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Preface 

The year 1996 will see the seventieth anniversary of the publication of The 

Internal Constitution of the Stars by Sir Arthur Eddington. This book re¬ 

mains a masterpiece, a classic in the astrophysical literature. In essence 

it proved that it was possible to construct a theory that made it possi¬ 

ble to look inside the stars. However, theoretical astrophysics remained the 

province of a very small number of people for many years. Quite a few re¬ 

markable textbooks have been published since, but there always remained 

the need to have a book, however incomplete, that took into account the 

fact that the study of the stars raises global problems. Whichever part of 

a star is studied, that part is of course connected to the rest of the star. 

Furthermore, all fields of physics are involved. The incredible increase in 

precision of astrophysical data and the wide variety of new types of ob¬ 

servation (from neutrinos to asteroseismology) obliged researchers to take 

into account new physical processes and to improve their knowledge of basic 

physical processes (the equation of state, opacities, nuclear cross-sections, 

plasma physics and magnetohydrodynamics, to name just the most impor¬ 

tant). 

Remember that astrophysics is first and foremost a science of observa¬ 

tion. But theoretical developments are essential if we are to understand the 

observed phenomena. Furthermore, that understanding is necessary if we 

are to move forward, to unravel the discrepancies between the observational 

data and the theoretical models, and if we intend to build new instruments 

that will help us progress in our collection of critical data. 

The spirit of this book is reflected in what we have just written. Let us 

repeat, though, that in astrophysics everything is linked together, and that 

at present our knowledge of stellar properties is absolutely fundamental to 

our undertanding of the universe. 

We have taken the opportunity of this English translation to thoroughly 

revise and update the text. 

Meudon, October 1992 Evry Schatzman 

Frangoise Praderie 
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Preface to the French Edition 

In 1959 there appeared the book Astrophysique Generate by Pecker and 

Schatzman. It is a little difficult today to realise the stages that knowl¬ 

edge of the stars have passed through in thirty }^ears, whether in respect of 

observational data or development of theoretical results. In the domain of 

stellar astrophysics alone, major observational discoveries have been made: 

neutron stars, through the pulsars (1967), the solar-neutrino deficit follow¬ 

ing the theoretical prediction (the 1970s), data from helioseismology (after 

19S0), and Supernova 19S7A in the Large Magellanic Cloud and its neutri¬ 

nos. The existence of neutron stars had been predicted by Landau (1932), 

but observation of them was nevertheless a considerable scientific event! 

In thirty years, the volume of publications in astrophysics has increased 

more than ten-fold. To make a choice and write a book designed for students 

which will accurately reflect our knowledge of the stars presents consider¬ 

able difficulties. The sensitivities of the authors and their perception of 

the importance of this or that topic and its future have played a role at 

least as great as acquaintance with scientific currents through the meetings, 

colloquia, conferences, and symposia which animate the subject. Only the 

coming years will allow one to say if the desired aim has been reached. 
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Introduction 

In the splendour of a moonless night, far from the pollution of the sky by 

artificial lighting, the first revelation is that of the stars. The Milky Way, 

crossing the whole sky, is easily resolved into stars, even with a very small 

instrument. In the 18th century Herschel (1738-1822) discovered objects 

then called nebulae whose exact nature as gigantic star systems was not 

definitively established until 1923, when it became possible to find their 

distances. During this time the Milky Way had been recognised as a vast 

flattened system, containing billions of stars. The position of the Sun, far 

from the centre of this system, in all respects analogous to the extragalactic 

nebulae, was established by Shapley (1915). Today this term is obsolete; 

we speak of galaxies (with a small g) and we belong to the Galaxy (with a 

large G). 

Within the galaxies, as in our Galaxy, we find stars and interstellar 

matter. The stars make up 90% of the mass of the galaxies and are the 

essence of the visible Universe, even if invisible dark matter (whose existence 

is suspected but not yet truly established) represents in its turn perhaps 90% 

of the mass of the Universe. Whatever the case, the study of the stars, their 

structure, and evolution is the key to a large number of questions which 

we may ask ourselves about the Universe. Without studying the stars it 

is impossible to understand the chemical composition of our Galaxy and 

of the Universe and the constitution of the galaxies, and thus to enter the 

immense domain of cosmology. 

The basic data are clearly those one obtains from observations of individ¬ 

ual stars: (1) for each star under study, we determine the spectral properties 

of its radiation in all possible wavelength domains; (2) once we have found 

the distance of a star from the Earth we know the power it radiates; (3) 

by a simple application of the law of universal gravitation to the Keplerian 

motion of the two component stars of a double star we find their masses 

and we can then associate masses and radiation properties; we discover very 

quickly that there is no one-to-one relation between these properties because 

of the role played by a further parameter which we identify as the age of 

the star; (4) the measurement of the radii of the stars is a more delicate 

process. The orbital plane of certain double stars contains the Earth, so 

we see two eclipses per period of one component star by the other. Called 

eclipsing variables, these double stars directly give values of the radii whose 
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interpretation is often difficult. For several tens of nearby stars the radius 

can be obtained by interferometric measurements. But the determination of 

the majority of stellar radii is indirect and consequently model-dependent. 

The essence of the study of the stars is immediately seen to be the the¬ 

oretical analysis of the observed properties. The principle of this analysis 

is after all no more than the rigorous application of almost all the laws of 

physics. Simple models can be developed, leading to elementary statements 

describing properties for which evidence appears only after the fact. It is 

quite remarkable that these models also give a realistic picture of the main 

physical processes at work in the stars. In contrast, quantitative agreement 

is only possible by means of elaborate calculations, using the best and most 

complete physical data. Despite some very brilliant results, there are numer¬ 

ous cases where there remain disagreements whose origin is not understood 

between the predictions of the models and the values of the observed quan¬ 

tities: the future of the theory of stellar interiors remains open, like that of 

the theory of the outer layers. 

The study of the surface regions allows in the first place a determination 

of the abundances of chemical elements in the stars. While a first approach 

to the question reveals the difference essentially between old stars (poor 

in metals) and young stars (rich in metals), detailed analysis shows that 

all stars (almost!) are different. The differences may be caused by anoma¬ 

lies in the region of formation or by the evolutionary history of the star. 

The classification into different types and varieties allows one to bring out 

the phenomena believed to be the cause of these differences: transport pro¬ 

cesses under the effect of forces applied to atoms (gravity, radiative forces), 

diffusion, and nuclear reactions. 

Two phenomena play an important role in the structure and evolution of 

the stars. On the one hand, the broadening of spectral lines by the Doppler 

effect demonstrates to us that the stars rotate. We cannot list here all the 

numerous effects of rotation, one of the most important being perhaps the 

origin of a whole series of hydrodynamical instabilities capable of modify¬ 

ing the star’s structure in an appreciable fashion. On the other hand, the 

profile of spectral lines reveals the presence of an astonishing stellar wind, 

corresponding to a remarkable rate of mass loss, itself capable of having an 

enormous repercussion on the star’s evolution. 

A star is an object out of equilibrium, which evolves in an irreversible 

fashion since photons escape it permanently, as does a flux of matter 

(the stellar wind). We can single out a certain number of characteristic 

timescales, which we evaluate here for the Sun: the time of sound propa¬ 

gation radially from one side of the star to the other (of the order of 30 

minutes), the time for radiative transport of heat from the centre to the 

surface (of the order of one hundred thousand years), the time to radiate 

the gravitational energy (or Kelvin-Helmholtz time, of the order of ten mil¬ 

lion years), the nuclear timescale (consumption of a certain fraction q of 

the nuclear energy reserves; for q = 0.1, the nuclear timescale of the Sun is 
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about ten billion years). Depending on the timescale of a phenomenon, one 

or the other of these processes plays a dominant role. 

The Sun, which we have just taken as an example, is only one of many 

similar stars. A single chapter is devoted to it in this book, where we stress 

the solar phenomena that are better known because of this star’s being close 

to the Earth. All the properties of the Sun which are common to other stars 

are treated in the course of the book. 

Significant magnetic properties are observable in the outer layers of the 

stars, without doubt leading to complex hydrodynamical and magnetohy- 

drodynamical phenomena. We summarise these properties by saying that 

they are caused by the famous dynamo effect, associating rotation and tur¬ 

bulence. Here too, the incontestable successes of mean field electrodynamics 

are accompanied by enormous unresolved difficulties. This does not prevent 

us recognising the role of the magnetic field in stellar activity, in the loss of 

angular momentum and braking of rotation, and in mass loss by a stellar 
wind. 

The nuclear timescale plays a primary role. Stellar evolution allows us to 

date star systems and to establish a timescale which permits us to estimate 

the ages of the globular clusters, and to evaluate the age of the Universe. The 

irreversible evolution of the chemical composition of the stars is accompa¬ 

nied, through the various mass loss processes, by a progressive change of the 

chemical composition of the Galaxy, which in turn modifies the conditions 

of star formation, in a remarkable reaction effect of stars- Galaxy-stars. 

Studies of stability, quite apart from their intrinsic interest for the under¬ 

standing of variable stars, link up with current work on nonlinear systems. 

In sketching this relation briefly we wished to show that the study of vari¬ 

able stars can provide original data on these systems. Conversely, we can 

hope in the near future that we will be able to deduce unrivalled information 

about stellar interiors from this analysis. 

Binary stars show properties which raise many questions: tidal phenom¬ 

ena, exchange of angular momentum, periastron advance. More spectacu¬ 

larly, the components of close binaries exchange mass between themselves, 

an inevitable effect of stellar evolution. A great number of unusual objects 

are thus explicable, of which the most remarkable are the cataclysmic vari¬ 

ables, the novae, and probably one class of supernovae. We should perhaps 

add to this list the neutron stars, whose distribution in the Galaxy can 

apparently only be explained by the disruption of binary systems at the 

moment of formation. 

The last-born of stellar studies, neutrino astrophysics, with the first flux 

measurements of solar neutrinos and Supernova 1987A, which are a credit 

to what is called underground astronomy, and asteroseismology (with he¬ 

lioseismology to the fore) open new paths and pose new questions. Helio¬ 

seismology gives us direct access to the Sun’s core, subjecting the theory 

of the internal structure to fierce testing. If the solar neutrinos which are 

detected at the Homestake Gold Mine and Kamiokande are proof of the 
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thermonuclear reactions which unfold in the centre of the Sun, the deficit of 

neutrinos (compared with the theoretical prediction) poses the most acute 

of questions. 
The study of the stars is today confronted with progress in the acqui¬ 

sition of data (high signal-to-noise ratio in ground-based and space obser¬ 

vation), with new sources of information (stellar seismology, neutrinos) and 

with results to come from large astronomical projects of all types. A consid¬ 

erable task awaits astrophysicists. However voluminous the present book, 

it is still only a sketch of the physical basis of our knowledge and of our 

understanding of the stars; it may nevertheless - let us hope - provide a 

means of access to an immense world literature and help to realise some 

progress in stellar astrophysics. 
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1. Basic Stellar Data 

In this book we shall mainly study the individual physical characteristics of 

the stars, rather than their appearance in vast aggregates as galaxies. We 

begin by examining the observational data for the stars (Chap. 1) and the 

Sun (Chap. 2), before considering the structure and evolution of the stars 

in the subsequent chapters. 

The observable properties of a star are its distance d, radius i?, mass 

Af, emitted energy per unit time (intrinsic luminosity) L, and the spectral 

distribution of this energy. We assume for the most part stars in a steady 

state. The basic source of information for all stars is their radiation; all 

methods of studying stellar properties such as distance, radius, mass, and 

energy rely on the measurement and analysis of radiation. We assume that 

the reader is familiar with the basic definitions of photometric quantities 

(see for example Mihalas 1978, Chap. 1; Lena. 1986, Chap. 3). 

1.1 Stellar Distances. Magnitudes 

There are two geometric methods giving stellar distances; these are the 

primary methods. Other (secondary) methods extend these results to many 

more stars. 

1.1.1 Primary Distance-Determination Methods 

Trigonometric Parallaxes. Because of the motion of the Earth E around 

the Sun O, a star S is seen at intervals of six months at two positions Si and 

S2 an angular distance 2tv apart on the sky (see Fig. 1.1). To an observer on 

the moving Earth, the star appears to oscillate through a very small angle 

(< 1" even for the nearest stars) against the background of the “fixed” stars. 

The angle tv subtended by the semi-major axis of the Earth’s near-circular 

orbit at the star S is the star’s trigonometric parallax. 

The parallax tv is expressed in seconds of arc. Using the relation 

1" = 1/206 265 rad (1.1) 

and the fact that a is much smaller than d = QS, we have 

d = 206265a/7r" . (1.2) 
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Parallactic 
eclipse 

Fig. 1.1. Trigonometric parallax of star S, at 

distance d from the Sun. The Earth is shown 

at two positions E\, E2 in its orbit, sepa¬ 

rated by six months 

Sky' 

Orbit 
of the earth 

The average Earth-Sun distance, or astronomical unit (AU; a = 

1.495979 x 1013 cm), is not appropriate for measuring stellar distances. One 

uses instead the parsec, which is the distance at which the semi-major axis 

of the Earth’s orbit subtends 1". We thus have 

(1.3) d( pc) = 1 / 7r" or 

1 pc = 206 265 AU = 3.0S6 x 1013 km = 3.26 light-years. 

Distances in the Galaxy are of the order of kiloparsecs (kpc); for dis¬ 

tances between galaxies one uses megaparsecs (Mpc). 

The definition of 7T assumes that the star S is located within a reference 

system consisting of stars or very distant objects which are not affected by 

parallax effects. When we measure the parallactic motion of a star from the 

surface of the Earth we obtain relative parallaxes, i.e. the star is related to 

faint objects in its field. 

We can obtain an absolute parallax by subtracting from a relative par¬ 

allax the mean parallax of the distant stars in the fields covered. It is very 

difficult to determine absolute parallaxes using observations made from the 

ground; this requires the observation of a large number of standard stars and 

the fixing of the system’s zero point. But the field of photographic plates 

is always very small. Accumulating several tens of plates with a dedicated 

telescope over four or five years leads to an accuracy of 0.005,, in trigono¬ 

metric parallaxes obtained from the ground. But the resulting parallaxes 

are affected by systematic errors of the same order of magnitude. About 

250 stars have a parallax known to better than 20 %, all of them closer than 

10 pc. Table 1.1 gives the parallaxes and distances of the stars closest to 

the Sun. Column 2 gives their numbers in the catalogue of Gliese (1969). 

Columns 5 and 6 give the spectral types and visual magnitudes of the stars. 

These parallaxes are taken from Van de Kamp (1981), who gives a list of 

the 47 known stars closer than 5 pc. 
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Table 1.1. The nearest stars 

Name GlieseNo. 7/' d (pc) Spectral type V 

a Cen A 559 A 0.753 1.33 G2V - 0.01 
a Cen B 559 B 0.753 1.33 K5V 1.33 
a Cen C (Proxima) 551 0.753 1.33 M5c 1 1.05 
Barnard’s star 699 0.544 1.84 M5V 9.54 
Wolf 359 406 0.432 2.31 M8 13.53 
BD + 36°2147 411 0.400 2.50 M2V 7.50 
UV Cet A 65 A 0.385 2.60 M5e 12.45 

B 65 B 0.385 2.60 M6e 12.95 
Sirius (a CMa) A 244 A 0.377 2.65 A1V - 1.46 

B 244 B 0.377 2.65 DA 8.98 

The launch of the Hipparcos satellite (1989) should change the situation 

appreciably, since it will obtain the parallaxes of 118 000 stars in three and 

a half years, to an accuracy of 0.002" for stars brighter than 9th magnitude. 

We will thus get direct parallaxes for stars with d < 500 pc. Space observa¬ 

tions allow one to overcome the main sources of systematic error affecting 

parallaxes: the random motion of the Earth’s atmosphere, atmospheric re¬ 

fraction and absorption, and flexure of the instruments. Moreover, a major 

advantage of Hipparcos's optical system is that it gives the parallaxes of 

stars in both hemispheres in the same system; the fact that we can simul¬ 

taneously measure stars separated by large angles allows us to get absolute 

parallaxes. The reference frame constituted by the set of positions measured 

by Hipparcos will be related to an inertial system for our local volume of 

space. To do this the Hipparcos frame is related to a frame defined by radio 

sources by simultaneous observations with Hipparcos and radio VLBI (very 

long baseline interferometry). It is also intended to relate the Hipparcos 

frame to that of quasars, by simultaneous observations with Hipparcos and 

the Hubble Space Telescope (in its astrometric mode) of stars at small angu¬ 

lar distances from quasars; the position of these stars relative to the quasars 

is itself measured by very long baseline radio interferometry. Quasars are 

very distant point sources and define the best absolute reference frame. 

The Convergent-Point Method. This method is used for star clusters. It 

is necessary to measure the two components of the space velocity V (radial 

velocity Vr and proper motion fj) with respect to the Sun. Figure 1.2 defines 

VR and /i for the star S. The heliocentric radial velocity Vr is found by using 

the Doppler effect for the stellar spectrum, after correcting for the Earth’s 

orbital motion (29.8 km s-1) and its rotation (0.5 km s_1 at the equator); 

the proper motion /< is the angle subtended by the tangential component of 

V; it measures the secular change of the stars’s position on the sky. Like 

parallaxes, proper motions are relative if they refer to distant stars in the 
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Fig. 1.2. Space velocity V, radial velocity VR and proper 

motion p for star S. The motions are relative to the Sun 

field observed or absolute if they have been corrected for the mean proper 

motion of the reference stars. 

For certain clusters the space velocities V are all directed at the same 

point in the sky, called the convergent point. Let A be the angle between the 

direction of this point and the direction ©S’. Assuming that the cluster is 

not contracting, expanding, or rotating and the stars in it have no residual 

random motions with respect to the convergent point, the distance d of any 

of the stars from the Sun is given by 

V sin A 

d 
and Vr — V cos A , 

giving 

(1.4) 

d = Vr tan A , (1.5) 

d 

(In (1.4) and (1.5) p is expressed in rad s-1.) 

We then assume that the distance d. is the same for all the stars of the 

cluster (which is not correct for the nearest clusters) and obtain d as the 

mean distance of all the stars in the cluster for which p and Vr are known 

to good accuracy (0.005" per year for p in the northern hemisphere, 1 km 

s-1 for Vr). 

This method has been used for the clusters given in Table 1.2. 

Table 1.2. Distances of three clusters found by the 

convergent-point method 

Cluster Number of stars d (pc) 

Hyades 200 42 

UMa 60 21 

Sco Cen 100 170 
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1.1.2 Secondary Distance-Determination Methods 

Statistical and Secular Parallaxes. As a preliminary to describing this 

method, consider a group of stars in the solar neighbourhood whose he¬ 

liocentric velocities V have been measured. In reality one measures the 

radial velocity I r and proper motion ji. for each star as we have seen above. 

The tangential velocity Vt cannot be obtained unless d is known; let us as¬ 

sume that this is so. We note the basic fact that heliocentric space velocities 

V may equally well be regarded as describing the motion of the Sun with 

respect to a group of stars as the motion of the stars with respect to the 

Sun. We thus seek the m.otion of the Sun in the Galaxy with respect to the 

velocity centroid of the group of stars. The principle of this determination 

is given here only schematically. 

(a) We define a system of galactic coordinates at a point S of the galactic 

plane at a distance r from the centre: one axis (77) is directed towards the 

galactic anticentre, one (6) in the direction of the galactic rotation, and the 

other perpendicular to the galactic plane (Z). 

(b) A star situated at S and following a circular orbit in the galactic 

plane has coordinates 77 = 0, 6 = 9C, Z = 0. 

(c) We define a second system of coordinates called the local standard of 

rest (LSR), with axes parallel to the first and origin S moving as described in 

(b). With respect to this system (LSR), a star has coordinates u = 77, u = 

6 — 9c,w = Z. u,v,w, are the components of what is called the peculiar 

velocity of the star, S. 

(d) The observed heliocentric velocity of a star V(£7*, V*, TL7*) can be 

written as 

V = S - s0. 

(e) A group of N stars is studied to find the motion of the Sun relative 

to them. If N is large, («*) = 0, (u>*) = 0, where ( ) denotes the mean over 

TV. (u*) does not vanish, because of the differential motions in the Galaxy, 

but we may assume it to at this point. Thus the components of Sq are 

uO = ~{U*), u© =-(K), w® = -{Wm). 

The Sun appears to move towards a point in the sky called the apex with 

a velocity Sq. 

The coordinates of the apex and Sq differ from one group of stars to 

another; they must be known when using the method of statistical and 

secular parallaxes. (As an example, the standard value of Sq, defined with 

respect to the most numerous types of stars in the catalogues of Vr and 

/i, is 19.5 km s_1.) Similarly the use of this method assumes that there 

are measured proper motions and radial velocities Vr for the stars whose 

distance one seeks. 
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Fig. 1.3. Definition of the quantities used in the method of statistical parallaxes 

Figure 1.3 makes these notions precise: Fig. 1.3a shows the star 5 and 

apex A on the celestial sphere; Fig. 1.3b shows the great circle (C) passing 

through the star S and the apex, and the proper motion p of S. Star S has 

equatorial coordinates a and S. The direction of ji is given by the position 

angle 8. The components of p in an equatorial system are fiacos6 and 

we denote by r and v the components of p along and perpendicular to the 

great circle (C*). In Fig. 1.3c A is the angular distance between the star and 

the apex of the Sun, and V© sin A is the component of the Sun’s motion 

towards the apex normal to the line of sight. 

— Analysis of the components v. Each measured quantity v is the sum 

of a stellar term U* and a solar contribution of modulus V© sin A/d, which 

is collinear with v. Expressing the proper motions in seconds of arc as is 

customary, we have for each star 

^mes V* T 

7r" V© sin A 

4.74 
(1.6) 

The coefficient 4.74 results from the conversion of the parallax tv to 

seconds of arc and assumes that V© is expressed in km s-1. We thus seek 

the mean parallax tt" of the N stars in the group. Noting that we can assume 

that the motions of the stars are random about their velocity centroid, we 

get 

4.74 (v sin A) ^ 
7f" = —; .. / . (1-7) 

V®(sin2 A) 

Analysis of the components r. If we also know the heliocentric radial 

velocity Vr^ of the stars, we get 

4-74 (|r|) 

(VR + V© cos A) ' 
(1.8) 
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A detailed demonstration of relations (1.7) and (1.8) is given by Mihalas 
and Binney (1981). 

This method can be used for stars having common properties (for ex¬ 

ample distant stars of the same spectral type, or a given group of variable 

stars) provided that their absolute proper motions are accurately known 

and the group of stars is really homogeneous with respect to the chosen 

property. It is applicable once genuine trigonometric parallaxes become un¬ 

reliable (d > 50 pc) and allows extension of the distance scale out to about 
500 pc. 

Dynamic Parallaxes. This method applies to stars belonging to a double 

system (cf. Sect. 1.5). If the orbital elements of the system are known (in 

Particular the semi-major axis a of the orbit and the binary period P), we 

use Kepler s third law to obtain the distance d of the system through the 
relation 

d( pc) = 1/tt" 
(Mi +M2)1/3P2/3 

(1.9) 

where Mi and M2 are the masses of the two stars in solar masses and P is 

the orbital period in years. This assumes some knowledge of the masses M\ 

and M2. For example we may assume that the spectral type of a. star fixes 

its mass, or use a mass-luminosity relation (cf. Sect. 3.4.4). For those few 

systems where the masses and orbital elements are known this becomes a 

primary method of distance determination. 

Although binary systems are very numerous this method has only been 

applied to a small number of objects (out to about 200 pc). Conversely the 

parallaxes supplied by the Hipparcos satellite will allow us to deduce masses 

of binaries from dynamical relations, rather than distances from masses. 

1.1.3 The Magnitude Scale 

The apparent magnitude of a star measures the amount of energy received 

from this star per unit surface area and time just outside the Earth’s atmo¬ 

sphere. The amount of energy / has the dimensions of an energy flux (erg 

cm-2 s_1). Pogson’s law is based on the empirical observation that the eye 

responds linearly to a logarithmically increasing excitation: 

m. — m0 - 2.51og10/. (1-10) 

The coefficient 2.5 is chosen so that there are 5 magnitudes between 

two stars whose received fluxes at Earth differ by a factor 100. If Am = 

m% —mi = 1 , we have _/j//2 = 2.512. The minus sign has a historical origin, 

giving a magnitude scale in which smaller numbers correspond to brighter 

stars; m0 is a constant. Table 1.1 gives the apparent visual magnitudes of 
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the stars closest to the Sun. Sirius is the brightest star in the sky, except 

for the Sun, which has rnv = —26.74. 
We have just mentioned the apparent visual magnitude, m actually de¬ 

pends on the wavelength of the radiation or the passband of the detector 

which makes the measurement. Star catalogues such as the Henry Draper 

(HD) or the Bonner Durchmusterung (BD) give photographic (mpg) or vi¬ 

sual (mv) magnitudes, whose reference wavelengths are A = 4250 A and 

A = 5480 A respectively. In the U, B, V system (see Lena 1988, Chap. 3) the 

V magnitude corresponds to A = 5500 A. 
We define the apparent bolometric magnitude mho\ with respect to the 

full range of electromagnetic radiation emitted by a star. This is related 

to the luminosity L of the star, since if /(A) is the monochromatic flux of 

energy received at the Earth, then 

We get 

m-bol — —2.5logioL + Slogiod + const, (1.11) 

a relation which shows that the apparent magnitude of a star depends both 

on its luminosity and on its distance. 

To compare the luminosities of stars it is useful to define an absolute 

magnitude for any star as the apparent magnitude it would have at a dis¬ 

tance of 10 pc from the Sun. For the bolometric magnitude, (1.11) gives 

Mboi = —2.5 logio-L + 5 + const, (1.12) 

where d is measured in pc, which gives 

mboi — Mboi = 5logi0d — 5 . (1-13) 

Relation (1.13) holds for all apparent and absolute magnitudes, whatever 

the wavelength for which the magnitude is defined. 

A difficulty in using (1.13) is that one measures the radiation of the 

stars through differing amounts of absorbing medium between the source 

and the detector. A general treatment of ground-based photometry is given 

by Young (1974). We will only point out here that interstellar absorption 

v reduces the amount of energy before the radiation reaches the top of the 

* atmosphere. Let A\ measure in magnitudes the reduction in the radiation 

at wavelength A. Then we always have 

(1.14) m\ - M\ = 5 logic<7 - 5 + A\ . 

The determination of A\ is an important part of the observational study of 

the Galaxy. 
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The quantity m — M is called the distance modulus of the object. 

We also define the bolometric correction DC as the difference between 

visual and bolometric magnitudes: 

DC = Mbol - Mv = itibol - mv . (1-15) 

This quantity gives Mboi from an observed Mv. Bolomet ric corrections are 

known to an accuracy of about 0.1 magnitudes, and vanish for spectral types 
close to F5V. 

In practice one uses the absolute bolometric magnitudes of the stars by 

referring them to that of the Sun, whose distance and intrinsic luminosity 

are well known. For the Sun Mboi(©) = +4.75, mboi(Q) = -26.82, BC(Q) = 

— 0.08. Relation (1.12) becomes 

Mboi(*) - Mbol(©) = —2.5loglo(T*/T0). (1.16) 

The determination of absolute visual magnitudes or intrinsic visual lu¬ 

minosities for the stars depends on a good knowledge of their distances. 

Conversely, if it is possible a priori to assign an absolute magnitude to a 

certain type of star this gives an indirect method of finding distances. 

1.1.4 Spectroscopic or Photometric Parallaxes 

This method proceeds in two stages: 

(a) From the direct distance determination for the Hyades cluster, we 

calibrate the absolute magnitudes Mv of the stars in the cluster. 

(b) We make the hypothesis that the main-sequence stars of other clus¬ 

ters have the same properties as those of the Hyades, so that a spectral 

type corresponds to a luminosity. This is the technique of m.ain-sequence 

fitting. Thus the spectral classification of the stars in these clusters gives 

their luminosities and hence their distances. 

This method has been widely used for the determination of cluster dis¬ 

tances in the Galaxy. It is a typical secondary method. It is affected by 

various types of errors, some photometric, some connected with the fact 

that the main sequence has non-zero width on the Hertzsprung-Russell di¬ 

agram (cf. Sect. 1.4). The absolute magnitudes Mv found in this way are 

accurate to ±0.2 mag, implying a distance error A d/cl which reaches or 

sometimes exceeds 20%. 

A good account of methods of finding absolute magnitudes of stars is 

given by Heck (1978). 

1.1.5 The Importance of Stellar Distance Determinations 

The determination of distances (in the Euclidean sense) in the whole Uni¬ 

verse is fundamentally based on the distance of stars from the Sun. For this 
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reason the paucity of direct distance determinations (via trigonometric par¬ 

allaxes) is a major stumbling block. The neighbourhood of the Sun where 

distances are well calibrated (A d/d < 20 %) is at present a volume of 10 pc 

radius. The Hipparcos satellite will extend this volume to 100 pc with the 

same accuracy, at least for stars brighter than magnitude 5 = 9, with lower 

accuracy for stars up to B = 13. 

For the first time, because of Hipparcos, we can expect that some intrin¬ 

sically luminous stars (supergiants, Cepheids) will have distances which are 

precise, or fairly precise (the nearest Cepheid is at 100 pc), for these are 

the stars that we see most easily in other galaxies. Distance estimates for 

galaxies are based on the hypothesis that their most luminous stars have 

the same intrinsic luminosities as similar stars in our Galaxy. It is there¬ 

fore vital that the first steps in this method of stepwise calibration are well 

calibrated. Similarly the distance to the standard candle which the Hyades 

constitutes for the method of main-sequence fitting should be known to 1 % 

from Hipparcos (rather than 10% as today). 

The Hipparcos satellite gives parallaxes, proper motions, and positions 

all for the first time subject to homogeneous errors. Of course the obser\ed 

sample wdll remain small (120 000 stars, while the Galaxy contains 100 bil¬ 

lion), and even in the solar neighbourhood the faintest stars will not be 

accessible. The importance of this first astrometric satellite is nevertheless 

very considerable. 

1.2 Stellar Spectra 

When dispersed by a spectrograph, the visible light from a star shows a con¬ 

tinuum spectrum generally cut, by dark lines (absorption lines), but occa¬ 

sionally with lines brighter than the continuum (emission lines). The same is 

true for radiation in the X-ray, UV, IR, submillimetre, millimetre or longer- 

wavelength radio. 

1.2.1 Continuum Spectrum of a Star 

Comparison with a Black Body. The continuum spectrum of a star may 

be compared with that of a black body of intensity B\(T), in three different 

ways. 

If the observed spectrum is relatively calibrated, that is, we may 

compare the received energy /(A) at two wavelengths Aj and A2, we can 

define the colour temperature of the star between these two wavelengths as 

that of the black body having the same gradient <?(Ai,A2) as /(A): 
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A(l/A) 
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(1.17) 

\Ai a2; va^ f(a2); ’ 

where /(A) is proportional to the flux F(A) of the black body, 

F( A) = tt5a(T) 
£i_ 

A5 
exp 

VAT/ 

The constants cj and c2 are ci — 3. <41 85 x 10 5 (erg cm 2 s 1) if A is in 

cm, and c2 = 1.43SS3 cm Iv. 

- If the observed spectrum is absolutely calibrated, and if we know the 
star’s distance, then 

/(A) 
L( A) 

47t d2 

4ttR2 

4-kcP 
F( A), (1.18) 

where F( A) is the flux emitted at the star’s surface at wavelength A, and R 

is the star s radius. We define the radiation or brightness temperature Tb as 

that of a black body of the same brightness at this wavelength: 

F(\) = irBx(Tb) . (1.19) 

- Finally, the intrinsic luminosity of the star L = J0°°T(A)dA is equal 

to that of a black body at the effective temperature of the star: 

L = 47ri?2aTe4ff, (1.20) 

where a is Stefan's constant (a = 5.669 56 x 10-5 erg cm-2 Iv-4 s-1). For 

a given stellar spectrum the effective temperature is unique if the radius is 

specified (cf. Sect. 1.3). The colour temperature varies from spectral region 

to another. The brightness temperature is particularly useful for the Sun 

(Sect. 2.2); for other stars it is affected by distance errors. Calibrated stellar 

spectra are found not by comparison with the Sun, which is much too bright, 

but with Vega, (a Lyr), which is itself calibrated by means of a laboratory 

radiation source. 

Colour Indices. Let us assume we are studying a continuous spectrum 

using a photometer rather than a spectrograph. We may use a photometric 

system with wide bands (U,B,V, or the Geneva system), with intermedi¬ 

ate bands (u,v,b,y of Stromgren), or even with narrow bands (see Golay 

1974 for a description of photometric systems). Each filter defines the radi¬ 

ation received in a spectral interval AA, and is characterised by its effective 

wavelength 
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(1.21) . _jAXswn\)\d\ 
eff JAX 5(A) T(A) dA ’ 

where 5(A) is the response function of the photometer and T(A) the atmo¬ 

spheric transmission. 
We define as the colour index between two wavelengths denoted 1 and L 

the quantity 

Cl = m(Aeff,l ) — 777.(Aeff,2) + const, {1.22) 

the constant being defined so that for a well-defined spectral type, Cl is 

zero for any choice of the Aeff (the convention is type AO). The notion of a 

colour index is formally equivalent to that of the colour temperature defined 

in (1-17), but it has the great advantage of being easily measurable. 

In the UBV system for example one uses the index U-B to characterise 

the strength of the near ultraviolet in the continuum spectrum of the star, 

while B - V measures the slope of the Paschen continuum and, with very 

good accuracy, the star’s effective temperature. 

Calibration of the colour indices is an essential step in getting to the 

characteristic parameters of a star, which are L and Teff (we should also 

add the chemical composition, as we shall see later). It relies on model- 

atmosphere calculations which predict the radiation spectra of atmospheres 

with specified Teff and surface gravity (Hayes et al. 1985; Bohm-Vitense 

1981). 
We note finally that the luminosity L in solar units is given by Mho\ 

(1.16), which itself relies on a knowledge of the bolometric corrections for 

different types of star (1.15). This in turn requires a knowledge of the stellar 

energy distribution throughout the electromagnetic spectrum and a deter¬ 

mination of Mv. 

1.2.2 Line Spectra: Spectral Classification 

Stellar spectra differ not merely in the colour of their visible continua, but 

also in their absorption line spectra,, which vary widely from star to star. 

It is natural to classify stars on the basis of uniformly measured spectra 

(same spectrograph dispersion). This ordering of spectral types was carried 

out mainly by the Harvard astronomers of the early 20th century. Thus 

stars are classified by their spectral types, which are always denoted by the 

sequence 
% 

OBAFGKM 

to which can be added W (at left) and types C and S at right; the former 

is level with O, and the latter two level with M. Originally the order was 

supposed to be alphabetical, but soon had to be modified, eliminating letters 
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to arrive finally at the present sequence 0, B, A, ... . The types are divided 

into ten; for example type B contains the subtypes BO, Bl, ... , B9. 

This sequence is based on the change of the absorption-line spectrum as 

one moves from blue stars (0, B) to red (Iv, M). Type W is different since 

its stars have emission lines (Wolf-Rayet stars). 

The main characteristics of the various spectral types and the criteria 

used in the Harvard classification are as follows. 

• Type 0. The hottest stars. Lines of1 He II, 0 II, C III, N III, Si IV. 

Example: £ Pup. 

• Type B. Spectra are dominated by lines of He I. Lines of He II disappear. 

Lines of hydrogen strengthen and those of singly ionised elements (C II, 

Si II, Mg II) appear. Example: a Leo (Regulus) 

• Type A. Hydrogen lines dominate and are a maximum at subtype AO. 

Lines of Mg II and Si II are strong, those of Ca II become progressively 

stronger. Example: a Lyr (Vega), a CMa (Sirius). 

• Type F. Metal lines grow in strength (neutral atoms and ions such as 

Ca II). Hydrogen lines become weaker. Example: a CMi (Procyon). 

• Type G. Stars of solar type, in the strict sense. The resonance line of 

Ca I is very strong, as are certain lines of Fe I. Ca II is always strong. 

The G band (spectrum of the CH radical) appears. Example: a Cen A 

(Rigil Kent). 

• Type Iv. The resonance lines of Ca II reach their maximum. Lines of H I 

become weak. Other molecular bands appear (CN, ...). Example: a Boo 

(Arcturus). 

• Type M. The spectrum is dominated by molecular bands, in particular 

TiO. Lines of neutral elements (Ca I) remain very strong. 

Besides this standard sequence there are parallel to type M 

• Carbon stars (type C, sometimes subdivided into types R and N) where 

the molecular bands C2, CN, CO, CH are very strong, while TiO is 

absent. Example: o Ceti (Mira). 

• Stars of type S, where the dominant molecular bands are ZrO, LaO, YO. 

Example: R Gem. 

Representative spectra of this classification are given in Abt et al. (1969) 

or Jaschek and Jaschek (1987). The spectral types of the stars in Table 1.1 

are given in column 5 of that table. 

We note an unusual designation in this table: the white-dwarf companion 

of Sirius, Sirius B, has type DA; D denotes white dwarfs; DO, DB, DA, 

DF are different subtypes (Sect. 8.3). Other designations are encountered 

for groups of stars which, like white dwarfs, represent a particular stage 

of stellar evolution. For example the hot Wolf-Rayet stars (type W) have 

1 Note: the spectroscopic designation of elements is He I for neutral helium, He II for 

singly ionised helium, etc. 
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subtypes WC or WN according as the lines of carbon (C III and C IV) or 

nitrogen (N III, N IV, N V) dominate. We shall return later to departures 

from the spectral classification. 

The spectral classification always uses the visible spectrum. There are 

standard stars for each type and subtype. Other stars are classified by in¬ 

terpolation by eye; the classification is thus entirely empirical. 

However, it soon became clear that the spectral classification by lines 

followed that by colours, and that both arrange the stars by temperature. O 

stars are the bluest and hottest, and their emission regions contain elements 

as ionised as He II. M stars are the reddest and coolest, so lines fiom neutral 

elements are found in their spectra, as well as lines fiom molecules which 

are not dissociated at the low temperatures of the emission region. 

It also became clear, but not so easily, that the strength of the lines does 

not depend solely on the temperature of the star. The luminosity of the star 

influences its spectrum, for example by narrowing the lines. This was noticed 

by Hertzsprung around 1905 when comparing stars of the same spectial 

type, for which he knew approximate distances and hence T, but whose 

lines had different widths. The most luminous stars have the narrowest 

lines for a given spectral type. This suggests that their surface densities 

are lower than those of less luminous stars, since the lines are broadened 

by collisions of the radiating atoms with electrons or hydrogen atoms, and 

the effect is proportional to the density. A more extended atmosphere, or 

a larger radius R, will mean a lower density. This explains the terminology 

dwarfs, giants, supergiants, etc. to denote more and more luminous stars, 

and thus by (1.20), for the same effective temperature, larger and larger 

radii. 

The spectral classification thus becomes a two-parameter classification, 

of spectral type and luminosity class, the latter giving the size (or intrinsic 

luminosity) of the star. In the MIv (Morgan-Iveenan) system, luminosity 

classes are denoted by Roman numerals I to V, the supergiants (I) being 

further classified into IaO, la, lb, by decreasing luminosity. Giants are de¬ 

noted II or III, by decreasing luminosity; class IV are the subgiants and 

class V the dwarfs. For example Vega (a Lyr) is classified A0\ in the MIv 

system. 

The two-dimensional spectral classification is simultaneously a basic 

achievement of stellar astrophysics and a reference grid against which to 

measure departures from normality. In fact many stars are not easily ac¬ 

commodated in the MIv classification; they are peculiar. Examples are Be 

stars — B stars with emission lines, a prototype being 7 Gas; stars of types 

A and B with strong lines of rare elements such as gadolinium, mercury, or 

the rare earths, or abnormally strong lines of certain elements (Mn, Si, Fe): 

these are called Ap and Bp stars; Iv and M-type stars which flare or have 

emission lines, denoted Ive or Me (e.g. a Gen C and UV Get, Table 1.1); 

barium stars, and so on. Departures from the spectral classification are al¬ 

ways the sign of important physical phenomena occurring either in the atmo- 
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sphere or the subphotospheric layers of the star. Before we discuss these 

phenomena, we must describe the basis of the quantitative study of stellar 
spectra. 

1.2.3 Spectral-Line Analysis 

The profile of a line is its intensity distribution /(A, 8) or the flux F(A) as 

a function of wavelength; 0 denotes the angle between the normal to the 

emitting layers and the line of sight. In the case of the Sun, where we can 

resolve the surface in angle, we can measure /(A,#). For stars, where the 

disc cannot be resolved, the energy /(A) received at the Earth’s surface 

is proportional (1.18) to the flux from the star’s surface F(A). One can 

easily show (Mihalas 1978, Chap. 1) that F(A) is equal to the mean intensity 

emitted by the disc (the mean is over angle). Here we consider stellar spectral 

lines and their profiles expressed through the flux. 

The amount of information contained in a spectral line depends on the 

spectral resolution A/AA of the spectrograph and the signal-to -noise ratio 

S/N (see Lena 19S8, Chap. 7). Today a good spectrum has resolution > 

50 000 and S/N > 100. 

Stellar spectral lines are formed in an inhomogeneous region of gas, 

so that their profiles cannot in general be taken to have a simple form 

(Gaussian or Lorentzian, corresponding to a single density and temperature, 

as holds for lines observed in the laboratory). The emergent flux from the 

star at each wavelength results from the balance of photon absorptions and 

emissions along the ray as it passes through the star to the surface. The 

radiative-transfer equation describing this out of equilibrium process will be 

discussed in Sect. 2.2; here it is sufficient to note that the observed profile 

results from two properties of the medium: its emissivity and its ability to 

absorb photons, both functions of the density and temperature. 

Equivalent Width. This is the integral quantity 

W = 
Fc(X)-Fl(X) 

Fc( A) 
dA (1 — r(A))dA, (1.23) 

where Fc is the continuum flux and fq the line flux (Fig. 1.4). It represents 

the emitted (or absorbed) energy in the line, compared with the continuum. 

It has dimensions of a wavelength (A in general), hence the name. The ratio 

r(A) = Fi(X)/FC(X) represents the flux removed from the continuum, and 

1 — r(A) is the depth or depression of the line (if it is in absorption). 

The notion of equivalent width is important in the abundance analysis of 

the absorbing elements. Methods for studying abundances will be developed 

for the case of the Sun (Sect. 2.3), but they apply to other stars and the 

interstellar medium, etc. 
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Fig. 1.4. Spectral line in absorption 

Line Profiles: Symmetrical Lines. We consider symmetrical absorption 

lines. 

— The position of minimum observed flux F(Xq) may be compared to 

the wavelength of the same line observed in the laboratory (it is assumed 

that the stellar wavelength scale has been corrected for the Earth s velocity, 

cf. Sect. 1.1). The deviation A0-Aiab measures the heliocentric radial velocity 

Vr of the star. 

Ao — Aiab _ Vr ^ 2 94) 

Alab C 

where c is the speed of light. 

— Vr is taken as positive if the star is moving away from the Sun, 

negative if it approaches. The wavelength scale must be corrected by Vr if 

we wish to consider a reference frame fixed in the star. If moreover Ao varies 

periodically in time, the star may belong to a binary or multiple system, 

two or more stars orbiting their common centre of gravity, or be a pulsating 

star. 

- The observed profile, which we denote 0(A), is the convolution of the 

true stellar profile F{ A) with all modifying geometrical effects B(A) and the 

spectrograph’s instrumental profile 5(A). We thus have 

0(X) = F{X)*B(X)*S(X). (1.25) 

The instrumental profile must be determined for each spectrograph used. 

The profile B( A) is a broadening function which may be due to 

- rotation of the star’s surface 

- the fact that the line is formed in a turbulent medium whose cells are 

large compared with the mean free path of the photons involved in the line 

formation. 
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Fig. 1.5. Stellar rotation. The rotation velocity pro¬ 

jected along the line of sight is Vsini (V = (7R+) 

We obtain B{A) as follows: 

(a) Rotational broadening. Figure 1.5 shows the star, assumed spherical 

and ligidly rotating with angular velocity Q. The axis of rotation makes an 

angle i with the line of sight. We can divide the stellar surface into isovelocity 

regions, i.e. zones contributing to the same radial velocity v<• = — £j?sim 

along the line of sight. 

The maximum Doppler shift of a line of wavelength A is 

b = Al?f? sin i/c = XV sin i/c, (1.26) 

where V sin i is the projected equatorial velocity of the star. 

The observed profile 0(A) is obtained from the emitted profile F(£, (, A) 

at position (£,£) on the disc. For an infinitely narrow instrumental profile 

we have 

0(A) = bx) B(x) ds , (1.27) 

where x = £/R, F(£, £, A) = const(1+/?) cos 6, where (3 is the limb-darkening 

coefficient in the continuum, assumed constant for all A in the profile, and 

cos# = (1 — £2 — C2)1/2. The broadening profile B(A) (see Unsold 1968) is 

given by 

B(x) = -(i - x*y/> + - x*) 
7T Z 

(1 + 2/3 3), (1.28) 

with B(A) = 0 outside [—1,+1], and B(x)dx — 1. 

Equation (1.27) is not strictly a convolution. To invert it and get B(x) 

we may rewrite it as 

0(A) = 

f + oo 

— oo 

r + oo 

F(A — bx)B{x) dx = F(X — t)B i - t \ dt 

b 

1 
F( A — t)A(t) dt with A(t) — —B ( - ) , 

(1-29) 

so that A(t) gives the broadening function for rotation. 
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(b) Broadening by macroturbulence. Because the size of the turbulent 

elements exceeds the mean free path of the photons, the line is formed 

entirely within one cell. The line profile is broadened but its equivalent- 

width is unaltered. The broadening function B( A) is generally assumed to be 

Gaussian; it follows the distribution function N{U)dU of random velocities 

U of turbulent elements 

B( A)dA ~ N(U)dU = const x exp(-U2/V^) dU 

= const x exp( — AA2/AA^) dA/AXp , (1.30) 

where AA/A = t//c, AA/j/A = Vm/c. Vm is called the macroturbulent ve¬ 

locity. Vh is a quadratic mean velocity. There is no requirement that the 

macroturbulent velocity field should be isotropic. 

The general relation (1.25) can be considered in Fourier space. B{ A) is 

obtained from its Fourier transform B if there exists a theory of the intrinsic 

profile F(A). Stellar-atmosphere theory gives F(A). We thus get 

B = 5/(F ■ S). (1-31) 

This method has been successfully applied to find the rotational broadening 

when the macroturbulent broadening is negligible (dwarf stars). Moreover 

it is the only method giving a good estimate of the macroturbulent velocity 

Vm- The book by Gray (1976) gives a good explanation of this. Using ex¬ 

tremely high quality profiles it has been possible to measure velocities V sinz 

of the order of 2 km s-1 to an accuracy of ±0.5 km s-1. 

Before Fourier analysis of the profiles became current, for velocities Usinz 

large enough compared to the width of the intrinsic profile F(A) and the 

instrumental width, it was usual to measure just the full width at half max¬ 

imum (FWHM); this is the width corresponding to a depth (1 — r(A0))/2 

(see Fig. 1.4). This gives 

V sin i = | FWHM. 

The accuracy then obtainable did not allow determination of rotation veloc¬ 

ities below 10 km s-1. This method is still used for very faint stars, observed 

at low resolution. 

- The wings of the line are barometers of the medium forming the lines, 

as suggested above (Sect. 1.2.2) (except for the hydrogen Balmer lines, which 

are barometers up to spectral type AO, and thermometers after this). If we 

compare the same line in a dwarf and a supergiant of- the same spectral 

type, the wings are stronger in the dwarf than in the supergiant because 

of the sensitivity of the mass absorption coefficient /c/(A) to the density p. 

The density is several orders of magnitude higher in the dwarf. k/(A) can 

be expressed as 
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Kl{^) — K0 ^(A) i (2 39^ 

where k0 is the absorption coefficient at line centre and Lp(\) is the intrinsic 

line profile (cf. Sect. 2.2). The general form of <p(\) is the convolution of a 

Gaussian and a Lorentzian, called the Voigt profile and written H(a,v): 

f(A) = H(a, v) = — 
7T 

“ + 00 
exp(- 

+ (v - x): 
d;r . (1.33) 

A general point of the line is given by 

_ A — A0 _ v — v0 

AAD Avd 

v here A vp and A A 79 denote the Doppler width. The dimensionless damping 
constant a is defined by 

n _ A _ Trad T 7col 

4ttAvd 4ttAud ’ (1-34) 

where 7rad is the width (FAA HM) of the intrinsic profile caused by the finite 

lifetime of the levels, and 7co] is the width due to collisions of the radiating 

atom with electrons, ions, or neutral atoms. 7co) always has the form 

7coi = l\Ne + 72Ah/ + 73-Afp + ... , (1.35) 

where Ne,NH,Np denote the number densities of electrons, neutral hydro¬ 

gen atoms, and protons, a is thus a function of density. 

Study of absorption line wings is a standard method of finding the den¬ 

sity of the atmospheric layers in stars (see e.g. Mihalas 1978). 

Line Profiles: The Asymmetric Case. In some stars the absorption lines 

are not symmetrical about Aq. Observed asymmetry always signifies motion 

of the medium forming the lines. The asymmetry can take different forms. 

- The line bisector does not coincide with A0. The bisector is the curve 

formed by the midpoints of sections of the profile parallel to the A axis, with 

the line represented in reduced flux units. In the Sun and some dwarfs of 

similar spectral type, the bisector has a C-shape (Fig. 1.6), concave towards 

long wavelengths. 

The interpretation of this asymmetry and the associated wavelength shift 

of the bisector involves the granular structure of a stellar surface through the 

emergence of blobs of material formed in the convection zone. Figure 1.6a 

shows a schematic 2D model of the granulation (see Sect. 2.4), consisting 

of bright ascending convective elements and a dark intergranular structure 

forming the descending flow. The profiles formed in the various regions are 

shown as if in very high spatial resolution (Fig. 1.6b). The profile resulting 

from the integrated disc has a C-shaped bisector and has the line centre 

shifted to the blue (Fig. 1.6c). 

23 



I/Ic 

1 

0.5 

0 

Fig. 1.6. Asymmetric line with C-shaped bisector. Explanatory scheme for the origin of 

the asymmetry and the wavelength shift due to convective motion. (1) Profile formed in 

ascending elements; (2) profile formed in descending elements; (3) mean observed profile 

(averaged over many granules); (4) profile in the absence of the velocity field. AT is the 

shift measured in km s-1 in a frame fixed at the star’s centre. (From D. Dravins, Ann. 

Rev. Astron. Asirophys. 20, 61 (1982). Reproduced with the kind permission of Annual 

Reviews of Astronomy and Astrophysics; (© 1982 Annual Reviews Inc.) 

— One of the. line wings is stronger than the other (for absorption lines, 

deeper). Assume that the blue wing is stronger (Fig. 1.7); if there are no 

granules, h*;(A — Ao) is larger for A — Aq < 0 than for A Ao > 0, for the same 

| A — A01. Here we must distinguish the reference frame of the observer, who 

measures A — A0, from the reference frame of the flow of emitting atoms. 

The observed asymmetry reflects the bulk motion (of velocity V(z) with 

respect to the observer) of these atoms. Let v be the frequency seen by the 

observer; this corresponds to a local value vp in the moving frame, 

uL = u( 1 - V{z) • n/c) ~v — u0V(z)r/c, (1.36) 

where z is the coordinate normal to the layers, and // = cos#. The mass 

absorption coefficient k\{v) defined in (1.32) is now 

Kt(v) = k0<-p(vl - vo), (l-3<) 

Fig. 1.7. Asymmetric line caused by a mono¬ 

tonic velocity field 
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where tp(yL - vQ) is the intrinsic line profile in the moving frame. We note 

that the frequency rq, seen by the moving atoms varies with z and the 

direction n of the photons. This means that the central frequency in the 

observer s frame is no longer z/0, but is given by the maximum of <p(uL — u0) 

in (1.37), at zq, = vQ. We call this value vWe have 

uo = ^0(1 + V(z)[m/c) = u0(l + Vr(z)/c) = vfj(z,//). (1.3S) 

If V(z) = V = const, the sign of z/° — u0 shows whether the medium ap¬ 

proaches or recedes from the observer. In the case of Fig. 1.7, v$ - u0 is 

positive and the motion is towards the observer. If V(z) is not constant, the 

gradient d\ r(z) / dz also affects the sign of Uq (z,/i) — no. The interpretation 

of an asymmetric line as in Fig. 1.7 becomes complex. 

~ P Cygni profiles. This type of profile (Fig. 1.8) is characteristic of very 

luminous stars (it is named after the hypergiant P Cygni, classified Blla+), 

and has both an absorption and an emission component. The former is 

shifted to shorter wavelengths and the latter is centred near wavelength A0 

(in the star’s frame). The line is formed in an extended envelope which the 

observer sees partly in projection against the layers forming the continuum 

(region .4) and partly outside this (regions B); a third region (C) of the 

envelope is occulted. Region A forms a blueshifted absorption line if the 

envelope is expanding. Regions B, accessible to lines of sight not crossing 

the core, are generally very optically thin and produce an emission line 

which would be centred at A0 if the occulted zone was negligible, but which is 

redshifted in many cases. Indeed, if region C is negligible we can always find 

in regions B volumes Pi, P2 symmetrical about the line xx' (and thus with 

respect to the plane normal to the line of sight passing through xx') such 

that their radial velocities cancel for the observer. If region C (and hence 

the similar region in front of it) is not negligible, a part of the emission 
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line centred at V = 0 is missing, resulting in a redshift of the emission 

component. 

This qualitative interpretation, due to Beals (1949), is fully confirmed 

by detailed calculations (see Mihalas 1978, Chap. XIV). 

P Cygni profiles are usually seen in resonance lines of abundant ions (Mg 

II, C IV, N V, 0 VI, etc.) but also in subordinate lines such as Ha, H/?, He I 

A 10830, etc. All these lines are strong enough in hot stars that their centres 

reflect conditions in the outer parts of the atmosphere where the wind has 

a significant velocity (several hundred km s *). In cool stars the resonance 

lines of e.g. Na I have P Cygni profiles. They are a very important tool in 

the study of stellar winds (see Chap. 4). 

A general point about asymmetric lines is that it is vital to establish 

carefully the wavelength scale of the star’s centre; otherwise the velocities 

estimated from the profiles will be meaningless. 

Absorption Lines, Emission Lines. The spectral classification is based 

on an ordering of absorption-line strengths, following a temperature scale. 

However, we have seen that lines can appear in emission, i.e. be stronger 

than the neighbouring continuum. We should ask what is unusual about 

such stars, remembering that for e.g. planetary nebulae, all the lines are in 

emission. 

We have just seen that the standard P Cygni profile has an emission 

component, which we attributed to the formation of the line in an extended 

envelope. By constrast, all the lines in the visible spectrum used for the spec¬ 

tral classification are formed in the layers producing the visible continuum 

also. This layer has a depth which is small compared to the star’s radius R, 

and is called the photosphere (see also Sect. 2.2). Its temperature decreases 

outwards. Figure 1.9 shows how an absorption line forms in a plane-parallel 

photosphere. Let k/(A0) be the mass absorption coefficient at line centre, 

and kc the absorption coefficient in the continuum. We assume that, the 

observer sees into the atmosphere to a depth such that f Kpdz = 1. To a 

first approximation 

Fig.1.9. F 'ormation of an absorption line. Left, the temperature distribution in the atmo¬ 

sphere; right, the emergent line profile 
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— for the continuum: J'c Kcpcdz = 1 

— at line centre: /*'(«,(A0) + Kc)pdz = 1 

- as Kt{XQ) > acc, we see that < zc, and thus T(z,) < T(zc). 

In general this means iq < _FC; the line is darker than the continuum on 

which it appears. If emission lines appear it means that one or more of the 

above assumptions does not hold: 

The line is formed in another layer of the atmosphere (chromosphere, 

corona) where the temperature does not decrease outwards. 

- The line is formed in a very extended layer (envelope) whose geometry 

invalidates the definition of the formation depth assumed above, whatever 

the temperature. Examples: P Cygni profiles, but also emission lines in Be 

and Wolf-Rayet stars, etc. 

The foregoing will have shown that the analysis of line profiles gives a 

wealth of information about the thermodynamic and dynamical state of the 
line-forming region. 

The thermodynamic state is specified by the temperature T and density 

P, which, as suggested above, vary with depth 2. Study of this dependence 

leads to the construction of model atmospheres; the principles will be dis¬ 

cussed in Chap. 2. But we have also seen above that different ions of the same 

element appear as we consider the range of spectral types and luminosity 

classes. For a given spectral type the lines of Fe II for example strengthen 

as we go from dwarfs to supergiants. Following the dwarf sequence, we go 

by decreasing temperatures through lines of He II (0 stars) to lines of Ca 

I or K I (G, K stars), neutral elements which are very easily excited. The 

interpretation of the density variation at given spectral type (given T) was 

provided by Saha in 1920, as a law of ionisation equilibrium. The Saha law 

is a form of the law of mass action, which holds for thermodynamic equilib¬ 

rium, applied to two successive ions of an element, called N+ and N° for 

simplicity: 

N+Ne U+ 

N° ~ 

f 2TrmekT 

h2 

3/2 

exp(-A'ion/kT), (1.39) 

where Xion is the ionisation energy, Ne the electron number density, and 

U+ and U° the partition functions of the two ions; the factor 2 comes from 

the statistical weight of the electron, whose mass is me; h and k are the 

Planck and Boltzmann constants. This law gives a simple interpretation of 

the changes in ionisation balance observed in the spectral classification. A 

more refined analysis of stellar spectra requires other state variables besides 

T and p: we need the populations of all the atomic energy levels, and the de¬ 

scription of the gas becomes one departing from thermodynamic equilibrium 

(see Thomas 1965; Oxenius 1986). 
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The dynamical state of the medium is given by the velocity vector at each 

point; this may have a systematic component (for example, a wind) and a 

random component (for example, turbulence on various scales). Diagnosing 

the dynamical state of the stellar gas is a difficult problem (see Chap. 5); 

however, it is the empirical basis for the study of many phenomena, heating 

of exterior layers, generation of magnetic fields, diffusion, etc. 

1.3 Stellar Radii 

The notions of dwarf, giant, and supergiant stars arose in the discussion of 

the spectral classification. Measurement of stellar radii, when it is possible, 

confirms the differences in the sizes of stars. 

We return to relations (1.18) and (1.20). The received flux / (outside 

the atmosphere) is related to the flux F emitted at the stai s suiface by 

R 

~d2 TF' 
(1.40) 

where 8 is the star’s angular diameter (8 = 2R/d). To measure a stellar 

radius usually means measuring 8. This is always a very small angle (< 0.1"), 

and stellar discs are not at present resolved in the visible, in the sense that 

we have no images of the structure of their discs. 

1.3.1 Direct Measurement of the Radius 

This uses interferometry: either phase, amplitude or speckle. These methods 

are described by Lena (1988, Chap. 6). By now the angular diameter of 

about 100 stars has been measured directly. The largest star in angular 

size (apart from the Sun) is Betelgeuse (a Ori, M2 lab), which has 8 = 

0.067" ± 0.005" at A = 4880 A. Table 1.3 gives the angular diameters 8, 

parallaxes 7r, distances d, and deduced radii R (in solar units) of a set of 

stars of various spectral types. It is clear from the table that giants and 

supergiants have radii which are respectively of the order of 10 and 100 (or 

even 1000) times that of the Sun. 

The angular diameter of a star depends on A. Generally “radius” will 

mean “visible radius” (A = 5500 A), corresponding to the atmospheric layer 

emitting the visible continuum. Direct measurements of stellar radii will 

benefit from the improved accuracy of distances supplied b}r the Hipparcos 

satellite. 

1.3.2 Radii of Eclipsing Binary Stars 

Variable stars (discussed in Chap. 6) include some binaries whose orbital 

plane is close to the line of sight. A consequence of this geometrical situation 
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Table 1.3. Angular diameter, distance, and radius of bright stars 

(adapted from Allen 1976) 

Star Name Spectral 

type 

Angular 

diameter 

(") 

Parallax 

(") 

Distance 

(pc) 

Radius 

(in Re) 

a Ori Betelgeuse M21ab 0.067 0.005 180 1 297 
a Tau Aldebaran K5III 0.024 0.048 21 54 
a Boo Arcturus K2I1I p 0.022 0.090 11 26 
a Aur Capella G5I11/ 

GOIII 

0.0047 0.075 14 7.1 

a CMi A Procyon F5IV-V 0.0055 0.287 3.5 2.1 
0 PsA Fomalhaut A3V 0.00210 0.149 6.7 1.5 
a Cyg Deneb A2Ia 0.0027 - 0.013 O 500 145 
a CMa A Sirius A1V 0.00589 0.377 2.65 1.7 
a Lyr Vega AOV 0.00324 0.126 7.9 2.76 
jB Ori Rigel B8Ia 0.00255 - 0.003 O 270 74 
a Leo Regulus B7V 0.00137 0.041 24.4 3.6 
a Vir Spica BUY 0.00087 0.021 65 7.8 

( ) A negative parallax implies one at the limit of current accuracy. 

is that each of the stars passes in front of the other once per orbital period, an 

occultation phase following a transit phase. Thus the light received from the 

system varies periodically, with two successive minima: primary minimum 

corresponds to the eclipse of the hotter star by the cooler, and secondary 

minimum to the reverse situation. Algol (f3 Per) is an example of an eclipsing 

binary. 

Analysis of the light curve of an eclipsing binary can give the radii of 

the two components, in the following way. 

(1) We normalise the measured intensities to the brightness between 

minima, which we can take as constant. Let the normalised intensity be /. 

(2) We measure the phase angle 8 = jr{t—10), where P is the heliocentric 

orbital period and to the time of primary minimum. 

(3) We assume the orbit to be circular. Let i be the inclination of the 

orbital plane to the plane of the sky (tangent to the celestial sphere), and 

d the distance between the two stars. 

(4) The two stars of radii n for the larger and r2 = kr\ for the smaller 

have discs deprived of limb darkening. The following relations are easily 

proved: 

^1 T ^2 — 1 i ^occul — ^1 — 1 ^2 1 ^transit *— 1 k l\ 

1 ^transit 

= 1 - k2 3 4l occul 

kl = 
occul 

(1.41) 

The quantity k2 is obtained from the light curve. 
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At exterior contact, rq + r2 = ri(l + k) = d{sin2 O' sin i + cos2 i) . 
At interior contact, r\ — r2 = n(l — k) = d(sin2 6" sin i + cos i) 

If the phases O' and 9" are established with enough precision we can m 

principle obtain d/r\ and cost from these two equations. If in addition, as 

is the case for spectroscopic binary systems, we have radial velocity curves 

for the two components as functions of 8 we can use the value of i found 

previously to find d and Tn\ + m2, finally obtaining rq and T'2• 

Photometric observations have finite accuracy, the stellar orbits are 

sometimes elliptical, the eclipses may be partial, and the stars can be de¬ 

formed by tides. These difficulties complicate the practical application of 

this method of determining stellar radii. 

1.3.3 Indirect Radius Determinations: 

The Infrared-Flux Method 

This method (Blackwell and Shallis 1977) obtains 9 from (1.40) by using 

this equation at several wavelengths: 

f(\)=jF(\). 

It relies on a measurement of /(A), the flux received at Earth, which assumes 

that the energy distribution of the star is available in absolute units; this 

gives f’°° /(A)dA. One also measures /(A/#); stellar-atmosphere theory then 

gives F(Xjr) and thus a first approximation to 9. For the method to work 

well, it is necessary that F(Xjr) can be computed without having to specify 

the parameters of the star too closely. These parameters are the effective 

temperature Teff (cf. (1.20)), the surface gravity defined by 

g = GMJR2, (1-42) 

and the star’s chemical composition. The surface gravity is almost never 

found from the stellar mass M* and radius i?, but usually by spectroscopic 

methods. For the purpose of finding R it suffices to note that dwarfs have 

gravities which are close to 104 cm s-2 (from 1 to 3 x 104), and that the 

IR continuum is very insensitive to g and abundances. A is chosen in the 

near infrared (A ~ 2 pm); for normal dwarfs the energy distribution is well 

represented by the Rayleigh-Jeans approximation to a black body: F{X) — 
(ci/c2)TeffA~4. The linear dependence on Teff is less significant than at 

shorter wavelengths. 

This method works by iteration: one starts with a first approximation 

for Teff and g and calculates F( A = 2 jum) using a model atmosphere with 

these parameters. As seen above, one uses (1.40) to give an estimate of 9 
from the measured /(A = 2 /mi). One also calculates F(A) for the entire 

visible spectrum and adjusts Tefr using 
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oo f)2 

f(X)d\=~ 
oo 

F( A)dA 
o 

The procedure is repeated to convergence. 

1.3.4 Other Radius-Determination Methods 

There are other methods for finding radii which have more limited applica¬ 

tion. The use of lunar or planetary occultations gives results for stars near 

the ecliptic plane. The varying radii of pulsating stars can be found by the 

Baade-Wesselink method (see Sect. 6.2). 

In concluding this section on radius determinations we note the impor¬ 

tance of measurements of distances and small angles. The development of 

interferometric techniques is indispensable for better radius determinations 

for stars, and particularly for a better picture of their surface structure. At 

present the Sun is the only star whose disc is resolved (see Sects. 2 4 and 

2.5). 

1.4 The Hertzsprung-Russell Diagram 

The MI\ classification has two parameters: the spectral type and the lumi¬ 

nosity class. These parameters give a first idea of the star’s properties, but 

their limits are clear: they are discontinuous and are not easily transformed 

to give the physical parameters of effective temperature and luminosity (but 

see de Jager and Nieuwenhuijzen 1987). 

We have seen (Sects. 1.1.3 and 1.2.1) that stellar photometry gives mag¬ 

nitudes and colour indices. These quantities are more easily converted to 

Teff and L than the parameters of the MIv classification. Consider a. magni¬ 

tude V and colour index B — V. For stars at a given distance, V gives the 

absolute visual magnitude M„, which is linked to the luminosity by 

Mv - MV(Q) = Mbol - Afbol(Q) - (BC - BC(Q)) 

= —2.5 log 10(L/Lq) - (BC - BC(Q)). 
(1.43) 

The index B — V ( similarly other indices built in the same way) can be 

calibrated in Teff, as indicated in Table 1.4 for dwarfs. The index B — V, 
which measures the slope of the Paschen continuum (see Sect. 1.2.1) is sen¬ 

sitive to interstellar absorption, which reddens the observed colour, as the 

extinction curve A(A) rises towards short wavelengths (see e.g. Allen 1976) 

in the optical region. In the following we consider the dereddened index 

B — V, often denoted (B — V)o. To achieve the dereddening requires the 

colour excess E(B — V), so that 

(B - V)obs =(B- V)0 + E(B - V). (1.44) 
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Tabic 1.4. Colour index and effective temperature as a function of spectral type for 

main-sequence stars (adapted from Bohm-Vitense 1981) 

A plot of Mv as a function of spectral type or B - V, for field stars or 

stars of a cluster, is called a Hertzsprung-Russell (abbreviated to HR) or 

colour-magnitude diagram (C-M). Figure 1.10 shows such a diagram for 

stars whose distances from the Sun are known. 

We note that the stars do not fill this diagram. The majority lie in a 

narrow band, called the main sequence, extending from the highest lumi¬ 

nosities (top left) to the lowest (bottom right). The scale of absolute visual 

magnitudes runs from —10 to +15, corresponding to a factor 10 in lumi¬ 

nosity. In contrast the effective temperatures run from about 100 000 Iv to 

2500 K. The stars of the main sequence are also called dwarfs, and have 

luminosity class V in the MIv classification. 

The giant branch, of luminosity class III, separates from the main se¬ 

quence in the direction of lower temperatures, at roughly constant luminos¬ 

ity. 
The supergiants cover an enormous region from blue to red stars, with 

Mv < -5 (~ 104 times brighter than the Sun). 

The lower part of the diagram is not empty, but contains white dwarfs, 

stars about 104 times fainter than the Sun. These stars have very large 

apparent magnitudes (cf. Sirius B, Table 1.1). 

The ranges of L and Te(f we have given above confirm that stellar radii 

vary widely over the diagram. The lines of constant radius have similar 

slopes to that of the main sequence; they can easily be drawn using (1.20) 

if the MV-{B — V) diagram is calibrated, i.e. converted to one of L/Lq vs 

Teff (see Schwarzschild, 1958, Fig. 1.5.) Supergiant radii are the largest at 

about 1000 Rq; those of the white dwarfs are about 0.01 Rq. 
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Fig. 1.10. HR diagram for stars at known distances from the Sun. This diagram was 

constructed for 2927 stars observed with the Hipparcos satellite during its first year 

of operations. The parallaxes are determined to better than 10%, corresponding to 0.22 

units in absolute magnitude. The colour scale is in the Tycho photometric system (that of 

the Hipparcos satellite). One has (B - VOTycho — 1-2(B - ^0Johnson ■ (After L. Lindegren, 

ESA SP-349, 1992, in press. Reproduced by kind permission of the European Space 

Agency) 

1.4.1 The HR Diagram of Open Clusters 

The diagram of Fig. 1.10 shows nearby stars (field stars), the majority be¬ 

ing dwarfs, as is the Sun itself. The errors in Mv come mainly from the 

distances, and those in B — V from extinction and reddening corrections. 

The dispersion of the points is thus markedly reduced in an HR diagram of 

stars at the same distance and having the same extinction. A group of stars 

like this, all at the same distance except for the depth of the group, is a 

cluster. We have seen (Sect. 1.1.1) how the parallax of a cluster is measured. 

For stars in nearby clusters we then have both Mv and B — V. In practice 

one plots V as a function of B — V, which for a cluster is equivalent (up to 

the distance modulus) to Mv as a function of B — V. 

Figure 1.11 shows the HR diagrams of several clusters, called open or 

galactic, which are clusters containing a few tens of stars to a few hundred 
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Fig. 1.11. HR (colour-absolute magnitude) diagrams of 4 open clusters. The diagrams 

were obtained by photoelectric photometry (private communication from J.C. Mermilliod, 

Observatoire de Geneve) 

stars in varying degrees of concentration, and having irregular shapes. We 

see that each of the diagrams shows a well-developed main sequence, and 

sometimes stars to the right of it, i.e. giants or supergiants. If we move to 

increasing temperatures on the main sequence (decreasing B — V), we note 

that there are no dwarfs below a certain B — V, or equivalently above a 

certain luminosity; the diagram (see e.g. NGC 2420 2) has a knee, and the 

bright stars of the cluster are to the right. 

We shall show in Chap. 3 that this termination of the main sequence and 

the existence of a knee (turnoff) is an effect of stellar evolution, more appar¬ 

ent for cluster stars because these can all be assumed to have approximately 

the same age and initial chemical composition. The HR diagram of a cluster 

is thus a sign of the evolutionary state of the stars in it, as indicated by the 

2 The designation NGC stands for New General Catalogue 
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colour index B - V giving the knee. We shall show in Chap. 3 that in the 

HR diagram of a cluster, which is an isochronic line of evolution (the stars 

there are the same age), the turnoff point gives the age of the cluster. 

For the moment we return to an assumption stated in Sect. 1.1.4: let us 

imagine that the main sequences of clusters coincide, i.e. the intrinsic lumi¬ 

nosity of a dwarf corresponds uniquely to a spectral type or to a colour index 

B 1 . Then we can construct (Sandage 1957) a composite colour—magnitude 

diagram, in which open clusters are ordered by age. The main sequences are 

arranged to coincide, and the turnoff points where the sequences bend to 

the right follow each other, from Mv = -5 for NGC 4755 to Mv = +3 for 

NGC 2420. The main sequence thus produced has a lower envelope called 

the zero-age main sequence (ZAMS); it is the position of the unevolved stars 

in each of the clusters, i.e. the position of stars in which central hydrogen 

burning has only just begun (Chap. 3). The higher the luminosity at the 

turnoff point (the smaller Mv there), the younger the cluster. Figure 1.12 

shows a composite colour-magnitude diagram. 

The hypothesis of a zero-age main sequence is empirically justified for 

most galactic clusters; but it may simply be difficult to recognise the main 

NGC 6231, 4755, 457, Pleiades, NGC 2516, 2287, 

Praesepe, NGC 752, M67 

Fig. 1.12. Composite HR diagram. 

The absolute magnitude Mv is 

shown as a function of (B — V)o. 

The diagram is constructed using 

HR diagrams for NGC 6231, 4755, 

457, the Pleiades, NGC 2516, 2287, 

Praesepe, NGC 752 and M 67 (pri¬ 

vate communication from J.C. Mer- 

milliod, Observatoire de Geneve) 
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sequence. For example Walker’s cluster (NGC 2264) has a very short main 

sequence, so short that it is difficult to adjust it to the ZAMS in Fig. 1.12 (on 

the high-luminosity side). The stars in this cluster are much younger than 

those represented in Fig. 1.12, and most of them have not yet ailived on the 

main sequence, i.e. they are still in the phase of gravitational contraction, 

and a fortiori none has yet left the main sequence, bifurcating to the right, 

back towards the giant branch. 

1.4.2 The HR Diagram of a Globular Cluster 

Figure 1.13 shows the C-M diagram of a globular cluster, M3. Globular 

clusters have many more stars (10J to 106) and are gravitationally more 

stable than open clusters. Their stars have remained bound, with few es¬ 

capes, throughout the immense ages of the clusters. 

The observed HR diagram (V,i? — V7) of a globular cluster is quite dif¬ 

ferent from that of an open cluster. The main sequence is formed of very 

unevolved dwarf stars. It terminates at a later spectral type than in open 

clusters. This sequence bends into a branch of the subgiants, never seen in 

open clusters, where the evolution is too rapid for stars to be found there. It 

is followed by the red-giant branch which in Mv, B — V coordinates extends 

to Mv-2. The most remarkable part of the HR diagram of a globular 

cluster is the horizontal branch, at luminosity Mv ~ +0.5, which can ex- 

Fig. 1.13. HR diagram (colour-visual magnitude) for the globular cluster M3. The diagram 

was obtained by photoelectric photometry (private communication from R. Buonanno, 

after R. Buonanno, A. Buzzoni, C. E. Corsi, F. Fusi Pecci, A. Sandage (IAU Symp. 

No. 126, 621 (1987)) 
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tend to varying distances towards the blue. In the middle of the horizontal 

branch there is a zone of instability which contains the RR Lyrae variables. 

Finally the horizontal branch joins the red-giant branch by an ascending 

branch which tends asymptotically to the giant branch. (See also Fig. 3.20.) 

The HR diagrams of globular clusters are sensitive to the chemical com¬ 

position of the material from which the cluster formed. As a result, main- 

sequence fitting to produce a composite HR diagram is more difficult than 

for open clusters. In fact stellar-evolution calculations show that the posi¬ 

tion of the ZAMS in the theoretical (i.e L/Lq vs Teff) HR. diagram of a 

globular cluster depends on the abundance of helium and global abundance 

of heavy metals (metallicity). There is a dependence of the ZAMS position 

on the helium abundance for open clusters too, but it is less severe. The 

helium abundance is generally difficult to determine, except in O and B 

stars, which are not found in globular clusters. Moreover globular-cluster 

stars are metal-deficient (see Sect. 1.6). 

1.4.3 Determination of Mv Revisited 

The composite colour-magnitude diagram for clusters allows us to complete 

the discussion above (Sect. 1.1.4) on estimating distances by main-sequence 

fitting or by the method of spectroscopic or photometric parallaxes. 

From the colour—magnitude diagram (Fig. 1.12) the colour index of any 

cluster star gives its absolute visual magnitude and hence its distance. 

Thus for cluster stars we have a relation between B - V (or spectral 

type) and Mv. Then study of the spectra of these stars shows that the sen¬ 

sitivity of the hydrogen spectrum to density, and hence luminosity, gives 

spectral-luminosity criteria. Thus for “late-type” stars (A, F, G) a com¬ 

bination of colour indices measures the size of the Balmer discontinuity, 

which is sensitive to the density. This is the case for Stromgren’s index 

Ci = (u — v) — (v — b). For O and B stars it is mainly the (weak) hydrogen 

lines whose wings are sensitive to the density. Stromgren’s index f3 measures 

the intensity of H/?. 

Table 1.5 gives the indices which are good luminosity indicators for stars 

later than AO in the Stromgren (intermediate band) and Geneva (wide band) 

photometric systems, as well as in the Barbier-Chalonge-Divan spectropho- 

tometric classification. 

We can therefore use cluster stars to calibrate these luminosity indica¬ 

tors in Mv. The resulting calibration is then used mainly for stars outside 

clusters, assuming that they can be classified by two parameters only. We 

refer to Stromgren (1966) for the intermediate-band classification, and to 

Hauck (1973) and Cramer (1982) for the Geneva classification. 

For stars with a chemical composition differing from that of the Sun a 

two-dimensional classification (Teff,Mv) fails, and we must introduce the 

metallicity as a third parameter. The above references discuss this point 

(see also Sect. 1.6). 
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Table 1.5. Spectroscopic luminosity indicators 

Spectral classification Luminosity indicator 

(stars later than AO) 

References 

Stromgrcn pi] = c, - 0.20 (b - y) Stromgren (1966) 

Geneva [d] = (U-B,) - 1.430 (R, -fl2) 

[A]=(U-B2)- 0.832 {B2 - G) 

Golay (1974) 

Barbier-Chalonge-Divan Balmer discontinuity D Pecker and 

and its position A, Schatzman (1969) 

1.5 Stellar Masses 

Many stars in the Galaxy, and no doubt in other galaxies, belong to multiple 

systems, i.e. a set (two or more) of stars orbiting a common centre of mass. In 

general a star can be orbited either by other stars, by planets or planetary- 

type objects such as rocks or dust grains (as in the star f3 Pic). All such 

objects follow Kepler’s laws. 

Kepler’s third law relates the mass of a binary system to the orbital 

period P and the semi-major axis a of the ellipse which is the relative orbit 

of the two stars. The application of this law to binary stellar systems with 

known orbits gives direct estimates for the masses of the stars. 

1.5.1 Direct Mass Determination 

Let Mi and M2 be the masses of two stars forming a binary system. Using 

Kepler’s third law (with n = 2tt/P the mean angular frequency) we have 

G(Mi + M2) = nV = ^a3 . (1.45) 

To get Mi + M2, we need a as a length, and thus a known distance d 

for the system. The orbital period P is easily measured. The main error in 

Mi + M2 is three times the error in d. To obtain Mi and M2 separately we 

have to be able to find the absolute orbit of at least one of the stars around 

the common centre of mass, in a reference frame fixed to distant stars. Let 

a be the semi-major axis of this absolute orbit. Then 

M2 _ fl] 

Mi + M2 a 
(1.46) 

which gives M2 and thus M\. 

This method of determining masses, the only direct one, assumes various 

conditions: 
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it must be possible to resolve the angular separation 6 of the two stars; 

the system s distance d must be known so as to give a, = d6\ 

- it must be possible to determine the absolute orbit of one of the compo¬ 
nents. 

These conditions restrict direct mass determinations to visual doubles, 

i.e. binaries with angular separations 0.5" for ground-based observations, 

or 0.1 for an instrument such as the Hubble Space Telescope. The advent 

of Hipparcos will improve the accuracy of mass determinations: it is hoped 

that masses accurate to 15% will be obtained for about 100 visual binaries. 

At present onljr about fifty stars have directly determined masses (Pop¬ 

per 1980); for only a dozen of these is the mass known to better than 20 %. 

1.5.2 The Mass—Luminosity Relation 

For some main-sequence binaries the masses M and luminosities L are 

known well enough that they can be plotted against each other (Fig. 3.1). 

It is clear from the figure that L and M increase together, with 

where a = 4 for L > LQ and a = 2.8 for L < LQ. 

Assuming that this result holds for all main-sequence stars, we see that 

stellar masses increase along the sequence, from M type (M = 0.1 M0 for 

a Cen C) to 0 type (Af ~ 30 — 50Afg). The observed luminosities have 

a well-defined upper limit (Mv > —11.6 for stars in the Galaxy), so this 

implies an upper mass limit of the order of 60- 100 Af0. For main-sequence 

stars the mass—luminosity relation shows that the star’s energy production 

is directly related to its mass, i.e. the available nuclear fuel reserve (see 

Chap. 3). These observational facts are of very great significance for the 

theory of stellar structure. 

The mass-luminosity relation does not apply to giants or supergiants: 

some supergiants (e.g. red) have low mass. White dwarfs do not obey the 

relation either. 

1.6 Stellar Populations 

1.6.1 Introduction 

We discuss here properties shared by stars having different spatial distribu¬ 

tions in the Galaxy (and other galaxies). 

The notion of stellar populations was introduced by Baade in 1944. Re¬ 

solving the centre of the Andromeda galaxy (M31) and its two companions 

M32 and NGC 205 into stars, he was able to construct HR. diagrams for 
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the brightest stars in these galaxies. He noticed that there were two types 

of HR diagram: that for the spiral arms of M31 resembled the HR diagram 

of the solar neighbourhood, while those for the central bulge of M31 and 

the stars of its two companions resembled HR diagrams of globular clusters. 

Baade called the stars of the solar neighbourhood and the spiral arms of 

M31 population /, and designated as population II the stars of the elliptical 

galaxies M32 and NGC 205, the bulge of M31, and the globular clusters, as 

well as the RR Lyrae and short-period Cepheid variables. 

The idea of a stellar population is now refined to mean stars having 

not only the same spatial distribution in the Galaxy, but also the same 

age, kinematic properties, and chemical composition. This set of common 

properties of the population is based on a model of the dynamical and 

chemical evolution of the Galaxy, which we shall not discuss here. The 

position of a star in the Galaxy and its related properties bear the imprint 

of the history of the Galaxy from its formation, since each star is assumed 

to have the same chemical composition as the interstellar medium where it 

was born. 

1.6.2 Defining Criteria for Stellar Populations 

Here we restrict ourselves to the Galaxy, but the concepts we shall introduce 

are clearly relevant for other galaxies. 

Stellar Spatial Distribution. In a spiral galaxy such as our own the spatial 

distribution of the stars allows us to distinguish a spheroidal part consisting 

of a bulge and a halo, together with a flattened disc extending into spiral 

arms. Table 1.6 summarizes the types of stars mainly or exclusively present 

in each of these components. This tendency for certain types of stars to 

occur in different, parts of the Galaxy is revealed by systematic number 

counts in different volume elements. 

Spheroidal and Flattened Distribution. The distinction between these two 

distributions largely coincides with that between the two main kinematic 

groups. High-velocity stars are largely members of Population II or of the 

halo, while low-velocity stars are mainly in the solar neighbourhood and the 

disc. The measured velocity is the space velocity; we often consider the more 

easily measured radial velocity. High-velocity stars are those with space 

velocities exceeding 65 km s-1 (with respect to the Sun). For comparison, 

the escape velocity from the Galaxy at the Sun’s position is 360 km s-1. 

Velocity distributions for spectral types and groups of stars give the 

velocity dispersion as the second moment of the distribution for each group 

of stars. It is well established that the velocity dispersion is low (1 km s-1) 

for stars in young associations and open clusters, and grows with age of the 

stars. 
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Table 1.6. Stellar population of the galactic halo and disc (after Mould 1982) 

Spheroidal population 

(halo) 
Flattened population 

(disc) 

Globular clusters Old disc population 
Metal-poor RR Lyrae variables - Dwarf F and M stars 

Field halo stars 
- Giants 

- Metal-rich RR Lyrae variables 
- Subdwarfs - Long-period variables 
- M and carbon-rich giants - C and S stars 
- Some planetary nebulae - Barium stars 

and white dwarfs - The majority of planetary nebulae 
- Fligh-velocity A stars and white dwarfs 

Bulge Young disc population 
- Giants - Bright 0 and B stars 
- OH/IR stars - A and B dwarfs 
- Long-period variables - Pulsars (neutron stars) 
- X-ray burst sources - Me dwarfs 

Outer halo 
- Open clusters younger than the 

Hyades 
- Distant globular clusters - T Tauri and Flerbig stars 
- Dwarf spheroidal galaxies 

- Magellanic clouds 

We should however note that there exist high-velocity stars in the young 

disc population: for example 0 stars of mass above 40 Mq almost all have 

high velocities. 

Stellar Chemical Composition. The chemical composition of stars varies 

according to the part of the Galaxy where they were born. The composi¬ 

tion is characterised by the metallicity index. Defined spectroscopically, it 

is written [Fe/H], standing for 

log(Fe/H)* - log(Fe/H)© , 

[Fe/H] denoting the relative abundance by number of iron relative to hy¬ 

drogen in the star compared with the solar value; iron is regarded as repre¬ 

sentative of the abundances of all the metals. Defined from a photometric 

system (e.g, UBV) the metallicity index measures the effect of metal lines 

on the energy distribution in certain passbands, for a given effective tem¬ 

perature. One of these indices is 8(U — B) = (U — B)st — {U — B)0bs, where 

(U — B)st denotes the standard colour of normal stars and (U — B)obs is the 

observed index; we measure 8(U — B) corresponding to the observed value 

of a good indicator of Tefr, such as B — V here. Similar indices are defined 

in the Stromgren system (Am) or the Geneva system. 
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It is clearly established that the UV excess S(U - B) is very well cor¬ 

related with the star’s metallicity [Fe/H], its distance from the galactic 

plane, and its space velocity. The excess grows with distance from the 

galactic plane, with space velocity, and with decreasing metallicity. Metal- 

deficient stars are defined as those with [Fe/H] < — 1; metallicities as low as 

[Fe/H] = —3 have been found in halo and globular-cluster stars. 

Of course there are exceptions to these correlations. The chemical com¬ 

position is not solely a function of distance from the galactic plane: there is 

a clear gradient of chemical composition with the distance from the galactic 

centre within the disc. Stars closer to the centre than the Sun are metal 

richer, and those at the disc edges metal poorer. The metallicity gradient 

near the Sun is ~ —0.05 kpc 1 in units of [Fe/H]. By contrast, the metal- 

licity distribution in globular clusters is bimodal, so that naive correlation 

of [Fe/H] with cluster age is not possible. 

This raises the question of the possible existence of population III: stars 

without metals, representing the oldest population, formed from a primor¬ 

dial “interstellar” medium consisting only of hydrogen and helium. This 

population need not exist, in that Cayrel (1986) shows that the oldest glob¬ 

ular clusters (those of the lowest metallicity) could have formed from a 

medium already enriched by the explosions of (still more primordial) super- 

massive stars, which no longer exist. 

Studies of distances, space velocities, and metallicities for stars, including 

the faintest in the Galaxy, are being extended to other galaxies, particularly 

by means of the Hubble Space Telescope. Existing instruments have already 

enabled the study of stellar populations and chemical evolution for galaxies 

in the local group, such as the Magellanic clouds and M31. 
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2. The Sun: The Nearest Star 

2.1 Introduction 

The unusual feature of the Sun as a star is its closeness to the Earth where 

from we observe it. The average Earth-Sun distance is 1.495 979 x 1013 cm 

(by definition one astronomical unit); this distance varies between 1.4710 x 

1013 cm (perihelion) and 1.5210 x 1013 cm (aphelion) through the orbit. 

There are several remarkable consequences of this proximity. First, the 

Sun has an angular diameter of 32/, allowing detailed study of its surface. 

The best spatial resolution in ground-based observation is about 0.25"; from 

space better than 0.1" is obtainable. As the Sun is also the star whose radius 

is known most accurately (see Table 2.1) this means that we can distinguish 

parts of the Sun’s surface down to about 180 km from the ground and 70 

km from space. Until very recently (supernova 1987A) the Sun was the only 

star from which we could detect particles: neutrinos, high-energy ions and 

electrons ejected in flares, and solar-wind particles. The Sun is still the only 

star from which particles emitted in transient events (flares) or steadily 

blown away (solar wind) can be counted, rather than being detected by 

Table 2.1. General solar properties 

Radius (R) 6.95997 X 10i0 cm 

Mass (M) 1.9892 X 1033 g 

Photospheric gravity (g) 2.7398 X 104 cm s 2 

Effective temperature (77rr) 5 770 K 

Synodic rotation period 

of the sunspot zone 

13.45° — 3.0 sin2 <p per day 

{<p = heliographic latitude): 

P = 26.76 days at the equator 

Rotation rate (12) and synodic period (P) 

(photosphere, at the equator) 

12 = 2.67 X 10 6 rad s ', 

P = 26.24 days 

Rotation speed 

(photosphere, at the equator) (Ecq) 

2 km s 1 
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Tabic 2.2. Energetics of the Sun 

Total luminosity (L) 3.83 X 1033 erg s~' 

Solar constant (at Earth) 1.360 X 106 erg cm 2 s 1 

or 1.360 kW m 2 

Mass loss rate (dM/dl) 0.6-1.0 x 10 14 Me/y 
or 1012 g sl 

or 10~36 particles s 1 

Binding energy (A/2G/R) 3.8 X 1048 erg 

Rotational energy {^-MQ2R2 j 1.4 X 1043 erg 

Angular momentum (from surface rotation) 1.63 X 1048 g cm2 s * 

_ 

Notes: (1) the binding energy, rotational energy, and angular momentum in fact depend on 

the mass distribution and the behaviour of Q with depth inside the Sun. (2) The solar 

constant varies in the course of the solar/activity cycle, by about 0.1 % from maximum to 

minimum. It has its maximum at the maximum of solar activity (results obtained between 

1980 and 1989 by the Solar Maximum Mission satellite (SMM)). 

their radiative effects. Neutrinos have now been detected from one other 

object (supernova 1987A) besides the Sun. 

In its other properties the Sun is a very ordinary star. Its spectral type 

is G2V: it is a dwarf. Its age is 4.6 x 109 y: it is quite old. There is nothing 

special about its position in the Galaxy: it is located about 10 kpc from 

the Galactic centre. But every property of the Sun is known to far higher 

precision than for any other star. Table 2.1 summarizes general properties 

of the Sun and Table 2.2 its characteristics as an energy source. 

Because it is the star whose mass, luminosity, and radius are best known, 

the Sun is the touchstone for all theories of stellar properties: evolution, 

heating of the exterior layers, generation of magnetic fields, acceleration of 

the wind, or large-scale motions in the interior. The Sun is a universal stellar 

prototype, which is the reason for devoting a chapter to it. 

The Sun is also a laboratory for plasma physics. Since the end of the 

19th century, laboratory spectroscopy and the identification of lines in the 

solar spectrum have developed in close symbiosis (discovery of helium in 

1868, laboratory identification by Ramsey in 1895; identification of coronal 

lines by Grotrian and Edlen between 1939 and 1942). Later, non-LTE (lo¬ 

cal thermodynamic equilibrium) diagnostic analysis was largely established 

through quantitative study of the solar spectrum. Today the spectroscopy 

of the solar corona is closely linked with that of fusion plasmas. 
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We remark finally that the Sun provides units of measurement for all 

stellar quantities: masses, radii, luminosities, and mass-loss rates are always 

given in solar units (see Chap. 1). 

In the following we give only a brief introductory picture of the Sun 

and study some aspects of its physics. We treat the Sun here as static and 

in a steady state, even though its time variability is very important; we 

shall consider it together with that of other stars (Chaps. 6 and 7). The 

Sun s structure and evolution are studied in Chap. 3, the expansion of its 

atmosphere (wind) and the possibility of collecting solar particles in Chap. 

4. The relation of the Sun to its system of planets is considered in the book 

by Encrenaz and Bibring (1990). The influence of the Sun specifically on 

the Earth is an essential part of the climatology of our planet, not discussed 
here. 

Observation of the Sun from X-rays to radio waves at the highest spatial 

resolution reveals an object of fascinating surface complexity. Initially^ we 

shall ignore these surface inhomogeneities (“fine structure”) and idealize the 

Sun as a sphere of gas in which every property is a function of radius only. 

This allows us to apply stellar-atmosphere theory to the Sun, as if it were a 

star, i.e. seen without spatial resolution. 

2.2 Models of the Solar Atmosphere 

Although the Sun has non-radial structure in the surface layers forming 

its atmosphere, physical quantities (electron temperature Te, pressure P, 

density p, electron density Ne, etc) in these layers were first studied using 

average homogeneous models. As a next step, models adjusted to each of 

the observed surface structures can be computed by the same methods. 

2.2.1 The Different Regions of an Atmosphere 

We introduce these regions in a general manner, so that the same termi¬ 

nology can be used for stars other than the Sun. First, by the atmosphere 

we mean the layers through which the energy produced at the centre of the 

Sun, here propagating mainly as radiation, interacts with matter to produce 

the photons we observe. Here the idea of opacity is important. We define 

a linear absorption coefficient at each frequency, and a mass absorption 

coefficient related by = /c„p. The first has dimensions [cm-1], the 

second [cm2g-1]. 

The observed photons come from different layers depending on their fre¬ 

quency. In the spectrum of every star we find frequencies where the material 

is very transparent, i.e. the absorption coefficient = Kvp is small, and 

at such frequencies we see deep into the atmosphere. Similarly there are 

frequencies where the material is very opaque; at these frequencies we can 

see only the upper layers of the atmosphere. The (radial) optical depth r„, 
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defined by dr„ = -«„/>dr, gives the size of the region of the star produc¬ 

ing the observed photons. At a given v, the received photons are such that 

10~3 < tv < 100, r„ ~ 1 being a representative value. The atmosphere is 

thus the zone between the geometrical radial depths rq and r2 such that 

/*oo 

t„ = — / Kvpdr ~ 100 

at the most transparent frequency, and 

I* OO 

tv — / K„pdr ~ 1(T3 

J r2 

at the most opaque frequency. 

In the Sun, the frequency where the matter is most transparent is in the 

near infrared (A = 1.6 pm), and the most opaque frequencies are in the core 

of the Lyn line and in the centimetre radio region. These frequencies differ 

for stars of other spectral types. 

The reference temperature in the atmosphere is the effective temperature 

Teff already defined as that of a black body radiating the same amount of 

energy as the star, 

L — AnRloTeff , (2-1) 

where L is the luminosity, i?* the radius, and o Stefan s constant. The 

classical radius of the star is that of the layer where Te = Teff, which for all 

spectral types is characteristic of the formation of the visible continuum. 

The notion of the star’s radius must be made precise. An observer view¬ 

ing the Sun at frequency v (Fig. 2.1) “sees’ on average down to Tit„ ~ 1 at 

each point of the disc (rpv here means an optical depth along the line of 

sight). He thus sees down to the dashed curve in the figure. Its shape results 

from seeing in more deeply at the centre of the disc, where the line of sight 

is vertical, than at the edge, where the rays received by the observer are 

highly inclined to the normals to the layers and are thus more absorbed, 

Fig. 2.1. The solar limb. 9 is the angle between the 

normals to the layers and the line of sight, tiiU is 

the optical depth along the line of sight, tv the ra¬ 

dial optical depth, and 2 the depth variable in the 

plane-parallel approximation. The dashed curve is 

the locus ritl/ = 1 
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Fig. 2.2. The various regions of a stellar atmosphere, classified by their variation of electron 
temperature with geometrical depth z 

since rpv = tu/cos6. We define the edge (or limb) of the disc as the point 

where r/tI/ goes from 1 to a near-zero value, for a displacement Az of the 

tangent ray OA small compared to i?*, because of the variation of the 

density p with 2: to a very good approximation we have p = p0e~z!H, 

with a scaleheight H of the order of 100 km in the Sun. We note that 

H/Rq = 10 4. For A2 = .4.4' ~ 3H there is too little material along the 

line of sight OA! for Ti>v to be ~ 1. This means that we can see a sharp 

edge to the Sun (other stars also have sharpe edges, but we cannot resolve 

their discs) and that the Sun does not have the same radius at different 

frequencies. For example the solar radius in the decametric radio region is 

about 1.8 times its visible radius. 

Figure 2.2 shows schematically the various regions of a stellar atmo¬ 

sphere, as in the Sun. Each region corresponds to a distribution Te(r), or 

Te(z) if the atmosphere is thin enough compared to ft** to be regarded 

as plane-parallel rather than spherically symmetrical. We consider this ap¬ 

proximation more precisely, for a vector V whose radial component Vr is 

non-zero. If the scaleheight H defined by l/H = <91nVr/dr obeys H <C ft**, 

we also have z ~ r and div V = dVr/dr + 2Vr/r ~ dVr/dr. This is easily 

satisfied if V is the radiation flux integrated over all frequencies, Fr, in a 

stellar atmosphere. 

The names for the various regions of an atmosphere have empirical ori¬ 

gins. However, it is more illuminating first to distinguish these regions by 

their dominant modes of energy transport, which fix Te(r); we shall do this 

below. We refer to stellar-atmosphere theory for the radiation-dominated 

regions and hydrodynamics and magnetohydrodynamics for the outermost 

layers. 

In the photosphere, energy is transported essentially by radiation. Then 

in the stationary approximation the local energy equation at depth z is the 

condition of radiative equilibrium: 

div FR(z) = 0 . (2.2) 
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We have 

Fr{z)= [ F„(z)du = (jTgjfj-, with F„(z) = f Iv(n,z)n do;, (2.3) 

Jo J Q 

where n is the propagation direction of the radiation, Fin, z) its specific 

intensity, and du the element of solid angle around n.1 * From the base of 

the photosphere to its outermost parts, different frequency domains become 

successively transparent, i.e. conditions in the stellar material cause r„ to 

range from ~ 100 to about lO^3 at each v. These frequency ranges define 

sub-regions; in each the intensity is found as the solution of the transfer 

equation. 
In the stellar interior, matter is by contrast opaque at all frequencies 

and characteristic scales; the flux can be found from a local approximation 

(quasi-isotropic, or diffusion) and has the form of a heat flux: 

Fr = —Kr-j— , with Kr = H—— Ti/K.p , (2.4) 
dz o 

where k is a mean absorption coefficient and I\r the radiative conductivity. 

For stars of some spectral types there is convective transport in the 

photosphere. Then the local energy-transport equation becomes 

div(Fr{z) + Fc(z)) = 0 , (2-5) 

where Fc is the convective flux. The theory of convection is discussed in 

Chap. 5, together with the conditions for convection to occur. 

In the chromosphere, radiation carries off a non-radiative energy contri¬ 

bution which may be due to wave dissipation (acoustic, hydrodynamic, or 

magnetohydrodynamic). The local energy equation is then 

div F r(z) = Qchrom (-<0 • (^) 

The non-radiative, or mechanical, heating term Qchrom raises the local 

electron temperature above the value it would have had in radiative equi¬ 

librium. At present we have a crude theory of convective transport and a 

very elaborate theory of the radiative flux; but the physics of the heating 

term Qchrom remains poorly known. The typical temperature range in a 

chromosphere is 6000-10 000 K. 

In the transition zone, i.e the region between chromosphere and corona, 

matter is optically thin. The electron temperature varies from 3 x 104 to 

3 x 105 Iv over a few hundred kilometres. The energy equation reduces to 

div(FR(z) + Fcond(z)) = 0 , (2.7) 

1 We shall always use the flux defined in (2.3) in the following. In the literature there 

exists an “astrophysical” flux defined as Fu(z)/tv. 
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assuming no matter motions; it is unclear whether this is justified for the 

Sun. Fcond is the conductive flux, which is significant because the temper¬ 
ature gradient is large: 

-^cond = A dTe /dz . (28) 

A is the thermal conductivity of the matter, with K = 1.1 x 10~6Te5/2 in 

cgs units, for a fully ionized gas. 

In the corona, the temperature reaches 10b to 10' Iv. Matter is optically 

thin. The energy equation contains a wind term, taking account of the 

expansion of the medium at velocity u, and a non-radiative-heating term 

Qcot 1 so that 

div(Fr + Fcond + Fconv) = Qcor > (2.9) 

with 

ACOnv = 4trpvr2 + h - ? 

where the first, term is the kinetic energy flux of the wind, the second its 

thermal flux (h is the specific enthalpy), and the third the gravitational 

energy flux. The term QCOT is still the subject of active research: Joule heat- 

ing, magnetic reconnection, and wave dissipation are some of the phenomena 

invoked to heat the solar corona (see Chap. 4). The plane-parallel approxi¬ 

mation is no longer valid in the corona; r replaces 2 for average models. 

A stellar wind is not always optically thin as in the Sun. In many types 

of star (blue and red giants and supergiants, pre-main-sequence stars, Wolf- 

Rayet stars, etc.) it is dense and optically thick, and its spectroscopic effects 

are seen first in the upper photosphere and chromosphere (Chap. 4). 

In some stars no corona is detected, but only a thick chromosphere. The 

geometrical depth of this layer is about 1A*. All such chromospheres are 

observed to be expanding (red giants and supergiants, pre-main-sequence 

stars). 

Above the corona (or thick chromosphere) there may be an envelope 

involving more than gas: a circumstellar dust envelope. Envelopes of this 

kind surround stars of many spectral types: pre-main-sequence stars, the 

Sun (the F corona), red giants and supergiants, Mira variables, etc. 

2.2.2 Models of the Mean Solar Atmosphere 

Theoretical Photosphere Models. The photosphere is the only region of an 

atmosphere for which one can compiite a theoretical model. In the absence 

of convection, the energy equation div Fr = 0 can be written explicitly in 

the plane-parallel approximation at each depth 2 as 
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(2.10) 

dFr 

dz 
= 0 = Sv) dv 

T ^ ^ huijAjirij 

i,j>i 

(, _ fo°° A»dl/ 

v Sij 

Each of the terms on the right represents a balance of emissions minus 

absorptions of radiation; the first refers to bound—free atomic transitions, 

the second to bound-bound transitions, i.e. lines formed at frequencies vtJ 

between levels i,j. Xij is the continuous absorption coefficient, of dimensions 

[cm-1], 

Xu i — ^i^ui 1/ P ■ 

AtJ is the Einstein spontaneous-emission coefficient, aul the photoionisa¬ 

tion cross-section, and rq and rij are the level populations. ./„ is the mean 

intensity, or zeroth moment of the specific intensity, 

1 r+i 

J„ = - / I„(^)d/i with /i = (n ■ S) = cos 6 . (2.12) 
2 J -1 

S is the unit vector normal to the surface element S that the radiation 

crosses. The physical flux Fu is the first moment multiplied by 47t, i.e. 

F„ = 4it^ J d[i (2.13) 

(see also (2.3)), S„ and St] are the source functions in the continuum and 

the transition ij, and is the absorption profile of the line ij. 

Equation (2.10) immediately shows that at each z we need consider only 

frequencies such that: 

(a) Xui (f°r the continuum) or At]rij (lines) are not very small: if the 

medium is transparent it has no effect on the radiative balance; 

(b) Ju differs from Sv\ equality holds in the quasi-isotropic case referred 

to above, i.e. when the medium is opaque at the frequencies considered. 

To solve (2.10) we need J„, i.e. a solution of the transfer equation at 

frequencies which are neither transparent nor opaque. In plane-parallel ge¬ 

ometry this equation is 

dl„ 
h z) T Si/ . (2.14) 

The source function S„ is in general a function of Te and of the radiation 

fields in the continuum or the lines. 

The other equations required to find Te from (2.10) are (in the static 

case) as follows. 
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Hydrostatic equilibrium: 

dP 

d7 = ~^’ (2.15) 

where g is the gravity and P the total pressure, 

P = Pg + Pr i (2.16) 

where Pg is the gas pressure and PR the radiation pressure, 

„ 47T 
Pr = — / hvdu, 

c Jo 
(2.17) 

where I\v is the second moment of the specific intensity, 

1 f+1 
Kv = 2 1 L(p)p2dp . (2.18) 

The equation of state of a perfect gas: 

Pg = k(NaTa + iVjon Tjon + NeTe) 

= NkTe = (Na + Non + Ne)kTe, 
(2.19) 

assuming equality of the kinetic temperatures of all constituents of the gas 

(justified if collisions are frequent), Na, 7Vjon, Ne being the numb er densities 

of atoms, ions, and electrons respectively; k is Boltzmann’s constant. 

The density p is given by 

, = Jw(l+ 4^+m^i), (2.20) 

where is the proton mass, Nf{ the number density of hydrogen nuclei; m 

is the mean mass of elements heavier than helium, collectively termed “met¬ 

als”, Nmet/NH their abundance relative to hydrogen by number; NHe/NH 

is the abundance by number of helium. 

- The equation of charge conservation (of a plasma) or electrical neu¬ 

trality: 

= E E kN* • (2.21) 
l k 

where Nk denotes the number of ions in state k belonging to the element / of 

the medium; k is the charge of this ion. We thus have to solve an ionisation 

equation to get the various Nk corresponding to the element /, such that 

J2k = N‘- Moreover J2iNi = N>on- 

— Similarly, to find the occupation numbers n,- and nj of the levels of 

a given ion we have in general to solve a set of conservation equations, the 

equations of statistical equilibrium: 
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^ = r,-R,, <2-22> 
at 

where Vi stands for the processes populating level i, and 7for those de¬ 

populating it. The form of the terms Vt, Vt, the radiation souice functions, 

and methods of solving the transfer equation are given by Heyvaerts et al. 

(1992) or by Mihalas (1978). 

To construct a theoretical model of a stellar photosphere we solve (2.10- 

22) simultaneously, with the boundary conditions: 

— no radiation incident from outside the atmosphere; 

W !„(//) =0 for fi < 0 at the surface, 

— radiation becomes quasi-isotropic at all frequencies for r„ 1: in this 

case 

Iu(tvi I1) = Bu(tv) + fj, — and Jv = Su = B u( Te ( t„ )), 
Q.T v 

where B„ is the Planck function; 

— gas pressure tends to zero at the surface. 

The radiation flux integrated over all u must be constant with 2 and 

the value of this constant gives the effective temperature of the model (cf. 

(2.3)): 

/*DO 

Fr(z) = / fT(z)dn = aTe4ff . (2.23) 
Jo 

A theoretical model of the photosphere in radiative equilibrium is then 

characterised: 

— by two parameters: the effective temperature Teff and gravity g, as 

well as the abundance of the elements of the medium (Nhe/Nh, 7Vmet/Ab/), 

— by LTE or not (NLTE): in LTE the ionisation equations and statis¬ 

tical equilibrium equations giving the occupation numbers nt and nj are 

replaced by the Saha and Boltzmann equations respectively. In this case 

the np , Nk depend only on temperature Te for a given density. The LTE 

approximation has to be checked whenever it is used. It holds only if col¬ 

lisions alone determine the atomic-level populations. In the general case 

where the level populations are determined by both collisional and radia¬ 

tive processes, the ionisation and statistical-equilibriurp equations must be 

solved in detail. The n,, nj, AT then depend not only on Te but on the radia¬ 

tion field at the relevant transitions, and there is complete coupling between 

the transfer equation, giving the radiation distribution functions, and the 

statistical balance equations, giving the material distribution functions. 
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If part of the energy is transported by convection at the photosphere we 

must calculate the convective flux at each depth (see Chap. 3), and (2.23) 

is replaced by 

Fr(z) + Fc(z) = aTe4ff . (2.24) 

LTE photosphere models for the Sun are given by Kurucz (1974). For 

other stars similar models are in many cases the only ones available. Thus 

the LTE models of Kurucz (1979) cover the range Teff = 50 000-5500 K. The 

first NLTE models are by Mihalas (1972) (range Teff = 50 000-15 000 K), 

while Borsenberger and Gros (1978) extend the grid of NLTE models to 

10 000 K. 

For atmospheric layers outside the photosphere the formal energy equa¬ 

tions given above (2.6, 7, 9) are not usable, since we do not know the terms 

containing dynamical and magnetic effects well enough. Thus semi-empirical 

models have been developed for these layers of the Sun, to find the distri¬ 

bution of Te with 2. As we shall see, this approach has been applied to the 

photosphere also. 

Semi-empirical Solar Photosphere. (a) Deep photosphere. We take advan¬ 

tage of the fact that an observer sees solar radiation at different emergent 

angles #; (//; = cos#;). The method proceeds by inversion of data from cen¬ 

tre to limb of the disc. Absolute photometric calibration gives the emergent 

intensity 7,(0,//;) in energy units (erg cm-2 s-1 Hz-1 str-1). The formal 

solution of the transfer equation is 

r oo 

4(0,//,) = / SMe-^dG/p,, (2.25) 
Jo 

which in the photosphere we may always write as 

4(0,//); = 5(4 = r*) , (2.26) 

where r* is by definition the “formation depth” of the radiation. 

The Eddington-Barbier approximation assumes that the source function 

varies monotonically with f„, e.g. S — a + btu. Then it is easy to show from 

(2.25) and (2.26) that r* = jjn. 

If we measure a continuum formed in LTE we have 

S{tv) = Bv(Te(tv)). (2.27) 

We can always define a brightness temperature Tf for the observed ra¬ 

diation: 

1,(0 ,//;) = 5„(T6(//l,^) (2.28) 

(as an example, for /i = 1 and A = 1.6 \im, T& = 6800 K). 
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Then from the above 

(2.29) Te(t„ = fii) = Tb(m,v). 

To model the deep solar photosphere we use several frequency ranges 

where, if possible, LTE provides a good approximation for the source func¬ 

tion. In practice the range 1-2.5 pm is convenient for studying the deep 

photosphere. Once the temperature Te(f„) has been found using various 

frequencies u and angles pj, we have to order all the on the same optical- 

depth scale, chosen for convenience at 5000 A, r5oooi using 

d tv = —K„pdz , 

dr5ooo = —k50ooP dz , (2.30) 

and calculate the other quantities (P,Ne,p,...) from (2.15-22). The desig¬ 

nation 75000 for the reference optical depth is standard even though we are 

working in frequency units. 

Figure 2.3a shows a compendium of semi-empirical models of the deep 

solar photosphere, which we may compare with the theoretical model of 

Kurucz (1974). 

(b) Upper photosphere. The same inversion method as above is applicable 

down to the temperature minimum, which is probed in the far IR (100-200 

pm.) or the UV near 1600 A. 

However, we may also find a model of the upper photosphere by a trial- 

and-error method. Instead of getting the electron temperature from T& we 

assume a priori a function Te(z). We retain all the equations describing the 

theoretical photosphere except for the energy equation, which we replace by 

this assumption. This model allows one to compute the emergent intensity 

at all frequencies where the radiation is formed in the layers considered. We 

can compare these intensities with those measured in as large a v domain 

as possible. Then we adjust Te(z) and iterate. Figure 2.3b summarizes the 

state of upper-solar-photosphere models in 1977. Maltby et al. (1986) give 

an improved version. 

We note that the theoretical model of Kurucz has a smaller gradi¬ 

ent dTe/dr5ooo than the semi-empirical models in the deep photosphere 

(Fig. 2.3a). We see also that the temperature in this model continues to 

decrease above the temperature minimum (Fig. 2.3b). The surface cooling 

of this theoretical model comes from the fact that it is a pure photosphere, 

while in the Sun the chromosphere is heated by non-radiative energy dis¬ 

sipation. A theoretical photosphere in radiative equilibrium has a surface 

temperature To, which in the plane-parallel case is reached and remains 

constant once all the constituents of the medium have become transparent. 

From Fig. 2.3b we see that there are still opaque layers in the Kurucz model 

at depths T5000 = 10—5, since the temperature has not stabilised; this re¬ 

sults from the fact that Ivurucz’s calculation contains many lines (almost 
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Fig. 2.3. Models of the solar photosphere, (a) deep photosphere, (b) upper photosphere. 

(After E.H. Avrett in The Solar Output and its Variations, ed. by O.R. White, Colorado 

Associated University Press, 1977) 

106) whose radiation still interacts with the matter at reference depths as 

low as 10~5. 

What is the value of the minimum temperature? If we use continuum 

observations to adjust Tm;n, we do not find the same value as when Tmin is 
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Table 2.3. Determination of the temperature minimum of the homogenous solar 

atmosphere 

Diagnostic 

used 

Source 

function 

Frequency 

redistribution v 
Thin 
(K) 

Authors 

IR continuum 

(100-200 pm) 

UV continuum 

(1400-2000) A 

H and K lines 

of Ca II 

(A 3 933-3 968 A) 

LTE 

LTE 

NLTE 

NLTE 

NLTE 

complete 

partial 

4 200 ± 300 

4 330 ± 70 

4 150 ± 160 

4 250 ± 50 

4 450 ± 130 

Avretl (1977) 

Samain (1980) 

Dumont (1967) 

Ayres and 

Linsky (1976) 

N.B. The problem of redistribution of radiation within spectral lines arises once the 

levels are broadened by radiation and collisions, both elastic and inelastic. The source 

function then contains a variable proportion of coherent and incoherent emission (see 

Omont et al. 1972). 

derived from resonance lines such as the H and I\ lines of Ca II. In reality 

Tm;n depends on line-formation theory in the second case, and calculations 

of the continuum source function in a suitable approximation in the first 

case. Table 2.3 shows the influence of these approximations. 

Is the solar minimum temperature necessarily unique? The above anal¬ 

ysis applies to homogeneous models, and Table 2.3 shows the difficulty of 

identifying a good theory. But the Sun has a surface roughness because of 

the horizontal fine structure, which can lead to different values of Tmin being 

obtained when different frequencies and inclination angles are used. 

Solar Chromosphere. As we shall see in Sect. 2.4, it is only possible to 

approximate the solar chromosphere as spherically symmetric over a thick¬ 

ness of about 2000 km, since structures (spicules) emerging from it reach 

heights of about 10 000 km while retaining a relatively low temperature (104 

K). We provisionally retain the assumption of plane-parallel geometry for 

chromosphere models. 

Semi-empirical chromosphere models are calculated by two methods. 

(a) Trial and error. We proceed as described above for the upper pho¬ 

tosphere. But for the chromosphere we have to give a priori not only Te(z) 

but also the field of unresolved velocities V(z). This function is needed (1) 

to calculate the Doppler width of the lines, which are observed at high ac¬ 

curacy; (2) to calculate the turbulent pressure, which affects the scaleheight 

of the chromosphere, measurable in eclipses (see beloW). These models use 

disc observations of optically thick lines and continua, all formed out of 

LTE: the calculated lines and continua have to agree with observation over 

all available frequencies and positions on the disc. Figure 2.4 shows the 

temperature distribution in such a model, giving the formation depths of 

spectral characteristics formed in the chromosphere. Figure 2.5 gives the 
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Fig. 2.4. Model of the solar chromosphere: temperature distribution, h is the height above 

the point defined by ooo = 1, m is the column density of matter. (After J.E. Vernazza 

et al., Astrophys. J. 45, 635 (1981). Reproduced with the kind permission of The Astro- 

physical Journal published by The University of Chicago Press; © 1981 The American 

Astronomical Society) 

density distribution as a function of height h in the atmosphere for the 

same model. 

We note that the typical electron temperature in the chromosphere is 

about 6000 K, forming a first plateau of around 1000 km near this tempera¬ 

ture. But the core of the Lya line is formed at 2.4 x 104 K, where there is a 

second narrow temperature plateau. The Lyman continuum comes from the 

region above the mean chromosphere, where Te reaches 104 K. The matter 

density p varies as A7//, and decreases outwards by a factor 104 to 105 over 

the chromosphere, but Ne is remarkably constant over a region coincident 

with the first temperature plateau because of the increase in the number of 

electrons through the ionisation of hydrogen as the density drops. 

(b) Eclipse-observation method. This gave the first solar-chromosphere 

models in the 1950s. 
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Fig. 2.5. Solar-chromosphere model: hydrogen and electron number densities NH,Ne 

(cm-3) as functions of height h. (After Vernazza et al. 1981) 

Fig. 2.6. Eclipse observations. The Moon's limb (dashed) moves across the Sun and blocks 

out its bright disc. The chromosphere is then directly observable at field points P(x, y) 

The method is almost entirely empirical and specific to the chromo¬ 

spheric layers. We observe the light emitted by that volume of the chromo¬ 

sphere at a height larger than h at the limb, defined by t;(A = 5000 A) = 1. 
The corresponding energy integrated over all wavelengths is (see Fig. 2.6) 

E(h) = f 
Jh 

I(x)dx erg s 1 str 1 cm 1 

with 

I(x) 

r + oo roo 

/ / y)e~T,'xdy dA , 
Jo Jo 

(2.31) 

(2.32) 

where £\(x, y) is the monochromatic emissivity per unit volume at the point 

P, and Tit\ is the tangential optical depth defined by 

P, A = (2.33) 

where n, and a\ have the same meanings as in (2.11). 

In spherical symmetry we have £\(x,y) = £\(h). In the following we shall 

use A rather than u. 

The method has the following advantages: we observe at different A (say 

p wavelengths) and at different values of h. We write analytic expressions 
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for tA as a function of the unknowns (Te, densities, say k unknowns). In 

the continuum, the emissivity per wavelength interval is the sum of all the 

radiative recombination emissivities 

£a = 47t Bx(Te)^2 n* - exp (~hu/kTe\, (2.34) 

where the symbol * denotes an LTE quantity. A similar expression gives the 
net line emissivity. 

At each height h we thus have p equations between k unknowns. By 

judicious choice of wavelengths we can obtain all the unknowns. 

The difficulties with this method arise in extracting £\{h) from E(h). 

This requires (1) a profile of the solar limb, to fix h; (2) good observational 

resolution in altitude; (3) absolute photometric calibration of E] (4) an 

accurate numerical method for extracting the second derivative of the data 

E( A). 

The method was applied to observations of the eclipse of 1952 at two 

wavelengths in the visible continuum (A = 3646,4700 A) from 500 to 2400 

km above the limb. This gave the first realistic model of the solar chro¬ 

mosphere, supplying the electron density and temperature as well as the 

ionisation degree of hydrogen as a function of h. We refer to Thomas and 

Athay (1961) for details. 

Transition Zone. Semi-empirical models of the transition zone use diag¬ 

nostic methods valid when the lines are effectively but not optically thin. A 

line is optically thin at frequency u if ru = — JQ K^pdz is less than 1, The 

line is effectively thin if at frequency v the mean free path, rrifp = 1/kap, is 

shorter than the thermalisation length of the photons, defined as the depth 

beyond which the source function equals Bu{Te). Pottasch (1964) gave the 

first analysis of the transition region and lower coronal emission lines. 

(a) Emission measure as a function ofTe. For an optically thin line the 

emergent intensity on a line of sight defined by p = cos# is 

roo i*oo 

L(r = 0,p)= / Sl/e~t‘' dt„ = / Svdt„, (2.35) 
Jo Jo 

where tu is the optical depth along the line of sight (= r„/p). 

We consider an atom with just two levels i,j, with i the lower. Then 

adopting the hypothesis of complete redistribution of radiation (not dis¬ 

cussed here: see Omont et al. 1972), S„ is 

5,= rijAji 

riiBij — rijBji 

where Aij, Btj, Bji are the Einstein coefficients. Further, 

(2.36) 
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(2.37) d tu — — —{nlBlJ njBj-i)<f>l/<is, 
47T 

where (p„ is the absorption-line profile (with f0 y?„dz/ = 1) and ds is the 

path element along the line of sight. Hence the emergent line intensity in¬ 

tegrated over v is 

m 
hv 

47T 
rijAjids. (2.38) 

In the transition zone the excitation of the upper level j is mainly collisional. 

For a two-level atom we thus have njA]l = ntCij, Cij being the collisional- 

excitation-rate coefficent for level j from level i. 

It is convenient to write rq in the form 

_ Nk_ Na_ Nh_ jy 

Ui ~ Nk Na Nh Ne ' 
(2.39) 

where Nk is the number density of line-producing ions, NA the number 

density of nuclei of the element: 

NA = J2Nk' (2'40) 
k 

and Nh the hydrogen number density. 

The rate Cij (cm-3 s-1) is a function of excitation energy EXJ and Te 

Cij = 8.63 x io~6 ^ALt^1/2Ne exp(—Eij/kT); (2.41) 

Qtj is an atomic quantity called the collision strength, and gi is the statistical 

weight of level i. 

A completely ionised plasma with Nne/^H =0.10 has Nh/Ne ~ 0.8. 

Transition-region lines are often resonance lines, i = 1 and n,i/Nk ~ 1. 

Na/Nh is the abundance A by number of the element forming the line. 

The integrated line-of-sight intensity (erg cm-2 s-1 str-1) of an emission 

line is 

J(0) = hun^-A [ N2eG(Te)ds , (2.42) 
9i J As 

where 

G(Te) = T~1/2Nk/NA exp(—E12/kTe) ' (2.43) 

depends only on Te and is calculated from the ionisation equations. This 

function is strongly peaked at a particular value Tm of Te; if (G(Te)) is an 

average of G(Te) we have 
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JV(Si) 
yv(H) 

N2dh 

Fig.2.7. Emission measure for the quiet Sun. The ordinate is the emission measure multi¬ 

plied by the abundance of silicon, and the abscissa the maximum temperature at which 

the ions are formed. (From S.R. Pottasch, Space Science Reviews 3, 816 (1964). Repro¬ 

duced with the kind permission of Kluwer Academic Publishers) 

1(0) = hutJ^A(G(Te)) f N2eds. (2.44) 
9i J As 

1(0) is measured, and the other quantities (v1j, Qij,gi,A) are known; we 

thus get the emission measure, often denoted EM: 

EM = [ N2ds . 
J As 

(2.45) 

If we choose (G(Te)) — G(Tm ± 0.15 dex), which is a very good approxima¬ 

tion, we get EM = ip(Tm). (dex = “exponent of 10”). 

Studying lines formed at different temperatures gives the emission mea¬ 

sure as a function of Tm. Figure 2.7 gives the curve EM(Tm) found by 

Pottasch for the quiet Sun. 

The emission measure is an integrated quantity for which we do not re¬ 

quire an a priori assumption about the geometry of the medium. In general 

As is chosen as the geometrical thickness over which AlogTe = 0.30, in 

agreement with the choice of (G{Te)) made above. In the solar case, As is 

small (about 100 km) so the plane-parallel assumption allows one to con¬ 

struct semi-empirical models of the transition region. In reality the integral 
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(2.42) should be over a volume rather than a length since the observations 

have limited spatial resolution. In practice all models assume infinite reso¬ 

lution. 
(b) Transition-region models. The full thickness of this region is less than 

the pressure scaleheight Hp = kTejfig, where [i is the mean molecular mass, 

the gas pressure thus varies little here. If we assume no motion, the equa¬ 

tion of hydrostatic equilibrium applies. Actually short-lived jets of matter 

with velocities up to 200 to 400 km s_1 have been seen in the CIV lines 

(Brueckner 1981). Their Doppler shifts are generally to shorter wavelengths, 

so this is matter moving away from the Sun. Flows directed towards the so¬ 

lar surface (downflows) are common elsewhere in the lower transition zone 

and chromosphere. 

In the following we consider observations made at the centre of the 

disc: we thus replace s by 2. We also neglect matter motions to a first 

approximation. 

If we assume that the temperature gradient dTe/dz is meaningful and 

constant over the emission region Az, we can write 

EM = [ N2edz = [ 
J Az J 2 

Nl 

dE 
dz 

-i 

2AT € dTe/dz 

(TeN2) d In Tt 

dTe 

'2 AT 

(2.46) 

with AT = 0.15 dex. We assume also, as justified above, that over the width 

Az of the emission region of each line we have Pe = NekTe = Pe — const. 

Then 

EM = 0.3 
dTe 

d^ 

P2 
2.3 e 

k2Te ’ 
(2.47) 

giving 

dT„ 
3.6 x 1031P;/(Te x EM). 

dz 
>.48) 

The hydrostatic-equilibrium equation then gives the dependence of Pe 

on z over the transition zone. With 

Pg = NkTe = (Nh + NHe + Ne)kTe = (1.1Nh + Ne)kTe 

and Ntf/Ne = 0.8 we get 

dP _ 
—- = -7.1 x lQ~9Peg/T. (2.49) 
dz 

We therefore have two equations, (2.48) and (2.49), which we can inte¬ 

grate, given the function EM(Tm), which is a single-valued function of Te. 

To find a solution we need the density or pressure at a reference height zq. 
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We can choose Pe(zo) at the top of the chromosphere, or take the value 

given by various diagnostics: there are pairs of lines whose ratio is sensitive 

to Ne, e.g. the 11/6 and 9 / / A lines of C III. These two lines respectively 

involve a metastable level2 (2p2 3P) and the ground level (2s2 'So) of C 

III. The intensity ratio of the triplet and resonance transitions depends on 

collisional and radiative rates between levels. Radiative excitations, ionisa¬ 

tions, and recombinations are negligible in the transition zone. For a given 

Te the intensity ratio is sensitive to Ne when the collisional and spontaneous 

deexcitation rates are of the same order. 

Values dTe/d2 = 1000 Iv km-1, Pg = 0.1 dyne cm-2 are typical of the 

transition region of the quiet Sun. 

Transition-region emission-line analysis can be applied to other stars. We 

have to replace the emergent intensity 1(0) by F(0), the integrated emergent 

flux over the line (F(0) = 2ttI(0)). Averaging gives a stronger smoothing of 

the inhomogeneities in the lateral structure than for the Sun. 

The Corona. The idea of a mean corona is even less meaningful than that 

of a mean chromosphere or transition region, since observations from the 

space platform Skylab (1973) showed pronounced structure of the corona 

to be a general phenomenon. There are also marked daily and solar-cycle 

variations (see Chap. 7). 

To fix orders of magnitude Fig. 2.8 gives Te and Ne and the wind velocity 

as functions of distance from the photosphere for the quiet corona, in a polar 

and an equatorial coronal hole. Coronal holes are described in Sect. 2.5.3. 

The main diagnostics for the corona are (1) for the lower corona (r < 

0.5i?© above the visible limb) the same as those used in the transition region; 

(2) for the outer corona, the emission-line profiles (Te diagnostic) and the 

Thomson-scattered photospheric continuum (Ne diagnostic). 

In the outer corona we distinguish from the point of view of radiation the 

K corona (continuum radiation produced by electron scattering) and the F 

corona (continuum radiation from scattering by interplanetary grains). The 

F corona becomes brighter than the K corona, which nevertheless exists, 

above r = 1.2Rq from the limb. 

(a) Electron-temperature diagnostics. The observed emission lines in the 

corona result either from collisional excitation, as in the transition zone, 

or from radiative excitation involving resonant scattering. We observe on 

the one hand lines from highly ionised species such as Mg X, Ne VII, Ne 

VIII, and on the other hand the Ly a lines of H I and He II, and the 

resonance lines of N V, 0 VI, etc. The former are excited by electrons 

from the lower corona, the latter by photons from the chromosphere or the 

transition zone. In the latter case the intensity of the scattered radiation 

depends on the temperature of the scattering ions or atoms through their 

velocity distribution function. 

2 A metastable atomic level is one not linked to the ground level by a permitted transition. 
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Fig. 2.8. Distribution of electron density and temperature and wind velocity as functions 

of distance from the coronal base defined as r — Rs. Full curves refer to a quiet region, 

long dashes to a polar coronal hole at solar maximum, and short dashes to an equatorial 

hole; long-short dashes show a polar hole at solar minimum. (From G.L. Withbroe, 

Astrophys. J. 325, 442 (1988), Fig. 13, p.457. Reproduced with the kind permission of 

the Astrophysical Journal, published by The University of Chicago Press; © 1988 The 

American Astronomical Society) 

Consider a coronal line (i — j), of rest frequency u0. Level j is excited 

by a beam of radiation of frequency u\ v' + dv', direction n', in solid angle 

du;. The number k of atoms or ions excited in the velocity interval v,v + dv 

is then 

drij(v) = n.i(v) I(v',u>)8 (v' — u0--v ■ n'^j dw du' dn , (2.50) 

where Brj is the Einstein coefficient for radiative excitation, and h Planck’s 

constant. The Dirac 8 function appears as a factor, since an atom of velocity 

v can only scatter frequencies u1 = u0 + (uq/c)v ■ n'. The natural width of 

the line is ignored in (2.50). The number of photons scattered into the 

observer’s direction n is then 

dn (^u = vq H—• nj = drij(v)(a + b(n ■ n')2), (2.51) 

where a + b(n ■ n' )2 is the angular dependence of the scattering process. For 

Lya scattering, a = 11/12, b = 3/12. 
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From (2.39) we can write the fraction of atoms in level i and the velocity 
interval v, v + dn as 

ni(v)dv ~ 0.8ANe(Nk/NA)f(v)dv , (2.52) 

where .4 is the elemental abundance by number (A = 1 for hydrogen), 

Nk/Na = F(Ti) is the degree of ionisation of the ion k, and Tt is the 

ionisation temperature, assumed equal to Te, and we recall that NH/Ne = 

0.8 in the corona if Ntfe/NH = 0.1. We have assumed that i is the ground 

level and nt/Nk ~ 1. The intensity scattered into the line of sight, taken as 
the x-axis is 

n?) 
0.8 hB c + oo 

U 

17T 
NeF(Te)f(v dx 

X / (a + b(n ■ n')2) dcu 
* + oo 

I(v' ,u>) du' 

^ + oo z' + oo 

-oo J — oo 
f{vy,vz) 8 (u' - u0 - V-~v ■ n') duy dvz . (2.53) 

If f(v) Is assumed Maxwellian (at temperature T), part of expression (2.53) 

may be integrated analytically. Analysis of the Lyn line gives T as the tem¬ 

perature characterising the thermal motions of neutral hydrogen, which at 

125 km s 1 exceed the non-thermal motions (wind < 20 km s-1, turbulence 

< 30 km s-1) in the corona. The temperature T is quite close to the proton 

temperature Tp; Tp is equal to Te until about 2Rq. Above this height Te 

and Tp differ, and the corona must be treated as two fluids, electrons and 

protons. 

(b) Electron-density diagnostics. The white light of the corona (K 

corona) is caused by coronal electron scattering of the photospheric con¬ 

tinuum into the line of sight. The number of incident photons scattered by 

coronal electrons with velocities in ue, ve + dve and number Ne(ve)dve is 

dn = Ne(ve)al(v',to) du' dcj dve , (2.54) 

where I(v\u) is the intensity of the incident beam of direction n' in solid 

angle co. Of these incident photons, dn{u) are scattered towards the observer 

(direction n), 

d n(u) dn(l + (n-n')2) 
lo7r 

6 ,(2.55) 

where a is the Thomson scattering cross-section and ^(1 + (n • n')2) its 

angular dependence. The observed intensity is 
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je(„)=ifl / jVed:r / du(l + (n • n')2) / J(i/,w)di/ 
167T 

X f f(ve)6 '-• ri ) - (n-ve • n due. (2.56) 

If we again assume that f{ve) is Maxwellian, the ve integral can be calcu¬ 

lated analytically. The observed intensity then gives JQ Nedx. 

(c) Limits of the diagnostics. Coronal densities are low (Fig. 2.8). This 

means that the velocity distributions will deviate from Maxwellian. Also 

there are mass motions in the corona (solar wind and turbulence associated 

with waves); these too modify the distribution functions. Finally estimates 

of = P9/Pmag, where Pg is the gas pressure and Pmag the magnetic pres¬ 

sure, show that (3 is much smaller than 1 in the corona, i.e. the magnetic 

field structures the corona. At best we can apply the above diagnostics to 

individual structures, showing the importance of high spatial resolution m 

coronal lines and continuum so that we can take account of the size and 

geometry in each case. 
Analysis of radio emission also gives a diagnostic of the mean corona. 

We refer for example to McLean and Labrum (1985) for this. 

2.2.3 Radiative Losses 

One of the aims of semi-empirical modelling of the outer layers of the Sun 

and stars is the estimate of radiative losses. This is the term in the energ\ 

equation equal to the divergence of the radiative flux. Its local^expression 

is given by (2.10). We often describe the integrated quantity f -jf-dz, (in¬ 

correctly) as the radiative losses, whereas it has the dimensions of a flux. 

Clearly we need the local expression, i.e. the net radiative cooling rate, to 

characterise the various terms in the energy equation. 

In (2.10), dFR/dz is expressed as a balance between emissions and ab¬ 

sorptions. It is positive for net radiative cooling. A continuum tends to cool 

the medium if ./„ < Bu. 
The line contribution to dFR/dz introduces the factor, often called NRB 

(net radiative bracket), 

(NRB) = 1 - (2.57) 

This term contains the effects of radiative transfer in the lines. In the case 

of strict LTE, Jv = Su = Bv and NRB = 0. In the case of restricted LTE, 

where the source function Sv is not equal to the mean radiation intensity 

J„, but S„ = Bu, a line generally cools the medium if < Bu at a given 

depth. Out of LTE, for a two-level atom, with complete redistribution of 

radiation, 
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(2.58) 

Jo Jytpi/dv + tBv{T') 

T^his expressi°n comes from (2.36) when we use the equation of statistical 

equilibrium. Here £ is the collisional-deexcitation probability per scattering: 

£ = ('Cji/Aji) [1 - exp(-huij/kTe)\ . (2.59) 

In this case the NRB term reduces to 

(NRB) = s(B„(Te)/S,j — 1), (2.60) 

which shows that, all things being equal, a line cools more for larger e. 

Athay (19(6) shows that in the optically thick case, radiative losses in the 

lines measure the number of photons created by collisional excitation in one 

thermalisation length. In the optically thin case the line term in dFR/dz 
reduces to 

hujjAjjnj . (2.61) 

hj>i 

In the solar chromosphere the lines are optically thick and we thus have 

to solve the transfer equation for the NRB terms to calculate the radiative 

losses. In contrast in the transition region and corona the lines are optically 

thin, considerably simplifying matters. 

Table 2.4. Integrated radiative losses (erg cm'2 s ') 

1. Radiative losses 

- Photosphere 6.4 x 10'° 
- Chromosphere 2-6 X 106 

Balmer series 5 X 105 
H 4 X 105 
Ly a 3 X 105 
metal lines (Mg II, Ca II) 34 x 105 

- Transition region 4-6 x 105 
- Corona: quiet Sun ~6x 105 
- Corona: coronal hole ~ 104 

2. For comparison 

- Conductive flux: 

Quiet Sun ~2x 105 
Coronal hole 6 X 104 

- Solar wind: 

Quiet Sun 0? 
Coronal hole ~6 x 105 
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is -Prad. defined by dFrad/dz — 

Table 2.4 gives the integrated radiative losses in the various outer layers 

of the Sun. It shows the contributions of individual atoms or ions to the 

radiative energy losses. 
When the plasma is optically thin, we have seen that it is not useful to 

calculate terms of the NRB type to find the radiative losses. In fact a good 

approximation for dFR/dz is a single-valued function of temperature, i.e. 

dFR/dz = N2A(T). Figure 2.9 shows A(T), valid for the solar corona at 

heights above that of the formation of Ly a. 

2.3 The Chemical Composition 

of the Solar Atmosphere 

The Chemical Composition of the Solar Atmosphere The first paper giving 

the chemical composition of the solar atmosphere was by H.N. Russell in 

1929. The predominance of hydrogen in the solar gas was a major result. 

Abundances of other elements were naturally given with respect to hydro¬ 

gen. These abundances were not very different from what is found today, 

using the photospheric (Fraunhofer) spectrum. This “Russell mixture is 

still used to specify the chemical composition of solar and stellar interiors. 

The study of the Sun’s chemical composition is an archetype for stellar- 

abundance determinations in general, but also for other objects in the Uni¬ 

verse. The solar gas is a sample of cosmic material, and, more accurately, 

its composition should be that of the interstellar medium 4.6 xlO9 y ago. 

Moreover it was formed from the same protosolar nebula as the contents of 

the Solar System, and a comparison of abundances in the Sun and objects 

such as meteorites or minor bodies is rich in information about the history 

of each of these objects. 
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More generally, finding abundances is of major importance in astro¬ 

physics, for models of the solar and stellar atmospheres and interiors, for 

checking the chemical homogeneity or inhomogeneity of the stars, for Solar 

System evolution, for testing theories of nucleosynthesis, and for the chem¬ 

ical evolution of galaxies and the abundance gradients found between their 
different regions. 

2.3.1 Methods of Finding Abundances 

There are two main methods of determining the abundance of an element 

from a photospheric spectrum composed of absorption lines. 

The Curve of Growth Method. The curve of growth compares the line 

equivalent width If to the number of atoms or ions producing the lines. We 
have 

w = d(AA) = 

r-f*oo 

rAd( AA), (2.62) 

where I\ is the emergent intensity in the line at the point A of the profile 

a distance A A from line centre, and Ic the continuum intensity; rA is the 

depression of the profile. If we consider a star whose disc is unresolved, the 

specific intensity I is replaced by the mean intensity over the disc, which is 

numerically equal to the emergent flux. 

In the following it is more convenient to use the variable A rather than 

v since UV and visible spectrographs provide I\. 
We can measure W for each line from the observed spectrum. Formal 

solution of the transfer equation for the emergent intensities Ic and I\ in a 

plane-parallel atmosphere gives an analytic expression for W. We have 

r oo /*oo 

Ic-I\= / Sc(r)e-T^dT/fi- 5/(r)e-(r+r^/'id(r + TA)/^,(2.63) 
J 0 Jo 

where r, rA are the optical depths, and 5C, Si the source functions, in the 

continuum and line respectively. Ic and I\ correspond to an angle 6 with 

respect to the normal to the layers (/i = cos#). 

In practice one calculates the curve of growth only for lines formed in 

•pure absorption, or LTE (i.e. when the source function is Bx(Te)). This 

is the only case where the source function is the same for all the lines. 

Generally, the source function 5/ has a part due to incoherent scattering 

(see the expression for the source function of a two-level atom (2.58)); each 

line is then characterised by its coefficient e, and it makes sense to speak of 

the curve of growth only for lines with the same e (Athay and Skumanich 

1968). 

In the following we assume Sc(t) = Si(t) = Z?A(Te(r)), i.e. that LTE 

holds. Then Ic — I\ is easily transformed using the relation drA = X\/x&T 

and integrating by parts; for each angle p 
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Ic-h = 
^ B\(r)eT^dr//j, - Bxe r/^j e Tx/tldtx/^ (2-64) 

and 

L-h 
= rx = 9(r,(i)er'/'‘drA , (2.65) 

where g(r,/i) is the weight function, which depends only on the model: 

1 ;;°£A(r>^dr7p-l?Ae-r> 
(2.66) 

g f0°° i?A(r)e-r/^dr//i 

The term erA/M (2.65) depends only on the line. The equivalent width 

W becomes 

,-rA/„XAd(AA)) dr. 
W g(r,v) x 

(2.67) 

We have seen from (1.32) that the linear absorption coefficient in the line, 

yA, can at each depth r be written 

Xa = Xo<Pa, (2.68) 

where <pA is the broadening profile of the line. We assume that the profile is 

given by the Voigt function 77(a, v), in which a is the damping constant a = 

j/4:irAvD-, v is the general point of the profile, expressed asr = Au/Aud = 

AA/AAo] 7 is the full width at half-maximum of the line profile; AXp and 

Avd denote the Doppler width in wavelength and frequency; AA = A — A0, 

where A0 is the central wavelength of the line. We set 

x = — 
Xo 

h Jo X 
dr , 

so that 

r-boo 

~r a Xa 

X 

c-f-oo 

d(AA) = —H(a, u)d(AA) 
J — oo X 

Xo d(AA) /+“ 

X do 

Pecker defines a saturation function 

H{a, v)e~xH{a’v)dv. (2.69) 

<t>(a,x) - — 
7T 1/2 

He-xHdv, 

where H stands for H(a,v). We get 

/» OD 
, Xo 

W g(r, //) — sfn A\D<f>(a,x)dT . 
X 

(2.70) 
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(2.71) 

The absorption 

_ yrTe2 Ap 

X° me A A 

coefficient at line centre is 

-ni(T)f, 
D 

where r?,j is the population of the lower level of the line ij, and / its oscillator 

strength. Let A be the abundance of the element forming the line, so that 

A = N^/Ntf. Then we have finally 

w = —XlfA 
me ^T’ ^^(T)NA(T)NH(T^a' a’^r 

(2.72) 

The quantities characterising the line are Ao, /, nl/NA and a; the abundance 

A by number depends on the element, and the other terms in (2.72) are 

functions of the model only. 

— For a weak line, xo/x < 1, a is small, so 

9 f°° 

x) ~ —— / e~y2dv = 1. 

V-X Jo 

In LTE 

rii 

N~k 

9i 

U(T) 
exp (-huij/kTe) 

from the Boltzmann law. U{T) is the partition function and Nk the popu¬ 

lation of the ion producing the line; then if F(r) stands for the ionisation 

degree, F(r) = Nk(r)/Na(t), and 

W2 = JTk§2= g,exp(-h^/kT,)F(T)/U(T). (2.73) 

The equivalent width of a weak line ij is thus 

7re2 f00 
Wij = -AIfgiA / g(T,fj,)exp(-huij/kTe)F(T)NH(T)dr . 

me j0 

In this case W/\q is a linear function of AXofgi, and the integral can be 

calculated using a model atmosphere. 

— For a strong line, 

H(a,v) = ~Tn~2 and /XY/2 ■ 
7T1z Vz 2 

From (2.71) and the definition of x, x varies as AXofgi, so that W/Xq oc 

(AXogifa)x/2 for a strong line. 

The theoretical curve of growth gives log IF/A as a function of 

log(AA0<?i'/) + -T, where F depends only on the model for lines of the same 

multiplet. It has a linear part of slope 1 for “weak lines”, independent of the 

damping constant a, while the “strong line” part has slope 1/2 depending 
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on the damping constant as a1/2. Between these parts there is a plateau 

describing the abundance interval over which the line begins to saturate, 

i.e. have profile wings ip\ = H{a,v). The position of this plateau depends 

on a. The damping constant a is not constant with depth r as both the 

width 7 and the Doppler width Avp depend on r. We note further that 

Au£> describes the Doppler broadening by all micromotions (thermal and 

turbulent). Thus in practice we can use the position of the plateau in the 

curve of growth to find the rms microturbulent velocity in the atmosphere, 

£t. Through the weight function gr(r,/r), the position of the plateau also 

depends on the gradient of the source function with depth (we can show 

this for a dependence D — Bq(1 + fir)). All things being equal the plateau 

position also depends on e, for non-LTE lines. 

To use a curve of growth we plot the empirical curve log(W/A0) as a 

function of log(A0 <?,•/) using the measured equivalent widths and the known 

quantities A0,gt,f for each line. We superimpose the theoretical curve cal¬ 

culated from a model atmosphere containing a microturbulence parameter 

which accounts for the observed line widths without being theoretically 

justified. Comparing empirical and theoretical curves of growth, a horizon¬ 

tal translation gives A and a vertical one a and hence £* if we know the 

width 7. Figure 2.10 shows an empirical solar curve of growth for Fe II. 

log W/a 

Fig. 2.10. Solar curve of growth for photospheric lines of Fe II measured at the centre 

of the disc. The abscissa is log(T<//A) + const. The full curve is the theoretical curve of 

growth calculated from the model of Holweger and Muller (1974); the microturbulence 

parameter is = 0.5 km s-1. The iron abundance is 7.5 on the scale of Table 2.5. (M. 

Spite, private communication) 
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A few remarks are in order. (1) LTE curves of growth give LTE abun- 

c ances, and tins assumption must always be justified; (2) it is not legitimate 

o plot a curve of growth using lines from too large a spectral interval, since 

the above procedure uses one theoretical curve to adjust one empirical curve- 

e former is calculated for one wavelength, the continuous opacity varying 

wi h A; (3) it is not legitimate to plot a single curve of growth for lines 

elongmg to different ions; (4) in practice we no longer calculate a satu¬ 

ration or a weight function, since computers give IE as an integral over A 

rafher than over r using the emergent intensities (cf. (2.63)); (5) the main 

difference between the solar or stellar case and a similar analysis for the 

interstellar medium is obviously the existence of intrinsic emission in the 
solar or stellar absorption lines. 

The^ curve of growth has the advantage of giving a value for A consistent 

with all the lines used. If very good spectra are available we can confine 

ourselves to using the ‘‘weak lines” part of the curve to get A. Nowadays it 

is possible to measure equivalent widths less than 1 mA quite accurately. 

Direct Use of Line Profiles. Since high-resolution spectra of good signal- 

to-noise (5/A > 100) are now available and atmosphere and line-formation 

models are now physically refined enough, it is more satisfactory to provide 

abundance estimates by adjustment of calculated and observed line pro- 

es'_ Use of this method and of NLTE calculations of the source functions 

requires all the atomic data influencing line formation, not simply the os¬ 

cillator strength and natural width 7. The problem of velocity broadening 

ecomes more severe: in particular the deduced abundance depends not only 

on 6 but also the assumed projected rotation velocity of the star. It also 

depends on assumptions about the redistribution of the radiation, i.e. the 

frequency dependence of the line source function over the profile. This effect 

is ignored m LTE and m NLTE calculations using complete redistribution. 

An advantage of using line profiles directly is that abundance information 

can be extracted even from line blends. 

2.3.2 Results for the Solar Photosphere 

Derived solar abundances generally use the curve-of-growth method if the 

element spectrum has enough lines. If not, individual lines are calculated. 

There have been efforts to get NLTE abundances for some elements (e.g. 

01). Forbidden lines require NLTE analysis. 

Table 2.5 gives the photospheric abundances. For comparison we give 

also abundances obtained from analysis of meteorites. 

2.3.3 Further Remarks 

Abundances obviously depend on the quality of the atmospheric models 

used. They further depend on basic atomic data (/ and 7), and opacities, 
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Table 2.5. Abundance of elements in the solar photosphere and meteorites (from 

N. Grevesse, Physica Scripta 8, 49, 1984) 

z Element Solar 

abundance3 

Meteoritic 

abundance15 

1 n 12.00 12.00 

2 He (11.00) — 

3 Li 1.00 3.33 ± 0.01 

4 Be 1.15 1.45 ± 0.03 

5 B (2.6) 2.93 ±0.11 

6 C 8.69 — 

7 N 7.99 — 

8 O 8.91 ± 0.02 — 

9 F (4.56) 4.48 ± 0.06 

10 Ne (8.0) — 

1 1 Na 6.33 ± 0.03 6.31 ± 0.03 

12 Mg 7.58 ± 0.05 7.59 ± 0.02 

13 A1 6.47 6.48 ±0.02 

14 Si 7.55 ± 0.05 7.55 ±0.02 

15 P 5.45 5.57 ±0.04 

16 S 7.21 ± 0.06 7.27 ± 0.05 

17 Cl (5.5) 5.27 ± 0.06 

18 Ar (6.58) — 

19 K 5.12 ± 0.13 5.13 ± 0.03 

20 Ca 6.36 ± 0.02 6.34 ± 0.03 

21 Sc 3.1 3.08 ± 0.04 

22 Ti 5.02 4.93 ± 0.02 

23 V 4.0 4.02 ± 0.02 

24 Cl- 5.67 ± 0.03 5.68 ± 0.03 

25 Mn 5.45 5.53 ± 0.04 

26 Fe 7.67 ± 0.03 7.51 ± 0.01 

27 Co 4.92 ± 0.04 4.91 ± 0.03 

28 Ni 6.25 ± 0.04 6.25 ± 0.02 

29 Cu 4.21 ± 0.04 4.26 ± 0.05 

30 Zn 4.60 ± 0.08 4.65 ±0.02 

31 Ga 2.88 3.13 ± 0.03 

32 Ge (3.63) 3.63 ± 0.04 

33 As 2.39 ± 0.04 

34 Se — 3.35 ± 0.03 

35 Br — 2.63 ± 0.07 

36 Kr 3.21 ±0.05 

37 Rb 2.60 2.40 ± 0.03 

38 Sr 2.9 2.93 ± 0.03 

39 Y 2.24 ± 0.03 2.22 ± 0.03 

40 Zr 2.56 ± 0.05 2.58 ± 0.05 

41 Nb (2.10 ± 0.10) 1.41 ± 0.06 

42 Mo 1.92 ± 0.05 1.96 ± 0.02 

44 Ru 1.84 ± 0.07 1.82 + 0.02 

45 Rh 1.12 ±0.12 1.09 ± 0.03 
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Table 2.5 (continued) 

Z 

46 

47 

48 

49 
50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

62 

63 

64 

65 
66 

67 

68 

69 

70 

71 
72 

73 
74 

75 

76 

77 

78 

79 

80 

8) 

82 

83 

90 

92 

Element 

Pd 

Ag 
Cd 

In 
Sn 

Sb 

Tc 

I 

Xc 

Cs 

13a 

La 

Co 

Pr 

Nd 

Sm 

Eu 

Gd 

Tb 
Dy 

Ho 

Er 

Tin 

Yb 

Lu 

nr 

Ta 

W 

Re 

Os 

Ir 

Pt 

Au 

Hg 
T1 

Pb 

131 

Th 

U 

Solar 

abundance3 
Mctcoritic 

abundance6 

1.69 ± 0.04 1.70 ± 0.03 
(0.94) 1.28 ± 0.03 
1.86 1.76 ± 0.03 
1.66 0.82 ± 0.03 
2.0 2.14 ±0.04 
1.0 1.10 ± 0.07 
— 2.25 ± 0.05 
— 1.51 ± 0.05 
— (2.19) ±0.05 
— 1.12 ± 0.03 

2.13 ± 0.05 2.19 ± 0.02 
1.22 ± 0.09 1.21 ±0.02 

1.55 1.62 ± 0.02 
0.71 ± 0.08 0.79 ± 0.03 
1.34 ± 0.1 1 1.48 ± 0.03 
0.80 ±0.11 0.97 ± 0.03 
0.51 ± 0.08 0.54 ± 0.03 

1.12 1.07 ± 0.02 
0.2 0.32 ± 0.05 
1.1 1.15 ± 0.02 

(0.26) 0.50 ± 0.02 
0.93 0.96 ± 0.02 

0.00 ±0.15 0.14 ± 0.03 
1.08 0.94 ± 0.02 

(0.76) 0.12 ± 0.03 
0.88 ± 0.08 0.80 ± 0.03 

— - 0.09 ± 0.04 
1.11 ± 0.15 0.69 ± 0.03 

— 0.26 ± 0.05 
1.45 ±0.10 1.41 ± 0.04 

1.35 1.37 ± 0.03 
1.8 ±0.03 1.69 ± 0.04 

(M3) 0.82 ± 0.06 
— (1.27) ±0.18 

(0.9) 0.82 ± 0.04 
1.90 2.05 ± 0.03 
— 0.71 ±0.03 
0.02 0.08 ± 0.02 

(« - 0.47) - 0.49 ± 0.03 

a Abundances arc given as log{NCJN„)+ 12.00. Values in italics correspond to 

accurate atomic data and use the solar model of Holweger and Muller (1974). Values 

in brackets correspond to elements not observable in the solar photosphere (He, Nc, 
etc) or elements where the oscillator strengths arc not accurately known. 

b Mctcoritic abundances correspond to the analysis of Cl chondrites. 



particularly for UV lines. NLTE calculations require. collisions! excitation 

rates and ionisation cross-sections as well as photoionisation cross-sections. 

Some elements (e.g. He, Ne) are not observable m the solar photosphere 

because they have no line located in the photospheric spectrum (visible 

near IR) or because their visible lines such as He I 5876 A require too muc 

excitation energy to be photospheric in origin. They are observable only m 

the chromosphere or corona. The helium abundance is calculated from the 

analysis of prominences, the solar wind or solar cosmic rays. 

Abundance studies carried out for many stars, cosmic rays, and the in¬ 

terstellar medium show that the Sun’s composition is close to what is called 

cosmic, which is that of fairly young objects (t < 5 x 10 y) m the Universe. 

Such objects have formed from an interstellar medium which has already 

been enriched in heavy elements by several generations of supernovae. Devi¬ 

ations from this composition once claimed in hot main-sequence stars have 

been invalidated by NLTE analysis of the lines. In contrast, very old stars 

(galactic halo, globular clusters, population II in general) or those m ad¬ 

vanced stages of evolution (carbon stars, red giants, baiium stars, etc.) s ow 

clear abundance differences from the solar composition, for certain elements. 

The first group is deficient in heavy elements, since they were formed in a 

region of the interstellar medium poor in metals. The second group have 

undergone violent events during their evolution which have brought to the 

surface elements recently formed by nuclear reactions in the centre (see 

Chap. 8). . . . 
In general we assume that the abundance A = Na/Ah is constant with 

depth in the atmosphere. There are exceptions: stars with peculiar chemical 

composition (Ap, Bp), and helium in the solar corona. These peculiar abun¬ 

dances can be explained by diffusion of elements under the effects of gravity, 

concentration and temperature gradients, and radiative forces (Sect. 5.3). 

2.4 Fine Structure of the Quiet Solar Atmosphere 

As the Sun is the nearest star, we see its surface in a wealth of detail which 

will remain hidden for a, long time for other stars. However, stellar ph} sics 

can no more ignore this surface structure than classical physics can ignore 

the microscopic interpretation of the phenomena it seeks to explain. In fact 

the Sun’s heterogeneous surface structure reveals the interaction between 

motions of the surface gas, its radiative properties, and its organisation by 

the magnetic field produced in the deeper convective layers. 

We observe solar fine structure not only in white light, UV continua, 

and spectral bands of various widths but also in the lines of the photo¬ 

sphere, chromosphere, or transition zone. In this section we shall describe 

the structure of the quiet component of the solar atmosphere without go¬ 

ing much into the relevant physical processes. This is the component which 
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is affected, albeit weakly, by the eleven-year cycle which is very noticeable 

m active components such as sunspots, active regions, prominences, and 
coronal holes. 

The Sun’s surface structure is primarily marked by local brightness vari¬ 

ations. Various horizontal scales are apparent, corresponding to different 

values and scales of the observed magnetic field. 

2.4.1 The Quiet Photosphere 

Lateral structure observed at the photosphere has three scales: granules and 

mesogranules, from Mm to 10 Mm, supergranules, from 20 Mm to 50 Mm, 
and flux tubes (< 0.3 Mm). 

The Granulation. The granulation is seen in white light (Fig. 2.11) as 

fairly inegular cells which are brighter than the intergranular space around 

them. It is no longer visible in the photospheric UV continuum at 2200 A. 
The average distance between granules is about 1.8". A range of sizes is 

revealed as the spatial resolution is increased. There is a critical size at 

about 1.4 . Roudier and Muller (1986) show that large granules have frac¬ 

tal dimension 2.15, and smaller ones 1.25. This critical size corresponds to 

a break in the slope of the power spectrum of the granules, the smaller ones 

Fig. 2.11. Photograph of the solar granulation taken on 1978 July 9. Wavelength 5750 A, 
passband 100 A; resolution ~ 0.25". (Photograph courtesy of Observatoire du Pic du 

Midi) 
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having a Kolmorgorov spectrum as expected for the smallest scales of con¬ 

vective turbulence (see Chap. 5, Fig. 7). Granules are small convective cells 

penetrating into the photosphere from the convective layer (the penetra¬ 

tion is about 100 km). Convective cells about 10 times the size of a granule 

are called mesogranules. They are observed as a pattern in brightness and 

spectral line shift. 

Granules last for the order of ten minutes. Cinematography shows that 

they are born by the mixing or fragmentation of preexisting granules; they 

disappear through the same processes, although the smaller ones can simply 

vanish. 

Granule motions are deduced from spectra taken at high spatial resolu¬ 

tion (0.75" at best from the ground). The vertical velocity is typically about 

1 to 2 km s-1 at 100 km above the top of the convective zone, while the 

horizontal component is 2 or 3 times as big. Rising motions (hot granules) 

are observed amongst a predominance of falling motions. The associated 

temperature fluctuations are about 100 to 200 K. 

The Supergranulation. This appears at the level of the photosphere be¬ 

cause of the tracer provided by the network bright points. These are struc¬ 

tures at the limit of spatial resolution (typically 0.22"), discovered by obser¬ 

vations with a very narrow spectral passband centred on photospheric lines 

or in the wings of Hcv. These bright points never appear inside a granule, 

but only in the intergranular regions, where they align themselves along 

the boundaries of huge cells (diameters 30 to 50") called supergranules. The 

boundaries of the supergranules are also called the photospheric network. 

The photospheric network is also observed in the UV at wavelengths 

which probe the temperature minimum (~ 1600 A). At this height, greater 

than that considered above, the network boundaries are bright and very 

clearly defined. Numerous bright points fill the whole interior of the super¬ 

granule, not just the boundaries. 

Horizontal mass motions from the centre to the edge are observed in 

supergranules, with velocities 300 to 400 ms 1. Vertical falling motions of 

speed 100 m s-1 are observed at the boundaries of the cells. 

Association with Magnetic Field Regions. This is an important property 

of the photospheric network. The magnetic field is concentrated at the edges 

of the supergranulation cells. The measured field intensity (several hundred 

gauss) is not typical of its value in the finer structures where it emerges, 

called flux tubes. In fact the spatial resolution of present measurements of 

the magnetic field does not exceed 1 to 2". We have to use indirect methods 

to find the fields in the flux tubes, which are provisionally identified with 

the bright points of the network (Stenflo 1973). A typical value for the 

field in a flux tube is 1 kG. The present description of flux tubes will be 

greatly improved once spatial resolution is improved (e.g. the Themis solar 

telescope). 
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Table 2.6. A. Fine structure of the quiet photosphere 

Structure Mean 

diameter (km) 
Mean 

lifetime 
Remarks 

Granules 

Mesogranulcs 

Supergranules 

Network bright points 

Cell bright points 

1000 

5 000-10 000 

30 000-35 000 

150? 

? 

8 min 

2 h 

20 h 

18 min 

Small convective cells 

Larger convective cells 

Large convective cells 

A dense chain of bright 

points is sometime called 

filigree 

B. Fine structure of the quiet chromosphere 

Structure Mean 

diameter (km) 
Mean 

lifetime 
Remarks 

Spicules 

Network 

- Bright mottles 

500-1500 

30 000-35 000 

1 500-4 000 

5 min 

20 h 

11-12 min Parts of the network 

- Dark mottles 1 000-8 000 5-15 min 
boundaries 

Identical to spicules 
- Fibrils 1 000-2 000 6-12 min Elongated horizontal 

Supergranules cells 

- Bright points 
30 000-35 000 

1000 3-4 min 

structures 

The three scales of structure observed in the photosphere give essential 

information about solar convection and its interaction with the magnetic 

field, which determines the size and number of flux tubes. Table 2.6A sum¬ 

marizes the properties of the photospheric fine structure. 

2.4.2 The Quiet Chromosphere 

Higher up in the solar atmosphere, the main structures are spicules and the 

chromospheric network. 

Spicules. These were discovered in white-light observations of the Sun’s 

limb during an eclipse. They are clearer when observed using a Lyot filter 

in the Ho line, either in the core or wings. Quasi-monochromatic images 

made without scanning are called filtergrams. At the limb, spicules appear 

like blades of grass, i.e. elongated cylinders, essentially radial, but some¬ 

times inclined. They reach down to the lower chromosphere, although they 

are difficult to see at lower altitudes as they cover each other. Their ver¬ 

tical extent is not well defined; the most likely mean value is about 9000 

km above the photosphere. The presence of spicules clearly shows that the 
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chromosphere is no longer spherically symmetrical above 2000 km. On the 

disc, spicules are also called dark mottles. They lie along the boundaries 

of the chromospheric network. The geometrical properties of spicules are 

summarised in Table 2.6B. 
The spicules are remarkable for their dynamical properties. Their av¬ 

erage lifetime is 5 min if observed at the limb. Their individual motions 

can be seen either directly, i.e. by imaging, or spectroscopically through the 

Doppler effect. The first method gives the velocity component m the plane 

of the limb and the second the velocity normal to this plane. Spicules show 

rising and falling motions of average speeds 20 to 25 km s 1, which seem to 

be directed along the spicule’s axis. The motion is predominantly upwards, 

so that spicules transport mass from the chromospherejo the transition 

zone. The mass flux is estimated at 101 ’ protons cm s 

The Chromospheric Network. This picks out a cell structure at the height 

of the chromosphere. It appears bright if we observe in the Ca II H and A 

lines, in the centre of Ho- or Lya, and dark in the wings of Ho. From the 

temperature minimum, where it occupies about 10 % of the solar surface, it 

reaches into the chromosphere, occupying 35 to 40 % of the surface observ ed 

in transition-region lines. 
The main instrument for studying the chromospheric network at moder¬ 

ate resolution is the spectroheliograph. Comparing spectroheliograms ob¬ 

tained for photospheric and chromospheric lines of different formation 

depths shows that the chromospheric network extends the photospheric net 

work in height: its cells fit smoothly over those of the photospheric super- 

granulation. 

All of the network and the enclosed cells are in motion: matter rises at 

the centre of a cell, with horizontal motions to the edges, where there are 

falling motions. This downdraft has a typical mean speed of 800 ms 1 in 

the middle chromosphere, 4 km s-1 in the transition zone. The mass flux 

is not conserved, being about 10 1 to 10 "of its photospheric value in the 

middle chromosphere and transition region respectively. At the lowest level 

are horizontal flows feeding the falling motions. In contrast, the descending 

flux at the transition region is of the same order as the rising flux in the 

spicules (Athay 1986), so that some of the vertical circulation at the cell 

boundaries can be seen as the return flow of the spicules. 

At high spatial resolution the chromospheric network shows finer struc¬ 

tures on the disc: 

Dark mottles, often grouped in “rosettes” and “bushes”. These are 

just the spicules. 

Bright mottles, the basic resolved bright elements of the network 

boundaries and thus the extension of the bright points of the photospheric 

network. 

Fibrils, which are horizontal structures, well observed in Ho, extend¬ 

ing above the supergranules, perhaps segments of flux tubes. 
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Inside the cells are bright points, seen in the Ca II K line (we have 

already encountered these near the temperature minimum). 

The properties of these various fine-structure elements are summarised 
in Table 2.6B. 

2.4.3 The Quiet Transition Region 

The chromospheric network is observable at the formation heights for the 

lines of C III, C IV, 0 IV, 0 VI, up to the coronal line Mg X (see Table 7.1 

for the formation temperatures of these lines). 

In all the regions of the quiet Sun where the network appears, from the 

temperature minimum to the lower corona, radiative losses are larger at the 

edges of the network than at the centre. It thus appears that the non-thermal 

heating is stronger at the edges. At the photospheric level these boundary 

regions coincide with concentrations of magnetic flux. Although the field is 

inferred, not measured, at the chromosphere, transition zone, or corona, it 

is tempting to conclude that the non-radiative heating in the outer layers of 

the quiet Sun is connected with the presence of a magnetic field diverging 

above the chromospheric network. Figure 2.12 shows the field configuration, 

together with the chromospheric network and the flows caused by convection 

at the centre of a cell and by spicules at the boundaries. 

This section on the fine structure of the solar atmosphere has shown 

the existence of various lengthscales and the close relation between velocity 

fields and magnetic flux concentrations. The magnetic regions encountered 

have open fieldlines, except perhaps for the small bipolar regions associated 

with the bright points. It is clear that understanding the mass and energy 

30000 km 

Fig. 2.12. Model of the network showing the magnetic fieldlines, convective flow lines, and 

isotherms. (From A.H. Gabriel, in IAU Coll. 36, ed. by R.M. Bonnet, P. Delache (1976), 

p. 375) 
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balance requires a good optical identification and modelling of all the types 

of lateral structure. The rising mass flux in the spicules is certainly not the 

origin of the solar wind, which has only about 1 % of the mass flux (3 x 10 

g cm-2 s-1 in the wind, compared with 2 x 10-9 g cm 2 s 1 in spicules) 

and the matter in the spicules must fall back. There is thus a circulation 

involving spicules and the edges of supergranules. 

2.4.4 The Quiet Corona 

One might give this designation to that part of the corona above the weakly 

magnetised regions of the Sun. However, it is actually composed of active 

regions only weakly active or of weakly expanding coronal holes. These are 

the main constituents of the corona as described in Sect. 2.5. 

2.5 Resolved Structure in the Active Sun 

In this section we shall describe the characteristic regions of the active 

Sun, reserving the variability linked to solar activity to Chap. 7. We shall 

emphasise the topologies and lengthscales, relating them to the measured 

magnetic field. This gives the size of all the structures if (3 — Pg/Pmag = 

(iR.pT / p)(B2/Sn) — c2Jv2a is much smaller than 1, which holds for layers 

above the solar photosphere. Here cs is the isothermal sound speed and va 

the Alfven speed. The structuring of the photosphere into flux tubes, where 

(3 > 1, creates bundles of force tubes through magnetoconvective phenom¬ 

ena originating below the photosphere. A hierarchy of magnetic elements 

thus appears at the surface of the Sun, from the photosphere to the corona. 

Methods of measuring magnetic fields are discussed in Chap. 7.4. 

2.5.1 Sunspots and Active Regions 

Sunspots. These were the first sign of irregularity observed on the Sun’s 

surface, initially with the naked eye (by the Chinese and Greeks), then 

with a camera obscura (Fabricius), and at about the same time (1610— 

1611) with a refracting telescope (Galileo). A spot has a central region, the 

umbra, surrounded by a brighter region, the penumbra, which are clearly 

separated; the penumbra is itself quite distinct from the neighbouring quiet 

photosphere. The full diameter of a spot is between 20 and 60 him, that of 

the umbra alone about 10 to 20 Mm. The penumbra is striated by elongated 

dark radial structures, called fibrils (Fig. 2.13). 

The magnetic field of sunspots was measured from 1908 by Hale, who 

discovered intense fields. At the centre of a spot the field intensity B reaches 

3000 to 4000 G and is vertical in direction; in the outer penumbra it is about 

1000 G, and the ficldlines are inclined, almost horizontal in isolated spots; 

at the extreme edge of the penumbra B is less than 100 G. 
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Fig. 2.13. A sunspot and the surrounding granulation. Visible are the umbra (central region 

of the spot) and the penumbra, formed of radial fibrils. Wavelength: 5280 A, passband: 

100 A, resolution ~ 0.3". (Photograph by Observatoire du Pic du Midi) 

In practice most spots are not isolated, but go in pairs, and they are 

found only in a well-defined latitude region, between +30° and -30°. At 

the beginning of the solar cycle the spots appear at high latitude; the pairs 

are oriented east-west and migrate towards the solar equator in time. Spots 

not only trace the solar magnetic field, but are good indicators of large-scale 

motions in the Sun. The spots extend downwards below the photosphere and 

are anchored at the depth where the field is generated. They follow the Sun’s 

differential rotation (the surface rotation period increases from the equator 

to the poles; see Table 2.1) and move more rapidly than the surrounding 

photosphere at each latitude (by 1 to 3%). This suggests that the Sun’s 

rotation increases inwards, at least to the depth of the spots’ feet, a result 

contradicted by helioseismology. 

Inside a moving pair of spots, one, e.g. the leading spot, has positive 

magnetic polarity and the other negative, with the opposite relation across 

the solar equator. The configuration survives for about eleven years and 

then reverses (see Chap. 7.1). A sunspot pair thus forms a magnetic dipole; 
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the fieldlines run from one spot to the other. There is a line of inversion 

of polarity between the two spots, which is the locus of points where the 

vertical field component changes sign (neutral line). 

Spots do not on average survive more than two or three rotation periods. 

They decay slowly at first, then rapidly; they leave behind a system of bright 

spots in the umbra (umbral dots). 

The basic structure of a sunspot magnetic field is a tight bundle of flux 

tubes held close together below the photosphere, whose ends float under 

magnetic buoyancy. In the umbra at presently available resolution onl\ the 

tubes are visible; if there are regions with weak or absent magnetic field 

this may be marked by umbral dots. No granules are observed in the spots, 

so convection does not appear there. The unsolved problem arises of what 

happens to the flux blocked by the spots, since they are darker than the 

surrounding photosphere. We do not know the ultimate size of the flux tubes 

or their filling factor; the present upper limits on their diameters are 0.2 to 

0.3". 
The spot equilibrium is dominated by magnetic pressure. At a given 

height there is a balance between P9(int) + Fmag and P3(ext), so that the 

gas pressure P^(int) inside the spot is lower than the exterior gas pressure 

Pg(ext). The electron temperature is therefore lower: analysis of molecular 

bands (TiO, SiO, CO) gives values 3000 to 3400 K. Optical depth t = 1 is 

600 to 1000 km deeper inside the spot than in the normal photosphere. 

Active Regions. Sunspots are parts of active regions, areas where there is 

considerable evidence of magnetic fields. Thus regions where the magnetic 

field emerges in a less compressed form are also localised above the spots; 

they are called plages and are composed of faculae. These regions are not 

observed at the level of the photosphere like sunspots, but at the height of 

the chromosphere or transition region. In a plage the filling factor is less 

than in the underlying spot, at about 5 to 10 %; the average measured field 

intensity is about 100 G, so that the local value of B is of the order of 

1500 G. At the level of the transition region the pressure and temperature 

gradient are each fives times larger than in the quiet Sun. Activity linked 

to the plages will be studied in Chap. 7. 

All solar activity is confined to active regions. For example, flares occur 

in regions near sunspots, exactly where the magnetic fieldlines are in tension 

at the line of polarity inversion between two sunspots. The magnetic prop¬ 

erties of the flare site are clearly vital to an understanding of the underlying 

mechanism. As we shall see, prominences observed on the disc also straddle 

lines of polarity inversion (or neutral lines). 

2.5.2 Prominences 

Prominences are thin layers of cold dense plasma within the corona. They 

are seen either as bright at the limb (Fig. 2.14) or as dark filaments against 

the disc. Their temperature is about 7000 Iv and the electron density con- 
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Fig. 2.14. Prominences (bright against the sky background) at the Sun’s limb and filaments 

(dark against the disc). Visible also are bright faculae, regions of strong magnetic field. 

Image obtained 1980 August 2 in Hq\ Resolution about. 2//. (Spect.rohehogram of the 

Observatoire de Meudon) 

Fig. 2.15. Schematic view of a prominence and associated magnetic field. (From J.M. 

Malherbe, Thesis, Univ. Paris VII, 1987) 

troversial: either < 1010 cm 3 or ten to twenty times greater. Figure 2.15 

shows their shape: the sheet forming the prominence is situated above a 

neutral line of the magnetic field and enters the photosphere at footpoints. 

The magnetic field is roughly perpendicular to the sheet, i.e. in the (X, Y) 

plane. The angle between the filamentary axis (Z) and the field vector is 

less than 20°. 
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The equilibrium of the filaments is due to a balance between the 

j x B force and gravity pg, the current j being given by Ampere’s law 

as (c/4tt) curl B. We have jzBx = pg, which causes a dip of the fieldlines. It 

is the Bx field component which supports the prominence. The footpomts 

occur in regions of the photosphere where the field is sheared. The fieldhnes 

in the ( AT, Y) plane of Fig. 2.15 are stirred at their bases by photospheric 

motions. 
We can distinguish quiescent prominences, situated at the edges of ac¬ 

tive regions or between them, or in polar regions, and plage prominences, 

associated with active regions. 

The typical size of a quiescent prominence is as follows: length ~ 200Mm, 

height ~ 50 Mm, thickness ~ 2 Mm. A prominence thus extends about one 

pressure scaleheight into the corona (T — 10® K). We note that the length 

is about the scale of the largest convection cells (see Chap. 5.5). 

Prominences have fine structure: unresolved vertical threads, or clearly 

defined vertical arches. 

The field can be measured by the Hanle or Zeeman effects. The first 

method gives the vertical field and shows that the field does not lie in the 

plane of the prominence. The intensity is about 5 to 10 G in quiescent 

prominences, reaching 20 to 150 G in plage prominences. It appears to be 

uniform inside the prominences. 

Prominences are in a dynamic state, since rising matter motions are 

observed, e.g. m Hcv or in C IV (speeds a few km s 1). Cine films of this 

process are spectacular, particularly as the whole prominence begins to dis¬ 

appear, when the motions accelerate and the prominence vanishes abruptly 

(“disparition brusque”). The origin of the forces acting on the prominences 

just before their disappearance is still ill-understood. 

The problems of formation and of modelling prominences have received 

much attention. We note first that the mass of a quiescent prominence of 

volume V, 

Mpro = NpmpV = 1011 x 1.67 x 1CT24 x 2 x 1010 x 5 x 109 x 2 x 108 

= 3 x 1015g 

is a significant fraction of the mass of the corona 

Mcor = NpmpAH, 

where A is the area of the photosphere, and H the coronal scale height 

(5 x 109 cm). With Np = 3 x 108 cm-3 in the corona, we find 

Mcor = 1.5 x 1017g. 

Two formation mechanisms for prominences have been proposed: (a) 

condensation (by thermal instability) of the coronal material, although 

Mpro/Mcor is a problem (the ratio is too large) if Np is of the order of 
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Condensation 
from the corona 

Injection 

from the chromosphere 

Ballistic Evaporative 

Fig.^.16. Formation scenarios for a prominence. The prominence is the hatched region. 

(a) 1 he prominence material condenses from the corona; (b) and (c) injection from the 

chromosphere. (From J.M. Malherbe, Thesis, Univ. Paris VII, 1987) 

1011 cm 3 m the prominence, as assumed above; this objection disappears 

if Np is less than 1010 cm 3; (b) injection from the chromosphere, with two 

possible variants: ballistic injection by transient jets caused by rapid vari¬ 

ation of the gas or magnetic pressure at the foot of a loop, or continuous 

evaporation because of a lack of heating of the medium above the neutral 

lme. The two mechanisms are shown schematically in Fig. 2.16, where the 

lines of force of the magnetic field and the velocity vectors of the matter are 

indicated: the mechanism of injection from the chromosphere has not yet 

been observed. 

2.5.3 Coronal Holes 

These are large-scale regions of the corona observable in X-rays in wave¬ 

length bands of a few A (Fig. 2.17), in EUV lines such as He II (304 A), 
Ne VII (465 A), or Mg IX (368 A), and in He I (10830 A). They appear 

as regions fainter than the neighbouring corona, but their relative contrast 

decreases in lines formed at lower temperatures: coronal holes are less no¬ 

ticeable in the transition region than in the corona (the line intensities are 

reduced by 25 to 30 %) and are not discernible in the chromosphere. The 

He I 10 830 A line (the only coronal-hole diagnostic observable from the 

ground) is an exception, since its formation mechanism involves coronal 

radiation directed towards the chromosphere. 

Coronal holes can be localised in polar regions, but are also observable at 

low latitudes heliographically. They lie over large unipolar magnetic regions 

of the photosphere, where the fieldlines are open. They appear preferentially 

at certain longitudes and are associated with new dipolar magnetic regions. 

It thus appears that large-scale field topology fixes the position and geom¬ 

etry of coronal holes. A coronal hole may cover from 1 to 5 % of the Sun’s 

surface, and a polar hole up to 10%. 

The orbiting platform Skylab (1973 May - 1974 February) supplied the 

main results on the solar X-ray emission. Coronal holes can be modelled 

(Fig. 2.8) by the methods described in Sect. 2.2 for the transition region and 
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Fig. 2.17. Image of a coronal hole, seen by the American Science and Engineering Telescope 

on board Skylab, 1973 June 1. It shows the hole stretching from the pole to low latitudes. 

This hole persisted for the whole Skylab mission. The passband is 3-30 A, 44-60 A 

the corona. The transition region is about 5 times thicker in a hole than 

in the quiet corona, the temperature gradient dTe/dz about 5 to 10 times 

smaller and the pressure 2 or 3 times smaller in the quiet corona. 

Another property of coronal holes is their rotation. Unlike sunspots, 

whose migrations are the best tracers of the surface differential rotation 

(Table 2.1), coronal holes rotate rigidly; there is no more than a 3 % variation 

in their rotation speed between the poles and the equator. Their synodic 

period is 27 days. 

Finally, coronal holes are associated with high-velocity flows of the solar 

wind, as observed near the Earth’s orbit. The matter velocity at the base 

of a coronal hole is of the order of 20 km s-1; Fig. 2.8 shows the expansion 

velocities in various coronal regions. We note that these velocities vary over 

the solar cycle, because a coronal hole produces a more rapid flow at solar 

minimum than maximum. The Ulysses space mission, launched in 1990, will 

for the first time observe the solar wind from outside the ecliptic plane, since 

it is due to fly over the solar poles. It will provide a 3D view of the solar 

wind. 

The term representing the energy flux in the solar wind dominates the 

energy equation for a coronal hole (2.9). 
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Table 2.7 Resolved structure of the active Sun 

Structure Mean diameter Mean lifetime 

Spot 
~ 100 d (2 to 3 rotations) 

- Umbra 10000-20000 for large spots, ~ 1 d 
- Penumbra 20 000-60 000 for small spots (pores) 
- Umbral dot 1 000 15-30 min 
- Flux tube <100 
- Fibril 200 2 h 
Plage 

- Facula 

- Ephemeral active region 

Prominence 

— 150 d (5 to 6 rotations) 

- Quiescent several months 
- Active region prominence several weeks 
- Thread <300 several mins 
Coronal hole 

- Bright point 
~ 200 d (6 rotations) 

2.5.4 Coronal Bright Points 

These are very obvious on X-ray images of the corona, and cover deeper 

short-lived active regions, and, deeper still, photospheric bright points. 

Table 2.7 summarises the nomenclature, sizes, and lifetimes of the re¬ 

solved structure of the active Sun. 

2.6 Remarks 

We should ask what connection there is between the variety of phenomena 

observed at various heights in the Sun’s atmosphere and the models whose 

computation principle was explained in Sect. 2.2. It is clear that the physics 

of the Sun’s outer layers is very complicated (see e.g. Priest 1982) and 

modelling can only be seen as a stage, giving local values of 7Ve, Te, and the 

velocity field. Clearly it is only reasonable at present to model individual 

structures (spots, faculae, flux tubes, etc.) rather than to treat the solar 

surface as homogeneous. However, we must go beyond this modelling in 

order to discover the origin of such phenomena. The formation of structures 

on the active Sun involves the magnetic field and its interaction with the 

solar plasma. The scales of the magnetic field, the properties of regions 

situated at foot points of lines of force, instabilities, waves, and ordered 

motions all result ultimately from mechanisms at work in the upper part of 

the convection zone. The book by Priest (1982) discusses in greater depth 

the study of one of the most complex objects in astrophysics. 
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3. Stellar Evolution 

3.1 Basic Internal Structure 

3.1.1 Basic Observational Data 

It may appear strange to begin a discussion of observational data w ith 

abstract questions and concepts dating from the middle of the 19th century 

(Kelvin 1862; Lane 1868). A star is an object characterised by a number of 

global data: spectral properties, luminosity, mass, etc.; binary systems are 

fundamental for mass determinations. The idea of evolution arises once we 

ask about the energy reserves of a star. A star of 10 solar masses, with a 

luminosity 104 times that of the Sun, would transform all its hydrogen into 

helium in 8 million years, a time much shorter than the age of the Galaxy 

(10 to 15 billion years). This elementary result immediately implies that 

stars must be forming in the Galaxy right now and that our view of the sky 

is a kind of snapshot of objects of very different ages and thus very different 

stages of evolution. To the global data mentioned above we should add the 

age. We know the Sun’s age, under the assumption that it is close to that 

of the Solar System, i.e about 4.55 billion years (Encrenaz, Bibring 1990, 

p. 350). Stellar-evolution models are only able to give estimates for the ages 

of galactic clusters, but we are unable to estimate the ages of isolated stars, 

and scarcely those of binaries (in the rare cases where the evolutionary state 

of one of the components is identifiable). 

The presence of easily identified resonance lines in absorption, blue- 

shifted with respect to the photospheric lines in red giants (a Ori, a1 Her, 

o Cet, £ Peg), has shown since 1951 that stellar envelopes may expand. 

Such very extended envelopes have also been detected through infrared dust 

emission, maser lines (OH, H2O), and emission lines in the millimetre region. 

These expanding envelopes show the existence of a stellar wind, and thus 

mass loss from the star. From the observations one can obtain estimates of 

the mass loss rate (we shall return to this in Sect. 3.7 and Chap. 4). For the 

moment we note that mass loss rates can be 10 — ‘ —10—8 Mq/y for red giants 

and 10—6 10~' M©/y for red supergiants. Among blue stars, the mass loss 

rates in Wolf-Rayet stars can reach 10-5 M©y_1 . Such high mass loss rates 

signify relatively brief stages of evolution (roughly a. few million years) but 

must of course be taken into account in the study of stellar evolution. 

The goal of stellar-structure theory is to explain the global properties 

of stars and follow these in time. This requires a knowledge of the distri- 
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butions of physical parameters such as temperature, density, pressure, and 

other thermodynamic variables, as well as the chemical composition and the 

hydrodynamics and magnetohydrodynamics of the stellar plasma. 

. The ful1 Programme is clearly very ambitious and it is essential to break 

it into stages. The study of internal structure has a basic reference model 

which is assumed to be stationary, non-rotating, and of constant mass. The 

description stationary state comes from assuming that dynamical terms are 

negligible. We retain terms involving secular evolution: the radiation of the 

star itself results from irreversible processes such as changes of chemical 

composition or radius. The timescales of these processes are so long com¬ 

pared with dynamical timescales that we can regard the reference star as 

being in equilibrium. This still holds even when we abandon the assump¬ 

tion of constant mass, as the energy |Mv2 involved in the mass loss is small 

compared with the star s luminosity. Under mass loss the star jrasses thus 

through a sequence of equilibrium configurations. 

3.1.2 Basic Equations 

We give here the internal-structure equations in Newtonian form (relativistic 

effects are considered in Chap. 8). 

Poisson’s Equation 

A<P = —AnGp, 

where is the gravitational potential, p the density, and G the constant of 

gravitation. 

Hydrostatic Equilibrium 

VP + pVP = 0 , 

where the pressure P is given by an equation of state as a function of local 

variables p and T (density and temperature) and chemical composition, 

described by the mass abundance X of hydrogen, Y of helium, and Z of 

all other elements (X + Y + Z = 1). The detailed abundance of the other 

elements is only important for problems of radiation transfer and nuclear 

chemistry. 

The Heat-Transfer Equation 

F = —KVT, 

where K is the thermal conductivity and F the flux (erg cm-2 s-1). For the 

moment it suffices to state that K is a function of local variables (density, 

temperature) and detailed chemical composition of elements other than hy¬ 

drogen and helium. The integral J FdS over the spherical stellar surface is 
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the luminosity L. We shall discuss the precise meaning of the term “surface” 

when considering boundary conditions. 

The Energy Equation 

dS „ 
T— = pz - div F, 

at 

where S is the entropy and e the energy production rate per unit mass. 

The change of entropy caused by changes of temperature, density, and 

chemical composition means that we have to write a mass-conservation 

equation. 

Mass-Conservation Equations 

— Mass conservation: 

d_l 
dt 

+ V • pv = 0 , 

where v is the fluid velocity. This is usually small, so that the corresponding 

inertia terms are completely negligible, and were omitted from the momen¬ 

tum equation, which reduces to the hydrostatic equation. 

— Conservation of chemical elements: 

We write this symbolically for an element i with mass concentration cp. 

p qj. — V • pv^Ci T ^ ^ Ii-ijp C{Cj , 

j 

where vl the velocity of the element (due e.g. to diffusion or gravitational 

settling) and Kij the reaction rate per unit mass of element i with element 

j, assuming that only two-body reactions occur. 

Spherical Symmetry. The hydrostatic equation shows that pressure is con¬ 

stant on equipotentials (VP and V$ are parallel). The temperature and 

density are also constant on equipotentials, and a static system has spheri¬ 

cal symmetry. We can thus write all the equations in terms of r only: 

— Gravity: 

GMr 

9 =-2~ rz 

- Mass: 

dMr = An2pdr ; (3.2) 

- Hydrostatic equilibrium: 

dP = —gp dr ; (3-3) 

(3.1) 
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(3.4) 

— Heat transport: 

F = -K 
.dT 

dr 

Energy. With specific heat ratio 7, and for a perfect gas, 

div F = pe — 1 p ^ P 

— Mass conservation: 

dp 1 d 2 

m+^d~rrpv = °- 

(3.5) 

(3.6) 

To soh e these equations we need to know the equation of state P = 

P{Pj T, X, T, Z,...), the thermal conductivity K = K(p,T, X,Y, Z,...), the 

energy production rate per unit mass e = e(p,T,X,Y, Z,and suitable 

boundary conditions. At the centre (r = 0) we require finite density, so that 

the mass has no singularity, and gravity tends to zero there. The total ra- 

diati've luminosity J0 47T7’~div_Fld?’ must vanish at the centre, requiring the 

temperature gradient dT/dr to vanish too. At the surface we often use the 

approximation P = p = T = 0. A more correct treatment requires us to 

match the atmosphere to the interior. Numerically one calculates a model 

atmosphere and matches it to the interior at a depth such that the outer 

layers contain a few percent of the total mass. 

3.1.3 Comparison with Observation 

Observations give us the mass and luminosity of about thirty members of 

binary systems with reasonable accuracy, with the most accurately mea¬ 

sured star being of course the Sun. From parallaxes we can get luminosities 

for a few hundred stars, the accuracy decreasing with distance (these state¬ 

ments refer of course to the pre-Hipparcos era). Observation of star clusters 

gives Hertzsprung-Russell diagrams which reveal evolutionary effects. At¬ 

mospheric chemical compositions may show the imprint of evolution, but 

also constitute a difficult puzzle. 

The differences (dwarfs, giants, supergiants) evident on the HR diagram 

correspond to different stages of evolution. Binary systems provide impor¬ 

tant information in the form of the main-sequence mass-luminosity relation. 

It is still the main observational evidence constraining the theory of internal 

structure (Fig. 3.1). 
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Fig. 3.1. Mass-luminosity relation. Data from the Popper (1980) and McAlister and 

Hartkopf (1984) lists of binaries. The points • refer to detached spectroscopic binaries, 

o to resolved spectroscopic binaries, and X to visual binaries. From H.A. McAlister, in 

Calibration of Fundamental Stellar Quantities, ed. by D.S. Hayes et, ah, Kluwer 1985, 

p.99. (Reproduced by kind permission of Kluwer Academic Publishers) 

3.2 First Approximations: Orders of Magnitude 

Before full numerical solutions by computer became readily available, great 

efforts went into studying simplified models of stellar structure, if possible 

analytically. These classical solutions are useful in providing good approxi¬ 

mations to the full solutions and give good estimates of internal conditions. 

Even if not quantitatively exact, they provide an excellent idea of the phys¬ 

ical processes at work. 
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3.2.1 Polytropes 

Eaily results were obtained by avoiding the problem of heat transport and 

by assuming a relation P = Apr, A = const. These configurations were 

called polytropes by Rayleigh. Defining the polytropic index as n = 1/(A —1) 
and setting 

P ~ Pc°n , r = a£, (3.7) 

where pc is the central density, £ a dimensionless variable, and a a length 

scale defined by 

a 2 (n + 1)K [1/n)_x 

4ttG 
(3.8) 

the star’s structure is given by the differential equation 

1 d 2 d# 
en (3.9) 

The solution must satisfy dP/dr = 0 at the centre, implying that d(9/d£ = 0 

for £ = 0. This discards the solution which is singular at the origin, and the 

conditions 9 = 1, d#/d£ = 0 define the solution of (3.9) completely. The 

point where 8 = 0, and thus where pressure, temperature, and density 

vanish, defines the reduced stellar radius £x. 

We get the mass M of the polytrope as the integral f 47rr2pdr, and thus 

M --- —4:77a3 pc (3.10) 

and the average density (p) is related to the central density pc by 

M = _A f 
Pc 6 ' 

(3.11) 

We also get an expression for the central temperature, 

GMp 1 

c -Ci(d9/dO^ ’ (3'12) 

when the pressure is that of a perfect gas, P = dlpT/p, where 3? is the gas 

constant and p the mean molecular mass. 

Use of the Saha equation shows that under the physical conditions in 

the interiors of main-sequence stars, matter is highly ionised over most of 

the star. The mean molecular mass p is given by counting the free particles 

in the stellar gas. A good approximation is to assume complete ionisation; 

this is certainly true of hydrogen and helium in the interior, and introduces 

negligible error for other elements. Thus we have 
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Table 3.1. Properties of polytropes 

n 5 Wot-!, (-("ik'©L 
i 3.14159 3.14159 0.5 3.28987 

3/2 3.65375 2.71406 0.53849 5.99071 

1 6.89685 2.01824 0.85432 54.1825 

3.25 8.01894 1.94980 0.96769 88.153 

5 00 1.73205 CO CO 

- = 2X + -Y+-Z. (3-13) 
p 4 2 

Estimates of the central density and temperature need the quantities 

( — 1/^1 )(d6»/d^)^=^1 and -^(dtf/df)^^. These estimates mark off the re¬ 

gion in which we need to make precise estimates of P, A, and e. Table 3.1 

gives the main properties of poly tropes of various indices n. 

The Eddington standard model has particular importance. The total 

pressure is the sum of gas and radiation pressure: 

P = Pg+Pr- (3-14) 

Eddington introduced the simplifying assumption 

Pr 

Pr + Pg 
1 — (3 = const. (3.15) 

This implies that P ~ p4P and gives polytropic index n = 3. For the Sun 

this gives the results below as a function of chemical composition (Z = 

0.020): 

X Tc (Sun) 

0.25 14 x 106 K 

0.28 13.8 x 106 K 

These estimates (very close to the exact results) show that the central tem¬ 

peratures of stars are high enough for them to get energy from nuclear reac¬ 

tions. This gives the nuclear timescale t/v for stellar evolution (Sect. 3.4.2). 

3.2.2 The Vogt-Russell Theorem 

For stars of uniform chemical composition, an important result, the Vogt- 

Russell theorem, shows that mass-luminosity and mass-radius relations ex¬ 

ist. The system (3.1-4) is one of 4 differential equations with 4 unknown 

functions of r, i.e p(r), T(r), M(r), and L(r). We have to solve them for a 

specified mass M(R) = M and four other conditions M(0) = L(0) = 0 and 

p(R) = T(R) — 0. These 5 conditions (including M(R) = M) make this 
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an eigenvalue problem. There is a unique solution, giving L{M) and R(M). 

is theorem explains the existence of mass-radius and mass-luminosity 

relations lor the mam sequence, but fails once the chemical composition 
depends on radius. 

3.3 Stellar Structure: Basic Physics 

The basic properties described briefly above show the need to use the most 

complete and precise physical data in studies of the internal structure. 

3.3.1 The Equation of State 

Quite precise equations of state are needed for some applications. The tem¬ 

perature and density range is vast, from low densities (e.g. 1CT5 g cm-3) to 

nuclear densities (p ~ 1014 g cm-3) and temperatures of only a few thou¬ 

sand degrees at the surface of a red giant to hundred of millions of degrees 

or even more in some short-lived phases. 

Pressure Ionisation. When the ionisation degree is calculated using the 
Saha equation, 

-^Q+l.nlVe _ (27TmekT)3/2 

Ni,m ^ h3 

E„0 n 9i+l,ne 
-Xn/kT 

E m yi,m 

p Xion jkT 
e-Xm/kT c ’ 

the summations over states diverge unless a cutoff is used to express the 

fact that the ions are not isolated but in a plasma. The presence of elec¬ 

trons and other ions limits the terms appearing in the state summations. 

This is called pressure ionisation. We can represent it with varying degrees 

of refinement. The simplest idea is as follows. An ion of charge je produces 

an electric field near an ion of charge (i + l)e (Fig. 3.2). Only excitation 

levels below the maximum of the perturbed potential can exist, and the 

state summations are truncated accordingly. More exactly, we have to mul¬ 

tiply the Boltzmann probability exp(~xoP/n2) for the existence of state 

n by the probability that the state will be disrupted by the nearest ion, 

exP {(—r3/a3) [l + [j/(i + l)]1/2] j. This corresponds to a state n, de¬ 

fined by 

Xo 

n* 
= d(yr+r+\^): 

and a probability 
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r Fig. 3.2. Electrostatic potential \ of an isolated 

proton (7) and one in the presence of another 

ion (C) as a function of their distance r. The 

energy levels n = 3, 4, 5, and 6 are those of an 

isolated hydrogen atom. Curve C is for a density 

4X 10~6 g cm-3 or 2.4xl018 atoms cm-3. Levels 

above n = 5 are not populated 

where aj is the average distance of the ion of species j, defined by (47ra3/3)J\y 

= 1, where Nj is the number density of ions of charge je. If there are differ¬ 

ent ionic species present we form the product of the probabilities (assumed 

independent in a weakly correlated medium), and the exponential contains 

the summation |7r-^j [(* + 1)1//2 + j1^2} ■ 

As an example, this simplified model of pressure ionisation gives for 0'+ 

in a hydrogen-helium medium X = 0.7,1 = 1 — X = 0.3 a contribution 

exp(—0.0065n6p). The level with principal quantum number n = 2 is no 

longer populated above p = 2.4 g cm-3, and ionisation is total at about 

p = 15 g cm"3. 

A full treatment of pressure ionisation requires sophisticated methods of 

statistical physics. 

Electron Degeneracy. The use of Fermi statistics gives the relations below 

if we ignore relativistic effects (we discuss these later). Defining functions 

Fn{il)b y 

Fn(ri) 
xndx 

e* + V + 1 ’ 

the electron density, pressure, and internal energy are given by the relations 
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Pe = 

h3 ^ 

8 (2irmekT)5/2 

37T3/2 h* 1 

4 (: 27nnekT)5/2 ^ 

3/2 

7TJ 

and the total pressure is 

„ £pT 

P=~~ + P, + Pr, 
Ha 

where fxA is the mean molecular mass of the ions alone, Pe the electron 

pressure and PR = oT4/3 the radiation pressure. The degeneracy parameter 

V — ~ log 2 Neh3/(2-KmekT)zP 

defines the degree of degeneracy of the electron gas. Figure 3.3 shows the 

curve where electron degeneracy gives a contribution (APe/Pe)deg =0.1, 

and also the curve Pr/P = 0.1. We note that the degeneracy contribution 

is not negligible at the centre of the Sun. 

Collective Effects. In a weakly correlated low-density plasma the Debye 

wavelength is large compared with the distance between ions. There are two 

modifications to the equation of state from collective effects. 

Fig. 3.3. The (logT, logp) plane. The curves Pdeg/PG = 0.1 ,Pr/Pg = 0.1 are plotted, 

together with the p(T) relation for the central region of the Sun. The electron gas at the 

centre is weakly degenerate and radiation pressure is negligible 
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The first correction is due to the electrostatic interaction between 

charged particles. We have (Landau and Lifschitz, 1959) 

where Nl is the number of ions of charge in the volume V. 

The second correction comes from the quantum-mechanical interaction 

between electrons and ions, taking account of bound states of large quantum 

number and free or scattering states (hyperbolic electron orbits in classi¬ 

cal theory). The Planck-Larkin correction for a rarified, almost completely 

ionised medium, is 

6P PL 23/2NeNp\3HkTQPL , 

where Ne,Np are the electron and proton number densities, XH the thermal 

de Broglie wavelength 

A H 
7r h2 

1/2 

mnkT 

and Qpl is the convergent (Planck-Larkin) sum 

Qpl V 
k 

9 k k {e+l3Ek - 1 - (3Ek) 

gk is the statistical weight of state k, Ek being the ionisation potential. 

The quantity Qpl is due to Larkin (1960). Its importance comes from the 

fact that the bound states with energy close to the ionisation potential give 

a contribution to the total pressure which is compensated by free states 

(scattering states) of low energy. This modifies the Saha equation, which 

for pure hydrogen becomes 

N*N*e _ 0 (2ttmekTfl2 1 

N H 
h3 Q PL 

To find the number of hydrogen atoms in state k we should use the Boltz¬ 

mann formula 

^ = -exp (Ek-EQ 
Nh i 9 i % 

and take account of pressure ionisation for high quantum numbers. This 

becomes important for n > (E\/e2Nj^Y^2. This truncation, which only 

depends on the density, results from a completely different physical process 

from that assuring the convergence of the sum Qpl for n > E\/kT, which 

depends only on temperature. 
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The Planck Larkin formula has not yet been extended to denser me- 

ia requiring higher-order terms. Astrophysicists use the equation of state 

obtained by minimising the free energy given by summing over all contribu¬ 

tions and calculating the occupation probability for excited states in a more 

elaborate way than m Sect. 3.1.1. The most important results are those of 

Mihalas, Hummer, and Dappen (1988) for p < 1(T2 g cm"3 and T < 107 

K. The two equations of state agree for low densities, but the free-energy 

method has the advantage of simultaneously giving the energy-level popu¬ 
lations. 

3.3.2 Opacity and Thermal Conductivity 

In a static medium (v = 0) with a temperature gradient, energy is trans¬ 

ported bj radiation and thermal conductivity. The radiation contribution 

to the heat transfer is given by the expression for the radiative flux in the 

quasi-isotropic approximation 

FR = -\aT*d^^- 
3 dr nRp 

= —K R 

dr 

d7 

where kr is the opacity per unit mass of the material, given throughout the 

star (except for optically thin parts of the atmosphere) by the Ross eland 
mean, kr, with 

_1_ _ 1 

kr k -\- u 

dB, 

ku + ov dT 
d v 

dBv 

dT 

where is the monochromatic opacity and au the scattering coefficient (to 

a first approximation a = (87t/3){e2/mec2)2Ne = 0.19(1 + X). 

We must add the contribution from thermal conductivity, Kc, so that 

the thermal diffusivity is 

A — ^r(AR + Kc), 

where C is the thermal capacity of the medium. One of the characteristic 

stellar timescales is R2/K, where R is the radius, which gives the order of 

magnitude of the heat transfer within the star. 

Opacity. Calculations of opacity have been undertaken since the time 

of Eddington (192G). It is important to remember that it is the central 

temperature which, via thermonuclear reaction rates, leads to theoretical 

stellar luminosities. 

The main contributions to the opacity are bound-free, bound-bound, 

and free-free transitions. The first approximation uses absorption coeffi- 
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dents of isolated atoms of spedes j, ionisation state i, and a quan¬ 

tum state symbolised by n (standing for the full set of quantum numbers 

spedfying the state). We first need the weighting by population pJin of the 

level n for the atomic species j, Ttirnes ionised, and the abundance Nj of 

the element j. It is clear that the absorption coefficient depends 

on this abundance. In what we regard as the usual case (roughly, main 

sequence stars) we take this to be “cosmic” for heavy elements (CNO and 

above). In practice we choose certain conventional abundances which have 

to be modified when we consider very old population II stars. 

Analytic calculations are of no use in handling the ten or so elements (C, 

N, 0, Ne, Mg, Al, S, Ar, Fe) and numerous atomic levels. The behaviour of 

the Rosseland mean kr is complicated. Apparent jumps in kr are caused by 

the maximum of the weighting function dBu/dT crossing a discontinuity in 

the opacity as the wavelength of this maximum changes with temperature. 

A second effect is due the temperature and density, which together change 

the level populations. 

The second approximation involves collective effects. The electric field 

of the ions both changes the ionisation potential (similar to that discussed 

for pressure ionisation) and also, together with collisions, broadens the lines 

and raises the bound-bound opacity. The implementation of this second ap¬ 

proximation is more difficult than it appears at first sight, since we have to 

change not merely the ionisation potentials but also the atomic wave func¬ 

tions. Now opacity calculations require a knowledge of the atomic dipole 

moment f iptrip*j-dr where ^ and ijjf are the initial and final wave func¬ 

tions, and the calculation of wave functions perturbed by collective effects 

poses difficulties which have not been entirely overcome. There are two 

methods: one involves calculating the wave function in a sphere having the 

average volume occupied by an ion, the other involves calculating the wave 

function in a Coulomb potential screened by a Debye potential. Neither 

method is completely satisfactory, as they obscure statistical properties of 

the micro-field that the atom sits in. The micro-field-model method (Frisch 

and Brissaud 1971) avoids this difficulty and is being systematically applied 

to line broadening in the framework of the Opacity Project (Seaton). 

Thermal Conductivity. Calculating thermal conductivity in a plasma is 

not difficult, although the screening adopted for the Coulomb potentials 

requires care. In weakly correlated plasmas the main contribution to the 

thermal conductivity comes from electrons. With a diffusion coefficient 

jji (^)5/2 i 
3 7r eANiyJml log Ip/a 

aud (/d/u) — (yxAh) (8nNee~ / kT) 1 /2 where is Debye length, we 

get the thermal conductivity by multiplying D by the thermal capacity per 
unit volume C = 3NekT/2. 
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Foi degenerate electrons the mean free path is larger because after a 

collision the electron has to find a free state. This effect of Fermi statistics 

decreases the cross-section and thus raises the mean free path. Only elec¬ 

trons near the Fermi limit pF are able to find a free state after a collision. 

The number of effective electrons is thus equal to the fraction of electrons 

in the interval kT /2, where 

Ne(effective) _ 4:irp2FApF 3ApF 

with 

pFApF ~ mekT. 

The mean thermal energy per electron is no longer 3kT/2 but must be 

calculated for a degenerate gas. The average energy is 157ne(kT)2 / p2F and 

the mean energy per degree is Q = 30me(k2T/p2F). The product DNeQ is 

the thermal conductivity. 

Estimating the cross-section for electrons of energy (p2F/2me) and using 

the probability that the electron finds a free state after the collision, we 

have 

2mPe2 \ ~ mPkT 
2 1 2 ’ 

Pf ) Pf 

and finally the order of magnitude 

K cond 

3 l3 p k2T 

32 7r2 Am ft m2e4 

or 

-Econd — 6.4 X 10 
14(d/105 

A; 
-T7 

which agrees with more refined treatments of thermal conductivity (TV = 

(T/107 K)). 

Approximate Representation of the Opacity. The radiative opacity writ¬ 

ten as an interpolation formula 

KR = K0(l + X)ZpaT-3-s 

with a ~ 1 and s ~ 0.5 is known as Kramers ’ law. This form is often used. 

3.3.3 Thermonuclear Reactions 

The idea that the energy sources of the stars are nuclear in origin was 

first clearly stated by H. N. Russell (1919). The first calculations, due to 
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Atkinson (1931), used the results of Garnow (1928) on barrier penetration. 

Generally, if N{,Nj are the number densities of nuclei of species i and j, 

aij the cross-section, and vtj the relative velocities of two nuclei i,j, the 

number of reactions per unit volume and time is 

rij = NiNj (crijVij) ^ . > 

where 8ij is the Ivronecker symbol (8lt = 1, 8{j = 0, i yf j). The calculation of 

(crijVij) assumes Maxwellian velocity distributions and requires a knowledge 

of the cross-section as a function of energy. 

Generally we have to consider the following: 

— neutron capture (important only for late stages of evolution); 

— charged particle captures (protons, alpha particles); the calculation 

of (crv) differs according to whether we consider a resonant or non-resonant 

reaction (i.e far from resonance); 

— beta captures: reactions ZAX + e~ —> A~XX + v. 

We will examine the various reactions in connection with the evolution¬ 

ary phases where they occur. 

Reaction Rates. Between charged nuclei the main phenomenon is the 

crossing of the potential barrier. The cross-section thus has the form 

S'(7rAf)2exp (—2 f jr(2M\E — y|)1//2dx). For a Coulomb potential, V = 

(ZiZ2e2/r), and E = (F1Z2e2/r0) is the kinetic energy. We can write the 

cross-section as 

c(E)=^?xp(-(Ea/E)''2), 

where E<j is the Gamow energy 

/ V.irp" \ 2 

Eg = 
27re2Zi Z2\“ M 

n 

where M — M\M2/{M\ -\-M2) is the reduced mass. S(E) is a slowly varying 

function of energy which is determined experimentally where possible. 

The Maxwellian energy distribution exp(-E/kT) appears in the calcula¬ 

tion of the mean value (crv). The product {exp(-B/J-r)exp [-(£0/£)>/2]} 

has a well-defined maximum for 

E max 
^T2r2£Gy73 

The width of this maximum is 

91/3 

ae = _. 
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It is always small compared with Emax and the function in square brackets 

above can be replaced by a Gaussian to a very good approximation. The 

main term in the reaction rate is then 

_ NjNj{av) 

1 + Sij 

NiNj ( 2 \ 1/2 
— 

A£n 

1 + Sij\Mj (kT)3/2 
Sef[ exp 

3£0 

kT 

where 

E0 naZi ZokT 
Me 

9 \ 1 /212/3 

= En 

is the Gamow peak, and 

A£0 = 4(E0kT/3)^2 

is the width of the peak; 

E0 = 0.1220(Z12Z22A)1/3r92/3MeV, 

AE0 = 0.2368(Z*Z%A)1/(iT!;/6MeV, 

where A is the reduced atomic mass. The deviation from a Gaussian in¬ 

troduces a factor ^1 + _ IE ...Y which is always close to 

unity. 

Collective Effects. For a nucleus in a plasma the potential barrier is no 

longer described by a Coulomb barrier. For a weakly correlated plasma the 

potential of an ion of charge Zt is described by a Debye potential and the 

interaction energy W is given by 

w 
Z{Zje2 

r 
exp •> 

where /o is the Debye length, here given by the classical relation 

47re2p 

mu kT “ - t l l 

When the Debye length is large we can expand the exponential for small 

distances to first order, giving 

ZtZje2 ZiZje 
A ij — 

r Id 
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In the expression for the cross-section the energy E is replaced by E + 
ZiZje2/lD. Changing variables in the calculation of (av) yields the factor 

A = exp 
(ZiZje2\ 

\ Id kT ) 
> 1, 

which is an acceleration factor for the nuclear reaction rate. As an example, 

at the centre of the Sun, with X = 0.7, Y = 0.3 (and neglecting other ions), 

for the proton-proton reaction 

A = 1.053. 

If the plasma is not weakly correlated, the main term in the acceleration 

of the reaction rate, analogous to (ZiZje2/IpkT), comes from taking the 

limit as r —> 0 of the autocorrelation function (De Witt et al. 1973): 

<712 exp 
ZiZ2e2 

rk.T 
+ H12(r) 

and the classical limit is thus (with /3 = 1 /kT) 

' ZXZ2(3e2 
f = exp[f712(0)] = lim 

r—>0 
gi2(.r)exp 

For a nuclear reaction between two species of charges Z\, Z2 giving a com¬ 

posite nucleus of charge (Zi + Z2\ we have 

exp[iJ12(0)] = exp [n(Zx + Z2) - fi(Zi) - /u(Z2)] \ , 

where g(Zi) is the chemical potential of the relevant species, taking account 

of autocorrelation effects. The calculation of these functions for strongly 

correlated plasmas is given in the literature. 

Resonant Reaction. In this case the cross-section is given by the Breit- 

Wigner formula. If we denote the reaction i(j,k)l, the cross-section is 

a{E) = ttA2 
urZJrki 

(E-ER)2 + (r2/ 4)’ 

where A is the de Broglie wavelength for the reduced mass M, to = 
(2J + l)/[(2Ji + l)(2Jj + 1)J the statistical factor, in which J is the an¬ 

gular momentum of the composite nucleus, Jt and Jj the angular momenta 

of the incident particles i and j, and E the full width of the resonant level, 

of energy ER. If we integrate over a Maxwellian velocity distribution and 

the resonant energy is much greater than the energy of the Gamow peak, 

the reaction rate becomes 
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T'ij — (av) 
NjNj 

(1 + 8ij ) 

NiNj 
(1 + Sij) \MkT 

3/2 
Flcl 

s/tt H2u}-13~ Kl exp(-ER/kT) 

Obviously each reaction must be examined in detail to see what levels are 

involved and what is their width. The basic data are from experimental 

nuclear physics. 

3.3.4 Convection 

The condition for stability of radiative equilibrium is another basic physical 

datum, this time macroscopic. If this condition is violated, a. convective 

zone will appear (sometimes a semi-convective zone if there is a gradient of 

chemical composition). The physics of convection is discussed in Chap. 5. 

The standard description of convection is called mixing-length theory. 

This description completely ignores the fact that the boundary described 

by Vad = Vrad can be crossed by convective motions. In reality v does not 

vanish at this boundary and this gives convective overshooting, which we 

consider in Chap. 5. 

Example: The Main Sequence. In models of chemically homogeneous 

(ZAMS) stars the extent and location of convective zones depend on the 

mass and chemical composition. As an example we consider here a reference 

model with mass fractions X, Y, Z of hydrogen, helium, and other elements 

given by 0.71, 0.27 and 0.02. (This composition is called the Russell mixture 

- see Chap. 2). Figure 3.4 shows the fraction of the mass of the star occupied 

by one or two convective zones as a function of total mass. Between 0.36 

Fig.3.4. Convective zones. The abscissa shows the mass (logarithmic scale) and the ordi¬ 

nate the convective mass fraction, for main-sequence stars of population I. Below 0.3 M© 

the stars are fully convective. Above 1.2 M© a convective core appears 
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and 1.4 M© the stars do not have convective cores. Below about 1.2 M© 

the outer convective zone extends deeper and deeper into the star as the 

mass decreases, until all of the star apart from the radiative atmosphere is 

convective (at about 0.3 Mq). 

3.4 Stellar Structure 

The study of the internal structure of stars is closely linked to that of their 

evolution. Two major irreversible processes govern the evolution: the change 

of chemical composition in nuclear reactions, and mass loss, which at cer¬ 

tain evolutionary phases can have dramatic importance. Stellar-structure 

theory begins with the assumption that stars are chemically homogeneous 

at their formation. This assumption is based on modelling of the pre-main- 

sequence phase, in which the forming star has not yet ignited thermonuclear 

reactions and can release energy only by contracting under gravity. These 

stars are strongly unstable according to the Schwarzschild criterion and are 

fully convective. It is then reasonable to assume that convective mixing is 

violent enough to ensure chemical homogeneity. With the one exception of 

deuterium, which is destroyed above 600 000 Iv in the reaction D2(p, 7) 3He 

(see Sect. 3.4.1), the star arrives on the main sequence with the same com¬ 

position as the interstellar cloud from which it was born. 

Such homogeneous stars are then at the beginning of their evolution 

(ZAMS), and we devote the first part of this study to them. First classi¬ 

fied by Russell in 1915, the white dwarfs represent an endpoint of stellar 

evolution. We can understand them by use of the equation of state of a 

degenerate gas, even before studying the evolutionary processes giving rise 

to them. Stellar-evolution theory makes constant reference to white dwarfs, 

so we shall discuss their structure at the outset. We treat stellar-evolution 

theory from Sect. 3.5 onwards. 

3.4.1 Thermonuclear Reactions 

We consider here the dependence of energy production rates on physical 

conditions. As we are here concerned with the main sequence we discuss 

only the two cycles of reactions relevant to it for the moment. 

The pp Chain. The reaction networks are 

PP I I 
1H + 1H —> 2D -f e+ + z/e + 1.442 MeV - 0.263 MeV 

'H + ]H + e~ -f 2D + ue + 2.486MeV - 1.44MeV 

2D + 1H -> 3He + 7 + 5.493 MeV 

3 He + 3 He -> 4He + JH + *H + 12.859 MeV 
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pp II 

pp III 

3 He + 4He 

' Be + e~ 

7Li + 4H 

7 Be + 4H 

8B 

8Be 

' Be + 7 + 1.586 MeV 

7Li + ue + 0.S61 MeV - 0.80 MeV 

4He + 4He + 17.347 MeV 

8B +7 + 0.135 MeV 

8Be + e+ + ue + 17.98 MeV - 7.2 MeV 

2 4 He + 0.095 MeV 

The energy liberated includes the annihilation energy of the positron; the 

energy given with a minus sign is the average energy lost as neutrinos. As 

we shall see, energy production by this sequence of reactions dominates up 

to about 1.3 Mq. For lower-mass stars the central temperatures are too low 

for the reactions to proceed beyond the formation of 3He. 

In the Sun, the reaction network labelled pp I contributes about 85 % 

of the luminosity, group pp II about 15%, and pp III only about 0.015%. 

The slowest reaction is 1H(p, e+^e)2D. If the energy production rate is rep¬ 

resented as a power law, e ~ Tn, the exponent n is given by 

2 

For the Sun, with r = (33.3/T61/3) we have for T6 = 15, n = 3.83, and the 

mean liberated energy per reacting proton is 6.541 MeV. 

The CNO Cycle. For stars with masses above 1.2 Mq the carbon cycle 

dominates. The reaction network is 

12C + 1H^13N + 7 + 1.944 MeV 

13N 13C + e+ + ve + 2.221 MeV - 0.710MeV 

14N -f 1H —► 150 + 7 + 7.550MeV 

150 —> 15N + e+ + ve + 2.761 MeV - 1.000 MeV 

15N + JH 12C + 4He + 4.965 MeV 

(von Weizsacker 1938; Bethe 1939). Supplementary proton captures can 

occur: 

15N + 1H -»■ 160+ 7+ 12.126MeV 

160 + ]H -» 17F + 7 + 0.601 MeV 

17F -» 170 + e+ + ve + 2.762 MeV - 0.94MeV 

170 + JH -> 14N + 4He + 1.193MeV. 

The slowest reaction of the CNO cycle is 14N(p, 7)150. This fixes the 

reaction rate. The branching ratio between the two 15N reactions giving 

12C + 4He and 160 is 1/1200 and gives weak oxygen production. Carbon 

reappears at the end of the cycle and behaves like a catalyst. 

A power-law representation, with r = 151.92T6 ' , gives n = 19.7 for 

Tq = 15. Comparing the two approximate expressions 
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4 

c =97 Cpp ^ I 
100 

X 
T 

14 x 106 
erg g 1 s 1 

and 

eCN = 20 
pXh 

100 

T 
20 

15 x 106 
erg g 1 s 1 

we see that the energy production rates are equal at about (M/ Mq) 1-2 

on the main sequence. 

3.4.2 The Nuclear Timescale 

This is the characteristic time spent on the main sequence. For stars between 

about 0.3 and 10 M© it is reasonable to take this as the time to exhaust the 

central hydrogen content. If Q is the energy production per reaction and 

7iv the ratio £Centre/(£), the characteristic time is 

tN = YQ~ ’ L JN 

where Xy is the initial hydrogen content. Transforming hydrogen into he¬ 

lium via the CNO cycle produces about 25 MeV. The energy from the pp 

and related reactions depends on the temperature. If the 3He(3 He,2p)4 He 

reaction dominates, the yield is 13.1 MeV per pp reaction. At higher tem¬ 

peratures, where pp II dominates, the yield per pp reaction is 25.7 MeV. 

Finally, when pp III dominates, neutrino losses result in a yield of 19.1 

MeV. However, on the main sequence the carbon cycle takes over before pp 

II comes into operation. For an n = 3 polytrope and a reaction rate oc Tn, 

we have 7/v(n = 4) = 9.75 and — 16) = 3.10. In the carbon cycle 

Q = 0.0268 mass units per reaction, and for pp I, Q = 0.0140 mass units 

per reaction, the energy yield per reaction being Qc2. 

For the Sun, = 15.8 x 109 y. Using the mass-luminosity relation (see 

Sect. 3.4.4) we find for stars with masses M < 1.4 Mq 

t^ps = 1.6 x 10lo(M/M©n2 years 

and for M > 1.2 Mq 

tcN ~ 1O1O(M/M0)-3 years. 

3.4.3 Homology 

The idea of homology is that near a given mass, stellar models obey scaling 

laws involving powers of the physical quantities (.L,M,R, /c0,£0,/i). This is 

essentially a form of dimensional analysis. 

Even though homology xesults are only approximate and cannot in any 

way replace full numerical solutions of the structure equations, they give 
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valuable insight into the physical meaning of the solutions. They are mainly 

applied to chemically homogeneous (i.e. ZAMS) stars. 

The equations of hydrostatic equilibrium, transfer, mass conservation, 

and nuclear luminosity become proportionality relations: 

P ~ 
M2 

IF' L ~ p7'5 M7+S~a R3a~7~s K~x , 

with opacity k = K0paT~3~s, 

p ~ (M/R3), L ~ s0pnMn+2R~3~n , 

n ^eing the exponent of T in the thermonuclear reaction rate, expressed as a 

power law. Eliminating R gives a mass-luminosity relation. The agreement 

is reasonable for spectral types from B to G on the main sequence. It is poor 

for low and high-mass stars, where large parts of the structure are dominated 

by convection and the energy transport is not radiative as assumed above. 

Conversely, we can try to use the observed L(i?),_R(A/) relations to find 

the exponent n in the nuclear-energy generation rate. For spectral types G4 

to M, with L = 0.41Af“-3 and R = A/0'5, we find n = 3.6; for spectral types 

B-G , with L = 1.12AT3'9, R = A-/0 '5, we find n = 16.6. These results can 

be seen as confirming the thermonuclear nature of main-sequence energy 

sources. 

3.4.4 The Mass—Luminosity Relation 

Anticipating a result of evolutionary theory, we note that stars spend a 

long time very close to their starting point on the HR diagram. For a given 

spectral type this defines an interval of about one magnitude in luminosity 

and constitutes the main sequence. The stars for which we know L,R, and 

M simultaneously are not necessarily zero-age stars if M > 0.8 Mq, even 

if they are on the main sequence. It is clear that there is little possibility 

of detailed observational checks of the theory in this case. For masses less 

than about 0.8 ALq, however, the timescale for evolution is appreciably 

longer than the age of the Galaxy. 

Despite these restrictions, the quantitative predictions of the ZAMS 

L(M), R{M) relations constitute one of the most important tests of stellar- 

structure theory and a primary method of determining cosmic abundances. 

Comparison of evolutionary predictions with the data for star clusters gives 

a second major test of the theory. 

Low-Mass Stars. Stellar models using the standard treatment of convec¬ 

tion and the best theoretical opacities and equations of state are in good 

agreement with observation (Fig. 3.5). The models have conventional popu¬ 

lation I composition (X = 0.73, Y = 0.25, Z = 0.02). 



Fig.3.5. Mass-luminosity relation for low- 

mass stars. The curve gives the theoretical 

relation of H.C. Graboske et al. (19(3) 

Stars of Intermediate Mass. We mean here stars of 1 10 Mq. They are 

dominated by radiative regions but have small convective cores which grow 

with mass and surface convection zones which disappear above about 2 Mq. 

With a suitable power-law representation of the opacity, homology re¬ 

lations give a reasonably accurate mass-luminosity relation. Within the 

present errors on L, R, and M, stellar-structure theory accounts well for the 

observed ZAMS for intermediate-mass stars (Fig. 3.6). Forthcoming data 

(e.g. stellar seismology, Hipparcos data) will provide more stringent tests. 

domains (0.2 Mg < M < 1 Mg; 1 Mg < M < 30 Mq \ 30 Mg < M) 
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High-Mass Stars. High-mass stars are almost entirely convective and dom¬ 

inated by radiation pressure. The mass-luminosity relation follows from the 

condition for convective equilibrium in the form Vad = Vrad: 

1 P_ kL _ 1 

167rc PR GM 4 ’ 

where k — 0.19(1 + A) is the opacity, which here reduces to electron scat¬ 

tering. With P = PR we get 

{L/Lq) ~ 4.6 x 104(M/M0). 

The relation L ~ M is approximately correct (Fig. 3.6), but high-mass 

stars have such short lifetimes = 6 x 105/7n years) that the concept of 

the ZAMS is scarcely meaningful. 

3.4.5 White Dwarfs 

Russell (1915) pointed out the existence of a peculiar class of stars of faint 

magnitude and spectral type similar to A. The explanation of their struc¬ 

ture had to await the discovery of the equation of state of degenerate matter 

(1924) as an application of Fermi—Dirac statistics. White dwarfs have been 

the objects of systematic study (number counts, luminosity function, spec¬ 

tral classification) since Russell’s discovery. 

There are essentially two classes of white dwarfs: DA, with pure hydrogen 

envelopes, and DB, having little or no hydrogen in their atmospheres and 

possibly some trace heavy elements. White dwarfs in general are one of the 

endpoints of stellar evolution, the others being neutron stars and black holes. 

White dwarfs provide the classic application of the equation of state of a 

degenerate electron gas. Because reference to white dwarfs occurs constantly 

in every discussion of stellar evolution we shall treat them as a parallel 

to main-sequence stars, where the first approximation to the pressure is 

provided by adding perfect gas and radiation. 

Zero-Temperature Stars. For the moment we ignore the white dwarf’s 

atmospheric envelope (which produces its spectrum). Then the equation of 

state gives a mass-radius relation. Degeneracy dominates even quite close 

to the surface, and the size of the non-degenerate envelope is negligible 

compared with the stellar radius. If pR is the radius of the Fermi sphere in 

electron momentum space at zero temperature, setting 

PF 
x = - 

mec 

gives relations defining the equation of state at T = 0: 
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p = 
—Mo = 9.75 x lO5^'3 gcnU3 = Bx3 , 

3 h 

irmic5 

3 h3 
f(x) = 6.01 x 1022f(x) = Af(x) P = 

with 

jie = (A/Z), 

f(x) = x(2x2 - 3)(x2 + 1)1/2 + 3arcsinx . 

Using 

H = 8,t4(1+i2)-1/2^ 
dr dr 

and setting 

y2 = x2 + 1, 

y — y0ip (?/; = 1 at the centre of the star), 

G being the gravitation constant a = 
2A \ 1/2 1 

■kG 

r = ar), 

we get 

i a 

B</o ’ 

- - I „2*t ] = _ I V>2 - 
if dy y d y 1 [ Vo 

3/2 

The star’s surface is defined by x = 0, or f = (1/yo), giving the mass-radius 

relation for white dwarfs (Fig. 3.7). There are two asymptotic regimes. For 

y0 close to 1, or xq <C 1, the structure is that of an n = 3/2 polytrope, with 

x = xvf>, = 1 at the centre), 

A'1'2 

nG 
a — 

1 

Bx1,'2 ' 

r = ar) 

1 d T/A 

and 

r)2 di] di) J 

which gives a mass-radius relation (for //,e = 2) 

44 b244 = -v>3/2, 

- = 0.01275 . w 
Rq V -^© 

M 
-1/3 
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log R. 

log M, 

Fig. 3.7. Mass-rad ius relation for fully degener¬ 

ate white dwarfs. The curves are for (A/Z) = 

he = 1 and 2. (From E. Schatzman, White 

Dwarfs, North Holland Amsterdam 1958) 

When y0 approa.ches infinity (very dense stars) the star becomes a poly- 

trope of index 3. In this limit the mass is independent of the radius, which 

itself tends to zero: 

M = — (-e-) = 
£2 V d£ 

5.76 

R2e 
-M, © 

This mass (which takes no account of general relativistic effects, Chap. 8) 

is called the Chandrasekhar limiting mass. For ye = 2, M = 1.44Mq. The 

existence of this limiting mass is extremely important. It means that any 

degenerate star of mass above 1.44 Mq must collapse, in practice towards 

neutron-star or black-hole configurations. 

White dwarfs are below the main sequence in the Hertzsprung-R.ussell 

diagram (Fig. 1.10). Figure 3.8 shows the lines R — const, with an indication 

of the corresponding mass, using Chandrasekhar’s R(M) relation. 

Non-zero Temperatures. The temperature of white dwarfs is in reality 

non-zero, but the degree of degeneracy increases so rapidly towards the 

interior that we do not need to consider very deep layers before T = 0 

becomes a very good approximation. 

In the outer layers gravitational settling is extremely effective and oc¬ 

curs in a time short compared to the star’s age. In a DA white dwarf, 

hydrogen floats to the surface in the resulting equilibrium. The DB stars 

have very little hydrogen, and white dwarfs with metal lines have a convec- 
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Fig. 3.8. Position of white dwarfs on the Hertz- 

sprung-Russell diagram. The curves R = const 

are shown. (From M.A. Sweeney, Asiron. 

Astrophys. 49, 375 (1976)) 

five zone reaching to the degenerate interior, where gravitational settling 

is ineffective. This dredges up the metals and brings traces to the surface. 

Gravitational settling is discussed in Chap. 8. 

As an example we discuss a w'hite dwarf with a pure hydrogen atmo¬ 

sphere in radiative equilibrium before showing how effective gravitational 

settling is. 

The absorption coefficient follows a Kramers law: 

K = K0pT-3'5, k0 = 7.4 x 1022 cgs. 

The outer layers can be taken to have constant gravity: 

dP 
= -gp, 

dr 

and we approximate the pressure as that of a perfect gas, P = 

down to the point where it must be replaced by that of a non-relativistic 

degenerate gas, P = K\(p/pe)5^• The heat transfer equation is 

A (\ rA = -^VT-3-5T 
dr \3° ) 4trP2c 

and we find the solution 

{IB (Jjl V7’ 3 25 

P \3 *0 

We assume that degeneracy pressure takes over once it becomes equal to 

the gas pressure: 

KMi*')5'3 =XT. 

This gives a relation between luminosity and internal temperature for 

hydrogen-rich (DA) white dwarfs, 
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L = 
647T [X / /Cl 

3 Kn3? V » st> ) “T^3 ^Stefan GM , 

and the thickness <5r of the non-degenerate layer: 

St = 4.25 R2{&/GMii)*l\$t/Klfl1il\Ql1 ( 3k°L 
\647r<7Stefan 

2/7 

or numerically, 

7— — 1.2 x 10_6T63'5(M/Mo) , 
Lq 

% = 8.217 (R/R&)(M/Mey/'(L/L0)2/\ 

For a typical white dwarf such as Sirius B, R/Rq ~ 0.01 and L/Lq ~ 

10 3, giving the non-degenerate thickness as Sr/R — 0.01 and justifying a 

posteriori the assumption g = constant in the outer layers. 

In the white dwarf, interior heat is transported by thermal conductivity. 

In degenerate matter the mean free path of electrons is very long and the 

conductivity is high; the interior of a white dwarf is essentially isothermal. 

This gives an estimate of the cooling time tc■ We assume the available 

internal energy is Q = (the ions are a perfect gas: see Chap. 8) so 

that 

tc = 1.76 x 10-3(-L/Tq)-5/3106 years, 

which is of the order of 8 billion years for L = 10_4Tq. 

3.5 Stellar Evolution (The Standard Model) 

We shall denote as the standard model the evolutionary model of a non- 

rotating star with no mass loss and chemical mixing only in unstable regions. 

This model (which for some evolutionary phases is completely unrealistic) 

has two main uses; it is the reference model, and it is also of great help in 

studying models with mass loss. 

There are a number of important phases of evolution, and it is important 

to consider their physical significance rather than simply giving accurate 

numerical results. 

3.5.1 The Beginning of Stellar Evolution 

Starting from a uniform chemical composition, the transformation of hydro¬ 

gen into helium in the central regions forces changes in the star’s structure. 
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To follow these changes we have to study stars over the full range of masses 

and initial chemical compositions, from population I to extreme population 

n. 
For a star of mass less then 1.25 Mq, having a radiative core, the hydro¬ 

gen concentration decreases, and a near-isothermal core gradually forms. If 

only thermonuclear energy were available, the disappearance of hydrogen 

would imply £ = 0 and thus zero flux, and hence an isothermal region. In 

reality we have to allow for entropy production (3.5). To within a fraction of 

a per cent nevertheless the core becomes isothermal and energy production 

becomes progressively confined to a thin layer around it. 

For stars above 1.25 Mq an isothermal core also forms, by a rather dif¬ 

ferent route (core convection dies out as the Schwarzschild criterion fails). 

There have been many calculations of the various evolutionary phases, 

and the results are now well established. The close relation of the various 

quantities makes it quite difficult to identify the physical causes of the evo¬ 

lution, and such understanding is fairly recent. 

Evolution Close to the Main Sequence. Here we mean evolution during the 

formation of the isothermal core and its initial growth. In the early stages the 

core density increases so that the radius r enclosing a given mass mr shrinks. 

Hydrostatic balance at the boundary of the isothermal core requires pressure 

continuity there. In a simplified model where the chemical composition is 

discontinuous at the boundary, the density must be discontinuous too. For 

an initial population I composition X — 0.73, Y = 0.25, Z = 0.02, the mean 

molecular mass is pfi = 1.34 in the core and pje — 0.60 outside, a change 

by a factor 2.23. Simultaneously we move from zero temperature gradient 

(isothermal case) to one differing from zero. In the simple discontinuous 

model the exterior temperature gradient is 

(VT)/e 
d log T\ _ 3 5RT> K.pfeL _ 1 

d log P J 16-rracG pfe MrTj ne + 1 

where ne is the local polytropic index (outside the core). The density gra¬ 

dient V/> = dlogp/dlogP also has a discontinuity, from (Vp)y2 = 1 to 

(yP)fe = 1 - (VT)/e. This decrease in the density gradient at the bound¬ 

ary produces an increase in the star’s radius. As the mass of the isother¬ 

mal core grows the gravity at its surface increases and the scaleheight 

HP = -dr/d logP decreases. The mass of the exterior layers, reduced in 

volume by the temperature changes, decreases too. If qM is the core mass, 

a point arrives when the requirement Mcore = qM = M - Mext can no 

longer be satisfied. One might try to arrange a larger density at the core 

boundary in order to provide a suitable mass for the outer layers. But this 

would require a larger pressure and violate hydrostatic equilibrium. This 

signifies the stait of a new phase of evolution: the contraction of the core on 

a thermal (Kelvin-Helmholtz) timescale. The transition occurs at q = 0.13 
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for stars of about 1 Mg, and near q ~ 0.10 for stars above 3Mg; the differ¬ 

ence is caused by the onset of electron degeneracy in the cores of low-mass 

stars (Schonberg and Chandrasekhar 1942). 

Evolution Towards the Giants. Coi'e contraction raises the temperature 

at the boundary radius rf and thus raises the energy production rate. This 

higher luminosity and the opacity properties of the outer layers produce an 

expansion of the star, which evolves towards the giant branch. If radiative 

equilibrium were maintained the radius would tend to infinity. 

Comparison of models of different compositions and opacities shows 

clearly that it is not the growth of the isothermal core to the Schonberg- 

Chandrasekhar limit which causes this evolution to the giant branch. We 

give three examples here to show this: 

(1) Models with (Y, Z) = (0.28,0.01) and M running from 3 to 7Mq. 
These models all evolve similarly. After core hydrogen exhaustion the surface 

luminosity rises to a maximum and then decreases as the envelope expands. 

A significant fraction of the thermonuclear energy is used to produce the 

expansion, which involves a kind of thermal runaway. A similar runaway 

occurs after core helium exhaustion. 

(2) Models with (Y, Z) = (0.28,0.001) and M running from 3 to 7 Mg. 
The 3 Mg behaves as above. There is a thermal runaway and core helium 

burning starts when the star becomes a red giant. In the 5 Mg model the 

thermal runaway starts, but is quenched by core helium burning, and only 

proceeds once core helium is exhausted. In the 7 Mg model there is no 

runaway until core helium is exhausted. 

(3) In models of massive stars with non-conventional opacity, thermal 

runaway and expansion of the envelope occur even while hydrodgen is still 

burning in the core. 

We define the critical luminosity as that for which the thermal runaway 

begins. We can estimate it by neglecting the core radius Rc in comparison 

with the star’s radius. 

Assuming a Kramers law, the conductivity is 

4acT3 

3 Kp 

T ” rri6.5 — 2 
A0 T p 

This gives a p(T) relation 

167r GpK0 prriH 12 
P = 

17 L & 
rj-\ 1 3/4 

For very large radii there is a power-law solution 

P = Pc(r/Rc)~42/1\ 

T = Tc{r/Rc)-w'l\ 
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/ / t-> n —32/11 
p = pc{r/Rc) ' , 

M = Mc(r/Rc)+1/1\ 

with a mass that diverges very slowly. But for the implied polytropic index 

of 3.2 one finds 

1 M 

^c 447r R\ ’ 

_ 11 GMC pmH 

c ~ 42 Rc k ’ 

and thus a critical luminosity 

■ r, \ 15/2 ,,11/2 
G/irn // \ Mc 

L = 9.443/to 
b;/2 

or in solar units 

(£/£©)= 2490 

which is within about 5 % of the luminosity given by numerical calculations. 

Once the mass of the envelope becomes negligible we have the solution 

T _ GMiimH /I_1_\ 
“ 17 k \r Rj ’ 

where /?* is the stellar radius. Using the relation for the density, we find for 

/?*—>• oo a luminosity 

£max = 0.615/0 
15/2 M11/2 f M 

rV2 Mr 

or in solar units 

which is within about 30% of the numerical result. 

The star actually evolves rapidly to lower temperatures until the ex¬ 

tended radiative zone becomes superadiabatic (hydrogen ionisation) and 

the outer layers are thus convective. 

Population I Stars: The Hertzsprung Gap. In the HR diagram (B - V, V) 

for a cluster (open or globular), the distribution of the stars outlines the 

main sequence, the departure from the main sequence, evolution to the giant 

branch and first ascent of the giant branch. The least massive stars evolve 

slowly and are still on the main sequence, while the most massive stars in 
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V 
13 

NGC 188 

b) B - V 

Fig. 3.9. Hertzsprung-Russell (B - V, V) diagram for four clusters: NGC 188, M 67, 

NGC 752, and NGC 2360. (From A. Maeder, Astron. Astrophys. 32, 177 (1974).) The 

logarithmic age in years is given against the isochrones. The marks on the isochrones are 

separated by mass intervals of 0.02 Mg and give an idea of the frequency of stars for a 

constant initial mass function. Data: NGC 188 (Eggen and Sandage 1969); M 67 (Racine 

1971), NGC 752 (Grenon and Mermillod 1973), NGC 2360 (Eggen 1969) 

the cluster evolve rapidly and have had time to evolve further. Figure 3.9 

shows the HR diagrams for four clusters, NGC 188, M 67, NGC 752, and 

NGC 2360, whose ages are about 6.3 x 109,3.5 x 109,1.2 x 109 and 109 y. 

The distribution of stars in main-sequence evolution depends simultane¬ 

ously on the mass distribution along the sequence and the speed of evolution. 

The density of stars on the diagram is lower for more rapid evolution. At a 

given age, such as the cluster age tc, a low-density region implies great sen¬ 

sitivity to small mass differences (dV/dM or d(B — V)/dM large)) which 

is equivalent to rapid evolution. All of the HR diagrams show a zone of 

avoidance, the Hertzsprung gap, corresponding to core hydrogen exhaustion 

in models and the formation of an isothermal core. The star becomes more 

luminous and its effective temperature increases. 
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Fig. 3.10. Evolution of the convective core of a 1.25 Mq star. Central hydrogen concen¬ 

tration Xc and mass Mc of the convective core as functions of time. The convective core 

disappears once all the hydrogen is burnt. (After A. Maeder) 

This process occurs in stars of mass M > 1.25 Mq, which retain a con¬ 

vective core when near to the main sequence. Once the hydrogen content 

has dropped sufficiently, the radiative gradient (VT)rad approaches (VT)ad 

and the convective zone shrinks rapidly. The core thus changes from an 

n = 3/2 polytrope, corresponding to adiabatic convection, to an isother¬ 

mal sphere. This rapid change only takes a few per cent of the age of the 

cluster (Fig. 3.10). As the convective zone disappears the first effect is a 

slight expansion of both the core and the star, the adjustment of radiative 

equilibrium increasing the luminosity somewhat. 

The Hertzsprung gap has some characteristic quantitative features (Fig. 

3.11): (1) distance of the start of the gap above the main sequence; (2) 

distance of the end of the gap above the main sequence; (3) vertical extent 

Fig. 3.11. The five quantities charac¬ 

terising the Hertzsprung gap in a 

galactic cluster (see text) 
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of the gap; (4) horizontal extent of the gap; (5) position of the maximum of 

the subgiant branch. The properties of the Hertzsprung gap are a valuable 

indicator of the structure of stars with mass M > 1.25 M©. Standard models 

with X = 0.70,1 = 0.27, Z = 0.03 are not in accord with observation. They 

have too wide a gap with an upper edge too close to the main sequence. 

This seems to arise from strict use of the Schwarzschild criterion to define 

the convective zone. Taking account of convective overshooting and thus 

allowing a largei chemically homogeneous central region gives an isothermal 

core with a bigger mass. Shell burning begins more quickly, explaining the 

narrower width of the Hetzsprung gap. 

In a phenomenological model, Maeder (1976) assumes that overshoot¬ 

ing occurs over a distance of about 15% of the mixing length. Taking 

l/Hp = 0.5 this implies overshooting of the order of 0.07Hp. Clearly this 

approximation is valid only when Hp is smaller than the convective core 
radius. 

The Age of Galactic or Open Clusters. The onset of evolution to the giant 

branch is very visible on all cluster HR diagrams. The corresponding (B — V) 

colour index fixes the age of the cluster. The result naturally depends on the 

assumed chemical composition. Determination of the chemical composition 

is possible if the absolute magnitude of the cluster stars are known. With 

Z ~ 0.02, A' ~ 0.70, Y ~ 0.28 we get the following values (Maeder 1974): 

Cluster log10 age (years) 

Praesepe 8.9 

NGC2360 

NGC752 

NGC3680 

M 67 

9.0 

9.1 

9.1 

9.6 

Evolution Towards the Giant Branch. As the surface temperatures de¬ 

crease, hydrogen tends to recombine. The adiabatic gradient Vad = 

d logT/d logPad falls below the radiative gradient Vrad. The Schwarzschild 

criterion is satisfied and a convective zone forms, whose size grows rapidly 

as the core contracts. 

The properties of this convective envelope are essentially determined by 

conditions at its surface: gravity and effective temperature, and the opacity. 

The most important point is that the opacity k = k0paT^ increases very 

strongly with the temperature (/? ~ 10). 

Homology arguments allow us to follow the evolution of a star to the tip 

of the first giant branch. The reasoning is in three stages: the envelope is 

decomposed into two regions: an exterior one where ionisation is low and 

radiative transport dominates convection and an ionised interior one where 

convection dominates; these are then matched. 
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(a) Interior region. As convection dominates, the star is close to being 

adiabatic, and thus a polytrope of index 3/2 describes this region if we 

neglect the mass of the hydrogen-depleted core. The pressure-temperature 

relation is 

Pi = KjTj12 • 

The homology relations Pj ~ M2/R\Tj ~ M/R imply the homology 

relation for A/ 

Ki m-Wr-wv. 

(b) Exterior region. Radiative transport dominates. For constant mass 

and flux we can integrate the radiative equilibrium equation 

dTi 

dP; 167T acG «o Pe aYt 
3? 

/? —a n 

E M 

so that 

___/rpOt-{-l—P 

a + i -/r eff 

rpOt-\- 1 — (3 

1 E 
3 . (ayEElL 

167racG' "° o + 1 M 

and we see that the pressure tends to a constant (as long as radiative 

equilibrium holds). This comes from the rapid rise in the radiative gra¬ 

dient with temperature caused by the large value of the exponent 0. Using 

L/M ~ T^ff/g we see that the pressure Pbe at the base of the outer radia¬ 

tive zone is given by the homology relation 

Pbe 
rp—(/?—3 + ar)/(a+l) l/(a+l) 

~ ^ eff 3 

(c) Matching the inner and outer envelopes is achieved by assuming that 

the specific entropy is constant across the boundary. This gives another 

homology relation. Thus 

pi 
Si = kNj log + const, 

T T 

P 
Se = kNE log —~ + const, 

T 
5/2 

E 

where the ratio Ni/Ne is taken as the ratio of the numbers of free particles 

per unit mass. For the change from an almost completely ionised medium 

to an almost neutral one we have 

Nj 1 8X + 3 Y 
= *, 

4X + Y 

and we can write the homology relation 
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/ \ (1/0 
Pbi _ Pbe\ 

rp§/2 l rp§/2 I 
1 BI \ 1 BE / 

For — 0.7,1 = 0.30 we have 1/7 = 0.48. Taking a = 1 and f3 — 10 and 

eliminating, we find the homology relations 

Teff ~ M°-073ir0-055 , 

L ~ m0-291 R1-782 , 

L ~ M2-667TT32-585 
err 

This extremely rapid rise in luminosity for decreasing temperature is 

essentially due to the response of the convective zone to the change of opacity 

when Teff decreases. This behaviour agrees exactly with numerical results. 

The Tip of the Giant Branch. As the core contracts, its temperature 

increases. We have to consider two cases (Fig. 3.12). 

For masses belo w 2.25 Mq, the effects of degeneracy are dominant and 

the core evolves towards a strongly degenerate state. The temperature con¬ 

tinues to rise during the contraction until a new thermonuclear reaction is 

triggered, namely 

Fig. 3.12. Evolution of the core of a star in the log p, log T plane. Curves for M = 1 Mq 

and M = 2 Mq: the core becomes degenerate before helium ignition. The curves for 

M — 1 Mq and above lead to the carbon flash 
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4He + 4He + (99 =t 6 keV) <± 8Be 

8Be + 4He -*■ 12C* 

i2C* ^ i2C + 97 + (7.656 ± 0.001) MeV 

12C +4He -»■ 160 + 7 + 7.162MeV. 

At the high densities and temperatures T ~ 108 Iv prevailing in the core, 

this reaction runs away. The reason is that the liberated energy raises the 

temperature without significantly affecting the equation of state, which 

is dominated by electron degeneracy pressure. For a helium density of 

106 g cm-3, degeneracy is not lifted until the temperature reaches about 

109 K. Thus the density remains high, and the temperature grows because 

the thermal conductivity is too low to remove the heat at the rate it is 

produced. If K is the thermal conductivity and Rc the helium core radius, 

the energy equation is 

dT 

d t 
pe 

KT 

where we have reduced V2T to its order of magnitude T/R2C. Once pe ex¬ 

ceeds the diffusion losses the temperature runs away. 

(a) Reaction rate. Beryllium 8 Be formed in the ground state is 99 keV 

above the rest-mass energy of 2 alpha particles. The 8 Be nucleus is highly 

unstable and gives 2 alpha particles with a lifetime of order ICO1' s. A very 

small fraction of beryllium has the time to react and produce carbon. 

Carbon itself is formed in an excited state at 7.656 ± 0.00S MeV above 

the ground state1 (Fig. 3.13). 

The probability of returning to the state 8 Be + 4 He is much larger than 

the de-excitation of 12C* to the ground state. We may thus write two Saha 

equations for the populations of 8 Be and 12C*, which when combined give 

jV(12C*) = N 3 (4He) 
(m44?7?,48)3/2 (2nkTf 

exp 
Cxi + \2 ) 

kT 

where m44 = m2/(2m4) and m48 = (m4mg)/(m4 + m8), with m4 and m8 

the masses of the helium and beryllium nuclei respectively. The transition 

rate to the ground state is then 

dV(12C) 

dt 
v(12c *)£i±Im 

where Jly and r±/3 me the widths of the levels for transitions to the ground 

state via 2-photon emission or e+e~ pair emission. (/^ + r±/3) is of the 

1 The need for a resonant reaction 8Be + 4 He was pointed out by F. Hoyle (1956) in 

order to explain the presence of 12C in the Universe. The resonance was found a little 

later. This is a rare case of a physical prediction originating from astrophysics. 
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order 2.5 x 10“3 eV. We still have to consider displacements of these levels 

by collective effects. 

For weakly correlated plasmas collective effects displace the levels 

through the Debye potential, with the full effect 

/ = exp(2.25 x KrV/2T~3/2) 

for pure helium. 

For a strongly correlated plasma we can use the approximate expression 

for the displacement of the levels 

— = 0.205[(ZiZ2)5/3 - Zi/3 - ^2/3] (T 
kT \ pt 

and combine this expression for the reactions 2a —» 

giving 

8Be and 8Be+a 12C* 
5 

Uo_ 

kT 
1.6738(p/T3)1/3. 

We note that for the reaction 2a —> 8 Be the binding energy of beryllium, 

0.99 keV for a. pure helium density p = 7.1 x 10' g cm-3, is reached. Above 

this density beryllium 8 Be is stable and the calculation of the carbon for¬ 

mation rate is modified. 

(b) Thermal conductivity. We gave above on p. 103 the thermal conduc¬ 

tivity of a degenerate medium. We note here that the timescale for heat 

transport is short compared with the nuclear timescale. The assumption of 

a degenerate isothermal core is justified. 
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(c) Neutrino emission. Four main processes produce (v, v) parrs. Neutri¬ 

nos and antineutrinos pass freely through stellar matter (except during the 

formation of neutron stars; Chapter 8). Consequently neutrino production 

always constitutes an energy loss from the star. 

The four processes are: 

(1) Production of photoneutrinos in the interaction of a photon with an 

electron in the presence of an ion: 

7 + e- + (Z) —>■ u + u + e + (Z). 

This is a modified Compton effect. 

(2) Electron-positron annihilation: 

e+ + e“ —> v + v . 

(3) Plasmon-neutrino interaction: transverse plasmons (photons con¬ 

stantly interacting with the plasma.) or longitudinal plasmons (plasma 

waves) spontaneously transform themselves into (u,u) pairs: 

plasmon + plasma —> v + v + plasma. 

(4) Bremsstrahlung: a decelerated electron produces a (i/,z7) pair: 

e T (Z) —> e -p (Z) T u u . 

Figure 3.14 shows where the various processes dominate in the logp, log T 

plane for a fully ionised Fe plasma. 

logp 

Fig. 3.14. Neutrino production domains in the log T, logp plane for a fully ionised Fe 

plasma (After G.G. Festa and M.A. Ruderman, Phys. Rev. 180, 1227 (1969)) 
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Fig. 3.15. Energy loss rate via neutrino emission. (After G. Beaudet et al., Astrophys. J. 

150, 979 (1967). Reproduced by kind permission of The Astrophysical Journal, published 

by The University of Chicago Press; © 1967 The American Astronomical Society). The 

curves are labelled by the value of kT/mec2 

At high temperatures and low densities the electron-positron annihila¬ 

tion process dominates, with 

T 
e (pairs) ~ 1010 — . 

P 

At high density and moderate temperatures bremsstrahlung dominates, 

with 

Z2 f T \6 

e (brems) ~ 0.76t (^j . 

The plasmon-neutrino contribution in the intermediate domain has no 

simple analytic representation (Fig. 3.15). 

These energy losses are significant at some epochs of stellar evolution, 

essentially after the formation of a carbon-oxygen core. The neutrino loss 

rate completely determines the conditions for the runaway of the 12 C + 12 C 
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reaction but is totally negligible for deciding the stability of the 3a -> C 

reaction. Runaway occurs if peRc = AT. 

Replacing Rc by the order of magnitude estimate 

Ivr R3cp = qM, 

where q is the mass fraction of the helium core, we can calculate approxi¬ 

mately the helium ignition curve (Fig. 3.12). 

At maximum, the luminosity due to the 3a * C reaction reaches 

L ~ 1011 Lq. This energy does not leave the star but remains in a convective 

zone which reaches almost to the hydrogen-burning shell. The temperature 

rises until degeneracy disappears. The connection between temperature and 

pressure now permits a new equilibrium: the helium core expands and cools, 

and helium burning continues as in more massive stars. 

For masses above 2.25 Mq the temperature and density of the helium 

core rise without any onset of degeneracy. Evolution then proceeds with 

core helium burning and shell hydrogen burning. The main effect of helium 

Fig. 3.16. Evolutionary track for a 5M® star, without mass loss or mixing, in the HR 

diagram. (From I. Iben, Jr., Ann. Rev. Astron. Astrophys 5, 573 (1967). Reproduced 

by kind permission of Annual Reviews of Astronomy and Astrophysics; (c) 1967 Annual 
Reviews Inc.) 
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burning is an expansion of the core which modifies the conditions in the thin 

hydrogen-burning shell and reduces the luminosity. Helium burning expands 

the core, but the main luminosity source is always hydrogen shell burning. 

To maintain equilibrium between the luminosity produced and that emitted 

the outer layers contract as the core expands, causing the outer radius of 

the star to decrease and the effective temperature to rise (from about 4000 
to 8000 K). 

Core helium exhaustion produces the same type of left—right- left oscil¬ 

lation across the HR diagram, followed by a new expansion towards the red 

supergiants. The main energy source is now helium shell burning. The core 

becomes degenerate, and neutrino losses stabilise the 12 C - 12 C reaction 

(Fig. 3.16). 

The Horizontal Branch. After the helium flash and the formation of a non- 

degenerate helium-burning core, a star of mass M < 2.25 M© returns to a 

lower luminosity, about 30 —IOOTq, but its position in effective temperature 

depends strongly on its chemical composition. 

The beginning of the zero-age horizontal branch (ZAHB) is easily vis¬ 

ible (Fig. 3.17) in the HR diagrams of globular clusters (population II). 

For young population I stars (Hyades type) it overlaps the ascending giant 

Fig. 3.17. Horizontal and asymptotic branch for two population II chemical compositions. 

The solid curve is the ZAHB, with masses marked along it in solar units. The mass of 

the helium core is taken equal to the mass of degenerate helium before the helium flash. 

The later evolution is indicated for some masses by a continuous curve (slow evolution) 

or dashes (very rapid evolution). In the second slow phase of evolution helium burns in a 

thick shell and hydrogen continues to burn in a thin shell. The marks on the tracks are 

at intervals of 10' y. (From S.E. Strom et ah, Astron. Astrophys. 8, 243 (1970)) 
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branch. A simple homology argument at constant luminosity relates the ef¬ 

fective temperature to the heavy-element abundance. With opacity oc pT 

we have TefT ~ Z^+3)/2. For Z = 0.0001 (old population II) to Z = 0.02 

(young population I) we find Teff(I)/Tefr(H) = 0.64 and 0.41 for 0 = 3 and 

0 = 0 respectively. Temperatures differing by about a factor of 2 are in¬ 

deed found between the ZAHB for young population I and and that for old 

population II. 

Intermediate-Mass Stars. This mass range is conventionally defined as 

that of stars which in the absence of mass loss would reach carbon or oxygen 

ignition in a degenerate core. For population I stars this means stars of init ial 

masses between 1.4 (the Chandrasekhar limit) and 10 Mq. 
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As we have seen, for stars of mass M < 2.25 Mq the helium core becomes 

degenerate before helium burning starts. Once a composition discontinuity 

and hydrogen shell burning appear, all stars evolve to the giant branch 

(Fig. 3.18). The reason is the same in each case: the shell source causes a re¬ 

duction of the radiative gradient, equivalent to an increase in the polytropic 

index, which results in an expansion of the outer layers. 

After the excursion to temperatures ~ 4000-5000 Iv, the evolution be¬ 

comes very complicated. The main features are: 

(1) The occurrence of thermal instabilities. 

(2) Crossing of regions of pulsational instability (Cepheids for popula¬ 

tion I stars with masses above about 5 M©; RR Lyrae stars for low-mass 

population II stars). 

(3) Mass loss in a stellar wind. This is an important phenomenon to 

which we shall return (Chap. 4); it is poorly understood. Simple reasoning 

shows its importance if we refer to Fig. 3.12. After core helium burning, 

stars between 2.25 Mq and ~ 8-10 ACq form a degenerate carbon-oxygen 

core. As it contracts this core enters a regime where a runaway of the 12 C 

- 12C reaction can occur because of screening, because the neutrino losses 

cannot cope with the thermonuclear energy production rate. 

In the absence of mass loss this would mean that all stars of mass above 

1.4 Mq would explode at the end of their evolution. Let us assume that 

20 Mq currently forms into stars each year in the Galaxy. With a Salpeter 

initial mass function diV = KM~235dM and a lower mass cutoff of 0.01 Mq 

we find a supernova rate for stars of mass above 1.4 Mq of dAgxp] dt = 

(2.8)-1 per year. If on the other hand we suppose that supernovae only 

occur for masses above 10Mq, this rate becomes one per 39 years, close to 

the usual estimate of one per 50 years in the Galaxy. 

We shall return to the evolution of intermediate-mass stars in Sect. 3.7 

on mass loss. 

Massive Stars (AT > 10 AFq). The cores of these stars are non-degenerate 

at carbon ignition. The effect of the feedback 

nuclear reactions 

— heating 

— expansion 

— cooling 

— reduced reaction rate 

stabilises carbon burning. These stars also produce stellar winds which in¬ 

fluence their evolution even before they reach the giant branch. 
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3.6 The Sun 

The importance of studies of the Sun’s internal structure lies not merely in 

its intrinsic interest but also in the possibility of testing some of the funda¬ 

mentals of the theory, both physical and astrophysical. This is because of 

the precision of the data (mass, luminosity, radius, age, and results specific 

to the Sun such as helioseismology and neutrinos), as well as the very ac¬ 

curate spectroscopy which is possible (abundances of 3He, Li, Be). It is 

also important to compare solar results with those for stars of similar mass 

(especially in the Hyades), providing a stringent test of the theory. 

3.6.1 The Basic Model 

The basic solar model requires the best input data for opacities, equation of 

state, nuclear reaction rates, and a model of the outer convection zone in¬ 

volving the parameter a = l/Hp giving the mixing length. We take initially 

uniform chemical composition and calculate a model assuming no mixing 

of chemical elements. We let it evolve up to t = 4.6 x 109 y (the Sun’s age) 

and compare calculated and observed quantities. The chemical composition 

(A", y, Z) may be modified, as well as the mixing length. 

We have to adjust the three parameters (A,Y,Z) so as to obtain the 

present mass, luminosity, and radius for the Sun. However, the primordial 

heavy-element abundance Z cannot be chosen freely because of the “cosmic" 

abundance of elements, such as results from the abundance ratio (Si/H) in 

the Sun and (other elements/Si) on the Earth and in meteorites. The choice 

of Z is thus restricted to a very small range. Near M = 1.25 Mq (log 

M ~ 0.1) we have Alog L = — (2.5AA" + 13AZ), allowing Z-variations of 

the order of 0.001 only. 

Lebreton and Maeder (1986) chose Z — 0.02 and got the values below 

for a model with a = 2.2 (this value is discussed later) and no mixing. 

3.6.2 Solar Neutrinos 

The reactions of the pp III chain (Sect. 3.4.1) are very sensitive to the tem¬ 

perature. The temperature dependence of the 3 He, 7 Be abundances and 

the production rate of boron (SB) shows that the main contribution to the 

high-energy neutrino flux (8B radioactivity) varies like T20. A very small 

temperature difference changes the neutrino flux considerably. 

The first estimate of the neutrino flux (195/) was very large. An attempt 

to measure these neutrinos through the reaction 

37C1 + l/_37A + e- 

followed by measurement of the radioactivity of argon 37 A, 

37 a , 37 r\ . -f , 
A —>• C + + v , 
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Table 3.2. Solar evolution calculated for 7 = 0.287, a = 2.2, Z = 0.02 (Lebreton and 
Maeder 1986) 

Age (109 y) 1 L log — log Tit log Te log pc x< 

0.000 - .191 3.745 7.134 1.879 .693 
0.118 - .154 3.748 7.130 1.902 .688 
0.198 - .145 3.750 7.132 1.918 .683 
0.326 - .139 3.751 7.133 1.928 .675 
0.838 - .123 3.752 7.138 1.952 .640 
1.350 - .108 3.753 7.144 1.977 .602 
1.862 - .092 3.755 7.151 2.004 .563 
2.374 - .076 3.756 7.158 2.032 .524 
2.886 - .060 3.758 7.165 2.062 .484 
3.398 - .043 3.759 7.173 2.094 .443 
3.654 - .034 3.760 7.177 2.111 .423 
3.910 - .025 3.760 7.181 2.128 .402 
4.140 - .017 3.761 7.185 2.144 .383 
4.371 - .008 3.762 7.189 2.160 .363 
4.601 .000 3.762 7.193 2.178 .344 

was made underground, using chlorine in the form of C2CI4, the standard 

industrial solvent. The first detector weighed 2 tons. Improvements in so¬ 

lar models soon produced a better estimate of the expected neutrino flux. 

With a detection threshold Q = 0.816 MeV, the use of chlorine only allows 

detection of beryllium and boron neutrinos. Davis’s experiment, installed in 

1964 at a depth of 1500 metres in the Homestake gold mine at Lead (South 

Dakota) started to get significant results during the 1970s. If cr(Eu) is the 

37C1 cross-section as a function of energy and (j)(Eu)dEu the flux of neu¬ 

trinos, the integral 4>v — j a{Eu)dElJ gives the capture rate per atom. The 

cross-section a is very small, of the order of 10-44 cm2 *, leading to the intro¬ 

duction of the solar-neutrino unit (SNU) which is one neutrino per second 

per 1036 atoms. Davis’s result is </>„ = 2.1 ±0.3 SNU 2 while Bahcall’s models 

predict </>„ = 7.5 SNU, and the most recent model of Lebreton and Maeder 

predicts 8 SNU. These predictions are clearly affected by uncertainties in 

the opacities (which fix the Sun’s central temperature) and cross-sections. 

Without going into details it appears impossible to adjust the models so as 

to predict fluxes below 5 or 6 SNU. We shall see that helioseismology gives 

insight into conditions in the solar interior and allows a check of the models. 

3.6.3 The Solar-Neutrino Deficit 

The deficit of solar neutrinos poses a difficult and important problem for 

physicists and astrophysicists. Discussions of it start from the temperature 

sensitivity of the reaction ' Be + p —>8B + 7, so that the neutrino flux 

2 Davis’s 1988 measurements gave a flux of 4 SNU, but the flux appears to have decreased 

in 1989. The variations of the neutrino flux are not understood. 
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^(8B) goes as T20 near T = 1.5 x 107 K. In the standard model this reaction 

gives only 0.015 % of the solar energy production. Thus the assumption of a 

different beryllium reaction rate has no effect on the solar model. We have 

the choice of two strategies: we can assume the central temperature correct 

or not. 
If Tc is correct then either the cross-section for ' Be(p, 7)8B is overesti¬ 

mated or something happens to the neutrinos between the Sun and us. 

If Tc is wrong there are various possibilities: opacities, pp reaction rates, 

various structural effects or (see below) new physics. 

We summarise the discussion below, stressing the essential objections. 

Hypothesis I: The Models Give the Correct Central Temperature, (a) The 

(7Be, p)8Be cross-section is too large. This seems unlikely: we are extrapo¬ 

lating experimental data to low energies, and a change by a factor 3 is ruled 

out. 

(b) The neutrino deficit is caused by a property of these particles. 

In 1967 Pontecorvo suggested that neutrinos might have a mass, allow¬ 

ing oscillations between different species, for example electron neutrinos ve 

and muon neutrinos This would be analogous to the oscillation of K- 

mesons between the two varieties K\, if2 because of a small mass difference 

((mj — m2) ^ 5 x 10-5 eV, compared with the K meson mass 497.8 MeV). 

We shall examine the consequences of this idea below. Whatever the cause, 

the origin of the neutrino deficit in Davis’s experiment can only be found by 

other experiments with different detectors. The capture of ue by the reaction 

71Ga + vt -> 71Ge + e~ 

with a threshold of 0.25 MeV will allow detection of neutrinos from the pp I 

chain, whose number is directly related to the solar luminosity and thus 

model-independent. The standard solar model predicts a flux of about 130 

SNU. If the deficit in the Davis experiment is not due to neutrino prop¬ 

erties there should be a pp I contribution of about 90 SNU. Underground 

experiments using gallium for neutrino counting have been started (SAGE: 

a Soviet-American cooperation in Baksan, Caucasus, and GALLEX, a Eu¬ 

ropean collaboration in Gran Sasso, Italy. The results of the two gallium 

experiments came recently into agreement, giving a neutrino flux of S3 i IS 

(error bar) ±8 (systematic errors) SNU (published by the GALLEX coop¬ 

eration, 1992). This represents about 2/3 of the predicted flux. 

The underground Kamiokande experiment in Japan detects neutrinos 

above 8 MeV, making use of the Cerenkov effect produced in a. pool of 2000 

tons of water by electrons projected by collisions with solar neutrinos. The 

measured flux is of the order of one half of the predicted one 
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Hypothesis II: The Central Temperature of the Models Is too High. 

A temperature error could have one of several causes: 

(a) Opacities. Lower opacity gives a. lower central temperature. For a 

Kramers law ac = KQpT 38 a homology argument gives 

<M37 ci)-kS/3. 

The desired factor 3 implies a reduction in the opacity by about 35 %, 

whereas all improvements in opacity calculations over the last 20 years have 
led to increases. 

(b) Thermonuclear reactions. An increase in the cross-section for 

p{p,ve )2 D would reduce the central temperature. The 1/3 reduction in 

the neutrino flux would need an increase of this cross-section by about 50 %. 

The theoretical cross-section is well known, and its only uncertainty is the 

neutron lifetime; this does not allow such a large change in the cross-section. 

(c) Magnetic fields. Strong magnetic fields in the Sun’s centre would 

reduce the gas pressure and thus the central temperature. To reduce the 

central temperature by 5 % requires a field of about 108 G. Such a field 

would prduce many types of instability, rendering its presence doubtful. 

(d) Diffusion. Turbulent diffusion, more efficient than atomic diffusion, 

could bring more nuclear fuel into the core, such as 3He and JH. This would 

reduce the temperature and thus the boron neutrino rate as required. How¬ 

ever, this process of turbulent diffusivity is easily inhibited by a composition 

gradient, and (see Chap. 6) the resulting composition distribution is incom¬ 

patible with data from helioseismology. 

New Physics, (a) New particles. Particle physicists have proposed new 

weakly interacting particles on the basis of symmetry arguments. “Dark 

matter" has been suggested as a manifestation of them. A small number of 

them in the Sun would transport heat and reduce the central temperature, 

and hence the boron neutrino flux. Such new solar models have several free 

parameters (cross-section, mass, lifetime, etc. of the new particles). With 

the parameters adjusted to fit the solar-neutrino observations these new 

particles should be detectable in underground experiments at present in 

preparation. 

(b) Massive neutrinos. Measurement of neutrino fluxes as functions of 

distance from nuclear reactors should reveal the oscillations. Neutrinos pro¬ 

duced in the reactor are electron neutrinos; during propagation some of 

these transform into muon neutrinos, which are undetectable. If we assume 

two eigenstates zq, zq of masses mi,m2 which differ from the ue,istates, 

the oscillations are caused by phase mixing between the two states, or in 

atomic units 

&Pu 

dt 
— E\ — E2 pl + mf + m22 P‘ 

m 7 — m‘ 

ip 
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In the usual units the characteristic length is given by 

L = 
2 hE 

= 248p /Am2(eV2) cm . 

In propagation in vacuo 

P(ue —> : = 1 — sin2 2# sin2 —r- , 

A m2c3 V c / 

the transformation probability z/e —> ^ is giyen ^3 

TTX 

1 

where 6 is the mixing angle of the two species. Only an upper mass limit of 

about 10 eV has been found. 
In matter the interactions (i/ee)(i/^e) alter the length of the oscillation. 

In a constant-density medium with 

In = 
2n 

1.624 x 109 cm/p, 
a/2 GNe 

where G is the Fermi coupling constant, Ne the electron number density in 

cm-3, and p the electron density in units of Avogadro’s number, the new 

oscillation length is 

-1/2 

' l.. ( L. \ ~ 
Im = h 1 — 2-/- cos 26 + 

<o 

and we define a new mixing angle 

sin 29 
tan 26 m — 

,/M' (cos 26 

The most interesting case for solar neutrinos is that for m-2 > m\. In 

this case there is a sort of resonance if the central density exceeds a certain 

critical value; this resonance is important if the gradient is not too steep, 

and in this case the transformation of the ve is conserved. There is then 

some suppression of the neutrino flux for neutrino momenta in 

7.5 x lO4 
MeV\ / Am2 
- cos 26 -T c V 1 eV2 

< P 

Am2 
< 2 x 108 sin 26 tan 26 

V c J V1eV 

corresponding to masses near Am2 ~ 10~6 eV2. 

From these calculations we can use the representation (sin220, Am2) 

to plot the fluxes </>„(3' Cl), </>,,('1 Ga). The experimental results for gallium 

could determine the mixing angle and the mass difference for the two neutri¬ 

nos (Figs. 3.19a and b). It is easy to see in Fig. 3.19a. that two small areas in 

the plane (sin2 26, - Am2) fit, the constraints of the experimental data, with 

a mass of neutrinos of the order of (10-5 eV2)1/2. However, one should keep 

in mind that we do not yet have a final solar model and we cannot exclude 

the possibility of explaining the observations with zero-mass neutrinos. 
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Fig. 3.19. The solar-neutrino flux in the mass-diflference-mixing-angle plane (logarithmic 

scales for Am2 in eV2, and for sin22l9). (a) gives the curves of 2.6 SNU and 1.4 SNU 

for the chlorine experiment, and at A—G the fluxes for the gallium experiment; (b) gives 

the predictions for the curves of fluxes 25 SNU, 70 SNU, and 105 SNU for the gallium 

experiment. (After J. Bouchez et ah, Particle Physics and Fields, 32, 499 (1986)) 

3.7 Evolution with Mass Loss 

In Chap. 4 we shall discuss the observational data for stellar winds and 

mass loss and their theoretical interpretation, which can have considerable 

importance. In the following we shall assume that mass loss occurs at a rate 

determined by the star’s parameters. 

The basic fact is that the wind’s mechanical luminosity |Mv^ is always 

small compared with the radiative luminosity. This means that we can use 

the results already found for static models (e.g. luminosity, radius, envelope 

mass as a function of core mass) to follow at least approximately the tra¬ 

jectory of a star in the HR diagram. Clearly the aim is to bring theory into 

agreement with observation. We shall distinguish between the evolution of 

low-mass stars (particularly population II stars, where we wish primarily to 

determine the ages of globular clusters), the evolution of intermediate-mass 

stars (particularly to the white-dwarf state) and the evolution of massive 

stars (Wolf-Rayet stars and evolution to a supernova). 

3.7.1 The Age of Globular Clusters 

Before attempting any age determination, it is important to identify the 

evolutionary states of the various families on the colour-magnitude diagram. 
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Fig. 3.20. HR diagram for globu¬ 

lar clusters. Names of the var¬ 

ious evolutionary stages. (From 

A. Renzini, Course at Saas-Fee 

1977, ed. by A. Maeder and P. 

Bouvier, Observatoire de Geneve) 

Figure 3.20 defines the relevant nomenclature for M92. We distinguish the 

main sequence, the knee where evolution to the giant branch begins, the 

red-giant branch (RGB), asymptotic giant branch (AGB), the horizontal 

branch (HB), and the instability strip containing the RR Lyrae stars. Clearly 

these regions are not straightforwardly related to the chronological order of 

evolution. 

At first sight it appears that the method used to find the age of open or 

galactic clusters will work also for globular clusters; we could calculate the 

isochrones and compare them with the observed (B — V,V) HR diagram. 

The mass of the stars at the knee of the main sequence where evolution 

to the giant branch begins should give the cluster age. The problem with 

this method is that the colour indices of stars with large convective zones 

are very sensitive to both the modelling of the convective zone and the 

metallicity. Adjusting the isochrones does not simply involve a vertical shift 

(in magnitudes), because the horizontal position (in B — V) is uncertain. 

Because of the great age (> 1010 y) of globular clusters, which are pop¬ 

ulation II objects, the knee ol the main sequence corresponds to low-mass 

(< 1 Mq) stars. Comparison of the observational data with models thus in¬ 

volves low-mass stars having few heavy elements but probably a primordial 

helium content which is the same for all clusters. Because we know little 

of the circumstances under which the clusters formed we cannot take them 

to have the same metallicity. Given their present compositions we assume 
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Fig. 3.21. Hydrogen and helium content as a function of mass fraction for a 1 Mg star at 

the end of its main-sequence lifetime 

that they were formed from a medium which was only weakly enriched by 

nucleosynthesis: the abundance of CNO and heavier elements (formed in 

primordial nucleosynthesis) being extremely small. 

Before discussing low-mass stellar evolution we summarise here the main 

features of the evolution of a low-mass star. 

(a) After core hydrogen exhaustion the star evolves towards the giant 

branch, and then along the RGB. At the end of its main-sequence evolution 

the helium concentration has changed in a significant fraction of the star 

(Fig. 3.21). On the RGB the surface convection zone fills more and more of 

the star, while the hydrogen-burning shell moves slowly outwards (Fig. 3.22). 

The convection dredges up the helium formed on the main sequence (first 

dredge-up) and enriches the helium content of the outer layers, which is 

important for the interpretation of the RR Lyrae stars (below). 

An important quantity is the luminosity at the knee of the isochrones. 

A wide grid of models yields the interpolation formula 

log Tknee = (0.019 log2 Z + 0.065 log Z + 0.41 Y — 1.179) log tg 

+ 1.246 - 0.028 log2 Z - 0.272 log Z - 1.073 Y, 

where tg is the age in billions of years. This formula holds for —4 < logZ < 

-1.4; 0.2 < Y < 0.3; 0.2 < t9 < 25. 

(b) The central density grows as the star evolves towards the tip of the 

giant branch. Energy loss via neutrinos from the central regions increases, 

lowering the central temperature slightly. Once the temperature and den¬ 

sity allow the 3a —A2C to become unstable, the helium flash occurs at a 

certain radius where M(ignition)~ 0.2 Mg. The helium flash partly lifts the 

degeneracy of the core layers outside this radius (Fig. 3.23). There follows 
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Fig. 3.22. Lower boundary of the convective hydrogen zone (CHZ), and the radius of the 

hydrogen shell source (HSS) around the isothermal core, as functions of the isothermal 

core mass for a 0.7 Mq population II star with Z = 10~4 

quasi-static, calculated by Mengel 

and Sweigart.. (a) Mass of the con¬ 

vective zones (hatched) as functions 

of time; the first convective layer (af¬ 

ter the strongest helium flash) is too 

short (~ 103 y) to be resolved; (b) 

surface luminosity L, hydrogen shell 

luminosity Lh and helium-burning 

luminosity L//e as functions of time. 

(From I. Iben and A. Renzini, Physics 

Reports 105, No. 6, 329-406 (1984). 

Reproduced by kind permission of 

Elsevier Science Publishers) 
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a series of flashes until one occurs at the centre and completely lifts the 

degeneracy (Fig. 3.23). The order of magnitude of the luminosity at the tip 

of the RGB is given by 

log L (flash) = 3.31 + 0.09(3 + log Z ) + 0.45(Ar - 0.7) - 0.16(M - 0.8). 

At this point about 5 % of the helium has been transformed into carbon. 

During evolution to the tip of the RGB moderate mass loss has started. For 

a 0.8 Mq star at the base of the RGB the mass loss is about 0.2 M©. The 

time spent by a star on the RGB above luminosity L is 

fRGB = 1.47 x 109 T“°-84(103Z)“0 04 ( — 

and a Reimers-t.ype mass loss rate (Sect. 4.3.4) has parameter 

Vr = 0.35, 

which is fully compatible with the observed mass loss. 

(c) Core helium burning signals the beginning of horizontal-branch evo¬ 

lution, at the blue side of the RR Lyrae instability strip. 

Helium burning in the convective core raises the carbon and oxygen 

content, and thus the opacity. Defining the edge of the radiative zone by the 

stability condition (Vrad —Vad)e < 0 at the outer boundary of the convective 

zone, we see that the chemical discontinuity as one crosses towards the 

interior of the convection zone implies a discontinuity (Vraa)j — (Vraa)e > 0 

when one crosses the boundary of the convective gone towards interior. 

This produces a new instability in the radiative region just outside the 

convective core; a semi-convective region arises, with energy transported via 

radiation, but a very slow adjustment of the chemical composition occurs 

which maintains the relation 

f d log p \ 

U lo§ Wad 

/ d log r \ 

U Wad 

( d log p\ 

\d log Wrad 

( d log r _ d log II \ 

V d log P d log P ) * 

This extra mixing zone ensures a larger nuclear fuel reserve for the star, 

which stays longer on the HB as a result of this semi-convective instability. 

There are various interpolation formulae for the time spent on the HB. 

From the tables of Sweigart and Gross (1978) we find for £hb in millions of 

years 
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log tHB = 2.04 - 3.0(MC - 0.475) - 0.36(F - 0.3) + 0.03(3 + log Z). 

Using the relation between the helium core mass at the start of the HB and 

the stellar mass, 

Mc = 0.4706 + 0.26(X — 0.7) — 0.01(3 + log Z) — 0.035(M — 0.8), 

we find 

log *hb = 2.053 + 0.42(1' - 0.3) + 0.06(3 + log Z) + 0.105(M - 0.8), 

which gives a typical HB lifetime of 100 million years. 

(d) After the HB the star moves on to the AGB. Its maximum luminosity 

is approximately 

L = 2.5 x 104(2Mc - 1), 

where Mc is the core mass on the AGB. The corresponding luminosity 

function is given by 

dG = 2.7d log L , 

where 16 is in millions of years. 

The maximum luminosity is reached for Mc = M*. Starting from stars 

with Mrgb = 0.8 M©, we would have log Tmax = 4.2 without mass loss. Let 

us examine the consequences for the globular cluster u Cen, which has about 

4000 HB stars. At this luminosity, and a lifetime of 2.4 million years after 

reaching the AGB (see p. 143), we should expect to see about SO bright stars 

at the tip of the AGB. We do not see these stars simply because of mass loss. 

Starting from 0.8 M© and reaching the HB with 0.6 M©, they have to lose 

about 0.1 Mq on the AGB. This can be achieved with a Reimers parameter 

r/a ~ 0.41. This result is compatible with log Tmax — 3.2. 

(e) As it makes its excursion to the AGB, the star may cross the 

RR Lyrae instability strip. This depends mainly on the mass of the star 

(Fig. 3.24). Stars with too low a mass (Mrb < 0.52 Mq) do not reach the 

AGB or the instability strip and evolve towards the white dwarfs. Slightly 

more massive stars (0.52 M© < MHb < 0.55 M©) cross the instability strip 

and then move to the blue, crossing it once again before going to the AGB. 

Pulsating variable stars with periods less than 8 d (BL Her type) are 

found in globular clusters which are rich in blue horizontal-branch stars. 

Their properties show that the excursion to the blue is sufficiently marked 

that these stars cross the instability strip and spend about a million years 

there. Variables with periods longer than 12 d (W Vir type) would then 

correspond to a re-crossing of the instability strip by stars near to the max¬ 

imum luminosity evolving to the white-dwarf state. The masses of these 

stars, about 0.5 Mq accoidmg to their evolutionary tracks, agree with the 

masses deduced from the pulsations (see Chap. 6). 
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Fig. 3.24. Evolutionary tracks on the HR diagram for population II stars of various masses. 

The evolutionary stages A-H are explained in the text. (From R.A. Gingold, Astrophys. J. 

204 116 (1976). Reproduced by kind permission of The Astrophysical Journal, published 

by The University of Chicago Press; © 1976 The American Astronomical Society) 

(f) The various stages of evolution labelled A, B, ... in Fig. 3.24 are 

explained in Table 3.3. 

(g) From these data we can find the ages of globular clusters. The most 

reliable method compares the luminosity at the knee and the HB luminosity 

for the same effective temperature (here log Tefr = 3.85), avoiding the errors 

in the theoretical prediction of the colour index B — V, the luminosity 

difference being directly related to age. Using the empirical relation between 

the luminosity, at the turning point, the HB luminosity and that of the RR 

Lyrae stars, 

log Lt = log The — 0.40AMRR(Bol), 

AMRR(Bol) = Mr(Bol) - MRR(Bol), 

we get the age 
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Table 3.3. Evolutionary stages for population II stars of 0.5 to 0.6M@ (Fig. 3.24) 

Letter Lifetime Evolutionary stage 

A 
Zero-age HB 

B 

2 x 106 y 

Maximum size of semi-convective zone 

C 

a few times 

105 y 

Core helium exhaustion 

Helium burns in a thick shell 

Core expansion reaches the hydrogen shell source. 

D 

2 x 106 y 

The luminosity drops and the star’s movement 

to the blue finishes at E 

E 

oo
 

X
 

o
 

O
s 

Hydrogen shell burning increases 

F 

2-4 X 106 y 

Luminosity Lu passes the helium luminosity L/ie 

G First helium flash. Star evolves in a series 

of pulses and cycles 

H Continuous curve shows slow loop and dashed curve 

4 X 104 y the rapid loop corresponding to the last cycle 

H' before evolution towards the white-dwarf state 

log tg = -0.352 - 1.88(1" - 0.3) - 1.44(Yhb - Y) 

- 0.088(3 + log Z) + 0.4lAMfR . 

If we assume Yhb — Y = 0.2, log Z = —3.89 (from the surface abundances), 

Y = 0.23 (perhaps slightly low, but coherent for the system of models used), 

AMR(Bol) = 3.35 ± 0.2, we get 

tg = (16 i 3.5) x 109 years. 

The compatibility of these evaluations of globular cluster ages with cosmo¬ 

logical and abundance data is discussed in the book by F. Combes et a.1. 

(1993). 

3.7.2 Intermediate-Mass Stars of Population I 

The main problem is that of the critical mass. As we have seen, stars of 

mass M < Mct\i evolve into white dwarfs after significant mass loss. 

We can calculate the evolution using the approximate L(MC) relations 

for the RGB and the AGB, and the relation 

dMcore _ Lc2 

d t ~~ ~Q ’ 
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where Q is the energy yield per unit mass of nuclear fuel, together with 

the mass loss (e.g. Reimers). This gives the final mass (M* = Mc). To 

satisfy the constraint on the critical mass requires t]r = 4, about 10 times 

higher than values encountered earlier, and completely incompatible with 

observation. In particular, stars of mass less than 1.5 M© would lose their 

entire envelopes while on the RGB, and helium ignition could not occur. It 

is possible that a final superwind phase, with a very high mass loss for a 

short time, might resolve this difficulty. 

Another problem is the mass of the Cepheids. From the evolutionary 

tracks (Fig. 3.25) we see that a star can cross the instability strip sev¬ 

eral times, with a secular period change (increasing or decreasing) given by 

crossings to the left and right respectively. Cepheids are stars in the phase 

of core helium burning. During the RGB phase, dredge-up of the deeper lay¬ 

ers by convection modified the surface composition, increasing nitrogen and 

decreasing carbon, revealing the effects of the main-sequence CNO cycle on 

the central composition. 

The period-luminosity relation for the Cepheids has a certain dispersion, 

according as the pulsation occurs at the first harmonic (extreme blue limit of 

the instability strip) or the fundamental (blue to red edges of the instability 

strip). The comparison with theory has long been known to present a prob¬ 

lem, in that the mass deduced from the period-luminosity relation (Mpuis) 

and that deduced from evolution (Mevoi) do not agree. Modest mass loss on 

the RGB as during helium burning, such as would result from a. Reimers 

parameter r/R ~ 1/2 (about 10-4 to 10-5 Mq) forces a correction of about 

0.2 magnitudes for the Hyades distance modulus above what is given by the 

convergent-point method. This would bring the two C'epheid mass estimates 

into agreement, although there are still difficulties for individual Cepheids. 

In comparing the problem of the RR Lyrae stars with that of the 

Cepheids we have to remember that the role of heavy-element opacity differs 

in metal-poor stars (RR Lyrae) and in Cepheids. A distinct increase (factors 

of 2-3) of the opacity for elements heavier than helium (“metals”) in stellar 

envelopes would remove the difficulty represented by the conflict between 

the mass estimate Mevoi from stellar-evolution calculations and the estimate 

MpUis given by the relation to the period, particularly for beat Cepheids and 

Cepheids with secondary maxima. For main-sequence stars, and the Sun in 

particular, the corresponding increase in the opacity would be no more than 

10 or 20 % at the base of the convection zone, and very small in the centre, 

thus being compatible with the constraints on solar models. 

The data now coming from Hipparcos will doubtless remove the uncer¬ 

tainty over the distance modulus to the Hyades. 

3.7.3 Massive Stars (M > 8 Mq) 

Massive stars have intense stellar winds (10-5 Mg/y) and strong mixing 

effects which can greatly increase the fully mixed mass fraction. We shall 

147 



regard the mass loss rate as an empirical parameter. Evolutionary tracks are 

calculated assuming various mass loss rates and compared with observation 

so as to estimate the mass loss. Definite conclusions are difficult, because 

the effects of mass loss and turbulent diffusion are difficult to disentangle. 

Study of the evolution of massive stars involves the following parameters: 

— Mass loss rate. For example Larners (1981) gives 

logM = —4.83(±0.28) + 1.42(±0.40)log 

- 0.99(±0.97) log f jjQ + 0.61(4=0.13) log 

and assumes a dependence M ~ (M/i?)°'6._ The dispersion in (M/R) ap¬ 

pears mainly responsible for the spread in M. 

— Convective overshooting. This increases the chemically uniform vol¬ 

ume. Maeder (1975) chooses an overshooting depth (dover /Hp) ~ 0.25. 

— Turbulent diffusion. This also extends the chemically uniform region. 

Its efficiency is related to the angular velocity of the star, if a parametrisa- 

tion is required. 

In addition the high central temperatures achieved in the course of the 

evolution oblige us to follow chemical evolution up to the formation of sili¬ 

con (Fig. 3.26). The elements thus formed are expelled into the interstellar 

medium by the stellar wind and change its chemical composition. The neon 

Fig. 3.25. Evolutionary tracks for population II stars of 3, 5, and 7 Mg (Z = 0.001 and 

Z = 0.01) (without mass loss). The dashed lines denote from left to right the blue edge of 

the first harmonic, the blue edge of the fundamental, and the red edge of the fundament al 

pulsation in the instability strip. The tick marks correspond to intervals 106 y (from the 

main sequence) for 3 Mg, 2 x 105 y for 5 Mg, and 105 y for 7 Mg. The ages at the 

numbered points are given below. 

Ages in units of 10' y 

Points 3 

Z = 0.01 

M/ Mg 

5 7 3 

z - 0.001 

M/ Mq 

5 7 

1 0.073 0.0217 0.0155 0.248 0.060 0.017 

2 18.791 6.268 3.325 20.793 6.448 3.335 

5 20.066 6.442 3.377 24.519 7.146 3.590 

7 24.656 - - 26.850 7.993 3.914 

9 - 7.950 3.892 29.729 8.204 - 

13 8.276 4.044 

(From S.A. Becker et ah, Astrophys. J. 218, 633 (1967). Reproduced with the kind per¬ 

mission of The Astrophysical Journal, published by The University of Chicago Press- 

© 1977 The American Astronomical Society) 
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isotope "Ne found in cosmic rays was probably formed inside massive stars. 

The theory of evolution explains a certain number of observed properties. 

(a) Maximum luminosity of supergiants on the HR. diagram. The bright¬ 

est stars have absolute magnitude MBoi = -12 for type 03; the boundary 

of the the 0-star region moves to decreasing luminosity until type B. The 

boundary of the supergiant region is then roughly horizontal (Fig. 3.27). 

(b) Statistics of massive stars. The relative number of red supergiants 

and Wolf—Rayet stars depends on the mass function and is an indicator 

of the speed of evolution, depending on the metallicity. The ratio (red 

supergiants)/(Wolf-Rayet stars) varies from 0.53 in the solar neighbour¬ 

hood to 23 in the Small Magellanic Cloud, with metal abundances going 

from 0.03 to 0.003. 

(c) Chemical composition of Wolf-Rayet stars. These stars (WR) consist 

of the remnant core of a star surrounded by an expanding envelope with 
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cleus 
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Fig. 3.27. The HR diagram. Main sequence and zone of avoidance 

a very large mass loss rate. We distinguish WN stars, in which helium 

and nitrogen lines are strong, and WC stars, in which helium, carbon, and 

oxygen lines are strong. 

Without going into great detail (Fig. 3.2Sa) the evolutionary tracks on 

the HR. diagram (Fig. 3.28b) can be classified according to mass. 

For M > 40 M0 

BSG 

0 —> Of —> Blue supergiants 

BBV 

—» Bright blue variables —> WR —> SN 

For 40 Mq > M > 30 M© 

O BSG YSG RSG WR -> SN 
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Fig. 3.28. (a) Evolution of the internal structure of a 60 Mq star until core carbon exhaus¬ 

tion, with mass loss and convective overshooting. The regions marked with eddies are 

convective: heavy diagonals show regions of strong energy production (e > 103 erg/g/s); 

vertical hatching shows regions of non-uniform H and He composition; and the horizontal 

hatching shows regions of non-uniform 12C, lsO and 20Ne. The surface evolution and 

observational status of the star are shown: O, WR of types WN then WC. The index 

s is related to the surface composition, index c to the central composition. (From A. 

Maeder, Astron. Astrophys. 182, 243 (1987) Fig. 3.) (b) Evolutionary tracks for massive 

stars (X = 0.70; Z = 0.02) with mass loss and convective overshooting. The hatched 

regions show the main-sequence and the helium-burning phase. The first mark on the 

tracks shows core hydrogen exhaustion and the second core helium exhaustion. (After A. 

Maeder, Astron. Astrophys. 182, 243 (1987) Fig. 9) 
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Table 3.4. Lifetime of the various nuclear phases and of the WR phase (in units of 

106y, Maeder and Meynet 1987) 

M, 

120 

85 

60 

40 

25 

20 
15 

H burning 

2.94 

3.32 

3.71 

4.79 

7.09 

8.81 

12.1 1 

He burning 

0.51 

0.50 

0.61 

0.64 

1.17 

1.26 

1.63 

C burning 

0.0011 
0.0018 

0.0019 

0.0049 

0.0072 

0.0091 

0.0179 

WR 

0.51 

0.49 

0.54 

0.49 

For 30 Mq > M > 15 M© 

/ with or without passage 

0 ^ y through the Cepheid instability strip 

The WN stars correspond to the appearance at the surface of the prod¬ 

ucts of the CNO cycle; the WC stars to the appearance at the surface of 

alpha-particle reactions (3 4He —> 12C; 4He + 12C —> 160). The lifetimes 

calculated for the various evolutionary phases give a basis for interpreting 

the abundances of the different spectral types (Table 3.4). 

The rotation parameter introduces varying degrees of turbulent mixing. 

Above a certain equatorial velocity ueq (~ 325 km s 1 for an O star) the 

mixing speed is larger then the evolution speed. The star remains chemically 

uniform as it evolves. It evolves to the left of the main sequence and goes 

directly to the WR(WC) branch, crossing the WN type very rapidly. Study 

of the association OB Per 1 seems to confirm this bifurcation of the evolution 

of massive stars, which occurs for veq > ucr;t — 35 km s~ . 

The isotopic anomalies of cosmic rays can be explained by assuming 

that Wolf-Rayet stars inject isotopes of 13C, 22Ne, 25Mg, 26Mg, 29Si, and 

Fig. 3.29. Yields of various chemical elements (in mass fraction). (After A. Maeder) 
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Fig. 3.30. Relative abundances of cosmic-ray isotopes 
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30Si into the Galaxy. We have to take into account gradients of chemical 

composition and the distribution of WR stars. Using the yields (as mass 

fractions) for the production of different elements (Fig. 3.29) it is possible 

to get the results of Fig. 3.30 which appear to give a good explanation of 

the cosmic-ray anomalies. 

3.8 Evolution of Binary Stars 

3.8.1 Introduction 

Binary stars are so numerous that it is impossible to discuss stellar structure 

and evolution without taking them into account. According to Jaschek and 

Gomez (1970), 50% of main-sequence stars are in binaries; Van Albada 

(1968) estimates that 60% of early-type stars are in binaries, with a mass 

ratio larger than 0.2. Some classes of objects are only found in binaries. 

(a) According to Abt (1961, 1965), Abt and Bidelman (1967), and Abt 

and Moyd (1973) metallic-line stars are all in binaries. 

(b) Novae, dwarf novae, and cataclysmic variables are all binaries. 

(c) Wolf-Rayet stars are frequently in binaries (Underhill 1967; Smith 

1968, 1973). 

(d) Runaway stars have escaped from binaries disrupted by the SN ex¬ 

plosion of the companion (Blaauw 1961). 
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(e) The kinematics of pulsars ((u2)1/2 from 100 to 200 km s 1 in the 

Galaxy) suggest that they are produced in the disruption of binary systems. 

There are now many binary pulsars known, some of them having very ec¬ 

centric orbits, suggesting the near-disruption of a binary system. There are 

however several binary pulsars having circular orbits, the secondary star 

being (or having been) a giant. Some of them have long periods (100 days); 

three systems with periods less than 10 hours are evaporating their low-mass 

companions. Several pulsars observed in globular clusters have eccentric or¬ 

bits and have no doubt been formed by capture. 

(f) Compact X-ray sources in the Galaxy involve neutron stars (or black 

holes) in binary systems. We discuss compact stars in binaries in Ghap. 8. 

Here we are interested primarily in gaseous stars. 

3.8.2 Structure of Stars in Binaries 

The apsidal-motion test in principle offers a way of studying stellar interi¬ 

ors. The deformation of each of the two stars by the other introduces an 

additional 1 /r4 attraction which causes a gradual precession of the line of 

apsides. Schwarzschild (1958) gives the relation 

orbital period f R\ M2 , R2 -^l A 1 + |e~ + ge 

apsidal period \ 1 D5 Mi D5 M2 ) (1 — e2)5 

where R1,R2,M1,M2 are the radii and masses of the two components, and 

D is the binary separation for small eccentricities e. The constants k\. k2 are 

related to the perturbations Vl ext of the potential due to the deformation 

of star i: 

Vi i ext. 
0*0i i 73 / /i\ 

-rP2(cos 9), 

a2i — 2 k{R' 
GM3-i 

D3 

The approximate expression for kz (Kopal 1959) is 

167T 

5 MiR\ 

This shows that the main contribution to the apsidal motion comes from a 

region near the surface of the star. 

The method is important for theory, but can be applied to only a small 

number of systems, since we need to know the changes in physical quantities 

very accurately. For a Vir (Odell 1974), with component masses 10.9 M© 

and 6.8 M©, standard evolutionary models for the 10.9 M© star cannot ac¬ 

count for the apsidal precession (R'^k is too small). Agreement is restored 

for a star with a 3.5 M© hydrogen-exhausted core and shell burning. This 
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implies that mass loss has occurred. The procedure used by Monet (1980) 

involves comparison of two quantities, the observed 

where the orbital period P is expressed in days and the apsidal period A in 

years, and the calculated quantity 

c = n o771 + 16/~—1 R%k2 

Aff/3(1 +/)5/3 ’ 

where k1,k2 are the apsidal motion constants defined above, and / = 

M2/M\ the mass ratio. Models with mass loss seem to give a value of R5k 

compatible with observation. 

Tides. In a binary system with eccentricity e the companion of mass M2 

produces a potential which varies in star 1 (mass M\). The potential pro¬ 

ducing the tide oscillates with circular frequency u> and can be expanded in 

spherical harmonics 

U = X! Unm ((d) Pn(c°S 9) exp [i((Tlmt - mtfi)]. 
Imn 

If the star’s spin frequency is Q with respect to an inertial reference sys¬ 

tem, and if the external potential rotates with the angular frequency to, the 

circular frequency of the orbital motion, the excitation frequency is 

aim = hjj — mS2 . 

The perturbed potential is the sum of the external potential and the internal 

potential due to the perturbed star. The space dependence of the external 

potential must make it harmonic and vanish at infinity. It thus has the form 

p = $l™(r/R)~n~l P™(cos 0)exp[i(almt - nrup)\ . 

In linear approximation the tide problem reduces to finding the exter¬ 

nal potential resulting from a single component of the perturbing field. In 

practice the problem involves finding the amplitudes as functions of 

the tidal frequency cqm. These coefficients were found by Zahn (1966, 1970, 

1975) for low tidal frequencies. 

Following Cowling (1941), Zahn distinguishes between static and dy¬ 

namical tides. The static tide is that part of the distortion which is static 

when viewed by an observer comoving with the binary. In the presence of 

dissipation the static tide is out of phase with the line of centres and pro¬ 

duces a torque which vanishes only when the orbit is circular and the spin 

and orbital periods are equal. The synchronisation and circularisation times 

are given by Zahn (1977, 1978) as 
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1 1 fDXt 
tsync~ 6?2F MR2 \r) F 

where D is the binary separation, /?, M the radius and mass of the star 

considered, and q the ratio M2/M with M2 the companion mass. I is the 

axial moment of inertia of the star of mass M, k2 its apsidal constant, 

and tF the viscous dissipation timescale. The two expressions assume small 

eccentricity e. We discuss tF in more detail below. 

The dynamical tide results from resonances between the frequency of a 

gravity wave (g-mode) of the star and the excitation frequency u/m. The 

dynamical tide has an amplitude which depends on time and occurs only 

when the binary is eccentric or not synchronous. Radiative dissipation pro¬ 

duces damping. The tidal potential excites a range of gravity waves in the 

star. In the absence of dissipation these waves would be reflected at the 

star’s surface and produce standing waves in phase with the tidal poten¬ 

tial. But in the outer layers of the star the radiative cooling time becomes 

comparable with the tidal period, and the waves are damped. The gravity 

waves are partially reflected at the surface and phase-shifted, and a net flux 

of mechanical energy is transported from the interior adiabatic regions to 

the surface. This energy transfers angular momentum from the star’s spin 

to the orbital motion. 

For the static tide the friction due to turbulent viscosity depends on 

the region, convective envelope, or core. The phenomenological nature of 

theories of convection means that we can only obtain an order of magnitude. 

In convective envelopes, where the tide has a large amplitude, the fric¬ 

tional time tF is found by assuming that the dissipated power L is entirely 

removed by convection; then we have 

tF ex (Mf?2/T)1/3 . 

=_i_(T 
21q(l+q)k2 \R 

For convective cores, where the amplitude is small, the frictional time 

is much longer, by a scaling factor (R/Rc)7, where Rc is the radius of the 

convective core. In this case there is another correction because the timescale 

of the turbulence may be longer than the tidal period. As a result stars with 

convective cores are synchronised and circularised by radiative damping. 

The timescales for these processes are 

i (GMV11 (MR2\ ,, ... 
<r,nc =5 2 7 ( j^r) i—) 9(1 +1)' e-2 

and 

21/2 

17/2 
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Table 3.5. Dynamical tide constants0 

Radius (RJR) I/MR2 e2 

1.6 1.152 0.1251 13.21 2.41 (£- 9) 
2 1.294 0.1594 12.97 1.45 (£-8) 
3 1.678 0.1854 12.58 4.72 (£-8) 
5 2.350 0.2143 11.98 1.53 (£-7) 
7 2.919 0.2379 11.49 3.80 (£-7) 

10 3.652 0.2669 10.95 1.02 (£-6) 
15 4.672 0.3054 10.43 3.49 (£-6) 

a Stellar models by M. Aizenman 

where q — M2/M and E2. the tidal coefficient, is very sensitive to the star’s 

structure. E2 varies as (i?c/i?)8, and is thus very small for convective cores. 

E2 is related to the apsidal constant for the dynamical tide. In Table 3.5 

we give some results of Zahn (1975), leading to characteristic timescales for 

the main sequence (Table 3.6). 

Zahn’s discussion shows that (1) for 1 Mq stars with convective en¬ 

velopes, synchronisation is achieved within the age of the Sun for D/R < 40, 

which seems to be confirmed by observation; (2) Synchronisation for stars 

with convective cores is achieved for D/R ~ 7 to 8, close to the results of 

Table 3.6. 

There are stars which spin much more rapidly than the orbital frequency 

(AR Cas, U Cep), with separations D/i? ~ 5 much smaller than the critical 

value of Table 3.6. It may be that mass transfer from the secondary to the 

primary has caused this in U Cep; but there is no obvious explanation for 

Table 3.6. Effects of the dynamical tide0 

M* 

Synchronisation Circularisation 

(D/R) sync -^sync (d&ys) (D/R), ync Fcirc (days) 

1.6 6.11 1.21 4.44 0.75 
2 7.05 1.59 4.99 0.95 

3 6.81 1.92 4.85 1.10 
5 6.52 2.19 4.68 1.33 

7 6.72 2.69 4.80 1.62 

10 6.67 3.30 4.77 2.00 

15 7.04 3.98 4.99 2.38 

0 The table gives the parameters describing the damping of the dynamical tide by 
radiative dissipation in stars with a convective core and radiative envelope. The 
parameters D/R, £synch, RCuc are calculated for synchronisation and circularisation 
times equal to 1/4 of the main-sequence lifetime tnuc. The calculations are for A/| = M2. 
For a different mass ratio one has to multiply (D/R),ync by q4/,7(( 1 + q)/2)5/51 and 
(D/R)^nc by (q/2)2/2I((l + q)/2)'1/63 taking account of one star only. 
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AR. Cas (a very young system?). Of course disagreement with the periods 

psync of Table 3.6 could simply be due to the models used (calculated in 

1974). 

3.8.3 Mass Transfer 

Theoretical Principles. The problem is complex, and some simplifying as¬ 

sumptions are listed by Paczynski (1971): 

(a) Stars in close binaries are regarded as spherical, even if they fill their 

Roche lobes. 
(b) The Roche-lobe radius is taken as the critical radius for mass loss. 

This ignores mass loss in a wind. The stellar radius is defined as that of 

the photosphere. This is satisfactory for dwarfs and giants, but not for stars 

with extended envelopes (e.g. supergiants). 

(c) We assume circular orbits in the present problem. The study of el¬ 

liptical orbits involves many difficulties and is not considered here. 

(d) The star’s radius is assumed less than or equal to the Roche-lobe 

radius. In other words the mass loss keeps the star within its critical radius. 

This assumption fails in two (ill-understood) cases: (1) the primary has a 

deep convective zone at the beginning of mass loss; (2) both Roche lobes 

are filled, the stars being in expansion. 

(e) The star is in hydrostatic equilibrium. This assumption fails in a 

small region near the surface, and also for primaries with a deep outer 

convective layer; it fails for secondaries with very high accretion rates and 

for contact systems where both stars expand beyond the Roche lobes. 

(f) The total mass M and angular momentum are conserved during the 

evolution. This assumption ignores the possibility of mass loss from the 

system and of electromagnetic braking. For cataclysmic variables the orbit 

evolves under gravitational radiation losses (Chap. 8). In some cases mass 

loss from the system is essential to the evolution. 

Modes of Evolution. Many calculations of binary evolution have been 

made. Three initial parameters, the masses Mi,M2, and the separation D 
of the stars, define the system. During the evolution the mass loss rate is 

another parameter. A complete discussion of all possible binary evolution¬ 

ary tracks is not yet available. The choice of initial parameters has been 

motivated by observation, in particular the desire to explain the formation 

of special systems (white dwarfs or neutron stars in X-ray binaries). It is im¬ 

possible to describe all the possible cases. We therefore confine ourselves to 

presenting the physics of mass transfer and giving some examples of binary 
evolution. 

We can identify modes of mass tranfer using the mass—radius diagram 

plotted by Webbink (1979). There are two basic ideas: (1) we assume 

fl-R M2, but assume that only the primary evolves; (2) we compare the 
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Fig. 3.31. The Roche-lobe radius as a function of mass ratio 

primary’s radius with that of the Roche lobe (Fig. 3.31). For Ml = M2 

we have R(Roche) = a/2 with a the semi-major axis of the orbit. This 

transforms the mass-radius diagram (Fig. 3.32) into a mass-period diagram 

(Fig. 3.33) and gives a classification of modes of evolution (Fig. 3.34). 

(a) Mode I: contact. These are close binaries of low angular momentum 

and zero age which are in physical contact, such as W UMa stars. Despite the 

fact that these are relatively unevolved systems (e.g. TX Cnc in Praesepe) 

the two components are very far from the main-sequence mass-luminosity 

relation; they have almost the same surface temperatures and a mass ratio 

~ 1/2. Their presence in old galactic clusters and their high space density 

suggest that they are secularly stable. 

High-mass contact binaries are observed. For these systems helium igni¬ 

tion in the primary occurs immediately on leaving the main sequence and 

takes it on to the “helium main sequence”. 

(b) Mode II: mass loss from a radiative envelope. This was the first type 

of mass transfer through the inner Lagrange point to be studied. 

Once the primary radius exceeds the Roche-lobe radius the mass loss 

soon reaches a stationary regime. Mass flows out at the sound speed through 

a nozzle defined by the condition that the advection term v2s/l should exceed 

the Coriolis force, 

so that 

Mmax = pVZstt~2 ■ 
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Fig. 3.32. Radii of solar-compo¬ 

sition stars at various stages of 

their evolution, as functions of 

their masses 

To order of magnitude this corresponds to mass loss on a Ivelvin-Helmholtz 

timescale: M ~ —M/tj.<r- It is actually somewhat shorter. We have 

Tra(j 47rafi4v5 3.85 x 10-6 / vs \5 

TKH Pphk4 pph V10 kms-1/ 

where fi is the mean molecular mass, />ph is the photospheric density and 

rrad is the actual mass-loss timescale. 

Mass loss continues at the rate Mmax. Once the mass ratio is reversed 

the Roche-lobe radius begins to increase and the mass loss reduces simply 

because the star has to expand. In radiative equilibrium the star’s specific 

entropy increases outwards in the envelope, 

d5 

dr 

_ rTad\ 

h HP\ r* J 
>o, 

so that as the outer layers are lost, heat has to be supplied to the new surface 

layers to re-establish thermal equilibrium. If the mass loss is sufficiently fast 

(Tdyn < tkh), this energy deficit cannot be filled immediately. Thus the new 
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Fig. 3.33. In a binary with equal-mass 

components, the evolution of one star 

causes an instability defined by the evo¬ 

lutionary state (Fig. 3.32). The period 

corresponds to the radius given on 

Fig. 3.32 

log M/Mq 

Fig. 3.34. Identification of the main modes 

of mass transfer in the period-mass dia¬ 

gram. (Symbols explained in the text) 
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outer layers are cooler and denser than an equilibrium star of the same mass: 

the mass-losing star becomes undersized and underlummous for its mass. 

Binaries following this evolution lose mass as they cross the Hertzsprung 

gap. 
There are several sub-modes: 

— IIa Mprimary < 3.5AT©. Mass loss on the Kelvin-Helmholtz timescale 

reverses the mass ratio. Mass transfer then proceeds on the nuclear timescale 

as the degenerate core grows, up to the point where the primary s envelope 

is almost entirely exhausted. These systems, called semi-detached, can be 

identified without doubt as Algol-type systems. This idea is supported by 

studies of Algol-type binaries and statistical arguments. However, quanti¬ 

tative comparison of theory and observation implies that up to 50 % of the 

angular momentum may be lost. 

In the lifetime of the Galaxy the system becomes detached, and consists 

of a helium white dwarf of mass 0.21 AT© tS Mwd ~ 0.46 AT©, and a main- 

sequence star of a few solar masses. 

_ Ub 3.5 Mq < AT < 7.6 AT©. These stars have a helium core which 

grows until helium burning starts. The star contracts and the system be¬ 

comes de tached. The final state is probably a carbon-oxygen white dwarf. 

— lie 5AT© < M < 14Mq. For such stars there is a second phase of 

mass transfer after core helium exhaustion, because the remnant stars of 

1-2.6 Mq expand during helium burning. After the second mass transfer 

the remnant is a carbon-oxygen white dwarf of mass 1-1.4 M©. 

— lid - f 14 Mq < M. The helium core left by these stars is too massive 

for helium burning to produce a degenerate carbon-oxygen core (the central 

temperature is too high). These stars expand less than those of lie and there 

is no second stage of mass transfer. The remnant stars have masses up to 

1.9 AT© {IId) to 4 AT© (TTe-/) and end as collapsed stars (neutron star or 

black hole). 

(c) Mode III: mass loss from a convective envelope. In a convective en¬ 

velope the specific entropy decreases towards the surface. In contrast to the 

radiative case, it is not necessary to provide energy to re-establish equilib¬ 

rium. These stars tend to expand once mass loss starts. 

We follow the discussion of Paczynski and Simkiewicz (1972). Near the 

inner Lagrange point L\ we assume that: 

— the flow is adiabatic: 

p = A>1+1/n; 

- the flow is slow enough to be regarded as quasi-stationary; 

- the interior of the mass-losing star is close to hydrostatic equilibrium. 

We can then use the Bernoulli equation 

\v2 + K{n + 1)/V") + n = I2S , 
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where v is the flow velocity and Qs the surface potential. 

At the inner Lagrange point we define coordinates x along the line of 

centres and y orthogonal to the line of centres. The total mass flux is 

Vf 

PvxV dy, 

where yp is the boundary of the outflow and vx the low velocity along the x 

axis. To estimate the mass flux to order of magnitude we seek its maximum 

value Lmax. We thus assume that pv is constant, so that 

d(pu) = p dv + v dp = 0 . 

Differentiating the Bernoulli equation gives 

i _ _ 77 1 ill/ 
vdv + K-p 1+1/"d/o = 0, 

n 

so that 

,2 , TTn+lnl/n_ -v* + K 
n 

0, 

and the Bernoulli equation becomes 

K 
_n + 1 ( \ 

n 
^2 + n^j P1//n — I?,, — i?, 

leading to the mass flux 

(p^)max 

rrn + 1 

n 

(n9 - Q)n 

(n + \)n 

The flux thus depends on the potential. Expanding the potential to lowest 

order near 170, the potential at the Roche lobe and inserting in the expression 

for F, 

Frr 27rA2 
(AQ )n+3/2 
_N(n) 

Q,h(K(n + l)r 1 ^ 
5 

where AJ?S is the difference Qs — l?o ,A the binary separation, and h the 

coefficient of the first-order term in y2 near L\. The function N(n) varies 

slowly with polytropic index n: 

N(n) = 
n 

(2n + 1) (n + ^) 
1 >. ri + l/2 

For n = 3/2, N(n) = 0.0766. The difference AQs is of the order of (GM\ /R). 

If we further assume that the star’s luminosity is of the order of 47r?-2pt;^, 

where vs is the sound speed at the photosphere, we find that 
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rsj Mn — M ('T/v'H^'hydr) 
-1/2 

where rhydr, the hydrostatic equilibrium timescale, is the time taken for a 

sound wave to cross the star. 
The mass loss rate from a convective envelope may be very large (up to 

10~3 Mq y_1), which prompts the questions of whether the companion can 

accept the mass and whether some mass is lost from the system. We can 

distinguish the following cases: 

— Mode Ilia. Binaries with periods below 1000 d and low masses begin 

mass transfer before helium ignition in the degenerate core. The remnant 

star is a white dwarf of 0.2 to 0.5 Mq. 

— Mode Illb. Binaries with longer periods and larger masses begin mass 

transfer after the primary reaches the AGB, leaving white dwarfs with 

masses between 0.5 and 1.4 Mq. 

— Mode IIIc. Stars between 3.5 and 7 M© give a helium star with 

0.5 Mq < 1.4 Mq, leaving a carbon-oxygen white dwarf. 

— Mode Hid. For stars above 7 Mq the helium star is heavier, 1.4 M©- 

4Mq, leading finally to a neutron star. 

3.9 Evolution to the Main Sequence 

Once the optical depth of a contracting molecular cloud exceeds 1 we can 

regard it as a star. Its energy comes from gravitational contraction, and the 

characteristic timescale, determined by the rate of heat loss, is the Ivelvin- 

Helmholtz timescale 

GM2 

TKH"TiT- 
We can study the contraction by assuming hydrostatic equilibrium (i.e 

neglecting accelerations) while allowing for gravitational energy release. 

From (3.5), written here for 7 = 5/3, 

div F 
3 R 

2 -/T R ' 

This approximation is valid once the sound crossing time in the star is 

smaller than the contraction timescale: 

R_ 

Rq 
< 490 

5 000 

Tpir 

8/9 
M 

M, © 

5/9 

Initially the star is fully convective and follows a near-vertical trajectory 

in the HR diagram, called the Hayashi track; this is almost parallel to the 

ascending giant branch but covered in the reverse direction. 
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Fig. 3.35. Pre-main-sequence evolution¬ 

ary tracks and the observed T Tauri 

stars. (From J. Bouvier et al., Astron. 
Astrophys. 165, 110 (1986)) 

Once the star is near the main sequence the opacity in the central re¬ 

gions decreases and they become subadiabatic. A radiative core forms (at 

least for masses 0.5 to 3 Mq). As the contraction continues thermonuclear 

reactions begin, slowing the contraction until the gravitational terms be¬ 

come negligible. Numerical calculations give evolutionary tracks as shown 

in Fig. 3.35. These tracks correspond to the radii and effective temperatures 

of very young stars of T Tauri type. 

165 



4. Mass Loss and Stellar Winds 

4.1 Introduction 

We discuss here mass loss and winds from isolated stars. In contrast to 

binary systems, where the presence of the companion causes mass loss, we 

have here to seek internal causes for the mass loss in winds. 

In the present incomplete state of the theory of winds, it is sensible to 

describe first the observational data and the different types of wind; this 

description is inseparable from the physics of the stellar wind, particularly 

its thermodynamics and the mechanism of spectral-line formation. We then 

discuss the successes and failures of current stellar-wind theory. The impli¬ 

cations of mass loss for stellar evolution are given in Chap. 3. 

4.2 Observational Data: General Remarks 

Mass loss provides both direct and indirect data. Direct data are spec¬ 

troscopic, showing the presence of expanding material around stars (see 

Chap. 1). We distinguish between different sources of information: 

— Circumstellar lines (metals, Call, Mgll) blue-shifted with respect to 

the stellar lines; 

— Infrared excesses (above the continuum corresponding to the star’s 

effective temperature), characteristic of circumstellar envelopes; 

— Radio emission (OH, SiO masers, continuum); 

— P Cygni profile in UV resonance lines such as Mgll, C IV, Si IV, 

N V, 0 VI or in strong subordinate lines such as Ha. 

Trying to use these data to find the mass loss rate M is fraught with 

uncertainties such as the evaluation of the optical depth, and above all 

estimates of the ionisation degree of the relevant element. These give rise to 

large differences in the mass-loss estimates published for the same stars by 

different authors. The various diagnostic methods are given in Sect. 4.3. 

Indirect data come from comparison of stellar-evolution theory with ob¬ 

servation. 

- The first indirect data came from white dwarfs. Study of white dwarfs 

in open clusters suggests (see Sect. 4.4.1) a total mass loss which may reach 

85% for masses 8 or 9 Mq. 
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Difficulties in matching data for the horizontal branch and the asymp¬ 

totic giant branch and the position of the RR Lyrae stars are resolved by 

taking account of mass loss. 

The origin of the Wolf-Rayet stars can be understood by following 

evolution including mass loss. 

All stars show evidence for stellar winds, particularly the Sun. It is cus¬ 

tomary to reserve the term mass loss for cases where the timescale M/M is 

comparable to (or shorter than) the nuclear timescale. Here we study stellar 

winds: the associated mass loss is basic to the study of stellar evolution. 

Some elementary theoretical considerations allow an initial classification 

of mass-loss processes. The momentum-conservation equation for a station¬ 

ary spherically symmetric flow is 

,.dV GM 
T d7 + +9T + gR+ 9m = o , 

where V is the mean velocity, G the gravitational constant, M the stellar 

mass (the mass of the wind material is negligible, Mwind/M* <3x 10~9), 

and r the radial distance. The term gx = (l/p)(dP/dr) represents the 

acceleration due to thermal pressure, gx the acceleration due to radiation 

pressure, and g\j the acceleration of mechanical origin (hydrodynamic (HD) 

and magnetohydrodynamic (MHD) waves). We can then distinguish three 

regimes: 

(1) When gx > gR,gM the wind has a thermal origin. This mechanism 

was the first proposed (Parker 1958) and regarded as the cause of the solar 

wind. 

(2) When gx > gx,gM the wind is driven by radiation pressure. In 

hot stars radiation pressure is exerted through the UV resonance lines of 

abundant ions and many subordinate lines. In cool stars radiation pressure 

can also be exerted on dust grains. 

(3) When g^i > gx,9R the wind is produced by HD or MHD wave 

pressure. 

Clearly this classification says nothing about the sources of the various 

terms (heating, temperature distribution, energy balance, wave production) 

which determine the mass loss. Moreover it ignores structural effects due to 

the presence of magnetic fields. It is however helpful in drawing distinctions 

between yellow giants, red giants, and red supergiants (types K-M) on the 

one hand, and blue supergiants (spectral types 0-B) on the other. The mass 

loss rate is expressed as 

M = 
d M 

d t 
—4:Trr2p(r)V(r) . 
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4.3 Direct Data on Winds 

4.3.1 The Sun 

The solar environment is well known, from the chromosphere and the corona 

to more distant regions which have been studied since 1960 using space¬ 

craft. Observations at all wavelengths show the heterogeneity of these outer 

regions. In particular closed magnetic structures are observed, extending 

through the lower corona and containing very hot gas. X-ray images (Sky- 

lab 1973) show these structures on a scale of 1/10 of the solar radius and 

large darker regions, coronal holes, where the plasma forming the solar wind 

appears to escape from. Clearly spherical symmetry is an extremely ciude 

approximation for these outer layers. 

Present estimates of the mass loss rate from the Sun are M = -(2.2 ± 

0.6) x 1CT14 Mq y-1. The wind velocity at the Earth’s orbit is on average 

about 400 km s_1, but it can reach 700 km s-1. 

4.3.2 Red and Yellow Giants and Supergiants 

Observations of the resonance lines of Ca II, and (from space) those of 

Mg II, show the presence of absorption components shifted towards shorter 

wavelengths with respect to the stellar lines (Fig. 4.1). The observed profile 

may be of P Cygni type. In general, however, the lines are simply asymmetric 

in bright red supergiants and the coolest red giants. Finding the density p 

requires a model of the expanding envelope. 

We find M as follows. Using spherical transfer theory, the P Cygni profile 

gives the column density a — fR p(r)dr (where R, is the inner radius of 

the expanding region), the wind velocity (10 to 50 km s_1), and the rms 

turbident velocity (several km s-1) in the wind. The mass loss rate M = 

—47tr2p(r)V(r) = — 4nRtaV is proportional to the radius Rt. The resulting 

mass loss rate is uncertain by an order of magnitude since the inner radius 

Rt is unknown (R.t ~ 101:tli?,(star)). 

The few accurate determinations of mass loss rates come from analysing 

red-giant circumstellar lines (Ti II, Fe II, Sr II) seen in absorption in the 

spectrum of a companion with higher Teff. The lines are produced by ex¬ 

panding material from the giant and seen on the line of sight to the compan¬ 

ion. The distance of the expanding gas from the giant is known. For example 

in a1 Her, -M = 1.1 x 10~7 Moy-1; for a Sco A, -M = 7 X 1CT7 M© y-1. 

We shall see in Chap, i that warm solar-type giants show high-tem- 

perature ions (N V, C IV, Si IV), indicating the presence of a transition 

zone surrounded by a corona observable through its X-ray emission. There 

is a clear demarcation in the HR diagram between yellow giants (spectral 

types earlier than Ivl III), which show high-temperature ions, but no optical 

evidence for a wind, and red giants, where none of these lines are visible 

and all the characteristics of a cool wind are seen. 
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Relative flux 

Wavelength (A) 

Fig. 4.1. The profile of the h and k 

lines of Mg II and K of Ca II (tl ie su- 

pergiant /3 Aqr, Dupree 1980). There 

is a clear correspondence between the 

absorption profiles of the magnesium 

and calcium lines from the circumstel- 

lar envelope. The magnesium lines are 

asymmetric. Theoretical calculations 

show that for stationary mass loss the 

asymmetry is larger for magnesium 

lines than calcium lines. To find the 

terminal velocity requires a line-forma¬ 

tion model. (From C. Chiosi and R. 

Stalio (eds.), Effects of Mass Loss on 

Stellar Evolution, Reidel 1981, p. 96. 

Reproduced by kind permission of 

Kluwer Academic Publishers) 

Circumstellar envelopes are also shown up by wide infrared emission 

bands in the regions 11 pm and 18-20 pm from all stars in the upper 

right-hand corner of the HR diagram. This comes from silicate grains at 

temperatures of a few hundred degrees. Infrared photometry gives the con¬ 

trast (AFv/Fu) of the emission peak at 11 pm. We can deduce the column 

density of dust, and from this estimate the hydrogen column density. The 

resulting mass loss rate again depends on the choice of inner radius for the 

envelope. 

The OH maser line at 18 cm has been seen in many red giants. This 

line is emitted only by molecules on the line of sight, and the presence of 

two peaks separated by about 20 to 50 km s-1 in radial velocity is due to 

emission from layers in front and behind the star. We can estimate the radial 

distance by the time delay of the maser emission compared with variations 

of the central star, and together with estimates of the optical depth this 

gives the mass loss rate. With a radius of 1016 cm and a velocity of 20 km 

s-1 one finds mass-loss rates from 5 X 10-6 M© y-1 to 3.5 x 10~5 M© y-1. 

Using solar and other data we give in Fig. 4.2 a schematic picture of the 

mass loss regimes for cool stars on the HR diagram. 

4.3.3 Hot Stars (O, B, WR) 

There are four methods, which all depend slightly on the model used to get 

from the spectrum to the mass-loss rate. 
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Tig.4.2. Schematic mass loss regimes in the HR diagram for cool stars. The ordinate 

is the absolute visual magnitude and the abscissa the B — V colour index. XX' is the 

Linsky-Haisch dividing line (Sect. 4.6 and Fig. 7.16, where it is called the coronal dividing 

line) 

The UV Method. This uses the P Cygni profile of ultraviolet lines obtained 

by satellite observations. This is quite sensitive and can detect rather low 

mass loss rates (down to 10-10 M© y_1). 

The resonance lines of the ions O VI, N V, C IV, Mg II have a broad¬ 

ened absorption component shifted to the blue, with a sharp boundary at 

a limiting velocity Vqq of the order of 2000 to 3000 km s-1, called the ter¬ 

minal velocity. These resonance lines are not saturated in 0 and B stars, 

but can be in A supergiants. The best diagnostic for these P Cygni lines is 

to synthesise them by solving the transfer equation in spherical symmetry 

(cf. Sect. 4.3.2). This assumes that we know a priori the temperature and 

velocity distributions T(R),V(R) in the wind. 

The Sobolev approximation simplifies this method; it is valid for flows 

with large velocity gradients dV/dr. Then at a given wavelength corre¬ 

sponding to velocity V, scattering in a resonance line occurs over a distance 

Ar ~ AA(c/A)(dV/dr)_1, corresponding to a width AA (natural + turbu¬ 

lent Doppler). We thus get the optical depth at wavelength A(1 + V/c)~l 

mec 

which is called the Sobolev optical depth, where / is the oscillator strength, 

A0 the rest wavelength, nt the number density of absorbing ions, and dWdr 

the velocity gradient. The mass loss rate is 
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Wavelength A 

Fig. 4.3. P Cygni profile of the resonance doublet of C IV. There is good agreement with 

the model of Conti and Garmany. The star is HD 93250, of type O. (From C. Chiosi and 

R. Stalio (eds.), Effects of Moss Loss on Stellor Evolution, Reidel 1981, p.7. Reproduced 

by kind permission of Kluwer Academic Publishers) 

—M = 4nr2V(r)fimH-—^- , 
9iZl 

where g, is the relative abundance of the ion i, Zi the abundance by number 

of the element with respect to hydrogen, and ft the mean molecular mass. 

Substituting for n, using r we have 

^ mec [r2V (dV / dr)\ 

f\0 tre2 gl(r)Z1 
rr(r). 

We shall return later to the determination of the function H(r). For 

the moment we note that near V = V^/2 the combination r2VdVjdr is 

fairly insensitive to the function V(r) itself. We thus evaluate r(r) at v = 

Eoo/2; the most delicate part of the determination of M is the calculation 

of g;, since the ions such as C3+, N4+, Si4+ whose lines are studied are not 

always the most abundant of their element. To find n; it is enough to fit 

a phenomenological profile with an estimate of ry to the P Cgyni profile 

(Fig. 4.3). 

The Optical Method. This uses strong subordinate transitions such a.s Ha 

or He II A 4686. It is essential to allow for non-LTE line formation and find 

the velocity law V(r) by trial and error. 

The Infrared Method. This assumes that the infrared emission from the 

wind is due to free-free transitions by hot electrons. We measure the infrared 

excess above the stellar continuum. 

To show how the procedure works we consider the case of a stellar wind 

of uniform velocity Wo. The mass loss rate is then 

—M — 4nr2nf^tmhVoo , 
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Fig. 4.4. Emission from a stationary spherical 

wind. Re is the inner radius of the spherical 

layer. We calculate the flux from the cylindri¬ 

cal layer of radius q and integrate from Re to 

infinity 

where r is the distance from the centre of the star, /i the mean molecular 

mass, and mu the hydrogen-atom mass. This can be written as 

-M 1 A 
^ ~ 9 9 5 

47tRmu boo rz 

so that the gas density decreases as the inverse square of the distance. 

We assume that the plasma begins to expand at a radius Re. Consider a 

cylindrical layer of radius q with axis parallel to the line of sight in the wind 

(Fig. 4.4). If T is the plasma temperature, the intensity of the radiation from 

this layer is 

I(v,T) = B{v,T)( 1-e-V)), 

where r(q) is the optical depth along the line of sight, 

r = 

The absorption coefficient Kvp goes as the square of the plasma density: 

— K(u, T)n2 . 

Ignoring the contribution from the hollow sphere of radius f?e, as is legiti¬ 

mate for large mass loss rates, we have 

7r ne A2 
T = RK(uiT)-3~ • 

2 rn q6 

If D is the distance to the object, the total flux received by the observer is 

S„ = ^P- J"(l-e-^)2irqdq. 

Thus 

5„ = 1.33 x 2tt 
2/3 q4/3 

~w 
B(v, T)K2/3(v, T). 
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Table 4.1. Comparison of mass loss rates for O stars (log(-M) in solar masses per 
year) 

Star Spectral type 
log - M) 

Radio 1 R. Optical U.V. 

C Pup 04 ef - 3.4 - 5.2 - 5.1 - 5.3 
9 Sgr 04 - 4.6 - 5.6 
HD 14947 04 r - 5.3 - 5.1 
Cyg OB2 *9 05 f - 3.9 - 5.0 
Cyg OB2 *5 07 r - 4.7 - 4.7 
£ Ori 09.5 1 - 5.6 - 5.7 - 5.5 - 5.6 

Expressing the flux Su in Jansky (10 W m 2 Hz *) and the frequency 

v in Hertz, the mass loss rate is 

—M = 0.095 
Zi{ne/ni)ll2 

Sl/4P3/2 

g i/2;/!/2 
Mq / year 7 

where <7 is the Gaunt factor and Zt the mean ionic charge. 

The shape of observed spectrum corresponds to free-free emission. The 

accuracy in the determination of M (within a factor of 2) is limited by the 

distance estimate. 

The Radio Method. The free- free radio emission comes from a region 

where the terminal velocity has been reached. This velocity is known 

from UV observations for almost all stars where radio emission has been 

detected. As for the infrared method, the deduced mass loss rate is then 

independent of the velocity law, but still depends on distance. 

Table 4.1 compares estimates of M by these different methods. Stars of 

the same luminosity can differ in mass loss rate by a factor of 10 (Fig. 4.5) 

or even 100 (see Table 4.1). 

4.3.4 Interpolation 

In evolution theory it is useful to have approximate parametric representa¬ 

tions of the mass loss rate as M(L, M, i?), where it is assumed that no other 

parameters enter. For giants and supergiants of types K and M the mass 

loss rate appears to be well represented by taking its mechanical luminosity 

as a constant fraction of the stellar luminosity: 

GMM 
-—— = —const x L . 

R 

In solar units (Reimers 1977) 

M* = —4 x lCT13^-^, 
g*n* 
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log M Fig. 4.5. Mass loss rate as a function of 

bolometric magnitude for 53 O and B 

stars. The roman numerals I, II, III, 

IV, and V give the luminosity class. 

We note the larger dispersion for stars 

brighter than A/bol = — 8- (From C. 

Chiosi and R. St.alio (eds.), Effects of 

Mass Loss on Stellar Evolution, Reidel 

1981, p.20. Reproduced by kind per¬ 

mission of Kluwer Academic Publish¬ 

ers) 
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where <7* is the gravity, M* is in solar masses per year, and 77r is a numerical 

factor, 1/3 < rjji < 3. F supergiants seem to have smaller mass loss rates, 

and for the Sun, ?m = 1/20. 

The mass loss rates for 0 and B stars seem to be fitted by the relation 

(Lamers 1981) 

7-1.42 p0.6 

M = 1.74 x 10“13^-— . 
M* 

It increases as a larger power of the luminosity than in cool giants and 

supergiants. 

4.4 Indirect Data on Winds 

4.4.1 White Dwarfs 

The presence of white dwarfs in galactic clusters can only be understood if 

there has been significant mass loss during evolution. A white dwarf cannot 

have a mass bigger than about 1.4 M0, while the stars at the tip of the 

cluster main sequence have masses of several Mq. 

There are various ways of estimating the progenitor masses for the white 

dwarfs in open clusters. Table 4.2 gives the clusters for which the mass loss 

can be evaluated. 
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Table 4.2. Mass of white-dwarf progenitors 

Cluster nWD (“) M\yd min ( ) M\yd max ( ) 

Hyades 13 2.7 4.5 
Pleiades 1 5.25 8 
Sirius group 4 4 7 
61 Cyg 3 1 (•) 
y Leo 1 

NGC 2168 4 5 7 
NGC 2287 8 ± 5 4 7 
NGC 2422 1 6 

NGC 2516 3 6 1 1 

NGC 6633 10 ± 5 >4 5 

(a) Number of white dwarfs in the cluster. 

(b) Minimum and maximum masses of the parent star. 

The method is as follows: 

- From the knee in the cluster HR diagram we can find the age tA of 

the cluster. 

From the mass and effective temperature of a white dwarf we can 

find the time twD since it became a white dwarf. 

The difference gives the cluster age at which the white-dwarf progen¬ 

itor left the main sequence, t'A, 

tA ~ ^A ~ t\VD ■ 

- The cluster epoch t'A gives the mass of stars then leaving the main 

sequence to evolve into white dwarfs. 

The main difficulty in the method is finding which part of the cooling 

age t\vD is the time spent passing to the giant branch (RGB), the horizontal 

branch, the asymptotic giant branch (AGB) and the cooling to the present 

state. In young clusters the latter may be only a small part of the evolution 

time. The results of Weidemann and Koester (1983) are summarised in 

Fig. 4.6. They suggest that the maximum mass of the progenitor is 

^TOmax = § ± |M© . 

Nuclear Transformations. An independent method was used by Hills and 

Dale (1973). During its evolution a star burns a certain fraction fu of its 

hydrogen. The mass Mc of the hydrogen-depleted core is the maximum 

mass of a white dwarf Mf = Mc formed from a star of initial mass Mt. 

The assumption is that mass M( 1 — ///) was lost during the formation of 

the white dwarf. If Q is the energy yield from unit mass of hydrogen, the 

integral f Ldt — XMfuQ gives the fraction fh of hydrogen consumed. The 

time interval dt is proportional to the number of stars dN in the luminosity 

175 



Fig. 4.6. The relation between initial and final masses for white dwarfs (from D. Koester 

and V. Weidemann ). The dotted and dashed curves correspond to different theoretical 

models for the mass loss rate. For stars denoted by a square masses are deduced from 

the surface gravity, for heavy dots the final masses are deduced from the radii; the error 

bars for the stars of NGC 2516, 2422, and 2287 are given their extreme values. The solid 

curve is that of Hills and Dale (1973) 

interval dlogT. Star counts per magnitude interval near the knee give an 

estimate of the element dt and thus f Ldt. The result is plotted in Fig. 4.6 

and lies within the extremes of the curves proposed by Weidemann and 

Koester (1983). 

4.4.2 Supernovae 

The notion of a critical mass was first introduced for supernovae. Here it 

is defined as the lower limit above which all stars undergo supernovae at 

sufficiently late stages of evolution. For stars evolving without mass loss, 

every star of mass above about 2.5 M© has a core which eventually enters the 

region of thermal instability of the 12C-12C reaction in strongly degenerate 

conditions. We can then estimate the supernova frequency in our Galaxy 

as a function of critical mass (Table 4.3), using the star formation rate and 

initial-mass function. 

Table 4.3. Frequency of SN II supernovae 

Lower mass limit 

(A4) 

Frequency 

(y ') 

2.5 0.16 

2.9 0.10 

5.1 0.04 

7.4 0.02 

9.1 0.01 
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Two observational points are crucial: (1) the observed frequency of SN 

II (Sect. 8.5) in our Galaxy is less than 0.02 per year; (2) the explosion of a 

medium-mass star injects about 1 M0 of elements near the iron peak into 

the interstellar medium. This would require the presence in the Galaxy of an 

enormous amount of iron, which is not observed. It follows that the critical 
mass is about 8 Mq . 

4.5 Generation of Mass Loss 

could view the pioblem of mass loss as a problem of the outer layer of 

stars, or of the stellar wind. We could also see it as a problem of internal 

structure: what is the origin of the energy which drives the mass loss. In 

fact these two questions are related, and it is not possible to separate them 

completely. The mechanism of mass loss is ill understood. The mass loss rate 

can diffei greatly from one star to another, and it can vary in time also. 

As well as the global parameters mass, luminosity, radius, and chemical 

composition, there is at least one other (probably the stellar rotation, via 

the dynamo effect) which controls the mass loss rate. 

4.5.1 The Sonic Point 

W e can illustrate one of the main characteristics of stellar winds by consid¬ 

ering the simple case of a thermal wind with T = constant. The steady-state 

equations of motion and mass conservation are 

ydV _ GM 1 dP 

dr r2 p dr (4.1) 

and 

—M = 4nr2 pV , (4.2) 

where V is the flow velocity. These imply 

2 $T GM 

dV r p r2 

dr 1 SRT 

V h 

(4.3) 

This differential equation has a singular point, defined by 

fr = 1 GMju 

' 2 
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It is called the sonic point because there the flow speed is equal to the 

isothermal sound speed of the gas. Solutions of (4.1) and (4.2) with veloc¬ 

ities finite at infinity and tending to zero at the stellar surface cross the 

sonic point. Before the sonic point (r < rs) there is hydrodynamic causality 

between the star’s surface and the flow, since V < V3; by contrast, above 

this point perturbations do not affect the wind, since V > V3. For the Sun, 

with coronal temperature T, rs = 5.4(1O6/T)i?0. 

4.5.2 Energy Constraints 

Even though stellar winds are definitely not spherically symmetric, the study 

of the general steady-state, spherically symmetric case illustrates the basic 

physics of stellar winds with heat and momentum sources. 

We list the hydrodynamical equations again: 

— mass conservation: 

—M* = 47rr2 pV — const; 

— momentum conservation: 

dF 1 dp GAL 
V -7— = — q-o-^ L 

dr p dr rz 
(4.5) 

— energy conservation: 

1 

7 - 1 
= 4W!) + «; 

rz dr 
(4.6) 

where p,V,P,q are the density, velocity, thermal pressure, and heat flux 

respectively, and D and Q are the volume injection rates of momentum and 

energy. The physical processes responsible for D and Q may bring in other 

equations to close the system. 

We wish to use observations to estimate the importance of effects pro¬ 

ducing non-zero T>, Q (e.g. heat transport, dissipation, momentum transfer, 

etc.). We consider the energy balance. The energy flux of the wind includes 

advection of kinetic energy, enthalpy and gravitational potential energy, and 

heat transferred by conduction. Integrating (4.5) and (4.6) we get 

F = (—M) ( “F2 -| — 
' 2 7 — 1 p 

GAL 
+ Airqr* (4.7 

which we can write as 

F = F0 + F A , (4.8) 

where Fq is the energy flux of the wind at a reference level ro, here taken as 

the base of the wind, and FA the contributions of the momentum and heat 

sources, 
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Fa= dr\(-M)D + 4irr2Q). 
' r0 

(4.9) 

These two contributions differ in that the added momentum goes directly 

into the kinetic energy (4.5), whereas the added heat modifies the internal 

energy and entropy of the gas (4.6). 

In comparing the different specific energies of the wind it is convenient 

to represent them as terms in v2. Thus vt, where 

vt=(p/p), (4.10) 

is the velocity associated with the internal energy, vg, where 

is the velocity associated with the potential energy, and vq is the velocity 

associated with the thermal conductivity, 

vg=87rqr2/(-M*). (4-12) 

We then have 

1 7 E=-V'2 + 
2 7 — 1 

u?- 1 2 | 1 2 

0V9 + oV1 (4.13) 

The minus sign m front of v2 arises because we have to do work to lift the 

wind material in the star’s gravitational potential. 

For winds which are strongly gravitationally bound near the stellar sur¬ 

face and whose energy flux is largely kinetic at infinity, we can simplify 

(4.13) by writing (with Vo — vt ~ 0) 

E0 
12,1 
2VgO + 

2 
gO 5 (4.14) 

E oo 
1_ 
2 (4.15) 

The difference E^ - E0 is the energy per unit mass which has to be injected 

into the stellar atmosphere above its base to drive the wind. Using (4.9, 12, 

14, 15) we write 

Ea(^oo) = d r'[(-M)D + 4nr2Q] 
r o 

1 
(4.16) 

+ «;„)-47rqrl 

If we include the conductive flux of energy driving the wind we can say that 

the driving flux Fao at the base of the atmosphere and dissipated within it 
is 

^do > FAoo +4nq0r2 ~ + v2). (4.17) 
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The > sign expresses the fact that we have to allow for radiation losses 

in the wind as well as the energy required to drive it. Using (4.17) and 

assuming ro = R* we get in solar units 

Fdo 

4tt r20 
> 3.3 x 103 

-M \ 

lO_7Af0 ) 

x 
/40OR©^ — 2 —1 

erg cm s (4.18) 

Using (4.17) and (4.18) we can classify the various types of winds, under 

the (valid) assumption of negligible radiation losses in the wind. 

Early-type Stars. These winds are very fast, V)2{ r20, and most of the 

driving energy is used to accelerate them to their terminal ■velocities. 

Solar-type Stars. In stars of solar type and analogous cases, is of the 

order of r20; comparable amounts of energy are used to lift the plasma 

off the star and to accelerate it to its asymptotic velocity. With -Mq = 

2 x 10“14 Mq y_1 we find the average energy flux 

Fdo/^rl ~ 105 erg cm-2 W1 . 

Winds in Red Supergiants. In general we have <C vg0, and almost all 

the driving energy is used to lift the material off the star. For a typical K5 

supergiant (M* ~ 16 Mq,R* ~ 40077©) and -M* ~ 1CT7 Mq y_1, we find 

Fd0 ~ 6 x 104 erg cm-2 s-1. For a Mira-type star (M* = M©, R* — 400Rq) 

and a high mass loss rate (-M* ~ 2 x 10 6 Mq y 4) we find Fao ~ 5 x 104 

erg cm-2 s_1. 

The comparable values at the base of the wind are due to the very low 

gravitational potential compared with the Sun, and also the very large area. 

(~ Rl) over which the energy is transported. 

4.5.3 Constraints on the Momentum 

This is particularly significant for hot stars, where the wind is driven by 

radiation pressure. We can write the momentum equation above a reference 

level r0: 

dU 1 d , „ „ . GM 
V -r— — — (P + Pr) Y~ 

dr p dr ri 
(4.19) 

where Pr is the radiation pressure. We may rewrite this as 

1 d 

r2 dr 
(^pr2V2 + (1 

pv2gor o 

2 r2 
(4.19') 

180 



where ?y(r) is the fraction of the momentum flux L/c received by the wind 

during its motion from the reference level r0 to r. Integrating (4.19) from 

ro to (the asymptotic regime) we get 

-MVao = VooL j 2 | VgQ Ko 

ulo 2(F) 
(4.20) 

where (V) 1 — r0dr/r2V. When the terminal velocity VW is much 

larger than the escape velocity at r0 (more precisely, when e2n < 2V^(V)) 

(4.20) reduces to the usual form 3 

MVqo — rjoo—(4.21) 

?/oo can be larger than unity if multiple scattering of photons is significant: 

it is less than one if only a fraction of the star’s radiation couples to the 

wind. We often assume ~ 1. This is valid for winds from many hot stars. 

Returning to (4.17), the terminal velocity is related to the energy added 

to the wind and to the mass loss 

V<L - 2{FAeo + 47:qrl) 
(-M) 

— v go (4.22) 

Integrating the momentum equation (4.5) to the sonic point rs gives the 

mass loss rate, which is proportional to Vq at the reference level. 

x exp _ i Yi_ 
2 + 2u2 

(4.23) 

This shows that the mass loss rate — M* increases when heat is injected 

(raising Vi) or when momentum is added (raising D) in the subsonic region. 

We note the different behaviours of mass loss rate and terminal velocity. 

Injecting energy in the subsonic domain raises FA and — Af*, while the 

terminal velocity varies little or even decreases. In contrast, adding energy 

in the supersonic regime has little effect on — Af*, but increases the terminal 

velocity AW. Thus for winds of low terminal velocity, V£, < v2g0, most of 

the energy must be injected in the subsonic region. This is the important 

region for red supergiants as well as for 0 and B stars. 

4.5.4 Driving Mechanisms 

The considerations above give an idea of the energy and momentum contri¬ 

butions in various stellar winds. 
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Cool Stars. It is easy to see that a thermal wind would require large injec¬ 

tions of heat and thus significant radiative emission, which is not observed. 

We therefore look to momentum injection. It is most likely that the wind is 

driven by Alfven waves, which, being very little damped, can propagate far 

from the surface of the star. In this case Holtzer et al. (1983) give the mass 

loss rate as 

-M* = 1.8 x 1CT13 ef Mq year •) 

where /o is in erg cm 2s 1, Bo in gauss, and these values are at the reference 

level r0 ~ R*. If the Alfven waves are undamped, 

Ko — VgO 

1 1/2 

7 W / sonic 7 

where v2 = Bq/8ttp gives the Alfven speed. 

The mass loss rate is compatible with observation, but the predicted 

terminal velocity is very large and we have to assume that the Alfven waves 

are damped. This is perfectly reasonable (friction of ions on neutrals), but 

the damping rate has to be very carefully adjusted to give the observed 

velocities. There is probably some kind of back reaction which arranges a 

similar terminal velocity for all stars, but this remains to be discovered. 

Wind driving by radiation pressure on dust grains could be important 

for cool stars where condensation of refractory material can occur in the 

outer layers. Energy and momentum arguments show that this is a possible 

process but needs some kind of self-regulating mechanism to give agreement 

with the observed mass loss rates and terminal velocities. 

Hot Stars. The idea of a radiation-driven wind is self-consistent in order 

of magnitude. In the Sobolev approximation the absorption in a line of 

frequency ul occurs over a band Azq = z/2(l/c)(dE/dr)Ar, in a layer of mass 

47rr2pAr. The quotient £T(l/L)L(iq)Azq is then the absorbed fraction of 

the radiation output L. The radiative acceleration is then the absorbed 

momentum divided by the mass of the layer of thickness Ar. Thus we have 

L L{vi) dE 1 

c 2—^ L ' c 47rr2pdr 

In the region where 

motion is 

Sr- 

gas pressure is negligible, the steady-state equation of 
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Table 4.4. Mass loss from hot stars 

Star Spectral 
type 

T, r 
(101 K.) 

log g 
cm s-2 

!og (L/Lq ) 
^obs 

10"6 A/©/y 
^cal 

10-6 A/0/y 

T/ObS 

oo 
km s 1 

1/ calc 

km s'1 

P Cyg B 11 a 18.0 2.0 5.64 20-30 29 400 395 
e Ori B0 1 a 28.5 3.25 5.91 3.1 3.3 2010 1 950 
( Ori 09.5 I 30.0 3.45 5.79 2.3 1.9 2 290 2 274 
9 Sgr 04 (0 V 50.0 4.10 5.95 4.0 4.0 3 440 3 480 
HD 48099 06 e 39.0 4.00 5.40 0.63 0.64 3 500 7 540 
HD 42088 06.5 V 40.0 4.05 4.89 0.13 0.20 2 600 2 600 
A Cep 06 ef 42.0 3.7 5.90 4.0 5.1 2 500 2 500 

The dimensionless quantity £h(VL)L(ui)ui = Neff is interpreted as the 

effective number of strong lines. Then we have 

M = — Neff . 

Then from (4.21) and q = 1, 

and with lVeff — 100 we have ~ 3000 km s 1, which is indeed of the ob¬ 

served order. However, a detailed treatment shows that the transfer equation 

must be sol\ed very carefully to take account of the velocity field, geomet¬ 

rical effects, and the deviation of the level populations from LTE. This has 

been done for a very large number of lines (250 000) (Kudritzki et al. 1986). 

The results are quite convincing (Table 4.4). 

4.6 Heating Mechanisms 

In some dwarfs, giants, and supergiants of solar-type strongly ionised species 

are seen (C IV A 1550 A; N V A 1240 A), indicating the presence of hot 

plasma (150 000 K). They also show X-ray emission. It thus appears that 

some late-type stars have chromospheres and coronae (see Chap. 7). 

For blue stars with strong winds, only detailed studies (Kudritzki et al. 

1986) show the non-LTE nature of lines from highly ionised species such as 

0 VI. It thus appear possible to explain simultaneously the spectrum and 

wind of blue supergiants without requiring solar-type heating (see Sect. 4.6.1 

below). The lack of a mechanical energy source for chromospheric heating 

would raise a real diffculty, which seems now to have been avoided. 

The role of mechanical energy injection in driving cool winds (momen¬ 

tum injection from Alfven waves) suggests that we look closely at acoustic 

waves in heating the outer layers and producing a chromosphere. It is tempt- 
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ing to extend to red giants and supergiants the mechanisms invoked to drive 

the solar wind, producing a chromosphere, a transition zone, and a large 

expansion zone which cools rapidly. The energy available in the convection 

zone is important here. But the main question is to know how the me¬ 

chanical energy reaches the outer layers and is dissipated so as to drive the 

wind. 

In the hydrogen convection zone near the surface, mechanical energy 

produced by the Rayleigh-Taylor instability propagates into the exterior as 

acoustic waves, which dissipate as heat and constitute an energy source in 

the immediate vicinity of the star; it also creates a complex magnetic field 

through a dynamo effect. MHD waves propagate in this field, and plasma 

instabilities convert magnetic energy into heat. 

The complexity of the heating mechanism is clearly visible at the Sun’s 

surface and demonstrates some of the dissipation mechanisms discussed 

here. This is also seen on an HR diagram where the various stellar-wind 

regimes are marked (Fig. 4.2). Below the line XX1 (the Linsky—Haisch line, 

see Chap. 7) we detect X-ray emission and a transition zone (similar to the 

solar transition zone between the chromosphere and the corona). There are 

weak winds below and strong winds above. In the upper part of the dia¬ 

gram there are stars with permanent circumstellar lines. The main sequence 

is shown for reference. The division into stars with transition zones and stars 

with cool strong winds is caused by a thermal instability. Stars with strong 

winds do not appear to have hot coronae. The difference between stars with 

strong and weak winds may have a dynamical origin (the speed of mass loss 

in stars with strong winds prevents a corona forming because the cooling 

time is short; there is a region of thermal instability between 15 000 Iv and 

5 x 105 Iv, so depending on the balance of heating and cooling the plasma 

settles at 15 000 Iv or 500 000 Iv). Alternatively it may be the formation of 

dust grains which prevents the formation of a corona. 

4.6.1 The Solar Wind 

The existence of very different regions in the outer layers of the Sun, such 

as coronal holes, which appear to be the source of the solar wind, and 

magnetic loops in the corona, show the importance of magnetic fields and 

various heating mechanisms. 

Acoustic waves are produced in the convection zone by compressional ef¬ 

fects associated with turbulence. The mechanical energy flux in these waves 

is of the order of 107 to 108 erg cm”2s_1. The waves quickly become shocks 

as they move outwards through the atmosphere. The mechanical energy 

flux decreases rapidly with height because of dissipation and refraction of 

the waves. Acoustic waves can heat the chromosphere but cannot reach the 

corona. 

MHD waves, particularly Alfven waves, penetrate further out, following 

field lines. In coronal loops, where the temperature reaches 2.5 X 106 K, 
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Alfven waves are trapped. If tM is the period of an oscillation caused by 

turbulence there is a corresponding wavelength vAtM = \A. There is a 

resonance if is a fraction 2l/n of the loop length /. A resonance means 

s rong dissipation of the electromagnetic energy of the wave and the mag¬ 

netic energy of the loop. This is known as the alternating-current heating 

mechanism because of the role of the frequency vA/l. In coronal holes, where 

the field lines are open and the temperatures lower, the heating is no doubt 

due to Alfven waves propagating along the field lines and dissipating under 
ion-electron friction. 

The chromosphere-corona transition zone presents an unsolved prob- 

em. It is probably heated by thermal conduction from the corona, but of 

an unusual type, because the mean free path of the electrons (50 km) is com¬ 

parable to the thickness of the transition zone. This implies non-Maxwellian 

distributions for the particles, and the conductivity must be computed tak¬ 

ing account of these “abnormal” conditions. 

It is difficult to achieve a quantitative model for chromospheric and 

coronal heating. It is also difficult to construct a model of the solar wind 

which simultaneously accounts for the thermal structure and the driving 

mechanism. It is clear that the theory of stellar winds is still in a primitive 

state and at best gives some idea of the physical processes involved. It is 

still not possible to include mass loss in stellar-evolution theory in a fully 
coherent way. 
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5. Hydrodynamics of the Stellar Interior: 

Convection and Rotation 

5.1 Introduction 

Complex chaotic motions of the stellar interior which are important to its 

structure and evolution result from local instabilities. We shall distinguish 

these from global instabilities such as those producing pulsations in variable 

stars. 
We shall first consider non-rotating stars where radiative energy trans¬ 

port becomes locally unstable, leading to the formation of a zone of con¬ 

vection or semi-convection. We then discuss rotating stars. We explain the 

circulation flows briefly, and then the associated instabilities. In particular 

we shall show how the combination of rotation and turbulence can produce 

macroscopic magnetic fields m a turbulent dynamo. An important appli 

cation of convective instability theory is to give (at least in principle) an 

explanation of stellar winds (see Chap. 4). 

5.2 Convection 

The condition for the stability of radiative equilibrium in a compressible 

medium is analogous to that for conductive equilibrium known as the 

Rayleigh-Benard stability criterion. A fluid heated from below in a ves¬ 

sel with a horizontal base becomes unstable once convective heat transport 

becomes more efficient than conduction. One then sees a stable system of 

convective cells (Benard cells) which rapidly become chaotic and then tui- 

bulent as the heat flux increases. 

5.2.1 Physical Preliminaries 

The treatment of stellar convection is based on the study of incompress¬ 

ible convection in the Boussinesq approximation; this allows a far-reaching, 

rigorous physical and mathematical analysis, introducing the basic ideas. 

Work in hydrodynamics attempts to make contact with the astrophysical 

situation, whose treatment is still essentially phenomenological at present. 

We start with the hydrodynamical equations for a vertically stratified 

medium: 
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dp 

dt 

The continuity equation: 

+ V • (pv) = 0 . 

The momentum conservation: 

dv f)T.. 
PgI^~9PUz-VP+^-, 

(5.1) 

(5.2' 

where uz is the unit vector along the vertical 2-axis and rlk the viscosity 
tensor. 

The thermal energy equation: 

0r — pdp I f dh 1 dp 
dt dt \dxk p dxk 

— Q — V • Fr + ^, (5.3) 

where h is the specific enthalpy and Q is an internal heat source (e.g ther¬ 
monuclear). 

We use the following notation: 

m = pv, 

6 = - 

Tik — P 

d log p 

d log T / p 

( du1 du_k _ 2 din 

\dxk dxi 3 lk dxi 

(5.4) 

(5.5) 

(5.6) 

where p is the coefficient of dynamical viscosity, p = pv, where v is the 

coefficient of kinematic viscosity, 

<P> = Tik 
_d_ 

dxi (5.7 

(with summation over repeated indices i and k) is the energy produced per 

unit volume by viscous dissipation, and V ■ FR is the divergence of the 
radiative flux: 

Fr = -VJ, 
3 (k + o)p 

where J is the solution of the transfer equation 

W -Fr = —0 + a)(J — B), 

with 

J~B= — T4 
4tt 

in the interior. 

(5.8) 

(5.9) 
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The linear problem (perturbation of the equilibrium equations) has both 

acoustic and gravity modes. If there is instability, the gravity modes become 

the convection. For the present problem (very subsonic convective motions) 

we can ignore the acoustic modes. The simplest idea is thus to expand the 

equations in powers of the Mach number v3/c in the gas. The resulting 

approximation is known as the anelastic approximation. 

All quantities are taken to have the form 

(5.10) 
f = f + 

where f is the stationary solution corresponding to the average situation. 

For a fluid layer of thickness d, we assume that the perturbations of pressure, 

density, and temperature are small. The pressure fluctuations are associated 

with the vertical kinetic energy, and the pressure pw2, where w is the vertical 

velocity component, is of the order of the pressure fluctuations 

t_ „ (5.11) 
P P 

giving the relations {HP = -(dr/d logP) is the pressure scaleheight) 

(5.12) 

We finally get the equations 

m% = pvi (5.13) 

(5.14) 
dxk 

dt dx 

dxk p dxk 

dh' 1 dp' 

(5.16) 

With 

(5.17) 

we have the relations or definitions 

(5.18) 
P P 
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(5.19) 
1 / d h 1 dp \ 

Cp\dx3 p dx3 ) 

dT 6 dp \ 

da; 3 pCp da-3 ) ’ 

k 
d 

dxk 
(5.20) 

5.2.2 Modal Theory 

The continuity equation is linear and thus separable, and we can write the 

velocity field as 

df dw df dw 9 

”’2 = ar2d^' = • (521> 

and we have 

d2/ «92/ 2 + ^t4 + A:2/ 
dx\ dxl 

0, (5.22) 

which has different, solutions for various convective structures: 

— in rolls: 

f = cos kxi (5.23) 

— rectangular: 

f = cos lx cos a/k2 — l2 y (5.24) 

— hexagonal: 

, , n/3. -v/3 
j = 2 cos -^-kx cos —ky + cos ky (5.25) 

— cylindrical: 

f = Jo(kr), (5.26) 

where Jo is the first-order Bessel function of the first kind. The function 

w(z) must be found from the other equations, which are non-linear. Using 

a truncated Fourier series for / one gets a set of linear equations which can 

be solved numerically. 

The Boussinesq Approximation. If we assume that the thickness d of the 

convective zone is small compared with the pressure scaleheight we can 

neglect density variations and revert to the incompressible case. 

If K is the thermal diffusivity we can write the system (5.13-16) in di¬ 

mensionless form by choosing suitable length, time, and temperature scales. 

The lengthscale is clearly d\ the timescale is defined from the thermal diffu- 
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sivity as d2 /A; the temperature scale is the difference AT between the base 

and the top of the convective zone, corrected for the adiabatic difference, 

i.e. AT — (gd/Cp). We express the vertical velocity w and the temperature 

and velocity fluctuations 8, v in these units, and write fdA = (d/Cp) f°r the 

adiabatic gradient, of dimension l/(length). We also introduce the following 

dimensionless numbers: 

- Rayleigh number: 

Ra = 
gouR_ 

Kv 
(5.27) 

where a is the thermal expansion coefficient of the gas: a — 1/T for a perfect 

gas. 

— Prandtl number: 

v 

If we take horizontal means, the equations become 

(5.28) 

d ^ 
— (p + pw-) = -gp, 

dT d —T T.a2T 

AT + = A W ’ at dz ozz 

^—|- v ■ Vr ) = —+ Rci8uz + V'u , 
ap \dt 

dd_ 

dt 
w 

dT 

!h 
- f3A ) + v ■ V8 - v ■ V6 - V 9, 

with 

zu 
p-p 

V P 
— ur 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

These equations hold if d < Hp, but not if the convective zone extends 

several scaleheights. They can however justify phenomenological treatments. 

In the Sun, taking d as the scaleheight Hp, we estimate the Rayleigh 

number 

Rciq ~ 1012 to 1020 . 

Similarly the Prandtl number is 

aP& ~ 10-6 to 10-9 , 

meaning that viscosity effects are negligible compared with those of thermal 

diffusivity, and the convection is very turbulent. 
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Only Rayleigh and Prandtl numbers much closer to unity can be realised 

in terrestrial experiments. There is little justification for extrapolation to 

the astrophysical case. 

We have to find the ratio of total and radiative fluxes. In steady state 

d/dt = 0, and (5.30) can be integrated as 

(5.34) 

where N, the Nusselt, number, is the ratio of total to radiative flux: 

F 
(5.35) 

Wre thus need the relation between N, Ra, and aP. 

We now introduce a concept similar to mixing length, to which we shall 

return later. We assume that we can regard a convective zone as obeying 

the Boussinesq approximation locally. We thus introduce a lengthscale which 

plays the role of a local thickness of the convective region. 

The equation of motion in the usual units is 

P 
fdv „ _ 
I — + v ■ Vv — v ■ Vv -w - o=o (5.36) 

We eliminate Vp' by performing the operation V x V x, giving 

— V2iw - = -[VxVx(t)Tt)-i)' Vd)] _ , (5.37) 

where is the horizontal Laplacian. Analysing in vertical and horizontal 

wavenumbers kz and kfj and linearising, we get 

(k2z + k2„) ^ - gk2H6 = 0. (5.38) 

Assuming constant temperature gradient /?, for a displacement £ we have 

with 

P = 
dT g 

dz 6 p 

(5.39) 

(5.40) 

We identify the time derivative as an advection term dt ~ wd/d£, and get 

w 2 gH 
[1 + (k*/k%)]T 

We set = 1 + {k2z/k2H) in this section. 

(5.41) 
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The heat equation describes the heat exchanges 

before we replace dt by an advection term to get 

during the motion. As 

80 2n 
w—-Qw — — A kz0 

dt 

(5.42) 

with 

k2 = k2H + k] . (5.43) 

Integrating, 

„ (Q Kk20\ 
(5.44) 

and we relate kz to the chosen scale l by 

/ = (5.45) 

We assume now that the displacement £ is 1/2 (equivalent to being in the 

middle of a layer of thickness /) and find the convective flux 

Fc = pCpwd=i$-1'2i -3wx (1 + r]2s)1/2 - 1 KpCp/3 , (5.46) 

where 

gpi4 

TI<2 
Raap , 

r? = -^U~3/2(<P - 1). 
TTZ 

(5.47) 

(5.48) 

We deduce the convective flux in two extreme cases: 

— efficient convection {p2s 1): 

Fc = \$~1/231/2KpCpp', 

- inefficient convection (ffis <C 1)-' 

Fc = ±$-1/2V3s2KpCpf3. 

Efficient convection gives a flux 

Fc = IpCpre-'/yAV)1'2 (W)‘/z (d-)2. . 

where 

AV=7dbgT)_tdlogT\ 
V d log p J \ d log P / ad 

(5.49) 

(5.50) 

(5.51) 

;5.52) 
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The corresponding velocity is 

w — - 
1gHp 2AV 

4 $ Hp 

1/2 

and we can re-express the flux as 

Fc = 2 

(5.53) 

(5.54) 

giving the order of magnitude of the turbulent vertical velocity (with # = 2, 

(luCjR) = 5/2) 

Dimensional analysis of (5.27), (5.28), and (5.35) gives the following 

result: if the heat flux does not depend on d or the viscosity, then 

N = const( .Ra-crp)1/3 

and the 1/3 power law appears to be well verified in some experiments. 

For hard turbulence (following Liebschaber’s terminology) with a 

Rayleigh number Ra > 108, boundary layers which develop at rigid bound¬ 

aries in laboratory experiments are extremely important, causing a transi¬ 

tion to a relation N oc (Raap)2^ ‘. Despite the very large Rayleigh numbers 

(Ra ~ 1025) in stellar convective layers, it is not clear that the results of 

laboratory experiments can be extended to stars. 

5.3 The Theory of Convection Zones 

The stellar case is made difficult by the fact that the instability can extend 

over several scaleheights, so that there is a large density variation across 

the unstable zone. We cannot use the usual linearisation methods to look 

for the onset of instability. There have been considerable efforts to treat 

convection in stars, and there has been significant progress. However, the 

phenomenological description we shall give below remains indispensible for 

treating convection. 

In a star the condition for dynamical instability is usually introduced as 

follows. If a fluid element, here called a blob, is displaced vertically without 

heat exchange with its surroundings, it undergoes an adiabatic transforma¬ 

tion and its density varies as 

S Pa.d 
d logp 

d log P 

d log P 
Sr 

ad 

d log p\ Sr 

d lo&PJ ad HP ’ 

(5.56) 
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where we have defined the local scaleheight through 

1 d log P 

Hp dr 
(5-57) 

For a region of the star in radiative equilibrium the density variation is 

defined by 

8Prad 

d log p\ 8r 

di^p;rad^' 
(5.58) 

If after its vertical displacement the blob is less dense than its surroundings, 

buoyancy forces will cause it to rise further; thus the medium is unstable if 

/ d log P \ ( d log P \ 

yd log Py ad Id log P)^ 

Conversely the stability condition (K. Schwarzschild 1906) is 

f d logp 

\ d log P 
< 

ad 

d log P \ 

diog Wrad 
(stability). (5.60) 

For a uniform chemical composition, with pressure only a function of tem¬ 

perature and density, the pressure difference between the blob and its sur¬ 

roundings vanishes if v/cs <C 1, and we have 

8 log P 
d log P 

d log p 

d log P 

d logp 

(^d)ad + 

(^P)rad T 

d log P 

d logT 

d log P 

d log T 

(8TU 

(&T)t ad (5.61) 

Then 

(8T)ad - (6T)rad = ~((8p)ad - (<V)rad) 
'a logp /a logp' 

, d log p / d log T 
(5.62; 

We usually write the stability condition for the temperature, since 

(<5T)rad is given by the transfer equation. It has the opposite sign from 

the density condition: a rising blob which cools more rapidly than its sur¬ 

roundings becomes denser, and buoyancy is now a restoring force: 

( d log T\ 

Vd losWad “ 

/ d log T \ 

\d ^g PJ rad 
(stability). 

We usually write 

/ d log P \ _ / d log T \ _ 72-1 

\ d !og p ) ad 71 ’ \ d !og P J ad 72 

(5.63) 

d log p 1 

d log T 73 1 

where local ionisation implies that ^ 72 7^ 73. In a fully ionised medium 

where we can neglect the second virial coefficient and electron degeneracy, 
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the perfect-gas approximation holds, and 7j = 72 =73 =5/3 for a non- 

relativistic gas. 

Combining the transfer equation with that of hydrostatic equilibrium, 

/ d log T \ 1 P nL(r) 

UlogPyrad_ 16trac ~Pr GM(r) ’ (5'64) 

where k is the opacity (including effects of heat transport), Pr the radiation 

pressure, L{r) the luminosity at r, and M(r) the mass inside r. a is the 

radiation constant, related to Stefan’s constant by ac = 4a. 

Stability holds if the temperature gradient is subadiaba.tic and instabil¬ 

ity occurs if the temperature gradient is superadiabatic. Two different effects 

tend to produce instability: the decrease in compressibility caused by ioni¬ 

sation, and increases in opacity when e.g. more atomic levels are available 

for absorption. 

5.3.1 Elementary Treatment of Convection 

The standard method of dealing with convection zones is a phenomenolog¬ 

ical treatment modelled on Prandtl’s theory of turbulence, which brings in 

the idea of a mixing length. Despite its shortcomings and even some internal 

inconsistency, this mixing-length theory provides a satisfactory approximate 

description of wide convection zones, because these are close to adiabatic 

over most of their extent. On the other hand, convection zones are narrow 

and close to radiative equilibrium in stars of spectral types hotter than F2, 

so that mixing-length theory does not apply very well. 

We assume a vertical velocity v and write the convective flux as the 

product of v and a certain quantity pCpST of energy being transported by 

the fluid 

Fc = pCp8Tv. 

The temperature difference ST is expressed as the deviation of the fluid 

element from the local average T*: 

ST = Tsiob - T,. (5.65) 

We assume that this temperature difference arises because the fluid ele¬ 

ment retains a separate temperature from that of its surroundings until the 

instant of mixing: 

ST = 
Blob 

(5.66) 

where / is the mixing length. We will see that ST is given by a first-order 

expansion, assumed valid whatever / is. Perhaps surprisingly, the final model 

of the convective zone thus obtained is indistinguishable from models using 
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more realistic phenomenological approaches, lending it a certain a posteriori 

justification. 

The blob begins to move with an infinitesimal temperature difference 

from its surroundings and mixes completely at the end of a pathlength /. 

There is no theory of the mixing length itself, and one simply assumes some 

relation between the mixing length and the characteristic length Hp = 

—dr/d logP, writing 

/ = aHP , (5-67) 

where a is a parameter of order unity. Since there is no theory of /, one 

uses the freedom in a to satisfy global constraints on the internal struc¬ 

ture. Although the choice of this parameter has rather little effect on global 

quantities such as luminosity and radius, it is important for the details of 

the internal structure, particularly if we wish to achieve a precise match of 

the radius to observations, e.g. for the Sun. 

The temperature variation in the blob is caused partly by expansion and 

partly by radiative exchanges with the surroundings. The latter are usually 

estimated by calculating the rate of heat exchange of a spherical blob of 

radius a whose central temperature is 8T higher than the surroundings. If 

the timescale a2/A', with I\ the thermal diffusivity, 

h 

Kp2Cp ’ 
(5.68) 

is smaller than the timescale l/v for the blob motion, we can take the tem¬ 

perature distribution inside the blob to be the same as in the stationary 

case: 

8T = (<5T)centre — sin — , 
7r r a 

and the rate of heat loss through radiative transfer is 

— = -4iraKR8T, 
d t R ’ 

(5.69) 

(5.70) 

where Kr — 16ctT3/3k/o is the radiative conductivity. Averaging over the 

sphere, the heat loss per unit volume is 

dw 

d t 

3 
KRpT. (5.71) 

The calculation then proceeds in stages: 

(a) We define a radiative gradient (d logT/d logP)raci, written as V#, 

through the relation 

F=8jtLVR. (5.-2) 
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(b) We find a velocity by integrating the linearised equation of motion 

pz = gp[6 
d log p 

d logP J HP 
(5.73) 

giving 

v = [g 
; d P 

d log P 

1/2 

HP 
(5.74) 

and estimate its mean value (v) = (1 //) J edz, 

(v) = ffl* 
d log p\ 1 

d log P J HP 

1/2 

(5.75) 

where the difference in density gradients, assuming a perfect gas, is given 

by 

412*4 = 1! d log p 

d log P V* d log P 

d log T \ 

(Vniob — V*) 

with 

V, = 

and we set 

<5=1 — 

d log P J 

d log p 

v ,dl°«Tl 
Blob 

d log P 

(c) The convective flux is defined by 

Fc = pCp—-{^Blob — V*)/u . 
tip 

(5.76) 

(5.77) 

(5.77') 

(5.78) 

(d) The radiative flux is defined from the average local gradient in the 

star V*, and we write 

F - KrTV 
Fr-HF ” 

(e) Flux conservation requires 

Ar t 

HP 
Vr = 

TvrT 

HP 
V* + pCp-y—(Veiob - V*)/(u) 

tip 

or 

pCp 
V, - Vr+ Blob - V*)Z(u) = o . 

Ar 

(5.79) 

(5.80) 

(5.81) 
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(f) The thermodynamics of the blob provide a second relation between 

V* and Vbiob- If £ is the energy loss rate per unit mass, 

dS 

T* =-£- 
(5.82) 

where S is the specific entropy of the blob. Taking l/(v) as timescale, the 

change of heat content is 

dQ (v) cn 

di~ 

Using 

= ^^C>T(VB|ob-Vad; 

l 
ST — — T( V * — Vnioby 

tip 

we get 

M 

/ 
Cpd(VBiob — vad) = —Ar(V* — Veiob)- 

(5.83) 

(5.84) 

(5.85) 

Eliminating (v)/l from (5.75), 

1 

2 

where 

gS 

HP 

1 1/2 

(V* - vBlob) Cpp(y Biob-Vad) = —AR(V*-VBlob),(5.86) 

a2 / gS 

6A'r \Hp 

1/2 

Cpd(VBlob — vad) = (V* — VBlob)1/2 . (5.87) 

Taking (V* - Vad) as unknown and setting 

3Kr///p\1/2 1 

“2 V Si ) Crp ' 

we write 

(VBi0b — Vad) = (V* — Vad + Vad — VBiob)1/2, 

where 

(Vsiob - Vad)2 + 4U2(VBiob - Vad) - 4U2(V* - vld) = 0, 

giving 

(^Blob - Vad) = 2U -U+Pl7* + (V,-V,d) 

(5.88) 

(5.S9) 

(5.90) 

(5.91) 
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(g) We use (5.75) and (5.76) giving (v), (5.87), and (5.88) in the expres¬ 

sion 

F = FR + Fc (5.92) 

for the total flux, and obtain 

(V, - Vad) - (Vrad - Vad) + - —Z — 
1 or U 

x (-fl+^2+V,-Vad)3 = 0. 

The parameter U is explicitly written 

!6aT3Hp / n W/2 

L Cpp2K(a2/r-)P V5RT8J 

Equations (5.93) and (5.94) were found without using special assumptions 

about (v) or Fc\ all the uncertainty is in the choice of (1/a), which is to some 

extent free. The choice of l/Hp = a fixes the properties of the convective 

zone. 

Equation (5.93) gives the difference (V* — Vad). At low densities near 

the stellar surface, U is large and (V* — Vad) — (V# — Vad), i.e. the local 

average gradient is close to the radiative one. Expressing U differently, we 

can use the approximation kP/g ~ r, 

(5.93) 

(5.94) 

v~_6-L_ 
_ o?{a?IP)\pvl t \S J ’ 

(5.95) 

where F is the total flux, r the optical depth, vs the sound speed, and 7 the 

adiabatic compressibility. pv3s/2 has the dimensions of a flux, and for r 1 

we see that U is the ratio of the total flux to that given by transporting 

the internal energy of the gas at its sound speed. We call this flux Fs. As 

one moves into the convection zone F/Fs rapidly becomes small, U is small, 

and the local gradient is close to adiabatic: 

:V* Vad} — C3 Z2 ^ 

2/3 

(Vrad - vad)2/3. 

5.3.2 The Convective Regime 

Use of a mixing-length theory throws up some difficulties which force cor¬ 

rections on the phenomenological model. The most important is for red 

supergiants, which have very extended low-density convective zones. These 

can imply supersonic velocities; but supersonic turbulence must dissipate 

rapidly in shock waves. There are two phenomenological assumptions we 

can make: 
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— We can limit the velocity to that of sound, and require the radiative 

flux to make up the total flux. 

- We can add a dissipation term representing the shock waves; the 

(constant) total flux then contains an extra term. 

5.3.3 Convective Overshooting 

The Schwarzschild criterion Vaa = V* = Vraa does not define an imper¬ 

meable barrier to the convective motions. Falling blobs may cross the lower 

boundary of a surface convection zone. In the subadiabatic region the buoy¬ 

ancy force decelerates the blob. In the phenomenological description the 

blob stops after one mixing length /. 

For stellar structure and evolution there are two important boundaries: 

the outer boundary of the central convection zone and the lower boundary 

of the surface zone. In these regions convection is efficient; the blobs are 

optically thick and exchange heat only at the ends of their pathlengths, and 

we can regard the motion as adiabatic. If we call 8(r) the deviation from 

adiabaticity, 

the temperature difference for a blob which has travelled from rq to r is 

8T(r\ri) = — f dr8(r) 

and the speed of the blob is given by 

v2(r|n) = 2 / dr'FWlXr'in), 
in T(r') 

where g(r) is the gravity at distance r from the centre. We assume r — rq < /. 

The convective flux at level r is 

Fa,c = faCp{p, T)p(r)v(r\r - l)8T{r; r - /) 

from rising motions occupying a fraction fa of the surface. For the falling 

motions the speed and the temperature difference have opposite signs, but 

the flux FdtC of the descending motions has the same sign as Fa,c. During 

the penetration of the radiative zone the temperature difference inverts, and 

the convective flux changes sign before vanishing. The radiative flux reaches 

a maximum before taking the value F imposed by the total flux. 

As an example we show in Fig. 5.1 results found by Shaviv and Salpeter 

for a perfect gas, with l/HP = 1/2, and far from the convective boundary, 

8 = 80 = 10“5. r£ is the radius for which the radiative flux equals the total 

flux. The radiative flux reaches a maximum and returns to the total flux at 

the point where the velocity vanishes, defining the penetration depth (here 
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v/v 

0 - rc)/l 

Fig. 5.1. Convective overshooting. The radiative flux as a function of depth (right-hand 

scale). The zone marked r = re on the abscissa is the point where the Schwarzschild 

criterion AV = 0 is satisfied. In the model describing the convection in local variables, the 

convective flux vanishes here. With overshooting, some heat is transported by convection 

to r = rx, then there is a zone where the convective flux is negative and FTa(j > F. The 

convective flux vanishes where the velocity vanishes, at r = rv (scale at upper left). The 

buoyancy factor <5(r) = (V»/Vaci) — 1, as a function of depth (lower-left scale) vanishes 

at rf, below r£, so that the inertia of the blobs carries them above radius r*. (From G. 

Shaviv, E.E. Salpeter, Astrophys. J. 184, 191 (1973). Reproduced by kind permission of 

The Astrophysical Journal; published by The University of Chicago Press; © 1973 The 

American Astronomical Society) 

(r — rv)/l = 0.075). The point where V* = Vad is distinct from the point 

where Fc vanishes before changing sign. 

The penetration depth thus defined is a sort of average. It does not give 

the size of the region completely mixed by the overshooting. According to 

Maeder (see Sect. 3.5.1) the penetration depth derived from evolutionary 

models is small. 

A more rigorous analysis in the plane-parallel case factorises the motion 

into a periodic horizontal function, with one or two modes, and an unknown 

vertical dependence. For example, temperature fluctuations are written as 

T' = Y/Mn,y)0i(z), 
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Table 5.1. Velocity field for the (D) model of Massaguer et al. (1984) 

Depth Temperature Density V (vertical) 

0 0 0 - 

0.2 1 0.1 - 

1.20 11 1 max 

2.08 0 

+ 

2.24 0 

2.5 17.5 4 

and for one mode, we can choose to represent the fi as hexagons (5.25). We 

simplify by supposing there are three regions, stable, unstable, and stable, 

with arbitrary polytropic indices 1/(7 — 1) constrained to be respectively 

larger, smaller, and larger than the neutral-equilibrium value 3/2. In the 

model of Massaguer et ah, n.\ = 3, = 1, and = 3. This set of non-linear 

ordinary differential equations for the temperature and other fluctuations 

can be integrated numerically. We give here the results for the parameter 

choice (grid a = 2.22; critical Rayleigh number Ra ~ 103) and Prandtl 

number = 1, for the two cases of ascending (A) and descending (D) motions 

along the axis of the hexagonal cell. 

In case (D) the vertical velocity vanishes quite far from the base of the 

unstable zone, and direct and inverse cells follow each other. Table 5.1 gives 

(in reduced variables) the values of the temperature and density and the 

variations of the vertical velocity component as functions of depth. 

For case D the penetration depth is 1.6 scaleheights. 

For A cells the velocity structure requires a much smaller perturbation 

in the lower region at depth 1.32, corresponding to only 0.2 scaleheights, 

followed by very small amplitude direct and inverse cells (Fig. 5.2). 

The basic result is that A cells penetrate little below the convection 

layer, but very little at the stable surface zone (0.2 scaleheights). D cells 

effectively do not penetrate the upper stable zone. 

We should ask whether choice A or D is valid for the convection zone. 

Small-scale turbulence controls both the viscosity and thermal conductivity, 

giving ap ~ 1; replacing the molecular viscosity by the turbulent decreases 

the Rayleigh number by 10 orders of magnitude and justifies calculations 

for Ra = 103f?crjtjcai, where Rcritical is the Rayleigh number for which the 

system becomes unstable. 

The sign of motion along the cell axes depends on the dependence of 

viscosity on temperature (u ~ T5/2/p) and agrees with observations of the 

solar granulation, which reveal ascending motions along the axes of the 

granules. 

The image of the blob penetrating inside the subadiabatic region is too 

simple and does not correspond either to observations in the Earth’s at mo- 
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Fig.5.2. Model of convective overshooting (from Massaguer et. al.). (V) The radiative 

and adiabatic gradients as functions of height. The unit of length is the thickness of the 

unstable zone, (p) Density is given in arbitrary units and varies from 0.1 to 1 in the 

unstable zone. Wy (in arbitrary units) is the vertical component of the velocity for a 

hexagonal cell with rising motion at the centre 

sphere or to the results of numerical simulations of motions in a stratified 

medium. “Plumes' penetrate downwards to great depth (of the order of one 

scaleheight), opening out and sweeping up matter in their paths. 

We present here a first-order analytic solution describing the penetra¬ 

tive motion, without giving a detailed description of the flow. We consider 

two cases: inward penetration from a surface convective zone, and outward 

penetration from a convective core. 

Overshooting from a Surface Convection Zone. We aim to describe average 

properties at a level z. We assume that the temperature fluctuations T\ 

and the vertical component w of the velocity are given by the same modal 

function h(x, y): 

Ti(x,y,z) = h(x,y)6T(z) (5.96) 

and 

w(x,y,z) = h(x,y)W(z). (5.97) 

The function h is such that its mean value is zero but its mean square is 

unity over the fraction of the area where h is positive, and it is / when 

averaged over the whole area. The ratio of the mean cube to the mean 

square, ({h3)/(h2)), measuring the asymmetry of the flow, is called c. 
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To a first approximation, the flow in the subadiabatic overshooting re¬ 

gion will be regarded as adiabatic. Then neglecting the kinetic energy flux, 

the convective energy flux is 

Fc = F — Frad . (5.98) 

We have 

U,d=A'R(W) (5.99) 

where Kr is the radiative conductivity. The linear approximation gives 

d InI\r z 

dinP 
(5.100) 

where z is the distance from the level of the Schwarzschild condition (z is 

measured positive downwards), and F is the total flux. On the other hand 

the convective flux can be expressed as advection of enthalpy: 

Fc = -pCP{wT\) = -fCppWST. (5.101) 

To obtain the vertical velocity as a function of z we write the linearised 

vertical deceleration: 

1 dud 

2 d z 
= 9 

5 In p 

5 In T 

F 

T 
(5.102) 

Multiplying both sides by h and taking the average, we obtain 

c dW2 

2 dz 
5 (5.103) 

where Q = (d In p/d lnT)p. Eliminating ST, integration of the last equation 

gives the relation between the penetration depth and the velocity TTo at 

which the flow crosses the level z = 0: 

Lp 

Wp 
w, 3/2 

1 -1/2 

-gQKxpV ad (5.104) 

where xp is (d InKp/d lnP)a(j and A the thermal diffusivit.y. The velocity 

W decreases from z = 0 and vanishes at z = Lp: 

W3 = W03[l - (z/Lp)2}. (5.105) 

The velocity scale (dz/dlnrc) vanishes at the boundary of the convection 

zone. The boundary layer between the regions of overshooting and radiative 

equilibrium can be defined as the locus where the radiative energy transfer 

rate balances heat advection. 
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An expression for the maximum velocity can be found by assuming that 

it is the result of inertial motion from the level z = — (Hp/xp) to the level 

z = 0: 

2cfXP pW* 

3 QVad ' 
(5.106) 

The definition of the boundary layer gives a thickness Lt of the order of 

Lt = 
K2HP 

9 
(5.107) 

which is of the order of a kilometer, with velocities of the order of one me¬ 

ter per second. Thus the boundary of the convection zone appears sharply 

defined, although it probably undulates somewhat under the velocity dis¬ 

persion of the impinging downdrafts, as illustrated in the boundary layer in 

our own atmosphere, where it is delineated by clouds. 

Penetration from a Convective Core. In a quasi-adiabatic region, Rox¬ 

burgh (1978) has shown that the extension of the convection zone can be 

derived from the specific entropy equation. He obtains the condition 

fr 1 c\.T J (Trad - L)— — dr = 0, (5.108) 

where Trad is the radiative luminosity (radiative transfer with the local value 

of the temperature gradient) and L the actual luminosity as a function of 

radius r. In this expression the fluctuations of the entropy flow, the kinetic 

energy flux, and the work done by the pressure fluctuations have all been 

neglected. These approximations are valid in the convective core, as shown 

by Zahn (1991), because of the very small departure from adiabaticity, even 

if the filling factor is very small. This defines a boundary which is different 

from the classical boundary defined by the Schwarzschild criterion. 

5.3.4 Semi-convection 

Another kind of instability occurs when there is a gradient of chemical 

composition and the radiative gradient increases outwards. This happens 

when the main opacity is scattering, with cross-section a = 0.19(1 + X). 
The important property is that a increases with the hydrogen content. Near 

the convective core of an intermediate-mass or massive star, the defining 

condition Vrad — Vad = 0 for the convective boundary at composition Xt 
fails for composition Xe > X, just outside the core. We thus write Vrade > 

Vrad p and the zone which was supposed to be stable under the condition 

(AV), = 0 is actually unstable. 
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We thus write the condition for marginal stability 

( 
where we take account of V// on the left-hand side, but not on the right, 

because we assume that blobs retain the same composition during their mo¬ 

tions. The marginal-equilibrium condition defines a zone of radially varying 

composition allowing a match to the outer region whose composition has 

not been changed by thermonuclear reactions. 

This assumption allows one to calculate stellar models and follow their 

evolution. But we must still explain how the change of composition comes 

about in this zone. Very slow convection appears to have the right properties 

to produce the required mixing, hence the name semi-convection zone. In 

fact we can imagine that as the central convection zone evolves it creates 

a composition discontinuity at its boundary. Once this is sufficiently large, 

viscosity cannot prevent overturning motions and the composition change 

propagates as a wave of chemical discontinuity from the convective core to 

the region where the gas still has the original composition. 

5.4 Circulation and Rotation 

5.4.1 Von Zeipel’s Theorem 

Von Zeipel’s theorem is fundamental to all discussions of the circulation 

induced in a star by its rotation. We consider a star entirely in radiative 

equilibrium. The flux and the energy production rate are thus related by 

V • F = p^Nuci 

at each point, and the flux is given by 

(5.109) 

(5.110) 

We also take P to be a function of density and temperature. 

We now assume that the star rotates with angular velocity ft = ft(zu), 

where w is the distance from the rotation axis. Then we may write the 

hydrostatic-equilibrium equation as 

1 
VP = -y<£ 

p 
(5.111) 

where 

(5.112) 
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(5.113) 

and the gravitational potential V is given by Poisson’s equation 

V2 V = 4:nGp , 

where G is the gravitational constant. 

From (5.111) we have P = constant on equipotentials, so that P = P (P) 

and (5.111) becomes 

1 _ dp 

~p ~ dP ' 
(5.114) 

Thus the density is constant on equipotentials. Since the pressure is a func¬ 

tion of temperature and density we can write T = T(P, p), and the temper¬ 

ature is also constant on equipotentials. Thus the fluid satisfies P = P(p), 

and is called barotropic. 

Returning to (5.109) we easily derive 

_ 4ac T3 dT 
F = —— — — VP 

3 up dP 

where 

(5.115) 

F = /(P)VP. (5.116) 

We note that the flux is proportional to the gravity on an eqxtipotential 

surface in a barotropic fluid. This is important for the study of the spectral 

properties of rotating stars. 

Substituting for the flux divergence in (5.109) gives 

2 

s© +/(*)*’*=/*»«.- 

Now (grad P)2 is equal to the square of the gravity, and we have also 

Y2P = 4nGp — — ~^—(ft2w2), (5.118) 
'CL7 Cl u7 

and so we can write (5.109) in the form 

/'(P)^2 + /(P) 4nGp-:—(f22zu2) 
ZD d w 

= p£Nucl • (5.119) 

The case i? = constant is particularly simple. We then have 

f\$)g2 + /(P)(4ttG> - 2n2) = p£Nud • (5-120) 

g is not constant on an equipotential. Equation (5.120) can only be satisfied 

if 

m = 0, (5.121) 
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so that 

/(<?) = const, (5.121') 

requiring 

£Nucl ~ (5.122) 

This condition is not obviously satisfied in a real star (von Zeipel 1924). 

Advection of thermal energy by circulation arranges that flux is conserved, 

but the fluid is then no longer barotropic but baroclinic (P = P(p,T, A;)), 
where the Xt are variables depending on zu and z. 

5.4.2 Circulation 

We begin by estimating the order of magnitude of the circulation velocity 

in a star and discussing the physical problems arising from rotation. 

We can easily estimate the meridional circulation velocity under the 

assumption that ft2 R/g is much less than 1. We separate the radiative flux 

into two components, one with spherical symmetry, and the other (denoted 

by a prime) without: 

KrVT = (Kr'VT)s + (KrVT)' . (5.123) 

The relative size of the two terms is of the order of the ratio between cen¬ 

trifugal force and gravity (e.g at the equator and the surface respectively): 

(KrVT)' n2R 

(KrVT) ~ g3 
(5.124) 

Replacing the radiative flux ( — KrVT) by (L/AttK2 ) and the V operator 

by 1/P, we estimate the divergence of the radiative flux as 

V • (KrVT) ~ 
L 

AttR3 

Q2R 

9 s 
(5.125) 

which comes entirely from the (KrVT)' component, since div(A'^VT)s = 0 

in regions where £nuc1 = 0. To order of magnitude, with A 7rR3p = M, we 

get (dividing by p) 

1 

P 
V • (KrVT) = 

L Q2R 

M g9 

LR3 

GAT2 
Q2. (5.126) 
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(5.127) 

We note that the Kelvin-Helmholtz timescale 

"TvH 
LR \ 

GAP ) 

-1 

is also the heat-diffusion timescale through the star, 

R2 

where I\ is the thermal diffusivity. 

Then to order of magnitude we have 

-V • (KrVT) = KQ2. 
P 

(5.128) 

(5.129) 

The energy equation (Sect. 3.1.2) can be written 

(dS 
pT 

\dt 
+ U-VS) = V-(A'flVT) + />£ Nucl i (5.130) 

where S is the entropy. The product u • V5 describes the advection of 

entropy from heat sources to heat sinks. 

The mean entropy gradient can also be found to order of magnitude 

from the quantity AV, 

as 

AV = (Vad — V*), 

3?(Vad —V* 

(5.131; 

VS ~ = 
(&T/gp) ‘ 

We thus get an estimate of the Eddington-Sweet circulation velocity 

LR2 Q2R p 

(5.132) 

ves - -(AV)-1 
GAP gs p 

and a characteristic circulation timescale 

fn2R\~l 
^ES — ^KH ( —- ) 

(5.133) 

(5.134) 

For fairly high (but easily attained) rotation speeds we have t^s ~ ^Nucl? 

and we can expect rotation to have a significant effect on the internal struc¬ 

ture. However, we note (see Mestel 1953 for details) that the circulations 

transport material from the star’s core with higher mean molecular mass; 

the resulting composition gradient inhibits the circulation and significantly 

changes the morphology of the flowlines. 
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Reverting to the discussion of orders of magnitude, the thermal energy 

equation 

^ d T p dp nr,' 
Cvp—— — — “77 + (d^Nucl — ^ ' F, 

at p df 
(5.135) 

can be written as 

pG($)(v-V$) = pCv 
yl 'd<? 

X (v • W) = (peNuci - V • F; (5.136) 

by means of the relation d/df = v • V. Now distinguishing between average 

quantities on the level surfaces and those whose means vanish on these 

surfaces, 

V ■ F = (V • F)* + (V • F)' 

with a potential 

U = Q2 (w1 )zo'du7/ , 

(5.137) 

(5.138) 

we have 

(V • F); 
d<£ 

/(<£)((V<5)2) + /($) [(V2F)* - 47rGp] 

and 

(v'F)' = dim [(v*)2]’ + fWv‘u)' ■ 
The mass flux across a surface $ =constant must vanish, so 

V*\ f ptNucl V - F 

M V |v<f|j L„,« G(#)|v$| 

(5.139) 

(5.140) 

dS = 0. (5.141) 
J c£>=const \ 

To first order the mean quantities obey 

/9£Nuci — (V • F)<*> = 0 . (5.142) 

The vertical component vr is then given by (5.136). Assuming p = constant, 

F " ( Tj 
<?p(vad-v*K = - - [(v2cry] + [(v<?)2]' ^ f — -£Nud (5.143) 

The variation of gravity caused by rotation is giveh by the variation of 

the potential, V being defined by (5.113). The relative variation is of order 

(VF/VV), and we thus have 

((V#)2)'~9 
vu 

(5.144) 
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(5.145) 

The velocity is then given by 

1 ' L |W| (v2uy ll 

(Vad - V*) M S2 dm'2p g2 

The second term is proportional to 1/p and becomes infinite at the 

surface. It vanishes for the case 1? = constant, but there is still a 1/p term of 

second order in e — (1?~ R:i /GAI), the ratio of centrifugal and gravitational 

forces at the surface. 

5.4.3 Validity of the Assumptions 

The description above ignored several potentially important effects: 

(a) The velocity becomes infinite where AV vanishes, i.e. at the frontier 

of the radiative and convective regions, and does not permit a description 

of how the circulation penetrates the convection zone. 

(b) The radial velocity component becomes infinite at the surface p = 

0, except in the case f?" = constant (at least to first order), but the v$ 

component, 

1 d 
ve = 

pr sin 6 dr 
pr vr sin 6d6 (5.146) 

always becomes infinite at the surface, since dp/dr ^ 0. 

(c) The vector product v x £2 is non-zero. It induces differential rotation 

which is indeterminate in the absence of viscosity, for the Coriolis force then 

implies an infinite azimuthal velocity. 

(d) The velocity field induced by rotation has a wide variety of instabil¬ 

ities which have to be considered in any serious study of the internal struc¬ 

ture. They can induce turbulence which in turn produces a “turbulent vis¬ 

cosity” and mixing phenomena as described below. There is a back-reaction 

(rotation-circulation-instabilities-circulation) that we have to consider. 

(e) We have ignored magnetic fields. In reality the magnetic force adds 

to the centrifugal force, 

W = zdQ2 + 
(V x B)xB 

47ip 
poloidal 

(5.147) 

and the azimuthal component adds to the viscous force. Magnetic effects 

are comparable to viscosity once 

B2 ~ dnpuQ (5.148) 

and for the Sun we see that a field of 2 x 10 2 G is equivalent to the (weak) 

viscosity of the gas. For fields of a few gauss we can expect noticeable effects 

(see Sect. 5.4.9). 
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Difficulties (a) and (b) are related to the absence of viscosity. The solu¬ 

tion of (c) is simultaneously the solution of (a) and (b). Introducing viscosity 

raises the order of the system of differential equations, and we can find a 

non-singular solution characteristic of a boundary layer. 

As an example we consider a star of mass 3 M© with a convective core 

and a radiative envelope. The microscopic viscosity is dominated by radia¬ 

tive viscosity, 

hfl = 
4aT4 

15 CK.p 1 

(5.149) 

and we write the viscosity as /r = 10qfJ,R to take empirical account of tur¬ 

bulent viscosity with a Reynolds number Re = 10? > l,q > 0. If k — o 

(electron scattering) the thicknesses #c, 8s of the boundary layers at the 

surface of the convective core and the surface of the stars are given by 

(Tassoul and Tassoul 1982): 

2 d2\ V' 

— = k 
Rr 

CBL 

8s 

R* 
= k SBL 

'KR. 

, Mi 

MRl 
Mi 

10(?//7), (5.150) 

) 

!0(9/10) (5.151) 

A:sbl = 6.18 x 10-4. The boundary layer is with kcBL — 3.17 x 10" 

therefore always very thin, even for large values of the turbulent viscosity. 

In most of the star the circulation is given by the non-viscous solutions. 

In contrast the problem of differential rotation remains. In general so¬ 

lutions of the system of partial-differential equations describing the hydro¬ 

dynamics of the stellar interior depend on both time and initial conditions. 

A stationary solution is a special case: the parity (in i?2) of the circulation 

velocity imposes an expansion of the form 

12 - cooie1'2 + uqe3/2 + ... 

u = eui + £2u2 + ... , 

(5.152) 

(5.153) 

where cc0 = (GM/R3)1/2 and £ = 122i?3/GM. Then describes differential 

rotation, and we have (with /( = cos#) (f/./j = radiative viscosity) 

d_ f 4 jj_ 1 d_ 
?’4 dr \ R dr ) r2 1 — /z2 dft (1 

(5.154) 

where ur,ug are the radial and poloidal components of the meridional cir¬ 

culation. For radiative viscosity, or phenomenological turbulent viscosity 

212 



dT 109/ip, (5.154) gives a characteristic timescale for the viscosity, which, 

for radiative viscosity, is of the order of tvisc: 

M c2 M 
^visc — 10 9 - = 1.6 x 101510 9 —— (years). (5.155) 

^ L* 

tvisc is only comparable to the nuclear timescale on the main sequence (see 

Sect. 3.4.2): 

M 
^Nucl = 11.2 x 109-—^ (years) (5.156) 

if q ~ 3 to 4. To order of magnitude from (5.154) 

(5.157) 

or, for radiative or turbulent viscosity and k = a (electron scattering), 

(5.158) 

ru 
UJ\ ~ — 

V 

45 7T f?2i?4c2 ,, 9 i?4 
wiwoe ^ = 4.3 x 1013f22—^10-9, 

4 G2M2 

Rc2 , i?, 

Wi"gm=5x1° 

Ml 

(5.158') 

The assumption of strong turbulent viscosity is the more reasonable the 

smaller the Prandtl number ap is (i.e. the less that radiative equilibrium is 

modified). Still with k = a we have 

(^P )turb 

CVT 

be2 
x 109 ~ 3 x 10~14 • 109T, (5.159) 

and except in central regions crpturb <C 1. 

The study of time-dependent solutions removes the difficulty with the 

value of the viscosity, whether for the convergence of the series (5.152) or 

for the Prandtl number. The basis is still an expansion of the form (5.152), 

but this time introducing time-dependent terms (/i = cosd): 

n = n o |d(r,t) + e 0\(r,t) 
dPi(n) 

dfi 
+ 0i(r,t) diM/on 

d/x J j 
(5.160) 

where Q is the average angular velocity. 

For full rigour we must write 

Q = Q0{u(r,n,t) + euq (r, //, t) + e2u2(r, (j,t) + ...}. (5.161) 

In fact for small e there is separation between the evolution equation 

for and the equations giving the circulation velocity and the dif¬ 

ferential rotation. Assuming that the boundary conditions retain spherical 
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symmetry (zero-order approximation), u;(r, p,f) reduces to 9(r,t) and sat 

isfies the diffusion equation 

36 _ 77 \(P6_ / 4 Idrj_\d9_ 

dt p dr2 + \r + p dr ) dr 
(5.162) 

where i] is the dynamical viscosity. Again as an example we can assume as 

boundary condition Skumanich’s empirical relation Q ~ giving the 

angular velocity at the surface i?rad at the surface of the radiative zone as 

a function of time, and write 

0(i2rad,t) = [1 + (a2 - 1 )(t/te)]~1/2. (5-163) 

We can clearly specify a 0-dependent turbulent viscosity, and (5.162) be¬ 

comes a non-linear diffusion equation. 

5.4.4 The Classical Solution (Sweet 1950) 

However it arises, the case 8(RTaj<\,t) — const is typical. Ignoring molecular 

weight gradients gives Sweet’s (1950) solution for an inviscid fluid. The ve¬ 

locity components of the meridional circulation are valid except in boundary 

layers. 

To first order in £ we then find for the perturbation P2(cos9) of the 

potential 

Vi,2^2(cos 0), (5.164) 

Hi)2 = h(r) - §c0V , (5.165) 

h" + -h'--^h + = 0 , (5.166) 
r rz p 

and we deduce the corresponding pressure, density, and temperature per¬ 

turbations 

Pi,2 = ~ph, 

PP , 

VP P) 

The radial component u can be written (p = cos0) 

u(r,p) = u(r)P2(p), 

2Lr4 n -f- 1 

”<r) = GHP—I 
2 L 

h' 
2 AP\ 

r M J 

(5.167) 

(5.16S) 

(5.169) 

(5.170) 

(5.171) 
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Fig. 5.3. Radial component of meridional circulation in the Sun. (a) Standard solution 

for a Cowling model (central point energy source surrounded by a convection zone), (b) 

Solution for the solar interior at t — 4.6 X 109 y, assuming initially rigid rotation at the 

same angular velocity as today, (c) Solution for the solar interior assuming a decrease 

of 17 following the Skumanich law and initially rigid rotation at four times the present 

surface velocity 

where n is the local polytropic index and M the mass. The poloidal com¬ 

ponent is then given by 

. . 1 1 d . 2 
ve(r) = -;—2 6 prz dr 

with the velocity 

v(r,p) = rvg(r)(1 - p2) 
dP2 

dp 

(5.172) 

(5.173) 

Sweet’s solution ignores the term of second order in e which however 

gives another divergence through its contribution to p/p (Fig. 5.3). 

A basic theorem (Gratton 1945; Opik 1951) for which we shall give a 

simple proof (Mest.el 1957) shows the existence of two zones with oppositely- 

directed circulations. Returning to (5.136) and using (5.116) we have 

P^Nuci — /(^)(47rGp — 2l?2) — f'{<P)g~ = pG(<P)u ■ , (5.174) 
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where g = d<5/dn is the effective gravity. Dividing by g and taking the 

mean, and using the fact that the mass flux vanishes across a level surface, 

we get 

[peNuci - fm^Gp - 2122)] (g-1) = f'($){g) - (5-175) 

Combining with (5.174) and (5.175) gives 

PG($)u • V7> = /'(<?) - g2^j • (5-176) 

In a radiatively stable zone, motion against gravity requires energy input; 

the component of velocity across a level surface is positive if the right-hand 

side of (5.176) is positive. If /'($) vanishes, the relation f(<P) = 0 defines 

a level surface which the circulation does not cross. In the outer regions, 

where £Nucl = 0, this defines via (5.175) a density pmv for the region where 

the circulation has an inversion: 

2tt Gpinv(£lllv) = C2. (5-177) 

Inside the surface <2>inv,27rGp > C2,/'(0) < 0. At the pole, where g is 

a maximum, the right-hand side of (5.176) is positive and the circulation 

rises near the pole and falls near the equator (Fig. 5.4). 

The reversal of the circulation does not occur (1) if Pi is not constant 

throughout the star, and (2) if the condition (5.177) on p-mw corresponds to 

a level surface in the boundary layer or the convection zone. From models 

of the outer layers we can eliminate AR/R between (5.151) (where we take 

83 = AR) and the relation for p(AR/R). As an example, for k = a we find 

C2rit = 3.2 • 10-15(Af2Xt^8)_1/1°10(3/lo)9, 

3/4 3 
corresponding to extremely slow rotation. Assuming R* ~ MJ . T* ~ M*, 

and even taking q — 6, the condition gives P > 3000 d for A/* = M0. This 

order of magnitude is large enough for us to conclude that every real star has 

an inversion of its circulation. To order of magnitude for this same model 

we find that the inversion is always above 0.77?*, corresponding to a density 

Polar radius 
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Equatorial radius 

Fig. 5.4. A consequence of von Zeipel’s the¬ 

orem. The sense of the circulation changes 

on the surface defined by 2nGp\nv — f?2 



of about 0.9(M*/f?3) gem-3. This is clearly different for a time-dependent 

model. "We recall that the above discussion is for the case where radiative 

viscosity dominates. We note however with Tassoul (see Fig. 5.5) that in any 

real star, where ft is a function of w and 2, there is no circulation inversion. 

5.4.5 /i Currents and ft Currents 

As a star evolves, the chemical composition of its central regions changes 

on the nuclear timescale tnUc1- Eddington-Sweet circulation currents bring 

matter of higher mean molecular mass to the surface. The buoyancy forces 

resulting from this excess molecular mass tend to oppose the motions in¬ 

duced by rotation. If the excess molecular mass is sufficiently large, the 

circulation can be halted. 

We can estimate the condition for the inhibition of ft currents to or¬ 

der of magnitude. We consider a motion driven by a difference in mean 

molecular masses. We adopt a phenomenological description analogous to 

the mixing-length theory. An element of molecular mass larger than the 

molecular mass po of the environment is approximately in pressure equilib¬ 

rium, and its temperature T; is lower than that of the surroundings, To- We 

then assume that the advection of heat caused by the motion of the element 

is equal to the rate of radiative energy exchange with the surroundings. 

Letting rracj be the characteristic energy-exchange time, local theory gives 

T, AV 

HP 
= (Tt — T0)- 

Trad 

with 

AV = (Vad — V*). 

The temperature difference (Tt — T0 ) is thus given by the relation 

Tt — T0 _ nl — no 

T0 Hr 

To relate (m — po) to the stars’s evolution we assume that this difference 

arises because Eddington-Sweet circulations require a certain time to bring 

the new chemical composition to level r, 

/T ~ V0 _ Ap tes 

l^i h T'lucl 

where Ap is the change of chemical composition caused by thermonuclear 

reactions. In other words, the slower the circulation, the larger the change 

in composition, because more time is needed to bring the new composition 

to level r. Assuming a perfect gas, we thus obtain a velocity 

_ Hp tes Ap 

AVrra(j 7"Nucl h 
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The velocity of the Eddington-Sweet currents is related to the timescale 

tes through the relation 

rES - (r/ves ) 

with ues from (5.133). We rewrite it to order of magnitude: 

t’ES 
J?2?’3 p(r) 

GMr 
(A V)-1 

LR2 

GM2 
Vad • 

We note that in this analysis is of the order of e_1, which at first sight 

appears absurd, but comes from the fact that the molecular mass gradient 

opposing the motion is larger for slower circulations. Thus we find that 

circulation occurs at the surface of a convective core of mass qM* if £, the 

ratio of centrifugal force to gravity, satisfies the condition 

> 4 ^ (W (TV . 

TNucl Wd P \PJ \PJ 

With tkh/tnucI — 4 x 10 3(Af*/i?.*), we find for rigid rotation that 

£2 > 0.8(MJR*). 

The assumption e <C 1 is clearly violated here, and the order of mag¬ 

nitude we find simply shows that near the core molecular mass gradients 

inhibit the rotation-induced circulation. 

To find the circulation exactly in the presence of p gradients we have to 

look for a solution with p expanded in powers of £ as 

p = p0(r, t)+e [pi,o(r, t) + pip(r, t)P2{cos 61)] . 

Tassoul and Tassoul (1984) have found such a solution to order £ for a 

1 M© star (Fig. 5.5). The growth of the /r-gradient is clearly seen to expel 

the flowlines from the core. To order e this expansion does not determine a 

value £crjt above which the flowlines penetrate the core and mix the stellar 

material, as to first order the topology of the flowlines is independent of 

£. £crjt can only be found by going to second order in e. Then the velocity 

of the meridional circulation depends on the deviation from rigid rotation 

defined by u\, 

Q = f?o(l + £u> i +...), 

where the solution for u>i depends on the choice of viscosity (size, anisotropy 

of turbulent viscosity). 

5.4.6 Instabilities 

The probable presence of turbulent viscosity in stars is caused by the many 

instabilities associated with rotation. Helioseismology (see Chap. 6) shows 
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(«) (b) 
Fig.5.5. Meridional circulation in a rotat ing star. The effect of composition inhomogeneity 

for a 1 M0 star. Flowlines in a meridian plane. In (a), circulation at 500 million years, 

in (b) at 5 billion years. The change of molecular mass in the central regions expels the 

flowlines. (From J.L. Tassoul and M. Tassoul, Astrophys. J. 279, 384 (1984). Reproduced 

by kind permission of The Astrophysical Journal, published by The University of Chicago 

Press; © 1984 The American Astronomical Society) 

that the rotation of the Sun’s interior is near rigid, allowing an elementary 

argument which we shall consider later. The timescale needed to establish 

such rotation is of the order of 

R2 
f . - 
CV1SC — 

^total 

In the Sun, with t = <q = 4.6 x 109 y, R — Rq, this gives 

^totai ~ 34 000 , 

while the microscopic viscosity is of the order of 10 from centre to surface. 

This total viscosity can only result from instabilities which maintain it, al¬ 

though we cannot determine its precise nature (hydrodynamic turbulence? 

MHD turbulence? See Sect. 5.4.9 on dynamo theory). Another possibility is 

that angular momentum is carried away by internal waves, through inter¬ 

action between the waves and the mean flow. 

There are very many instabilities and it is difficult to classify them sys¬ 

tematically. Some can be regarded as dynamical, in the sense that they exist 

for zero viscosity and thermal diffusivity; other instabilities can be induced 

by viscosity and/or thermal diffusivity. In a rotating system with an axis of 

symmetry there are both axisymmetric and non-axisymmetric instabilities. 

Finally there are both local and global instabilities. We shall consider the 

latter here: global instabilities are considered in Chap. 6 (variable stars). 

Dynamical Instabilities. Such instabilities occur in a fluid where at each 

point the equilibrium is unstable with respect to an adiabatic inviscid per¬ 

turbation. A local instability of this kind produces a new static equilibrium, 

or a new state of motion where non-linear effects rapidly become dominant 
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and viscous and thermal diffusivity effects can no longer be ignored. All 

dynamical instabilities have the same growth time, which is of the order of 

the rotation period. 

Axisymmetric Instabilities. A very general method, due to Fjortoft (1946), 

uses an energy principle. Zahn (1974) considers the perturbation of an equi¬ 

librium state by a. field 8r( to, z) of axisymmetric displacements in meridian 

planes, with a. timescale short enough to be regarded as adiabatic. 

As the fluid is in a static equilibrium state the first variation 8\\ of 

the total energy W (internal + kinetic + gravitational) is zero. The second 

variation 82W is given by the volume integral of a quadratic form 

S2W = 
’ r IP (8P\2 
6r ■ M ■ 8r 4- 

7 P \P 
pdV , 

where 8P is the Eulerian pressure perturbation associated with the dis¬ 

placement 8r(zu,z) and M is a tensor representing the density and angular 

momentum stratification: 

M = Mi + M2 

= -L(-g)VS+-^V(zo2f2)2Vzo, 
(_/ p W 

where g is the local gravity (including centrifugal force) and S the specific 

entropy 

= 4—VP --Vp=- (V,iP - Vp) . 
Cp jP P p 

If the characteristic time of the perturbation is longer than the propagation 

time for a sound wave across the region considered, the second term in the 

integral is negligible compared with the first, whose sign determines the sign 

of 82W. 

If the quadratic form 8r ■ M ■ 8r is positive definite, the stationary value 

of W is a minimum and the equilibrium is stable. If the quadratic form 

is negative definite we can find a displacement 8r which decreases the to¬ 

tal energy, and the equilibrium is unstable. The convenience of an energy 

principle is that the displacement 8r is arbitrary except that it must van¬ 

ish on the boundaries of the integration region and its timescale must be 

compatible with the conditions of adiabaticity and pressure equilibrium. 

The Rayleigh Criterion. For a fluid with a density distribution such that 

VS = 0, the first quadratic term vanishes. Instability occurs when either of 

the following conditions is satisfied: 

r\ 

——(zo2f?)2 <0, — (zo2n) £0. 
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The first of these is the Rayleigh criterion for instability of a homoge¬ 

neous, non-gravitating, inviscid fluid. It is a sufficient condition for instabil¬ 

ity. The second condition is much stronger, since if it holds there can be no 

equilibrium. This is a result of the Taylor-Proudman theorem: for a slowly 

rotating fluid the linearised equation of motion can be written as 

dv 
— + 2J? A v = - VP -f p W . 
at 

Taking the curl of each side we have for an incompressible fluid 

(uz ■ V)v = 0 . 

and the velocity of fluid elements must be independent of the coordinate 

along the axis of rotation. 

The stability condition 

2 > o 
C/ZZJ 

can easily be explained through the conservation of angular momentum 

when a fluid element is displaced from its equilibrium position. If the sta¬ 

bility criterion is met, an element displaced outwards has a smaller angular 

momentum than its surroundings. The centrifugal force on it is smaller than 

on the neighbouring elements, decelerating its outward motion. Similarly, 

if the element is displaced inwards it feels a restoring force outwards which 

arrests its motion. In fact, as we shall see below, stability requires that the 

specific entropy decrease and the angular momentum increase outwards. 

Barotropic Instability. Let us consider a star with rotation law f2(w) and 

ask if a stable density stratification can inhibit the Rayleigh instability. We 

assume the fluid to be barotropic, i.e. the equipotential surfaces are also 

constant pressure and density surfaces. The quadratic form 

Qi = Sr ■ -^-(-<y)V5 ■ Sr 
Ls p 

is positive definite. The quadratic form 

1 o 

Q2 = Sr ■ — —— (to2!?)2Vw ■ Sr 
w6 aw 

must be positive definite for the total form Q\ + Q2 to be positive definite 

(because of the symmetry of the equatorial plane it is always positive definite 

there). Put another way, if the condition for the Rayleigh instability is met, 

there are always displacements Sr which cause a negative variation S2W of 

the energy. The unstable displacements are those insensitive to the density 

stratification and occur on equipotentials. 
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Baroclinic Instabilities. This result can be extended to more general rota¬ 

tion laws. For a baroclinic fluid, VF and g are not parallel, and the angle 

between them is given by the equation of equilibrium 

-Vp + W = , 
P 

where V is the gravitational potential. Taking the curl of both sides we can 

write 

VS x (—g) H--V{w2 f2)2 x Vzu = 0 . 
Cp 

The necessary and sufficient condition for the quadratic form Qj + Q2 to 

be positive is then 

-^vsx \^{w2nf 
Cp 

If this condition is violated we can always find a displacement which de¬ 

creases the energy, S2W < 0. The configuration is unstable to the baroclinic 

instability. It occurs on a surface of constant entropy. 

Calling N the Brunt-Vaisala frequency, 

n2 = -J-(vad - vrad), 
Up 

one can show (Zahn 1983) that the baroclinic instability corresponds to the 

condition 

d \ogtt > HP (N\2 

d log r r \Q J 

for a locally constant shear. 

One can also show (Zahn 1983) that for a shear with a point of inflec¬ 

tion of the form U = Uotnnh.(x/H) the baroclinic instability on a sphere 

corresponds to the condition 

d log 1? _ (Hp V (N\2 

d log r \ r ) \ i? ) 

Shear (Richardson) Instability. In a plane-parallel shearing flow a suffi¬ 

cient condition for stability is that the velocity field v^z) has no point of 

inflection. This theorem was also proved by Rayleigh and its equivalent for 

a cylindrical flow is that the expression 

d 

dw w d w 

■ [—g xVb]>0. 

222 



should not change sign in the domain considered. In fact viscosity can desta¬ 

bilise a shear flow if the Reynolds number Re = VL/v is larger than a crit¬ 

ical value of the order of 103, where V and L are the typical velocities and 

lengthscales of the region. 

The flow can be stabilised by a stable density stratification. We describe 

the stability criterion as follows. A fluid element displaced vertically by / 

feels a restoring force of acceleration TV2/, where TV is the Brunt-Vaisala 

frequency, because of the density gradient. Its velocity changes by An = 

/(du/dz)2. The shear flow is stable if 

TV2 / > l(dv/dz)2 . 

We call 

the Richardson number, and one can show 1 that the stability criterion is 

Ri > | , 

and for a wide variety of profiles the condition Ri < | is a sufficient condition 

for instability. For a rotating star the local stability criterion is 

N2 cos2 a > j(n7 grad f?)2 , 

where a is the angle between g and VI?. 

Diffusive Instabilities (Viscosity, Thermal Diffusivity). Transport processes 

greatly modify the behaviour of fluids and can easily destabilise an otherwise 

stable situation. We have already mentioned the effect of viscosity on shear¬ 

ing flows and the importance of the Reynolds number. We now examine the 

effect of thermal diffusivity. 

Shear Flows (Townsend). Heat exchange with the surroundings reduces 

buoyancy forces on a fluid element. If tex is the characteristic timescale for 

heat exchange (see Sect. 5.3 on convection), the equation giving the thermal 

evolution of an element simplifies to 

d 

d t 
('Tl-T0) = 

Tt - T0 AV^du 

tex HP dz ' 

If tex is much shorter than the timescale dz/dv of the shear flow, the new 

temperature difference is reduced to 

(Ti - T0) = 
AV. 

Ifp 
T 1 

1 Miles, J.W., Journal of Fluid. Mechanics 10, 496 (1961). 
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and we have the stability condition 

For thermal diffusivity A and typical turbulent eddy scale L in the 

optically thick inviscid limit, Dudis (1974) introduced a new Richardson 

number (Richardson-Townsend criterion) 

Ri = 0M7(K/VL) 

with 

tex = (A2/A'). 

Zahn (1974) studied turbulent fluids in which thermal diffusivity sustains 

the turbulence. The conjecture is that the smallest fluid elements must 

satisfy the definition of the critical Reynolds number 

Rec = -l2 
v 

du 

cb ' 

Replacing the heat exchange time by l2 /K we have to order of magnitude 

the instability condition 

N2 

which now depends on the Prandtl number u jI\. For a rotating star this is 

cos 6 
d logir 
d log r > ‘ KRCc 

AT 

i? 

where 0 is the colatitude. Setting d log Q/d log r = n (if n = constant, 

Q ~ r") we find the condition on the period 

Rcrit ^ 

K 

v Rer 

1/2 

N2irn' 

In a region where viscosity is radiative 

Pcrit < n \ x H-6 days. 

For the Sun, where molecular viscosity is larger than radiative viscosity, 

the corresponding critical period is smaller. For a Kramers opacity law and 

Z = 0.02, X = 0.7, with 

f?2 = -4-5.48 x 1026 
n2. 

Z{ 1 + X) 

log A 
/iAV 

T5 
and 
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1/2 

Gnol — 
2777p/2(frT)5/2 

5e4plogT 
and 

mpk^T3 

.. np 

we find 

-Peril ~ n 

T5/2 

-8.29 x 1(T12. 
P 

Taking the base of the convection zone as the reference we have 

P, 
T 

ent 77 - 
9© 

g \1.73 X 106 

2.5 
0.117 

x 3.23 days. 

The Richardson-Townsend instability condition requires very rapid rotation 

(100 km s 1 at the equator) for a star like the Sun. It is by contrast much 

easier to satisfy for intermediate-mass stars. 

Multi-diffusive Instabilities. The most important of these is the GSF 

instability (Goldreich—Schubert—Fricke). Taking account of viscosity, the 

Rayleigh criterion can be written 

J_ d_ 

to3 doo 
ny < —n 

A 

7-2 

These conditions are less severe than those for inviscid fluids, particularly 

for slow rotators like the Sun. We can show that a. molecular mass gradient 

stabilises the flow once 

Nz = 
> kn2 

The GSF instability occurs in almost every circulation induced by rota¬ 

tion. Ivippenhahn and Thomas (1981) have shown that phenomenological 

introduction of nonlinear processes associated with the GSF instability gives 

the order of magnitude of the diffusion process engendered. The basic idea, 

by analogy with p currents, is to estimate the deviation from thermal equi¬ 

librium caused by the displacement of an unstable fluid element. 

If a fluid torus of radii tz70 and d expands to zo0 + / it must adjust 

its density to remain in hydrostatic equilibrium with its new surroundings, 

which implies a decrease of d. The temperature inside the torus is then lower 

than outside: 

T.-T. =2£pio<Q| 

Tt dzo 

where e is a mean value of the ratio of centrifugal force to gravity. We as¬ 

sume that radiative exchange between the torus and the surroundings is 

compensated by advection of entropy by the motion. If r* is the character¬ 

istic radiative exchange time 
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r^/ 
T* 

3CpK.p2^d2 

8acT3 

where £ is a geometrical factor, we find the velocity 

vn 
Hp 0 dlog(Gru2) 
-Zb l-:- 
AVr* dtu 

where Hp is the pressure scaleheight. 

The heat exchange with the torus causes a circulation of matter which 

mixes it with the surroundings on a timescale l/vp. This occurs over a 

lengthscale of the order of the cross-sectional (small) diameter of the torus 

and defines a diffusion coefficient 

Dn = 
HP 

AV t * 

9rj2dl°g(^2 
dru 

To order of magnitude we can define a Kippenhahn-Thomas Reynolds num¬ 

ber i?e(KT). For radiative viscosity we have 

Re( KT) = 8e 
Rgt* 

From the circulation velocity ve Baglin (1972) finds a Reynolds number of 

the order of vqHp/v of the same order as Ae(KT), for turbulent diffusion 

produced by violation of the Rayleigh criterion (GSF instabilities) or classi¬ 

cally by the shear of meridional flows. We shall return to this in connection 

with observational tests. 

We ignore other instabilities here. However it is important to discuss 

how a composition gradient can stabilise the medium. 

5.4.7 Stabilisation by a p Gradient 

GSF Instability. If A is the angle between gefi and the equatorial plane, T 

the angle between grad(ar2f?) and this plane, Kp the molecular diffusivity 

(AT is of the order of i/), and Np the Brunt-Vaisala frequency associated 

with grad /r, 

N2 = — Vii 
^ HP ^' 

the GSF instability condition becomes 

sin2 A 

4 sin A sin(T — A) 
N2 

v v 2 

- > t<n + irfN> 
with Nq = zv~:i(d/dw)(w2H)2. Using v/K <C 1, while v/Kp = 0(1), it is 

clear that a very small chemical composition gradient can inhibit the GSF 

instability. 
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Shear Instability. It suffices to use the Richardson criterion, replacing the 

density gradient by the molecular mass gradient. The instability condition 

becomes 

-(cugradf?)2 > - cos2 a\gI log a 
4 dz 

where we have assumed that the gradient of // only depends on z, with a 

the angle between g and V17. 

5.4.8 Turbulence and Mixing 

Turbulence. We have invoked turbulence several times already: in convec¬ 

tion zones, instabilities in radiatively stable zones, and the relation between 

meridional circulation and rotation. We do not of course wish to develop a 

theory of turbulence here, but adopt a simplified phenomenological descrip¬ 

tion. By turbulence we mean random motion, describable by a number of 

average quantities (e.g. energy density, turbulent viscosity, turbulent diffu¬ 

sion), whose significance and origin we have to consider. 

Two driving mechanisms have been pointed out, one associated with 

Rayleigh-Benard instabilities in convection zones, and the other, in radiative 

regions, associated with motions driven by rotation (Rayleigh, shear and 

GSF instabilities). In each case if we define the Reynolds number 

where L and V are characteristic lengths and velocities, we find very large 

values. In a convection zone, Re ~ 10n-1013 cm2 s_1; in a star like the 

Sun the differential rotation on an equipotential between pole and equator 

corresponds to Re ~ 1010-1012, according to helioseismology data. Such 

very high values of the Reynolds number are in line with ideas of fully 

developed turbulence. The theory of turbulence is far from complete, and 

in the following we shall point out a number of elements of it which are 

applicable to astrophysics. 

In fully developed turbulence we assume there are three scales: 

(a) Large eddy scales which carry energy. We assume that some hydro- 

dynamic or convective instability feeds energy ej into the turbulence and 

defines a scale Iq — 1/kj. 

(b) Dissipative scales < Id- Their dynamics results from a competition 

between nonlinear effects and linear dissipation caused by the molecular 

viscosity u0] kinetic energy is dissipated as heat at the rate Sd- 

(c) Between the two scales, if the Reynolds number is large enough there 

is an inertial regime where the nonlinear terms of the Navier-Stokes equa¬ 

tion dominate. On this scale energy is neither produced nor dissipated but 

transferred to smaller and smaller sales at a rate independent of both time 
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and the scale itself. The rates of injection, transfer, and dissipation of energy 

must on average be equal, and we denote this mean value by e. 

We define the energy spectrum by considering statistically homogeneous 

steady turbulence. The average velocity (v) is zero, but the correlation 

Cij = (Vi(x,t)vj(x + r,t)) 

must be a function of the spatial separation r only. The assumption of plane 

symmetry and isotropy requires the tensor Czj(r) to be characterised by its 

trace Cu(r) = C(r) and to depend only on the modulus \r\ = r. The energy 

spectrum E(k), a function of the wavenumber k, is 47rfc2FTC(r), where 

FTC(r) is the spatial Fourier transform of C(r), and usually normalised so 

that 

E(k)dk= l-(v2). 

In the regime of inertial turbulence, one finds experimentally E{ k) = Aik 

with m = 5/3. This is the result found through dimensional analysis by 

Kolmogorov in 1941. If we assume that there is a universal law, independent 

of the Reynolds number, such that the energy E(k)dk depends only on the 

wavenumber, the dimensions 

E(k) ~ L3T“2 , e ~ L2T“3 , 

give the unique combination of e and k 

E(k) = CK£2/3fc-5/3 (Kolmogorov’s law), 

which holds for 

i?e»l, &/<*:<&£>• 

von Ivarman evaluated the constant Cjx- as 1.4. 

A characteristic feature of three-dimensional turbulence is the local 

growth of vorticity by the stretching of vortex tubes in an inviscid fluid 

(Helmholtz’s theorem, conservation of vorticity). 

For large Reynolds numbers a physical mechanism (e.g. rotation) can 

make the turbulence two dimensional. On small scales the 2-D turbulence 

can turn into 3-D turbulence. This occurs once inertia dominates Coriolis 

forces. Defining the Rossby number Bo as the ratio of inertia to Coriolis 

force, the critical value of Ro is, experimentally, 

Ro = 
|v • Vt?| 

2\Q xv\ 2 RL 
-0.2, 

where uc is a characteristic convection velocity and the transition occurs for 

Ro > 0.20. 
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The conservation of vorticity V x v along the motion for each fluid 

element implies the conservation of its mean square ((V xu)2) or enstrophy. 

In 2-D turbulence, from the wavenumber kj where energy is injected, 

there is a cascade of enstrophy to smaller scales with a power-law energy 

spectrum 

E(k) = C'(kje)2/3k-\ 

and an inverse cascade of energy to larger scales with spectrum 

E(k) = C"e2l3k~bl3 

up to the scale ?e(0 which grows indefinitely with time: at large scales 

there is no global stationary regime; in real situations the growth of larger 

structures is limited by the size of the system. 

In the enstrophy cascade domain the Rossby number is constant; in the 

region of 3-D turbulence the Rossby number increases at smaller scales. 

2-D turbulence in a system of finite size can never satisfy conservation of 

enstrophy across scales exactly. In laboratory experiments one finds a power 

law k~n, with n between 5/3 and 3. The Rossby number grows towards 

smaller scales as ^3_n)/2? until it reaches a value Ro > 0.20 so that 2-D 

turbulence turns into 3-D turbulence. 

In a stratified medium we have to respect a condition analogous to the 

Richardson-Townsend condition: the power available to produce 3-D tur¬ 

bulence must exceed the power dissipated in work against buoyancy forces. 

The decay of 2-D turbulence into 3-D can only occur if Hp/r < 0(1). 

This excludes the presence of this kind of turbulence immediately below the 

boundary of the convection zone in solar-type stars. 

Diffusion. In 3-D turbulence the stochastic fluid motions can transport 

chemical elements by a random-walk process analogous to that of micro¬ 

scopic diffusion. The continuity equation for the concentration c of a chem¬ 

ical species is 

l = V'W = 0- 

Writing c = c = / • Vc where l is a random displacement of the fluid element, 

we have 

+ V • ((c) + (/ • Vc)v) = 0 . 

Taking (v) = 0, and (l ■ v) = -Rr, we get a diffusion equation 

| = V-(D,Vc). 
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where we have introduced a turbulent diffusion coefficient Dt• Radial tur¬ 

bulent diffusion occurs whenever the concentration gradient is small enough 

not to inhibit the generalised instabilities driving the turbulence. 

Observations demand the existence of a turbulent diffusion mechanism 

which can change the surface composition of stars or inhibit gravitational 

settling in Am stars: we discuss these problems in Sect. 5.5.4. 

5.4.9 The Dynamo Effect 

The presence of magnetic fields at the surfaces of stars requires explanation, 

and we need to understand their origin and role in stellar hydrodynamics. 

We have already seen (Sect. 5.4.3) that even a weak magnetic field may 

considerably alter the circulation of matter in a rotating star. 

Magnetic Field Properties. Two properties are basic to all discussions of 

stellar magnetic fields. 

(a) If ohmic dissipation can be neglected, the magnetic field, is frozen 

in to the plasma. This follows easily on calculating the variation of flux $ 

across a surface bounded by a curve C moving with the fluid: 

ckl> 

dt 
V x (v x B) ■ ndS. (5.178) 

Using the induction equation 

f) R 
= \7 x (v x B) — Vx (77 V x B), (5.179) 

where 77 = 1/hqo is the magnetic diffusivity, with a the conductivity, we get 

d$ f 
— = 77 / ABdS. (5.180) 
dt J 

If the conductivity a is infinite, 77 = 0 and the flux $ is constant across 

the surface bounded by C: the magnetic field lines move with the matter, 

(b) If we neglect the motion of the fluid (i> = 0) the magnetic field obeys 

a diffusion equation 

dB 

ar = ’'AB’ 
(5.181) 

and the characteristic time 
* 

tB = (T2/77) (5.182) 

is also the timescale for the disappearance of the field under ohmic dissipa- 

tion. The electrical conductivity of stellar matter is very high. In electro¬ 

magnetic units, a plasma of ionic charge Z has 
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e2T3/2 1 
(5.183) 

15Zme In A ' 

where /l1/3 is as usual the ratio of the Debye length to the average inter¬ 

particle distance. For a hydrogen plasma, inside the Sun this gives a charac¬ 

teristic timescale of the order of 1010 y, or 300 y for a sunspot. In all cases, 

on large scales the main effect is that magnetic fields are dragged around by 

matter motions. This property, stated in this simplified way, does not ex¬ 

plain the magnetic phenomena observed at the surface of the Sun and active 

stars, although the assumption of a frozen-in fossil field does explain the Ap 

stars (p = peculiar, slowly rotating stars with strong magnetic fields). 

In the solar convection zone the turnover time lju varies from 5 minutes 

near the surface to a fraction of a day near the base, and turbulence is 

mainly due to Rayleigh-Benard instabilities. This causes field evolution on 

large scales (sunspots), which is a manifestation of the turbulent dynamo 

effect (Steenbeck et al. 1966). 

The Dynamo. The decay of magnetic fields through ohmic dissipation had 

already suggested the idea of a dynamo well before turbulent dynamos were 

envisaged. Cowling (1934) showed that a stationary axisymmetric magnetic 

field could not be maintained by an axisymmetric velocity field. The velocity 

u and magnetic field B can be decomposed into poloidal components Up, Bp 

(in the meridian planes) and toroidal (azimuthal) components U<pe<p, B$e<p, 

where is a unit vector in the $ direction. By symmetry the poloidal field 

component must vanish on a circle about the axis. This can only happen if 

there is an azimuthal current on this circle and an azimuthal electric force. 

This is impossible, since if the field B were azimuthal the product U x B 

must be poloidal, in contradiction with the requirement of axisymmetry. 

A turbulent fluid may be axisymmetric on average. This is only a sta¬ 

tistical symmetry, leading to the idea that through an inverse cascade from 

small to large scales, turbulence could produce a large-scale field. We give 

here a brief summary of mean-field electrodynamics (MFE). We shall give 

several astrophysical applications. 

The astrophysical problem is to produce a magnetic field in a rotating 

body through motions which are statistically stationary. The resulting field 

should be essentially symmetrical about the rotation axis, while exhibiting 

large local deviations from this symmetry; it may be stationary, or show 

cyclic or period variations. 

MFE expresses the velocity u and magnetic field B as the sum of slowly 

varying average values (u),(B) and fluctuating components u1, B1. The 

turbulent motions are assumed to have a correlation time r and length A 

small compared with the variation scales t0, l0 of (u), (B); r is the average 

time after which u1 is no longer correlated with its initial value, and A is 

a length of order the average eddy size. Equation (5.179) is then separated 

into its mean and fluctuating parts: 
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= V x (E + (u) X (B)) - V x (r/V x (£)), (5.184) 

r) Ft1 
= V x ((u) xJ5' + u'x(B) + G)-Vx (77 V x B'), (5.185) 

where 

E={u'xB') (5.186) 

and 

G = u'x B'- (u1 x B'). (5.187) 

The electric field E is electromotor and regenerates the field through the 

“a effect”. 

In (5.184) the electric field E can be regarded as a mean electric field 

resulting from the interaction of the turbulent motion and the field. We can 

find it by solving (5.185) for B'. We neglect (u) in (5.185), as is reasonable 

for a turbulent medium. To first order we can neglect G, which is higher 

than second order. This is justified if B' is small compared with (B). This 

holds for a medium with rapid fluctuations, r <C A/u, v2 = (u,2): in this 

case the dominant term on the right-hand side of (5.185) is V x (u'~ x (B))• 

This does not apply for the Sun, where r ~ X/u. Actually one still uses the 

first-order approximation 

f) B' 
+ V x (77V x B') x (u1 x (B)). (5.18S) 

We use this equation to get an idea of the form of E. Using the fact that 

the correlation time is r we integrate (5.188) with u' = constant over this 

interval, with B'(t — t) — 0, to find the part B" of B1 correlated with u': 

B" = V x (u1 x (B) )dt. (5.1S9) 

As the right-hand side of (5.189) is linear in Bj and dBj/dxk, we write the 

electric field components as 

Et = o/ij(Bj) -(- /3ijk J " 5 (5.190) 

where alj,(3ljic depend on the local structure of the fluid velocity field. If 

the velocity field is isotropic, 4 

Oiij — a6ij ; fiijk — $£ijk (5.191) 

in the usual notation, and 

E = a(B) ~/?V x (B) . (5.192) 
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If r is small compared with the diffusion time of the field in an eddy, 

Td = A2/?; (or, amounting to the same thing, for a magnetic-eddy Reynolds 

number Rm = v\/i) 1) we can neglect the diffusion term in (5.188) and 

get 

o = _ir(w'. (V x u')), fi=lTV2. (5.193) 

The quantities »,/? are very poorly known. We shall see below a way of 

estimating them. If r/r^ is not small, expressions like (5.193) result, with r 

replaced by rc: 

1 - I J_ 
Tc t Td 

(5.194) 

The quantity u' •( V x u1) is called the helicity of the velocity field. A non¬ 

zero value of the helicity means that the vort.icity V x u1 is predominantly in 

either the direct or retrograde sense around the velocity. In general cp ^ 0 

means that the velocity field is not plane-symmetric. 

We thus get the MFE dynamo equation 

= V x (a(B) + (u) x (B)) - V x [(?/ + /?)V x (B)) . (5.195) 

The term a(B), representing an electric field parallel to (B), avoids the 

obstacle presented by Cowling’s theorem for an axisymmetric dynamo. 

The quantity /? is a turbulent diffusivity analogous to ohmic diffusivity. 

It shows that magnetic fields are transported by turbulence, but does not 

suppress small inhomogeneities like ohmic diffusivity. Equation (5.195) gives 

a sufficient condition for the dynamo effect, i.e. that B should grow: 

^>CD, (5.196) 
V + P 

where Cd is a number depending on the shape of the fluid region and L a 

characteristic length of the system. 

The Solar Dynamo. This is a turbulent a dynamo in the convection zone, 

a turbulent system with non-zero helicity, typical for the dynamo effect 

caused by the a term. We use in (5.195) cylindrical coordinates z with 

u<p = C7i?, where 1? = Q(zu,z) in general, and with Bp = V x (A^e^>), 

where A^eq, is a toroidal vector potential. Setting = fj + P we get 

r) Ti 
—-1- J3(V • up) + zu(up ■ V)(^_1 B) 
ot 

= zj(Bp ■ V)Q + (V x (iaBp))<*> + zu_1 Vr/r • VzuB 

+ 7]t(V2 -zu-2)B, (5.197) 

+ cu-1 up ■ V(zuA) — cxB + ?]t(^7" — 2)A (5.198) 
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In (5.197) the main term generating the magnetic field comes from V17 

(non-uniform rotation). The a term can be compared with the term in Vl7. 

The ratio of these two terms is of the order of vt/L and thus small. If we 

neglect the a term in (5.197) this is an am dynamo. This is the most studied 

case, and holds for the Sun. 

Moffat (1984) shows how to apply this model to the solar dynamo in a 

simple way. First, the assumption of a correlation time r gives an estimate 

of the differential rotation. We consider the velocity components u, v created 

from 0 to t by a vertical component w. The Coriolis force implies that 

du 

~dt 
= —217 x u 

with the local Cartesian coordinates for 17 

(5.199) 

1? — ( —17 sin #, 0,17 cos 8). (5.200) 

With u = v = 0 at time t = 0, we have 

v = — 2w sin# • l7f + 0(t3), (5.201) 

u = —2w cos 6 sin #(l7f)2 + 0(t4), (5.202) 

so that the Reynolds stress tensor has the component 

(uv) = 4(l7f)3 (w2) cos 8 sin2 8 + 0(t3 ). (5.203) 

This suggests a reasonable approximation for a statistically stationary state 

(uv) — 4(l7r)3 (w2) cos 8 sin2 8 . 

For the supergranulation, r ~ 3 x 105 s, 17r ~ 0.2. This creates ^-dependent 

differential rotation l7j, 

= (5-204) 

where t]t is the turbulent viscosity, here attributed to the inertial scales 

(granulation), with 7]t — 1012 cm2 s-1. 

Integrating (5.204) gives 

fliM) = T) , (5.205) 

where the integration constant is chosen to make (I7i) = 0. This expression 

shows that the rotation velocity increases towards the equator, as observed, 

and suggests that this representation is physically reasonable. The difference 

between pole and equator is 

rti -17i(fl,0) = ^(u;2)(17r)3. (5.206) 
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(5.207) 

To order of magnitude, with (w2) = 108, Qt = 0.2 we have 

AQ ~ 10-6 s_1 

to be compared with the observed value Al? — 7.9 x 10_7s_1. 

From this we can evaluate a. We consider a fluid element in vertical 

motion. In this motion the vertical component of (lj + 2i?)/p, where u 

is the vorticity, is conserved. Over a small time interval t we find the 2 

component 

Ul3 — 2Q cos 6 ■ wt — log p 
az 

giving the helicity H, 

H = (u ■ uj) ~ (wu3) ~ -(f?r)(rt>2)^^ , 
zip 

where Hp is the density scale height. 

The a parameter is then evaluated as 

a ~ --Hr ~ -Qr2 . 
3 3 Hp 

(5.208) 

(5.209) 

The sufficient condition (5.196) for the am dynamo effect is equivalent to 

L 
Qt cos 8 

~n7 
> i, (5.210) 

where, introducing the Rossby number Ro = (v/2Ql) = (1/2Qt), 

k>2R° 
1 

expressing the compatibility between 3-D turbulence on small scales and 

the dynamo effect on large scales. 

Reconnection of magnetic fieldlines is caused by ohmic dissipation. It 

occurs continuously because of the stretching of fieldlines by turbulence. A 

flux tube is stretched and its length grows exponentially in time: 

/ ~ exp 

where u0 and /0 are the characteristic velocity and lengthscale of the tur¬ 

bulence. In first approximation the cross-section of the flux tube decreases 

exponentially (as the matter is frozen to the fieldlines, the volume is con¬ 

served and Is2 is constant, with s2 the cross-section). Ohmic dissipation 

occurs when the timescale for dissipation is comparable with the growth 

time 

235 



(C) (d) 

Fig. 5.6. Dissipative effects in a plasma. In (a) and (b) the evolution of the magnetic 

fieldlines is due to dissipative resistivity. The Coriolis force creates magnetic loops which 

can lead to field annihilation (c) or reinforcement (d) 
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After a time of the order of ten times the characteristic turbulent 

timescale (uo/Iq) the stretching of the flux tube is such that reconnection 

by ohmic dissipation takes place on the timescale uq/Iq■ Several basic cases 

occur (Fig. 5.6): dissipation near a neutral point (a, b), dissipation and field 

annihilation (c), dissipation and reinforcement of the field (d). However they 

occur, a turbulent dynamo is the likely explanation for variations of the so¬ 

lar magnetic field. The essential property is the propagation of a dynamo 

wave, as envisaged by Parker (1955). As an example we consider (5.195) 

in Cartesian coordinates. With Bp — V x {Aey) we have two equations 

analogous to (5.197) and (5.19S) 

c) j\. 
— + up ■ V A = aB + ?/tW2 A , 
at 

—k up • VB = Bp • Vu + ?/tT" B . 

We seek a solution of the form 

exp(pf -(- ik ■ x) 

(5.211) 

(5.212) 
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(5.213) 

and obtain the dispersion relation 

p = s — — iup ■ k 

with 

s2 = -ia(k x Vu)y = 2ij (5.214) 

the mean velocity and magnetic field being uy + up and Dey + Bp respec¬ 

tively. In the case 7 < 0,-Up = 0, 

P = ~r)Tk2 ± |7|1/2(1 -i) (5.215) 

we have a. growing field, propagating in the direction of the wavevectors k. 

The amplitude increases in time if 

1 / ^U s 2/4 
■ (5.216) 

We define the dimensionless numbers Da = aR/i]p, related to the produc¬ 

tion of poloidal field, and D^ = V QR3/yp, related to the production of 

toroidal field. We have 

p = -rjTk2 + TjTk2(DaDUJ/2k3R3)1^2(l - i). (5.217) 

The dimensionless number DaD^ = Dy is called the dynamo number. The 

dynamo effect occurs if 

Dy > Dcrit (5.218) 

with 

DCTit = k3CTitR3 , 

where kCTIt is given by (5.216), or 

*£it = RVr(S2a/2^T). (5.21C') 

For k = kCI\i the dynamo wave does not grow in time. Its period P is given 

by 

(27r/P) = Im(p) = ( —|aRkVQ)l/2 . (5.219) 

Writing Vi? = (AQ / Q){Q / R) we find, using (5.55) for w, 

(2tr/P) ~ 2-5/6 
HPQA Af2 

27 (F/lOp)1/3 V D 

1/3 

(5.220) 

The period thus found is of the order of a year at the base of the convection 

zone and increases slowly, roughly as T-1/6, towards the surface, reach- 
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ing about two years there. This disagreement with observation is discussed 

below. 

The MFE theory successfully explains the essential characteristics of the 

solar cycle: 

— propagation of a dynamo wave towards the equator, explaining the 

Maunder butterfly diagram (Fig. 7.2); 

— polarity reversal every eleven years; 

- polarity rules for sunspot pairs in the two hemispheres (NS in the 

north, SN in the south, with exchange of polarities every eleven years); 

phase difference between the poloidal and toroidal fields (<P = tt/4). 

A number of problems remain: 

- The period predicted for the solar cycle is too short. This could result 

from an overestimate of a. Assuming with Zeldovitch et al. (1983) that the 

helicity is the time average 

a — J u ■ (V x u)dt, 

we have to take this average over an eddy turnover time r as long as 12 r < 1; 

in contrast in the lower convection zone we have to take the average over a 

period ~ 1/12. In the upper part of the convection zone 

12 r < 1 , a ~ IQ , 

and in the lower part 

12 r > 1, a ~ . 

At the base of the convection zone we deduce 

(2tr/P) ~ 2~5/6 
5 F 1 

27 lOp 
(5.221) 

with A12/12 = 1 , P = 460 days, with A12/12 = 0.01, P = 27 years. 

- The depth at which the solar dynamo operates is not clearly under¬ 

stood. Observations suggest magnetic field production at the base of the 

convection zone, in particular the production of the toroidal component. 

- The stability of the flux tubes under buoyancy forces requires that 

the rise time should be comparable to the timescale for field amplification 

and that for field diffusion, with both comparable to the period of activity. 
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5.5 Observations and Interpretation 

The data pertaining to the hydrodynamics of the stellar interior are simul¬ 

taneously meagre and fundamental. Only indirect effects of fluid motions 

are observed, and not these motions themselves. 

5.5.1 The Solar Granulation 

White-light observation of the Sun’s surface shows a granular structure (see 

Sect. 2.4.1). The first observations, made by Janssen at the Observatoire de 

Meudon at the end of the 19th century, revealed sizes from 400 to 1000 

km. We have long assumed that this pattern is due to rising columns of 

hot gas, forming bright granules surrounded by descending areas of cool gas 

constituting the darker intergranular regions. 

In fact we can observationally distinguish several scales of convective 

motions: global convection with a scale of 100 000 km and extending over 

the whole convection zone; supergranules, of characteristic scale 30 000 km; 

mesogranules, of intermediate size; and granules, with scale 1000 km. Mag¬ 

netic field measurements and the study of solar activity show the existence 

of similar scales for magnetic activity: large scale (the 22 year cycle in par¬ 

ticular); intermediate scale, in active regions, with size comparable to the 

supergranulation; and the filigree at the scale of the granulation. The na¬ 

ture of interaction between hydrodynamical motions and magnetic fields 

is not well understood. On large scales the dynamo appears established 

in principle, but it seems difficult to attain agreement between numerical 

simulations and observations. The circulation on the supergranulation and 

granulation scales expels the field from the centre of the convection cell to¬ 

wards the walls: this is as observed. The fieldlines leaving the Sun sketch 

out the supergranulation pattern. 

Models of radiative transfer in the granules give a good representation of 

the flux at the Sun’s surface. The combined effects of entropy advection and 

radiative heating explain the appearance of the granulation satisfactorily. 

Fourier analysis of the velocity field at the Sun’s surface shows that 

many modes of high horizontal wavenumber appear. The appearance of the 

granulation is due to the combination of oscillatory motions of the surface 

and random motions of the highly unstable fluid in the convection zone. It 

is tempting to try to find the properties of the turbulence by subtracting 

the basic periodic motions. 

A simplified method assumes that the basic periodic motion occurs near 

a period of 5 min. Adding Doppler images taken at 2.5 min intervals implies 

opposite phases, and to a first approximation we are left with the random 

motion. From the combined image we can calculate the two-dimensional 

correlation function and, by Fourier transforming, find the power spectrum 

F(k)dk of the turbulence (Fig. 5.7). We thus find that the granulation region 

obeys a k~5/3 law (Fig. 5.8) and corresponds to the inertial domain of the 
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log (Power spectrum) Fig. 5.7. Power spectrum of solar photo- 

spheric motions obtained by superpos¬ 

ing two Doppler images separated by 2.5 

minutes. (From J.P. Zahn, in Solar and 

Stellar Physics, ed. by E.H. Schroter 

and M. Schiissler, p.64 (1987)) 

Fig. 5.8. The power spectrum of phot.ospheric turbulence, from 200 Mm (the size of the 

rolls causing solar activity) to the granulation (450 km). L denotes large-scale motions, 

S the motions of the supergranules, G the motions of the granules. (From J.P. Zahn, in 

Solar an d Stellar Physics, ed by E.H. Schroter and M. Schiissler, p.68 (1987)) 

turbulence. We can thus imagine that there is a cascade towards smaller 

scales from the supergranulation scale. The motions of the granules under 

these conditions are caused by a cascade from large scales, and not by 

Rayleigh-Benard instabilities. 

5.5.2 Solar and Stellar Activity 

A second tracer of MHD effects in the convection zone is solar and stellar 

activity, and in particular the associated X-ray emission (see Chap. 7). We 

note here the importance of the Rossby number, which basically decides 

whether a dynamo can work. Directly connected with the dynamo effect is 

the problem of stellar rotation and angular momentum loss (see below). 
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Stellar Rotation. The classical problem of the Sun’s rotation first arose 

when Babinet (1S61) and Fouche (1884) tried to apply angular momentum 

conservation to Laplace’s model of the formation of the Solar System. In 

present terms, it is easy to see that the contraction of an interstellar cloud 

towards the main sequence results in a star rotating near breakup. At the 

equator, the relation 

R 

gives the rotation speed. For the Sun this corresponds to an equatorial 

velocity of about 400 km s-1, about 200 times the present value. 

The problem of supplying an efficient process of angular-momentum 

exchange was the main reason for abandoning of the Kant-Laplace cos¬ 

mogony. One had to wait almost a century until, mainly through the work 

of Struve and Elvey (1931), the prime observational discovery emerged that 

the rotation velocity of stars depends on their spectral type. Summarising, 

main-sequence stars later than F2 spin slowly, and those earlier than F2 

spin rapidly. Typical equatorial velocities are respectively 10 km s-1 and 

50 km s-1 and above (Fig. 5.9). 

A second observational fact, discovered by Kraft (1967) from studies of 

the rotation of stars belonging to clusters of known age, was that the rota¬ 

tion velocity of a star depends on its age t. Significant angular-momentum 

loss could explain the spindown of stars; if the angular momentum had to 

be carried off by matter leaving the stellar surface, the observed behaviour 

of Q would have implied very high mass-loss rates, which were not observed 
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Fig. 5.9. Equatorial velocity as a func¬ 
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plotted the Sun’s trajectory assuming 
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p/2 \ye note the rapid rise of V sin i 

towards log Teff = 3.780 (Teff = 6100 
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ical Journal, published by The Uni¬ 

versity of Chicago Press; © 1983 The 
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for solar-type stars. Angular-momentum loss at a distance d much larger 

than the stellar radius is required to solve the problem. 

This can happen if the matter leaving the star is forced to corotate with 

the stellar magnetic field (Schatzman 1959). The difference between stars 

later and earlier than F2 lies in the nature of the convection zone and the 

dynamo effect. A simple idea, due to Parker, is to assume that there is a 

dynamo effect if the dynamo number Dy is large enough: 

Dy = 
aADL4 

Vt 
>1, 

where Ai7 is the differential rotation, L the scale of the generating sys¬ 

tem (the depth of the generating region), and rjr the magnetic diffusivity. 

Evaluating a and 

V T = Ul, 

we find the dynamo number 

Dy = Ro~2 = (ujiny2 . 

where uc is a characteristic velocity of the convection. The dynamo effect 

occurs if the Rossby number is small enough, i.e. if the Coriolis force is 

stronger than inertial turbulence. This assumes that the differential rotation 

is determined by turbulent viscosity: 

A Q 
l2Q 

w 
For increasing masses, the rapid decrease in the depth of the convection 

zone near log(M/ Mq) ~ 0.05 — 0.1 increases the Rossby number rapidly 

(Fig. 5.10), making dynamos ineffective at intermediate masses, whatever 

the angular velocity. 

To estimate the distance where angular momentum is lost we follow 

Cowling in assuming that this happens once the Alfven velocity given by 

2 
4 

B2 n A 

47xp 

becomes equal to the stellar wind velocity. In the stellar wind the magnetic 

field varies as r-2 because of the freezing-in of the field in the plasma. If Bq 

is the field at the surface of the star, 

B0R2 = BAr\ . 
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Fig. 5.10. The Rossby number as a function of mass for main-sequence stars. The typical 

velocity iHyP = vm R/2HC, where Iic is the thickness of the convection zone, vm the 

maximum velocity in the zone and R the stellar radius. The effective Rossby number is 

Ro = vtyp/feq where veq is the equatorial velocity. For 17 = const, utyp varies roughly as 

the Rossby number Ro. (We have assumed 17 corresponding to veq = 1 km s-1) 

As the angular-momentum loss occurs at large distances from the star 

{rA/R 1) we can take uA as the escape velocity, 

uA ~ (2GM/R)1'2 . 

We thus obtain an angular-momentum loss rate 

P° = ~i (W R. 

We now need the dependence of B0 on R. Durney and Latour (1978) take 

the observational data as a starting point, assuming with Skumanich (1972) 

that the surface field Bo decreases as R. 

This property should no doubt be associated with non-linear effects of 

the turbulent dynamo, for which there is no unique theory. If we assume 

that magnetic field growth is limited by field expulsion through buoyancy, 

one of the solutions actually gives B ~ R. We write with Durney and Latour 

(1978) 

B0 = ^ = Br 
Ro 

3 

where Bn is deduced from observation. We obtain the angular momentum 

as a function of time: 

/ tV1/2 
R = R0 ( 1 -f — J with 
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Fig.5.11. Specific angular momentum (per unit mass) for main-sequence stars (assuming 

rigid rotation). (From R.P. Kraft, Astrophys. J. 150, 551, 1967. Reproduced by kind 

permission of The Astrophysical Journal, published by The University of Chicago Press; 

© 1967 The American Astronomical Society) 

4 / R 

3 \2GM 

i y a2 

uj KMR2 ’ 

where uc is a characteristic convection velocity, i?o is the initial angular 

velocity and K is the star’s moment of inertia. To have an idea of the order 

of magnitude we take a mass-radius relation R ~ Af3/4, t as the nuclear 

timescale, with t ~ AT-3, and adjust to the Sun with an angular-momentum- 

loss timescale of 1010 years. We then have 

(^Nucl/to ) 71400 
-f-o 

■1^0(7) max . 

l/uc 

(f/“c)© 

Figure 5.11 gives the specific angular momentum KR2i1 as a. function of 

mass. The main effect is caused by the shrinking of the hydrogen convection 

zone as the mass increases. This causes a very rapid increase in the specific 

angular momentum near M/ Mq = 1.12 or log(A// A/©) = 0.05. In fact, 

observations indicate that the transition from slow to .fast, rotation occurs 

for a slightly higher mass. This difference from the model is probably mainly 

caused by the fact that the star has lost some angular momentum before 

reaching the main sequence. Analysis of data for cluster stars for which the 

age is known actually shows that the equatorial velocity for zero-age stars on 

the main sequence is clearly smaller than the maximum equatorial velocity. 
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Fig. 5.12. The period as a function of age for stars of 1.1 Mq. The lithium abundance 

has been used to measure the age of field stars. A good representation is P = 3.5(1 + 

</0.52)°'5, where t is in billions of years and P in days. The symbols T represent upper 

limits for individual stars in Soderblom’s list. (From Th. Simon et ah, Asirophys. J. 293, 

551, 1985. Reproduced by kind permission of The Astrophysical Journal, published by 

The University of Chicago Press; © 1985 The American Astronomical Society) 

According to Simon et al. (1985) the (1 + t/t0)~1//2 relation is not exactly 

verified, and in any case indicates that <C h?o max (Fig. 5.12). 

However, the situation is not as simple as might appear here. The pres¬ 

ence in very young clusters such as a Per (50 million years) of both rapidly 

and slowly rotating stars shows that there is no unique initial distribution 

of angular momentum. 

We have given here only a sketch of a rapidly developing subject. 

5.5.3 Abundance of Trace Elements: 

Gravitational and Radiative Separation 

The existence of stars with numerous abundance anomalies (Am and Ap 

stars) has long been a puzzle which it has been difficult to piece together. 

As an example we show here the element abundances in two Am and Ap 

stars (Fig. 5.13). 

The main idea is to take account, in a stable atmosphere, of the trans¬ 

port processes associated with gravitation and radiation pressure (Michaud 

1970). These two effects can produce enormous abundance anomalies both 

in excess and in deficit. Two phenomena limit the size of the anomalies: 

the presence of a weak stellar wind, with a very long timescale (M/M)-1 

~ 1014 y (for the Sun (M/M)q ~ 1013 y); and the turbulent diffusion 

caused by rotation. 
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The dependence on mass introduces on one hand the depth of the con¬ 

vection zone which governs the speed of the diffusion process (see below), 

on the other hand the turbulent mixing processes, which become important 

for rapid rotation. For stellar masses ranging from about 1 to 3M0 there is 

a narrow band where conditions permit abundance anomalies. 

The equation governing the evolution of the surface abundance gives 

the velocity of a trace element (i.e. one with a very small abundance) under 

the combined effects of (1) microscopic diffusion down the concentration 

gradient, (2) settling under gravity, (3) driving by the temperature gradient, 

(4) radiation pressure, and possibly (5) turbulent diffusion. 
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If Dt is the microscopic diffusion coefficient for a trace element with 

concentration c;, the velocity contribution due to microscopic diffusion is 

—-DjV log Cj. The gravitational contribution is easy to understand, and has 

two components, the weight —gAmu of atom of mass A and the electric force 

caused by the very small charge separation of an equilibrium plasma. In a 

completely ionised hydrogen and helium mixture with mass concentrations 

X and 1 — X (we neglect the heavy elements), the electric field is given by 

the equilibrium condition 

eE = 
g(mt - me) 

Zx + 1 

which can be generalised for a mixture (neglecting me): 

eE 
(Zi + 1)A (Z2 + 1)(1 — A) 

A\ 
+ 

An 
gmH = eE 

Z + l 

A 

The corresponding speed is due to the friction on the ion under consideration 

of the ions and electrons of the plasma; the contribution is DikpX log p, 

where 

Z + l 

The driving by the temperature gradient comes from the fact that the cross- 

section depends on velocity, and thus on temperature. The resulting contri¬ 

bution is Di^yVlogT, where 

kT = 2.65Z2 + 0.805(Z2 - Z). 

Radiation pressure gives a speed —D,(miF/kT), where F is the acceleration 

due to radiation pressure. To find F we need the opacity of the atomic 

species i, Z-times ionised, and also the solution of the transfer equation. In 

the stellar interior we can use the quasi-isotropic approximation and write 

4 1 dBv dT 

3 ( ^line T ^cont )P d)T dZ 

The acceleration by radiation is then 

F = J ^du 
_4 f 1 Kline OB„ dT^ 

3 J C (^coiit T ^line)P d)T Oz 

where the integral is over the whole spectrum of the atomic i, Z-times 

ionised. If AC]jne «+, the line is saturated and the acceration F decreases 
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as p 1 (Doppler profile) or p 1//2 (damping). If there is turbulence we add 

a term log c, and obtain finally 

v = —D j log c — kp V log p — krV log T + 
mlF 

~kT 
D^Vlogc. 

The problem is then to solve the equation 

dc 
— + V • (uc) = 0. 

The diffusion coefficient Dt is to a first approximation 

D, = |/u, 

where l is the mean free path of the trace atoms. Scattering through 7r/2 

implies a cross-section of order 

Plasma effects give a correction term (Spitzer 1962), and we finally get for 

a binary mixture of ionised elements 

= J3_ f kT(m% + mH)\1/2 (2kT V 1 

S7T { 2ixmlmH j \ZxZi J Ai(2) ’ 

where Ai(2) = ln(l + x2),cc = iXpkT/ZiZ2e2, where is the Debye 

length. The full calculation of the diffusion coefficient also takes account of 

collisions with neutrals. 

We note particularly the T5/2/p dependence of Di. In an interior radia¬ 

tive zone, where p ~ Tn with n of order 3 to 4, the microscopic diffusion 

coefficient decreases rapidly towards the interior, while the gradients V log p 

and VlogT also decrease as 1/T; thus the entrainments by gravity, temper¬ 

ature gradient and radiation pressure all decrease. Yu again introduces the 

scaleheight, so that the characteristic time increases as p/T1/2. We thus see 

that in deep layers, the concentration does not vary in time. 

This does not hold for layers close to the surface, where elemental sep¬ 

aration can be very efficient. In general, separation of elements does occur 

in radiatively stable regions. 

A range of anomalous compositions exists. Figure 5.14 shows them on 

an HR diagram. The broken curves give the limits of the region where 

diffusion can produce observable effects. This included the ZAMS, ZAHB, 

and white dwarfs of different spectral types in a 0.6 Mq cooling sequence. 

The subdwarfs SdO and SdB are shown as a continuation of the horizontal 

branch, following the suggestion of Greenstein and Sargent (1974). 
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log L/Lq 

Fig. 5.14. Abundance anomalies. HR diagram for stars with peculiar chemical composition 

(CP stars). The figure shows the ZAMS, the ZAHB with its extension to the sub-dwarf 

region, and the white-dwarf sequence, in a logTeflf — log (L/Lq) plot. The positions of 

various types of stars of peculiar chemical composition are shown. There is no attempt 

to show their ranges of luminosity. Be-d: F stars deficient in beryllium. He-W: stars 

underabundant in helium. 3 He: stars with little helium and anomalous isotopic ratio 

3He/4He. He-R: helium-rich stars. SdB: B subdwarfs. SdO: O subdwarfs. The white- 

dwarf sequence is divided into a hydrogen (DA) sequence and a helium (DO, DB, DC, 

A4670) sequence. “Metals” implies that the white dwarfs have metal lines in absorption. 

The other notations are standard. The broken line is at Mq0\ = —6 and shows the upper 

limit of the region where diffusion can be important. Above this, mass loss cancels the 

effects of diffusion. The broken curve to the red side of the figure is the limit where the 

diffusion time at the base of the convection zone is equal to the lifetime of the star. We 

note that the Sun is to the right of this line: diffusion has a negligible effect on its surface 

composition. In the region between these two bounds diffusion can produce abundance 

anomalies. The instability strip is marked. It crosses the horizontal branch at the edge of 

the diffusion region (RR Lyrae); variable main-sequence stars (<5 Scuti stars) and white 

dwarfs (ZZ Ceti stars) are in the diffusion region. (From S. and G. Vauclair, Ann. Rev. 

Astron. Astrophys. 20, 37 (1982)) 

249 



The Cepheid instability strip, extended to the main sequence and the 

white dwarfs, cuts the two sequences at the 8 Scuti stars (which coincide 

with the Am stars) and the variable white-dwarf stars (ZZ Ceti). 

We give here a brief indication of the spectral characteristics of the 

various stars concerned, and the reasons for their anomalies. 

Am Stars. The classic definition is: the Balmer lines indicate late A spec¬ 

tral type, the metal lines type F, the H and K lines an early type. In other 

words there is an excess of metals and a deficit of calcium. The 8 Scuti 

variables are in the same region of the HR diagram as the Am stars, but 

have mutually exclusive properties. 

Gravitational separation begins with the separation of helium and hy¬ 

drogen. As the helium sinks, the structure of the outer layers changes; the 

convection zone associated with helium ionization disappears and the inte¬ 

rior radiative zone begins at a level where diffusion can occur at the base of 

the H-He I convection zone. 

At the same time, the decrease in the helium abundance removes a 

possible way of driving oscillations by the kappa mechanism (see Chap. 6). 

There is a boundary region where there is still enough helium to drive 

oscillations, but where separation of metals can occur. These stars have 

attenuated Am features. 

Rotation and turbulent diffusion retard gravitational separation. In the 

first phase, characterised by the establishing of a concentration gradient, 

the timescale changes from tmic to Rurb: 

_ Hhcz 

tmic ~ k D • ' 

Turbulent diffusion acting on Vc will in the end quickly remove the trace 

element. A calibration of Dbased on the lithium destruction rate in the 

Hyades (see below) gives an estimate of the equatorial velocity required 

to prevent element separation in an A star. We find Req ~ 50 km s-1. 

However this is not valid for a star in a close binary. Here the dissipative 

effects of the tides (see Sect. 3.8) bring the two stars towards rigid rotation, 

and the differential rotation producing the turbulence is of higher order in 

e = (f?2R3/GM). The fact that almost all Am stars belong to short-period 

binaries (1 to 100 d) thus explains why the maximum observed equatorial 

velocity is about 100 km s-1. 

The excesses predicted by settling theory can be suppressed by a very 

weak stellar wind, of the order of 10-14 Mq y_1. It is required only that 

the wind produce a velocity of the order of the diffusive velocity at the base 

of the convection zone. The wind then removes those elements pushed into 

the atmosphere by radiation pressure. 

Magnetic Ap Stars. Magnetic fields of tens to several thousand gauss have 

been detected in main-sequence stars with temperatures between 8000 and 
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30 000 K. All these magnetic stars show abundance anomalies, which also 

depend strongly on the temperature. The coolest stars have an excess of 

rare earths (Sr, Eu). The intermediate stars between 12 000 and 15 000 Iv 

have an excess of silicon. The hottest stars are helium rich. 

These anomalies vary in time. For a given star they all vary with the 

same period. This is explained in terms of a rotating star with a frozen- 

in magnetic field. The importance of the magnetic field for the anomalies 

is incontestable. Non-magnetic stars (i.e. with as yet unmeasurable fields) 

of effective temperature 12 000 Iv have an overabundance of mercury and 

manganese, while magnetic stars have an excess of silicon. 

White Dwarfs. Gravitational separation of hydrogen in white dwarfs oc¬ 

curs rapidly, because of the strong gravitational field and the small distances 

involved, despite the high density. In the DB stars the outer convection zone 

dredges up elements from deep in the star and brings helium to the surface. 

The occurrence of this behaviour depends of course on the mass of the 

surface hydrogen layer. 

5.5.4 Abundance of Trace Elements: Lithium Burning 

The underabundance of lithium in Population I stars by comparison with the 

cosmic value (log10 (Li/H) = —9) is closely related to lithium burning. This 

depends very strongly on the temperature (as about T20) and is completed 

on a timescale short compared to the nuclear lifetime of the star, except in 

the outer layers (T < 2 x 106 Iv). The presence in the Hyades of a lithium 

deficiency (lithium dip) between effective temperatures 6400 Iv and 6700 Iv 

(Fig. 5.15) raises new problems. The beginning of the formation of a lithium 

dip in younger clusters suggests that it grows with age and depends on stellar 

properties. 

Several mechanisms have been proposed to explain the lithium deficit: 

(1) destruction of lithium at the base of the convection zone before the main- 

sequence stage; (2) destruction of lithium at the base of the convection 

zone because of the extension of the mixing region by overshooting; (3) 

lithium transport by turbulent diffusion induced by rotational instabilities 

into the lithium-burning region; (4) transport to the surface by meridional 

circulation of layers where lithium has been destroyed; (5) diffusive transport 

induced by internal waves; and (6) radiative and gravitational separation. 

We examine briefly the effectiveness of these mechanisms. 

(1) The contribution of pre-main-sequence burning to the lithium defi¬ 

ciency must certainly be considered, but by itself it does not explain the 

obvious age dependence of the lithium abundance; (2) the second idea re¬ 

quires the physics of the convection zone to depend strongly on the star’s 

mass; (3 and 4) the third and fourth suggestions assume a relation between 

the burning rate and the rotational velocity, but the large intrinsic velocity 

dispersion around the lithium dip (Fig. 5.15) makes a one-to-one relation 

251 



Fig. 5.15. Lithium abundance and pro¬ 

jected equatorial velocities (Vsini) 

in the Hyades. Upper part: Li abun¬ 

dance for log TV// = 12; lower part-. 

equatorial velocities V sin i in km s-1. 

(From A.M. Boesgaard, P. A. S. P. 

99, 1067, 1987. By kind permission of 

the Astronomical Society of the Pa¬ 

cific) 

7500 7000 6500 6000 

T{ K) 

® Measurements of log Li, or V sin i 
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between lithium depletion and rotation implausible; (5) gravity waves are 

generated by the motions in the convection zone, non-linear effects inducing 

a diffusive process which can carry the lithium to the burning level; and (6) 

radiative and gravitational settling are clearly significant. 

For a diffusion coefficient D, the characteristic destruction time for 

lithium depends on the distance Ar from the burning region to the base 

of the convection zone and to order of magnitude is 

<b urn 

where it is naturally important to define the distance Ar accurately. If 

diffusion dominates we have to solve the diffusion equation 

1 d ( 2 <9c\ 

7>~dr V pDdr ) 
+ K(r)c 

to obtain the surface concentration of lithium as a function of time, where 

K(r) is the rate of destruction of lithium by thermonuclear reactions. 

The behaviour of the lithium abundance as a function of mass for a 

cluster of given age (e.g. the Hyades) seems to be clearly related to the 

properties of the surface convection zone, its depth increasing as the mass 
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decreases (Fig. 3.4). The closer the base of the convection zone to the burn¬ 

ing region, the more efficient the transport mechanism and the higher the 

burning rate become. 

The lithium dip discovered in the Hyades is difficult to explain. Ex¬ 

cluding rotation one has to consider gravitational and radiative settling and 

check the role of meridional circulation. In the interval 6000 < Tefr < 7000 Iv 

the start of the lithium dip could be caused by the increasing efficiency of 

transport by internal waves and the enhanced abundances by the near- 

disappearance of the convection zone. This problem is still under discussion 

(1993). 

5.5.5 Abundance of Trace Elements: 

Formation of the 13C Isotope 

In the central regions of main-sequence stars the carbon cycle alters the 

relative abundances of 12C, 13C, 14N, 15N. At the end of the main-sequence 

lifetime the chemical composition as a function of mass fraction (Fig. 5.16) 

has a number of distinct characteristics: an abundance peak of 13C, fol¬ 

lowed by a rapid decrease of the two carbon species towards the interior, 

accompanied by a growth in 14N. 

Observations show that the ratio (12C/13C) decreases along the giant 

branch, from about 80 on the main sequence to about 10. The lowering of 

the base of the convection zone during the passage along the giant branch 

does not dredge up enough 13C to reach (12C/13C) ratios below 40. We thus 

need a mechanism transporting the 13 C isotope outwards from the region 

log (A) 

Fig.5.16. Chemical composition inside a main-sequence star (M = 1 M©) as a function of 

mass fraction AT/M*. (After D.S.P. Dearborn et al., Astrophys. J. 203, 455, 1976. Re¬ 

produced by kind permission of The Asirophysical Journal, published by The University 

of Chicago Press; © 1976 The American Astronomical Society) 
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where it is abundant, during the main-sequence phase, so that the lowering 

of the base of the convection zone dredges more carbon 13 C to the surface. 

The presence of a molecular-weight gradient V/i prevents turbulent dif¬ 

fusion from transporting 14N towards the surface, so that the (C/N) ratio 

stays in a restricted range. In contrast, turbulent diffusion, acting in a region 

where V/i remains negligible, brings considerable quantities of 13 C to the 

outer regions, and thus appears to offer an explanation of the observations. 
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6. Variable Stars 

6.1 Classification of Variable Stars 

There is a wide variety of variable stars, and in some sense all stars are 

variable, the Sun being a typical example. The proof of variability may de¬ 

pend on the detection threshold, for luminosity variations (the lower the 

threshold the more variables are found); or the resolution, whether angular 

(the Sun, stars studied by speckle interferometry), temporal (days, hours, 

minutes, or fractions of a second), or spectral (radial velocity); or the wave¬ 

length (from X-rays to radio waves). We are concerned here with intrinsic 

variables, i.e. isolated stars whose variability has an internal physical ori¬ 

gin. Other causes of marked variation are known, such as motion (eclipsing 

binaries), accretion of material from another star (cataclysmic variables), 

rotation (pulsars), or accretion (gamma-ray bursts). Some stars have varia¬ 

tions combining rotation with a particular type of activity (flare stars). 

By limiting ourselves in this chapter to intrinsic variables we necessarily 

defer until later the study of the other variables: cataclysmic variables and 

pulsars to Chap. 8 (“The Last Stages of Stellar Evolution”). Even though 

their variability has an internal origin, flare stars involve a quite different 

mechanism and we give an introduction to their study in Chap. 7 (“Solar 

and Stellar Activity”). 

The classification of variable stars is primarily based on the analysis of 

their periodicities (periodic and irregular variables) and the forms of their 

light curves; further more refined study, particularly spectroscopic, reveals 

the nature of the variability. The first variable stars were found by accident 

(see the book by Harwit, Cosm.ic Discovery, 1981), followed by systematic 

searches using a blink comparator. This instrument allows comparison of 

photographic plates taken by the same telescope at different epochs. An 

optical system superposes the images of the two plates being compared via 

two microscopes, over the entire field. Two synchronised discs alternately 

occult the two light beams. The image of a variable star is different at the 

two epochs, and appears to the observer as scintillating, allowing immedi¬ 

ate recognition. The modern detection method uses image processing. The 

Hipparcos satellite should thus permit the discovery of thousands of variable 

stars. 

The general catalogue of variable stars, compiled at present in the USSR 

under the auspices of the International Astronomical Union, contains data 
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Table 6.1. Julian date for 1 January 12 hours UT of each year 

Gregorian 

year 

0 1 2 3 4 5 6 7 8 9 

1900 241 5 021 5 386 5751 6 116 6481 6 847 7212 7 577 7 942 8 308 

1910 8 673 9 038 9403 9 769 *0 134 *0499 *0 864 *1 230 *1 595 *1960 

1920 242 2 325 2691 3 056 3421 3 786 4 152 4517 4 882 5 247 5613 

1930 5 978 6 343 6 708 7 074 7 439 7 804 8 169 8 535 8 900 9 265 

1940 9 630 9 996 *0 361 *0726 *1 091 *1457 *1 822 *2 187 *2 552 *2918 

1950 243 3 283 3 648 4013 4 379 4 744 5 109 5 474 5 840 6 205 6 570 

1960 6 935 7301 7 666 8031 8 396 8 762 9 127 9 492 9 857 *0 223 

1970 244 0588 0 953 1 318 1 684 2049 2414 2779 3 145 3510 3 875 

1980 4 240 4606 4971 5 336 5701 6067 6432 6 797 7 162 7 528 

1990 

2000 245 

7 893 

1545 

8 258 8 623 8 989 9 354 9719 *0 084 *0 450 *0815 *1 180 

on all the known variable stars. They are classified here by the shape of 

their light curves. The catalogue contains information on all stars on which 

data have been published, so that all recognised variables appear. They are 

denoted in order of discovery by the name of the constellation preceded 

by one or two letters (R, S,...,Z, RR, RS,...,SS, ST,...,ZZ,...,AA,...,QZ) or, 

for constellations where this system of letters is exhausted, by the letter V 

followed by a number (the first being 335). 

The dates of the events occurring in each star are given in Julian days, 

the prolongation of the Julian calendar beyond 1582, when the Gregorian 

calendar was introduced. Julian days are counted from 1 January 4713 BC. 

Table 6.1 gives the correspondence between the Julian day and 1 January 

12 hours UT from 1900 to 2000. 

The phase of light variation of periodic variables is counted from a light 

minimum to the following minimum. 

6.1.1 Inventory 

When the intrinsic variables are plotted on the Hertzsprung-Russell dia¬ 

gram (Fig. 6.1), we see that they are distributed in well-defined areas. The 

positions of these provide a natural division into four groups: 

(a) A (near) vertical strip, from visual magnitude +1 to -6, containing the 

most regular variables. This is often referred to as the instability strip. 

(b) To the right of the instability strip, roughly parallel to the main se¬ 

quence and 9 to 10 magnitudes above, is the red sequence. Stars in this 

region show different types and degrees of irregularity. 

(c) Near the main sequence there are several groups of pulsating stars, all 

with short periods and small oscillation amplitudes. 

(d) The ZZ Ceti variables, on the white-dwarf cooling sequence. 
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SPECTRAL TYPE 

Fig. 6.1. Positions of intrinsically variable stars on the Hertzsprung-Russell diagram 

6.1.2 Periodic Variables 

At present and from ground-based observations only, there are around 14 000 

periodic intrinsic variables. Their periods lie between a few seconds (periodic 

white dwarfs) and several hundred days (Mira Ceti type). The histogram 

of variable stars reflects both observational selection effects and intrinsic 

properties. As for all stars, the observed number is affected by the num¬ 

ber of progenitor stars and the time over which the observed characteristics 

are present. The most numerous variables involve the presence of suitable 

physical conditions for variability in stars which are evolving slowly, or rel¬ 

atively slowly (white dwarfs, main sequence, horizontal branch, yellow and 

red giants). 

Classification by period is not unique; there are clear differences in the 

light curves. A complete classification involves the luminosity class, spectral 

type, and stellar population (I or II). 

In the group of periodic variables and the General Catalogue of Vari¬ 

able Stars (Kukarkin et ah), the Cepheids comprise about 700 stars, the 

W Virginis stars about a hundred, RR Lyrae stars of various types about 

6000, dwarf Cepheids and 6 Scuti stars around 150. There are about 5000 

long-period variables; about 50 blue variables of (3 CMa type and about ten 

ZZ Ceti variable white dwarfs. Table 6.2 summarises the properties of these 

stars under the designation pulsating stars (see Sect. 6.2 below). The galac¬ 

tic population can be estimated from the space distribution of the various 
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Table 6.2. Pulsating variables 

Type Periods 

Charac¬ 

teristic 

period 

Popula¬ 

tion 

Spectral 

Type My 

RR Lyrac 1 h 5 to 24 h 0.5 d 11 A2 to F6 0.0 to +0.5 

Classical Cepheids 1 d to 50 d 5d to lOd I F6 to K2 -0.5 to -6 

W Virginis 2d to 45d 12 d to 20 d 11 F2 to G6 0 to - 3 

RV Tauri 20d to 150d 75 d II G, K ~ —3 

Red semi-regular 

variables 100 d to 200 d 100 d I and II (K),M,R,N,S — 1 to - 3 

Long-period 

variables 100d to 700d 270 d I and II M, R, N, S + 1 to — 2 

/? CMa (/? Cephei) 4 h to 6 h 5 h I B1 to B2 -3.5 to-4.5 

5 Scu and dwarf 

Cepheids 1 h to 3 h 2h I A2 to F5 + 2 to +3 

ZZ Ceti 1 min 

(white dwarfs) to 15 min 4 min I DA + 10 

types; it is about 15 000 for the Cepheids, 150 000 for the RR Lyrae stars, 

and 200 000 for red variables of Mira Ceti type. 

6.1.3 Irregular or Semi-regular Variables 

These stars are ill-understood theoretically, and are briefly reviewed in 

Sect. 6.4. We give some details of their observed properties. 

This heading applies to several types of variable stars among the red 

giants and supergiants (Fig. 6.1). 

RV Tail Stars. These can be characterised as follows: 

(a) The light curve alternately shows deep and shallow minima (Fig. 6.2) 

which occasionally switch. 

(b) The light curve has transient irregularities. 

2250 3 300 3 350 Julian days 

Fig.6.2. Variations of the spectral type of RV Tau. (After J.C. Pecker and E. Schatzman, 

in Astropliysique Generate, Masson 1963, Fig. 220, p.395) 
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Fig.6.3. Variation of the spectral type of U Mon. (After J.C. Pecker and E. Schatzman, 

in Astrophysique Generate, Masson 1963, Fig. 220, p.395) 

(c) The mean brightness is constant or very slowly varies with a long period. 

(d) The mean spectral type is F, G, or K. 

There are at present more than 100 known stars with these characteris¬ 

tics. The brightest, R Scuti, has magnitude 6.1 at maximum. The periods lie 

between 30 and 50 days, and their amplitudes are in general between 1 and 

2 magnitudes. Spectral classification is difficult, because the hydrogen lines 

and the Ca I 4227 line are abnormal, probably indicating a large divergence 

from thermodynamic equilibrium in the surface layers. In contrast the G 

band of CH places the RV Tau stars in class la. or lb. In some of them, such 

as U Mon, TiO bands appear at the deep minima and hydrogen lines near 

the maxima (Figs. 6.2 and 6.3). 

These are low-mass post-asymptotic-branch stars and evolving towards 

the white-dwarf branch. 

Semi-regular Variables of Type K. This is a small group of stars related to 

the RV Tau stars, but having more irregular light variations. The RV Tau 

and semi-regular variable regions extend towards the region of the long- 

period variables such as Mira Ceti, red supergiants of types M, R, and N 

or S. This suggests that these various types of supergiants have a common 

mechanism which brings about instability without all having the properties 

needed for regular pulsation. 

6.1.4 f3 CMa Stars 

These are blue stars with very short periods, of the order of a few hours. 

Their light variation is slight: 0.1 magnitudes in the blue; the radial-velocity 

amplitude is between 5 to 100 km s_1. 

Most (3 CMa stars have two periods and show the beat between them. For 

example f3 CMa, of spectral type BII Bill has periods P\ = 0.250 022 44 d 

with amplitude K\ = 5.8 km s_1 and P2 = 0.251 3003 d with amplitude 

K2 — 2.0 km s_1 (the latter has varied). (3 Cep itself has a radial velocity 

amplitude of 45 km s-1. 

These stars also have quite long rotation periods (V sin i ~ 5 to 30 

km s-1). 
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Period 

Fig. 6.4. Power spectrum of Procyon in the range 1.17-1.65 mHz. The frequency difference 
6unt (Sect. 6.5.3) is proportional to the inverse of the frequency for modes of increasing 
degree, so it. is convenient to take as abscissa a scale proportional to inverse fiequencies. 
We thus clearly see a regular system of equidistant peaks. Not all the peaks allowed 
by the observing window appear because of the interruption of observations in the day. 
The period of the fundamental (about 2.4 x 104 s) is the beat period between successive 
harmonics of the same degree. This period defines the spacing Ay = 79.4/iHz 

Other groups of variables related to the C'Ma stars have been found, 

with spectral types BO V to B la, with periods of a few hours to a day. 

6.1.5 Main-Sequence Stars 

Since the discovery of high-mode, high-degree non-radial oscillations in the 

Sun, there have been efforts to study other stars in corresponding period 

ranges. Geliy, Grec, and Fossat (1986) measured the spectrum of radial- 

velocity variations of Procyon (a CMi) (F6 IV-V) and of a Gen A (G2 V) 

(Fig. 6.4). Noyes et ah (1984) measured the flux variations of the calcium H 

and K lines in e Eri (K2 V). Fourier analysis in the period range from 10 to 

15 min. shows equal spacing of the eigenmodes of 79.4 //Hz for Procyon (see 

the discussion of the theoretical problem in Sect. 6.5.3) and of 165.5 /./.Hz 

for a Cen A. For £ Eri, the spacing is of 172 //Hz. The significance of these 

results is still under discussion. We will see later the meaning of equidistant 

frequencies and the fundamental importance of these modes for the study 

of the internal structure. These pulsations are characterised by very small 

amplitudes (of the order of 1 m s-1 in Doppler velocity). 
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6.2 Periodic Pulsating Variables 

(RR Lyrae, Cepheids, Miras) 

Observational studies and theoretical work on pulsating variables are so 

closely interwoven that it is first necessary to give some idea of the inter¬ 

pretation of these phenomena. 

For a spherical non-rotating star, a linear analysis factorising the dis¬ 

placement into spherical harmonics and functions of the radial variable r 

gives a description of the motion in terms of a complete set of orthonormal 

functions. We thus distinguish between radial and non-radial oscillations. 

The latter are classified in p modes (the restoring force is pressure) and g 

modes (the restoring force is gravity). Radial oscillations, called / modes 

by Cowling, can be analysed at each order. The zero order, or fundamental, 

has a node at the centre and an antinode at the surface. The first order, or 

first harmonic, has a node between the centre and the surface. 

RR Lyrae stars, Cepheids, and Miras oscillate in the fundamental mode, 

or possibly the first harmonic. 

The theory of these pulsating variables allows us to interpret the raw 

data and we shall present the latter along with their interpretation. 

The main problem is that of the pulsation itself. We have to explain why 

a star oscillates rather than being in hydrostatic equilibrium. We expect that 

stability conditions will define the boundaries of the instability strip within 

which the pulsating variables are found. More exactly, the hydrodynamic 

model should explain the main features of the light curve and its dependence 

on period. The theoretical model should allow us to use both photometric 

data and measurements of radial velocity to determine the radii of variable 

stars. Finally, the need for agreement between the mass deduced from the 

period and the theoretical mass deduced from the evolutionary track should 

give an idea of the rate of mass loss. 

During its evolution a star enters and leaves the physical region of insta¬ 

bility. The study of stellar evolution should indicate the evolutionary status 

of a given variable star. Remembering that the oscillation period is propor¬ 

tional to the the sound travel time from the centre to the surface, we see 

that the secular variation of the period gives information on how the global 

properties of a variable star evolve. Table 6.3 gives several examples. 

We can see that the observed secular variations and the estimates from 

stellar-evolution theory are not in contradiction. 

6.2.1 Radial Velocity, the Light Curve 

Observational Data. Each class of variable star has characteristic light- 

curve properties. For pulsating variables the curve is asymmetric and has a 

sort of bump on the descending part (Fig. 6.5). 
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Table 6.3. Secular period variations 

Star Duration of 

observations 

Period 

(days) 

Variations of the period 

Date Days/year s/year 

S Cep 

T Mon 

SV Vul 

RR Lyraeb 

1784a—1919 

1881-1920 

5.3663770 

2.700313 

45.2 

0.5 

1883 

1886 

-9.16 X 10"7 

+ 4.17 X 10 5 

-7.9 X 10'2 

3.6 

-(254 ± 10) 

5.1 x 10 10 

a Date of the discovery by Goodricke. 

b Mean values for the RR Lyrae stars in the globular cluster oj Cen. 

0 1 phase 

Fig. 6.5. Light curve of 3 periodic variable 

stars. (From J.C. Pecker and E. Schatz- 

man, in Asirophysique Generate, Masson 

1963, Fig. 200, p.374) 

The asymmetry of the light curve can be measured by the difference 

between the phase </?(M) of maximum and the phase <^(m) of minimum: 

e = ip(M) - <p(m) ■ 
% 

When we plot the logarithm of the period against the asymmetry, we 

see that there is a discontinuity at about 10 days. However, if we plot for 

periods less than 10 days the difference 

e! — ip(M') — ip(m) 
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^ max ^ min 

1 

° -1 - 0.5 0 0.5 " r.O L5 log P 

Fig. 6.6. Asymmetry of the light curves of periodic variables. • = Galactic Cepheids of <5 

Cephei type, * = Galactic Cepheids of RR Lyrae and W Virginis type, + = Globular 

cluster variables, □ = Variables in Andromeda and M 33, o = Variables in the Large 

and Small Magellanic Clouds. (From J.C. Pecker and E. Schatzman, in Astrophysique 

Generate, Masson 1963, Fig. 202, p.375) 

* • «» 

° • * . 
* * 

A. 
8a{ 

- 1 - 0.5 0 0.5 1.0 1.5 log 

between the phase (p(Al') of the bump or secondary maximum of the light 

curve and the phase <^(m) of the minimum, the points are continuous 

(Fig. 6.6). One has the impression that the bump, which is just a detail 

of the light curve for P < 10 d, becomes the main light variation for pe¬ 

riods P > 10 d, and, conversely, that the main light variation for periods 

P > 10 d is only a secondary phenomenon for periods P < 10 d. 

Cepheids separate into two main groups: classical Cepheids (8 Cephei 

type), and short-period variables (RR Lyrae type), which merge into the 

anomalous Cepheids of W Virginis type at long periods. 

Precise photoelectric photometry has revealed finer differences amongst 

the Cepheids: for example, the light curve of r/ Aql has a bump essentially 

absent from the light curves of 8 Cep and ( Gem. The light curve of 8 Cep is 

extremely asymmetric, while the light curve of £ Gem is almost symmetrical. 

Radial Velocities. During pulsations spectral lines undergo periodic Dopp¬ 

ler shifts, indicating periodic motion of the stellar surface. 

The radial velocity v, measured by the position of line centre, results 

partly from the motion Vr of the star with respect to the Sun and partly 

from the average V of the radial velocities V = dR/dt of different parts of 

the star’s disc. In other words, 

v = VR-V, (6.1) 

where the velocities v and Vr are taken as positive for motion away from the 

observer. Assuming that the variation of Cepheids is caused by a spherically 

symmetric pulsation of the star, we have to study the relation between 

the radial matter velocity dR/dt = V and its average value on the disc. 
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Assuming for simplicity a constant relation between V and V, V — kV, we 

find Ur while imposing the condition f0 Vdt = 0, expressing the fact that 

during a period P the material layers return to the same places: 

(6.2) 

To a first approximation all the lines have the same Doppler shift at the 

same phase, indicating a motion of the whole stellar atmosphere. 

To find the parameter k, we have to model the atmosphere and calcu¬ 

late the mean value of the radial velocity as a function of phase. As an 

example, we could suppose that the measured radial velocity is an average 

of the radial velocity over the stellar surface weighted by the background 

continuum intensity, which assumes the same limb-darkening for the line 

and continuum. Under these conditions we have simply 

_ f* V cos 61(6) cos #2-7rd(cos0) (6 3) 

f* 1(6) cos 0 27rd(cos 6) 

Using a linear representation of the limb-darkening 

/(cos 6) — Ic [1 — x + x cos 9] 

we get easily (x is constant) 

V=±Z±v. (6-4) 
6 - 2x 

This fraction varies slowly as x varies from 0 to 1, and it is usual to 

adopt the relation 

V = §JU = 0.708U (x = |) . (6.4') 

This is only an approximate relation. In reality the ratio (V/V) varies 

with phase. The exact value of (V/V) is important in the determination 

of Cepheid radii by the classic Baade-Wesselink method. Before discussing 

this method we note some features of the radial velocity curves. 

(a) For most Cepheids the Doppler shifts give a regular radial velocity 

curve. 

(b) In certain stars such as RR Lyr, W Vir, some lines are observed to 

become doubled at the point where the radial velocity (V — Ur) changes 

sign, particularly the strong hydrogen lines. Anticipating the explanation of 

Sect. 6.2.2, this corresponds to the passage of a travelling wave through the 

stellar atmosphere. The wave which has just passed through the atmosphere 

is still visible when the next wave appears deep in the atmosphere. 
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(c) In most Cepheids one sees emission lines at certain phases, always 

with large negative velocities, i.e. corresponding to rapid matter motion 

towards us, and thus towards the upper atmosphere. 

RR Lyr has Ha and H7 in emission near phase —0.09 (the origin cor¬ 

responds to maximum light). The radial velocity is -99 km s_1. The emis¬ 

sion lines appear just before the doubling of Ha at velocities -130 and 

—20 km s-1. 

W Vir has intense hydrogen emission lines during phases 0.65-0.825. 

Later, when the lines become doubled at phases 0.94-0.10, the emission 

lines are weaker. The measured radial velocity of the emission lines varies 

from —80 to —85 km s 1. The doubled emission lines have velocities —92 

and —40 km s 1. The radial-velocity curve of the emission lines joins up 

with that of the absorption lines, and it is possible to follow the velocity of 

a gas layer for 1.45 periods. 

6 Cep has the H and Iv lines in emission at phase 0.97. The measured 

radial velociies are then 

— line H (emission): -47 km/sec 

— line I\ (emission): —46 km/sec 

— line I\ (centre of the absorption): +22 km/sec 

— six other lines: — 4 km/sec. 

The Baade-Wesselink Method. We let Fv be the monochromatic flux per 

square centimetre of the star’s surface. The monochromatic magnitude at a 

given time is 

m = —2.5 log Fu — 5 log R + const. (6.5) 

Considering two instants (1) and (2) when the star has the same colour, 

we can assume that the star’s surface brightness is the same and that the 

difference in luminosity comes solely from the change in radius, 

m2 - mi =-5\og(R2/Ri). (6.6) 

Assuming further that the variation of photometric radius is identical 

to that calculated from the radial velocities, we set 10 °-2(m2 mi) = n. The 

two radii R\ and R2 are related to the mean radius R and the calculated 

radius variations by Ri = R + ARi, R2 = R + AR2. We thus have 

R + AR2 
- = n 
R + A Ri 

which gives 

nARi — AR2 

(6.7) 

(6.8) 

265 



Tabic 6.4. Ccphcid radii by the Baadc-Wesselink method 

RR Lyr 8 Cep V Aql 

R X 107 km 

R/R0 

0.50 ± 0.06 

7.2 ±0.9 

3.7 ±0.1 

53 ± 2 

4.7 ± 0.2 

68 ± 2 

The constancy of the right-hand side with phase is a test of the pulsation 

hypothesis. Stebbins (1953) obtained the results of Table 6.4 from 6-colour 

photometry. 

The values found for R are only very approximate because of the lim¬ 

ited validity of relation (6.4*), the uncertainty in the parameter A', and the 

determination of Af?i and AAh from radial velocities. 

We can also consider the problem as follows. Theory shows that there is 

a linear relation between the monochromatic flux variation and the variation 

of the colour index (denoted Cl): 

—2.5 A log Fu = aA(CI), (6-9) 

where the symbol A stands for the variation between two observations. We 

thus get immediately 

Alogi? = 0.2[aA(CT) — Am]. (6.10) 

A suitable choice of the parameter a then gives a curve for A log R of 

the same form as that deduced from the radial velocities. 

For 8 Cep, rj Aql this procedure works if a is taken as 2.3 and 3.3 respec¬ 

tively, although the values calculated from model-atmosphere theory are 4 

and 5.4. Using the theoretical value of a gives a radius of the same order as 

that from the radial velocities, but significantly smaller, and with different 

variations. 

Christy (1968) has made a detailed comparison of the models applied to 

/3 Dor, P = 9.84 cl, and finds from the Baade-Wesselink method a radius 

too large by 30% compared with that deduced from the relation P ^/~p = 

constant (see below, p. 270) and from the period-luminosity relation (see 

p.275). He explains the difference as being due to a variation of the depth 

of the photosphere with phase. The Baade—Wesselink method can only be 

used if significant systematic corrections are made. 

6.2.2 Phase Lag and the Cause of the Instability 
% 

In an adiabatic oscillation of a gaseous mass, the relation P ~ p1 implies 

that the variations of velocity, density, temperature, and pressure are all in 

phase, and the luminosity and radius in antiphase: the luminosity should 

reach a maximum at the minimum radius. 
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In one dimension, the equations of continuity and motion are 

(6.11) 

dv _ Pdp 

dt ^ p dx 
(6.12) 

giving the solutions 

(6.13) 

6T ~8p, (6.14) 

(6.15) v ~ exp i 

V6T ~ i exp i (-ut (6.16) 
c 

l \ c 
(6.17) 

showing that 8R and V6T, the latter being proportional to the flux, are in 

antiphase. 

In reality, for Cepheids and RR Lyrae stars, the luminosity reaches a 

maximum at the maximum velocity, corresponding to a phase lag close to 

(7r/2) in sinusoidal motion. 

To explain this requires the study of the linearised equations of motion in 

the non-adiabatic case. This shows that the cause of the instability and that 

of the phase lag are related and involve sub-photospheric ionisation zones 

of hydrogen, helium, and ionised helium. Here we shall try to bring out the 

physical basis of the instability and the phase lag, without discussing the 

detailed agreement with observation, which requires numerical solution of 

the full non-linear equations of motion. 

Stellar Structure. Cepheids are stars of 6 to 7 M0 and spectral type ap¬ 

proximately F to K; such stars have extended low-density convection zones. 

At low densities the efficiency of convective energy transport is low (see 

Chap. 3) and the convection zone is close to radiative equilibrium. The en¬ 

velope structure is determined by the absorption coefficient and ionisation 

equilibrium. In equilibrium the transition from partially to fully ionised 

hydrogen occupies a very small fraction of a scaleheight and behaves like 

a discontinuity. The ionisation zones of helium and ionised helium behave 

similarly. For hydrogen, two effects combine: the rapid increase in opacity 

near 104 Iv, and the sensitivity of the ionisation degree to the temperature 

(Fig. 6.7). 
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Fig. 6.7. Pressure-temperature rela¬ 

tion in the radiative envelope of a 

classical Cepheid. Note the near-dis¬ 

continuity in temperature, caused by 

the change in opacity near 10 000 K. 

(From R.F. Christy, Quarterly Jour¬ 

nal of the Royal Astronomical Soci¬ 

ety 9, 15 (1968). Reproduced by kind 

permission of the Royal Astronomi¬ 

cal Society) 

Equations. These are the standard equations of hydrodynamics. In La- 

grangian coordinates the most useful independent space variable is the frac¬ 

tional mass 

M(r) = f Anr'2 p{r')dr' , (6.18) 
Jo 

where p(r') is the density. Then the equation of motion is 

d2r GM(r) A 2 dP{p, T) 
- =-— 47tr - 

dt2 r2 dM 
(6.19) 

The diffusion (quasi-isotropic) approximation for radiative transfer holds 

throughout the star: 

L(r) = — {An r2)2 
4a 

3 k(p,T) 

d(T4) 

dM 
(6.20) 

where a is Stefan’s constant and k(p, T) the opacity. The heat-production 

equation is then 

dS(p, t) 

dt 

d L 

dM 
+ s(Pi T), (6.21) 

where S is the entropy and e the rate of nuclear energy production per unit 

time and mass. At the free surface the boundary conditions are: 

- in the equation of motion, P(R*) = 0, where if* is the stellar radius. 

- in the heat equation, the surface flux, proportional to VT4, is equal 

to the flux radiated at the surface temperature. Assuming the radiation is 

emitted at optical depth t — 2/3 we write 
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dr4 

dr 
(r=2/3) 

(6.22) — ^(^4)(7-=2/3) • 

In a giant star, the rapid density increase towards the interior makes 

the amplitude of the oscillation very small inside radius r = J?*/4. In non¬ 

linear theory, and for numerical reasons, it is convenient to introduce a rigid 

boundary at a small but non-zero radius, which then contains all the energy 

sources. This gives the boundary conditions r = 0, L = (L(9)) = L0, the 

average value of the luminosity. This means that the causes of the instability 

and the phase lag are to be sought outside the stellar core and do not involve 

the nuclear energy sources. Down to r = 9i?*/10 the envelope contains only 

1 % of the star’s mass. This is therefore a chemically uniform region. The 

luminosity L0, taken as constant at the internal boundary, is fixed by the 

stellar structure. In linearised theory, by contrast, the boundary conditions 

are written at the centre and the surface. 

Linear Adiabatic Theory. Linearisation of the equations assumes that the 

amplitude of the oscillations is small. Linear theory can explain the causes 

of the instability and the period. It cannot give the detailed characteristics 

of the light curve or explain the finite amplitude of the oscillation. Nor can it 

give the red boundary (towards decreasing temperatures) of the instability 

strip, which involves non-linear dissipation (Sect. 6.2.5). The linear theory 

is however indispensable for an understanding of variable stars. 

The classic dependent variable is the radius variation Sr, written as 

6r{t) = r£eiujt, (6.23) 

and as independent variable we take 

x = (r/R). (6.24) 

For an adiabatic oscillation 

P ~ p1 (6.25) 

we do not need the heat equation (6.21); (6.18) and (6.19) now give a second- 

order equation 

dx2 
+ (4 

v, i de . v(x) 
V(x))~ — + 

x dx 

4 — 3 7 x3R3 

7 
+ 

y G'M(x) 

u;2 £ = 0, (6 96) 

where 

V(x) = p{x) 
GM(x) 

P(x)xR* 

is the ratio of gravitational to thermal energy. 

(6.27) 
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Equation (6.26) is an eigenvalue equation for the amplitude £(x). The 

boundary conditions at x — 0 and x — 1 fix the eigenvalues of the angular 

frequency oj. At x = 1 the pressure condition is 

(6.28) 

assuming that the pressure vanishes at the surface. From the adiabatic as 

sumption we have the condition 

dx 
= 4 - 37 + 

u;2/?3 

GM 
(6.29) 

As x tends to zero, the condition that £ should remain finite is sufficient. 

Equation (6.26) can be expressed as 

-0£ + u;2/i(xK = 0, (6.30) 

where O is a differential operator. With the boundary conditions at x = 0 

and x = 1 we have a classic eigenvalue problem for a linear self-adjoint sys¬ 

tem. This gives (Ledoux and Walraven 1958) an expression for the frequency 

of the fundamental, as the result of a variational principle: 

u,'o = min 

rP 

R2 dx 'Ax-idlx2(2 ||(3«-4)Pldi 
(6.31 

px4£2dx 

Ritter (1878-1883) investigated the case of a uniform sphere with a constant 

relative oscillation amplitude, finding 

u 
2 
0 (37 4) 

AnGp 

3 
(6.32) 

The frequency found from more realistic models is always proportional to 

p1/2. The relation P0 ^fp — constant, where P0 is the period, is a fundamental 

property of variable stars; it obviously remains to find the constant, as will 

be discussed later. 

Applying the calculus of variations to (6.31) gives 

u>2 = 

47rx3£y-[(37 - 4)P]dx 
dx 

47rx4{pdx 

(6.33) 

The weighting function determining the period of the fundamental has its 

maximum near x = 0.7 and is small outside the interval 0.3—0.9. This implies 

that there is a physical parameter essentially fixing the form of the light 

curve. Christy (1968) has shown that the quantity V(x), defined by (6.27) 

and calculated for x = 0.83, acts as this parameter. 
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Cause of the Instability. If we regard the departure from adiabaticity as a 

perturbation, we can follow Eddington and insert the solution of the adia¬ 

batic equation of motion into the heat equation. If the energy of the oscil¬ 

lation is W, 

W = iW: (2r2dM, (6.34) 

the rate of decrease or increase of the oscillation energy is given by A", where 

1 d W 
K = 

W d t 

where we have 

dIC 

df 

-M 

(7 - 1)— ( Se 
P 

dL 

DM 
d M. 

(6.35) 

(6.36) 

The meaning of this expression is that if the rate of nuclear energy 

production increases with compression (as is in fact true) the oscillation 

energy will grow; if heat is absorbed at maximum compression, the heat 

flux raises the oscillation energy. As we have mentioned above, the very 

small amplitude near the centre makes the nuclear contribution negligible 

in most cases. 

Assuming an opacity k = KoprT~s, we can calculate the contribution of 

the term 6(dL/dM). The amplitude of the oscillation is very small in the 

central energy-producing regions, and we can neglect the term in s. The 

main term is thus 

K = ^ ■> ,2/^ J 9£2(4 - 37 - (7 - l)s + r)dM , (6.37) 

where I is the moment of inertia. 

For opacity following Kramers’ law, r — l,s = 3.5, the integrand van¬ 

ishes for 7 = 1.307; if r = 1, s — 3, we find 7 = 4/3 (Eddington). On the 

other hand, in surface layers s — —10. Two effects can thus combine to 

produce the instability. On the one hand, if the opacity increases with tem¬ 

perature (for T ~ 104), the maximum compression is accompanied by an 

increase of the opacity and heat retention which thus raises the amplitude 

of the oscillation (opacity mechanism or kappa mechanism). On the other 

hand, in helium ionisation zones the adiabatic compressibility 7 decreases 

and approaches 1, and the integrand is positive (gamma mechanism). Re¬ 

gions where 7 ~ 5/3 stabilise the star, while surface layers destabilise the 

star and allow the oscillation. 

Non-adiabatic Theory: The Phase Lag. The physical basis for the phase lag 

was found by Zhevakin (1954). It involves the deviation from adiabaticity 

caused by the displacement of the ionisation boundaries during the oscilla- 
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tion. We can understand this mechanism by discussing the ionisation layer 

of hydrogen schematically. 

Regarding the transition from neutral to ionised hydrogen as a discon¬ 

tinuity, the incident and emergent luminosities are Lt and Te, and because 

of the low mass of the hydrogen layer above the discontinuity, the latter is 

equal to the stellar luminosity. As the hydrogen layer has low mass it can be 

regarded as being in radiative equilibrium. There is then a relation between 

the mass of the layer and the emergent luminosity which we shall give later. 

The hydrogen layer retarding the escape of the luminosity Li behaves as a 

low-pass filter whose time constant is the ionisation time of the hydrogen in 

the layer. In the Cepheid instability strip the time constant is of the order 

of the period, explaining the phase lag of 7r/2. 

Because the transition layer to ionised hydrogen is very thin we can 

regard it as a discontinuity and use the Rankine-Hugoniot conservation 

equations. If v is the matter velocity with respect to the discontinuity, mass 

conservation gives 

1 d M 

pV ~ 4^2 ~df 
(6.38) 

Conservation of energy gives 

pv (h + |t>2) — F = const, (6.39) 

where h is the specific enthalpy and F = L/Airr2 the radiative flux. 

The enthalpy variation is of the order of the ionisation energy per unit 

mass, x, much larger than the kinetic energy. Then we have approximately 

dM 

dt 
-(Le-Li). 
X 

(6.40) 

The relation between the mass of the layer of neutral hydrogen and the 

luminosity Le follows from integrating the equations of radiative equilibrium 

in the convective layer, adopting an opacity of the form k ~ PXI2T1^2 for the 

typical temperatures encountered in variable stars. With effective gravity 

ge we obtain for the pressure 

P 9 
2/3rp—8 
e JefF 1 - (! + I' 

2/3 
(6.41) 

where Teff is the effective temperature. The very strong temperature depen- 

dance of the opacity leads to an asymptotic value of the pressure for large 

optical depth r, * 

p ~ g2e/3T-8 (6.42) 

(of course, the pressure begins to grow again once the opacity starts to de¬ 

crease with temperature). As the mass of the hydrogen layer is proportional 
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t° {P/de) (neglecting the radius variations) we find for the mass M# of the 

neutral hydrogen envelope (with Le ~ Te4ff), 

Mh ~ g71,3L~2 . (6.43) 

To obtain the phase lag, we assume that the luminosity L, at the base 

of the discontinuity is in phase with the pressure and thus with the second 

derivative d2r/dt2, as indicated by numerical calculations of the non-linear 

theory. The effective gravity includes a term due to the gravitational attrac¬ 

tion, g, and an acceleration term (d2r/dt2), 

ge = g + (d2r/df2), (6.44) 

so we assume that 

Lz (6.45) 

where a is of the order of 1/2. Assuming the oscillation has the form elUJt 

we then find that 

iu,'8M 
L ( 1 8M 1 8ge 8ge 

X V 2 M 6 g g 
(6.46) 

where the symbol 8 refers to a perturbation from equilibrium. With 

8ge —u28r 

9 9 

we get finally 

8Le f u2<5r\ /I aL \ 1 — i(ojMx)/(3&L) 

L \ g ) \2 uMx) 1 — iL/(2u>Mx) 

(6.47) 

(6.48) 

and we see that the phase lag is controlled by the ratio (L/u>Mx), which 

is equal to the pulsation period divided by 2n times the ionisation time for 

the hydrogen layer. For models resembling real pulsating variables such as 

RR Lyrae stars or Cepheids, this parameter is of the order of unity, indeed 

giving a phase lag of order 7r/2. 

Of course, only a non-linear calculation can give results directly com¬ 

parable with observations. The above calculation shows the role of the 

hydrogen-envelope mass M in determining the phase lag between the lu¬ 

minosity and the velocity. 

6.2.3 The Period-Luminosity Relation 

The first step towards the discovery of the period-luminosity relation was 

due to Leavitt (1908), who detected 1777 variable stars in the Magellanic 

clouds. She found the periods of 16 of these variables and noted in 1912 that 

the stars’ brightness increased with period; she drew Pickering’s attention 
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to this relation. Hertzsprung, in 1913, showed the identity of these variables 

with galactic Cepheids and realised the importance of the period-luminosity 

relation for distance determinations. This relation was the instrument used 

by Shapley to determine the Sun’s position in the Galaxy (1918), and by 

Hubble in definitively establishing the extragalactic nature of M31, M33, 

and NGC 6822 (1925, 1926). 

Much work was undertaken to find the zero point of the period- 

luminosity relation. The idea is to use the method of statistical parallaxes 

(see Chap. 1). It was necessary to wait for the first results of Baade in 1952 

to show finally that the RR Lyrae stars and classical Cepheids were not a 

unique class. Baade could observe stars in the Andromeda galaxy (M31) 

down to magnitude 22.7; the RR Lyrae stars should have had magnitude 

22.75 according to Shapley’s 1930 period-luminosity relation. But they were 

invisible. This forced a correction of —1.5 magnitudes for the Cepheids. This 

result had already been found by Mineur (1944), but had remained unno¬ 

ticed. Classical Cepheids belong to population I, while the RR Lyrae stars 

and dwarf Cepheids (P < 0.26 d) belong to populations I and II. One typi¬ 

cally finds RR Lyrae stars in globular clusters, while dwarf Cepheids belong 

to the disc population. W Virginis stars, or population II Cepheids, appear 

to belong to the same physical family as the RR Lyrae stars, and their 

Fig. 6.8. Period-luminosity relation 

for period variables 
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period-luminosity relation extends that of the RR Lyrae stars and dwarf 

Cepheids with a different slope (Fig. 6.8). We adopt the expression 

P ~ L° (6.49) 

with a close to 1. 

The theory of the period-luminosity relation rests partly on the existence 

of a mass-luminosity relation and partly on the period-density relation (see 

below) and the simplified expression for the cause of the instability. 

Pulsation occurs once the ionisation time of a helium layer is comparable 

to the pulsation period, t\on > aP, a < 1. We can use a simple self-similar 

model to understand how the period-luminosity relation arises. Obviously 

the exact solution can be found only numerically. 

The condition on the ionisation time (which we have already encountered 

in connection with the cause of the phase lag) has the form 

(PL/AM) — const, (6.50) 

where AM is the mass of the neutral layer. If the ionisation occurs at a 

fixed temperature T/ (in reality it depends very weakly on temperature), 

assuming a polytropic index n for the outer layers gives 

AM ~ M~nRn+1 . (6.51) 

The period-density relation (6.31, 32), 

Pv/p = const, (6.52) 

combined with the instability condition (6.33) gives 

L ~ R-n+(\/2) Mn-(l/2) . (6.53) 

With the mass-luminosity relation 

L ~ Mm , (6.54) 

we get finally 

p ~ LP/m) + (3/(2n-l)) _ (6.55) 

For m ~ 3,n ~ 3 we find P ~ L0 93, in satisfactory agreement with 

observation. 

Actually none of the power-law relations used here is fully exact. The 

quantity Q = P{p/p©)1/2 depends a little on mass and radius. From nu- 

merical results, Christy (1968) gives 

Q = 0.022R1/4M~1/4 (days), (6.56) 

and for the fundamental 

P ~ 0.022<r7/8M_1/8 , (6.57) 
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(6.58) 

giving finally the ratio of the ionisation time tj and the period 

u = 9.8x lO-5Y 3/4m-i/s 

P (TJ 104)9-5 y 

where Y is the helium concentration by mass. 

These relations lead to 

P ~ T11/12 , (6.59) 

L ~ TJ12 . (6.60) 

The pulsation condition t\on > aP is satisfied by moving from left to 

right in the Hertzsprung-Russell diagram. The last relation (6.60) represents 

approximately the blue edge of the near-vertical instability strip in the HR 

diagram. 

6.2.4 The First Harmonic and the Structure Parameter 

Homology relations immediately give P Jp = constant (6.31). However, vari¬ 

able stars are not strictly homologous (6.56). Complete model calculations 

reveal a parameter characterising the interior properties of the star and 

essential features of the pulsation. 

Following Christy (1968) we denote by V(x) the ratio of gravitational 

to thermal energy at the distance r = xR from the centre (6.27). The 

parameter V(x = 0.83) = Vc describes the properties of the Cepheids and 

the RR Lyrae stars. First, the quantity Q, 

Fig. 6.9. Phase of secondary acceleration. The origin is the phase = 0 of minimum 

radius. The phase of secondary acceleration for different Cepheid and RR Lyrae models 

is plotted as a function of the structure parameter Vc = V(x = 0.83) (6.53). (From R.F. 

Christy, Quarterly Journal of the RAS 9, 15 (1968). Reproduced by kind permission of 

the Royal Astronomical Society) 
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(6.61) 

Q = pVp/p& » 

is well described by the relation 

Q = 0.222(Vcr°-60 . 

The value r = 0.837?, close to the node of the first harmonic, thus 

appears as the characteristic point for the behaviour of the pulsations of 

Cepheids and RR Lyrae stars. This property appears clearly in the results 

of calculations of the motion of the star’s interior. We plot on the same 

graph the Lagrangian variable r(a, t) as a function of time for different 

values of the initial radius a. Once the wave propagating from the centre 

to the surface reaches large amplitude, it is reflected by the surface layers, 

propagates towards the interior, rebounds from the central regions, and 

emerges from the surface with a certain phase lag. This secondary wave is 

clearly visible in the radial-velocity curves, where it appears as a kind of 

secondary maximum, or a small bump. 

This lag (Fig. 6.9) is an increasing function of the characteristic param¬ 

eter Vc. This quantity appears to be important in fixing the properties of 

variable stars. It allows in particular an estimate of the star’s mass (see 

Sect. 6.2.6). 

6.2.5 The Red Edge of the Instability Strip 

The blue edge of the instability strip appears to be defined by the onset 

of the instability in linear theory; in contrast the red edge is due to non¬ 

linear dissipative phenomena. Perturbations of the convective flux in the 

oscillation and dissipation due to turbulent viscosity damp the oscillations. 

To give some idea of the role of the turbulent viscosity vt, we consider its 

contribution to the imaginary part of the oscillation frequency, 

LO 
/ 

/ 
de 
dr 

(6.62) 

is positive-definite, so that the turbulent viscosity always damps. Moving 

to the red in the HR diagram the convective flux become more important, 

and turbulent dissipation becomes dominant once the characteristic convec¬ 

tion time becomes comparable to the pulsation period. This effect defines 

a limit on the red side of the instability strip. The agreement with the ob¬ 

served limit depends on the choice of parameters describing the turbulent 

viscosity, implying a suitable modelling of the turbulence in the convection 

zone. We refer here to the discussion of Chap. 5 of the hydrodynamic of the 

stellar interior. 
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6.2.6 Masses of Pulsating Stars (Cepheids, RR Lyrae) 

We see that stars on evolutionary tracks in the HR diagram enter and leave 

the instability strip either moving from right to left or in the opposite direc¬ 

tion (Cepheids), or when they leave the ZAHB (RR Lyrae stars). Mass de¬ 

terminations for pulsating stars are simultaneously tests of stellar-evolution 

theory and a way of studying these stars. 

RR Lyrae Stars. We have already noted (Table 6.2) that the RR Lj^rae 

stars belong to the spherical component of the stellar population (population 

II). One typically finds them in globular clusters, allowing unambiguous 

determination of their evolutionary status. Figures 6.10a and b (Renzini 

1977) show schematic HR diagrams for a typical globular cluster (e.g. M3) 

and the diagram calculated for stars evolving without mass loss. 

The main characteristics of the HR diagram (e.g. for M3) are: (a) the 

horizontal branch is brighter than the stars of the knee in the main sequence 

by about 3.4 magnitudes; (b) the horizontal branch is quite extended in 

effective temperature, containing stars from various parts of the RR Lyrae 

instability strip; (c) the asymptotic giant branch (AGB) is close to the red- 

giant branch (RGB) without exceeding its peak luminosity. 

Evolutionary sequences calculated at constant mass (M = 0), con¬ 

strained by the 3.4 magnitude difference between the horizontal-branch stars 

and those of the knee, have the following properties: (a') the luminosity func¬ 

tion of the RGB is in excellent agreement with observations; the end of the 

RGB coincides to within 1/4 magnitude with the observed peak of the RGB; 

(b') contrary to observation, the horizontal branch is only populated to the 

red side of the instability strip (the first question mark on the figure); (c') 

(b) 

Fig.6.10. (a) HR diagram for a typical globular cluster, (b) Diagram calculated for stars 

evolving without mass loss. There are no stars to the red side of the horizontal branch; 

the asymptotic giant branch extends too high in luminosity 
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the asymptotic giant branch (AGB) extends 2.5 magnitudes above the end 

of the red-giant branch. 

The condition on the magnitude difference between the knee stars and 

those of the horizontal branch gives an initial mass of 0.85 Mq for the stars 

reaching the horizontal branch; mass loss of 0.2 Mq leads to a mass of 

0.65 Mq, the mass given by the pulsation properties. Assuming a mass loss 

rate (Reimers, see Chap. 4) 

M — —Ax lCT13?; — (Af0/year) (6.63) 

we find r/ ~ 0.4. The discussion by Renzini shows that this value of r/ is 

fixed within a narrow interval (± 10%). 

The same mass loss rate limits the maximum luminosity of the AGB. 

We may conclude that the disagreements (b') and (c') are both explained 

by mass loss. 

The extent of the horizontal branch implies the presence of a second 

parameter (stellar mass? degenerate helium core mass? core rotation?). We 

should add to this the effect of metallicity. The horizontal branch is bluer for 

lower metal abundance, in agreement with the results of Faulkner for pop¬ 

ulation I stars (Chap. 3). We note that this metallicity effect implies a tight 

constraint on the mass loss. Clusters with low Z would have a “red” hor¬ 

izontal branch for AM < 0.1 Mq; metal-rich clusters would have a “blue” 

horizontal branch for AA/ > 0.3 Mq. 

W Vir Stars (Population II Cepheids). As we have seen, these are pul¬ 

sating variable stars with period comparable to those of the Cepheids. But 

these stars have much smaller radii, clearly showing that their masses are 

very different, and the stars have become unstable at a quite different stage 

of their evolution. Models give a mass of 0.9 Mq for W Vir. 

These stars are found in metal-poor clusters (small Z) with a “blue” 

horizontal branch. They are stars which have left the peak of the AGB and 

are now crossing the instability strip. 

Cepheids. The various methods of determining masses for Cepheids are in 

relatively serious disagreement. The main disagreement is that between the 

mass deduced from evolution and that deduced from the pulsation. The ideal 

method would be to find the mass of a Cepheid in a binary. Unfortunately 

binaries containing Cepheids are too wide to allow an orbital solution. In 

two cases radial-velocity measurements lead only to the mass ratio of the 

two components (S Mus, V636 Sco). 

We may appeal to the following methods: 

(a) Evolution. During the passage through the instability strip a star of 

mass M has a luminosity L. Measurement of L (which involves the 

calibration of the distance scale) gives the mass. 
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(b) Pulsation. Measuring the luminosity and the effective temperature gives 

the radius. Using the relation P(p/p©)1/2 = Q gives the mass. 

(c) The bump in the light curve. As we have seen, the phase of the bump in 

the light curve gives the structure parameter Vc, and thus the parameter 

Q = P(p/pq)1'2. A radius measurement gives the mass. 

(d) The Baade- Wesselink method. This gives a value of the radius indepen¬ 

dent of the luminosity and effective temperature. Using P{p/Pq )1//2 = Q 

we derive the mass. 

Obviously there are numerous problems in interpreting the observational 

data: calibration of the distance scale, the relation between the radial ve¬ 

locity and the derivative 7?,, and the relation of the effective temperature to 

observed photometric and spectroscopic quantities. From an observational 

viewpoint the two main uncertainties are the value of the distance modulus 

of the Cepheids and the value of the effective temperature; theoretically the 

main uncertainties are the opacity and chemical composition. Comparison 

of the mass Mev deduced from the evolutionary track, and the theoretical 

mass Mph found from the mass-luminosity relation associated with the re¬ 

lation P^fp = constant, and the mass Mpu\s found from various properties 

of the pulsation allow us in principle to decide the importance of the dis¬ 

tance scale and the mass loss rate. The result of the comparison depends 

essentially on the distance modulus; at present the basis of the determina¬ 

tion of distance moduli is the distance to the Hyades. Too small a distance 

to the Hyades leads to an underestimate of the radii of Cepheids and the 

expression for Mpuis gives too small a mass, by about 40%. Increasing the 

distance modulus by Am = 0.26 brings the mass Mpu]s into line with Mgv 

and M-ph (see Sect. 3.7). 

The evolutionary position of the Cepheids indicates that they are helium¬ 

burning stars, on their way towards the AGB (Fig. 3.25), and in the main 

are crossing the instability strip from right to left. The only possible epoch of 

mass loss is that of the very brief passage along the giant branch, implying 

that very little mass is lost. This theoretical argument favours a higher 

distance modulus. However, following a revision (1974) the smallest distance 

modulus appears to be the correct one (1984). The lowest of the masses 

Mpuis f°r P ~ 6 d appears to be in agreement with mass determinations for 

Cepheids in binaries (M ~ (5± 1) M©). The frequency of Cepheids depends 

on their mass, through the initial mass function; a little larger for lower 

masses appears to accord better with the observed statistics. The origin 

of the disagreement should Ire sought in the theoretical models, and would 

be resolved by crossing of the instability strip at a higher luminosity than 

present theory predicts. The explanation seems to rest bn the value of the 

opacity (see Sect. 3.7.2). 
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6.2.7 Long-Period or Red Variables 

These variables have large amplitude and long period and are essentially of 

type M (to which we should add types R and S). It is usual to place in this 

group the Miras, having periods of 300 days (4566 stars in the Kukarkin 

catalogue), and semi-regular variables of types K5 to M5, with periods be¬ 

tween 30 and 1000 d (9221 objects). They are distinguished from the Miras 

by their amplitudes, which are less than 2.5 magnitudes. 

Miras show strong emission lines at certain phases, the intensity of the 

lines increasing with the amplitude of the light curve. Observation of Miras 

in globular clusters shows a relation between the period and the chemical 

composition (the [Fe/H] ratio) (Fig. 6.11). This supports the idea that Mi¬ 

ras of a given period constitute a homogeneous group in age and chemical 

composition. 

Pulsation Mode and Mass. For stars whose energy source is core helium 

burning (AGB), linear theory gives the quantity Q = P(p/p®)1/2, (with 

Q expressed in days) as a function of mass for the fundamental and first 

harmonic. Conversely, given a calibrated distance to the Miras, it is possible 

to find an empirical value of Q by making an assumption about the mass. 

The distance determination rests on the hypothesis of Eggen (1975) that the 

Miras have the same mean luminosity as the non-Miras of the red-supergiant 

branch. 

The value of Q as a. function of period (Fig. 6.12) for different assumed 

masses (0.8, 1, and 2 Mq) (dashed curves), and the theoretical value of Q 

for the fundamental and the first and second harmonics for various masses, 

give the following conclusion: Miras of the old disc population, with periods 

between 250 and 500 days, pulse in the first harmonic. They are on the 

AGB, and their mass is that expected for old stars which have lost mass. 

Fig.6.11. Relation between the pe¬ 

riod and the iron abundance in Mi¬ 

ras from several clusters. (A mean 

value of the period has been taken 

for each cluster). (From M.W. Feast, 

in Physical Processes in Red Gi¬ 

ants, ed. by I. Iben and A. Renzini, 

Reidel 1981, p.198. Reproduced by 

kind permission of Kluwer Academ¬ 

ic Publishers) 
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Fig.6.12. Red variables. The relation Q — P{p/pg)1/2 for the fundamental and first 

harmonics, as functions of period. The dashed curves are deduced from observation for 

various assumptions about the mass. The continuous curves are theoretical ones for the 

fundamental and first two harmonics for various masses. Comparison of theoretical and 

observed curves favours the idea of oscillation in the first harmonic of stars which have 

lost mass. (From P.R. Wood, in Physical Processes in Red Giants, ed. by I. Iben and 

A. Renzini, Reidel 1981, p.208. Reproduced by kind permission of Kluwer Academic 

Publishers) 

The Evolutionary Phase. Calculations of the evolution along the asymp¬ 

totic giant branch (AGB) reveal the following properties: 

— The stars evolve upwards along the AGB while losing mass. 

— At a certain luminosity the stars become unstable and oscillate in the 

first harmonic. 

— For a larger luminosity the fundamental oscillation begins to domi¬ 

nate. There is a relaxation oscillation which after a few periods leads to the 

ejection of the envelope and the formation of a planetary nebula. 

This model predicts an instability region in the (M, logT) plane. The 

position of the instability region given by the theoretical models does not 

agree with observation (which requires a higher luminosity), but this could 

be due to the poorly known molecular opacities for the outer envelope and 

to the difficulty of treating the convection zone. 

Theoretical models of helium-shell-burning stars prqdict runaway burn¬ 

ing (the helium, flash) accompanied by an increase of the surface luminosity 

above the steady value. These episodes last about 600 years. The radius 

change associated with the luminosity increase causes a rapid change of 

period. 
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JD 2390000 + 

4 000 5 000 7 500 JD 2400000 + 

Fig. 6.13. Light curve of \ Cyg. (From J.M. Perdang, in Chaos in Astrophysics, ed. by J.R. 

Buchler et al., Reidel 1985, p.32. Reproduced by kind permission of Kluwer Academic 

Publishers) 

Secular period variations have long been known in R. Hya, R. Aql, and 

W Dra. In R Aql, (dP/dt) ~ 0.4S5 days/year, about 10' times greater than 

for RR Lyrae. Combining Eggen's period-luminosity relation for Miras with 

the secular period variation gives an (L,t) diagram in good agreement with 

theoretical predictions of the helium flash. 

Chaotic Behaviour. Besides secular variations, the light curves can show 

significant changes in the phase of maximum (e.g. x Cyg, Fig. 6.13). The 

behaviour of these oscillations resembles that of dynamical systems. Recent 

developments in the study of non-linear systems appear to suggest physical 

causes for the preference for chaotic rather than limit-cycle behaviour of the 

oscillations (see Sect. 6.4). 

6.2.8 8 Scuti Stars 

General Properties. These are variable stars with very small amplitudes (a 

tenth of a magnitude or less) close to the main sequence, at the intersection 

with the Cepheid instability strip. The prototype is 6 Scu, with an amplitude 

of Am = 0.194 magnitudes. The spectral type of the 8 Scu stars is A3-F6, 

and their chemical composition is normal population I. 

8 Scuti and Am (Metallic-Line) Stars. These two classes occupy the same 

region of the HR diagram. The difference between them appears to be re¬ 

lated to their chemical composition. In the Am stars, elemental separation 
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by gravity or radiation pressure produces spectral anomalies; moreover, he¬ 

lium is separated too. Once the helium content of the outer layers falls below 

10%, the kappa-mechanism becomes ineffective and the star can no longer 

pulse. 

6.3 Other Variables 

6.3.1 (3 CMa Stars 

Stars in this group have spectral type BO.5 to B5 (15 000 to 25 000 Iv); 

their periods lie between 3 and 7 hours. The light-curve amplitude is small, 

less than 0.1 magnitudes, but they have large radial-velocity amplitudes, 

between 5 and 50 km s-1 or even more. 

These stars have several periods, and beats between them. They are slow 

rotators, with equatorial velocities between 15 and GO km s , while normal 

stars of the same spectral type have typical equatorial velocities of 165 km 

s_ . Their oscillations are non-radial (see Sect. 6.5) with significant secular 

variations. 

Particularly remarkable is a Vir (B1V). The amplitude of oscillation 

decreased steadily from 1968 to 1972 and the star has now almost stopped 

pulsing. It is a 10 M© star (in a binary) with standard chemical composition. 

The cause of the oscillations of /3 CMa stars is still unknown. It is possible 

that the observed oscillations are modulated by the rotation. 

6.3.2 White Dwarfs 

Pulsating white dwarfs are divided into two groups. 

ZZ Ceti Stars. These are pulsating DA white dwarfs with a luminosity of 

about 10~2T© and an effective temperature between 12 000 and 10 000 Iv. 

More than 20 such stars are known at present, all close to the Sun. 

The observed periods, in the range 100-1200 s, are longer by two orders 

of magnitude than the period of the fundamental. The simplest assumption 

is that they pulse in non-radial g modes (see below). All the ZZ Ceti stars 

show several periods, with light-curve amplitudes lying between 0.003 and 

0.3 magnitudes. 

The ZZ Ceti stars have masses between 0.4 and O.SAf©; they probably 

have a carbon-oxygen core surrounded by a helium layer containing about 

1 % of the mass and surrounded by a. hydrogen layer, whose mass is between 

10 11 and 10 4 times the total mass. The driving of the* <7 modes is mainly 

due to hydrogen ionisation. 

DB and DO White Dwarfs. These stars have almost no hydrogen and may 

drive non-radial g modes through the ionisation of Hell. At present only a 

few such stars are known, with significant differences. The power spectrum 
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given by Fourier analysis reveals many periods between 2 and 15 min. As 

for the DA white dwarfs, it appears that linear theory is inadequate for 

explaining the observed pulsations. A third instability band has been found 

for higher-temperature DO stars. 

6.4 Variable Stars and Dynamical Systems 

6.4.1 Variable Stars as Dynamical Systems 

Irregular behaviour is observed in many variables (amplitude, phase of max¬ 

imum, variation of Fourier amplitudes). This suggests that the description 

of pulsating stars by linear equations may be incomplete. Dynamical sys¬ 

tems involve non-linear restoring forces and dissipative effects. There are 

no analytical solutions for such systems. They have a characteristic feature: 

although described by regular equations they can have solutions which be¬ 

have irregularly in time. Irregular oscillations of a system, or turbulence, 

show the same features. In astrophysics such behaviour is seen in irregular 

pulsing of Miras, irregular red variables, and ZZ Ceti stars, and turbulence 

in convection zones. 

Here we give an elementary introduction to dynamical systems and show 

how we can relate an astrophysical phenomenon (irregularity of variables) 

to a simple model of a dynamical system. 

The equations governing a dynamical system are deterministic; the 

system may nevertheless have unpredictable behaviour. Already in 1S92 

Poincare showed that solutions starting from infinitesimally separated points 

might nevertheless diverge exponentially from each other. The study of dy¬ 

namical systems has developed rapidly in recent years because of the great 

variety of problems which can be described in this way. 

6.4.2 The One-Zone Model 

We represent the star as having a static core producing a constant energy 

flux (because of the very small oscillation amplitudes in central regions), 

surrounded by a hydrogen layer of constant density and uniform tempera¬ 

ture, surrounded by a radiative region. In Miras we have a carbon-oxygen 

core with a helium-burning shell; the outer parts of these stars are immense 

convection zones in which ionisation equilibrium brings the adiabatic com¬ 

pressibility below 4/3. We can show that for an equation of state with this 

property the equation of hydrostatic equilibrium has three solutions; two 

are dynamically stable, corresponding to two minima of the potential, and 

one solution is dynamically unstable, corresponding to a maximum of the 

potential. 

Non-linear dynamical systems with at least three fixed points (two stable 

points and one unstable saddle point) have trajectories which are extremely 
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sensitive to small differences in physical parameters. In the absence of dissi¬ 

pation, the stable points lead to limit cycles while the unstable point repels 

the trajectories exponentially. We can describe the situation in physical 

terms as follows. 

A star in dynamically stable hydrostatic equilibrium but thermal disequi¬ 

librium will evolve away from this equilibrium on a thermal timescale. Ther¬ 

mal disequilibrium means that the right-hand side of the thermal-balance 

equation 

dS _ 1/ dL\ 

dt T \ dm) 

does not vanish, where q represents local energy sources and (dL/dm) the 

divergence of the flux. As a result the specific entropy S depends on time. If 

there is sufficient energy available, and the conservation of thermal energy 

pulls the star in the right direction, two processes now compete: thermal 

disequilibrium drives the star from one hydrostatic-equilibrium state to an¬ 

other, and the dynamical instability near the unstable-equilibrium point 

drives the star towards one or other of the stable hydrostatic equilibria. A 

great variety of oscillatory motions are then possible, including relaxation 

oscillations. In particular, if the dynamical and thermal timescales are com¬ 

parable, irregular variations can occur. 

We write the equations for a one-zone model. The mass variable m is 

bounded above at R(t). We let S be the specific entropy of the zone, which 

surrounds a fixed core of mass Mc = M — m, radius i?c, and luminosity Lc. 

Then the zone’s behaviour is governed by the equations 

d 2R 

d t2 
g(R,S), 

dS 

d t 
eh(R, S), 

where g is the total acceleration, 

9 = 
GM 

+ AttR2 
P{p,S) 

Am 

(6.64) 

(6.65) 

(6.66) 

while the quantity Am differs from m and gives the relation between the 

uniform pressure in the zone and its effective inertia, h is the entropy pro¬ 

duction rate, 

h 
(Lc-L) 

mT 
(6.67) 

and e is a scale parameter, equal to the ratio of the dynamical and thermal 

timescales, the former appearing through the equation of motion and the 

latter through h. 
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The functions P(p, S),T(p, S) are given by the equation of state taking 

account of the ionisation change during the motion, and p is given by mass 

conservation for the one-zone model, 4np(R3 — f?3) = 3m. 

The luminosity L at the outer boundary of the zone is fixed by radiative 

transport across a layer of mass Ain', 

L = 
(4tt7?2)2 

k(p, T)Am' 
(6.68) 

where a is Stefan’s constant, k the opacity, and T* the temperature (assumed 

constant) of the outer radiative zone. Finally the opacity is given by a power 

law: 

/c(p, T) = KopkTn . (6.69) 

At constant entropy we can obtain the total acceleration as a function of 

the radius (Fig. 6.14) for a particular choice of model parameters (see figure 

caption). The fixed point is described by g = 0, X = Lc; it corresponds 

to the curve 5 = S3 in Fig. 6.14. In the interval Scr|ti < S < 5cr;t2 the 

hydrostatic-equilibrium equation has three solutions, with the intermediate 

solution being unstable, as perturbations away from the equilibrium give 

the same sign of radius and acceleration variations. 

Plotting the hydrostatic-equilibrium radius as a function of the entropy 

in the thermal equation, we get the entropy production rate as a function of 

specific entropy (Fig. 6.15). We note that on the branch of minimum radius 

J?min, the entropy production rate is positive and drives the zone towards 

the maximum radius, while on the branch of maximum radius f?max the 

1_1_1_1_1- 

0.6 0.8 1.0 1.2 1.4 1.6 R/R0 

Fig. 6.14. Total acceleration as a function of radius in a one-zone model. The ionisation of 

He+ fixes the behaviour of the pressure P{p,S) and determines the form of the curves, 

with a maximum and a minimum. The curve S = S3 is chosen so that <7 = 0 for L — LCOre 

(see text). (From J.R. Buchler and O. Regev, Astrophys. J. 263, 312 (1982). Reproduced 

by kind permission of The Astrophysical Journal, published by The University of Chicago 

Press; © 1982 The American Astronomical Society) 
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Fig. 6.15. Entropy production rate as a function of the specific entropy in a one-zone model 

entropy production is negative and drives the zone towards the minimum 

radius. 

The extremal solutions of hydrostatic equilibrium combine dynamical 

stability and thermal instability; the intermediate solution is simultaneously 

dynamically unstable and thermally secularly unstable. 

6.4.3 The Moore—Spiegel Model (1966) 

The Moore-Spiegel model is the first study of a non-linear one-zone model, 

having the characteristics of an unstable physical system. We can find the 

equation governing the Moore-Spiegel dynamical system by expanding the 

equation of motion and the energy equation in the neighbourhood of the 

intermediate solution defined in the last section. Setting x — R — Rq, A = 

S — So, we have 

x" + yRA + (Bo + B1X)x + (D0 + D\A)x3 = 0 . (6.70) 

The non-derivative term is of algebraic degree 3 in x. It has the behaviour 

seen in Fig. 6.14. For A = 0, there are 3 fixed points, x = 0 and x = 

±( — Do/Do)1/2, corresponding respectively to the intermediate dynamically 

unstable solution and the two hydrostatically stable solutions. 

The energy equation thus reduces to 

A = —Kex, (6.71) 

where I\ is a measure of the departure from adiabaticity. Reducing the 

equation of motion to lowest order in A, we get the Moore-Spiegel equation: 

x T (Dq + 3D0x2)x — A ex = 0 . (6.72) 

Examination of the adiabatic solutions facilitates an understanding of the 

non-adiabatic ones. We have adiabaticity for K = 0. Then we have 
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Fig. C.16. Phase-space oscillations of a one- 

zone model without dissipation. (From M. 

Auvergne and A. Baglin, Astron. Asirophys. 

142, 388 (1985)) 

x + ( Bq + 3Dqx~ )x = 0 , 

which can be integrated to give 

x + (Box + Dqx3) = b. 

(6.73) 

(6.74) 

This equation has 3 fixed points. It suffices to examine the case 6 = 0. We 

can represent the motion in the phase space (x,x). Near x = 0 we have a 

saddle point, which repels; near x = ±( — Bo/Doy/2 we have two minima. 

We then have 

X — i \ / E — BnX~ 
DoxA 

w hich we can write as 

(6.75) 

x = ± >/E + V , (6.76) 

where V is the potential — Bqx2 — DqX4/4. Depending on the value of E, 

we get the various curves of constant energy shown in Fig. 6.16. 

When dissipation is introduced (K y 0) we find a new property of the 

trajectories in phase space: period doubling. 

For I\ = 0 we have a. periodic orbit, of period T; for K / 0 and small, 

the orbit is still periodic, but closes only after a period 2T (Fig. 6.19). This 

is the first bifurcation. As K is increased, a new bifurcation appears. The 

orbit is still periodic but we now have periods 2T and 4T, with the orbit 

closing after 4T. Increasing the parameter I\ gives more bifurcations, with 

the distance (A'n+i — Kn) from one bifurcation to the next decreasing. There 

is a critical value /vcrit = Koo above which the orbits are no longer regular 

at all; the dynamical system has become chaotic. 

6.4.4 A Schematic Red Variable 

We return to the system (6.64, 65), where the only parameter is s, the ratio 

of the dynamical and thermal timescales. 

Depending on the value of the parameter e, we get different types of 

oscillations (Fig. 6.17). For small £ there are many dynamical oscillations 

per thermal cycle (1/e dynamical oscillations per thermal relaxation cycle) 
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Fig.6.17. Radius as a function of time for various values of the parameter e: (a) e = 0.04; 

(b) e = 0.15; (c) e = 0.205; (d) £ = 4.0. The timescale of an oscillation in (a) is of the order 

of a year. (From J.R. Buchler and O. Regev, Asirophys. J. 263, 312 (1982). Reproduced 

by kind permission of The Astrophysical Journal, published by The University of Chicago 

Press; © 1982, The American Astronomical Society) 

(case (a), e = 0.04). In the phase diagram (Fig. 6.18) the trajectory winds 

around two fixed points. This can be understood by reference to the figure 

giving the entropy production rate as a function of the entropy of the layer 

(Fig. 6.15). The short period of the dynamical oscillation shows that the star 

is close to hydrostatic equilibrium for most of the time. Starting from the 

upper branch, the star is thermally unstable. It evolves, close to hydrostatic 

equilibrium, along the curve h(S) (Fig. 6.15), until the maximum entropy is 

reached. At this point, hydrostatic equilibrium disappears. The system then 

passes into a phase of dynamical oscillations, oscillating in the potential well 

centred on the maximum-entropy branch (lower branch of the h(S) curve). 

This oscillation is damped and the layer evolves with decreasing entropy 

towards the critical entropy minimum. Here hydrostatic equilibrium once 

again disappears and there follows a phase of dynamical oscillation around 
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Fig. 6.18. Phase diagram for the oscillation of Fig. 6.17, with the same values of e. In (a) 

the system is dominated by dynamical oscillations around one or other of the hydrostatic 

equilibria; in (b) and (c) the oscillations are irregular; in (d) there is a limit cycle. (From 

J.R. Buchler and O. Regev, Astrophys. J. 263, 312 (1982). Reproduced by kind permission 

of The Astrophysical Journal, published by The University of Chicago Press; © 1982 The 

American Astronomical Society) 

the potential minimum associated with the upper branch of the h(S) curve 

(Fig. 6.15). 

The one-zone model can thus have two oscillation modes with different 

amplitudes, according as the damped oscillation occurs around the entropy 

maximum or minimum. It is tempting to see here the possibility of two stars 

of the same mass and same state of evolution having different oscillation 

amplitudes, corresponding to two different epochs in different regimes. This 

would then have the appearance of hysteresis. 

For smaller values of the ratio e the two oscillation regimes would last 

longer (having more dynamical oscillations per thermal relaxation time). 

With increasing £, the number of dynamical oscillations per thermal cycle 

decreases, and the oscillations suddenly become aperiodic for a certain value 

of e. There has not been a complete examination of the model and the pres¬ 

ence of a sequence of period-doublings has not been verified. For the values 
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of e chosen by Buchler and Regev (1982) there are aperiodic oscillations 

for the case (b) (e = 0.15) and (c) (e = 0.205). For larger values of £ the 

system is dominated by the thermal timescale, and we find another periodic 

system, with a limit cycle. In case (d) (e = 4.0) the limit cycle makes 2 

loops around the 2 hydrostatic-equilibrium points. For larger values of £ the 

limit cycle makes a single loop around the two fixed points. 

This one-zone model is clearly very crude, and in particular does not 

describe the movement of the ionisation front through the stellar envelope 

during the pulsation. However, the main effect of ionisation in lowering the 

adiabatic compressibility below 4/3 is well represented. From a physical 

point of view the outer convective layer of low-mass supergiants has density 

and entropy profiles which are very flat, so that modelling it as a region of 

constant density and entropy is not absurd. 

It is not really possible to identify the various modes of oscillation of 

the one-zone model with the radius variations of a red variable, regular, or 

irregular. It is however very suggestive to compare the aperiodic variations 

of the one-zone model with those of the regular or irregular red variables; 

we might attribute Mira oscillations to an irregular oscillation which is close 

to a limit cycle. 

6.4.5 n-Zone Models 

When a stellar envelope is represented by n layers, each layer is characterised 

by three quantities, radius, velocity and entropy, so that the discretised 

system has a 3n-dimensional phase space. To study this system we start from 

an envelope in hydrostatic equilibrium, and then examine its hydrodynamic 

behaviour. Buchler and Ivovacs (1987) did this for a sequence of envelopes 

of mass M = 0.6 Mq, with chemical composition X = 0.745, Z = 0.005, 

luminosity L — 40071©, and effective temperatures from log Teff = 3.71 

to log Teff = 3.64 (Table 6.5). The heat transfer is treated in a simplified 

fashion and reduced to radiative transfer. The number of layers is n = 60. 

The results of this calculation are extremely rich and simulate a sequence 

from the W Vir stars to the RV Tau and semiregular variables. 

The two-dimensional representation (velocity as a function of radius) 

already shows period-doublings (models a, b, c, d) and chaos (models e and 

f) (Fig. 6.19). 

The best insight is given by the Poincare representation. Given a trajec¬ 

tory in an N-dimensional space, we cut it by a surface of N — 1 dimensions. 

A periodic trajectory will return to the same point after a certain number 

of intersections. Chaos produces a uniform distribution of points. In the 

present case we construct a 3-dimensional trajectory by faking the radius R 

of one of the layers (here n = 55) at the points x = t, y = t + k, z = t + 2fc, 

where k is chosen to correspond approximately to a phase shift of order n/2. 

The intersecting surface is the plane x = y. About 100 intersection points 

are continuously distributed on a curve. 
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Table 6.5. Properties of model red supergiants 

Models 

(1) 

log Tcrr 

(2) 

Po 

(3) 

°-Q 

(4) (5) 

p N L 
ro 

(6) 

a 3.71 9.730 0.034 - 0.033 1 1.587 
h 3.69 11.689 0.031 - 0.026 26.196 
c 3.67 14.043 0.029 - 0.019 59.040 
cl 3.66 15.405 0.028 - 0.015 25.784 
e 3.65 16.913 0.027 - 0.012 

f 3.64 18.587 0.026 - 0.009 

Column (3): 

Column (4): 

Column (5): 

Column (6): 

period of the fundamental (in days) calculated from a linear 

analysis 

growth rate of the fundamental 

growth rate of the first harmonic 

period of the fundamental (in days) given by non-linear 

calculation 

Fig. 6.19. Two-dimensional phase-space representation (R, v of layer n = 55) of the enve¬ 

lope models (Table 6.5) of Buchler and Kovacs. We note the period-doublings (a, b, c, 

d) before chaos (e, f). (From J.R. Buchler and G. Kovacs, Astropliys. J. 320, 257 (1987). 

Reproduced by kind permission of the Astrophysical Journal, published by the University 

of Chicago Press; © 1987 The American Astronomical Society) 

The light curve of model (f) resembles that of an RV Tau star remark¬ 

ably closely. A 3-dimensional representation is thus enough to characterise 
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the main properties of a model with 180 dimensions. This suggests that this 

complex dynamical model can be represented by a small number of coupled 

differential equations. But the nature of the physical variables which would 

be governed by this system remains to be clarified: this would be an impor¬ 

tant step towards understanding the irregularities of variable stars and the 

passage from periodicity to chaos. 

6.4.6 White Dwarfs of ZZ Ceti Type 

Fourier analysis of the light variations of white dwarfs sometimes shows 

chaotic oscillations (e.g. GD G6) or the presence of subharmonics indicat¬ 

ing the transition to chaos. These stars appear to have the properties of 

dynamical systems, and the one-zone model can in principle explain their 

properties. In particular, small differences of the parameter e (the ratio of 

dynamical and thermal timescales) cause large changes in the character of 

the pulsations. 

6.5 Non-radial Oscillations 

6.5.1 Modes of Oscillation 

The linearised equations of motion show the existence of normal modes of 

oscillation of a spherical star with amplitudes £ proportional to spherical 

harmonics Y,m(6, <^>), with l = 0, 1, 2 ..., and -l < m < l and frequency er, 

f ~ y;m(0, ip)etat = P,m(cos 0)eiTnifiei<Tt . (6.77) 

For a non-rotating star there is degeneracy in m, i.e. the frequency is inde¬ 

pendent of m. 

One usually denotes the order of the radial mode by n, and the degree 

by l. In the presence of rotation or a magnetic field the degeneracy in m is 

broken. Radial modes correspond to the case / = 0. 

There are two main problems associated with non-radial oscillations. 

The first is to identify the mode; the second is to find a way of stimulating 

the oscillation. 

The restoring force governs the oscillation. The pressure changes occur¬ 

ring in radial oscillations act here too. But as for waves on the sea, gravity 

is also a restoring force. We distinguish between pressure modes (p modes) 

and gravity modes (g modes). Radial modes are called / modes. 

Two characteristic local frequencies govern the oscillation properties of 

the medium: (a) the Lamb frequency T;, associated wfth the sound speed 

and the horizontal wavelength and given by 

L\f = ^ +J}— , (6.78) 
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where c is the sound speed; pressure modes correspond to frequencies above 

L/, and gravity modes to frequencies below. The second is the Brunt-Vaisala 

frequency N, which is the adiabatic oscillation frequency of a bubble of gas, 

(6.79) 

where Zf is the coefficient of adiabatic compressibility and P0 and p0 the 

unperturbed pressure and density. The frequencies of propagating acous¬ 

tic pressure modes necessarily exceed JV, and those of propagating gravity 

waves are necessarily less than N. 

For a given frequency cr, these two frequencies define the regions of the 

star where pressure or gravity modes can propagate. Figures 6.20a and b 

give an example of a propagation diagram. 

If cr > Li and a > Ar, we have a region where pressure modes can 

propagate; if cr < Z/ and cr < TV, gravity modes propagate. If Li < a < N, 

pressure modes are damped, and if N < a < Z/, gravity modes are damped. 

In convection zones, N2 < 0, and gravity modes cannot propagate. 

6.5.2 Observational Data 

It is interesting to note that theoretical studies of non-radial oscillations of 

stars preceded the observational recognition of the importance of such mo¬ 

tions. The first theoretical calculations were by Lord Kelvin (1863). Pekeris 

(1938) obtained the exact analytic solution for non-radial adiabatic oscila- 

tions for a uniform compressible fluid. Cowling (1941) extended these solu¬ 

tions to polytropes. 

Work on non-radial oscillations was stimulated by difficulties in inter¬ 

preting the radial velocity and line-profile variations in (3 CMa or f3 Cep 

stars. Ledoux (1951) showed that it was possible to explain some spectral 

characteristics of these stars in terms of non-radial modes. The discovery, 

in several stages, of the 5-min oscillation in the Sun (Evans and Michard 

1962; Leighton, Noyes, and Simon 1962) led rapidly to helioseismology. The 

importance of this method of probing the interior of the Sun led to similar 

studies for some bright stars, such as a Cen A, Procyon, and z Eri. 

The most important of these observations, by Deubner (1975, 1977), and 

Rhodes, Ulrich and Simon (1977), clearly showed the properties of high- 

degree modes, because of the high instrumental resolution. Global observa¬ 

tions of the Sun in radial velocity or photometry show the presence of modes 

of high order but low degree, / = 0, 1, 2, and 3. The highest-degree modes 

remain for the moment undetectable in global observations because of the 

cancellation between rising and falling motions or between local increases 

and decreases of brightness. 

The low-degree modes are detected in radial-velocity fluctuations using 

resonant scattering in the analysis of solar line profiles. The light of the full 

solar disc (or a part of the disc) is focussed on to a transparent cylinder 
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Fig. 6.20. (a) Curves of N2 and Lj 

as functions of radius for a so¬ 

lar model (the scale at the sur¬ 

face is expanded by a factor 40). 

The hatched regions denote zones 

where waves can propagate (Lj is 

calculated for 1 = 2). (b) Curves 

of TV2 and L'j as functions of ra¬ 

dius (Lj calculated for l = 8) 

(a) r/R0 1 000 2 000 km 

R o 

Re 

containing strontium, potassium, or sodium gas. Light which is resonantly 

scattered has an intensity proportional to the incident intensity at the wave¬ 

length of the scattering element in the laboratory standard. This wavelength 

can be altered by using a magnetic field parallel to the observation axis 

of the detector, and the measurement is made using a circular polaroid 

which selects one of the two a components separated by the Zeeman effect 
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Frequency (mHz) 

Fig. 6.21. Power spectrum of South Pole solar data. The data are from Doppler-shift 

measurements of the whole disc. The frequency resolution is Ais = 1.97 pHz. (From E. 

Fossat, Sol. Physics, 82, 55 (1983). Reproduced by kind permission of Kluwer Academic 

Publishers) 

(Roddier 1965). The noise level in this method is at present of the order of 

1 cm s_1. 

Continuous observation of the Sun at the South Pole for 120 hours using 

sodium optical resonance yielded SO modes when Fourier-analysed. Their pe¬ 

riods lay between 3 and 10 min (actually 4.5 mHz to 2.5 mHz; Fig. 6.21). The 

same modes were identified by the SMM (Solar Maximum Mission) satel¬ 

lite from intensity fluctuations of the Sun. The amplitude of these modes is 

A I/I = 2 to 3 x 10“6. 

Table 6.6 summarises the situation with respect to non-radial oscilla¬ 

tions. 

We shall not consider all the cases mentioned in Table 6.6 in the follow¬ 

ing. We give the basic theoretical picture and confine ourselves to the solar 

case. 

6.5.3 The Linear Theory of Non-radial Oscillations 

We confine ourselves here to the linear theory of adiabatic oscillations, even 

though it is clear (in particular from observations of variable white dwarfs) 

that the chaotic character of some oscillations can only be explained by a 

non-linear theory. 

Non-adiabaticity occurs in stellar atmospheres, just where the surface 

boundary conditions have to be applied. Correct surface boundary con¬ 

ditions are quantitatively important. But the zero boundary conditions 

P = p = 0 preserve the general qualitative features of the oscillations. For 

297 



comparing the frequencies of high-??, modes the surface boundary conditions 

are unimportant. 

We start from the four basic equations (continuity, motion, energy, and 

Poisson equation). These constitute a fourth-order system of differential 

equations with respect to time. 

In the linear approximation, all the perturbed quantities can be ex¬ 

panded in spherical harmonics using the associated Legendre polynomi¬ 

als P;m(/i)1. As an example, Fig. 6.22 shows the the amplitudes of various 

modes (/, m). If £ is the displacement vector, with radial and horizontal com¬ 

ponents £r, related by the continuity equation, the displacement vector 

is given by 

* = 
Wr),a(r)A Wr)-L| vm 

11 (#w)e 
iat (6.80) 

The Y™ are normalised and related to spherical harmonics by 

rr(o^) (_l)(m+lmD/2 
(21 + 1 (/- H)!\ 
v 47T (l+\m\)\J 

1/2 

P;m(cos 6)e‘rnip (6.81) 

1 We recall here some properties of Legendre polynomials. They are solutions of the 

differential equation 

(l-*2) 
d^i 

d z2 

du 
22— + 

dz 
/(/ + 1) u = 0 . 

We also have 

pr(x) = (-ir(i - 
dxm 

» = (-ir 
r(i — m + 1) 

1 v P(l + m+ 1) 

The first few Legendre polynomials are: 

pr(x). 

Po =1, 

P® — x = cos 0 , 

Pi = -(1 - x2)1/2 = — sin 9 , 

P2° = i(3x2 - 1) = ^(3 cos 20 + 1) , 

Pi = -3(1 - x2)1/2x = | sin29 , 

P22 = 3(1 - x2) = f(l - cos20), 

P3 = ^-(5a:3 — 3x) = (5 cos 30 + 3 cos 0), 

P31 = -f(l — x2)P2(5x2 - 1) = — |(sin 0 + 5 sin 30), 

p| = 15(1 — x2 )x = ^j-(cos 0 — cos 30), 

P33 = -15(1 - x2)3/2 = ^-(3 sin 0 - sin 30), 

P4° = |(35x4 - 30x2 + 3) = +-(35 cos 40 + 20 cos 20 + 9). 
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Table 6.6. Observational data explained or explicable by non-radial oscillations8 

Type of star Phenomenon Proof of non-radial 

oscillation 

Mode 

/? CMa Pulsating variables Beat? 

Profile variations 

/ — 2 ? 

0, B stars Line-profile variations Profile variations l~2 

DA white dwarfs 

DB white dwarfs 

Periodic light curve Period value, multiplicity 

of periods 

g modes 

with small / 

Cataclysmic variables Periodic light curve Values of periods, 

phase changes of oscillation 

during eclipse 

g modes 

with small / 

Sun 5-min. oscillation {k, a) diagnostic diagram p modes 

with large / 

Global oscillations Values of periods P (and gl) 

modes 

with small / 

Ap stars Global oscillations Values of periods /= 0, 1,2 

Blue supergiants 

(a Cyg type) 

Light curve, 

semi-regular radial- 

velocity variations 

Multiplicity of periods, 

width of lines 

/ —(3, 4 

p or 

g modes 

S Scu stars Pulsating variables Multiplicity of periods p modes 

Red giants 

and supergiants 

Chromosphere, 

Wilson-Bappu effectb 

Heating of outer 

atmospheric layers 

p modes 

with large / 

8 From Unno, Osaki, Ando, and Shibahashi (1979). 

b Width of calcium H and K lines increases with luminosity. 

and the equations of motions reduce to the three relations 

1 dp' q . dsP' 
- -r I—P + (N — cr )£r + —— = 
p dr czp dr 

1 d 

r2 dr 
+ %' _ 4nGp 

r-2 

0, (6.82) 

p' _ o
 II 

1—1 
e 

+
 

c (6.83) 
pcz 

p' N2 \ 
(6.84) --o + 

O
 II 

pcz (J J 

for p' (pressure perturbation), £r, and 4>' (gravitational potential perturba¬ 

tion), where Li and N are the Lamb and Brunt-Vaisala frequencies defined 

above. 

Two extreme cases are particularly important: (a) surface waves (large 

/), and (b) global oscillations (small / but large n). 

High modes can be studied by the WKB (Wentzel-Kramers-Brillouin) 

method: the asymptotic solutions allow a discussion in terms of the trapping 
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/=lm=0 / = 1 m = 1 / = 2 m = 0 

and propagation mechanisms of waves inside the star. For high modes (n 

or / large) it is possible to neglect the perturbation of the potential 

The system then reduces to two differential equations. We introduce new 

variables: 
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I = r2ir exp (6.85) 

r n2 
V = cr'r£r exp ( - / -dr 

Jo 9 

P_ 

P 

exp /W dr 
10 9 

and the system reduces to the canonical form 

-2 
J_P_ 

r2 
h, V'2 ^ 

Tr = fc(r)? 1 - ~n. 

d ?/ 1 

dr 

with 

r2h{r) 

h(r) = exp 

(a2-iV2)e 

^-4Ur 
. 9 c2 

> 0. 

(6.86) 

(6.87) 

(6.8S) 

(6.89) 

To a first approximation the WIvB method gives a solution 

£(r), fj(r) ~ exp 

with 

K = 
c2a2 

(a2 - L2)(a2 - N2) 

(6.90) 

(6.91) 

The importance of the sign of k2 is apparent when one plots a propagation 

diagram (drawn here for the Sun), where the limiting frequencies L2 and 

N 2 are shown as functions of radius (Figs. 6.20a and b). 

Surface Waves (Large /). The Brunt-Vaisala frequency vanishes at the 

boundary of the convection zone. Writing 

1 

rrad 
— 1 — 
W H(r) 

where H is the local scaleheight, 

H(r) 
3rr_ 

gp 

(6.92) 

(6.93) 

we immediately see that N2 grows as we move inwards from the convection 

zone, reaches a maximum, and then decreases because of the growth of the 

scaleheight with temperature (Figs. 6.20a, b). 

The Lamb frequency 

2 /(/ T 1 )c2 /(/ + 1) 'ytftT 

^ r2 r2 jj. 
(6.94) 
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on the other hand, has a minimum at the temperature minimum. In the 

atmosphere the curve Lj(r) only lies above that for N2(r) for very high 

values l > 3000. 

The propagation diagram (Figs. 6.20a, b) for the whole Sun (with L2 

plotted for / = 2 and 1 = 8) gives the propagation regions of the p and 

g modes (shown hatched) as the domains k2 > 0. The g modes cannot 

have frequencies greater than 4 mHz (or periods less than 250 s). They are 

confined to the solar interior, below the convection zone. By contrast, the 

p modes are confined between the solar atmosphere and a deep layer of the 

Sun, deeper for higher-order modes. The frequency rises with the degree 

of the mode, and high-degree modes penetrate very little into the interior: 

these are surface modes. 

Assuming a temperature distribution 

7 - 1 

7 
fi'Ar 

near the convection zone, and using the approximate solution 

(6.95) 

\o2 - L2)1'2dr = nit, (6.96) 
c 

where a and b denote the boundaries of the p-mode propagation zone (L2 = 

a2 and r = R), we find 

a 2 4(7 - 1 )nyjl(l + 1) 

R 9 
(6.97) 

With 7 — 1 = 0.25, high values of / = nRkh/d (where kh is the horizontal 

wavenumber) obey 

a = 0.014\Jn.\JkhjMm~x s-1 . (6.98) 

We thus get an approximate solution for high-degree modes which agree 

with the general trend of the observations (Deubner’s diagnostic plot, Fig. 

6.23). A full calculation shows that the surface waves give a diagnostic for 

the structure of the convection zone, which is penetrated by these high- 

degree modes. 

Global Oscillations. The asymptotic form of the eigenfrequencies for low- 

degree oscillations makes it easy to see their significance. As we have seen, 

modes with / = 0,1,2, 3 are so far the only ones to be, detected in global 

observations of the solar disc. 

For frequency vn\ we have the expansion 

^nl — 

(l(l+l) + B)A 

n+i+S 
(6.99) 
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Horizontal wavenumber kh (Mm ') 

Fig. 6.23. Diagnostic plot for high-degree, high-order p modes showing the power spectrum 

obtained by F. Deubner (kindly supplied by the author) 

where £ is of the order of unity and B, which has a complicated form, is 

also of the order of 1. 

A is given by 

1 c(Rq) r i a,/ 
27r2 Rq 

-
1

 
: 

o
 

(6.100) 

The principal term is 

(6.101) 

so that 2uq is the propagation time of an acoustic wave from the centre to 

the surface of the Sun. An important probe of the solar interior is obtained 

by comparing the frequencies uni for values (n, /) and (n — 1, l T 2): 

^n —1,1+2 — bv-nl — 
(4/ + 6)A 

fl + ^ + £ 
(6.102) 

where A is related to the gradient of the sound speed near the core. The 

global Sun spectra show clearly only the modes of degree 0, 1,2, and 3. The 
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Fig. 6.24. Variation of the fre¬ 

quency separation 6 as a func¬ 

tion of n — 21. The lower curve 

is 6on, and the upper one 8i„. 

(From Y. Elsworth et ah, Nature 

347, 536 (1990)) 

pattern of the spectrum repeats modulo u0 = 135 /iHz. The pattern itself 

shows the modes (n — 1,3), (n,l), (n, 2), (n + 1,0) with the succession of 

frequencies 

0, 
10A 

ri + 2 + £ 
’ o 

6 A 

n + 2 T £ 
’ o 

12 A 

n + | + £ ^71 

assuming that n is large. This spacing can easily be read off the spectrum, 

allowing the values of n and l to be identified. We thus plot the frequency 

differences 8uni as functions of frequency or of the order n of the mode (Fig. 

6.24) and compare with the theoretical frequency differences which decrease 

as the frequency rises. Adjustment of the mode of order 21, arbitrarily 

chosen, allows one to compare the measured value of Dq — 8ni/(Al + 6), 

£>0(?i,0) = 1.52 p.Hz, with the theoretical value D0 = 1.51 pHz for the 

“standard” solar model. 

Study of the Solar Interior. The approximate formula (96) for the fre¬ 

quency may be rewritten 

/(7 + l)c2\ 

7’2 ) 
1/2 

dr = (n + a)tv , (6.103) 

where a allows one to connect the pressure-wave propagation region (from 

rp to Rq) and the evanescent wave zone, and must be found empirically 

from the observations. , 

This relation can be approximated by the empirical relation 

7i(n + a) 

G 

(6.104) 

with L2 =/(/+!). 
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Thus we plot 7r(n + ct)/<r as a function of (<r/L) to give a by empirical 

fitting. Christensen-Dalsgaard et al. (1985) give a = 1.58. 
Setting 

a 

VW+i) (6.105) 

we can write 

n + o 
7T- 

a 
(6.106) 

We can thus invert (6.103) to give 

= Rq exp 
7T 

■c(r)/r 

c(Rq)/Rq 
-r>2 

(6.107) 

where F(x) is given by observation; we thus get a relation r = /(c/r) which 

gives c(r), which we can compare with the sound speed in theoretical models. 

The differences between the sound speeds (deduced from helioseismology 

and given by the standard model) are less than 2 %, implying a temperature 

deficit of 4 % in the model near r = 0.4Rq. 

Rotation. We mention here only the lifting of the degeneracy in m by 

rotation. The separation by ±mi2g of the oscillation frequencies in principle 

gives i? as a function of depth into the solar interior. However, inversion 

of the relation giving the frequency separation is difficult because of the 

relatively noisy data. We can conclude only that the 0(r) law is close to 

rigid rotation in the range 0.2Rq < r < Rq (Fig. 6.25). 

Fig. 6.25. Angular rotation frequency in the solar interior, as a function of the distance 

from the axis. (From W. Dziembowski et al. 1989) 
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Asteroseismology. Studies similar to those for the Sun have been made for 

Procyon and a Cen A (Geliy, Grec, and Fossat 1986), and for e Eri by Noyes 

et ah (1984). These show the same system of equidistant modes as in the 

Sun. These studies, which are still preliminary, have not yet produced results 

consistent with other measures of the internal structure of these stars. 
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T. Solar and Stellar Activity 

The surfaces of the stars, particularly that of the Sun, are the sites of time- 

dependent phenomena which, at least for the Sun, are directly linked to the 

heterogeneous nature of its surface and the appearance of magnetic fields 

(see Chap. 2). The most striking sign of solar activity is the existence and 

temporal evolution of sunspots, which possess intense magnetic fields (up 

to 4500 G). While the spots are located at the photosphere, activity is also 

seen in higher layers; another characteristic phenomenon is the strengthened 

emission of some lines or continua (the level of activity) (Fig. 7.1): in the 

Sun, this strengthening is seen in heterogeneous chromospheric structures 

(plages). In whole-disc observations of the Sun (i.e. viewed as a star) over 

several years this strengthening is more significant at certain phases of the 

activity cycle. 

The term “activity” actually refers to two kinds of phenomenon. One 

is a type of surface variability caused by structure due to the magnetic 

field: the Sun and stars, besides being oscillating mechanical systems and 

thus intrinsic variables (see Chap. 6), are also magnetic variables. On the 

other hand, activity may also mean the strengthening of emissions which 

show the existence of temperatures in “active regions” which are locally 

enhanced above those of “quiet regions”; activity then means heating of the 

layers where these emissions appear. 

7.1 Indicators of Activity 

7.1.1 Sunspots and Starspots 

We have seen in Chap. 2 that spots are scattered over the Sun’s disc between 

latitudes +30° and —30°, their number and positions varying over time. 

Each spot persists for a few (2 or 3) rotations, but spots are not rigidly 

fixed to the same place on the Sun: at the beginning of the cycle they 

appear at high latitude, generally in pairs; the pair migrates towards the 

equator or the poles depending on its latitude, indicating circulation in the 

form of rolls. The mean latitude at which spots appear decreases as the 

cycle progresses. 

A plot of spot latitude against time has a characteristic form: this is 

the Maunder or butterfly diagram (Fig. 7.2). We can count the number of 
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Fig. 7.1. Solar spectrum near an active centre. The intensity profile of the main spectral 

lines is shown below the photograph. Ha is the intense hydrogen line at 6562.8 A. The 

line marked C is a reference wire. The photograph shows properties appearing in various 

forms in most stars. The zig-zags of the line B and the intensity fluctuations marked 

as D are caused by the solar granulation: the Doppler effect of moving granules and 

the intensity differences associated with rising and falling motions. A denotes a telluric 

line, which of course shows no zig-zags. Many traces of solar activity are visible, small 

spots EE, a large spot L with penumbra I\K, another spot I, a bright facula J, Zeeman 

broadening caused by a magnetic field at F, and the decreased intensity of line G due 

to another magnetic effect. H indicates an emission line, very broadened by the rapid 

motion of the emitting gas, and called a “moustache”. (Photograph by the Observatoire 

de Paris, obtained from the spectrograph of the solar tower of the Observatoire du Pic 

du Midi on 1987 June 25) 

sunspots visible on the Sun’s disc at a given time and make annual averages. 

This number (called the Wolf number) varies with time and is the oldest 

measure of solar activity. It can be recovered uninterruptedly from the time 
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Fig. 7.2. Butterfly or Maunder diagram from 1935 to 1987. (R.K. Ulrich, private commu¬ 

nication) 
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Fig. 7.3. Amplitude of the solar cycle: variation of the Wolf number with time. The annual 

average spot number is plotted against the year for the epoch 1700-1988. (World Data 

Center for Solar-Terrestrial Physics, Boulder) 
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of the first telescope observations in about 1610, and has been recorded 

systematically since the 19th century. This series of observations shows an 

essential property first recognised by Schwabe in 1844: the spot number 

varies with an eleven-year period, although the amplitude is not constant 

(Fig. 7.3). The Sun thus passes alternately through a phase of maximum 

activity (average spot number between 40 and 180) and then a minimum 

(about 5 spots). But the maxima can vary in intensity and the minima may 

be more or less inactive. Eleven years is the dominant period, but at times 

the cycle can be as short as 8 years, while at others it is as long as 15 

years. The solar cycle can also be irregular: the most famous example is the 

Maunder minimum between 1645 and 1715. 

As we have seen, the spots are one of the sites where new magnetic 

field emerges; spots migrating as a pair always have opposite polarities. 

Following the spots in time reveals another period in solar activity: those 

spots born with positive polarity in the northern hemisphere in one cycle 

have negative polarity in the next, implying a period of 22 years. Studies of 

the large-scale magnetic field also show a 22-year periodicity in the polarity 

of the solar poles, the North Magnetic Pole becoming the South Pole and 

vice versa after 11 years. The reversal of polarity between North and South 

Poles occurs with a delay of up to a year. 

Spots are thus a powerful way of monitoring polarity variations of the 

solar magnetic field and also the stability of the solar activity cycle. 

However it is noticeable that the spots never cover in total more than 

0.4% of the visible disc, with the largest spots occupying at most 1.5 x 10-3 

of the visible hemisphere. If we observe the Sun without spatial resolution, 

the variations of the Sun’s integrated luminosity caused by the presence of 

spots and their irregular distribution in longitude as the Sun rotates are of 

the order of a few percent at most. These variations are caused by the fact 

that the spots are cooler than the surrounding photosphere (Tefj ~ 4200 K 

in the umbra, compared with 5700 Iv). 

Are stars also covered with spots? This is more difficult to prove than for 

the Sun, because stellar discs are not resolved. But there are stars where the 

area covered by spots on the visible disc is much greater than on the Sun, 

causing a measurable periodic photometric variation as the spots cross the 

line of sight as the star rotates (> 0.05 mag, and sometimes several tenths of 

a magnitude). We observe late-type stars in binaries of the BY Dra and RS 

CVn type which have large-scale spots on their surfaces (up to 30 or 50 % of 

the disc area). These are sometimes near the poles, and have a sufficiently 

asymmetric longitude distribution as to cause a rotational modulation of 

the apparent brightness (Fig. 7.4). Analysis of the light curve shows that 

the spots migrate differentially over the disc in time. The T Tauri stars also 

have surfaces covered with spots. 

This gives us an indirect way of resolving the discs of some stars, since 

we can use photometi'y to produce a crude map of the longitude distribution 

of starspots. On the other hand, it has not yet been possible to show that 
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Orbital phase 

Photometric phase 

Fig. 7.4. Ev idence for starspots. The light curve of the RS CVn star V711 Tau is inter¬ 

preted as being due to the superposition of two large spots (called 1 and 2). Two epochs 

are shown. (From M. Rodono et ah, Astron. Asirophys 165 135 (1985) Fig. 10, p. 147) 

the spots are magnetic; they cannot be individually resolved, and we do not 

know if the spots are analogous to those of the Sun, only much larger, or 

whether they are collections of many smaller spots. 

Of course, the detection of starspots in white light depends on the pho¬ 

tometric quality of the measurement. As for solar oscillations, photometry 

from space will be needed to detect spots at a much lower contrast level 

than on the Sun (Am ~ 0.001). 

7.1.2 Spectroscopic Activity Criteria 

in the Visible and Ultraviolet 

Observations of lines formed in the solar chromosphere and transition zone 

show that the intensity of the emission in these lines increases in moving 

from a quiet region (e.g. the centre of a supergranule) to the boundary of 

a supergranule or to a plage, and a fortiori to a flare. Depending on the 

part of the disc being observed, the Sun is more or less active in these lines. 

Similarly, coronal lines are intensified in coronal arches or loops. 

Stars of spectral type close to that of the Sun (roughly F0 to M) emit 

energies in these same lines which can greatly exceed (factors of 100 to 1000) 

those of the average Sun or even the active Sun. Although their discs are not 

resolved, it is tempting to assume that these stars are covered with active 

regions, like the Sun. 

Which lines are most useful as indicators of stellar activity? These are 

usually resonance lines, that is, lines involving the ground state of an atom 

or ion and a nearby excited state, and lines of abundant elements. Depend- 
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Table 7.1. Lines showing the existence of chromospheres, transition zones and 

coronae 

(A) Transition zones and coronae 

Ion Line 

A (A) 

Transition Formation tem¬ 

perature Te (K) 

Mg X 609.76 

624.93 

2s 2S-2p 2P° 1.2 X 106 

Ne VII 465.221 2s2 1 S-2s 2p 'P° 5 x 105 

O VI 1 031.912 

1 037.613 

2s 2S-2p 2P° 3.2 X 105 

O IV 554.51 2s2 2p :P°-2s 2p2 2P 1.5 X 105 

N V 1 238.821 

1 242.804 

2s 2S-2p 2P° 1.6 X 105 

He 11 303.78 Is 2S-2p 2P° ~8 x 10“ 

He II 1 640.332 

1 640.474 

2p 2P°-3d 2D ~8 x 104 

C IV 1 548.185 

I 550.774 

2s 2S-2p 2P° 1 x 105 

Si IV 1 393.755 

1 402.770 

3s 2S-3p 2P° 6 x 104 

C III 1 175.71 1 

1 174.933 

2s 2p 3P°-2p2 3P 5 x 104 

ing on the dominance condition of their source function and optical depth 

these appear either completely in emission, or with a central emission (self¬ 

reversal) within wide absorption wings. The condition for an optically thick 

line to be in emission at the wavelength A of its profile is 

S\(tx ^ 1) > Sc(tc ~ 1), (7.1) 

where S\ and Sc are the source functions in the line and the continuum and 

T\ and tc are the optical depths. If S\ is collision-dominated, i.e, photons are 

emitted essentially at the expense of electron energy, the line may appear 

in emission (Thomas 1957). 

Table 7.1 gives a list of these lines and the temperature of the region 

where they are formed: corona, transition zone, or chromosphere. Most of 

them are observable in the space ultraviolet, explaining the great importance 

for the study of stellar activity of the Copernicus and IUE (International 

Ultraviolet Explorer) satellites, launched in 1972 and 1978 respectively. EUV 

lines, with A < 900 A (Mg X, Ne VII, 0 IV, He II A 304 A) have not yet 

been observed in stars. 

It is worth stressing that observations of the Ca II H and K lines from 

the ground have revealed many of the characteristic features of solar and 

stellar activity: the existence of stellar chromospheres, the discovery of stel- 
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Table 7.1 (continued) 

(B) Chromospheres in the solar sense 

Ion Line 

A (A) 
Transition Formation tem¬ 

perature Te (K) 

H 1 1 215.67 Is 2S-2p 2P° 1-2 X 104 

6 562.8 (Ha) 

3 970.07 (He) 

2p 2P°-3d 2D 

2p2 P°-7d 2D 

6-10 X 103 

He I 10 830 

5 875.7 

1 s 2s 3S-ls 2p 3P° 

Is 2p T°-ls 3d 3D 

2 x 104 

C 11 1 334.532 

1 335.708 

2s2 2p :P°-2s 2p2 2D 2 x 104 

Si III 1 206.51 

1 892.03 

3s2 'S-3s 3p 'P° 

3s2 'S-3s 3p T° 

3.5 x 104 

Si II 1 304.372 

1 309.277 

3s2 3p 2P°-3s 3p2 2S 1.2 x 104 

1 526.708 

1 533.432 

3s2 3p 2P°-3s 4s 2S 1.2 x 104 

Ca 11 3 933.66 (K) 

3 968.47 (H) 

8 542.09 

8 662.14 

8 498.02 

4s 2S-4p 2P° 

3d 2D-4p 2P° 

6-8 x 103 

Mg II 2 795.53 (k) 

2 802.70 (h) 

3s 2S-3p 2P° 6-8 x 103 

O I I 302.169 

1 304.875 

2p4 3P-2p3 3s 3S° 6 x 103 

C I 1 560.683 

1 657.008 

2s2 2p2 3P-2s 2p3 3D° 

2s2 2p2 3P-2p 3s 3P° 

6 x 103 

lar activity cycles by O. Wilson (1978), indirect evidence of stellar plages 

from the rotational modulation of emission in the H and K lines (Vaughan 

et al. 1981), evidence for amplified nonradial oscillations in the same lines. 

Figures 7.5a and b show the Ca II H and K and the Mg II h and k 

lines, as observed by the OSO-8 satellite, in both a quiet region and an 

active region of the Sun. 

Figures 7.6a and b show the same lines, but observed in stars, where 

the disc is unresolved. This suggests the notion of more (e Eri) or less 

(r Cet, not shown) active stars, depending on the mean level of intensity of 

the lines averaged over the disc. 

We note finally that the lines of neutral helium at 5876 and 10 830 A, 
which figure in Table 7.1, are not resonance lines. But the excitation energy 

required to form them is large enough that we conclude that they are not 

formed in the photosphere, at least in solar-type stars. Calculation supports 

this idea. These lines are observed either in emission or in absorption. 
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Fig. 7.5a. Ca II H and K lines observed by OSO-8 in an active (upper panel) and quiet 

(lower panel) region of the Sun, of size 2" X 10". The spectral resolution is 0.02 A. (Ph. 

Lemaire, private communication) 

7.1.3 X-rays 

Although the Sun has been known as an X-ray source since 1945, it was 

the Skylab orbital platform (1973) which provided the main results on solar 

X-ray emission. Figure 7.7 shows that the Sun seen in X-rays is strongly 

structured: we distinguish dark regions, or coronal holes, and bright tubular 

regions, or coronal loops. Moreover many bright points cover the Sun in X- 

rays. Each of these structures, which show that the corona is heterogeneous 

just like the lower layers of the atmosphere, can be matched to a feature 

in the chromosphere or transition zone, and even the photosphere. Thus 

coronal loops have footpoints in chromospheric active regions, each of which 

lies above a complex of spots. As we have seen in Chap. 2, coronal holes 

cover the photospheric and chromospheric regions of the quiet Sun, as can 

be identified from solar images in the He I 10 830 A line. 

It is not possible to measure directly the magnetic field at the coronal 

level, since this requires measurements of the polarisation in the UV or EUV 

lines, where polarisers are not efficient. However, it is possible to link the 
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Fig. 7.5b. Mg II h and k lines observed under the same conditions as the Ca II lines. The 

spectral resolution is 0.025 A. (Ph. Lemaire, private communication) 

coronal loops to regions of closed magnetic field, while coronal holes corre¬ 

spond to regions with open fieldlines and one dominant polarity. The X-ray 

bright points can be linked to their Ly a counterparts down to the level of 

the supergranules (lower chromosphere). This identification of the magnetic 

configuration as a function of altitude is based on models of the magnetic 

field which assume that at the photosphere the field has the orientation and 

strength actually measured at a large number of points on the surface, and 

that it extends as a potential field (zero-current model). Figure 7.8 shows 

such a model of the coronal field. 

The Einstein satellite (1980) showed that most stars are also X-ray 

sources in the 0.4-3 keV range. The X-ray luminosity in this spectral band, 

called Lx, is in many stars much higher than that of the Sun. It reaches 

1033 erg s_1, while the Sun, if it were totally quiet, would emit ~ 5 x 102' 

erg s-1, and if totally covered with active regions, ~ 2 x 1029 erg s_1. The 

detection threshold for Einstein was 1027 erg s_1. 

The mam properties of stellar X-rays, as revealed by Einstein, are as 

follows (Vaiana et al. 1981): 
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Normalised flux 

Fig. 7.6a. Ca II H and I\ lines observed for a series of solar-type stars. The spectral reso¬ 

lution is 0.12 A. (From J.L. Linsky et al., Astrophys. J. Supp. 41, 47 (1979). Reproduced 

by kind permission of The Astrophysical Journal, published by The University of Chicago 

Press; © 1979 The American Astronomical Society) 

— Stars of every spectral type and luminosity class emit X-rays, with 

the exception of cool supergiants. A-type stars have the'lowest, luminosity 

Lx. 

- The ratio of the X-ray luminosity to the bolometric luminosity is 

constant (Lx/Lbo\ = 10-7) for hot stars (0 and B). 

- The X-ray luminosity is enhanced and practically constant for F0- 

F5 stars. Stars cooler than late F have Lx varying by several orders of 

magnitude (typically 3) for a given spectral type. 

Dwarf M stars emit a large fraction of their luminosity in X-rays, 

with Lx/Ly>oi of the order of 0.1. 

The EXOSAT satellite (1983) extended the observed energy range down 

to 0.04 keV, and confirmed the results of Einstein; it also carried out sev¬ 

eral studies of time-varying X-ray emission from “normal” stars (we do not 

316 



Fig. 7.6b. Mg II h and k lines observed by the IUE satellite. The spectral resolution is 

0.2 A. (From G. Basri and J.L. Linsky, Astrophys. J., 234, 1023 (1979). Reproduced by 

kind permission of The Astrophysical Journal published by The University of Chicago 

Press; © 1979 The American Astronomical Society) 

consider here binaries with a compact component, possibly possessing an 

accretion disc). Like the Sun, stars are found to be variable X-ray sources 

when one can measure them. The ROSAT satellite (1990) works in the range 

0.1-2 keV and has better sensitivity than Einstein and EXOSAT. 

7.1.4 Radio Emission 

The Sun emits radio waves which are detectable from Earth (from wave¬ 

lengths of a few millimetres to several tens of metres), or from space (wave¬ 

lengths above 30 m). There is a thermal component (bremsstrahlung radia¬ 

tion from 1 eV electrons), but the radio emission from active regions requires 

high-energy electrons (10 keV to 10 MeV). These are accelerated in mag¬ 

netic fields and spiral around the fieldlines. In some cases the magnetic field 

causes anisotropies in the electron distributions, leading to coherent emis¬ 

sion. Radio emission from active solar or stellar phenomena is via cyclotron 

and gyroresonant processes if the electrons are non-relativistic, and syn¬ 

chrotron emission if they are relativistic. Ooherent plasma emission, which 

is independent of the magnetic field, can also occur (see Dulk 1985). 

Solar radio emission has several components at wavelengths greater than 

a few cm; all of these originate in the corona, at various distances from the 

optical limb of the Sun. The components are: 
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Fig.7.7. Image of the Sun in X-rays. Several active regions are visible at the limb. The 

disc itself shows coronal loops in emission and quite a large number of bright points 

(photograph by D. Moses, American Science and Engineering, obtained from a rocket 

flight on 1987 December 11) 

— A continuum which at A = 10 cm is completely correlated with the 

spot number and shows slow periodic variations following the 11-year cycle. 

This emission is via bremsstrahlung or gyroresonant processes or both. 

— Sporadic rapidly varying emission associated with flares (see Sect. 

7.3). It is observed at all wavelengths above active regions where flares 

occur. 

A burst-type component, whose brightness temperature reaches 10' 

to 109 K and which is highly polarised. 

High-resolution maps of the Sun at 169 MHz (or 1.77 m) again show the 

heterogeneity of the corona (Fig. 7.9) and its variability with the activity 

cycle. 

Stellar radio emission was almost undetectable until the advent of sen¬ 

sitive (mJy) telescopes capable of high angular resolution (1" to 10"). The 

VLA (Very Large Array) in New Mexico began operating in 1982 and found 

that stars of all spectral types are radio sources at centimeter wavelengths. 

Figure 7.10 shows a detection of the active star y1 Ori (GOV) at 6 cm. 

Like other solar and stellar activity indicators, radio emission is time- 

variable. In the Sun the main timescales are the periods of the activity cycle 
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24 May 21 June 18 July 14 August 10 September 

Fig. 7.8. Top: the magnetic field calculated for the solar corona. The open fieldlines are 

calculated from data two revolutions apart. Bottom: coronal-hole boundaries centred at 

the same longitude (103°), as observed by Skylab. The calculations correspond to 1973 

June 21 (left) and 1973 August 14 (right). (From R.H. Levine et al., Astrophys. J. 215, 

363 (1977). Reproduced by kind permission of The Astrophysical Journal, published by 

The University of Chicago Press; © 1977 The American Astronomical Society) 

and of the rotation. Characteristic timescales have not yet been established 

for other stars. 

7.2 Timescales of Magnetic Variability 

of the Sun and Stars 

7.2.1 Rotational Modulation of Activity Indicators 

We have already seen that starspots are detectable in photometry because 

their asymmetric distribution on the surface causes a rotational modulation 

of the star’s light. 
Similar modulations are seen in the intensity of other activity indicators. 

One is therefore led to assume that these indicators come from active regions 

which are asymmetrically distributed on the star’s surface. This reasoning 

relies on the solar analogy (Fig. 7.11): this figure shows monochromatic im¬ 

ages of the Sun m the /v 3 line separated by about one half of the synodic 

rotation period P = 27.25 d. It is clear that one of the Sun’s hemispheres 

has more active regions than the other, and that these active regions persist 

319 



Fig. 7.9. Maps of the Sun at 169 MHz (1.77 m). Images from the radioheliograph at Nan^ay. 

The white circle represents the visible solar disc: North is at the top and East at the right. 

Top: (1980 July) appearance of the Sun near solar maximum. We note an equatorial 

coronal hole. Bottom: (1984 July), appearance of the Sun near solar minimum. The 

emission is decieased near the poles by coronal holes. (P. Lantos, private communication) 

for several rotations (5 or 6). If the active phenomena varied more rapidly 

than the rotation period there would be no detectable rotational modulation 

of the emission: this is true of flares for example. 

The necessary longitude asymmetry and persistence of active regions 

over several rotations certainly holds in many stars. For example, the disc- 

integrated Sun shows a rotational intensity modulation of all the X-ray, 

UV, and visible activity indicators. Similarly, Fig. 7.12 shows a sample from 

observations at Mount \\ llson of the Ca II A line in 99 late-type stars 
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Fig. 7.10. Detection of the 6 cm radio continuum of the stars x1 Ori (GOV) by the VLA. 

The optical position of the star is marked by a cross. (From D. Gary and J.L. Linsky, 

Astrophys. J. 250. 284 (1981). Reproduced by kind permission of The Astrophysical Jour¬ 

nal, published by The University of Chicago Press; © 1981 The American Astronomical 

Society) 

(Vaughan et al. 1981). In this systematic programme each star was observed 

once per night. The observed emission variations with time give the rotation 

period of the star directly. For solar-type stars these periods lie between 1 

and 40 days. 

7.2.2 Stellar Activity Cycles 

These are exhibited in spotted stars and in late-type stars, mostly on the 

main sequence. The distinction between these two groups of stars is not 

fundamental but introduced by the different modes of detection: the cycles 

are seen in white light in the first case and in Ca II emission lines in the 

second. 

Using photographic-plate collections one can study the brightness vari¬ 

ations of certain stars over more than 100 years. In this way a period of 60 

years has been assigned to the K5e dwarf BD + 26°730 by Hartmann et al. 

(1981). 

In the disc-integrated Sun, the fluxes of the H and K emission lines vary 

with amplitudes of the order of 20 % through the eleven-year sunspot cycle. 

Similarly, variations of the Ca II Ji-line chromospheric activity indicator 

have been followed at Mount Wilson Observatory since 1966 for 91 late-type 

main-sequence stars (types F to M). Figure 7.13 shows the great variety of 

long-term behaviour of these variations. In 24 years 85 % of these stars were 

found to vary; 60 % of them are apparently or definitely periodic. Several 

show chaotic fluctuations: they are the youngest stars of the sample. The 
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1982 

Fig. 7.11. Spectroheliograms in the K3 component of the Ca II K line over 3 solar rota¬ 

tional periods (1982 May-July). Each image is separated from the previous one by one 

half of a rotation period. The hemisphere seen in the left-hand column is more active 

than that seen at right. 1982 was a solar maximum. A very large active region developed 

towards mid-1982 and lasted for several rotations. (M.J. Martres, private communication) 

10-15% which are constant in time may be in a state like the Maunder 

minimum experienced by the Sun in the 17th century. The cycles are in 

general 8 to 12 years long, i.e. similar to the solar cycle. Some of the stars 

show several periods; some have periods less than 5 years, verj^ different from 

the Sun. The periods found (on a baseline of 20 years only) do not depend 

on the mass, the rotation period, the age, or any basic stellar characteristic. 

These activity cycles are not immediately identifiable with the solar 

cycle, since in stars we do not yet have the possibility of detecting a magnetic 

cycle in flux or polarity. By analogy with the Sun, however, they are very 

important, in that the observed periods and modes of the cycles imply 

empirical constraints on dynamo theories of magnetic field generation (see 

Chap. 5). 
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Fig. 7.12. Right: rotational modulation of Ca II K line emission. The average flux in 

the emission of the H and K lines is plotted against time. Left: long-term variations of 

the same quantity, from Wilson (1978). The stars are specified by their HD numbers. 

From Vaughan et ah, Astrophys. J., 250, 276 (1981). Reproduced by kind permission of 

The Astrophysical Journal, published by The University of Chicago Press; © 1982 The 

American Astronomical Society) 

7.3 Solar and Stellar Flares 

7.3.1 Solar Flares 

Flares are the most abrupt and transient of variable solar phenomena. They 

are observed as intense brightenings of the Ho line, in white light, and most 

of all in soft and hard X-rays, radio, and the UV. Flares erupt and develop 

(impulsive phase) in one to two minutes, then decrease (gradual phase) over 

several tens of minutes. They are quite localised on the solar surface and 

appear along the neutral line separating two regions of opposite magnetic 

polarity inside an active region. 

Their frequency varies with the solar cycle: they are more numerous (2 

per hour on average) near solar maximum. 

It is assumed that the energy of a flare (~ 1031—1032 erg) is magnetic 

in origin; the magnetic field dissipates and releases energy B2/Sir per unit 

323 



Year 

Fig. 7.13. Stellar activity cycles. 7 dwarf stars whose chromospheric activity was followed 

for 18 years. Meaning of symbols: N - no variation; L - linear trend; V — variable without 

clear period; C - periodic or probably periodic cycle. The periods are given in years in 

brackets. (From S. Baliunas, in Advances in Space Research 6, 8 (1986) p. 231 (Pergamon), 

reproduced by kind permission of the Committee for Space Research COSPAR) 

volume by the Joule effect. When a flare is triggered, electrons and ions are 

accelerated. The accelerated electrons emit the X-rays and radio radiation 

seen after the impulsive phase. In the gradual phase the emission is probably 

thermal; the emitting plasma has a temperature of the order of 101 K. The 

accelerated electrons and ions (a few tens of keV for the electrons, MeV to 

GeV for protons) are ejected from the Sun and propagate in interplanetary 

space. 

7.3.2 Stellar Flares 

Like solar flares, stellar flares are transient events, developing in 1 to 1000 

seconds and declining over 1 to 100 minutes. By analogy with the Sun, they 

result from the magnetic variability of the stars. But unlike the variations 

considered in Sect. 7.2 they do not as yet appear to show any periodicities. 
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They were first detected in (/-band photometry. This showed the ex¬ 

istence of two classes of flare stars: the UV Ceti and BY Dra stars, both 

active as defined in Sect. 7.1. The UV Ceti stars are M dwarfs with emission 

lines (dMe), and the B\ Dra stars are binaries of type K or M with spotted 
surfaces. 

During flares in the optical continuum there is also a strengthening of 

the Balmer lines of H I and of the He I lines; the enhanced emission persists 

for several hours, then decreases more slowly than the emission observed in 

the broadband continuum. 

The Einstein and EXOSAT satellites observed flares in the X-ray do¬ 

main, and in some cases simultaneous UDVRI photometry was obtained. In 

BY Dra the peak of the visible emission precedes the X-ray peak by 4 to 8 

minutes. In addition, the optical flare develops more rapidly than the X-ray 

flare (respective growth times are 1 and 10 min, decay times 5 min and 1 

hour). 

Study of several dMe stars simultaneously in the visible and X-rays gives 

a ratio Eopt/Ex of emitted energies between 0.1 and 1. 

Since flares have become detectable in all wavelength regions (X, UV, 

radio) other classes of active stars have been found to have flares: the evolved 

RS CVn binaries, consisting of a solar-type dwarf and a G or K subgiant; 

the pre-main-sequence T Tauri stars; and giants and supergiants such as a 

Ori (M2 I ab), 7T Aur (M3 II) and R Aql (gM5e-8e). 

Table 7.2 summarises the parameters obtained from an analysis of the 

X-ray and UV data from the Sun and from dMe and RS CVn stars (Byrne 

1989). We note that stellar flares each emit a total energy which can exceed 

that of even a large solar flare by factors of 100 for a dMe star, and 104 to 

105 for an RS CVn star. The mechanisms responsible for stellar flares are 

probably of magnetic origin, as in the Sun, but the reasons for their much 

greater efficacy are not understood. 

Table 7.2. Parameters of solar and stellar flares in the X-ray and UV regions 

dMe stars RS CVn stars Sun 

Emission measure (EM) 

in soft X-rays (cm 3) 105l-1053 1053-1054 1047-105° 

Temperature (K) 1-5 X 107 6-10 x 107 2-5 X 107 

Ne (cm 3) 1-8 X 10" 3-9 x 10" 1-10 x 10" 

Total energy in soft X-rays (erg) 103l-1034 1034-1036 1028-1 o30 

Emission measure (EM) 

deduced from C IV (cm 3) 1049-2 x 1050 (?) p
 

r
 

o
 

-U
 

1046-1049 

Ne in the transition zone (cm 3) < 10'2 5-10 X 10'° 1-5 x 10'° 

Total energy 

in the transition zone (erg) 103l-l033 1035-1037 1027-1 o29 
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7.4 Stellar Magnetic Fields 

Can we verify that stellar activity, like solar activity, has magnetic origins? 

This requires direct measurement of the magnetic field; then it will be possi¬ 

ble to look for correlations, for instance between the strength of an indicator 

and the magnetic field intensity. Where such correlations exist they can be 

used to find the field indirectly. 

7.4.1 Direct Measurements of the Magnetic Field 

Most of these use the Zeeman effect, which is seen in three ways: (a) sepa¬ 

ration of a line into distinct Zeeman components, whose separation can be 

measured; (b) polarisation, generally elliptical, of the light emitted in the 

Zeeman a components; (c) linear polarisation of the light emitted in the 

Zeeman 7r components. Figure 7.14 shows a decomposition of the field into 

a component B\\ along the line of sight and a component B± orthogonal to 

it. If 6 = 0 (longitudinal field), only the a components exist, and they are 

circularly polarised. If 6 = 7t/2 (transverse field), the a and 7r components 

are linearly polarised. 

To observer 

Fig. 7.14. Decomposition of the magnetic field B 

into longitudinal (By or Bz) and transverse (Bi) 

components 

The Zeeman effect causes a separation AAB between the central group 

of 7r components and the centroid of the cr+ or a~ components (polarised 

respectively right and left circular): 

AAb(A) =4.67 x 10“13A20gB, (7.2) 

where Ao is the wavelength of the line (in A), g the Lande factor, and B the 

field strength (in G) of the magnetic field. 

For a line at Ao = 6200 A, with g = 2.5, AAB corresponds to a velocity 

displacement of Av = cAAB/Ao = 2.2(77/1000 G) km s-1. Av is of the same 

order as the rotational or turbulent line width; this makes the measurement 

of stellar magnetic fields very difficult even if B = 1000 G. As a result 

very few stars (apart from the Sun in sunspots) have fields strong enough 

326 



and sufficiently coherent over large scales for the Zeeman splitting to be 

measurable in unpolarised light. This can be done for some Ap stars and 

white dwarfs. 

In cases where the field has an arbitrary local orientation we can mea¬ 

sure it by either Babcock s or Robinson’s methods. The first uses the mea¬ 

surement of circular polarisation in the wings of absorption line. The light 

from the star in a magnetically sensitive line (i.e. large Lande factor) passes 

through a polarisation analyser, formed from a quarter-wave plate with its 

neutral line inclined at 45° to the slit of the spectrograph, followed by a 

Nicol (Iceland spar birefringent polariser). The Nicol is oriented so that the 

splitting of the emergent ordinary and extraordinary rays, corresponding to 

two images of the star with orthogonal polarisations, is parallel to the slit. 

We thus get a spectrum made up of two bands, one showing the right 

circularly polarised Zeeman components and the other the left circularly 

polarised ones. Since in general the line of sight does not coincide with the 

field direction, the emergent a components have intensities depending on 6 

(Fig. 7.14). Seares (1913) showed that 

la = 1(1 ±cos6)2 , (7.3) 

while measurement of the n component gives In = | sin2 6. The splitting 

AAb is proportional to the average field intensity projected along the line 

of sight, or effective field 

Bef[ / B cos 61 ds I ds = B\\I ds Ids (7.4) 

where ds denotes a surface element of the stellar disc through which the 

field is B. 

Babcock’s method gives good results for Ap stars since the field geometry 

is simple, either dipolar or quadrupolar. The magnetic dipole can either be 

aligned or inclined to the rotation axis, and the measured field varies with 

the rotation period. For these stars, the precision of the method has been 

brought to about 5-10 G by Brown and Landstreet (1981), who measured 

the polarisation in 1500 lines simultaneously. 

Measurement of linear polarisation (in general the rate of polarisation) 

is difficult because its value is very low. However, such measurements give 

very useful information on the field geometry. 

It is clear that the detection of a polarised signal by itself reveals the 

presence of a magnetic field. It is equally clear that for a solar-type geometry, 

i.e. with many zones of opposite polarity visible on the stellar disc, there 

will be cancellation of the polarised signals, and the net result will be close 

to zero if one observes the integrated disc. In solar-type stars Babcock’s 

technique almost always fails. 

Robinson’s method uses two photospheric lines as similar as possible 

(same element, same degree of ionisation, same multiplet, and same oscil- 
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lator strength) except for the Lande factor. The line with smaller g is little 

affected by the field, while that with large g is broadened in magnetic re¬ 

gions, by an amount proportional to A2 and the modulus of B, whatever 

the polarity of the region. We thus compare the half-width of these two 

lines in unpolarised light and, following Robinson (1980), postulate that 

the profile of the broadened line is the convolution of the unbroadened line 

with a function of the area occupied by magnetic regions on the stellar 

surface. These regions are assumed to have a field of the same strength. 

The observed line profile FQbs is interpreted in a two-component model, i.e. 

Fobs = fFm(B) + (1 - f )Fq(B = 0) where Fm is the profile arising from 

magnetic regions covering a fraction / of the surface, and Fq is the profile 

arising from non-magnetic quiet regions. The derivation of Fm and Fq gives 

the value of \B\ and the filling factor /, i.e. the relative area covered by 

magnetic regions. 

This method can be used in the visible or near IR, where the factor 

A2 amplifies the Zeeman effect. It requires very high signal-to-noise spectra 

of very high spectral resolution, that the star does not rotate too rapidly 

(u sin i < 10 km s_1), that the lines are not blended, but above all that we 

can find pairs of lines obeying the severe conditions of identical properties 

up to the factor g. These conditions should ensure that the lines are formed 

in the same atmospheric layers, whether or not the region is magnetic. It so 

happens that this is rarely the case. 

The results existing in 1990 for the fields of some 30 slowly rotating 

solar-type stars do however result from this method, which is difficult to 

apply (Saar 1988). 

(a) On the main sequence, fields are detected in stars of spectral types 

between GOV and dM 3.5e, with rotation periods between 3 and 15 days. 

(b) There have been no detections for solar-type giants, except for the 

RS CVn star A And. 

(c) The detected fields have intensities from 600 to 3000 G; in the most 

active stars these values are exceeded: 2500 ± 300 G in EQ Vir (dK 5e), 

3800 G in AD Leo (dM 3.5e). 

(d) Too few stars have been measured to establish a definitive relation 

between the fieldstrength B and the emission in the Ca II I\ line: Marcy 

(1983) finds Lcall ~ \B\a with a = 0.5, differing from the quiet Sun where 

-hcall ~ \Bz\i with Bz the local longitudinal component of the field (Sku- 

manich et al. 1975), but close to the relation established by Schrijver et al. 

(1989) for active regions of the Sun, where they find a = 0.6. 

The Zeeman-Doppler imaging method (Sect. 7.4.4) works for rapidly 

rotating solar-type stars. 
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7.4.2 Indirect Methods of Measuring the Magnetic Field 

A relation between a sensitive activity indicator such as Ca II emission and 

the magnetic fieldstrength is particularly interesting: given the difficulty 

of direct field measurements in solar-type stars one is tempted to use the 

This is the method of intensity of a suitably chosen line to deduce \B\ 

the spectroscopic magnetograph. The problem is the calibration of such a 

relation. Calibration from the Sun has the advantage of being local, i.e. 

we can easily distinguish magnetic and non-magnetic regions. On the other 

hand, a calibration like that of Marcy explicitly assumes that |H| is the same 

in all magnetic regions, and that the line with small g factor is completely 
insensitive to B. 

7.4.3 Other Approaches 

The Zeeman effect gives photospheric magnetic fields, either B\\ or |5|. 

In principle we could deduce the coronal field from the radio intensity, if 

we have good reason to attribute the emission to a non-thermal process 

(e.g. if the source varies rapidly, r < 10 min, or the radiation is polarised). 

This method has the difficulty of requiring an assumption about the field 

geometry (we have to construct a model of the source) and assumes that 

we have identified the emission mechanism. As a result the interpretation 

of non-thermal radio emission is not yet very developed. 

Clearly there are not enough measured fields for active stars in 1992 

to allow answers to some of the questions suggested by the solar analogy: 

are there various lengthscales on which the field emerges? Is there a dipole 

component as well as a toroidal one? How does the measured fieldstrength 

depend on fundamental parameters such as mass, age, and rotation of the 

star? How does the energy balance in the outer layers of stars depend on 

the heating and confinement of the plasma by magnetic fields? 

7.4.4 Sizes of Stellar Active Regions 

A knowledge of filling factors, i.e. the area of active regions on unresolved 

stellar discs, is a first step towards discovering the characteristic scales of 

activity. The filling factor found by Marcy was about 0.16 for GOV stars, 

and 0.54 for stars of types K0-K5V. For F stars, whose high degree of 

activity is attested by their enhanced X-ray luminosity, there is no rotational 

modulation in white light or chromospheric lines, and no field measurement 

has been possible (but these stars rotate rapidly): in this case the active 

regions may be distributed fairly uniformly and close enough to each other 

so that the filling factor is quite close to 1. 

There is another way of estimating the size of active regions, without 

relating them to the presence of a magnetic field, though. This is Doppler 

imaging. Figure 7.15 shows the basis of this method, which is derived from 

study of the rotational modulation. Here we examine the effect on the line 
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Fig. 7.15. Principle of Doppler imaging. Left: the star’s disc has an active region A (latitude 

/, longitude L) and its effect AV on the profile of a line is a function of rotational phase 

4>\ it is given by AV(cp) = Ve sin i cos/sin(27r0 + L), where i the inclination of the line 

of sight to the rotation axis. Right: the visibility a of a region of latitude /. (From P. 

Gondoin, Astron. Astrophys. 160, 73 (1986)) 

profile of the passage of spots or active regions (as in the figure) across the 

line of sight. If the star satisfies certain conditions on (a) the inclination 

of the rotation axis to the line of sight (angle i) and (b) the projected 

rotation velocity V sinz, we can work out the contribution of regions like .4 

to the total radiation. The contribution of A is Doppler-shifted over half a 

rotation (if A is the only active region we will see nothing over the next half 

period); moreover A produces lines and a continuum differing in intensity 

from those of the neighbouring photosphere. This is seen in the profile for 

the integrated disc of the star, as shown on the figure. The visibility function 

a is also shown as a function of the latitude of region A. 

This method was successfully used first for Ap stars, then for active 

solar-type stars, both for absorption lines (photosphere) and emission lines 

(chromosphere). This allows one to show that the layering which occurs in 

the Sun is also characteristic of stellar active regions, with plages above the 

spots. 

The complementary Zeeman-Doppler imaging method (Semel 1989; Do- 

nati et al. 1989) produces a two-dimensional map of the disc in the Stokes 

parameter V and has allowed the detection of magnetic regions in the active 
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component of the RS CVn binaries V711 Tau (HR 1099), II Peg, a2 Cr B, 

UX Aql. All these stars have V sin?! > 20 km s_1. 

7.5 Sources of Stellar Activity: Convection, Rotation, 

Primordial Fields (Empirical Aspects) 

7.5.1 Activity Indicators on the HR, Diagram 

Most of the stars we have mentioned up to now as being active have been 

solar-type; but we noted that X-ray emission is present in all spectral types, 

being particularly weak for spectral type A. Does solar-type activity extend 

right across the HR diagram? 

Stars with similar activity to that of the Sun are grouped along the main 

sequence from type F5 to M. Main-sequence stars from F5 to A7 are almost 

certainly similar to the Sun in their activity. At spectral type A7 the star 

a Aql (Altair, A/ V) shows intense emission in the Ly a line. Hotter dwarfs 

have no more Ca II A or Mg II k emission, nor emission in typical transition 

zone lines such as the A1550 line of C IV. 

Figure 7.16 gives an HR diagram. The shaded zone extending above 

the main sequence shows where evolved stars are probably active in a way 

similar to that of the Sun. This zone is abruptly terminated by a. division 

(Linsky and Haisch 1979), whose existence is established by UV and X-ray 

indicators. To the left of this line, and in all of the shaded area, stars have 

an ensemble of outer layers (chromosphere - transition zone - corona) like 

the Sun; if they have a wind, like the Sun, it is optically thin at the same 

wavelengths; it is therefore not seen spectroscopically. In contrast, to the 

right of this line, stars have only weak X-ray emission (the temperature of 

the emitting plasma is less than 100 000 K). There are no lines typical of 

the transition zone; moreover some lines (Mg II h and k) have blue-shifted 

components or asymmetries indicating ejection of matter in a wind which 

is optically thick in at least some lines, with a low temperature (~ 104 Iv, 

compared with the 106 Iv of the solar wind). The division thus marks a 

boundary for hot coronae and separates two types of wind regime. 

The existence of this division for solar-type giants (luminosity classes 

IV to II), is interpreted as the change in structure of coronal loops as the 

temperature and gravity decrease. Consider a corona made up of loops of 

height H and temperature T. A static model of the loop is given by equating 

the non-radiative energy supply E (heating) and the radiative losses (Rosner 

et al. 1978): E(Ne,T) = N^A(T), where the function A(T) has the form 

given in Fig. 2.9. Let Hp = kT/fig be the scaleheight at the apex of the 

loop. The energy equation of the loop has two classes of solution whose 

stability has been studied by Antiochos and Noci (1986): 
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Fig. 7.16. HR diagram (absolute visual magnitude - colour index) showing the regions 

where solar-type chromospheres are detected (Adapted from J.L. Linsky, Sol. Phys 100, 

333 (1985). Reproduced by kind permission of Ivluwer Academic Publishers) 

(a) A “hot loop” solution, which for given H and E implies a maxi¬ 

mum temperature Tm above 106 K and a quasi-isobaric loop. The hot-loop 

solution is only possible and stable if 6 = Hp(10I * * * 5)/H is much smaller 

than 1. 

(b) A “cold loop” solution, which retains hydrostatic equilibrium only 

if P and Ne decrease with height; in this case the energy equation is only 

satisfied if A(T) is an increasing function of T, requiring T < 105 Iv. This 

case occurs if 0 = 1. For low-gravity stars Hp varies as i?*, and if we assume 

that the height H of the loops varies as f?*, 6 grows linearly with f?*. As 

a result, without invoking any change in the nature of the heating across 

the Linsky-Haisch line, we can understand the absence of X-ray emission 
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to the right of the line: the coronal loops are filled with material which is 

cool (< 105 K) rather than hot (> 106 Iv). 

Pre-main-sequence stars (T Tauri stars and Herbig stars) do not appear 

on Fig. 7.16. Classical T Tauri stars and Herbig stars are very active, but 

differ from active solar-type stars in having a dense wind, with a terminal 

velocity of order 300 km s"1. The “weak-line” T Tauri stars are similar to 
active solar-type stars. 

Figure 7.17 gives an HR diagram with the same coordinates as the pre¬ 

vious figure, showing the stars detected by the Einstein satellite in the first 

survey. All spectral types on the main sequence are present, and we note 

the detection of some white dwarfs. This diagram gave the first plausible 

indication of the existence of X-ray emitting coronae around hot stars as 

well as around solar-type stars. This interpretation has however been dis¬ 

puted, and various production mechanisms for X-rays in instabilities and 

shocks in an otherwise cool wind have been proposed. However, we should 
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Fig.7.17. HR diagram (absolute magnitude - B — V index) showing the regions where 

X-ray emission has been detected. (From G.S. Vaiana et ah, Astrophys. J. 245, 163 

(1981). Reproduced by kind permission of The Astrophysical Journal, published by The 

University of Chicago Press; © 1981 The American Astronomical Society) 
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SPECTRAL TYPE 

Fig. 7.18. HR diagram (absolute visual magnitude - spectral type) showing the regions 

where radio emission is detected from stars. (From G. Dulk, in Advances in Space Re¬ 

search 6, 8 (1986) p. 96 (Pergamon), reproduced by kind permission of the Committee on 

Space Research - COSPAR) 

not neglect the possibility of magnetic activity in hot stars. Uchida (1986) 

assumed that there are types of activity on the main sequence according to 

the generation or just the maintenance of the magnetic field. For hot stars, 

whose ages (106—10' y) are less than the diffusion time td = AnaR^/c2 of 

the magnetic field (where a is the conductivity, R* the stellar radius, and c 

the velocity of light) the dynamo mechanism need not have a regenerative 

phase, unlike the solar-type case. 

Figure 7.18 is an HR diagram for stars detected in radio waves. What 

radiation mechanism should we appeal to here? Bremsstrahlung occurs in 

hot stars with fast dense winds and in cool giants and supergiants to the 

right of the Linsky-Haisch line. In O and B stars the radiation may also 

be non-therma.1 in origin; the magnetic field would then be the primordial 

field enclosed within the star. The star’s rotation stretches the fieldlines and 

makes them toroidal at the surface. The field is not regenerated, in contrast 

to what is thought essential in solar-type dynamos. There are several O and 

WR stars whose radio spectral index is not compatible with purely thermal 

emission. These observations support the suggestion of magnetically driven 

activity in hot stars. 
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7.5.2 Parameters Influencing Stellar Activity 

The Relation Between Activity Indices. We compare the luminosity in 

various activity indicators for active solar-type stars. We find 

-^Mgll ~ LCall (holds for all chromospheric lines), 

Lew ~ -^Call (holds for all transition zone lines), 
T T 3 '7 Lx ~ 

The same powei laws hold for the Sun when we correlate the observed 

luminosities simultaneously observed at different altitudes m either quiet 

or active regions. TCaII is a measure of chromospheric activity. As seen in 

Sect, i .4 Tcall in the Sun is proportional to in the photosphere. Assuming 

that the calibration of this relation is generally valid, there result empirical 

scaling laws between the activity indicators at various heights in the outer 

atmosphere and the photospheric magnetic field. These laws, which hold for 

dwarfs or giants of spectral types F to M, imply empirical constraints on 

the heating mechanism for the outer layers of these stars. 

The Relation Between Activity, Rotation, and Spectral Type. In con¬ 

trast to other stellar properties, activity does not depend simply on the 

effective temperature and gravity. It is well established that activity indi¬ 

cators strengthen as the rotation rate Q increases, saturating for the close 

W UMa binary systems. However, the activity indicators also depend on 

spectral type, strengthening towards later types. The mass decreases from 

1.5 Mq to 0.2 Mq as we go from F0 to M5 on the main sequence, with a 

continuous increase in the thickness D of the convection zone. At a mass 

of 0.2 Mq (M5) the star is fully convective. There have thus been efforts to 

correlate activity indicators with parameters describing both rotation and 

convection. We recall from Chap. 5 that, at least in solar-type stars, the 

magnetic field is thought to be generated by dynamo action, i.e. induction 

in a turbulent conducting fluid. 

A useful parameter is the Rossby number Ro, the ratio of the charac¬ 

teristic rotation time 1/1? to the convective turnover time rc = //R, where 

/ is, say, the mixing length and V a typical convection velocity. The Rossby 

number VI IQ or PTOt/rc is connected to the characteristic dynamo number 

Dy by Dy = Ro~2. In a — to models, Dy grows with the dynamo efficiency 

(Chap. 5). The intensity of the emission in the H and K lines of Ca II is well 

correlated with the Rossby number calculated at the base of the convection 

zone of solar-type stars, while the X-ray emission is correlated with an ef¬ 

fective Rossby number, defined at the depth of the maximum convection 

velocity (see Fig. 5.10). 

The stellar age also controls the activity level of stars, in that young stars 

show many intense signs of activity. However, it appears that age is a less 

important factor than rotation. This is demonstrated by the RS CVn bina¬ 

ries, in which one component is a sub-giant, usually rotating synchronously 
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with the orbit at a fairly high rate (< 10 d period). These stars are ex¬ 

tremely active, despite their age, being comparable to the T Tauri stars in 

activity. Moreover, the subdwarf HD 103095, which is an old star of low 

metallicity, shows a magnetic cycle of large amplitude, similar to that of the 

Sun. 
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8. The Last Stages of Stellar Evolution 

8.1 Minimum-Energy States 

The late stages of stellar evolution require special discussion, mainly because 

of the occurience of brief phases of rapid dynamical evolution. The reference 

objects for this discussion are stars in minimum-energy states: white dwarfs, 

neutron stars, and possibly black holes. The endpoints are reached once 

these objects have exhausted all their reserves of gravitational and nuclear 

energy and can radiate no more. 

In practice these objects are observed directly or indirectly by the ra¬ 

diation they emit, either in the last stages of their evolution, or in their 

interaction with their environments (binary systems). In the latter case 

the observable phenomena reflect either (a) the conversion of energy into 

radiation in the outer layers of these stars, involving processes in rarified 

media (cataclysmic variables) or (b) surface phenomena, occurring at opti¬ 

cal depths large enough to allow a treatment similar to that of the internal 

structure (gamma-ray bursts). 

It thus seems advisable to take as reference objects stars of minimum 

energy and zero temperature. 

There are two possible approaches. The first is to use the equation of 

state to find the (M,R) relation to order of magnitude, and deduce the 

main properties of these zero-temperature stars; the other is to solve ex¬ 

actly the hydrostatic-equilibrium equation to get the best (M, R) relation 

possible, and in particular the maximum masses of white dwarfs and neu¬ 

tron stars. The first method is useful in making clear the physics underlying 

the properties of dense and ultradense stars; the second method is of course 

indispensable for accurate comparison with observational data. 

8.2 The Physics of Minimum-Energy States 

8.2.1 The Equation of State (T = 0) 

We require the properties of the equation of state P = P(p) at zero tem¬ 

perature, now including effects neglected in Chap. 3. The equation of state 

of a degenerate electron gas (Fermi gas) has to be corrected for microscopic 

(mainly nuclear) effects and those of neutronisation and general relativity. 
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An ultrarelativistic gas of free particles of mass m has pressure P and 

internal energy U given by 

U = ~g(x) 
A3 

with the particle number density 

n 
8ttp3f x 

3 h3 3tt2A3 

and the usual definitions 

h 
A = 

me 

(the Compton wavelength) and 

PF 

me 

(with pf the Fermi momentum), as well as the expressions 

x + (1 + x1)1!2 f(x) = “X 1^(1 + x2)1/2 (^-1 ) + In 
>7f 

1 2 ^ 
lim f(x > 1) = ^ - xl + - In 2z ... J , 

ff(z) = ^2 {^C1 +a;2)1/2(1 + '2x2) -In (x + (1 + x2)1/2 | 

lim<7(x >> 1) = —- ( x4 + x2 — - In 2x ... 
47t2 V 2 

(8.1) 

(8.2) 

(5.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

These relations apply equally for free electrons and free neutrons. We 

will use them later to show the existence of a maximum mass for white 

dwarfs and neutron stars. 

As the density increases, the energy of electrons of momentum pp 

E = {p2Fc2 +m2ec4y/2 , (8.10) 

may become large enough to allow inverse ft reactions, electron captures of 

the form 

+ e —*z_^X + u. (8.11) 
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Table 8.1. Neutronisation thresholds 

Inverse /? reactions 
Neutronisation 

energy (a) 

(MeV) 

Density 

(g cm-3) 

i H -4- c —> q/7 4- v 0.782 1.22.107 

“S - rsP -> fiSi 1.710 1.47.10s 

26Fc - 25Mn - 24C1' 3.695 I.14.109 

uSi -> ()A1 _ ®Mo 4.643 1.97.109 

liMg - i)Na - fpNe 5.513 3.16.109 

fDNe - »F -> “O 7.026 6.21.109 

-» )hN - IX 10.419 1.90.1010 

IX - ’2B - ):Bc 13.370 3.90.1010 

2HC -► ,H + n —» 4 n 20.596 1.37.10" 

( ) After subtraction of the electron rest-mass energy. 

The opposite /3-decay reactions are forbidden because all the transla¬ 

tional electron states are occupied. The equilibrium is thus displaced to¬ 

wards the formation of neutron-rich elements, with a decrease in the elec¬ 

tron number. If Q is the energy requirement for the reaction (8.11), the 

required Fermi momentum is pF = (Q2 - m2ec4y/2/c. Equation (8.3) then 

gives the density at the capture threshold. 

A realistic study of degenerate electron capture by nuclei must take 

account of the chemical composition. Table 8.1 gives the neutronisation 

thresholds for the most abundant elements in the interior of white dwarfs, 

arranged in order of increasing density, and calculated from the capture 

threshold of an electron for an isolated nucleus. We shall see later the sig¬ 

nificance of these for white dwarfs. 

These capture thresholds do not suggest thermodynamic equilibrium 

between the electrons and nuclei. Thermodynamic equilibrium must be at¬ 

tained in the minimum-energy state: physically this can only occur in a 

zero-temperature medium through neutron-producing reactions of the type 

12C + 12C —> 23Na + n (8.12) 

or at high temperatures, where reactions of the type (p, e~, i/, n) can occur. 

In principle the study of minimum-energy states uses the following 

method. Let the mass of a nucleus containing Z protons and A — Z neu¬ 

trons be M(A, Z). If jin, n„, ne are the number densities of nuclei (A, Z), 

neutrons, and free electrons, the total energy per unit volume is 

U = n^/AL(A, Z)c2 + (Ue — nemec~) + Un + Ul , (8.13) 
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where Ui is the energy of the neutron lattice (which at absolute zero be¬ 

comes a centred cubic lattice), Un the energy of the neutron gas (including 

the rest-mass energy of the neutrons), and Ue the energy of the electron 

gas. Under the constraint of conservation of baryon number 

??.(baryons) = Ann + nn , (8.14) 

we have to minimise the energy, 

dU 

d(njn) ~ ’ 
(8.15) 

and, using the equation of state and the pressure of the Fermi gases, we find 

the Fermi energy of the free neutrons. 

Writing F'(neutrons), T(electrons) for the Fermi energies of the neutrons 

and electrons, we have 

F’(neutrons) = — l A1(A, Z)c2 -f Z (^electrons) — mec2) + — Z—— 
-A ^ o ne 

(8.16) 

We calculate F(neutrons) for each A and Z and a given baryon density. 

Conversely, to find the neutron-evaporation threshold for a given chemi¬ 

cal species we set ^(neutrons) = 0 and calculate ^(electrons), giving the 

density. Above this density free neutrons are captured and a new chemical 

species appears, until it too is superseded by a species richer in neutrons. 

Above a certain density neutron-rich nuclei can only exist in the presence 

of a free-neutron gas, the neutrons evaporating spontaneously from the nu¬ 

clei. Reactions of the type + 71 are forbidden if the free-neutron 

energy states are occupied. The medium then consists of nuclei surrounded 

by free electrons and free neutrons. 

The calculation of successive neutronisation states depends on the func¬ 

tion M(A,Z), extrapolated from known nuclei to neutron-rich nuclei. The 

results obtained differ slightly depending on the choice of the function 

Table 8.2. Equilibrium nuclei before neutron evaporation 

Nuclei P max (gent 3) Nuclei P max (gem-3) 

2(TC 8.1.10'’ H Ni 1.6.10" 

£Ni 2.7.108 2fc 1.8.10" 

28 Ni 1.2.109 {fMo 1.9. IX)" 

“Se 8.2.109 io2Z>- 2.7.10" 

”Ge 2.2.1010 '20or 3.7.10" 

SoZn 4.8.1010 ll«K- 4.3.10" 
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M(A, Z). Table 8.2 gives the values of the critical density pmax for a se¬ 

quence of neutron-rich nuclei (Baym, Pethick, and Sutherland 1971), above 

which a new nuclear species is in equilibrium with the medium. 

The ratio Z/A decreases along the sequence. 

Between the density (p = 4.3 x 10n g cm-3) at which neutron evapora¬ 

tion allows an equilibrium nuclei neutrons + electrons, and nuclear den¬ 

sity (p ~ 2.8 x 1014 g cm 3), the equation of state is fairly well understood. 

Above the latter, nucleon—nucleon interactions become very important and 

there is currently no agreement about what theory to adopt. 

8.2.2 The Equation of State for 0 

Supernovae are associated with the collapse of a star or stellar core of the 

order of one solar mass. The temperature increase associated with the col¬ 

lapse brings about an equilibrium nucleus nucleus' +n + e_, which de¬ 

termines the equation of state. The relaxation time for nuclear equilibrium 

is so short (10~"° s) compared with the collapse timescale (10-3 s) that we 

can regard the medium as being in local thermodynamic equilibrium and 

in a minimum-energy state at each instant. We note that the assumption 

of local thermodynamic equilibrium implies a different treatment according 

to whether we assume the medium opaque or transparent to neutrinos. In 

fact the medium becomes opaque to neutrinos at a density of a few times 

1011 g cm"3 (below nuclear densities) and for a stellar radius of 100 km 

(well before the end of the collapse). We shall return to this question later 

(p. 367). 

At finite temperature, and below nuclear densities, we have to consider 

the statistical equilibrium between various species of nuclei in the presence 

of a fluid of protons, neutrons, electrons, and alpha particles. El Eid and 

Hillebrandt (1980) considered an ensemble of 457 nuclear species, from Z = 
10 to Z = 32. The energy density of the mixture includes the contribution 

of all these species and that arising from nucleon-nucleon interactions. If n 
is the baryon number density, the pressure is found from the total energy 

density using the thermodynamic relation 

d(U/n) 

<9(1 /n) ' 
(8.17) 

Above the density (po/l0) (where p0 is the nuclear density) we have 

to take account of the interaction between the nucleus and the gas of free 

particles (protons and neutrons). The calculation requires a model of the 

nucleon-nucleon interaction and the Hartree-Fock potential acting on each 

particle. 

There have been two calculations: (a) using a liquid-drop model of the 

nucleus (Lamb, Lattimer, Pethick, and Ravenhall 1978); (b) using a periodic 

lattice, each cubic cell containing Z protons and (A — Z) neutrons (Bonche 

and Vautherin 1981), fixing the entropy per nucleon at (S/Ak) ~ 1. 
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Table 8.3. Atomic weight at very high density for S/Ak= 1 (from Bonche and Vau- 

therin) 

Temperature 

(MeV) 

P 

(MeV I'm ') 

Density 

(fm-1) 

Density 

(g cm ') A 

3.80 0.1357 0.02 3.3 ,1013 300 

4.35 0.1309 0.03 

O
 

o
 

IT) 400 

4.75 0.3356 0.04 6.7 ,1013 500 

5.00 0.4482 0.05 8.3 ,1013 600 

5.34 0.5655 0.06 1.0 ,1014 900 

5.53 0.6851 0.07 1.16.1014 1 000 

Very neutron-rich nuclei are produced (Table 8.3) where the density is 

given in fermi-3 or fm-3, 1 fm = 10-13 cm). Once the density reaches one 

half of the nuclear value, neutron-rich nuclei are replaced by bubbles full of 

free neutrons and protons, while the bound neutrons and protons collect on 

the walls and edges of the cubic lattice. 

For a certain value of the density (depending on the temperature) there is 

a. phase transition to a single homogeneous phase, well represented by a Saha 

equation with a binding energy of 16 MeV per nucleon for the dense phase 

(in the lower-density domain). In the higher-density domain, the transition 

occurs when the nuclei touch (nuclear density). The boundary is indepen¬ 

dent of the temperature since the nucleons form a degenerate gas whose 

Fermi energy is about 60 MeV per nucleon, well above the temperature of 

the medhim (Fig. 8.1). 

It is very difficult to establish the equation of state above nuclear densi¬ 

ties. An essential property is that the sound speed should be less than the 

speed of light. The relation dP/dp < c2 implies the upper limit P = pc2, 

Fig. 8.1. Phase diagram for dense 

matter. The region of bound nuclei 

is limited on one side by high tem¬ 

peratures and on the other by high 

densities (above nuclear density) 
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which we shall use later. Once neutrinos are trapped in dense matter, the 

equation of state should include the pressure of their Fermi gas. 

8.2.3 Maximum Mass of White Dwarfs 

Relativistic Effects. A very simple argument based on a uniform-density 

model allows us to estimate the general-relativistic correction. 

For a sphere of radius R containing N nucleons of atomic weight A and 

charge Z the baryon mass is 

Mb = N Amv , (8.18) 

where mu is the atomic mass unit 1.66 x 10~24 g, and the electron number 

density is given by 

|7rR3A^e = N(Z/A). 

The total energy is then 

jtt 3 GM2 , r 2 4 , 
W = -5 — +MBc* + rR>U'. 

We must include the electron energy in the gravitational mass: 

H - , 4 ttR3 Ue 

(8.19) 

(8.20) 

(8.21) 

and we then have 

W 
3 G 

5 R 
(^Mb + 

4 

3 

7rR3Ue\2 

c2 ) 
+ Mbc2 + —7rR3Ue . 

o 
(8.22) 

We have to find the minimum of W. Differentiating with respect to 

R, using the relation between R and x (8.3, 19), we obtain a relation 

Mb = Mb(x). The maximum mass occurs for dMs/dx = 0. To a first 

approximation, the mass is given by Chandrasekhar’s limiting value 

Mb ch = (8.23) 

where mu is the mass unit, so that Mb — 1.5 M©. The value of x = pp/mec 
is 

4 A mu\ 1//3 

3 Z me ) 
(8.24) 

where x ~ 17; the corresponding density is p = 9.48 x 109 g cm 3; the 

radius is 
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1/2 
1 

(8.25) 
(m^me)2/3 ’ 

or about 440 km (about one half of the exact result). The relativistic cor¬ 

rection gives 

Mbgr = Mb ch ^1 - 1.5-^) (8.26) 

amounting to a correction of 1.5%. 

The exact calculation uses the hydrostatic-equilibrium equation in gen¬ 

eral relativity; in spherical coordinates these are the Oppenheimer-Volkoff 

equations: 

dm 9 
—— = 47rr 
dr 

P, (8.27) 

dP 

dr 

47rPr3 

me2 

2GM \ ~1 

rc2 ) 
(8.28) 

and the condition on the metric is easily satisfied at the surface. Approx¬ 

imating the solution as an n = 3 polytrope we can calculate the inter¬ 

nal energy, the gravitational energy, and the general-relativistic correction. 

Writing 

p = Ayr, 

for I\ constant we find (see Appendix) 

Pint = AM plJ3 + CMp,~1/3, 

£grav = -BM^pl'3 , 

A Erg = - DM7'3p2J3. 

with 

A = kxK, B = k2G, 

c = u m'c3 n - h — 
3 ti(pem.u)2/:i ’ '4 c2 

and 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

k\ = 1.75579, A'2 = 0.63900, 

= 0.519723 , k4 = 0.918294, 

where these values come from assuming the density distribution is given to 

a first approximation by an n = 3 poly trope. We thus find the mass, radius, 

and critical density, including the relativistic correction: 
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1 363 1 364 1 365 I 366 M/AfQ 

Fig. 8.2. Mass—radius relation for carbon—oxygen white dwarfs of homogeneous chemical 

composition. The inverse beta-decay instability is reached before the relativistic insta¬ 

bility for carbon concentrations less than 0.94. f) denotes the point where the electron- 

capture instability appears, and GR the appearance of the general-relativistic instability 

Merit - 1.457 (pe/2)-2 (l 15.7 Mq , (8.34) 

Rent ~ 108 cm , (8.35) 

* = = 2-646 gem"’, (8.36) 

where pe = A/Z. The relativistic correction to the mass is 0.034. 

Nuclear Effects (Beta Captures). The capture of electrons by nuclei re¬ 

duces the central electron pressure. This capture occurs in oxygen for a 

density below the critical relativistic density (pc (oxygen) = 1.90 x 1010 g 

cm-3), while in carbon and helium it occurs above above the critical den¬ 

sity (pc(carbon) = 3.90 x 1010 g cm-3; pc(helium) = 1.37 x 1011 g cm-3) 

(Table 8.1). Figure 8.2 give the mass-radius relations for white dwarfs of 

different chemical composition. For a carbon white dwarf one has to reach 

a carbon concentration JY(12C) = 0.94, so that the unstable branch begins 

at the relativistic critical mass. For a pure-oxygen white dwarf the unstable 

branch begins before the critical relativistic mass is reached. In other words, 

an oxygen-rich white dwarf whose mass grows by accretion can become un¬ 

stable before reaching the relativistic mass. 

Pycnonuclear Reactions. The possibility of pycnonuclear reactions (see 

Chap. 3) imposes constraints on the chemical composition of white dwarfs. 

The reaction time for a pure carbon white dwarf is, from Van Horn and 

Salpeter (1969) 
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with (8.37) r = 2.5 x 10“46A~7/4 exp(2.64A~1/2), 

1/3 

Z1 pe 1.36 x 10ngcm' 
(8.38) 

This time reaches 1017 s (3 billion years) for p ~ 1010 g cm"3. This central 

density is reached for white dwarfs of about 1.3 M®. We conclude that 

carbon-rich white dwarfs cannot have masses above about 1.3 M®. 

8.2.4 The Maximum Mass of Neutron Stars 

Use of an Approximate Equation of State. The maximum-mass problem 

for neutron stars is more difficult, because we do not know the exact equa¬ 

tion of state of ultradense matter above nuclear densities. 

The essential constraint that the sound speed should be less than that 

of light allows an estimate of the maximum mass of a neutron star. The 

assumptions are 

— The equilibrium is represented by the Oppenheimer-Volkoff equa¬ 

tions. 

— The pressure is an increasing function of the density. This is a con¬ 

straint of microscopic stability, since there can be no small condensations 

of matter. 

— The causality condition is written 

— We refer the equation of state to a density po for which the pressure 

is known. 

A plausible assumption is 

P = Po + (p - po)c2 p>po (8.39) 

with po = 4.6 x 1014 g cm"3 and P0 = 7 x 1033 dyne cm"2 (Rhoades 

and Ruffini 1974). With this pressure-density relation we can estimate the 

maximum mass. The gravitating mass includes the baryons and their kinetic 

energy. If e = pc2 is the energy density, n the baryon number density and 

P the pressure, the adiabatic assumption leads to 

d(^r)+Pd0i)=o’ ■ (8-40> 

giving 

dp p + P/c2 

d^ = n ' (S'41) 

346 



We look for an approximate solution of the form p = constant. Then the 
mass is 

M 
fR i 4 

= An pr2dr = -7ri?3 p 
Jo 3 

(8.42) 

and the total baryon number (here with G = c = 1) is 

. fR nr2 dr 
A = An - 

Jo {l-2m(r)/rY 

znn 
Snp 

3/2 

i(?')/r)1/2 

(X ~ sin y cos x), (8.43) 

where siny, defined by (S.44), is the ratio of the Schwarzschild radius to 

the radius of the star: 

sin x 
'Snp' 

1/2 

R 
'2 A/' 

1/2 

(8.44) 

(with G = c = 1). 

The equilibrium configuration is reached when the energy is a minimum 

at constant baryon number, i.e. 

dM 

~dx 
= 0. (8.45) 

We differentiate (8.42), (8.43), and (8.44) with respect to y. Eliminating 

dn/dy, and dp/dy using (8.41) gives 

^ _ ,f..\ _ 6 cos y 
] C(x) n n . 3 /, . \ pj 9cosy —2sm y/(y — siny cos y) 

- 1 . (8.46) 

For a given relation p(n) we can then calculate R(y) and M(y). The latter 

is a function of y with a maximum at y = ym. For y < ym the stability 

condition is 

fd2M\ 

\~dx^)A-° 
(8.47; 

at constant baryon number. The maximum mass at y = ym is given by the 

vanishing of the second derivative in (8.47). 

We can write (8.47) in the form 

r > rcrit(y), 

where 

r <9 In P 
d In n 

p \ dP 

1 + ?)d5 

(8.48) 

(8.49) 

347 



and 

-^crit — (C + 1) S 1 + 3C + 1 (C±l 
2 V 6( 

tan x — 1 

The limiting mass is given by dP/dp = 1, and 

r _ n dP 
P dn 

1 \ dP 

+ P/p) &P ’ 

so that for this mass 

(8.50) 

(8.51) 

r = i + 

implying 

(P/p) 

— r . 
— -*■ crit i 

i = c (i + A±i (T+han2x -1' 

(8.52) 

V 2 V 6C / , 

This condition is satisfied for ( = 0.364, x = 1.12, M/R = 0.405 and 

(8.53) 

Afmax ~ 3.6M0 . (8.54) 

With more realistic equations of state we find maximum masses between 

1.5 and 2.7 M0. As an example, the equations of state of Bethe and Johnson 

and of Friedman and Pandharipande give the respective results 

Mmax = 1.85M0 , R = 9.8km, GM/Rc2 = 0.28, 

Mmax = 1.93Mq , R = 9.4 km , GM/Rc2 = 0.305 . 

Any compact object with a mass above about 3 Mq is a black-hole can¬ 

didate. 

Neutron-Star Masses: Observations. There are two sources of information 

on neutron-star masses, corresponding to two types of binary: (a) X-ray 

binaries, and (b) binary pulsars. 

For X-ray binaries we have the standard case of a spectroscopic binary. 

If we can measure the period P and the radial velocity amplitudes of both 

components, vx and v0, we have the mass functions 

_ (M0 sin i)3 Pvy 

fx ~ (Mx + M0)2 = 2jtG ' 

_ (Mx sin z)3 _ Pvq 

/0 ~ (Mx + Mo)2 ~ 2nG ’ 

giving the mass ratio 

_ Mx _ vo_ 

q Mo vx 

(8.55) 

(8.56) 
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and the mass of the X-ray component 

Mx = 
/.yg(l + qf 

• 3 • 
sm i (8.57) 

The mass determination depends on finding sin*. This can be estimated 

from the eclipse duration or the light-curve form. In the latter case the 

estimate is crude. 

For binary pulsars the data come from the measurement of the pulse 

arrival times. In the case of PSR 1913+16 for example, we have only one 

mass function, since the companion is a dense object which is not directly 

observable. However, the very small separation of the components gives rise 

to measurable relativistic effects such as periastron advance, giving more 

information and allowing one to calculate the masses of both components 

-Tfpuisar = 1.41 ± 0.06 Mq, MCOmpanjon = 1.41 ± 0.06 M©. The period of PSR 

1913+16 is 59 ms, the orbital period is 27.906 s, and the periastron advance 

is 4.22 degrees per year. 

Figure S.3 summarises the present data on neutron-star masses. The 

masses are all less than the maximum mass; they are compatible with the 

masses found in models of neutron-star formation in supernova explosions 

(see Sect. 8.5). They are also close to the maximum mass found using more 

realistic equations of state. 

These methods do not apply to low-mass X-ray binaries, which in gen¬ 

eral do not pulse; they do not apply to binaries containing a black-hole 

candidate, such as Cyg X-l, LMC X-3, and A0620-00. The first two are 

massive systems, and the mass limit for the companion is deduced from an 

Fig. 8.3. Summary of observa tional data 

for neutron-star masses (X-ray bina¬ 

ries, binary pulsar). The abscissa gives 

the mass and the ordinate the vari¬ 

ous stars for which the mass has been 

measured. The horizontal lines are the 

error bars. The vertical dotted region 

shows the mass range deduced from 

various production scenarios for neu¬ 

tron stars 
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assumption about the mass-luminosity relation of the visible companion; 

the third is a low-mass system with period 7.7 hours. In this case the mass 

function of the invisible star is already 3.2 Mq, giving a lower limit to the 

mass of the dense star. 

8.3 White Dwarfs 

8.3.1 Properties 

Spectral Types. The various spectral types of white dwarf indicate differ¬ 

ences of internal structure. Two main classes are known, the DA, charac¬ 

terised by the presence of hydrogen in their spectra, and the DB, charac¬ 

terised by helium, and sometimes showing traces of metals or the A 4670 

band of C2. The DB sequence extends to low temperatures to a class of 

stars without spectral lines at all. From their continua they are classified as 

DC stars. At high temperatures the stars are classified as DO, by analogy 

with 0 stars. 

The temperature scale is established using model atmospheres of pure 

hydrogen or helium. DA temperatures go from 7000 Iv to 30 000 Iv. Lines of 

neutral helium (He I) are seen in the DB stars from 12 000 Iv to 30 000 Iv. 

The DA are helium-poor (He/H < 10 3). In contrast, the hvdrogen 

abundance is very low in DB stars (He/H > 105). Hydrogen has been found 

in some DB stars, called DBA stars, with He/H ~ 3-10 x 103. 

The masses of the DA stars are of the order of 0.6 to 0.8 Mq, while the 

DB stars have masses of the order of 0.3 M0. 

The DA and DB white dwarfs appear to have different origins and to 

have been formed in these two types respectively. About 15% of white 

dwarfs are of DB type or its variants such as DC. Their velocity distribution 

suggests that white dwarfs belong to an intermediate or old population. A 

small fraction come from population I stars, implying that less than 50 % of 

white dwarfs come from stars with mass larger than 1.5M0, i.e. with ages 

less than 3 billion years. 

Gravitational Separation. The differences in chemical composition be¬ 

tween the DA and DB stars appear to be associated with their different 

origins. The existence of hot (up to 40 000 Iv) helium stars shows that, as 

for the DA stars, we are dealing with a continuous cooling sequence of stars. 

The absence of helium in the DA stars and the low abundance of metals 

and carbon in the DB stars are caused by gravitational settling. The effect 

of settling appears when we require that in equilibrium the diffusion velocity 

should vanish (see Sect. 5.5.4). In isothermal equilibrium the contribution of 

the term VT is zero. In statistical equilibrium the mixing height depends a 

little on the degree of degeneracy. Once settling of hydrogen and other ions 

has occurred, the difference in the ratios A/Z[(A/Z)H = 1 ;(A/Z)ion ~ 2] 
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means that the mixing height is always of the order of the scaleheight of the 

ions and small compared with the the pressure scaleheight, and thus small 

compared with the star’s radius. 

When settling of helium and other ions occurs the situation is very dif¬ 

ferent depending on whether the medium is degenerate or not. In a non- 

degenerate or weakly degenerate medium the mixing height is smaller than 

the pressure scaleheight but of the same order; in contrast, in a strongly de¬ 

generate medium the mixing height grows with the degeneracy parameter 

A, given by 

In A = ( 
2/3 

V s nemH, 
(h2/2irmekT) 

= 3.094 x 105 
1 

T ’ 

once Ai/Zi — A2/Z2 is zero. This is caused by the decoupling of the electron 

and ion pressure gradients in strongly degenerate conditions. If the charge 

per unit mass is the same for all ions there is no settling at all. 

DA white dwarfs, with hydrogen envelopes, allow very efficient settling 

between hydrogen and the other elements. By contrast, in DB white dwarfs 

the helium envelopes favours less efficient settling. 

Structure. Immediately below the surface radiative zone, at very small 

optical depth (r < 0.1) there is a convection zone, which may extend down 

to layers of quite high temperature. For decreasing surface temperatures 

convection appears in DA stars at Tefr ~ 16 500 K and in DB stars at 

50 000 K. 

As a star with a helium envelope cools, the convection zone becomes 

deeper. We might suppose that metals would appear at the surface once 

the convection zone became deep enough to dredge them up. However, the 

timescale for gravitational separation is so short compared with the cooling 

time that settling has stopped by the time the convection zone reaches deep 

layers. The metals therefore cannot be dredged up to the surface. Metals 

may be added by accretion. This idea meets some difficulties, and at present 

there is no fully satisfying theory of the presence of metals in DB spectra. 

8.3.2 Evolution and Cooling 

Cooling. We have already seen (Sect. 3.4.5) that the energy source for 

white dwarfs is their thermal energy. We assume (as is indeed very plausi¬ 

ble) that white dwarfs are formed as a result of a planetary nebula in which 

a star of initial mass less than 6-8 Mq is reduced to a degenerate core of 

temperature > 108 K in which nuclear reactions have stopped. This core 

then evolves by radiating its thermal content, at first rapidly via neutrino 

emission, then more and more slowly by radiative transfer through a thin 
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non-degenerate envelope. After about 105 y the matter ejected by the cen¬ 

tral star of the planetary nebula has dispersed enough to be undetectable, 

and the object passes from the planetary-nebula, nucleus stage to the white- 

dwarf stage. The star follows a line of constant radius in the HR diagram 

and its luminosity decreases over 1010 y to about log(L/Lq) ~ —4.5. 

Luminosity Function. Study of white-dwarf cooling allows us to construct 

a theoretical luminosity function, i.e. the number of white dwarfs per unit 

volume (of the galactic disc) and per interval of bolometric magnitude. 

Because they outnumber all the others, we calculate the luminosity function 

for 0.6 Mq white dwarfs. 

While the white-dwarf plasma remains liquid we can use the relation 

found in Sect. 3.4.5, 

(\T 
L ~ T3 5 ~ VvMwd~^t i (8.58) 

giving the luminosity function $ ~ (|dlogZ/dt|)_1 ~ Z-5/7. In the 

(log Z, log $) representation the luminosity function is a straight line of slope 

—5/7, which agrees roughly with observations of the brighter white dwarfs 

(Fig. 8.4). 

To do better than this requires a more detailed model of the outer layers 

and estimates of the electrostatic energy’s contribution to the specific heat, 

the latent heat of crystallisation, and the change of specific heat when the 

temperature of the central regions falls below the Debye temperature. In 

this last phase the specific heat is lower (it deceases as T3), accelerating the 

cooling and flattening the luminosity function (Fig. 8.4, for log(Z/ZQ) ~ 

-2.5). 

- 1 -2 -3 -4 -5 

log (L/L0) 

Fig. 8.4. White-dwarf luminosity function (from the data of Winget et al. Ap. J. 315, L77 

(1987)) and the theoretical relation L~6/7 for cooling of a liquid plasma (log-log scale). 

For bright white dwarfs, neutrino cooling puts the observational points below the line; 

for faint white dwarfs the decreased heat content flattens the distribution below the line 
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The observed luminosity function uses the relation between visual and 

bolometric magnitudes. The latest results on white-dwarf bolometric correc¬ 

tions make log(T/Z,0) = -4.5 correspond to visual magnitude My = 15.7. 

Assuming that white-dwarf number counts are correct to this magnitude, 

there appears to be an abrupt decrease of the luminosity function, with a 

total absence of white dwarfs of luminosity less than log(L/L0) = -4.5. 

But for this luminosity, and a mass of 0.6 M0, present theory gives an age 

of 9 x 109 y, much less than the ages of globular clusters (1.8 x 1010 y). This 

difference raises several questions. 

(a) Is the physics of white-dwarf interiors understood? Is there an¬ 

other energy source which would increase the lifetime of white dwarfs with 

l°g(L/Lq) = —4.5 by about 5 billion years? 

(b) Are the white-dwarf number counts complete? All of those counted 

are nearby, so are we correctly accounting for their galactic distribution, 

paiticularly as the scaleheight. perpendicular to the galactic plane increases 

with the age of the population? 

(c) Is the ratio of white-dwarf formation to stellar births independent of 
time? 

8.3.3 White Dwarfs in Binaries 

The presence of white dwarfs in many binaries introduces the physics of the 

interaction of the white dwarf with a companion. The main phenomenon is 

accretion from this star on to the white dwarf. Depending on the chemical 

composition of the white dwarf and the accreted material as well as the 

accietion rate, a great variety of phenomena can occur: cataclysmic vari¬ 

ables, novae, type I supernovae, and possibly the formation of at least some 

pulsars. 

The designation cataclysmic variable is applied to a wide variety of stars 

which show abrupt increases in brightness at irregular intervals. This group 

includes the novae, dwarf novae, and recurrent novae. Typical novae are also 

probably recurrent, but at intervals of the order of 105 y; recurrent novae 

have outbursts separated by a few decades, and dwarf novae (U Gem or SS 

Cyg type) have weaker outbursts (a few magnitudes) at intervals of weeks. 

The physical processes involved are very different, typical nova explosions 

being thermonuclear in origin, while dwarf-nova outbursts are caused by the 

production of a shock wave due to an increase in the rate of accretion on to 

the white dwarf of matter originating on the companion. 

We note here an important property of the orbital periods of cata¬ 

clysmic variables, namely the lack of systems with periods between two 

and three hours, and the absence of systems with periods less than 80 

minutes. Long-period systems are characterised by electromagnetic angular- 

momentum losses (possibly of the type described for single stars in Sect. 5.5). 

These losses shrink the binary orbit and thus cause mass to be transferred 

from the companion to the white dwarf. At a period of about 3 hours, 
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the companion (which fills its Roche lobe) has a period of about 0.3 Mq 

and becomes fully convective. The currently favoured hypothesis is that the 

angular-momentum losses are then severely reduced, and with them the 

mass transfer and the variability. 

We shall describe here only some results relevant to the study of accretion 

on to a white dwarf and the production of thermonuclear explosions in 

novae. 

Accretion on to White Dwarfs. We describe the physics of the process. 

The accreted matter contracts gravitationally, which raises the temperature. 

Energy is transported outwards by radiation and inwards by conduction. 

Nuclear burning of hydrogen (usually the main constituent of the accreted 

material) begins and becomes significant once the temperature at the base 

of the accreted layer exceeds 10' I\. The situation then depends on the 

accretion rate. 

(a) For the lowest accretion rates, contraction is slow and nuclear reac¬ 

tions are late in appearing. The accumulated mass is enough to make the 

material partially degenerate, so that hydrogen burning is explosive. This 

leads to the ejection of the accreted envelope: this is the nova phenomenon. 

(b) For intermediate accretion rates nuclear flashes are more frequent 

but weaker. 

(c) High accretion rates allow stable hydrogen burning at the rate the 

material accretes. The star becomes a red giant. 

(d) There is a limiting accretion rate at which the gravitational 

energy release produces enough radiation pressure to balance the weight 

of the accreting material. If the accreting layer is optically thin this 

corresponds to the Eddington luminosity TecM = 4-7TcGMwd/where 

Mwd is the mass of the white dwarf. If the opacity is due to Thom¬ 

son scattering, TEdd = 1-4 x 1038M\vd and the limiting accretion rate is 

M = 10~3(Rwd/Rq) Mq y-1. 

The critical accretion rate above which the star becomes a red giant can 

be found by comparing the growth rate of the degenerate core by accretion 

with the growth rate of the degenerate core of a red giant with hydrogen 

shell burning, 

d M \ L // 

/ RG Xe£H 
(8.59) 

where Xe is the hydrogen concentration of the envelope, and eh = 6 x 1018 

erg g_1 is the energy yield per unit mass of hydrogen. With, the interpolation 

formula 

L = 5 x 104 (M - |) Lq 

we get, identifying L and Lr, 

(8.60) 
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Fig. 8.5. Modes of hydrogen shell burning as a function of accretion rate Mfj of hydrogen- 

rich material. In descending order we find the Eddington limit, the formation of a red 

giant envelope, the region of weak flashes, and the domain of slow and fast novae. A A/// 

is the mass of hydrogen-rich matter accreted at the point of ignition of hydrogen 

6.75 x 10 ' (Mwd — 0.5)Mg/year. (8.61) 

We call Mrg the critical accretion rate for the transition to the red-giant 

state. It seems that accretion is stable in the range 0A-1MRG, flashes oc¬ 

curring at lower accretion rates. Figure 8.5 gives the various regimes in the 

(Mwd-, M) plane; for the flash regime the mass of hydrogen accreted at the 

point of ignition is given (implying the time interval between flashes). 

Novae. Novae are characterised not only by energy production but also by 

the ejection of matter. The transition from the cataclysmic-variable state 

to a nova requires enough thermonuclear energy to produce the ejection at 

velocities of several hundreds to a thousand km s-1 (slow and fast novae 

respectively). 

For carbon-oxygen white dwarfs the efficiency of thermonuclear reac¬ 

tions depends on the CNO concentration of the accreted matter. Rapid 

novae can only occur in CNO-rich accreted matter. The ejection condition 
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Table 8.4. Abundances in some novae 

Year H He C N O Ne 

RR Pic 1925 0.53 0.43 0.0039 0.022 0.0058 0.011 

HR Del 1967 0.45 0.48 0.027 0.047 0.0030 

T Aur 1891 0.47 0.40 0.079 0.051 

V 1500 Cyg 1975 0.49 0.21 0.070 0.075 0.13 0.023 

V 1668 Cyg 1978 0.45 0.23 0.047 0.14 0.13 0.068 

V 693 Cr A 1981 0.29 0.32 0.0046 0.080 0.12 0.17 

DQ Her 1934 0.34 0.095 0.045 0.23 0.29 

V 1370 Aql 1982 0.053 0.005 0.031 0.095 0.061 0.47 

is satisfied once the pressure at the base of the accreted mass exceeds a 

critical value. For Z(CNO) = 0.507, we require 

P 
G%pMflMh 

4 ^Rwd 
> 2 x 1019 dyne cm 2 , (8.62) 

where A7flash is the accreted mass. The regions of slow and fast novae are 

shown in Fig. 8.5. 

A significant fraction of white dwarfs among cataclysmic variables are 

rich in neon, as is shown by the analysis of the chemical composition of the 

ejecta (Table 8.4). This neon cannot have been produced by the thermonu¬ 

clear reactions involved in the explosion; it must have been present in the 

white dwarf, turbulent mixing in the explosion carrying some of the white 

dwarf material off with the ejecta. 

8.3.4 Supernovae and White Dwarfs 

Classification. Several hundred supernovae have been observed in other 

galaxies. They are classified as SN II or SN I depending on the presence 

or absence of hydrogen lines. The frequency of SN I and SN II depends on 

the type of galaxy, and even on the position within the galaxy. Tammann’s 

statistics (Table 8.5) lead to the following conclusions: 

Table 8.5. Supernova rate (per century and 1OIOM0) (Tammann 1982) 

Type of galaxy All SN SN 1 SN II 

E 0.22 0.22 0 

SO 0.12 0.12 0 
SOa Sa 0.28 0.28 0 

Sab Sb 0.69 0.37 0.32 

SBc Sc Scd Sd 1.38 0.77 0.61 

Sdin Sm lm 1.02 0.83 0.19 
10 not determined 
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(a) SN I occur in all galaxies. 

(b) The SN I rate is higher for elliptical and late-type spiral galaxies. 

(c) SN II occur only in Sab galaxies. 

(d) The SN I and SN II rates are comparable in the most numerous group 

of spirals, i.e. Sbc, Sc, Scd, Sd. 

SN II aie thus clearly associated with the young population of galaxies. 

Conversely, the SN I come mostly from older stars. More exactly, SN II are 

located in spiral arms and correlated with neutral hydrogen. In constrast 

the SN I are associated neither with spiral arms nor hydrogen. 

Both the SN I and SN II classes can be subdivided, implying a dispersion 

in the properties of the progenitor stars. SO % of the SN I form a homoge¬ 

neous group, the SN la, with remarkably similar light curves. The others 

differ in spectral characteristics and could have more massive progenitors, 

rather like the SN II. 

The significance of Tammann’s statistics may be altered by the recent 

suggestion of a correlation between SN II and bursts of star formation. 

The Spectra of SN la. The spectra of SN la are remarkably uniform. They 

evolve in time in such a predictable way that the age of an SN la. can be found 

by comparing it with a well-observed SN la, such as SN 1972E in NGC 5253. 

The essential feature of SN I spectra is the almost total absence of hydrogen 

lines. Near maximum light the energy distribution in the spectrum is well 

represented by a fairly cool continuum (about 15 000 Iv), corresponding to a 

photospheric radius of 1015; the expansion velocity is about 11 000 km s-1. 

The light curve is characterised by a very rapid rise to a luminosity of 

1043 erg s_1. During this phase most of the light comes from the continu¬ 

ous spectum. As the expansion proceeds the photosphere cools rapidly and 

the luminosity falls to 1042 erg s-1 in a month. From then on the light 

curve shows a slow exponential decline with a timescale of about 60 days, 

which can last up to 700 days after maximum light. During this luminosity 

decrease the continuous spectrum continues to weaken and disappears, and 

the spectrum is dominated by broad emission bands. Model-atmosphere cal¬ 

culations well reproduce the observed bands, which seem to be due mainly 

to groups of iron lines (Fe+ and Fe++). Near maximum, by contrast these 

lines appear in absorption (Fig. 8.6). 

This result agrees very well with the theory of energy production in SN 

I through the radioactive decay 56Ni —> 56Co —* 56Fe with decay times 6 

and 77 days respectively. The production of 56Ni during the collapse of a 

white dwarf (see below) appears very plausible since this nucleus is tightly 

bound and stable in the presence of dense degenerate electron gas. The f3 
radioactivity of 56Co contributes to the luminosity maximum, but mainly 

heats the expanding gas and the electrons exciting the emission lines. 

The standard model of the SN I starts with a carbon-oxygen white dwarf 

in a binary system with an accretion rate sufficiently great as to ensure that 
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Fig. 8.6. Top: the spectrum of SN I 1981, in NGC 4536, 17 days after maximum light 

(McDonald Observatory). Below: a synthetic spectrum with Teff = 8000 K, v = 

11 000 km s-1, with visual extinction Ay = 0.3. The crossed circles indicate telluric 

lines. (From D. Branch, in Supernovae: a Survey of Current Research, ed. by M.J. Rees 

and R.J. Stoneham, Reidel 1982, p.271. Reproduced by kind permission of Kluwer Aca¬ 

demic Publishers) 

its mass grows to the Chandrasekhar limit. The details of this phase have 

been calculated rather precisely for some cases. Given a 1 Mq white dwarf 

with internal temperature 3 x 10' K, an accretion rate of 4 x 10~8 Mq y-1 

causes a series of flashes accompanied by the growth of a helium layer at the 

rate Mpje ■ The white dwarf contracts and the nuclear reaction rate, initially 

negligible, grows progressively. 

The energy ecc liberated by carbon burning is at first removed by 

neutrino losses until the ignition line defined by Ecc = is crossed. 

Thermal instability appears before gravitational instability, the mass of the 

white dwarf being M\vd = 1.378 M@, with central density and temperature 

2.6 xlO9 g cm-3 and 3xl08 Iv. The overpressure resulting from nuclear burn¬ 

ing is only a few percent because of the strong degeneracy of the medium. 

A detonation wave cannot occur, but a deflagration wave appears, with a 

propagation velocity of the order of (K/Ctj1/2, where K/C is the thermal 

diffusivity and r the characteristic time of the nuclear reactions. 

It is important to know what type of remnant is left after the SN I 

explosion. According to some models, all of the star disperses, ejecting about 

0.6 Mq of 56Ni. In other models the deflagration wave is slow enough to allow 

time for beta captures to occur followed by the collapse of the core and the 

production of a neutron star of between 0.4 and 0.6 Mq. 

The mass of nickel ejected is directly related to the luminosity radiated 

by a type I supernova. Branch (1982) proposed the relation 

H0 = 4Q(Mni/Mq)~ 1 /2 kms-1 Mpc-1 
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between the Hubble constant (defined from the distance modulus of SN I) 

and the nickel mass, suggesting a nickel mass of the order of 0.25 M©. 

In our Galaxy the iron abundance is a test of the amount of 56Ni ejected 

by SN I. The amount of iron produced in massive stars gives an upper limit 

to the amount of iron ejected by SN I (one event per century) of about 

0.2 M© per explosion. 

A Critique of SN I Models. We have still to check whether the scenarios 

suggested above are in fact realised. This depends on the population of white 

dwarfs in the various regions of the (-A/wo, Af^e) plane, where Mfje is the 

average net rate of mass increase resulting from accretion and mass loss in 

recurrent nova explosions. The distribution function of masses in binaries 

containing white dwarfs has a maximum at AfwD — 1 A/©, higher than for 

isolated white dwarfs (two maxima, at 0.6 - 0.7 M© and 0.2 - 0.3 M0). The 

mass distribution is poorly known at higher masses. The rate of explosive 

collapses, which occur only for Mwd ~ 1.2 M©, may be much smaller than 

the SN I frequency. 

We examine systematically the accretion regimes for white dwarfs in 

binaries. 

(a) For systems consisting of a white dwarf and a red giant or an AGB 

star filling its Roche lobe, mass transfer occurs on a dynamical timescale 

and leads to the formation of a common envelope which is ultimately lost 

by the system, except for the case AIwd > 1-3 A/©. Accretion on to a white 

dwarf is possible only in the latter case, considerably reducing the frequency 

of this scenario, to the order of 1/100 of the observed SN I frequency in the 

Galaxy. 

(b) In systems consisting of a white dwarf and an AGB star, but where 

accretion occurs via a stellar wind, it is possible to produce SN I, but with 

the requirement of efficient capture (M//e > M/3). This condition has not 

been verified. 

(c) In cataclysmic variables, consisting of a white dwarf and a main- 

sequence star, it is unclear if the mass increases at all for M < 10~8 M© y-1. 

Systems with higher accretion rates may not be very common. 

A possible variant is the following scenario. In binaries consisting of two 

white dwarfs, gravitational radiation decreases the separation of the stars 

on a timescale of 1010 y for an initial separation of 37?©. Ultimately the less 

massive of the two white dwarfs fills its Roche lobe, leading to coalescence 

of the two white dwarfs on a dynamical timescale. If the total mass is large 

enough this may produce an SN I, but not necessarily. However, this depends 

in a complicated fashion on the chemical composition of the two components 

and the mass and angular-momentum exchange mechanisms. 

If we assume that high-mass white dwarfs are produced by stars of 

8-10 A/©, we can estimate their number in the Galaxy. Assuming that all 

these white dwarfs become supernovae gives a rate of SN I comparable with 
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the observed one. This estimate suggests that there is a selection effect 

favouring the discovery of massive white dwarfs in binaries. 

8.4 Neutron Stars 

We have already mentioned the problem of neutron-star structure. We dis¬ 

cuss their formation and properties here, and compare the latter with those 

of pulsars, X-ray sources, and gamma-ray-burst sources. 

8.4.1 Structure 

To understand the properties of pulsars, which we discuss later, we have to 

invert the historical order of discovery and first discuss models of neutron 

stars. Even without entering into quantitative details it is clear that the 

material of a neutron star is not the same at the surface as at the centre. 

(a) Close to the surface (p < 106 g cm-3) is a region about 10 m thick 

where the temperature and strong magnetic fields greatly affect the equation 

of state. 

(b) We then have the outer crust (106 < p < 4.3 x 1011 g cm-3), about 

0.1 km thick, where the matter forms a Coulomb solid of neutron-rich nuclei 

in beta equilibrium with a relativistically degenerate electron gas. 

(c) The interior crust, of thickness about 1 km (p < 2 x 1014 g cm-3) 

consists of a Coulomb solid of neutron-rich nuclei in equilibrium with a 

neutron gas and a degenerate electron gas. The neutron gas is a superfluid 

(see later). 

(d) The neutron fluid, extends to the centre (about 10 km) and consists 

mainly of a neutron superfluid with a small concentration of superfluid 

protons and degenerate electrons. 

The superfluidity of the neutron liquid is caused by the formation of 

neutron pairs with oppositely directed spin and momentum. These neutron 

pairs or quasi-particles form a boson gas which has superfluid properties 

if the temperature is low enough. This occurs if the thermal energy is less 

than the latent heat associated with pair formation. Nuclear research shows 

that neutrons and protons form pairs in heavy nuclei, and the latent heat 

is about 1 MeV. At the temperatures of a few keV inside neutron stars pair 

formation must occur and the neutron liquid behaves as a superfluid. 

Superfluidity, as observed in 4 He below 2.19 Iv, is characterised by almost 

zero viscosity. In neutron stars this implies a very weak, coupling between 

the neutron liquid and the solid crust. This is important for explaining the 

behaviour of pulsars during abrupt changes of the spin period. 
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8.4.2 Pulsars 

These were discovered in 1967, during radio observations designed to detect 

interstellar scintillation. They are astronomical objects with radio emission 

pulsed at periods of the order of a second (Hewish et ah 1968). 

The remarkable stability of the period required an emitter with high 

inertia. The very small period of 33 ms for the Crab pulsar required a small 

size. The later discovery of a 1.6 ms pulsar reinforced this, leading rapidly 

to the idea that the radio emission came from rotating neutron stars. 

There are three main problems: (1) the emission mechanism of the radio 

waves, (2) the braking mechanism, and (3) the cause of period changes. 

Radio Emission. About 500 pulsars are known (1988) in our Galaxy. They 

all show pulsed radio emission over a wide spectral band. The pulse ampli¬ 

tude varies widely and sometimes pulses are missing. The pulse duration is 

small compared with the period (1 to 5%). At scales below a millisecond 

the pulses are very complex and show structure at a scale of 10 //s. However, 

the average profile over several hundred pulses is remarkably stable. Mea¬ 

surement of arrival times of average pulses shows that the pulsar, a rotating 

neutron star, is an extremely accurate clock. The period of some pulsars is 

known to a precision A P/P of the order of 10-13. 

The radio intensity has a power-law spectrum, /„ ~ n", with a ~ —1.5 

for v < 1 GHz, or even steeper for higher frequencies. A typical intensity 

is 0.1 Jy at 400 MHz (1 jansky = 10~23 erg s”1 cm^Hz-1). The radiated 

power is between 2 x 1025 and 8 x 1030 erg s-1. 

Many pulsars show strong linear polarisation, up to 100 % in some cases. 

The degree and position angle vary with time during the pulse. 

The radio pulses are interpreted using an oblique rotator model, in which 

the Earth is periodically swept by a directed radio beam which rotates with 

the pulsar. This requires a certain geometry of the emitting region, and 

the polarisation is explained if the radiation is from high-energy electrons 

in a magnetic field. The intensity is too great to be thermal, and coherent 

emission is the only plausible hypothesis. 

There is no consensus at present about the mechanism responsible for 

pulsar emission, and the interpretation of polarisation properties is difficult. 

A possible model is as follows. 

We assume a dipole magnetic field, with the dipole axis inclined to the 

rotation axis. Radio emission occurs partly along the dipole axis, from elec¬ 

trons accelerated along it. This core emission dominates around 400 MHz. 

The rest of the emission is in a hollow cone from electrons accelerated per¬ 

pendicular to the fieldlines, the polarisation depending on the curvature of 

the fieldlines (Fig. 8.7). The change of position angle during the passage of 

the radio beam is explained if the emission in the hollow cone dominates 

around 1 GHz. Figure 8.8 shows the average pulse profile of PSR 1821 + 

05 at various frequencies, clearly showing emission in a hollow cone at high 

frequencies of strength comparable to that of the magnetic core. 
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Fig. 8.7. Pulsar radio emission: core and hol¬ 

low cone. Electrons propagate along the 

magnetic field, and the curvature of the 

fieldlines is responsible for the core emission 

(one pulse each time the beam crosses the 

Earth). Electrons gyrating around the field¬ 

lines emit in a hollow cone (two pulses each 

time the beam crosses the Earth) 

Pulse phase (milliperiods) 

Fig.8.8. Average pulse profiles in 

PSR 1821 + 05 for various frequen¬ 

cies between 228 and 238 MHz (see 

text) (J.H. Taylor and D.R. Stine- 

bring, Ann. Rev. Astron. Asirophys. 

24, 308 (1986). Reproduced by kind 

permission of Annual Review of As¬ 

tronomy and Astrophysics: © 1986 

Annual Reviews Inc.) 

Magnetic Fields. The presence of strong magnetic fields in neutron stars 

is shown by direct and indirect data: 

Pulsed emission in a hard X-ray line in Her X-l and 4U 0115-63 can 

be interpreted as due to a cyclotron emission line correponding to fields of 

4-6 x 1012 G in Her X-l and 2 x 1012 G in 4U 0115-63. 

- Contraction of a solar-type star with a surface magnetic field of 100 G 

down to the size of a neutron star gives a field of 1012 G if the field is frozen 

in. This order of magnitude is compatible with estimates of the surface 
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fields. However, the evolution to the neutron-star state is complicated and 
this agreement is not conclusive. 

The slowing of the rotation of pulsars is mainly caused by the emission 

of low-frequency waves (at the rotation frequency itself). The presence of a 

strong electrostatic field near the pulsar surface creates a charge-separated 

plasma around the neutron star. Study of this medium, corotating with 

the star, involves very difficult non-linear problems. The radiated power is 

however of the same order as for an oblique rotator in vacuum. Assuming 

that we have a dipole inclined to the rotation axis at an angle a and rotating 

in vacuum, we find a radiated power 

sin2 a 
*'dipole g^3-’ (8-63) 

where 1? is the angular frequency and Bp the polar fieldstrength of the 

dipole. From the observed spindown of the Crab pulsar we get 

HCin = IBIQ = 6.4 x 1038 erg s-1 , (8.64) 

where I is the moment of inertia. With M = 1.4M0, R = 12 km, / = 

1.4 x 1045 g cm2. This loss of kinetic energy is comparable to the power 

radiated by the Crab nebula, WCbs = 5 x 1038 erg s—1. Using the expression 

for H'dipoie we calculate Bp ~5x 1012 G. 

Pulsar spindown is not entirely caused by electromagnetic radiation. A 

small asymmetry can for example lead to significant gravitational radiation. 

Period Glitches. Lengthy observations of the Crab and Vela pulsars reveal 

abrupt accelerations, followed by a slowing of the rotation, after which the 

spindown rate returns to the value observed before the glitch. 

In the Crab pulsar the period initially decreases by AP/P ~ —10-8, 

and in Vela by — 2 x 10-6. In the Vela pulsar the original spindown rate is 

resumed after 50 days, and in the Crab pulsar after about 10 days. 

For the Crab pulsar it is currently thought that the spindown creates 

tensions in the solid crust of the neutron star. A starquake adjusts the shape 

of the crust to the flattened equilibrium form, decreasing the moment of 

inertia and thus increasing the angular frequency. The motion of the crust is 

first communicated to charged particles via the magnetic field (characteristic 

timescale 100 s), then to the neutron superfluid, with a longer relaxation 

time. From the observed rate of period increase we can calculate the time 

between two starquakes using the theoretical properties of the solid crust. 

The result is satisfactory for the Crab pulsar, with an interval of about 10 

years between glitches. 

On the other hand the calculated interval for the Vela pulsar is of the 

order of 105 y, while the four glitches observed were separated by 2.5, 4.1, 

and 2.8 years. One must envisage other processes, for example connected to 

the quantum properties of a rotating superfluid. The quantisation of fluid 
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circulation leads to the existence of quantised vortices, each one having a 

fluid circulation 

/ vdl = 
h 

2mn ' 

(8.65) 

where v is the fluid velocity and 2mn the mass of a neutron pair. These 

quantised vortices can be pinned to the crust, and the glitches would be 

caused by catastrophic unpinning of vortex lines. 

8.4.3 Gamma-Ray Bursts 

The timing of simultaneous detections of gamma-ray bursts by several satel¬ 

lites (at least three) allows one to find the direction of the emission by 

stereoscopy. Several gamma-ray-burst sources have been localised in this 

way. In all there are about 5000 events per year in the Galaxy with flux 

above 5.5 x 10~9 erg cm-2, and 105 events with flux above 10_1° erg cm-2. 

The spectrum is a combination of thermal radiation (kT ~ keV), inverse 

Compton radiation, and synchrotron emission. The total energy emitted is 

of the order of 1038 erg per burst. 

The main hypothesis is as follows. In a binary system, a small amount of 

mass (10“13 Mq) is captured by a neutron star and flows down fieldlines to 

accumulate near the magnetic poles. This matter is confined by the magnetic 

field and undergoes nuclear reactions which become explosive and produce 

the gamma-ray burst. Each neutron star can thus produce a burst every 

thousand years, which is compatible with the estimated number of neutron 

stars in the Galaxy (about 109) and the frequency of observed gamma-ray 

bursts. 

The Gamma Ray (or Compton) Observatory, launched in 1991, records 

seconds-long gamma pulses several times a day. The sources of the bursts 

are distributed isotropically over the sky, which is hardly compatible with 

an origin in our Galaxy. 

8.4.4 X-ray Sources 

Observations of the sky with X-ray instruments of good angular resolution 

(the Uhuru mission 1970, and 10 missions since then) have revealed a large 

number of point X-ray sources, of which many belong to binary systems and 

some show pulses. 

The X-rays in some cases are thermal emission from an accretion disc 

around a neutron star or possibly a black hole. The disc is formed by capture 

of matter from the companion star, which often fills the Roche lobe. The disc 

luminosity is of the same order as the Eddington limit, about 1038 erg s_1. 

The accreted matter eventually falls on to the neutron star. In pulsing 

sources accretion is accompanied by spinup, just as expected from the extra 

angular momentum supplied by the accreting matter. 
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8.5 Type II Supernovae 

As we have seen, type II supernovae are characterised by strong hydrogen 

lines. The total ejected mass can be estimated from spectroscopic data and is 

of the order of ten solar masses. The idea that SN II result from the evolution 

of massive stars is supported by their presence in the arms of spiral galaxies. 

These are young objects originating in rapidly evolving, i.e. massive, stars. 

The problem thus reduces to studying the evolution of massive stars up to 

the point when the explosion disperses most of the stellar mass. 

Depending on its mass, and parameters such as rotation, the progenitor 

star may have rather different characteristics, and the light curve in par¬ 

ticular can vary widely. However, in all cases the main events occur in a 

central region of mass no more than about 1.3 M®. 

8.5.1 Pre-supernova Models 

As we have seen in Chap. 3, the evolution of massive stars involves a com¬ 

petition between the mass loss rate and the speed with which the outer 

radiative region mixes with the convective core. We can follow the evolu¬ 

tion of such stars given a good phenomenological description of the mixing 

process. The result, confirmed by studies of the Per OBI association, is that 

stars rotating more rapidly than about 300 km s-1 evolve homogenously and 

remain as O stars, while more slowly rotating stars evolve towards the red- 

giant branch. These stars have large hydrogen-rich envelopes, whereas the 

homogeneous stars evolve as blue and helium rich. 

It is conventional to study the evolution of a non-rotating star without 

mass loss, from the formation of the helium core up to the collapse of the 

iron core. The beginning of the collapse will be discussed in Sect. 8.5.2. We 

note that this last process is independent of the outer layers and any mass 

loss from them. 

Using the results of Chap. 3 we summarise the evolution of massive stars 

in the pre-supernova stage as follows. 

(a) In the range 8-11 M© there are a great variety of evolutionary tracks. 

Near 8 M® ignition of a degenerate carbon core becomes possible. Near 

11 M® there are 6 successive nuclear burning stages (hydrogen, helium, car¬ 

bon, neon, oxygen, and silicon). 

In the range 8-10 M® a helium core of 2.2 to 2.5 M® forms. Helium 

burning is followed by carbon burning (mainly 12C + 12C —> 20Ne + 4He). 

Neon 20 is less bound than oxygen 16 so that for increasing temperature 

the main subsequent reaction is 

20Ne + 7 —> 160 + 4He. 

A degenerate oxygen-neon core results finally. 
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Contraction continues to a density of 2.5 X 1010 g cm-3. Oxygen burning 

(160 + 160 —> 28Si + 4He) soon begins in the contracting core because of 

electron capture by 20 Ne and 24 Mg. The collapse continues and the unstable 

core (near the Chandrasekhar limit) reaches the nuclear density without 

undergoing silicon burning and formation of elements in the iron peak. 

For 10 to 11 Mq stars with a helium core of 2.5 to 2.8 Mq, a hydrostatic 

iron core can form, with complicated instabilities associated with iron burn¬ 

ing at the boundary. 

.(b) For stars more m,assive than 11 Mq, the main process is slow silicon 

burning (main reaction 28Si + 7 —> 24Mg + 4He), followed by the capture of 

alpha particles up to the iron peak in the stellar core. The final result gives 

the mass of the iron core at the start of neutronisation. To find the mass of 

the iron core (which plays a critical role in the supernova phenomenon) re¬ 

quires the use of the best available microscopic data, including as complete 

a reaction network as possible (incorporating in particular the abundance 

of 30 Si coming from the beginning of neutronisation) and a choice of the 

initial abundance of the elements (we take “cosmic” abundances). It is also 

necessary to use very fine spatial and temporal grids in the numerical cal¬ 

culation of the evolution. In the reactions near the iron peak it is the speed 

of the reaction 45Sc(p, 7)46Ti which controls the rate of iron formation. 

During the silicon-burning phase the core is convective, and the silicon¬ 

burning layer moves outwards, surrounded by a convective layer, at a speed 

determined by the formation rate of the iron core. Figure 8.9 gives the 

abundance distribution at the beginning of the collapse (v ~ 1000 kms-1) 

for a 25 M0 star. 

The mass of the iron core is 1.41 Mq and 1.35 Mq for stellar masses of 

20 and 25Mq respectively. The entropy per baryon at the centre (whose 

importance will be clarified in Sect. 8.5.2) is 0.69 and 0.73; and the numbers 

Ye of electrons per baryon at the centre are 0.422 and 0.423 respectively. 

8.5.2 Collapse 

Electron Capture. The basic problem in treating the collapse is the elec¬ 

tron capture rate. These captures decrease the electron pressure and allow 

core collapse. Electrons are mainly captured by nuclei rather than protons, 

which have low abundance. The number Fe of free electrons per baryon 

decreases slowly. The fractional electron pressure deficit 

4 - Ye 

3 Fe(l) 
(8.66) 

(where Ye * is the value of Ye at the start of the collapse) gives the infall 

velocity through 

d2i? GMF 

~ W~' (8-67) 
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M (solar masses) 

Fig. 8.9. Abundances in a pre-supernova of 25 A/q. The chemical composition is given at 

the point where the collapse velocity has reached 1000 km s_1 in all zones. The horizontal 

lines represent abundances in (or created in) convection zones. The curve marked “Fe” 

is an exception. This gives the sum of all the mass fractions of the iron group richer in 

neutrons than 54 Fe. The central density is 2 X 109 g cm-3 and the central temperature 

is 5 x 109 K. (From S.E. VVoosley, in Problems of Collapse and General Relativity, ed. by 

D. Bancel and M. Signore, NATO series, Reidel 1984. Reproduced by kind permission of 

Kluwer Academic Publishers) 

For F ~ 0.1 the infall velocity is less than free fall. At the point where 

neutrinos are trapped in the moving matter, p ~ 5 x 1011 g cm-3 (see 

Sect. 5.2.2) the infall velocity is 2.45 x 109 cm s-1, and the core radius is 

40 km. 

Neutrino Trapping. The neutrino mean free path, according to Bethe, 

Brown, Applegate, and Lattimer (1979) (BBAL) is 

A, = 10kr 

-l 

10 MeV\ 

&V 

(8.68) 

where XT, Xn and Xp are the mass fractions of heavy nuclei, neutrons, and 

protons. N is the average number of neutrons per heavy nucleus with atomic 

weight A and e„ the neutrino energy. 

In statistical equilibrium BBAL give pio = 50 (where p10 = p/( 1010 g 

cm-3), A = 105, and N = 67. After time t, neutrinos have diffused a 

distance 

367 



rdiff - 
A „Ct 

~Y~ 

1/2 

(8.69) 

corresponding to a diffusion velocity 

Aiifr 
= — • 

At the same time the infall velocity 

boundary is (8.66, 67) 

2FGM \ 1/2 

with (from Sect. 5.2.2) 

(8.70) 

the homologously contracting core 

(8.71) 

(8.72) 

We regard the neutrinos as trapped once their diffusion velocity is smaller 

than the infa.ll speed. With M = 1 Mq,F = 0.1 we find that neutrinos are 

trapped once pio = 30, corresponding to a radius r = 46 km and an infall 

velocity of about 20 000 km s_1 at the core boundary. 

Once the neutrinos are trapped the total lepton number Y\ = Ye + Y„ 

remains fixed. Also there is equilibrium between direct and inverse beta 

decays, so that the chemical potentials pe,pr,pn and pp satisfy 

de /A f^n l^p • (8. 13) 

The Chandrasekhar mass changes from the point that the neutrinos are 

trapped because of their contribution to the pressure. If Yp is the lepton 

number per baryon before trapping and Yv this number after trapping, and 

/ = Yv/Yl, the Chandrasekhar mass is immediately multiplied by 

((1 _ ff/3 + 21/3 /4/3)3/2_ 

For / ~ 0.2 to 0.25, the Chandrasekhar mass is reduced by a. factor of 

0.84. This reduction must be taken into account in calculating the energy 

liberated in the explosion. 

Simplifed Collapse Dynamics (Self-similar Collapse). Many partial-differ¬ 

ential equations involving time and one space variable admit solutions of 

the form f(xat^). This method, discovered by Sedov, gives exact asymp¬ 

totic solutions. For core collapse of a supernova we have to make a further 

simplification, by replacing the equation of state by a polytropic relation 

P = Kp1, 
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where P is the pressure, p the density, 7 the adiabatic compressibility, and 

A a constant whose value depends only on the entropy of the system. This 

approximation is justified to the extent that calculations before neutrino 

trapping show that the specific entropy is effectively constant. From this 

point on it remarns constant because there are no neutrino energy losses. 

Self-similar solutions are useful in that parameters such as the initial 

central density only affect the early stages of the motion, memory of them 

being lost at late times. The solution then depends only on two physical 

quantities, the constant A (depending only on the entropy) and the gravi¬ 

tational constant G. We introduce the dimensionless combination 

X = A “1/'2Gr(‘,_1)/2r(—f)7-2 . (8.74) 

The time origin is the singular point at which the density becomes infinite. 

The self-similar solution neglects the rebound produced once the central 

density reaches the nuclear value. To describe the density, velocity, mass 

within radius r, and the total energy within r we introduce the dimen¬ 

sionless functions D{ A ), V(A ), M(X), E(X) and the necessary dimensional 

combinations of I\ and G: 

P ~~ G 3 ( t) 2 D (X), 

1/ = A'1/2G(1~7)/2(-t)1-^y(X), 

m(r) = 7v 3/2G(1_37)/2(—f)4_37M(x), 

e(r) = A"5/2G(3~57>/2(—t)6~S7E(X), 

where M(X) and E(X) are defined by 

M(X) = 4tt / X2 D(X)dX , 
Jo 

E( X) = 4tt [ 
Jo 

X2D(X) \v\x) + 

(8.76) 

dX. 

The latter expression contains contributions from the kinetic, internal, and 

gravitational energies. We find differential equations for T>, V, M, E by in¬ 

serting the expressions for p,u,m(r), and e(r) into the equations of hydro¬ 

dynamics (conservation of mass, momentum and energy, and the equation 

of state). We have to satisfy the following boundary conditions: 

(a) As t tends to zero and X tends to infinity the density must remain 

finite, forcing the asymptotic relation 

D(X) ~ A'“2/(2~7) , (8.77) 

eliminating t from the expression for the density, which tends to zero at 

large times. 

369 



Fig. 8.10. The reduced velocity V and sound speed A before (t < 0) and after (t > 0) the 

rebound 

(b) Across the singular point (of the same type as in the theory of stellar 

winds) the solution coming from infinity must match to the regular solution 

as X tends to zero. 

The critical solution found in this way automatically satisfies the condi¬ 

tion of zero total energy. 

We can thus use the equations for t > 0 (giving the post-explosion solu¬ 

tion) if we take as initial conditions the density and velocity distributions 

from the asymptotic solution for large X (t = 0). As an example, Fig. 8.10 

shows the behaviour of the reduced velocity and sound speed "F(X), A(X) 
for 7 = 1.3. We define the inner core by the velocity maximum. This region 

behaves homologously, with infall speed essentially proportional to X; the 

outer core has a velocity distribution similar to that of an accretion flow. 

The mass of the inner core changes slowly with time. For 7 = 1.3 it 

varies as (—t)01. The velocity inside the sonic point (V + A = 0) is subsonic, 

allowing pressure perturbations to travel ahead of the collapse and cause the 

homologous rearrangement of the density and velocity. The velocity in the 

outer core is by contrast highly supesonic and close to free fall. 

Defining the Chandrasekhar mass ilfch as that mass of a static polytrope 

with the same central density as the collapsing inner core we find that the 

mass of the inner core is related to Afch by 

Mc = (l + /)MCh, (8.78) 

where f is fixed by the average value of (4 — 3y) in the collapsing inner core. 

For realistic equations of state 

/ = 0T. (8.79) 

Rebound. We assume for simplicity that the equation of state becomes 

stiffer once the matter reaches the nuclear density p = 2.7xl014g cm“3. 
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Matter becomes almost incompressible and accumulates in a sphere close to 

hydrostatic equilibrium. The pressure pulse caused by the increased stiffness 

of the equation of state cannot propagate spatially beyond the sonic point 

while the density and velocity are continuous there. The collapse proceeds, 

with the pressure inside the sonic point continuing to grow until a shock 
wave forms. 

For zero total energy we can assume that, the binding energy D of the 

core and the shock energy have zero sum, so that the energy available for the 

rebound is of the order of — D. To calculate the binding energy requires an 

equation of state. We can however estimate it as the gravitational binding 

energy of the excess mass over the Chandrasekhar mass. For a rigid constant- 
density sphere we get 

5 R J (8.80) 

with 47rf?3po/3 = M. Taking pQ = 2.7xl014 genW3, / = 1 and M = 0.8 MG) 
we find 

-B = 6.2 x 1051 erg, (S.Si) 

which is indeed of the order given by more sophisticated calculations. 

We would like to know if the shock can eject the envelope and produce 

a supernova. There are three problems in calculating the shock propagation 

velocity. 

(a) The high post-shock temperature causes further electron captures, 

decreasing the electron pressure and the shock propagation velocity. 

(b) Once the density ahead of the shock falls below p ~ 1011 g cm-3 

neutrinos can leave the shock region and remove energy. 

(c) An iron-rich region forms around the inner core of mass M\c. The 

temperature is at least 20 MeV, causing iron to be photodissociated at 

8.9 MeV per nucleon. We thus need a dissociation energy Ed 

Ed = 17(Mpe — Mic) x 10jl erg, (8.82) 

where Mpe,M\c are in solar masses. The mass of iron depends on the 

entropy at the start of the collapse (hence the importance of this quantity). 

The initial shock energy — B is evidently just enough to supply the neutrino 

losses (about 2 x 1051 erg) and the iron photodissociation energy. Woosley’s 

latest models give Mpe — 1.35; using M\c = 1 M© we find a binding energy 

-B ~ 9 x 1051 erg and an iron photodissociation energy Ed — 7 x 1051 erg. 

There remain only 1051 erg to push the shock to the star’s surface. 

Element Synthesis. Heavy elements are formed from small quantities of 

iron in three main processes, clearly visible in the nuclear (A — Z, Z) plane 

(Fig. 8.11). 
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Fig.8.11. Part of the nuclear (TV, Z) plot. The continuous zig-zagging line shows the path 

of slow (s) processes. In this part of the plot the two species 186 W and 176Yb (tungsten 

and ytterbium) can only be formed by rapid (r) processes 

The first process is slow (5 process). The capture timescale for a neutron 

is of the order of 10 to 100 years. If a radioactive element is formed, beta 

decay occurs before another neutron is captured. This mechanism gradually 

populates the valley of stability in the direction of increasing atomic weight . 

These reactions occur at 200-300 milion degrees, requiring a neutron source. 

The s process may occur mainly in pulses of intermediate-mass stars during 

the AGB phase. 

Proton captures (p process) occur during high-temperature phases and 

should be the main nucleosynthetic process during an SN II explosion. 

The rapid (r) process requires a significant neutron flux. Neutron-rich 

elements form up to the point that beta decays, occurring in less than 

a second, bring the element back into the stable region. Many elements 

can only be formed by the r process, in particular radioactive elements 

(uranium) and some others such as those in Fig. 8.11 (176Yb and 186W). If 

we calculate the detailed abundances produced by the s process and subtract 

them from solar abundances, we find a curve whose form agrees perfectly 

with the abundances produced only by the r process (Fig. 8.12). Supernova 

explosions may be the favoured site of the r process, although there are 

doubts because of the difficulty of producing enough neutrons. 
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Fig. 8.12. Contribution of the r process to element formation. The figure shows the abun¬ 

dances found by subtracting s process abundances from solar abundances. The solid dots 

show elements accessible only via r processes. The whole curve shows the importance 

of the r process, whose site is still uncertain. (From H. Beer, in Advances in Nuclear 

Astrophysics, ed by E. Vangioni-Flam et al. Editions Frontieres 1986, Fig. 5, p.382) 

8.5.3 Supernova 1987A 

On 1987 February 23 an International Astronomical Union telegram an¬ 

nounced Ian Shelton's discovery of a 5th magnitude object in the Large 

Magellanic Cloud (LMC), obviously a supernova. This supernova has three 

remarkable features. 

(a) The progenitor star was a blue supergiant, while the typical SN II 

progenitors are red supergiants, the enormous radius being important in the 

formation of the usual light curve. 

(b) The light curve of SN 1987A is completely atypical. Maximum light 

is four magnitudes fainter than for typical SN II; the brightness in the blue 

began to increase a month after the explosion, reached a secondary maxi¬ 

mum after three months, and did not begin to decline until the beginning 

of June. 

(c) There were simultaneous neutrino detections in Japan (Kamiokande 

II: 11 events), in the USA (Irvine-Michigan-Brookhaven, Cleveland: 8 

events), and in the USSR (Baksan: 5 events). 

These features raise many problems for our understanding of the struc¬ 

ture of the pre-supernova and the theory of the explosion. The observations 

are extremely important and detailed; we summarise the main conclusions. 

The Nature of the Progenitor. We have first to explain why the progenitor 

was a blue supergiant. This may indicate different evolutionary tracks for 

stars of low metallicity, as in the LMC, and high metallicity, as in our 

Galaxy. 
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Fig. 8.13. Evolutionary tracks in the HR diagram for stars with various heavy-element 

abundances. (From W. Hillebrandt et al., Nature 327 (1987) p.597. Reproduced by kind 

permission of Nature; © 1987 Macmillan Magazines Ltd.) 

Homogeneous evolution would give a massive helium-rich star, whose 

explosion would result in an SN la. These SN la resemble SN I in their lack 

of hydrogen but SN II in the mass of their ejecta. 

A strong stellar wind, leaving a blue naked remnant star has been sug¬ 

gested, with the progenitor then being a Wolf-Rayet star in its final stages. 

However, the progenitor, Sanduleak 62212, was a blue B3I supergiant, and 

not a Wolf-Rayet. 

Evolutionary tracks on the HR diagram show that changing Z from 

0.02 to 0.005 is enough to make the star finish its evolution at an effective 

temperature near 16000 Iv (Fig. 8.13). Ignition of 12C-12C can begin in 

a 15-25 Mq star while it still appears as a blue supergiant. Because the 

thermal timescale is so short (comparable to the nuclear timescale) we do 

not expect evolution to the red-giant branch. 

Light Curve. The rise in the light curve seems to be caused by the arrival 

at the photosphere of the expanding gas of the disintegration energy of 

radioactive nickel 56Ni and then radioactive cobalt 56Co, with a timescale 

of 77.12 days. The production of 0.075 Af© of 56Co predicted by Woosley’s 

models (collapse of a 6 Af© helium core) agrees with what one can conclude 

from the light curve after 8 months of observation. Cobalt and nickel are 

identified in the infrared mainly via a Co II line at 10.5 microns and a Ni II 

line at 6.6 microns. The iron 56Fe found in the expanding gas results from 

the rapid radioactive decay of 56Ni and corresponds to a mass of 0.07 Af©. 

Neutrinos. The detectors at Kamiokande, Cleveland (IMB), and Baksan 

all work on the same principle: a large volume of very pure water is sur¬ 

rounded by thousands of photomultipliers and sited in a deep mine to min- 
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imise the cosmic-ray background. The IMB detector contains 6800 tons of 

watei, and Kamiokande II 2140 tons, but it has photomulipliers covering a 

largei fraction of its surface. The detection threshold of Kamiokande II is 8 

MeV while those of IMB and Baksan are 20 and 10 MeV, the latter despite 

a much smaller number of free protons. The main reaction is antineutrino 
capture by protons: 

p + ue -> n + e+ 

whose cross section is about 100 times larger than the elastic reaction ue -f- 
e~ —> n + e~. 

There are two main questions about the observed event numbers: 

(a) Does collapse and explosion theory of SN II correctly predict these 

numbers? (b) Can theory explain the dispersion in arrival times of these 
antineutrinos? 

(a) With the capture cross-section 

a-UeP ~ 7.5 x 10-44(MeV) cm2 = a0ElleV 

we can calculate the total number of neutrinos emitted by the supernova 

and the total neutrino energy, assuming an energy spectrum for them. 

Letting x = Eq/L'T, where Eq is the detector threshold, d the source dis¬ 

tance, and n the number of events at a detector containing np free protons, 

we find a total energy 

jj, _ 247rd2?r 1 MeV ex 

a0np E0(MeV) x{x4 + 4.r3 + 12x2 + 24x + 24) ’ 

assuming a thermal non-degenerate neutrino spectrum. This has a minimum 

value of 0.401 for x = 4.1335. This corresponds to a minimum energy of 

0.443 x 1055 erg. W ith a threshold around 10 MeV this implies a minimum 

emission temperature of 2.41 MeV. 

The average energy of the antineutrinos detected at Kamiokande was 

about 14.66 MeV. It is related to the threshold energy Eq by the approxi¬ 

mate relation 

(E) 
1 + 

x 

x 

120 

1 

1 + x + 
3T 

2 
_j_ -Hi _|_ 

' 6 ~ 24 

With a 10 MeV threshold we find a temperature T = 2.21 MeV, and x = 
4.511. The total energy is than 0.462 x 1053 erg. Assuming equipartition 

of energy between the 6 neutrino and antineutrino species this implies a 

liberated energy of 2.77 x 1053 erg. 

We have seen that the total energy of the collapsing core is close to 

zero. This implies internal energy equal to —ESTSLV. This energy is available 

for neutrino emission and can be calculated for present models. The most 
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likely give — £grav between 2.5 and 3 x 1053 erg, compatible with the results 

from Kamiokande, IMB, and Baksan, assuming a distance d = 5 kpc for the 

LMC. 

(b) Neutrino escape is a diffusion process. If we simplify drastically and 

estimate the diffusion time from the relation 

R2 

Tdiff - ~D 

with 

D = |A„c, 

we find, with T = 2.5 MeV, N2/A ~ 4000 (from Bonche and Vautherin 

1981), p = 2.5 x 1014 g cm"3, and R — 15 km, 

(R2/D) = 2.4 s, 

which is indeed of the observed order. 
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Appendix 

Calculation of the Relativistic Correction 

for White-Dwarf Stability 

To discuss the stability of a white dwarf, taking account of general relativity, 

we write the total energy in the form 

E — T’int + Tgrav + Ai^int + AEgR ■ (A.l) 

To a first approximation only the first two terms are important. We can 

evaluate them for a polytrope. With P = Kp1 ,n = 1/(7 - 1) 

, (7A/5/3 f^1 
^grav = i^Pc)1 3 | 15/3 Jq ^ O'6" , 

= (pc)1/3GA/5/3 -A_ . 
V 5 -n 6 

The term AE\nt represents the contribution to the internal energy from the 

non-zero temperature. Per unit mass this contribution is 

(A.2) 

(A. 3) 

(A.4) 

£e — Mec2ne 
u = -. 

P 

Using the degeneracy parameter x, 

V Pemu J 

(A.5) 

(A-6) 

where Ae is the de Broglie wavelength of the electron and my the atomic 

mass unit, we have 

3 mec2 
u =- 

4 pemy 
(A.7) 

The first term is just 3P/p and is used to calculate Eint. The second (con¬ 

stant) term does not appear in the variational calculation. This leaves the 

term in 1/a;, which gives 
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3 mec2 [ dm 
Aff int = — 

4 pemv J x ! 

where 

AElnt = 

with 

fcj 

m2c3 

h(pemu)2l3 
Mp-'^kr 

(A.S) 

(A.9) 

£2d2d£. 
4 (37T2)1/3 |e2^'| 

(A.10) 

Writing /?o,m.o for the baryon density and mass, and ro = (3u/4M)1//3 for 

the radius of the sphere of volume v defined by 

, , 2m\-’/2 2, dt> = [ 1-j 47rrMr , (A.11) 

we can express the relativistic correction (assumed small) as 

fR 
/ Po^ AE, GR 
'0 

m 1 / m \ 2 mo m 
-u-I 

r 2 V r 
+ 

ro 
(A.12) 

and we find in standard units 

A EGR = -h^M7/3p2J3 

with 

h 
(4tt) 2/3 5 + 2n — n 

(5 — n)|£2 9' |7/3 

Kl 

n + 

- r?2 m1 3 
--2/ £s0'0n+1d£+Mn-i; 
1 do 2 

X £40/20"d£ (A.13) 

With the parameters .4, B, C, D defined in equations (S.33), we find 

£ = (AM - + CMp71/3 - DM‘/zp2J* . (A.14) 

Differentiating with respect to pc and setting the result equal to zero we 

find the equilibrium mass as a function of pc. Differentiating again we find 

the stability limit. For A/Z = pe this gives a central density 

Pc = 2.046 x 1010Oue/2)2gcm-3. 
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