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Preface 

We have written this book for the layman as an introduction to the 

subject of tessellations. Understanding the material requires little previous 

background in either art or mathematics. A glossary is included to help the 

reader with technical terminology that may be unfamiliar. 

The study of tessellations provides opportunities for exploring and 

discovering relationships in a creative way. Some readers may be more 

interested in learning about the fundamental concepts we present so that 

they can better analyze and describe the patterns and structure of a tessella¬ 

tion. Others will want this basic understanding to help them create their 
own pattern designs. 

Numerous software programs that are available for today's personal 

computers enable us to draw with amazing speed and accuracy. With this 

new technology, we can create in just minutes or hours complex drawings 

that previously required days or weeks to complete. Many of the illustra¬ 

tions in this book were drawn with the Adobe Illustrator 88 program on the 
Macintosh II. 

Teachers of mathematics and art may be interested in the companion 

book. Tessellation Teaching Masters by Dale Seymour (Palo Alto, CA: Dale 

Seymour Publications, 1989). This volume contains more than 280 full-page, 

reproducible illustrations, offering examples of common types of tessella¬ 

tions, patterns for analysis by students, designs that can be colored according 

to the types of symmetry represented, and grids and templates to use for 

sketching and tracing original designs. 

For readers interested in a more rigorous and extremely comprehen¬ 

sive study of tessellations, we highly recommend the book Tilings and 

Patterns by Branko Griinbaum and G. C. Shephard (New York: W. H. 

Freeman and Company, 1987). See the bibliography for further information 

on this and related topics. 

Readers with a particular bent for drawing Escher-like tessellations 

might be interested in the contest mentioned at the end of this book. 

We hope you enjoy exploring tessellations. We love them, and we 

want to share them with you. 

Dale Seymour 

Jill Britton 

April 1989 
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Chapter 1 

INTRODUCTION 
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Patterns of geometric design are all around us. We see them 

every day, woven into the fabric of the clothes we wear, laid 

underfoot in the hallways of the buildings where we work, and 

printed on the wallpaper of our homes. Whether simple or intricate, 

such patterns are intriguing to the eye. In this book we will be 

exploring a special class of geometric patterns called tessellations. 

Our investigation will interweave concepts basic to art, to geometry, 

and to design. 

The word tessellation comes to us from the Latin tessella, which 

was the small, square stone or tile used in ancient Roman mosaics. 

Tilings and mosaics are common synonyms for tessellations. Much 

like a Roman mosaic, a plane tessellation is a pattern made up of one 

or more shapes, completely covering a surface without any gaps or 

overlaps. Note that both two-dimensional and three-dimensional 

shapes will tessellate. Two-dimensional shapes may tessellate a 

plane surface, while three-dimensional shapes may tessellate space. 

In this book, when we use the word tessellation alone, we will 

always mean a plane tessellation. 

Although the mathematics of tiling can become quite complex, 

the beauty and order of tessellations is accessible to anyone who is 

interested. To analyze tessellating patterns, you have to understand 

a few things about geometric shapes and their properties—but all you 

need to know is easily explained in a few pages. 

We will approach this subject through directed exploration. In 

the first few chapters, we will be looking into the following ques¬ 

tions: Which shapes will tessellate (that is, tile a plane without 

overlapping or leaving spaces)? Why will certain shapes tessellate 

and others not? How many different tessellating patterns can we 

create using two or more regular polygons? Do tessellating designs 

have symmetry? If so, what kind? How can we use transformations 

(slides, flips, and turns) to create unique tessellations? What other 

techniques could we use to generate these intricate designs? 

Many classifications of tessellations have been established. Our 
* 

explorations will focus on some of the more elementary types, in¬ 

cluding those illustrated in figures 1-1 through 1-9. 
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Fig. 1-1. Tessellating triangles (one shape) 

Fig. 1-3. Tessellating pentagons (one shape) 
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Fig. 1-4. Tessellating hexagons (one shape) 

Fig. 1-5. Tessellating regular polygons (one shape) 

Fig. 1-6. Tessellating regular polygons (three shapes) 
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Fig. 1-7. Tessellating polygons (two shapes) 

Fig. 1-9. Tessellating birds, M. C. Escher C 1988 M. C ESCHER HEIRS 
CORDON ART - BAARN - HOLLAND 
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As you can see from the preceding examples, there are many 

different categories of the design patterns we call tessellations. Each 

of the types shown will be discussed in some detail in later chapters. 

Regardless of the variety, however, all tessellations share one im¬ 

portant property: they can be extended in the plane infinitely in 

every direction. There are designs that contain patterns and fill a 

finite space that are not tessellations. For all the illustrations in this 

book, the infinitude of the tessellations is assumed; it can be verified 
in any particular case by extending the pattern. 

A 
/ \ 

Fig. 1-10. A tessellation extends infinitely in all directions. 
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Artists, designers, and mathematicians have been interested in 

tessellation designs and their properties for centuries. Geometric 

mosaics were used as decorations as early as 4000 B.C. by the 

Sumerians. Archimedes (c. 287-212 B.C.) and other ancient 

mathematicians investigated properties of regular polygons and 

combinations of regular polygons that tessellated the plane. A 

number of polygonal tessellations were pictured in Johannes 

Kepler's book, Harmonice Mundi, published in the year 1619. 

Probably the most extensive work with mosaic designs was done 

by Moorish artists, especially during the period 700-1500. The 

Islamic religion forbade artists to represent people, animals, or real- 

world objects in their work, limiting them to the use of calligraphy, 

linear designs, and geometric patterns for ornamentation. Chapter 6 

explores the type of tessellating design work done by the artists of 

Islam and other ancient cultures, including patterns based on star 

polygons. 

Fig. 1-11. Islamic art design 
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Fig. 1-12. Parquet flooring Fig. 1-13. Parquet flooring 

Fig. 1-14. Paving tiles 

Over the centuries, artists and artisans have worked their 

tessellating design patterns in many different media. With mosaics 

of colored, glazed clay tiles, they have decorated floors, walls, and 

ceilings. Their tessellations have appeared on pottery, in tapestries 

and carpets, in metal work, in wood carvings, and in stained glass. 

Tessellating shapes were sometimes an integral part of the structure 

of an object; other times they were purely decorative additions. 

Some of the same designs that were used as ornamentation 

hundreds of years ago are still seen in modern design motifs. 
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Fig. 1-15. Medieval tiled flooring 

Fig. 1-16. Modern linoleum pattern 

Fig. 1-17. Modern ceramic tiles 
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Fig. 1-18. Ancient Roman mosaic floor 

Fig. 1-19. Steel ceiling design (19th century) 
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Fig. 1-21. Patchwork quilt design 
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Fig. 1-22. Crochet pattern 

Fig. 1-23. Lace tablecloth Fig. 1-24. Vaulting in English cathedral 

INTRODUCTION TO TESSELLATIONS 13 



Fig. 1-25. Architectural plan for multi-unit complex using 
prefabricated "HEXAN" hexagonal shell units 
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Artisans are not the only ones to have recognized the beauty 

and decorative value of tessellation designs. In the twentieth 

century, a number of fine artists have applied the concept of 

tessellating patterns in their work. The best known of these is Dutch 

artist M. C. Escher. Inspired by the Moorish mosaic designs he saw 

during a visit to the Alhambra in Spain in the 1930s, Escher spent 

most of his life creating tessellations in the medium of woodcuts. He 

altered geometric tessellating shapes into such forms as birds, 

reptiles, fish, and people. Chapter 7 is devoted to a study of the 

Escher tessellations; it also introduces techniques that anyone can use 

to create Escher-like drawings. The fundamental properties of 

tessellations that we explore in chapters 2 through 6 help make 

Escher's work more understandable. 

0 1988 M. C ESCHER HEIRS 
CORDON ART - BAARN - HOLLAND 

Fig. 1-26. Sun and Moon, 

M. C. Escher 
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Fig. 1-27. Characteristic Op art design 

Other contemporary artists who have used tiling patterns or 

modifications thereof include leading figures in the Op art move¬ 

ment of the 1960s. One of these is Victor Vasarely, a Hungarian-born 

painter working in France who created striking designs in stark black 

and white as well as in vibrant colors. Another is the English painter 

and designer Bridget Riley, whose work shows a mastery of the 

characteristic visual effects of Op art, with geometrically precise 

patterns that vibrate and flicker before our eyes. 

The basis for most works of art—ancient or modern—involving 

tessellation patterns is an underlying grid formed by polygons. In the 

next chapter, we will explore different polygonal shapes to discover 

which ones can be used to form such a grid, or in other words, which 
ones tessellate the plane. 
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Chapter 2 

TESSELLATING 
POLYGONS 

(General) 





When we analyze a tessellation pattern, we are interested in the 
closed figures, or tiles, or tessellating shapes that form the overall 
design.* Circles, squares, and triangles are all closed figures; each has a 
perimeter and an area. The simplest class of closed figures is poly¬ 
gons. Our purpose in this chapter is to explore different types of 
polygons to find out which of these shapes will tessellate. Before we 
begin our investigation, we will review a few basic geometric terms 
and concepts. 

Polygon is the general classification for plane shapes with sides 
formed by line segments. A line segment is a part of a straight line, 
bounded by its endpoints. Polygons are named according to the 
number of sides and angles they contain, as shown in the chart below. 

NAMES OF POLYGONS 

SIDES AND 
ANGLES NAME 

SIDES AND 
ANGLES NAME 

3 triangle 11 undecagon 
4 quadrilateral 12 dodecagon 
5 pentagon 13 13-gon 
6 hexagon 14 14-gon 
7 heptagon • • 

8 octagon • • 

9 nonagon • ♦ 

10 decagon n w-g on 

The sides of a polygon meet at their endpoints. These common 
endpoints are called vertices (singular, vertex). In figure 2-1, points 
A, B, C, D, E, and F are all vertices of polygon ABCDEF. Line 

segments are usually named by the letters that identify their two 
endpoints. Hence, we can say that AB is a side of the hexagon. 
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A polygon has the same number of angles as sides. When we 

speak of the angles of a polygon, we are referring to its interior angles. 

That is, at each vertex of the hexagon in figure 2-2, there are two 

angles—an interior angle and an exterior angle. Unless we specify 

exterior angle, it can always be assumed that we are referring to the 

interior angle. 

For convenience in discussing angles, we can name them in any 

of several ways, as shown in figure 2-3. Angles are often named by 

their vertex point only (e.g., angle A). If a figure is more complex, we 

can name the angle using a vertex and two points, one on each side 

of the angle (e.g., angle CAB), or we can use a single numeral (e.g., 

angle 1). When we use three letters to name an angle, the letter at the 

vertex of the angle is always named second. 

D D 

C/3 
angle DAB 
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Angles are measured by the rotation between their sides. A 

complete rotation is 360 degrees (360°). 

Fig. 2-4. Angle measures 

We can classify angles as different types according to their mea¬ 

sure. A complete rotation or 360° angle is called a perigon. This and 

other angle names are illustrated in figure 2-5. 

(360°) 
a reflex angle 

(greater than 180° but 
less than 360°) 

a straight angle 
(180°) 

an obtuse angle a right angle 
(greater than 90° (90°) 

but less than 180°) 

an acute angle 
(greater than 0° but 

less than 90°) 

Fig. 2-5. Six types of angles 
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One property of the angles of a triangle is extremely important in 

understanding which polygons tessellate: The sum of the interior 

angles of any triangle equals 180°. We will not present a formal proof 

of this, but a simple demonstration will verify the relationship. After 

cutting a triangular shape from paper, tear off the three vertices of the 

triangle. When placed adjacent to each other, the three angles form a 

straight angle (180°). 

Fig. 2-6. Demonstration that the sum of the angles 
of a triangle equals 180° 

Since a triangle is the simplest polygonal shape, we will start 

with the triangle in our investigation of which polygons tessellate. 

Also, to keep things simple, we will explore tessellating with a single 

triangular shape rather than combinations of different triangular 

shapes. 

Two triangles that have the same size and shape are said to be 

congruent triangles. In figure 2-7, it's easy to see that A ABC could be 

superimposed exactly on ADEF, so they are congruent. We write this 

relationship as AABC = ADEF. Perhaps less obvious is the fact that 

triangles ABC and GHI are also congruent. We need only flip AGHI 

and then it, too, could be superimposed exactly on AABC. 

c F 
Fig. 2-7. Triangles ABC, DEF, and GHI are congruent. 
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We are about to explore the following questions: 

Which triangles (if any) tessellate? 

If some triangles tessellate, do they all? 

Before we proceed with our investigation, let's look at some 

different types of triangles so that we can consider each type sepa¬ 

rately. Triangles are classified according to the relationships and the 

size of their sides and angles. Examples of each triangle type are 
shown in figure 2-8. 

A triangle with three congruent sides is called an equilateral 

triangle. A triangle with three congruent angles is called an 

equiangular triangle. All equilateral triangles are equiangular and, 

conversely, all equiangular triangles are equilateral. Triangles with 

two congruent sides or two congruent angles are called isosceles 

triangles. Triangles with no congruent sides or angles are called 
scalene triangles. 

Triangles can also be classified according to the measure of their 

angles. A triangle that contains three acute angles is called an acute 

triangle. If a triangle contains one right angle, it is a right triangle. 

Finally, a triangle that contains one obtuse angle is called an obtuse 
triangle. 

A 
equilateral 

triangle 
equiangular isosceles 

triangle triangle 
scalene 
triangle 

right triangle acute triangle obtuse triangle 

Fig. 2-8. Seven classes of triangles 
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To start our investigation, let's first explore whether scalene 

triangles tessellate. Remember the properties of a scalene triangle: no 

sides congruent, no angles congruent. We might cut out a number of 

identical scalene triangles like the ones pictured in figure 2-9. Then 

we could move the triangles around on the tabletop, trying to fit 

them together to produce a tessellation. 

Fig. 2-9. Congruent scalene triangles: Will they tessellate? 

If we position three of these triangles as shown in figure 2-10, we 

observe that they fit together nicely when the corresponding sides are 

placed together. Since the sum of the three angles is 180°, it makes 

sense that the three angles at point A (angles 1, 2, and 3) fill half of a 

complete rotation. 

Fig. 2-10. Three congruent scalene triangles 
positioned to fill a half rotation 
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By adding three more triangles, we can completely fill all the 

space around the common vertex point of the six triangles. There are 

no gaps, no overlaps—a criterion of a tessellation. 

Fig. 2-11. Six congruent triangles forming a perigon (360°) 
with six angles 

At this stage of our investigation, the question becomes: If we 

continue using this triangular shape, will it tessellate the plane? 

Figure 2-12 shows that the pattern will continue and that the scalene 
triangle will tessellate. 

Was this triangle a special case? Will all scalene triangles 

tessellate? Will non-scalene triangles tessellate? If you are interested 

in exploring these questions on your own, we encourage you to close 

the book at this point and do so, as discovering things independently 

is a rewarding way to learn. However, as a matter of expedience, we 

will answer these questions briefly on the following pages so that we 

may continue our investigation. 
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Fig. 2-15. Tessellating right triangles Fig. 2-16. Tessellating isosceles triangles 
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Fig. 2-17. Tessellating equilateral (equiangular) triangles 

Figures 2-13 through 2-17 illustrate different types of congruent 

triangles tessellating. You may have guessed that any triangle will 

tessellate the plane by itself. If so, you are right. This property is the 

basis for almost every type of polygonal tessellation, as you will see in 

the following pages. Here, then, is the first generalization we might 
make about tessellating polygons: 

Any triangle 
tessellates the plane 

by itself. 

Now let7s work with scalene triangles to discover the variety of 

interesting patterns we can create with a single triangle. If we were to 

cut out several congruent triangles from paper that is white on one 

side and red on the other side, we could create a number of different 
patterns. 

Fig. 2-18. Opposite faces of one triangle 
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Placing the triangles together with the white side up, we would 

create a pattern like the one shown in figure 2-19. By flipping all the 

triangles over so that the red faces were showing, we could create a 

red tessellation (figure 2-20). Flipping the triangle in this way will be 

referred to as reflecting the triangle. 

Fig. 2-19. White side tessellation Fig. 2-20. Red side tessellation 

Combining a red and a white triangle at their common edges 

will produce three different shapes like those shown in figure 2-21. 

In figure 2-22, we see the tessellation patterns that can be produced 

using these three different pairs of red and white triangles. 
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Fig. 2-22. Three different patterns using the same scalene triangle 
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Fig. 2-23. Six different shapes formed by two congruent triangles 

Now we see that not only will any triangle tessellate, but it will 

tessellate in different patterns depending on how the triangle edges 

are arranged. Shown in figure 2-23 are the six different ways we can 

arrange a triangle to form a tessellating pattern. 

Maybe it has already occurred to you that the two triangle shapes 

combine in each case to form a quadrilateral. Since we will next be 

exploring the tessellation of quadrilaterals, we may be able to apply 

some information we have learned about triangles. If we view figure 

2-23 again, but replace the common side with a dotted line, we see 

that we have six different quadrilaterals. 

Fig. 2-24. Pairs of congruent triangles seen as quadrilaterals 
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Viewing pairs of triangles this way provides a nice transition 

into our exploration of quadrilaterals. The three patterns in figure 

2-25 show us how pairs of triangles can be seen as tessellating 

quadrilaterals. The other three triangle pairs from figures 2-23 and 

2-24 could be similarly arranged in patterns of tessellating 

quadrilaterals. 

Fig. 2-25. Quadrilateral tessellations from triangle pairs 
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Since any triangle tessellates and in fact tessellates in six different 

ways when arranged as pairs that form quadrilaterals, we know that 

many quadrilaterals will tessellate. Recall that we began our explora¬ 

tion of triangles with the important fact that the sum of the interior 

angles of a triangle is 180°. What is the sum of the interior angles of a 

quadrilateral? The preceding examples, in which two triangles were 

combined to form a quadrilateral, give us some clues. In each case 

when two adjacent triangles formed a quadrilateral, their interior 

angles were not overlapping, nor was there any gap. From figure 

2-26, we may deduce that the sum of the four angles in the quadri¬ 

lateral will total two times 180°, or 360°. 

Fig. 2-26. Two congruent triangles together form a quadrilateral 
whose interior angles measure 360°. 

Can every quadrilateral be divided into two triangles? Before we 

investigate this, let's review how quadrilaterals are named and clas¬ 

sified. A quadrilateral is any four-sided polygon. Like triangles, 

different quadrilaterals are classified according to their special proper¬ 

ties or the relationships of their sides and angles. Examples of the 

different classifications are shown in figure 2-27. 

A rhombus is a quadrilateral with four congruent sides. 

A parallelogram is a quadrilateral with opposite sides parallel. A 

rectangle is a quadrilateral with four congruent angles (each 90°). 

A square is an equilateral rectangle. A kite is a quadrilateral with two 

pairs of adjacent, congruent sides. A trapezoid is a quadrilateral with 

only two sides parallel. A scalene quadrilateral is one with no sides 

congruent. Finally, a quadrilateral with one reflex angle (greater than 

180°) is called a concave quadrilateral. If a polygon is not concave, 

then it is convex. Thus, the first seven shapes in figure 2-27 are all 

convex quadrilaterals. 
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rhombus parallelogram rectangle 

kite square 

Fig. 2-27. Eight classes of quadrilaterals 

Now lef s go back to our question: Can every quadrilateral be 

divided into two triangles? It is not essential that the two triangles be 

congruent, since every triangle's three angles total 180°. We can take a 

variety of quadrilaterals and divide each with a single diagonal, as 

shown in figure 2-28. (A diagonal is a line that joins the opposite 

vertices of a quadrilateral.) In each case, notice that the figure is 

divided into two triangles with no overlapping interior angles. 
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If we were to continue taking quadrilaterals of different types 

and drawing a single diagonal in each, this further investigation 

would reveal that any quadrilateral can be divided into two triangles. 

Therefore, the sum of the interior angles of any quadrilateral equals 

360°. Cutting the four vertices off a paper quadrilateral and placing 

them together to form a perigon (360°) will demonstrate this 

property. 

Fig. 2-29. Demonstration that the sum of the angles 
of a quadrilateral equals 360° 

In figure 2-30, we see several congruent quadrilaterals that 

appear to tessellate the plane. Observe the combination of angles that 

are located at each vertex point. In each case, the sum of angles 1, 2, 3, 

and 4 equals 360°. 
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It might seem that concave quadrilaterals would not tessellate 

because of their large interior angle. However, figure 2-31 shows that 

even concave quadrilaterals tessellate. Notice once again that angles 

1, 2, 3, and 4 all appear at each vertex. 

Fig. 2-31. Tessellating concave quadrilaterals 

Thus we come to another generalization about tessellating 

polygons: 

Any quadrilateral 
tessellates the plane 

by itself. 
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Fig. 2-32. Tessellating rhombi 

Fig. 2-34. Tessellating parallelograms 

Fig. 2-36. 
Tessellating scalene quadrilaterals 

Fig. 2-33. Tessellating rectangles 

Fig. 2-37. 
Tessellating concave quadrilaterals 
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Figures 2-32 through 2-37 illustrate the patterns of six different 

types of tesseliating quadrilaterals. Recognizing that any quadrilateral 

will tessellate, we might then ask: Will quadrilaterals tessellate in 

different patterns by pairs, as triangles do? We can approach this 

question, as we did with triangles, by envisioning a quadrilateral cut 

from paper colored white on one side and red on the other. Flipping 

or reflecting the white shape produces the red, and vice versa. 

Using the quadrilateral pictured in figure 2-38, we know that we 

can form a tessellation of all white shapes, and that we can form a 

tessellation from all red shapes. The question is, can we form 

different tessellations from the red and white shapes combined? The 

four possible combinations of this particular quadrilateral are shown 
in figure 2-39. 

Fig. 2-39. Four ways to combine the same red and white quadrilaterals 
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In figure 2-39, notice that the same angle appears twice at each 

pair of common vertices. In all our previous examples of tessellating 

quadrilaterals in which no shapes were reflected, each of the four 

angles appeared once at the vertex point. In this new situation, 

where we see one angle appearing twice, we question the likelihood 

that a combination of the other angles would exactly fill the 

remaining angle space. 

When we were experimenting with red and white triangles, we 

found that they tessellated because a pair of triangles always formed a 

quadrilateral (and, as we now know, all quadrilaterals tessellate). 

However, when we place a quadrilateral (white) and its reflection 

(red) together along a common side, we form a six-sided polygon, or a 

hexagon. It appears that the hexagons thus created may not tessellate. 

As we have not yet begun to investigate hexagons, we will for the 

time being conclude that while every quadrilateral will tessellate, a 

quadrilateral will not necessarily tessellate in a pattern with its 

reflection, as does a triangle. 

Let7s next investigate whether or not five-sided polygons, or 

pentagons, will tessellate. Once more we can begin by cutting a 

pentagonal shape from a piece of paper. We number the five angles, 

tear them off the pentagon, and observe relationships among them. 

A demonstration of this experiment is shown in figure 2-40. Notice 

that the sum of the angles is greater than 360°. Is this true of all 

pentagons? Does this mean that no pentagon will tessellate? Is it 

necessary in a tessellation that the tessellating shape have each of its 

angles represented at a vertex point? These are all good questions to 

pursue. 

Fig. 2-40. Experiment with a paper pentagon 

As we did with both triangles and quadrilaterals, we might cut 

out a number of congruent pentagons and try placing them in a 

tessellation pattern. A few such experiments would probably lead to 

frustration and the conclusion that at least some pentagons won't 

tessellate. But, some pentagons will tessellate. 
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Figures 2-41 and 2-42 show pentagonal shapes that tessellate. 

What special relationship do the sides of each pentagon have in 

figure 2-41? Could you modify figure 2-42 to make a similar 

tessellation with a slightly different pentagon? Draw or describe your 

variation. 

A A A A A A A A A A M 

V V I Y Y Y Y Y I Y V 
A / A A A A A A A A 

M 

V V T T Y 1 Y Y Y Y v 
A A A A A A A A A A A 
v V Y T Y T Y Y Y Y V 

Fig. 2-41. Tessellating pentagons Fig. 2-42. Tessellating pentagons 

At this point we will leave our investigation of pentagons with 

the conclusion that some pentagons tessellate and others do not. In 

the next chapter, we will explore the special properties of pentagons 

that relate to their tessellations. 

Now let's turn our attention to hexagons. The tessellation of 

hexagons is worthy of special consideration. We have learned that 

every quadrilateral tessellates, and we can observe that pairs of 

tessellating quadrilaterals form special hexagons. What is special 

about them? Study the hexagons highlighted in figure 2-43 and try to 

detect their special properties. 
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Fig. 2-43. Pairs of tessellating quadrilaterals form 
special hexagons that also tessellate. 

You should have observed that each of these special hexagons 
displays two properties: 

1. Opposite sides are congruent. 

2. Opposite sides are parallel. 

As you can see, a quadrilateral tessellation can introduce as 

many as four new tessellating special hexagons. Tessellations of the 

four hexagonal shapes shown in figure 2-43 are illustrated in figure 

2-44. Each pattern in figure 2-44 is formed by congruent pairs of the 

same quadrilateral, arranged in different positions. 
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Fig. 2-44. Tessellating special hexagons formed by two 
congruent quadrilaterals 
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If we could continue our investigation of which general 
polygons will tessellate the plane, we would find that in general, only 
triangles and quadrilaterals always tessellate by themselves. We have 
seen examples of some pentagons and special hexagons that tessellate, 
too. Other polygons or combinations of polygons will sometimes 
tessellate, under certain conditions. Figures 2-45 through 2-50 show 
tessellations of polygons with seven, eight, nine, ten, twelve, and 
eighteen sides; however, in none of these cases will all forms of that 
polygon tessellate. Now we may ask: Which regular polygons 
tessellate? This question we will explore in the next chapter. 

Fig. 2-45. Tessellating heptagons 

Fig. 2-47. Tessellating nonagons 

Fig. 2-49. Tessellating dodecagons 

Fig. 2-46. Tessellating octagons 

Fig. 2-48. Tessellating decagons 

Fig. 2-50. Tessellating 18-gons 

INTRODUCTION TO TESSELLATIONS 



TESSELLATING 
POLYGONS 

(Specific) 





In chapter 2 we explored which general polygons would 

tessellate the plane. We concluded that only two types of polygonal 

shapes will always tessellate: triangles and quadrilaterals. In this 

chapter, we will explore which regular polygons tessellate by 

themselves. In addition, we will investigate which combinations of 

two or more regular polygons tessellate the plane. Recall that a 

regular polygon is one with all its angles and sides congruent. 

Examples of eight regular polygons (triangle through decagon) are 

illustrated in figure 3-1. Observe that as the number of sides in the 

regular polygon increases, the closer it comes to appearing like a 

circle. In fact, it would be difficult to differentiate a regular 100-gon 
from a circle. 

Fig. 3-1. Eight regular polygons 
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Fig. 3-2. Tessellating equilateral triangles Fig. 3-3. Tessellating squares 

Since we already know that every triangle tessellates and every 

quadrilateral tessellates, we know that their special regular forms will 

tessellate. Examples of these regular tessellations are shown in 

figures 3-2 and 3-3. We are quite familiar with tessellations of squares 

and equilateral triangles in patterns that we see around us daily in 

design and decoration. 

In the preceding chapter, we learned that hexagons with opposite 

sides that are both parallel and congruent (hexagons made from two 

congruent quadrilaterals) will tessellate. In figure 3-4, we can observe 

that the opposite sides of a regular hexagon appear to be parallel; they 

always are. Further, we know that the opposite sides are congruent, 

since all six sides are congruent. We should, therefore, expect this 

special shape to tessellate the plane; figure 3-5 shows that it does. Like 

the previous two regular tessellations, this one is quite familiar to us. 

We have seen regular hexagon tessellations in numerous places, 

including kitchen and bathroom tile, quilt designs, honeycombs, and 

chicken wire. 

o 
Fig. 3-4. 

A regular hexagon Fig. 3-5. Tessellating regular hexagons 
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We have seen that regular triangles, squares, and hexagons all 

tessellate by themselves; but what about the regular pentagon? 

Figure 3-6 shows three congruent regular pentagons positioned in the 

plane so that they share a common vertex. Notice that three 

pentagons so arranged do not form a perigon (360° angle); there is a 

slight gap. From this we could speculate that each congruent angle of 

the regular pentagon contains slightly less than 120° (one-third of a 

perigon). If we place a fourth regular pentagon at the common 

vertex, the four shapes do not tessellate; they overlap (figure 3-7). 

Fig. 3-6. Three regular pentagons Fig. 3-7. Four regular pentagons 

Dividing a pentagon by drawing two of its diagonals demon¬ 

strates that any pentagon can be divided into three triangles. This 

means that the sum of the angles of any pentagon is always 3 x 180° 

or 540°. Dividing 540° by the five angles, we see that each angle in a 

regular pentagon will measure exactly 108° (figure 3-8). Because 108° 

does not divide 360° exactly, we can conclude that regular pentagons 

will not tessellate by themselves. Figure 3-9 shows an attempt to 

tessellate with regular pentagons. 

Fig. 3-8. The sum of the interior angles of a pentagon is 540°. 
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Fig. 3-9. Regular pentagons leave parallelogram gaps, 
forming a two-shape tessellation. 

It seems that we can generalize as follows: 

Dividing polygons into triangles to determine the sum of their 

interior angles, as we just did with the pentagon, provides a strategy 

for determining which other regular polygons, if any, tessellate by 

themselves. We can divide any regular polygon into triangles. 

Knowing that the sum of the angles of a triangle equals 180°, we 

multiply 180° times the number of triangles that we formed; this 

gives us the sum of all the angles in the polygon. If we divide this 

total by the number of congruent angles in the regular polygon, we 

arrive at the measure of each of angle. Figures 3-10 through 3-12 

show how we determine the measures of the angles of regular 

hexagons, heptagons, and octagons, which in turn enables us to learn 

whether or not these shapes tessellate. 
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180° 
180° 

180° 

180° 

4 x 180° = 720° 
720°-r 6= 120° 

5x180° = 900° 
900° -r 7 = 128 4/7° 

Fig. 3-10. 
A hexagon divides 
into four triangles. 

Fig. 3-11. 
A heptagon divides 
into five triangles. 

Fig. 3-12. 
An octagon divides 
into six triangles. 

As you can see in figure 3-13, the three 120° angles of the regular 

hexagons exactly fill all the space around a common vertex point. 

Just figuring the angle measures tells us this, because 120° divides 

360° exactly. Thus three hexagons will fit around a vertex point with 

no gaps or overlapping; regular hexagons tessellate. The angle 

measures of the regular seven- and eight-sided polygons, however, 

do not exactly divide 360°; therefore they do not fill the space around 

a common vertex without overlapping (figures 3-14 and 3-15). We 

conclude that regular heptagons and octagons will not tessellate. 

120° 

120°M 20° 

Fig. 3-13. 
Regular hexagons 

tessellate. 

Fig. 3-14. 
Regular heptagons 
do not tessellate. 

Fig. 3-15. 
Regular octagons 
do not tessellate. 

Let7s see what generalizations we could make here. As the 

polygons increase in number of sides, the size of their angles also 

increases. When hexagons fill the space around a point, three equal 

angles meet at a common vertex point. Since the polygon angles get 
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larger as the number of sides increases, the next time we could fill 

360° with equal angles would be when we had two angles measuring 

180°. It is impossible to have a regular polygon each of whose angles 

measure 180° (since that is a straight line); therefore we cannot have 

regular polygons with more than six sides that tessellate the plane. 

Our conclusion is as follows: 

• ~ ♦♦♦ 
• ♦ 

There are only three 
regular tessellations. 

Fig. 3-16. The three regular tessellations 

Tessellations of Two or More Regular Polygons  

We have seen the importance of the angle measure of polygons 

in determining whether or not a given polygon will tessellate. In this 

section we will explore which combinations of regular polygons 

tessellate. 

Remember, we have learned how to find the angle measure of 

regular polygons quite simply by drawing diagonals to divide them 

into triangles. Knowing the angle measure of certain regular poly¬ 

gons enables us to determine which combinations total 360° and thus 

exactly fill the space around a vertex point. Figure 3-17 lists the key 

regular polygons and their angle measures. Using the general formu¬ 

la for an n-gon, we can find the angle measure of any regular polygon. 
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SUM OF MEASURE OF EACH 
NUMBER OF INTERIOR INTERIOR ANGLE 

POLYGON SIDES/ANGLES ANGLES (REGULAR POLYGONS) 

triangle 3 l—
l 

00
 

o
 

o
 

60° 

quadrilateral 4 360° 90° 

pentagon 5 

0 O
 

S
 108° 

hexagon 6 

o
 

O
 120° 

heptagon 7 900° 128 i° 

octagon 8 1080° 135° 

nonagon 9 1260° 140° 
decagon 10 1440° 144° 

dodecagon 12 1800° 150° 
15-gon 15 2340° 156° 
18-gon 18 2880° 160° 

20-gon 20 3240° 162° 
24-gon 24 3960° 165° 

42-gon 42 7200° 171 j° 

n-gon n (»- 2) 180° 
(n - 2) 180° 

n 

Fig. 3-17. Interior angle measures in selected regular polygons 

The general problem of filling the space around a point with 

regular polygons was first solved in 1785 by The Rev. Mr. Jones. 

Jones listed the following limitations regarding the number and 

kinds of polygons that can be fitted together around a single point: 

1. There cannot be more than six polygons, because six angles of 

equilateral triangles are equal to four right angles. 

2. There cannot be less than three polygons, because an angle of 

any regular polygon is less than two right angles. 

3. There cannot be more than three "sorts" of polygons used at 

once, because the three "sorts" whose angles are smallest are 

the equilateral triangle, the square, and the regular pentagon. 

The sum of these three angles, 60° + 90° + 108°, is 258°. For 

four different regular polygons the smallest possible sum is 

60° + 90° + 108° + 120°, which is 378°. 

4. If there are four polygons, two must be of the same "sort." 

5. If there are five polygons, there are two possibilities: 

(a) Two of each of two "sorts" and one of another; 

(b) Three of one "sort" and one each of two other "sorts."* 

*From Bradley, A. D., The Geometry of Repeating Design and Geometry of Design for High 

Schools. New York: Teachers College, Columbia University, 1933. 
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Using Jones's logic, we can find what possible combinations of 

regular polygons will fill all the space around a point. Here's where 

our chart of angle sizes (figure 3-17) is very helpful. Kepler first 

addressed the problem of finding tessellating angle combinations 

nearly 400 years ago; mathematicians have now determined that 21 

arrangements of regular polygons will fill the space around a point, as 

shown in figure 3-18. (Although the language of Jones's fifth 

limitation seems technically inconsistent with combinations 3.3.3.4.4 

and 3.3.3.3.6, he apparently did not mean to exclude them.) Note that 

there are only 17 different angle combinations; the additional four 

arrangements are made by placing some of the same combinations of 

polygons in a different order. 

3.3.3.3.3.3 3.3.3.4.4 3.3.4.3.4 4.4.4.4 3.6.3.6 

O a 

Fig. 3-18. The 21 arrangements of regular polygon combinations that 
fill the space around a point 
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In the numerical notation that we use to identify each arrange¬ 

ment, we list the polygon sides (angles) starting with a given vertex 

and proceeding sequentially around the point. Figure 3-19 shows an 

example of a combination that appears twice but in a different order, 

creating a quite different pattern. 

Fig. 3-19. The same polygon combinations in different order 

Readers who are teaching secondary mathematics or those with 

a strong math background may be interested in the algebraic analysis 

of all possible arrangements of regular polygons that fill space around 

a point. This information can be found in the appendix, page 245. 

Now that we have identified the 21 arrangements of regular 

polygons that fill the space around a point, let's investigate which of 

these will tessellate the plane. Filling all the space about a point 

guaranteed a tessellation when we were using congruent regular 

polygons, but it is no guarantee when we are using more than one 

shape. We need to look carefully at each combination to see if we can 

continue to build a pattern that will be infinite. In figure 3-20, 

arrangement 3.3.4.3.4 has been extended and appears to tessellate. 

Observe that at every vertex point in the tessellation, we find the 

identical set of polygons in the same order. 

Fig. 3-20. A tessellation of squares and equilateral triangles 
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Fig. 3-21. A different tessellation of squares and equilateral triangles 

Extending the other combination of three triangles and two 

squares (3.3.3.4.4) shown in figure 3-19 also forms a tessellation, but in 

a much different pattern. Again, though, at each vertex point in 

figure 3-21 we find the same set of polygons in the same sequence. 

We call the patterns that have been formed in figures 3-20 and 

3-21 semiregular tessellations. A semiregular tessellation has two 

properties: 

1. It is formed by regular polygons. 

2. The arrangement of polygons at every vertex point is identical. 

If you like to discover things on your own, you might like to 

stop reading here momentarily and see if you can discover all the 

possible semiregular tessellations by yourself. Armed with informa¬ 

tion about angle measures (figure 3-17) and the 21 regular polygon 

arrangements shown in figure 3-18, you should be able to discover 

most of the semiregular tessellations without much difficulty. Here 

is a clue to get you started: 

There are eight 
semiregular 
tessellations. 
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The eight semiregular and three regular tessellations are 

sometimes called Archimedean, homogeneous, or uniform tilings. 

In semiregular tessellations, all the vertex points are formed by 

identical combinations of regular polygons, as you can see by studying 

the designs in figure 3-23. The tessellation in figure 3-22 is made 

from regular polygons, and it does form a pattern that can be 

extended indefinitely. Nonetheless, it is not semiregular because 

there are two different vertex points with different combinations of 

polygons (3.4.6.4 and 3.3.4.3.4, as highlighted in the figure). 

Fig. 3-22. A tessellation of regular polygons that is not semiregular 

Further examples of tessellating regular polygons that are not 

semiregular tessellations are shown in figure 3-24. There are an 

infinite number of these patterns that do not have the same com¬ 

bination of angles at every vertex point. These types of tessellations, 

along with many others that are not discussed in this book, are 

explained in rigorous detail by Griinbaum and Shephard in Tilings 

and Patterns. 
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Fig. 3-23. The eight semiregular tessellations 
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Fig. 3-24. Tessellations of regular polygons that contain more than 
one type of vertex point 
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Before we leave our exploration of the tessellation of regular 

polygons, let's look at another variation. All the examples we have 

considered thus far have been created with polygons that share 

common edges and vertices. That is, all shared edges coincide. It is 

possible to tessellate the plane with regular polygons that are not 

arranged in edge-to-edge patterns. Four such patterns are shown in 

figure 3-25, and an additional two are shown in figure 3-26. In 

general, we are less interested in tessellations of this type as they 

appear much less frequently in design applications. 

t yy yyyyyy 
a/vvvww 
AAA/VVVVV 
A/vvvvvw 
/yyywvw 
AZVVVVVVSZ (yyyyyyyy /vvvvvvw 

) A ...JLL x x x x x xy (xx x x XX 
XX X X X XX 
XX X X X XX 
XX X X X XX 

(XX X X XX 
EBBS 

t \ i \ i \ r \ i 

i/vvvvv\7W 

Fig. 3-25. Tessellations of regular polygons not positioned edge-to-edge 
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Fig. 3-26. Tessellating non-congruent regular polygons 

We have now completed our investigation of which regular 

polygons will tessellate, both by themselves and in combinations. In 

the next chapter we will explore another important property of 

tessellations: their symmetries. 
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Chapter 4 

SYMMETRY & 
TRANSFORMATIONS 





Most of us know the word symmetry as used by artists, architects, 

and scientists to refer to the balance of form or harmonious arrange¬ 

ments in a painting, a sculpture, a building, or in natural phenomena 

such as crystals or plant and animal forms. Symmetry also happens 

to be a property of all tessellations. We look for symmetries as we 

explore these designs; locating the symmetries in a particular tessella¬ 

tion helps us identify its underlying grid pattern. 

We will discuss several different types of symmetry in this 

chapter. Take a look at the four designs in figure 4-1. All are 

symmetrical, but each has a quite different kind of symmetry. To 

understand the differences, we will look at how each design might 

have been created by certain special movements of a part of the 

figure—movements that mathematicians call transformations. 

Fig. 4-1. Designs exhibiting four different types of symmetry 
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Mathematicians recognize different types of transformations, but 

in this book we are concerned only with rigid transformations, which 

move figures without changing their size or shape. A transformation 

can be thought of as a motion that moves a figure from one location 

on a plane to a new location on that same plane. Recognizing these 

transformations helps us analyze and create tessellations. In this 

book we will use four types of transformation: (1) translation, 

(2) rotation, (3) reflection, and (4) glide reflection. Let's explore the 

differences among them. 

In figure 4-2, the two-color arrow on the left is moved to a new 

location by sliding it down and to the right. In the process, every 

point on the first arrow is moved the same distance in the same 

direction. Such a motion is the transformation that we call a 

translation or a slide. 

Fig. 4-2. A translation or a slide 

The smaller arrow indicates the direction of the translation. The 

distance between any two corresponding points on the original and 

the translated shape is Called the magnitude (or size) of the transla¬ 

tion. The dashed arrow in figure 4-2 shows the magnitude of this 

particular translation. Note that the orientation of a figure does not 

change when it undergoes a translation. 

When we move a figure to a new location on a plane by rotating 

it about a fixed point, we call this transformation a rotation or a turn. 

Figure 4-3 demonstrates this motion. 
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To better understand a rotation, you can recreate it using figure 

4-4 and tracing paper or acetate. Trace the two-color arrow on the 

upper left, then lay your tracing precisely over the figure. Anchor the 

tracing paper (or acetate) to the plane of this page by pressing a sharp 

pencil onto the marked point. By rotating the tracing paper through 

an appropriate angle about that point, you can make your tracing 

coincide exactly with the arrow in its new location and orientation at 
the lower right. 

Fig. 4-3. A rotation or a turn Fig. 4-4. Diagram for exploring a rotation 

The point in the plane about which a shape is rotated is called 

the center of rotation. Lines connecting the center of rotation with 

corresponding points on the original shape and the rotated shape 

form the angle of rotation. The size of this angle gives us the 

magnitude of the rotation. 

center of rotation 

Fig. 4-5. The center of rotation and the angle of rotation 

We can think of a rotation as the motion of a windshield wiper 

sweeping across a car's windshield. The point about which the wiper 

turns is the center of rotation; the size of a single sweep gives the 

magnitude of the angle of rotation. 
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In the third type of transformation, we move a figure to a new 

location on a plane by flipping it about a line in that plane. We call 

this motion a reflection or a flip. The line about which the figure 

moves is the line of reflection. This transformation is illustrated in 

figure 4-6 with the same two-color arrows that we earlier translated 

and rotated. 

If we placed a mirror along the line of reflection, in a plane 

perpendicular to the plane of this page (figure 4-7), then the "mirror 

image" of the original figure would coincide with the figure in its 

new location. The use of the word reflection to name this transfor¬ 

mation emphasizes this mirror-image relationship. 

Fig. 4-6. A reflection or a flip Fig. 4-7. The line of reflection 
suggests a mirror image. 

In the final type of transformation, we combine the motions of 

reflection and translation to move a figure to its new location—first 

by flipping it about a line of reflection, then by sliding it along a 

straight line parallel to that line of reflection. Such a motion, illus¬ 

trated in figure 4-8, is called a glide reflection. We could, of course, 

perform the steps in the other order, sliding the figure first and then 

reflecting it; the result is the same in either case. 

reflection slide (glide) final figure 

Fig. 4-8. A glide reflection 
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Note that to achieve a glide reflection, neither a translation 
alone nor a reflection alone will give us the desired effect. Hence, in 
this case, we regard neither the translation nor the reflection by itself 
as a transformation; instead they are seen together as the steps of a 
single transformation. 

It is interesting to compare a glide reflection with a 180° rotation. 

In figures 4-9 and 4-10, what difference (if any) do you see in the two 
transformations? If the arrow had not been half dark and half light, 
would the two different transformations have produced essentially 
the same result? 

Now that we have identified four types of transformation, let's 
see how these operations help us create the four different types of 
symmetry: translational symmetry, rotational symmetry, reflective 
symmetry, and glide-reflection symmetry. 

Translational Symmetry 

Suppose the pattern in figure 4-11 extends infinitely to the left 
and to the right. It can then be made to coincide with itself by sliding 
or translating it to the left or to the right. If you were to trace the 
pattern onto a sheet of tracing paper or acetate, you could verify this 

for yourself. 

Fig. 4-11. A design with translational symmetry 
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Such a design is said to have translational symmetry. When 

a figure has been translated onto itself exactly, we say it is in 

coincidence. The shortest translation that results in coincidence is 

the translation between any two adjacent corresponding points, as 

illustrated by the dashed lines in figure 4-12. We call this distance the 

magnitude of the translation. 

◄-► 

a a 

Fig. 4-12. The magnitude of the translation 

In general, then, a figure has translational symmetry if it coin¬ 

cides with itself after an appropriate translation. Every point in the 

figure moves the same distance in the same direction. The shortest 

distance that results in coincidence in a given direction is the 

magnitude of the translation in that direction. 

Let7s see how this works in a tessellation, like the tessellation of 

congruent scalene quadrilaterals shown in figure 4-13. This tessella¬ 

tion has translational symmetry. Note that all the red quadrilaterals 

Fig. 4-13. A tessellation with translational symmetry 
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have precisely the same orientation. We can make the tessellation 

coincide with itself by sliding it until any quadrilateral of one color 

coincides exactly with another quadrilateral of that same color. The 

arrows show three possible directions for this translation. 

Since there are infinitely many identically oriented quadri¬ 

laterals, there are infinitely many different possibilities for the 

direction of the translation. This fact is valid for all tessellations, 

whatever their type of tessellating regions, and whatever other kinds 

of symmetry they possess. 

Rotational Symmetry 

Now let's consider the design shown in figure 4-14. Suppose 

that you trace the figure, lay your tracing precisely over the original 

figure, press with a sharp pencil on the marked point, then rotate the 

tracing paper about this point until the tracing and the original figure 

again coincide. This will happen in less than one full turn. Such a 

figure is said to have rotational symmetry. The marked point is 

called the center of rotation. 

You could use your tracing to verify that the traced figure will 

coincide with the original figure exactly three times in one full turn, 

as shown in figure 4-15. Because of this property, we can say that the 

figure has three-fold (3-fold) rotational symmetry. 
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initial position 120° rotation 240° rotation 

Fig. 4-15. A figure with three-fold symmetry, shown in the three 
positions in which it coincides with itself 

For this particular figure, the size of the angle between 

successive fits is 120°, or 360°/3. We call this the angle of rotation. 

In general, then, a figure has rotational symmetry if it coincides 

with itself after an appropriate rotation of less than one full turn. 

The point about which all other points in the figure move is called 

the center of rotation. We say that a figure has n-fold rotational 

symmetry if it coincides with itself exactly n times in one full turn. 

The smallest angle that results in coincidence, or the angle of 

rotation, is given by the formula 360°/n. Figures 4-16 through 4-19 

present further examples of figures with rotational symmetry. 

Fig. 4-16. Two-fold rotation; 
angle of rotation: 180° 

Fig. 4-17. Three-fold rotation; 
angle of rotation: 120° 

Fig. 4-18. Five-fold rotation; 
angle of rotation: 72° 

Fig. 4-19. Eight-fold rotation; 
angle of rotation: 45° 
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All regular polygons have rotational symmetry. The center of 

rotation is the center of the polygon. A regular polygon with n sides 

has n-fold rotational symmetry; this is readily verified by observing 

the polygons in figure 4-20. 

three-fold four-fold five-fold 

six-fold eight-fold 

Fig. 4-20. Regular polygons have rotational symmetry. 

All three regular tessellations have rotational symmetry. Con¬ 

sider, for example, the tessellation of equilateral triangles illustrated 

in figure 4-21. The center of each triangle is a center of three-fold 

rotation; each vertex of each triangle is a center of six-fold rotation; 

and the midpoint of each side of each triangle is a center of two-fold 
rotation. 

center of three-fold rotation center of six-fold rotation 

center of two-fold rotation 

Fig. 4-21. A triangle tessellation has rotational symmetry. 
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The rotational symmetries for all three regular tessellations are 

shown in figure 4-22. If you are having trouble visualizing the 

symmetries, try tracing the figures and rotating your tracings as 

described earlier. 

Note that the centers of all polygons in a given tessellation are 

interchangeable or equivalent, as are all the vertices and all the 

midpoints of the sides. Each tessellation has exactly three different 

(non-equivalent) centers of rotation. 

Fig. 4-22. The rotational symmetries of the three regular tessellations 

equilateral triangle 

three-fold at the centers 

six-fold at the vertices 

two-fold at the midpoints 

of the sides 

square 

four-fold at the centers 

four-fold at the vertices 

two-fold at the midpoints 

of the sides 

regular hexagon 

six-fold at the centers 

three-fold at the vertices 

two-fold at the midpoints 

of the sides 

The semiregular tessellations also display rotational symmetries, 

but there is no simple pattern. For practice in identifying symmetries 

in tessellations, let7s look at the semiregular tessellations. In figures 

4-23 through 4-26, we identify some points of symmetry with red dots. 

Determine whether the marked point is a center of rotation, and if so, 

what the symmetry of the rotation is (i.e., two-fold, three-fold, six¬ 

fold). If the point is not a center of rotation, locate some other points 

on the tessellation to which the marked point could translate. If 

you can't do this by visualizing, trace the patterns and explore them 
that way. 
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Then, in the next four semiregular tessellations (figures 4-27 

through 4-30), see if you can identify all the different centers of 

rotation and the symmetries (i.e., two-fold) of each. (See page 84 for 
answers.) 

yy \ / \ 

\ / • y \ • / 

yy / \ / \ 

yy \ y \ / 

/y / \ Y \ 

yy \ / \ / 

y v / \ \ 
Fig. 4-23. Tessellation 4.8.8 Fig. 4-24. Tessellation 3.12.12 

Fig. 4-26. Tessellation 3.3.3.4.4 
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xxxxxxx 
xxxxxx^ 
KXXXXXX 
lYxyxyxy 

Fig. 4-28. Tessellation 3.4.6.4 

Fig. 4-29. Tessellation 3.33.3.6 Fig. 4-30. Tessellation 3.3.43.4 
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When we look for symmetries in the tessellations of irregular 

polygons, we find several interesting results. Parallelograms taken 

alone have two-fold rotational symmetry about their centers. Tessel¬ 

lations of parallelograms have two-fold rotational symmetry about 

the center, the vertices, and the midpoints of the sides of each paral¬ 

lelogram (figure 4-31). 

Fig. 4-31. Centers of rotational symmetry for 
tessellating parallelograms 

Tessellations of scalene quadrilaterals have two-fold rotational 

symmetry about the midpoints of the sides of each quadrilateral. 

Thus there are four different centers of two-fold rotation, marked 

with red dots in figure 4-32. Similarly, tessellations of scalene 

triangles have three different centers of two-fold rotation. 

Although we could further explore rotational symmetry and 

tessellations, this is all we really need for the purposes of this book. 

tessellating quadrilaterals 
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Reflective Symmetry 

Next we will investigate reflective symmetry, an example of 

which appears in figure 4-33. If you were to trace the clown face and 

fold your tracing along the vertical dashed line, you will find that one 

half fits exactly over the other half. In other words, if the original 

illustration could be flipped about the vertical dashed line, left side to 

right side and right side to left, it would coincide with itself. 

Fig. 4-33. Illustration with 
reflective symmetry 

If you were to place a mirror along the vertical line, in a plane 

perpendicular to the plane of this page, you would find that the 

mirror image of one half of the clown face is exactly the same as the 

other half of the original face, lying behind the mirror. The two 

halves of the figure are mirror images of each other. Thus we say 

that the figure has reflective symmetry, and the vertical line is its line 

of reflection. This type of symmetry is what the word brings to mind 

for many people; asked to name a symmetrical figure, many of us 

would name a heart, a Christmas tree, a butterfly, or other such 

examples of reflective symmetry. 

In general, then, a figure has reflective symmetry if it coincides 

with itself after reflection about an appropriate line, or a line of 

reflection. A line of reflection divides a figure into two congruent 

parts. In other words, it bisects a figure. 
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PARALLELOGRAM 

A figure can have one or more lines of reflection. The number 

of lines of reflection in a polygon is an important property of that 

polygon. A polygon may have no lines of reflection or it may have 

several, as illustrated in figures 4-34 and 4-35. Parallelograms, other 

than rectangles and rhombi, have no lines of reflection. Isosceles 

triangles other than equilateral, and kite-shaped quadrilaterals other 

than rhombi, have a single line of reflection. Rectangles and rhombi, 

other than squares, have exactly two lines of reflection. Regular 

polygons with n sides have exactly n lines of reflection. 

three lines four lines five lines 
of reflection of reflection of reflection 

Fig. 4-35. Lines of reflection in regular polygons 
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Figure 4-36 shows a number of patterns extracted from tessel¬ 

lations. Try to visualize the centers of rotation and the lines of 

symmetry of each pattern. Which patterns have both rotational and 

reflective symmetry? (See page 85 for answers.) 

Fig. 4-36. Symmetrical polygonal patterns 
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All polygonal tessellations with reflective symmetry have lines 

of reflection that are coincident with the lines of reflection for the 

individual polygons in the design. In many cases, the tessellation has 

additional lines of reflection that are coincident with the sides of the 

individual polygons. This is true in the three regular tessellations. 

Lines of reflection run from the vertices through the centers of the 

polygons, and lines coincident with the sides of the polygons are also 
lines of reflection. 

When we superimpose all lines of symmetry on a regular 

tessellation, the cumulative effect can be overwhelming. Consider, 

for example, the tessellation of regular hexagons. A closeup of a 

single hexagon within that tessellation, with portions of its 

immediate neighbors, is shown in figure 4-37. The lines of reflection 

are represented by dashed red lines. 

Fig. 4-37. Lines of symmetry in a tessellation of regular hexagons 

The implications of this figure are amazing. Suppose you were 

to place a tiny mirror on each of the three sides of the shaded triangle, 

each in a plane perpendicular to the plane of this page and each just 

meeting its two companion mirrors at the vertices of said triangle. A 

tiny insect sitting on the shaded triangle and looking into any of the 

three mirrors would see the entire tessellation extending to infinity— 

accompanied by infinitely many images of the insect itself! 
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Glide-Reflection Symmetry 

We have already seen that a figure can have more than one kind 

of symmetry. Regular polygons, for example, have both rotational 

and reflective symmetry. But what about a pattern like the one in 

figure 4-38? Suppose this pattern extends infinitely to the left and to 

the right. It then has translational symmetry, a fact that we can easily 

visualize (or, if needed, verify with a tracing). But we can also look at 

this pattern another way, as demonstrated in figure 4-39. 

Fig. 4-38. Figure with translational symmetry 

Suppose that we first reflect the figure about the dashed hori¬ 

zontal line, then translate it horizontally. This sequence of motions 

will bring it into coincidence. Because of this, we say that the pattern 

has glide-reflection symmetry. 

Fig. 4-39. Visualize a translation, then a reflection of the first element. 

/ 

starting reflection translation transformation 
element completed 
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Note that reflection alone does not result in coincidence; the 

reflection must be followed by a translation in a direction parallel to 

the line of reflection. 

We say, then, that a figure has glide-reflection symmetry if it 

coincides with itself after reflection about a given line followed by 

translation in a direction parallel to that line. 

The nature of glide reflection produces an interesting result, as 

demonstrated in figures 4-40 and 4-41. This design has translational 

symmetry, a fact that is easy to visualize. It also has reflective 

symmetry; the dashed horizontal line in figure 4-41 is the line of 

reflection. If we apply the definition literally, we must conclude that 

this pattern also has glide-reflection symmetry. Indeed, any figure 

with both translational and reflective symmetry will automatically 

have glide-reflection symmetry. 

a nd a a a a a 

3 3 3 3 3 3 3 
Fig. 4-40. Visualize the translational symmetry. 

zJ 3 a il a 3 3 

j 3 3 3 3 3 3 3 
Fig. 4-41. Now visualize the reflective symmetry. 

The inverse of this statement is not necessarily true, as our 

previous example (figure 4-38) illustrates. Like that pattern, a figure 

can have glide-reflection symmetry without having reflective sym¬ 

metry. Figures 4-42 through 4-46 should clarify this very important 

point. 
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The trail left on a sandy beach by a biped hopping on one foot 

has translational symmetry alone. 

Fig. 4-42. Pattern with translational symmetry 

If this biped hops on both feet at the same time, the trail will 

have both translational and reflective symmetry. It will also have, as 

an inevitable consequence, glide-reflection symmetry. 

Fig. 4-43. Pattern with translational and reflective symmetry, as well 

as glide-reflection symmetry 

If this biped walks on both feet the way a human walks, the trail 

will have translational symmetry and glide-reflection symmetry, but 

it will not have reflective symmetry. 

Fig. 4-44. Pattern with translational and glide-reflection symmetry, 
but not reflective symmetry 

All polygonal tessellations have translational symmetry. Many 

also have reflective symmetry and, consequently, glide-reflection 

symmetry. Among the latter, we can include all tessellations of 

regular polygons. 
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Fig. 4-45. Tessellation with glide-reflection symmetry 
in two directions 

The nature of tessellations makes it impossible for a polygonal 

tessellation to have glide-reflection symmetry without having 

reflective symmetry. With this statement in mind, let's explore the 

tessellation of kite-shaped quadrilaterals in figure 4-45. 

You will see two sets of dotted lines overlaid on the tessellation, 

one horizontal and the other vertical. The horizontal lines are lines 

of reflection. If the tessellation is reflected about any of these hori¬ 

zontal lines, it will coincide with itself. If it is reflected about any of 

these horizontal lines and then translated horizontally an appro¬ 

priate distance, it will coincide with itself again. By definition, the 

tessellation has glide-reflection symmetry. 

The tessellation does not have any vertical lines of reflection. 

However, if it is reflected about any of the vertical lines and then 

translated vertically an appropriate distance, it will coincide with 

itself. Once again, the tessellation has glide-reflection symmetry. 

However, the nature of the glide reflection in the two directions 

(horizontal and vertical) is quite different. 

In a later chapter, we will modify a kite-shaped quadrilateral and 

generate a non-polygonal tessellation with glide-reflection symmetry 

but without reflective symmetry in any direction whatsoever. 
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Understanding the four types of symmetry presented in this 

chapter enables us to visualize more of the inherent underlying 

structure as we analyze tessellations. Additionally, knowing the four 

transformations—translations, rotations, reflections, and glide 

reflections—gives us some creative alternatives to consider when 

inventing designs of our own. With these transformation tools, we 

can create an infinitude of tessellating pattern designs. In the next 

chapter, we will explore a number of different techniques for creating 

such designs. Many of these involve transformations, either of 

individual design elements or entire tessellations. 

Answers to Figures 4-23 through 4-30 

Following are the centers of rotational symmetry in the eight 

semiregular tessellations: 

4.8.8 two-fold rotational symmetry: midpoints of common 
edge of two octagons 

four-fold rotational symmetry: centers of squares; 
centers of octagons 

3.12.12 

3.6.3.6 

two-fold rotational symmetry: midpoints of common 
edges of dodecagons 

three-fold rotational symmetry: centers of triangles 

six-fold rotational symmetry: centers of dodecagons 

two-fold rotational symmetry: vertices of triangles 

three-fold rotational symmetry: centers of triangles 

six-fold rotational symmetry: centers of hexagons 

3.3.3.4.4 two-fold rotational symmetry: midpoints of common 
edge of two squares; midpoints of common edge of two 
triangles; center of square 

4.6.12 

3.4.6.4 

two-fold rotational symmetry: centers of squares 

three-fold rotational symmetry: centers of hexagons 

six-fold rotational symmetry: centers of dodecagons 

two-fold rotational symmetry: centers of squares 

three-fold rotational symmetry: centers of triangles 

six-fold rotational symmetry: centers of hexagons 
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3.3.33.6 two-fold rotational symmetry: midpoints of segments 
that are located at 60° clockwise rotations from the 
sides of the hexagons 

three-fold rotational symmetry: centers of triangles 
touching three hexagons 

six-fold rotational symmetry: centers of hexagons 

3.3.43.4 two-fold rotational symmetry: midpoints of common 
edges of triangles; centers of squares 

Answers to Figure 4-36 

Pattern a: three-fold rotational symmetry; three lines reflective 
symmetry 

Pattern b: four-fold rotational symmetry; four lines reflective 
symmetry 

Pattern c: six-fold rotational symmetry; six lines reflective symmetry 
j * 

Pattern d: no rotational symmetry; one line reflective symmetry 

Pattern e: four-fold rotational symmetry; four lines reflective 
symmetry 

Pattern f: four-fold rotational symmetry; no reflective symmetry 

Pattern g: four-fold rotational symmetry; four lines reflective 
symmetry 

Pattern h: six-fold rotational symmetry; six lines reflective symmetry 

Pattern i: four-fold rotational symmetry; no reflective symmetry 

Pattern j: four-fold rotational symmetry; four lines reflective 
symmetry 

Pattern k: three-fold rotational symmetry; three lines reflective 
symmetry 

Pattern 1: two-fold rotational symmetry; two lines reflective 
symmetry 

Pattern m: six-fold rotational symmetry; no reflective symmetry 

Pattern n: four-fold rotational symmetry; no reflective symmetry 
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Chapter 5 

TECHNIQUES FOR 
GENERATING 

TESSELLATIONS 





This chapter addresses some—although by no means all—of the 

different techniques that we can use to generate tessellation designs. 

Many of these strategies are used in combination with one or more 

other techniques. They involve either sketching modifications of 

existing tessellations or visualizing those modifications in your 

mind s eye. The ideas in this chapter will give you a variety of 

approaches to creating your own tessellation patterns. Some of them 

are fundamental to creating Escher-like drawings, a topic that we 
discuss in detail in chapter 7. 

Using Intersecting Parallel Lines 

In chapter 2 we learned that any triangle, quadrilateral, or 

hexagon whose opposite sides are parallel and congruent will 

tessellate the plane by itself. One simple technique, therefore, is to 

use one of these three polygonal shapes as a template and trace the 

shape numerous times to form a tessellation. Observing patterns 

within such a tessellation will reveal patterns that suggest other 

techniques for generating tessellations. For example, we might 

observe that in tessellating triangles, we frequently see three sets of 

parallel lines. These lines are shown in figure 5-1 as black lines, red 
lines, and dotted lines. 

Fig. 5-1. Triangle tessellation seen as three sets of parallel lines 
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parallel lines different parallels 

parallels combined 

Fig. 5-2. Two sets of parallel lines form tessellating parallelograms. 

Any two sets of parallel lines will form tessellating parallelo¬ 

grams, as shown in figure 5-2. Adding all the diagonals in the same 

direction transforms those tessellating parallelograms into a pattern 

of tessellating triangles. Figure 5-3 demonstrates that this could be 

done in two different ways. 

diagonals in the other direction 

Fig. 5-3. Creating tessellating triangles 
from tessellating parallelograms 
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In figure 5-4, we see that even tessellating quadrilaterals not 

formed by intersecting parallel lines can be transformed into 

tessellating triangles by drawing their diagonals. 

tessellating 
quadrilaterals 

diagonals in 
one direction 

diagonals in the 
other direction 

Fig. 5-4. Creating tessellating triangles from tessellating quadrilaterals 

We can also form interesting tessellations with parallel sets of 

"broken" or zigzag lines. Figure 5-5 shows a broken-line pattern that 

we might use as a starting place. The pattern has been generated on 

dot paper by connecting two segments of different lengths drawn at 

alternating angles. 

Fig. 5-5. Broken-line pattern 

INTRODUCTION TO TESSELLATIONS 91 



Repeating our broken-line pattern creates a series of parallel 
segments somewhat similar to a set of parallel lines. 

When we connect the corresponding vertices, we get a 
configuration of tessellating parallelograms. 

Alternatively, we could join the corresponding vertices of each 
broken line segment pattern instead of each collinear (or straight) line 
segment, as shown in figure 5-8. The result would be a tessellation of 
hexagons with opposite sides parallel and congruent. 
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Let's see what happens when we use broken lines for both sets of 

parallels. Starting with the same horizontal broken-line pattern, we 

can draw a vertical set of broken-line parallels, intersecting the 

"point up" vertices only. This gives us a tessellation of octagons 

(figure 5-9). Through this approach to forming tessellations with 

intersecting parallel lines, we begin to sense that we could use a 

lattice of points to generate tessellations—which brings us to our 

second technique. 

Fig. 5-9. Two sets of parallel broken-line patterns 
(forming tessellating octagons) 

Creating Patterns on Dot Paper 

A lattice of points spaced equally in rows and columns serves as 

a helpful background for designing tessellations. Often the dots are 

positioned to represent the vertices of tessellating squares or 

equilateral triangles. 

square dot lattice 

Fig. 5-10. Two types of dot paper useful for sketching tessellations 
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Sheets of dot paper masters are provided in the back of this book. 

These pages may be photocopied in quantity for use in exploring and 

designing tessellations by sketching patterns. Many of the techniques 

described later in this chapter are best approached by sketching a 

design initially on dot paper. Examples of typical explorations done 

on dot paper are shown in figures 5-11 through 5-19. 

Fig. 5-11. Pattern of arrows 

Fig. 5-12. Pattern of pentominoes 

Fig. 5-13. Pattern of squares and crosses 
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Fig. 5-14. Pattern created by connecting the vertices of squares 

Fig. 5-15. Pattern created by connecting the vertices 
of two different types of square 
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Fig. 5-17. Pattern of star polygons and hexagons 

Fig. 5-18. Pattern of pentagons forming rosettes 

Fig. 5-19. Pattern of identical pinwheels 
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Using Overlapping Grids 

Another technique for generating creative tessellation patterns is 

to design a basic tessellating grid pattern, then make a transparency of 

that grid. By moving the transparent duplication around on top of 

the original design, you can find new and more elaborate tessella¬ 

tions. Examples of designs created by this technique are shown in 

figures 5-20 through 5-28. As you analyze these designs, look 

particularly at the vertex points and note (1) their new position in 

relation to their original position, and (2) their relationship to key 

elements in the new design. 

Fig. 5-20. Square grid and tessellation of overlapping squares 

Fig. 5-21. Triangular grid and tessellation of overlapping triangles 
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Fig. 5-22. Hexagonal grid and five tessellations of overlapping hexagons 
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Fig. 5-23. Overlapping squares centered at a vertex point 

Fig. 5-24. Overlapping squares centered at a point equidistant from 
the square vertices 
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X x x x X x x x x 
X X X X X X X X 

X x x x x x x x x 
X X X X X X X X X x x x x x x x 
X X X X X X X X 

X x x x x x x x X 
X X X X X X X X x x x x x x x x x 
X X X X X X X X x x x x x x x X x 
X X X X X X X X x x x x x x X x x 
X X X X X X X X 

X x x X X x x x 
X X X X X X X X X x x x x x X x x X X X X X X X X 

Fig. 5-25. Overlapping octagonal designs (Notice that this is an 
elaboration of figure 5-24, with diagonal lines connecting the 
vertices of adjacent squares.) 
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Fig. 5-26. Overlapping octagonal designs 
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Fig. 5-27. Design with two polygonal shapes, and five variations 
created by overlapping the original design 
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Fig. 5-28. Overlapping octagonal design (one base and three overlays) 
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As we learned in chapter 2, a hexagon whose opposite sides are 

parallel and congruent will tessellate. Notice in figure 5-29 that the 

two identical hexagonal patterns overlap so that vertices coincide, 

resulting in three tessellating parallelograms. 
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In the following example (figure 5-30), the pattern is formed by a 

square grid that has been overlapped and rotated. Intersections occur 

at the midpoints of line segments. 

Fig. 5-30. Overlapping tessellation of squares rotated to create a 
Pythagorean-type pattern 
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Rotating Individual Tessellating Shapes__ 

We just saw how rotating an entire overlapping tessellation can 

create an interesting new pattern (figure 5-30). In a related technique, 

instead of rotating an entire overlaid design, we can rotate a single 
unit of the original design. This technique is illustrated in figures 

5-31 through 5-37. In figures 5-31, 5-32, and 5-33, each square from the 

original underlying square grid has been rotated about one of its 

vertices. Deleting the original underlying grid leaves an interesting 

pattern. In figure 5-34, each square has been rotated 30° both clock¬ 

wise and counterclockwise; figure 5-35 shows an enlargement of the 

pattern thus created. Figures 5-36 and 5-37 show a similar approach 

with tessellating rhombi and hexagons. 

Fig. 5-31. Square rotated 45°, with and without underlying grid 

Fig. 5-32. Square rotated 30°, with and without underlying grid 
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Fig. 5-33. Square rotated 15°, with and without underlying grid 

Fig. 5-34. Square rotated 30° in two directions 

Fig 5-35. Enlarged pattern from figure 5-34 
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Fig. 5-36. Rhombus rotated 45° 
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Fig. 5-37. Hexagon rotated 30° 
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Modifying Grids by Translation 

We have seen that tessellating patterns can be created from 

underlying grids and lattices. We have also seen that more complex 

designs can be created by duplicating a design and moving it on top of 

itself. This next technique combines those two methods. Take a 

square grid, for example. First, we superimpose this grid over itself 

and make a horizontal translation or slide (figure 5-38). The result is 

a new grid having two sizes of rectangle. By connecting diagonals of 

the rectangles as shown in figure 5-39, we can form a tessellating 

quadrilateral design. 

Fig. 5-38. Square grid and the same grid superimposed and translated 

Fig. 5-39. Final tessellation on the modified grid 
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The same procedure is used in figures 5-40 and 5-41, although 

this time we begin with a parallelogram grid instead of a square grid. 

Another difference is that we translate the grid at an oblique angle, 

introducing an additional set of vertices. In the final design, notice 

that the tessellating quadrilateral shapes have no congruent sides. 

Fig. 5-40. Parallelogram grid and the same grid 
superimposed and translated 

Fig. 5-41. Final tessellation on the modified grid 
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Creating Duals 

Every regular polygon has a center point called a centroid. This 

centroid is equidistant from the sides and also equidistant from the 

vertices. It is a center of balance in the figure. 

Fig. 5-42. Centroids of regular polygons 

Since all regular polygons have easily located centroids, we can 

mark all the centroids in a tessellation of regular polygons. Connect¬ 

ing all these points creates a new tessellation which is the dual of the 

original tessellation. Compare figures 5-43 and 5-45; you will note 

that the tessellation of triangles has a dual of tessellating hexagons 

and vice versa. The tessellation of squares (figure 5-44) has a dual of 

tessellating squares, so it is called a self-dual. 
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Fig. 5-44. Dual of squares 

Fig. 5-45. Dual of regular hexagons 
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Since the eight semiregular tessellations are formed from 

regular polygons, we can find the centroids of each of those polygons 

and connect them to observe their duals. Four of these duals are 

shown in figures 5-46 through 5-49. 

Fig. 5-46. Dual of the semiregular tessellation 33.3.3.6 
is a tessellating pentagon. 
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Fig. 5-47. Dual of the semiregular tessellation 33.4.3.4 
is a tessellating pentagon. 
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Fig. 5-48. Dual of the semiregular tessellation 3.4.6.4 
is a tessellating kite. 
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Fig. 5-49. Dual of the semiregular tessellation 4.6.12 
is a tessellating right triangle. 
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Recall that a centroid is the center of balance in a polygon. We 

can locate the centroid of any triangle by drawing or constructing its 

three medians. A median of a triangle is a line segment that joins 

one vertex with the midpoint of the opposite side. The three 

medians of any triangle meet at a common point, the centroid. (This 

same approach can be used to find the centroid of every regular 

polygon, but it will not work with polygons in general. While every 

polygon has a center of balance, it is not always easily found by 

construction methods.) 

Fig. 5-50. Finding the centroid of any triangle 

The tessellating triangle shown in figure 5-51 has its centroids 

connected to form a dual of tessellating hexagons. Figure 5-52 shows 

another triangle tessellating in two different arrangements. Notice 

that the duals for each arrangement are different. 
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Fig. 5-52. Two different tessellations of the same triangle 
and their hexagonal duals 
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Connecting Midpoints of Sides 

Quadrilaterals have the special property that lines joining the 

midpoints of their four sides form a parallelogram. Examples of this 

property are illustrated in figure 5-53 with common types of 

quadrilaterals. 

Parallelograms joining midpoints of sides 

Connecting the midpoints of tessellating quadrilaterals creates a 

grid similar to a dual. As with a dual, this new grid forms a different 

tessellation pattern. Examples of this technique are shown in figures 

5-54 through 5-57. 

Fig. 5-54. Connected midpoints of a tessellating parallelogram 
form a two-shape tessellation. 
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Fig. 5-55. Connected midpoints of a tessellating rhombus 
form a "stretched" semiregular tessellation. 

Fig. 5-56. Connected midpoints of a tessellating 
scalene quadrilateral form a grid of parallel lines 

Fig. 5-57. Connected midpoints of a tessellating 
concave quadrilateral form a grid of rectangles. 

INTRODUCTION TO TESSELLATIONS 121 



As you can see, connecting the midpoints of tessellating quadri¬ 

laterals generates quite different types of patterns, depending on the 

shape of the quadrilateral. An interesting question for you to explore 

would be: Which types of quadrilateral tessellations will produce sets 

of parallel lines using this method? 

We can also use this technique (connecting midpoints of sides) 

with other tessellating shapes. This is what we have done in figure 

5-58, starting with one of the semiregular tessellations and connecting 

midpoints to generate a new design. 

Fig. 5-58. Design formed by connecting midpoints of sides 
of the semiregular tessellation 4.8.8 
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The two techniques just described—creating duals and connect¬ 

ing midpoints—are quite similar, in that the centroids and midpoints 

of the original tessellations become the vertices of new designs. We 

can extend this idea to include any other points systematically chosen 

in a pattern; for example, a point located at the intersection of two 

diagonals of one of the elements of a tessellation would appear at the 

same location throughout the pattern. Such points could become the 

vertex points of a new design. The possibilities for generating new 

designs with this technique are endless. We will expand on this idea 

later when we discuss the technique "dissecting shapes." 

Choosing Compatible Shapes 

Compatible shapes could be defined as shapes whose sides 

and/or angles are either congruent or multiples of one another, and 

whose angles contain numbers of degrees that together, in some 

combination, total 360°. An excellent example of compatible shapes 

can be found in figure 3-18 (page 52), the 21 arrangements of regular 

polygon combinations that fill the space around a point. Compatible 

shapes need not always be regular polygons, though. Some other 

examples are shown in figure 5-59. 

Fig. 5-59. Compatible shapes 
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Another example of compatible shapes that are helpful in 

creating tessellation designs are the manipulative models called 

pattern blocks. Originally developed at EDC in Boston by Bill Hull, 

pattern blocks are colored blocks of wood, plastic, or paper in six 

different compatible shapes (figure 5-60). Three of the shapes are 

regular polygons: the equilateral triangle, the square, and the regular 

hexagon. The other three shapes are an isosceles trapezoid (half of a 

regular hexagon) and two rhombi. All six shapes tessellate by 

themselves, and many other tessellation patterns can be created with 

combinations of two or more of the six shapes. 

Pattern blocks are valuable tessellation tools for all ages, but they 

are particularly useful for young children who have yet to develop 

precise drawing techniques and the patience required to create 

patterns on paper. All the pattern block pieces have congruent edges, 

with the exception of the base of the trapezoid, which has a length 

twice that of the other pattern block edges. The angles of the shapes 

are conveniently either 30°, 60°, 90°, or 120°. 

Fig. 5-60. Pattern block shapes serve as tessellation tools. 
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Fig. 5-61. Four of the many possible pattern block tessellations 
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In discussing compatible shapes, we must not overlook identical 

shapes. For example, perfectly congruent shapes like the brick-shaped 

rectangles shown in figure 5-62 can be termed compatible. They have 

compatible angles (all 90°), and their side lengths are in the conve¬ 

nient ratio of 2 to 1. The compatibility of these shapes enables us to 

create several different tessellating patterns. 

Fig. 5-62. Brick patterns formed by congruent rectangles 

There's another way to create tessellations with congruent 

compatible shapes. Imagine that you have a number of square tiles of 

a single size; that is, all the tiles are congruent. Obviously you could 

create a regular tessellation with such tiles. You could also position 

them variously as shown in figure 5-63—translating (sliding) them 

along their sides to make several different tessellations, thinking of 

the gaps between the tiles as white squares of a smaller size. Can you 

visualize that an infinite number of different patterns could be made 
in this manner? 

Fig. 5-63. Congruent squares creating patterns with 
smaller "gap" squares 
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We can combine congruent equilateral triangles in much the 

same way, starting with a regular tessellation, then sliding the 

triangles along their edges. Notice that the gaps in this case (figure 

5-64) are hexagonal rather than triangular, but they are still 

compatible shapes. 

Fig. 5-64. Congruent equilateral triangles creating patterns 
with compatible "gap" hexagons 

We could also start with the regular triangle tessellation and 

remove alternating triangles until we have a design of only "point 

up" triangles with "point down" triangular gaps. Then, when we 

slide the triangles along their edges, we create new patterns like those 

Fig. 5-65. Equilateral triangles creating patterns with 
smaller "gap" triangles 

If we start with a tessellation of regular hexagons, translating 

them along their sides creates compatible triangular gaps and a wide 

variety of new patterns. 

Fig. 5-66. Regular hexagons creating patterns with compatible 
"gap" triangles 
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Some designs based on compatible shapes can be modified into 

new designs by sliding an entire row or column of shapes. For 

examples of this, see figure 3-25, page 58. We can also modify a design 

significantly by rotating a group of shapes within a tessellation, as we 

have done in figure 5-67. Being able to visualize combinations of 

shapes that form larger symmetric shapes allows us to imagine the 

modifications that will create new designs. 

Fig. 5-67. Original position for group of shapes (left) and the same 
group rotated to a new position (right) 

Fig. 5-68. Rotating a group of shapes as shown in figure 5-67 
transforms semiregular tessellation 3.4.6.4. into a new design. 
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Combining Shapes 

Once we have a completed tessellation, that pattern can serve as 

the basis for creating other designs. By combining two or more adja¬ 

cent shapes in the pattern (and deleting some line segments), we can 

create new shapes that tessellate. Some examples of this technique 

are shown in figures 5-69 through 5-74. 

Fig. 5-69. Combining the squares and triangles of semiregular 
tessellation 3.4.6.4 

Fig. 5-70. Combining shapes in semiregular tessellation 3.3.3.3.6 to 
form a star pattern 
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Fig. 5-71. An alternative way of combining the shapes of 3.4.6.4 

Fig. 5-72. Combining squares and triangles to create 
a new three-shape design 

form a star pattern 
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Fig. 5-74. Transition tessellation shows a few possible combinations 
of smaller shapes into larger shapes 
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Dissecting Shapes 

An existing tessellation can also be turned into a new design by 

dividing one or more of the pattern's shapes into smaller shapes. 

Such dissections will most frequently divide a shape into two or 

more congruent parts. Examples of this technique appear in figures 

5-75 through 5-79. 

Fig. 5-75. Design made by bisecting hexagons 

Fig. 5-76. Design made by trisecting hexagons 
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parts, creating a new design. 

triangle in each unit creates this star pattern. 

Fig. 5-79. This hexagonal design is changed to stair steps first by 
dissection, then by combining shapes. 
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Creating Unit Cells 

Still another technique for generating tessellations that have 

aesthetic properties is to create unit cells. Unit cells are often seen in 

ceramic tiles. Most often these tiles are square. A tile by itself may 

not present a very interesting design; however, when several such 

tiles are combined to form a tessellation, surprising patterns appear. 

Sometimes the process may be reversed; that is, a tessellation may be 

designed first by some other technique, then divided into the prac¬ 

tical, square-cell configuration. For example, we might have first 

created the basic overall star pattern in figure 5-80 using dot paper, 

then discovered the unit cell (shown above the tessellation) by 

connecting centroids of the stars. Unit cells frequently contain more 

than one type of symmetry. Some typical designs are illustrated in 

figures 5-80 through 5-85. You may enjoy designing some unit cells 

of your own. 

Fig. 5-80 
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Modifying by Translation 

As we discussed in chapter 4, a translation is a slide on a plane 

along the path of a straight line. If we translate a line in a plane, it is 

not rotated. In figures 5-86 and 5-87, lines have been translated from 

one side of the parallelogram to the other. Note that no rotation has 

taken place. The process is broken down into four steps in figure 5-86. 

We start with a parallelogram (step 1); modify one side (step 2); 

translate (slide) the modified line to the opposite, parallel, congruent 

side (step 3); and finally, delete the original sides (step 4). The 

resulting shape tessellates the plane, as shown. 

step 1 step 2 step 3 step 4 
parallelogram modify translate new shape 

Fig. 5-86. Tessellation formed by modification, then translation 

Figure 5-87 shows the tessellation of a parallelogram with both 

pairs of opposite sides modified. The steps show the modification of 

the second set of opposite sides, assuming the modification shown in 

figure 5-86 has already occurred. 
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In this technique of modifying one side of a parallelogram and 

translating the modification to the opposite side, the modification 

sometimes crosses the original side of the parallelogram—that is, it is 

drawn both outside and inside the original shape. Figure 5-88 shows 

modifications made by line segments that zigzag on both sides of the 

original line; figure 5-89 shows that the procedure works with curves 

as well. 

parallelogram modify and modify and 
translate translate 

Fig. 5-88. Tessellation formed by broken line modifications 

parallelogram modify and modify and 
translate translate 

Fig. 5-89. Tessellation formed by modifications with curves 
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Although we have been looking at parallelograms up to now, 

modifying by translation also works with other shapes. Recall from 

chapters 2 and 3 that hexagons whose opposite sides are parallel and 

congruent will tessellate. Using the technique of modifying a line 

and translating it to the opposite side, we can change three pairs of 

sides. An example of the modification of a tessellating hexagon is 

shown in figure 5-90. This is one of the techniques we build on in 

creating Escher-like drawings, explained in more detail in chapter 7. 

Fig. 5-90. Tessellation of hexagon modified by translations 
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Modifying by Rotation at Midpoints 

In order to translate a modified line from one side of a polygon 

to another, the two sides involved must be parallel and congruent. 

That is why we avoided triangles in discussing the previous tech¬ 

nique, focusing instead on quadrilaterals and hexagons. There is, 

however, another good technique that allows us to change tessellat- 

ing triangles to other shapes that tessellate. It works for some other 

polygons as well. The technique is this: We modify one or more 

half-sides of the triangle, then rotate that modification 180° around 

the midpoint of the side. Figure 5-91 shows an example of this type 

of modification. 

Fig. 5-91. Tessellation of modified triangles 

The shape tessellating in figure 5-91 has two remaining straight 

sides. Figure 5-92 shows how we can take that shape and modify one 

additional side by rotation about its midpoint. 

modify another 
half-side 

Fig. 5-92. Further modification of the shape shown in figure 5-91 
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Naturally, we can also modify the third and final side of the 

triangle by the same process, as is shown in figure 5-93. 

modify third 
half-side 

Fig. 5-93. All three sides of original scalene triangle 
modified by rotation 

The nice thing about this technique of modifying a tessellating 

polygon by rotation at its midpoints is that the polygon need not have 

special properties of parallelism or congruence. Since the modifica¬ 

tion of the half-line can be performed on either side of any line, this 

technique gives us lots of freedom and flexibility. 

We know that every quadrilateral tessellates. Using "modifying 

by rotation at midpoints," we can turn any tessellating quadrilateral 

into another shape that also tessellates, just by changing one or more 

sides. In figure 5-94, we start with a scalene quadrilateral and modify 

all its sides by rotation about a midpoint. As is often the case, the 

final shape looks very dissimilar to the original, yet the areas of the 

final modified shape and the original quadrilateral are exactly the 

same. You can see that although the area changes when we modify 

the half-side, this change is balanced by the corresponding change 

after we rotate the modification 180°. 
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quadrilateral modify rotate 

Fig. 5-94. Each side of the quadrilateral is modified by altering the line 
from a vertex to the midpoint; then the modification is rotated 180° 
about the midpoint. The resulting shape tessellates. 
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Figure 5-95 shows some special symmetrical modifications and 

rotations of a half-side of a square and the resulting tessellation in 

each case. One modification is a semicircle; the other is a half-square. 

Fig. 5-95. Two examples of the technique of rotating about a 
midpoint, starting with a square 
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The technique of modifying a half-line and rotating it 180° about 
the midpoint of a side, which works well with triangles and quadri¬ 
laterals, will not work with tessellating hexagons. Recall from 
chapter 2 the necessary conditions for tessellating hexagons: opposite 
sides are congruent and parallel. Since opposite sides must coincide, 
they cannot have different modifications. In figure 5-96, we modify 
each half-side of a hexagon and rotate each modification 180° about 
the midpoint. As you can see, the resulting shape does not tessellate. 

Fig. 5-96. Modifying all sides of special hexagons produces a figure 
that will not tessellate. 

Rotating Modified Sides 

In this final technique, we will modify an entire side of a 
triangle, then rotate it to a side that has the same length. This limits 
us to isosceles triangles (remember that an equilateral triangle is 
isosceles). Modifying an entire side of an equilateral triangle, then 
rotating that modification to an adjacent side will produce a new 
shape that tessellates. An example combining the modification of a 
full-side rotation and a half-side rotation is shown in figure 5-97. 
Notice that this tessellation contains three-fold rotational symmetry 
at one point and six-fold symmetry at a different point. We will refer 
to more symmetries in tessellations in the chapter on drawing 
Escher-like designs. 
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Fig. 5-97. Tessellation created by two types of rotation 

modify rotate to 
full side adjacent side 

modify a rotate 180° 
half-side around midpoint shape 

three-fold 
symmetry 

six-fold 
symmetry 

Since, when we use this technique, we rotate the modified side 

of a triangle to an adjacent side, clearly the triangle must be at least 

isosceles. Further exploration will reveal that the technique always 

produces a tessellation with equilateral triangles, but not necessarily 

with isosceles triangles. 
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Fig. 5-98. Tessellation created by rotating modified sides of a square 

Modifying an entire side of a square and rotating it to an adjacent 

side will produce a tessellation (figure 5-98). However, if the quadri¬ 

lateral has four congruent sides but is not a square, difficulties arise. 

In figure 5-99, we modify the sides of a rhombus and rotate each 

modification to an adjacent side. As you can see, the resulting shape 

does not tessellate. 

Fig. 5-99. Rotating sides of a non-square rhombus creates 
non-tessellating shapes. 
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Figure 5-100 shows a regular hexagon with sides modified and 

then rotated to an adjacent side, producing a shape that tessellates. As 

with triangles and quadrilaterals, this would not work with a 

nonregular hexagon. When our original figure is a regular polygon, 

this technique creates a tessellation, but when the shapes are not 

regular, a tessellation is not assured. Using rotation of modified sides 

will be discussed further in chapter 7. 

Fig. 5-100. Tessellation created by rotating modified sides of a 
regular hexagon 

As mentioned at the beginning of this chapter, the 14 techniques 

presented here do not include all the known ways of generating 

shapes that tessellate. They are, however, the most common and the 

easiest to use. 

As you experiment with the various techniques, be aware that 

special effects such as coloring or shading can enhance the appearance 

of your designs. Some designs create the illusion of having three 

dimensions, and you can select colors or shades that will strengthen 

this illusion. Patterns containing special symmetries may reveal 

those symmetries more clearly if you give some preliminary thought 

to the selection and number of different colors you use. 
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There are currently available for the personal computer a num¬ 

ber of drawing programs that offer the basic tools of transformational 

geometry. With tools such as reflect, rotate, reduce, enlarge, copy, 

translate, and sheer, you can produce beautiful and accurate tessella¬ 

tion drawings in surprisingly short periods of time. 

In the next two chapters we will show how to apply many of the 

techniques just discussed. You will find that often the same design 

can be created in more than one way; you will also see that in many 

cases, we create a design by using a combination of two or more 

techniques. Familiarity with all these approaches will help you both 

in analyzing existing tessellations and in creating new designs of 

your own. 

/ 

146 INTRODUCTION TO TESSELLATIONS 



INVESTIGATIONS 
& APPLICATIONS 





In this chapter we will investigate several special types of tessel¬ 

lations. Some types are discussed for their historical significance and 

beauty, while others suggest topics that you might explore recreation- 

ally or activities that you can used to develop skill in designing 

tessellating patterns. Our treatment of these topics is brief, and we 

pose some open-ended questions. The bibliography offers a listing of 

resources for those who are interested in studying any particular type 

of tessellation design in more depth. 

Polyominoes, Polyiamonds, and Polyhexes 

Polyominoes are shapes formed by combining two or more 

congruent squares along their edges. The unit squares that create the 

overall shape must coincide completely at an edge; sharing only a 

vertex is not sufficient. Polyiamonds are similarly created with 

combinations of congruent equilateral triangles; polyhexes are shapes 

created with congruent regular hexagons. Examples of these shapes 

are shown in figures 6-1, 6-2, and 6-3. 

4 squares (tetrominoes) 

5 squares 
(pentominoes) 

Fig. 6-1. All possible configurations of dominoes, triominoes, 
tetrominoes, and pentominoes (categories of polyominoes) 
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2 triangles 3 triangles 
(diamonds) (triamonds) 4 triangles (tetriamonds) 

XX 
5 triangles (pentiamonds) 

aA v 
6 triangles (hexiamonds) 

Fig. 6-2. All possible configurations of diamonds, triamonds, 
tetriamonds, pentiamonds and hexiamonds (categories of polyiamonds) 

—s 2 hexagons 
(dihexes) cco a9& 3 hexagons 

(trihexes) 
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We can explore polyominoes, polyiamonds, and poly hexes to 

discover which of these special shapes tessellate. For example, we 

might ask ourselves, which of the pentominoes tessellate the plane? 

We start by looking at the twelve pentomino shapes in figure 6-4. To 

clarify the shapes, we have deleted adjacent sides of the five squares 

comprising each one, leaving only the perimeter. 

Fig. 6-4. Pentomino shapes — 
j * 

Figure 6-5 shows four of the pentominoes that do tessellate. 

Which others will tessellate? 

Fig. 6-5. Examples of pentominoes tessellating 
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Figure 6-6 shows the twelve hexiamond shapes, and figure 6-7 

shows four examples of hexiamond shapes that tessellate. Will all 

the hexiamond shapes tessellate? 

Fig. 6-6. Hexiamond shapes 

Fig. 6-7. Examples of hexiamonds tessellating 
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Figure 6-8 shows the 22 pentahex shapes. Figure 6-9 shows four 

examples of pentahex shapes that tessellate. Which other pentahexes 
will tessellate? 

Fig. 6-9. Examples of pentahexes tessellating 

As you can see, combinations of squares, equilateral triangles, 

and regular hexagons provide many combinations of shapes with 

which to explore tessellation possibilities. 
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Letters of the Alphabet 

Another set of shapes that we can use to explore tessellation 

patterns is letters of the alphabet. Letter shapes are easily sketched on 

dot paper. Although not all letters conveniently form block letters on 

a grid, especially letters containing curves, letter styles do differ 

considerably and we can take some artistic license in modifying a 

►hth 

Fig. 6-10. Tessellations with the letter T 
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letter shape to fit a grid. For example, figure 6-10 shows several 

tessellating patterns with the letter T. In this particular style, the stem 

of the T is quite short in relation to the crossbar. If we extend the 

length of the stem, we can create different tessellating T patterns as 

shown in figure 6-11. In both of these figures, note how we use color 

as one element of the tessellation pattern. 

Fig. 6-11. Different shapes of the letter T tessellating the plane 
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While exploring with letters on dot paper or graph paper, we can 

experiment with color symmetries as well as with variations in the 

position of the tessellating shapes. 

Fig. 6-12. Examples of tessellating letter shapes 
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Star Polygons 

Star polygons are featured in many types of ornamentation and 

pattern designs. They have been used as design elements by all 

cultures and in all periods of history. The great mathematician and 

astronomer Johann Kepler was one of the first to explore the tessel- 

lating properties of regular polygons and regular star polygons. His 

book Harmonice Mundi (1619) contains remarkable examples of 

tilings with these star shapes. 

We might define regular star polygons as non-convex polygons, 

all of whose sides are congruent, containing two angles of different 

sizes, one convex and one concave. A star polygon can be created by 

drawing congruent isosceles triangles as star points off the sides of a 

regular polygon. Figure 6-13 shows a variety of star polygons formed 

this way; the original regular polygon is indicated by dotted lines. 
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We could also construct a star polygon by (a) dividing a circle 

into a given number of equal arcs, (b) connecting the endpoints of the 

arcs in some pattern (other than consecutively), and (c) eliminating 

certain line segments to create the final star polygon. The next 

several figures demonstrate this procedure. 

Figure 6-14(a) shows a circle that we have divided into eight 

equal 45° arcs; figure 6-14(b) shows how we connect the endpoints of 

every other arc; figure 6-14(c) shows the final star polygon after we 

have eliminated the superfluous line segments. Since the star is 

formed from eight points by segments that join every second point, 

we call this shape a 2/8 star polygon. 

1 1 1 

Fig. 6-14. Three stages of construction of a 2/8 star polygon 

If we chose to join every third point on the circle divided into 

eight equal arcs, and if we followed the same procedures as in figure 

6-14, then we would form the 3/8 star polygon (figure 6-15). Compare 

the 2/8 and 3/8 figures; what are the differences? 

Fig. 6-15. Three stages of construction of a 3/8 star polygon 
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We can derive a four-pointed star from the 3/8 star by omitting 

part of it, as shown in figure 6-16. As you can see, a circle divided into 

eight equal arcs can be the basis for several different types of regular 
star polygons. 

1 

Fig. 6-16. Construction of a four-pointed, 3/8 star polygon 

Figures 6-17 through 6-21 show the construction of star polygons 

by the same basic procedure, starting with a circle divided variously 

into five, ten, and sixteen equal arcs. 

Fig. 6-17. Construction of a 2/5 star polygon 
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1 1 
2 

3 

4 

6 

Fig. 6-18. Construction of a 3/10 star polygon 

Fig. 6-19. Construction of a 3/16 star polygon 

Fig. 6-20. Construction of a 5/16 star polygon 
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Fig. 6-21. Construction of an eight-pointed, 7/16 star polygon 

Another technique for constructing regular star polygons is to 

choose the size of the acute angle and draw the resulting star. For 

example, suppose we want to create a five-pointed star polygon 

whose acute interior angles are each 20 degrees. In order to construct 

this star, we also need to determine the size of its interior reflex 

angles. This is easily done. A five-pointed star is a decagon. In 

chapter 3 (page 51) we saw that all decagons contain 1440° in the sum 

of their ten interior angles. If each acute angle of our star measures 

20°, there will be a total of 100° in the five acute angles. This leaves 

1340° for the other five angles, and 1340°/5 equals 268°. Thus, each of 

the interior reflex angles will measure 268°. We can now construct 

our star polygon using a straightedge and a protractor (or, if available, 

a personal computer). The three stages of construction are shown in 

figure 6-22: (a) draw a 20° angle; (b) add congruent adjacent edges to 

form 268° angles; and (c) continue the drawing to complete the star 

polygon. Note that we can choose any convenient length for the 

measure of the edges and need only be sure that each edge is the 

k 
(a) 

me length. 

(b) 

Fig. 6-22. Star polygon constructed with 20° angles 
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We can create an infinite number of five-pointed star polygons 

of different shapes by first selecting an angle size. Figure 6-23 shows 

just a few examples. 

Fig. 6-23. Five-pointed star polygons with acute angles measuring 30°, 
40°, 50°, 60°, and 70° 

Now that we've learned several ways of constructing star 

polygons, let's consider how we might use them as elements in 

tessellating patterns. Star polygons do not tessellate by themselves 

but will often tessellate in combination with other regular polygons. 

The star polygon in figure 6-24 joins with three congruent stars to 

create an additional shape—a square—with sides the same length as 

the edges of the star. This combination of shapes tessellates as shown 

in figure 6-25. 

Fig. 6-24. Star polygons and a square 
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Imagine, in figure 6-25, that the shaded squares are all joined at 

their vertices by rigid rods (the edges of the stars) that will not bend 

but will pivot where they are connected to the squares. Now try to 

visualize that by pulling the squares farther apart, we move all the 

squares and also enlarge the star polygons. In the process, each of the 

acute interior angles of the star increases in size. The resulting 

change produces a tessellation like that in figure 6-26. 

Fig. 6-26. Tessellation similar to figure 6-25, using squares of the same 
size and star polygons with edges of the same length but different 
interior angles 
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This "pulling apart" process is further demonstrated in figures 

6-27 through 6-34, where we see how the various tessellations of star 

polygons and squares make a transition from a pattern of tessellating 

squares of one size to a different pattern of tessellating squares of two 

sizes. Note that any angle less than 90° can be used for the acute angle 
of the star polygon. 

Fig. 6-27. Tessellating squares Fig. 6-28. Star polygons (10°) 

SMSSMMKiS jgflfggjggjig§gjigp 
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Fig. 6-29. Star polygons (20°) Fig. 6-30. Star polygons (30°) 

Fig. 6-31. Star polygons (45°) Fig. 6-32. Star polygons (60°) 

Fig. 6-33. Star polygons (80°) Fig. 6-34. Tessellating squares (90°) 
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Similarly, we can "pull apart" a tessellation of equilateral 

triangles to create patterns with star polygons, each triangle having 

the same edge length as the star polygons. The following series of 

figures shows that as the star polygon's acute angles grow larger, the 

stars approach a point where they become larger equilateral triangles 
(with 60° angles). 

Fig. 6-35. Star polygons with acute angles of 10c 

Fig. 6-36. Star polygons with acute angles of 25° 

Fig. 6-37. Star polygons with acute angles of 50° 
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We can also create tessellations by combining hexagons with star 

polygons, as seen in figures 6-38 and 6-39. It would be interesting to 

explore whether or not any regular polygon could be similarly 

combined with star polygons to create a tessellating pattern. If you 

want to pursue this, you might start by tracing the regular polygons 

on page 45 or page 71. 

Fig. 6-39. Tessellation of star polygons and hexagons 

Fig. 6-40. Design generated from units of figure 6-38, with new shapes 
(equilateral polygons) that are neither star polygons nor regular polygons 
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Designs containing star polygons can be modified into new 
designs through some of the techniques presented in chapter 5. For 
example, figure 6-40 shows the design we make from figure 6-39 

when we combine two of the three-pointed star polygons into a single 
new shape. Alternatively, can you visualize what design we might 
create by inscribing six-pointed star polygons in the hexagons, then 
deleting the lines of the hexagons? 

Many unique design discoveries result from experimentation 
with existing designs. Such experiments can increase our under¬ 
standing of the relationships between fundamental shapes such as 

regular polygons and star polygons and may give us even more ideas. 
Figures 6-41 through 6-55 demonstrate some experimental designs; 
try to visualize a modification of each one. 

Fig. 6-41. Star polygons with squares 

Fig. 6-42. Star polygons with regular pentagons 
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Fig. 6-43. Star polygons with regular dodecagons 

Fig. 6-45. Star polygons with regular dodecagons 
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Fig. 6-46. Star polygons with regular octagons 

Fig. 6-48. Star polygons with regular nonagons 
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Fig. 6-49. Two types of star polygons with regular octagons 

Fig. 6-50. Star polygons with equilateral triangles and regular hexagons 

Fig. 6-51. Two types of star polygons with squares 
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Fig. 6-52. Star polygons with equilateral triangles and squares 

Fig. 6-53. Star polygons, equilateral triangles, squares, and regular hexagons 

Fig. 6-54. Star polygons, equilateral triangles, squares, and regular octagons 
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Fig. 6-55. Two types of star polygons with equilateral triangles 

Islamic Designs 

More than any other culture, Islam developed the art of 

geometric pattern. The early religious leaders of Islam interpreted 

Muhammad's preaching against idolatry as an injunction against the 

representation of humans or animals in art. Consequently, for 

centuries, Islamic art consisted of three types: designs derived from 

plant life, calligraphy, and repeating geometric shapes. 

Fig. 6-56. Congruent intersecting circles form a triangular grid. 
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All Islamic designs were constructed with compass and 

straightedge only, so the circle became the basis for their geometric 

designs. * Circles defined triangular, square, or hexagonal grids upon 

which the designs were constructed. These are the same grids we 

know as the three regular tessellations. Figures 6-56 through 6-60 

demonstrate the fundamental relationships of congruent circles 

intersecting to form the basic grids. 

Fig. 6-57. Congruent circles intersect 
at one-sixth arc positions, forming 
a hexagonal grid. 

Fig. 6-58. Tangent congruent circles 
form a triangular grid. 

Fig. 6-59. Tangent lines form a square grid. 

Fig. 6-60. Each pair of intersecting circles 
cuts quarter-circles, creating a semiregular 
tessellation. 
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Many Islamic designs reveal the semiregular tessellation pat¬ 

terns described in chapter 3. On the following pages, we show but a 

few of the simpler and more popular Islamic designs. A visual 

analysis will reveal many of the concepts and techniques discussed 

in earlier chapters. Notice the extensive use of star polygons 

throughout. 

Fig. 6-61. Star polygons on a triangular grid 

Fig. 6-62. Star polygons further separated on the grid 

Figures 6-61 and 6-62 show two design ideas starting with 

six-pointed star polygons on a triangular grid. Working with the 

arrangement shown in figure 6-62, we can divide the space between 

the stars symmetrically (figures 6-63 and 6-64) to create a common 

Islamic design (figure 6-65). 
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Fig. 6-63. White area between stars is Fig. 6-64. Dividing each white area 
divided symmetrically from the center. creates a uniform angular S shape. 

Fig. 6-65. Completed Islamic design 
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Fig. 6-66. Underlying grid pattern of the design in figure 6-67 is a 
semiregular tessellation. 

Fig. 6-67. Popular Islamic pattern 
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Fig. 6 -68. Pattern from figure 6-67 extended to three dimensions 
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Fig. 6-69. Islamic design with eight-pointed stars 

Fig. 6-70. Islamic design with star polygons and interlocking hexagons 

Fig. 6-71. Islamic design with two types of star polygons 
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Fig. 6-72. Islamic design with regular and nonregular star polygons 
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Chapter 7 

CREATING 
ESCHER-LIKE 

TESSELLATIONS 





The late Dutch graphic artist Maurits Cornelis Escher was the 

creator of many artistic and perplexing tessellations whose repetitive 

patterns appear, at first glance, to be beyond the grasp of artist, 

mathematician, and layman alike. As we will discover in this 

chapter, he was experimenting with some of the same geometric 

principles we have touched on in our investigations, and he created 

his tessellations using some of the same techniques we explored in 
chapter 5. 

Escher was born in the Netherlands in 1898. His first work was 

strictly representational, yet his landscapes reveal a fascination with 

the intricate structure he saw in nature and architecture. Escher's 

preoccupation with tessellations developed after a repeat trip to Spain 

in 1936, where he visited a structure that had first intrigued him in 

1922—the Alhambra. The walls, floors, and ceilings of this 13th- 

century palace-fortress, built by the Moors, are covered with mosaics 

of great variety and beauty. Escher spent days copying the patterns in 

his notebook and remarked, 'This is the richest source of inspiration 

that I have ever struck. . . . What a pity it is that the religion of the 

Moors forbade them to make graven images!" 

Fig. 7-1. Sketches made by Escher at the Alhambra 
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Although inspired by the Moorish mosaics, Escher did not 

restrict himself to abstract geometrical designs. In fact, he did the 

opposite—he restricted himself to animate forms as he explored the 

world of tessellations. With extraordinary inventiveness, he created 

tessellating shapes that resembled birds, fish, lizards, dogs, humans, 

butterflies, and the occasional creature of his own invention. He left 

notebooks filled with studies and sketches of repeating patterns, 

many of which he incorporated into woodcuts and lithographs. One 

such lithograph. Reptiles (figure 7-2), shows an intrepid lizard crawl¬ 

ing out of Escher's two-dimensional sketch to explore the real world 

before rejoining his fellow reptiles in the interlocking design. 

©1988 M. C ESCHER HEIRS/CORDON ART - BAARN - HOLLAND 

Fig. 7-2. Reptiles, M. C. Escher 
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If you study the notebook drawing in the lithograph, you will 

notice a grid of regular hexagons superimposed on it. Even though 

the reptiles are turning this way and that, each fits in a hexagon in 

exactly the same way—a relationship that you can see more clearly in 
figure 7-3. 

Fig. 7-3. A grid of hexagons underlying the reptile tessellation 

This reptilian creature appears to have "evolved" from a regular 

hexagon. We will discover in this chapter that, in fact, each of 

Escher's tessellating creatures was based on a polygon that he 

modified by certain procedures to create a distinctive contour. 

Until his death in 1972, Escher maintained his interest in 

tessellations, returning again and again to what he once called "the 

mental gymnastics of my puzzles." In this chapter we will analyze 

several of Escher's tessellations, each formed by a single tessellating 

shape, and discover how we can create similar patterns ourselves. 

Modifying Polygons by Translation 

In 1960 Escher was commissioned to design a tiled fagade for a 

school in The Hague. He created a motif consisting of two elements, 

a light-colored Pegasus and a darker one. The two winged horses are, 

apart from their color, exactly the same, both in contour and in 

orientation. 
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Fig. 7-4. Pegasus, M. C. Escher 

Suppose we had a transparent duplicate or tracing of the Pegasus 

tessellation shown in figure 7-4. If we placed this tracing on top of the 

original, we could translate (slide) it horizontally until one horse 

ended up exactly on top of an adjacent horse—thus bringing the 

design into coincidence with itself (ignoring the change in coloring). 

We could do the same thing vertically. 

By actual measurement, we would find that the magnitude of 

the horizontal translation just described is exactly equal to that of the 

vertical translation. This suggests that a square is somehow involved 

in the design of the tessellating shape. Indeed, we find that the 

tessellation fits neatly into a grid of squares (figure 7-5), with hori¬ 

zontal and vertical lines intersecting at the tip of each horse's lower 

jaw. (There are other possible placements for the vertices of the 

square grid, but using the tip of the lower jaw works nicely because 

we end up with the major part of the horse's body in a single square.) 

Note that each horse fits in its square in exactly the same way as its 
fellow horses. 

186 INTRODUCTION TO TESSELLATIONS 

0
1
9
8
8
 M

. 
C

 E
S

C
H

E
R
 H

E
IR

S
/C

O
R

D
O

N
 A

R
T

 -
 B

A
A

R
N

 -
 H

O
L

L
A

N
D

 



Fig. 7-5. A square grid underlying the Pegasus design 

Let"s investigate how we might create this shape by modifying a 

square by translation—a technique discussed in chapter 5. The process 

is shown in figure 7-6. As we analyze the various transformations in 

this chapter, we will always number the sides of the original polygon 

clockwise and refer to each side by number. Thus, we number from 

1 to 4 the sides of a square in which a horse is inscribed. Studying the 

horse's contour, we see that we might first modify side 1 and translate 

this modification to side 3. Protrusions (or bumps) on side 1 become 

congruent indentations (or holes) on side 3, and vice versa. In like 

manner, we make a modification to side 2 and translate it to side 4. 

Despite these changes, the modified square has the same area as the 

original or parent square. 

Fig. 7-6. Modifying by translation to create the Pegasus shape 
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We can now try this same procedure to create our own Escher- 

like tessellating shape. There are two ways to approach our modifi¬ 

cation of a polygon to create a non-polygonal tessellating shape. One 

way is to have some specific object in mind—such as a horse—and to 

modify the sides of the polygon until its contour resembles that ob¬ 

ject. A second approach is to modify the sides of the polygon with 

random curves, then interpret the resulting shape by adding details to 

highlight its interior. 

In figure 7-7, we see a square that has been modified by transla¬ 

tion (with no specific object in mind). Figure 7-8 shows the modified 

square interpreted first as a witch and then, with the shape rotated 

counterclockwise 90°, as a winged seahorse. 

Fig. 7-7. Modifying by translation 

ART BY STEVE DAWSON 

/ 

ART BY STEVE DAWSON 

Fig. 7-8. Alternative interpretations of the same tessellating shape 
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Each of the tessellating shapes in figure 7-9 was similarly created 

by modifying a square by translation. In the first instance, the artist 

had a dog in mind and modified the square until its contour resem¬ 

bled that object. In the second instance, the artist made random 

modifications and interpreted the shape after the fact, adding details 
to represent a woman. 

Fig. 7-9. Two more tessellations created by modifying a square 
by translation 
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Any quadrilateral having parallel and congruent sides can be 

modified by translating the modification of one side to the opposite 

side. Figure 7-10 demonstrates the result when we modify a rectangle 

and a parallelogram in this way. Adding details to the interior of 

each shape gives us the two tessellations shown below. 

Fig. 7-10. Tessellations created by modifying a rectangle and a 
parallelogram by translation 

ART BY STEVE DAWSON 
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We can extend this method to include regular hexagons or, 

more generally, any hexagon having parallel and congruent sides. 

(Recall that in chapter 2, we discovered that any hexagon whose 

opposite sides are parallel and congruent will tessellate.) In hexago¬ 

nal tessellations we have three sets of opposite sides to be modified. 

The resulting non-polygonal shape has the same area and tessellates 

the plane in the same manner as its parent hexagon. The tessellation, 

with details added, is shown in figure 7-12. 

Fig. 7-11. A modification of a regular hexagon 

Fig. 7-12. Tessellation based on a hexagon modified by translation 
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Modifying Polygons by Rotation about Midpoints of Sides 

The Escher tessellation of fish shown in figure 7-13, like the 
Pegasus tessellation, consists of identical animals, light and dark. 
However, the two types of fish are oriented differently, the dark fish 
swimming to the right and the light ones to the left. 

Fig. 7-13. Fish, M. C. Escher 

This tessellation has translational symmetry (as do all the Escher 
and Escher-like tessellations in this chapter). Thus we can bring the 
design into coincidence with itself by translating it either horizontally 
or vertically until adjacent light fish or dark fish coincide. 

The tessellation also has rotational symmetry. That is, a light 
and a dark fish can exchange places if we rotate them 180° about a 
point between their left eyes. (You might trace a fish onto a sheet of 
translucent paper or acetate and verify this for yourself.) If we rotate 
the figure in this way two times, it will return to its original position; 
thus we say that the tessellation has two-fold rotational symmetry. 

There are actually four different centers of two-fold rotation that 
will allow a light and a dark fish to exchange places. Each is the mid¬ 
point of a side of a scalene quadrilateral. Figure 7-14 shows the grid 
formed by these scalene quadrilaterals. Note that they are not paral¬ 
lelograms; we know this is not a problem since all quadrilaterals 
tessellate. 
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Fig. 7-14. A grid of scalene quadrilaterals underlying the Fish design 

Note that although the orientation of the quadrilaterals alter¬ 

nates, each fish fits in its quadrilateral in exactly the same way as all 

the others. Let's investigate how we might create this fish shape from 

the original quadrilateral (see figure 7-15). We number the sides of 

that quadrilateral and study the contour of the fish inside it. Looking 

at each side separately, we see a type of change familiar from chapter 

5: modifying by rotation about the midpoint of a side. That is, we 

modify a half-side of side 1 and rotate our modification 180° about the 

midpoint of that side. As a result, a hole on half of side 1 becomes a 

congruent bump on the other half. As you can see in figure 7-15, the 

same is true of all four sides. 

Fig. 7-15. Modifying by rotation about midpoints of sides 
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Any quadrilateral will tessellate if we rotate it 180° about the 

midpoint of each of its sides. The four angles of the quadrilateral, 

totalling 360°, then surround each vertex in the tessellation, as shown 

in figure 7-16. 

Fig. 7-16. The orientation of a quadrilateral in its tessellation 

Given the enormous variety of quadrilaterals available to us, we 

can use rotation about midpoints of sides to create a wealth of Escher- 

like tessellating shapes. Each resulting tessellation will have four 

different centers of two-fold rotation: the midpoints of the four sides 

of each tessellating shape. Figures 7-17 through 7-21 demonstrate 

some of the possibilities. 

Fig. 7-17. A square modified by rotation about midpoints of sides 
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ART BY LYDA KOBYLANSKY 

Fig. 7-18. A scalene quadrilateral modified by rotation 
about midpoints of sides 

ART BY HENRY FURMANOWICZ 

Fig. 7-19. A scalene quadrilateral modified by rotation 
about midpoints of sides 
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Fig. 7-20. A trapezoid modified by rotation about midpoints of sides 

Fig. 7-21. A scalene quadrilateral modified by rotation 
about midpoints of sides 

As we saw in chapter 5, we can use this procedure with any 

triangle as well. Figure 7-22 shows two examples of tessellating 

shapes created by modifying each half-side of a triangle and rotating 
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the modification 180° about the midpoint of the side. See if you can 

ART BY STEVE DAWSON ART BY HENRY FURMANOWICZ 

Fig. 7-22. Triangles modified by rotation about midpoints of sides 

Modifying by rotation about midpoints of sides cannot be used to 

modify tessellating hexagons, as we discovered in chapter 5 (page 140). 

However, there is one exception. If we make exactly the same half¬ 

side modification to all six sides of a regular hexagon, so that the 

figure has six-fold rotational symmetry about its center, then the new 

shape will tessellate. (In fact, the generating polygon is an equilateral 

triangle, one-sixth of the hexagon.) 

Fig. 7-23. Modifying all six sides of 
a regular hexagon the same way 
produces a tessellating shape. 
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Fig. 7-24. Lizard I, M. C. Escher 

Now let's consider a somewhat more complex design, the Escher 

tessellation of lizards shown in figure 7-24. Like the Pegasus and fish 

designs, this tessellation has translational symmetry. That is, a lizard 

of either color can be made to coincide with a lizard of the same or 

opposite color by a simple translation in some direction. This tessel¬ 

lation also has rotational symmetry. 

Note that as we look for symmetries, we are seeking an under¬ 

lying grid of polygons—as we did with the Pegasus and fish tessella¬ 

tions. Once we determine the polygonal shape on which the lizard is 

based, we should be able to discover a procedure for creating the 

tessellating shape. In tessellations with rotational symmetry, the 

vertices of the polygons in the underlying grid are usually rotation 

points. Thus, as we analyze Escher tessellations, we will always look 
for rotation points. 

In this tessellation, each lizard's right "elbow," the extreme tip of 

its right leg, its left knee, and the extreme tip of its left "arm" are 

points of two-fold rotational symmetry. That is, each lizard can be 

made to coincide with an adjacent lizard of the same color by a 180° 

turn about any of these points. Note that these four points mark the 
vertices of a parallelogram. 
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Fig. 7-25. A grid of parallelograms underlying the Lizard I design 

Figure 7-25 shows, then, the underlying structure of this tessel¬ 

lation—a grid of parallelograms. If we study the contour of a lizard 

inscribed in a parallelogram, we find that we can create this shape by a 

procedure that combines translation and rotation about midpoints of 

sides (figure 7-26). First, a modification to side 2 is translated to side 4. 

Then, modifications to half of side 1 and side 3 are rotated 180° about 

the midpoints of those same sides. Note that in the tessellation, 

adjacent lizards of opposite color can be made to coincide by two-fold 

rotation about both of these midpoints. 

Fig. 7-26. Modifying by translation and midpoint rotation 
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We can follow the same pattern—translation of sides 2 and 4, 

and rotation about the midpoints of sides 1 and 3—to create our own 

Escher-like tessellating shape, as shown in figure 7-27. Here the 

parallelogram we use is a rectangle. Figure 7-28 shows the modified 

rectangle interpreted either as a rabbit or, with the shape rotated 180°, 

as a bulldog with a snappy bow tie. 

Fig. 7-27. Modifying by translation and midpoint rotation 

/ 

ART BY STEVE DAWSON 

Fig. 7-28. Two interpretations of the modified rectangle 
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Fig. 7-29. Lizard II, M. C. Escher 

Modifying Polygons by Rotation about Vertices  

In figure 7-29 we see another Escher tessellation of lizards with 

both translational and rotational symmetry. As before, we will look 

for rotation points to locate the vertices of the underlying grid; then 

we will try to discover the procedure for creating the tessellating 

lizard shape. Concentrating first on either the white or the black 

lizards, we see points of two-fold rotation at their noses, at their right 

knees, at their right front feet, and at their left rear feet. That is, at any 

of those points, a rotation of 180° brings two same-color lizards into 

coincidence. If we look at the design as a whole, ignoring color 

differences, we discover that the latter two points—right front feet 

and left rear feet—are also centers of four-fold rotation. That is, a 

rotation of 90° about either point brings the lizards into coincidence. 

If we connect all four points with sets of perpendicular lines, we find 

a square grid, as shown in figure 7-30. 
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Let's isolate one lizard from that grid and see how it was created 

from a square (figure 7-31). We number the sides and, for this pro¬ 

cedure, we also letter the vertices of a square. Studying the contour of 

the lizard, we find that we can modify side 1 and rotate our modifica¬ 

tion about vertex A to side 2. As a result, a bump on side 1 becomes a 

congruent hole on side 2, and vice versa. We do the same with the 

remaining sides, modifying side 3 and rotating this modification 

about vertex C to side 4. 

Fig. 7-31. Modifying by rotation about vertices to create 
the lizard shape 
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It is interesting to consider the orientation of the lizard shapes in 

the resulting tessellation. As you can see in figure 7-30, four lizards 

together form a larger unit that tessellates by translation alone. But 

within that four-lizard unit, each lizard has a different orientation. 

This is the first Escher design we have explored in which the shape is 

turned in four different directions. 
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Fig. 7-32. The changing orientation of the lizards in the tessellation 

Figure 7-32 shows the underlying square grid with the sides and 

vertices of each square labeled according to the orientation of its in¬ 

scribed lizard. If you study this configuration, you will see that side 1 

always touches side 2 and that side 3 always touches side 4. The 

letters in the diagram help point out the four-fold symmetries 

(around vertices A and C) and the two-fold symmetries (at vertices 

B and D). 

The generation of this tessellation is easier than its many 

symmetries might suggest. Note that the red lizards appear in 

squares that are identically oriented. Starting with any one of these 

lizards, we could generate the tessellation simply by rotating the 

shape 90° four times about vertex C (until it returns to its original 

location), then translating it two squares, both horizontally and 

vertically, and repeating the process. Alternatively, we could start 

with a four-fold rotation about vertex A and follow the same steps. 
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Now let's try to create our own tessellating shape by modifying 

two opposite sides of a square and rotating each modification about a 

vertex to an adjacent side. This is what we have done in figure 7-33. 

We started with a bird in mind and modified the sides of the square 

until its contour resembled a bird with wings outspread. The result¬ 

ing tessellation has two centers of four-fold rotation and two centers 

of two-fold rotation, as does the Escher tessellation whose pattern 

inspired it. 

Fig. 7-33. Modifying by rotation about vertices 
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Figure 7-34 contains two more examples of tessellating shapes 

that result from rotating modifications about vertices. In creating 

each of these, the artist made random modifications to the sides of a 

square, then interpreted the resulting shapes as a goofy moose and a 
rogue in a plumed hat. 

Fig. 7-34. Two further examples of modifying a square by rotation 
about vertices 

ART BY STEVE DAWSON 

INTRODUCTION TO TESSELLATIONS 205 



Now let's look at the same procedure applied to a regular hexa¬ 

gon. You may recognize the Escher tessellation in figure 7-35 as the 

one featured in his famous lithograph Reptiles that we saw earlier 

(figure 7-2, page 184). 

Fig. 7-35. Study of Regular Division of the Plane with Reptiles, M. C. Escher 

This design is based on a grid of regular hexagons; residual 

traces of Escher's own grid will help us locate all six vertices of a 

typical hexagon. We will look at an individual lizard in a single 

hexagon to discover how it can be formed (figure 7-36). 
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Fig. 7-36. Modifying a hexagon by rotation about vertices to create 
the lizard shape 

We number the sides and letter the vertices of a single hexagon, 

then study the contour of the lizard within. We find that we can 

create the lizard shape as follows: modify side 1; rotate this modi¬ 

fication about vertex A to side 2; modify side 3; rotate it about vertex 

C to side 4; modify side 5; rotate it about vertex E to side 6. 

The lizard shape thus formed will tessellate in a pattern with 

three different centers of three-fold rotation, as shown in figure 7-37. 

That is, a rotation of 120° about each of these three points brings the 

design into coincidence. (You might trace a lizard and rotate your 

tracing to verify this relationship.) Can you spot these symmetries in 

the original tessellation (figure 7-35)? 

Fig. 7-37. Three centers of three-fold rotational symmetry 
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Figure 7-38 shows our attempt to create a tessellating shape 

through this same procedure—modifying a regular hexagon by 

rotation about vertices. The resulting outline resembles a peg-legged 

pirate, even before we add interior details. The tessellation of this 

shape has three centers of three-fold rotation. Can you find them? 

Fig. 7-38. A hexagon modified by rotation about vertices 

1 ^A>2 
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The shape in figure 7-39 was also created from a hexagon with 

modifications of sides 1, 3, and 5 rotated about vertices to adjacent 

sides. In this case, the artist made random modifications, then gave 

three different interpretations to the shapes—a broad-beaked parrot, a 

crested bird, and a flying squirrel. In the resulting tessellation, 

identically oriented shapes were given the same interpretation. 

Fig. 7-39. A hexagon modified by rotation about vertices 
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The shapes in the next Escher tessellation, figure 7-40, can be 

created by combining both rotation techniques—rotation about a 

vertex of a polygon, and rotation about the midpoint of a side of 

that polygon. 

Fig. 7-40. Birds, M. C. Escher 

Let's look for rotation points in figure 7-40 as we try to discover 

the underlying polygonal grid. Perhaps most obvious is the center of 

three-fold rotation where the birds' beaks meet. There are two such 

points—one for the dark birds and one for the light. The lower tip of 

each bird's left wing marks another point of rotational symmetry; 

ignoring the color differences, we see here a center of six-fold rota¬ 

tion. These two kinds of rotation points, six-fold and three-fold, 

mark the vertices of a grid of equilateral triangles. 

Another center of rotational symmetry, overlooked by most 

observers, is located on the right wing, midway between the beaks of 

adjacent light and dark birds. This is a center of two-fold rotation; a 

rotation of 180° brings adjacent birds into coincidence. 
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Fig. 7-41. A grid of equilateral triangles underlying the Birds design 

Figure 7-41 shows the underlying grid of equilateral triangles. 

Note that the points of two-fold rotation lie at the midpoint of one of 

the sides of each triangle. 

Looking at a single triangle from the grid with its inscribed bird, 

we find that we can modify side 1 and rotate this modification about 

vertex A to side 2. Since a triangle has an odd number of sides, side 3 

has no partner, so we cannot continue to use rotation about a vertex. 

Instead, we modify half of side 3 and rotate the modification 180° 

about the midpoint of that side. The bird shape is now complete. 

B 

Fig. 7-42. Modifying by rotation about a vertex and rotation about 
the midpoint of a side to create the bird shape 
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Now let's see how we might create our own tessellating shape, 

using the same combination of procedures evident in Escher's Birds 

tessellation. Starting with a triangle, we modify side 1 and rotate that 

modification around vertex A to side 2. We then modify half of side 

3 and rotate that modification 180° about the midpoint of the side. 

Can you see these changes in figure 7-43? The tessellation of this 

shape has centers of six-fold, three-fold, and two-fold rotation, as did 

the Escher Birds tessellation. Can you find them all? 

Fig. 7-43. An equilateral triangle modified by rotation about a vertex 
and rotation about the midpoint of a side 

B 

'TISHA,* ART BY STEPHEN MAKRIS 
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The same combination of procedures was used to create the 

tessellating shape shown in figure 7-44. The artist made random 

modifications, then experimented with the six different interpreta¬ 

tions shown. The dragon option is shown tessellating Can you find 

the centers of rotational symmetry? 

Fig. 7-44. Another equilateral triangle modified by rotation about a 
vertex and rotation about the midpoint of a side 
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The Escher tessellation of lizards in figure 7-45 is similar in 

design, again combining rotation about a vertex and rotation about 

the midpoint of a side. Residual traces of the artist's grid, just visible 

in the figure, reveal that the design is based on an isosceles right 

triangle rather than an equilateral triangle. 

To arrive at this lizard shape, we can follow the steps shown in 

figure 7-46: we first modify one leg of the triangle, side 1, and rotate 

this modification about vertex A to the other leg, side 2. Then we 

modify half of the hypotenuse and rotate this change about the 

midpoint. 

This tessellation has a point of four-fold rotation at the vertex of 

the right angle, a point of two-fold rotation at the midpoint of the 

hypotenuse, and as a natural consequence, two points of four-fold 

rotation at the base vertices, where the heads of either four light or 

four dark lizards meet. 

Fig. 7-45. Lizard IV, M. C. Escher 
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Fig. 7-46. Modifying an isosceles right triangle by rotation 
about a vertex and rotation about the midpoint of a side 
to create the lizard shape 

We can use the same combination of procedures to modify an 

isosceles triangle with an angle of 120°. In the resulting tessellation, 

the rotational symmetry is three-fold—as opposed to six-fold when 

we start with an equilateral triangle and four-fold when we use an 

isosceles right triangle. A portion of the grid underlying such a 

tessellation is shown in figure 7-47, with sides and vertices of each 

triangle labeled. Here you can clearly see where three angle A's meet 

at a point of three-fold symmetry and angles B and C come together 

alternately at a point of six-fold symmetry. 

Fig. 7-47. Grid underlying a 120° isosceles triangle tessellation 
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In figure 7-48, we use these procedures to modify such a triangle, 

creating a hummingbird that tessellates as shown. 

Fig. 7-48. Modifying an isosceles triangle with an angle of 120° 

Modifying Polygons by Reflection 

Now we take up a new technique involving the transfor¬ 

mation that we call reflection. The design we will first study is a 

tessellation of human figures that appears at the right side of 

Escher's Metamorphosis [I] woodcut (figure 7-49). An enlarged 

version of this pattern (created with pencil and watercolor prior to 

use in the woodcut) is shown in figure 7-50. 

©1988 M. C ESCHER HEIRS/CORDON ART - BAARN - HOLLAND 

Fig. 7-49. Metamorphosis [I], M. C. Escher 
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Fig. 7-50. Study of Regular Division of the Plane 
with Human Figures, M. C. Escher 

As we see in figure 7-51, this tessellation is based on a grid of 
isosceles triangles with angles of 120°. However, unlike previous 
tessellations we have explored, in this case the tessellating shape is 
created from two such triangles. That is, each triangle contains just 
half of a human figure. 

The resulting tessellation has reflective symmetry. Mirror lines 
(lines of reflection) run in three different directions, tracing out a grid 
of equilateral triangles. The shortest possible translations are in direc¬ 
tions parallel to these mirror lines. The tessellation also has three¬ 
fold rotational symmetry. Adjacent human figures can exchange 
places by a rotation of 120° about the tip of their hats or about the 
lower end of either sleeve. 

Fig. 7-51. A grid of 120° isosceles triangles underlying 
the human figure design 
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Figure 7-52 demonstrates how we modify and reflect a triangle to 

create the desired shape. First we modify side 1 and rotate this 

modification about vertex A to side 2. Side 3 falls on a mirror line 

(line of reflection); we simply reflect the modified shape about this 

line to obtain the other half of the human figure. 

Fig. 7-52. Modifying by rotation about a vertex and reflection to create 
a human figure 

The underlying grid, with the sides and vertices of each triangle 

labeled according to the orientation of its inscribed human half, is 

shown again in figure 7-53. Compare this grid with the one in figure 

7-47. Both show tessellations with the same triangle—but in each 

case the triangle is modified by different transformations. Here the 

triangle has been reflected about side 3; before, side 3 was rotated 

about its midpoint. You can see the difference by comparing the 

placement of angles B and C in the two grids. 
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Fig. 7-53. An alternative configuration of 120° isosceles triangles 

In figure 7-54, we follow the same pattern of transformations, 

starting with an isosceles triangle with an angle of 120°: modify side 1 

and rotate about vertex A to side 2, then reflect about side 3. The 

resulting clown face tessellates in a pattern that has both reflective 
and rotational symmetry. 

B 

Fig. 7-54. Triangle modified by rotation about a vertex and reflection 
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Fig. 7-55. Crabs, M. C. Escher 

For the Escher tessellation of crabs in figure 7-55, the tessellating 

element was also created by a combination of transformations that 

includes reflection. 

Note that the tessellation is based on a grid of rectangles (figure 

7-56). One half of each crab fits in a single rectangle in exactly the 

same way as all the other corresponding crab halves. Figure 7-57 

demonstrates how we can create the crab shape: modify side 2 and 

translate this modification to side 4; modify half of side 1 and rotate 

about the midpoint; reflect about side 3, which falls on a mirror line 
/ 

The crab tessellation naturally has reflective symmetry. The 

mirror lines, running vertically from top to bottom, coincide with the 

mirror lines of the crabs. If we ignore color differences, the shortest 

possible translations are between adjacent crabs in a direction parallel 
to the mirror lines. 

As we discovered in chapter 4, any tessellation with both trans¬ 

lational and reflective symmetry will also have glide-reflection 

symmetry. You can see that, ignoring color, the tessellation can be 
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made to coincide with itself by reflecting it about any mirror line and 
then translating it vertically. 

If we ignore both color and reflections, we can find points of 

two-fold rotation in any rectangle, at the vertices that do not lie on 

a mirror line, and at the midpoints of the vertical sides joining 
those vertices. 

Fig. 7-56. A rectangular grid underlying the Crabs design 

Fig. 7-57. Modifying by translation, rotation about the midpoint of a 
side, and reflection to create the crab shape 
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Now let's see how we might create a similar shape ourselves. In 

figure 7-58, we begin with a rectangle and modify it using the same 

procedure. The result suggests a devilish visage. The tessellation of 

this figure has translational symmetry, reflective symmetry, glide- 

reflection symmetry, and two-fold rotational symmetry. 

Fig. 7-58. A rectangle modified by translation, rotation about the 
midpoint of a side, and reflection 

ART BY STEVE DAWSON 
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Modifying Polygons by Glide Reflection 

The tessellation of dogs shown in figure 7-59 is one of Escher's 

most ingenious designs. Note how the black dogs' rear toes become 

teeth for the white dogs, and vice versa. 

Fig. 7-59. Dogs, M. C. Escher 

Let7s look for symmetries in this tessellation. It's easy to see that 

it has translational symmetry. We can bring the tessellation into 

coincidence with itself by translating horizontally between adjacent 

dogs (ignoring color) or vertically between dogs of the same color. 

If we were to draw vertical lines through the elbows of the white 

dogs, we would find that these lines also pass through the elbows of 

the black dogs. A white dog will exchange places with the black dog 

just below it if we first reflect it about the line just described, then 

translate it vertically. Thus the tessellation has glide-reflection sym¬ 

metry. It does not, however, have reflective symmetry. 
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Fig. 7-60. A grid of parallelograms underlying the Dogs design 

The dog design is based on a grid of parallelograms occurring in 

two different orientations, as shown in figure 7-60. Figure 7-61 shows 

the steps we take to create the dog shape. The first step is a simple 

modification of side 1 translated to side 3. Observe closely what 

happens next: We modify side 2, then reflect that modification about 

a vertical line that passes through the center of the parallelogram, 

and finally translate the reflected modification to side 4. This is the 

transformation that we call a glide reflection. 

Fig. 7-61. Modifying by translation and glide reflection 
to create the dog shape 
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Figure 7-62 illustrates our modification of a parallelogram using 

the same procedure that produced the dogs for the Escher design. We 

started with the idea of creating a fish and modified the parallelogram 

until its contour resembled a fish shape. The tessellation of our fish 

shape has translational symmetry and glide-reflection symmetry, like 
the Escher tessellation that inspired it. 

Fig. 7-62. A parallelogram modified by translation and glide reflection 

INTRODUCTION TO TESSELLATIONS 



Although we have focused our discussion on designs formed 

by a single tessellating shape, let's take a look now at the tessellation 

in figure 7-63, which Escher prepared for use in his lithograph 

Encounter. 

Fig. 7-63. Study of Regular Division of the Plane 
with Human Figures, M. C. Escher 

The pattern here is built up from two figures, an optimist (light) 

and a pessimist (dark), each occurring in two different orientations. 

If, however, we regard the tessellating shape as a unit containing two 

figures, an optimist and the pessimist directly below, we find that the 

tessellation has precisely the same properties as Escher's tessellation 

of dogs. The two-part tessellating shape is once again a parallelogram 

modified by translation and glide reflection, as shown in figure 7-64. 

/ 1 

Fig. 7-64. Modifying by translation and glide reflection to create the 
optimist/pessimist shape 
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In general, we may always subdivide any tessellating shape into 

as many figures as suits our fancy. 

Now let's consider another design created by glide reflection. 

The Escher tessellation shown in figure 7-65, which he used in his 

wood engraving Swans, is deceptively simple looking. With its 

alternating rows of dark and light swans, the pattern has clear 

translational symmetry; both vertical and horizontal translations 

bring swans of the same color into coincidence. 

The swan tessellation has glide-reflection symmetry without 

reflective symmetry. A dark swan exchanges places with the light 

swan just below and to the right of it if we first reflect it about a 

vertical line midway between the tips of their heads, then translate it 

vertically. The same is true of a dark swan and the light swan just 
below and to the left of it. 

Fig. 7-65. Study of Regular Division of the Plane with Birds, M. C. Escher 
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Fig. 7-66. A kite-shaped quadrilateral grid 
underlying the Swans design 

The tessellation is based on a grid of kite-shaped quadrilaterals, 

as shown in figure 7-66. The vertices of this grid are marked by the 

tips of the heads of all swans, dark and light. The horizontal diagonal 

of each quadrilateral subdivides it into two congruent triangular 

halves, as shown in figure 7-67 (second step). 

It takes a bit of work to arrive at the swan shape, but you can 

follow the step-by-step process in figure 7-67. Starting with our kite¬ 

shaped quadrilateral, we modify side 1 and reflect this modification 

about a vertical line. As you can see in the figure, this mirror line 

passes through the midpoints of sides 1 and 2. After reflection, we 

translate the modification to side 2. Then we go through the same 

process with sides 3 and 4: modify side 3, reflect about a vertical line 

through the midpoints of sides 3 and 4, and translate the reflected 

modification to side 4. This gives us the desired swan shape. 

*4 

Fig. 7-67. Modifying by glide reflection to create the swan shape 
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Following the same pattern of transformations, we can create 

our own tessellating shape from a kite-shaped quadrilateral, as shown 

in figure 7-68. We started with the intent of creating a dog and 

modified the sides of the quadrilateral through glide reflection until 

it looked something like a dog. Like the Escher swan design, the 

tessellation of this dog has translational symmetry and glide- 

reflection symmetry, but no reflective symmetry. 

Fig. 7-68. Modifying a quadrilateral by glide reflection 
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The same approach was used to create the tessellating owls and 

seals in figure 7-69, modifying two kite-shaped quadrilaterals (one 

convex, one concave) by glide reflection. The artist in these cases 

worked with no particular shape in mind, adding details to interpret 

the figures after the fact. 

Fig. 7-69. Two more examples of modifying quadrilaterals 
by glide reflection 

ART BY STEVE DAWSON ART BY STEVE DAWSON 

/ 
The same approach can also be used to create the tessellating shape in 

figure 7-70, which Escher devised for use in his woodcut Horseman. 

The creation of the horseman's contour is perhaps the best 

illustration of Escher's cunning ingenuity. Figure 7-71 details how we 

can arrive at this shape. After modifying side 1 of an appropriate kite¬ 

shaped quadrilateral, we reflect it about the vertical line passing 

through the midpoints of sides 1 and 2, then translate the reflected 

modification up to side 2. Then we modify side 3, reflect it about the 
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I . 

Fig. 7-70. Study of Regular Division of the Plane 
with Horsemen, M. C. Escher 

Fig. 7-71. Modifying a quadrilateral by glide reflection 
to create the horseman shape 

mi 
i 

vertical line passing through the midpoints of sides 3 and 4, and trans¬ 

late this reflected modification to side 4. This completes the horseman 

shape. 
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Each of the convex kite-shaped quadrilaterals we have just seen 

modified could be subdivided into two isosceles triangles by drawing 

the vertical diagonal, as shown in figure 7-72. 

Fig. 7-72. A convex kite-shaped 
quadrilateral subdivided into 
two isosceles triangles 

When we modified such a quadrilateral to create, for example, 

Escher's horseman, the isosceles triangle on the left was modified by 

glide reflection, as was the isosceles triangle on the right. This would 

suggest that we might be able to use the glide-reflection procedure 

with a tessellating grid of isosceles triangles. 

But a triangle has three sides. If we modify the legs of an 

isosceles triangle by glide reflection, how do we deal with the third 

side? We have two choices available: reflecting the modified triangle 

about the third side, or rotating it about the midpoint of the third 

side. With the hummingbird design (figure 7-48) we rotated it; with 

the clown face (figure 7-54) we reflected it. 

In figure 7-73, the selected isosceles triangle is equilateral. We 

have modified sides 1 and 2 by glide reflection, using a sequence of 

steps identical to that we just used to create Escher's horseman. Then, 

we modified half of side 3 and rotated this change 180° about the 

midpoint of the side. TTie resulting contour resembles a bird even 

without the addition of interior details. Our bird tessellates in a 

design that has translational symmetry, glide-reflection symmetry, 

and two-fold rotational symmetry. 

Figure 7-74 shows another isosceles triangle, in this case not 

equilateral, modified by the same transformations. Rotated counter¬ 

clockwise 90°, the modified triangle could be interpreted as a 

glamorous lady pig. 
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Fig. 7-73. Modifying by glide reflection and 
rotation about the midpoint of a side 

Fig. 7-74. Another triangle modified by glide reflection 
and rotation about the midpoint of a side 
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Further Explorations 

In this chapter we have merged two approaches to exploring 

tessellations of animate figures; both can lead you into some fas¬ 

cinating explorations of your own. One approach is to analyze an 

existing design—perhaps one of the many by Escher that we have not 

presented here. What was the generating polygon? How was it 

modified? What are the symmetries of the tessellation? Such an 

analysis can be accomplished by locating the underlying grid of 

polygons. The vertices of those polygons are usually points of 

rotational symmetry. Other visual clues may reveal translations or 

glide reflections. 

A second approach is to create your own designs, starting with a 

tessellating polygonal shape, then modifying sides or half-sides and 

transforming these modifications to other parts of the polygon. You 

might have some specific object in mind and modify the polygon 

until its contour resembles that object, or you might modify the 

polygon with random curves and interpret the resulting shape by 

adding interior details. Working towards a decent contour requires 

tenacity, but the effort will make you better appreciate the challenge. 

As Escher's son George has advised us: 

Do not confuse the creation of a meaningful contour with the 
highlighting of the interior of a tile. These are fundamentally 
different things. Almost anyone can take a random shape and 
draw something life-like inside its outline. 

But it is an entirely different story to push a recalcitrant 
outline into a pattern that suggests, without highlighting, some 
living thing. Highlighting may be necessary to clarify a decision: 
is it a bird or a fish? But it is often not even necessary, if the 
contour is characteristic enough. 

This discussion is not new. It is a repeat of a homily given to 
me by my father when I was around twelve years old and had 
made some tessellations like the above. "Look, it is not that 
difficult," I told him. "Why do you work so hard on such a 
simple task?" I soon found out. 
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Designing an Escher-like shape and drawing its tessellation is a 

time-consuming yet satisfying exercise. Following are some practical 
tips to help you get started. 

A scalene quadrilateral allows you the greatest freedom and 

flexibility when you attempt your first design. As you make your 

preliminary sketches, you may find that you want to alter the shape 

of your original polygon—and with a scalene quadrilateral, you can. 

However long its sides and whatever the size of its angles, a 

quadrilateral will tessellate the plane if each of the sides is rotated 

180° about its midpoint. (The only drawback of a scalene quadrilateral 

is the relative difficulty of drawing its tessellating grid, but if you 

tessellate by the first method we suggest below, this is not a problem.) 

Once your preliminary sketch is completed, you must prepare an 

accurate version of the shape for your tessellation. One simple and 

practical approach is to cut the original polygon shape from construc¬ 

tion paper or lightweight cardboard, then cut appropriate "holes" and 

tape them on as corresponding "bumps" to represent your modifica¬ 

tions. (In the case of glide reflection, you will need to flip the bump 

before taping.) You can mark the location of simple details with slits 

or small holes in your final shape. 

To create the tessellation, position your pattern on another sheet 

of paper, trace about its perimeter, and mark the location of interior 

details. By repositioning and tracing the pattern again and again, you 

will see the tessellation evolve before your eyes. 

A more precise procedure involves no cutting and allows you 

more freedom in adding interior details—but it also requires more 

time and patience, and either a light table or a window that you can 

draw against. You will need three sheets of translucent paper. Draw 

your polygon on two of these. Then, on one polygon, draw your 

modifications to the sides in one of their two locations. Tape this 

polygon to a window or light table and superimpose the second 

polygon precisely on top. Trace your initial modifications, then 

move the superimposed sheet as needed to locate and trace each 

modification in its new location. (For glide reflection, you will need 

to flip the base polygon.) You end up with an accurately drawn shape 

to serve as your pattern, to which you can add interior details at will. 

Now you need to create the underlying grid for your tessellating 

polygon. To avoid the problem of grid lines in your finished design, 

we suggest drawing the mirror image of the grid on the back of the 

third sheet of translucent paper. That way, when you tape this sheet 

INTRODUCTION TO TESSELLATIONS 235 



face up over your pattern at the window or a light table, you can see 

the grid lines to help you position your shape, but they will not 

appear in your final drawing. (Alternatively, of course, you could 

draw the grid on a separate sheet and draw your final design on yet 

another sheet placed over it—but three sheets of paper start to get 

opaque, even with a light table.) 

From here on, completing the drawing is simply a matter of 

meticulous tracing. You align a polygon in the grid precisely with the 

polygon of your pattern, then trace all marks except the polygon on 

the top sheet. Select an adjacent polygon, turn the sheet to align with 

the pattern, and trace—continuing in this manner until you are 

satisfied with the extent of your tessellation. 

For either method—tracing around a cardboard pattern or 

through translucent paper—ink gives you better contrast than pencil, 

but slips and errors are harder to repair. If you use pencil, you can 

improve the contrast as follows: Photocopy your final drawing, 

process it at a slow setting through a thermal transparency maker, 

then photocopy the resultant acetate. The improvement in quality 
can be quite dramatic. 

Whether you undertake the creation of an Escher-like drawing 

or turn to Escher's own art to further analyze his tessellations, the 

fundamental procedures that we have presented in this chapter give 

you all the necessary tools for these exciting investigations. We hope 

we have inspired you to explore further. 

/ 

236 INTRODUCTION TO TESSELLATIONS 



DOT PAPER 
& 

SKETCHING 
GRIDS 



/ 

■ 



• ••••• t 

♦ 

• • • • • • • 

♦ 

Copyright © by Dale Seymour Publications • INTRODUCTION TO TESSELLATIONS 239 



INTRODUCTION TO TESSELLATIONS • Copyright © by Dale Seymour Publications 



• • • 

• • 

• • • • 

• • 

• • • • 

• • 

Copyright © by Dale Seymour Publications • INTRODUCTION TO TESSELLATIONS 241 





I;;::::::::::::: j j 

: i ::::: j ::::::: : 
j • ; : 

i • j j i :::::: i : 
• • 

; ; 

• i :: : j: i ::::::: : 
| j 

: : 

• • ; • 

I;:;;;;;;;;;;;;; 

: • • • 

M M M M M M M M i ; 1 ; 

!!! 1 ;;;;;;;;;;; ; 
• * 

; \ 

i i i 
• • 

; ; 

:• ill j ::::::::: : 
| • 1 | 

:::::::::::::::: : ; • • 

• • 

j j ; i j ' i ; j j j j j j i j j 
j j 

! M 1 ! M II j II II M 
:::::::::::::::: : | : • 

i i : : : • ; ; 

! i ! r ::::::::::: : 1 ; 

:::::::::::::::: ; ; 

:::::::::::::::: • • 
i ; 

! I i i j 
; ; ; • 

:::::::::::::::: i | 
; ; 

::::::::::::::: i * * i \ 

; • 
• : 

:::::::::::::::: 1 ; 
; ; 

* * 
; J 

j j • i • ; 

*
.

 

i ; 
: \ 

:::::::::::::::: 
I I \ j 

Copyright © by Dale Seymour Publications INTRODUCTION TO TESSELLATIONS 243 



INTRODUCTION TO TESSELLATIONS • Copyright © by Dale Seymour Publications 



Appendix 

Algebraic Analysis of Regular Polygons Around a Point 

In chapter 3 we noted that there are 17 possible combinations of 

regular polygons around a vertex, and with these there are a total of 

21 different arrangements. This section gives an algebraic analysis of 
these results. 

Since the smallest possible angle in any regular polygon is 60° (in 

a triangle), we cannot have more than six polygons meeting at any 

vertex. Also, we cannot have fewer than three polygons at any 

vertex. Therefore we are interested in investigating the cases where 

3, 4, 5, and 6 angles meet at a point. Recall that the measure of any 

angle of a regular polygon with n sides and n angles is generalized by 
the expression 

(n - 2) 180° 
n 

The sum of the angles around any vertex is 360°. Thus, if we 
consider three polygons with nv n2, and n3 sides, we have 

This expression can be simplified to 

_1_ _1_ J_ _ 1 

nl + n2 + n3 ~ 2 

Similarly, we find the arrangements for four polygons gives the 
equation 

_1_ _1_ _1_ J_ 

"l ”2 + "3 + "4 = 1 

Arrangements for five polygons gives 

— — — — _L _ 1 
"l + "2 + "3 + "4 + n5 ~ 2 

And finally, for six polygons we have the equation 

j_ _r j_ _l_ j_ _i_ 
"l + "2 + H + "4 + "5 + «6 = 2 
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These four equations have 17 possible solutions, as shown in 

figure A-l. Although we found 21 arrangements (illustrated in 

chapter 3, page 52), recall that the four additional arrangements are 

simply repeated polygon combinations in a different order. (These 

are marked with * in the chart.) 

No. n2 «3 No. Mi n2 «3 n4 n5 n6 

1 3 7 42 10 6 6 6 

2 3 8 24 11* 3 3 4 12 

3 3 9 18 12* 3 3 6 6 

4 3 10 15 13* 3 4 4 6 

5 3 12 12 14 4 4 4 4 

6 4 5 20 15* 3 3 3 4 4 

7 4 6 12 16 3 3 3 3 6 

8 4 8 8 17 3 3 3 3 3 3 

9 5 5 10 

Fig. A-l. The 17 possible regular polygon combinations 

Of the 17 arrangements, three are the regular tessellations 

(triangles, squares, and hexagons.) Six of the remaining 14 cannot be 

extended to tessellate the entire plane. That leaves us with the eight 

semiregular tessellations. The 3.3.4.12 is actually the 4.6.12 with two 

threes (60°) in place of a six (120°). One of the eight semiregular 

tessellations differs from the other seven in that it exists in two 

mirror-symmetric forms, as shown in figure A-2. 

Fig. A-2. Two different forms of semiregular tessellation 3.3.3.3.6 
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Glossary 

Acute angle An angle that measures less than 90°. 

Acute triangle A triangle with three acute angles. 

Adjacent angles Angles that share a common side and a common vertex 
point. 

Angle of rotation The measure (size) of the angle of a figure's rotation 
about a point in a plane. 

Center of rotation A point about which a figure is rotated. 

Centroid of a polygon The center of gravity or balancing point of a figure. 

Closed figure A figure in a plane whose boundary starts at a point and 
comes back to that same point. 

Concave polygon A polygon containing one or more interior angles that 
measure greater than 180° (but less than 360°). 

Congruent angles Angles that have the same measure. 

Congruent polygons Polygons that have the same size and shape. 

Convex polygon A polygon containing no interior angles that measure 
greater than 180°. 

Decagon A polygon with ten sides. 

Diamond A parallelogram formed by joining two equilateral triangles of 
the same size along an edge. 

Dihex A shape formed by combining two regular hexagons of the same 
size along an edge. 

Dodecagon A polygon with twelve sides. 

Dual tessellation Two tessellations, each formed by connecting the 
centroids of the other. 

Endpoints Points at the ends of a line segment. 

Equiangular triangle A triangle with all three angles congruent (of equal 
measure). 

Equilateral triangle A triangle with all three sides congruent (of equal 
length). 

Exterior angle (of a polygon) An angle on the exterior of a polygon formed 
at a vertex by two adjacent sides, one of which has been extended. 

Four-fold rotational symmetry Characteristic of a figure that coincides with 
itself after a 90° (360°/4) rotation about a point. 

Glide reflection A transformation that moves a figure in a slide and also 
mirrors it. 

Glide reflection symmetry Characteristic of a figure that coincides with 
itself after an appropriate reflection and translation. 

Heptagon A polygon with seven sides. 

Hexagon A polygon with six sides. 
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Hexiamond A shape formed by combining six equilateral triangles of the 
same size along their edges. 

Inscribed polygon A polygon whose vertices all lie on a given figure. 

Interior angle (of a polygon) An angle in the interior of a polygon formed 
by two adjacent sides. 

Isosceles triangle A triangle with two congruent sides. 

Kite A quadrilateral with two pairs of congruent sides of different lengths 
and one pair of equal angles. 

Lattice An arrangement of points in a given geometric pattern. 

Line of reflection A line in a plane that lies equidistant from any two 
corresponding opposite points in a figure that has reflective symmetry; 
also called mirror line. 

Line segment A connected portion of a straight line. 

Magnitude of a translation The distance a point travels in the direction of a 
given translation. 

Median of a triangle A line joining a vertex of a triangle with the midpoint 
of the opposite side. 

Midpoint of a line segment The point equidistant from the ends of the 
segment. 

Mosaic Synonym for tessellation or tiling. 

N-fold rotational symmetry Characteristic of a figure that coincides with 
itself after a 360°/n rotation about a point. 

N-gon A polygon with n sides. 

Nonagon A polygon with nine sides. 

Obtuse angle An angle that measures more than 90° but less than 180°. 

Obtuse triangle A triangle with one obtuse angle. 

Octagon A polygon with eight sides. 

Parallel lines Two or more lines in the same plane that do not intersect, 
even if extended. 

Parallelogram A quadrilateral whose opposite sides are congruent and 
parallel. 

Pentagon A polygon with five sides. 

Pentahexes Shapes formed by joining five regular hexagons of the same 
size along their edges. 

Pentiamond A shape formed by combining five equilateral triangles of the 
same size along their edges. 

Pentominoes Shapes formed by joining five squares of the same size along 
their edges. 

Perigon The angle of one complete rotation (360°). 

Perpendicular lines Lines that meet at right angles in a plane. 

Plane (surface) A two-dimensional, flat surface that is infinite. 

Polygon A simple closed shape, bounded by line segments. 

Polyhexes A classification of shapes formed by combining two or more 
regular hexagons of the same size along their edges. 
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Polyiamonds A classification of shapes formed by combining two or more 
equilateral triangles of the same size along their edges. 

Polyominoes A classification of shapes created by combining two or more 
congruent squares of the same size along their edges. 

Quadrilateral A polygon with four sides. 

Rectangle A quadrilateral that contains four right angles. 

Reflection (in a plane) A transformation that mirrors a figure in a plane. 

Reflex angle An angle that measures more than 180° but less than 360°. 

Regular polygon A polygon with all its sides congruent and all its angles 
congruent. 

Regular tessellation A plane tessellation of one type of regular polygon, 
each such polygon being the same size. 

Rhombus An equilateral quadrilateral. 

Right angle An angle that measures 90°. 

Right triangle A triangle that contains one right angle. 

Rotation (in a plane) A transformation that turns a figure about a point in 
a plane. 

Scalene triangle A triangle with sides of three different lengths. 

Semiregular tessellation A tessellation of two or more regular polygons, 
with edges of equal length, that has an identical combination of polygons 
at every vertex point. 

Six-fold rotational symmetry Characteristic of a figure that coincides with 
itself after a 60° (360°/6) rotation about a point. 

Star polygon A star-shaped polygon containing two sets of congruent 
interior angles. 

Straight angle An angle that measures 180°. 

Symmetry Characteristic of a figure that can be made to coincide with itself 
by a translation, rotation, reflection, or glide reflection. 

Tangent circles Circles that intersect at one point only. 

Tessellation (plane) A covering of an infinite plane, without any gaps or 
overlaps, by a pattern of one or more congruent shapes. 

Tessellation (space) A filling of space, without any gaps or overlaps, by a 
pattern of one or more three-dimensional shapes. 

Tetrahexes Shapes formed by combining four regular hexagons of the same 
size along their edges. 

Tetriamond A shape formed by combining four equilateral triangles of the 
same size along their edges. 

Three-fold rotational symmetry Characteristic of a figure that coincides 
with itself after a 120° (360°/3) rotation about a point. 

Tiling Synonym for tessellation or mosaic. 

Transformation In this book, a movement of a figure to a new location, 
leaving the figure unchanged in size and shape. 

Translation A transformation involving a slide of a rigid figure without 
rotation. 
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Translational symmetry Characteristic of a figure that coincides with itself 
after an appropriate translation (slide). 

Trapezoid A quadrilateral with exactly two parallel sides. 

Triamond A shape formed by joining three equilateral triangles of the 
same size along their edges. 

Trihexes Shapes formed by combining three regular hexagons of the same 
size along their edges. 

Two-fold rotational symmetry Characteristic of a figure that coincides with 
itself after a 180° (360°/2) rotation about a point. 

Undecagon A polygon with eleven sides. 

Uniform tilings The three regular and eight semiregular tessellations. 

Vertex (of a polygon) The point of intersection of any two adjacent sides of 
the polygon. 

Vertex (of an angle) The point of intersection of the two rays that form the 
angle. 

Vertex point (of a tessellation) Any point in the tessellation where 
tessellation shapes share a common vertex. 

Vertices Plural of vertex. 
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