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Preface

This translation has been made from the Russian third edition of Kaplan’s

The Physics of Stars, which was essentially rewritten. Some of the general

questions in the first chapters have been given in less detail which allowed us

to reduce the volume of the book. On the other hand, we have introduced a

new chapter treating neutron stars and ‘black holes’ and the generation and

formation of stars has been completed. We have taken into account the latest

achievements in astrophysics.

From the foreword to the first edition

Astronomy, certainly the oldest science, is today undergoing a real

revolution. Everybody knows that the achievements in space have opened

new aspects to man, allowing us, for the first time in history, to realize

interplanetary experiments. Radioastronomy has yielded powerful new
methods for the study of the Sun, the galaxies, and the interstellar medium.

In addition there have been notable achievements in optical astronomy.

However, the most important fact is that astronomers can now use for the

study of stellar objects the voluminous experimental and theoretical material

gathered from modern physics, especially from atomic and nuclear physics.

We can now understand and study problems which have been considered

unsolvable for centuries: to know the temperature in the interior and on the

surface of stars, to determine the chemical composition of celestial bodies, to

find the source of stellar energy, to study the stellar evolution, etc., etc. The

key to all these problems is in physics.

In this book you will learn how to study the structure of stars with the help

of school physics and how to understand the processes taking place in stellar

interiors—to study stellar evolution. You will also learn how to calculate the

characteristics parameters of stars, for example their temperatures, and, if

their masses and radii are given, to find the oscillation periods of variable

stars with their mean density, to calculate the molecular weight of the stellar

matter, to find the magnitude of stellar energy sources, etc. The results will

not have the precision needed for modern science but will be sufficient to give

a good understanding of stars.

You will find here neither a description of the beauties of the constellations

nor a comparison of stellar dimensions with Earthly objects. To us, stars,

although beautiful, are objects of physical study. Different subjects will be
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studied in the same way as in laboratories: electric fluxes, magnetic fields, and

other physical phenomena will be studied with a pen and a piece of paper.

It should be noted that formulae are given here. They may be few but they

play an important part, forming the basis of the text. Using these formulae we
will learn how to understand and estimate the conditions in stellar interiors.

Some of them have already been met in school physics; others which may be

new are thoroughly explained.

Although this book is called The Physics of Stars we do not deal with stellar

physics in general. We have chosen one chapter of this science which is quite

large. It is the theory of stellar structure and stellar evolution. Why have we
chosen these questions and stars as objects for our study of celestial bodies

with the help of physics? The reasons are diverse. The first reason is the

importance of this question: the stars represent the foundation of the

Universe (the greatest part of cosmic material is contained inside of stars) and

the understanding of stellar evolution is very important for the materialistic

vision of the World. Second, the physical theory of inner stellar structure is

relatively simple. It may seem a paradox but we know more about the inner

structure of any star, even far away, than about the inner structure of our

Earth or the surface of the Sun, which we have been studying for many
decades.

Although we can never actually reach the interior of the Sun or of the stars

we can quite easily calculate their structure and find out the physical

conditions of the stellar matter. These conditions appeared to be so simple,

although very different from those on Earth, that one of the founders of the

inner stellar structure theory, the English astrophysicist A. Eddington, said:

‘There is nothing more simple than a star.’

For this reason a knowledge of school physics is sufficient for the study of

the inner structure of stars. This would no longer be the case if we were to

treat stellar atmospheres.
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Fundamental characteristics of

stars

When approaching the physical study of a body we must first of all characterize

it, i.e. determine its mass, form, dimension, aggregate state, chemical

composition, etc. Likewise, when approaching the physical study of stars we
must first of all determine the basic values characterizing stars, in other words,

the parameters of stars.

Many parameters exist to describe the different characteristics of stars, but

for the theory of the inner structure of stars and for the study of stellar

evolution only a few fundamental parameters are important: the mass, radius,

luminosity, spectral class, chemical composition. These parameters are

determined by observation. For some of them this is easy to do, but for other

more complicated and difficult methods are needed. Finally, it is apparent that

it is possible to determine an important number of fundamental parameters for

only a comparatively few stars (and all of them for the Sun only). This certainly

is a serious difficulty for the theory, but the known parameters are sufficient to

make a great number of important deductions.

The aggregate composition of stars and their form do not require

elucidation. Stars are big gas spheres (sometimes they have the form of an

ellipsoid). Probably the most important parameter of stars is their mass, but

first we shall look at the other paremeters.

Primarily, what do we observe when looking at stars? It is their brightness,

measured in so-called stellar magnitudes. One of the fundamental

characteristics of stars is the capability of emitting energy—to shine. Therefore

the first stellar parameter we shall introduce is ‘luminosity’. The luminosity of a

star, designated by the letter L and measured in ergs per second, is the quantity

of light emitted by the total surface of the star in one second.

The luminosity of the Sun can easily be determined. We know that each

square centimetre of the Earth’s surface receives from the Sun, in the form of

light, about two calories every minute. This quantity, called the solar constant,

has been determined many times with the help of special instruments called

1
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actinometers. As the Sun emits energy uniformly in all directions, we can

multiply the two calories by the area of the surface of a big sphere with its centre

at the Sun and a radius equal to the distance between the Earth and the Sun.

Thus we obtain the amount of radiation yielded by the Sun in the form of light

in one minute. Converting the calories into ergs and the minutes into seconds

we find the brightness of the Sun in ergs per second. We let the reader perform

his own calculations and give here only the final result: the luminosity of the

Sun Lois equal to 3.8 x 10^^ erg/s.

In order to determine the luminosities of other stars we must compare the

light they give on Earth with the light coming from the Sun. It is true that the

comparison of these two quantities is in a sense a comparison of day and night.

However, this difference is due only to the fact that the Sun is close while the

stars are far away (the closest star is 250 000 times farther away than the Sun)

and we know that the emitted radiation is inversely proportional to the square

of the distance. We must therefore take into account the fact that the stars are

at different distances from the Earth. Thus, in order to compare the different

luminosities of stars we must mentally move all the stars, including the Sun, to

the same distance from the Earth, equal to 3.08 x 10^"^ km or 10 pc

(parsec)
.
(A parsec is the distance at which the radius of the Earth’s orbit is seen

at an angle of one second of angle. Consequently, at a distance of 10 pc the

semi-major axis of the Earth’s orbit is seen at an angle of under 0.1". At this

distance the Sun would appear to us as a very faint star not easily seen in the

sky.) Once the light from the stars and the Sun is determined by observation,

and knowing that the radiation varies inversely with the square of the distance,

we can calculate what would be the light from the Sun and the stars at a distance

of 10 pc. Since the ratio of the light from the sources situated at the same

distance equals the ratio of their luminous intensities, i.e. of their luminosities,

we can determine the ratio of the luminosities between a star and the Sun and

consequently the luminosity of the star in ergs per second.

We shall now consider other stellar parameters. By carefully observing stars

we can easily see that they have different colours. The colour of the Sun is

yellowish while that of the brightest star in our sky—Sirius—is white. The

majority of stars have a more reddish colour than the Sun. One would imagine

that the difference in the colour of the stars is explained by their different

surface temperatures.

It is well known that if we heat, for example, iron, as the temperature

increases it becomes first dark red, then yellow, and finally white and

incandescent. An expert blacksmith is easily able to determine the temperature

by the colour of the heated metal. This is also true of stars: the difference in

colour of stars is due to the difference in temperature and the astronomer must

know how to determine the temperature by the colour of the star. The

relationship betwen the colour and the temperature of a heated body is known
’i

in physics under the name of Wien’s displacement law: = 0.29/7. T is the

temperature of the heated body onThe absolute temperature scale and is the

wavelength (in centimetres) of the light emitted by this body at its maximum
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intensity. For example, this formula gives at a temperature T = 4000 K a

maximum of radiation of = 7.2 x 10“^ cm, i.e. the wavelength of the

colour red. Consequently, the temperature at the surface of a red star is about

3000-4000 K. The temperature of yellow stars is 5000-6000 K. (In particular,

the temperature of the solar surface is 5760 K). The hotter stars (T = 10 000 K
and more) are of a whitish colour with a bluish shadow. For these hot stars the

maximum of radiation is in the ultraviolet region of the spectrum

(Xjn < 3 X 10“^ cm) which is not perceptible to the eye. Therefore we only

observe the less intensive radiation of the stellar surface with wavelengths in

the visible region of the spectrum (blue, yellow, red). The sum of this radiation

gives the whitish colour of the stellar surface.

Astronomers often determine the temperature of a stellar surface from its

colour, but if it is possible to obtain the stellar spectrum the temperature can be

determined with greater precision. We remind the reader that from laboratory

observations of emission or absorption spectra and from compiled lists it is

possible to determine from the position of the spectral lines the presence of any

chemical element in the given matter and from the intensity of the line the

number of atoms of these elements.

We shall first give some of the results obtained from the study of the chemical

composition of stars.

It became apparent that the upper atmospheric layers of the great majority

of stars have approximately the same chemical composition (this does not

mean that in the interior of the stars the chemical composition is the same), but

there are also anomalies. The most common elements observed in stellar

atmospheres are helium and hydrogen. For example, in the atmosphere of the

Sun for each atom of oxygen there are nearly two thousand hydrogen atoms

and about two hundred helium atoms. There is about three times less nitrogen

than oxygen and five times less carbon (when considering the number of

atoms). There is a million times less lithium and beryllium than oxygen. The
amount of neon is approximately the same as that of oxygen and that of

magnesium and argon is about ten times smaller. Even smaller are the amounts

of iron (about thirty times less), silicon (about fifty times less), and chlorine

(about fifteen times less). The abundance of other elements is very low—

a

hundred, thousand, and million times less than oxygen. An entirely defined

law exists, although with many exceptions: the heavier the chemical element

the lesser its amount. This law is also observed on Earth and in many respects

the chemical composition of stars and that of the Earth is similar. However,

there are also very distinct differences: on Earth we have much oxygen and

silicon and little hydrogen while stars have large amounts of hydrogen and

helium; also on Earth there is very little of the inert gases which exist in greater

quantities in the stars. These facts are very important for the theory of stellar

evolution.

We must also note that for a series of stars, or even groups of stars, there exist

great anomalies in chemical composition. For example, there exist so-called

‘metallic stars’ in which there are more metals than in ordinary stars, there are
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stars with a great abundance of rare-earth elements, there are carbon stars with

a high abundance of carbon, and there are stars containing an element,

technetium, which is generally unstable and not found on Earth or on the Sun

in a natural state. In the case of the so-called ‘subdwarfs’ there is an even

greater relative amount of hydrogen and helium. These differences in chemical

composition are very important for the study of stellar evolution and indicate,

to a certain extent, the accuracy of our assumptions on the structure of the star.

We shall give one example here. The light nuclei of lithium, beryllium, and

boron are involved, relatively easily, in thermonuclear reactions, in the process

of which these nuclei disappear (in the end they are converted into helium) and

are not renewed again, which explains their small abundance in stars. All these

elements could exist in the original matter from which the stars were formed.

Therefore one could expect the light elements to be burned in the stellar

interiors while being maintained in the outer layers. This is very

important—the stellar matter does not intermix. In cold stars the stellar matter

does intermix, which we shall find out when studying the structure of these

stars. Therefore there is almost no lithium, beryllium, or boron. In hot stars

there may be a greater amount of lithium. Unfortunately the solution of this

‘lithium problem’ is very difficult, since it is not easy to determine the

abundance of rare elements in stellar atmospheres.

Apparently, in the case of 75 per cent, of stars of the spectral classes F5-G1
there is more than five times the amount of lithium in the Sun, whereas the

number of stars of the classes G2-G8 with this abundance of lithium is only 25

per cent. Probably the mixing is more important here than in the case of hotter

stars, but smaller than in the case of cool stars.

Thus, the chemical composition is also a parameter of the star. As we shall

see later, in most cases it is not important to know the detailed values of the

relative abundance of all elements. For the construction of the theory of stellar

evolution one must know the amount of hydrogen, helium, and of heavy

elements taken all together. The relative content of hydrogen is denoted by the

letter A, that of helium by Y, and that of heavy elements (chiefly carbon,

nitrogen, oxygen) by Z. It is evident that X + Y Y Z = 1.

Fet us consider now how to determine the temperature of a stellar surface by

spectral analysis. We shall illustrate this with the following example. We
already know that hydrogen is the most abundant element in stars. Therefore

we would expect that the hydrogen lines would be the most intense lines in

stellar spectra. However, in fact this is not the case. The spectral lines of

hydrogen are indeed very intense in stars with a surface temperature of about

10 000 K, but in red stars (with a surface temperature of 3000-4000 K) or in

very hot blue stars with a surface temperature above 15 000-20 000 K the

hydrogen lines are almost invisible. This phenomenon can be easily explained.

It is well known that atoms are composed of nuclei and electrons moving

around the nuclei in defined orbits and that when a quantum of light or photon

is absorbed the electrons jump frorh a lower orbit to an upper one. In order to

effect such a transition from one orbit to another the photon must have a
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specific energy. It is easy to understand that in the atmospheres of cool stars,

with low surface temperatures, the energy of the particles and the photons is

small and is not sufficient to compel the electrons in hydrogen atoms to jump
from one orbit to another. Therefore, in the atmospheres of these stars the

majority of hydrogen atoms neither absorbs nor emits photons. The hydrogen

lines in the spectra of these stars are weak. On the other hand, on the surface of

very hot stars the energy of the particles and photons is so great that they tear

off the electrons in hydrogen atoms, or as we say they ionize them. Certainly

the nuclei of hydrogen atoms, having lost electrons, cannot absorb or emit

photons. It is true that sometimes they capture free electrons—we call this

process ‘recombination’—and are then capable of emitting and absorbing light.

This rare phenomenon, and the collision with the ‘energetic’ photon or particle

which follows, again tears off the electrons and ionizes the atoms.

Consequently, in the spectra of hot stars the hydrogen lines are also weak.

Only at a stellar surface temperature of about 8000-10 000 K is the number
of non-ionized hydrogen atoms and the energy of the photons sufficient to

allow frequent electron transitions in these atoms and, therefore, to form

intensive hydrogen lines in the spectra. Indeed, the same arguments are valid

for atoms of other chemical elements. Since each element has its own particular

spectral lines, the presence in the spectrum of such spectral lines reflects not

only its chemical composition but also the surface temperature. Moreover,

since the chemical composition of stars is approximately the same (with rare

exceptions) the difference in the stellar spectra is, in the first instance, exactly

determined by the different temperatures on their surfaces.

Long ago, when this property was not yet known, astronomers classified

stellar spectra by denoting the different types of spectra with Latin letters and

by setting them in a defined, so-called spectral sequence. We now know that

the order of the stellar spectra in this sequence is determined by the

temperature of their surface.

Initially the spectral sequence was determined according to the order of the

Latin alphabet. However, with the discovery of the dependence of this

sequence on the temperature, this order has had to be changed and now
students have contrived mnemonic laws for memorizing the spectral sequence.

The best way is probably the English sentence: Oh Be A Fine Girl Kiss Me
Right Now. Some of the letters in the initial sequence disappeared when it

turned out that the corresponding spectra were not related to stars but either to

nebulae or, if they referred to stars, to already known spectral classes notable

only for anomalies in the spectrum. The final form of the spectral sequence is:

R—

N

O—B—A— F—G—K—

M

S

blue white yellow red

In the spectra of class A stars (initially this was the beginning of the sequence)

the hydrogen lines are the most intensive. In classes F, G, K, and M the
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hydrogen lines become successively weaker. In classes B and O the hydrogen

lines also become weaker but, as we have seen above, this is for another

reason. Therefore, we have changed the initial order. In the stellar spectra of

classes R, N, and S there are almost no hydrogen lines. There are very few

stars in classes R, N, and S and apparently they have a slightly different

chemical composition—for this reason they branch off from the common
spectral sequence. In stars of classes R and N there is probably more carbon

(they are often called carbon stars). In the stellar spectra of class S one

observes zirkonium oxide lines, whereas in the spectra of most prevailing

stars of classes K and M the lines of titane oxide dominate. One must not

think that titanium is to be found in these stars in large amounts. The fact is

simply that at this temperature the titanium oxide is more easily found in the

lines of the visible part of the spectrum than other elements or chemical

combinations. One must also pay attention to the fact that at low

temperatures (spectral classes K, M, R, etc.) there are still chemically

combined molecules, while on the surface of hotter stars (spectral classes O to

G) all molecules are dissociated into atoms. According to the presence or

absence of molecules or lines in' the spectra, one can also evaluate the

temperatures of stellar surfaces.

We must note that the spectral classification described above (distribution

of stars according to the spectra within ten classes) has proved to be too

rough. For this reason astronomers have divided each interval of this

sequence into ten parts. For example, there are stars with spectral classes BO,

Bl, B2, ..., etc., up to B9. Then follow AO, Al, ..., A9, FO, ..., etc. Stars with

a large number have a small surface temperature. Moreover, a more
thorough study of the spectra has revealed more subtle differences. The
stellar spectra depend not only on temperature and chemical composition but

also on the dimension of the star, more precisely, on the density of the gas in

its atmosphere (stars of smaller dimension have denser atmospheres). For this

reason, to designate the spectral class of the stars is also, if necessary, an

index d denoting the spectrum of a relatively small star (from the English

word ‘dwarf), or g (giant) denoting the spectrum of big stars, or c denoting

the spectra of very big stars called supergiants; for example dM3, gF5, cB8,

etc.

We have now discussed two parameters of the stars—the luminosity and

the spectrum (or temperature). Right away there is a question: can a star of a

given spectral class have an arbitrary luminosity (i.e. emit an arbitrary

amount of energy) and, inversely, can a star with a given luminosity have an

arbitrary surface temperature? This question is very important for the

comprehension of stellar evolution.

In order to answer this question, we shall construct a so-called

spectrum-luminosity diagram (such diagrams were composed for the first

time by the Dutch astronomer Herzsprung and the American astrophysicist

Russel in the years 1905-1913 and therefore are often called the

Herzsprung-Russel diagrams). In order not to deal at once with a great
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Figure 1 Spectral-luminosity diagram for stars situated within 5 pc from the Sun

number of stars, we shall choose the stars closest to us (situated not farther than

5 pc) and shall mark them by points on a graph on which the ordinate indicates

the logarithms of luminosity and the abscissa the spectral classes.

As a result we obtain the diagram shown in Figure 1, from which it is seen at

once that the luminosity of the star and its spectral class are related by a

determined, though not unique, dependence. The majority of stars is situated

along a line going from the hot and brilliant stars to the cold and faint stars. This

is the well-known main sequence, to which the greater majority of stars

including our Sun (spectral class G2) belongs. Note that there are many more

cold and faint stars than hot and brilliant ones, but because the latter stand out

better in the sky they have been given genuine names.

In the lower left-hand part of the diagram the faint but hot stars are situated,

which, according to now understandable reasons, are called white dwarfs (in

contrast, the faint stars of the main sequence are called red dwarfs). The white

dwarfs represent a large group of stars. They are distinctly different from other

stars by their structure and we shall study them separately.

We can see that the luminosity of the star and its spectral class are related. One of

the first tasks of the theory is to explain this dependence, to find the basic

physical phenomena. How this has been done by modern astrophysics will be

explained later. At this point we shall note that it was only after construction of
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the diagram that a sense of evolution was attached to it. It had been assumed

that the stars evolved along the main sequence from the hot and brilliant stars

towards the cold and faint ones. It then turned out that the stellar evolution had

a more complex character than the representation of stars showing ‘early’ stars

in the upper left-hand part of the diagram and ‘late’ stars at the other end of the

main sequence.

The spectral-luminosity diagram shown in Figure 1 does not appear to be

entirely ‘representative’. In its construction we limited ourselves to the close

stars only. In particular, very bright but far away stars are not represented. One
can certainly construct such a diagram for all the stars for which the spectrum

(or the colour and the luminosity) can be determined. This is the way it has

been done before. Such diagrams are representative in the sense that one can

see in them other groups of stars that do not occur in the diagram of Figure 1

(red giants, supergiants, subgiants and subdwarfs, etc). However they are less

representative in another respect for stars of different ages and different origins

are mixed ‘into one lot’. We could construct spectrum-luminosity diagrams for

separate stellar systems with stars of the same age. In spite of the fact that on

such diagrams there are less stars, they are more ‘representative’. We shall

consider such diagrams below.

A fundamental parameter of a star—its radius—can easily be determined

from the given luminosity and surface temperature if the Stefan-Bolzmann

radiation law is used. According to this law each square centimetre of the

surface of a body heated to TK emits, in all directions, a light energy (visible,

ultraviolet, infrared rays) of oT^ ergs per second. Here a is the

Stefan-Bolzmann constant and its numerical value is 5.7 x 10“^

erg/(cm^ s deg"^). Note that with the increase of temperature the intensity of the

radiation of the body increases proportionally to the fourth degree of

temperature. You can verify this on your own if you remember that iron

radiates strongly when heated to a temperature of 600 K (twice as much as

room temperature in the Kelvin scale).

If we designate the radius of a star by R (in centimetres) then its total surface

equals square centimetres. Each square centimetre emits oT^ ergs per

second, where stands for the surface temperature of the star. Subsequently,

the total emission of the star in one second, i.e. the luminosity, equals

(1) L = AnR^oTi

With this formula one can easily find the radius of the star if its luminosity (or

the absolute bolometric stellar magnitude) and its surface temperature (or

spectral class or colour index) are known. We have already seen how these

parameters are determined. The radius of the Sun can be measured directly. It

is seen from Earth with an angle of 16' = 0.0046 rad. Multiplying this value by

the distance between the Earth and the Sun (i.e. by 150 million km) we obtain

for the radius of the Sun R Q — Cl ^ 10^^^ cm. The reader can easily verify

that the above formula yields the same value for the radius of the Sun

{L^ = 3.8 X 10^'^ erg/s, = 5760 K).
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We cannot measure directly the radii of other stars, since even with bigger

telescopes we are unable to ‘see’ the disk of the star. It is true that for relatively

close stars of large dimension it has been possible with the help of special

interferometers (instruments with action based on interferential phenomena)
to determine their angular diameters, but the precision of such measures is very

small, usually less than in calculations with formula (1).

There is another possibility of determining stellar radii. We must suppose

that a great number of stars, probably more than half, are not ‘single’. By this

we do not mean planetary systems such as that of our Sun, but so-called

multiple stellar systems (composed of two, three, or more stars). For example,

in the simple case of a binary stellar system both stars (they are called

components) move under the action of a universal gravitation force in elliptic

or circular orbits around a general centre of gravity—exactly as the planets

rotate around the Sun. If the two components of the pair are always a great

enough distance away from one another for us to see them separately, then this

system is called visually binary. However, the stars are often too close to one

another for us to see them separately, even with very powerful telescopes. We
can determine that there are two stars and not one, either by the periodic

changes in their spectra (spectrally binary) or by the eclipses of one star by the

other (eclipsed variables). This last case will now be discussed.

Let us admit that the line of sight connecting the observer and the centre of

the binary system is situated in the plane of the components’ orbits of the pair.

Then, during the rotation of the stars each one of them will from time to time

eclipse the other one, in the same way as the Moon covers the Sun at the time of

a solar eclipse. If we know the duration of the eclipse, the distance between the

components of the pair, and the velocities of their motion, it is simple to

calculate the dimension of the stars. It will be left to the reader to consider this

problem on his or her own.

The study of eclipsed variables has revealed many interesting phenomena.

For example, if both stars are situated so close to each other that their surfaces

almost touch (as we say, they form a close pair), then the stars have an

ellipsoidal form and resemble a melon, the elongated ends being turned one to

the other. In the case of very close pairs the major axes of the stars are about 25

per cent, longer than the minor axes. This elongation is due to the attraction of

the surface layers of one star by the other star. It is interesting to notice that the

sides of the ellipsoidal stars facing one another are cooler than the rest of the

surfaces.

We have probably spent more time than is necessary on the description of

eclipsed stars, especially as the determination of the radii with formula (1) is

still more accurate. However, in so doing we have come to know the very

interesting phenomenon of ellipsoidal stars and have also studied binary

systems (including the eclipsed system), practically the only way of

determinating the stellar mass—the most important parameter which defines

the structure and the evolution of stars.

For the determination of the masses of celestial bodies Kepler’s third law is



10

used: the squares of the rotation periods of planets are related as the cubes of

their mean distances from the Sun. Newton completed this law by

determining the coefficient of proportionality. In its complete form Kepler’s

law is

P^{Mq + m) 4jt^

Here M© is the mass of the Sun in grams, m is the mass of the planet in

grams, / is Newton’s gravitation constant (in the CGS system f =

1/15 000000 cm^/(s g)), a is the mean distance of the planet from the Sun in

centimetres, and P is its rotation period in seconds. With this formula the

mass of the Sun has been found. You can verify on your own the calculation

by introducing the parameters for the motion of the Earth {a = 150 million

km = 15 X 10^^ cm, P = 1 year = 3.1 x 10^ s). The Earth’s mass is small

compared to the Sun’s mass, so it can be neglected in formula (2). After a

simple calculation we obtain Mo = 2 x 10^^ g.

In binary stellar systems the stars move under the action of the same force

of universal gravitation and consequently their motion obeys the same

Keplerian laws, in particular the third one. We must now introduce in the

place of Mq + m in equation (2) Mi + M2—the sum of masses of both

components. We must also know the distance between the components of the

pair. Thus, knowing the distance between the components of the binary

system and their period of rotation we can determine with this formula the

total mass of the stars. With the total mass we can then estimate the mass of

each component. At present the masses of many scores of stars are already

known. Generally they are not very different from the mass of the Sun (from

0.1 to 50 Mo).

We have already examined the relationship between different stellar

parameters. The relation between the luminosity and the spectrum (or

surface temperature) is determined by the Herzsprung-Russel diagram. The

relation between the luminosity and the radius yields no new information, as

the stellar radius according to equation (1) is expressed by the luminosity and

the surface temperature.

We can obtain a new relationship from the study of the luminosity and the

mass insofar as the latter is determined in a quite independent way. We mark
on the abscissa the logarithms of the stellar masses (or, even better, the

logarithms of the ratio of stellar mass to mass of the Sun) and on the ordinate

the logarithms of the luminosities. Thus we obtain the diagram shown in

figure 2 which is called the mass-luminosity relationship. It shows only stars

of the main sequence (the cross marks the Sun, the points the stars in

spectroscopic binary systems, and the circles the stars in visual binary

systems). We see that at least for a s.tar in the main sequence the stellar

luminosity and consequently alsp its spectrum are simply determined by the

mass. This is a very important observational conclusion and the first problem
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Figure 2 Mass-luminosity relationship. The cross marks the Sun, the points the

spectroscopic binary stars, and the circles the visual binary stars

of the theory of inner stellar structure consists of finding the physical laws

which define these relations.

In order to give the reader an image of the characteristic values of the stellar

parameters we have shown them in Table 1 for a series of typical stars. There

are also giants and supergiants, which we shall study later.

The stars shown in Table 1 are typical in the sense that they represent objects

radiating their energy mainly in the visible spectral region. Such stars have

been the object of study in ‘classical’ astronomy for tens and hundreds of years.

Nevertheless, in recent times, thanks to the fantastic progress in new areas of

astronomy (radio astronomy. X-ray astronomy), new types of objects have

been discovered which, generally speaking, are also stars but of a quite

different type—namely pulsars and ‘black holes’. Certainly, in a study of the

physics of stars we cannot leave aside these objects. Pulsars and ‘black holes’

also have luminosities, masses, and radii but their properties are so unusual

that it is better to describe their parameters separately, at the same time as

discussing the physics of these objects (see Chapter 6).

Let us come back to the ‘ordinary’ stars. We have already determined a few

basic parameters: the mass M, the luminosity L, the radius R, the spectrum (or

surface temperature T^), the chemical composition (in particular the

abundance of heavy elements Z). At once the question arises: do these

parameters change with time for a given star? in fact, once formed, stars
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evolve, they consume their energy supply, which is by no means
‘inexhaustible’, and at a certain time the evolution of each star comes to an end.

Obviously, if not all at least some of the parameters should change with time.

For this reason we need one more important parameter—the age of the star.

It is possible to determine the age of stars through the study of stellar

systems. We have already seen the simple form of stellar systems—the binary

stars. The study of binaries, besides the definition of mass and radius, can also

yield other valuable information. Apparently both components of the pair

originated at the same time and therefore have the same age. Both components

can be nearly identical stars but it is often the case that one of the stars belongs

to the main sequence and the other to the white dwarfs group (as, for example,

in the case of Sirius). Consequently, one can say that binary stars of the same

age can be very different.

Besides the binary stellar system there exist more complex multiple systems

composed of several stars (three, six, or even more), as well as so-called

galactic star clusters and stellar associations, including scores and sometimes

hundreds of thousands of stars. All these stellar systems enter the structure of

the enormous stellar system—the Galaxy—with the amount of stars totalling

some 150 milliards. Another example of a huge stellar system, of the same type

as our Galaxy, is the well-known Andromeda Nebula. The galaxies, in their

turn, amalgamate into clusters of galaxies. Finally, all these galaxies and their

clusters taken all together form what we now call the supergalaxy.

It is very important to know that the Galaxy does not only represent one

homogeneous stellar system but is composed of a great number of

interpenetrating subsystems; we shall study them in detail below. Besides stars,

the stellar systems are also composed of interstellar gas and the cosmic dust.

It is evident that stars belonging to the same stellar cluster have the same age.

Probably stars which belong to the same galactic subsystem are also very close

in age.

Can we find a concrete definition for the age of a star? Apparently it is

possible. There are stellar systems which are very unstable and therefore

should rapidly disintegrate. The characteristic time of collapse of such systems

can be determined: it is of the order of the time each star needs to cross the

diameter of the system; evidently the stars belonging to such systems are not

old. The unstable systems of the type ‘trapezium’ are multiple stellar systems

where all distances between the components are comparable, and associations

are very scattered galactic clusters. In this way stars were discovered where the

age is about a few hundred thousand years (which is very little in comparison

with the age of the whole Galaxy—more then tens of milliards of years). In

general, all galactic clusters observed now are comparatively young but their

age is different. Globular star clusters are considerably older.

We now return to the colour-luminosity diagram. If we construct such a

diagram for each cluster we can be sure that there will be only stars of the same

age and the dependence of the luminosity on the spectrum will not be distorted

by evolutionary factors. Figure 3 displays in one graph several spectra (or
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Figure 3. Summary colour-luminosity diagram for nine discovered scattered galactic

clusters (thick lines) and for two globular clusters (thin lines). This diagram is very

important for the theory of stellar evolution

colour-luminosity diagrams) for a series of galactic and globular clusters

(obtained by Sandage). Here the thick lines represent the diagrams of galactic

clusters and the thin lines the diagrams of globular clusters. Next to each line

we have written either the proper name of the cluster or its number according

to the Messier (M) catalogue or the general catalogue of clusters and nebulae

(NGC). The segments of lines corresponding to globular clusters and parallel

to the main sequence come to a halt in the lower part, as the distance of the

globular cluster does not permit us to see the faint stars. In fact, they would also

continue in the lower part of the diagram.

On examination of Figure 3, a series of very important conclusions can be

drawn. First, the line of the main sequence for each galactic cluster diverges at a

certain height to the right and it appears that the colder the cluster the lower the

deviation on the diagram. The deviated main sequence breaks up almost at

once. Moreover, in all galactic clusters groups of stars appear called red giants

or supergiants (in young clusters, e.g. h, % Perseus) which are ‘torn off the

main sequence (small segments on the right-hand side of the diagram). The
diagram of the old galactic cluster M67 resembles the corresponding diagram of

a globular cluster, although its lower part coincides with the main sequence and

the branch of the giants is low^f. In globular clusters the main sequence is

replaced by subdwarfs and the branch of the red giants is very clear and does
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Table 2

Name of stellar population Type of object belonging to Content of all elements
the given population besides hydrogen and

helium, according to the

number of atoms, %

Extreme population type

Population type 1

Old population type 1

Population type II

Extreme population type

II

Stars of classes O, B. Very
young galactic clusters and
associations, cosmic dust,

neutral interstellar hyd-

rogen

Common stars of spectral clas-

ses from A to F. Galactic

clusters. Red supergiants

Stars of the main sequence and
giants of spectral classes

from G to K
White dwarfs, numerous clas-

ses of variable stars

Globular clusters, subdwarfs

4

3

2

1

0.3

not come from the branch of the subdwarfs. It should be noted that the

subdwarfs resemble stars of the main sequence, but at the same temperature

their brightness is two or three times weaker. An important property of these

stars is the very low abundance of heavy elements.

Galactic and globular clusters are part of the composition of our Galaxy.

Thus, in our big stellar system we have at least two different types of, as we say,

stellar population: a stellar population of the first type is composed of stars

characteristic of galactic clusters and a stellar population of the second type is

composed of stars characteristic of globular clusters. The majority of stars

situated on the periphery of galaxies (the distance betwen the Sun and the

centre of the Galaxy is of about 10 000 pc) belongs to the first type of

population. Consequently, the colour of the central parts of galaxies is red and

that of the peripheries blue, due to the presence of a great amount of bright and

hot stars.

However, this division into two types of populations is too simplified. At

present we distinguish five basic types of stellar population (Table 2). The

following designations are often used: population of spherical subsystems

(population II), intermediate and plane subsystems (population I). These

designations are connected with the distribution of stars in the corresponding

subsystems in space.

It is also very important that the abundance of all elements besides hydrogen

and helium (see the last column of Table 2) increases in proportion with the

decrease in the age type of the population. This conclusion was shown by a
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statistical analysis of stellar spectra belonging to different types of population.

These properties of stellar populations are also explained by the theory of

stellar evolution which will be considered later.

It should be noted that besides big stellar systems such as those of our Galaxy

or the Andromeda Nebula, which are composed of all types of stellar

population, there are many elliptic galaxies composed of only the type II

population and galaxies of an irregular form in which the type I population

prevails. It is evident that the stellar evolution is linked to the evolution of

galaxies, but this question goes beyond the scope of this book. This is, for the

time being, all we need to know for the study of the physics of stars.
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A star—a sphere of gas

Let us start our study of stellar structure by resolving the following physical

problem. Let us suppose we are given a huge sphere of gas in equilibrium with

its own gravitational field. We must first determine the gas temperature in the

central part of the sphere.

Let us consider the basis of the problem: according to Newton’s law of

universal gravitation any bodies attract each other with a force proportional to

the product of their masses and inversely proportional to the square of the

distance between their centres (the last condition is valid either for spherical

bodies or for bodies of an arbitrary form but situated at large distances from

one another)

F = f
M1M2

where F is the force of universal gravitation between two bodies of masses Mi
and M2 ,

r is the distance between them, and/is Newton’s gravitation constant

whose value is given on page 10.

Our gas sphere is composed of a great number of atoms, ions, and electrons

(it is interesting to note that the number of particles in a star such as the Sun is

expressed by unity with fifty-six zeros). All these particles attract each other

according to the law of universal gravitation. It is true that for each pair of

particles this force is very small, but the large number of particles makes the

resulting gravitational force of our gas sphere sufficiently great. Under the

influence of its gravitational force the gas sphere should contract
—

‘collapse’

towards the centre. However, in our case, according to a given condition, the

sphere is in equilibrium. Therefore, a force should exist to counteract the

gravity. This force is the gas pressure.

Indeed, if the gravitational force contracts the gas sphere, the gas pressure,

inversely, tends to increase it. It is evident that the gas sphere will be in an

equilibrium state only if the pressure of the gas in this sphere is equalized by the

gravitational force. In other words, this problem can be expressed in the

following way: the pressure of the gas close to the centre of the sphere should

17



18

Figure 4. How to determine the pressure in the centre of stars

be equal to the weight of the column with a cross-section of 1 cm^ and a height

equal to the radius of the sphere (Figure 4). We remind the reader that the

barometric pressure of the Earth’s atmosphere can be calculated in an

analogous way.

We shall now interpret this problem as a formula. It is evident that the weight

of the hatched column in Figure 4 equals the force which attracts it to the centre

of the sphere. In Newton’s formula Mj = M, the mass of the entire sphere, and

M2 is the mass of the column. If we designate the mean gas density in the

column by p, then M2 = pR, where R is the radius of the sphere (note that the

cross-section of the column is 1 cm^). The distance between the centres of the

sphere and the column is r = RI2.

Expressing the problem using this formula is not very precise. This is due to

the facts that different parts of the hatched gas column are differently attracted.

The upper parts are attracted by the whole sphere, but the lower parts, though

situated in the centre, do not in fact experience the force of gravity. In order to

explain this phenomenon we imagine ourselves to be at the Earth’s centre.

Where shall we fall? As a matter of fact the Earth will attract a body in its centre

uniformly in all directions. As a result, being at the centre of the Earth we
somehow lose our weight. In the same way, the gas in the centre of our sphere

has no weight. Consequently, we cannot consider that our column will be

equally attracted in all its parts towards the centre of the sphere. For a precise

calculation, we must first know the density distribution inside the sphere and

second use mathematical methods which go beyond the limits of a school level.

As a matter of fact, we are not interested in a precise formula; we only need to

know the order of magnitude. We must clearly explain the physical

phenomenon and for this it is sufficient to use the simplest assumption that the

selected column is uniformly attracted by the gas sphere.

Under these conditions the weight of the selected column (p) equals

(3 ) p = f
MpR

(R/2f
= 4/

pM

R
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If the sphere is in equilibrium this value should be numerically equal to the gas

pressure close to its centre. To obtain an order of magnitude for this we must

first calculate the pressure in the centre of a gas sphere with the dimension and

mass of our Sun (M = 2 x 10^^ g, R = 7 x 10^® cm, p = 1.4 g/cm^). We
obtain p = 10^^ dyn/cm^ = 10^^ atmospheres! Certainly, such a pressure

cannot be obtained in our laboratories.

We know that the gas pressure increases as the temperature and density

increase. We shall use the well-known law of gas composition or, as it is often

called, the Clapeyron law. This law is as follows: the product of the volume of

one gram-molecule of gas with its pressure divided by the absolute temperature

is a universal gas constant A ,
numerically equal to 8.3 x 10^ erg/mol grad. The

formula of Clapeyron’s law is very simple: pV = AT. \t is, however, more
convenient to present it in another form. We denote by p the molecular weight

of the stellar gas which is the same as one gram-molecule of the stellar matter.

Then the stellar gas density p = p/T and Clapeyron’s formula can be written as

follows:

(4) p = — pT.

Let us come back to our gas sphere. The tremendous pressure at its centre can

be obtained either with a large temperature or with a very high density (or with

both conditions taken together). We know that the mean density of stars is

small—about the same as the density of the matter on Earth. The density at the

stellar centre is certainly greater than the mean density, but not

much—perhaps a few times higher and at the worst a few scores of times

higher—and in any case it cannot increase the pressure up to milliards of

atmospheres.

We have touched upon this question of central stellar densities so in order to

avoid further misunderstanding we shall make two remarks: first, although the

densities of white dwarfs are great, the matter in their innermost layers is not a

normal gas and therefore what has been said above (and in particular

Clapeyron’s law) cannot be applied; second, the mean densities of giants, and

in particular of supergiants, are very small but they have a complex inner

structure and therefore the above reasoning is not valid in their case. The white

dwarfs and red giants will not enter into our considerations for the time being

and we shall come back to them later.

There is one hypothesis left. The great pressure indispensible for the

retention of the gas sphere in the equilibrium state can be assured only by very

high temperatures. In order to determine this we equate the gas pressure with

Clapeyron’s formula for the centre of the sphere to the weight of the column.

We obtain

A oM
Pc —

Pc^^c — 4/
p R

where Pc and are the density and temperature in the centre of the
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sphere. The mean of the central densities enters into this formula as well. If the

gas spheres have the same structure, but a different mass and consequently a

different radius, then both these values (pc and p) are proportional to one

another. How many times is pc bigger than p? This depends on the concrete

structure of the gas sphere and can be answered only after a detailed study. As
we do not treat the precise theory here but are only interested in the physical

aspect of the problem, it is sufficient to take, for example, pc = 4p. The
coefficient 4 proves to be correct later (with this value the temperature

calculations from formula (5) are in good agreement with more precise

calculations). Then for the central temperature of the gas sphere we have

AR
This formula determines the temperature at the centre of the star according to

its mass, radius, and molecular weight of the stellar matter. Its importance for

the theory of inner stellar structure will be proved many times. We also must

mention that even though it has been deduced quite approximately, after a few

essential simplifications, it is, in fact, precise enough. The central temperatures

calculated with this formula for stars of the main sequence differ at the most

from the effective ones by not more than 10-20 per cent, or less.

The masses and radii of stars are known, as well as the constantsA and/. The
molecular weight is left to be determined. The expression ‘molecular weight’

defines the mass of the matter composed of a fully determined number of

particles equal to the so-called Avogadro number 6 x 10^^. For example, the

molecular weight of atomic hydrogen (it is also called the atomic weight) is the

mass of 6 X 10^^ hydrogen atoms numerically equal to unity, since the mass of

one hydrogen atom is 1.67 x 10“^"^
g. The molecular weight of gas

composed of hydrogen molecules equals the mass of 6 x 10^^ hydrogen

molecules and therefore equals two, etc. The molecular weight of a mixture of

gases (e.g. air) is determined in a similar way: take a general number of

particles equal to the Avogadro number (each component of the mixture

should be taken in corresponding proportion) and then find the sum of the

masses. This is the way we proceed to determine the molecular weight of stellar

matter. The stellar matter is composed of atoms and ions of diverse elements

and therefore we should first of all determine its chemical composition.

We shall determine here the molecular weight of the stellar matter in the

interior of the stars, i.e. where the gas temperature reaches millions of degrees.

Of course, at such temperatures molecules cannot exist. Moreover, at this

temperature all atoms must be ionized. The most ‘stable’ atoms of inert gases

are ionized, i.e. they lose one or several electrons, at a few tens of thousands of

degrees. Thus, the material in stellar interiors is a mixture of electrons and the

‘residues’ of atoms (atomic nuclei with ‘interior electrons’ that have survived or

else nuclei altogether ‘bared of electrons’). First of all we have to find out how
many electrons have been torn dff the atoms, i.e. to what degree the stellar

matter has ionized.
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Let us give some numbers. At temperatures of millions of degrees the mean
energy of the particle is about 2.4 x 10“^^ erg. On the other hand, the

energy of attraction of the electron towards the proton (coupling energy) in a

hydrogen atom equals approximately 2.2 x 10“^^ erg, which means that it

is about ten times smaller. It is clear that all hydrogen atoms in the stellar

matter are split into electrons and protons at a temperature of more than a

million degrees, because each collision of a hydrogen atom with another

particle causes its disintegration. The situation is the same for helium atoms.

Although the coupling energy binding two electrons to the nucleus is much
greater than the energy of coupling in a hydrogen atom, it is still smaller than

the energy of separate particles; the great majority of helium atoms in stellar

matter at temperatures exceeding a million degrees disintegrates into electrons

(two for each atom) and alpha particles.

The energies of electrons in atoms of other elements are very different. The
fact is that in a complex atom the electrons revolve around a nucleus, not on

one orbit but on different orbits situated at different distances from the

nucleus. The inner electrons are more strongly bound to the nucleus than

electrons in hydrogen or helium atoms and inversely the outer electrons are

more weakly bound. In this case the heavier the nucleus and the more electrons

in the atom, the greater the binding energy of the inner electrons, whereas the

binding energy of the outer electrons changes very little; it depends on the

chemical properties of the elements. For this reason in the stellar matter the

outer electrons are torn off all atoms, whereas the inner electrons can remain

with the nucleus. It is evident that the heavier the atom, the greater the charge

of its nucleus and the more inner electrons it keeps. At a temperature of about a

million degrees the nuclei of oxygen, nitrogen, and carbon keep two inner

electrons and the heavier elements also keep the inner electrons at such

temperatures. However, at a temperature of about ten million degrees these

nuclei can no longer keep even the ‘most strongly bound’ electrons. At a

temperature of ten million degrees they are almost entirely ionized and the

most abundant elements, after hydrogen and helium, are oxygen, nitrogen,

and carbon.

We can therefore assume that at a temperature of about ten million degrees

the stellar matter is no longer composed of atoms, but of electrons, protons,

alpha particles, and ‘bare’ nuclei of other elements. At lower temperatures the

nuclei of all elements, besides hydrogen and helium, can still keep some inner

electrons. Let us note that if a nucleus has entirely lost its electrons it does not

always stay ‘bare’. From time to time the nucleus of an atom captures an

electron and keeps it for a while before losing it again. Protons and alpha

particles can also capture electrons but lose them very rapidly.

While calculating the molecular weight of the stellar matter we must consider

one important property of atomic weights, or the chemical elements situated at

the beginning of Mendeleev’s table. It is known that the elements of the first

three periods in Mendeleev’s table (except hydrogen) have an atomic weight

approximately twice as big as their atomic number. On the other hand, since
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the atomic number determines the charge of the nucleus and, subsequently,

also the number of electrons in the atom, we can say that for these elements

the atomic weight is about twice as big as the number of electrons in the atom.

If we consider all particles (electrons and nuclei) this relation will hardly be

changed. Thus, for example, if an oxygen atom is fully ionized, nine particles

are formed (eight electrons and one nucleus). The atomic weight of oxygen is

16; consequently, one particle represents on the average 16/9 = 1.8 of an

atomic weight unit, i.e. a value close to two. It is evident that at the complete

ionization of any element in the first three periods of Mendeleev’s table

(except hydrogen and helium) the mean atomic weight for one particle will

also approach two.

After the complete ionization of helium three particles are formed.

Dividing the atomic weight of helium (p = 4) by three, we see that on the

average for one particle there are 4/3 of an atomic weight unit. Finally, after

complete ionization of an hydrogen atom two particles are formed (one

electron and one proton) and each particle has 1/2 of an atomic weight unit.

Let us now perform a simple calculation to find the molecular weight of the

stellar matter. Remember that 6 x 10^^ particles of the stellar matter

(electrons and atomic nuclei) have a mass equal to p. In one gram-molecule of

stellar matter are [iX grams of hydrogen. Dividing this value by

1.67 X lO^^'^g (the mass of one hydrogen atom) we obtain the amount of

hydrogen atoms in one gram-molecule. Since each hydrogen atom is divided

through ionization into two particles (a proton and an electron) the general

amount of particles in one gram-molecule is 2 x lO”^"^). In the same

way, considering helium and taking into account the fact that the mass of a

helium atom is 4 x 1.67 x 10“^"^
g we get a number of particles (electrons

and helium nuclei) for one gram-m^olecule of stellar matter, by ionization of

helium, which is 3|iy/(4 x 1.67 x 10“^'^). The sum of the masses of all other

atoms under the same conditions is pZ. Since one particle has an atomic

weight approaching two, that is 2 x 1.67 x 10“^"^, the number of particles

generated by ionization of all elements, except hydrogen and helium, equals

pZ/(2 X 1.67 X 10 ^‘^). The total number of particles in one gram-molecule

equals the Avogadro number. Subsequently,

2\iX 3|iy jiZ

1.67 X 10
-24

+
4 X 1.67 X 10

-24
2 X 1.67 X 10' -24

= 6 X 10
23

Now we can find the final formula for the calculation of the molecular weight

of the stellar matter:

(6)
\i =

1

2A + Y4Y 1/2Z

For example, if in the stellar matter there were neither hydrogen nor helium

(A = y = 0, Z = 1), then p = 2. Inversely, stellar matter composed of pure

hydrogen (X = 1, Y = Z = 0) has a molecular weight of 0.5. Thus, the

molecular weight of the stellar matter should be within the limits from 0.5 to 2.
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Table 3

Star

Temperature in millions

of degrees Star

Temperature in millions

of degrees

^ Arietis 43 Procyon 11

Vega 13 ^ Bodtis 12

Sirius 15 x] Cassiopeiae 9

The percentage of ‘heavy’ elements in stars is different for stars of diverse

populations (see Table 1), but does not exceed 4 per cent (Z ^ 0.04). For this

reason, the molecular weight depends mainly on the relative contents of

hydrogen and helium. In this way we realize that in the evolution process of a

star its hydrogen is converted into helium and subsequently, as time passes, the

molecular weight of its stellar matter also changes. In a helium star (X = 0,

y=l,Z = 0)|i=1.3. Therefore, in fact, the molecular weight of the stellar

matter varies within smaller limits—from 0.5 to 1.3. In particular, for stars in

the middle part of the main sequence, which also contains our Sun (X = 0.71,

Y = 0.21, Z = 0.02), p = 0.6.

We have now learnt how to calculate the molecular weight of the stellar

matter and have all the data necessary to calculate the central temperature of

the main sequence stars. For this it is convenient to transform formula (5) by

expressing M and R as ratios to magnitudes of the Sun, i.e. we express M in

units of 2 X 10^^ (MIMq) and R in units of 7 x 10^^ (R/Rq). We also

assume that the hydrogen and helium abundance in stars of the main sequence

is approximately the same as in the Sun and we take p = 0.6. We then obtain a

very simple formula to calculate the central temperature of stars:

million degrees

According to this formula the temperature in the centre of the Sun equals 14

million degrees (a more precise calculation yields almost the same result). The
central temperatures of other stars of the main sequence given in Table 1 are

shown in Table 3. As expected, in brilliant and hot stars the central

temperature is very high and reaches a few tens of millions of degrees; in cooler

stars it reaches about ten million degrees.

The difficult problem of the definition of the temperature in the centre of

stars has been resolved quite simply on the basis of two well-known physical

laws: the law of universal gravitation and the law of the state of a gas. It is true

that we made many simplifications, but a precise calculation is also based on

the same physical laws, using only more perfect mathematical techniques, since

astronomers need to know the central temperatures with greater precision.

The next stage in the study of the physics of stars will be limited to the study

of the processes which led to the presence of very high temperatures in the

stellar interiors and comparatively low temperatures on their surfaces.
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Energy transfer in stars

We already know that a star in an equilibrium state must have an inner

temperature reaching millions of degrees. It is evident that there must be

sources of energy heating the stellar matter. In fact, it is well known that due to

a difference of temperature heat is transmitted from hotter bodies to cooler

ones. The same happens in stars, where the heat is transmitted from the very

hot central parts of the star to the comparatively cool surface from where it

radiates into space. The sources of stellar energy balancing these losses will be

examined in the following chapter but here we shall study the process of heat

transfer in stars.

A question arises: is it important for the theory of stellar structure to study in

detail the energy radiating from the interior of stars towards the exterior? It

seems to be very important. First, this energy flux determines the structure of

almost all parts of the star; second, the luminosity of the star—one of its

fundamental parameters—is simply energy flux ‘leaving’ the interior of the star

towards its surface. For this reason it is very important for us to know the

physical processes of energy transfer in the star and to know how to calculate

this energy flux in order to be able to compare the theory with observations.

In physics one studies diverse possibilities of energy transfer; we are

acquainted with these phenomena in everyday life although we do not always

notice them. For example, the heat from a hot body can be transmitted to a

cooler one by means of thermal conductivity. If you strongly heat one end of an

iron bar, the other end will be heated too—the heat from the heated end

diffuses along the bar due to the fact that there are free electrons in the metal

which transport the thermal energy. This kind of energy transfer, called

thermal conductivity, has no significance in ordinary stars (but is important for

white dwarfs).

Another means of heat transmission is convection. The air adjacent to the

heated body is also heated and rises carrying away the heat. This warm air is

replaced by cool air which is heated in'its turn and thus also carries away the

heat. The heated air coming intdAontact with cool bodies transmits the heat

—

in this way the energy transfer is realized by convection. The convective heat

24
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transfer in stellar interiors is possible and is in fact frequently observed. We
shall study convection later.

The most important means of energy transfer in stellar interiors is radiation.

This type of energy transfer is often observed in everyday life. It is well known
that on approaching a heated body (a stove, a heated piece of iron, etc.) we
immediately feel the heat. This heat comes only from the heated object so

evidently this heated object emits rays which transport energy (and from which

we can protect ourselves with a screen). Usually these rays are infrared and

invisible, but if we heat a metal to red heat then the thermal radiation becomes

visible—it is a light emitted by the heated body.

We have already met this phenomenon in stars while studying the

fundamental parameters. In fact, the radiation of energy from a star (e.g. the

Sun) and the absorption of this energy by a cool body (e.g. the Earth) are also

processes of heat transfer by radiation. We have learnt that the colour and the

amount of radiated energy are determined in the first place by the temperature

of the heated body. We do not need to know the colour of radiation in stellar

interiors, as we do not see it, and the amount of radiated energy, as we have

seen, is proportional to the forth degree of the temperature (the

Stefan-Boltzmann radiation law). For this reason the ability to radiate

increases very rapidly in proportion to the screening of the stellar interior. For

example, each cubic centimetre of the stellar matter in the centre of the Sun

radiates about 10^^ erg in one second. If the Sun were transparent in all

directions, this energy would burst out and reduce everything on Earth to

ashes. However, as the stellar matter is not transparent, the luminous energy

must ‘filter’ through the mass of the star. We shall illustrate this process with

examples.

Imagine that we have a body heated to a quite high temperature and that

there are two or three iron screens, one behind the other, between the body

and ourselves. Will we feel the heat coming from the body? Yes, although very

faintly. In fact, the heat rays falling on the first screen are absorbed and heat it.

This screen then starts to emit heat. Part of it is emitted to the heated body and

part of it to the second screen, which, in its turn, absorbs it and consequently is

heated. The second screen starts to emit heat, part of which falls on the third

screen. Thus, although we protected ourselves by opaque screens, part of the

heat from the hot body will reach us. In the same way, the thermal energy in

stars, emitted by the central parts, is absorbed by the upper layers and is then

emitted again, thus ‘filtering’ towards the surface of the star.

Let us try to represent this process by a formula with certain reserves; its

rigorous conclusion needs the use of higher mathematics and therefore we will

not give it here. An approximate estimation of this process is very intelligible.

Let us go back to Figure 4 and study the flux of thermal energy through the

shaded columns. The upper end emits energy, as it is easy to imagine, equal to

the luminosity of the star, which is distributed over its surface, that is L/(4jt/?^).

This is what reaches the surface from the energy source, which we can assume

to be located in the centre, through the entire column of the stellar matter
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which acts like the ‘screens’ of the preceding example. If we extracted this

column from the star, then its base would emit an energy which could be

calculated using the Stefan-Boltzmann law with the central temperature of the

star. Thus, at the base of the column, energy is emitted equal to

Remember that o is the Stefan-Boltzmann constant (see Page 8). Moreover,

we used here the formula for the central temperature of the star, obtained in

the preceding chapter. If we invert our column (we ‘introduce the screens’) we
notice that the emission will weaken. In our example with the screens covering

the heated body, the larger the screen, i.e. the greater the total opacity, the

greater is the decrease in the thermal flux. The same thing happens here; the

greater the opacity of the column, the stronger the decrease of the thermal

energy flux.

Now we have an important problem: how do we explain what the opacity of

the stellar matter is? Let us first consider transparency in general. Any body is

called transparent if a ray of light passes through it in a straight line without

difficulty. In opaque matter the rays of light can no longer pass through in a

straight line; they are either completely absorbed and their light energy

converted into heat or they are diffused in different directions—part of it

returns, part is deviated through different angles, and only a small part passes

through the body. It is evident that we can see nothing or almost nothing

through such a body and therefore call it opaque. The opacity of a body

depends on its thickness (any matter if reduced to a thin film will become
transparent) and on the density; in general, the denser the matter, the less

transparent (the hard, dense matters are usually opaque, fluids are often

transparent, and gases are almost always transparent), although on Earth there

are many exceptions to this principle. Finally the transparency depends on

chemical and physical properties of the matter.

The stellar material is a gas and consequently should be transparent.

However, as a matter of fact, in stellar interiors this matter is very densely

compressed and therefore becomes opaque. The transparency of the stellar

matter in the centre of the Sun can be compared to the transparency of wood.

Radiation can, however, still ‘filter’ through it.

The general opacity of our entire column should be, according to what has

been said above, proportional to the mean density and height of the column.

The factor of proportionality, which we designate k (of a dimension

cm“^ g ^)7 is called the ‘opacity’.

The radiation leaving the base of the column while filtering through the

entire mass will become 3xpR times weaker (the factor 3 takes into account the

inhomogeneous distribution of the ' stellar matter over the radius).

Subsequently, the amount of ener-gy reaching the surface is
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We introduce p = ?>MI{^nB?) and obtain the formula

L = NP .

9^4 X

Since formula (8) is very important for the theory of inner stellar structure we
shall once more derive the same formula.

It is known that the light exerts a pressure on the absorbing or reflecting

medium. The magnitude of the radiation pressure can be calculated with the

formula Prad — (4o/3c)7^, where c is the velocity of light. It is evident that the

radiation pressure in the centre of a star equals 4a 7^/3c. This pressure should

be equal to the pressure of the flux of radiation absorbed on the entire way to

the surface. The amount of light absorbed on 1 cm of the path while the

radiation filters through 1 cm^ at a distance r from the centre equals xpL/

(43Tr^). The total amount of absorbed light in the entire path from the centre of

the star to the outside in a column with a cross-section of 1 cm^ equals xpL/

(jtjR^) (we put p for p and P/2 for r). The absorbed light exerts a pressure on the

stellar matter in this column. In order to determine its magnitude we recall that

in the study of the light pressure we discovered that the momentum (or

pressure) of one light ray is always c times smaller than its energy. For this

reason the total momentum of radiation absorbed during the filtering from the

centre of the star to its surface equals xpL(jiP^c). This magnitude should also

be compared to the radiation pressure in the centre, which leads to formula (8)

.

Formula (8) is called the theoretical mass-luminosity relationship. Before

we compare it to observations we shall examine its components. The first one,

\67p'(3fl{9A^) is a constant composed of physical constants and is equal to

4.2 X The molecular weight p depends on the chemical composition

and we already know this dependency (formula 6). The opacity x also depends

on the chemical composition of the stellar matter. Let us study this

dependency.

It is easy to understand that protons, alpha particles, and ‘bare’ nuclei of

other elements have very little influence on transparency since they do not have

nearby electrons capable of absorbing light during the transition between

orbits. It is true that from time to time these nuclei capture electrons for a short

time and then for a short period are capable of absorbing light. Moreover, if a

free electron passes close to an atomic nucleus, absorption of light is also

possible, but the role of these processes is small. In principle, the opacity of the

stellar material is due to the presence of atomic residues of heavy elements

which can only keep their inner electrons in the conditions which exist in stellar

interiors. Therefore the opacity coefficient should be proportional to the

percentage amount of heavy elements Z.

Yet this is not all. As the temperature increases, even heavier nuclei of

oxygen, neon, etc., start to lose their inner electrons. These then stop

absorbing light and, as a result, the opacity of the stellar material decreases. As
the density of the stellar material increases the opacity increases since a closer

disposition of the particles increases the probability of the capture of free

electrons by the ‘bare’ atoms. Thus the opacity increases as the density
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Figure 5. Dependence of the opacity on density and temperature. The curves on the

graph indicate the variation of the opacity with the change in temperature at a given

value of density

increases, the temperature decreases, and the amount of heavy elements

increases. It is true that close to the stellar surface the opacity coefficient

increases with temperature, since at large T there are more excited atoms

capable of absorbing light in the visibe spectral region; e.g. in cool stars of

population I (a large abundance of helium and heavy elements) x ~ ^ 7^

In cool stars of type II population (less helium and heavy elements) the

absorption coefficient depends even more strongly on temperature:

K ~ Incidentally, this high degree of dependence of x on T also leads

to the fact that the surface temperature of such stars cannot change very much
(r ~ 3-4 thousand degrees).

On the other hand, on the surface of very hot stars {T > 20 000 K) the

absorption coefficient is almost constant (x ~ 0.2 cm^/g). Here the opacity can

be explained by the diffusion of light from the free electrons.

For more profound stellar layers Kramer’s rule x ~ is frequently

used. Of course, in modern calculations this formula is not precise enough so

more detailed tables must be used.

Figure 5 shows a graph of the evolution track of the dependence of the

opacity on temperature and density. The left-hand slope corresponds to low

temperatures (i.e. atmospheres of cool stars) while the right-hand slope is an

example of Kramer’s rule. In a region of even higher temperatures the opacity

tends towards a constant value; this is the region of Thomson’s diffusion.

As we go deeper into the star
p
and T increase and therefore we can expect

that X varies slowly. Precise calculations have shown that in fact, although the

temperature increases about one thousand times on the way from the surface to
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the centre, the opacity changes not more than ten times. For this reason the

error is not large in the arguments given above, assuming that n is the same over

the entire length of the column. From one star to another n will change very

little. In hot and brilliant stars >c ~ 0.7 — 3cm^/g while in cooler stars of the

main sequence x ~ 8 — 25 cm^/g. This means that a layer of stellar gas only a

few millimetres thick, or even more, is already opaque.

Now let us return to the theoretical mass-luminosity relationship. In order to

compare it with observations we transform formula (8) in a way analogous to

the transformation of formula (5) into formula (7). We obtain

j 4 / w x3

(9)
— = 860

/ M
L O

With this formula we calculate the theoretical luminosity of the Sun. The
opacity is taken to be 20 cm^/g. Introducing p = 0.6 and M = into (9)

we find = 5.6Lq.

To sum up. Considering the process of energy transmission from the stellar

interior to the outer surface we obtain a formula which relates the luminosity of

a star to its mass. The observations in general satisfy this relationship (see

Figure 3), but the theoretical luminosity of the Sun appears to be five or six

times greater than the observed one. How can this be so? It is possible that we
have a false conception of the physical processes which led to the theoretical

deduction of the mass-luminosity relation, or else the difference is simply due

to the approximations in our calculations. We calculated the central

temperature of the star with formula (5) which, as we already noted, can

contain an error of 10-20 per cent. Since the luminosity is proportional to if.

the decrease of by 20 per cent, will diminish the theoretical value of

luminosity by a factor of 2. Moreover, the assumption of a constant value x

along the stellar radius also gives an error of a few times. Thus, the difference

between the theoretical and observational luminosity magnitudes can be

entirely due to the approximations in our calculations. There is no need to

complain; a precise calculation needs the solution of a quite complex system of

differential equations which are nowadays usually performed on electronic

computers. We should rather consider, as a quality, the fact that such a simple

and approximate calculation has yielded a comparatively good agreement with

the theory.

It is important to understand correctly the physical phenomena which are at

the base of the observed mass-luminosity relationship. Figure 2 shows clearly

that the luminosity increases as the mass increases, what is this relation? If

there were, in all stars, the same values for the molecular weight and the

opacity, then there should be L ~ M^. An analysis of Figure 2 shows that

effectively in massive (M > ?>Mf) and hot stars L ~
. This is explained

by the fact that in these stars there is total ionization almost everywhere

(constant p) and almost the same value of x. In fact, we have already noted that

in hot stars the opacity is linked to the diffusion of light from free electrons and

that each electron screens the light from one section.
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In stars with smaller mass (M < SM©) the opacity is more sensitive to

temperature and density variations and therefore x changes from one star to

another. Indeed, from Figure 2 is it seen that the variation of luminosity with

mass is a little sharper (approximately as L ~ Thus Figure 2

corresponds perfectly to equation (9) if we also take into account the variations

of the factor p"^/x in the transition from one star to another.

The theory, therefore, not only permits us to calculate the luminosity

magnitude but also to describe correctly the dependence on its mass. This can

serve as the best confirmation of the correctness of the theory. The

fundamental conclusion is: the luminosity of the star is simply determined by its

mass, since this rule is based on one physical phenomenon, the transfer of

energy from the stellar interior towards the outside by radiation, while the

‘capacity’ of the stellar material is in the end determined only by the mass of the

star. The sources of the stellar energy must somehow adapt to the stellar

opacity. One of the two fundamental relations between the basic parameters of

stars can be explained in this simple and natural way.

We shall often come back to the different consequences of the

mass-luminosity relationship. Let us simply note here that this relation was

first deduced theoretically by the English astrophysicist Eddington and later

confirmed by observations.

The phenomenon of convection was briefly mentioned in the beginning of this

chapter. We note once again that in stellar conditions convection is very

frequently observed. In contrast to the energy transfer by radiation, where the

amount of transmitted thermal energy is determined by the opacity of the

matter and is therefore limited (this limitation of the radiant flux in the star also

appears as a deduction from the mass-luminosity relationship), the convective

energy flux is not limited. In fact, when observing heated water in a kettle one

can see that the more we heat the water the faster the convective motions and

consequently the faster the transmission of heat from the heated part of the

kettle to the whole mass of water.

In stars the transfer of thermal energy is realized mostly by radiation, but

there are also layers of stellar material where the thermal energy is transmitted

towards higher layers by convection. Convection appears where the energy

transfer by radiation seems not to be sufficient: either the stellar matter became

too opaque or the temperature decrease is so strong that the energy, so to

speak, ‘overflows’. However, the fact that a layer with convective energy

transfer exists in stars does not upset the correctness of the theoretical

deduction of the mass-luminosity relation.

If there is only one layer with radiative energy transfer, then it is indeed the

opacity of this layer which determines the ‘transmission’ capacity of the entire

mass of the star and subsequently also its luminosity. Only the coefficient in the

equation for the mass-luminosity relation can change (this is, by the way, one

more possible cause of the discrepancy between the theoretical and

observational values of the luminosity of the Sun). Among the majority of the
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main sequence stars there are no entirely convective stars; therefore the mass-

luminosity relationship has a universal character for these stars.

Nevertheless, in nature there probably also exist entirely convective stars.

Apparently, in stars of very small mass, convection diffuses over the whole

star. In newly formed stars, not yet in a steady state (they are called

protostars), the energy is also transferred by convection. However, in these

objects the convective transfer is also replaced in the surface layers by

radiative transfer.

Since convective transfer plays an important part in stars—particularly in

non-steady-state stars—we shall study it in detail. Let us consider a case with

a rapid temperature increase as we penetrate deeper into the star.

If at a great depth in a given mass of gas the temperature has increased by

chance, then this mass will start expanding. Its density will decrease, it will

now be lighter than its surrounding stellar matter, and it will therefore rise.

As it rises, it will pass through always cooler outer layers of the star, where

the pressure is also respectively smaller; therefore our mass of gas will expand

even more and cool. If the temperature decrease in the stellar interior is

sufficiently big, then the rising mass of gas appears to be, as previously, hotter

than the surrounding stellar matter and its rise will continue. In the end,

however, this mass of gas will transmit its heat to the surrounding stellar

matter at an even greater height and will then come to a stop. Therefore, a

certain mass of gas having initially a certain excess of thermal energy transfers

all its thermal energy supply from the lower layers to the cooler upper layers,

thus realizing the convective transmission of thermal energy. In the place of

the rising mass of heated gas, cooler masses of gas come down from the higher

levels, which in their turn are heated and the same process starts all over

again. It is easy to understand how convection can transfer an unlimited

amount of thermal energy: the more energy that has to be transferred, the

greater the mass taking part in the convection and the greater the velocity of

the rising heated mass (and according to this the greater the velocity of the

descending cooler mass).

In the convective transfer of thermal energy in stellar interiors the energy

flux is no longer determined by a simple formula. According to what has been

said above, we can consider that convection transfers only the amount of

thermal energy that is emitted. On the other hand, we can theoretically

derive, from the convection graph, the relation between the gas density and

its temperature, and vice versa. In fact, one can consider that the rising mass

of gas expands adiabatically, since during its rise it keeps its initial supply of

thermal energy until it comes to a stop. It is known that for an adiabatic

variation of the state of a gas its pressure is proportional to the density of

degree y (where y is the thermal capacity at a constant volume). The stellar

matter is a gas of single atoms (in fact, the electrons, protons, and ‘bare’

nuclei also have only three degrees of freedom of kinetic motion) and

therefore it has y = 5/3. Consequently, for an adiabatic change of the stellar
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matter the pressure P is proportional to p^^^. We designate the pressure and

the density at the beginning of the rise of the convective mass of gas by the

index 2. Then, since during the rise the adiabatic conditions are satisfied, we
obtain the relation

We note that in a rising mass of gas the temperature is somewhat higher than

the temperature of the surrounding matter, but only very little, probably by

only one degree, which is very small compared to stellar temperatures of

millions of degrees. From this follows that for a convective energy transfer the

pressure and density of the surrounding matter satisfy the condition = a

constant. This condition also determines the structure of the stellar layers with

a convective energy transfer. We shall give two more values characterizing the

stellar convection: the velocity of the rising mass of gas is of the order of 30 m/s

and the time of the rise is about 20 days.

As we are now acquainted with the energy transfer in stars and have obtained

at the same time the theoretical explanation of the mass-luminosity

relationship, we can now study the sources of stellar energy. But first we need a

historical background.

Astronomy is an ancient science, possibly the oldest science among all

others. Nevertheless, the study of stellar structure and evolution is one of its

youngest chapters. Four hundred years ago Giordano Bruno taught that all

stars are celestial bodies resembling our Sun, but two hundred years before that

people thought that the Sun was a hard sphere, the same as planets, but

covered by hot clouds. At present it is hard to tell who was the first to conceive

that stars, among them the Sun, are spheres of gas. The first calculations of the

structure of these gas spheres were performed by D. Ten and A. Ritter in

1869-1878. The energy transfer with the help of convection in the inner regions

of stars was studied by Kelvin (England, 1887), but most important for the

theory of stellar structure is, as we know, the energy transfer by radiation. The

notion of radiative energy transfer in stars was first given by a Polish scientist

Bielobrzecki (1913), but it was further developed in the works of the well-

known English astronomer A. Eddington. Indeed, Eddington considered the

importance of energy transfer in stars and obtained the mass-luminosity

relationship theoretically, which he then compared to observations. He then

elaborated the first standard stellar model. The year of Eddington’s Inner

Structure of Stars publication, 1962, is considered as the moment of origin of

this theory.
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Thermonuclear sources of stellar

energy

In nature there exists a universal law of energy conservation: energy cannot be

formed from nothing, it only turns from one form into another. For example,

from the combustion of a chemical fuel the energy of attraction of the atoms in

the molecules of this fuel turns into heat. This is chemical energy. It is clear that

stars cannot dwell on chemical energy—at a temperature of millions of degrees

any molecules immediately disintegrate.

Maybe the star simply releases its stock of thermal energy. Let us consider

this process. If the energy released by the star is taken from its thermal energy,

then with time the temperature in the stellar interior should decrease.

However, this would disturb the equilibrium of the star, since at a lower

temperature the gas pressure is no longer able to counteract the gravitational

force of the star. The star would then contract and in a way collapse towards the

centre. At any decrease of pressure the potential energy turns into kinetic and

thermal energy (e.g. if a body falls through air it is heated by friction).

Consequently, at the contraction of a star gravitational energy is also released

(potential energy of the gravitational force of the star). Part of this energy gives

an increase in the temperature of the stellar interior, preventing in this way a

too rapid contraction, and part of the energy is released into space.

Furthermore, if we consider this process in detail it will appear that the

temperature of the centre of the star, deprived of the sources of stellar energy,

does not decrease but on the contrary increases, i.e. the star does not cool but is

heated thanks to the release of potential gravitational energy. This can be

confirmed by formula (5) which is also valid for a contracting star only if the

contraction is not very rapid. With a decrease in the radius at constant mass the

central temperature increases.

How long will the stock of potential energy in a star last? This can be easily

calculated. It is known that the potential energy of a body in a gravitational

field equals Mgh, whereM is the mass of the body, g the acceleration of gravity,

and h the height of the body above the level taken as the beginning of the

reading. Let us try to apply this formula to our case. The whole star contracts in

a gravitational field. Consequently, M is the mass of the star. To accelerate the

gravity we take its value on the surface: g = fMIR^. In the stellar interior its

33
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value is approximately the same. Finally, calculating the entire supply of

potential energy we must evaluate the total contraction of the star to a small

dimension and therefore the length of ‘collapse’ of the star can be equal to its

radius: h = R. Subsequently, the total supply of potential energy of the proper

gravity of the star equals fM^IR. A precise calculation (applying higher

mathematics) yields the same formula, but only with a numerical factor close to

unity.

During the contraction of the star approximately half of the energy is used to

heat the star and the other half is released into space. Since the luminosity of

the star depends simply on its mass, during contraction with a constant mass the

luminosity will not vary either. Consequently, the duration of contraction of a

star, or the time for which there will be enough potential energy, is

fM^
(11) r =

2RL

For the Sun t = 5 x 10^"^ s = 1.6 millions of years. This is a very small value.

The Earth, and therefore also the Sun, has existed for at least milliards of years.

Thus, in the Sun, as well as in other stars of the main sequence, there should

exist another source of energy, which we shall consider later. Nevertheless,

there is a group of stars ‘living’ on account of the contraction energy. These are

recently formed stars.

Formula (11) shows that the stage of stellar formation should be very short.

Note that the release of stellar energy on account of contraction in a proper

gravitation field is called ‘a gravitational energy source’.

The problem of stellar energy sources has been of interest to astronomers for

a long time. Many hypotheses have been framed, among them the hypothesis

of nuclear reactions was discussed (in the twenties). For a long time these were

only general reflections and only in 1938-1939 were the American physicist

G. Bethe and others able to calculate theoretically just which concrete nuclear

reactions are sources of stellar energy.

Nuclear reactions in general, and thermonuclear reactions in particular,

represent a very large chapter in modern physics and also have important

technical applications. Unfortunately, it is not possible to consider this

problem fully here, the reader will have to turn to other sources which

specifically deal with nuclear reactions in more detail. Here we will limit

ourselves to a brief outline.

You will remember that the nucleus of an atom of a chemical element is

composed of protons and neutrons (except the nucleus of a hydrogen atom,

which has only one proton). Protons and neutrons are linked in the nucleus by

very strong forces called nuclear forces. The nature of these forces is not yet

known but it is important to know that such forces exist and that the energy of

this coupling is very large. By the term ‘coupling energy’ we mean the work

which must be spent to destroy the nucleus and pull apart its particles to large

distances. The magnitude of these forces can be judged by the fact that they

must be able to surmount the repulsive forces between protons, since all
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protons have the same positive charges. Note also that the nuclear forces are

such that in most cases of not too heavy stable nuclei the number of protons and

neutrons is about the same. This rule is violated only in heavier nuclei. It is

evident that if one more proton or neutron arrives in the nucleus of an atom, a

new nucleus is formed that can be stable as well as unstable, depending on the

relation between the protons and neutrons in the initial nucleus. Moreover, in

this case energy is usually emitted since the ‘newly arrived’ particle is linked by

the nuclear forces to the other particles and the excess energy must be released.

This excess energy can either be radiated in the form of gamma rays or carried

off by a particle ejected from the nucleus (by a proton, neutron, or even an

electron or positron if the so-called beta-decay takes place in the nucleus). This

is a nuclear reaction. Thus, in a nuclear reaction a new nucleus is formed and

energy is released.

Nuclear reactions may also be more complex, e.g. when not one particle

(proton or neutron) but the nucleus of another element arrives in the original

nucleus. Very frequent nuclear reactions take place with alpha particles and

helium nuclei. There exist reactions of an altogether different type—division or

fission reactions—where a more complex nucleus is divided into two or several

smaller nuclei. These reactions are used in atomic reactors.

Let us come back to the simplest atomic reaction: the arrival of a proton or

neutron in the initial nucleus. The neutron reactions are accomplished

easily—there is nothing to prevent the neutron from approaching the nucleus

so close that the nuclear forces, which act only at small distances, ‘pull’ it into

the nucleus. With protons it is more difficult to obtain these reactions. In fact,

all nuclei have a positive charge, the same as the proton. Therefore, as the

nuclei repel the protons large energies are needed to overcome the electrostatic

force of repulsion and allow the protons to approach the nucleus at a distance

where the strong, but limited in time, nuclear forces can act. There are almost

no free neutrons in space. It is true that sometimes in the process of nuclear

reactions neutrons are formed, but this case is rare although important for the

construction of heavy elements (see below).

Nuclear reactions with protons should be more frequent in cosmic conditions

as hydrogen is the most widespread element in the Universe. Free protons exist

everywhere, including stellar interiors. The temperature in the central parts of

stars is high and therefore there are many protons with large velocities. Indeed

the temperature is also an ‘accelerator’ of protons and alpha particles in stars.

However, we must note that the temperature in stellar interiors is still not high

enough to assure for each proton the possibility of entering into a nuclear

reaction. As a result of numerous collisions between protons any one of them

can occasionally acquire a velocity a few times greater than the mean velocity of

thermal motion at a given temperature and therefore will be able to enter into

the nuclear reaction, overcoming the repulsion of the positively charged

nucleus. Reactions where heating to high temperatures is used to overcome the

repulsion of nuclei with the same charge are called thermonuclear reactions.

They were recently discovered as sources of stellar energy. One of the
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important technical problems of modern times is to learn how to use

thermonuclear energy sources on Earth.

Having completed this short introduction we can begin to study

thermonuclear reactions in stars. In such reactions, energy is released when
four protons combine into one helium nucleus (in this case two protons should

turn into neutrons). Such a combination of protons forming a helium nucleus

can take place in different ways, but the result is always the same. Let us verify

that in this way large amounts of energy can really be released. The mass of one

proton in atomic units equals 1.00813. Thus the mass of the four protons will

equal 4.03252. However, we know that the mass of a helium nucleus in atomic

units equals 4.00389. Consequently, the excess of mass, equal to 0.02863 of an

atomic unit of weight, should turn into released coupling energy. The energy

excess in the generation of a helium nucleus can be calculated with the well-

known Einstein formula: E = mc^ = 1.67 x 10“^"^ x 0.02863 (3 x
10^®)2 = 4.3 X 10“^ ergs for one nucleus. Remember that

c = 3 X 10^^ cm/s is the velocity of light.

We shall now calculate the energy released by thermonuclear reactions in

stars. The values given above show that when four protons join into one helium

nucleus about seven thousand units of the mass are released and transformed

into energy (0.02863/4.03252 = 0.007). Consequently, if the whole Sun were

composed of hydrogen, in its transformation into helium an amount of energy

would be released which would equal 2 x 10^^ x 0.007 x 9 x 10^^ =

1.3 X 10^^ ergs. Since the Sun radiates 3.8 x 10^^ ergs every second, the

transformation of hydrogen into helium would be sufficient to maintain the

solar radiation at its present level for 3 x 10^^ s (about a hundred milliard

years). This is more than enough. Thus we have shown that the combination of

protons into helium nuclei can entirely guarantee the necessary magnitude of

stellar energy sources. There now remains to study the different ways of

transforming hydrogen into helium.

At present two systems of consecutive reactions are known in which four

hydrogen nuclei can form a helium nucleus (evidently the possibility of a

simultaneous collision of the four protons and their immediate combination

into a helium nucleus is negligible). The first group of reactions is called the

proton sequence (the origin of this name will be explained later on) and the

second group of reactions is called the carbon-nitrogen cycle.

Let us consider the proton-proton nuclear reactions. If two protons collide,

in most cases they are simply deflected in different directions. Nevertheless, in

very rare cases both protons will start a nuclear reaction and form a deuterium

nucleus composed of one proton and one neutron. In order to make this

possible two extremely rare conditions must be simultaneously realized. First,

the energy of one of the reacting protons should at least exceed the mean
thermal energy of the particles of the stellar medium (this is necessary for the

protons, once they have surmounted the Coulomb law repulsion, to approach a

distance at which the nuclear forces could react). Second, it is essential that

within the short time span of the protons at a close distance (10“^^ s!) one of
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them should turn into a neutron, expelling a positron and a neutrino (since two

protons cannot form a stable nucleus). The generated neutron joins with the

proton and forms a deuterium nucleus.) The positron (a particle with a mass

equal to the mass of an electron, but with a positive charge) escapes somewhere
(not very far away from where it generated), joins a free electron, and the two

of them are converted into two quanta of electromagnetic radiation. We repeat

that an association of two very rare events is extremely infrequent—on the

average this might happen for each proton once in ten milliard years! However,

there are many protons in stellar interiors and therefore this reaction occurs

with sufficient intensity.

The deuterium nucleus which has been formed rapidly enters a new reaction;

after a few seconds it meets a sufficiently rapid proton with an energy allowing

it to come close enough to the deuterium nucleus to join it. As a result one

nucleus of helium isotope is formed with an atomic weight equal to 3, and is

composed of two protons and one neutron—He'^. The great rapidity of this

reaction (compared to the first one) can be explained by the fact that the proton

is not transformed into a neutron, as in the first case. Moreover, deuterium is

generally very active in nuclear reactions. Let us remark that modern
thermonuclear reactors on Earth also use the activity of deuterium. It is evident

that in this reaction an excess of energy appears which leaves the nucleus by

electromagnetic radiation.

The further destiny of the nucleus of a helium isotope He^ can be different,

depending on the temperature and the presence of a helium isotope He^ in the

stellar matter, but the result is always the same, i.e. the formation of a helium

nucleus. We shall first consider the most simple way. The nucleus of a helium

isotope He^ (already having three protons, one of which is transformed into a

neutron) meets another nucleus of the same kind and enters into a reaction

with it. Asa result of this reaction the two He^ nuclei form one nucleus of an

ordinary helium isotope He'^ and two protons (from the initial six) are again

released. It is true that this reaction is also quite rare—one nucleus of a helium

isotope looks for a ‘partner’ for the reaction for about one million years. The

scarcity of reactions is explained by the fact that there are much less He"^ isotope

nuclei than protons and therefore the probability of an encounter with a

partner possessing enough energy to surmount the repulsion is very small.

In other, scarcer, varieties of the proton-proton sequence of reactions, the

nucleus of a He^ isotope combines with an ordinary He"^ nucleus, the result

being a beryllium nucleus Be^. This nucleus in its turn can capture a proton and

form a nucleus of boron (B^) or can capture an electron and turn into a lithium

nucleus. The lithium capturing a proton turns into beryllium (Be*^) which

rapidly decays into two alpha particles (2He"^). The same thing happens with a

boron nucleus but in the beginning a positron and a neutrino are released

(B^ Be^ + + v). These ‘boron neutrinos’ are being searched for in

‘neutrino astronomy’. The release of energy in different varieties of the

proton-proton sequences is not the same and must be taken into account in

precise calculations.
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As a final result, the four protons formed one nucleus of an ordinary helium

isotope (two protons being transformed into neutrons). In all these reactions

energy has been released either in the form of neutrinos and positrons or in the

form of electromagnetic radiation, or finally part of the energy was released

with the protons in the last reaction. The energy of the positrons and of gamma
rays and the kinetic energy of protons is rapidly transformed into thermal

energy of the stellar matter and only the neutrinos can transport their energy

through the whole star and escape into space. Let us write the fundamental

proton-proton sequence as a formula (the origin of the same of this branch

does not need to be explained):

+ |3^ + V tens of milliards of years

(12) He^ + Y a few seconds

2He^ He"^ + 2H^ a few millions of years

Here |3^ stands for the release of a positron during the reaction process, v

represents the release of a neutrino, and y the radiation of an electromagnetic

energy quantum.

On the right-hand side we give the characteristic time spans during which one

hydrogen, deuterium, and helium nucleus searches for a partner for the

reaction. The rapidity of reaction depends on the density, on the percentage

abundance of hydrogen and helium (this also depends on the predominant

reaction sequence), and even more on the temperature. The increase of each of

these parameters brings about an increase in the rapidity of the reaction—the

reader can imagine the cause of these dependencies. The time spans given

above correspond to conditions which exist in stellar interiors, such as the Sun

or slightly cooler stars.

At the end of each reaction cycle about the same amount of energy is

released—4.0 x 10“^ erg(0.3 x 10”^ erg is carried off by

neutrinos)—but as the probability of reaction changes at different

temperatures and densities of the stellar matter, the amount of energy (in ergs)

emitted in one second by one gram matter (we shall denote this value by e) also

depends on the temperature and the density. The deduction of the formula

describing this dependency is simple, but cannot be given here. In fact the

probability of reaction depends on the so-called ‘tunnel’ effect—the

surmounting of the potential barrier by the proton. This can be understood

only on the basis of quantum mechanics which is beyond the scope of

a school physics course. For the informed reader understanding quantum

mechanics we recommend specialized literature and only give the final formula

written in logarithmic form:

(13) log E = 6.3 - 14.8

T,
1/3

+ log
-2/3

6 ^6 '

Here the temperature is given in ^millions of degrees (shown by the index ‘6’,

the number of zeros left out), p stands for the density in grams per cubic

centimetre, andX is the relative abundance of hydrogen—a parameter we have
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already met in Chapter 1. This formula shows the rapid increase in energy

release with the increase in temperature and the slower increase with the

increase in density and the percentage of hydrogen abundance. The reader

already knows the reason for this. The dependence on the abundance of the

He^ isotope is not evident here, but in fact it is ‘hidden’ in the first term.

In more precise calculations detailed tables are used instead of formula (13),

whereas in approximate calculations even this formula is simplified by a

relation of the following kind:

(14) £ =

where Eq and n are certain numbers specially chosen so that formula (14) yields

the same result as (13) or the corresponding tables. For this reason eg and n

depend on the temperature, although only slightly. For example, at a

temperature of the matter lower than ten millions of degrees the exponent in

(14) is close to 5, at higher temperatures (Tg > 10 million degrees) this

exponent diminishes to 4, and at temperatures of a few tens of millions of

degrees the exponent n — 2. In other words, the values eg and n are considered

as constant only in determined and not very large temperature spans. The fact

that the parameter n decreases with an increase of Tg can be easily understood.

Indeed, at relatively low temperatures there is a very small number of rapid

protons capable of surmounting the Coulomb barrier of proton repulsion by

the nucleus. With the increase in Tg the number of such protons increases

exponentially; at very high temperatures nearly every proton surmounts this

barrier, in which case the dependence of the energy release on the temperature

becomes weak.

We shall now consider whether the proton-proton reaction can assure

energy radiation from the Sun. We admit that in a certain region near the

centre of the Sun the following parameter values exist: T = 14 million degrees,

p = 100g/cm^,X = 0.71. Using formula (13) we then obtain e = 13erg/(g s).

With a mass of 2 x 10^^ g the Sun emits 3.8 x 10^^ erg/s, that is 1.9 erg/(g s).

Subsequently, if a seventh of the mass of the Sun has properties close to the

ones described above then the thermonuclear reactions of the proton-proton

sequence can assure the actual luminosity of the Sun. If the temperature in the

interior of the Sun is higher, then the region of energy generation can be

considered to be of a smaller dimension. However, if, in reality, the

temperature of the Sun is smaller, the situation is bad and the thermonuclear

reactions cannot assure the luminosity of the Sun. We shall come back to this

when considering ‘neutrino astronomy’.

For stars of larger mass than our Sun the proton-proton sequence does not

yield a sufficient energy release. In this case a more effective mechanism at high

temperatures enters into action—the carbon-nitrogen cycle—which we will

consider now.

In the proton-proton sequence only protons react, whereas in the

carbon-nitrogen cycle carbon, nitrogen, and oxygen nuclei also take part in the

reactions. Higher temperatures are needed in these reactions than for the
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proton-proton reactions since the greater charge of these nuclei demands

greater energy of the protons in order to overcome the Coulomb repulsion. On
the other hand, the first reaction of this cycle (at a sufficient temperature) is

much more probable than the first proton-proton reaction since it is not related

to the necessity of transforming a proton into a neutron. For this reason the

carbon-nitrogen cycle is much more effective than the proton-proton reaction

at temperatures higher than 15-16 million degrees.

We give here the formulae of successive reactions of the carbon-nitrogen

cycle:

1. ^ + Y tens of millions of years

2. + v 7 minutes

3. ^ + Y a few millions of years
^ '

4. ^ + Y hundreds of millions of years

5. + Y + seconds

6. ^ + He"^ hundreds of thousands of years

Also given is the characteristic time during which the fundamental reacting

nucleus ‘looks for’ a proton with a velocity sufficient for a thermo-nuclear

reaction (reactions 1, 3, 4, and 6) to take place or a time span during which the

unstable isotope which is formed decays and releases a positron and a neutrino

(reactions 2 and 5) . The cycle starts when a rapid proton is captured by a carbon

nucleus and is kept there by nuclear forces. An unstable nitrogen isotope is

formed with an atomic weight equal to 13 (too light for a normal nitrogen

nucleus) which disintegrates within 7 minutes and turns into a stable carbon

isotope with the same atomic weight. This nucleus twice captures successively a

rapid proton (each time releasing the energy excess by way of electromagnetic

radiation) and is transformed into an unstable oxygen isotope with an atomic

weight equal to 15 (too light for an ordinary oxygen nucleus). After only 82 s it

disintegrates, releasing as usual a positron and a neutrino, and forms a stable

nitrogen isotope. Finally, having captured one more rapid proton, the fourth in

the reaction sequence, this isotope gives a helium nucleus and the initial

reactant, an ordinary carbon isotope. The cycle then starts again from the

beginning. In this cycle the carbon and nitrogen are only catalysts, the final

product of the reaction being the same as at the start; the four protons formed a

helium nucleus and the corresponding energy release took place (giving

4.0 X 10~^ ergs for one cycle).

All the reactions of this cycle, in which protons are captured, are slow—a few

millions of years. This can be explained, as already noted, by the fact that the

charges of the carbon and nitrogen nuclei are large and therefore the

probability of encountering a sufficiently rapid proton to overcome the

repulsive forces is small. We must also note that here the velocities of the

reactions depend not only on the hydrogen abundance but also on the carbon

and nitrogen abundance, which^we designate by Xcn- As we know, in the

stellar matter the mean carbon and nitrogen content is about two hundred

times smaller than that of hydrogen: = 0.005A.
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A variety of the cycle also exists where the nitrogen nucleus (N ''^) capturing

a proton does not disintegrate into nitrogen and carbon, as described above,

but stays in the form of an oxygen nucleus (O’^) which thereupon undergoes

the following transformations:

0^6 + + Y
+ V

+ He^

In this case, the four protons form one helium nucleus while oxygen, nitrogen,

as well as fluorine only serve as catalysts. However, this variety of the cycle has

no practical meaning because for only one in two thousand proton captures

does the oxygen atom have a change of being preserved.

The formula to calculate the energy release in a carbon-nitrogen cycle has

the same form as formula (13), but of course with different values of the

constants:

66.8 pAJ^cN
+ log

T^1/3 ^2/3
^6 i 6

Here again the temperature is expressed in millions of degrees. This formula

shows that in the carbon-nitrogen cycle the temperature dependence of the

energy release is much stronger than in the sequence of proton reactions. This

is not surprising. The large positive charge of the carbon and nitrogen nuclei

strongly raises their ‘Coulomb barrier’ and the protons need great energy to

overcome it.

As before, formula (16) can be replaced by the approximate relationship

(14). Now the exponents n will be even greater. With T(, equal to some tens of

millions of degrees we have n ~ 23; at a temperature of up to thirty million

degrees this exponent decreases to 16. We now use formula (16) in the carbon-

nitrogen cycle to calculate the energy release in the Sun. For the same

conditions as in the case of proton reactions (and with Acn = 0.003) we obtain

the energy release e = 0.1 erg/(g s). This of course is not enough—the

temperature in the centre of the Sun is too small for carbon-nitrogen cycle

reactions to take place. We then determine the energy output in the hot and

bright star. We assume = 30 millions of degrees, p = 10 g/cm^, X = 0.7,

^CN — 0.003. We obtain e = 1600 erg/(g s), whereas on the average this star

emits 128 erg/(g s) for 1 gm of matter. Here, less than one-tenth of the star is

sufficient to assure its luminosity in the given conditions.

The strong dependency of energy release in the carbon-nitrogen cycle on

temperature exhibits the great need for precision in its determination—

a

precision not given by formula (5). It is better to do the opposite, i.e. knowing

the luminosity of the star and supposing that energy is released, e.g. in 1/200 of

its mass, we can use the given formulae to determine the central temperature of

the star. We leave the reader to do these calculations and check that the central

temperatures are close to those given in Table 3.

Thus we can see that the thermonuclear energy sources assure the luminosity

(16) log E = 28
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of all stars of the main sequence. Of course we are not yet convinced of the

trustworthiness of all the data as most of the reactions were observed in

laboratories . Besides
,
since in laboratories more rapid protons are used for these

reactions than those reacting in stellar conditions (we cannot wait for millions of

years), the experimental data must be extrapolated for small particle energies

and in this case serious errors are possible. It is possible, for example, that for

certain determined proton energies the reaction is particularly intense (in this

case there is a ‘resonance’) . Some of the reactions are such that
,
for example

,
the

first of the proton-proton reactions cannot be realized in laboratory conditions.

It is therefore possible that later on the numerical value of the energy release

could change
,
but the variation will not be much larger. As for the thermonuclear

reactions, their sequences and their role in the process of energy production in

the main sequence stars are beyond any doubt.

Do these reaction sequences exhaust the list ofthermonuclear reactions which

can serve as sources of stellar energy? Generally speaking, no. First of all, at

stellar temperatures thermonuclear reactions with light elements such as

lithium, beryllium, and boron are very intense. In the end, hydrogen, together

with the nucleic ofthese elements; is transformed into helium. However, in these

reactions the lithium, beryllium, and boron nuclei are not renewed as was the

case with the carbon nuclei in the carbon-nitrogen cycle . In other words
,
if in the

carbon cycle the carbon were the catalyst, and therefore would not be totally

consumed in the entire process, then in a reaction with light elements these

elements are ‘burned’ and turn into helium. For this reason these elements are

rapidly (within about a million years ‘burnt’ in stellar interiors. They serve as a

source of stellar energy only during a short (of course relatively) initial period in

the stellar evolution.

At temperatures of some hundreds of millions of degrees, when hydrogen is

already entirely ‘burned’, the source of stellar energy can be the so-called triple

alpha process . This process can be resumed as follows . Iftwo alpha particles with

large energies (ten times greater than the thermal energy at a hundred million

degrees) collide, they can, for a very short time, form an unstable nucleus of a

beryllium isotope with an atomic weight equal to 8. If, after a time, before this

nucleus manages to decay inversely into alpha particles, one more alpha particle

joins it, then a stable nucleus of the ordinary carbon isotope can be formed

and a great amount of energy is released. In this reaction the ‘fuel’ is helium and

the product of ‘combustion’ is carbon.

The formula for energy release in the triple alpha process differs a little from

the corresponding formulae for the proton reactions:

1890

(17) log E =-• 17.5 - — + log—
where Y represents the helium abundance. The difference in temperature

dependence can be explained the fact that for the alpha particles in the

reaction we must entirely determine the energy corresponding to the already

mentioned resonances.
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Figure 6 Thermonuclear energy release in different reactions with the following

assumptions: the amount of hydrogen in hydrogen cycles is 100 g/cm^, the amount of

carbon and nitrogen is two hundred times smaller in weight, and the amount of helium

is 10 000 g/cm^ (in the triple helium reaction)

The triple alpha process can only give an important energy release at

temperatures exceeding 100-120 millions of degrees. It is interesting to note

that if we try to replace formula (17) by formula (14) then at = 100 million

degrees we obtain e ~ In ordinary stars of the main sequence the

temperature does not reach a hundred degrees and therefore this reaction is

not important for them. However, at certain stages of stellar evolution, as we
shall see later, the triple alpha process can be a fundamental source of stellar

energy.

Figure 6 shows a graph (on a logarithmic scale) with the dependence of the

energy release on temperature for all three sequences of reactions examined.

We assumed that in the hydrogen reactions = 100 g/cm^ and in the helium

reaction = 10^ g^/cm^. We have shown the relative role of the reactions

in stars which are of different types but all belong to the main sequence. This

graph clearly illustrates the quite strong dependence of the energy release in a

thermonuclear reaction on the temperature. At higher temperatures reactions

with heavier elements start. It is true that at the moment the maximum
temperature in stellar interiors is now known but we presume that there are

temperatures of up to ten milliard degrees. What happens then?

Already at = 100 million degrees an important reaction starts:

(18) + He'* ^ O**’ + n

where n represents a neutron Its significance is not so much the fact that energy

is released in this case but that the neutron which appears in the reaction can

‘stick’ to any other nucleus and in this way increase its atomic weight—all

heavier elements can be formed successively in this way. There are also other

reactions in which neutrons are released, for example —> Mg^^ + n.
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Of course in this case a much higher temperature is needed (up to one

milliard degrees).

The successive formation of heavy elements by addition of neutrons can be

realized in different ways. Theory has predicted the existence of so-called s-

processes (slow) and r-processes (rapid). In the s-processes the following

happens. The atomic nucleus captures a neutron and is unstable with respect

to the beta-decay, which is usually slow. If the time span between the

successive captures of neutrons is also small (small quantity of neutrons) the

nucleus can undergo a beta-collapse, release an electron, and so increase the

atomic number of the nucleus forming a new stable atomic nucleus. Such a

successive formation of elements can take place in hot and dense stationary

stars; it is in this way that the elements in the middle of Mendeleev’s table are

probably formed. On the other hand, if there are many neutrons and the time

span between successive captures of neutrons is smaller than the period of a

beta-decay, then their is a formation of heavy elements by the r-process. In

this process heavy elements are formed, shown at the end of Mendeleev’s

table.

There are also p-processes in which the heavy atomic nuclei successively

capture free protons. Of course, to make this process effective there should

be, on the one hand, a sufficiently high temperature (2 x 10^ degrees) and,

on the other hand, free protons which burn at much lower temperatures.

Usually it is assumed that the r-processes and p-processes can take place

only in explosions of stars—the phenomenon of supernovae which we shall

study in Chapters 8 and 10. In such bursts the matter of the central parts with

high temperatures and hydrogen already burnt up can mix with the matter

from exterior stellar layers where the temperatures are much lower.

In stationary stars heavy elements can also be formed by the successive

addition of helium nuclei: -(- He"^ -I- y; + He"^ —> + y;

+ He"^ Ne^° -I- y; Ne^^ + He"^ ^ Mg^"^ -f- y; etc. Ne^^ and Mg^"^ are

formed only in stars with masses bigger than 30Mo. The abundance ofO^^

can reach 50 per cent., the abundance of neon being not more than 20 per

cent.

If very high energies occur in stellar interiors, energy release will also take

place in reactions between heavy elements:

C>2 + c'^ ^ Na^-"' + H‘
'I

[• T > S X 10* degrees

C‘^ + Ne^" + Hed
(ly) qI 6 o'ft ~ + Y 1

(• 7’> 1.3 X lO** degrees
2Ne^" ^ + Mg^d

However, all thermonuclear reactions with an energy release end in the

formation of iron nuclei Fe'’^. In-order to form a more heavy element with this

non nucleus it is necessary to lose more energy than is released in the reaction

process. For this reason heavier elements are formed only by the s-process.



45

Consequently they are rare. Meanwhile it is possible that stellar bodies exist

which are composed almost exclusively of oxygen, neon, magnesium, and even

iron.

If we continue to increase the temperature of such ‘stars’ then the iron nuclei

will decay into alpha particles. This will happen at a temperature higher than

7-8 milliard degrees. In this way we approach the second important

consequence of the activity of thermonuclear reactions—the change in

chemical composition of the star—and at the same time deal with the question

of the origin of chemical elements.

This is a very complex problem which goes beyond the limits of the stellar

theory treated here. What was the initial composition of the matter that formed

the stars? Because there are few heavy elements in old stars (see Chapter 1) we
can presume that their abundance was very small or even absent in the original

matter. Heavy elements are quite abundant in young stars and in interstellar

space so they must have formed in stars which had to go through a high

temperature phase.

The question of helium abundance in the original matter is very interesting.

The modern forms of the ‘hot universe’ model need an initial abundance of

helium representing 30 per cent of the weight. As helium is also the first

product of thermonuclear reactions there should be a large amount of helium.

Unluckily helium is a very difficult element to observe and at present very little

data are available to judge its real abundance.

We have already remarked that light elements such as lithium, beryllium,

and boron burn quite rapidly (within millions of years) in stellar interiors and

turn into helium isotopes He^ and He"^. In thermonuclear reactions these

elements are not renewed. Observations have shown that in stars with an

important intermixing there is very little lithium. Of course, there are stars with

large abundances of lithium, but this means that there is no intermixing of

matter and lithium has been conserved in external layers with a low

temperature.

On the other hand, it is known that lithium, beryllium, and boron nuclei are

abundant among cosmic ray particles. Effectively, the nuclear reactions with

rapid heavy particles of cosmic rays can bring about the formation of a

sufficient amount of these nuclei. It is now considered that lithium, beryllium,

and boron, actually existent, originated only in cosmic rays. They diffused into

the interstellar medium and from there passed into stars.

The elements carbon, nitrogen, and oxygen take part in the carbon-nitrogen

cycle. With the passage of time, a relative number of nuclei of these elements

will change until an equilibrium state is reached, that is C : N : O are inversely

proportional to the probability of reactions in which these elements take part.

In fact, the greater the probability of these reactions, the more corresponding

nuclei turn into other elements. It appears that if the temperature in the centre

of the star exceeds 16 million degrees, almost all carbon and nitrogen atoms

turn into isotopes (an abundance of 95 per cent.) The isotope

represents 4 per cent and the isotope 1 per cent. However, the general
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amount of carbon, nitrogen, and oxygen nuclei does not change in the carbon-

nitrogen cycle process. For this reason the carbon-nitrogen cycle also changes

the total content of hydrogen and helium.

The fact that the relative abundance of carbon, nitrogen, and oxygen should

be inversely proportional to the probability of the carbon-nitrogen cycle

reaction can be checked by observations. In many stars this condition is in fact

realized, but there are quite numerous exceptions. There are stars with many
different carbon isotopes (this interesting phenomenon was discovered in 1948

by the Soviet astronomer G. A. Shain) and we know even more striking

anomalies of the chemical composition of stars—the stars of class Ap—which

have not yet been explained.

Certain reactions have been shown in general and processes mentioned where

the formation of heavier elements could occur. In recent times a large number of

publications have appeared in astrophysics and physics where these possibilities

have been analysed. However, it must be said that it is still difficult to trace with

certainty the entire evolution or formation of all elements, but it is possible.

Undoubtedly, carbon, nitrogen, and oxygen are formed in the helium burning

stage in hot nuclei of stars which are not too massive (M >0.5 M^). In the

interiors ofmore massive stationary stars other heavy elements
,
apparentlyup to

neon, magnesium, and possibly flint, develop through successive captures of

helium nuclei.

It is not very clear whether a sufficient amount of iron can be obtained in

stationary stars. If at any stage in stellar evolution the temperature in the stellar

interior reaches 3-5 milliard degrees for a density ofmatter of 10^-10^ g/cm^
,
the

iron nuclei and close elements (nickel, cobalt) are formed in a sufficient amount.

However, it is more probable that these elements are formed in stellar outbursts

.

Heavier elements with atomic weights exceeding 60 can be formed only in the

processes of neutrino capture (s- and r-processes) and proton capture (p-

process). This probably happens in supernovae flares, when in stellar interiors

regions appear, though very briefly, with very high temperatures up to 4-5

milliard degrees and very large densities up to 10^-10® g/cm^. Theoretical

calculations have shown that the observed abundance of chemical elements

formed in supernovae flares can be explained if the temperature and density of

the matter are correctly chosen. One more possibility of heavy element

formation is the accretion of hydrogen-rich matter on the surface of a very dense

star—a white dwarf with no hydrogen. Such formation exists through proton

capture (p-process).

Thus, we can see that the formation of chemical elements occurs principally in

stellar flares and other processes involving outbursts. It has not been possible to

study stellar outbursts fully yet so we really know very little of the origin of the

chemical composition of the universe.

Let us pass on to the very popular ‘uQutrino astronomy’ . As we already know

,

most of the energy released i^ thermonuclear reactions is carried away by

protons—quanta of electromagnetic waves. An important part of the energy

leaves with positrons or is simply transmitted by nuclei in the form of kinetic
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energy. Most of this energy is immediately converted into another form, but, as

in the proton sequence and the carbon-nitrogen cycle, about 10 per cent, of the

energy release passed to the neutrinos. This energy cannot be converted into

thermal energy. The neutrinos have a great capacity of penetration and though

they are formed in the centre of the star they freely pass through its whole

thickness, carrying off to the exterior the energy they have received. For this

reason we can speak of the ‘neutrino luminosity’ of a star.

Therefore the thermonuclear energy leaves the star in two forms: the energy

converted into heat gradually filters through the thickness of the star and comes

out in the form of ‘photon radiation’, while the energy taken away by neutrinos

leaves in the form of ‘neutrino luminosity’. Neutrino luminosity is very difficult

to observe as the neutrinos pass directly through the Earth without any

interaction and so do not register on instruments. Although difficult, it is not

impossible, and the problem of neutrino luminosity must be considered.

Since the neutrino luminosity of ordinary stars does not exceed a few per

cent, of their optical luminosity, one can only hope to measure the flux of

neutrinos coming from the Sun. The total amount of neutrinos formed can

easily be estimated: the formation of one helium nucleus releases about

4 X 10“^ erg of energy and two neutrinos appear. In one second the Sun

emits almost 4 x 10^^ erg and consequently in one second 10^^ helium nuclei

and 2 x 10^® neutrinos are formed—almost all of these leave the Sun. This

means that on each square centimetre of the Earth’s surface 8 x 10^° neutrinos

fall per second, which is such an enormous amount that it is difficult for us to

grasp.

The measures of the whole neutrino flux do not give us very much
information and perhaps only upset all notions of thermonuclear reactions if

these neutrinos do not appear. There is one particularity. We have already

mentioned that in stellar interiors certain varieties of thermonuclear cycles

occur and in different reactions neutrinos with different energies are released.

In particular the above-mentioned reaction of the transformation of boron into

beryllium gives a high energy capable of turning a chlorine isotope nucleus

into the nucleus of a radioactive argon isotope Ar^^. This reaction can only be

due to boron neutrinos as only they have enough energy.

The amount of boron neutrinos released by the Sun is some ten thousand

times smaller than that of ordinary neutrinos, but the reaction of formation

depends strongly on temperature and on helium abundance. For this reason,

the result of boron neutrino flux measurements permits us to determine the

helium abundance in the interior of the Sun and also its central temperature. In

1968 an attempt was made to detect boron neutrinos. The result was important,

showing that the boron neutrino flux falling on the Earth’s surface is much less

than 2 x 10^ particles per square centimetre in one second. Since then

measurements of boron neutrino flux have regularly been made (though only

in one laboratory, by the American physicist Davison). As one measurement

(the accumulation of the radioactive Ar^^ isotope) lasts for about a hundred

days, during the whole period up to 1976, only about forty measurements have
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been carried out. In most cases it was not possible to confirm the existence of

the boron neutrinos. An estimation of the experimental precision shows that in

this case the upper limit of the neutrino flux from the solar interior is six times

smaller than the value given above. In 1975-1976 Davison finally managed to

discover these particles (with a magnitude of the flux two times smaller than the

theoretical one) but at the end of 1976 the next measure again yielded a

negative result.

There are a few ways of explaining this negative result, but they are all linked

with a serious revision of some fundamental ideas in the theory of inner stellar

structure. The absence of boron neutrinos means that the probability that the

reaction He^ + He"^ Be^ occurs is much smaller. This can be the case, for

example, if the temperature of the matter in the solar interior is smaller than

14.4 million degrees, as shown by calculations. We could decrease the

numerical value of the central temperature, supposing that there is a rapidly

rotating nucleus. Then the centrifugal force would permit us to slightly

decrease the gas pressure. It is difficult to conceive why this rotation does not

slow down. We could suppose that the temperature in the solar interior varies

periodically with time; in that case the values given above only determine the

mean temperature and actually the temperature in the centre of the Sun could

be a little lower. The cause of these fluctuations is not clear. We could admit

that in the centre the helium abundance is simply small (T < 0.22), but the age

of the Sun is great, about 5 x 10^ years, and so a large amount of helium should

have accumulated. Of course we could assume that in the solar interior,

notwithstanding the absence of convection, strong intermixing occurs which

impedes the accumulation of helium. On the other hand, the whole modern

theory of stellar evolution corresponds better to the hypothesis that there is no

important intermixing in stellar interiors. We could also assume that the

abundance of heavy elements in the centre of the Sun is much smaller than at its

surface (that is Z < 0.02), but it is difficult to explain how such a composition

could arise.

An attempt to explain the negative result of the neutrino experiment by the

revision of the neutrino theory has been made; e.g. it has been assumed that a

neutrino can decay on its way from the Sun to the Earth (it traverses this

distance within 8 minutes). A solution to this problem has not yet been found,

but it is hoped that this difficulty will be overcome without a wholesale

reconsideration of the theory of the inner structure of the Sun and subsequently

of stars in general.

Neutrinos with great energy are formed in the interior of the Sun in the rare

reaction p + p + e~ —> + v. These neutrinos are also captured by the

nuclei of chlorine isotopes Cl^^. Their abundance is about a hundred times

less than that of boron neutrinos, but since measurements can now be made
with a precision ten times greater than previously it should be possible to

detect the presence of these neutrinos. However, even if they do not appear,

there will have to be alterations made to the whole theory of inner stellar

structure.
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In neutrino astronomy another interesting problem exists. The fact that

neutrinos formed in hydrogen reactions carry off about 10 per cent, of the total

energy released has little influence on the stellar structure. In the burning of

helium (with the generation of carbon and oxygen) neutrinos in general do not

appear. However, in the evolution of stars it is possible, at least in principle,

that there are states where the neutrino luminosity can exceed the optical

luminosity. Where does this lead us?

G. A. Gamov supposed that at high temperatures in stellar interiors an

important part can be played by phenomena which he called the

URCA-process. Gamov explains this denomination in the following way. In

Rio de Janeiro there is a casino URCA where the players imperceptibly lose

their money at roulette. The same thing happens with stars (which also turn)

which imperceptibly lose their energy by cyclic processes of neutrino emission.

In these processes an important part of the energy is carried from the star by

neutrinos without having any effect on the outer layers of the star. Let us give a

few examples of such a URCA-process.

The nucleus of a helium isotope (He^) absorbs an electron with an energy of

3 X 10“"^ erg (such electrons are abundant at a temperature of two

hundred million degrees) and, releasing an antineutrino, turns into a hydrogen

isotope—tritium (T^). This isotope then turns into He^, releasing an electron

and a neutrino. Everything returns to the initial state, but a

neutrino-antineutrino couple carries off an energy of about one hundred

million of the share of an erg. Of course at two hundred million degrees,

probably no He^ nuclei are left, but in the process described energy is carried

away through the whole thickness of the star.

The second example of a URCA-process has similar transformations of

into C^"^. For this to take place there must be an electron energy of about

2.4 X 10“^ erg (a temperature of about two milliard degrees). The inverse

transformation of C^"^ into is very slow—the half-life is 5600 years.

In the case of rapid contraction URCA-processes are possible with

elementary particles since neutrinos are also formed during the collapse. For

example, a neutron decays into a proton, an antineutrino, and an electron. In

its turn the electron is captured by a proton and forms a neutron and a

neutrino. As a result the neutron remains a neutron and the neutrino-

antineutrino couple carries off the energy.

Neutrinos and antineutrinos can also appear in other physical processes

which are possible even if not in ordinary stars, at least in those stages of stellar

evolution where the temperature increases so strongly that a large number of

electron-positron couples are formed in the gas. In the annihilation of these

couples many gamma quanta are formed of such great energy that in collisions

with other particles their energy is divided between other newly formed

particles, some of which are neutrinos and antineutrinos. It is difficult to

explain the physics of these phenomena visually, but if we use a rough analogy

we can say that in collisions of rapid particles (gamma quanta also being

particles) very diverse ‘bits’ fly in all directions. Then the gamma quanta.
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Figure 7 Growth of neutrino luminosity with the increase of central temperature. The
dashed lines indicate neutrino luminosity at determined stages of stellar evolution (the

lines corresponding to novae and supernovae are hypothetical)

electrons, positrons, and other particles rapidly yield their energy to the

medium, i.e. they return it, in fact, inversely. The neutrino and antineutrino

carry off the energy beyond the limits of the star and thus cool it rapidly. This

cooling process increases as the temperature increases: at a temperature of one

milliard degrees 1 g of matter loses about 10^"^ erg in one second and at a

temperature of 2.5 milliard degrees the losses are already about 10^^erg/(gs)

(at p ~ 1 g/s^). These are large losses, greatly exceeding the energy outcome of

thermonuclear reactions.

It is true that such great temperatures are probably very rare in stellar

interiors. However, it appears that in a dense plasma which is not too hot

neutrinos and antineutrinos can be formed when one gamma quantum

disintegrates into the pair. The maximum energy release that can be obtained

in this process at p = lO^g/cm^ and T = 4 x 10® degrees is approximately

10^erg/(gs). Here the dependence on temperature is not very strong; at

p = 10®g/cm^ and T = 2.5 X 10^ degrees the energy release is about
10*^ erg/(gs).

For a rough estimation of the energy release in neutrinos one can use the

approximate formula

To
8 ~ 10^"^ — erg/(gs)

P
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where Tq is the temperature in milliards of degrees. This formula is valid for

p < 10^ g/cm^. At p > 10^ g/cm^ it is more convenient to use another

formula:

(21) e » lO^rl erg/(gs).

Thus we would expect that if the evolution of the star is accompanied by an

increase in its central temperature and density its central luminosity will

increase strongly with time. Figure 7 shows an example of an increase in

neutrino luminosity with an increase of the central temperature in a star whose

mass is close to the mass of the Sun. The dashed lines show the neutrino

luminosity at determined, though hypothetical, stellar evolution stages. In the

case of supernovae the neutrino luminosity can exceed the optical luminosity of

the Sun by many milliards of times. We have no way of checking this result by

observation. Moreover, the duration of neutrino luminosity of supernovae

lasts for only about 20 ms.

The possibilities of discovery of neutrinos were studied by the Soviet

physicist B. Pontecorvo, who can be considered as one of the founders of

neutrino astronomy.
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Dense stars—white dwarfs

In the description of different stellar sequences we have seen a particular group

of stars, called white dwarfs, characterized by their great densities. Due to this

the stellar matter in white dwarfs has particular characteristics. If we try to

calculate the temperature in the centre of a white dwarf using formula (5), we
obtain hundreds of millions of degrees, since the masses of these stars are

comparable to the masses of ordinary stars and the radii are ten times smaller.

At such temperatures a large amount of thermonuclear energy should be

released and it is found that the luminosity of white dwarfs is small—much
smaller than the luminosity of ordinary stars of the same mass.

It is evident that the temperature in the innermost part of a white dwarf

cannot be determined using formula (5). Which one of the two physical laws on

which this formula is based cannot be applied to the stellar matter of white

dwarfs? We cannot doubt the applicability of the universal gravitational law in

general. We must therefore assume that the stellar matter of white dwarfs does

not obey Clapeyron’s law of gas composition. On the other hand, it is evident

that it cannot be solid (in the ordinary meaning of this word) or fluid, since at

the surface of white dwarfs the temperature already reaches 10 000 degrees and

in the interior it would, of course, be greater. Moreover, the density of solid

and fluid matter, where atoms are densely ‘stored’ and accompanied by their

electron envelopes, does not exceed 20 g/cm^. As the density of white dwarfs is

ten thousand times greater, the distances between the centres of atoms in the

stellar matter of white dwarfs should be several tens of times smaller than in

ordinary solid and fluid objects in which—we emphasize this—atoms are

‘contiguous’. For this reason, in the stellar matter of white dwarfs the atoms

would be destroyed and the electrons separated from the nuclei. Such matter

cannot be said to be in a solid or fluid aggregate state, because a solid object

and a fluid can only exist when the atoms are entirely conserved (the

particularities of solid bodies and fluids are determined by the chemical

particularities of entire atoms).
^

We call a gas a state of matter where, on the one hand, its particles are at

large distances from each other (much greater than their dimension) and, on

52
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the other hand, the particles of the gas move freely in space, except for a short

instant when they collide. In the matter of white dwarfs the first condition is

always realized, the second only partially. In dense white dwarfs the bare atom

nuclei cannot move freely; they oscillate around the equilibrium position in

their ‘cells’ which is a peculiarity of solid bodies. However, the basic

particularities of the white dwarfs’ matter are defined by electrons and this

‘solidness’ of the nuclear component of the matter is not of great importance.

Therefore, the matter of white dwarfs is composed of different electrons and

bare atomic nuclei (i.e. of the same particles as the matter of ordinary stars)

and is a gas, but thanks to the high density and pressure this gas has unusual

properties. Such a gas is usually called degenerate and we shall now study its

properties. For this, we shall start in an altogether different way and consider

an ordinary atom of a certain chemical element. We shall choose oxygen, but

an atom of any element could be used. An oxygen atom is composed of a

nucleus and eight electrons which move around the nucleus in different orbits.

Three orbits have two electrons and two orbits one electron. To be more

precise, we can say that in each couple of electrons in one orbit, one electron

has one direction of spin, i.e. the direction of the proper mechanical moment,

and the other the opposite. These orbits are situated at different distances from

the nucleus. In the innermost orbit there are two electrons; the other electrons

are situated in higher orbits. At once the question arises: why are there not

more than two electrons in each orbit? Why do the electrons not jump from the

higher orbits to the lower ones, releasing their stock of potential energy? We
know that the electrons in atoms can freely pass from one orbit to another,

emitting or absorbing energy. It appears that such transitions are only possible

if in the orbit in which the electron falls there are either no electrons or only one

electron. On the other hand, we know that if in a mechanical system there is a

supply of potential energy (as, for example, in a lifted stone) and if the

potential energy has the possibility of becoming kinetic energy (in the case of a

lifted stone the possibility is to fall), it will slow down this action. This means

that in the atom something impedes the upper electron from falling into the

lower orbits occupied by two electrons. Why is there only room for two

electrons in one orbit? This is difficult to explain clearly if one does not want to

go beyond the limits of a school physics course. It is one of the laws of quantum

mechanics called the Pauli principle.

We must note that this property of electrons is observed not only in single

atoms but also in metals. It is known that so-called free electrons exist in

metals. Each atom in a metal loses one or two outer electrons, which are the

less strongly bound and can freely move in the metal. These free electrons

transport the electric flux and heat, which is why metals are such good

conductors. In non-conductors all electrons stay fixed in their atoms and there

are no free electrons; therefore non-conductors do not conduct an electric flux.

The number of free electrons in metals is either equal to the number of atoms in

the metal or is twice as large. Each free electron in the metal moves on its

trajectory—a certain line—with a certain velocity. On any one trajectory there
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cannot be more than two electrons moving with the same velocity. The spin of

these electrons will also be different. If three or more electrons move on the

same trajectory, they must have different energies and velocities. Of course we
can ask: why must they in fact move on the same trajectory? There is a lot of

space in a metal, why can they not move on other trajectories? In fact this is not

possible. It appears that electrons in an atom can only move in entirely

determined orbits. This is also true for free electrons in a metal; they move on

entirely determined trajectories separated from one another by a certain

distance. Thus there are also trajectories which are successively occupied by

pairs of electrons. The following electrons must ‘sit’ on more ‘distant’

trajectories or move with greater velocities.

We must note that, rigorously speaking, there is no concept in quantum

mechanics of ‘determined trajectories’. One can only speak of the probability

of the presence and motion of electrons in a given position in space. For this

reason the reader who wants a precise expression should always understand by

‘determined trajectory’ the term in quantum mechanics ‘determined quantum

state’.

The different physical experirhents and their theoretical interpretations lead

to the conclusion that this new rule is a universal physical law and therefore

should also be valid for stars. We now use the Pauli principle to explain the

paradoxical particularities of white dwarfs.

In the beginning of this chapter we saw that due to the high density of matter

in the innermost part of white dwarfs the atoms are shattered. Consequently,

the electrons are free and move not in orbits around the nuclei, as in atoms, but

in open, complex, and often irregular trajectories, as they do in metals. If bare

nuclei can move freely they can form a gas of atomic residues. However, the

motion of atomic nuclei has little influence on the properties of white dwarfs.

Free electrons in a star are submitted to the Pauli principle in the same way as

free electrons in a metal. Let us see what results from this. The Pauli principle

changes the behaviour of matter only if the number of electrons is larger than

the number of free trajectories. If there are less electrons, the Pauli principle,

although still valid, has no effect—each electron can choose a free orbit and

move on it with an arbitrary velocity. This is the case in ordinary stars, where

there are many free electrons torn off the nuclei but even more free

trajectories. The situation is different in white dwarfs. Since the densities are

much higher there (and consequently in one cubic centimetre there are many
more electrons than in the stellar matter of an ordinary star) not enough free

trajectories are avilable for all the electrons. Consequently, the electrons in the

matter of white dwarfs must occupy the same trajectories and according to the

Pauli principle must move on them with different velocities.

Let us examine this stellar matter from a slightly different point of view. Let

us suppose that we heated the matter of an ordinary star with a comparatively

small density to millions ofvdegrees and then contracted and cooled it

simultaneously (it is necessary to cool it, for as we know contraction heats the

gas). During the contraction the number of free trajectories would decrease.
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On the other hand, by cooling the stellar matter, energy is taken away from the

electrons and atomic nuclei and consequently their velocity would decrease.

How long can the process of contraction and cooling of the gas last and what

will result? We assume that we reach a state where the number of trajectories

decreases to the number of electrons; from this moment all trajectories are

occupied. After further contraction several electrons will move on one

trajectory. According to the Pauli principle they should have different

velocities. We now stop the contraction and continue the cooling. In this case,

as we know, the velocity of all particles decreases, as does also the number of

electrons. If we could cool the stellar matter to absolute zero (—273°C) all

particles should come to a stop—as a matter of fact, the absolute zero in

temperature is characterized by the fact that at that temperature all motion of

atoms, molecules, and other particles ceases. But the electrons in our stellar

matter cannot stop. According to the Pauli principle, as they are situated on the

same trajectories they must move with different velocities. On each of the

trajectories there can only be two electrons. Thus, having cooled the stellar

matter we have not stopped the electrons. Let us go back again to the

contracted and heated stellar matter and continue the contraction so that on

each trajectory there will be many electrons; the more electrons on the same

trajectory the greater will be the velocity interval of their motion. Thus,

according to the Pauli principle, the velocities of the particles will become

greater than their thermal velocities and the heating or cooling of this matter

will not have much influence on the velocity of the electrons.

A gas in which electrons occupy all trajectories and move with great

velocities (according to the Pauli principle) is called a ‘degenerate electron

gas’. A degenerate electron gas can have an arbitrary temperature and will stay

degenerate if the velocities of the electrons are only related to the necessity of

occupying the same trajectories and remain larger in comparison to the thermal

velocities.

We shall now consider the question of degenerate gas pressure. Note that the

pressure of ordinary gases is small at low temperatures—as a matter of fact,

according to Clapeyron’s formula, the pressure is proportional to the

temperature. Therefore, if we could obtain a gas at a temperature of absolute

zero (physically this is not possible, since at low temperatures any gas will

contract) its pressure would also equal zero. It is known that pressure is an

impulse transmitted to the containing limit in a collision with a gas molecule. In

fact, the gas molecule (considering an ordinary gas) hitting the containing wall

transmits the impulse and moves away, again transmitting the same impulse. It

is evident that the greater the velocity of motion of the molecule (the greater

the temperature), the greater the transmitted impulse and the greater the

pressure. Stationary molecules do not transmit any impulse.

A degenerate electron gas should exert pressure on the container since the

electrons move with large velocities and nothing impedes their collision with

the container and the transmission of their impulse—as a matter of fact, after

their repulsion from the container they continue to move with the same velocity
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but only in the opposite direction. Moreover, the pressure of a degenerate gas

should be very large, due to the high velocities of the electrons, and since the

velocities of the electrons also remain high at absolute zero temperature the

pressure of the degenerate gas also remains large in this case. In general, since in

a degenerate gas the velocities of the particles are not strongly related to the

temperature of the gas, its pressure does not really depend on the temperature.

As this is sufficient to understand the theory of white dwarfs, we shall not in

general consider the influence oftemperature on the pressure of an electron gas.

Of course in the stellar matter there are not only electrons but also bare

nuclei—atomic residues. Note that the heaviest nuclei conserve their closest,

strongly bound electrons even in the unusual conditions of the stellar matter of

white dwarfs. It is evident that the nuclei and atomic residues must also take part

in thermal motion and pressure. And this is the case. However the nuclei do not

become degenerate
,
even at the highest densitieswhich are encountered in white

dwarfs, and therefore their velocities correspond to the thermal energies of the

particles (much smaller than the pressure of the degenerate electron gas). For

this reason the equilibrium of a star does not depend on the gas temperature of

the atomic residues, but it is essential for the calculation of the thermonuclear

energy release in white dwarfs.

In reference to this, we must make a remark concerning the molecular weight

of the stellar matter with degenerate electron gas. As we already know, the

molecular weight of the stellar matter depends mainly on the hydrogen and

helium abundance . There cannot be a very high density ofhydrogen in the stellar

matter since at a great density the thermonuclear hydrogen reactions occur with

great velocity and should release a great amount of energy. This is in

contradiction to the weak luminosity of white dwarfs. Where do these stars

obtain their energy? This is a singular question and we shall answer it later. At

this point we will simply note that in the regions of stars where the stellar matter is

composed of degenerate electron gas and the gas temperature of atomic residues

is about 10^-10^ degrees there should be very little hydrogen, and in the

calculation of the molecular weight it can be left out. On the other hand, in the

calculation of the molecular weight of a degenerate electron gas, helium appears

on equal terms with other heavy elements. In fact, the particular role of

hydrogen and helium in calculations of the molecular weight was that in helium

four units of atomic weight were distributed among three particles. In a

degenerate gas the pressure depends only on the electrons. The role of helium

nuclei under large pressures, as well as the role of other nuclei, is small.

Consequently, four units of atomic weight ofhelium in a degenerate electron gas

are distributed between two electrons formed during the fractioning of a helium

atom. Thus, the atomic weight of the stellar matter composed of degenerate

electron gas can always be considered equal to 2 (if there is no hydrogen).

Finally, why do we call degenerate,electron gas a ‘gas’, notwithstanding the

great density? The fact is that ^ the dimensions of the atoms are 10“^ cm then

the ‘dimensions’ of electrons or bare nuclei are much smaller—about

—and even at high densities in white dwarfs the
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distances between the particles in their stellar matter are much bigger than the

dimensions of the particle.

We now introduce a simple formula describing the dependence of

degenerate electron gas pressure on the density of the matter. Usually this

formula is deduced using quantum mechanics. This was first realized by E.

Fermi in the early twenties. We cannot give here the whole deduction, since we
assume that the reader of this book does not know quantum mechanics.

Nevertheless, it appears that this formula can be obtained very simply if we use

the theory of dimensions. We shall describe this method in detail and to

understand it we do not need to know quantum mechanics.

It is more convenient to find the dependence of the electron gas pressurep on

the concentration of degenerate electrons i.e. on the number of these

electrons in one unit of volume. The relation between the density of matter p
and Hq is easily obtained, knowing that the molecular weight is, as already said,

close to 2. We take p = IrripHe, where is the mass of a proton.

We now apply the method of dimension analysis. The pressure is measured

in atmospheres or, in the CGS system, in units of dynes per cubic centimetres,

i.e. in units of grams per centimetre per square second. The electron

concentration is expressed by units per cubic centimetre. The pressure p
depends not only on but also on certain parameters defining the

particularities of the matter. Since the degenerate electron gas is a

phenomenon characteristic of quantum mechanics, its pressure should depend

on the sole parameter which determines all quantum properties of the

matter—the Planck constant ti. The numerical value and dimension of this

constant in the CGS system is ti = ergs = 10“^^
g cm^s“k We

note that the gas pressure is an impulse transmitted from one gas particle to

another and the surface which contains the gas. The impulse is determined by

the mass of the particle, which in this case is the mass of an electron

mg = 10”^^ g. Electrons also have a charge e. However, the repulsion

between the electrons is compensated for by their attraction towards the

positively charged heavy ions situated among the electrons and therefore the

electron charges have no influence on the electron gas pressure. In the

conditions of a degenerate electron gas, the pressure does not depend on the

temperature. As there are no other parameters we can consider that the

pressure of a degenerate electron gas depends only on the values of ti, and

mg. The physical formulae describing this simple dependence always have a

simple form—the product of certain degrees of all-important parameters. For

this reason the dependence of pressure on the values of ti, and will be

(22) P = WJiyml

where H is a certain dimensionless number of the order of unity, and x, y, z are

degrees indicating how the pressure depends on the corresponding parameters.

It is clear that the dimensions of the right- and left-hand sides of this equation

should be the same. This requirement permits us to determine the values of the
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indices x, y, z, which is the main point of using the dimension method to find

the physical formulae. We know the dimensions of all the parameters in

formula (22). On the left-hand side we have gram (g) from p and on the right-

hand side gram (g) from the product with a degree of (y -t- z), since ti as well as

me have the dimension of gram (g). From this we obtain the equation

1 = y-t- z. The dimension of units per centimetre (cm~^) enters the left

hand side while on the right-hand side this dimension appears twice: in fi as

square centimetres (cm^) and in as units per cubic centimetre (cm“^).

From the condition of equal dimensions we obtain a second equation:

— 1 = 2y — 3x. Finally, we have the dimension of units per square second

(s“^) from the left-hand side and on the right-hand side units per second

(s~^) appear only in the Planck constant. From this we obtain the equation

—2 = —y and immediately find y = 2. From the first equation we find

z = 1, y
= —1, and from the second equation x = 1/3 (1 + 2y) = 5/3.

Thus, for the pressure of a degenerate electron gas we find the following

formula:

(23) p = n ~
me

The value of the dimensionless factor IT is not determined using the dimension

method but this is not very important, since this value cannot be very different

from unity. The most important fact here is that the dimension method permits

the determination of the degrees for all important physical parameters in the

formulae.

The numerical value of IT is obtained only from a complete calculation using

quantum mechanics. It appears that IT = 1/5(3jt^)^^^ = 1.9. Introducing this

value into (23) and replacing by p/2mp we obtain the formula

5m,
(24) P =

5/3

2m,
= Kp5/3

where K is a constant, numerically equal to 3.1 X 10^ atm cm^/g^^^. This

formula also determines the basic characteristics of a degenerate electron gas.

It is easy to understand that the pressure is proportional not to the first degree

of the density but to a higher one. In fact, the pressure should increase as the

density increases due to the fact that a great number of particles collide with the

partition. In addition, as the density increases in a degenerate gas the number

of electrons situated on the same trajectories, as well as their velocities, should

also increase and consequently also the impulse transmitted by each electron.

Thus the simultaneous increase of collisions with the partition and of electron

velocity leads to a more rapid increase of pressure with the density.

This formula defines the degenerate gas pressure if the role of temperature is

small. In particular, it is valid at the absolute zero of temperature. If the gas

temperature (of electrons and atomic residues) is not zero, the possibility of
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applying it is determined by the relation between thermal velocities and the

velocities which the electrons need to place themselves on a limited number of

trajectories. If the thermal velocities are small—smaller than the velocities of

degenerate electrons—the temperature can be neglected and formula (24) can

be used, but if the thermal velocities are greater than those of electrons in a

degenerate gas then, on the contrary, the characteristics of the gas are

determined by its temperature and the degeneracy of electrons can be

neglected. Then we must use formula (24). Instead of comparing the velocities

we can compare the pressures: if the impulse transmitted to the partition by

thermal motion is smaller than the impulse of electron velocities due to

degeneracy (i.e. if the pressure according to (24) is greater than the pressure

determined with Clapeyron’s formula), then the gas will have the

characteristics of a degenerate electron gas. In the opposite case the gas will not

be degenerate. We write this condition in the form of an inequality:

A small transformation will give us the lower limit for the values of density at

which the electron gas is degenerate:

3/2

We now introduce the numerical value: p > (8.3 x 10^ TI2 x 3.1 x 10^^)^^^

= (r/75 000)^^^g/cm^. For example, at a room temperature of 300 degrees in

the absolute scale, the electron gas becomes degenerate at a density of

2.5 X lO'^'^g/cm^ (!), i.e. the electron gas in our Earthly conditions is

degenerate, e.g. in metals, where the density is of the order of lOg/cm^.

Indeed, we must keep in mind that this formula is valid if p = 2. On Earth the

molecular weight is much greater and the parameter K of formula (24)

respectively smaller (p^^^ times).

In stellar matter the temperature is, as we know, of the order of ten million

degrees. One could imagine that the temperature in white dwarfs is of the same

order. In fact these stars emit an energy, possibly due to thermonuclear

reactions, for which a temperature of this magnitude is needed. We introduce

into (25) a temperature T = 14 million degrees. We find that the stellar matter

becomes degenerate if its density exceeds 1000 g/cm^. The mean density of

white dwarfs is tens and even hundreds of thousands of grams for Icm^.

Consequently white dwarfs should basically be composed of degenerate

electron gas. Only the most exterior layers of the star where the density of the

matter is less than 1000 g/cm^ behave according to the ideal gas law. Here lies

the solution of the paradoxal characteristics of the stellar matter of white

dwarfs.

Thus at the high densities peculiar to white dwarfs, the pressure must be
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determined by formula (24) independently of the temperature. Therefore we
cannot calculate the temperature in the centre of a white dwarf in the way it has

been done in Chapter 2. Nevertheless, using this method we can calculate the

density in the centre of a white dwarf, since the weight of the stellar matter

column should be balanced at low temperatures necessary to counteract the

great pressure like in ordinary stars, but a great density is also essential to

counteract the great pressure in the degenerate gas of the white dwarf matter.

Introducing into (3) the expressions for the pressure of the degenerate electron

gas and pc for the density in the centre of a white dwarf, we obtain

and the central density

(26) Pc
4/pM \

2/5

KR / .

Using this formula we calculate the density values in the centre of three white

dwarfs given in Table 1. The results are shown in Table 4. The central densities

of white dwarfs are four to ten times greater than their mean densities.

Certainly at such densities a white dwarf is composed of degenerate gas not

only at a temperature of several millions of degrees but also at temperatures of

hundreds of millions of degrees. We underline again that the immense pressure

in the centre of a white dwarf does not depend on temperature—a white dwarf

can exist even at a temperature of absolute zero, when it will be not a white

dwarf but a ‘black dwarf, since at absolute zero temperature a star cannot

radiate energy.

Table 4

Name of star Central density, k/cm^

40 Eridana B 400

Sirius B 250

Van Maanen 2 300

Thus the structure of a white dwarf does not depend on temperature and

subsequently on luminosity. For this reason the mass-luminosity relation does

not exist at all for white dwarfs. However, there is another relation which exists

for white dwarfs; this is the mass-radius relation.

The necessity of this relation can easily be explained. In fact, we ask the

following question: can white dwarfs of determined mass have different radii

and thus different central densities? We admit this possibility. However, what

will prevent them from passing from the state with a big radius to a state with a
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smaller radius? In an ordinary star this is not possible since in the ‘attempt’ of

stellar contraction the temperature increases in the centre of the star and brings

about a very strong increase of thermonuclear energy emission. On account of

this the temperature and also the gas pressure increase even more, bringing the

star back to its initial state.

Temperature is not essential for the equilibrium of a white dwarf. We can limit

our consideration to the cool ‘black dwarfs’ . The stellar matter in all such dwarfs

is the same (i.e. at the same zero temperature). We give a simple example: from

pieces of the same metal with the same mass one can form compact spheres of

only one radius. The same is true for ‘black dwarfs’ . From identical masses of the

same stellar matter (degenerate electron gas at zero temperature) one can

‘make’ compact spheres of equal radii. If the temperature in the interiors of

white dwarfs are different from zero
,
their radii (at identical mass) will also differ

slightly but not by verymuch
,
since the temperature has no great influence on the

pressure of a degenerate gas. We can compare this with the small growth of

radius in the case of heated metal spheres.

Thus
,
the radius of a white dwarf is determined (in the first approximation) by

its mass. Nevertheless, an important difference exists between white dwarfs and

metal spheres (besides the disparity of masses) . The radii of metal spheres made
of one material are proportional to the cubic root of the mass, whereas the radii

of white dwarfs decrease with the increase of mass. This phenomenon can be

explained in the following way. In more massive white dwarfs the self

gravitational force contracting the star is large. This leads to an increase in the

central (and mean) stellar density and subsequently also to a decrease in the

radius . The metal spheres do not fall apart as they are restrained by atomic forces

which do not depend on the mass of the sphere; for this reason the density of the

spheres does not depend on their mass.

The theoretical calculation of the mass-radius relation for white dwarfs is

relatively complex but in the case of small densities this relation can be easily

found.

Returning to formula (26) ,
we can calculate that according to the data given in

Table 4 the central densities in white dwarfs are four to ten times greater than

their mean densities. A precise calculation shows that pc - 6p. A simple

formula will give the relationship between the radius of the white dwarf and its

mass:

K 2K

GM^'^
8 X 10^

1/3

M /

km

One can see that the radii of white dwarfs can be compared to the Earth’s radius

(6.4 X 10^ km) and that they decrease as the mass increases.

Formula (27) is obtained in a very simple way and appears to be in good

agreement with observational data if the mass of the white dwarf does not

exceed half of the solar mass. For larger masses this dependence is more

complex; therefore in Figure 8 we show the graph in a logarithmic scale of the
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Figure 8 Mass-radius relation for white dwarfs

entire calculated dependence of a white dwarfs radius on its mass. The points

indicate known white dwarfs (including those given in Tables 1 and 4).

Observations confirm the theory quite well and prove that white dwarfs are

effectively formed of a degenerate electron gas. Figures also shows that at

small masses the white dwarfs radius hardly varies. The left-hand part of the

graph corresponds to formula (27) and is in good agreement with it.

This same figure shows that if the mass of the white dwarf approaches the

limited 1.4Mq = 2.8 x 10^^ g its radius tends to zero, i.e. the self

gravitational force of these stars is so big that the degenerate gas pressure is

incapable of keeping the star in equilibrium. White dwarfs with a mass greater

than 1.4Mo cannot exist in general. This is a very important theoretical

result and we shall appreciate its meaning when studying stellar evolution.

Observations have shown that the mean of the white dwarf masses is 0.8-0.

9

solar masses and their radii are on the average a hundred times smaller than the

solar radius. Thus, ‘ordinary’, i.e. observed, white dwarfs are still far from the

mass limit (often called the Chandrasekhar limit). What would happen if this

limit is approached and what does the convergence of the radius to zero mean?
Let us try to answer these questions.

We already know that an increase in the mass causes an increase in the

central density. In its turn, the increase in density always leaves a smaller space

for the electron trajectories. For this reason they must always occupy higher

energetic states. In other words, the smaller the space for electrons the greater

should be their energy. In the final account, at sufficiently high densities the

electron velocities are close to the velocity of light. The motion of electrons will
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then obey the laws of the theory of relativity. Such a gas is called a degenerate

relativistic electron gas. The equation of state is different, for it links the

pressure and the density of the degenerate relativistic electron gas; it can also

be deduced by the method of dimension analysis.

We must determine the relationship between the pressure p and the electron

concentration n^. As previously, this pressure is determined by the Pauli

principle, i.e. it depends on the Planck constant ti. Contrary to the case of a

non-relativistic gas, there is no dependence on the rest mass of the electron m^.

Since we now consider the case of relativistic electrons, their impulse is

determined by the proximity of the velocity of the particles to the velocity of

light c. Consequently, there should be a dependence of pressure on c. Instead

of (22) we write

(28) P =

and with the same reasoning as for (24) we get y = 1, z = 1, and x = 4/3.

Therefore the pressure of a degenerate relativistic gas is

(29) p = U^\vcnt'\

The numerical value of a dimensionless constant is again determined only from

the precise theory which yields 111 = 1/4(331^)^^^ = 0.78. Again replacing /ig t>y

p/2mp we obtain

P = (3

4̂
he

where the constant Ki equals 4 x 10^ atm . With this equation we can

also calculate the structure of a very dense white dwarf. This seems to be easy if

we use the method that led us to formula (26), i.e. if we compare the

gravitational pressure according to formula (3) with the pressure of the

degenerate relativistic electron gas (30) calculated at the stellar centre:

(31) /fiPc® = 4G —
R

However, later we meet a difficulty. In white dwarfs with an equation of state

(24) the central density is six times bigger than the mean density. As soon as the

electrons have velocities comparable to the velocity of light, the possibility of

contraction of the degenerate gas increases and therefore in the central parts of

white dwarfs with an equation of state (30) the density is much greater. In such

stars the central density can be several tens of times greater than the mean

density. Moreover, in this case the relation between the central and mean
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densities depends on the stellar mass: the greater the mass, the higher the

electron velocities in the centre and the larger the central density. The precise

theory shows that in the limiting case the central density is about fifty times

larger than the mean density. In stars with such a large drop in density,

formula (3) with factor 4 becomes inaccurate.

In order to obtain the formula we need we shall reason in the following

way. The gravitational pressure (formula 3) is proportional to the product

Gp MIR ~ GM^IRI^. We do not know the proportionality coefficient and will

therefore designate it by <2
,
that is p = aGM^IR^. In very dense dwarfs the

central density is proportional to the mean density ~ p ~ MIR^. Here,

too, we do not know the coefficient of proportionality and will designate it by

the letter b. We assume that the values a and b are constant and independent

of the mass and stellar radius. Then instead of (31) we have

M \4/3

R^

GM^
a

R^

We immediately see that the stellar radius falls out of this equation and its

mass is clearly defined by

G / •

Thus, at first sight, we have obtained a strange result: in white dwarfs where

the inner density is so high that the electrons move with a velocity

approaching the velocity of light, the mass should be clearly defined and its

radius in general does not depend on the mass. How can we understand this

result? Let us go back to ordinary white dwarfs consisting of non-relativistic

degenerate electron gas and do, at least mentally, the following experiment.

We shall gradually increase the mass of the white dwarf by adding material

from the exterior. This mental experiment does in fact happen in real

conditions in cases where the white dwarf is part of a close binary system and

the second star loses matter.

From Figure 8 and formula (27) we see that the mass of a white dwarf

increases as its radius decreases and the density, especially in the centre,

increases. In the central part the gas becomes relativistic, but according to

formula (30) this brings about a certain slowing down of pressure growth as

the density increases: if we had p ~ before, we now have p ~ As
already noted, this means that the opposition of the gas to gravitational

contraction will now be smaller and even a small stellar mass increase will

bring about rapid contraction, especially in the central part. If we increase the

mass a little more, a greater part of the stellar gas will become relativistic, the

ability to resist contraction wjll decrease, and the stellar radius will rapidly

decrease with the increase in mass. This corresponds to the sharp fall in the

mass radius curve on the graph in Figure 8. Formula (32) also corresponds to
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the limiting mass of a white dwarf which can no longer resist the forces of

gravitational contraction; for this reason the mass should not depend on the

radius.

The exact theory gives the numerical values for the factors a and b. If,

moreover, we keep the value for the molecular weight Pe (without adjusting it

to two as we have done above), then we obtain for the limiting mass of a white

dwarf the following precise formula:

M = 4.5
3mp

PeCG'mp/lic)^^^

5.75

—

T

l^e

The limiting mass of white dwarfs is called the Chandrasekhar limit. With

Pg = 2 this limit equals lAAM^.
Formula (33) is interesting as it determines the characteristic mass of a star by

universal constants. If the mass of a proton becomes greater, then the limiting

mass of a white dwarf will decrease as m~ . It has been assumed that the

gravitation constant G varies with time
;
then the limiting mass of white dwarfs

should also vary as Indeed, the gravitation constant does not change

and the magnitude of the mass of a proton is fixed by the value

mp = 1.64 X although we do not know why this is really so. The

relation of astronomical parameters and microscopic parameters described by

formula (33) is always of continuous interest.

Nevertheless, at very large densities we must consider not only the special

theory of relativity but also the general relativity theory, according to which in

the proximity of massive bodies the characteristics of space and time change. It

is beyond the scope of this book to explain the general theory of relativity (the

reader will find many books on this subject) but we shall explain a few

consequences. Close to the surface of a body with a large gravitational force,

space is distorted and time changes. This change of the curvature of space can

be observed by the deviation of the light beam at an angle equal to about 4/M/

c^R radians and after a decrease in the velocity of light tofMIcR centimetres per

second. HereM is the mass of the body, R is its radius, and c the velocity of light

in the vacuum. The larger the mass and the smaller the radius, the greater are

the effects of the general theory of relativity.

We shall now study the contraction of a white dwarf taking into account the

general theory of relativity. The decrease in the velocity of light and the

increase in the curvature of space prevents the electrons from occupying higher

energy levels and occupying a smaller volume—the curved space has, at a given

dimension, a smaller volume than the ‘plane’ space. As a result the

counterpressure against contraction decreases and at a density higher than a

certain critical value the white dwarf ceases to be stable, i.e. can no longer

exist. The magnitude of the density limit of the most massive white dwarfs is

variable, depending on the hypothesis of the chemical composition of the

matter of white dwarfs. If a white dwarf is composed of helium, the limiting

density will be about lO^g/cm^. However, if the majority of nuclei of the white
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dwarfs matter is composed of iron (this is the upper limit of formation of

chemical elements in stars) then the limiting density increases by up to

2 X lO^^g/m,^. The radius of such a star will be about 1000 km—six times

smaller than that of our Earth.

We have still not arrived at the limit of the possible. At very large densities

the process of the so-called neutronization of matter starts. Its nature can be

presented as follows. The atomic nucleus can absorb an electron which will

transform one of the protons of the nucleus into a neutron. In this process one

neutrino will be released, which will freely leave the star and carry away part of

the energy that belonged to the absorbed electron. In general conditions the

nucleus formed with an excess of neutrons is unstable and in the process of

radioactive decay it should again return to the initial nucleus, releasing a new
electron. In a white dwarf this is not possible—a re-expelled electron has less

energy than the initial one and there is no place for it in the degenerate gas. The

nucleus thus remains with an excess of neutrons. This process continues until

the nuclei absorb the greatest part of the electrons and are converted into

‘neutron gas’.

Such neutronization starts at densities smaller than the limiting value defined

by the general theory of relativity (i.e. at ~ 10^-10^° g/cm^), and at nuclear

densities of about g/cm^ practically the entire gas becomes neutron

gas. This leads to the formation of neutron stars, which we shall study in the

next chapter. Here we only note that on account of neutronization of matter

the mass limit of white dwarfs decreases slightly—instead of 1.4 of the solar

mass this limit will be about 1.2 of the solar mass.

Until now we have studied the structure of a white dwarf, only considering

‘black dwarfs’ with reference to their temperature. We did not pay attention to

the fact that they radiate energy. For this reason we shall now study energy

sources and the energy transfer in the interior of these stars.

As we know, the luminosity of an ordinary star is determined by the

transparency of the stellar matter. How transparent is the matter of a white

dwarf? As strange as it would appear at first sight, the matter of a white dwarf

notwithstanding the great density, is quite transparent. This phenomenon can

be easily explained. The reason for the opacity of ordinary stellar matter is the

absorption of light by electron transitions from a close orbit to a remote one.

The remote orbit should therefore be free of electrons or have only one

electron. In fact we know that according to Pauli’s principle one orbit should

contain no more than two electrons. This is also true for free electrons in the

stellar matter: in order to absorb luminous energy they must pass from one

trajectory to another. However, in the degenerate matter of a white dwarf all

trajectories are occupied, the electrons can go nowhere, and therefore they

cannot absorb energy. It is true that some electrons with high energies can

nevertheless pass to another trajectory if they can increase their velocity to

create a difference from the velocity of the electrons which already occupy that

trajectory. Thus, light can be a&sorbed in a degenerate gas only by a few rapid

electrons and consequently the transparency of a degenerate electron gas is
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comparatively high. The stellar matter of white dwarfs has a good thermal

conductivity. This is testified by the well-known fact that metals, which are also

composed of degenerate electron gas, are good conductors of heat and electricity.

Thanks to the high transparency and thermal conductivity of the degenerate

electron gas, the temperature in the interior of white dwarfs is nearly constant. In

fact, good thermal conductivity rapidly smooths out the temperature. Of course

we must take into account the fact that a white dwarf is not entirely composed of

degenerate gas, since the degeneration takes place only at densities exceeding

1000 g/cm^ (at a temperature of 14 million degrees). For this reason the external

layers of a white dwarf are composed of ordinary, not degenerate, ideal gas with

poor transparency, as in any ‘ordinary’ stellar matter. This layer of

‘non-degenerate’ stellar matter detains the thermal flux coming from the interior

of the white dwarf. In an ordinary star the temperature increases from thousands

to ten milhons of degrees over the length of its radius. In a white dwarf the

temperature increases from thousands to ten millions of degrees in a narrow

surfaee layer with a thickness ten times smaller than its already very small radius,

and then for the rest of the distance to the centre it remains nearly constant.

We can describe the structure of a white dwarf as an immense sphere composed

of degenerate electron gas with a density in the centre of hundreds and thousands

of kilograms for one cubic centimetre. The temperature in the interior of the

sphere is almost constant. On the outside it is surrounded by a comparatively thin

layer (a few per cent, of the radius) of ordinary stellar matter, where the density

falls from thousands of grams per cubic centimetre to zero and the temperature

decreases from milhons to one thousand degrees.

In the outer gas envelope there should exist an energy flux towards the outside.

Consequently, either in the degenerate gas or on its limit there should be sources

of energy. We already know that there is no hydrogen in a degenerate gas: at a

high density it would enter into a reaction releasing a great amount of energy and

this is not observed. Calculations show that in the degenerate part of a white dwarf

the hydrogen abundance cannot exceed 0.05 per cent. On the other hand,

observations show that hydrogen exists in a gas envelope, at least in its surface

layers (this was discovered through spectral analysis). Therefore we can make an

essential assumption: thermonuclear reactions in a white dwarf can occur in a gas

envelope in a thin layer immediately adjacent to the degenerate stellar matter.

The energy releasing layer must be effectively thin because of the strong

dependency of thermonuclear energy release on temperature. The fact that this

layer is thin explains why so little energy is released in white dwarfs although the

temperature is the same as in ordinary stars. Another question arises: why is there

no hydrogen in a degenerate gas when it has been conserved in the gas envelope?

This will be answered in our study of stellar evolution. Indeed, theory shows that

sueh an energy release is unstable in the close surface layers. The white dwarf

should in this case pulsate and this has not been confirmed by observation.

Even if there is no hydrogen in the gas envelope of a white dwarf, it can

nevertheless radiate as a result of cooling. In fact in the interior of the white dwarf

there is a supply of thermal energy which slowly filters through the opaque.
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isolating gas envelope. Since this filtering process is slow the cooling of the

white dwarf takes a long time. It is easy to calculate the duration of cooling of a

white dwarf.

However, we must first determine the temperature in the degenerate part of

a white dwarf. It is evident that the temperature of a white dwarf depends only

on its luminosity—as a matter of fact, we already know that the pressure in the

interior of a white dwarf does not depend on the temperature and consequently

its radius and mass are not related to temperature either. It is quite simple to

deduce the formula for determining the interior temperature of a white dwarf

from its luminosity, but we shall give only the final result:

/LM^\2/7
(34) 7^6 - T ~

] million degrees
' A—/ ^ -L r-i- '

If we know the luminosity and mass values of the white dwarf we can easily find

its interior temperature with the help of this simple formula.

Now let us see how to calculate the cooling of the white dwarf. It is known
that the amount of heat contained in 1 g of a single atom gas equals 3/2 A T/^i (A

is the gas constant and p the molecular weight of the gas composed at atomic

residues;^ should not be confused with the molecular weight of one electron Pe

which is always close to 2 as the value of p can be much greater). The same

amount of thermal energy is also in 1 g of degenerate electron gas where it is

distributed over the gas of ‘atomic residues’. This is the so-called ‘storehouse’

of thermal energy in a white dwarf. Now we can express the total supply of

thermal energy in a white dwarf with the formula

'x at
(35) IT = M

2 p

where T is the temperature in the degenerate part of the white dwarf and M is

its mass. Since the gas layer represents a few per cent, of the stellar mass,M can

be considered as the mass of the whole white dwarf. It is evident that if we
divide the energy supply of the white dwarf by its luminosity, i.e. by the amount

of energy radiated in 1 s, we obtain the cooling time of the white dwarf:

.... _ 100 / Lo M \ 3/7

t — million years
p \ L M©/

This formula gives a lower limit for the cooling time since as time passes the

luminosity of the white dwarf decreases.

The cooling time also depends on the chemical composition of the white

dwarf. We already know that there is no hydrogen but it is difficult to

determine the amount of helium and other elements. If in the evolution process

of a star, which in the end turns into a white dwarf, the temperature has not

reached a hundred million degrees then the entire white dwarf will probably be
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Table 5

Name of star Temperature in millions Cooling time

of degrees of years

40 Eridana B 13 400

Sirius B 9 190

Van Maanen 2 700 1200

Figure 9 The temperature-luminosity diagram for white dwarfs

composed of helium (p = 4). This is probably the case for stars with a small

mass. In bigger stars the temperature could be higher during this evolution

process and therefore white dwarfs can exist which are composed of

magnesium and even iron (p = 24 and p = 56 respectively). In the latter case

the white dwarfs cool more quickly. Considering that the known white dwarfs

are of small mass we shall limit ourselves to those composed of pure helium.

Using the formula given above we obtain their temperatures and characteristic

cooling times which are given in Tables 5. This shows us that, first, the

temperatures of white dwarfs are relatively small and correspond entirely to

ordinary temperatures in which thermonuclear reactions take place and,

second, if thermonuclear reactions are not sufficient (as, for example, in the

case of Van Maanen’s star) the cooling of the white dwarf can assure its

luminosity during hundreds of millions of years. This concerns the problem of

stellar evolution which will be considered in Chapter 10.

To conclude this chapter we can now show on the lower left-hand part of the

Hertzsprung-Russel diagram the positions of white dwarfs (Figure 9). On the
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abscissa, in place of the spectral type we have the corresponding surface

temperature. Almost all white dwarfs have radii within the range of

0.02i?Q = 1.4 X 10^ cm to 0.005 = 3.5 x 10^ cm. The cooling of

white dwarfs is indicated on the graph by points parallel to the lines of equal

radius down to the right-hand side.

Thus all particularities of white dwarfs (high densities, small radii, low

luminosity) have been entirely explained by modern physics. It is difficult at

first sight to expect an analogy between the behaviour of free electrons in a

metal well known for electron conductivity and the unusually dense matter of

white dwarfs. The physical nature of one and the phenomenon of the other is

the same. The difference lies only in the scales.
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Superdense stars—pulsars and
‘black holes’

In the preceding chapter we saw that if the dense matter of a white dwarf is

continuously contracted this matter will be neutronized—the electrons are

‘crushed’ into the atomic nuclei, react with protons, and turn into neutrons. Such

nuclei will then disintegrate and neutron gas appears. One could imagine, at

least in principle, that the star is contracted to a state where all the matter is

converted into neutron gas. We shall call such a star a neutron star. However, it

must be noted that real neutron stars which are observed, such as pulsars, have a

more complex structure. There is neutron gas as well as hyperon gas, ordinary

plasma, and hard crust. In this new astrophysical problemwe shall proceed in the

following way. First we shall study a simple case of a star entirely composed of

neutron gas. Then we shall describe a real model of a pulsar. After this, we shall

see how they are formed. Finally we shall consider denser objects
—

‘black

holes’.

Let us imagine a sphere composed ofpure neutron gas held together by the self

gravitational force. How can we determine the parameters of such a sphere?

How, for example, can we find its radius if the mass of the sphere is given?

At low temperatures neutron gas has the same behaviour as an electron gas

—

in this case quantum degeneration also appears. The greater the amount of

neutrons in a limited volume, the greater their energy and even greater the

pressure of the neutron gas. For this reason the calculation of the neutron gas

pressure can be done in the same way as for the degenerate electron gas . Here the

pressurep depends only on the concentration of neutrons
,
the Planck constant

Ii, and in this case on the mass of the neutron Using the method of dimension

analysis we obtain the same formula as (22) with replaced by m^. The neutron

gas pressure is

5/3
(37) p = n —

mn
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Here also the value of H is not determined by considering the dimensions. We
shall take the same value as that used for an electron gas, i.e. we assume

n = 1.9 ~ 2. The molecular weight of the neutron gas is very close to unity

since the masses of a proton and a neutron are almost equal. Therefore we
obtain for the neutron gas pressure

P ^ 2ti'
.5/3

m 8/3
n

Where the constant = 5.3 x 10^ atm cm^/g^^^. If we ignore the difference

between molecular weights, the difference between the degenerate electron

and degenerate neutron gas at equal densities will be of a factor equal to the

mass ratio of a neutron and an electron.

Unfortunately formulae (37) and (38) are not very precise. This is due to

the fact that in a neutron gas the density is quite high, which means that the

neutrons are close to one another. In this case the pressure of the neutron gas

is affected by the strong mutual' attraction of the neutrons at small distances,

i.e. the action of nuclear forces appears, which in general retains the neutrons

in the nuclei. However, at extremely short distances the neutrons are

repelled. In order to calculate the nuclear attraction and the repulsion of

neutrons Cameron assumed the following formula for the pressure of a

neutron gas:

p = 53 X + 1.6 X 10 - 0.14p^ atm.

Here the second term takes into account the repulsion at small distances—it

becomes larger at very high densities—and the third term takes into account

the mutual attraction of neutrons which evidently decreases the pressure of

neutron gas proportionally to the square of the number of particles. But in the

first approximation we can still use the simple formula (38).

Knowing the equation of state of a neutron gas we can now consider

neutron stars. Indeed, we can employ methods entirely analogous to the

theory of the structure of white dwarfs. Here formula (27) is valid, only now
in place of the ’electron’ value of the constant K we must write the ‘neutron’

value for this parameter. We then obtain

12
M 1/3

o

M
km.

The radius of neutron stars is only a few kilometers! This can be seen from

even simpler estimations. The gas will be almost entirely composed of

neutrons only if its density is of^the order of 10^"^-10^'^ g/cm^^. The radius of a

homogeneous sphere with a mass equal to the mass of the Sun and a density

of 3 X 10^"^ g/cm'^ is R = (3M0/(4jTp))^^^ = 12 km, which is a value close
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to (39). Certainly the density of a neutron star is not homogeneous, but it is

evident that neutron stars should always have a small radius.

Thus a simple model of a neutron star composed of pure neutron gas

describes a configuration with a mass approximately equal to that of the Sun
and with a radius of 10-12 km. As in white dwarfs, the central density is six

times greater than the mean density. In reality, however, the model of a

neutron star is more complex. The matter cannot remain a neutron gas up to its

surface. Therefore we must consider the structure of a neutron star taking into

account all possible changes in the state of the matter. After the discovery of

pulsars, astronomers and physicists paid particular attention to neutron stars

and many papers were devoted to a theoretical analysis of neutron star

structure. We shall now briefly expose the results of these studies.

First of all, let us note that a neutron star is formed from a hot star after a

strong contraction. It is therefore evident that the temperature in the interior of

a neutron star will remain high. There are no precise data, but probably the

surface temperature of neutron stars is about hundreds of thousands of degrees

and in their innermost the temperature reaches hundreds of millions of

degrees. Therefore the inner temperature close to the surface of neutron stars

should be relatively small compared with those in the deeper layers which

increase to very high values.

At the very surface of a neutron star the density is about 10"^ g/cm^. This is the

density of the matter of white dwarfs composed of atomic nuclei and

degenerate electrons. It is true that here the matter is in a very strong

gravitation field of the neutron star and moreover its temperature is very much
smaller than in the interior of white dwarfs. Therefore this matter has the

characteristics not of a gas but of a hard body.

The chemical composition of the outer layers of neutron stars is apparently

such that the most common element is iron, although there can also be atomic

nuclei of other elements. In the atomic nuclei of iron, protons and neutrons are

densely packed. These atomic nuclei are the final product of all nuclear

reactions with energy release. Thus, the exterior part of neutron stars

represents a hard, primarily iron, crust where the density increases from the

surface towards the interior. It is thought that ‘mountains’ exist on the very

surface of the crust of neutron stars, as on the Earth’s surface. However, the

height of these ‘mountains’ does not exceed several tens of centimetres as

higher ‘mountains’ are not possible due to the great force of gravity.

The hard crust of neutron stars composed of ordinary atomic nuclei and

degenerate electron gas has a thickness of about 100 m, reaching a depth where

the density of matter is 4.3 x 10^^ g/cm^. In neutron stars with a small mass

(0.13Mq.) the hard crust can occupy half of the radius of the star, but in the

‘heaviest’ neutron stars ifs thickness is not more than 100 m. If we go deeper

into this crust we note that there is a slight change of the chemical composition.

Close to the surface iron prevails with an atomic weight of about 56, but close to

the inner limit of the hard crust there exist more atomic nuclei of the type of

zirconium (with the atomic number 40) and of nuclei with very large atomic
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weights reaching 127. This is due to the fact that the electrons ‘crushed’ into

atomic nuclei decrease their atomic number but increase the number of neutrons

in these nuclei. The decrease of the Coulomb repulsion force favours the fusion

of nuclei and also a total conversion into neutron gas.

The most interesting layer is the outermost one, several meters thick, where

the density of matter does not exceed 10^ g/cm^ . This is also a hard layer with the

particularity that the material of the neutron star’s crust is strongly magnetized.

The magnitude of the magnetic field reaches G. We shall study these

magnetic fields later.

The intense transformation of matter composed of atomic nuclei and

degenerate electrons into a neutron gas starts at depths where the density exceeds

4.3 X 10^^ g/cm^ and even at depths where the density reaches 10^^ g/cm^ there

is a greater amount of matter with free neutrons than with atomic nuclei. At
depths where the density reaches a magnitude of 3 x 10^"^ glow? almost all of the

matter has become neutron gas.

The thickness of this neutronization layer is about 100m in the heaviest

neutron stars. Thus, the entire thickness of the crust of ordinary neutron matter

of a neutron star, having about the same mass as the Sun, represents 200 m—and

this for a total stellar radius of about 10 km! Here the largest part of the neutron

star matter is in the form of neutron gas and therefore we can apply exactly the

same approximations as used previously. In not very massive neutron stars (e.g.

at M = O.IMq) a density of 3 X lO^'^g/cm^ exists only close to the centre,

since the mass is too small to let the star be contracted to greater densities. Here

the stellar matter represents a mixture of neutron gas, atomic nuclei, and

electrons. The study of the structure of such stars is complex.

From this we can draw an important conclusion. Neutron stars cannot exist if

their mass is small: in such stars the density is small and the neutrons disintegrate

into protons and electrons. Until now it has not been possible to calculate

precisely the limiting mass of neutron stars, but it should not be less that

At a density of p ^ 3 x 10^"^g/cm^ the neutron star matter is composed of

neutrons with a small addition of protons and electrons (4 per cent, of each

charged component). The pressure is almost entirely determined by the density

of neutrons. At even greater densities (p ^ lO^^g/cm^) in the central parts of

most massive neutron stars there are also hyperons, elementary, charged, and

neutral particles with masses greater than the mass of a proton and a neutron . It is

probable that the neutron gas behaves like a superfluid and the pressure of the

charged particles adds the characteristics of a superconductor to this matter.

The study of neutron stars takes into account all particularities of the

behaviour of the matter at great densities. However, the general dependence of

the radius of a neutron star on its mass, described by formula (39), will still be

valid if the mass of the neutron star is npt too small.

We already have mentioned tjiat neutron stars are pulsars. The fundamental

characteristic of a pulsar is that distinct impulses of radiation are observed with a

well-defined periodicity. How can this periodicity be explained? It is evident that
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this can be done through either one of two phenomena: pulsations, i.e. periodic

contraction and expansion, or rotation.

Pulsating variable stars composed of ordinary gas will be considered in

Chapters. There we shall also study the causes of periodic expansion and

contraction of stars. It is true that these causes cannot be applied to neutron

stars but we shall assume that they can also pulsate. In Chapters we obtain

relation (46) which determines the pulsation period for a given mean density.

This relation is universal and can be applied to neutron stars as well as to

ordinary gas stars. We introduce into formula (46) the value for the mean
density p equal to 3 x 10^"^ g/cm^ and find that if a neutron star starts pulsating

the pulsation period should be about 7 x lO'^^s. Even the shortest periodic

pulsar has a period of 3 x 10“^ s. Thus the pulsations cannot explain the

phenomenon of the periodicity in the radiation of pulsars and moreover one

can consider that neutron stars in general do not pulsate.

It remains to assume that they rotate and that the period of impulse

repetition is the period of rotation. A pulsar with a period of 3.3 x 10“^

s

makes 33 r/s and even the slowest rotating pulsar, with a period of 4.8 s, makes

0.21 r/s.

Such rapid rotations can be due to the origin of pulsars. We assume that

initially a pulsar was a big gas sphere with radius rotating with a certain

period Pi. In fact, rotating stars are observed and the rotation periods of

certain stars can even be about 30 hours, although the rotation period of the

Sun is much greater—almost 30 days. We assume that in its evolutionary course

this star was contracted to the state of a neutron star. Everybody knows that in

this case it should rapidly untwist. The variation in the rotation state is

determined by the conservation law of the rotational momentum. As we know,

the rotational momentum is the product of the moment of inertia I and the

angular velocity of rotation, equal to 2 jt/P. In order to calculate the moment of

inertia we must know the distribution inside the star, but / will aproximately be

O.IMP^, where M is the stellar mass and R the radius. Consequently, at the

contraction of the star the product is / x 2 jt/P = 0.6MR^IP. If the mass does

not change the value R^/P stays the same. A pulsar with radius R2 generated

from a star with radius Pi will rotate with a period P2 ,
expressed by the formula

Let us now consider some numerical values. Let the stellar radius be equal to

7 X 10^ km, up to the contraction, that is the same as the radius of the Sun. If

we suppose that the radius of a neutron star is 14 km, we find that after the

contraction the rotation period should decrease by about 2.5 x 10^ times. A
neutron star originating from the Sun will make one turn in 10“ s. It is

possible that the initial rotation periods of neutron stars were really as short as

this and that the presently observed pulsars have slowed down their rotations.

Deceleration of rotation exists in pulsars. In many of them, particularly in
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those with small periods, there is in fact a gradual but very regular increase of

the period. As a rule, the smaller the period, the more rapid its increase. In the

most rapidly rotating pulsar with a period of 3.3 x 10“^ s, this value will

increase by 1.3 x 10~^s in a year. In another rapidly rotating pulsar with a

period of 8.9 x 10“^ s, the increase of the period will be 3.5 times slower,

and for other pulsars it is even more.

In two of the most rapidly rotating pulsars ditches were observed in the

rotation when the period suddenly decreased with a jump and then continued

to grow. The ditches in the period were small and can be explained by the small

variations in the radius of the neutron star or by the redistribution of matter in

its surface layers. There is a theory that flows and ‘starquakes’ can occur in the

crust of a neutron star which give rise to ditches. However, other theories also

exist and the phenomenon of these ditches is still not very clear. Moreover

these events are quite rare.

Observations show that neutron stars decelerate their rotation, i.e. they lose

rotational energy. The value of the rotational energy of a neutron star is

V2 7(2 Ji/IF)^ and knowing the rotational deceleration we can easily determine

how much energy a pulsar should lose in a unit of time. For example, in the

most rapidly rotating pulsar the rotation energy equals 5 x 10"^^ erg. The
change of period by 1.3 x 10~^s in a year corresponds to an energy loss of

about 10^^ erg/s. Of course, in other more slowly rotating pulsars, the rotation

energy losses are much smaller but the energy radiated by pulsars in one second

can be much greater than the luminosity of the Sun due to the deceleration of

rotation.

Let us now consider the causes of rotation deceleration in pulsars. The most

effective cause appears to be the magnetic field, although maybe there are

others. We shall now study in detail the magnetic field of a pulsar.

First of all, how can such a magnetic field appear? It is known that at least

some stars have magnetic fields. These fields can be weak, as in the Sun, or

much stronger (reaching 35 thousand gauss). Suppose that a star, together with

its magnetic field, contracts. In this case the magnetic lines of force are also

contracted, meaning that the magnetic field grows. One can show that the

strength of the magnetic field is greatly increased as the rotation period

decreases. Therefore, if the Sun were to contract to the dimension of a pulsar

its magnetic field would have a strength of 2.5 x 10^ G. A star with an initial

magnetic field of 10^ G would generate a pulsar with a magnetic field tension of

10^2 G.

Therefore, a pulsar formed after a stellar contraction rotates rapidly and has

a strong magnetic field. It should lose energy by radiation in the same way as

electric charges lose energy by rotation on a certain orbit with a high velocity.

The magnitude of energy loss is determined by the following formula:

L ^



77

Here //is the magnetic field strength at the surface of the pulsar, R is the radius, c

the velocity of light, and P the rotation period. In formula (40) the value L is

known from observations of the variation of the period (L ^ 10^® erg/s), the

radius of the star being taken as equal to 12 km. Introducing these values into

formula (40) and taking the rotation period to be 3.3 x 10“^ s, we find that

the magnetic field strength for this star is equal to 12^^ G. A pulsar with a

magnetic field, in fact, slows down its rotation by radiation of electromagnetic

energy, which is indeed observed. It is easy to explain the origin of the strong

magnetic field and the rapid rotation of the pulsar.

On the other hand, the same magnetic field and rotation explain the particular

character of their radiation which we observe as separate impulses. As this book

treats the inner stellar structure of a pulser we shall not examine the theory of

radio emission which is due to the hard crust of the pulsar. We shall only make a

few remarks here.

The magnetic axis of a pulsar does not coincide with its axis of rotation.

Therefore as the pulsar rotates, its magnetic axis draws a cone in space. The
magnetic field of the pulsar is strongest in the vicinity of the magnetic poles,

where this axis leaves the surface of the pulsar. Here the magnetic field is almost

perpendicular to the surface. We can assume that electromagnetic radiation is

emitted by regions with the strongest magnetic field and that this radiation comes

out of these regions principally along the magnetic lines of force. In other words,

it is quite probable that the pulsar generates radio emission only along its

magnetic axis . Therefore we observe the radiation of a pulsar onlywhenwe are in

the prolongation of its magnetic axis. This explains the pulsating character of the

radiation of a pulsar—it is simply the displacement of the ray of the pulsar over

the sky. The observation of the radiation of a pulsar resembles the observation of

light from a lighthouse.

Let us come back to the structure of neutron stars. We have already seen that

their mass cannot be smaller than 0. 1 of the solar mass. Is there an upper limit for

the mass of neutron stars? It appears that the masses of neutron stars are also

limited from above. Again we turn to the analogy between degenerate electron

stars (white dwarfs) and degenerate neutron stars (pulsars) . Here the bigger the

mass of the star, the smaller its radius, the denser the matter, and the greater the

velocities of neutrons . Therefore
,
we can expect that as the mass of a neutron star

increases the neutron gas becomes relativistic, and instead of the equations of

state
, (37) and (38) ,

we can use the equation of state (30) which does not depend

on the mass of the particles. There will also be a mass limit, as was the case with

the Chandrasekhar mass limit in white dwarfs. For the neutrons to become

relativistic the neutron gas density should greatly exceed the nuclear density of

the matter. This is therefore probably not the effect that determines the mass

limit of neutron stars.

We now shall imagine what would happen ifwe increased the mass of neutron

stars. The greater the mass, the smaller the radius and the greater the velocity

necessary for the particle to leave the stellar surface . We will use the well-known
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formula which permits us to find the velocity that a body needs to leave the

surface of the Earth:

1 ,
CM

(41) T ^
We obtain this formula by comparing the kinetic energy of a body V2 mv\ to its

potential energy GMmIR. Formula (41) can also be applied to a pulsar. On Earth

the velocity Vk is not very high (Vk — 11.2 km/s) but on a pulsar Vk almost reaches

the velocity of light.

Ifwe continue to increase the mass and decrease the radius of a neutron starwe
can obtain from (41) a velocity Vk equal to that of light. From this moment the star

‘retires within itself—i.e. even light can no longer leave its surface. For this

reason physicists and astronomers say that the star recedes to its ‘black hole’.

This name expresses very well the following phenomenon: light or particles can

be attracted by this body but nothing leaves it for outer space!

The radius at which the velocity of departure becomes equal to the velocity of

light is called the gravitational radius:

2GM M
= 3 — km

where is determined by the mass of the body. The star can be in a stationary

state and can only be seen if the real radius is larger than the gravitational radius.

What would happen if the radius is smaller than its gravitational radius is hard to

tell, but this is not so important. However, no radiation leaves the star and so we
shall never know anything about them. In the general theory of relativity the

existence of ‘black holes’ is related to the curvature of space-time. If the star has

a radius smaller than its gravitational radius the space will close upon itself. Of
course the star does not disappear into its ‘black hole’ without trace: the

gravitational field of the star in its ‘black hole’ remains and it continues to attract

the surrounding matter and to pull it into the ‘black hole’
,
gradually increasing its

mass . Collisions can bring about a fusion of ‘black holes’ into one big ‘black hole’

.

The radii of neutron stars
,
as follows from formula (39) ,

are dangerously close

to their gravitational radii and this effect determines the mass limit of stationary

neutron stars. If we compare the radius of a neutron star from (39) with its

gravitational radius (42) we obtain the mass limit:

/ K C^\ 3/4

(43) ==2.8^,.

Although this calculation is approximate, an even more precise theory leads to

almost the same value.

The masses of neutron stars qre limited from above by a comparatively small

value—not more than about three solar masses. This is an important conclusion.

If a star with a mass exceeding this limit starts to contract this contraction does
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not stop with either the degenerate electron gas or the degenerate neutron gas;

the contraction does not come to a stop at all and the star recedes into its ‘black

hole’. This deduction is very important for the theory of stellar evolution and

we shall study it in more detail in Chapter 10.

Theoretically the existence of ‘black holes’ was predicted by Oppenheimer

and Snayder in 1939 but the real proof of their existence came in 1972-1973

with the demonstration that the X-ray source Cyg X-1, a close binary system

with a rotation period of 56 days, has a mass of about 10-12 solar masses. Thus

we have here a ‘black hole’ which attracts the matter. When falling into the

‘black hole’ the matter is heated and emits X-rays. Obviously ‘black holes’ can

in general be ‘observed’ only if they are part of a close binary system.
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Calculation of stellar models

In physics and astrophysics, as in many other fields of science, one often uses

so-called models of diverse phenomena. By the term ‘model’ we do not mean a

mock-up made of wire, paper, or some other material; ‘model’ here means a

calculation, a numerical description of the corresponding physical object or

phenomenon. If, on the basis of a calculation, we compose a table or a graph

which gives the values of density, temperature, and chemical composition at

different distances from the centre and which shows how the properties of

stellar matter change at different depths, we have calculated a model of the

star. Why do we say that we calculate a stellar model and not describe a star? In

fact, in constructing a model we do not take into account all physical factors but

only the more important ones. The model is not a precise copy; it describes only

the fundamental particularities of the object. Models of stars do not

correspond to their real structure in ail details— we do not know them and

probably never will. We do not need all the details; our task is to show the basic

rules which define the laws of stellar structure and its evolution. This can be

fully realized ifwe build a more or less satisfactory stellar model describing only

its basic properties.

Stellar modelling using calculations is justified as we cannot observe the

conditions in stellar interiors. The calculation of a model based on physical laws

allows us to understand the physics of stars. As a matter of fact, the whole

theory of inner stellar structure amounts to the calculation or, as is often said,

the construction of different stellar models, their comparison, and an analysis

of differences between one model and another. To build models one starts

from the physical laws described in the preceding chapters and from optical

data of stellar masses, luminosities, and radii.

We already know the physical laws used by astronomers in the theory of

stellar model calculations in the form of a system of comparatively simple

differential equations which we shall not give here. These laws are the

following:

1. The equilibrium between tH^d gravitational force of the star and the gas

pressure of the stellar matter (Chapter 2)

80
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2. The transfer of energy from the interior to the exterior through the opaque
stellar matter (Chapters)

3. The law of energy emission in thermonuclear reactions (Chapter 4)

4. The equation of state of an ordinary gas (Clapeyron’s equation in

Chapter 2) or the equation of degenerate electron gas in white dwarfs (in

Chapters)

5. The determination of molecular weight and chemical composition of the

stellar matter (Chapter 2)

6. The relationship between the stellar matter opacity and the temperature

and density (Chapter 3)

The basic parameters of stars (their mass, luminosity, and radius) are also

known (Chapter 1). The author wishes to emphasize that the calculations of

stellar models are based on the physical laws studied in this book. The reader

knows many of them from the school physics course. The differential and

integral calculations used by astronomers are a matter of technique and

methods of computation and not of the physics of theoretical principles.

Stellar models have been calculated since the twenties. In the beginning they

were calculated by hand with slide rules. The calculation of one model needed

months of hard work. Now the models are calculated on powerful computers

and one model is obtained within a few minutes or even seconds of computer

time. Presently thousands of models are being calculated from which a large

number of important deductions on the structure and evolution of stars can be

made.

In the first editions of this book we gave in detail the methods used to

calculate stellar models ‘by hand’. Now this is no longer of use. Although the

principles of computer calculations are analogous to those of hand calculations

it is more convenient to use here an iterative method which is simpler to

explain.

Let us assume that for a given stellar model we know how the density and gas

temperature depend on the distance from the stellar centre r, in other words,

we consider that the functions p (r) and T{r) are known even if their choice is

arbitrary. We divide the star into a large number of concentric spherical layers,

so that within the limits of each layer the density and temperature do not

change very much. It is evident that knowing p and T, we can immediately find

the gas pressure in each layer. Moreover, it is easy to find the acceleration due

to the gravitation force and the weight of each layer.

We shall now assume that the star is in an equilibrium state. This means that

the gas pressure in each layer must balance the weight of all higher layers. This

condition can be easily checked by computation. If it is satisfied, then the

chosen functions p (r) and T{r) correctly describe the model of the star. If this

condition is not satisfied, it means that the choice of these functions is

incorrect. We assume that the weight of the upper layers is larger than the

density in certain layers of the star. We change the functions p (r) and T{r) so

that the pressure will be higher in the layers where it was insufficient and we
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again check the equilibrium of the stellar model. If the gas pressure is still

larger or smaller than the weight of the higher layers, we again change the

functions p (r) and T{r). This process is called an iteration. We chose the

functions p (r) and T{r) until the equilibrium condition is satisfied in all

layers. If the choice of the initial values of these functions was good, only a

few iterations are needed.

To calculate this by hand is a very tedious process, but for a computer it is a

very simple problem. It is not complicated to write a program which

automatically checks the equilibrium condition and also automatically

changes the functions p (r) and T{r) so that the good values are rapidly found.

We mentioned above the condition of hydrostatic equilibrium: the

necessity that the pressure in a given layer balances the weight of all higher

layers. In stars one other equilibrium condition is necessary which must be

taken into account in the calculation of a model: the equilibrium condition

between the generation and transfer of energy.

We will start again from the beginning: we have the functions p (r) and T{r)

and a stellar model divided into many layers. Since we know the density and

pressure in each layer we can first calculate the amount of thermonuclear

energy released in each layer (with formula 14) and second find the opacity of

each layer. It is evident that to satisfy the equilibrium condition each separate

layer must allow energy generated in all layers inferior to it to pass. We verify

this using the computer in the same way as we have done to check the

hydrostatic equilibrium. If the condition is satisfied, everything is alright. If

not, we must again change the functions p (r) and T{r) so that we approach

values which satisfy the condition and the thermal equilibrium, i.e. we use our

iterative method here also.

In the calculation of stellar models the functions p (r) and T(r) are tested

simultaneously for both equilibrium conditions and so with our iterative

method we satisfy simultaneously the equilibrium conditions. Of course the

volume of calculations increases, but for a computer with a large memory this

does not represent a great difficulty.

Having obtained one stellar model as a result of several iterations, it is easy

to obtain another model, for example, with a slightly different mass using as a

first choice of p (r) the value from the first model increased by a factor

corresponding to the variation of mass. For the calculations of the second

model we need less iterations than for the first.

The iterative method has one more important advantage: it allows us to

follow the evolution of stars. We assume that a certain stellar model was

calculated for a given chemical composition and that we have satisfied the

equilibrium condition. After a certain time the hydrogen in the interior of the

star burns up, the energy released decreases, and the equilibrium conditions

are changed. One must calculate a new stellar model, taking into account the

lack of hydrogen in its interior. This can be done easily with the iterative

method taking the initial functions p(r) and T(r) and changing X and V
correspondingly to the amount of hydrogen consumed in each stellar layer
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within a given lapse of time. Thus, it is easy to build an evolutionary sequence

of models of a given star.

Finally, the application of this method allows us to demonstrate some
properties of the inner structure of stars. For example, while checking the

equilibrium between the energy release in the inner stellar layers and its

transfer to more external layers it appears that any choice of the functions p (r)

and T{r) will not allow us to satisfy the equilibrium condition. This could mean
that energy transfer by radiation is not sufficient and that in these layers energy

is transferred by convection. In this case the pressure and density of the gas in

convective layers are given by formula (10) and must be taken into account in

the calculation of stellar models. It can further appear that the pressure of a

degenerate electron gas is greater than that calculated with Clapeyron’s

formula—this property must therefore be taken into account in the equilibrium

calculations.

All this means that in the calculation of stellar models one must take into

account many factors, but the physical notions of stellar model calculations stay

as simple as those described above. One only needs a good powerful computer

and also detailed tables of thermonuclear reactions and of opacities.

We have already mentioned that thousands of diverse stellar models have

been calculated. Of course it is not necessary to describe here ail these models.

We shall give only general results.

We will first look at models of the main sequence stars. All these stars exist

because hydrogen burns—is transformed into helium—in the central parts of

the stars. The structures of main sequence stars appear to be simple, but they

are different for stars of different masses. In the upper part of the main

sequence, specifically in stars with masses larger than that of the Sun, there is a

convective nucleus and the greater the mass of the star the greater also is the

relative mass of the convective nucleus. In stars in the lower part of the main

sequence (masses smaller than that of the Sun) there is no convective nucleus,

but there is a convective zone close to the surface. Stars with very small masses

(smaller than 0.3M®) are entirely convective. Figure 10 shows the variation

of the relative mass of a convective nucleus and a convective zone depending on

the mass of the whole star.

These properties can easily be explained. In massive stars the energy release

occurs in the carbon cycle. In this case the power of the energy release depends

very strongly on temperature (e ~
)
and therefore almost all of the

energy release is concentrated in the very centre of the star. Here a strong

energy flux is generated which must pass through a small sphere surrounding

the energy emitting region. Energy transfer by radiation is not sufficient and a

convective nucleus appears. On the other hand, in stars of small mass, energy is

released in the proton reactions and depends less on temperature (e ~ 7^);

therefore in this case the energy transfer by radiation is maintained in the

centre. In the outer layers the temperature is low, the opacity of the matter

high, and radiative transfer appears to be insufficient. A convective surface

zone is formed. Such a convective zone also exists in our Sun.
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Figure 10 Distribution of convective zones and convective nuclei in stars with different

masses. The value q indicates the quota of stellar mass occupied by the convective

zone

The numerical values for the parameters of main sequence stars are given in

Figure 11. In fact this graph represents the theoretical mass-luminosity

relationship. The lower curve corresponds to models in which the hydrogen

abundance is the same all over the star—this is the so-called initial main

sequence. The upper curve describes stars in which hydrogen is almost entirely

consumed in the central parts. The dashed curve represents stars of smaller

mass, showing their positions after 10^° years of hydrogen consumption.

During the process of hydrogen burning the mass of the star does not change,

but the luminosity increases slightly (vertical arrows). For each given value of

mass we indicate: the central density in grams per cubic centimetre, the

central temperature in millions of degrees, the stellar radius R in units of the

solar radius Rq = 7 x 10^° cm, the relative mass of the convective nucleus

Mconv, and the time of hydrogen burning in years. Also given is the transition

from the carbon to the proton cycle (8pp = ecN)^ the place where the

convective nucleus disappears and totally convective stars appear.

The reader can compare Figure 11 with Figure 3 and confirm that the

theoretical mass-luminosity curve is in good agreement with that observed (the

scales in Figure 11 are enlarged for convenience).

Figure 11 also shows a model of an ‘initial Sun’. Its parameters are:

Pc = 90gcm“^, Tc = 13.9 million degrees, R = 0.87/?©. This model is

calculated with the condition that hydrogen abundance is the same over the

whole star and represents X = 0.70 (it has been also assumed that Y = 0.28,

Z = 0.02). However, the actual Sun has already existed for at least 4.5 milliard

years and therefore this model is not valid for the Sun with its present

composition. A few models of the actual Sun were calculated with the

assumption that hydrogen abundance is smaller in its centre than at its surface.

In one of these models the following values were used: X = 0.5 in the centre.

Pc ~ 134gcm“', and ~ 14.6 million degrees. The external convective

zone occupies 15 per cent, of the radius but contains only 2 per cent of the mass.

A very important fact is that while hydrogen is burning in the central parts of
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Figure 11 Theoretical mass-luminosity relationship. Lower curve—initial composition

relative to hydrogen burning, upper curve—state at which hydrogen is almost entirely

burnt in the convective nucleus. Dash line—position of stars with small mass after

hydrogen burning for 10^^ years. In brackets: pc = central density, = central

temperature, R = stellar radius, Mconv = relative mass of the convective nucleus,

H = time of hydrogen burning. The changes in thermonuclear reaction cycles

£pp — ^CN are also marked, as well as the disappearance of the convective nucleus and
appearance of entirely convective stars

stars their external parameters (luminosity and radius) only change slightly.

This explains why there is such a distinct main sequence. The distance between

the curves on Figure 11 increases with a decrease of mass, but if we consider the

limited time of existence of these stars (about 10^^ years) then the band is quite

narrow. Of course, the calculations depend also on the initial chemical
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composition assumed. Figure 11 represents the main sequence stars of galactic

clusters where we assumedX ~ 0.7 and Z ~ 0.02. Stellar models of subdwarfs

belonging to globular clusters were also calculated. In this case the abundance

of heavy elements is much smaller and there is more hydrogen One can even

assume Z = O and X ~ 0.9. Stellar models of subdwarfs with Z = O differ

from the models of Figure 11 by the fact that the convective zone decreases

strongly and even disappears. The luminosity of subdwarfs with a given mass is

smaller than that of ordinary stars, whereas the central temperature and

density are approximately the same. However, calculations do not give definite

results, mainly because there are no precise data on the initial abundance of

helium.

We shall consider all of these models again in Chapter 10 when studying the

evolution of stars. As the stellar models described above are notable for their

comparatively simple structure, it is not possible to elaborate them in the same

way as those for red giants or supergiants. It appears that the models of these

stars have a complex structure and that this structure is a consequence of stellar

evolution.

As an example we give here the parameters used for one model of a giant

star; the mass is equal to 1.3 times the solar mass, the luminosity is 226 times

greater than the luminosity of the Sun, and the radius is 21 times greater than

that of the Sun. This model serves only as an example. The description given

below shows in which conditions it was possible to obtain a model satisfying the

equilibrium conditions as well as giving the values for the fundamental

parameters.

In the centre of the star is an isothermic nucleus with a constant temperature

of 40 million degrees. In this nucleus there is no hydrogen; therefore no

thermonuclear reactions occur and no energy is released. It is evident that all

the hydrogen has already been ‘burnt’ in the nucleus and is composed almost

entirely of helium with small amounts of heavy elements. An isothermic

nucleus represents 26 per cent, of the whole stellar radius. The density is

therefore very large—the central density is 3.5 x 10^ g/cm^. Consequently the

central isothermic nucleus of the star is composed of degenerate electron gas;

in other words, one can say that in the centre of a red giant there is a typical

white dwarf.

The degenerate isothermic nucleus of a giant is surrounded by a thin layer

—

about 0.08 per cent, of the stellar radius—in which energy is released by

ordinary thermonuclear reactions. Inside this thin layer the temperature falls

very sharply from 40 to 25 million degrees and the density changes from 70 to 14

g/cm^. The energy releasing layer is surrounded by another layer occupying 8

per cent, of the stellar radius and containing 5 per cent, of the total stellar mass

in which energy is transformed by radiation. Finally, the other 92 per cent, of

the stellar radius and 70 per cent, of the stellar mass represents a large ‘inflated’

envelope in which energy i^ transferred by convection and where the

temperature does not reach even one million degrees. The formation of a

convective zone is due to the same reason as for the main sequence red dwarfs:
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the low temperature results in the stellar matter being opaque and this ‘locks in’

the radiation. Thus the characteristic nature of red giants is, to a high degree,

an inhomogeneous structure with, on the one hand, a very dense nucleus and,

on the other hand, a very extended envelope. For this reason formula (5)

cannot give a correct value for the central temperature of these stars—in the

deduction of this formula we assumed a more or less homogeneous stellar

structure. We must also consider the degenerate stellar matter in the central

parts of giant stars.

The model of a giant star is not entirely satisfactory—the complex structure

of these stars introduces an important factor of arbitrariness into the

calculations. It has not yet been possible to calculate a model of a supergiant.

The calculations are particularly difficult for the transition zone and the energy

releasing layer. We shall study the models of giant stars in Chapter 10.
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Variable and non-stationary stars

In the preceding chapters we have studied the inner structure of stationary

stars. In the true meaning of the word, stationary stars, i.e. stars that do not

change their composition, generally do not exist—because every star evolves.

However, if the changes in stellar composition (e.g. the transformation of

hydrogen into helium) occur very slowly, during hundreds of millions or

milliards of years, then these stars can be called stationary stars. The majority

of stars in space change much more rapidly than that. First, there are variable

stars which are different because their light (i.e. luminosity), radius, and

spectrum undergo more or less regular variations. Second, there are ‘explosive’

stars which flare and throw off gaseous envelopes from time to time. There are

also many different types of stars which show variations in the

spectrum—sometimes rapid, lasting a few minutes, sometimes slower—which

are often not understood. It is difficult to classify these stars as we still do not

know the basic physical processes which bring about these sharp variations. For

this reason they are usually classified only according to their external

indications. We are interested here in stellar physics and therefore limit

ourselves to data which can be explained from the physical point of view.

All ‘rapidly changing’ stars (on the average one star in 150000 undergoes

rapid changes) can be divided into two groups: periodic variables and properly

non-stationary stars, with which we also associate explosive variables. The
study of variables and non-stationary stars is interesting for a number of

reasons. It is evident that in the process of slow stellar evolution an

accumulation of numerous changes leads to qualitative changes—evolution

gives way to ‘revolution’, stars in such a ‘revolutionary’ state also being non-

stationary stars. The violent changes in a non-stationary star that we observe

allow us to penetrate deeper into the physical processes which take place in it,

as well as to check the validity of our theory for the inner structure of stationary

stars. In certain types of non-stationary stars cosmic rays and heavy chemical

elements are apparently gener^ed.

Periodic variables are the ‘lighthouses’ of the Universe: they allow us to find,

with the help of the period-luminosity relationship given below, the distance to

88
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Figure 12 Spectrum -luminosity diagram for variable stars. The white bands represent

stationary stars of type I population (i.e. relatively young); the black bands represent

stationary stars (relatively old) of type II population. The bands with horizontal

hatching are variable stars of type I population; the bands with vertical hatching are

old variables and non-stationary stars of type II population. Periods of variable stars

are shown (in hours or days). The explanation of the types of variables is given in the

text

far away stellar systems. It is not surprising that astronomers pay particular

attention to variable and non-stationary stars but very few of the observed

particularities of these stars have been explained. At the present time only the

theory of pulsations of periodic variable stars has been developed fairly well.

We shall briefly explain it.

Periodic variables, as their name indicates, change their luminosity with a

more or less regular period. Figure 12 shows a spectrum-luminosity diagram

for all variable stars given by the well-known American astrophysicist O.

Struve. Each group of variable stars is marked by a band, indicating the

dependence of the luminosity on the surface temperature (or spectrum). The
mean periods of oscillation (in days) are also shown, as well as the limits in

which the periods of a given type of variable star are situated if the oscillations

of different variable stars or the same type have different periods.

First of all, we note that the positions of variable stars and stationary stars do

not coincide. This means that their structures are different, and since there is a

comparatively small number of variable stars we can say either that the

phenomenon of variability is linked to the brief change in the very structure of

an ordinary star or that these are particular stars. In the left-hand part of

Figure 12 there is a rather important interval of possible oscillation periods

which are small. The hotter the star, the shorter its period. In cool stars the

periods are large. It appears also that if in hot stars the oscillations are

comparatively regular in cool stars they are irregular.
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All the types of variable stars given in Figure 12 have diverse spectral

characteristics. We have already seen that many phenomena are not

understood. For this reason we will proceed in the following way. We shall

describe in detail the aspects of variables for which there are explanations for the

phenomenon that occurs and expose the basis of the oscillation theory for these

stars. Then we shall briefly describe the particularities of the ‘unexplained’

variable stars.

The most ‘comprehensible’ and perhaps therefore also the most interesting

type appears to be the class of variable stars which is designated by the name
‘cepheids’ (from the constellation Cepheus where a variable star of such a type

was discovered for the first time). This class is composed of different stellar

groups. In Figure 12, in the cepheid class (sometimes for distinction they are

called ‘classical cepheids’) areW Cep andRR Lyrae stars and each group of stars

is again divided into subgroups.

All stars of the cepheid type have a constant period. A particular stability

distinguishes a comparatively small subgroup of stars belonging to the type I

population, the RR Lyrae stars. The oscillation period of these stars remains

rigorously constant during tens of millions of pulsations. Of course, the majority

of the RR Lyrae stars, namely those belonging to stars of the type II population,

is not very stable: after a few years they can change the period or phase of

oscillation. Considering that the oscillation period of these stars is on average 12

hours, we find that their period does not change in approximately one thousand

pulsations. This is not very bad; in other variables the periods and phases can

change much more rapidly. Besides, in cepheids the variations of period are

small and the oscillations can almost always be considered sufficiently constant.

In classical cepheids the oscillation periods coincide with an interval from 2 to

10 days but stars with a period of 8 days (a mean period) are the most frequent.

Figure 12 shows that the period increases with an increase in luminosity and a

decrease in surface temperature of the star. This is a very important property of

cepheids which has not yet been entirely explained. Studying the observational

data, astronomers have found a statistical relationship between the period of a

variable star P (expressed in days) and the logarithm of its luminosity (see

Figure 13) . This relation allows us to consider the cepheids as ‘lighthouses of the

Universe’. In fact, having determined the period by observations, an

astronomer can find the luminosity of the star from Figure 13, and knowing its

luminosity he can easily determine the distance. We must emphasize that

Figure 13 is not a theoretical result but an ‘experimental’ one. Moreover, one

must keep in mind that Figure 13 is valid only for classical cepheids. For Virga

stars a similar relationship exists (this is clear from Figure 12). These stars, with

identical periods, are on the average one and a half stellar magnitudes smaller

than the classical cepheids. All RR Lyrae stars have the same luminosity, which

is forty times greater than that of the Sun. W Virginis stars differ from classical

cepheids in being less bright and also having larger mean periods—about 15

days. We have already mentioned that these stars belong to the type II

population.
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Figure 13 Relationship between the cepheid luminosity and the period of pulsation

All three groups of cepheids, and in general also their subgroups, are notable

for the variation of the stellar brightness (Figure 14), the characteristic change

of their surface temperature, and finally the change of velocity of the stellar

surface motion. The latter is measured from the radial velocities of atomic

motions in the upper layers of the star on the basis of the well-known Doppler

effect (Figure 15). This point will be considered in more detail.

The reader certainly knows the Doppler law: the frequency of light emitted

by a moving source changes in proportion to the velocity of the source. Using

this law, we can determine from observed stellar spectra the velocities of the

atoms which are at the surface of the star. In fact the atoms emit spectral lines of

entirely determined frequences. Having measured the frequency of the same

atom on Earth we can immediately find from Doppler’s law the velocity we are

interested in. In stationary stars the velocity of an atom at the surface is

evidently on average (ifwe exclude thermal motion) equal to the velocity of the

star.

When, in a similar way, the velocities of variable stars were measured it

appeared that these velocities changed within one period. The results have

shown that the stellar surface changes its position with respect to the centre of

the star, which of course moves with constant velocity, within one period. In

other words, variable stars pulsate—they expand and contract. This explains

the change observed in the surface temperature of the star; its position and

luminosity change which, according to formula (1), brings about oscillations in

the value T^. Figure 15 gives the variations in the visible surface velocity for

cepheids. The plus sign corresponds to a greater distance of the surface from

the observer (the contraction of the star) and the minus sign corresponds to a

closer distance (the expansion of the star). In the graphs of Figure 15 the zero is

not always situated in the middle because here the stellar motion was not

considered as a whole. If the curve is placed so that the zero is precisely in the

centre the velocity of motion of the whole star and the velocity of expansion
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Figure 14 Brightness curves of a few cepheids. The visible stellar magnitude is given

relative to the phase that is the portion of the period calculated from a certain fixed

point. The periods are shown in days

and contraction of its envelope can also be determined. It appears to be about

10 km/s. Note that the variations of velocity as well as of brightness curves are,

in general, not symmetric-we cannot compare the pulsations of a star to the

regular oscillations of a gas sphere. These particularities of the brightness

curves are explained by the behaviour of the very exterior stellar layers (which

we consider here) and therefore if we do not consider the particularities of the

velocity curves we can come to the conclusion that a variable star is a gas sphere

pulsating with a determined period.

The pulsation theory for stars is quite complex but we have already seen

many times that the basic relations can be obtained in an elementary although

not very rigorous manner.

Let us consider a concrete problem: we will find the oscillation period of a

gas sphere with radius R and mass M pulsating under the action of the

gravitational force. To solve this problem we can use the analogy between

pulsations of gas spheres and os(^llations of a pendulum.

First of all we recall the well-known rule for oscillations of a mathematical

pendulum found by Huygens. The oscillation period is directly proportional to
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Figure 15 Velocity curves of some cepheid surfaces. Observed velocities are given
relative to the oscillation phase which is given here in days. Note that the brightness

curves and those of velocities do not coincide for the same stars

the square root of the value of the acceleration due to gravity, that is

(44) P = 2jtV

Here P stands for the oscillation period, / for the length of the pendulum, and g
for the acceleration due to gravity. We must note that this formula is quite

universal. It can also be applied in other problems to find the oscillation period,

when one need only choose a value equivalent to the length of the pendulum /.

Of course the oscillations of a gas sphere are not very similar to the

oscillations of a pendulum, but taking into account the universal character of

the Huygens formula we can try to use it to find the oscillation period of stars.

The ‘length of the pendulum’ will be taken to be equal to the stellar radius; the

acceleration due to gravity in the star is, as we already know, equal to g = fM!
R^. Introducing these values into the Huygens formula we obtain a formula for

the oscillation period of a ‘pendulum-star’:

(«) )

This formula can be simplified if we remember that the mean density of a star is

p = 3M/4jt R^. Then we obtain
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Thus for oscillations of a gas sphere in a gravitational field the product of the

oscillation period over the square root of its mean density is a constant. This is a

very important formula. As a matter of fact, in the case of oscillations of gas

spheres it changes the law of Huygens. We shall now see whether this formula

can be applied to oscillations of cepheids. For this we should compare the

products of an observed period with the square root of the mean density,

obtained for very different pulsating stars. Such comparisons have been done

many times and it appears that if one takes, for example, classical cepheids for

which the periods are within an interval of 2 to 35 days and the densities of

different stars differing by three orders of magnitude then for them the product

from (46) does not change by more than one and a half times. It is true that the

numerical value of the constant is a little smaller. With formula (46) we obtain

V(3 k/J) = 0.12 (if the period is expressed in days and the mean density in

grams per cubic centimetre),, whereas from the observations this value is

between 0.4 and 0.6. This can be explained by the fact that in deducing (46) we
overestimated the ‘length of the pendulum’, considering it to be equal to the

stellar radius. In fact, as only the surface layers are pulsating, this leads to a

decrease of the constant in formula (46).

Formula (46) is very important for the theory of stellar pulsations and

therefore astronomers have tried to make it more precise by taking into

account the thickness of the pulsating layers and the density distribution in the

stellar interior. As a result they obtained the relationship

, / /? \l/4 /M^\ 1/4

(47, fVp.0«(-j
(^)

from which one can immediately obtain a formula determining the oscillation

period of the star relative to the acceleration due to gravity on the stellar

surface and its mass:

P 0.022

1/8

days.

The oscillation period for cepheids is determined mainly by the acceleration

due to gravity on their surface—this verifies the fact that it is mainly the upper

layers of the star which pulsate. It is important that formula (46) is

approximately correct for any pulsating star. The more precise theory of (47)

and subsequently also of (48) has only been formulated for cepheids.

Our Sun does not pulsate—its structure is different from the structure of

cepheids. If it did start to oscillate, however, the pulsation period would be one

and a quarter hours (according to formula 46) or 32 minutes (according to

formula 48), i.e. shorter than for the shortest period of an RR Lyrae star. We



95

emphasize again that pulsating stars differ in their structure from ordinary

stationary stars although it is possible that this difference is not very large.

The formula for the oscillation period was easy to obtain and this formula

appears to be in good agreement with the observational data, but the remaining

peculiarity of pulsations in variables is very difficult to explain. For example,

we see from the velocity of motion of stellar surfaces that the amplitudes of the

pulsations are small and from mechanics we know that any small oscillation

must be of a sinusoidal nature. However, we have already seen that the

brightness curve does not resemble a sinusoid. Another peculiarity is perhaps

even more important. One could expect that the star reaches maximum
brightness either at the moment of the maximum contraction, when the stellar

matter is hotter than at the moment of maximum expansion, or at the moment
of expansion, when its surface is at a maximum. Observations of temperature

variations on stellar surfaces show that these variations are more important

than variations in the radius; therefore we can expect a maximum brightness at

the moment of maximum contraction. In fact, it appears that the star reaches

maximum brightness at the moment when its surface is closest to us with the

highest velocity, i.e. somewhere in the middle between the maximum
contraction and expansion. This peculiarity is often explained by the fact that

oscillations close to the stellar surface are different from oscillations in the

interior. What happens to oscillations of a star near its surface resembles in a

way the phenomenon of surf: a wave far away from the shore resembles a

sinusoid; coming closer it changes its form and the different parts of the wave

profile move in a different way—the crest catches up with the base and the

wave becomes very short. Below we shall give details of this phenomenon
based on results of numerical calculations of stellar pulsations.

Of course the most important problem of pulsating stars is to find the causes

of pulsation, in other words, to answer the question: why do certain stars

pulsate and others not? Although we cannot give a complete and detailed

explanation, the causes of pulsations are known and astronomers can calculate

them. Let us come back to the pendulum. If we push it, it will oscillate but it

soon comes to a stop—the friction in the bearing of the pendulum and the

resistance of air will take away all its energy. The pendulum will oscillate for a

long time only if the energy is supplied by shocks or continuously, thereby

compensating its loss by resistance. If we push the pendulum each time at the

moment when it is at the greatest distance we support its oscillations with a

‘periodic’ force. However, a pendulum can oscillate for hours without

stopping, under the action of a constant force, e.g. the tension of the spring in

an ordinary clock with weights for a pendulum. Such oscillations due to a

periodical force are called auto-oscillations.

A star may be compared with a pendulum from this point of view. Part of the

energy of motion is converted into heat and cannot be reconverted to kinetic

energy (the same change that is a result of the friction of the pendulum). If we

‘contract’ the star and then ‘release’ it, it will start to oscillate (pulsate), but the

oscillation amplitude will rapidly decrease and after only five to ten expansions
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and contractions it will return to the initial state. Pulsating stars vibrate much
longer; consequently there should be some kind of force compensating for the

energy loss and maintaining the oscillations at a certain level. It is difficult to

imagine the force which, for example, at the moment of maximum expansion

would push the surface of the star—there is no periodical force in pulsating

stars. However, there is no need to look for a constant force acting

continuously—the force is the result of energy release in thermonuclear

reactions and the passage of this energy through the entire thickness of the star.

Thus we can assume that a pulsating star is an auto-oscillating system, the same

as, for example, in a clock.

To complete our analogy we must find the mechanism which acts in the same

way as the counterweight in the clock and leads to oscillations, ‘portions’ of

energy with periods corresponding to the oscillation period. In this case two

possibilities exist. We know the amplitude of oscillations at the stellar surface

but we do not know the beahviour of oscillations inside the star. We first

assume that in the central parts of a star the oscillation amplitude is at least not

very small. Then we obtain the following. As the stellar layers contract the

temperature will increase and according to data from Chapter 4 the release of

thermonuclear energy increases strongly due to the strong dependence of this

release on temperature. Now the energy release increases the gas pressure in

the layer and the contracted layers tend to expand with an even greater force

than when they were contracted. This is the first mechanism maintaining and

even pushing the stellar oscillations. Of course the central parts of the star must

be pushed with a certain amplitude, which is not easily done as they are densely

‘packed’. The calculation effectively shows that in energy releasing layers the

amplitude of oscillations is practically zero.

The second mechanism of oscillation, sometimes called the ‘valve

mechanism’, is somewhat more complex, but more effective, simply for the

reason that it is linked to oscillation of stellar layers close to the surface. In this

mechanism oscillations are maintained even if they affect about 1 per cent, of

the stellar mass and about ten per cent, of its radius. To explain this mechanism

we must start almost from the beginning.

In Chapter 3 we saw that the opacity of stellar matter depends on density and

temperature and we described this relationship using Kramer’s formula:

X ~ It is true that in the outer layers of the star the matter behaves in a

more complex way and there is a different relationship between x and p and T
(see Chapters). We shall presume that the stellar matter is such that Kramer’s

formula is valid, and this allows us to explain the nature of the ‘valve’

mechanism.

Let us see what happens to the opacity of a certain layer inside a pulsating

star when it contracts and expands. It is evident that we must know how the

temperature and density change in this layer. We first assume that when
contraction and expansion tak^ place the thermal energy is maintained—in

this case one talks about adiabatic pulsations. We already know that for

adiabatic variations the gas pressure is proportional to the density of degree y
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(see Chapters). Since p = {Al\i) p T, the temperature is proportional to the

density of degree (y
- 1) (that is 7 ~ p^~^). Now, as in formula (10), we

can write an analogous relationship between the variation of the opacity

proportional to the contraction and expansion of the gas layer:

(49)

This relation yields a very important conclusion: if the exponent of the adiabatic

line ofthe gas y > 9/7 then on contraction of the gas its opacity decreases . At first

sight this seems to be strange but it is easily understood. By contracting a gas we
increase its temperature and consequently strip electrons off the nuclei—the gas

becomes more transparent . However ify < 9/7 then on contraction of the gas its

opacity increases—the temperature increase is insignificant and the higher

density of the gas increases the opacity. This condition (y < 9/7) seems very

strict and at first sight it is encountered nowhere, as in an ordinary single atom of

gas y = 5/3. However, we assume that somewhere in stellar interiors there is a

layer with y < 9/7. What brings this about?

We contract a star with a not too thin layer composed of a gas with y < 9/7.

Then, except in this layer where the opacity increases, the opacity of the whole

star decreases . As a result the layer will retain the energy coming from the central

parts of the star and absorb it . This will bring about a temperature increase in the

given layer and compel it to expand and push the layer of ordinary gas situated

above with a greater force than was used to contract the layer of gas. Thus the

layer with y < 9/7 acts like a ‘valve’, withholding thermonuclear energy

radiation at the moment of contraction and compelling part of this energy to be

used to support the oscillations. According to the example given by S. A.

Zhevakin (who formulated this model for the theory ofpulsations) the action of a

layer with y = 9/7 resembles the work of a diesel motor where the fuel (an

addition of energy) is also injected at the moment of contraction. However, here

the role ofthe fuel is played by the absorbed radiation coming from the interior of

the star. We can also establish an analogy between the action of a layer with

y < 9/7 in a star and the action of a balance-wheel in a clock.

In order to maintain pulsations in a star it is therefore necessary to have a gas

layer with y < 9/7 . Can such a layer be found in real stars? On the surface of stars

such as the Sun
,
there is single atom gas with y = 5/3 . On the surface of cool stars

there are molecules, but even if we presume that all atoms are united into

molecules of two atoms then even here y = 7/5. All the values for y are greater

than 9/7 . In the stellar interiors
,
gas is ionized—divided into electrons and atomic

residues—but behaves like single atom gas. Consequently here also y = 5/3.

Thus almost in the whole star y > 9/7. However, it appears that a layer with

y < 9/7 also exists in stars.

It is evident that somewhere at not too great a depth under the stellar surface

there should be layers where the transition from weakly ionized gas at the stellar

surface to entirely ionized plasma in its interior takes place. For example, in
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regions with a gas temperature of about 10-20 thousand degrees, intense

ionization of hydrogen occurs. At higher temperatures hydrogen is almost not

ionized; at lower temperature it is almost entirely ionized. At a temperature of

about 40 thousand degrees helium is strongly ionized (its second electron is

torn off). The regions in stellar interiors with similar temperatures are called

hydrogen ionization zones and helium ionization zones. It appears that in such

zones of ionization the parameter can be much smaller and that the condition

Y < 9/7 is possible there.

It is easy to imagine that y will be close to unity if on contraction of the gas the

temperature increase is small (since here T ~ This will also be

true in the ionization zones. We will now contract such a zone. On.contraction

the temperature should increase and consequently a greater facility to ionize

atoms is acquired. The energy used is that gained on contraction. In other

words, an important decrease of y occurs on contraction of a gas ‘on the

threshold of ionization’ when only a small increase in the energy of the particles

is sufficient to increase strongly the ionization.

Thus we see that, at least in principle, the hydrogen and helium ionization

zones can serve as a valve mechanism withholding the flux of thermo-nuclear

energy coming from the stellar interior on contraction of these zones. The fact

that these zones are situated near the stellar surface makes them effective for

the maintainance of the oscillations in real stars. We cannot give numerical

estimations here of the mechanism considered, partly because we have

examined only the principle aspect of the phenomenon—in practical

calculations one must also take into account the fact that Kramer’s opacity law

is not sufficiently precise—and partly because the calculation for the ionization

zones is quite complicated.

Our qualitative estimation is as follows. Although there is much hydrogen in

stars, the zone of helium ionization is more effective. The hydrogen zone is too

close to the surface and the opacity coefficient is smaller there. In a number of

cases it does play a role, but the fundamental part is played by the zone of

second ionization of helium (when the second electron of the helium atom is

torn off). A helium abundance of 15-30 per cent, is sufficient in a star and the

ionization zone can serve as a valve for the maintaining pulsations. In order to

obtain the correct value of y to permit the action of the ‘valve mechanism’ (that

is y < 9/7 in the case of Kramer’s formula) a few more limits concerning the gas

composition in the ionization zones are needed. This, in turn, leads to limits

imposed on the acceleration due to gravity in the surface layers. From this

results the known observed fact that only certain stars of a particular

composition pulsate.

One problem of the theory of pulsating stars which we have not yet

considered is the problem of determination of the oscillation amplitude. On the

basis of considerations given above wq can also study this problem, although it

is more difficult. In fact, we k^iow that everywhere inside the ionization zone

the pulsations are linked to the transformation of kinetic energy into thermal

energy—in other words, a dissipation of energy occurs. In the ionization zones
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the situation is different; here the energy of the radiation flux is converted into

kinetic energy—we say that ‘negative dissipation’ occurs. Positive and negative

dissipations depend in different ways on the amplitude of oscillations. In a

cepheid oscillating with a constant amplitude the negative dissipation should

entirely compensate (but not exceed) the positive dissipation. It is clear that

this can only occur at a determined oscillation amplitude.

This phenomenon can also be explained in the following manner. Imagine

that in a star in which pulsations can exist there were initially none. What
incidental causes brought about the very small contraction of the ionization

zones? At first the ‘valve mechanism’ scarcely ‘pulsated’ the energy. Then
oscillations with very small amplitude started. Such oscillations cause very little

energy losses. The ‘valve’ mechanism maintained the pulsations of oscillations.

Gradually their amplitude increased until finally a state existed in which the

positive dissipation was so great that it ‘ate up’ all the energy released in the

ionization zones. From that moment on, the star will oscillate with a constant

amplitude until changes in the stellar structure upset this equilibrium. This

process of the establishment of the oscillation amplitude can only be studied by

computation. A few such computations have been done recently. We shall give

the results of two of them.

The first concerns a star with a mass of 6.75 solar masses, a radius 48 times

greater than the solar radius, and a luminosity equal to 2200Lo. The

amplitude of established oscillations of the radius is 2 per cent., the oscillation

amplitudes of the surface temperature is 4.5 per cent., and the luminosity is 7

per cent. In the helium ionization zone, playing here the basic role, the

oscillations are sinusoidal; in the upper layer of the star an asymmetry appears.

The second concerns a star with parameters M = 0.4M©,

R = 4.9??o, and L = 390L®. In the computation we presumed that the

initial oscillation amplitude of the radius equals 10 per cent. After forty

oscillations the amplitude grew to 18 per cent. The luminosity oscillation

amplitude grew from 8 to 13 per cent. In this star two-thirds of the negative

dissipation is generated in the zone of secondary helium ionization (at T = 40

thousand degrees) and the remaining third of the energy in the hydrogen

ionization zone and the zone of first helium ionization (T = 22 thousand

degrees). Both zones release within one oscillation period 7.2 per cent, of the

energy generated by the whole star during the same time. From this amount 78

per cent, serve to compensate energy losses in oscillations of deeper stellar

layers since the coefficient efficiency of a pulsating star, as that of an engine, is

7.2 X 0.22 = 1.6 per cent. This is not very much.

Figures 16 and 17 show computations by R. Christie of luminosity variations

and of the velocities of stellar layers at different depths. The layers are

numbered from a certain depth to the surface and are denoted by a number on

the axis. The first layer is the helium ionization zone, layers 20 to 30 are inside

the ionization zone, and layer 40 corresponds to the surface. We must note that

the luminosity oscillations reach a maximum amplitude inside the ionization

layers of hydrogen and helium where, according to what has already been said.
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Figure 16 Energy flux (luminosity) variation curves for one period at different depths
of the pulsating star. The unit of luminosity on the graph is 10^^ erg/s. The luminosity
oscillations are greater inside the star and smaller on its surface. Compare the graphs

of Figure 16 and 14

Figure 17 Variation within one period for the velocity of motion of the layers inside a

pulsating star. The oscillation amplitude, given in kilometres per second, increases

towards the surface. Compare with Figure 15

oscillations are also considered. On the other hand, the variation amplitude for

the velocity of the gas is much greater at the surface. This phenomenon is

reminiscent of surf where the height of the wave in the sea increases as it rolls

towards the shore. In the same way the velocities of waves in stars increase as

they ‘roll’ to the stellar surface. One can also note that the approach to the

surface distorts the wave. At great depths the wave is sinusoidal; close to the

surface the wave has a shorter rise time and longer fall-off.

We have paid a great deal of attention to the description of pulsating

cepheids. This was done on purpose, since among all non-stationary stars they

are the only ones for which we can say with certainty that we understand the

processes occurring there. Of course there are pulsating stars for which we can

only say that there are some oscillations but how and why they occur is not

known. For example, in Figure42 is a line representing RV Taurus stars. These

are also pulsating stars with a period of about 75 days, but besides this period

they also have a larger oscillation period of some thousands of days. The
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amplitudes of both oscillations change with time rather strongly. The
brightness curve also has a complex and changing character.

Even more irregularities appear in observations of long period variables to

which belongs, in particular, the well-known Mira Ceti star with a period of

406.95 days. The study of so-called semi-regular or irregular pulsating stars is

very complicated. In each such star a few oscillations with changing

amplitudes can occur and there are no maintained periods. The visible

oscillations of the brightness of these stars are very big but this is linked to the

particularities of their atmospheres. All these stars are red giants and

supergiants in whose atmospheres there are many molecules. Within one

period the percentage of molecules changes strongly, which leads to variations

in the visible brightness. These stars are also characterized by emission lines,

appearing from time to time, released by gas clouds rejected from their

interior.

It is possible that the quality of pulsations of these stars has something in

common with the pulsations of cepheids, but the complexity of the processes

occurring in such stars has not yet permitted us to understand them and

establish a numerical method.

The diagram of Figure 12 also shows pulsating hot |3 Canis Majoris stars

which are characterized by a small oscillation amplitude and also the dwarf-

like cepheids. For these stars no theory has been elaborated yet. One can

hope that in the near future we will know more about these stars.

Even less concrete facts are known about another big class of

non-stationary stars—the so-called flare stars. The general characteristic

feature of these stars is that from time to time there is an outburst in such a

way that their upper parts are blown off and the brightness grows rapidly.

Then the expanded envelope is torn off the star and flies off into interstellar

space. From the surface of the remaining part of the star a flow of matter

continues but this gradually stops and the star returns to a stationary state.

Stars of this type are also varied; their basic distinctions are in the scale and

the nature of the flare. To a certain degree the Sun, and probably also all

other stars, belong ‘in miniature’ to stars of such a type. It is known that on

the Sun, particularly at the period of maxmimum solar activity, so-called

chromospheric flares accompanied by rejection of matter occur from time to

time.

Such flares probably exist in many stars, but cannot be observed against the

background of ordinary, stationary radiation of these stars. There are also

stars (called ‘flare’ stars, in particular of the UV Ceti type) in which flares are

so strong that within 10 seconds their total brightness increases by ten to a

hundred times. Then, after 10-20 minutes the star ‘calms down’ and returns

to its initial state. In chromospheric flares on the Sun radioemission is

generated—as in UV Ceti stars. However, the scale of all these phenomena is

of course much greater in these stars than in the Sun. Another difference also

exists. UV Ceti stars are red dwarfs of class M and are part of binary systems,

whereas the Sun is a single yellow star.
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Apparently, at the moment of a flare, a gas cloud is ejected from the flare

star but the whole stellar surface is not affected. If the scale of the phenomenon
is more important and if it occurs at a greater depth it cannot be called a flare

but an explosion. In this case a great diversity of phenomena is observed,

determined in the first place by the scale of the explosion.

There are stars in which explosions are comparatively small and occur in the

surface layers—these are called nova-like stars. Some stars have large-scale

flares where the explosion affects deeper layers of stellar interiors (a few per

cent, of the radius). These stars are called novae. Finally, if the explosion

affects an important part of the star we are dealing with a so-called ‘supernova’.

The name ‘nova’ is not quite appropriate and can be justified only from a

historical point of view. Novae have, up to the flare, a very insignificant visible

brightness. Such stars cannot be seen through any telescope. At the moment of

the flare the brightness of a nova greatly increases and it becomes visible; it

seems that this star appears at a place where it did not exist before. For this

reason a nova is in fact not literally a new star but an old star in its final

evolutionary state.

A numerical theory of nova flares has not yet been established. Many
different hypotheses have been studied but astronomers still cannot reach a

common opinion on the structure of flare stars and the reason for these flares.

This is mainly due to the fact that we have very little observational data on nova

stars. Presently in the Galaxy many hundreds of novae flare but we observe

only one or two a year, and at times we do not even observe that number since

the majority of novae flare a great distance from the Sun and we do not notice

them. Usually novae are discovered accidentally. However, even if we do see a

nova we cannot find out much about the star itself. It has never been studied

and nobody even knew that this star would outburst. Nevertheless, a few things

are known.

In a typical nova the brightness increases during the explosion by about ten

thousand times. In nova-like stars the amplitude of the flare is much smaller

—

the brightness increases by only several tens of times. In supernovae, however,

the amplitude of flares is indeed enormous—within a few days, and sometimes

hours, one supernova radiates as much energy as the whole Galaxy composed

of hundreds of milliards of stars. We do not know their luminosity before the

flare and therefore the amplitude of brightness variation is not yet known. It

has been discovered that stellar flares can reoccur and the smaller the

amplitude of the flares the more often they occur. In nova-like stars flares

reiterate during several tens and hundreds of days, while in typical novae this

period should be hundreds and thousands of years (unfortunately this last

conclusion cannot be checked as modern astronomy is still too young). Finally,

supernovae probably flare only once in their lifetime.

Observations of the spectrum of a nova during the growth of its brightness

show a blowing-off of the stellar^surface layers at velocities of several tens and

hundreds (up to a thousand) of kilometers per second. Probably a rather dense

opaque envelope is detached from the star and ejected by the force of the
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explosion. The increase of brightness is due to the immense increase of the

dimension of the stellar envelope.

When the blown-off envelope of the variable star reaches its maximum it

starts to fall back into the star. However, this is not the situation in the case of a

nova. After the maximum brightness of the nova the envelope continues to

recede from the star. At the moment of maximum brightness the envelope is

transparent. Its radiation therefore decreases. The brightness of the nova

should diminish even further since the envelope of the star stops emitting (it

consumes its supply of thermal energy) and the star, seen through the

envelope, comes gradually to a state of rest. After the explosion of the main

envelope, stellar matter continues to be rejected, often at a velocity greater

than that of the fundamental, primary envelope. Nevertheless, in spite of the

great velocities these rejections are already less intense and gradually the

ejection of matter from the surface of the nova comes to a stop. The progressive

acceleration of the star continues for several years and even several tens of

years. We must note a propos that two types of nova exist: so-called rapid

novae in which all changes occur in accelerated speed and slow novae with an

inhibited development of the whole cycle. In general, the different novae show

a great variety of details in their evolution.

The stellar matter ejected by a nova forms a nebula. The study of these

nebulae is very interesting but goes beyond the limits of this book. In

particular, by applying to this nebula the corresponding methods developed in

the physics of nebulae and interstellar gas, the masses of ejected envelopes can

be determined. It appears that at the first explosion a mass of about 10“^-

10“"^ of the solar mass is ejected. This fact shows that in the process of

explosion only surface layers of the star take part. In the following ejection of

matter into interstellar space a mass of similar magnitude ‘flies off. The

explosive energy of a nova can be approximately estimated by multiplying the

mass of the envelope by half of the square of the ejection velocity (we can take a

velocity of 1000 km/s). We obtain for the explosive energy the value of

~ 10^^ erg.

The causes of explosions in novae and similar stars are not as yet known.

Many hypotheses exist. For a time, nuclear explosions were a very popular

assumption. Let us assume that somewhere, at a determined depth inside the

star, thermonuclear reactions take place. The velocity of the reactions depends

strongly on temperature. On the other hand, the energy released in

thermonuclear reactions is carried off by radiation. The velocity of energy

evacuation is determined by the opacity which also depends on the

temperature, but to a much smaller degree. If in the place where

thermonuclear reactions occur the temperature inceases suddenly, though very

little, then the energy release will sharply increase and the radiation will no

longer be able to cope with its transfer because of the slight change in opacity.

The temperature will increase even more, and also the pressure, which will

induce an explosion. The energy of the explosion can be transmitted to the

stellar surface by a shock wave. It is possible that the explosions of novae are
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linked to the transition from one thermonuclear reaction to another or, in

general, to the reconstruction of certain stellar layers, which can also be linked

to the transition of gas to a degenerate state. Similar assumptions existed when

it was not known that novae, as well as other flare stars, form binary systems.

Now it is thought that this particularity of flare stars is directly related to their

explosions. Another possibility is that the second star induces the instability of

the flare star.

Even more important are the flares of supernova stars. The velocity of an

ejected supernova envelope reaches 6000 km/s. The mass of the ejected

envelope is about one-tenth of the solar mass and the energy of the envelope

can be compared to the total energy of the star before the outburst. Recent

studies of supernovae in other galaxies have shown that all supernovae can be

divided into two types. Supernovae of type I (among which is the outburst

which gave birth to the Crab nebula) represent stars with a relatively small mass

belonging to the type II stellar population. Spectral studies of ejected

envelopes show that there is little hydrogen present but a relatively large

amount of heavy elements, such as carbon, nitrogen, and oxygen. The masses

of the ejected envelopes are rather small. Supernovae of type II exist only in

plane subsystems and thus belong to the type I stellar population. Their ejected

envelopes contain a great deal of hydrogen. The masses of these envelopes are

much greater than those of type I supernovae. Although we have no precise

indications, we can assume that the mass of an envelope ejected by a type II

supernova can be greater than the mass of the Sun (up to lOM©).

Apparently type I supernovae are old stars with small mass, far advanced in

their evolution, and type II supernovae are young, massive stars early in their

evolution, which is proved by the great abundance of hydrogen. It is thought

that type I supernovae eject an envelope, which represents only part of their

mass, while type II supernovae explode entirely. The discovery of pulsars and

the indentification of one of them with the supernova 1054 (in the Crab nebula)

made this long-known hypothesis more credible and it is believed that the

explosion process of a supernova is related to the transition of the star to the

state of a neutron star after the entire consumption of the nuclear matter.

Here we end our description of non-stationary stars but we do not take leave

of them. As a matter of fact, the radiation of these stars plays an important part

in stellar evolution theory with which we shall now become acquainted. We
shall come back to non-stationary stars of the supernova type and the very

interesting T Tauri stars.
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Protostars

All that we have studied in this book until now has led us gradually to an

important problem whose understanding goes far beyond the limits of

astronomy—the problem of the formation and evolution of stars. This is far

from being solved and much work still needs to be accomplished. However the

outline of a stellar evolution theory has appeared and a number of reliable

results exist.

In this and the following chapter we shall expose the actual notions of stellar

evolution—sometimes hypothetical and sometimes more promising, we can

now describe a general and sufficiently probable scheme of the formation,

development, and ‘death’ of at least ordinary stars which are not outstanding

by any specific peculiarities. But how promising is this scheme?

Can we asume that the general scheme of stellar evolution, established in the

last 15-20 years and explained below, is correct and will not change essentially

in the future? Of course the details of this theory can indeed change

considerably. Here we shall expose the theory of evolution and the birth of

stars with many concrete details, but perhaps not sufficiently ascertained. The
reader should keep this in mind. We emphasize again that the general scheme

of the theory of evolution and birth of stars developed up to now should last a

long time.

The stellar evolution theory uses many results of very different chapters of

science: astrophysics, stellar astronomy, radioastronomy, intergalactic

astronomy (studying galaxies), cosmology (studying the structure and

development of the observed part of the universe), etc. The theory of inner

stellar structure contributed mostly to the development of this problem. By
building various stellar models and comparing them with observational data (in

particular, that obtained by an analysis of the spectrum-luminosity

relationship), astronomers were able to outline the evolutionary course we
shall describe here.

Unfortunately not all computations can be compared to observations—and

this is the greatest difficulty of stellar evolution theory, as we shall soon see. It is

interesting to note that ‘infrared astronomy’ and radio astronomy will also

105



106

contribute to the theory of stellar evolution. We shall start with them to

underline this role of observations.

The study of stellar clusters and associations has shown that the process of

stellar formation takes place all the time
,
that it continues at the present time

,
and

that stars are ‘born’ by groups, composed of several tens of stars, and in a much
earlier period of development of galaxies—by much greater clusters. The origin

of stars is rather long and of course it has not been possible, within the several

tens of years during which astronomy has developed, to observe the evolution of

stars and clusters. We have to compare clusters of different ages. We shall

henceforth do this many times.

From what is a star generated? Evidently from the matter contained in very

young stellar clusters or associations. Of course we are not sure that we see all

that is there. We can make the same assumption as Ambartsumian, who,

discovering an association in 1946, considered that there are invisible, dense

clusters of matter, which he called D-bodies. We cannot pledge their existence

on the basis of pure assumption, but we can start from what we really see in

clusters and associations.

Observations show that all
'
young clusters and associations are either

imbedded in big masses of interstellar gas or dust (they are called gas-dust

complexes) or they are close to them . According to the opinion ofthe majority of

astronomers, we shall assume that stars are formed by condensation of matter of

gas-dust complexes. We must again emphasize that although this is probable it

nevertheless is only an assumption.

Be that as it may, the first step is done—the initial position is formulated. Now
we can study the process of transformation of part of the gas-dust complex into a

star. We shall do this theoretically and, whenever possible, we shall try to

compare theoretical computations with observational data. The process of

transition from a gas-dust cloud to a star with thermonuclear energy sources is

called the protostellar stage in stellar evolution. This chapter will be devoted to

this stage. In the following chapters we shall study stellar evolution including

thermonuclear sources.

It is evident that to begin we must get acquainted with the characteristics of the

interstellar medium. Astronomers know that the space between stars is filled

with very rarefied gases and fine dust . On the average
,
in one cubic centimetre of

interstellar space there is no more than one hydrogen atom and even less atoms

of other chemical elements. In one cubic kilometre of this space there is no more
than ten dust particles, each of about one micrometre.

In gas-dust complexes, and also in those where stars are generated, the

concentration of gas and dust is thousands and sometimes millions of times

greater than in an ‘empty’ interstellar space. Of course, on Earthly scales this

matter is also extremely rarefied, and its density is much weaker than in the very

best vacuum which can be obtained in laboratories on Earth. The characteristics

of such a rarefied medium are qqite varied, but we shall consider here only its

temperature. It appears that for the condensation of interstellar medium into

stars the most important factor is the thermal balance in the medium.
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In order to determine the temperature of the interstellar medium we must
estimate the heating as well as the cooling of this medium. The interstellar

matter is heated by absorption of the light coming from stars and by collisions

of particles of cosmic rays and X-rays with atoms, and is cooled by its own
radiation. We must remember that the light flux from the star can also be

represented in the form of a flux of quanta of electromagnetic waves where

each quantum carries energy. In a hot star the energy of the quanta is on the

average large, whereas in a cool star it is small. Even greater is the energy of X-

ray quanta.

When an ‘energetic’ quantum falls into interstellar space, it can pull off an

electron from an interstellar gas atom (ionize the atom) and ‘push’ it on a free

trip in interstellar space, providing it with all the energy that remained after the

electron has been torn off. It appears that in this case the electron acquires

about the same energy as that of free electrons in the atmosphere of a hot star.

The free and ‘energetic’ electron formed through ionization, when entering

into collision with other electrons or atoms of the interstellar medium,

transmits its excess energy. When its energy equals the mean energy of the

interstellar gas particles it can again be captured by an ion (this is called

recombination). Thus, the atom will remain an atom and the whole process can

start all over again, but each time one quantum of stellar light disappears it

turns into kinetic energy of the gas particles, i.e. it is heating it. If the

interstellar gas were not cooled, its temperature would equal that of stars. X-

ray quanta tear off atoms and inner electrons and heat them to even higher

temperatures.

Until the middle of the sixties, astronomers thought that inter-stellar gas is

heated by absorption of stellar radiation. Then it appeared that an important

part is played by the heating of gas through absorption of X-rays and particles

of cosmic rays with small energies (so-called cosmic rays). Until the launch of

artificial satellites it was not known that many powerful X-ray sources exist.

After their discovery it became evident that their role in the heating of the

interstellar medium is important. There is no precise data on the existence of

subcosmic rays, but probable estimations show that their amount is sufficient

for an important heating of the interstellar medium, particularly in the regions

where ultraviolet stellar radiation does not penetrate.

However, the interstellar gas is intensely cooled. We already know that in

every atom or positive ion there are so-called energy levels. In a normal state all

electrons of an atom are on the lowest, fundamental levels. If a certain

determined energy is given to the electron of an atom, it will jump to a higher

level (farther from the nucleus). Usually the electron will not stay for a long

time on this level but will jump back to a lower level, releasing, in the form of a

quantum of electromagnetic radiation, the amount of energy which was spent

on its transmission to the higher level.

Atomic electrons can be raised to higher levels by different means. This can

be done by free electrons travelling in interstellar space. To raise an atomic

electron to a higher level, the free interstellar electron spends the greater part
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of its energy, which in the final account is converted into quantum energy of

electromagnetic radiation. If these quanta are then absorbed by the same

interstellar gas, the energy lost by the free electrons in the excitation of atoms

will come back to them. However, if these quanta are not absorbed and leave

the cloud of interstellar medium, then the energy spent by the free electron on

the excitation of atoms is irretrievably lost. This is the cooling of the interstellar

medium.

In order to help the reader understand what the rarefied interstellar medium
is, we shall see how this mechanism of cooling would work in Earthly

conditions. Here, also, free electrons can excite atoms by a transfer of energy.

It must be remembered that an atomic electron sits on an upper level during a

certain, although very short, time. During this short time, another free electron

in a dense gas can collide with such an excited atom, which will push the atomic

electron to a lower level, taking away the energy spent by the first electron to

raise the atomic electron. As a result, during the whole process the energy

passed from one free electron to another and the gas is not cooled at all. Only in

the conditions of a very rarefied medium, where collisions of electrons with

atoms are rare and where emitted quanta of electromagnetic radiation are

almost not absorbed at all, the considered mechanism can and should

effectively cool the gas.

There is one particularity in this mechanism of cooling: the process works by

‘steps’. In fact, we know that the levels on which one can push atomic electrons

are at determined distances and therefore for each excitation by electrons a

determined quantum of energy must be transmitted. We assume that the

interstellar gas is so cool that the mean energy of the electrons is smaller than

the quantum energy needed for the jump of the atomic electron to the closest

free level. It is clear that in this case the considered mechanism of cooling does

not work: the free electrons are not capable of exciting the atoms and

consequently cannot lose energy. The gas starts to heat. As the temperature

increases, the energy of free electrons also grows. When it becomes

comparable to the energy of the first excited atomic level, the mechanism of

cooling stars and any further temperature increase comes to a stop or is

inhibited.

Let us assume now that the gas is heated so rapidly that the cooling

mechanism cannot cope with the dispersion of energy. Then the mean energy

of the electrons will also increase and becomes greater than the energy of the

level. The cooling mechanism acts as before but now what follows happens.

Each time during the excitation of the atom the free electron loses only a

determined amount of energy equal to the energy of the level, and therefore, if

the level is low, the electron transmits to the atom only a small part of its

energy. The cooling mechanism becomes less effective and cannot stop the

increase of temperature. If the temperature increases so much that the free

electrons are able to excite the higher atomic levels, the cooling mechanism is

more effective here since, for the excitation and subsequently also the

radiation, greater amounts of energy are necessary. The growth of temperature
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slows down or stops altogether. If the second level also is not able to stop the

growth of temperature this can be done by the third level, the fourth, and so on.

The system of levels which cool the interstellar gas is rather complex. The
energy is greatest in electron levels of atoms and ions. Therefore if the

temperature of the gas is already high it will be cooled by excitation of the

optical luminescence of most abundant atoms and ions in the interstellar space,

such as carbon, nitrogen, oxygen. In helium the levels are high and are excited

only at a very high temperature. The levels of a hydrogen atom are also rather

high, but here it is important to note that at high temperatures the hydrogen

atoms are ionized and in a ‘bare’ proton there is nothing to be excited.

At low temperatures the electron levels in atoms are not excited—the

electrons do have not enough energy for it. Here the energy levels of molecules

are more important. In this case the kinetic energy, as radiation, is not given up

by electrons but by heavy atoms, ions, or even the molecules. If the gas

temperature is not very high then, in collisions between molecules or atoms,

oscillations are generated inside the molecules, i.e. the atoms in molecules

oscillate with respect to each other. The energy of these oscillations is radiated

in the form of infrared quanta. In the case of very low temperatures in collisions

of molecules with atoms the rotation levels of molecules are excited. In other

words, in collisions the molecules are untwisted which releases the kinetic

energy of the motion of the molecule and the interchange of the atoms and the

molecules. Then the rotation energy is radiated in the form of low frequency

infrared and even radio quanta. Indeed, the greatest contribution to

interstellar gas cooling is from hydrogen molecules H2. Unfortunately it is not

possible to detect the existence of these molecules in interstellar space by

modern means, although there is no doubt about their existence.

One more cooling mechanism consists of the following effect. When a free

electron passes close to a positively charged ion it slows down, radiating energy

in the form of electromagnetic waves with a large spectrum of frequencies. This

loss of energy, although small in absolute magnitude, can occur in the case of

electrons with an arbitrary energy and therefore this mechanism cools the gas

at high as well as low temperatures.

The gas can also be cooled in collisions of atoms and molecules with cosmic

dust particles—small particles composed of graphite, ice, or other

components—only if the temperature of the dust particles is smaller than the

temperature of the gas.

There are therefore several mechanisms of heating and cooling of interstellar

gas. Although these mechanisms are known, the problem is to know how to

calculate the temperature of interstellar gas in different conditions.

Unfortunately this is a rather difficult problem because it is not always possible

to estimate correctly the relative part played by this factor. The temperature of

interstellar gas has been calculated many times and often these calculations can

be checked by observational data. We shall give the results of computations

and describe the general appearance of temperature distribution in interstellar

space.
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What really is the temperature of insterstellar gas? Close to hot and bright

stars there are many quanta of light whose energy is high (more precisely we
must speak of ultraviolet quanta). They can almost entirely ionize all the

surrounding hydrogen and therefore transfer to it a great deal of energy. The
temperature here increases sufficiently rapidly and remains high,

corresponding to the first levels of the most abundant atoms and ions of oxygen

and nitrogen. The temperature is now close to 8-10 thousand degrees, which is

much less than the temperature of hot stars of classes O and B.

Close to cool stars there can be many quanta of light, but the energy of each

quantum is small. They are not able to ionize hydrogen, helium, oxygen, or

even nitrogen. They can only ionize carbon, iron, and other atoms of low

abundance. As a result there are many less free electrons, as they have

obtained a smaller amount of energy from the quanta released by the star, and

therefore the heating process is less effective. This leads to the conclusion that

here the cooling process comes to a stop at the first ‘degrees’ of carbon and iron

as well as at the ionization of hydrogen molecules. Close to hot stars these

‘degrees’ are passed over due to rapid heating. Thus, the temperature in the

vicinity of cool stars should be low, and appears to be about 100-200 K (but not

in the immediate neighbourhood of such stars). The heating by X-rays and

particles of subcosmic rays can strongly increase this temperature, but, on the

other hand, if there are many dust particles and molecules the temperature

close to cool stars can be even less.

Now we shall consider what happens far from stars which are hot or cool. All

ultraviolet quanta emitted by hot stars will be absorbed by interstellar

hydrogen close to these stars and therefore will not reach the ‘far’ interstellar

space. Consequently hydrogen will not be ionized there, the heating process

will be slow, and the gas temperature will remain low—lower than in the

vicinity of cool stars. At distances from hot stars which ultraviolet quanta can

reach and where hydrogen ionization is important, the gas temperature

increases strongly and can exceed 5000 K.

In general the situation is as follows. Each hot and bright star is surrounded

by an extended region (its dimension can reach tens of parsecs) of ionized

hydrogen, called HII regions. The temperature inside the HII region is

10 000 K in the central part close to the exciting star and decreases on the

periphery of this region to 5000 K. The HII regions are separated from the rest

of the interstellar space (denoted HI) by a rather sharp limit where the degree

of ionization of hydrogen drops from one to zero and where, for this reason, the

temperature decreases sharply. In the regions of non-ionized hydrogen the

mean temperature is close to 100 K (about — 170°C) and in denser HI regions

the temperature can be smaller, dropping to 50 K and even to 4-6 K. Here the

main source of cooling is the excitation of the rotation levels of molecular

hydrogen H2 . In the interior of dense regions of non-ionized hydrogen,

particularly if there is also du^, practically no stellar radiation nor X-ray

quanta and particles of subcosmic rays can penetrate. On the other hand,

infrared quanta corresponding to the radiation of rotational transitions (i.e.



Ill

from the deceleration of molecular rotation) leave the dense regions of non-

ionized hydrogen more or less freely and therefore cool them intensely.

We must emphasize that the temperature of interstellar gas cannot drop

below 3 K, i.e. lower than —270 °C, for the following reason. The entire space is

filled with so-called remnant radio emissions, i.e. electromagnetic radiation

which remained from the initial state of our universe when it was very dense

and hot. Now this radiation has a temperature of about 3K (more precisely

2.7 K) and as it penetrates literally everywhere (if there is not a very strong

absorption at high frequencies) the temperature of interstellar gas cannot fall

below this value. Indeed, all-penetrating, remnant radio emission will heat the

gas to this temperature. The fact that in dense HI regions the temperature

exceeds, by only a few degrees, the temperature of the remnant radio emission

shows how effective is the cooling process of interstellar gas.

The reader should keep in mind this important particularity of interstellar

gas: its temperature is not arbitrary, but is entirely determined by the

characteristics of the interstellar medium and the exterior radiation. Now we
must determine which parameters of the interstellar medium have an influence

upon the temperature in the first place. One could think that first of all the

temperature of a gas depends on its density. In fact if the gas density is small the

collisions between particles are rare and the cooling process will act slowly. On
the other hand, greatly concentrated particles often collide, are more often

excited, and lose energy by radiation. It is true that if the gas density increases

so much that the excitations of atoms are extinguished by collisions and

radiation cannot carry away much energy, then the cooling process becomes

less effective and the temperature begins to increase. However, this only

happens at densities greater than the characteristic density of interstellar gas.

In fact, there are also other conditions which affect the temperature of

interstellar gas: the chemical composition, the relative portion of dust

particles, the degree of ionization, and the presence of X-ray sources and

cosmic ray particles. Nevertheless, if we consider homogeneous regions of the

interstellar medium at a great distance from hot stars and other ‘heating’

energy sources, then the temperature of the interstellar gas drops gradually

with the increase in density.

Since the density of interstellar gas is very small (p
~

g/cm^) it is more convenient to use for our study not the density but the

concentration of particles, i.e. the total number of atoms, ions, and molecules

in a volume unit. We shall denote this quantity by the letter n. Since in the

interstellar medium there is mainly hydrogen, n ~ p/mn, where mu is the mass

of a hydrogen atom. Moreover, we can also determine the concentration of

electrons in a unit of volume Hq. The ratio njn is called the degree of ionization.

In ionized hydrogen regions, HII, we have nJn ~ 1 and in non-ionized

hydrogen regions, HI, this value is much smaller and depends on the total

density. In dense HI regions nJn ^ 10 and in rarefied regions it can even

be n^/n 0.1.

Thus, the temperature of interstellar gas drops gradually as n increases.
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Figure 18 Graphs of the dependence of the temperature (K), pressure, and electron

concentration in the interstellar medium on the total concentration of particles

What happens to the gas pressure? This is proportional to the product of the

concentration with the temperature. According to the Clapeyron law,

p =— pT = nT = knT,

p pmn

where k = Almn is the Boltzman constant, k = 1.38 x 10“^^ erg/grad. It

has been also assumed here that the molecular weight of interstellar gas is close

to unity.

Calculations show that at small concentrations the temperature drops as n

slowly increases and therefore the pressure increases as the density increases.

At greater concentrations the temperature decrease also slows down as n

increases and, in this case, the pressure increases with the density increase.

However, there is a certain interval with a concentration of

0.2 ^ ^ 1 cm~^ where the temperature drops very sharply as n

increases; in this case the pressure decreases as the density increases.

Figure 18 shows the dependence of temperature, pressure (upper graph),

and concentration of free electrons (lower graph) on the total concentration of

atoms, ions, and molecules in the interstellar matter. These graphs play an

important part in the comprehension of stellar origin and we must consider this

question in detail.
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From the upper graph of Figure 18 we see that if the concentration of atoms is

small, e.g. if n ^ 10 ^cm^ (i.e. log n ^ —2), then the gas temperature is a

little higher than 10"^ degrees and the product nT, which is proportional to the

pressure, is less than 3 x 10^ degrees/cm^ (i.e. log {nT) ^ 2.5). We will start

from this state and will compress the interstellar cloud, increasing the outer

pressure. The gas density will increase and the temperature decrease. At a

concentration of 0.2 cm“^ the temperature will be 7500 K and the gas

pressure will correspond to the product nT = 1.5 x 10^ degrees/cm^—the

curve on the upper graph of Figure 18 will reach the first maximum. What will

happen if we slightly increase the pressure further? The density of the gas will

indeed increase, but as the density increases in this concentration interval the

temperature will drop so rapidly as n increases that the pressure, that is nT, will

decrease. This means that if we compress, however weakly, the gas to a

concentration exceeding n = 0.2 cm“^, corresponding to the maximum of

this curve, the gas will not only be unable to counteract the outer pressure but

will continue to contract and cool along this curve up to the lower point where
n ~ lcm~ and T ~ 260 K. In other words, the state of interstellar gas in

the concentration interval from 0.2 cm“^ to lcm“^ is unstable; it must

spontaneously contract, since the effective energy emission which rapidly

decreases the temperature as the density increases deprives the gas of the

possibility to counteract the contraction.

Thus, a certain region of interstellar gas compressed by an outside pressure,

having reached a state with n ~ 0.2 cm~^, passes to a regime of

spontaneous contraction and rapidly to a state with n ^ 1 cm“^ and

T ^ 260 K. If the pressure is preserved, this gas will continue to contract, the

temperature will decrease as before, but more slowly, and the gas will again

counteract further contraction. When the concentration exceeds 10^cm“^

and the temperature drops to 15 K, the pressure will be greater than the value

which existed at the point of spontaneous contraction. However, in real

conditions the interstellar gas begins simultaneous contraction a little earlier as

it has not reached the upper maximum of this curve.

Thus, resuming this analysis and examining again Figure 18 we can draw the

following important conclusions. First, at pressures smaller than 4 x 10“^*^

atm (corresponding to the product nT ^ 3 x 10^ degrees/cm^), the interstellar

gas can exist only as a rarefied medium with n ^ 10“^cm“^ and a high

temperature, T ^ 10"^ degrees. Second, at pressures greater than

2 X 10“^^ atm, the interstellar gas can exist only in a dense state with

n ^ 10^ cm~^ and a low temperature, T ^ 20K (if, of course, it remains

non-ionized, i.e. an HI region). Third, in the intermediate pressure interval,

simultaneous states (with equal pressures) of low concentrations

(10“^ ^ ^ 0.2 cm“^) and high temperatures and of high

concentrations (1.0 ^ n ^ 10^cm~^) and low temperatures can exist. The

interstellar gas in this pressure interval breaks up into two parts.

This phenomenon was visually observed a long time ago by astronomers. If

we attentively observe the sky in the region of the Milky Way, where there are a
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great many stars, even an inexperienced eye will see the flock-like distribution:

there are neighbouring regions with many stars and with few stars. This can be

partly explained by the fact that in the regions showing a small amount of stars

it appears that, in fact, the light of many stars is screened by absorption in

different dust clouds. Thus, we can see only some close dust clouds, but a

detailed study shows that all interstellar gas and all cosmic dust are distributed

over the interstellar space in such a way that separate clouds (dense phase) exist

in the intercloud medium (rarefied phase). For a long time astronomers did not

know how to explain the fact that interstellar gas is so rarefied. At present we
understand this phenomenon—it is due to spontaneous contraction of the gas

which results from energy radiation. The clouds appear where, for some

reason, and we shall study these reasons, the gas density has reached the

‘dangerous’ value close to the first maximum on the graph of Figure 18.

The second graph of Figure 18 shows that although the concentration of free

electrons grows, also on average with the growth of n, this is a slow and not

monotone increase. In a rarefied intercloud medium the degree of ionization is

high, whereas in dense clouds the ratio njn is small.

We have thus considered in detail the thermal behaviour of the interstellar

gas and explained how it behaves under the action of an outside pressure. What
exactly does an outside pressure mean in the interstellar medium? First, this is

the general pressure of the whole gas. The interstellar gas is held in the Galaxy

by the total attraction of all stars and is distributed along the plane of the entire

Galaxy in the form of a cylinder of about 200 ps (6 x 10^® cm) thickness in the

central parts of the Galaxy and a few times greater on the peripheries. The gas

pressure should be such as to keep this cylinder from flattening further due to

attraction to the symmetry plane of the Galaxy. A simple formula exists

relating the gas pressure to its density and the thickness of the cylinder d which

contains this gas:

p ~

On average the density of interstellar gas and the mean density of stellar

distribution are the same, about lO^^'^g/cm^. Substituting for this value and

taking d ^ 6 x 10^^ cm we have p ~ lO'^^atm, which corresponds to the

pressure range at which interstellar gas breaks up into two phases: a cloud and

an intercloud medium.

We have not yet considered one force acting as pressure on the interstellar

gas: its self gravitational attraction. In order to take this phenomenon into

account we shall examine the destiny of a dense cloud with a certain mass,

isolated by the instability described above from the more rarefied intercloud

medium. According to formula (3) a gravitational pressure exists in this cloud

tending to contract it. On contraction the gas density in the cloud increases, the

temperature drops, but the gas pifessure continues to grow. If the gas pressure

finally appears to be greater than the gravitational one, the contraction will

come to an end. However, if decreases in radiation and temperature keep the
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gas pressure smaller than the gravitational pressure, then contraction will go on
until the density of the matter becomes sufficiently great to stop energy losses

by radiation.

In order to write the numerical relations we suppose that the density and the

temperature of the gas in the cloud are homogeneous, and we compare the gas

pressure, calculated with Clapeyron’s formula, to the gravitational pressure

(3). We find that the gravitational pressure exceeds the gas pressure if the

radius of the cloud satisfies the condition

(50) R
4\iGM

AT
= 6.5 X 10

17 p M 0.2 M
cm = ps.

T M. T M Q

If on contraction of the cloud the temperature changes so that the inequality

(50) is preserved, the gravitational forces will continue to contract the cloud.

The condition (50) is, of course, rather strict. We already know that the

minimum temperature of interstellar gas is not lower than 3 K. On the other

hand, the density of interstellar gas with a low temperature cannot be very

large, otherwise the cloud would become opaque and radiation would stop

cooling. Observations show that in the coolest gas-dust clouds the

concentration of particles is 10^-10"^ cm“^, i.e. the gas density is

10“^^-10“^®g/cm^. Setting the mass of the cloud M we find the radius of

the cloud with the following density: R ^ (0.1 to 0.2) x (M/Mo)^^^ps.

Using this value in (50) and assuming T ~ 3 K we find that a cloud with a mass

of the order of the solar mass, having a maximum optical density and a

minimum possible temperature, will contract under the action of gravitation.

The inequality (50) can be satisfied more easily if we consider clouds with

greater masses. Let us increase the mass of the cloud 10^ times. Then its radius

will increase ten times and the ‘reserve’ of inequality (50) will now be a

hundredfold greater. In other words, inequality (50) will be realized for such a

cloud even if the gas temperature inside it is 300 K.

The following pattern of phenomena appears. The mean pressure in the

interstellar gas is such that it breaks up into two parts. Dense clouds with low

temperatures are generated. If the mass of these clouds is small, comparable

with the mass of single stars, then the gravitational forces in them are either

small compared to the gas pressure or they are more or less balanced by the

pressure.

However, if clouds are generated with great masses, a few thousand times

the solar mass, then self gravitational forces appear which contract the cloud.

The increase in density is at first accompanied by a temperature decrease and

therefore the contraction is accelerated. However, the entire cloud is not

totally contracted as a single body. With a density increase and a temperature

decrease the criterion (50) is always fulfilled for smaller masses. This means

that if inside the cloud (e.g. close to its centre) a small denser part is formed, it

will start contracting independently and more rapidly than the rest of the cloud.

The cloud will finally break up into parts, and for each one of them the
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condition (50) will be realized. The disintegration into such fragments will

come to a stop at the moment when the gas density is 10“^ -10“^® g/cm^

and its temperature 4-6 K. In other words, the initial cloud with a mass of 10^

solar masses disintegrates into several hundreds of fragments with masses of

the order of the solar mass—the germs of future stars.

We can now understand why stars must generate in groups: otherwise it is

difficult to satisfy condition (50) in real conditions of the interstellar medium.

Condition (50) plays a very important role in astronomy. This had already been

found at the end of the last century by the English astronomer D. Jeans, and

has since been called the ‘Jeans instability criterion’.

To make the formation of big clouds in the interstellar medium possible

there should be some kind of outside pressure—something like an initial

contraction. As a matter of fact, observations show that new stars do not

appear everywhere in interstellar space, but only in determined places with

conditions favouring the appearance of massive gas clouds. In particular, initial

contraction takes place in the spiral arms of the Galaxy. Unfortunately we do

not have the means to explain the nature of this phenomenon. Spiral arms are

great waves in the plane of the Galaxy in which the contraction of the gas

happens. In favourable conditions the gas flowing into a spiral arm is

contracted by more than ten to fifteen times. This is enough for the generation

of great dense clouds with a mass of about a thousand solar masses.

There are also other causes favouring the gas contraction. We know that in

regions of ionized hydrogen the temperature is a hundred or more times

greater than in regions of non-ionized hydrogen. Consequently, how many
times greater is the pressure if their densities are the same? Let us imagine a

cool gas-dust cloud near an HII region—the pressure of this region will lead to

a complementary contraction of the cool cloud. For this reason the formation

of HII regions in gas-dust complexes helps to create new stars. HII regions

appear with outbreaks in these complexes of very young hot stars. Here

something acts as the mechanism of a chain reaction: the generation of first

stars implies the generation of other stars.

Let us consider that after all fragmentation of the interstellar medium, first

into big gas clouds and then into single fragments of small mass, densities and

temperatures are reached when the inequality (50) is satisfied for clouds with

masses close to the solar mass. This means that germs of single stars are

formed. Unfortunately it is difficult to determine these conditions with enough

precision. We have already seen that densities of about I0“^^-I0“^°

g/cm^ and temperatures of 4-6 K are sufficient for further contraction of

protostars and certainly these observational data result from measurements. It

would be best to observe the radiation of such star embryos but to do this we
must pass to the infrared region of the spectrum. We have already noticed that

the low gas temperature in such clouds is maintained by radiation of hydrogen

molecules. The most intense radiation is emitted under the form of infrared

quanta with a wavelength of 28 pm. When we are able to observe the sky with

sensitive infrared telescopes we will obtain reliable data on the star embryos!
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In recent times one more possibility to observe these objects has appeared. The
development of radio astronomy led to the discovery of numerous simple and

complex molecules in interstellar space. The majority of them behave in an

ordinary way, absorbing and emitting radiowaves as in laboratories on Earth. But

water H2O and hydroxyl OH molecules show a quite uncommon behaviour; in

certain cases they show such intense radio emission that could appear only in

masers. The principles of a maser are probably known to the reader. In

laboratories on Earth maser radiation is emitted by special generators

manufactured under strict observance of precision criteria. Apparently nature can

also emit masers in natural conditions. Maser sources with radio emission ofH2O
and HO molecules are effectively found in the cosmos and observations show that

they are situated in places where new stars appear. It is possible that the birth of a

star announces itself by the inclusion of a corresponding maser. We are not able to

interpret properly the optical data of maser source observations and we still do not

have reliable data of infrared studies. Therefore we shall continue on the sole basis

of theoretical considerations.

Let the embryo of the star be in a critical state in which inequality (50) is fufilled

at the upper limit. Since the gravitational pressure is always greater here, the

contraction will continue. In Figure 18 we saw that with a density increase the

temperature drops. As we are now beyond the Umits of application of this graph it

is not very clear how the temperature will evolve on further contraction. To
simplify this question we shall consider that, at least in the initial stage of this

contraction, the gas temperature in this cloud remains constant. On contraction,

the gravitational pressure will increase more rapidly than the gas pressure. The

contraction becomes more and more accelerated. We can now consider that

almost nothing impedes the contraction and the star embryo, which we shall now
call a protostar, will in a way decay, i.e. contract with the free-fall velocity of a

body on its surface.

We will try to estimate the time for the contraction of a protostar, with the

following considerations. On the spherical surface of the protostar the

acceleration due to gravity is g = fMIR^. Under the action of this acceleration the

surface falls towards the centre. If the motion is all the time at a constant

acceleration, then according to the well-known formula of mechanics the distance

after a time t would be determined by the formula S = V2 gt^. In fact, the surface

of the protostar always moves with a greater acceleration, but we shall not

consider this. Later we shall determine the time the surface of the protostar needs

to fall a distance equal to the radius of the protostar. In fact, the protostar does not

collapse until reduced to a point, but with the above-mentioned assumption we

partly compensate for the error linked to the hypothesis of constant acceleration.

Thus, assuming R = V2 gr^ and introducing here the expression for g, we can

find the collapse time for a protostar:

(51)
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It is interesting to note that the collapse time depends only on the initial mean
density of the protostar. We substitute formula (50) into (51), determining the

radius of the protostar at which the collapse starts. We then have

/ 5fX \3/2

^ =
(
—

j
/M = 6 X 10

"
M
Mo

years.

In particular, at T = 50 K a protostar with the mass of the Sun will contract

within ten thousand years. A contracting protostar emits energy in the infrared

range; we shall try to estimate its luminescence. Although we still cannot

observe this radiation it is interesting to know on what we must rely. In

Chapter 4 we have already considered the case of radiation of a star which is

contracting and we obtained formula (11) defining the contraction time for a

given luminosity. In a star luminosity is determined by the filtering of energy

and therefore it is given in fact. In a protostar the collapse time is given, i.e. the

time of energy emission (formula 52) which now determines the luminosity;

therefore in order to find the luminosity of a protostar at the stage of its collapse

we must transform formula (11), expressing Lhy M, R and t. We obtain

2Rt

We know the massM of the protostar. The time of collapse t can be determined

from formula (52). What happens to R1 In the process of collapse of a protostar

R decreases rapidly. It is evident that as long as R is big the luminosity of the

protostar is small. Consequently the most favourable case for observations is

during the final stage of the collapse of a protostar when R diminishes to the

smallest possible value and L increases correspondingly. Let us try to

determine this radius.

We shall once again consider the collapse of a protostar. The emitted

gravitational energy will heat the gas or dust and this heat will rapidly be

radiated. The gas and dust can again ‘receive heat’. If too much gravitational

energy is freed, strongly heating the gas and dust, the heat can no longer

manage to radiate and brings about dispersion of the dust, dissociation of the

molecules, and ionization of the atoms. In the place of gas and dust a plasma

appears in the protostar which at low temperature radiates weakly. Thus, the

collapse of a protostar comes to an end as soon as the gravitational energy

reaches the thermal energy necesary to the transformation of the whole mass of

the protostar into a plasma. We denote the energy needed to transform one

gram of initial matter into plasma by the letter /. Thus, for the transformation

of the entire protostar into plasma IM ergs are needed. Since the gravitational

energy of a protostar is/M //?, we find by comparison of both values that

M^ — •

Mo
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To obtain the numerical value of R we took I = 2.5 x lO^^erg/g. This rough

estimate has been obtained in the following way. In the interstellar medium
hydrogen is the most abundant element. In the cool HI region H2 molecules are

the most abundant (3 x 10^^ for one gram). For the dissociation of one
molecule 7 x 10“ erg of energy are needed. Each hydrogen atom must

be ionized and for this we need 22 x 10“^^ erg. Altogether, for one

molecule we need ~ 5 x 10“^^ erg and for one gram ~ 1.5 X 10^^ erg. If

we consider that interstellar space is composed not only of pure hydrogen but

also of other atoms, in particular helium which is more difficult to ionize, it is

better to overestimate /, taking 2.5 x 10^^ erg/g.

Thus, a protostar with a mass of the Sun collapses to a radius approximately

eighty times greater than the radius of the Sun. In more massive protostars the

minimum radius of collapse is also bigger. Now we substitute (54) and (52) into

(53) and obtain the luminosity

This is a curious result—the luminosity of a protostar at the final stage of free

fall does not depend on its mass and is determined only by the temperature of

the gas. What will the value of Tbe here? It is no longer the initial temperature

of the interstellar gas since in the process of collapse the temperature in the

interior of the protostar continues to grow. Apparently the temperature should

be chosen to be close to the temperature at which the dissociation and

ionization of hydrogen starts. We take T ~ 10"^ degrees. Assuming also p ~ 1

from (55) we obtain L ~ 2 x 10^ Lq. Consequently a bright flare occurs

for the protostar, although only for a short time—possible for a few years or

even less.

Immediately after the flare the luminosity starts to decrease and the

protostar becomes opaque. However, the contraction does not stop as now the

energy released in the star serves to heat its interior. A large temperature

decrease occurs and therefore some energy transfer mechanisms could ‘be

included’ from the inside of the protostar to the exterior.

Astronomers assumed that during the contraction of a protostar the energy

generated is transmitted through its thickness in the same way as in an ordinary

star. Let us also assume that this is in fact so. We can then use formulae (8) and

(9) to determine the opacity of protostars. From this several conclusions

immediately follow. First, the luminosity of such a protostar is determined by

its mass. Second, if we trace the position of protostars on the

spectrum-luminosity diagram, then on contraction the point representing

them would shift along a horizontal line (at constant luminosity) from right to

left—as it contracts the radius decreases and the surface temperature increases.

Third, as the temperature increases in the inferior of protostars the opacity

decreases and this should increase, a little, the luminosity—the evolution

sequence increases a little. These were indeed the notions of protostellar
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evolution described in the first edition of this book (see Fig. 19 of the first

edition.

However, as has been shown by Hayashi, in a contracting opaque protostar

energy is not transmitted by radiation but by convection. Calculations confirm

this effect but it can also be easily explained. First, convection can transmit a

greater amount of energy than radiation and therefore favours a more rapid

contraction of the protostar. Second, the dissociation of molecules and

ionization of atoms in protostars decreases their adiabatic curve index. We
studied this phenomenon in detail in the preceding chapter while considering

the causes of oscillation in pulsating stars. The same thing also occurs in

protostars, only there appears to be instead of small amplitude oscillations

violent convective motions which envelope the entire protostar—we can say

that it is ‘boiling’.

Thus, the energy of contraction is transmitted from the interior of opaque

stars to their surfaces by convection. However here their energy must be

converted into radiation otherwise it cannot leave the protostar. In this way
radiation still plays a part in the contraction of a protostar—it determines the

conditions on its surface. But how? This can be easily explained by analogy

with the study of stars where energy is transported by convection to the outer

layers, where it must also be converted into radiative energy before leaving the

star. We know that convection in surface layers occurs only in cool stars. This is

a characteristic feature of red giants where an important part of the stellar

volume is convective, continuing up to the very surface. In all such stars the

surface temperature is close to 3500 K. This means that at such temperatures,

or slightly lower, the transformation of convective energy into radiative energy

takes place and that precisely this temperature should be at the surface of

opaque protostars.

We must note, however, that the surface temperature of convective stars

depends only slightly on the mass and the radius. This dependency has a

complex nature: can either increase or decrease as M and R increase. For

precise calculations this fact must be taken into account, but for the

explanation of the protostellar evolutionary pattern it is sufficient to neglect

the change in T^.

We can imagine the following pattern. As soon as the protostar becomes

opaque its inner temperature begins to increase—first slowly and then more
rapidly. Convection appears in the protostar to rapidly take up all its volume.

The temperature continues to increase in its centre but the temperature on the

surface reaches three thousand degrees and subsequently hardly changes.

When the temperature at the surface of the protostar comes close to this value,

the luminosity of the star will, after a certain drop, again reach a

maximum—the convection carries the greatest amount of energy from the

contracting protostar. Later the luminosity will again start to decrease since,

according to (1), with the decrease in the radius and a constant surface

temperature the luminosity can only decrease. It is rather difficult to determine

the luminosity of a protostar at the moment of its maximum flare, i.e. at the
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moment when the convection takes up the whole star. For this we need detailed

calculations but unfortunately the available information is not very reliable.

However, we can also obtain a simple estimate if we consider that during the

convective stage the protostellar radius would not change very much—in other

words, we can take the value (54) for the protostellar radius at this moment.
Then, using formula (1) and considering that the effective temperature of the

protostar is about two times smaller than the effective temperature of the Sun

we obtain

L /re^4— +
R

L© Z© R
400

M
© M©'

This is really a bright flare, although also of short duration (a few years).

Later the luminosity of the protostar decreases in proportion to the decrease

of the square of the radius. The duration of contraction can be determined as

before using formula (11). We have

2RL SnoTiR^

fMp

6a7t
= 8 X lO’p

M
years.

It is interesting to note that here the duration of contraction is proportional to

the mean density whereas in a transparent protostar the duration of contraction

is proportional to 1/Vp.

During this contraction the central temperature increases quickly. It finally

reaches a value at which thermonuclear reactions start. The protostar

continues to contract, but when the thermonuclear reactions are in a state to

produce enough energy to maintain a high temperature the protostar ‘sits’ on

the main sequence and turns into an ordinary star. Its destiny will be studied in

the following chapter.

Thus during contraction of a protostar two bright flares occur, the first at the

end of the ‘transparent’ stage, when the luminosity reaches several

thousands of solar luminosities independently of the protostellar mass and

when the greatest part of radiation takes place in the far infrared region of the

spectrum, and the second at the moment of establishment of convective energy

transfer, when the luminosity is smaller, about 400(M/Mo)^L©, and the

radiation corresponds to the surface temperature of a red star. The time

interval between these flares is small (a few years) and it is possible that in fact

they merge. Be that as it may, in the protostellar stage there exists a certain

interval of very strong protostellar luminosity. Observations of these flares

would be an important confirmation of the theory.

The formulae given here indicate correctly all characteristic features of

protostellar evolution, but of course they are approximate. More precise

calculations can be done and have been done many times. We must note,

however, that the precision of these calculations is in a certain measure illusory

since many parameters are not known with any great certitude.
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Figure 19 Variation with time of the radius of a contrasting protostar. A luminous flare

corresponds to the stage of rapid contraction (left-hand side of the graph)

As an example we shall give some results of such calculations. Figure 19 shows

the variation of the radius of a protostar of a mass equal to the solar mass with

time . To illustrate this examplewe also give the orbital radii ofplanets in the solar

system. The region of rapid contraction on this graph corresponds to the period

immediately before the flare and lasts for all of about ten years. The more gently

inclined part of the curve shows the contraction during the convective stage of

protostellar evolution.

Figure 20 represents the displacement of a protostar in a spectrum-luminosity

diagram. At the beginning there is rapid contraction in the transparent stage (the

dashed line at the extreme right-hand side of the graph). Here the uncertainty is

linked to the value of the gas temperature and therefore two arrows are marked.

Then the protostar becomes opaque
,
shown by a rapid drop of the dashed line on

the diagram. Further, a large shaded area represents a sharp ‘expansion’ of the

star at the instant of a flare (’boiling’) of the protostar. Finally, the decrease in

luminosity in the convective stage of contraction is shown up to the transition to

the main sequence.

We have already noted that all these effects occur mainly in the infrared region

of the spectrum. In recent times it has been possible to make the first infrared

stellar observations. It appears that there are a few very bright objects with

surface temperatures of about a thousand degrees. One of these objects was

identified as the well-known variable star R Monoceros while another object

appears to be a punctual source in the Orion Nebula. Perhaps these objects are

protostars at the instant of a flare. Figure 20 shows such a hypothesis.
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Figure 20 Spectrum-luminosity diagram with the evolution track of a protostar. A
large radius corresponds to the transition moment in the convective stage. This has

been done for a better agreement with observations of infrared objects (graph by
Hayashi)

The case of the variable star FU Orionis is also interesting. In 1936 this star

suddenly flared and since then continues to radiate with approximately the

same intensity. Its radius is about twenty to twenty-five times greater than the

solar radius. This is also a flare but with a transition to a higher surface

temperature and a subsequent slower contraction. This hypothesis is also

represented on Figures 19 and 20.

If observations of protostars in their early evolutionary stages are a matter

for the future, protostars in the stage of convective contraction should be

observed now.

How can we distinguish such protostars from stars with the same surface

temperature? They should have more intense convection, but of course we do

not see this. We can expect that the violent ‘boiling’ of protostars should bring

about a greater activity of their atmospheres; we can assume that on the surface

of protostars flares and outbursts of different magnitude should be observed.

Contracting protostars resemble non-stationary flare stars. If we consider that

they could not move far from their original place in the gas-dust complexes and

that such objects should be seen in very young clusters and associations, then

we can immediately select protostars.
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Figure 21 Evolution tracks of protostars contracting towards the main sequence

As a matter of fact in the early forties A. Joy discovered stars that were later

called Taurus stars. V. A. Ambartsumian showed that these stars are always

grouped in associations (called T-associations). Close to T-Taurus stars is

always an interstellar medium. The features of T-Taurus stars are very

characteristic. They often change their brightness several times and the

increase or decrease in brightness can last for hours. However, there are also

frequent periods without any change in the brightness of the star. In these

stars sometimes lines appear due to the ejection of gas clouds from the surface

layers of the star at velocities reaching 200-300 km/s. An important fact is also

that these stars are rich in lithium: it is about fifty to four hundred times greater

in abundance than in the Sun. This, together with the absence of high

temperatures in their interiors necessary for thermonuclear reactions, is

evident proof of the youth of these objects. With all these data it is nowadays

admitted that these T-Taurus type stars can be considered as protostars in the

convective contraction stage.

Until now we have considered the evolution of protostars with a mass close

to the solar mass or with smaller masses. In more massive protostars, before

their transition to the main sequence and the start of thermonuclear reactions,

the convective transfer of contraction energy is converted into radiative

transfer. This is due to the fact that in massive stars the gas is entirely ionized,

which on the one hand increases the adiabatic curve index (diminishes the

polytrope index) and on the other hand decreases the opacity. For this reason

when massive protostars contract, their ‘vertical drop’ on the

spectrum-luminosity diagram with convective transfer is replaced by a

horizontal shift (which we mentioned at the beginning of this chapter) with a

radiative energy transfer. This is schematically represented on Figure 21. With
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formula (9) we can obtain the luminosity of a protostar at this stage of

contraction; it is not much different from the luminosity of a star with the

same mass, as can be seen in Figure 21.

On this graph, constructed by the Japanese astrophysicist Hayashi, the

circles denote the moment of generation of a radiative nucleus in massive

stars or the moment of transition of the main sequence in stars with a mass

M ^ 0.25M© where, as we know, the radiative nucleus is not in general

formed. In protostars with M ^ 0.05M©, during the contraction process

the central temperature remains so low that nuclear reactions are not

included, the contraction stops with the degeneration of the electron gas in

the centre of the protostar, and such a star does not arrive at the main

sequence.

On contraction of a protostar with a mass equal to the solar mass a central

radiative nucleus is generated before the transition of the star to the main

sequence. Precise calculations made for the Sun show that inside the

‘protosun’ a radiative nucleus is generated when the protosun contracts to a

dimension two times greater than the actual solar radius. The luminosity of

the protosun was then equal to 1.5L®. As the contraction continues the

luminosity decreases to a value of 0.512L©; in this case, in the greatest

part of the protosun energy is already transported by radiation. The variation

of the absorption coefficient during the heating process of the protosun on

contraction brings about, according to (9), a subsequent luminosity increase

reaching a magnitude close to L©.

Using formula (11) we can easily estimate the duration of contraction on

the horizontal part of the evolution path:

r = 2 X 10^ years.

The characteristic contraction time depends on the radius of the protostar and

rapidly increases with the decrease in the radius during the contraction

process. This means that such protostars rapidly cross the right-hand side of

the diagram in Figure 21 but slow down as they approach the main sequence.

Formula (58) is the result of an approximate estimate. The contraction time

of protostars can be calculated more precisely, as shown by Figure 22. In

order to explain the meaning of this graph we shall study the following case.

We assume that in a given gas-dust cloud contracting stars of different masses

were simultaneously formed and we trace on a Hertzsprung-Russel diagram

the position of these stars during equal time intervals. Then lines will appear

on this diagram which decribe sequences of protostars of the same age. These

lines are called isochronisms. Figure 22 shows isochronisms of contracting

protostars. The first line on the upper right-hand side corresponds to the

position of protostars 10“^ years after the beginning of the contraction, the

second line (if we continue towards the lower left-hand part) after 10^ years,

and the third line determines the position of protostars after 10^ years. The

following two lines represent protostars after 10^ and 10^ years respectively.
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Figure 22 The isochronisms of protostars contracting towards the main sequence. The
curves represent stellar ages (from above to below) of lO'^, 10^, 10^, 10^, and 10^ years

This graph also shows that massive protostars rapidly skip the region above

the main sequence and stay there during several millions of years after their

generation. Protostars with small masses pass to the main sequence after

hundreds of millions of years.

From Figures 21 and 22 we can see that massive protostars in this stage of

evolution belong to the same region as red giants. It is therefore possible that

some parts of the red giants, observed in young stellar clusters, are in fact still

protostars. However, their number should be small since protostars rapidly

‘skip’ this region because of the short duration (58).

In fact, an analysis of spectrum-luminosity diagrams of young clusters

allowed us to discover clearly defined sequences of red giants, as well as a few

stars dispersed over the diagram in this region—apparently protostars of large

mass. It is also possible to observe quite young stellar clusters which probably

have not yet managed to settle on the main sequence; their

spectrum-luminosity diagrams are the same as the isochronisms of Figure 22.

An example of such a protostellar cluster is the object known by astronomers as

NGC 2264. Its spectrum-luminosity diagram passes near the isochronisms

corresponding to the age of 10^ years.

We must note that very bright stars, particularly stars of classes O and B,

occur, as a rule, in clusters as well as in associations (O-associations);

moreover, O- and T-associations are often adjacent. From condensations of

gas-dust complexes stars are apparently formed with different masses. We
must finally note that in big and dense gas-dust complexes nebulous objects are

often observed, sometimes appearing as dark, round spots on the shining

background of bright nebulae (globules) and sometimes as bright spots on a

dark background of absorbing pebulae.

Of course optical data actually allow us to understand better stellar

formation. We know that the process of stellar formation is everlasting and
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presently in the Galaxy many new stars are being generated (probably on

average about ten stars in one year). What actually takes place is only the

remains of stellar formation. Presently in the Galaxy the interstellar gas

represents only 1-2 per cent, of its total mass; the rest has already managed to

condense into stars. The process of stellar formation at early evolutionary

stages of galaxies and of the Universe in general was much more intense.

Unfortunately, this early process of stellar formation is even more difficult to

observe; apparently to do this one must study other galaxies where for some
reason the stellar formation process has slowed down.

However, many conclusions can be drawn from observations of our Galaxy,

namely from the study of the composition and distribution of old stars in it. We
recall (see Chapter 1) that in our Galaxy two basic types of stellar populations

exist: type I to which the sun belongs and type II to which stars of spherical

systems and globular systems belong. Where is the difference? As we can see

from Table 2, one of the fundamental differences lies in the chemical

composition. The heavy elements, of large magnitude Z, decrease with the

transition from type I to type II populations. This fact already verifies the

difference at the moment of their formation. The second essential difference

lies in the distribution of the stars in space. This can be better judged not by

their instantaneous position but by their motion in the Galaxy. Stars of type I

population move on almost circular orbits near the galactic plane while stars of

type II population move on strongly elongated orbits. These orbits are situated

so that the corresponding stars pass close to the centre of the Galaxy and then

move far from it at great distances, rising at the same time high above the

galactic plane.

Stars of extreme type I population move in the same way as clouds of

interstellar gas move at the present time. We can therefore draw the following

conclusion: stars of type I population were formed of interstellar gas relatively

recently, since from the moment of their formation until now the composition

of the interstellar gas has hardly changed. An argument in favour of this

assumption is that the chemical composition of the interstellar gas and of

extreme type I population stars is almost the same.

In terms of age we can think that stars of extreme type II population were

generated first, then stars of type II population, stars of old type I population,

stars of type I population, and finally the extreme type I population (see

Table 2). There are many good reasons for drawing this conclusion.

First, the chemical composition should change with the age so that the

younger the star the greater the value of Z. In fact we know that heavy

elements are formed in stars during thermonuclear reactions. Certain stars

lose mass which mixes with the interstellar medium. This means that as time

passes the interstellar medium should be enriched by heavy elements from

the matter which managed to condensate into stars and then was again

ejected into interstellar space. While the star remains on the main sequence

only the helium abundance changes; the magnitude of Z does not vary.

Heavy elements are formed only in the last stages of evolution (see the
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following chapter). Therefore the value of Z which is observed in stars on

the main sequence corresponds to the value at the moment when the star is

generated.

Second, the various movements of stars of different ages in space can also be

easily explained. We shall consider that at the beginning of evolution of the

Galaxy, when the greatest part of the matter was still a gas, it was distributed in

the form of a more or less homogeneous sphere or a somewhat flat ellipsoid. As
we know, gas disintegrates into clouds. The clouds moving in space collide, are

heated, and radiate the excess energy. If the gas exists for a sufficiently long

time it must lose a great deal of kinetic energy of the clouds by radiation.

However, the rotation does not disappear in this case. This means that initially

the spherical rotating system of interstellar gas gradually decreases its thickness

but the diameter does not decrease, otherwise the rotation would not be

maintained. The system of rotating interstellar gas becomes a more and more
flattened spheroid and finally turns into a flat disk. During this time stars are

formed from the interstellar gas which maintains the motion the interstellar gas

cloud had at this time. In fact, contrary to big interstellar gas clouds, stars of

small dimensions do not collide and do not lose their kinetic energy.

This explains an important optical observation: the younger the star, the

closer to the galactic plane it moves. Consequently all particularities of division

of stellar subsystems into spherical, intermediate, and plane ones, taking into

account the changes in chemical composition, can be easily explained, at least

qualitatively.

Now we shall come back to the problem of the mechanism of condensation of

protostars from the interstellar medium. We have already studied the

formation of the youngest stars and considered the physical state of interstellar

gas at the present time. This gas is rich in heavy elements and, what is very

important, has a rather abundant addition of cosmic particles. Its essential role

in the whole problem is that H2 molecules are formed on the dust which very

effectively cools the interstellar gas by shading the innermost dense clouds

from exterior radiation.

At the initial state of the interstellar gas there were little or no heavy

elements. Therefore there was no cosmic dust and consequently the formation

of H2 molecules was difficult. Of course interstellar H2 molecules can also be

generated without the help of cosmic dust, but in a much smaller quantity. All

this shows that at early evolutionary stages of the interstellar medium the

cooling processes are much weaker. If in the actual interstellar gas the known
cooling processes can decrease its temperature to 4-6 K, then in the ‘earlier’

interstellar gas the temperature scarcely drops lower than 200-300 K.

This conclusion slightly changes the pattern of the stellar formation process

at the first stages. The general scheme remains essentially the same and all the

formulae given above remain valid. Only now greater values of temperature

must be used in our estimations. This means that during the first stage of

evolution of the Galaxy the formation of massive stars and big clusters is more

probable. Massive stars formed in the initial stage evolve rapidly and explode.
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‘polluting’ the interstellar medium with heavy elements. Presently no initial

massive stars are left and those which remain are a little later, less massive

stars, slowly evolving. The big clusters of old stars are the so-called globular

clusters also composed of stars with a small content of heavy elements. This is

the approximate scheme of the gradual formation of protostars and stars from

the interstellar medium at different stages of its evolution. It is, however, only a

qualitative pattern. Some computations have also been done.

In this model many things are not yet clear but on the whole the outlines of

the scheme of protostellar and stellar formation are sufficiently precise. We
hope that in the future this scheme will be conserved, although in the process of

further study many new concepts will be clarified.
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Stellar evolution

We have studied the entrance into the main sequence of a protostar and its

transformation into a star. Now we shall consider the evolution of stars. This is

at the same time both an easier and a more difficult task. It is easier because

stars can be observed and with the optical data we can reject bad theoretical

models and can use observations to find different rules determining stellar

evolution. It is more difficult because, in contrast to the case of protostars, we
need precise data on the temperature and density of the stellar matter, on its

chemical composition, on the distribution of mass inside the star, on its

rotation, etc. In fact, the sensitivity of thermonuclear reactions to the

temperature does not permit us to use simple numerical estimations such as

those we used in the preceding chapter. The chemical composition determines

the opacity and the role of different thermonuclear reactions and its influence

on the evolution of a star is very strong. Finally, the most important point is

probably that the evolution of a protostar is almost independent of its inner

structure; in the case of stars the situation is very different, as we shall soon see.

A conclusion can be drawn: for the study of stellar evolution we must calculate

a large number of precise stellar models. Without the help of computers this

cannot be done.

However, first a qualitative image—the essential nature of stellar

evolution—can be obtained with the help of elementary notions based on

stellar physics data which the reader has seen in the preceding chapters. We
shall therefore first describe this qualitative picture and then give the concrete

data obtained from results of computer calculations.

On contraction the central temperature of a protostar increases according to

formula (5) (or formula (7) if we take p = 0.6). The thermonuclear reactions

which consume hydrogen start at a temperature of eight million degrees.

Introducing this value in (7) we obtain that at the moment of ‘inclusion’ of

thermonuclear reactions the protostellar radius was R = URqMIMq.
This value is slightly larger t)^an its radius on the main sequence but the

‘inclusion’ of thermonuclear reactions is not able to stop the contraction. Only

after equilibrium between the energy generation and its evacuation according

130
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to the mass-luminosity relation does the star finally ‘sit’ on the main sequence.

In stars of small mass the ‘inclusion radius’ of thermonuclear sources is also

small—if it is smaller than the radius of a white dwarf with the corresponding

mass then hydrogen will not burn there.

If we mark on the spectrum-luminosity diagram the points describing the

situation (i.e. luminosity and radius) of stars of different mass where the

thermonuclear reaction begins to set in, we will obtain a line called the ‘zero

age’ main sequence. Its position depends on the chosen chemical composition.

For type I population stars its position coincides with the lower edge of the

observed main sequence. In type II population stars with a small amount of

heavy elements the zero age sequence coincides with the subdwarf sequence.

The mass-luminosity diagram (Figure 11) also shows the zero age sequence

(lower curve).

In a star on the zero age sequence hydrogen starts burning—in the proton

reactions for low mass stars and in the carbon-nitrogen cycle for massive stars.

What happens then to these stars? We shall try to imagine this using formula

(9). As the hydrogen burns, the molecular weight increases, and according to

(9) this should lead to an increase in the luminosity. However, in order to

oppose the increased luminosity with a lower hydrogen content, the star must

increase its temperature. This in turn leads to a decrease in the opacity and

consequently to a further increase in the luminosity (always according to

formula 9). Thus, when hydrogen burns the luminosity of the star increases, a

condition represented on Figure 11 by vertical arrows.

The variation of the stellar radius can be estimated using formula (5). The

temperature only slightly increases with time, the thermonuclear reactions

being very sensitive to the temperature. A very small increase in the latter is

enough to increase the energy emission and this leads, according to (5), to a

small decrease in the stellar radius. On the other hand, as the hydrogen

consumption continues the molecular weight increases in the star and this

condition, according to (5), brings about a more important increase in the

stellar radius. Precise computations show that, although the luminosity

increases, the increase in the radius is more rapid, so that the surface

temperature drops. Of course these precise calculations depend on the

assumption of stellar matter mixing. If we assume, as it is done nowadays, that

the mixing is not very strong and that hydrogen burns mainly in the centre, then

the surface temperature drops. However, if we allow for strong mixing in the

star (such that the hydrogen content decreases over the whole star), then we
can also obtain an increase in the surface temperature. Because of the optical

factor the choice between these two assumptions goes in favour of the first

one—we shall come back to this problem later.

Since the molecular weight changes only a little even after the entire

consumption of hydrogen, (see Chapter 2), we can conclude that within this

time the luminosity and the radius of the star also change very little, i.e. the

star will remain within the limits of a relatively narrow band of the main

sequence all this time. To be precise, the small variation in the luminosity and
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surface temperature during the whole time of hydrogen burning defines the

existence of the main sequence as a well-expressed rule.

Let us continue. Since the hydrogen content in the star is proportional to its

mass and the velocity of its radiation (i.e. luminosity) is proportional to the

mass cubed (or even at a higher degree), it is clear that the hydrogen will burn

much more rapidly in massive and hot stars than in small and cool ones.

Figure 11 shows the time of hydrogen burning in stars of different masses. In a

star with a mass fifteen times greater than the solar mass the hydrogen burns

within ten million years and in a star with a mass one-fourth of the solar mass,

within seventy milliard years. It is known that the part of the Universe which we
observe exists for about ten milliard years. From this it follows that even the

oldest stars with masses smaller than the solar mass would not have time to

‘burn up’ their hydrogen and leave the main sequence. Moreover, the smallest

stars would not even have left the zero age sequence. The dashed line on

Figure 11 indicates the positions of stars with small masses during 10^® years

after the beginning of hydrogen burning and confirms what has been said

above.

Thus the evolution of stars with masses inferior to the solar mass, i.e. the

majority of stars, is simple and uninteresting. Once these stars have arrived on

the main sequence (type I population) or on the subdwarf sequence (type II

population) they remain almost in the same place. The brightness increases a

little, the surface temperature drops a little, but the structure of the star hardly

changes.

To conclude our discussion of the evolution of small stars we must note the

following. Computations have shown that the star remains entirely convective

during the main sequence stage if its mass is within the limits of

0.08A/® < M < 0.26M® (at greater masses a radiative nucleus is

formed). Since the central temperature is small here, the proton reactions stop

with the formation of He^ which can no longer turn into He"^. After ten milliard

years 1 per cent, of the hydrogen is burnt, so that the ratio He^/He"^ in these

stars can be of about 3 per cent. Stars with M < O.OSMo, having passed the

stage of thermonuclear reactions (the temperature in their interiors does not

reach eight million degrees), pass at once to the state of degenerate red dwarfs.

The evolution of massive stars is much more complex and interesting. We
shall now study these stars. In massive stars, as we already know, there is

always a convective nucleus containing 10-40 per cent, of the entire mass of the

star. Hydrogen mixes rapidly here but also burns rapidly. However, it is not

clear whether there is an exchange of matter between the convective nucleus

and the surrounding envelope in which energy is transmitted by convection. It

is more probable that there is no such exchange. In any case without this

hypothesis we shall not obtain the stellar evolution scheme which agrees with

optical data, so the question of mixing^remains open.

Let us assume that there isqjo exchange of mass between the convective

nucleus and the radiative region and let us consider what is the result. In the

beginning hydrogen will burn uniformly over the whole convective nucleus.
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Computations show that as the hydrogen content decreases in the centre of the

star, the convective nucleus also diminishes by mass and by dimension. As the

hydrogen content decreases from X ~ 0.7 to Z ~ 0.05, the mass of the

convective nucleus decreases by 2-3, and its dimension decreases even more
due to an additional contraction of matter in the centre of the star. In this case

the temperature in the centre increases by 10-15 per cent, and the central

density increases by 15-20 per cent. The star remains on the main sequence as

long as the temperature in its already small convective nucleus does not drop

more than 1 per cent. What happens after the exhaustion of hydrogen in the

centre of the star?

The energy flux from the stellar interior will not be compensated by

thermonuclear reactions and the star starts to contract at least in its central part

where the pressure had earlier started to decrease. Contraction of the star

causes an increase in the central temperature. The temperature of the nucleus,

which no longer contains hydrogen (it is now composed of almost pure helium),

will also grow, as well as the temperature of the radiative part of the envelope

surrounding the nucleus. Finally, the temperature grows so much that the

hydrogen will burn in the central parts of this envelope. The star will now have

the following structure: the central helium nucleus which is isothermic (i.e. at a

constant temperature) is surrounded by a thin layer in which thermonuclear

reactions occur due to the fact that here hydrogen is still conserved and the

remaining envelope in which energy is transferred by radiation.

Can such a star exist? The reader probably remembers that similar structures

are found in the inner parts of red giants although there is, besides the above

described layers, also a very elongated outer envelope with convective energy

transfer. Apparently such a convective envelope is indispensible.

With convection in the isothermic nucleus the density is increased, but in the

surrounding layers where hydrogen burns the density should not increase. If

this were to happen, then the energy release would grow sharply (it has large

amounts of hydrogen and large temperatures and densities) and the

transparency of the matter would decrease sharply. This cannot take place,

however, because the amount of energy generated in the star is always

regulated by the heat evacuation. The increase in energy emission with a

simultaneous decrease in transparency leads to a violation of this principle.

From this it follows that the increase in density of the central nucleus leads to a

decrease in the gas density in the adjacent envelope. The isothermic part

contracts and the layer with burning hydrogen remains in its place.

Rarefications are not possible in a star; the density of the gas must always

decrease with the emission from the centre. Thus, it appears that the formation

of a layer with hydrogen burning surrounding the isothermic nucleus must

inevitably be accompanied by expansion. In the outer layers of an expanded

star the temperature drops, the transparency decreases, and these layers pass

to the state of convective energy transfer. In short, after the beginning of

hydrogen consumption in a layer the former main sequence star turns into a

typical red giant with a complex inner structure.
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Evolution in 10^ years

Figure 23 Change of the stellar structure in the process of evolution at the stage of

hydrogen burning. Straight shading shows the regions of thermonuclear reactions; the

figured shading shows the convective zones

These qualitative estimations could appear to be not very convincing to the

reader. Simple numerical estimations cannot be done here, but numerous

calculations of stellar evolution models have confirmed these conceptions.

Incidentally, in the process of passing to the stage of a red giant the

luminosity of the star can for a certain time decrease since an important part of

the energy produced goes towards the blowing-off of the stellar envelope and

its ‘boiling’, i.e. the establishment of convection. In this case the surface

temperature also sharply decreases. Afterwards, however, the luminosity

starts to grow again.

Can such a layer described above convert the entire amount of hydrogen into

helium and by this turn the star into an isothermic gas sphere? It appears that

this is not possible. It is easy to consider that an isothermic gas sphere will be

unstable since the inner gas pressure will not be sufficient to support the upper

layers which, notwithstanding their weight, exert a high pressure on the

interior layers due to the high temperature. In a gas sphere restrained by its

own gravity the temperature must always increase from the surface towards the

centre. For this reason the central isothermic nucleus cannot take over the

whole star. Calculations show that if more than 0.21 of the stellar mass is

concentrated into an isothermic helium nucleus, it starts to contract again

independantly of whether or not there is hydrogen in the layer (p is here the

molecular weight of the matter outside the helium nucleus). The temperature

in the centre of the isothermic FHicleus will start to increase. When it reaches a

hundred million degrees (or a little more) the triple alpha process starts—the

formation of carbon from helium. Helium naturally burns first in the centre of
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Evolution in 10^ years

Figure 24 Stellar structure variation in the evolution process at the stage of helium
burning

the star and our star again becomes similar to its initial model—the

thermonuclear sources in the central convective nucleus. The convective

envelope disappears and a hot, very bright star appears. All this is then

repeated again, but for another stage. Helium burns in the nucleus and a star is

formed with a layer of helium and a broad convective envelope. All that has

been said above about a star with a hydrogen burning layer is also valid here.

Only the concentration of density towards the centre of the star is even more
distinct. The relative radius of the layer of helium is five times smaller than the

relative radius of a hydrogen thermonuclear layer. The total radius is even

greater and the star becomes a yellow or red supergiant.

At the end of helium burning in a layer a star is formed with the following

distinctive chemical composition: in the central nucleus (22-16 per cent, of the

mass) are carbon, oxygen, and neon; this nucleus is surrounded by a layer in

which helium remains (about 3-5 per cent.); further out this is surrounded by

an envelope basically composed of hydrogen (71-73 per cent, of the mass).

Contraction then begins again, the temperature in the centre increases, and if

the mass of the star is big enough other reactions can start—those dealt with in

Chapter 4 (formula 19). First a star is formed with a central carbon source and

then a star with a layer carbon source. This is no longer a simple ‘repetition of

what happened’. Neutron luminosity grows sharply and all processes are

explosive. We shall see later what will happen.

The evolution of a star is well illustrated in Figures 23 and 24 drawn by R.

Kippenhahn. They show the change in structure of a star with a mass of about

7Mq during its evolution. Along the vertical axis is given the part of mass

which is occupied by a layer and along the horizontal axis the time. Since the
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evolution of a star is not regular in time, the time scale changes twice on the

horizontal axis. Let us examine these figures in detail.

We have already seen that as hydrogen burns the convective nucleus

diminishes; this is clearly shown in Figure 23, where the figured shading marks

the convective zones. Subsequently the mass in the regions where the hydrogen

burns also decreases slightly. The time on the main sequence is indicated by

AC. At point B the scale of the time axis has been changed in order to extend

the time scale to include red giants. At point C the hydrogen burning in the

nucleus comes to a stop, but a layer source starts to burn where hydrogen turns

into helium. In the beginning its relative mass is big, up to a few per cent, of the

total mass of the star, but after that the layer rapidly grows thinner and contains

only 1.5 per cent, of the stellar mass. Beneath this layer is located the helium

nucleus. For stage CD nothing is burning in this nucleus and the temperature

remains the same; however, it gradually increases with time. Figure 23 shows

that the penetration of the convective surface zone into the interior nuclei of

the star occurs only at the stage immediately before helium starts to burn in the

nucleus (DE). According to other calculations the convective surface zone is

formed earlier. At point D helium starts to burn in the centre and a convective

nucleus appears again.

The further evolution of the star is shown in Figure 24 where the time scale is

again a little compressed. Thermonuclear reactions take place in the star

simultaneously in two areas: the helium reaction ‘works’ in the nucleus and

hydrogen continues to burn in the layer. Note that, as could be expected, the

hydrogen layer moves upwards through the mass of the star (i.e. it leaves

behind an always greater part of the mass). In this case the part of the stellar

mass in which hydrogen is burning remains more or less constant. Although the

helium reaction in which three helium nuclei become one carbon nucleus gives

a large energy release and there is enough helium in the nucleus, the lifetime of

the high luminosity of a star with a helium source is about ten times shorter than

that of a star with a hydrogen source. Figure 24 shows this clearly. Then helium

is used up in the centre of the star and a layer helium source starts to burn

(indicated by GH). A carbon nucleus appears in the star. The further stages are

not marked in Figure 24, it is very difficult to calculate them.

Figures 23 and 24 clearly show the evolution of a star, but for a comparison

with observations it is better to build evolution tracks, as for example that

shown in Figure 25 of a star with a mass of 5M^, calculated by the

American astrophysicist I. Iben. Figure 25 shows the variation of luminosity

and surface temperature of a star in its evolution process, as well as diverse

stages and the characteristic times which stars spend on each of these stages.

The main sequence is shown by the track between points 1 and 2. Then follows

a small phase of contraction (2-3) and the establishment of the layer source.

The decrease in luminosity on the portion 5-6 is linked to an energy loss for the

expansion of the convective envelope. The indications given below the figure

allow the reader to examine all the phases.
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(1-2)—hydrogen bums in the convective nucleus, 6.44 x 10^ years; (2-3)—general contraction of the

star, 2.2. x 10^ years; (3-4)—hydrogen starts to bum in the layer source, 1.4 x 10'^ years;

(4-5)—hydrogen burns in the thick layer, 1.2 x 10*^ years; (6-7)—red giant phase, 5 x 10“’ years;

(7-8)—beginning of helium burning in the nucleus, 6 x 10^ years; (8^9)—disappearance of the

convective envelope, 10^ years; (9-10)—hydrogen bums in the nucleus, 9 x 10^ years;

(10-11)—second expansion of the convective envelope, 10^ years; (11-12)—contraction of the nucleus

during helium burning; (12-13-14)—layer helium source; (14-?)—neutrino losses, red supergiant.

Figure 25 Evolution track of a star 5Mq belonging to type I population stars. The
particularities of each evolution phase are given below the graph, as well as the length

of these phases in years

The evolution tracks for stars with different masses are given in Figure 26.

The numbers on the turning points of the tracks have the same meaning as on

Figure 25. Slowly evolving stars with small masses are indicated by dashed

lines. Detailed calculations show that the evolution of stars with masses in the

interval O.IMq < M < 3Mq have certain particularities after a

certain time of evolution. First of all, if the stellar mass is inferior to O.SM©,

helium will not burn at all. This can be explained in the following way. We
already know that as hydrogen burns in the central part of the star the gas

density becomes greater and the temperature smaller. It appeared that in stars

with masses below O.SM^ the density is so big and the temperature so low (a

few million degrees) that a degeneration of the electron gas occurs with

contraction. Here the helium nucleus is formed of degenerate electron gas. Of
course it continues to contract but in a degenerate gas the pressure is
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Figure 26 Evolution tracks for stars of different masses. The numbers indicate the

same evolution phases as in Figure 25

determined only by the density and therefore the contraction is not

accompanied by an increase in temperature. In such stars the temperature

never reaches the hundred million degrees necessary for helium burning.

In stars with masses from O.SM© to electron degeneracy also

occurs on contraction of the central nucleus, but to a smaller degree. The
temperature of the stellar centre increases with hydrogen burning but the

increase is slower than in more massive stars. Eventually the temperature is

large enough to make the helium burn. However, in order to compensate

somehow for the slow temperature increase, helium here does not simply burn

but ‘flares’ (the so-called helium flare). Let us explain this phenomenon. First

we shall examine how helium starts to burn in massive stars which lack

degenerate electron gas. As the gas is compressed the temperature grows and

the gravitation pressure increases slowJy. At a certain moment the temperature

becomes high enough to allow helium burning. Energy starts to be released and

the temperature grows a little more rapidly. This brings about an even more
rapid increase of the gas pressure which seems to be greater than the
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gravitation pressure. The stellar nucleus rapidly starts to expand and the excess

temperature decreases. In the end the stellar nucleus reaches, comparatively

quickly, an equilibrium state at which the energy release is compensated by an

outward flow.

In a nucleus with partly degenerate electron gas the situation is different. Let

us assume here also that the temperature has reached a level at which helium

starts to burn. A certain amount of energy has been released and the gas is

strongly heated. However, the gas pressure has not changed very much as it is,

at least partially, determined by the electron degeneracy and depends to some
extent on the temperature. The nucleus continues to contract and the

temperature continues to grow even more rapidly. This leads to an even more
rapid helium burning and a greater temperature increase. Only at

temperatures where the electron gas is no longer degenerate will the nucleus of

the star start to expand. Meanwhile, the energy emission due to the helium

reaction increases strongly. In fact, an outburst takes place which is called a

helium flare. This is only theoretical; it is still not absolutely certain how this

occurs in reality. It should be recalled that stars with small masses evolve slowly

and therefore what has been said above concerns type II population stars which

have left the main sequence. In type I population stars only those with masses

greater than 1.2-1.5Mo manage to leave the main sequence.

Stellar evolution computations determine the time dependence of different

parameters characterizing the star. We cannot give here the tables of these

detailed data, but certain tables have been included which were obtained by

different authors on the basis of numerous calculations. Tabled shows the

characteristic lifetimes (in years) on the main sequence of three groups of stars

with different masses. The first group (second column) are young type I

population stars which on leaving the main sequence have many heavy

elements (Z = 0.02) and a high abundance of helium (Y = 0.3). The second

group also belongs to type I population stars but these are older stars of

intermediate systems. There are less heavy elements (Z = 0.01) and less

helium (Y = 0.1). Finally, the third group is composed of type II population

stars of spherical subsystems. In calculations the amount of heavy elements has

been assumed to be very small, about 10~^-10“"^. The dashes in the

table indicate that such stars have not yet been considered. Finally, Table 7

gives the characteristic lifetimes of stars in the red giant stage. For type II

population stars only those with small masses are considered, as they are the

only ones which remain today. It should be pointed out that the calculations of

different authors often differ.

At the present time diverse institutions continue intense work on the

calculation of stellar evolutionary sequences. The results of these calculations

are in good qualitative and often quantitative agreement, although they still

differ in details. Apparently it will soon be possible to compose detailed tables

which will permit determination of the values of the basic stellar parameters M,
L, and R at each given moment depending on the initial conditions of their

formation.
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Table 7

Stellar masses in

units of solar

mass

Stars of normal
composition (type

I population)

Stars with poor

amount of heavy

II population)

64 5 X 10^

32 1.5 X 10“

15 2 X 10^ —
10 4 X 10^ —
5 2 X 10^ —
3 7 X 10^^^ —
1.5 4 X 10^ 10'«

1.0 4 X 10"^ 2 X 10^^^

Let us go back to Figures 25 and 26 and compare the theoretical calculations

with observational data. We immediately see a good explanation of the

location of the giant branch in globular clusters. They are composed of old stars

and therefore the red giant stage has already been reached by stars of small

mass 0.5Mo < M < IM©). Figure 26 shows that their calculated

evolution follows the vertical line on the spectrum-luminosity diagram in

perfect agreement with observations. These stars are at the stage of a layer

hydrogen source.

We know the position of the zero age stars. Now let us mark on the

spectrum-luminosity diagram the position of all stars within any determined

time interval and join the points by a line. Thus we obtain the position of stars

of the same age. This has been done in Figure 27 for stars of the upper part of

the main sequence and for relatively small time spans (hundreds of millions of

years). In Figure 28 this has been done for the entire main sequence and for

larger time spans (several milliards of years).

The properties of these sequences with different ages are easy to understand.

Because of the increase in luminosity and the decrease in surface temperature,

occurring more rapidly in massive stars, the sequence of stars of the same age

goes from the main sequence of zero age upwards and towards the right-hand

side. The passage to the red giants interrupts these sequences at their ends and

the older the curve the lower this interruption—less massive stars have always

managed to become red giants.

Now let us compare Figure 27 with Figure 3. The rules appear clearly. The
young cluster NGC 2362 just managed to ‘emerge’ on the top of the main

sequence of zero age. The cluster in the Perseus constellation, which is older,

‘merges’ even more and now appears on a big branch of bright red giants. The
clusters M41 and Mil are even older and so the point of departure from the

main sequence is lower. The red giants are situated below here—this is linked

to the fact that massive stars went through the red giant stage and the observed

red giants are already stars of smaller masses. There is a very good agreement

between theory and observations here!
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Figure 27 Displacement of stars of different mass from the main sequence with time

In the very old type II population clusters M92 and M3, as well as in the old

type I population cluster M67, the evolution has at first sight a slightly different

character: here the giant branch is not interrupted and leaves the main

sequence, or the subdwarf sequence, at a right angle. In fact, the evolution is

the same, although slower, and concerns stars with smaller masses. Because of

this slow evolution the stars gradually pass to red giants without passing

through the intermediate region, as is the case for massive stars.

In Figure 28 sequences of stars of two old clusters are shown: one being the

M67 cluster, already known to us, and the other the very old NGC 188.

Comparing the theoretical positions of stars of the same age with the observed

sequence we can also determine the age of the corresponding cluster. For

example, the age of the cluster in the constellation Perseus is probably lower

than ten million years, the age of the Pleiades is about a hundred million years,

the age of the Hyades can reach one milliard years, the age of M67 is about

eight milliard years, and the age of the cluster NGC 188 appears to be of the

order of cosmological time—about 14—15 milliard years.

Thorough spectral studies have allowed us to obtain the so-called ‘fine

structure’ of the main sequence and also to determine the age of different stars.

Figure 29 shows an example of such a structure (obtained by B. Stromgren).

The farther the star is from the sharp line of zero age (the lower part) the older

it is.

Thus for the general evolutioaof stars the passage from the main sequence to

red giants is in very good agreement with the observational data. Many details

are also in agreement. For example, the fact that on Figure 3 the type II
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Figure 28 Displacement of stellar sequences from the main sequence with time. The
lighter lines indicate the calculated positions of the sequences at different moments
(the time spans are given in milliards of years) and the heavy lines show two observed

sequences

population red giants are situated on the spectrum-luminosity diagram above

the type I population red giants can be explained by the fact that in stars with a

small amount of heavy elements the opacity is small and consequently the

luminosity is high. Other, finer properties are linked, for example, to the fact

that, in stars with small mass, on the formation of a nucleus without hydrogen

this nucleus is made up of degenerate electron gas; this limited the increase in

temperature and does not lead to a helium reaction flare. It also leads to a

continuous transition from the main sequence to the red giants.

This scheme explains the evolution of ordinary single stars. However, we
know that, first, there are sufficient stars with such properties, as for example

variable stars. Second, a great number of stars are double and, in general, form

a multiple system. The theory of evolution should also consider these stars.

Comparing Figures 25 and 26 with 12 we can see that pulsating variable stars

are located on the spectrum-luminosity diagram in an intermediate region

between the main sequence and the red giants. For this reason one can expect

that the capacity of a star to pulsate is linked to a definite stage of its evolution

when, as a result of the expansion of the outer stellar layers, there is a situation

in which helium and hydrogen ionization zones oscillate with a ‘negative

dissipation’. In fact, calculations confirm this assumption. The envelope
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Figure 29 ‘Fine structure’ of the main sequence. Here special colour indexes are

chosen to characterize the presence in stellar spectra of a line of metals (horizontal

axis) and of hydrogen (vertical axis)

expanded during the formation of a helium nucleus is unstable with respect to

the excitation of pulsations if the helium abundance is not less than Y ~ 0.22.

Detailed calculations allow us to follow the evolution of a star entering the

phase of pulsation excitation and, after a certain period (usually years),

leaving this phase when the pulsations stop. The luminosity of the star at this

stage of evolution determines the dimension of its envelope and consequently

the mean density and the pulsation period. From this the period-luminosity

relationship is deduced which is described by the graph in Figure 13 obtained

with observational data.

Now let us study the evolution of binary stellar systems. First of all we must

say that until now the cause of the formation of binary systems remains

unknown. The question is how, from an initial fragmented cloud, pairs of stars

can be formed which almost touch upon each other and rotate around a

common centre of gravity. Many hypotheses exist but none of them are very

satisfactory.

If the distance between two stars of one system is very large, e.g. a thousand

times greater than their radii, then each star evolves by itself and there will be

no particularities in the development of binary stars. If, in this case, the masses

of the components of the pair are very different, the more massive star evolves

more rapidly and, in such a pair, two stars at different stages of evolution can be

linked, e.g. a star of the main sequence and a white dwarf. However, if the stars

form a close pair the evolutionary course is altogether different. In this case one
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star can outweight the mass of the other star. Stellar evolution in close binary

systems has been given much consideration and we shall describe certain results

which have been obtained.

First we shall introduce the idea of the Roche lobe, which is very important for

the entire evolution theory of binary stars. For this we shall study the motion of a

particle, appearing for some reason in the gravitation field of both stars. If the

particle is close to the surface of one star it will be attracted to this star, but if the

particle is somewhere between the stars, or even simply nearby, the attraction

from each star will partly or entirely compensate each other and the motion of

the particle will depend on the magnitude of the centrifugal force acting upon the

particle, since it rotates together with the binary system of the stars. This means

that stars in such a binary system can retain particles only if these are situated

inside a certain closed region where the attraction of one star prevails over the

attraction of the other star and the centrifugal force. This region is called the

Roche lobe. The Roche lobes of both stars touch each other on a line linking the

centre of both stars at a point which is called the first critical Lagrangian point

Li.

Coming back to the evolution theory of binary stars we can say that, evidently,

all depends on how deeply ‘embedded’ the stars are inside the Roche lobes. Will

they be able, during the whole time of their evolution, to extend so much as to

fill the Roche lobes, even if only for a certain time? In fact as soon as the star fills

in its Roche lobe, its outer layers are no longer gravitationally related to the rest

of the star. The star loses its mass and this must appear in the course of the whole

evolution of the star. There is not only mass loss when the star fills its Roche

lobe. Part of this mass, namely that which leaves the lobe close to the Lagrangian

critical point, is captured by the second star, falls on its surface, and so changes

the evolution pattern of the second star. This phenomenon is called accretion.

These properties—mass loss from the first star and accretion of part of it by the

second star—determine the whole evolutionary pattern of binary systems.

It is evident that the filling up of the Roche lobe can take place only if it is not

too big, i.e. if the distance between the stars is comparable to the dimension of

these stars. For this reason only close binary systems have distinct particularities

of evolution.

It is well known that there exist close binary systems in which the distance

between the components of the pair are five to twenty times greater than the

solar radius. If the stars of such pairs have masses greater than that of the Sun

and subsequently also have greater radii they can fill up their Roche lobes during

their stay on the main sequence. This is called a type A evolution. On the other

hand, if the distance between the stars of one pair is greater than the radius of

the Sun, e.g. thirty to two hundred times (the radius of the Sun being

Rq = 1 X 10^® cm), then the star can only fill up its Roche lobe at the red

giant stage when there is a helium nucleus and a layer hydrogen source of

thermonuclear energy. In this case it is a type B evolution. One more expansion

of the star occurs at the stage of hydrogen burning in the layer source. This is a

type C evolution.
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Figure 30 Change in structure of a star belonging to a close binary system. Mass loss in

the evolution process at the stage of hydrogen burning in a convective nucleus (Graph
calculated by A. Tutukov and L. Yungels)

At each stage of expansion the star loses mass which leads to an increase in the

distance between the stars. Therefore one pair of stars can at the beginning

evolve as a close pair (i.e. at stage A) and then as a larger pair (stage B).

Let us first consider the evolution of a close binary system where the main

component fills up its Roche lobe already at the main sequence stage.

Calculations show that as soon as the stellar surface approaches its Roche lobe

in the expansion process there is an outflow of matter. The first stage of outflow

lasts about 10"^ years and during this time the star loses 15-20% of its initial

mass. Then its surface recedes again from the Roche lobe and the outflow

stops. The star somehow accommodates to a new existence of a so-called

subgiant where the mass of the star is smaller than that corresponding to its

given luminosity. We should note that in the process of outflow the luminosity

of the star changes very little since it is determined by the magnitude of the

energy sources and the radiative transfer in the deep layers of the star where the

equilibrium is not very much affected by the outflow of matter from the

surface. Afterwards the star with a lesser mass, being on the main sequence,

expands again, fills up its Roche lobe again, and starts again to lose mass—but

now much more slowly. In two to three million years it loses about 25-35 per

cent, of the initial mass. At stage A a star of a close pair can lose up to half of its

initial mass.

Figure 30 shows a graph representing the change in structure of a star—

a

component of a close binary system during the process of mass loss. The

vertical scale indicates the stellar mass expressed in solar masses at each

moment in time (with an initi.aj mass of IbM©) while the horizontal scale

indicates the time. The time scale changes in order to describe the slower mass

loss during the second stage. We can see in Figure 30 that the convective
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Figure 31 Change in structure of a massive star during its evolution process.

Fundamental mass loss at the stage of hydrogen burning in the layer source and helium

burning in the nucleus. In the later evolution stages, carbon and oxygen burning are

also shown (Graph by A. Tutukov and and L. Yungels)

nucleus and the region of hydrogen burning change little with the outflow of

matter, although during the intermediate period when there is an absence of

outflow a certain change in structure occurs and there is an accommodation to

the smaller mass.

In case B, when the star fills up its Roche lobe, the pattern will be somewhat

different at the stage of the layer source, although in this case there are also two

stages of mass loss. In the beginning a rapid outflow of mass starts as soon as the

stellar envelope fills up its Roche lobe and the star loses 50-70 per cent, of its

mass within 10^ years. During the second, slower phase, the star loses about

one solar mass within about 10^ years, since all mass outflow during stage B,

where two-thirds or even more of its mass leave the star, is ten times more rapid

than in case A.

Figure 31 represents the construction of a massive star (with an initial mass of

32M^) during its evolution process if it belongs to a binary system. Here

only late evolution stages are shown, helium burning in the nucleus, then a

helium layer source, and carbon and even oxygen burning in the nucleus of the

star. In the left-hand side of the figure the large mass loss during stage B is

shown which is followed by a relatively small but rapid mass loss (within 10^

years) at stage C—a loss of about 0.2M^.

From this we can obtain a formula which will determine the mass of the

remainder of the star after all outflows of mass Mf relative to the initial mass Mi
have been considered.

(59)

The greater the initial mass the greater the amount of mass loss.

The outflow of matter in close binary systems leads to the fact that the com-

ponent stars are often particular objects. Let us study some of them. For
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example, astronomers have known for a long time the existence of so-called

Wolf-Rayet stars which are characterized by a rather rapid mass loss. Obser-

vations show that these stars lose in a year. It also

appears that these stars enter close binary systems and that the mass of Wolf-

Rayet stars is about three to five times smaller than the mass of the second

component forming the pair.

However, the most interesting fact lies elsewhere. It appears that all Wolf-

Rayet stars are divided into two groups: nitrogen and carbon stars. In nitrogen

stars the amount of nitrogen is fifty to a hundred times greater relative to the

amount in ordinary stars and there is comparatively little carbon. In carbon

stars, on the contrary, there is four hundred to seven hundred times more

carbon than its relative amount in ordinary stars. The amount of hydrogen is

relatively small in Wolf-Rayet stars, particularly in nitrogen stars.

Can these particularities be explained by stellar evolution theory? It appears

that at least qualitatively this can be done quite easily. Let us consider the stage

of evolution of a star when after the helium consumption a carbon nucleus is

formed in its centre. There is little helium (it was used in thermonuclear

reactions), there is absolutely no hydrogen, and there is a relatively small

amount of nitrogen. Above this nucleus is a layer of matter with a lot of helium

but almost no hydrogen; it was also used in the hydrogen burning, mostly

during the carbon-nitrogen cycle (17).

As we have already seen, the result of these reactions is the following relative

abundance of nitrogen and carbon: about 95 per cent, of the nitrogen isotope

about 4 per cent, of the carbon isotope and only about 1 per cent, of

the carbon isotope Consequently, in the layer of material surrounding the

carbon nucleus nitrogen and helium prevail. In even higher layers some

hydrogen remains and the ratio of carbon to nitrogen is more or less normal.

We now assume that such a star with a layered composition starts to lose

mass as it enters a close binary system and fills up its Roche lobe. In the

beginning only the upper layers will flow out and we see a star of normal

composition. Then the second layer starts to flow—a region rich in nitrogen

which remained below the layer of burning hydrogen. This layer also flows out

entirely. As a result layers on the surface appear to be enriched by carbon on

account of the burning helium. Wich such a gradual uncovering of deeper and

deeper layers of the star which differ by their chemical composition we can

explain the existence of nitrogen and carbon Wolf-Rayet stars. In the process

of mass loss the distance between the stars increases and in fact the carbon

Wolf-Rayet stars are located farther from their companion than a nitrogen

star. Of course the Wolf-Rayet stage can be passed only by stars with a great

initial mass, of about 5-10 M®, which is understandable since most of their

mass has been lost.

We must note that single stars also lose mass if in the process of their

evolution they increase their dirpension so much that the velocity of the matter

flying off their surface is of the order of the thermal velocity of molecules. The

outflow of matter can also be favoured for the pressure of radiation if the
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luminosity of the star becomes very strong in the process of evolution. A so-

called Eddington limit of luminosity exists:

(60) L<10^®(-—

)

erg/s.

It is obtained in the following way. We compare the force which acts upon a

particle of matter absorbing the radiation from a star with the action on the

same particle of gravitational attraction forces and we find the luminosity at

which these forces are equalized. Let us explain this in more detail. The light

radiated by the star transports an impulse—a certain amount of motion—and

when a particle of matter absorbs this radiation it also takes away the impulse

and consequently receives a shock in the direction of the light emission, i.e.

from the star. The force of the light decreases in inverse proportion to the

square of the distance and thus changes the impulse absorbed by the matter.

The gravitation force also decreases in inverse proportion to the square of the

distance and therefore if the repulsion force is greater, due to the absorption of

radiation, than the gravitational attraction this condition is satisfied at all

distances from the star. Formula (60) determines this luminosity where the

repulsive force on the absorption of radiation is greater than the force of

attraction. It is clear that during the evolution of a star the luminosity reaches

the limit (60) and the outer layers will be torn off by radiation pressure and fly

off into infinity. It is probable that in this way, for example, single Wolf-Rayet

stars are generated which are also sometimes met.

Astronomers often deal with mass losses by stars. Sometimes the rejected

mass can be observed, e.g. planetary nebulae. Probably they were formed by

red giants in which the whole envelope gradually left the star. The slow

expansion of the envelope is also observed in the form of a spherical layer

surrounding the remainder of the star, the so-called nucleus of the planetary

nebula which from its properties slightly resembles Wolf-Rayet stars. The

whole process of tearing off and recession of the envelope, although smooth, is

rather rapid and therefore a few planetary nebulae are observed—in our

Galaxy there are about one hundred.

Other stars lose mass in a not very quiet manner. Such loss is observed in the

form of outbursts or stellar flares. These flares can be of very different

magnitudes. We have already described these processes and how they are

observed in Chapter 9.

Unfortunately it has not yet been possible to reconcile the phenomena

occurring in stellar flares with the evolution theory. The masses rejected in

flares of nova-like and nova stars are small and therefore such flares apparently

are not related to any important reconstruction of stars. Probably they occur on

a more advanced evolution stage and apparently an important part is played by

the recently discovered duplicity of such stars. This duplicity acts upon the

stability of such stars in a way which is still not very clear. The reader should not

be astonished that there is so little to say about these stars. When we studied the
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evolution of ordinary stars and even binary stars with mass loss, we considered

that a star is at every instant in equilibrium state and we assumed that only slow

changes occur with time in the state of equilibrium. Even pulsating stars

oscillate around their equilibrium state. Flaring stars are not in equilibrium, all

processes are rapid, and it is much more complicated to calculate them. For this

reason we have very little data but we hope that in the near future more

information will be found on these interesting objects. We shall come back

later to flares of supernovae stars.

Studying the evolution of stars, single or double, we have seen many times

that during their evolution a gradual formation of heavier elements takes place

in all stars—in the beginning in the central parts and then in higher layers. The

question arises: up to which elements can this process of formation reach? The

answer is related to the estimation of the maximum temperature that can be

reached in stars of different mass in the process of the whole evolution.

Although it is difficult to effect reliable calculations, according to estimated

data the end of the thermonuclear evolution of stars with masses greater than

4M 0 occurs when a nucleus is formed in the centre of the star which

contains carbon, oxygen, neon, and metals (such as magnesium and iron). In

this ‘metallic’ nucleus 20-25 per cent, of the mass of the whole star is

concentrated. The nucleus is surrounded by a layer in which much unburnt

helium remains (about 5 per cent, of the mass). If the star conserves the

greatest part of its mass, then its outer layers are composed, as before, of

matter with a large amount of hydrogen.

A star with a nucleus composed of heavy elements has no longer a sufficient

amount of thermonuclear fuel for corresponding reactions in the region where

the temperature is sufficiently high. What happens then? Evidently a star

deprived of thermonuclear sources starts to contract and its central parts pass

to the state of electron degeneracy (if it has not already taken place at an earlier

stage). What happens next depends on the mass of the star and on how much
mass is lost. We assume that the mass of the star was below the Chandrasekhar

mass limit of white dwarfs, but smaller than the mass limit of neutron stars.

Therefore, in the contraction process the stellar gas is neutronized and a

neutron star appears. It can be a pulsar if it rotates rapidly and has a strong

magnetic field. However, we are not sure that all neutron stars become, at least

temporarily, pulsars. In fact it is known that among stars there exist many
binary systems and these are few among pulsars. Apparently, only the stars

which do not accrete mass on their surface from the second components of the

pair are converted into pulsars. Finally, if the mass of the remainder of a star is

sufficiently large it will in the process of contraction recede into its ‘black hole’.

As we already noted, the process of rejection of envelopes by stars, in

particular after exhaustion of thermonuclear sources in the central parts of the

star, has not yet been studied in enough detail. Some calculations were done,

however. Here it is very important to consider the role of neutrinos. In fact, the

contracting nucleus of a star becomes very dense and hot and therefore nuclear
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processes with neutrino emission can take place. If they leave the star freely,

then the energy they transport decreases the gas pressure and facilitates

contraction. However, if the neutrino is absorbed in the upper layers of the

contracting star, then the energy is transmitted to these layers which leads to

the rejection of a certain enevelope. This can happen with stars having masses

smaller than 2-4Mq .

In the case where the nucleus becomes so dense that even neutrinos cannot

leave it, once the density of neutron gas is reached the contraction of the

nucleus will be suspended. The higher layers continue falling, meet the

nucleus, and a strong shock wave appears. In the collision with the dense

nucleus the gas is heated. Because of this, thermonuclear reactions can again

appear in the falling matter of the outer stellar layers. The temperature here

increases so much (up to 10^ degrees) that not only helium and hydrogen are

rapidly and totally burnt (if these elements are still conserved) but oxygen also

starts to burn. A very large amount of energy is emitted and the most external

envelope of the star is rejected. According to calculations, this phenomenon
can happen in stars with masses smaller than 15-2OM0.

This process of envelope rejection due to oxygen burning in the outer layer of

such a star is, generally speaking, linked to the phenomenon of flares in

supernovae. Of course, as the same calculations show, the masses and the

energy of the rejected envelopes are smaller than the magnitudes observed in

real supernovae.

If the mass of the star is very large (M > SOM^) then nothing can stop its

rapid contraction after the combustion in the nucleus of all thermonuclear

energy sources. Even the remaining unconsumed oxygen, helium, and

hydrogen in the outermost layers of the star do not manage to explode.

Everything recedes into the ‘black hole’.

These conclusions were obtained through calculations which did not take

into account the role of rotation: its calculation complicates the problem. On
the other hand, as we already know, during contraction the rotation increases

strongly which can lead to an additional rejection of the envelope due to the

action of the centrifugal force. This problem is in general very complex and we
will probably have to wait some time for a more or less reliable solution. There

is also little observational data on supernova flares or on this stage of stellar

evolution.

The very last stage of stellar evolution—white dwarfs, neutron stars, and

‘black holes’—were studied in Chapters 5, 6, and 7 of this book. The matter

rejected by stars forms new stars but what has fallen into the ‘black holes’ is lost

for further evolution.

The study of stellar evolution has always been one of the most important

problems in astronomy. Many fantastic assumptions have been made. The first

scientific hypothesis appeared when the American astrophysicist G. Russel,

having built the spectrum-luminosity diagram, assumed that stars evolve on it

along the main sequence from above to below. The modern pattern of stellar
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evolution is quite different from the first models. It has been realized from the

work of many astrophysicists and is based on the theory of stellar structure

described in this book. Many astrophysicists have published a modern pattern

of stellar evolution, but since this is a collective work of scientists we shall not

give particular names here.

V•^
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