. The second and third
parameters are lists of characters. All characters in the value string that occur in

*If Nan can really be considered a numeric value, since it means not a number.

182 Chapter 8: XSL Transformation Language

the from list are replaced by the character in the to list that is at the same position.
Take, for example, the following code fragment:

<xsl:value-of
select="translate(., ‘abcde’, 'EDCB7’)"/>

Each lower-case a is replaced with an upper-case E, lower-case e with the num-
ber 7, and so on. One common use of translate () is to convert all lower-case
letters to upper-case or vice versa as XSLT does not provide toLowerCase () or
toUpperCase () style functions.

<xsl:value-of select="translate(.,
abcdefghijklmnopgrstuvwxyz’,
' ABCDEFGHIJKLMNOPQRSTUVWXYZ’)" />

8.6 USING VARIABLES

Variables are an essential part of the programmer’s toolkit. They simplify code and make
it more efficient. XSLT includes a limited type of variable. The XSLT variable element is
really somewhat misnamed because in XSLT variables don’t vary. Once a value has been
assigned to a variable element, it cannot be changed. Therefore, in XSLT, variables are
really constants.

Unvarying variables may seem terribly limiting. How can you write real, meaningful
code if you can’t manipulate data? It’s important to remember that XSLT is not a pro-
cedural language, it’s declarative. When you write XSLT, you are telling the processor
what result you would like once it has finished transforming the source document. You
are not telling it how to achieve that result. If this seems like a strange idea, it really isn't.
If you've written database code in SQL, tried your hand at Lisp programming or taken a
functional programming course using a language such as Haskell, then you’ve used this
idea before. In fact, since Lisp is one of the oldest programming languages in use today,
programming without variable assignment must be one of the oldest ideas in computing.
You're probably wondering why, if this is such an old and well-established idea, the vast
majority of code is written in languages such as Java and C++ which use variables. Many
answers could be offered to that question, but in the end it probably all comes down to
control and complexity. As programmers, we like to be in control of the machine. Pro-
gramming in a language such as Lisp often seems to leave the computer in charge.® A

61t isn’t, but that’s not how these languages feel.

Section 8.6: Using Variables 183

more realistic reason for the popularity of variables is that programming without them
can be very complicated. Learning to write XSLT stylesheets will take some time but it’s
not an impossible task.

XSLT variables are declared using the variable element. Each variable must be given
a name that is unique at its level of scope. Within each template, all variable names must
be unique and must not clash with a global variable. The same name can be used for a
local variable in every template if you wish. Variables are accessed by placing a dollar
sign before their name. If the value of the variable is to be assigned to an attribute, it is
placed inside curly brackets, even if, as in this example, it is an attribute of a CSS style:

<gome element attr={$variable} /»

Listing 8.3 modifies the Hello World stylesheet to use variables. The code now displays
an HTML page which shows the message Chris Says Hello World when trans-
formed using a Web browser.

Listing 8.3 Hello World Using Variables

<?xml version="1.0"?>

<xs8l:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
vergion="1.0">

<x8l:variable name="msg">
<x8l:value-of select="/" />
</x%xs8l:variable>

«<x8l:template match="/">

<x8l:variable name="greeter">
<x8l:text>Chris</xsl:text>
</xsl:variable>

<x8l:variable name="col">
<x8l:text>purple</xsl:text>
</x8l:variable>
<html>
<head><title>Test</title></head>
<body>
<hl style="color: {3col}">

184 Chapter 8: XSL Transformation Language

<x8l:value-of select="S$Sgreeter" />
Says
<x8l:value-of select="Smsg"/>
</hl>
</body>
</html>
</x8l:template>

</x8l:stylesheet>

The code shows a global variable, msg, which is available throughout the stylesheet.
This contains the root node of the XML source document. Inside the template, a local
variable is declared which holds a text element containing the string Chris. I could
simply have placed the string inside the variable element; the text nodes are not strictly
required here. Using them in your stylesheet guarantees control over whitespace inside
text content. The third variable, col, is given a string value which represents the color of
the text. This is used in styling the <h1> level heading. Notice that because the variable
is being used in an attribute, its name is placed in curly brackets.

8.7 PARAMETER PASSING

When a piece of data is needed in more than one template, it could be declared as a global
variable and used freely. Global variables cannot, though, be used if the data item is going
to be generated during the processing of the script. This may happen when, for instance,
a numerical value is being created which is based on the value of elements in the source
document. Fortunately, XSLT includes a parameter passing mechanism. Values can be
created as the stylesheet is executed, and passed to those templates that require them.
This is far safer than using global variables. If you have to pass a parameter explicitly,
you know that you need it. Global variables can be used accidentally, which will lead to
incorrect outputs.

Parameters are created using the with-param element. Parameters are passed into
named templates which are being processed through the call-template element. Each
parameter is given an identifier using the name attribute, and a value using either the
select attribute of the with-param element, or using a nested value-of element.
Parameters are extracted in the template using the param element. This takes a single
parameter which is the identifying name of the parameter. The names used in the param
element must be identical to those used in the with-param element. The extraction of

Section 8.7: Parameter Passing 185

parameter values is done using direct comparison of names rather than, for instance, the
order in which parameters are passed.
Listing 8.4 code modifies the Hello World example to use parameters.

Listing 8.4 Hello World Using Parameter Passing

<?¥xml version="1.0"?>

<x8l:8tylesheet

xmlng:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<x8l:template match="/">

<html>
<head><title>Test</title></head>
<body>
<xs8l:call-template name="makeBody">
<x8l:with-param name="content" select="." />
<x8l:with-param name="greeter">
<x%8l:value-of select="'Chris’" />
</x8l:with-param>
<x8l:with-param name="color" select="'purple’" />
</x%x8l:call-template>
</body>
</htmls>
</x8l:template>

<x8l:template name="makeBody">
<xs8l:param name="content" />
<x8l:param name="greeter" />
<x8l:param name="color" />

<hl style="color: {$color}"s
<xsl:value-of select="Sgreeter" />
Says
<xsl:value-of select="$content"/>
</hl>
</x8l:template>

186 Chapter 8: XSL Transformation Language

</x8l:8tylesheet>

The stylesheet has two templates. A top-level template sets up the structure of the
result document, which is an XHTML page. A second template, named makeBody, is
called from this one and three parameters are passed to it. The first parameter is node-set
which contains the body of the XML source document. The context in the first template is
the root node of the XML document. Giving the value .’ to the select attribute will,
therefore, pick all nodes in the document.” The second parameter contains a text node
which has the value Chris, and the third is a text node which holds purple. Notice
that the parameters greeter and color are declared using the two different syntactic
options. In the called template, makeBody, the parameters are extracted and used as if
they were local or global variables.

8.8 MODES

Sometimes the same XML element, or subtree, needs to be processed more than once.
Good examples of this include the creation of a table of contents at the start of a book,
and the placing of footnotes on a printed page. In each case content must be placed into
the flow of the output document and later placed in the document but outside of its main
flow. The two pieces of processing must be treated independently of each other. A table
of contents cannot be created until the rest of the document has been produced because
chapter, section and page numbers depend upon the structure of the whole document.

XSLT provides control over repeated code using modes. Modes work with the
apply-templates element which passes control to templates using matching expres-
sions rather than calls to named templates. The same template can be matched by repeat-
edly using apply-templates elements that have the same context and use the same
pattern in their select attributes. The name of the mode is supplied using the mode
attribute. Listing 8.5 shows this in action.

Listing 8.5 Hello World Using Modes
<?xml version="1.0"?>
<x8l:s8tylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

version="1.0">

<xs8l:template match="/">

"In this trivial example, the values ’ ** and ’ /* would have the same effect.

Section 8.9: Handling Whitespace 187

<htmls>
<head><title>Test</title></head>
<body>
<xs8l:apply-templates select="/" mode="makeHead" />
<xs8l:apply-templates select="/" mode="makeBody" />
</body>
</html>
</xs8l:template>

«<x8l:template match="/" mode="makeHead" >

<hl style="color: purple">
Chris Says
<xs8l:value-of select="."/>
</hl>
</x8l:template>

<xs8l:template match="/" mode="makeBody">
<p>Fred Says
<xs8l:value-of select="."/>
</p>
</x8l:template>

</x8l:stylesheet>

A set of templates is created which match the expression. In the template element of
each, a different mode is supplied. When the processor successfully matches the expres-
sion in a select attribute of an apply-templates element, it will search for a template
whose mode matches that of the element. Figure 8.3 shows what happens when Listing
8.5 is applied to the code from Listing 8.1 using Mozilla.

8.9 HANDLING WHITESPACE

Processing whitespace is one of the most complex and problematic parts of XSLT. This
might seem peculiar at first sight. After all, whitespace is just whitespace and it ought to
be copied straight from the source document to the output document, shouldn’t it? Ac-
tually no. The complexity arises because some whitespace is significant and some isn’t.

188

Significant whitespace is found in the content of the elements in the source document. As
a general rule this should be passed straight through to the output document. Whitespace
that is not significant includes those newlines, tabs, spaces and carriage-returns used to
format XML documents so that humans can read them. When the output of a transforma-
tion is destined directly for a Web browser, another set of problems is created. Browsers
normalize whitespace in element content. This means that where a piece of content has
a run of more than one adjacent whitespace characters, those characters are reduced to a
single space. XSLT provides us with a number of techniques which can be used to control

Chapter 8: XSL Transformation Language

PR

B Mozilla {Build ID: 2002020415

le Edit WMiew Search Go Bookmarks Tasks

9 -5 X [Sfile///1=] search| B - [l

-

Fi
g
¥

| Chris Says Hello World

Fred Says Hello World

¥ & 7 B & Documen.. | -

Figure 8.3 Styling Hello World Using Modes

the appearance of documents.

<preserve-gpace elements="tokens" />

By default, any space that is present in the content of an element is left there by the
XSLT processor. This doesn’t guarantee that you'll notice it in the output, especially
if you are transforming to XHTML. Sometimes, where nested stylesheets are being
used, or where one stylesheet is including or importing another, whitespace may be
removed by an earlier instruction. If you need to guarantee that space will be left
alone, use the preserver-space element. It takes a list of element names as the
value to its elements attribute. The names in the list must be separated by spaces.

Section 8.9: Handling Whitespace 189

<gstrip-space elements="tokens" />
When you need to guarantee the removal of insignificant whitespace, use the
strip-space element. Again this takes a space-separated list of element names
as the value for its elements attribute.

<text />
The content of text elements is placed directly into the output document. This
makes them a very convenient way to add whitespace where it would otherwise
not appear. You've previously seen Table 8.1 in Chapter 2, but it’s reproduced here
to refresh your memory. The table lists the Unicode values that can be used in XML
entities to get space in your output. These entities are understood by all XSLT and
XML processors and will always work.

Table 8.1 XML Whitespace Characters

Character Unicode Value
tab #x9

newline HxA

carriage return #xD

space #x20

normalize-sgpace ()
This function is used to remove leading and trailing whitespace from the text con-
tent of elements. The element name is placed inside the parentheses of the function
during selection:

<xsl:value-of select="normalize-space (elementName)" />

I've tried to illustrate the handling of whitespace in the example which occupies the rest
of this chapter. This is a straightforward, and relatively common, application. I've created
an XML file which holds a poem. The poem is Elegy written in a Country Churchyard by
the English poet Thomas Gray who lived from 1716 to 1771. The poem itself is quite long
so I'm only using the first three stanzas in this example. Listing 8.6 shows the contents of
the XML document.

Listing 8.6 An XML Formatted Poem

<?xml version="1.0"7?>
<?xml-stylesheet type="text/xsl" href="poem.xsl"?>

<poem>

190 Chapter 8: XSL Transformation Language

<title>Elegy written in a Country Churchyard</title>
<author>
<first>Thomas</first>
<last>Gray</last>
</author>
<content>
<stanza>
The Curfew tolls the knell of parting day,
The lowing herd wind slowly o’er the lea,
The plowman homeward plods his weary way,
And leaves the world to darkness and to me.
</stanza>
<stanza>
Now fades the glimmering landscape on the sight,
And all the air a solemn stillness holds,
Save where the beetle wheels his droning flight,
And drowsy tinklings lull the distant folds;
</stanza>
<stanza>
Save that from yonder ivy-mantled tow’r
The moping owl does to the moon complain
Of such as, wand’ring near her secret bow’r,
Molest her ancient solitary reign.
</stanza>
</content>
</poem>

The simplest transformation will display the name of the author, title of the poem and
place each stanza in a separate paragraph. I'm using XHTML as the output format so that
I can display the result in a Web browser. To avoid anomalies caused by the implementa-
tion of software, I transformed the XML to XHTML, saved it in a file, using Xalan-J, and
opened the result directly in Mozilla. Doing this not only verified the transformation, it
also meant that the HTML output was available so that its structure could be examined.

Listing 8.7 shows the first transformation.

Listing 8.7 Stylesheet For A Poem

<?xml version="1.0"?>
<x8l:8tylesheet
xmlng:xsl="http://www.w3.0rg/1999/XSL/Transform"

version="1.0">

Section 8.9: Handling Whitespace

<xgl:template match="/poem">
<html>
<head>

<title><xsl:value-of select="title" /></title>

</head>
<body>
<hl><xsl:value-of select="title" /></hl>
<h3>By
<xs8l:value-of select="author/first" />
<x8l:value-of select="author/last" />
</h3>
<xsl:for-each select="content/stanza">
<p><x8l:value-of select="." /></p>
</x8l:for-each>
</body>
</html>
</x8l:template>

</x8l:stylesheet>

191

The result of the initial transformation is shown in Figure 8.4. Notice how the poet’s
names have been run together into a single word, and the stanzas, which were neatly
formatted, are now presented as long lines of text. The obvious question is which of these
are artifacts of the way that the browser handles text, and which are XSLT problems.
Looking at the HTML code will give us the necessary answers. Listing 8.8 shows the

HTML code.

Listing 8.8 Transformed XML Poem

<html>
<head>
<title>Elegy written in a Country Churchyard</title>
</head>
<body>
<hl>Elegy written in a Country Churchyard</hl>
<h3>By
ThomasGray</h3>
<p>
The Curfew tolls the knell of parting day,
The lowing herd wind slowly o’er the lea,

192 Chapter 8: XSL Transformation Language
B Mozilia {Build 1D: 20
'; File Edit WView Search Go Bookmarks Tasks Help
. €~ -8 X ¥ file///home/f ~| Search| B ~ Wi
R
¥ Extensible St.. | ¥ Getting Start.. | B (Untitled)
Elegy written in a Country !
By ThomasGray
The Curfew tolls the knell of a parting day, The lowing herd v
i| Now fades the glimmering landscape on the sight, And all the
Save that from yonder ivy-mantled tow'r The moping owl do
| | , 2]
¥ [7 f9 &) Document:Don.. | |+
Figure 8.4 Styled Poem
The plowman homeward plods his weary way,
And leaves the world to darkness and to me.
</p>
<p>
Now fades the glimmering landscape on the sight,
And all the air a solemn stillness holds,
Save where the beetle wheels his droning flight,
And drowsy tinklings 1lull the distant folds;
</p>
<p>
Save that from yonder ivy-mantled tow’'r
The moping owl does to the moon complain
Of such as, wand’ring near her secret bow’r,
Molest her ancient solitary reign.
</p>
</body>

</html>

Section 8.9: Handling Whitespace 193

Two separate problems are now clearly identified. The XSLT processor has run the
poet’s names together but it has preserved the whitespace in the stanzas of the poem.
This is exactly the default behavior that was expected. Now that the problems have been
identified, they are easily solved. A space entity, , can be placed between the
names and the HTML <pre> element can be used to format the poem. The default be-
havior of <pre> is to use a fixed pitch font such as Courier, but I'm going to apply a style
to get a more reader-friendly version.

Listing 8.9 A Better Stylesheet For A Poem

<?xml version="1.0"7>

<xsl:stylesheet
xmlng:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xs8l:output method="html" indent="yes" />

<x8l:template match="/poem">
<html>
<head>
<title><xsl:value-of select="title" /></title>
</head>
<body>
<hl><xs8l:value-of select="title" /></hl>
<h3>By
<xg8l:value-of select="author/first" />
<x8l:text> </x8l:text>
<x8l:value-of select="author/last" />
</h3>
<x8l:for-each select="content/stanza">
<p><pre style="font-family:helvetica">
<x8l:value-of select="." />
</pre>
</p>
</x8l:for-each>
</body>
</html>
</x8l:template>

</x8l:stylesheet>

194 Chapter 8: XSL Transformation Language

& Mozilla {Build 1D: 2002028 X
i Eile gdrt}{lew m_ggakch Co _B_ookma_rrlks' Tasks "ﬂelp'

€9 5 X [N fle/rome/is] search| B -

W Extensible St.

¥ Getting Start.. | ® (untitled)

Elegy written in a Country

v W

By Thomas Gray

: The Curfew tolls the knell of a parting day,
v The lowing herd wind slowly o'er the lea,

The plowman homeward plods his weary way,
And leaves the world to darkness and to me.

1ad | 2
w4 & 2 BT @3 | Document: Don.. | . |+
pBen L L e

Figure 8.5 Styled Poem With Whitespace Handling

Figure 8.5 shows the resultant output. The structure of the code is demonstrated in
Listing 8.10. A space now appears between the names. The stanzas remain as they were
yet they now display exactly as intended.

Listing 8.10 Transformed XML Poem

<html>
<head>
<title>Elegy written in a Country Churchyard</title>
</head>
<body>
<hl>Elegy written in a Country Churchyard</hls>
<h3>By
Thomas Gray</h3>
<p>
<pre style="font-family:helvetica">
The Curfew tolls the knell of parting day,
The lowing herd wind slowly o’er the lea,
The plowman homeward plods his weary way,

Section 8.9: Handling Whitespace 195

And leaves the world to darkness and to me.
</prex>
</p>
<p>
<pre style="font-family:helvetica">
Now fades the glimmering landscape on the sight,
And all the air a solemn stillness holds,
Save where the beetle wheels his droning flight,
And drowsy tinklings lull the distant folds;
</pre>
</p>
<p>
<pre style="font-family:helvetica">
Save that from yonder ivy-mantled tow’r
The moping owl does to the moon complain
Of such as, wand’ring near her secret bow’r,
Molest her ancient solitary reign.
</pre>
</p>
</body>
</html>

This chapter has introduced many new ideas. Learning XSLT is an incremental process
which can be extremely infuriating. Most people transform using a Web browser, at least
during development. This is quick and convenient but difficult to debug. The main dif-
ficulty is that the output file never really exists. The output is only in the memory of the
browser. If you are having debugging problems with something like whitespace, trans-
forming your code using software such as Xalan or Saxon will give you an output file that
you can examine.

In Chapter 9 I demonstrate two large and complex transformations. The Recipe Book
becomes an online application. Readers get to select a recipe from a menu and see it
displayed on screen. The Business Letter is transformed into XHTML which displays on
screen just like a printed letter — it even includes footnotes.

196

Chapter 8: XSL Transformation Language

Exercises

10.
11.

12.

13.
14.
15.

16.

Find and install at least one application which can be used to transform XML docu-
ments using XSLT. be sure to run any test suites which come with the application so
that you know it installed properly.

Describe three problems which might be encountered when using CSS to format
XML documents. How does XSLT address these problems?

. What output formats are commonly created by XSLT processors?

. Think of two output formats which are not currently supported by XSLT processors.

Outline why you think these ought to be added to popular processors.

. Write an XSLT stylesheet which converts your name and address document into

XHTML. View the resulting document in a Web browser.
List, and briefly describe, three pieces of XSLT processing software.

Why don’t all Web browsers support automated transformation of XML to XHTML
using XSLT?

. Outline why XML to XHTML transformations using XSLT are normally performed

on a server rather than at the client.

. What is an XSLT template element? Why are XSLT stylesheets formatted as sets of

templates?
What other XML technology is used in XSLT to navigate through documents.

If a stylesheet needs to add information into an output document, that information
is placed inside an XSLT element. Using a code fragment describe how this is done.

Describe how XSLT variables differ from those in programming languages such as
Pascal.

How are parameters passed into XSLT templates?
Why are modes needed in XSLT stylesheets? Give an example of their use.

Create an XSLT stylesheet which creates an XHTML document containing a calendar
of the current month. Place the calendar in a table with the names of the days in blue
text.

Modify the calendar so that, using selection and iteration, it produces a calendar for
the current year. You may ignore the problem of leap years, for this exercise.

Chapter

XSLT in Use

I've said it before, but this point is worth emphasizing: XSLT is an extremely complex and
awkward language. The complexity is magnified because using XSLT requires in-depth
knowledge of XML, namespaces and XPath, as well as an understanding of the desired
transformation. Understanding can only really be gained through experience, but writ-
ing non-trivial stylesheets without seeing others is far from easy. To help you get enough
knowledge to write your own stylesheets, this chapter is composed of two substantial ex-
amples in which the Recipe Book and Business Letter are transformed to XHTML-format
Web pages for display in a traditional browser. Since XHTML is an application of XML, a
valid XHTML page is also a valid XML page. XSLT is commonly used to transform one
XML structure into another. The commonest of these transformations is probably XML
to XHTML, as shown here. In previous chapters, I've placed the examples in the chapter
which they refer to. These XSLT examples are too long and complicated to fit comfortably
in Chapter 8, which is why I've split them into a chapter of their own.

The code that follows is, on the whole, straightforward. Having said which, it’s only
straightforward if you read and understand XML, XSLT and XPath. Plenty of explana-
tion accompanies and illuminates the code. Often, when faced with a programming ex-
ample, readers dive straight for the code, bypassing the explanation. I'm not sure that
approach will work in this case. The examples demonstrate a variety of XSLT constructs
and approaches. The reasons for choosing this particular set of techniques are not always
obvious from the source so it’s worth spending some time finding out why certain de-

198 Chapter 9: XSLT in Use

sign decisions were made. When you read through these examples, notice that the XPath
expressions are rather simple. XPath can be used to construct fearsomely complex expres-
sions but, often, that code can be broken down into a series of much simpler steps. The
advantage of writing simple code is that you are far less likely to make mistakes during
development and, just as importantly, you will be able to maintain your code in the future.

9.1 THE RECIPE BOOK

The Recipe Book is going to become a traditional Web-style application. This has two
parts. First, a list of categories and the recipes they contain is shown to the user. The user
selects an item from the list which is then displayed, nicely formatted.

I've only built sample code. All of the processing is performed by the Web browser
which in my case is Mozilla. If I were building a real application, the XSLT would remain
virtually unchanged. I would add hyperlinks to the list of recipes, so that user-driven
selection worked, but the rest of the code would remain the same. The largest change
would be in the way that the XML and XSLT are processed. Rather than sending a large
XML file and a complex stylesheet to the browser, the processing should be performed
on the server. The browser then receives HTML and, probably, a stylesheet. This is an
important difference. Web browsers do not all process XSLT properly. Even the latest
revisions of browsers can have problems. Figure 9.1 shows what happened when I loaded
the Recipe Book XML file into Opera which supports XML but not XSLT.

I consider these examples to be demonstrations of what the technology can do, rather
than sensible applications. Web browsers are designed to display XHTML, that’s what
they do well. XHTML sent using the Web-standard HTTP protocol is a relatively
lightweight, fast and extremely simple way of communicating data. XML is none of these
things. Sending XML between processing applications, for instance within an e-commerce
environment or to replace a technology such as EDI', is sensible. Using it when you really
need to pass XHTML around is simply foolish.

That's quite enough proselytizing for now, though. Let’s see what XSLT can do for us,
wherever and however we choose to use it.

9.1.1 Selecting a Recipe

The Recipe Book is a single XML file which contains many recipes. These are placed into
categories, each recipe appearing in only one category, making a simple non-relational
database. Presenting this data to a user is typical of the requirements of many different

1Electronic Data Interchange. A long-established standard for sharing transactional information between businesses.

Section 9.1: The Recipe Book 199

| @Transfers | Difilesfflocalho...

“E'? @0& [lfxm[bookfcodefrecipe.xrhl

bread The Basic Loaf Warm water Granulated Dried
Yeast Sugar Stoneground wholemeal flour Strong
white bread flour Salt Fresh Lard Bake at gas
number 8 for 15 minutes Bake at 230c¢ for 15
minutes Add the yeast and sugar to the warm
water and leave to activate Sieve the flour and salt
into a large bowl Crumble the lard into the flour

until it has a "breadcrumb” texture Mix the liquid

into the flour Turn onto floured surface and knead
for 300 strokes Form into a ball, place in a warm
place until doubled in size Knead for another 100
strokes Form into a ball, place in a warm place unt
doubled in size Form into five loaves and leave to
rise for 30 minutes Bake! Sussex Gypsy Bread Selfff
Raising Flour Pinch Of Salt Pinch Of Mixed Spice ;
Ground Ginger Soft Brown Sugar Sultanas
Chopped Peel Treacle Milk Egg Bicarbonate Of Soda

Figure 9.1 XML plus XSLT in Opera

Web applications. Users will want to see a small selection of the recipes from the database.
They will, typically, select recipes either from a menu system or through a search script.
Searching may be based on category, the name of the recipe, ingredients or regular ex-
pressions which can match against anything in the database.

Two possible transformations suggest themselves immediately. The first is a search
through the XML file which pulls out categories and recipes. The information is formatted
into a table inside an XHTML page. The result is shown in Figure 9.2.

Since the stylesheet that creates the list is relatively straightforward, I'll show all of the
code in a single block. Later examples are more complex and have been split so that they
are more readable. Read through the code first, try to make sense of it, then look at the
explanation which follows.

Listing 9.1 Selecting a Recipe

<?xml version="1.0"7?>

<xs8l:stylesheet

200 Chapter 9: XSLT in Use

B Mozilla {Build

Available Reapes

> . o

BREAD

The Basic Loaf
Sussex Gypsy Bread

Buns For Fun

—

Figure 9.2 The List of Categories and Recipes

xmlng:xs8l="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<x8l:template match="/cookbook">
<html>
<head>
<title>Available Recipes</title>
</head>
<body>
<hl>Available Recipes</hl>

<p style="margin-left:2cm">
<table border="3" cellspacing="10">
<x8l:for-each select="category">
<tr>
<td style="font-size:20pt;
color:maroon;

Section 9.1: The Recipe Book 201

background:pink;
text-align:center">
<x8l:for-each select="title">
<x8l:value-of
select="translate(.,
’abcdefghijklmnopgrstuvwxyz’,
' ABCDEFGHIJKLMNOPQRSTUVWXYZ’) " />
</x8l:for-each>
</td>
</tr>
<x8l:for-each select="recipe/name">
<tr>
<td style="color:navy; font-style:italic">
<x8l:value-of select="."/>
</td>
</tr>
</xs8l:for-each>
</x8l: for-each>
</table>
</p>
</body>
</html>
</x8l:template>
</x8l:stylesheet>

The first thing to notice is that the transformation results in a well-formed? XHTML
page. The XHTML tags are not given a prefix. The output from this transformation, if it
were executed on a server, would be redirected to a browser. Although many of the more
modern Web browsers understand at least some XML, assuming that the browser would
understand namespaces and prefixes is extremely dangerous. To allow for the possibility
that the reader is using Internet Explorer 3 or Navigator 2, the output doesn’t include
anything that older browsers can’t handle.

The gimlet-eyed among you will have spotted two potential flaws here. This output
is XHTML, but older browsers only understand HTML. What happens to the additional
features, such as empty tags, that XHTML provides? Easy — since they look like tags,
they get ignored. Web browsers have always ignored everything inside an element that
they can’t process. It’s a safety mechanism since most Web pages are badly formed. But

I don’t include a Document Type Declaration since most Web browsers assume one anyway.

202 Chapter 9: XSLT in Use

what about the style attributes? They’re treated in just the same way. Since the browser
knows they’re attributes that it can’t handle, it ignores them. An old browser will show
a simple, unadorned, Web page that functions perfectly. Isn’t backwards-compatibility
great?

<xsl:template match="/cookbook">

The stylesheet starts with the selection of all cookbook elements into a single node-set.
Although there’s only one of these elements in the file, making it into a node-set simplifies
the XPath expressions in later selections. Once the infrastructure of the XHTML page has
been established, the category elements are selected into another node-set. Since the
selection process is working upon the context node, the select attribute only requires
the name of the target node:

<xsl:for-each select="category">

The finished page is going to display all categories in the XML file. Using the
for-each element means that they are all selected into a node-set which the processor
then moves across, handling one element at a time. Although for-each looks like a typ-
ical programmatic loop control, it isn’t. Remember XSLT is a purely declarative language.
This statement is telling the processing application that it must operate on all category
elements but it does not say how it should do that. The software may implement the
operation as a for or while loop, may handle the process recursively, or manage the
whole thing through a tree structure. The great thing is that we don’t care. So long as all
category elements are selected and processed in reasonable time, we can be satisfied.

<xsl:for-each select="title">
<xsl:value-of
select="translate(.,
'abcdefghijklmnopgrstuvwxyz’,
* ABRCDEFGHIJKLMNOPQRSTUVWXYZ')" />
</xsl:for-each>

Next up, the title element of the category is pulled out for display. Unfortunately,
there’s no way of knowing if the content here is upper-case, lower-case or a mixture of
the two. Displaying these as upper-case letters makes them stand out and, coincidentally,
shows another neat aspect of XSLT. The translate () function can be used to convert
items in one string into something different. In this example the function is applied to the
content of the current node, represented by a dot. The lower-case English alphabet is given
as the second parameter, the upper-case version as the last one. As each lower-case letter is
encountered in the content, it is replaced by the letter that appears at the same position in
the upper-case set. Performing the same thing when the content may contain any Unicode
character is rather less straightforward since it requires the use of extension libraries. The

Section 9.1: The Recipe Book 203

XSLT Standard Library, which is available from http://xsltsl.sourceforge.net,
provides functions to do this.

At this point, the node-set contains all of the category elements and their subele-
ments. The next part of the processing is the extraction of recipe names for each category.
The code is still inside the for-each element, which means that whatever follows will
be applied to each category in turn. The first step is to extract the name of each recipe:

<xsl:for-each select="recipe/name">

This XPath is expressed relative to the context node, category, and heads straight
down to the name element. The selected name becomes the new context node. Its content
is placed into the table using:

<xsl:value-of select="."/>

That’s it. The entire database of recipes can be traversed and the desired nodes ex-
tracted with this simple script. If you look back at the code, roughly eight XML elements
are used. Most of the script is XHTML. Try writing the same thing as simply using Java
or Active Server Pages and you will start to appreciate the power of XSLT. If it is used
appropriately, a compact, yet powerful, solution can be built.

9.1.2 Displaying a Recipe

Once visitors to the site have selected a recipe, it needs to be presented to them as a neatly
formatted Web page. The desired output is shown in Figure 9.3.

The page contains a table of ingredients, a numbered list of notes and a series of para-
graphs delimited by bullet points. The table and bullet-pointed list are standard HTML
constructs. The creation of the numbered list could have been done using a simple HTML
enumerated list. In this example it's created using some of the more powerful features
of XSLT. The stylesheet that creates this simple page is far too long to present as a single
block of text in a book. Instead it has been split it into small pieces which, if assembled in
the same order in which they are presented, combine to make the whole stylesheet.

In the previous example, the entire stylesheet was wrapped inside a single template
element. That is the most straightforward way to write a stylesheet. The structure of the
input mirrors exactly the structure that will be found in the resulting XML. If the transfor-
mation is simple, this is probably the best way of writing the XSLT, if possible. It certainly
makes for readable code, requires relatively little documentation, and can be maintained
easily. The problem with this simple approach is that it is incredibly restrictive. Achieving
complex results inevitably requires duplication of code throughout the stylesheet. That's
not how complicated programs are written and it needn’t be how complex XSLT scripts
are created.

In XSLT templates can be written for each operation and called from a main template,
or from each other. In fact, templates can be used in a very similar way to functions in

204 Chapter 9: XSLT in Use

B Mozilla {Build ID: 2002020415) -
File Edit View Search go Bookmarkg Tasks Help Debug QA
-'_ (- -} VIS_W){ [Q ﬂlef//ho ne/fred/xmibook/co -I search* .I. E

-

-
Buns For Fun
Ingredient Amount Unit
Butter 3 oz
Milk 300 mi
"I | Fresh Yeast 8¢ g
Dried Yeast 25 g
|| caster Sugar 80 g
| | Ground Cardamom 7.5 mi
|| salt 25 ml 2
; Strong White Flour B00 g
Raisins 25 g
Egg 1 g

Note 1: Preheat the oven to 225C/425F/Gas 7.

e Melt the butter in a small saucepan. Add the milk and heat until
the liquid is lukewarm (at body temperature).
. MIX together the sugar, ground cardamom, salt, yeast and flour -

\#% B 7 EB @ Document. Done (0.075 Tl e e

Figure 9.3 A Selected Recipe Displayed in Mozilla

traditional programming languages. It’s important to remember that XSLT is a declarative
language; templates don’t work like functions and variables aren’t really variable. If you
forget these things, the results that you get can sometimes be unexpected.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<x8l:variable name="recipe" select="//category([l]/recipe(3]"/>
<x8l:template match="/cookbook">

<html>
<head>

Section 9.1: The Recipe Book 205

<titles><xsl:call-template name="showTitle"/></title>
</head>
<body>
<hl style="color:maroon; background:lemon; padding:5pt">
<xgl:call-template name="showTitle"/>
</hl>
<table border="2">
<tr style="background:wheat; color:darkgreen'>
<th style="padding:5pt">Ingredient</th>
<th style="padding:5pt">Amount</th>
<th style="padding:5pt">Unit</th>
</tr>
<xs8l:call-template name="showIngredients" />
</table>
<x8l:call-template name="ghowNotes"/>
<ul style="width: 12cm">
<xs8l:call-template name="ghowMethod" />

</body>
</html>
</x8l:template>

The stylesheet starts with a main template which calls all of the others. Before this,
though, the selected recipe is extracted into a single-element node-set and assigned to a
variable. The recipe that we want to display is the third one in the first category. The array
indexing syntax of square brackets may be familiar from other programming languages.

<xsl:variable name="recipe" select="//category([l]/recipe[3]"/>

The recipe is going to be used repeatedly throughout the transformation. Searching
for it or making it into the context node for each template is going to cause a massive
performance hit. The code is simplified, which means that development and maintenance
are also easier. In the example, I assume that the user has asked for the third recipe in the
first category. In my small database this is a recipe called Buns For Fun.

<x8l:template name="showTitle">
<x8l:value-of select="S$recipe/name"/>
</x8l:template>

All of the templates work in the same way. Each has a unique name so that it can
be called from the top-level template and so that, if needed, it can be reused throughout
the program. Each template displays subnodes of the selected recipe. The showTitle
template is used to display the name of the recipe. It is called to create content for the

206 Chapter 9: XSLT in Use

title of the page, which displays in the frame of the browser, and to create a large heading
at the top of the page. When the entire XML file is sent to the browser for a client-side
transformation, the title is not displayed since the browser doesn’t have a complete HTML
page. Getting at the subnodes is very simple. Because they are subnodes of the node
which is held in the variable recipe, a simple XPath expression will pick them out. The
XPath starts at the contents of recipe which are available when a dollar sign is placed in
front of the variable name.

<xs8l:template name="showIngredients">
<x8l: for-each select="S$recipe/ingredient">
<tr>
<th align="left" style="padding-left:8pt">
<x8l:value-of select="name"/>
</th>
<td align="right" style="padding-right:7pt">
<x8l:value-of select="quantity/@amount"/>
</td>
<td align="left" style="padding-left:7pt">
<x8l:value-of select="quantity/@unit"/>
</td>
</tr>
</x8l: for-each>
</xs8l:template>

Creating the table of ingredients is more complex than getting the name of the recipe,
but not greatly so. The template iterates across the ingredient subnodes of the
recipe. During each iteration the ingredient being processed becomes the context node.
This means that selection of its subnodes such as the quantity element is relative to
ingredient. The name of the ingredient is selected first and placed in a cell of the
table. The quant ity element never has content but it does have two attributes whose val-
ues interest us. Accessing the content of the attributes is done by placing an ampersand
in front of the attribute name within the XPath expression:

quantity/@unit

Notice that the code that creates the table includes styles so that each cell is neatly
formatted. Using a combination of text-justification and padding within each cell means
that some visually interesting effects can be created. In fact, there’s no reason why HTML
tables can’t be as interesting as those found in print media.?

3 Although I'm not going to claim that this table is in any way interesting.

Section 9.1: The Recipe Book 207

<x8l:template name="showNotes">
<xg8l:variable name="tmp" select="Srecipe/cooking/note"/>
<xs8l:for-each select="S$tmp">
<p>
<gpan style="font-style:italic;
color:purple;
font-size: 10pt">Note
<xgl:value-of select="position()"/>:

<xs8l:value-of select="."/>
</p>
</x8l: for-each>
</x8l:template>

Recipes often include information which, while instructional, is not part of the method.
This information may include cooking times or temperatures, the number of people
served by the recipe or details of special equipment that might be required. In the Recipe
Book XML example, this class of information is called a note. I decided to display note
data in a numbered list. I didn’t use the built-in HTML ordered list since I wanted to show
another feature of XSLT. The template starts by selecting all of the notes into a node-set:

<xgl:variable name="tmp" select="$recipe/cooking/note"/>

The code iterates across this node-set placing each item into a styled paragraph. Writ-
ing out the contents of the node is a simple matter of using:

<xsl:value-of select="."/>

But a number needs to be shown before the contents are displayed. I do this using the
position() function. Each node is numbered by showing its position in the node-set
which is held in \ $tmp:

<xsl:value-of select="position()"/>

I'll use the same idea in Section 9.2 to produce numbered footnotes and references to
them.

<x8l:template name="showMethod">
<x8l:for-each select="Srecipe/method/instruction">
<xsl:value-of select="." /></1li>
</x8l:for-each>
</x8l:template>

</x8l:stylesheet>

Displaying the instructions is another easy step. Again the XPath has three steps but
once each item has been selected it is placed into a <1i>, list item, element. The browser

208 Chapter 9: XSLT in Use

will automatically place bullet points in front of these and arrange them on the page.
None of the complexity that was required to format the notes is needed here.

When the stylesheet is considered as a piece of code, and when it’s compared to alterna-
tives such as PHP or Java, XSLT begins to look like an excellent transformation language.
Problems may arise because of its succinctness, but they are easily surmounted given
enough practice.

9.2 THE BUSINESS LETTER

Generally, styling content for display on a screen is very different to styling for print.
Screens are far more flexible than pages when displaying layered or formatted content.
Physical pages are subject to many different constraints such as the need for margins and
the limited amount of transparency that can be applied to text or images. When content
is displayed on screen it can be far more fluid; most people expect that when they resize
an application, its content will flow around into a new configuration. Despite this, many
Web designers create pages that are so rigidly sized that they often leave the user’s screen
part empty. When writing the XSLT for the Business Letter, I decided to try to mimic a
typical printed layout using XHTML as the target output format. In part, this example
shows more features of XSLT, but it also demonstrates that XML can be transformed into
almost any form. Figure 9.4 shows the end product of the transformation.

The XSLT code that accomplishes these whole-scale changes is long and complicated.
As with the Recipe Book, I've separated the processing into a set of templates which are
called from the top-level template. Each template transforms part of the source code into
XHTML. Although XSLT is a declarative language, we can exercise some control over
how it works. By calling templates in a particular order, XHTML is generated in the
correct order.

Read through the code for the first template, then I'll explain it. Many of the ideas
that I used to style the Recipe Book are reused here. In this explanation I'll skip over this
familiar territory. This transformation introduces a lot of new, and more complex, ideas
which I want to look at in some detail.

<?xml version="1.0"?>
<xs8l:stylesheet version="1.0"
xmlng:x8l="http://www.w3.0rg/1999/XSL/Transform" >

<xsl:variable name="footnotes" select="//content/para/footnote"/>

<xs8l:template match="/letter">

Section 9.2: The Business Letter 209

Bl Mozila {Build 1D: 2002021 =
" File Edit View Search Go Bookmarks J‘_asks' Help Debug 0A

€ - 9 - B X [® filey//mome/fred/xmibook/code/let »] Search| B ~ [l
e A ,

Mr. William James Smiggins —
Bill Smiggins Incorporated
California

CA 11223

Thursday, 27 December, 2001.

Dear Bill Gates,

Here at Bill Smiggins Inc. we're really proud of our ten-year reputation for the
development of quality products. We're sorry to hear that you were unhappy

H with the Combined Trouser Press and Waffle Maker that you recently purchased
from us. I can only state that it was in full working order when we shipped, and
the presence of fluff in your breakfast waffles was as much of a shock to us, as
we're sure it was to you.

If you return the Combined Trouser Press and Waffle Maker in its original
packaging, we'll arrange a full refundLL,

B S i b b R e e R

Bill Smiggins Inc. Giving you the quality of service you deserve.
Yours Faithfully,
Bt

[1] Please note, we will not pay the cost of shipping goods back to us.

1o |

% 1 7 ¢l o7 | Document: Done (0.099 secs)

Figure 9.4 Mozilla Displaying the Styled Letter

<html>
<head>
<title>To:
<x8l:value-of select="recipient/name/firstname"/>
<x8l:text> </x8l:text>
<x8l:value-of select="recipient/name/surname"/>
</title>
</head>

210 Chapter 9: XSLT in Use

<body style="width: 15cm">

<xsl:call-template name="address_table">
<xs8l:with-param name="side" select="'right’'" />
<x8l:with-param name="add"
select="header/sender/address" />
<xs8l:with-param name="nom"
select="header/sender/name" />
</x8l:call-template>

<xsl:call-template name="address_table">
<x8l:with-param name="side" select="'left’'" />
<x8l:with-param name="add"
select="header/recipient/address" />
<x8l:with-param name="nom"
select="header/recipient/name" />
</x8l:call-template>

<x8l:call-template name="dater"/>
<xs8l:apply-templates select="//content"/>
<xs8l:call-template name="salut"/>
<x8l:call-template name="footnotes"/>
</body>
</html>
</x8l:template>

A variable called footnotes is declared at the very top of the template. Later in the
template I'm going to create footnotes which are placed at the foot of the letter,* and
referenced from the body of the text. I need to be able to access all footnotes which are
defined in the XML structure. Since footnotes can only occur inside paragraphs inside the
content of the letter, I can select them into a node-set just once. The following line of code
performs the selection:

<xsl:variable name="footnotes" select="//content/para/footnote"/>

Because this node-set is created before any templates are defined, it is effectively a global
variable which can be used in all of the templates inside the stylesheet. Creating a global
variable means that I don't have to worry about passing the variable as a parameter to

40f course!

Section 9.2: The Business Letter 211

each template that needs it. This makes the code both more readable and, hopefully,
easier to process.

The title element of the XHTML document should contain the names of the recipient
with a space character between each part of the name. A brute-force approach to creat-
ing the content for this element would be simply to select all firstname and surname
elements from below the recipient element. This causes problems with the handling
of whitespace. Simply placing a space between the content of each node as it is selected
does not guarantee that there will be a space in the output. Remember that whitespace
is treated in different ways at different times. In this situation we are neither preserv-
ing whitespace from the source document, nor removing it. Rather, we are adding new
whitespace to the output of the document as it is created. The problem, therefore, is one
of forcing the processor to place whitespace characters where it would not, by default, do
50.

The solution is something that is obvious when you've seen it, but extremely difficult
to figure out the first time. Since the XML is being transformed into XHTML, the most
obvious answer is to place the XHTML non-breaking space character into the output.
This character has a standard XHTML entity: &#nbsp; which all HTML processors un-
derstand and which they convert into a single space character. Unfortunately, with this
transformation we’re dealing with an XML parser and an XSLT transformation engine.
They do not, by default, understand the meaning of &#nbsp;. XML software under-
stands the meaning of the Unicode space character which is represented by the entity
 ;. This is one of four such entities which were listed in Table 2.4. Having identified
the correct character, it has to appear in the transformed document. This could be done
by placing the entity directly into the stylesheet, but this doesn’t guarantee that the space
will appear in the output. Output can be forced using the <xsl:text> element whose
content will always be placed into the transformed document:

«xsl:text> </xsl:text>

Having sorted the title, the body of the letter itself can be created. The letter starts
with the names and addresses of the sender and recipient. I'm using a typical British
structure here in which the sender’s details are placed on the right side, and the recipient’s
on the left of the page.> Since both transformations use the same data structures, I'd like
to be able to use the same template for them both. None of the browsers I've tried have
any concept of page width when transforming XML. Content placed on the right side of
the page will disappear way over to the right so that the page must be scrolled to view it.
This behavior can be negated by setting the width of the page:

<body style="width: 15cm">

$The screenshot in Figure 9.4 omits the recipient’s address so that the image fits on a printed page.

212 Chapter 9: XSLT in Use

The only difficulties in this transformation will be identifying the correct elements and
telling the template which side of the screen to place the content. I'll solve both prob-
lems by passing values into the stylesheet as parameters. I create a template named
address_table and call it with three parameters: the side on which I want the content,
a node-set containing the address and a node-set containing the name. Each parameter
is passed in using the xs1:with-param element. This has two attributes: a parameter
name and the value which is assigned to the select attribute.

<xsl:with-param name="nom" select="header/sender/name” />

The address_table template, shown below, starts by extracting the parameters so
that they can be used in the same way as variables. The parameter names in the template
must match those in the with-param element inside the call-template element that
called the address_table template.

<xs8l:template name="address_table">
<x8l:param name="side" />
<x8l:param name="add" />
<x8l:param name="nom" />

<div align="{$side}">
<table border="0">
<tr>
<th align="left">
<x8l:if test="Snom/title”">
<x8l:value-of select="S$nom/title" />
<x8l:text> </x8l:text>
</x8l:if>
<xs8l:for-each select="$nom/firstname">
<xs8l:value-of select="." />
<x8l:text> </x8l:text>
</x8l: for-each>
<xs8l:value-of select="S$nom/surname" />

</th>
</tr>
<x8l:for-each select="$add/child::*">
<tr>
<td align="{$side}">
<x8l1:value-of select="."/>
</td>

</tr>

Section 9.2: The Business Letter 213

</x8l: for-each>
</table>
</div>
</x8l:template>

The address_table template formats a name and address using an HTML table.
Aligning the text on screen is a simple matter of aligning the cells in each row of the table,
and of correctly placing the table on the page. To align the table the content of the side
parameter must be extracted and used as the value for HTML attributes:

<div align="{$side}">

To obtain the value of a parameter as text, the parameter reference is placed inside
curly brackets. A reference to a parameter is created by placing a dollar sign before the
parameter name. If the parameter is a node-set, its content is accessed by creating XPath
expressions which start with the parameter reference such as $nom/surname. Selecting
and displaying subelements of the address could be done in a number of ways. A crude
approach would be to select all subelements, items such as 1inel or country, and place
them inside an HTML table. Doing that is going to require a significant amount of code.
In this example a more compact approach has been taken:

<xsl:for-each select="%add/child::*">

The stylesheet iterates across all children of the address node, extracting the content
of each and placing it in a new row of the table. This approach is far less selective. With
the brute-force approach, if it was decided that 1ine3 elements should not be shown the
appropriate lines could be removed from the stylesheet. Using the iterative approach a
conditional expression would have to be written to selectively remove 1ine3 elements as
they were encountered.

<xs8l:template name="dater">
<xg8l:variable name="dy" select="//header/date"/>
<div align="right">
<x8l:if test="S$dy/dayname">
<x8l:value-of select="3dy/dayname"/>,
<x81:text> </x8l: text>
</x8l:1if>
<x8l:if test="S$dy/day">
<x8l:value-of select="$dy/day"/>
<x8l:text> </x8l:text>
</xs8l:if>
<x8l:1f test="Sdy/month">
<x8l:value-of select="3$dy/month"/>,
«<x8l:text> </x8l:text>

214 Chapter 9: XSLT in Use

</x8l:if>
<x8l:if test="3dy/year">
<x8l:value-of select="S$dy/year"/>.
</x8l:if>
</divs>

<xs8l:call-template name="greet"/>
</x8l:template>

Once the addresses have been displayed, the date is placed on the right-hand side of
the page. The code in the dater template is pretty simple. It works by testing the type of
each element below the date element and displaying its contents. Why not use a simple
loop to iterate across these elements? When the date is displayed the order of the parts is
important. When the data is stored, that order doesn’t matter. An iterative approach to
processing the date may give the output we want, but it’s more likely not to.

Once the date has been formatted, the body of the letter starts. Letters always begin
with a greeting of the form Dear Miss Smith. The greet template formats the greet-
ing.

<xs8l:template name="greet">
<xs8l:variable name="nom" select="//header/recipient/name" />
<p>Dear<xsl:text> </x8l:text>
<x8l:if test="Snom/title">
<xs8l:value-of select="S$nom/title" />
<x8l:text> </x8l:text>
<x8l:value-of select="S$nom/surname" />
</x8l:if>
<x8l:if test="not ($nom/title) ">
<xs8l:for-each select="Snom/firstname">
<x8l:value-of select="." />
<xs8l:text> </x8l:text>
</x8l:for-each>
<x8l:value-of select="$nom/surname" />,
</x8l:if>
</p>
</x8l:template>

Once the recipient’s title has been shown, we want to output their name. They may
have several firstname elements and they will have just one surname. Yet again, itera-
tion across the node-set held in $nom is not going to work since we have already processed

Section 9.2: The Business Letter 215

the title.> Using the not () function means that only firstname and surname fields will
be processed.

<xsl:if test="not ($nom/title)">

Actually, I could have written the template without this particular test. It's included to
show you a different way of using XSLT and, of course, similar tests could be useful in
many circumstances.

After processing the recipient’s name, control returns to the main template. The body
of the letter is going to be processed next. This presents more complications as the text of
the letter is contained in a series of paragraphs which may each contain text, footnotes or
emphasized text. Since the XSLT processor cannot know, in advance, how the contents of
letters will be nested, processing the letter must be done in a properly declarative manner.
The easiest technique here is to create a series of templates which match the elements
found below the content element and leave the processor to sort out how it should call
them. Processing is initiated using the <xsl:apply-templates> element:

<xsl:apply-templates select="//content"/>

Handling basic paragraphs and emphasized text is not a problem. The next two tem-
plates should need no explanation.

<x8l:template match="para">
<p><x8l:apply-templates /></p>
</xsl:template>

<x8l:template match="emphasis">

<xs8l:value-of select="."/>

</x8l:template>

Footnotes are a more complicated story, though. Processing a footnote has two stages.
First, it must be identified and a marker placed in the text. Secondly, the markers must be
reproduced at the bottom of the letter, along with the content of the footnotes. It's obvi-
ously vital that markers are placed next to the footnote to which they refer. These footnote
handling templates are based upon those supplied with the XSLT stylesheets which are
used to process the XML version of DocBook. Chapter 17 describes the DocBook XML
structure and stylesheets.

<xgl:template match="footnote">
<xs8l:variable name="tmp" select="para"/>

A less formal letter can be created if the title is not processed.

216 Chapter 9: XSLT in Use

<x8l: for-each select="$footnotes/para">
<x8l:if test="S$tmp=.">
<x8l:variable name="var" select="position()"/>
<sup>
[<x8l:value-of select="S$var"/>]
</sup>
</x8l:if>
</x8l: for-each>
</x8l:template>

Each time that the processor encounters a footnote element, it uses this template.
The template starts by selecting the content of the footnote, which is contained in a
single para element, and placing it into the $tmp variable. All of the footnote elements
in the document were collected into a node-set referenced by the $footnotes variable at
the very top of the stylesheet. The stylesheet next iterates across this node-set, comparing
the para subelement of each footnote with the value held in $tmp. If the two are the
same, the position of the item in $footnotes is saved in the variable $var using the
built-in position () function. The position is going to be used to create the marker for
the footnote and is used to create a hyperlink from the marker to the footnote.

<x8l:template name="footnotes">
<divs
<hr width="15%" align="left"/>
<p>
<x8l:apply-templates select="$footnotes" mode="showem" />
</p></div>
</x8l:template>

<xs8l:template match="footnote" mode="showem">
<xs8l:variable name="var" select="position()"/>

[<x8l:value-of select="S$var"/>]

<x8l:text> </x8l:text>
<xs8l:value-of select="para"/>

</x8l:template>

Displaying the footnotes uses almost the same process as creating the markers. The
footnotes template is called at the very end of processing the letter. It uses the
<xsl:apply-templates> element to process the contents of $footnotes once more.
The <xsl:apply-templates> element causes the processor to search for a template

Section 9.2: The Business Letter 217

that has the same name as the element it applies to. In this example, that is a template
called footnote. Unfortunately, that template was the one was used to create the mark-
ers in the text, and it can’t perform both tasks. The solution is to use a mode. XSLT modes
provide a way to apply different templates, with the same name, to the same content. In
this case, when the processor has to apply a template to a footnote element without the
mode attribute, it creates a marker. If the mode attribute has the value showem, it prints
the markers and the content of the footnote.

The last piece of the letter before the footnotes is a signature and closing message. These
are created using the salut template.

<x8l:template name="salut">
<x8l:variable name="msg"
select="//header/signature/greeting” />
<x8l:if test="Smsg">
<p>
<xg8l:if test="S$msg/@type">
<xs8l:variable name="tmp" select="Smsg/@type"/>
<x81:if test="Stmp='formal’">
<xs8l:if test="Smsg="">
Yours Faithfully,
</x8l:if>
</x8l:if>
<x8l:if test="Stmp='informal’">
<x8l:1if test="Smsg="">
Yours Sincerely,
</x8l:if>
</x8l:if>
<xs8l:if test="not (S$msg=")">
<x8l:value-of select="Smsg"/>,
</x8l:if>
</x8l:if>
</p>
</x8l:if>

<x8l:variable name="nom" select="//header/signature" />
<p style="font-style: italic">
<x8l:1if test="Snom/firstname">
<x8l:value-of select="Snom/firstname"/>
</x8l:if>

218 Chapter 9: XSLT in Use

<x8l:if test="not ($nom/firstname)">
<x8l:if test="Snom/name/title">
<x8l:value-of select="$nom/name/title" />
<x8l:text> </x8l1:text>
<x8l:value-of select="S$nom/name/surname" />
</x8l:if>
<x8l:if test="not ($nom/name/title) ">
<x8l: for-each select="$nom/name/firstname">
<x8l:value-of select="." />
<x8l:text> </x8l: text>
</x8l: for-each>
<x8l:value-of select="$nom/name/surname" />
</x8l:if>
</x8l:if>
</p>
</x8l:template>

</x8l:stylesheet>

Three types of message are allowed, with the appropriate one controlled by the type
attribute of the greet ing element. The first test determines if a greet ing element ex-
ists:

<xsl:if test="Smsg">
the greeting having already been selected into the $msg variable. If there is a
greeting, its type attribute is tested:

<xsl:if test="S$msg/@type”>
This can take the values formal, informal or other. If the atiribute has not been set,
processing transfers to the sender’s name. The stylesheet then selects the appropriate
message based on the value of the type attribute:

<xsl:if test="$tmp='informal’">
Generally, when the attribute is set to either formal or informal, the element will be
empty. If, however, the greeting element has content, that content will override the
default messages.

Again, this transformation shows the simplicity and power of XSLT. When combined
with an efficient transformation engine, it’s an extremely useful tool which every XML
developer should have in their toolbox.

Chapter

XSL Formatting
Objects

XSLT is a powerful and comprehensive mechanism for transforming between XML struc-
tures. It can be used to select elements and subtrees, modify the content of elements and
create entirely new structures. The biggest problem with XSLT is that the end result of all
that processing is either plain text or another XML structure.! XML structures are great
when pieces of software are communicating with each other but they are virtually un-
readable to humans. What is needed is the ability to transform XML into formats that can
be printed in the same way as conventional books, memos or articles, printed as braille
documents or read by synthesizer software. These ideas should be familiar to you because
they were first introduced in Chapter 6 which examined Cascading Stylesheets Two.

The differences between XML to XML transformations and XML to presentation format
transformations were recognized right at the beginning of the development of XSL. The
same difficulties had already been encountered and, at least partially, overcome when
styling HTML documents. That knowledge could be usefully applied to the development
of a technology for the transformation and styling of XML. In fact, the original version

Don’t forget that XHTML is an XML application.

220 Chapter 10: XSL Formatting Objects

of the Extensible Stylesheet Language included both transformation and styling under
a single banner. This was cumbersome and so complex that no one would ever use it,
hence the two functions were split into distinct languages. XSLT was developed for the
transformation process, andXSL Formatting Objects, XSL-FO, for styling.

If you struggled with some of the ideas involved in designing XSLT stylesheets, you
may not wish to know that XSL-FO is, if anything, more complex. Working with XSL-
FO involves the creation of a stylesheet which is broadly similar to those that are created
in XSLT. The stylesheet is applied to XML documents using an XSLT processor which
outputs a new document containing a set of Formatting Objects. The formatting objects
are converted into the end document, which may be PDF, PostScript, audio or braille,
using a formatting objects processor. From the developer’s point of view, the complexity
of XSL-FO occurs because to be able to write even the simplest of stylesheets you need to
understand:

o XML,

the use of Namespaces,

¢ Cascading Stylesheets Two,

¢ Extensible Stylesheets Language,

e XPath expressions,

¢ XSL Formatting Objects,

e The structure and composition of your finished document.

Fortunately, if you've worked through this book so far and grasped at least the basics
of each idea, you will know enough to make some progress here. The new ideas are XSL-
FO and document structures. Before introducing XSL-FO, I'm going to look at document
structuring, particularly as it is used with XSL-FO.

Note:

Throughout this chapter, I'm only considering text in Western languages such
as English or French. In these languages text runs from the top left corner of the
page in horizontal lines. Document content starts at the front of a book, page one,
and continues to the end. Other families of languages use different structures
such as running text vertically down the page. XSL-FO has been designed to
accommodate all possible structures and to use Unicode characters.

Section 10.1: Document Structure 221

10.1 DOCUMENT STRUCTURE

Writing a formatting object processor is a highly complex software engineering task. Not
only does the software need to understand XML and process XSLT, it also needs to be
able to work with the output format. I'm not going to consider the areas of braille or
audio output since these are, to the best of my knowledge, still theoretical applications for
which no software has yet been released.

Although printed documents come in a wide variety of shapes and sizes, we can ex-
trapolate some general structures that hold for many applications. If you are seriously
considering the use of XSL-FO for a project, it's probable that you have a fairly typical
document structure in mind. I'm going to look, briefly, at two widely used structures: a
report which might be printed on a typical office printer, and a book structure. One thing
I'm not thinking about here is inline formatting. That’s the sort of thing that is used when
text color or fonts for individual words or phrases are changed.

10.1.1 Structuring a Report

Most of the reports and memos circulating in businesses today have a single, somewhat
boring, logical structure. This structure results from the use of word processors to cre-
ate the report, and laser printers to publish it. The limitations of both the hardware and
software, and often, the relative lack of knowledge of most users mean that complicated
documents cannot reasonably be expected from them. It’s unlikely that XML and XSL-FO
could ever replace the output from desktop publishing software such as Quark Express,
but they certainly can replace a word processor. If you are suddenly wondering why any-
one would want to replace their word processor, remember all of the advantages that XML
provides, such as platform independence, multiple output formats, reuse, easy indexing
and so on.
The typical business report includes some, or all, of the following features:

e It is printed on just one side of the paper.
e The content is split into sections.

e A table of contents is used.

The title appears on a separate page.

Page numbers are used on all pages.

Footnotes are used sparingly.

Version control information such as the author, date of creation and version number,
appear in either the page header or footer.

222 Chapter 10: XSL Formatting Objects

e Images, including charts and diagrams, appear in the flow of the text.

All of those features can be implemented using XSL-FO. The great thing about using
XSL to format your reports is that a single corporate style can be created. Users will no
longer be tempted to spend hours changing fonts or colors in their reports - the stylesheet
will do all of that for them. The downside is that, at the time of writing, no usable software
exists for the creation of styled documents. Programmers don’t mind using plain text
editors and command-line tools, but to expect ordinary office workers to do the same is
to be extremely unrealistic.

10.1.2 Structuring a Book

Producing a book is different to producing a report. Once the author has created the
content it goes off to the publisher who finds a typesetter? to style the book for printing.
Books have a more intricate structure than business reports:

¢ The book has three logical parts.

— The front matter contains title pages, copyright and catalog information, and
tables of contents and figures.

- The body of the book consists of the chapters of content.
— The back matter contains the glossary, appendices and index.

o Chapters always start on the right hand page, which has an odd number.
¢ Chapters may contain sections, subsections and so on.

¢ Images and tables are placed in the flow of the text, although systems such as KTgX
float them to the top of a page.

All pages are numbered except the first page of each chapter.

Page numbering in the front matter often uses Roman numerals.

o Even pages have the chapter title in the header.
¢ Odd numbered pages have section titles in their page header.
e The first page of each chapter has nothing in its header.

e Margins at the inside of the page, by the binding, are often smaller than those on the
outer side of the page.

2Some authors, me included, prefer to produce the finished camera-ready copy themselves.

Section 10.1: Document Structure 223

¢ Footnotes may be placed either at the bottom of the page or in the outer margin.

A book requires a number of different formats: the front matter, the first page of a chap-
ter, odd-numbered pages, even-numbered pages and back matter. This type of structure
looks difficult but can be created using XSL-FO.

10.1.3 Page Structure

Whatever type of document you are creating, the same logical structure is used for all
pages. Figure 10.1 shows what the structure looks like. A page is divided into two ar-
eas: the margin in which no text will appear, and the body in which all content, headers
and footers appear. It is important that you understand the difference between the page
margin and any headers, footers or marginalia which you use in your work. The margin
is whitespace which surrounds all of the text on the page. Generally a small amount of
whitespace is provided at the top and bottom of the page with larger areas at the sides.
Traditionally the outside, edge of the page has a wider margin area than the bound side,
although in modern books this distinction has been lost.

margin—top
BEFORE
et =.
5 | = S
52 ooy |2 | %
1 = O o
T | @ <
- 3
AFTER
margin-bottom

Figure 10.1 XSL FO Page Structure

224 Chapter 10: XSL Formatting Objects

In Section 10.3 I'll show how to define the structure of a page using XSL-FO. Although
it requires some complex code, defining page structures is a logical process once you get
into it.

Page headings, page numbers, footnotes and any ruled lines used to give them dis-
tinction appear as part of the body of the page. They are always separated from the main
page content using a small area of whitespace. Some book designs use notes in the margin
rather than footnotes. These look good, and may be more useful to readers when notes
are being used extensively. One can think of many such applications, from scientific or
mathematical works, through to annotated pieces of literature.

The designer has to tell the processor where all of the page components will appear,
and how much space to use for them. The first thing to specify is the page size. This
is done with the page-height and page-width properties. In common with all XSL
lengths, these take either absolute or relative values. Generally, you will specify absolute
lengths using px, em, mm, cm or inches. The amount of whitespace around the page is
defined using the margin property, although individual values can be specified for each
side using margin-left, -right, -top and -bottom.

The area of the page that holds all of the content is called the region-body. If your
document includes headers, footers or marginalia, you must tell the processor how much
space to leave inside the region-body for them. The amount of space that is made avail-
able must be at least as large as the extent of these areas. The extent of an area is the
amount of space that it will occupy within the region-body. There are examples and
detailed description in Section 10.3.

10.2 PROCESSING XSL-FO

One problem which currently faces would-be XSL-FO developers is the lack of supporting
software. Although editing the XSL-FO file can be done using the same tools that you use
for your other XML development, processing those files to achieve a finished document
is not easy. As I write these words, no application that can take an XML document, an
XSL-FO stylesheet and interactively display the formatted XML exists. In fact there is no
software available that even understands all of the XSL-FO elements and functions. It is
currently not possible to process an arbitrary XML document and XSL-FO stylesheet with
any guarantee of complete success. Contrast that with XSLT which can be viewed in some
recent Web browsers and you will start to see why XSL-FO has not been widely adopted.
Because the development of XML and XSL applications is a complicated piece of software
engineering, developers are loathe to build tools before a market exists, yet users will not
adopt a standard that lacks the support of high-quality tools. There’s also the problem
that XML is widely, if incorrectly, seen as being a Web thing. People expect to view XML

Section 10.2: Processing XSL-FO 225

in a Web browser, but XSL-FO is targeted at producing output in print formats such as
PDE Many potential users see this task as the domain of other types of software such as
word-processors.

Warning:

XSL-FO can produce auditory output, similar to that which CSS2 allows. Applica-
tions that can handle this are a remote possibility at the moment. For this reason
| am going to ignore all of the auditory aspects of XSL-FO, although they are
comprehensively documented in the W3C Recommendation.

I've found three applications that can process XSL-FO. These are commonly cited on
mailing lists and Web sites and appear to be the sum total of such software. The applica-
tions are:

o XEP which is made by RenderX Inc. This is a commercial program, although an
evaluation version can be downloaded from http://www.RenderX.com/, and
academic licenses are available. XEP is a Java application, so you will need to install
a Java Runtime Environment if you don’t already have one.

e PassiveTgX which uses XSL-FO stylesheets to convert XML into TgX. If you want to
process this output to get printable documents, you will need to install a version of
TeX. The PassiveTEX macros are available from http: //www.ctan.net.

o FOP which is produced by the Apache project and can be downloaded free of charge
from their Web site at http://www.apache.org. This is a Java application so
you'll need one of the many Java Runtime Environments, which are freely available,
on your machine.

Each of the XSL-FO processors that I've listed shares a common failing. They do not
implement all of the Recommendation. In fact, important parts may be omitted — FOP
doesn’t properly create tables, for instance. XEP is probably the best of the bunch but
it’s not perfect. Many users claim that the printed documents they can produce from
XSL-FO do not look very nice. Certainly this is true when compared to the output that
can be generated using a dedicated typesetting system such as IXTEX, or a modern word-
processor. Writing software that can format printed documents is a massive task. The
algorithms required to place content on a page and produce output which looks pleasing
are fearsomely complex. If the user-base for XSL-FO grows, I'm sure that the tools will
improve and that output quality will start to rival that of other systems.

I tend to use FOP for my XSL-FO work. I'm going to show you how I use it to process
the XSL-FO, described in Section 10.4, which prints a recipe from my Recipe Book appli-
cation. The aim is to produce output in Adobe PDF format, which is the default output

226 Chapter 10: XSL Formatting Objects

for FOP. The stylesheet is an XSL application and is stored in a file called recipe.xsl.
The first stage is to transform the XML into formatting objects that match the instructions
in the XSL file. Since the formatting objects are valid XML, this is an XML-to-XML trans-
formation which can be handled by any XSLT processor. I use Xalan like this:

java org.apache.xalan.xslt.Process
-in recipe.xml -xsl recipe.xsl -out recipe.fo

Xalan takes a number of possible parameters. You'll always need to specify the XML
source file, an XSL file and the output file. The formatting objects must then be processed
by FOP. I use a batch file to do this. In fact I use batch files to run most of my Java
applications since I have no desire to continually reconfigure my system. If you are not
familiar with Java, the use of batch files might seem like common sense. After all, it's how
many applications are launched. In Java, though, applications can be launched in several
different ways. Each application tends to require its own libraries* which must be found
on either the PATH or CLASSPATH environment variables, or placed in special directories.
If you use a lot of Java, as I do, bypassing all of this with a batch file is far simpler. Here’s
the one I use to run FOP on a Linux system:

Listing 10.1 Batch File to Run FOP 0.20.3
java -cp /opt/fop-0.20.3/build/fop.jar:/opt/fop-0.20.3/1ib/batik.
jar:/opt/fop-0.20.3/1ib/xalan-2.0.0.jar:/opt/fop-0.20.3/1ib/
xerces-1.2.3.jar:/opt/fop-0.20.3/1ib/jimi-1.0.jar:/opt/fop
-0.20.3/1ib/avalon-framework-4.0.jar:/opt/fop-0.20.3/1ib/
logkit-1.0.jar:.:/opt/jbuilder5/jdkl.3/jre/lib/rt.jar org.
apache.fop.apps.Fop "$@"

The batch file is called fop, and lives in a directory that can be found on my PATH.
Batch files similar to those shown here can be created on systems such as Windows 2000
or MacOS X. FOP requires the name of the file that holds the formatting objects, and the
name of the PDF document you want it to create:

fop recipe.fo recipe.pdf

If you've used FOP, or read the information provided on the Apache Web site about
it, you may wonder why I bother to use Xalan. FOP can take the XML and XSL files and
produce a PDF document itself. The formatting objects do not need to be stored in a file,
and the entire transformation can happen in a single step. That’s fine of you know that

3The code is wrapped so that it will fit onto the printed page.
“4Java calls these packages.

Section 10.3: Formatting Object Elements 227

the process works. If you are still debugging or developing your XSL-FO code, you'll find
the error messages that FOP produces almost useless. I prefer to use Xalan, or sometimes
Saxon, since the information these give back to me is more meaningful when I'm trying
to track down an error. Once I've got valid formatting objects, I know that any errors I get
from FOP are problems with the way that it is transforming the formatting objects rather
than problems with the creation of those objects.

10.3 FORMATTING OBJECT ELEMENTS

The XSL Formatting Object Recommendation describes a great number of elements and
attributes. I'm not going to cover them all here; if you need more detail you should either
download the Recommendation® or buy a reference book dedicated to the topic. This
chapter is just an introductory guide, which is why I shall only be describing a few of the
available elements and attributes. Unfortunately, descriptions of elements can be rather
dry and dusty. You may find that looking at the example stylesheets in Appendices E and
F makes this material more meaningful.

<root>
All XSL-FO documents must start with a root element. This provides the root of
the tree from which the document will be created. The root element can have up to
three types of children: a single layout -master-set, a set of page-sequences
and, optionally, a declaration element. I'm ignoring the latter in my quest for
some simplicity.

<layout-master-set>

This element is used to define the sequence in which pages appear, and their geom-
etry. The geometry of the page includes its size and margins and the positioning of
headers, footers and so on within the page. Each child of the layout -master-set
is an element which defines part of the structure of the document. These elements all
have names that end in -master. The page-master elements describe the struc-
ture of the page, while page-sequence-masters describe the order in which the
page-master elements are used.

<page-sequence-master master-name="string">
This element is used to specify the order in which pages are created. Each page can
have a different structure since they can all have different page-masters. As a
general rule of thumb, in designing a book, the front matter, main content and back

 Actually, everyone working with any of these W3C Recommendations should download and read the ones they are using.

228 Chapter 10: XSL Formatting Objects

matter have different structures. The page-sequence-master would be used to
define the use of those different page layouts. As an aside, front matter is the table
of contents, copyright information, preface and so on, and back matter includes the
glossary, index and appendices.

Each page-sequence-master in the document must be uniquely identified us-
ing the master-name attribute. Even if your document includes just a single
page-sequence-master, you'll need to name it so that it can be referred to when
it is used.

The page-sequence-master has four possible child elements. These are listed be-
low, along with their attributes. For details of how they are used, consult the Recommen-
dation.

e <single-page-master-reference master-reference="name">

e <repeatable-page-master-reference master-reference="name"
maximum-repeats="integer">

e <repeatable-page-master-alternatives maximum-repeats="integer">
This element has conditional -page-master-reference elements as children.

e <conditional-page-master-reference master-reference="name"
page-position="first|last|rest|any|inherit"
odd-or-even="odd|even|any|inherit"
blank-or-not-blank="blank|not-blank|any|inherit">

Remember that the page is divided into an outer margin and an inner region, which
acts as a container for page content. The page layout is defined in a page master. At the
time of writing, only the simple-page-master, which describes a standard rectangu-
lar page, is available. In the future, different types of page-master are likely to become
available.
<simple-page-master master-name="name" page-height="length
page-width="length® margin-top="width|percentage*"
margin-left="width|percentage® margin-right="width|percentage”

margin-bottom="width|percentage”>
Often the layout-master-set will have just one page master element. When all

pages in the document have the same structure, as they do in most word-processed
documents, a simple-page-master is used. The page is divided into five regions,
although only those that are being used need to be specified.

The simple-page-master may be given a name so that it can be referenced from
elsewhere in the stylesheet. The page size is given using the page-height and

Section 10.3: Formatting Object Elements 229

page-width attributes. If these are omitted, the processing application may assume
a default, which is likely to be 8.5 inches wide by 11 inches high. The page margins
may be given as absolute lengths or as percentages of the page size. If these are not
used, text will be printed as close to the edge of the paper as possible.

<region-body clip="shape|auto" column-count="integer"
column-gap="length|percentage"
overflow="visible|hidden|acroll|error-if-overflow"
region-name="xsl-region-body|xsl-region-start|xsl-region-end]
xsl-region-before|xsl-region-after|name"
writing-mode="1r-tb|rl-tb|tb-rl|lr|rl|tb"
margin-top="length|percentage” margin-bottom="length|percentage”
margin-left="length|percentage” margin-right="length|percentage”>

The region-body element defines an area in the center of the page which may be off-
set if the page margins are not all identical. This description is quite complex. Page layout
is non-trivial and XSL-FO attempts to cover most eventualities. I've tried to simplify the
information provided here, but it will probably only make sense once you see an example.

The region-body must be large enough to accommodate the page content plus any
side regions. The region may be uniquely identified through its region-name attribute.
Those optional values that start xs1 - are defined within the Formatting Objects Recom-
mendation.

When headers, footers or marginalia are being used, space must be allocated to
them. This space is specified twice: first in the margin-top, -bottom, -left and
-right attributes of the region-body element. Each of these can be given an abso-
lute size or a size expressed as a percentage. These values must be at least as large
as the value given to the extent attributes of the other four regions. The margins
here are separate to, and different from, the page margins which were specified in the
simple-page-master-element. These margins exist so that content can be placed in-
side them. If you are not using a region, there is no need to specify a size for it. It will be
subsumed into the region-body and used for the main content of the page.

If the content in an element is too large for its containing region, it will overflow it.
Overflowing content may be clipped or displayed in full. The clip attribute is used
when the overflow attribute has any value apart from visible. The shape given as
the value for this attribute can currently only be specified as a rectangle. Don’t expect
complex behavior from current generations of processors. Overflowing content is likely
simply to disappear.

Using multiple columns in documents is a common requirement. By default, XSL-FO
places text into a single column. If multiple columns are needed the number should be
specified using the column-count attribute. The gap between columns is set to 12pt if

230 Chapter 10: XSL Formatting Objects

the column-gap attribute is not given an alternative value. Formatting multi-column
output seems to be one area in which the current generation of processors is particularly
deficient, but it’s such a common requirement that it will be well supported at some point
in the near future.

The writing-mode attribute specifies the direction in which text is written. In the
definition given here, 1 means left side of the page, r means right, t means top and b is
the bottom of the page.

The following CSS2 background, border and padding attributes, and possible values
for them, may be used with the region-body element:

¢ background-attachment=scroll|fixed

e background-color=<colors>|transparent

e background-image=uri |none

e background-repeat=repeat | repeat-x|repeat-y|no-repeat

e background-position-horizontal=percentage|length|
left|center|right

e background-position-vertical=percentage|length|
left|center|right

e border-side-color=color
e border-side-style=style
e border-side-width=width

e padding-side=padding-width

Note:

¢ In the listed items, the text side is replaced with one of the values: before,
after, top, bottom, start, end, left or right.

o The border-style may be one of: none, hidden, dashed, solid, double,
groove, ridge, inset, outset.

o Widths take the values thin, medium, thick or may be given a specific size
such as 1pt.

Section 10.3: Formatting Object Elements 231

<region-before extent="length|percentage">
region-after extent="length|percentage"
region-left extent="length|percentage"

region-right extent="length|percentage"
These elements specify areas inside the region-body element that can be used

to hold content. They are all optional. The region-before element is used for
page headers, region-after for page footers, region-left for content in the
left margin of the page and region-right for the right margin. Each must have
an extent which specifies the size of the region. This must be smaller than the
equivalent margin of the region-body element.

The following attributes from region-body may also be used with these elements:

e clip

e overflow

e region-name

¢ writing-mode

e background-attachment=scroll |fixed

e background-color=<colors>|transparent

¢ background-image=uri |none

® background-repeat=repeat |repeat-x|repeat-y|no-repeat

e background-position-horizontal=percentage|length|
left|center|right

e background-position-vertical=percentage|length]|
left |center|right

e border-side-color=color

® border-side-style=style

e border-side-width=width

e padding-side-padding-width

In version 1.0 of the Recommendation, the border-width and padding attributes
must be given the value 0. When using the border elements, replace the word side
in the descriptions with the appropriate choice from top, left, bottom and right.

Listing 10.2 shows how a page can be defined. In this case the page is a typical
A4 sheet with 25mm margins on three sides and a smaller, 10mm, margin at the top.
The region-before and region-after elements are used to define space within the
region-body for page headings and a footer. This page definition is taken from the
Recipe Book example which is described in Section 10.4.

232 Chapter 10: XSL Formatting Objects

Listing 10.2 A Page Definition

<fo:simple-page-master master-name="recipeContent"
page-height="297mm" page-width="210mm"
margin-left="25mm" margin-right="25mm"
margin-top="10mm" margin-bottom="25mm">
<fo:region-body margin-top="10mm" margin-bottom="25mm"/>
<fo:region-before extent="10mm" />
<fo:region-after extent="25mm" />
</fo:simple-page-master>

Having created structures for the page and the document, content can be added to
those pages. Each document must contain at least one page - sequence element which
is used to define a sequence of pages within the document. These are associated with a
page master and contain flow and static-content elements which hold the content
of the page. Again this appears complicated but once you start to grasp the hierarchy it
makes a lot of sense. The structure of the hierarchy is shown in Figure 10.2. I've simplified
it by ignoring page - sequence-master elements. This shouldn’t present too much of a
problem since no examples I've ever seen actually use them. This may be because these
elements are too complex, redundant or simply beyond the capabilities of processors.

page-sequence id="string" master-reference="master"

initial-page-number="number |auto|auto-odd|auto-even"
A page-sequence is an ordered set of pages. All pages within the page - sequence
have the same structure as they will all use the same page master. The page mas-
ter is selected using the master-reference attribute. If you need to refer to a
page-sequence later in a stylesheet, it needs to be uniquely identified. This is
done by giving a unique value to the id attribute. If the page-sequence does not
need to be referred to elsewhere, the id attribute can be ignored.

When creating a complex document such as a book, different parts of the book may
have different page numbering schemes. The page number can be specified using
the page-number attribute. A particular value can be given, or one of the auto op-
tions can be used. The simplest case is to use auto where the processor will assign
a default page number — usually incrementing the preceding value. The auto-odd
value increments the number of the preceding page and, if the result is even, adds
one to it. Clearly auto-even works in the same way as auto-odd but ensures that
the new page number is an even value.

The page -sequence element can have up to three child elements. These define con-
tainers which will be used to hold parts of the page.

Section 10.3: Formatting Object Elements 233

root

layout-master-set page-sequence-master

simple-page-master static-content flow

region-body block block
region-before

region-start

region-after
region-end

Figure 10.2 A Simple Hierarchy of Formatting Object Elements

title
A page - sequence may, optionally, be given a title. When transforming to a format
such as HTML, the content of the title element would be used as the content of
the HTML title element in the head of the page.

static-content flow-name="region"
The static-content element holds content which will be used on every page
within a page-sequence. Typically, static-content is used to create page
headers or footers which are placed in region-before or region-after ele-
ments. The same content will appear each time that the static-content element
is included. The element takes a single parameter, £1ow-name, which is the name
of the region in which it should be placed. XSL reserves the following names:

e xsl-region-body,

e xsl-region-before,

234 Chapter 10: XSL Formatting Objects

e xsl-region-after,

e xsl-region-start,

e xsl-region-end,

e xsl-region-before-float-separator,

e xsl-region-footnote-separator.
Only block elements may be placed as children of static-content.

flow flow-name="region"
The main text of the document, including tables, lists, images and so on, is placed
inside £1ow elements. As for static-~content elements, the £1ow element takes
the name of a region as the value of its f1ow-name attribute, and has block ele-
ments as its children.

10.3.1 Blocks

The content of the document is logically separated into constructs such as paragraphs,
title, sectional headings, lists, tables, figures and so on. Within the source XML file these
will all be marked up using tags which are, hopefully, meaningful to document authors.
When XML is transformed to XHTML, simple transformations can be made so that, for
instance, an XML element such as:

<section title="Blocks" />
becomes the following XHTML:

<h2>Blocks</h2>

XSL-FO cannot supply such simple transformations. Output languages such as PDF
do not include concepts such as generic section headings. Since a language like PDF is
intended to reproduce arbitrary output ranging from text documents through to complex
graphics, they describe the form in which content will be displayed rather than the meaning
of the content. In some ways this is the reverse of XHTML which gives meanings® to tags
and relies upon stylesheets to describe how they are displayed.

XSL-FO removes all meaning from the document, hopefully just at the structural level,
and replaces it with instructions for formatting output for display. Formatting instruc-
tions are supplied using the attributes of the block element. The permissible set of at-
tributes that block can take includes virtually all of the properties described for Cascad-
ing Stylesheets Two, CSS2, as well as additional XSL-FO properties which are listed in
Section 10.3.2. If you want to display an element separately, as for instance must be done

6Yes, I know that XHTML tags carry no useful meanings, but they do supply a useful distinction between, for instance,
different types of heading.

Section 10.3: Formatting Object Elements 235

for each paragraph, that element will need to be placed inside a block. Useful ways of
doing this use the XSL for-each and call-template elements. You'll see examples of
both later in this chapter. Given the XML element:

<gsection title="Blocks" />
this block will format it as 14-point green text which is horizontally centered within the
flow, and which has a 16-point deep space below it:

<fo:block text-align="center" font-size="14pt"
color="green" space-after="1l6épt">
Blocks
</fo:block>

Displaying a Poem In Section 8.9, I transformed an XML version of Thomas Gray’s El-
egy Written in a Country Churchyard into HTML. The same poem can be converted into PDF
using XSL-FO. The code, as shown in Listing 10.3, is slightly longer and more complicated
than the XSLT code. The additional length is partly explained by the need to set up the
page structure. The complexity has grown because of the use of static-content and
block elements. One interesting thing, though, is that most of the code is either XSLT
which is being used to control the transformation, or CSS2 properties which are being
used to style the output. To achieve a simple XML-to-PDF transformation relatively few
XSL-FO elements are needed.

Listing 10.3 XSL-FO to Convert Gray’s Elegy

<?xml version="1.0"2?>

<xsl:stylesheet version="1.1"
xmlng:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns: fo="http://www.w3.0rg/1999/XSL/Format" >

<xsl:variable name="Ptitle" sgelect="/poem/title"/>

<xsl:template match="/poem”>
<fo:root>
<fo:layout-master-set>
<fo:simple-page-master master-name="poemContent"
page-height="297mm" page-width="210mm"
margin-left="25mm" margin-right="25mm"
margin-top="10mm" margin-bottom="25mm">
<fo:region-body margin-top="25mm" />
<fo:region-before extent="25mm" />
</fo:simple-page-master>

236 Chapter 10: XSL Formatting Objects

poem.pdf

Elaggy weion i Conirtry Chissbyw

Elagy written in a Country Churchyard
Thomas Gray

Thes Curfew lolls S kned of 8 parting day, The lowing heed wind siowly o'er the na,
Thes plorasmaan homeward plods his weaary way, And leaves he world to darkness. and
loy e

Mosw fades e glmmering lendscape on the sight, And all the air a solern sSliness
bolds, Save whare be beells wheels his drocing fight, And drowsy Snklings kil the
distant fobds,

Save thal fum ponder ivy-mantiad low'r The maping owl does i e moon complain
Of such ss, wand'dng near hee sacret bow's, Molest her ancient solitary reign.

Figure 10.3 Gray'’s Elegy Formatted for Print

</fo:layout-master-set>

The first task is to extract the name of the poem and save this in a variable. The
name will be used in a few places within the stylesheet, but searching for it will be time-
consuming so it’s important to get that done as early as possible — and to do it just once.
Formatting is performed within an XSL template element which is used to select the root
node of the poem. The page is set to A4 size with a small margin at the top of the page
and larger margins on the other sides. A margin is set within the body of the page so that
a header can be printed within it.

Listing 10.4 XSL-FO to Convert Gray's Elegy

<fo:page-sequence master-reference="poemContent">
<fo:static-content flow-name="xsl-region-before">
<fo:block text-align="end" font-style="italic"
font-size="9pt" color="navy">
<xsl:value-of select="$Ptitle" />
</fo:block>
</fo:static-content>

Section 10.3: Formatting Object Elements 237

The page header is the name of the poem, printed in small blue, italic text. This header
is aligned to the right-hand edge of the region-body. Content for this region is taken
from the variable which was initialized earlier.

Listing 10.5 XSL-FO to Convert Gray’s Elegy

<fo:flow flow-name="xsl-region-body">
<fo:block text-align="center" font-size="14pt"
color="green" space-after="1lé6pt">
<xsl:value-of select="$Ptitle" />
</fo:block:>

The title is displayed once more, this time as the document title. Formatted in large
text and colored green, the title is followed by some vertical whitespace. Notice how
everything that is written to the page is placed inside block elements.

Listing 10.6 XSL-FO to Convert Gray's Elegy

<fo:block text-align="end"
font-size="10pt" space-after="12pt">
<xsl:value-of select="author/first" />
<xsl:text> </xsl:text>
<xsl:value-of select="author/last" />
</fo:block>

Formatting the name of the author uses some techniques which were demonstrated in
Chapter 9. The names of the author are held in two elements in the source XML file. When
displayed we want a space between those names. If I used code like this no space would
appear:

<xsl:value-of
select="author/first" /> <xsl:value-of
select="author/last" />

The whitespace has to be forced with the entity. Writing that into the document
is done by placing it inside an XSL text element.

Listing 10.7 XSL-FO to Convert Gray’s Elegy

<xsl:for-each select="content/stanza">
<fo:block text-align="start"
font-gize="12pt" space-after="12pt"
linefeed-treatment="preserve">
<xsl:value-of select="." />
</fo:block>

238 Chapter 10: XSL Formatting Objects

</xsl:for-each>
</fo:flow>
</fo:page-sequence>
</fo:root>
</xsl:template>

</xsl:stylesheet>

Individual stanzas are selected and formatted inside a for - each element. Whitespace
is placed after each stanza to separate them on the page. It is important that the line struc-
ture of the stanza is maintained. Within the XML file each line of the poem is separated
from the following line by a newline character. By default, the processor would collapse
these so that the stanza appeared on a single line. Using the 1inefeed-treatment at-
tribute of the block element, and setting its value to preserve, keeps the correct struc-
ture.

That code produces the output shown in Figure 10.3. Here the PDF file is being dis-
played in Adobe Acrobat which has scaled the text so that it fits in the window.” Notice
that the line structure has not been preserved. That’s because FOP 0.20.3 doesn’t support
linefeed-treatment yet. Instead it gives this warning:

[WARN] : property - "linefeed-treatment” is not implemented yet.

and places the text incorrectly.

10.3.2 XSL-FO Properties

The Formatting Objects Recommendation is, in some ways, a synthesis of all of the pre-
existing W3C Recommendations that deal with content presentation and formatting. It
brings together formatting properties which were described in the Cascading Stylesheets
Recommendation, properties from CSS2® alongside elements and functions from XSLT.
I've already described many properties from Cascading Stylesheets and since I don’t want
to repeat myself, I will not be describing them again here. The easiest way of discovering
those CSS properties that can be used with XSL-FO is trial and error. If a property makes
sense within a printed document as, for example, font - family does, then use it and see
what effect it has.
space-before="length"

space-after="length"
Almost inevitably block elements need to be separated from each other so that they

7But you don’t need to read the poem again, do you?
8 And CSS2 is an extension of the CSS Recommendation.

Section 10.3: Formatting Object Elements 239

can be differentiated. In most word-processed documents, a whitespace of approx-
imately the depth of a single line is left between paragraphs. These two properties
can be applied to the block element to achieve this effect. The two can be combined
so that the first block has a value for its space-after property and the second one
has a value for space-before. Since this will probably not give the desired result,
using one property or the other rather than a mixture of the two is advisable.

start-indent="length|percentage”
This element indents the start edge of a block within its containing flow. Notice that
this is different to indenting just the first line, and provides an alternative to increas-
ing the margin or adding padding before the start edge.

break-after="auto|column|page|even-page|odd-page"

break-before="auto|column|page|even-page|odd-page"
Typesetters apply a set of complex rules to text at those places where page or column

breaks occur in a document. Having the last two or three lines of a paragraph at the
top of a page, or the first few lines at the bottom of a page is considered a bad thing.
Tables and lists should, wherever possible, be placed on a single page even if that
moves them some distance from their natural location in the document. Typesetting
software such as TgX includes many complex algorithms which automatically im-
plement the rules of good layout. Generally they do a surprisingly good job, too.
The break-after and break-before properties let XSL-FO stylesheets specify
some of the same rules. break-after means that the block that follows the cur-
rent one should start a new context such as a page or column. break-before
means that this element is the first one of the new page or column. The list of values
that these properties can take is self-explanatory apart from auto which means that
no breaking is performed. The default value for both these properties is auto.

hyphenation-keep="auto|column|page"
This element controls how the final word of a context is hyphenated. When given
the value auto, the final word of a page or column may be hyphenated even if this
breaks basic typesetting rules. When set to column, both parts of the hyphenated
word must be placed in the same column. page means that both hyphenated parts
lie on the same page.

id="name"
Any block can be given an optional unique identifier using the id property.

keep-together="auto|always|integer"
keep-with-previous="auto|always|integer"

keep-with-next="auto|always|integer"
The processor can spend time and resources paginating the document and moving

240

Chapter 10: XSL Formatting Objects

elements around so that elements fit where they naturally occur. Given a format-
ting object which may be too large to fit on a page or within a column, the processor
will generally break the content once one page is full and resume processing on the
next page. These three properties can be used to give the processor some indication
of how much effort it should expend on layout and pagination. keep-together
is used to try to force the content of the block to be placed together as a unit.
keep-with-previous is used to try to ensure that the current block is placed
on the same page, or column, as the previous one. keep-with-next tries to place
the element on the same page as the one that follows it.

The default value for all of these properties is auto which imposes no constraints
on the processor. The value always means that the processor must do everything
possible to keep the content together. An integer value can be given which indicates
the relative amount of effort that the processor should take. Sometimes the block
will hold so much content that it has to be split. Even in these circumstances the
processor will do all that it can to give the desired result.

orphans="integer"

widows="integer"

I've already noted that good practice in typesetting indicates that whenever possi-
ble one or two lines of a paragraph should not escape onto a page of their own. The
orphans property specifies the minimum number of lines from a paragraph that
should be grouped at the bottom of a page. The widows property indicates the min-
imum number of lines that can be processed at the top of a page. Both default to the
value two.

linefeed-treatment="ignore|preserve|treat-as-space|
treat-as-zero-width-space"

Sometimes you want to preserve the linefeed characters found in the content of an
element, when it is converted for printing. The PDF version of Gray’s Elegy was a
classic example of this. At other times, you will want the processor to treat linefeeds
in the source as whitespace characters. In this context a linefeed is the entity �A ;
or its Unicode equivalent U+000A.

The linefeed-treatment property can be given one of four values. ignore
tells the processor to remove linefeeds, preserve tells it to do nothing special with
them. When preserve is used they should be left in the document and should,
usually, be expected to appear in the printed document.

white-space-treatment="ignore|preserve|
ignore-if-before-linefeed|ignore-if-after-linefeed|

ignore-if-surrounding-linefeed”

This property specifies how the processor should handle all whitespace characters

Section 10.3: Formatting Object Elements 241

except linefeed characters. The value ignore indicates that the whitespace char-
acters are discarded. preserve means that they are converted to the XML entity
 , or an equivalent.

white-space-collapse="true|false"
If this property is set to true, runs of more than one consecutive whitespace char-
acter are converted to a single whitespace.

text-align="start|center|end|justify|inside|outside

left|right|<string>"
This property controls how text within the block is aligned across the horizontal

axis of the page.

text-indent="length|percentage"
This element is used to control the indentation of the first line of text within a block.
It can be given an absolute length or a percentage of the length of the enclosing
region.

10.3.3 Inlines

Text that is part of a block may be styled independently from the rest of the block. This
may be done for emphasis, using italic or bold fonts, or simply to add colors or other
effects. Formatting instructions which are placed in the flow of text are called inline in-
structions. Inline formatting is created using the inline element. This accepts any of the
properties that the block element accepts. If you have written XHTML code, inline
works like the tag, whereas block elements are analogous to <div> tags.

10.3.4 Footnotes

Annotations to the body of a text’ are created using the footnote element. The proces-
sor can be instructed to place the content of footnote elements wherever you require.
Although they can appear at the foot of the page, they may be displayed at the end of a
chapter or as margin notes.

The footnote element is placed into the flow at the point at which the reference to the
footnote is needed. References may be symbols, such as &, or numbers. The character that
will be used for the reference is not described within the footnote element, but must be
created using normal XSLT code. A footnote has two parts: an inline element which
is used to create the reference marker, and footnote-body which holds the content. The
content of a footnote must be placed inside a block if you want it to appear on the page.

9Such as this.

242 Chapter 10: XSL Formatting Objects

The following code shows a technique which I use to create numbered footnotes within
documents such as memos and letters. It may not be directly applicable to documents
such as books which have complicated internal structures. I start by selecting all footnotes
into a variable:

<xsl:variable name="footnotes" select="//content/para/footnote"/>

The template shown below is used to process the footnotes.

<xsl:template match="footnote">
<fo:footnote>
<xsl:variable name="tmp" select="para"/>
<xsl:for-each select="$footnotes/para">
<xsl:if test="$tmp=.">
<xsl:variable name="var" select="position()"/>
<fo:inline>
<xsl:value-of select="$var" />
</fo:inline>
</xsl:1if>
</xsl:for-each>

<fo:footnote-body>
<fo:block>
<fo:inline>
<xsl:value-of select="position() div 2" />
</fo:inline>
<text> </text><xsl:value-of select="para" />
</fo:block>
</fo:footnote-body>

</fo: footnote>
</xsl:template>

Numbered references are created by comparing the content of the current footnote
element with all of the nodes in the variable. When the two match, the position of the
element in the node-set is used as the reference number. Creating the number in the
footnote-body is slightly different. The template has matched all footnote elements
in the document. It creates a node-set which contains the body of each footnote and a
reference to it. The position of the footnote within the node-set is not, therefore, the same
as its numerical order within the document. The reference number is, in fact, the current

Section 10.3: Formatting Object Elements 243

position divided by two. This slight quirk is obvious when the code is executed: remove
the division and your footnote references will be wrong; include it, and they're correct.

10.3.5 Tables

Tables are widely used both to present structured data, and to present unstructured data
within a tidy format. The latter use is more widely used when developing Web sites
and other forms of output in which the data is displayed on a computer screen. Printed
documents are usually formatted around columns rather than a table as might be used on
a Web page. An XSL-FO table is created in roughly the same way that an HTML table is,
although the names of the tags are different. If you've worked with tables in Web pages
then you will be aware that they require lots of tags and attributes. Even if you spend a
long time tweaking a Web table, it will often look wrong when displayed in the browser.
This is simply because when the table is designed, it must be created for a generic device.
The screen size and resolution are unknown until the page is actually displayed. Since
tables created using formatting objects are going to be printed, factors such as page size
are no longer variables, but are defined in the stylesheet. This means that the designer can
spend much more time working on the table layout to get the best possible result.

Note:

Table support in XSL-FO processors seems to be particularly weak as | write
this. The Apache FOP processor, for example, cannot process the basic
table-and-caption element. Tables with captions must be built using other
techniques. Check what your formatting software can handle before you invest
too much time and effort in table design.

table-and-caption caption-side="before|after|start|end|

top|bottom|left |right"
The root element from which tables are created is table-and-caption. This cre-

ates a block on the page which contains two areas. One is used for the caption, the
other for the table itself. The caption-side attribute is used to define where the
caption will be placed relative to the table. This element also takes the following
attributes, which have been described previously:

e all border, padding and background properties,
e all margin properties,
e break-after,

e break-before,

244 Chapter 10: XSL Formatting Objects

e id,

e keep-together,

e keep-with-next,

e keep-with-previous,

e text-align.

This element only has to be used when the table is going to have a caption, although
many stylesheets will also use it to aid in numbering, indexing and in creating a list
of tables at the front of a document.

table-caption height="length" width="length*
This element is used to define a caption for the table. The content of the caption must
be placed inside a block element within the table-caption. The commonly used
border, background and padding properties can be applied to a table-caption
element.

If your table is simple and will display neatly inline within a document, it can be de-
fined within a table element rather than a table-and-caption element. If the table
is going to be floated and appear away from where it is being referenced, you'll need to
provide some form of captioning so that readers can find the table.

Before showing an example of a table, I'll describe the elements and some of their
attributes which are needed to define tables.

table table-layout="auto|fixed"
table-omit-header-at-break="true|false"
table-omit-footer-at-break="true|false”

height="length|percentage® width="length|percentage”
The table-layout attribute is used to select one of the layout algorithms which

are used to place content within the table. Not all processors are guaranteed to sup-
port both algorithms. When a table spans more than a single page, reproducing the
header and footer on each page may not be desirable. Their presence is controlled
by the table-omit-header-at-break and table-omit-footer-at-break
attributes. If set to true, the header, or footer, will appear on only one page. The
table element also accepts border, background, padding and margin attributes, and
those dealing with the relationship between pages and elements. These include
break-before, break-after, keep-together and so on.

table-column column-width=*"length|percentage®

number-columns-repeated="number"
Defining the width of columns when the table is created may be important. The

layout algorithm will generally be able to do this automatically, but that may

Section 10.3: Formatting Object Elements 245

lead to results that are visually unsatisfactory. Much better, therefore, to use
a table-column element for each column and determine a fixed width. Any
table-column elements are placed as direct children of the table element. If a
number of columns are to have the same width, the number-columns-repeated
attribute can be used in preference to repeating code.

table-header
This element is used to define the table header. It accepts table-row and
table-cell elements as children, and can be formatted as a mini table in its
own right. If table-cell elements are being used without first being placed
into table-row elements, the starts-row and ends-row properties of the
table-cell must be used.

table-footer
This defines a footer for the table and works exactly like the table-header ele-
ment, except that it appears at the bottom of the table.

table-body
This element contains the main body of the table. It has table-row or
table-cell elements as its children. Although the normal background proper-
ties can be applied, those relating to padding, borders and margins cannot be used
here.

Defining the overall structure of tables is not overly complicated. The main difficulty
comes when content is being added. Although the content of a table is simply a set of
cells which are placed into rows and columns, those cells need not be uniform. Cells can
be made to span horizontally across columns, or vertica