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Editors’ preface to the 
Manchester Physics Series 

The Manchester Physics Series is a series of textbooks at first degree level. It 

grew out of our experience at the Department of Physics and Astronomy at 

Manchester University, widely shared elsewhere, that many textbooks contain 

much more material than can be accommodated in a typical undergraduate 

course; and that this material is only rarely so arranged as to allow the 

definition of a short self-contained course. In planning these books we have 

had two objectives. One was to produce short books: so that lecturers should 

find them attractive for undergraduate courses; so that students should not be 

frightened off by their encyclopaedic size or price. To achieve this, we have 

been very selective in the choice of topics, with the emphasis on the basic 

physics together with some instructive, stimulating and useful applications. 

Our second objective was to produce books which allow courses of different 

lengths and difficulty to be selected with emphasis on different applications. 

To achieve such flexibility we have encouraged authors to use flow 

diagrams showing the logical connections between different chapters and to 

put some topics in starred sections. These cover more advanced and alternative 

material which is not required for the understanding of latter parts of each 

volume. 
Although these books were conceived as a series, each of them is self- 

contained and can be used independently of the others. Several of them are 

suitable for wider use in other sciences. Each Author’s Preface gives details 

about the level, prerequisites, etc., of that volume. 

The Manchester Physics Series has been very successful with total sales 

of more than a quarter of a million copies. We are extremely grateful to 

the many students and colleagues, at Manchester and elsewhere, for helpful 

criticisms and stimulating comments. Our particular thanks go to the 

authors for all the work they have done, for the many new ideas they have 

contributed, and for discussing patiently, and often accepting, the suggestions 

of the editors. 



Xx Editors’ preface to the Manchester Physics Series 

Finally we would like to thank our publishers, John Wiley & Sons Ltd, 

for their enthusiastic and continued commitment to the Manchester Physics 

Series. 

D. J. Sandiford 

F. Mandl 

A. C. Phillips 

February 1997 



Author’s preface 

Astrophysics is of natural interest to students and provides an ideal framework 
for demonstrating the power and elegance of physics. It is not surprising, 

therefore, that astrophysics is playing an increasing part in physics education. 

Despite this, there is a shortage of suitable textbooks for advanced 

undergraduates and beginning graduate students. For the most part, existing 

books are either too elementary and descriptive, or too technical and encyclo- 
paedic. 

This book is based on lectures prepared for a one-semester course on stars for 

final-year undergraduates at Manchester University. To a large extent, the 

selection of topics covered has been based on a personal judgement as to 

whether the topic is important and whether it is also interesting to understand 

in terms of basic physics. The book is unusual in two respects. 

First, there is a strong emphasis on explaining the underlying fundamental 

physics. Second, simple theoretical models are used to illustrate clearly the 

connections between fundamental physics and stellar properties. The overall 

aim is a self-contained, concise explanation of some of the most interesting 

aspects of stellar structure, evolution and nucleosynthesis. 

In organizing the material in this book, I have recognized that the reader’s 

motivation to understand physics is enhanced if the astrophysical application is 

near at hand and that an understanding of astrophysics requires a clear and 

concise reminder of physical principles. Thus, I have attempted to maintain a 

balance between physics and astrophysics throughout. 

The first chapter introduces basic astrophysical concepts using elementary 

physical ideas which should be familiar to students pursuing a course on stars. 

Subsequent chapters rely on more advanced physical ideas which are normally 

met in the latter part of an undergraduate course. These ideas are carefully 

explained before they are applied. The properties of matter and radiation are 

considered in Chapter 2, heat transfer in Chapter 3, thermonuclear fusion in 

Chapter 4, stellar structure in Chapter 5, and the endpoints of stellar evolution, 

namely white dwarfs, neutron stars and black holes, in Chapter 6. At the end of 

each chapter there are a number of problems aimed at testing understanding 

and extending knowledge. Hints for the solution of these problems are given at 

the end of the book. 



Xl Author’s preface 

In preparing the manuscript I have consulted many books and articles on 

astrophysics, particularly those listed in the bibliography. It is important to 

mention here a subset of books and articles which have been particularly 

influential. My interest in stellar physics was initially stimulated many years 

ago by the deep insight and directness of the articles by Salpeter, Weisskopf and 

Nauerberg. I have learnt much from two superb books: Black Holes, White 

Dwarfs, and Neutron Stars by Shapiro and Teukolsky and Neutrino Astrophy- 

sics by Bahcall. In addition, Clayton’s elegant article on Solar Structure With- 

out Computers had a strong influence in Chapter 5. I have also found very 

useful the wealth of detail in Cauldrons in the Cosmos, Nuclear Astrophysics by 

Rolfs and Rodney, and in Astrophysics I, Stars by Bowers and Deeming. 

Finally, I would like to express my thanks to colleagues at Manchester 

University. First, Franz Kahn and Franz Mandl read the early, primitive 

draft of the book, and their envouragement and help led me to take the idea 

of writing this book seriously; in particular, Franz Mandl’s advice as Editor of 

the Manchester Physics Series was invaluable. Second, Judith McGovern and 

Mike Birse were very patient with me when I sought their help after doing 

stupid things with the word processor. 

A. C. Phillips 
May, 1993 



Author’s preface to the 
second edition 

When the First Edition of Physics of Stars was reviewed in The Observatory by 

Andrew Collier Cameron, he began his review thus: 

Stellar structure can be a tough subject to teach and to learn at undergraduate level. 

It draws on every branch of physics that the undergraduate has encountered in the 

preceding years, and frequently a few additional ones for good measure. The whole 

lot is then transplanted into the often bizarre regimes that prevail in stellar interiors. 

It is small wonder that many of those who attend a course on stellar structure, 

or who return to it after some years in order to teach it for the first time, soon 

develop the nasty feeling that if they ever understood the physics concerned, that 

understanding has evaporated. This is partly because many of the relevant areas of 

physics are taught in completely different contexts. Thermodynamics, for exam- 

ple, is often confined to its historical context, in the nineteenth-century world of 

pistons and steam. Its real physical origins in statistical mechanics are delivered 

separately in the abstract world of phase space. 

Phillips has written a book which turns this whole approach on its head. The 

title is well-chosen; this is a textbook covering the branches of physics that are 

important in stellar structure. 

The new edition retains this emphasis on developing an understanding of 

fundamental physics before considering key aspects of stellar structure, evolu- 

tion and nucleosynthesis. The main changes are as follows: 

e The discussion of the Hertzsprung-Russell diagram at the end of Chapter | 

has been extended. 

e A new chapter on Helioseismology has been added, but in doing so I have 

taken care to develop an understanding of the physics of wave propagation 

before discussing the normal modes of vibration of the sun. 

e The number of the problems at the end of the chapters has been significantly 

increased. 

A C Phillips 

November 1998 
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A Hubble Space Telescope image of the nebula NGC 604 in the spiral galaxy M33. Newly formed 
Stars ionize the surrounding gas and highlight the three-dime nal shape of the nebula. 
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Basic concepts in 

astrophysics 

The aim of this book is to explore the properties of stellar interiors and hence 

understand the structure and evolution of stars. This exercise is largely based on 

the application of thermal and nuclear physics to matter and radiation at high 

temperatures and pressures. However, before developing and applying this phy- 

sics it is useful to consider the subject as a whole using elementary physics. In this 

brief and rapid overview we shall introduce some concepts which are fundamen- 

tal to stellar evolution, fix the order of magnitude of some important astrophy- 

sical quantities and identify the basic observational information on stars. Many 

of the topics mentioned are covered in more detail later in the book and in the 

references listed at the end of the book. We begin by considering the processes 

which produced the raw material used in the construction of the first stars. 

1.1 BIG BANG NUCLEOSYNTHESIS 

To a first approximation matter in the universe consists of hydrogen and helium, 

with a smidgen of heavier elements such as carbon, oxygen and iron. It is now 

recognized that the bulk of this helium was produced by nuclear reactions which 

occurred during the first few minutes of the universe, a process called primordial 

or big bang nucleosynthesis. We shall begin this introductory chapter by giving a 

very brief outline of big bang nucleosynthesis so that the reader is aware of the 

origin and nature of the raw material used in the construction of the first stars. 

A brief history of the universe 

In order to understand the history of the universe it is necessary to account for 

two important facts regarding the present universe: firstly the universe is 
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expanding in such a way that if we extrapolate back in time it appears that the 

universe had infinite density some 10 to 20 billion years ago. Secondly the whole 

of space is filled with a thermal radiation at a temperature of about 3 K, the 

cosmic microwave background radiation discovered by Penzias and Wilson in 

1965. These facts are consistent with the idea that the universe began with a 

sudden decompression, a big bang. 

The big bang is not a local phenomenon with matter being expelled in all 

directions from a point in space. The big bang happened simultaneously every- 

where in space. Everywhere was a point at the time of the big bang if the universe 

is closed, i.e. a finite volume of space with no boundary. But if the universe is 

open, the big bang occurred all over a space of infinite extent. According to the 

standard model of the big bang, the universe developed along the following lines: 

e Nanoseconds after the big bang the universe was filled with a gas of funda- 

mental particles: quarks and antiquarks, leptons and antileptons, neutrinos 

and antineutrinos, and gluons and photons. When the temperature fell below 

10'4 K, the quarks, antiquarks and gluons disappeared, annihilating and 

transforming into less massive particles. Fortunately, because the number 

of quarks slightly exceeded the number of antiquarks, a few quarks were left 

behind to form the protons and neutrons present in today’s universe. The 

heavier leptons and antileptons were also annihilated as the temperature fell. 

e In the interval between a millisecond to a second after the big bang the 

universe consisted of a gas of neutrons and protons, electrons and positrons, 

neutrinos and antineutrinos, and photons. As the temperature fell, the density 

of the universe became too low for the neutrinos to interact effectively with 

matter; this occurred when the temperature was about 10!° K. These non- 

interacting, decoupled neutrinos now form a universal gas which, because of 

the expansion of space, has cooled to a temperature of about 2 K. As yet it 

has not been possible to detect this universal background of neutrinos. Soon 

after the decoupling of the neutrinos, the annihilation of electron—positron 

pairs removed all of the positrons and most of the electrons. 

e After 100 seconds, neutrons combined with protons to form light nuclei, 

ultimately leading to a universe in which approximately 75% of the mass 

consists of hydrogen and 25% is helium. We shall explain later how these 

percentages were determined by the ratio of neutrons to protons in the 
universe when the neutrinos decoupled. 

e After 300000 years the temperature fell to 4000 K, low enough for the 
formation of stable atoms. Hydrogen and helium nuclei combined with 
electrons to form neutral hydrogen and helium atoms. As a result, the 
photons in the universe ceased to interact strongly with matter; in other 
words, the universe became transparent to electromagnetic radiation. This 
radiation, freed from interaction with matter at a temperature near 4000 K, 
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has now cooled to a temperature of about 3 K because of the expansion of 
the space. It is the cosmic microwave background radiation which was first 
detected by Penzias and Wilson. This radiation is slightly warmer than the as 
yet undetected neutrino background at 2 K_ because, unlike neutrinos, 

photons were warmed by the heat generated by electron—positron annihila- 

tion in the early universe. 

e The universe continued to expand and cool until it reached its present lumpy 

condition with most of the matter assembled in stars, galaxies and clusters of 

galaxies. 

This history of the universe is summarized in Table 1.1. 

TABLE 1.1 A history of the universe according to the big bang. As the universe cooled 

quarks produced protons and neutrons, protons and neutrons formed helium and other light 

nuclei, and then nuclei and electrons combined to form neutral atoms. This led to today’s 

universe in which matter is assembled in stars and galaxies with a thermal universal 

background of photons and neutrinos at temperatures of about 3 and 2 K, respectively. 

Cosmic time Temperature Events 

fei0's kT = 107 MeV Quarks form neutrons and protons 
Po Vs kT ~ 1 MeV Neutrinos decouple 

PaaS kT ~ 0.5 MeV Electron—positron annihilation 

t +3 min kT = 0.1 MeV Helium and other light nuclei formed 

t = 3x 10° years KT 0:3 6V Atoms formed and photons decouple 

The synthesis of helium 

We shall now focus on the processes which led to the formation of helium and 

other light atomic nuclei. To understand these processes we shall follow what 

happened to the gas of neutrons and protons as the universe expanded and 

cooled from around 10!° to 10° K. At temperatures above 10'° K, any deuteron 

formed from a neutron-proton collision was quickly disrupted by a collision 

because the thermal energies involved often exceeded the 2.2 MeV binding 

energy of the deuteron. The only nuclei existing at these temperatures were 

single protons and neutrons. 

In normal circumstances a neutron beta decays with a mean life of about 15 

minutes to a proton, an electron and an antineutrino, 

nopt+e +1. 

However, at high temperature and density, neutrons can be transformed to 

protons, and protons can be transformed to neutrons in collisions involving 

thermal neutrinos, antineutrinos, electrons and positrons. In particular, neu- 

trons and protons in the early universe were continually transformed into one 

another by the reactions: 
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Vetn=e +p and Detp =e +n: (1.1) 

Because neutrons are more massive than protons, more energy had to be 

borrowed from the gas to make a neutron than a proton. Hence the neutrons 

were outnumbered by the protons. Indeed, the ratio of neutrons to protons at 

equilibrium at temperature 7 is given by a Boltzmann factor: 

aL = exp(—Am c*/kT}, (1.2) 
P 

where Am is the neutron—proton mass difference, 1.3 MeV/c’. 

The Boltzmann factor in Eq. (1.2) implies that the neutron/proton ratio 

decreased rapidly as the expanding universe cooled. But as the temperature 

and density decreased the neutrino reactions (1.1) became less frequent, and 

neutrons and protons were transformed into one another at a slower rate. 

Eventually, the reaction rates became too slow to maintain thermodynamic 

equilibrium. The neutrino reactions fizzled out, and the numbers of neutrons 

and protons ceased to change rapidly. Calculations indicate that the neutron/ 

proton ratio became almost frozen at a value of about 1/5 when the temperature 

was just below 10!° K. In fact, this ratio continued to decline slowly because 

neutrons are unstable; they beta-decay to protons with a mean life of about 15 

minutes. 
After a few minutes, when neutron decay had reduced the neutron/proton 

ratio to about 1/7, the universe was cool enough for a sequence of two-body 

reactions to construct bound states of neutrons and protons. At about 10° K, 

deuteron nuclei began to be present in significant amounts as neutron—proton 

radiative capture, n + p—d + y, competed successfully with deuteron 

photodisintegration, y + d—n + p. Capture of neutrons and protons by 

deuterons led to the formation of tritons and helium-3. These nuclei in turn 

captured protons and neutrons to form helium-4. Since helium-4 is by far the 

most stable nucleus in this region of the periodic table, nearly all the neutrons 

that existed when the temperature was 10? K were converted into helium-4. 

Moreover, the absence of stable nuclei with masses 5 and 8 prevented the 

formation of more massive nuclei, apart from small amounts of lithium-7. 

Thus big bang nucleosynthesis took a gas of neutrons and protons and made 

helium-4 and a smattering of other light nuclei, namely deuterons, helium-3 and 

lithium-7 nuclei. All the neutrons were used in this construction, but many of 

the protons were left over. In fact, the theory of big bang nucleosynthesis makes 

a clear-cut prediction for the abundance of helium-4, but the predictions for the 

other light nuclei are less certain, being dependent on the uncertain density of 

the universe; see, for example, Bernstein et al. (1989). 

We can estimate the helium-4 abundance produced in the big bang by noting 

that it is determined by the neutron/proton ratio in the universe just before 

nucleosynthesis. Because this ratio was about 1/7 we shall focus on 2 neutrons 

and 14 protons. These formed a single helium-4 nucleus containing 2 neutrons 
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and 2 protons, and there were 12 protons left over. Thus 16 atomic mass units 
of neutrons and protons produced one helium nucleus of mass 4. The fraction 
of the mass converted into helium was 4/16 or 25%. 

Hence big bang nucleosynthesis led to a universe in which about 25% of mass 
was helium. The remaining 75% of the mass was mostly hydrogen formed from 
the left-over protons. This material was the raw material for the first stars. 

1.2 GRAVITATIONAL CONTRACTION 

Gravity is the driving force behind stellar evolution. Most importantly it leads 

to the compression of matter and thence to the formation of stars. It leads to the 

conditions where nuclear forces play a constructive role in thermonuclear 

fusion. The transformation of hydrogen to helium in the hot compressed 

centres of stars is often followed by a further compression and the transforma- 

tion of helium into more massive elements such as carbon, oxygen and iron, the 

star dust out of which we are all made. 

In order to identify some simple and general features of gravitational con- 

traction, we consider in Fig. 1.1 a spherical system of mass M and radius R, in 

which the only forces acting are due to its self-gravity and the internal pressure. 

To keep the analysis as simple as possible, we shall assume spherical symmetry 

and no rotational motion. The density and pressure at a distance r from the 

centre of the system will be denoted by p(r) and P(r). 

We begin by finding an expression for the acceleration of a mass element 

located at a distance r from the centre. The matter enclosed by a spherical shell 

of radius r has mass 

m(r) ral o(r’) 4nr? dr’, 
0 

and acts as a gravitational mass situated at the centre giving rise to an inward 

gravitational acceleration equal to 

There is also, in general, a force arising from the pressure gradient. To find this 

we consider a small volume element located between radii r and r+ Ar, of 

cross-sectional area AA and volume Ar AA, as illustrated in Fig. 1.1. A net 

force arises if the pressure on the outer surface of the volume is not equal to the 

pressure on the inner surface. Indeed, the inward force on the volume element 

due to the pressure gradient is 

dP dP 
P(ry+ Ae Ar — P(r)| AA = ap Ar AA. 
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Fig. 1.1. A spherical system of mass M and radius R. The forces acting on a small 

element with volume Ar AA at distance r from the centre due to gravity and pressure 

are indicated. The gravitational attraction of the mass m(r) within r produces an inward 

force which is equal to g(r) p(r) Ar AA = g(r) AM. If there is a non-zero pressure gradient 

at r, the difference in pressure on the inner and outer surfaces leads to an additional force 

which can oppose gravity 

Bearing in mind that the mass of the volume element is AM = p(r) Ar AA, we 

deduce that the inward acceleration of any element of mass at distance r from 

the centre due to gravity and pressure is 

st = 207) corres: (1.3) 

Note that to oppose gravity the pressure must increase towards the 
centre. 

Free fall 

We shall now assume that there is no pressure gradient to oppose gravita- 
tional collapse. In this case each mass element at r moves towards the centre 
with an acceleration g(r) = Gm(r)/r?. Spherical symmetry implies that each 
spherical shell of matter converges on the centre. In particular, a shell of matter 
enclosing a mass mo collapses under gravity with an inward acceleration 
Gmo/r?, and the kinetic energy of the shell increases as its gravitational poten- 
tial energy decreases. To find the inward velocity of the shell when its radius is ie 
we assume that the shell is initially at rest at a radius ro, and that it encloses a 
mass which remains constant during collapse. The inward velocity can then be 
found from the conservation of energy equation: 
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dr _ Go _ Gio 

dt . Nol] r ro 

It follows that the time for free fall to the centre of the sphere is given by 

2 2 1/2 = f dt ay --[ pon Gg _ ne dh 

ro r r0 

This may be simplified by introducing the parameter x = r/ro to give 

3 71/2 pl ale! 
‘9 x 

t = | ————. _————s a 

bon [ = -| se 

The integral in this equation may be evaluated by substitution of x = sin? 6 to 
give 7/2. 

We have shown _ the free-fall time for a shell of radius ro enclosing mass 
mo depends on mo/r, i.e. it is determined by the average density of the matter 
enclosed. It follows that, in the absence of an internal pressure gradient, a 
sphere with an initial, uniform density of p will collapse as a whole in a time 
given by 

Boe 1/2 

t = |——— 5 : a (1.4) 

Collapse under gravity is never completely unopposed. In practice the energy 

released by the gravitational field of the collapsing system is usually dissipated 

into random thermal motion of the constituents, thereby creating a pressure 

which opposes further collapse. However, free fall is a relevant approximation 

if energy is easily lost by radiation, or if the constituents of the collapsing 

system can absorb energy by excitation or dissociation. For example, an inter- 

stellar cloud of molecular hydrogen can collapse rapidly as long as it is trans- 

parent to its own radiation, or as long as hydrogen molecules can be dissociated 

into atomic hydrogen, or as long as atomic hydrogen can be ionized. But the 

gravitational energy released in an opaque cloud of ionized hydrogen will be 

trapped as internal thermal motion. The internal pressure will rise and slow 

down the rate of collapse. The cloud will then approach hydrostatic equili- 

brium. 

Hydrostatic equilibrium 

Figure 1.1 and Eq. (1.3) indicate that an element of matter at a distance r from 

the centre of a spherical system will be in hydrostatic equilibrium if the pressure 

gradient at r is 
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dP Gm(r)p(r) (1.5) 
dr r2 

The whole system is in equilibrium if this equation is valid at all radii, r. In this 

case it is possible to derive a simple relation between the average internal 

pressure and the gravitational potential energy of the system. 

To derive this relation we multiply Eq. (1.5) by 4rr and integrate from r = 0 

to r= R to obtain 

[ae ress ih Gm(r)p(r)4ar 

0 d 0 la y 

= 

Both sides of this equation have simple physical significance. The right-hand 

side is simply the gravitational potential energy of the system: 

m=M 2 

Ecr=- | eat a ewe (1.6) 
m=0 is 

where dm is the mass between r and r + dr; i.e. p(r) 4xr? dr. The left-hand side 

can be integrated by parts to give 

R 

[P(r)4nr3], 3 | P(r)4nr dr. 
0 

The first term is zero because the pressure on the outside surface at r = R is 

zero. The second term is equal to —3(P)V, where V is the volume of the system 

and (P) is the volume-averaged pressure. Hence we conclude that the average 

pressure needed to support a system with gravitational energy Egr and volume 

V is given by 

hp eee (1.7) 

In words, the average pressure is one-third of the density of the stored gravita- 

tional energy. This expression for the average pressure needed to support a self- 

gravitating system is called the virial theorem. 

The physical origin of this pressure depends on the system. In Chapter 2 we 

shall consider the pressures generated by classical and quantum gases of both 

non-relativistic and ultra-relativistic particles. But at this stage we would like to 

focus on the relation between the pressure and the internal energy density due 

to the translational motion of the particles, and in so doing we shall emphasize 

the profound difference in the behaviour of non-relativistic and ultra-relativistic 

systems. 

To derive this relation we consider a gas of N particles in a cubical box of 

volume L* with its edges orientated along the x, y and z axes. Initially we 
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shall focus on a gas particle with velocity v = (v,, v,, v-) and momentum 

P = (Px. Py, p-). As this particle bounces around the box it strikes the sides at 

regular intervals. In particular, the rate at which it strikes one of the sides 

perpendicular to the z-axis is v-/2L, and in so doing it imparts a momentum 2p- 

with each strike. Hence the rate of momentum transfer to unit area of the side is 

p-v-/L. We now consider all N particles in the box. The pressure due to these 

particles on a side of area L* perpendicular to the z-axis is 

N 
P = L (pzUz), 

where the brackets denote an average over all the particles. If the gas is 

isotropic, all directions of motion for the particles are equally likely and 

(PxVx) = (PyVy) = (pzUz) = (p ‘ Yi 3, 

where 

p =y¥ => DxVUx <= PyVy ae DzvUz- 

Thus, the pressure on each side of the box is the same and equal to 

P= (p : v), (1.8) 

where n is the number of particles per unit volume. 

Even though this expression for the pressure in an ideal gas has been 

derived using classical physics, it is also valid when quantum effects are import- 

ant, as in a degenerate electron gas; see Section 2.1. Furthermore, it is also 

valid when the kinematics of the gas particles are described by special rel- 

ativity. 

We shall now compare and contrast two types of ideal gas, a gas of non- 

relativistic particles and a gas of ultra-relativistic particles. The general relation 

between the energy ¢, and the momentum p of a particle of mass m is 

2 12 2A G=pe tm, 

and the velocity of the particle is v = pc? /e,. The familiar non-relativistic limit 

is found by assuming p << mc, so that ep = me? + p?/2m and v = p/m. The 

less familiar ultra-relativistic limit is found by assuming p >> mc, so that 

€ =pe and v=c. The general expression (1.8) for the pressure in an ideal 

gas takes the following forms in the non-relativistic and ultra-relativistic 

limits: 

e Fora gas of non-relativistic particles of mass m, p - V = mv” and the pressure 

becomes 
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mu) =~ of the translational kinetic energy density. [1S9) 
WI] rw 

2 4,1 
Fag 

e For a gas of ultra-relativistic particles p - v = pe and the pressure becomes 

P= . (ne ; of the translational kinetic energy density. (1.10) 

We shall now show that the replacement of the factor 3 by | when the particles 

become ultra-relativistic has a profound effect on the hydrostatic equilibrium of 

gases under gravity. 

Equilibrium of a gas of non-relativistic particles 

Consider a gas of volume V held together by gravity. If the gas is ideal and if the 

gas particles are non-relativistic, then the average pressure implied by Eq. (1.9) is 

_ 2 Exe 
SN dopa 

where Ex g is the kinetic energy due to the translational motion of all the 

particles in the entire gas. Comparison with the average pressure needed for 

hydrostatic equilibrium, Eq. (1.7), shows that the gravitational and kinetic 

energies of an ideal gas of non-relativistic particles in hydrostatic equilibrium 

under their own gravity are related by 

2Exe + Ecr= 0. (1.11) 

If the particles have no internal excited degrees of freedom, the total energy of 

the gas is the sum of the kinetic and gravitational energies of the particles, 

Eror = Exe + Egr. Equation (1.11) implies that this total energy can be 

expressed in terms of either the kinetic energy or the gravitational energy of 

the particles; in particular 

1 
Eror = —Exr and Eror = 3 Far. tb2) 

Equations (1.11) and (1.12) are of fundamental importance in astrophysics. 

They describe the implications of the virial theorem for a system of self- 

gravitating, non-relativistic particles in hydrostatic equilibrium. 

The first point to note is that if such a system is in hydrostatic equilibrium, 

it is bound with a binding energy, —Eror, equal to the internal kinetic energy 

due to the translational motion of the gas particles. This implies that tightly 

bound clouds of gas have gas particles with high kinetic energy; in other words 

they are hot. 
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The second point to note is that if the system evolves slowly and remains 

close to hydrostatic equilibrium, the changes in the gravitational and kinetic 

energies are simply related to the change in the total energy; for example, a 1% 

decrease in the total energy would be accompanied by a 2% decrease in the 

gravitational energy and a 1% increase in the kinetic energy. 

Such changes characterize the behaviour of many astrophysical systems. For 

example, let us consider a cloud of gas which is losing energy from its surface 

by radiation. If the energy loss from the surface of a gas cloud is supplied by 

the release of gravitational energy, the gravitational energy decreases 

and the internal thermal energy increases; the cloud will contract and get 

hotter. Indeed, for contraction close to hydrostatic equilibrium, half the 

gravitational energy released is lost from the surface and the other half is 

dissipated as heat; this heat provides the increase in pressure needed to oppose 

the increasing forces of gravity in the contracting cloud. However, if the 

energy loss from the surface can be supplied by the release of nuclear energy 

by thermonuclear fusion, the total energy Exg+ gr remains constant 

and there is no need for the cloud to contract; the sun behaves in this way. 

But if nuclear fusion releases excess energy, there is an increase in the 

total energy. This implies an increase in the gravitational energy and a 

decrease in the kinetic energy; the cloud expands and cools. Conversely, 

nuclear reactions which absorb energy will cause a gas cloud to contract and 

heat up. 

Equilibrium of a gas of ultra-relativistic particles 

We shall now show that the situation with regard to hydrostatic equilibrium is 

markedly different when a gas of ultra-relativistic particles is held together by 

gravity. In this case the pressure inside the gas is given by Eq. (1.10), and 

consequently the average pressure in the system is one-third the average kinetic 

energy density. If we equate this pressure to the average needed for hydrostatic 

equilibrium, Eq. (1.7), we find that the kinetic and gravitational energies are 

now related by 

Exe + Ecr= 0. (1.13) 

In words, hydrostatic equilibrium is possible only if the binding energy is 

zero. We have a system which is on the cusp of being bound and unbound. 

Indeed, as the ultra-relativistic limit is approached, the binding energy decreases 

and the system is easily disrupted. This type of instability occurs in stars in 

which a substantial fraction of the pressure arises from radiation, i.e. from a 

gas of ultra-relativistic particles called photons. It can also occur in stars 

supported by the pressure of a gas of degenerate electrons if these electrons 

become very energetic. These instabilities are considered in detail in Sections 5.4 

and 6.1. 
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Equilibrium and the adiabatic index 

The stability of hydrostatic equilibrium is often described in terms of the 

adiabatic index + of the gas. This is particularly useful when the constituents 

of the gas have vibrational and rotational degrees of freedom. 

The adiabatic index + is used to describe the relation between the pressure 

and the volume of a gas during an adiabatic compression or expansion. For 

such a process, PV? is a constant; 1.e. for small adiabatic changes in the volume 

and pressure 

Seal or d(PV)=PdV+4+V dP=-—(7-1)P dV. 

As there is no heat transfer in an adiabatic compression or expansion, the 

change in the internal energy of the system is determined solely by the work 

done. If we denote the internal energy due to translational kinetic energy and 

the excited internal degrees of freedom of the gas particles by E;,, then 

dE~w = —P dV, 

and hence 

l 
dEiw = —— d(PV). 

y¥—1 

If the adiabatic index 7 is constant, we can deduce the following useful relation 
between the internal energy and the pressure of the gas: 

l 
ear hd Bina 

We now consider a self-gravitating gas with adiabatic index y, which is in 
hydrostatic equilibrium. The average pressure in such a gas can be expressed in 
terms of the internal energy and 7, and, by using the virial theorem (1.7), in 
terms of the gravitational potential energy: 

IN ] GR Pie 

Thus, a self-gravitating gas with adiabatic index ¥ is in hydrostatic equilibrium 
if 

3(q bh) Ene Ber 0. (1.14) 

Equations (1.11) and (1.13) are particular cases of this more general relation 
between the internal and gravitational potential energies of a gas. These parti- 
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cular cases can be obtained from Eq. (1.14) by specializing to a gas of 
particles with no excited internal degrees of freedom so that Ew = Exe, the 
internal kinetic energy due to translational motion of the particles, and then 
setting y = 5/3 for non-relativistic particles and y = 4/3 for ultra-relativistic 
particles. 

The total energy of a gas with adiabatic index y in hydrostatic equilibrium is 
given by 

Eror = Ej + Egr = —(37 — 4) Eqn. (dis15) 

We note that the gas is bound if 7 > 4/3. Furthermore, the binding energy is 
small if 7 is near to 4/3, and when this is the case a small change in the total 
energy is accompanied by much larger changes in the internal and gravitational 
energies. For example, if y is 1% bigger than 4/3, a | unit decrease in the total 
energy is accompanied by a 25 unit increase in the internal kinetic energy anda 
26 unit decrease in the gravitational potential energy. It is clear that the 
stability of such a system is precarious. Indeed, instability is expected 
whenever ¥ is reduced towards 4/3. In this context, we note that for particles 
with no excited internal degrees of freedom 7 = 5/3 when they are non-relativ- 
istic, but 7 approaches 4/3 as they become predominantly ultra-relativistic. 
The adiabatic index can also approach 4/3 when there are processes which 
provide new ways of absorbing heat, such as the dissociation of molecules, 
the ionization of atoms, the photodisintegration of atomic nuclei or the pro- 

duction of particles. Such processes will tend to render hydrostatic equilibrium 
precarious. 

1.3 > STAR FORMATION 

It seems that most stars are formed in clusters. There are two characteristic 

kinds of cluster, globular and open. Globular cluster are compact aggregations 

of many thousands of stars. Studies of their spectra indicate that the member 

stars are deficient in heavy elements, such as carbon, oxygen and iron. This lack 

of heavy elements suggests that these stars are old stars formed from primordial 

hydrogen and helium. In contrast, open clusters are loose collections of 50 to 

1000 stars. These stars are rich in heavy elements, indicating that they are 

comparatively young stars formed from matter which has been enriched with 

elements formed by earlier generations of stars. 

There is as yet no complete understanding of how stars emerge from inter- 

stellar gas clouds. These clouds seem to have too much kinetic energy and too 

much angular momentum to condense into stars, and there is much interest in 
how this excess energy and angular momentum can be shed. Despite this 

uncertainty some general features of star formation can be identified. To do 

this we shall give a qualitative description of the gravitational contraction of 

clouds of uniform density. 
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Conditions for gravitational collapse 

In order to begin the process of the condensation into a cluster of stars, a gas 

cloud must be sufficiently compact so that the attractive forces due to gravity are 

not overwhelmed by the dispersive effects of the internal pressure. In particular, 

the cloud becomes bound if the magnitude of the gravitational potential energy 

is larger than the internal kinetic energy. We shall determine an approximate 

condition for condensation by considering a cloud of radius R and mass M 

containing N particles with average mass m at a uniform temperature 7; for 

simplicity we shall assume that the cloud consists predominantly of hydrogen. 

The gravitational potential energy can be evaluated with the aid of Eq. (1.6) 

to give 

GM? 
R 3 

Ecr = —f (1.16) 

where f is a numerical factor which depends on the density distribution within 

the cloud. It is straightforward to show that f = 3 for a spherical cloud of 

uniform density, but a larger value is obtained if the density is higher towards 

the centre; in our rough calculation we shall adopt a value of unity for f. The 
thermal kinetic energy of the cloud is found by noting that each particle 
contributes 37. Hence 

Exe = 5NKT. (1.17) 

The critical condition for the onset of condensation is 

|EGr| > Exe. (1.18) 

This condition implies that a cloud of radius R can condense if its mass exceeds 

3kT 
AjRBLZIR 
ppiite 

It also implies that a cloud of mass M can condense if its average density 
exceeds 

PJ 
3 pas aD 

~ 4nM2 |2Gm 

The subscript J has been used because these critical values for the mass and 
density are often called the Jeans mass and density. 

In fact, it is most useful to express the condition for condensation in terms of 
the average density of the cloud. We note that the critical density given by 
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Eq. (1.19) is low and hence more easily achieved if the mass of the cloud is large. 
For example, a cloud of molecular hydrogen at a temperature of 20 K with a 
mass of 2 x 10° kg, which is equivalent to 1000 solar masses, could condense if 
its density reaches 10~* kg m~?; i.e. about 10° molecules per cubic metre. The 
critical density for a similar cloud with a mass equal to 1 solar mass is a million 
times higher! 

These considerations suggest that it is natural to regard the condensation of 
gas clouds into stars as taking place in several stages. First, a massive extended 
gas cloud contracts; its mass may be thousands of times the solar mass. When 
the cloud has compressed and its density has become high enough, smaller 
parts of it will be able to contract independently. Ultimately, the cloud will be 
able to fragment into many parts, each with a mass comparable to the solar 
mass. These fragments may then condense to form a cluster of primitive stars, 

protostars. 

Contraction of a protostar 

Equation (1.19) implies that, when a cloud at a temperature of 20 K reaches a 

density of 10-'® kg m~?, a fragment with a mass comparable with the solar mass 
(i.e. 2 x 10*° kg) is capable of contracting independently. At this stage the 
fragment forms a protostar with a radius of the order of 10!° m, about a million 
times larger than the sun. It collapses freely, unopposed by internal pressure, if 

the gravitational energy released is not converted into random thermal motion. 

This is possible as long as a substantial fraction of the energy released is 

absorbed by the dissociation of hydrogen molecules and by the ionization of 

hydrogen atoms. 

The energy needed to dissociate a hydrogen molecule is ep = 4.5 eV, and the 

energy needed to ionize a hydrogen atom is €; = 13.6 eV. Hence the energy 

needed to dissociate and ionize all the hydrogen in a protostar of mass M is 

approximately 

—— Cl eels 
2my My 

where my is the mass of the hydrogen atom. If we assume that this energy is 

supplied by the gravitational collapse of a protostar from an initial radius R; to 

a final radius R2, then 

M 
i ED oe Lil eg ATE (1.20) 

My 

In particular, the energy needed to dissociate and ionize the hydrogen ina 

protostar with a mass equal to the solar mass is 3 x 10°? J. Such a sense 

will collapse freely from its initial radius of R; ~ 10!5 mtoa radius Ry + 10" m, 
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i.e. the radius shrinks 10000-fold to a size equal to a 100 times the solar radius. 

The timescale for this collapse is set by Eq. (1.4), which gives the free-fall time 

for an object of initial density p. In this case p ~ 107!® kg m3 and the timescale 

is of the order of 20000 years. 

When most of the hydrogen is ionized, and as the protostar becomes increas- 

ingly opaque to its own radiation, the gravitational energy released is converted 

into random thermal energy of electrons and ions. The internal pressure rises 

and the collapse of the protostar is slowed down, and hydrostatic equilibrium is 

approached. 

It is easy to estimate the average internal temperature of a protostar at the 

time when the rapid collapse under gravity is replaced by slow contraction. To 

do so, we use the virial theorem (1.11) to relate the internal kinetic energy and 

gravitational energy of a protostar when it is near to hydrostatic equilibrium. 

The thermal kinetic energy of the hydrogen ions and electrons in the protostar 

at an internal temperature 7 is 

M 
Exr =~ — 3kT. [210 

MY 

The gravitational energy at the end of the period of rapid collapse is given by 

Eq. (1.20); because R; >> R> we have 

GM? M M 
Eorwe— ~) — f are) GR R ee Ep Len €] (1.22) 

According to the virial theorem (1.11), 

2Exr + Egr = 0. 

Hence a protostar approaches hydrostatic equilibrium at a temperature given 
by 

kT a fem PO) eG EV. (1.23) 

This corresponds to an average internal temperature of 30000 K. Note that this 
estimate is independent of the mass of the protostar. 

The subsequent slow contraction of the protostar is governed by the opacity 
of the ionized interior. This opacity controls the rate at which energy is lost as 
radiation from the surface, and hence the rate of release of gravitational energy. 
The timescale for the contraction is of the order of 107 to 108 years. The virial 
theorem can again be used, because the protostar remains close to a state of 
hydrostatic equilibrium. According to Eq. (1.11) and Eq. (1.12), half the grav- 
itational energy released is lost from the surface; the other half is stored as 
internal kinetic energy. The temperature and pressure at the centre of the 
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protostar increase until the conditions are suitable for the thermonuclear fusion 
of hydrogen. The energy released by nuclear fusion lessens the need for the 
release of gravitational energy, and the protostar ceases to contract. True 
stardom is reached when the nuclear reaction rate is sufficient to supply the 
radiant energy lost from the surface. 

Conditions for stardom 

Not all self-gravitating bodies achieve stardom. A hot gas of classical electrons 

and ions is not the only way to resist gravity. Gravitational contraction can also 

be opposed by a cold, dense gas of degenerate electrons. In such a gas, the 

electrons are governed by the laws of quantum mechanics and occupy the 

lowest possible energy states in accordance with the Pauli exclusion principle. 

A degenerate electron gas resists compression, not because of random thermal 

energy of the electrons, but because the total kinetic energy of the electrons has 

a minimum value which increases as the density rises. In fact, the temperature of 

a contracting body ceases to rise if the electrons become degenerate. This occurs 

if the average distance between electrons in the contracting system becomes 

comparable with the typical de Broglie wavelength of the electrons. 

The quantum mechanical de Broglie wavelength of an electron is given by 

\ = h/p, where h is Planck’s constant and p the momentum. Since the kinetic 

energy of an electron in a classical gas at temperature T is approximately kT, 

the momentum is about (m,.kT yl/ > and the typical de Broglie wavelength is 

Aideeides (1.24) 
~ (mekT) 2 

Classical mechanics will be valid provided the wave functions of the electrons 

do not overlap; in other words, the average separation between the electrons 

has to be large compared with X. This condition is satisfied if the density of the 

ionized gas satisfies the inequality 

WAT) 5 3 (1.25) 

Here m is the average mass of the particles in the ionized gas; for ionized 

hydrogen m = 0.5 amu, the average mass of a proton and an electron. 

It is straightforward to show that the internal temperature of the protostar 

will initially rise as the internal density increases. Substitution of the approx- 

imate expression for the gravitational energy, Eq. (1.16), and the classical 

expression for the internal kinetic energy, Eq. (1.17), into the condition for 

hydrostatic equilibrium, 2Exe + Ecr = 9, gives 

_ GMm 
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We see that the temperature is proportional to p'/3. This will be the case as long 

as the density is low enough to satisfy the inequality (1.25) so that the electrons 

are governed by classical mechanics. 

When the density reaches the value 

(m.kT)*/* ao (1.27) 
{! 

pm 

quantum mechanics becomes important and the electrons will begin to become 

degenerate. As a result, the temperature of the gas no longer increases markedly 

if it is compressed. We can estimate the temperature at which the electrons in 

the contracting protostar become degenerate by substituting the critical density 

given by Eq. (1.27) into Eq. (1.26). We obtain 

(m.kT ) Hf 
KT = GMM m ——— 

which can be rearranged to give 

28/3 7 
kT a m4, (1.28) 

Around this temperature, degenerate electrons begin to resist compression and 

further contraction under gravity no longer causes the temperature to rise. 

Equation (1.28) gives an estimate for the maximum value of the average 

internal temperature reached by a contracting protostar. Notice the key role 

played by the mass M of the protostar. If the solar mass of 2 x 10*° kg is 
substituted, we obtain a maximum temperature of kT ~ 1 keV. In other words, 

a solar mass, if it were allowed to contract under gravity, could reach an 

average internal temperature of about 10 million K, and a central temperature 

which is even higher; this is more than sufficient to trigger thermonuclear 

reactions and the fusion of hydrogen to helium. But the contraction of proto- 

stars less massive than the sun leads to lower internal temperatures. Detailed 

calculations indicate that the minimum mass needed for thermonuclear igni- 

tion, and hence true stardom, is about 0.08 solar masses. Protostars with masses 

less than this value evolve into objects where gravity is countered by the 

pressure of degenerate electrons; such objects are often called brown dwarfs. 

We shall consider the possible range of masses for stars in Chapter 5. The 

minimum mass for a star will be examined in more detail, and we shall also 

argue that there is a maximum as well as a minimum mass for stardom. In 

particular, it will be shown that the pressure generated by radiation inside a star 

is significant if the mass is much larger than the solar mass. This implies that the 

hydrostatic equilibrium of a massive star is dependent on radiation pressure, i.e. 

on the pressure due to a gas of photons. But, as we have already seen in Section 

1.2, hydrostatic equilibrium becomes precarious as the gas particles become 
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ultra-relativistic: according to Eq. (1.13) the binding energy becomes small, and 
small changes in the total energy are accompanied by large changes in the 
internal and gravitational energies. These considerations suggest that stars 
with a mass greater than 50-100 solar masses are easily disrupted. And indeed 
such stars are rare. 

1.4 THE SUN 

As our nearest star, the sun has a special role as a source of precise astrophy- 
sical information. For example, we know its mass, radius, geometric shape and 
age, and also the luminosity and spectrum of electromagnetic radiation from its 

surface. This observational information is used in theoretical models of the sun 

to predict the physical characteristics of the solar interior. The most detailed 

model of the sun is the Standard Solar Model, which is described by Bahcall 

(1989). Some of the input parameters for this model and some of the calculated 

solar properties are listed in Table 1.2. 

Our aim in this section is to consider the sun in its simplest terms in order to 

illustrate basic astrophysical concepts and to fix the order of magnitude of 

astrophysical quantities. 

TABLE 1.2 The main physical properties of the sun* 

Property Value 

Mass Mz = 1.99 x 10° kg 
Radius Rs = 6.96 x 10° m 
Photon luminosity Le = 3.86. x 10° W 
Effective surface temperature Tg= 5780 K 

Age to © 4.55 x 10? years 
Central density pe = 148% 10" ke mm 

Central temperature T= 15.6% 10° K 
Central pressure Ple'9 2980 10" Pa 

* The measured properties are the mass, radius, photon luminosity, and 
surface temperature. The estimate for the age is largely based on geolo- 
gical studies. The properties at the centre of the sun are calculated with 
the aid of the Standard Solar Model; see Bahcall (1989) for more detail. 

Pressure, density and temperature 

The sun is a star of mass Ms ~ 2 x 10°° kg. The gravitational contraction of 

the sun was halted about 5 billion years ago by the ignition of ‘hydrogen 

burning’, i.e. the thermonuclear fusion of hydrogen to form helium. During 

its current hydrogen burning phase the solar radius is Ro ~ 7 x 10° m and the 

average density (p) is 1.4 x 10° kg m~?. The time for free fall under gravity for 

an object of this density is given by Eq. (1.4), 
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5 

37 ad 1 h 
lrr = 32G(p) ~~ D) our. 

As this time bears no relation to the sun we observe, we safely conclude that the 

sun is not in free fall and that the internal pressure gradient within the sun 

must play an essential role in opposing gravity. Indeed, as there is no evidence 

for major changes in the sun during the geological lifetime of the earth, we 

can conclude that the sun has been close to hydrostatic equilibrium for at least 

4.5 billion years. Hydrostatic equilibrium implies we can use the virial theorem 

to find the average pressure supporting the sun; using Eqs. (1.7) and (1.16) we 

find 

1 Ecr _ GM? ted FEW! a ils Skee (1.29) (oi 

Hence the interior of the sun provides an environment in which matter 

and radiation interact at high temperature such that, on average, the pressure 

is about a billion times atmospheric pressure and the density is comparable 

with normal water. The thermal physics needed to understand matter and 

radiation under these extreme conditions will be reviewed in Chapter 2; the 

ionization of gases and the equations of state for non-relativistic, ultra-relat- 

ivistic, classical and quantum gases will be discussed. This discussion 

indicates that we are justified in making the simple and bold assumption 

that the sun is primarily supported by the pressure of an ideal classical gas 

of electrons and ions. Thus, the average pressure inside the sun is given 

by 

(P) = Na (1.30) 

where 77 is the typical internal temperature and m is the average mass of the gas 
particles. For ionized hydrogen m = 0.5 amu, the average mass of a proton and 
an electron. In fact, the Standard Solar Model assumes that the sun was formed 
from material which was 71% hydrogen, 27% helium and 2% of heavy elements, 
such as carbon, oxygen and iron. When fully ionized this yields an average gas 
particle mass of m ~ 0.61 amu. 

It is easy to combine Eggs. (1.29) and (1.30) to estimate the typical tempera- 
ture inside the sun. We obtain 

WAR pei as vac oS gall Seah Adem Seh (1.31) 
3Ro 

Of course the actual temperature inside the sun, like the density and the 
pressure, increases towards the centre. The central temperature, density and 
pressure given by the Standard Solar Model are listed in Table 1.2. 
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Solar radiation 

The total power radiated by the sun, its luminosity Lo, is about 4 x 1076 Ww. 
Moreover, to a first approximation the sun appears to be a black body 
radiator with area 47R*, and effective surface temperature 7, of about 
6000 K. Thus 

Lo = 4nRi oT}, (1.32) 

where o is Stefan’s constant, 5.67 x 10°-§ W m~? K~. Since kT = 0.5 eV the 
bulk of the radiation is in the visible part of the electromagnetic spectrum. 
We note that the effective surface temperature, T; ~ 6000 K, is three orders 

of magnitude less than the typical interior temperature of 7; ~ 6000000 K 
given by Eq. (1.31). We can understand this difference by examining the 
mechanism by which radiation escapes from the sun. 

As the electrons and ions interact inside the sun they emit electromagnetic 
radiation which in turn interacts with electrons and ions. Indeed, to a first 
approximation we can consider the sun as a globe of electrons and ions in 
equilibrium with electromagnetic radiation at a temperature 77. If this radia- 

tion were free to escape, without disturbing thermodynamic equilibrium, then 

the sun would appear to be a black body radiator at a temperature of T;. The 

luminosity of the sun would be 

Li, © 4nR20T;, (1.33) 

and the radiation would be in the X-ray region of the electromagnetic spectrum 

because kT; ~ 0.5 keV. 

Fortunately for the inhabitants of planet earth, this radiation is not free to 

escape; to a very large extent it is trapped within an opaque sun and the earth is 

not incinerated by X-rays. The radiation inside the sun is continually scattered, 

absorbed and emitted by electrons and ions. A temperature gradient is set up 

and the radiant energy slowly diffuses towards the surface, where it escapes as 

visible radiation. The underlying mechanism for radiative diffusion is a random 

walk in which the photons are scattered, absorbed and emitted, as shown in 

Fig. 1.2. 
We shall let / represent a free path for a photon within the sun. In practice 

there is a distribution of free paths with a mean which depends on the region 

within the sun. To keep the analysis as simple as possible we will take / to be a 

constant length characteristic of photons within the sun as a whole. After N 

interactions, and after N vector displacements in random directions, the radiant 

energy associated with the photon has travelled a vector distance 

D=h+h+--:+ly, 

as shown in Fig. 1.2. The square of the net distance travelled in N steps is 
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Fig. 1.2 A random walk mechanism for radiative diffusion. A sequence of N steps in 

random directions leads to a vector displacement of D=1], +h + --- + ly 

D=P+h+-.-+h +2(h-ht+h-b+---) 

If we average over many random walks, the terms involving scalar products 

cancel because the direction of each step is random. Hence the mean square 

distance travelled is simply /? + 5 +--+ +/) or NP. 
To escape from the sun, a photon must diffuse a distance which is compar- 

able with the solar radius. On average this requires about Re /F steps. Because 

the time for each step is //c, where c is the speed of light, the random-walk 

escape time is approximately 

R2 
inw 2 —. (1.34) 

cl 

In contrast, the time to escape directly from the sun is R;/c, which is a factor of 

1/Reo shorter than the random-walk escape time. Thus, radiative diffusion via a 

random walk slows down the rate at which energy escapes from the sun by a 

factor of //Rs. It follows that the actual luminosity of the sun given by 

Eq. (1.32) is a factor of //Rs smaller than the luminosity given by Eq. (1.33), 

the luminosity that would arise if radiation were free to escape unhindered. This 

implies that the effective surface temperature and the typical internal tempera- 

ture of the sun are approximately related by 

1/4 

TE le T}. (i335) 

Using Tr, ~ 6000 K and 7; + 6000000 K, we find that the effective mean free 

path for radiative diffusion in the sun is about 1 mm, i.e. the sun is very opaque. 
And using Eq. (1.34), we find that the typical time for radiation to diffuse from 
the centre and escape from the sun is about 50000 years. 
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We can also use this simple but approximate analysis to reveal how the 
luminosity of a star like the sun depends on its mass. An approximate expres- 
sion for the luminosity (1.32) can be found by using Eq. (1.35) and the relation 

between the internal temperature and the mass and radius of the sun given in 
Eq. (1.31). We find 

fins rid! wi ht ) 
ie ~ ART} 5S . ~ Gt mi (p)l M3. (1.36) 

This equation indicates that the luminosity of a sun-like star is expected to be a 

rapidly increasing function of its mass. 

Radiative diffusion will be considered in more detail in Chapter 3. We shall 

end this preliminary discussion by emphasizing that radiative diffusion restricts 

the flow of radiation and prevents the sun from losing heat catastrophically. It 

determines the luminosity and hence the rate at which energy must be released 

by thermonuclear fusion at the centre of the sun. 

Thermonuclear fusion in the sun 

Thermonuclear fusion will be considered in detail in Chapter 4. At this point 

we note that the solar luminosity is currently being supplied by a chain of 

thermonuclear reactions called the proton—proton chain. The dominant reac- 

tions are 

ppt +O be (1.37) 

p+d—-He+¥4, (1.38) 

3He +7He *He + p +p, (1.39) 

where d denotes a deuteron or 7H, an isotope of hydrogen with mass 2. Each of 

these reactions is exothermic and the total thermonuclear energy release is 

about 26 MeV per *He nucleus formed. This energy must be released at a rate 

of 4 x 1076 W in order to power the solar luminosity. 

All the reactions in the proton—proton chain are hindered because a Coulomb 

barrier tends to keep the positively charged nuclei apart. However, there is a 

significant probability that nuclei can tunnel, quantum mechanically, through a 

Coulomb barrier if the temperature is high. The interaction required to effect 

fusion is different for each of the reactions: reaction (1.37) relies on the weak 

nuclear interaction, reaction (1.38) relies on the electromagnetic interaction and 

reaction (1.39) relies on the strong nuclear interaction. As a result, the first 

reaction in the chain, reaction (1.37), is by far the slowest. As we shall see in 

Chapter 4, a proton at the centre of the sun takes, on average, about 5 billion 

years before it fuses with another proton to produce a deuteron. The deuteron 
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so produced is snapped up to form a 3He in about a second and the average 

time needed for two *He to collide and form a 4He nucleus is approximately 

300 000 years. 

It follows that the first reaction in the chain, the slow weak reaction (13D) 

governs the rate at which energy is released by the proton—proton chain. This 

reaction forms a bottleneck through which an immense store of hydrogen fuel is 

gradually processed. One consequence is that, even though the total power 

released is huge, 4 x 107° W, the power density is very modest. On average 

each kilogram of the sun generates only 0.2 mW; this is about 10000 times less 

than the power density generated by the metabolic activity in the human body. 

We note that the weak reaction (1.37) implies that, as protons are consumed, 

neutrinos are emitted. Four protons are needed to produce a 4He nucleus and 

release 26 MeV, ie. 26 x 1.6 x 10-3 J. Hence the rate of consumption of 

protons needed to power a solar photon luminosity of 4 x 107° W is 

(4 x 4 x 107°)/(26 x 1.6 x 10-3) = 4.x 10°* protons per second. 

The fusion of these protons is also accompanied by the emission of at least 

2 x 10°8 neutrinos per second. These weakly produced neutrinos can sub- 

sequently interact, but only weakly, via the weak nuclear interaction. Unlike 

photons, they pass through the sun and escape almost unhindered and, if 

detected on earth, they could provide direct inside information on the thermo- 

nuclear reactions occurring at the centre of the sun. Needless to say, the 

detection on earth of particles which can pass almost unhindered through the 

sun is a formidable exercise. The detection of solar neutrinos and the solar 

neutrino problem will be considered in Chapter 4. 

Thermonuclear fusion not only postpones the contraction of the sun, it also 

acts as a solar temperature regulator, a thermonuclear thermostat. If the 

temperature rises, the nuclear reaction rate will increase and release more 

energy than can escape. Because the sun remains close to hydrostatic equili- 

brium we can apply the virial theorem to see what happens when the total 

energy is increased in this way. Equations (1.11) and (1.12) show that there will 

be an increase in the gravitational energy and a decrease in the internal energy; 

in other words, the sun will expand and cool. A parallel set of events will occur 

if the temperature falls: the energy released by the nuclear reactions will not be 

high enough to supply the energy lost by the sun and the total energy will be 

reduced; this reduction in the total energy will cause the sun to contract and 

heat up. 

This thermonuclear thermostat has postponed gravitational contraction and 

kept the sun steady for at least 4.5 billion years. It will continue to do so until 

there is insufficient hydrogen at the centre of the sun to fuel the proton—proton 

chain and supply the required solar. luminosity of 4 x 107° W. There are 
approximately 7 x 10°° protons in the sun, and as they are being consumed at 
a rate of 4 x 10°* every second, 10% will be consumed in the next 6 billion years. 
In total, the hydrogen burning phase of the sun will last for about 10 billion 
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years, after which the central core of the sun will contract and heat up until the 
temperature and density are high enough to ignite the thermonuclear fusion of 
helium. The outer layers of the sun will expand to form a red giant, and the sun 
will begin its next stage of stellar evolution. 

1.5 STELLAR NUCLEOSYNTHESIS 

Stellar evolution involves the release of gravitational potential energy through 

contraction, with pauses whenever nuclear fuels are ignited so as to supply the 

energy flow from the surface of the star. The ashes of one set of nuclear 

reactions may become the fuel for the next set. For example, the helium 

produced by the fusion of hydrogen may be ignited in a subsequent gravita- 

tional contraction to produce carbon. In fact, there is a sequence of thermo- 

nuclear stages. Each stage can be effective in calling a temporary halt to 

gravitational contraction provided it leads to the release of energy through 

the formation of more tightly bound nuclei. 

The binding energy per nucleon for atomic nuciei is illustrated in Fig. 1.3. 

The broad maximum at a mass number near 56 implies that the nuclei near iron 

in the periodic table are the most tightly bound. Thus, the sequence of thermo- 

nuclear reactions in stars is expected to terminate when nuclei near iron are 

BINDING ENERGY PER NUCLEON (MeV) 

0 50 100 150 200 

MASS NUMBER 4 

Fig. 1.3. Binding energy per nucleon for atomic nuclei. There is a broad maximum at 

mass number 56 which implies that energy is normally released when two light nuclei 

fuse to form a heavier nucleus provided the nucleus formed has a mass number less 

than 56 
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produced. These nuclei, isotopes of Cr, Mn, Fe, Co and Ni, form a nuclear ash 

which cannot be burnt. 

The main stages of thermonuclear fusion in stars and the approximate 

temperature needed to ignite each stage are listed in Table 1.3. 

TABLE 1.3. The main stages of nuclear burning in stars. The ashes of one stage of burning 

may become the fuel for the next stage provided the contracting star is massive enough to 

reach the approximate ignition temperature indicated. 

Process Fuel Products Approximate ignition 

temperature (K) 

Hydrogen burning Hydrogen Helium PR 10? 

Helium burning Helium Carbon, oxygen i oed* 

Carbon burning Carbon Oxygen, neon, sodium, 5 x 108 

magnesium 

Neon burning Neon Oxygen, magnesium Lx 10° 

Oxygen burning Oxygen Magnesium to sulphur 2 IO” 

Silicon burning Silicon Iron and nearby elements 3 x 10° 

Stellar mass and the extent of thermonuclear fusion 

Not all stars can achieve the temperatures needed to ignite every stage of 
thermonuclear fusion and progress to the synthesis of iron. We recall that the 
internal temperature of a contracting star ceases to rise when the electrons 
within the star become degenerate, i.e. when the average distance between the 
electrons becomes comparable with the typical de Broglie wavelength of the 
electrons. In particular we found in Section 1.3 that the maximum temperature 
possible is approximately proportional to M*/?; see Eq. (1.28). Thus the mass of 
a contracting star determines the maximum temperature achievable and hence 
which thermonuclear fusion stages can be reached. 
We have already mentioned that only stars with a mass greater than 0.08M, 

can attain true stardom and ignite hydrogen. There are in fact two mechanisms 
for hydrogen burning. The proton-proton chain is important in stars like the 
sun. But in more massive stars hydrogen is fused to helium via a set of reactions in 
which carbon acts as a catalyst, the so-called carbon-nitrogen cycle; an import- 
ant by-product of this type of hydrogen burning is nitrogen. These and other 
aspects of thermonuclear fusion will be considered in more detail in Chapter 4. 
When hydrogen burning ceases in the centre of the star, the helium core 

contracts under gravity and grows hotter. The increased temperature promotes 
hydrogen burning in a shell surrounding the core. It also leads to an increase in 
pressure and a large expansion of the outer layers of the star. As hydrogen 
burning continues in the shell, more helium is produced and deposited onto a 
helium core which becomes hotter and denser. If the star is massive enough, the 
core becomes sufficiently hot and dense for helium nuclei to fuse together to 
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form carbon nuclei. Helium burning releases energy which causes the core to 
expand and cool, and a cooler core leads to a partial contraction of the outer 
layers of the star. The star is now a red giant with a luminosity dominantly 
powered by helium burning in a hot, dense central core. The temperature of this 
core is between 10° and 2 x 10° K and its density is between 10° and 108 kg 
m~*. To achieve these conditions the initial mass of the star must exceed a value 
of about 0.5M.. 

In fact, helium burning is severely hindered by the absence of stable nuclei 
with mass 5 and mass 8. The only way forward involves the fusion of three *He 
nuclei to produce '*C via the three-body reaction 

4*He +4He +4He —!2¢. 

This three-body reaction actually takes place in two stages. Two *He nuclei fuse 
to form an unstable *Be nucleus whose brief existence is just long enough to 
permit an occasional capture of a third *He nucleus to form '2C. This requires 
both a high density and a high temperature. We note that helium was produced 
but not burnt in big bang nucleosynthesis; the temperature was hot enough but 
the density was too low. The high density and temperature needed for helium 
burning had to await the formation and evolution of massive stars. 

Helium burning not only produces carbon it also leads to another vitally 
important element, namely oxygen, via the reaction 

"He -¥C 3G 4. 4, 

In addition, small amounts of 7°Ne are also formed by 

4He +!°O 3”Ne + 4. 

As helium is consumed in the centre of the star, helium burning migrates to a 

shell surrounding a central core of carbon and oxygen, leading to an onion-like 

structure for the star in which there is an outer hydrogen burning layer, an inner 

helium burning layer and a core of carbon and oxygen; the outer layers of the 

star expand markedly during this phase of evolution. 

Stars with a mass greater than 8M. or thereabouts, can progress beyond 

helium burning and ignite carbon at a temperature of about 5 x 10® K to form 

elements such as neon, sodium and magnesium. If the temperature exceeds 

10° K, carbon burning can be followed by the photodisintegration of neon to 

produce oxygen and helium nuclei; the helium nuclei are then captured by 

undissociated neon nuclei to form magnesium. Oxygen burning can then take 

place at about 2 x 10° K to produce elements between magnesium and sulphur. 

Stars with a mass greater than 11Mq, or thereabouts, are able to achieve the 

high temperature of about 3 x 10’ K which needed to ignite silicon burning, the 

final stage of thermonuclear fusion. This leads to the formation of nuclei near 

iron in the periodic table. Such stars develop a structure consisting of concentric 
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layers composed mostly of hydrogen, helium, carbon, neon, oxygen and silicon 

surrounding a core of iron and nearby elements. 

In summary, the mass of a star governs the extent to which it converts 

hydrogen to heavier elements. Contracting stars with a mass approximately 

between 0.1M. and 0.5M. will reach the required temperature to ignite hydro- 

gen but they do not get hot enough to ignite helium. Stars with mass roughly 

between 0.5M. and 8M., will ignite hydrogen and helium, and stars in the mass 

range 8M. to 11M. will progress beyond helium burning to carbon burning. 

Finally, stars with a mass greater than 11M. are able to achieve the high 

temperatures necessary for the ignition of every stage of thermonuclear fusion. 

Neutron capture 

Thermonuclear fusion provides a mechanism for the release of energy and the 

production of elements up to iron in the periodic table. We also need a 

mechanism to account for the existence of elements heavier than iron. In 

general, energy is needed to produce these elements and fusion of charged 

nuclei is not effective. These elements owe their existence to neutron capture. 

Neutrons are released by nuclear collisions and photodisintegration, parti- 

cularly during the later stages of stellar evolution. Because neutrons are elec- 

trically neutral, they are easily captured by a nucleus to form a more massive 

nucleus with the same charge. Thus the presence of neutrons can lead to the 

production of neutron-rich isotopes. Such isotopes will eventually decay by 

beta decay; a neutron within the nucleus is converted into a proton and the 

atomic number of the nucleus increases by one unit. It is believed that the 

elements heavier than iron have been produced by sequences of neutron capture 

reactions followed by sequences of beta decays. 

The production of neutrons in an evolved star is normally a slow process, and 

any nucleus formed by neutron capture will have plenty of time to beta decay. 

This process of forming atomic nuclei is called the s-process where s stands for 

slow. However, neutron production may become very rapid during the final 

stage of evolution of a massive star. We shall see that this stage involves the 

collapse of a central core of iron which, among other things, can lead to the 

ejection of the outer layers of the star to form a supernova. During this 

explosive stage, nuclei can capture many neutrons before beta decay becomes 

effective. This process is called the r-process where r stands for rapid. The types 
of nuclei produced by these two processes differ significantly. For example, no 
element beyond bismuth (Z = 83) can be formed by the s-process, whereas the 
r-process can produce elements beyond this. 

s 

1.6 STELLAR LIFE CYCLES 

The big bang led to a universe composed of hydrogen and helium with traces of 
light elements. This primordial matter has been enriched with heavier elements 
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by a cycle of stellar formation and evolution in which matter has been trans- 
ferred back and forth between stars and interstellar matter. One of the main 
aims of astrophysics is to use this cycle to explain the abundances of the 
chemical elements in the universe today. 

Rate of stellar evolution 

In our discussion of the sun in Section 1.4 we saw that the luminosity of the sun 

determines the rate at which it consumes its nuclear fuel. In particular, Eq. 

(1.36) indicates that the luminosity of a star is a rapidly increasing function of 

its mass. Indeed, if the mean free path / for radiative diffusion is inversely 

proportional to the density, the luminosity given by Eq. (1.36) is proportional 

to the cube of the mass of the star. Figure 1.4 illustrates the actual relation 

between the mass M and luminosity L of representative hydrogen burning stars 

like the sun. We note that the luminosity is proportional to M°, where a is 

about 3 for massive stars and about 3.5 for stars less massive than the sun. 

LUMINOCITY IN UNITS OF Lo 

0.1 1.0 10 100 
MASS IN UNITS OF Mo 

Fig. 1.4 The mass—luminosity relation for hydrogen burning stars with a chemical 

composition similar to the sun. The data on representative main sequence stars 1s 

taken from Table 3.13 in the Astronomy and Astrophysics section of the Physics Vade 

Mecum compiled by Fredrick (1989) 
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This rapid increase of luminosity with mass has an important implication: it 

implies that massive stars have shorter lives despite their greater resource of fuel. 

Since the fuel reserves are proportional to M, the hydrogen burning lifetime 1s 

proportional to M~? for high mass stars and M~25 for low mass stars. Given that 

the hydrogen burning life of the sun is about 10 billion years, we conclude that a 

star of mass 10M. will burn hydrogen for about 100 million years, whereas the 

hydrogen burning lifetime of a star of mass 0.5M.. will exceed 50 billion years. 

In fact, the overall rate for all nuclear fusion processes inside a star, and 

hence the rate at which the star evolves, is largely determined by its mass; more 

massive stars evolve more quickly. Since the lifetime of the universe is 10-20 

billion years, there has been ample time for many generations of massive stars, 

but there has been insufficient time for the evolution of stars with a mass much 

smaller than the sun. 

The endpoints of stellar evolution 

The ultimate fate of a star depends crucially on the mass that remains in the 

central core when nuclear fusion can no longer maintain the pressure needed to 

prevent gravitational contraction. At this stage, the star must rely on a non- 

thermal source of pressure for support, namely a gas of degenerate electrons. 

However, we recall that hydrostatic equilibrium becomes precarious if gravity is 

opposed by the pressure generated by ultra-relativistic particles. This general 

principle imposes an upper limit on the mass that can be supported by a 

degenerate electron gas. In particular, we shall show in Chapter 6 that if the 

mass of a stellar core exceeds a critical value, the degenerate electrons become 

sufficiently relativistic to render hydrostatic equilibrium impossible. This crit- 

ical mass is about 1.4M. and is called the Chandrasekhar mass. 

Thus the fate of an evolved star depends crucially on whether the mass of its 

central core is less than or greater than the Chandrasekhar mass. A star like the 

sun will develop a stellar core with a mass less than 1.4M;, which can be 

supported by the pressure of degenerate electrons. After it loses its outer 

tenuous layers it forms a white dwarf, a compact object with a radius of 

about 10’ m and a density of about 10° kg m~?, which slowly cools without 
appreciable contraction because its mechanical support is due to a pressure 

which is insensitive to temperature. 

Massive stars develop an onion-like structure with a central core of iron. The 
mass of this inert core grows as silicon burning deposits more iron. Eventually 

the core will collapse catastrophically when its mass exceeds the Chandrasekhar 

limit; this collapse is considered in Section 6.2. To a first approximation the 

collapse is a free fall under gravity, unopposed by an internal pressure gradient 

because energy is absorbed by processes such as the photodisintegration of iron 
and inverse beta decay. The bulk of the gravitational energy released is carried 
away by a pulse of neutrinos. But a small fraction of this gravitational energy 
may be used to eject a substantial fraction of the stellar mass into interstellar 
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space to form a supernova. Stellar nucleosynthesis is completed during these 
final stages of stellar evolution. In particular, elements heavier than iron are 
produced by neutron capture. 

The eventual mass of the collapsed core is crucial to the final outcome of the 
evolution of a massive star. The most likely result is the formation of a neutron 
star, a compact star consisting primarily of degenerate neutrons. There is a 
maximum possible mass for such an object, which is analogous to the Chan- 
drasekhar mass for a star supported by degenerate electrons. This limit is 
discussed in Section 6.3. It is probably about 3M, but the exact value is 
uncertain because of the uncertain compressibility of nuclear matter at high 
densities. It is thought that if the mass of the collapsed core exceeds this limit, 

there is no possibility of halting gravitational collapse. A black hole is 
produced. 

One of the uncertainties in tracing the evolution of a star is the uncertainty in 

the amount of matter ejected into interstellar space as the star evolves. This 

mass loss can affect both the rate and the ultimate destination of stellar evolu- 

tion. Stars lose matter even during the hydrogen-burning phase of evolution; 

the solar wind, for example, carries away about 107'3M. of the solar mass 
every year. As stars evolve, even more intense flows occur as the tenuous outer 

layers expand. Furthermore, the final stages of evolution are often character- 

ized by significant mass loss. As intermediate mass stars, like the sun, exhaust 

their nuclear fuel, they shed their outer layers in an expanding cloud called a 

planetary nebula. In contrast, more massive stars often end their lives with an 

explosive ejection of matter in a supernova. This matter, together with the 

matter ejected as planetary nebulae by less massive stars and the matter lost 

during the earlier stages of stellar evolution, then forms the raw material for 

future generations of stars. 

Abundances of the chemical elements 

The cycle of stellar formation, evolution and death has led to an enrichment of 

the primordial hydrogen and helium with heavier elements. In particular, the 

chemical elements observed in the solar system are largely a reflection of the 

combined effect of nucleosynthesis during the big bang and of nucleosynthesis 

during the stellar evolution of earlier generations of nearby stars. 

The relative abundances of elements in the solar system are plotted against 

the atomic number Z in Fig. 1.5. The most notable features are as follows: 

e The dominance of hydrogen and helium, largely a left-over from nucleo- 

synthesis during the big bang. 

e A distinct lack of abundance between helium and carbon, reflecting the 

difficulty of building elements from hydrogen and helium in the absence of 

stable mass 5 and mass 8 atomic nuclei. 
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Fig. 1.5 The abundances of elements in the solar system relative to the abundance of 

hydrogen. The dominance of hydrogen and helium is a result of nucleosynthesis during 

the big bang. Thermonuclear fusion in stars preferentially produces helium, carbon, 

oxygen, neon, silicon and elements near iron. The abundances of elements beyond iron in 

the periodic table are low; for example, the abundances of silver, gold and lead relative to 

hydrogen are | x 107'', 6 x 107!* and 1 x 107!°. Elements like these are produced in the 
latter stages of stellar evolution by the capture of neutrons by lighter nuclei followed by 

beta decay. Data is taken from Table 3.06 in the Astronomy and Astrophysics section of 

the Physics Vade Mecum compiled by Fredrick (1989) 

e Peaks corresponding to the major products of stellar nucleosynthesis; namely 

carbon, oxygen, neon, silicon and elements near iron. The high abundance of 

nitrogen, the element between carbon and oxygen, is due to hydrogen burn- 

ing by the carbon-nitrogen cycle. 

In general, thermonuclear fusion, i.e. hydrogen, helium, carbon, oxygen, 
neon and silicon burning, is responsible for the abundances of elements with 
atomic number in the range 12 < Z < 30. Elements with atomic number 
Z > 30 owe their existence to neutron capture, particularly during the terminal 
stages of stellar evolution. In addition, small quantities of elements throughout 
the periodic table are produced by cosmic ray collisions; indeed a substantial 
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proportion of the elements between helium and carbon have been formed in this 
way. 

For each element there are often several naturally occurring isotopes. Their 
relative abundance provides further insight into the mechanisms of nucleo- 
synthesis. In addition, some of these isotopes are unstable. Indeed, the continu- 
ing presence of radionuclides, such as *°U , 8U and *°K , all with lifetimes 
comparable with 10° years, enables us to estimate that the solar system was 

formed some 4.5 billion years ago; see Problem 1.8. 

1.7 THE HERTZSPRUNG-RUSSELL DIAGRAM 

We shall end this introductory chapter by briefly considering some observa- 

tional properties of stars. It is important to note that stars are opaque to 

electromagnetic radiation and astronomers are therefore limited to recording 

superficial information. Moreover, the angular size of even the nearest stars is 

only a few thousandths of a second. Hence, with rare exceptions, a star appears 

as a point source of radiation from which the observer can deduce a luminosity 

and a surface temperature. 

Luminosity 

The observed brightness of a star is usually expressed as an apparent magnitude. 

The faintest stars visible to the naked eye have a magnitude of 6, and brighter 

stars have a smaller magnitude; Sirius A, the brightest star in the sky, has a 

magnitude of —1.4. The scale is logarithmic such that each tenfold increase in 

brightness decreases the magnitude by 2.5. Thus if the energy flux received from 

two stars is f; and f4, the magnitudes differ by 

my — m2 = —2.5 logy (fi //2)- (1.40) 

Because the energy flux from a star is proportional to its luminosity and 

inversely proportional to the square of its distance, the difference in magnitudes 

of two stars with identical luminosities at distances d; and d) is given by 

my — mz = —2.5 logy (ds /d;) = 5 logo (di /d2). 

The radiation from a star extends beyond the visible part of the electromag- 

netic spectrum. To take this into account, astronomers describe the visual 

brightness of a star by a visual magnitude, my, and the brightness over the 

entire electromagnetic spectrum by a bolometric magnitude, mz; the difference 

mpg — my is called the bolometric correction. 

The absolute bolometric magnitude corresponds to the brightness of a star as 

measured at a distance of 10 parsecs by a hypothetical detector which responds 
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to the entire electromagnetic spectrum. The parsec is the standard astronomical 

unit of distance. It is the distance at which one second of arc is subtended by a 

baseline whose length is equal to the mean separation of the earth and the sun. 

The numerical value of a parsec is 

1 pc = 3.086 x 10'° m = 3.26 light years. (1.41) 

We note that the accurate determination of distance has always been and 

remains today one of the central problems in astronomy, and that such a 

determination is needed to deduce the absolute bolometric magnitude of a star. 

Because the absolute bolometric magnitude represents the brightness of a star 

at a specific distance, it provides an absolute measure of the luminosity. In fact, 

a star with luminosity L has an absolute bolometric magnitude Mg given by 

Wh gcse S Nee kel Toes) 4 12 (1.42) 

where L5 ~ 4 x 102° W is the luminosity of the sun. Notice that the absolute 

bolometric magnitude of the sun is equal to 4.72, and notice that, as lumino- 

sities range from 10~4L. to 10°L5, bolometric magnitudes decrease from about 

+15 to —10. 

Surface Temperature 

The effective surface temperature of a star, Tg, is defined as the temperature of 

the black body of the same size which would give the same luminosity. For a 

star of luminosity L and radius R 

L = 4nRoT?, (1.43) 

where g is Stefan’s constant. For the sun T¢ ~ 6000 K. 

The colour of a star provides an alternative measure of its surface tempera- 

ture. The colour temperature of a star is determined by measuring its magnitude 

using a B filter which transmits wavelengths around 440 nm, and then a V filter 

which transmits wavelengths around 550nm. The difference in these magni- 

tudes is denoted by B—V and is called the colour index; B—V is negative for a 

blue star and positive for a red star. The colour temperature corresponds to the 

temperature of the Planck black body spectrum which gives the observed value 

of the colour index. 

An additional source of information on the surface:temperature is provided 

by absorption lines in the spectrum. As radiation passes through the photo- 

sphere, the surface region from which most of the observed radiation originates, 

radiation at particular wavelengths is absorbed by ions and atoms to give a 

spectrum containing dark absorption lines. The absorption lines in the spec- 

trum permit a classification of stars according to spectral type. The spectral 
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type depends on the degree of excitation and ionization of atoms and ions in the 
photosphere. It is denoted by a letter O,B,A.F,G.K or M. a sequence which 
largely reflects a steady decrease in surface temperature from 30000K to 
3000 K. The sequence is remembered by a mnemonic which these days is 
considered sexist. 

Luminosity and surface temperature 

The main observational properties of a star, its luminosity and its surface 
temperature, are not uncorrelated. The correlation is usually illustrated in a 
two-dimensional plot called a Hertzsprung—Russell diagram, in which the ver- 
tical axis represents the luminosity and the horizontal axis represents the surface 
temperature; for historical reasons the temperature decreases to the right. When 
Stars are represented by a point with coordinates (Tg, L) on this diagram, 
certain regions are more densely populated than others. The different regions 
of the H-R diagram are illustrated in Fig. 1.6. In many H-R diagrams the 

luminosity of a star is represented by its magnitude, and its surface temperature 

is represented either by its spectral type or by its colour index, B—V. 

When interpreting the H-R diagram it is important to remember that star 

formation and evolution is an ongoing process. An H-R diagram provides a 

snapshot of stars at different stages of their evolution. 

As stars evolve, they spend most of life burning hydrogen. Hence hydrogen 

burning stars, like the sun, should give rise to a densely populated region of the 

H-R diagram. This region is called the main sequence. About 80-90% of 

observed stars are main sequence stars. The hottest stars on the main sequence 

are blue supergiants and blue giants. The coolest are red dwarfs. 

The relation between the mass and luminosity of a hydrogen burning star can 

be used to deduce the mass of a star from its position on the main sequence. We 

recall from Section 1.6 and Fig. 1.4, that the luminosity of a star of mass M is 

proportional to M®, where a is between 3 and 3.5 . This mass—luminosity 

relation implies that as we descend the main sequence, we encounter stars 

with lower masses. In fact the masses range from about 50M, at the top to 

0.1M, at the bottom of the main sequence. The physical reasons for the 

existence of these upper and lower mass limits of main sequence stars were 

mentioned at the end of Section 1.3 and will be considered further in Chapter 5. 

A star does not evolve along the main sequence. It evolves onto the main 

sequence when a protostar contracts and ignites hydrogen. The star evolves off 

the main sequence, and moves into the red giant region of the H-R diagram, 

when the hydrogen in the central nuclear burning region is depleted. Theoret- 

ical models indicate that hydrogen burning in the core ceases but continues in a 

thin shell which moves outwards. The core contracts and heats up, but the outer 

layers expand to form a star of high luminosity and low surface temperature. 

We can use Eq. (1.43) to show that a star in the red giant region of the H-R 

diagram with L = 1000Lq and Tg = 4000 K has a radius of about 70Ro. Such a 
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Fig. 1.6 A schematic Hertzsprung—Russell diagram. This diagram provides a snapshot 

of the luminosity and surface temperature of stars at different stages of their evolution. 

Most of the observed stars are grouped along a band called the main sequence; these are 

hydrogen burning stars like the sun. As a star evolves, the contraction of central core is 

accompanied by an expansion of its outer layers to form luminous stars with low surface 

temperature, e.g. red giants. The endpoint in the evolution of a star with a mass 

comparable to the sun is a compact object supported by degenerate electrons, a white 

dwarf. The evolution of a more massive star can lead to the formation of a neutron star 

or a black hole 

star will stand out conspicuously in the sky. A famous example is Betelgeuse in 

the constellation Orion. 

As the temperature and density at the centre of the star increase, helium and 
then possibly other nuclear fuels may be ignited. But, whether or not these fuels 
are ignited depends on the mass of the star; see Section 1.5. During these phases 
of evolution the star will have an extended outer envelope surrounding a hot 
dense core. It will be located in the top right-hand region of the H-R diagram, 
the region of high luminosity and low surface temperature. Since the timescale 
for these phases is brief, this region of the H-R diagram is not densely 
populated. : 

Observations indicate that a star of intermediate mass ends its life by shed- 
ding its outer layers to form a planetary nebula, which merges with the inter- 
stellar medium to leave a remnant with low luminosity and high surface 
temperature in the white dwarf region of the H-R diagram. The best-known 
white dwarf is Sirtus B, which forms a binary system with the bright main 
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sequence star Sirius A. In fact the existence of Sirius B was postulated by Bessel 
in 1834 in order to explain the fact that Sirius A appeared to wobble in the sky; 
it was later observed to be a star with a low luminosity and high surface 
temperature. A typical white dwarf has a luminosity of L = L,/100 and surface 
temperature T~ = 16000 K, and hence a radius given by Eq. (1.43) of about 
Ro/70. Such a star shines merely because it evolved from the hot core of a red 
giant. In time it will cool and fade away; see Section 3.4. 

Hertzsprung-Russell diagrams are of great practical and historical signific- 
ance in astronomy because they provide a vital link between theoretical 
calculations of stellar evolution and observations. 

Star clusters 

The star clusters in our galaxy fall into two main categories: globular clusters 
are distributed spherically around the centre of the galaxy, in the galactic halo; 
open clusters are found in the plane, spiral arms and nucleus of the galaxy. 
Their main characteristics are listed in Table 1.4. 

We note that the oldest stars in our galaxy are found in globular clusters. 

These stars are called population II stars. They were formed early in the history 

of the universe from material which consisted primarily of hydrogen and 

helium. In contrast, the stars in open clusters, population I stars, are younger. 

They have a significant abundance of elements heavier than helium because 

they were formed from material which had been processed by earlier genera- 

tions of stars. 

The age of a star cluster can be estimated from its H-R diagram. This is 

possible because each star in the cluster has the same age and chemical compo- 

sition, but an evolutionary lifetime determined by its mass. In particular, the 

most massive stars have main sequence lifetimes of the order of millions of 

years, and the least massive have lifetimes of the order of billions of years. It 

follows that as the cluster ages, stars progressively move away from the upper 

end of the main sequence. For example, a star of spectral type O with mass 

40M. will leave the main sequence after 10° to 10’ years, whereas a type A star 

TABLE 1.4 Characteristics of globular and open star clusters 

Globular clusters Open clusters 

Approximate number observed 125 1000 

Number of stars in cluster 10°10 10710? 
Type of star Population II Population I 

Diameter (pc) 5-30 1-5 

Location Galactic halo Galactic plane, spiral arms and 

nucleus 

Age (years) Cd tO 10" 
I LE 
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with mass 3M. will leave the main sequence after 10° years. We conclude that 

the age of the cluster can be determined by assessing the age of the most massive 

star that is still on the main sequence. Clearly this assessment requires a reliable 

theory of stellar evolution which takes into account the chemical composition 

of the stars and the loss of mass from the stars. 

SUMMARY 

Big bang nucleosynthesis 

e Nuclear reactions in the early universe led to a universe in which about 25% 

of the mass was helium and the remainder mostly hydrogen. This proportion 

of helium to hydrogen was largely determined by the ratio of neutrons to 

protons that existed when neutrons and protons ceased to be continually 

transformed into each other by neutrino reactions (1.1). 

Gravitational contraction 

e Bodies can collapse rapidly if the gravitational energy released is easily 

absorbed or radiated away. The time for free fall under gravity of a body 

of uniform density p is 

ag hb 
ipE = sa . 39Gp (1.4) 

e The pressure gradient needed for hydrostatic equilibrium is given by 

dP = Gm(r)p(r) 
te (1.5) 

e The average pressure needed to support a system with gravitational energy 
Egr and volume V is given by 

(1.7) 

e The internal kinetic energy and gravitational energy of a gas of non-relati- 
vistic particles in hydrostatic equilibrium are related by 

2Exe + Egr = 0. Cert) 

The most important consequence of this relation is that, as a self-gravitating 
system loses energy, its gravitational energy decreases and its internal 
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kinetic energy increases. Indeed, half the gravitational energy released 
Supplies the energy loss and the other half is used to increase the kinetic 
energy. 

e The corresponding relation for an ultra-relativistic gas is given by 

Exr + Egr= 0. 13) 

This relation implies that hydrostatic equilibrium becomes precarious as the 
constituents of the system become ultra-relativistic. 

Star formation 

e A gas of mass M consisting of particles of average mass 7 at a temperature 
T is gravitationally bound if its average density exceeds a critical value given 

by 

PJ (1.19) ~ 4nM2 |2Gm 
3 pall 

e The temperature of a contracting body ceases to rise when the electrons 

become degenerate. The maximum temperature attained by a contracting 

body of mass M is approximately given by 

(1.28) kT = ot] Mil. 
h2 

As a result, only bodies with a mass greater than 0.08M, can achieve the 

necessary temperature to ignite hydrogen fusion and become genuine stars. 

There is also a maximum mass for a normal star which is in the region of 

(50-100) M.. This arises because radiation pressure, a pressure due to ultra- 

relativistic particles, becomes increasingly important in massive stars and 

hydrostatic equilibrium becomes precarious. 

The sun 

e The mass and radius of the sun are M,, ~ 2 x 10°° kg and Ra © 7 x 108 m. 

e The average pressure inside the sun is given by 

lEgr _ GM2 
(P) =-345 iaRt e 10" Pa. ylepicy 

e The typical internal temperature inside the sun is given by 
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GM.m 
kT; ® ~0.5keV or 7,6 10° K. ébeal, 

e The effective surface temperature, 7; = 6000 K, is three orders of magnitude 

less than the typical internal temperature. 

e The luminosity of the sun is Ls ~ 4 x 1026 W and is approximately given by 

(4)? o 
if f%e = ja GH (p)IM.,, (1.36) 

where / is the effective mean free path for radiative diffusion in the sun. 

e The luminosity fixes the rate of thermonuclear fusion within the sun. Hydro- 

gen is fused to helium by the reactions of the proton—proton chain, and the 

dominant reactions are 

ptprodt+e' +, (1.37) 

p+d-— He +4, (1.38) 

3He +*He — *He + p +p. (1.39) 

e A solar luminosity of 4x 1026 W implies that about 4x 10°* protons are 
consumed per second and that at least 2 x 10°° neutrinos are radiated every 

second. 

Stellar nucleosynthesis 

e The observed chemical elements in the solar system are largely a product of 

nucleosynthesis during the big bang and nucleosynthesis during stellar evolu- 

tion. 

e The extent of thermonuclear fusion in a star is determined by its mass. 

Hydrogen is burnt if the mass is above 0.08M.. This will be followed by 

helium burning if the mass is above 0.5M 5, or thereabouts. Stars with masses 

roughly between 8M, and 11M. will progress to carbon burning. Every 

stage of nuclear fusion up to the synthesis of elements near iron occurs in 

stars with a mass greater than 11M. 

e Neutron capture in the final stages of stellar evolution leads to the formation 

of elements heavier than iron. 

Stellar life cycles 

e The mass of a star determines the rate of its evolution, and its ultimate fate. 
Stars like the sun evolve slowly and end their life as white dwarfs. Massive 
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stars evolve rapidly and end their life with a castastrophic collapse when the 
mass of the central core of iron exceeds the Chandrasekhar limit of about 

1.4M.. The outer layers of the star can be ejected as a supernova and the 

remaining matter forms a neutron star or black hole. The interstellar medium 

is enriched with heavier elements by mass loss from evolving stars; the 

formation of planetary nebulae by intermediate mass stars and the supernova 

of massive stars are of particular importance in this regard. 

The Hertzsprung—Russell diagram 

e The H-R diagram displays the two basic observational properties of a star, 

its luminosity and its surface temperature. Certain regions of the H-R dia- 

gram correspond to stars at particular stages of their evolution; e.g. hydrogen 

burning stars are on the main sequence. The H—-R diagram has played a key 

role in the link between observations and theoretical calculations of stellar 

evolution. 

PROBLEMS 1 

1.1 Consider a sphere of mass M and radius R. Calculate the gravitational potential 

energy of the sphere assuming (a) a density which is independent of the distance 

from the centre, and (b) a density which increases towards the centre according to 

p(r) = pc(1 — r/R). 

In both cases, (a) and (b), write down the average internal pressure needed for 

hydrostatic equilibrium, and determine how the pressure within the sphere 

depends on the distance from the centre. 

1.2 The globular cluster M13 in Hercules contains about 0.5 million stars with an 

average mass of about half the solar mass. Use the Jeans criteria (1.19) to check 

whether this cluster could have been formed in the early universe just after the 

time when the universe was cool enough for the electrons and nuclei to form 

neutral atoms; at this time the density of the universe was p © 10-7’ kg m~? and 

the temperature was T ~ 10* K. 

1.3 As the sun evolved towards the main sequence, it contracted under gravity while 

remaining close to hydrostatic equilibrium, and its internal temperature chan- 

ged from about 30000 K, Eq. (1.23), to about 6 x 10° K, Eq. (1.31). (This stage 

of stellar evolution is called the Kelvin-Helmholtz stage.) Find the total energy 

radiated during this contraction. Assume that the luminosity during this con- 

traction is comparable to the present luminosity of the sun and estimate the time 

taken to reach the main sequence. 
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Lee 
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The main sequence of the Pleiades cluster of stars consists of stars with mass less 

than 6M; the more massive stars have already evolved off the main sequence. 

Estimate the age of the Pleiades cluster. 

The binding energy per nucleon for *°Fe is 8.8 MeV per nucleon. Estimate the 
energy released per kilogram of matter by the sequence of reactions which fuse 

hydrogen to iron. 

Given that the luminosity of the sun is 4 x 10°° W and that the absolute 

bolometric magnitude of the sun is Mz = 4.72, estimate the distance at which 

the sun could just be seen by the naked eye. (The naked eye can detect a star of 

apparent magnitude 6.) Estimate the number of photons incident on the eye per 

second in this situation. 

Useful bounds can be set on the pressure at a centre of a star without detailed 

stellar structure calculations. Consider a star of mass M and radius R. Let P/r) 

be the pressure at distance r from the centre and m/(r) be the mass enclosed by a 

sphere of radius r. Show that in hydrostatic equilibrium the function 

P(r) + Gm(r)? /8xr4 

decreases with r. Hence show that the central pressure satisfies the inequality 

1 [4x7 ‘3 
Biba F] G(p)43.M2/3, 

where (p) is the average density. 

If you assume that the density p(r) decreases with r, it is possible to derive a 
tighter lower bound and, in addition, a useful upper bound for the central 
pressure. Show that 

In addition, show that 

1 [47 : 4/3 
p< 5/F] God M?/3 | 

where pc is the central density. . 

How old is the sun? Two things are certain: the sun is older than the solar 
system and the solar system is as old as the oldest rocks in solar system. In 
practice tectonic activity gives rise to rocks with a wide range of ages, but the 
oldest terrestial rocks, and also the oldest rocks from meteors and from the 



19 

Problems 1 43 

moon, have ages approaching 4.55 x 10° years. As a result, the accepted age of 
the solar system is 4.55 x 10° years, and this age sets a lower limit to the age of 
the sun. 

In this problem we illustrate how the naturally occurring radioactive isotopes 
of uranium, **°U and 758U, can be used to determine the age of rocks. Both 
isotopes decay via a sequence of a-decays and (-decays to form stable isotopes 
of lead; the decay chain of *7°U ends up with 7°’Pb, and the decay chain of 
°38U ends up with ?°Pb. As a result, the number of uranium nuclei in a rock 
decays exponentially with time in accord with: 

Ns(t) = .Ns(0) e*! and = Ng(t) = Ng(0) e*!. 

To avoid clutter, the last digit of the mass number of the isotope has been used 

as a subscript label. The decay constants A; and Ag for the two isotopes 

correspond to half-lives of Ts =1In2/\s = 0.7 x 10’ years and Tg = In2/Ag 

= 4.5 x 10° years. The magnitudes of these half-lives are ideally suited to the 

determination of the ages of rocks which are over a billion years old. 

Now consider a set of rock samples which were formed at the same time, but 

with different chemical composition. They differ in chemical composition 

because different chemical elements are affected differently by the processes 

of rock formation. However rock formation processes do not favour one 

isotope over another. For example, on formation, the relative abundances of 

>35UJ and *°8U should be the same in every sample. Similarly the relative 
abundances of 7°’Pb and 7°°Pb should also be the same in every sample. But 
these abundances will change with time as the decay of *°U and 7*8U produce 
nuclei of 7°’Pb and 7°°Pb. 

e Consider the ratio of the increase in the number of 7°’Pb nuclei relative the 

increase in the number of 2°°Pb nuclei. Show that this ratio is the same for all 

rock samples which were formed at the same time, and that show it is given 

by 

N7(t) — N7(0) Ns(t) est — | 

No(t) = N6(0) Ns(t) ers! — | - 

e Consider a graph in which the measured abundances in the rock samples of 

207Pbh and 2°°Pb are plotted, N7(f) along the y-axis and N¢(t) along the 

x-axis. Show that a straight line will be obtained if all the samples were 

formed at the same time. 

e Given that the current ratio of naturally occurring **°U to *8U is 0.0071, 

evaluate the gradient of the straight line for rock samples of age (a) | billion 

years, (b) 3 billion years and (c) 5 billion years. 

When nuclear burning ceases in the core of a star, the flux of energy flowing 

through the core, and hence the temperature gradient in the core, become zero. 
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The core becomes isothermal and the pressure gradient needed to support the 

core and the overlying envelope arises solely from a steep density gradient. 

However, if the isothermal core becomes too massive, it becomes unstable. It 

will contract and the overlying envelope will expand. This limiting value for the 

mass of an isothermal core is called the Schénberg—Chandrasekhar limit 

(Schonberg, 1942). This limit is of the order of one-tenth of the total mass of 

the star. However, the core mass can form a higher fraction if electron 

degeneracy becomes important in the core; this is more likely in less massive 

stars where the core has a higher density. 

In this problem we consider the physics of the Sch6nberg—Chandrasekhar 

limit. Consider a star with mass M and radius R with an isothermal core of mass 

M_,, radius R, and volume V,. Let 7, denote the uniform temperature of the 

core and let P. denote the pressure exerted on the core by the envelope. In 

Section 1.2 we derived Eq. (1.7), the virial theorem for a star as a whole, by 

multiplying the equation of hydrostatic equilibrium (1.5) by 4zr? and integrat- 

ing from the centre of the star to the surface where the pressure is zero. 

e This time integrate from the centre to the edge of the isothermal core at 

r = R., where the pressure is P,, and show that in hydrostatic equilibrium 

3V Pe — SP), = Ec; 

where (P), is the average pressure in the core and Ec is the gravitational 

potential energy of the core. 

e Assume that the core consists of an ideal gas of non-relativistic particles and 

show that 

3V.P. = 2EKc + Lec, 

where Exc is the translational kinetic energy of the gas particles in the core. 

e Now assume that the core consists of an ideal classical gas of particles with 
average mass m, and show that 

A» VB 
c D2 D4? 

Rk 

where A and B are positive constants. 

e Sketch P. as a function of R, and show that has a maximum value 

bao uil 7 sat ee Se eae a Pee ee 
: Gms M2 kT? 

where C and D are numerical constants of the order of unity. 
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e Use your sketch to show that Po is the maximum pressure the core can 

withstand and still remain in hydrostatic equilibrium. You can do this by 

showing that if the radius of the core is larger than Ro, any small increase in 

the pressure on the core is accompanied by a contraction of the core, so the 

core is in a state of stable equilibrium. But if the radius of the core becomes 

smaller than Ro, the core is at best in a state of unstable equilibrium, where 

any decrease in the radius is accompanied by a decrease in the pressure on the 

core. 

e Now note that the values of P. and T, depend on the total mass M and 

radius R of the star; in analogy with Eqs. (1.29) and (1.31) 

3 GMn 
Ces shikel WE lee ae 

where m is the average mass of the gas particles in the star. Show that when 

the following condition is satisfied, P, is less than the maximum pressure the 

core can sustain : 

ae 
m : ‘ 

<a = where a is a numerical constant. 
Cc 

e The theoretical value of the constant a is about 0.4. This implies that an 

isothermal core with m. = 2m has a maximum mass of about 0.1M. 
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Properties of matter and 
radiation 

A stellar interior is an environment in which matter and radiation at high 

temperature produce a pressure to oppose gravitational contraction. The con- 

ditions are extreme: the atoms are ionized, the electrons can be degenerate and 

ultra-relativistic, and the pressure due to radiation can be significant. Never- 

theless, despite this complexity, many of the properties of stellar interiors can be 

understood by considering the simplest thermodynamic system, the ideal gas. 

However, we shall need to go beyond the familiar ideal gas in which the 

particles are both classical and non-relativistic, and consider the ideal gas in 

its most general form. We shall give particular attention to the properties of 

electron and photon gases and consider their relevance to stellar structure. In 

addition, we shall consider the thermodynamics of the dissociation of mole- 

cules, the ionization of atoms, the photodisintegration of atomic nuclei and the 

production of particle—antiparticle pairs. 

2.1 THE IDEAL GAS 

The ideal gas is a large number of particles occupying quantum states whose 

energy is unaffected by the interaction between the particles. The particles we 

have in mind may be atoms, ions, electrons, photons, neutrinos, etc. The effects 

of quantum mechanics and special relativity will often be important in the gas; 

only in particular circumstances will it be an appropriate approximation to 

treat the particles as classical and non-relativistic. 

Density of states 

The gas particles can act like waves and we can use these wave-like properties to 

enumerate the possible quantum states that can be occupied by the particles. We 

47 
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. . 
3 

assume that the particles are confined in a cubical box of volume V = L’. 

Confinement to such a box implies that the quantum states can be represented 

by standing waves of the form sin k,x sinkyy sink,z with wave vector k given by 

k = (kx, ky, kz) = (Mx, My, Nz) (2.1) 
BA 

where n,,”,,N- are positive integers; in other words, an integer number of half- 

wavelengths can be accommodated between opposite faces of the box. 

The quantum numbers nx, ny, Nz can be used to count the quantum states 

with different wave vectors. For example, (L/7) dk distinct values of n, are 

encountered if k, is increased to k, + dk,. Hence the number of quantum states 

with a wave vector k with components between k, and ky + dkx, k, and 

ky +dky, kz and k, + dk. is 

3 

A dk, dk, dk-. 
AG 

This result can be interpreted geometrically by thinking of a k-space defined by 

positive coordinates k,, ky, k, in which any volume element contains many 

quantum states with a density of [L/x]° states per unit volume. 

We shall be interested in the quantum states with a wave vector k with a 

magnitude between k and k + dk. These states occupy the k-space volume (with 

positive ky, k,, k-) between two spheres of radius k and k + dk. This volume is 

4nk? dk/8, and the number of states with wave vector magnitude between k and 

k + dk is 

gra (2.2) L)°4nk? dk 

EF 
The particle-like properties of these states become apparent if the momentum 

of the particle is measured. The de Broglie relation, p = h/A, implies that if the 

wave vector has a magnitude k then the momentum has a magnitude p = hk, 

where f =h/2r. Accordingly, if we set p=hk in Eq. (2.2) we obtain the 

following expression for the number of quantum states that have a momentum 

with a magnitude between p and p + dp: 

V 
g(p) dp = pie dp. 

This result has to be modified if the particles have intrinsic angular momentum 

or spin. For each state with definite momentum, there can be several quantum 

states corresponding to different orientations of the spin of the particle, or in 

other words, to different polarizations of the particle. Thus, when g, is the 

number of independent polarizations of the particle, the number of quantum 

states that have a momentum with a magnitude between p and p + dp becomes 
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KOs 
8(P) dp = g, 75 4np" dp. (2.3) 

We note that protons, neutrons and electrons are spin 5 particles with g, = 2. 
Neutrinos also have spin 5 but have only one polarization, i.e. g; = 1. Photons 
have spin | and g, = 2, corresponding to the two independent polarizations of 
an electromagnetic wave. 

Internal energy 

The internal kinetic energy of the gas depends on three factors: the density of 
states, the energy of each quantum state, and the number of particles in each 
state. The density of states, g(p) dp, is given by Eq. (2.3). According to special 
relativity, the energy €, of a particle of mass m in a quantum state with 
momentum p is given by 

6 Sip’ sent: (2.4) 

If we represent the average number of particles in a state with energy €p by f (e), 
we can write the internal energy of the gas as 

E= | eS) 8p) ae. (2.5) 
0 

Similarly, the total number of particles in the gas is 

N= flq) stp)ep (2.6) 
0 

The macroscopic thermodynamic properties of the gas may be described by 

its temperature 7, its pressure P and its chemical potential y. In particular, 

these parameters determine how the internal energy of the gas is changed by a 

transfer of heat or entropy, by a compression or expansion, and by a transfer of 

particles; if the entropy changes by dS, the volume by dV and the number of 

particles by dN, then 

dE = TdS — PdV +N. (2.7) 

The approach to thermodynamic equilibrium is characterized by processes 
which lead to a uniform temperature, pressure and chemical potential; and 

when equilibrium is established, 7, P and are related by an equation of state. 

From the microscopic viewpoint, the temperature, pressure and chemical 

potential determine the equilibrium distribution of the particles in the quantum 

states. This distribution depends on whether the particles are identical fermions 

or bosons: 
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e Identical fermions obey Fermi—Dirac statistics in which the occupation of 

states is restricted by the Pauli exclusion principle; not more than one particle 

can be in a given quantum state and the average number is 

l eanto 2.8 
Fe) exp[(€ — 1) /kT| +1 (28) 

e Identical bosons obey Bose-Einstein statistics in which any number of par- 

ticles may be in a given quantum state. The average number is 

l 
f) = Sale Swe (2.9) 

These distribution functions are illustrated in Fig. 2.1, which shows that the 

average occupation of every state decreases as the chemical potential decreases 

or as the temperature increases. As this happens, the fermion and the boson 

distribution functions approach the same distribution function, a distribution 

which is appropriate for a dilute classical gas. In a dilute classical gas, even the 

states of lowest energy with €, = mc? are scarcely occupied. Indeed, the occupa- 

tion of such states becomes very much less than one when 

exp[(mc? — p)/kT] >> 1. (2.10) 

In this case it is possible neglect the +1 in the fermion distribution function (2.8) 

and the —1 in the boson distribution function (2.9), and for both fermions and 

bosons the average number of particles in a quantum state becomes 

Fe») & expl—(ép — w)/kT] << 1. (2.11) 
It follows that a gas of bosons and a gas of fermions have similar properties 

when the occupation of every quantum state is low. The fact that there can be at 

most one fermion but any number of bosons in a given state is of no relevance 

since the average occupation of any state is very much less than one. Further- 

more, dilute gases act as classical systems of particles because the separation 

between the particles allows an observer to keep track of their motion and 

distinguish particles which are really identical. In particular, there are no 

quantum effects arising from the identity of the particles. In this situation 

bosons and fermions obey classical, Maxwell-Boltzmann statistics; they behave 

like maxwellions. We shall see that the quantum and classical behaviour of 

electron gases play an essential role in stellar physics. 

Pressure in an ideal gas 

In Section 1.2 we used classical arguments to derive relations between the 
pressure and internal energy density of an ideal gas. These were used to show 
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Fig. 2.1 The average number of bosons and fermions in a quantum state with energy Ep 

for different values of the chemical potential. The energy scale has been fixed by setting 

kT = 1; the average occupation of a state at 4, = —2 and e, = 2 on the graph represents 

the average occupation at yp = —2kT and e, = 2kT 

that the hydrostatic equilibrium of a self-gravitating gas becomes more precar- 

ious as the gas particles become more relativistic. Here we shall confirm that 

these relations are also valid when quantum physics is appropriate. 

From the fundamental thermodynamic relation (2.7) we note that the change 

in the internal energy brought about by a volume change dV at constant 

entropy and particle number is equal to —PdV, the work done on a system. 

In such a process, the number of particles in each quantum state remains 

constant, and the internal energy changes because the energy of each quantum 

state depends upon the volume. Thus, by using Eq. (2.5), we find that the 

pressure in an ideal gas is given by 

p=-S=- [Sef @) ee) (2.12) 
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In order to find the dependence of the quantum state energy on the volume 

confining the particles, we consider €, as a function of p, and p as a function of 

V, and write 

eu eee 
dV dpdV’ 

According to Eq. (2.1), the wave vector, and hence the momentum, is inversely 

proportional to L. Since V = L3, px V~'/* and 

Also, the relation (2.4) between energy and momentum gives 

de, pe 
ee een Se Up; 

dp 

where v, is the speed of a particle with momentum p. Hence we find 

dep _ _ PUp 
Arg AsV 

Substitution of this result into Eq. (2.12) gives the following expression for the 

pressure in an ideal gas: 

Paap | mpSle) sed = zp Wr») (2.13) 

where the brackets, ( ), denote an average over the N particles in the gas. We note 

that Eq. (2.13) agrees with Eq. (1.8), which was derived using classical physics. 

It is easy to show that, when the gas particles are non-relativistic or ultra- 

relativistic, the pressure is directly proportional to the kinetic energy density of 

the gas. For non-relativistic particles «, = mc” + p?/2m and v, = p/m, and the 
pressure is 

INS ae 2 mS: 
=37 Om ai of kinetic energy density. (2.14) 

For ultra-relativistic particles «, = pc and uv, = c, and the pressure is 

N l ‘pt ; 
[ae 377 (pc) == 3 of kinetic energy density. (2.15) 

We emphasize that these expressions for the pressure are applicable to an 
ideal gas in its most general form. It is immaterial whether the gas particles are 
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bosons or fermions, or whether they form a dense gas where quantum effects 

are important or a dilute gas where classical physics is appropriate. 

The ideal classical gas 

The reader will be familiar with many of the properties of an ideal classical gas. 

Our purpose here is twofold: to focus on the effects of relativistic kinematics 

and to understand when the gas particles are no longer described by classical 

mechanics. We begin by showing that the familiar equation of state for a 

classical ideal gas is valid even when the particles are relativistic. 

A gas is classical when the average occupation of any quantum state is small 

and given by Eq. (2.11). The pressure in such a gas can be found by the 

substitution of Eqs. (2.3) and (2.11) into Eq. (2.13) to give 

1 ‘ V 
of 3p oPlu/k T] [ Pvp exp[—€p/kT] B73 Arp? dp. (2.16) 

0 

We now use the relativistic relation between energy and momentum, Eq. (2.4), 

to obtain de, = v, dp and rewrite the integral in Eq. (2.16) as follows: 

‘f p° exp[—e,/kT]u, dp = -«r [” p’ d(exp[—e,/kT]). 
0 

Integration by parts then gives 

/ p exp[—e,/kT]up dp = ser | exp[—€,/KT] p* dp. 
0 0 

Substitution of this result into Eq. (2.16) gives the following expression for the 

pressure in an ideal classical gas: 

ae V 
P= <expla/kT) ‘b exp[—€,/kT] 8574 iB Arp? dp. (2.17) 

0 

We now compare this expression with Eq. (2.6) for the total number of particles 

in the gas. For a classical gas, Eq. (2.6) has the form 

N = exp[u/kT] i exp[—e,/kT] 8573 Y Aap? dp. (2.18) 
0 

This comparison leads directly to the equation of state 

P= DRT = nkT. (2.19) 
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We emphasize that this equation of state is valid for classical particles even 

when they are relativistic. However, as the particles become more energetic 

there will be additional contributions to the pressure due to particle production. 

The equation of state can be usefully compared with the relations between the 

pressure and the kinetic energy density, Eqs. (2.14) and (2.15). We find that the 

average kinetic energy of a particle in a classical gas is equal to $AT if it is non- 

relativistic and equal to 3k7 if it is ultra-relativistic. 

We now turn to the condition for the particles to form a classical gas. The gas 

is classical if the average occupation of every quantum state is small compared 

with unity. This will be the case if the chemical potential satisfies the inequality 

given by Eq. (2.10). This inequality can be cast in a more useful form by 

deriving an explicit expression for the chemical potential of a classical gas. 

The chemical potential for a classical gas of non-relativistic particles can be 

found by substituting €, = mc? + p?/2m into Eq. (2.18) for the total number of 

particles in a gas. Integration then gives 

7 

5) V / 
N = exp[(u — me’) /kT] gs (2amkT)*”. (2.20) 

This may be rearranged to give 

— me? = —kT in ee), (2.21) 
n 

where n is N/V, the density of particles in the gas, and ng is defined by 

2nmkT)>/* 
no = he : (2.22) 

We shall see that mg is an important parameter in statistical physics; it is called 
the quantum concentration. 
A similar calculation can be carried out for a classical gas of ultra-relativistic 

particles. If we neglect the rest energy mc? of the particles and substitute €, = pce 
into Eq. (2.18), we obtain the chemical potential 

pe kT he P=], (2.23) 

where the quantum concentration is now given by 

kT]? 

Where necessary, we shall distinguish between the quantum concentrations for 
a non-relativistic gas and an ultra-relativistic gas by using the notation NONR 
and NOUR. 



2.2 Electrons in stars nN Nn 

These expressions for the chemical potential can be used to reveal the 
physical significance of the inequality (2.10), the condition for a gas to be 
classical. We see immediately from Eq. (2.21) that the inequality, 

exp[(mc? — )/kT] >> 1 

is satisfied if the actual particle concentration n is small compared with the 
quantum concentration no. It is easy to see that this is just a more precise way 
of saying that the average separation of the gas particles is large compared with 

their typical de Broglie wavelength. For non-relativistic particles, 

A=h/p~ h/(mkT)'/? and the particle separation is large compared with . if 

n << (mkT/h2)*? x nonr- For ultra-relativistic particles, \ = h/p ~ hc/kT 
and their separation is large if n << (kT /he)* =~ ngur. In the simplest terms, 

gas particles are only classical if their de Broglie wavelengths are small. We shall 

see in Section 2.3 that photons never form a classical gas, because the chemical 

potential for photons is fixed and equal to zero. However, gases formed from 

particles with mass, such as electrons and ions, can behave classically or 

quantum mechanically, depending on their density. The required density for 

the breakdown of classical physics is lower in a gas of light particles because 

lighter particles have longer de Broglie wavelengths. Thus, as a star contracts 

and as its density increases, the electrons, the lightest particles in the ionized 

interiors, are the first to exhibit the breakdown of classical physics. Electrons 

are the first to form a quantum gas. Many aspects of stellar structure are 

affected by this quantum mechanical behaviour. 

2.2 ELECTRONS IN STARS 

As stellar matter is compressed, electrons are the first particles to change their 

role. They initially form a dilute classical gas and then a dense quantum gas. 

Moreover, they become increasingly relativistic as the density increases. We can 

illustrate this trend by considering the electrons in the sun. 

In Chapter 1 we assumed that the sun was a body with an average density 

1.4 x 103 kg m~? composed of electrons and ions which form an ideal gas of 

non-relativistic, classical particles. By considering the pressure needed to sup- 

port the sun, we found that the typical temperature of this classical gas is 

6 x 10° K. It is easy to confirm that the electrons in the sun are indeed non- 

relativistic and classical. First, the electrons are non-relativistic because the 

typical thermal energy kT is small compared with the rest energy of the 

electron; in fact, kT ~10~* mc’. Second, an average solar density of 

1.4x 103 kg m-? implies an average electron concentration n of about 

6 x 1022 m-3. This should be compared with the quantum concentration ng 

for electrons at a temperature 6 x 10° K. Using Eq. (2.22), we find that ng is 

about 3 x 102! m~?. Thus, on average, the electrons in the sun form a dilute gas 

with a concentration much less than the quantum concentration. In other 
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words, they form a classical gas. When we focus our attention on the electrons 

in the central core of the sun, we shall find that even in this dense region the 

electrons still form a gas which is approximately classical. 

Thus, at present, the electrons in the sun form a gas of non-relativistic, 

classical particles. However, it is easy to see that quantum effects will eventually 

become important when the central core of the sun contracts. According to Eq. 

(1.11), the thermal kinetic energy increases as the solar core contracts. The 

typical temperature 7 inside a contracting solar core of mass M increases as the 

radius R of the core decreases. In analogy with Eq. (1.31), we expect 

GMm 
kT x : 

3R 
(2.25) 

According to Eq. (2.22), the quantum concentration for the electrons in the core 

increases as the temperature increases; in fact, ng «x T*/*. If this temperature 
dependence is combined with Eq. (2.25), we find that ng x R */*. In compar- 
ison, the actual concentration of the electrons increases as n x R-*. Thus, n 

increases more rapidly than vg as the core contracts, and eventually n will 

exceed ng. In other words, the process of contraction will lead to an electron gas 

in which quantum effects are important. Moreover, we shall see that, if this 

quantum gas becomes more dense, the electrons will become relativistic. 

Hence electrons obey different rules at different times during stellar evolu- 

tion. We are already familiar with the equation of state for a classical gas of 

electrons. We now need to find the equation of state for a quantum gas of 

electrons. 

The degenerate electron gas 

Quantum effects dominate when the concentration of electrons becomes large 
compared with the quantum concentration. This high density requirement can 
also be viewed as a low temperature requirement. In particular, n >> Ng is 
equivalent to kT << h’n’/?/2nm, if ng is given by the non-relativistic Eq. 
(2.22). Thus, a quantum gas is a cold gas, but the standard of coldness is set 
by the density of the gas; a temperature of a billion degrees can be cold in a very 
dense gas. 

A cold gas of electrons is called a degenerate gas because the electrons have 
fallen into quantum states with the lowest possible energy. Electrons are ident- 
ical fermions and obey the Pauli exclusion principle. Hence the electrons must 
be distributed so that each of the quantum states up to a certain energy is 
occupied fully by one electron and quantum states with higher energy are 
unoccupied. Such a distribution of electrons must be the zero temperature 
limit of the Fermi—Dirac distribution (2.8). Indeed, if we set the chemical 
potential at zero temperature equal to an energy e, Eq. (2.8) gives the following 
result for the average number of electrons in a quantum state with energy €,: 
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The energy of the most energetic electrons in a cold electron gas, er, 1S called the 
Fermi energy; the corresponding momentum, pr, is called the Fermi momentum. 

Because every state up to those with a momentum pr is occupied by one 
electron and all other states are unoccupied, the total number of electrons in a 
degenerate gas is the number of states with momentum less pr. Using Eq. (2.3) 
for the density of states, we find 

PF V 9 87 V 
N= saa 4 “dp = —_ a De 

/ = h3 P 3h3 Pr ( 25) 

where we have used g, = 2 to account for the two independent spin states of the 
electron. This equation for the number of electrons may be rearranged to give 

the Fermi momentum in terms of the electron density, 

3n)'7 
Pr=\|—| Ah. (2.27) 

We note that this expression for the Fermi momentum implies that the de 

Broglie wavelength of the most energetic electrons in a degenerate gas, 

= h/pr, is comparable with n~'/, the average distance between the electrons. 
The equation of state for a degenerate gas can be found by evaluating the 

internal energy. We shall consider two special cases corresponding to non- 

relativistic and ultra-relativistic electrons. 

The electrons in a degenerate gas are non-relativistic if pp << mc, which is 

equivalent to n << (mc/h)*, where h/mc = 2.4 x 10-! m is the Compton 
wavelength of the electron. In this case the internal energy of the gas can be 

found by substituting «, = mc? + p*/2m into 

PF V 5 

E= i €p8s 73 4p dp (2.28) ; 3 

to give 

2 3p; E=N\|mc +——|. (ee) 
10m 

We now recall that, according to Eq. (2.14), the pressure in a non-relativistic 

ideal gas is two-thirds of the kinetic energy density. Hence the pressure in a non- 

relativistic, degenerate gas is 

jap yng sa (2.30) 
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The Fermi momentum can be expressed in terms of the electron density using 

Eq. (2.27); this gives an equation of state having the form 

4 eR | 

LRSe a 
— Kyrn’? where Kyr==—|>-| - (2.31) 

Fant NR 5m |8r 

The equation of state takes a different form when the degenerate electrons are 

predominantly ultra-relativistic. In this case n >> Nour andn >> (mce/h)’, and 

an approximate expression for the internal energy can be obtained by substitut- 

ing €, = pc into Eq. (2.28). This gives 

3 
fie N apre (2.32) 

and the pressure, now obtained from Eq. (2.15), equals one-third of the kinetic 

energy density: 

1 
hae: naPre. (2.33) 

The equation of state becomes 

PORK 4/3 “s he | 3 te 7.34 

ait Where Ne oo Hel ae (2.34) 

We note from Eggs. (2.31) and (2.34), that the pressure of a degenerate gas is 

an increasing function of the density, but the rate of increase becomes less rapid 

once the particles become ultra-relativistic, i.e. the equation of state becomes 

less stiff. We shall see in Section 6.1 that this has important implications for the 

stability of white dwarfs. 

A density—temperature diagram 

An understanding of when electrons become degenerate and relativistic is 

important in the theory of stellar evolution. The equation of state changes 

gradually as the temperature and density vary, and it takes on a simple form 

if the electrons are classical or degenerate, and non-relativistic or ultra-relativ- 

istic. For example, the electrons are ultra-relativistic and degenerate with the 

equation of state P = Kyen*/? ifn >> nour and n >> (mc/h)*. If the tempera- 
ture increases and the density decreases, the electrons become classical and 

ultra-relativistic with an equation of state P=nkT when n<<ngup and 

ki > mec. 
The classical, quantum, non-relativistic and ultra-relativistic regimes for 

electrons in an ideal gas are illustrated in Fig. 2.2. To a first approximation, 
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Fig. 2.2 Equation of state regimes for an ideal electron gas at a temperature T and ata 

density of n electrons per cubic metre. Typical values are shown for the temperature and 

density for electrons in a normal metal, in the sun, in a white dwarf and in the iron core 

of an evolved star just prior to a supernova 

the boundary lines between the different regimes in this n—T diagram are set by 

these four equations: 

n = nonr ~ AEN 107! Toe ee 

n=nour ~ 8 x 10° T? rite 

n=(mc/h) ~7 x 10% m7}, 

T =mc’/k = 6 x 10° K. 

Inspection of Fig. 2.2 indicates that dense electron gases are degenerate pro- 

vided they are not too hot, and that hot electron gases are classical provided 

they are not too dense. 

In practice the electron gas is not ideal because electrons interact. The 

principal correction to the equation of state usually arises from the electrostatic 

interaction between electrons and ions. In a classical gas this correction 
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becomes more important as the density increases. This is illustrated by the 

density dependence of the ratio of the electrostatic energy of interaction to 

the thermal kinetic energy. This ratio is approximately 

- 
Exs Ze 1/3 

eS, n (2.35) 
kT 4negkT 

where Z is the charge on the ions and n'/? is the typical distance between an 

ion and an electron. 

In contrast, the electrostatic correction becomes less important at high den- 

sity in a degenerate gas. In this case the typical kinetic energy of the electrons is 

determined by the Fermi momentum, which in turn depends on the density; see 

Eq. (2.27). If electrons are non- -relativistic, the ratio of the electrostatic energy 

to the kinetic energy is approximately 

7 
Bes. Ze*n'/3 _Zelm 13 
5 ~ = ~ ~ HA (2.36) 

pz /2m 4Anegpz/2m  4negh- 

Thus, as the density of a degenerate gas increases, electrostatic interactions 

become less important and the ideal gas approximation becomes more appro- 

priate. 

Electrons in the sun 

The changing role of electrons in stellar evolution can be illustrated by consider- 

ing the electrons in the sun. At present, according to theoretical models of the sun, 

the centre of the sun contains electrons with a concentration of about 8 x 10°! 

m~> ata temperature of about 1.6 x 10’ K. If we substitute this temperature into 

Eq. (2.22), we find a quantum concentration for electrons of 1.5 x 10°? m~°, 
which is just above the actual concentration. This implies that we can approx- 

imately treat the electrons at the centre of the sun as a classical gas, but a precise 

treatment must include small yet significant corrections due to degeneracy. 

As the sun evolves, the hydrogen content will be reduced and helium will 

build up in the core. Eventually hydrogen burning will be confined to a shell 

surrounding a small but growing helium core. Evolutionary models indicate 

that the temperature will rise to about 2 x 10’ K and the electron concentration 

to about 3 x 10° m-+. The effects of electron degeneracy will now become 
more pera because the quantum concentration at this temperature, 

2 x 10° m=, is comparable with the actual concentration. 
When the sun evolves away from the main sequence towards the red giant 

region of the Hertzsprung—Russell diagram (Fig. 1.6), evolutionary models 

predict it will develop a helium core with a temperature of about 10° K and 

an electron concentration of 3 x 10*4 m~?, The quantum concentration at this 

temperature is 2 x 10° m~3, which is an order of magnitude less than the actual 



2.2 Electrons in stars 61 

concentration. Despite a temperature of 10° K, we have a cold, degenerate gas 
in which most of the electrons occupy the states of lowest energy in accordance 

with the Pauli exclusion principle. 

Even though 10° K is cold enough for the electrons to be degenerate, it is hot 

enough to ignite the fusion of helium to form carbon. According to Section 1.4, 

the fusion energy released will cause an increase in the gravitational energy and 

a decrease in the internal energy. If the core were composed of non-degenerate 

matter, the fusion control mechanism discussed in Section 1.4 would be operat- 

ive: if the fusion energy cannot escape, the core will expand and cool, and the 

rate of fusion will decrease. However, when helium fusion begins in the sun, the 

core will consist of a classical gas of ions and a degenerate gas of electrons, with 

the electron gas providing the bulk of the pressure. The release of excess fusion 

energy into this material will be accompanied by an expansion and a decrease in 

the energy of the degenerate electrons but without any appreciable fall in 

temperature. The rate of fusion will be uncontrolled. Thus, the onset of helium 

burning in the sun will cause an explosive release of energy in a thermal 

runaway called a helium flash; the peak power could exceed the present lumin- 

osity of the sun by a factor of 10!'. But only a fraction of this energy will escape 
as radiation. Most of it will go into a rapid expansion of the core which lifts the 

electron degeneracy. Eventually helium fusion will take place in a controlled 

way in a less dense core of non-degenerate matter. 

The sun has insufficient mass to proceed beyond helium burning. It is 

expected to end its life as an inert white dwarf composed mostly of carbon 

and oxygen. The mass of this white dwarf is uncertain because of the uncertain 

mass losses during the red giant and planetary nebula phases of evolution. 

However, if a white dwarf of 0.5M. were formed, the central density will be 

of the order of 10° kg m~ and the initial temperature, following the completion 

of helium burning, will be of the order of 10° K. The electrons in the centre of 

this white dwarf will be degenerate and partially relativistic. In fact, we have an 

electron gas with concentration 3 x 10°° m~*, a Fermi momentum of 0.8mc and 

a Fermi energy of 1.3mc?; according to Eqs. (2.22) and (2.24), such a gas will be 

degenerate as long as the temperature is below 10? K. In contrast to the 

electrons, the carbon ions in the white dwarf are massive particles with small 

de Broglie wavelengths. They will form a classical system, with an average 

thermal energy of 3kT per classical degree of freedom, which will slowly cool 

down as energy escapes into space. Gravity will tend to compress the ions and 

the electrons, but the bulk of the resistance will be due to the electrons. Indeed, 

to a first approximation, the white dwarf is held up by a pressure gradient in a 

gas of degenerate, partially relativistic electrons. 

Electrons in massive stars 

Electrons play a different role in stars more massive than the sun. First, we note 

that massive stars can evolve extensively before electron degeneracy affects their 
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evolution. To understand this, we recall from Eq. (2.25) that the typical internal 

temperature of a stellar core of mass M and radius R supported by a classical 

ionized gas is given by 

ke des IR x M 
GMm 2/3 1/3 satis 

This equation implies that the temperature rises as a star contracts, but that a 

given temperature is reached at a lower density p if the mass M is higher. It 

follows that electrons are less likely to be degenerate when nuclear fuels are 

ignited in a massive star, because the ignition takes place at a lower density. In 

particular, theoretical models indicate that a star with a mass greater than 

11M. will normally evolve through all the stages of thermonuclear burning 

with no effects due to electron degeneracy. 

However, electron degeneracy plays a spectacular role at the end of the 

evolution of a very massive star. Eventually a core of iron is formed. As no 

further energy can be extracted by nuclear fusion, this core contracts and the 

electrons become degenerate. The mass of this degenerate core increases as 

more iron is deposited, and when its mass exceeds the Chandrasekhar mass of 

about 1.4Moq, it will collapse rapidly. Part of the energy released by this collapse 

can give rise to the ejection of the outer layers of the star as a supernova. The 

origin of this instability can be found by considering the electrons in the iron 

core just before the collapse. 

Theoretical models for highly evolved stars suggest that the iron core has a 

temperature of about 8 x 10° K and a density of about 4 x 10!7 kg m~> just 
before collapse. It is easy to show that the electrons in the core at this stage are 

degenerate and predominantly ultra-relativistic. First, the electron concentra- 

tion is approximately 10°? m~?, which implies a relativistic Fermi momentum of 

about 12mc. Second, according to Eq. (2.24), the quantum concentration for 

ultra-relativistic electrons at a temperature 8 x 10’ K is a factor of 1000 smaller 

than the actual concentration. Thus, we have a gas of degenerate electrons 

occupying the states of lowest possible energy in accordance with the Pauli 

exclusion principle. But because the density is so high, most of these electrons 

are ultra-relativistic; in fact, their average energy is 9mc*. The collapse of the 

core is a direct result of the ultra-relativistic nature of the electron gas attempting 

to support it. As discussed in Section 1.2, hydrostatic equilibrium becomes 

precarious whenever gravity is opposed by the pressure of a gas of ultra-relativ- 

istic particles. Indeed, we shall show explicitly in Section 6.1 that a gas of ultra- 

relativistic, degenerate electrons cannot support a mass greater than 1.4M.,. 

2.3. PHOTONS IN STARS 

To a first approximation, a star consists of matter and radiation in 
thermodynamic equilibrium. Indeed, the pressure due to radiation inside a 
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star can be nearly as important as the pressure due to electrons and ions. 
For this reason we shall review some of the properties of black body radiation, 
or in other words, the properties of a photon gas in thermodynamic 
equilibrium. 

The photon gas 

Electromagnetic radiation in equilibrium in a black body cavity can be thought 

of as an ideal gas of photons. This gas is the simplest ideal gas because all the 

particles move at the same speed, the speed of light. The unusual property of the 

photon gas is that the number of particles can change; photons are zero mass 

bosons which can be created and destroyed. We recall that a change in the 

internal energy of any gas is given by Eq. (2.7), 

dE =TdS — PdV +pdN, 

where the third term, involving the chemical potential 4: and the number of 

particles NV, describes the effect of a change in particle number. In a photon gas, 

N is free to change; in particular, photons are destroyed or created until 

equilibrium is established. For example, at fixed energy E and volume V, the 

number of photons changes until the entropy S is a maximum. This equilibrium 

is characterized by 

= 0. (2.37) 

Similarly, at fixed T and V, photons are destroyed or created until the free 

energy, F = E — TS, is a minimum. Since 

dF =—-SdT —PdV+ypdN, (2.38) 

such an equilibrium is characterized by OF /ON or « equal to zero. Thus, a 

photon gas in equilibrium has zero chemical potential. Its properties may be 

deduced by setting ;, = 0 in the Bose-Einstein distribution function given by 

Eq. (2.9). 

The number of photons in states with momentum between p and p + dp can 

be found by using Eq. (2.3) for the density of states and Eq. (2.9) for the 

distribution function to give 

| a 4np’ dp, (2.29) 
OT exp(€,/kT) —1 8s 7B 

where €, = pe and g; = 2 since the photon is a particle with zero mass and two 

states of polarization. The number of photons per unit volume is 
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l od x 
1=— os dx, (2.40) n= 7 |, oe) )dp = anf] jhe 5 ag 

where we have introduced a dimensionless integration variable x =ipereT: 

Similarly, the energy per unit volume in the photon gas 1s given by 

] OO kT oe 
=— — kT u=F €p N(p) dp = ef ae zal ih 

0 

hase (2.41) 

The integrals in Eqs. (2.40) and (2.41) can be related to a special function called 

the Riemann zeta Function which is denoted by ¢. The binomial expansion gives 

oo x2 oo r : 

| Z dx= | x lee ea ep ten ts 
On Chee 0 

and if we integrate each term we obtain 

0 2 Ret eed | 42 + 4 ...| = 2¢(3) = 2.404. / ‘ey ke atgstgst | 6G) 

Similarly 

co l l l 7 = ecayoe ‘ de ce litatyt” | se) is 

Thus, Eq. (2.40) for the photon number density and Eq. (2.41) for the photon 

energy density can be simplified to give 

n=bT° where b=2.404 x Bo 2. US CL Re thy (2.42) 

and 

8akt _ 774 ~ = ~16 Sg CS3 Me Whe CLG de shia = (ACL Se RO oe (2.43) 

These two equations imply that uw = 2.70nkT. Hence the average energy of a 

photon in a photon gas at temperature T is 2.70kT; the corresponding results 

for non-relativistic and ultra-relativistic particles in a dilute classical gas are kT 

and 3kT, respectively; see the paragraph following Eq. (2.19). 

Photons give rise to a pressure called the radiation pressure. According to Eq. 

(2.15), the pressure due to ultra-relativistic particles is one-third of the kinetic 

energy density, so the radiation pressure at temperature T is 

testes Pp =3u=3aT*, (2.44) 
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It is straightforward to determine the relation between the properties of a 

photon gas and the properties of a black body radiator. A black body radiator 

at temperature 7 can be formed by making a small hole in the surface enclosing 

a photon gas in equilibrium at temperature 7. Photons will escape like ordinary 

effusing gas particles at a rate of nc/4 per unit area; i.e. on average they move 

towards and escape from the hole with a speed which is ; of the actual speed of 

the particles. Similarly, the rate at which energy escapes is uc/4 per unit area. 

This can be identified with c7*, the power radiated by unit area of a black 

body, to give a value for Stefan’s constant, 

o =ac/4=5.67x 10° WK 4m”. (2.45) 

Photons with all possible energies or frequencies are radiated. Clearly, the 

intensity radiated at a particular frequency is c/4 times the photon energy 

density at this frequency. If we use Eq. (2.39) and «, = pc = hv, we obtain 

Planck’s formula for the intensity radiated in the frequency range v to v + dv: 

C c hv Srv 
y S*e5 V — d . 2.46 

bay ao ai 4exp(hv/kT) —1 3 en) 

This equation implies that the intensity J, and the energy density u, have a 

maximum at v = 2.82kT/h. In other words, the most probable energy of a 

photon in radiation at temperature T is 2.82kT, which is slightly higher than 

the average energy of 2.70KT. 

Radiation pressure in stars 

In order to appreciate the quantitative aspects of thermal radiation, we list in 

Table 2.1 the properties of radiation at two particular temperatures: the tem- 

perature of the solar photosphere (6 x 10° K) and the typical temperature 

inside the sun (6 x 10° K). 

TABLE 2.1 The thermal properties of electromagnetic radiation in 

equilibrium at two temperatures." 

ee eee 

Property Solar surface Solar interior 

at 6 x10°K at 6 x10°K 

Average photon energy (eV) 1.4 [4 16 

Photon density n (m~*) 4x 10/8 4 x 1077 

Radiation energy density u (J m~) 1 loranlo? 

Radiation pressure P, (Pa) 0.33 0.33 x 102 

Radiation intensity oT*(MWm~) = 73 13 al 0. 

2 A temperature of 6 x 103 K is a typical temperature for the solar surface and 6 x 10° 

K is a typical temperature for the solar interior. 
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We note that the radiation pressure at the solar surface is tiny by terrestrial 

standards of pressure, comparable with the pressure exerted by butter on a slice 

of buttered bread. In the solar interior, the radiation pressure is much greater, 

more than a million terrestrial atmospheres. Nevertheless, this pressure is much 

smaller than the pressure needed to support the sun against gravity; according 

to Eq. (1.29) this is 10'* Pa. Thus, we were justified in Section 1.4 to neglect 

radiation and assume that the sun is primarily supported by the pressure 

generated by electrons and ions. 

However, it is easy to show that radiation pressure cannot be neglected in 

stars more massive than the sun. To do so, we recall from Eq. (1.11) that the 

thermal kinetic energy of a star in hydrostatic equilibrium is related to its 

gravitational potential energy. This implies that the typical internal temperature 

T; ina star of mass M and radius R is approximately proportional to M/R. The 

electrons and ions have densities which are proportional to M/R*, and these 

particles supply a ‘gas’ pressure 

4 

Py = nekTy + njkTy a ar (2.47) 

In contrast, the radiation pressure is given by 

] M4 

Hence 

P. 3 
— «x M?. 2.49 Po (2.49) 

Thus the ratio of the radiation pressure generated by photons to the ‘gas’ 
pressure generated by the electrons and ions increases with the mass of the 
star. This ratio is small for the sun. But we shall see in Chapter 5 that the 
radiation pressure becomes comparable with the ‘ gas’ pressure if the mass of the 
star exceeds 50 M2. Furthermore, we recall that hydrostatic equilibrium of a 
self-gravitating system becomes precarious if the pressure of support is gener- 
ated by ultra-relativistic particles. Hence radiation pressure is likely to have a 
destabilizing effect on massive stars. 

2.4 THE SAHA EQUATION 

Molecules are dissociated, atoms are ionized and atomic nuclei are photodis- 
integrated by radiation. The underlying reaction mechanisms are complex and 
varied. However, simple and powerful results are readily derived if we assume 
that matter and radiation are in thermodynamic equilibrium. To illustrate the 
general ideas, we shall consider hydrogen in equilibrium with radiation and 
derive the Saha equation for the ionization of atomic hydrogen. 
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We begin by considering the physical significance of the chemical potential. 
In a system containing one sort of particle, particles move from a region of high 
chemical potential to a region of low chemical potential until the chemical 
potential is the same everywhere. Similarly, if the system consists of particles 
of types A, B, C and D, which can be transformed into each other via the 
reactions 

At B= Gite dD, 

thermodynamic equilibrium is reached when the chemical potential of particles 

A and B equals the chemical potential of particles C and D, i.e. 

u(A) + p(B) = n(C) + p(D). 

These ideas can be applied to the ionization of hydrogen. 

The electron in the hydrogen atom can occupy bound states with discrete 

energies €, labelled by the quantum number n = 1,2,---. When the atom is 

ionized, the electron can occupy unbound states with momentum p and energy 

€p. These energy levels are illustrated in Fig. 2.3. 

: Gait s 
Continuum DP 2m 
of unbound 
energy levels 

£,=0 
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c= 13.6 ey 
1 

Fig. 2.3. The bound and unbound energy levels of the hydrogen atom 
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The interaction with photons can cause the hydrogen atom to be excited and 

ionized. Indeed, at high temperatures we have a dynamic situation in which 

atoms are continually excited and ionized, and in which electrons are continu- 

ally captured and atoms are de-excited. If we assume that the atoms, ions, 

electrons and photons are in thermodynamic equilibrium, we can find the 

proportion of atoms which are excited and ionized. In particular, the number 

of hydrogen atoms in states with energy ¢, can be found by considering the 

dynamic deadlock set up by the reactions 

yf AH = eT siep, (2.50) 

Since the chemical potential of the photon is zero, thermodynamic equilibrium 

is characterized by 

u(H,) = ule) + up). (2.51) 

If the density is sufficiently low, we can assume that the electrons, protons 

and hydrogen atoms behave as classical particles in an ideal gas; and if they are 

non-relativistic, we can use Eq. (2.21) to evaluate the chemical potentials: 

ule) = mec* — kT In ee ‘ (2.52) 

E(p) = Myc —kTln ene. (2.53) 
P 

Ey u(H,) =m(H,)e2 — kT In eed . (2.54) 

In these equations n, and n, are the concentrations of electrons and protons, 
and n(H,,) is the concentration of hydrogen atoms in a state with energy €,; the 
mass of such an atom m(H,,) is given by 

m(H,)c? = mc? + Mgt? V5: 

The quantum concentrations are denoted by a subscript Q. Because these 
depend on the mass of the particle (2.22), the quantum concentrations for 
hydrogen atoms and ions are almost identical and they are denoted by Rap. 
The number of quantum states with a particular energy is denoted by g. Since 
electrons and protons both have spin 4, g.=2 and &p = 2. The number of 
hydrogen atom states g(H,,) with energy ¢, is determined by the degeneracy 
arising from the spin and the relative orbital angular momentum of the electron 
and proton in the atom. There can be several orbital angular momentum states 
with the same energy «,; for n = 2 there are three p-states and one s-state. In 
general, the total number of hydrogen atom states with energy €, is 
2(Hn) = 2,828, with g, = n?. 
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Substituting these chemical potentials into condition (2.51) gives the Saha 
equation for the equilibrium concentrations of electrons, protons and hydrogen 
atoms in an ideal gas at temperature T. We find 

MHn) — &n 
NeNp NGe 

exp[—¢,/kT], (253) 

where the quantum concentration of the electron is 

2nm,.kT)*/? ‘i a Noe = Po Ae, LU het ele Pe (2.56) 

Because the Saha equation (2.55) is so important, we shall seek a clearer 
insight into its physical significance by giving an alternative, more intuitive 
derivation. The Saha equation describes the result of a dynamic deadlock in 
which the reaction rate for y+H,—e +p balances the rate for 
e +p—7+H,. Because the rate for the former is proportional to n(H,) 
and the rate for the latter is proportional to nenp, it follows that 

where f,(7) is some function of the temperature. We expect f,(T) to be 

proportional to the probability that an electron is bound, and inversely propor- 

tional to the probability that an electron is unbound. 

To show that this is indeed the case, we consider an electron and a proton ina 

box of unit volume at temperature 7. First, there are g.g, bound states with 

energy €, available to the electron. Furthermore, to be in such state the electron 

has to borrow an energy e, from the environment, and the probability of a 

successful loan is proportional to the Boltzmann factor exp|—e,/kT]. Hence the 

probability that the electron is bound in a state with energy e¢, is proportional to 

LeLn CXp|—€n/KT). 

Secondly, the density of unbound states available to the electron with momen- 

tum between p and p + dp and kinetic energy €, is given by Eq. (2.3), and the 

probability of acquiring this energy is proportional to exp{—e,/kT]. Hence the 
probability that the electron is unbound with any positive energy is propor- 

tional to 

oo 1 
exp[—ep/kT ie 53 4m? dp = Berge. 

0 

If we assume that the constants of proportionality for these two probabilities are 

the same, and if we set f,,(7') equal to the ratio of the probabilities, we find that 
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n(H,) Ley e Len exp[-€n/kT] 

NeNp 15 LeNGe 

This equation is identical to the Saha equation (2:55): 

When the electron is bound, it can be in any one of the bound states labelled 

by the quantum number n. The concentration of un-ionized hydrogen atoms 1s 

found by summing over all values of n. Using the Saha equation (2.55), we find 

mH) _ 1S g, exp[—e,/KT]. (2.57) 
n=1 

NeNp  Nge 

We may rewrite this as 

A bah Bes (2.58) 
NeNp Ne 

where E; = —e = 13.6 eV, the ionization energy of the ground state, and where 

Z is the function 

Z = S~ gnexp[—(én — 41)/KT]. (2.59) 
nl 

Note that ¢, — «) is the excitation energy of the nth state. The function Z is 

called a partition function. As it stands, it is given by a sum which is divergent. 

But in practice, Z is of the order of unity because the sum is terminated when 

the value of n corresponds to a state whose spatial extent is comparable with the 

distance between the gas particles. 

Finally we will change the notation slightly and replace n, by n(H~). Then 

according to Eq. (2.58) the ratio of ionized to un-ionized atoms of hydrogen in a 

gas at temperature 7 is approximately 

~ “2 exp[-Ei/kT]. (2.60) 

We note that the degree of ionization depends markedly on the temperature. 

But it is also inversely proportional to the electron concentration ne. It follows 

that the ionization increases if the density of the gas decreases. In effect, once 

atoms are ionized they are less likely to capture an electron if the gas is very 

dilute. P 

In order to explore the strong temperature dependence of ionization, we take 
the logarithm of Eq. (2.60) and obtain 

In ea Lee = where F =In ea (2.61) 
Ne 
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Throughout this entire section we have assumed that the electrons form a 
classical gas with ne << ng,. Hence F is a positive, slowly varying function of 
temperature. According to Eq. (2.61), the ratio n(H*)/n(H) increases from e~! 
to et!, ie. from 0.37 to 2.72, when the temperature increases from 
kT = E;/(F +1) to E;/(F —1). Thus when F is large, as in a very dilute 
electron gas, the onset of ionization occurs rapidly near kT = E;/F. 

2.5 IONIZATION IN STARS 

In this section we shall consider some of the more important consequences of 
the ionization of the matter in the interior of stars and in the outer regions of 
stars. 

Stellar interiors 

In order to gain an understanding of the degree of ionization in stellar interiors, 

we shall, for the sake of simplicity, first consider matter which consists dom- 

inantly of hydrogen. The concentrations of the hydrogen atoms, the protons (or 

H* ions), and the electrons will be denoted by n(H), n(H~) and n:, respectively. 

If the mass of the electrons is neglected, the mass density is given by 

p = [n(H) +n(H*)] mu, (2.62) 

where my is the mass of the hydrogen atom. Furthermore, the particle concen- 

trations can be expressed in terms of the density and the fraction of the 

hydrogen that is ionized. If this fraction is denoted by x(H) then 

Ne =n(H*t) =x(H)p/mpy and n(H) = [1 — x(H)]p/my. (2.63) 

The fraction of ionized atoms, x(H), can then be found by substituting Eq. 

(2.63) into the Saha equation (2.60) and using the ionization energy E; = 13.6 

eV. This gives 

1—x(H)]__p/mu meee Ton 73/2 exp[158 000/T], (2.64) 

where T is the temperature in Kelvins. In Section 1.4 we considered a simple 

model in which the sun was considered to be a globe of ionized gas with an 

average density of 1.4 x 10° kg m~™* at a temperature of 6x 10° K. At this 

density and temperature, Eq. (2.64) gives [1 — x(H)]/x(H)° 0.055, indicating 

that the fraction of hydrogen ionized, x(H), is about 95%. In fact, this calcula- 

tion underestimates the degree of ionization. Equation (2.64) is not accurate at 

this density because, even though the electrons and hydrogen ions are small 
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enough to form an ideal gas, the hydrogen atoms are too large; their size is 

comparable with the typical distance between the particles, 

d =(p/my) \/° ~ 107! m. The atoms interact strongly with the gas particles 

and the likelihood of ionization is increased. 

We now assess the extent of the ionization of heavy atoms in the sun. Even 

though the inner electrons in such atoms are very tightly bound, the ionization 

is almost complete. This arises largely because small quantities of these atoms 

are immersed in a dilute electron gas formed by the ionization of hydrogen. To 

illustrate this, we consider a few carbon atoms in a gas of hydrogen at 

T =6x 10° K and p=1.4x 10° kg m™ ? which is fully ionized to give 

Ne & p/my & 8 x 10°? free electrons per cubic metre. Because the carbon 

nucleus has charge 6, the ionization energy of the last electron in carbon is ee 

or 36 times the ionization energy of hydrogen. We can adapt Eq. (2.60) to find 

the approximate ratio of fully ionized carbon atoms to carbon atoms which 

have only lost 5 electrons. This ratio, which depends on the concentration of 

electrons provided by the ionization of the hydrogen, is given by 

n(6) 107 7°/? 
n(5) iS Neo 

exp[—36 x 158000/T] ~ 10. (2.65) 

This calculation, like the earlier one, underestimates the degree of ionization. 

However, it indicates that, to a first approximation, the atoms inside a star like 

the sun are completely ionized. 

Complete ionization greatly simplifies the analysis of the properties of matter 

inside stars. In particular, we can find simple expressions for the total number of 

particles and their average mass: let X,, X4, and Y4 be the mass fractions of 

hydrogen, helium and heavy elements. If the material was not ionized, the number 

of H and He atoms and the number of heavy atoms per unit volume would be 

= Xip/my, nga= X4p/4my and ny = X4p/Amy. (2.66) 

When ionized, a hydrogen atom yields 2 gas particles, a proton and an electron. 

A fully ionized helium atom yields 3 particles, a nucleus and two electrons, 

whereas a fully ionized heavy atom of mass number 4 and atomic number Z 
yields a nucleus and Z electrons, about A /2 particles in total. Hence the total 

number of particles per unit volume in a fully ionized gas is 

A 3 l 
n & 2n, + 3ng + ana aan PPG + 4X4 + 5X p/my. 

Since X; + X¥4+ X4 = 1, we have 

ne (1+3X, +0.5X4]0/2my. (2.67) 

Hence the average mass of the gas particles is 
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m= p/n = 2my/[1 + 3X) + 0.5X4). (2.68) 

For example, the Standard Solar Model (Bahcall, 1989) assumes that the sun 
was formed from matter with XY; = 0.71, ¥4 = 0.27 and X 4 = 0.02 which when 
ionized, forms a gas of particles with average mass of m~ 0.61 amu. The 
standard model predicts that hydrogen burning in the sun has reduced the 
hydrogen content and increased the helium content so that, at present, the 
mass fractions in the central regions are approximately Y; = 0.34, X4 = 0.64 
and X4 = 0.02; this material has average particle mass of 0.85 amu. 

Finally, it is also useful to have expressions for the number of electrons and 
the number of ions per unit volume in a fully ionized gas. It is straightforward 
to show that these are given by 

Ne = [1+ Xi]p/2my and 7; © [2X + 0.5X4]0/2my. (2.69) 

Stellar atmospheres 

We recall from Section 1.7 that stars are classified according to their spectral 

type. The classification, denoted by a letter O, B, A, F, G, K or M, largely 

reflects a steady decline in surface temperature from about 30000 K to about 

3000 K. The atoms in stellar atmospheres at these temperatures are partially 

ionized. Moreover, if the chemical composition, temperature and density of 

the stellar atmosphere are known, the degree of ionization of the various atomic 

species may be estimated by applying the Saha equation. In general, the 

metallic elements (Li, Na, Mg, Al, K, Ca, etc.) with an ionization energy 

of about 5 eV are predominantly ionized. Elements such as H, C, N, O, F, P, 

S, Cl, Ar, which have ionization energies in the range 10—20 eV, tend to be 

partially ionized; whereas He and Ne, noble gas elements with ionization 

energies above 20 eV, are only partially ionized even in the hottest stellar 

atmospheres. 

The general situation can be understood by considering the ionization of 

three representative elements, Na, H and He, which have ionization energies of 

5.14, 13.6 and 24.6 eV, respectively. If these ionization energies are substituted 

into the Saha equation, we obtain 

n(Nat) 10717 3/2 Rae S ais exp{—60 000/7], (2.70) 

n(H*) _ 102! 73/2 

7H) . exp[—158 000/7], (2.71) 

+ 2173/2 

a ew O—exp|-286 000/T]. (2.72) 
n e 
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The exponential factors in these equations give rise to huge differences in the 

degree of ionization of the three elements. For example, at 6000 K, the tem- 

perature of the solar photosphere, we have 

197 HD ted n(He*) _ j-10 HL) 
(2.73) 

n(Na) n(H) n(He) n(H) 

The ionization of metallic elements plays a crucial role in stellar atmospheres. 

We see from Eq. (2.73) that the ionization of sodium is a factor of 10’ larger 

than the ionization of hydrogen. This factor more than compensates for the low 

abundance of sodium relative to hydrogen in stellar atmospheres; this abund- 

ance is about 10~° in stars like the sun. Thus, even though stellar matter largely 

consists of hydrogen and helium with traces of heavier elements, most of the 

free electrons in stellar atmospheres are due to the ionization of metallic 

elements like sodium. Moreover, the degree of ionization of other elements, 

such as hydrogen and helium, depends on the concentration of these electrons. 

For the solar atmosphere, 7 and n, are typically of the order of 6000 K and 10” 

m~>. If we substitute these values into the Saha equation, we obtain 

n(H"*) = 10-4, n(He™) e107 and n(Na°* ) 
(Hl) (He) ae 10°. (2.74) 

We see that in the solar atmosphere hydrogen is partially ionized, helium is 

hardly ionized at all, and sodium is predominantly ionized. The degree of 

ionization is higher in hotter stellar atmospheres. Indeed, if nm. remains at 

about 10!9 m~3, 50% of hydrogen is ionized at about 9000 K, and 50% of 

helium is ionized at about 15500 K, as shown in Fig. 2.4. 

These considerations help to explain the approximate relation between the 

surface temperature and the spectral classification of a star: 

The spectral classification is based upon the observation of dark lines in the 

spectrum due to the absorption of photons of particular energies by atoms and 

ions in the stellar photosphere. For example, the observation of the absorption 

lines belonging to the Balmer series would imply that the temperature is such 

that hydrogen atoms are present in the n = 2 level illustrated in Fig. 2.3; the 

photoexcitation of these atoms to states with n = 3, 4, etc. gives rise to dark 

lines of the Balmer series. But atoms in the.n = 2 states will not be present if the 

photosphere is too hot or too cold: if the temperature is too high most of the 

hydrogen will be ionized and if the temperature is too low most of the hydrogen 

will be in the ground state of atomic hydrogen or in the form of molecular 

hydrogen. As a result, the absorption lines of the Balmer series are only 

conspicuous in type A and type F stars, where the surface temperature is 

between 11000 K and 6000 K. 

Similar considerations apply to the absorption lines of other elements. In 

brief, the spectra of hot type O and type B stars, with a surface temperature 
between 30000 and 12000 K, are characterized by absorption lines due to the 
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Fig. 2.4 The fractional degree of ionization of hydrogen and helium as a function of the 
temperature in a gas with a free electron concentration n, = 10!? m=? 

presence of singly ionized helium, lines which do not appear in cooler stars. 

Absorption lines due to atomic hydrogen are conspicuous in type A and type F 

stars, where the surface temperature is between 11000 and 6000 K. Finally, 

lines due to the presence of neutral metals are particularly apparent in the 

spectra of cooler stars belonging to types G, K and M, where the temperature 

is between 6000 and 3000 K. 

The spectral lines due to the absorption of photons with particular energies 

are seen against an opaque and luminous background. This background is 

produced by the absorption and emission of photons with a continuum of 

energies in the visible region of the electromagnetic spectrum. For example, 

electrons in stellar atmospheres emit and absorb photons as they accelerate 

past ions; these processes, usually called bremsstrahlung and inverse brems- 

strahlung, are particularly important in hot stellar atmospheres. But 

cooler atmospheres are rendered opaque and luminous by a process of 

considerable interest, the continual production and destruction of hydrogen- 

minus ions. 
The H~ ion is a bound state of a proton and two electrons. It is a 

two-electron system like the helium atom. But the charge on the nucleus 

is only Z=1 and the second electron is only just bound with a binding 

energy of only 0.75 eV. Accordingly, photons with an energy as low as 0.75 

eV, i.e. a wavelength as long as 1650 nm, are absorbed and emitted by the 

reactions 

y+H> =e +H. (2.75) 
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However, a gas of hydrogen atoms will absorb or emit visible photons in this 

way only if free electrons are present. In other words, a transparent gas of hot, 

un-ionized hydrogen can be made opaque and luminous by the presence of free 

electrons. We shall now show that a small abundance of easily ionized metallic 

elements in such a gas can provide these electrons. We shall model the situation 

by assuming the presence of metallic elements, denoted by M, which are 

partially ionized to give a mixture of atoms, electrons and ions. The concentra- 

tion of these particles and the fractional ionization of the element x(M) are 

related by 

Ne = n(M*) = x(M)|[n(M) + n(M7*)]. (2.76) 

If we assume that all the metallic elements have the same ionization energy as 

sodium, the Saha equation gives 

(1 a Fe sea es exp[60 000/T). (2.77) 
xX 

j 

The dynamic equilibrium concentration of H™ ions is established by the reac- 

tions y + H~ =e~ + H, where the electron concentration is primarily deter- 

mined by the ionization of metallic atoms. The Saha equation for the ratio of 

the number of H™ ions to the number of H atoms is 

wih, re apa pars ©P18700/7, (2.78) 

where the electron concentration n, is determined by Eqs. (2.76) and (2.77). 

A simple numerical calculation, based on Eqs. (2.77) and (2.78), illustrates 

the coupled roles of easily ionized metals and loosely bound H™ ions in stellar 

atmospheres. The fraction x(M) of metallic atoms ionized and the concentra- 

tion n, of free electrons increase with temperature until nearly all the metallic 

atoms are ionized at about 4000 K. The concentration of H™ ions reflects this 

change in the number of free electrons. The number of H™ ions increases with 

temperature as the electrons become available, but then declines as n, 

approaches saturation and as the temperature becomes too hot for the existence 

of a loosely bound H™ ion. The temperature dependence of n(H~)/n(H) is 

illustrated in Fig. 2.5 for the particular case when the abundance of metallic 

atoms is such that, when they are singly ionized, the concentration of free 

electrons is 10/9 m7. ‘ 
According to Fig. 2.5, at a temperature of about 3000 K there is a small but 

significant abundance of free electrons and H™ ions. At this temperature, H~ 

ions are continually being produced and destroyed, and as this happens, visible 

radiation is emitted and absorbed. If the temperature is lowered below 3000 K, 
the number of free electrons decreases and the number of H™ ions in equilibrium 



2.5 Jonization in stars uf 4 

= 0.5 

0.0 
2 3 4 5 

3 

TEMPERATURE IN UNITS OF 10K 

4.0 

“e = 3.0 

= 

~20 
= 

1.0 

0.0 
i) 3 - 5 

3 
TEMPERATURE IN UNITS OF 10 K 

Fig. 2.5 The fractional ionization of metallic atoms like sodium and the ratio of the 

number of H~ ions to the number of H atoms as a function of temperature. As metallic 

atoms with an initial concentration of 10!9 m~} are increasingly ionized, the electrons 

released are captured by hydrogen atoms to form loosely bound H~ ions. These H~ ions 

dissociate as the temperature increases. The formation and dissociation of H™ is a 

dynamic process which no longer takes place if the temperature falls below 3000 K, 

and visible radiation is no longer produced and absorbed. Below 3000 K the gas is no 

longer luminous and opaque 

with these electrons drops even more precipitously. In particular, H~ ions are 

no longer being produced and destroyed, and visible radiation is no longer 

being emitted and absorbed. As a result, the gas is no longer luminous and 

opaque. This phenomenon has an important implication for a stellar atmo- 

sphere: the temperature of the observed surface of such an atmosphere is always 

above 3000 K, or thereabouts. 

This result has an important implication for the evolution of a star after it 

has left the main sequence. On leaving the main sequence, the luminosity 

increases and the surface temperature decreases, so the star moves upwards 

and to the right in the H—-R diagram. However, the temperature of the 

visible surface cannot drop below 3000 K. Thus the star can only increase its 
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luminosity by expanding at almost constant surface temperature. During this 

phase of evolution the star occupies an area of the H-R diagram called the 

giant branch. 

2.6 REACTIONS AT HIGH TEMPERATURE 

So far we have focused on the interaction of radiation with atoms. When the 

temperature becomes comparable with a billion degrees, the interaction of 

radiation with matter gives rise to two new processes: the production of elec- 

tron—positron pairs and the photodisintegration of atomic nuclei. Both these 

processes are important in highly evolved massive stars. In this section we 

indicate how simple and powerful results can be obtained for these processes, 

provided they take place in a system which is close to thermodynamic equilib- 

rium. 

Electron—positron pair production 

Electron—positron pairs can be produced when the typical thermal energy kT is 

comparable with m,.c*. The equilibrium concentrations of electrons and posi- 

trons, n(e~) and n(et), can be found by considering the reactions 

ytyee +e,” (2.79) 

noting that the chemical potential of a photon gas is zero, and then equating the 

sum of the electron and positron chemical potentials to zero, 

u(e)+p(et) =9. (2.80) 

If the electrons and positrons form a classical gas, we can use Eq. (2.21) for the 

chemical potentials to give 

n(e" )n(e*) = 4ng exp[—2mec?/kT], (2.81) 

where vg is the quantum concentration for electrons or positrons. 

In a star the concentration of electrons is dominated by the electrons arising 

from the ionization of the stellar matter. In the hot central regions of an evolved 

stars, only traces of hydrogen will remain unburnt, and according to Eq. (2.69), 

the electron concentration at density p is approximately n(e~) = p/2my. As an 

example, we consider matter with p10’ kg m-? and T= 10° K. Then 
n(e~) = 3 x 10° m™ and the equilibrium concentration of positrons given by 

Eq. (2.81) is n(e*) © n(e~)/100. However, Eq. (2.81) is not valid at higher 
densities where the electrons are degenerate. In this case pair production is 

inhibited, because an electron can only be produced if there is an unoccupied 
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quantum state available to be filled. Thus pair production is favoured by high 

temperature and low density. Accordingly, it is more likely in the centres of 

very massive stars which attain very high temperatures at comparatively low 

densities. 

The most important astrophysical implication of pair production is that it 

can lead to the production of neutrinos via 

ytyHe +e Ss Y +h. (2.82) 

Most electron—positron pairs annihilate to yield photons. But about | in 107 

pairs yield neutrinos. This is one of the mechanisms for neutrino production 

that can occur in the hot central regions of highly evolved stars. The neutrinos 

so produced can escape almost unhindered from a stellar interior and thereby 

provide a very efficient energy loss mechanism. 

Energy loss by neutrinos can be important in stars if their core reaches a 

temperature of 10’ K at a density where the electrons are not too degenerate, 

i.e. less than 10? kg m~°, or thereabouts. Note that, even though this energy loss 

is often called neutrino cooling, it does not lead to cooling. Its main effect is to 

stimulate a faster rate of thermonuclear fusion in order to maintain steady 

conditions inside the star. As a result, energy loss by neutrinos accelerates the 

rate of evolution of the star. 

Photodisintegration of nuclei 

A second phenomenon induced by the interaction of radiation at high temper- 

atures is the break-up of atomic nuclei. This process is the analogue of the 

ionization of atoms which, we recall from Section 2.5, becomes important at 

about 3000 K. Since nuclear binding energies are typically a million times larger 

than atomic binding energies, nuclear photodisintegration becomes appreciable 

at a temperature which is about a million times higher than 3000 K, i.e. when 

the temperature is about 3 x 10” K. 

We shall see in Section 4.4 that photodisintegration occurs during advanced 

stages of nuclear burning in massive stars, beginning with neon burning which 

is initiated by the photodisintegration of *?Ne via the reaction 

+ +?°Ne 3160 +*He. 

The 4He nuclei released can then be captured by an undissociated *?Ne nuclei to 

form 24Mg. Photodisintegration also plays the key role in silicon burning, the 

final stage of nuclear burning which leads to the formation of nuclei near iron in 

the periodic table. 
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SUMMARY 

The ideal gas 

e In an ideal gas, particles occupy states whose energy is unaffected by the 

interactions between the particles. The number of quantum states with a 

momentum of magnitude between p and p + dp is 

V 

g(p) dp = Bs 53 Amp” dp. (2.3) 

The average number of particles in a state with energy €, is given by Eq. (2.8) 

if the particles are identical fermions, and by Eq. (2.9) if the particles are 

identical bosons, 1.e. 

He) = exp|(€p — p)/kT|] + 1 

where the plus sign applies to fermions and the minus sign to bosons. 

e The pressure in an ideal gas is given by 

| P=ay | pul a)e(p) ap. (2.13) 

which equals two-thirds the kinetic energy density if the gas particles are non- 

relativistic and one-third the kinetic energy density if they are ultra-relativistic. 

e If the concentration of particles in an ideal gas is low compared with the 

quantum concentration, their distribution in the quantum states is given by 

f (ep) © expl-(e — 1) /KT]. (2.11) 

These particles form a classical gas. The quantum concentration for non- 
relativistic particles in such a gas is 

2nmkT]*/? 
OR PO RCH ) (2.22) 

and the quantum concentration for ultra-relativistic particles is 

al é 
No = 8r Ea (2.24) 

e The chemical potential of a classical ideal gas is 
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= me? —kT ln ew : (2e2! ) 
n 

Electrons in stars 

e If the concentration of electrons greatly exceeds the quantum concentration, 

the electrons form a degenerate gas in which all the electrons fully occupy 

quantum states with a momentum less than or equal to the Fermi momen- 

tum. The Fermi momentum is related to electron concentration by 

3n) 1/3 
Dr = Fe h. (2.21) 

e The equation of state of a non-relativistic, degenerate electron gas is 

2 2/3 

P = Kyprn*/? where Kyr= ee | (2.31) 
m Tv 

This is replaced by 

IO ee RCN age ock s 2.34 = URN where BE A ae ) (2. ) 

if the electrons are predominantly ultra-relativistic. 

e The classical, quantum, non-relativistic and ultra-relativistic regimes for an 

electron gas are illustrated in Fig. 2.2. The properties of electron gases in 

these different regimes have key roles in stellar evolution. 

Photons in stars 

e Thermal radiation can be considered as a photon gas, a gas of zero mass 

bosons with zero chemical potential. 

e The number of photons per unit volume is 

n=bT? where b=2.03 x 10’ K* m™. (2.42) 

e The energy per unit volume in a photon gas is 

u=aT? where a=7.565x 107° JK“ m>. (2.43) 

e The radiation pressure is 
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a i ie (2.44) 

This is comparatively small in the sun, but it is more important in more massive 

stars. According to Eq. (2.49), the ratio of the radiation pressure to the gas 

pressure in a star of mass M is proportional to M?. 

The Saha equation 

e Ionization of atomic hydrogen and recombination, 

yt+tH=e +H* 

can result in an equilibrium characterized by (H) = p(e) + u(H"). The 

equilibrium concentrations are given by 

MET) pe a Hi 2.60 n(H) — Ne exp[ E;/kT), (2. ) 

where £; is the ionization energy of the hydrogen atom. 

Ionization in stars 

e The ionization in stellar interiors is almost complete and the number of 

particles per unit volume in a fully ionized gas is 

n= (1 +3X, +0.5X4]0/2muy, (2.67) 

where X; and X4 are the hydrogen and helium mass fractions. The number of 

electrons and the number of ions per unit volume are 

Ne (1 Sia X\|p/2my and nj; [2Xj ae 0.5X4]p/2my. (2.69) 

e lonization is partial in stellar atmospheres. Often most of the electrons arise 

from easily ionized metallic elements. These electrons and the temperature 

determine the degree of ionization of hydrogen and helium in the atmo- 

sphere. Typically 50% of the hydrogen is ionized at 9000 K and 50% of the 

helium is ionized at 15500 K; see Fig. 2.4. 

e The opaque luminous surface of a star is due to the continual absorption and 

emission of visible photons. This happens as electrons accelerate past ions, 

and when loosely bound H™ ions are formed and broken up. The coupled 

roles of easily ionized metallic elements and loosely bound H7 ions indicate 
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that the minimum temperature of the observed surface of a star is about 
3000 K; see Fig. 2.5. 

Reactions at high temperature 

Electron—positron pair production becomes significant when kT is compar- 
. y « “4° . able with m.c- in a non-degenerate electron gas. The equilibrium concentra- 

tions of electrons and positrons are given by 

n(e )n(e*) = Ane, exp[—2m,c?/kT]. (2.81) 

Pair production leads to neutrino production. Energy loss by neutrinos in 
massive stars speeds up the rate evolution. 

During the latter stages of the evolution of a massive star, central temper- 

atures above 3 x 10° K can be reached. At this temperature, and above, high 

energy thermal photons can break up atomic nuclei. Photodisintegration of 

nuclei plays a key role in neon and in silicon burning. 

PROBLEMS 2 

2.1 Consider an ideal gas of degenerate, non-relativistic electrons with a concentra- 

tion n and obtain an expression for the Fermi energy. Assume now that the gas 

has a temperature T such that the quantum concentration ng, given by Eq. 

(2.22), is equal to the actual concentration; n quantum effects will be important 

in such a gas, but the electrons will not be completely degenerate. Find the ratio 

of kT to the Fermi energy. 

2.2 Compare the relative importance of the electrostatic interactions between 

degenerate electrons and ions in a normal metal with a density of about 10* 

kg m~ and in a white dwarf with a density of about 10° kg m~?. In both cases 
estimate the temperature below which the electrons are indeed degenerate. 

2.3 The pressure in an ideal degenerate electron gas is given by Eq. (2.31) if the 

electrons are non-relativistic, and by Eq. (2.34) if the electrons are predomin- 

antly ultra-relativistic. Use the relativistic relation between energy and 

momentum, @ = p?c?+ mc’, and show that the general expression for the 
P. . 

pressure in an ideal degenerate gas is 

P= Kyrn*7 I(x) 

where x = pr/me and 
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Confirm that, in the appropriate limits, this expression for the pressure reduces 

to Eqs. (2.31) and (2.34), respectively. (This general expression for the pressure 

in an ideal degenerate gas will be used in the discussion on white dwarfs in 

Chapter 6.) 

A stellar atmosphere consists almost entirely of hydrogen. Assume that 50% of 

the hydrogen molecules are dissociated into atoms and that the pressure is 100 

Pa. Given that the binding energy of the hydrogen molecule is 4.48 eV, estimate 

the temperature. 

In the early universe, electrons and positrons coexisted with photons at very 

high temperature. The concentrations of electrons and positrons were approx- 

imately equal and were determined by a thermodynamic equilibrium set up by 

the reactions 

y+yee +e. 

It follows that both the electrons and the positrons formed a gas of ultra- 

relativistic fermions with zero chemical potential. 

Reconsider the calculation for ultra-relativistic bosons with zero chemical 

potential which led to Eqs. (2.42) and (2.43), and derive the corresponding 

results for fermions. Show, in particular, that the number of fermions per unit 

volume and the energy density of these fermions are given by 

bT*, and up = Tart. 
lw 

Afr = 

In fact, the bulk of the pressure in the early universe was due to a gas of 

photons, electrons, positrons, and three types of neutrinos and antineutrinos. 

In all there were 8 types of ultra-relativistic fermions in equilibrium with 

photons at a high temperature 7. Bearing in mind that the electrons and 

positrons have spin 5 with two polarizations, and neutrinos and antineutrinos 

have spin 5 but only one polarization, find an expression for this pressure. 

Consider electron—positron production in a degenerate electron gas with Fermi 

energy ef, and derive an expression, analogous to Eq. (2.81), for the equilibrium 

concentration of positrons. Make a numerical estimate for this concentration in 

stellar. matterat.T = 10° K andp=10" kom, 

When the core of a massive star exceeds the Chandrasekhar limit, it collapses. 

During this collapse, energy is absorbed by the photodisintegration of *He via 

the reaction 
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7 +4He — 2p + 2n. 

The energy required for this reaction is Q = 28.30 MeV. Assume that this 
reaction is in equilibrium with its inverse. Estimate the temperature at which 
50% of the *He is dissociated into nucleons when the density is 10'2 kg m~3, 

Consider a classical electron gas with number density n, = 1029 m-3 in equilib- 
rium with radiation at temperature 7. Find the temperature T at which the 
radiation pressure equals the electron pressure. 

A white dwarf star has a luminosity Z and an effective surface temperature 
given by 

L=0.01Lq and Tr, =16000K. 

e Estimate the radius of the star. 

e Given that the mass is M = Mo, estimate the average density of the star. 

e Use Eq. (3.43) to estimate the internal temperature of the star, 77, and show 

that the electrons are predominantly degenerate. 

e When a carbon white dwarf becomes cool enough, the carbon ions can 

crystallize, raising the possibility that it will twinkle like a diamond in the 

sky. An approximate condition for crystallization is that the thermal energy 

kT of an ion is less than 1/60 of the potential energy of interaction between 

two nearby ions. Estimate the density at which this condition 1s satisfied in a 

white dwarf with internal temperature 77. 
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3 
Heat transfer in stars 

There are two basic mechanisms for the transport of heat inside a star. The first 

mechanism depends upon the random thermal motion of the constituent par- 

ticles. The particles move, interact and transfer energy from hot regions to cold 

regions. If the particles are electrons or ions, this process is called thermal 

conduction. If the particles are photons, this process is called radiative diffu- 

sion. The second mechanism depends on the collective motion of the constitu- 

ent particles and is called convective heat transfer. If the temperature gradient is 

steep enough, heat is transferred from hot to cold regions by rising pockets of 

hot buoyant fluid and by falling pockets of cool dense fluid. Heat transfer is a 

complex and difficult subject. We shall focus on the basic ideas and use them to 

understand how the heat, generated by nuclear fusion at the centre of a star, is 

transported to the surface. 

3.1 HEAT TRANSFER BY RANDOM MOTION 

Consider a gas in which the temperature J depends weakly on a coordinate x, 

so that heat flows in the x-direction between regions which are approximately in 

thermodynamic equilibrium. The microscopic mechanism underlying this flow 

of heat is the random motion of the gas particles. In general these particles 

move with a distribution of speeds, in all possible directions and with a dis- 

tribution of free paths before they interact. We shall assume, for the sake of 

simplicity, that one-sixth of the particles move in the x-direction with a speed uv 

and that they travel a distance / before they interact. The thermal energy per 

unit volume at x will be denoted by u(x). 

We begin our analysis by considering a surface at a particular value of x and 

the particles crossing this surface. If there is a temperature gradient, the parti- 

cles which cross the surface from below will have a different thermal energy 

than those which cross the surface from above. As a result, there is a net 

transfer of energy across the surface. As indicated in Fig. 3.1, the particles 
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1 vu(x + [) T(x + 1) 

eit 
T(x) 

x1 7 vu(x — 1) T(x — 1) 

a! Lye 1 
j(x) = 4 u(x =D) 6 wx +) ae 

Fig. 3.1 Energy transfer across a surface at x by random thermal motion of particles 

moving from below originate, on average, from a region at x —/ and transfer 

across the surface an energy which is proportional to u(x — /), whereas particles 

from above originate from x +/ and transfer an energy proportional to 

u(x +/). This implies that the rate of energy transfer across unit area of the 

surface is given by 

1 od 
u(x 1) — gou(x +) x Zul. (3.1) j(x) - | 

Ge 

Since u and T are both functions of x 

diy du dT ys gain (3.2) 
dx endiidx dx 

where C is the heat capacity per unit volume. Hence the flux density of heat 

across the surface at x is directly proportional to the temperature gradient: 

i 1 
j(x) =-K F— with K = zu. (3.3) 

The coefficient K in Eq. (3.3) is the coefficient of thermal conductivity of the gas. 

A more sophisticated calculation, which takes into account that the particles 

have a distribution of speeds, directions and free paths, gives a similar result for 

K, but with v and / replaced by the mean speed 0 and the mean free path /. 

We shall first use Eq. (3.3) to describe heat conduction by randomly moving 

electrons and ions ina plasma. We shall then use it to describe heat conduction by 

randomly moving photons, a process which is usually called radiative diffusion. 

Random motion of electrons and ions 

The importance of thermal conduction by electrons and ions in a plasma can be 

assessed by using familiar results from the kinetic theory of gases. For classical 

electrons with concentration n, at temperature T 
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3 3 x 
Ue =5NekT, Co= 5 Nek and Up, [3kT/m,]'/?. (3.4) 

Heat transfer by an electron-electron collision is not very effective; this is 

because two identical electrons largely swap energies, so the ionized gas is 

essentially the same before and after the collision. Electron—ion collisions are 

more effective in transferring heat, and the relevant mean free path in Eq. (3.3) 

is the mean free path for an electron to collide with an ion. This equals 1/njo, 

where n; is the concentration of ions and a is the electron-ion collision cross- 

section. (The relation between mean free paths and cross-sections is 

considered in more detail in Section 4.1; see Eq. (4.15).) An order of magnitude 

estimate for the electron-ion cross-section is 7r*, where r is the distance at 

which the potential energy of an electron-ion pair is comparable to the 

thermal kinetic energy; a significant energy transfer to the ion is likely if the 

electron comes within this distance. For an ion with charge Z this distance is 

given by 

Ze* 

4reor 
kT. (3.5) 

Substituting these results into Eq. (3.3) gives the following estimate for the 

coefficient of thermal conductivity due to electrons. 

(3.6) 
© 2nn; | me Ze? 

k ne aa he acai 
K.~— 

The thermal conductivity due to ions, K;, can be obtained from Eq. (3.6) by 

interchanging n- and n;, and m, and m;. If we assume the plasma is fully ionized 

with n, = Zn;, we find 

1/2 
rae as a K.. (3.7) 

Since Z > 1 and m; >> m,, it follows that K; << Ke, a result which merely 

reflects the fact that ions are outnumbered by electrons and that they move less 

quickly than electrons. Thus, the random thermal motion of ions is, in general, 

4 less effective mechanism for heat transfer than the random thermal motion of 

electrons. 

In fact, thermal conductivity by electrons and ions is of minor importance in 

most stars. White dwarf stars are a notable exception. Here the electrons form a 

dense, degenerate gas with high thermal conductivity, as in a metal. Equation 

(3.3) is still applicable, but Eq. (3.4) must be modified to take account of the 

degeneracy. If the Fermi energy ¢r is large compared sa kT, the typical 

electron speed is increased by a factor of about (e-/kT)~ and the thermal 

capacity is reduced by a factor of about kT/er. The mean free path for an 
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electron collision is also longer in a degenerate gas, because an electron can only 

be scattered if there is an unoccupied state available to be filled. The net result is 

that heat in the interior of a white dwarf is conducted very efficiently by 

degenerate electrons. Indeed, to a first approximation, a white dwarf has an 

interior of high conductivity, at a temperature which is almost uniform, sur- 

rounded by an insulating jacket of non-degenerate electrons and ions. The heat 

transfer through this jacket will be considered in Section 3.4. 

Random motion of photons 

We can also use Eq. (3.3) to assess the importance of radiative diffusion, the 

thermal conduction of heat by photons. We recall from Section 2.3 that thermal 

photons move with the speed of light and, according to Eq. (2.43), form a gas 

with an energy density and a thermal capacity given by 

u,=aT* and C,=4aT°. (3.8) 

Hence the heat flux density due to radiative diffusion is 

Ab- 
i(x) = a i with K, = 3 cial, (3.9) 

where K, can be thought of as the coefficient of thermal conduction due to the 
random motion of photons. 

To proceed further we need to know /, the mean free path for a photon 
collision in stellar matter. The simplest situation occurs at the high tempera- 
tures and the comparatively low densities found in the interiors of massive main 
sequence stars. Here the dominant process is Thomson scattering by electrons, 
in which case 

l= 81 e it h axOr inte Gocouyt 
NeOoT eer nel Pe AS ol San) 

The Thomson scattering cross-section a7 can be derived by considering the 
classical radiation of an accelerating electron, or more generally from quantum 
electrodynamics. The coefficient for thermal conduction by photons can be 
found by substituting the mean free path into Eq. (3.9). It is instructive to 
compare the result with Eq. (3.6), the corresponding coefficient for conduction 
by electrons. Straightforward algebra gives 

K, P, Mec 5/2 
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where P, and P, are the radiation and electron pressures, given by Eqs. (2.44) 
and (2.19), and we have again assumed that n, = Zn;. To illustrate we consider 

conditions typical to the solar interior: for a hydrogen plasma at 6 x 10° K and 

1.4 x 10? kg m-3, 

kT ~ 10-3 mc*, P,=3x10!! Pa and P,=7x 10)3 Pa. 

Substitution into Eq. (3.11) gives K, + 2 x 10° K.. We conclude that radiative 

diffusion is a more effective mechanism for heat transfer in the sun than thermal 

conduction by electrons. 

This conclusion still holds when we take into account the absorption 

of photons in the sun. Conservation of energy and momentum implies that a 

photon cannot be absorbed by an interaction with a free particle. In practice, 

photon absorption normally involves an interaction with an electron in the 

presence of an ion, and as such it becomes increasingly important at higher 

density and lower temperature. If the interacting electron is initially bound to 

the ion, we have a process called bound-free absorption; and if the electron is 

initially unbound, we have free—free absorption. These processes are also called 

photoionization and inverse bremsstrahlung. 

Both free-free and bound-free absorption lead to a mean free path which 

varies with the frequency of the photon. Accordingly, the analysis leading to 

Egs. (3.3) and (3.9) must be modified. We recall that Eq. (2.46) describes the 

black body radiation due to photons with a frequency between v and v + dv. 

The energy density and the thermal capacity due to the photons in this fre- 

quency range are given by 

i 8r--dv and ae dv. JA2 
exp(hv/kT)—-1 cc atone 2) uae 

If 7, is the mean free path at frequency v, the coefficient of conduction due to 

photons of all frequencies is 

oreah arson (3.13) 
wails 

We conclude that Eq. (3.9) can still be used to describe radiative diffusion 

provided the mean free path is averaged over frequency as follows: 

ip iC, dv 
ee (3.14) Lx 

This average, called the Rosseland average, is likely to be dominated by 

contributions at frequencies near 2.8kT/h, where C, is a maximum, and at 

frequencies where 1, is large, i.e. where the stellar material is almost trans- 

parent. 



92 Heat transfer in stars Chap. 3 

Regardless of the dominant mechanism for photon scattering or absorption, 

the photon mean free path is determined by the probability of an interaction 

with either an electron or an ion. This depends upon the concentration of 

electrons and ions, n. and n;, and interaction cross-sections, a and o;. The 

probability of interaction in a distance dx is equal to (nae + niai) dx, and the 

mean free path is 

je (3.15) 
NeOoe + NjO; 

Since n, and n,; are both proportional to the mass density p of the stellar 

material, it is customary to write / = 1/p« and specify the radiative transfer 

properties in terms of «, the opacity of the material. In particular, the flux 

density of radiant heat, given by Eq. (3.9), is rewritten as 

4ac T° dT 
x)= eared (3.16) 

We shall not consider in detail the complex mechanisms underlying the opacity 

of stellar material. We shall merely indicate the most important features. 

Bound-free absorption is important at low temperatures where a large frac- 

tion of the atoms are only partially ionized. Free-free absorption dominates at 

higher temperatures where ionization nears completion. These mechanisms give 

a frequency averaged opacity which increases with density and decreases with 

temperature roughly in accordance with 

Kx pT >. (3.17) 

This is known as Kramers’ law. Electron scattering provides a constant back- 

ground opacity which becomes predominant at high temperatures and low 

densities. This constant opacity can be found using Eqs. (3.10) and (2.69): 

Kes = neor/p = (1+ X1) or/2my © (1+ Xj) x 0.02 m’ kg"! (3.18) 

where Xj is the mass fraction of hydrogen in the stellar material. 

By way of numerical illustration, we consider three locations inside the sun 

and list below some approximate values for the opacity and density, together 

with the corresponding values for the mean free path of a photon, / = 1/«p. 

Location Opacity (m? kg/') Density (kg m-*) Mean free path (mm) 

0.0R5 0.1 TS yal 0.07 

0.6R5 1.0 3.5 10? 3.0 
0.9R. 10 1.2 x 10! 8.0 
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We note that the mean distance travelled by photons at different locations 

inside the sun are comparable with the rough estimate of 1 mm we used in 

Section 1.4 for the average of 7 over the entire sun. 

3.2 HEAT TRANSFER BY CONVECTION 

In the last section we considered how the random motions of photons, electrons 

and ions in a material lead to the conduction of heat. However, in the presence of 

a force field, heat may be transferred by the collective motion of the constituent 

particles. Gravity provides this force field in a star. A rising pocket of stellar gas 

may sometimes find itself in a cooler and more dense environment, and it will 

continue to rise because of its buoyancy. A falling pocket of gas will continue to 

fall if it finds itself in a warmer, less dense environment. Complex and unpre- 

dictable currents can be set up which convect heat very efficiently from hot 

regions to cold regions. Indeed, convection is so efficient that it will dominate 

other heat transfer mechanisms. However, convection only takes place if the 

magnitude of the temperature gradient exceeds a certain critical value. 

Critical condition for convection 

Consider an ideal gas in a gravitational field. We shall denote the temperature, 

pressure and density by T, P and p at height x, and by 7+ AT, P+ AP and 

p+Ap at height x + Ax. Because the gas satisfies the ideal gas law, we have 

px P/T and 

Apc AP At 

pol Tn 
(3.19) 

Now consider a pocket of gas at height x, as shown in Fig. 3.2. We shall 

assume that the temperature, pressure and density of the gas in this pocket and 

of the surrounding gas are matched. In general they will not match if the pocket 

is displaced to a height x + Ax. We shall denote the changes in the temperature, 

pressure and density of the displaced pocket by T + 67, P + 6P and p + ép. It is
 

T + 6T 
HEIGHT x + Ax ——] P+ 6P T+ AT, P+ AP, p + Ap 

pt 6p 

HEIGHT x — ——. TT Pyp 

Fig. 3.2. Displacement of a pocket of gas from height x to height x + Ax 
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reasonable to assume that the pressure inside the pocket responds rapidly to the 

new environment so that 6P = AP. We shall also assume that there is insuffi- 

cient time for heat conduction to the environment and that the displaced pocket 

of gas expands adiabatically until its pressure matches the surrounding press- 

ure. For an adiabatic process P x p’, so that 

(3.20) 

The pocket will be buoyant, and will continue to rise, if it contains gas which is 

less dense than the surrounding gas, i.e. convection is possible if 

LéP- yd? VAT 
3.21 6p < Ap or a a P F ( ) 

We can set 6P = AP, because the pressure within the pocket responds quickly 

to match the surroundings, and rewrite the condition for convection as 

AF =: (yall 

i soa theo 

In other words, the critical temperature gradient for convection is given by 

dT _(y-1)TaP 
dx y  Pdx- 

(3.23) 

Note that the temperature and the pressure gradients are both negative in this 

equation. Convection requires the temperature to fall off rapidly with height. 

This fall-off is determined by the value of the adiabatic index y and the fall-off 

in the pressure. 

The reader may recall that the adiabatic index of an ideal classical gas is 

related to the number of classical degrees of freedom of the constituent gas 

particles. In particular, if there are s classical degrees of freedom, each with an 

average thermal energy of }AT, then 

eu Cpe oberg/2 
LIES 3057S (3.24) 

For gas particles with just three translational degrees of freedom we have s = 3 

and hence y = 5/3. But y is smaller if the number of degrees of freedom is 

larger; in fact y approaches | as s becomes large. Thus, if the gas particles can 
absorb heat by exciting internal degrees of freedom such as rotation or vibra- 
tion, 7 is smaller and the critical temperature gradient for convection (3.23) 
becomes less steep. This is also the case if heat can be absorbed by the 
dissociation of molecules or by the ionization of atoms. 
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The other important factor in Eq. (3.23), the fall-off in pressure with height, 
depends on the strength of gravity. In particular, if we assume hydrostatic 
equilibrium in a region where the acceleration due to gravity is g, then 

Pp 
at —gp(x). (ERA 

We note that in regions where g is small the pressure falls off gradually and 
convection is more easily induced. 

In practice, convection currents transfer heat very effectively. Indeed, the 
process is so efficient that, in many circumstances, all the heat generated can be 
transported a soon as the temperature gradient reaches the critical value given 
by Eq. (3.23). 

3.3 TEMPERATURE GRADIENTS IN STARS 

The temperature gradient at a point inside a star is determined by the rate of 

flow of energy towards the surface and the mechanism governing this energy 

flow. In practice the most important mechanisms for the flow of energy in stars 

are often radiative diffusion and convection. 

Let L(r) denote the rate at which energy flows outwards through a spherical 

surface of radius r within the star. The release of nuclear energy in the hot 

centre of the star implies that L(r) increases with r until a region is reached 

in which no energy is being released. Indeed, if e(r) denotes the nuclear 

power generated per unit volume at r, then the power produced in a shell 

bounded by r and r+ dr is e(r)4nr? dr. Because this is added to the outward 

power flow, 

= = 4nr’e(r). (3.26) 

Outside any central generating regions, L(r) becomes constant and approaches 

the surface luminosity of the star. 

We begin by assuming that radiative diffusion is the dominant heat transfer 

mechanism. In this case the total outward power flow is L(r) = 4nr? j(r), with 

j(r) given by Eq. (3.16). Hence 

L(r) _ 4ac[T(r)}° dT 
Amr? = 3p(r)K(r) dr’ 

(3.27) 

where the temperature 7’, the density p and the opacity « depend on r. In fact, it 

is more useful to think in terms of how the star manages to transport the power 

generated in the interior towards the surface. If it does so by radiative diffusion, 

it sets up a temperature gradient given by 
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eS) i 8) 
ca cw 3pt)n(r) L(r) 

dr }raa — Aac[T(r)]° 400° 

The implications of Eq. (3.28) for heat transfer in the sun can be assessed by 

inserting appropriate numerical values. We can assume that the power od in 

the sun reaches a constant value equal to the surface luminosity of 4 x 10” W 

at a distance of about 0.4, from the centre. If we use the following estimates 

for the temperature, density and opacity at this distance: 

3 
T~5x10°K, px5xl0?kgm”’ and «205m et 

we obtain a temperature gradient of about —0.03 Km !. We note that the 

fractional change in temperature over a distance comparable with the photon 

mean free path, which in this case is 0.4 mm, is only 2 x 10~!*. This indicates 

that the basic approximation underlying radiative diffusion is valid: the solar 

interior is dense and opaque, and radiation can indeed diffuse slowly to and 

from regions which are in local thermodynamic equilibrium. 

However, radiative diffusion will not be the dominant mechanism for heat 

transfer if the temperature gradient reaches the critical value for the onset of 

convection. According to Eq. (3.23), this critical temperature gradient is 

BT) cote hor Abd IE, (3.29) 
dr conv ay P dr 

where the pressure gradient is determined by hydrostatic equilibrium, 

dP a ene) . (3.30) 

dr re 

In practice, convection dominates radiative diffusion whenever the temperature 
gradient reaches the critical value given by Eq. (3.29). Indeed, convection is so 
efficient that almost any amount of power can be transported and the temper- 
ature gradient seldom needs to be steeper than this critical value. Convection is 
particularly important in ionization zones and in the cores of massive main 
sequence stars. 

Ionization zones occur in the surface layers of stars, where atoms and ions are 
continuously absorbing and releasing energy by ionization and recombination. 
Convection is favoured for two reasons. First the opacity « will be large and the 
temperature gradient for radiative transfer (3.28) is steep. Second the temper- 
ature gradient needed for the onset of convection (3.29) is not steep because the 
adiabatic index 7 is close to one; in more physical terms, convection is favoured 
because a rising pocket of gas does not cool so much and is more likely to 
remain buoyant if electron recombination can provide some of the energy 
needed to expand the gas. 
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There is a convection zone in the sun located just below the photosphere. 

Helioseismology indicates that the bottom of the convection zone is at a depth 

of 0.287 + 0.003 Rs; see Chapter 7. In the convection zone hot pockets of 

partially ionized gas rise and cooler pockets of gas sink back down. As a result, 

there appear at the base of the photosphere bright, irregular and transient 

formations, called granules. The convected energy is dissipated in the photo- 

sphere and then transferred to the solar surface by radiative diffusion. 

Convection can also be important in the central energy-generating regions of 

stars. The most favoured situation occurs when thermonuclear power is gener- 

ated in a small region near the centre. In this case, large amounts of energy flow 

through a region where the acceleration due to gravity is low; the pressure falls 

off gradually, and a rising pocket of gas is more likely to remain buoyant 

because it need not expand much. 

We can be more quantitative by focusing on L(r)/m(r), the power that is 

generated per unit mass within a core of radius r. If this exceeds a critical value, 

the core will become convective. To find this critical value, we set the radiative 

temperature gradient (3.28) equal to the critical gradient for convection (3.29) 

and use (3.30) to give 

4acT34nr2 oy «6©POrr 

3pk Lir) (y-1)T Gmir)p 

If we tidy up by replacing a7*/3 by the radiation pressure P,, we find that the 

value of L(r)/m(r) needed for convection is 

Fa ~ (y-—1) lonGe Py (3.31) 

m(r) 7 ferisek? 

If L(r)/m/(r) is below this value, energy can be transported from the core by 

radiative diffusion without inducing convection. If it exceeds this value then 

convection dominates. Thus, a convective core of radius r is produced if the 

power generated per unit mass within r exceeds the limit set by Eq. (3.31). 

Convection occurs in the cores of massive main sequence stars, where hydro- 

gen burning takes place by the carbon-nitrogen cycle. This process, which will 

be considered in Chapter 4, is very temperature dependent; in fact, the power 

generated is proportional to T'7. As the temperature falls off with r near the 

centre of the star, nuclear power generation falls off extremely rapidly to give a 

small generating regions in which convection dominates. The central generating 

region of less massive stars, like the sun, are larger and convection is less likely. 

This is because hydrogen burning in such stars 1s via the proton—proton chain, 

which is less temperature dependent than the carbon-nitrogen cycle. 

Most models of the sun indicate that convection is not important in the solar 

core. For example, if we evaluate the right-hand side of Eq. (3.31) using values 

appropriate to the solar core, 7 = 5/3, P= 1.73 x LOE Pa, ahi = 13.7 x 10° K 

and « = 0.138 m2 kg |, we find that convection occurs only if the central 
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; é = a : 

power generation per unit mass Is greater than 1.5 x 10-7 W kg . In practice 

the power generated is expected to be about 1.35 x 10-3 W kg ~, just less than 

the critical value for convection. 

3.4 COOLING OF WHITE DWARFS 

We shall end this chapter by considering the physics underlying the steady 

decline in the temperature and luminosity of a white dwarf. Our primary 

purpose is to illustrate the role of heat transfer in stars. Our secondary purpose 

is to indicate how the age of a white dwarf can be estimated from its luminosity. 

This is possible because a white dwarf is an inert star, a dead body with no 

internal power source. The time of death, as every detective knows, can be 

deduced from the temperature of the corpse. This time can be used to estimate 

the age of the white dwarf and also the age of the star system to which the white 

dwarf belongs. 

For the most part, a white dwarf is composed of a dense system of classical 

ions and degenerate electrons, surrounded by a thin envelope of classical gas 

particles. The star cools predominantly by the conduction of heat by electrons 

in the interior, and by the diffusion of radiation through the outer envelope. 

The cooling time is long because of the high thermal energy of the ions in the 

interior and the high opacity of the gas composing the envelope. In fact, the 

timescale for cooling is about a billion years, long enough to ensure that many 

white dwarfs have not yet faded from view, but short enough to ensure that 

most white dwarfs have low luminosities. 

We shall consider a simple model for a cooling white dwarf consisting of a 

hot, metal-like sphere surrounded by an insulating jacket of ionized gas. We 

shall assume that the temperature of the interior is almost uniform because of 

the high thermal conductivity of degenerate electrons; such electrons transfer 

energy over long free paths because they can only be scattered into unoccupied 

quantum states. The temperature of this isothermal interior will be denoted by 

T;. We shall also assume that the thermal energy of the ions, typically 3k7; per 

ion, is lost as heat is transported across the outer envelope, mostly by 

radiative diffusion. Hence the insulating properties of the outer envelope 

control the energy loss to outer space and thereby determine the relation 

between the luminosity L of the star and the steadily declining internal 

temperature 77. We note that, as energy is lost, there is little change in the 

structure of the star because it is supported by degenerate electrons which 

cannot lose energy. 

Our first task is to consider the variation of the pressure, temperature and 

density in the outer envelope of the white dwarf. We assume that the ionized gas 

in the envelope is classical and ideal with an equation of state P = pkT/m. 

There is a pressure gradient determined by hydrostatic equilibrium, Eq. (3.30), 

and a temperature gradient produced by the flow of heat towards the surface, 

which we assume is governed by radiative diffusion, Eq. (3.28). Hence 
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dP GM p(r 83 p(r)K(r dPuy Ptr) re ome s Pat ae fign (3.32) 

dr ré dr 4ac[T (r)) 401? 

Because there is no energy generation, L is the surface luminosity. Also, m(r) 

has been replaced by M, the total mass of the star, because most of the mass is 

concentrated within the envelope. These two equations can be combined to give 

dP l6nacG M| T? 
a | (3.33) 

dT IN ASwSie, | Dry 

The opacity of the ionized gas in the outer envelope depends on the temper- 

ature, density and chemical composition. In this calculation we shall assume 

that the opacity is due to bound-free absorption and that 90% of the mass is 

helium and that 10% is in the form of heavier elements. An appropriate opacity 

is then given by 

K = KopT >> = 4.34 x 10° pT-3> m? kg", (3.34) 

an expression consistent with Kramers’ law (3.17). We can use the ideal gas 

equation to rewrite the opacity in terms of the temperature and pressure 

pe [| pr (3.35) 

Substitution into Eq. (3.33) gives the following differential equation relating the 

pressure and temperature in the envelope: 

dP ies ae em 3.36 
dT & Ai 330) 

l6macGk M 

If we integrate and use the boundary condition that P = 0 when T = 0, we find 

that 

P? T85 

—=C —. a) 
Z g 8.5 Gee 

The pressure, temperature and density increase as we go deeper into the white 

dwarf. We are particularly interested in the density of the electrons, because 

these particles will become degenerate as the interior of the white dwarf is 

approached. This density can be found by noting that two-thirds of the particles 

in the ionized gas of the envelope are electrons. Thus, electrons provide two- 

thirds of the pressure with a number density given by 

proc atad (3.38) 
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If this is combined with (3.37), we find 

1/2 

Ne =- Fed {iste ie (3.39) 

The electrons will no longer form a classical gas when n, approaches the 

quantum concentration given by Eq. (2.22), i.e. when n, approaches 

2nmkT | */ no = a | ) (3.40) 

The transition between the classical electron gas in the envelope and the 

quantum electron gas in the interior occurs when n,. © ng. The highly conduct- 

ing, isothermal interior is reached when the electrons become degenerate with 

Ne >> ng. In particular, we can obtain an approximate expression for the 

temperature of the isothermal interior, 7,, by assuming that at this temperature 

Ne = 10ng. Then Eqs. (3.39) and (3.40) imply that 

2nm-kT, wat * gate A j 
10| | =x aa5| Tike (3.41) 

If we use the definition of the constant C given in Eq. (3.36), and if we use 

the sun as a standard of mass and luminosity, we find the following estimate 
tOTal 7 

(3.42) 
iP 2/7 

T,; = (7 x 107 ©) a : 
M/M. 

Finally, we may rearrange Eq. (3.42) and express the luminosity of a white 
dwarf in terms of its mass and the temperature of its isothermal interior, 

Ty acidosis eld 
LS |——_— oe ; x 107 = Fa te eens, 

We note that this approximate relation between the luminosity ZL and the 
internal temperature 7; arises because the insulating envelope of the white 
dwarf controls the loss of energy into outer space. 

The energy source for the luminosity of a white dwarf is the thermal energy of 
the classical ions in the interior. This energy store is very large. For example, if a 
white dwarf of mass M contained carbon ions in the form of a classical gas, the 
thermal energy would be 

3 3| M 
Ea Ne Ts Sa | ee 5 [5 ia KT;. (3.44) 
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This equals 8 x 10*° J for a star of mass 0.4M. at 108 K. In practice, as the 
white dwarf cools, the ions crystallize to form a lattice. The specific heat will 
increase from 3 Nk to 3Nk, and then decrease as the temperature falls below the 
Debye temperature of the solid. 

Given the luminosity of a white dwarf (3.43) and its internal energy store 
(3.44) we can find its cooling rate. If we equate the rate of decrease in the 
internal energy to the luminosity, we find that 

/2 

dT, OS Ge 12 
_ -a| : K with ax — re Lo © 6 K per year. (3.45) ie Eo Tees 2107 3k | M. 

This simple differential equation may be integrated to give an expression for the 
internal temperature of a white dwarf as a function of time. This expression 
may then be substituted into Eq. (3.43) to give the luminosity as a function of 
time. The initial temperature and luminosity are determined by the events which 
led up to the formation of the white dwarf. For example, if the white dwarf was 
formed following the completion of helium burning, the internal temperature 
will be about 10° K, and the initial luminosity will be about Le if the mass is 
0.4M 5. 

Figure 3.3 illustrates the declining luminosity of a carbon white dwarf of 

mass 0.4M.; with an initial internal temperature of 10° K. Note that the 

calculated timescale for cooling from a luminosity of about Ls to 10~*Lg is a 

billion years. 

This elementary calculation only gives a rough guide to the cooling of white 

dwarfs. Detailed comparison between theory and observation requires a careful 

analysis of the thermal properties of the ions, heat loss by neutrino emission 

o 
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Fig. 3.3. The declining luminosity of a cooling carbon white dwarf of mass 0.4M; with 

an initial internal temperature of 10° K 
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and energy release by sedimentation under gravity; see Shapiro and Teukolsky 

(1983). Such a comparison is of practical use in astronomy as a way of estimat- 

ing the age of white dwarfs and the age of the star systems to which they belong. 

SUMMARY 

Heat transfer by random motion 

e The flux density of heat due to the random thermal motion of particles with 

mean speed 0, mean free path /, and heat capacity per unit volume C is given by 

d7 = oe K wi h K SS — BWC. 38 

Ix) dx : é : ( 

Random motion by electrons, ions and photons can lead to the conduction of 

heat. 

e Conduction by photons, or radiative diffusion, is especially important. It 

leads to a radiative flux density given by 

bo) & 

7 t 
iG) a sKrag with K, + =claT?. (3.9) 

e Transfer of heat by radiative diffusion is usually described in terms of the 
opacity « = 1/pl. In particular, the radiant flux density is given by 

j(x) = “eae (3.16) 

The constant background opacity due to electron scattering is given by 

Kes = (1+ X1) x 0.02 m? kg™!. (3.18) 

At high density and low temperature, bound—free and free—free absorption 
give rise to an opacity which has a density and temperature dependence given 
by Kramers’ law, 

wee pre: (S17) 

Heat transfer by convection 

e A rising pocket of gas will remain buoyant and continue to rise, and a falling 
pocket of gas will continue to fall, if the temperature gradient in a classical 
ideal gas is given by 
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dT = d (y'— 1) 7 dP 

dx Pe idix (3.23) 

Convection is usually the dominant heat transfer mechanism once this critical 
temperature gradient is reached. 

Temperature gradients in stars 

e If the outward power flow in a star is governed by radiative diffusion, the 
temperature gradient is given by 

dT 3p(r)K(r) L(r ES ype tele or 
qr | ad 4ac[T(r)|° 401° 

e If the temperature gradient reaches the critical value given by 

LM We Gite gO aes Pe 

cai y e dr Oa? 

convection is the dominant mechanism for heat transfer. 

Cooling of white dwarfs 

e The important problem of the cooling of white dwarfs illustrates many of the 

ideas introduced in this chapter. It involves heat transfer by radiative dif- 

fusion through the outer layers of the star, and heat conduction by 

degenerate electrons through the interior of the star. 

PROBLEMS 3 

3.1 Show that, if the frequency and temperature dependence of the mean free path 

for a photon is given by 

Law ‘da +, 

then the frequency-averaged opacity satisfies Kramers’ law (3.17). 

3.2 The opacity depends on the chemical composition of the stellar material. 

Explain why the free-free opacity is proportional to (X; + X4) (1+ 41), and 

the bound-free opacity is proportional to X4(1 + 1), where X;, X4 and X4 are 

the mass fractions of hydrogen, helium and heavier elements. 
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Show that heat transfer by radiative diffusion implies a non-zero gradient for 

the radiation pressure which is proportional to the radiant heat flow. Bearing in 

mind that the magnitude of the force per unit volume in a fluid due to the 

pressure is equal to the pressure gradient, find the radiant heat flux density 

which can, by itself, support the atmosphere of a star with surface gravity g. 

Hence show that a star of mass M has maximum luminosity given by 

Lax = 4ncGM /k, 

where « is the opacity near the surface. Obtain a numerical estimate for this 

luminosity by assuming that the surface is hot enough for the opacity to be 

dominated by electron scattering. (This maximum luminosity is called the 

Eddington luminosity.) 

Recall that the adiabatic index y is the ratio of the heat capacities at 

constant pressure and at constant volume. Show that, for an ideal classical 

gas, the critical temperature gradient for the onset of convection (3.23) can be 

written as 

dT Ams 

dx atc Cp’ 

where Cp is the thermal capacity per unit mass at constant pressure and g is the 

acceleration due to gravity. (Note that if the thermal capacity is high because of 

the absorption of heat by the excitation and/or the dissociation of the consti- 

tuent particles, then the temperature gradient needed for convection is less 

steep.) 

The approximate temperature and pressure profiles in the outer envelope of a 

white dwarf were found in Section 3.4 by assuming hydrostatic equilibrium and 

heat flow by radiative diffusion. Show that the results obtained justify the 

neglect of convection. 

Use Eq. (3.37) and show that the radiative temperature gradient in the outer 

envelope of classical gas surrounding a white dwarf is given by 

dT GMm 

dr 4.25rk’ 

Consider a white dwarf with mass M = 0.4M, and radius R = R5/100 with 
an internal temperature of 10’ K, and estimate the thickness of its outer 
envelope. 

Integrate Eq. (3.45) and show that the time for a carbon white dwarf of mass M 
to cool from a high internal temperature to a much lower internal temperature 
T; is approximately 
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,_3kTr_M 
~~ § L 12my’ 

where L is the luminosity corresponding to 7). 

The physical quantities near the centre of a star are given in the following table. 

Neglecting radiation pressure and assuming the average gas particle mass ™ is 

0.7 amu, determine whether energy transport is convective or radiative. 

r m(r) L(r) T(r) p(r) K 

0.1R: 0.028M> 24.2L, 2.2x107K 3.1x10'kgm* 0.040 m2 kg! 
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4 
Thermonuclear fusion in 

stars 

Thermonuclear fusion in stars is activated by gravitational contraction. Because 

the fusion of nuclei is strongly hindered by Coulomb repulsion, the first nuclear 

fuel to ignite is composed of light nuclei with low charge. The energy released by 

this fuel brings a temporary halt to the contraction of the star. But contraction 

resumes when this particular fuel is exhausted. The internal temperature then 

rises until the next available fuel, consisting of heavier nuclei, is ignited. In this 

way a Star can proceed through a sequence of nuclear burning stages which 

interrupt and delay gravitational contraction. These thermonuclear hang-ups 

not only prolong the life of a star, they also play a constructive role in the 

synthesis of heavier atomic nuclei. We shall begin this chapter by considering 

the basic physics of thermonuclear fusion. 

4.1 THE PHYSICS OF NUCLEAR FUSION 

The most remarkable aspect of thermonuclear fusion is that it happens at surpris- 

ingly low temperatures. Indeed, when the significance of nuclear fusion to stellar 

evolution was first noticed, many people expressed the doubt that stars were not 

hot enough for it to occur. But Sir Arthur Eddington’s response to these doubters 

was robust: ‘We do not argue with the critic who urges that stars are not hot enough 

for this process; we tell him to goand find a hotter place’. Wenow know that nuclear 

fusion in stars depends crucially on the wave-like properties of atomic nuclei. 

Barrier penetration 

Consider two nuclei with charges Z4 and Zz with masses m, and mg. At large 

separations r these particles interact via a repulsive Coulomb potential 
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—_— Height of barrier FE; 

<< Energy of approach E 

POTENTIAL 

Fig. 4.1 A representation of the Coulomb and nuclear potentials between two nuclei of 

charge Z4 and Z,. The distance rc is the classical distance of closest approach for nuclei 

with an energy of approach equal to E. The distance ry represents the range of short- 

range nuclear forces. Ec is the height of the Coulomb barrier keeping the nuclei apart 

Z4Zpe? /4neor. However, at distances comparable with a fermi (10~'° m) they 
will also interact via a strong, attractive nuclear potential to give the overall 

potential energy of interaction shown schematically in Fig. 4.1. Note there is a 

Coulomb barrier which will inhibit the close approach of the nuclei and their 

fusion. The classical mechanics of a head-on collision 1s straightforward: the 

kinetic energy is progressively converted into potential energy as the nuclei 

approach each other until the kinetic energy falls to zero. They will then come 

momentarily to rest and bounce back. The distance of closest approach rc 

corresponds to the point where the potential energy reaches the energy of 

approach. When this energy is E, rc is given by 

ZaZpe ae ei (4.1) 
4te0rc 

According to classical physics, fusion would only be possible if rc were less than 
ry, the range of the nuclear interaction between the nuclei. In other words, 
fusion would only be possible if the nuclei had sufficient kinetic energy to climb 
over a Coulomb barrier of height 

ey ALB xg 1.4 Z4Zp 
Ec= ~ : 

4reory (rw in fermis) 
MeV. (4.2) 

The height of this barrier is large compared with the typical thermal energies of 
nuclei in stars. For example, when the temperature is 10’ K, kT is of the order 
of | keV, not 1 MeV. Moreover, the fraction of nuclei with a thermal energy 
around | MeV is tiny; this fraction is of the order of exp(—E /kT), or 
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exp(—1000) if E=1 MeV and kT =1 keV. Thus, at first sight, Coulomb 

repulsion presents an insurmountable barrier to fusion in stars. 

In fact, a definite distance of closest approach is a figment of the classical 

imagination, and fusion can occur at energies well below Ec. According to 

quantum mechanics, there is a chance that the nuclei can penetrate through 

the Coulomb barrier and reach the region where the strong nuclear interaction 

is effective. Once in this region, there is a possibility that the nuclei can fuse 

to form a heavier nucleus. The physics underlying barrier penetration is that 

the wave function representing the approach of the nuclei can leak into the 

region forbidden to classical particles. This wave function, y(r), can be 

found by solving the Schrodinger equation for the two nuclei in the potential 

Find, 

= a vin) w(r) = Ey(r), (4.3) 
2m, 

where the reduced mass m, is given by m, = m4mg/(m4 + mg). Once we know 

the wave function, we can find where the nuclei are likely to be by noting that 

the probability that they are separated by a distance between r and r + dr is 

lab(x) | 4arr? dr. 

To understand the wave mechanics of barrier penetration, we consider the 

simple example of a barrier of constant height Ec as shown in Fig. 4.2. When a 

particle approaches with energy E from the right, the incoming wave function 

oscillates sinusoidally in the classically allowed region. As it penetrates into the 

classically forbidden region, the kinetic energy E — Ec is negative and the 

incoming wave function satisfies the equation 

V(r) = x(x), (4.4) 

where y is defined by 

hr 2, 

Peers, (4.5) 
2m, 

It follows that the incoming wave function decays exponentially as r gets 

smaller. In fact, 

pr) = expt) (4.6) 
r 

if there is no orbital angular momentum. The probability that the nuclei 

penetrate the Coulomb barrier is roughly given by 

; |w(rw) [40K 2 47 
Probability of penetration ~ =|exp[-x(tc -tn)]|°- (4.7) 
robability of p (re) (242 
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Decaying wave in classically 

forbiden region 

WAVE FUNCTION r y(r) 

+ Height of barrier E, 

=< Energy of approach E 

POTENTIAL 

Fig. 4.2. The wave function representing the penetration of a barrier of constant height 

Ec by particles whose energy of approach E is below the barrier. The wave function, 

rw(r), oscillates sinusoidally in the outer and inner classically allowed regions. It decays 

exponentially in the intervening classically forbidden region. In stellar thermonuclear 

fusion the wavelength for the relative motion of the nuclei in the outer classically allowed 

region is very long compared with the range of nuclear forces ry 

A more careful calculation would consider the probability current density of 

particles and reflection from the inner boundary, but the result given by Eq. 

(4.7) is adequate for our purposes. 

This result may be adapted to give the probability of penetrating a barrier of 

variable height, such as the Coulomb barrier in Fig. 4.1. In this case the parameter 

x, which governs the exponential decay of the wave function in the classically 

forbidden region, depends on r. For nuclei with reduced mass m, we have 

PP | ZaZne? E= 
2m, Areor 48) 

and the equation corresponding to Eq. (4.7) is 

rc 2 

Probability of penetration ~ |exp|[— / »x(r)dr] (4.9) 
TN 

The integral can be evaluated by substituting r = rc cos? @. It is useful to write 
the result in terms of the relative energy E of the nuclei and an energy Eg, called 
the Gamow energy, defined by 
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Eg = (naZ4Zp)?2m,c?, (4.10) 

where a is the dimensionless fine structure constant, 

paereeton 2 4.11 G dames St (4.11) 

Equation (4.9) then leads to 

1/2 
Probability of penetration ~ exp - (=) | (4.12) 

Thus, the Coulomb barrier keeping charged nuclei apart need not be overcome 

in order to give the nuclei a chance to fuse. In practice, stars evolve slowly by 

adjusting their temperature so that the average thermal energy of nuclei is well 

below the Coulomb barrier. Fusion then proceeds at a rate proportional to the 

probability of penetration of the barrier. Because this probability is very low, 

fusion proceeds at a slow pace and the nuclear fuel lasts for an astronomically 

long time. We note that the penetrability of the barrier is completely described 

by its Gamow energy (4.10). For the fusion of two protons Eg is 493 keV. If the 

temperature is about 10’ K, the typical thermal energy kT is about | keV, and 

the penetration probability for two protons with this typical energy is 

exp[—(Eg/kT)'/*] = exp[—22]. There are, of course, protons present with 
higher kinetic energy which will have a better chance of penetrating the Cou- 

lomb barrier. 

Fusion cross-sections 

The probability of fusion is usually expressed in terms of a fusion cross-section. 

In order to define a cross-section for a particular reaction, we consider a 

particle passing through a medium containing n target particles per unit 

volume. The probability that the incoming particle reacts as it travels an 

infinitesimal distance Ax is defined by 

Probability of reaction in distance Ax = on Ax, (4.13) 

where o is the reaction cross-section. It follows that the probability of no 

reaction in Ax is [1 — on Ax]. The probability that the particle travels a finite 

distance x without reaction can be found by dividing the distance x into N 

intervals of thickness Ax = x/N, and then compounding the probabilities for 

no reaction in each of the intervals. We have 

Probability of no reaction in distance x = Jim, [1 — onx/ n\% =exp[—onx}. (4.14) 
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The mean free path travelled before a reaction is then given by 

é o | 
l= i xexp[—onx] on dx = —. (4.15) 

Jo no 

The reaction cross-section o is an effective target area which 1s proportional 

to the probability of the reaction occurring in a collision. A classical analogue is 

the collision between a cricket ball and a window of area | m?; the reaction 

cross-section will be 0.1 m2 if there is a 10% chance that the window breaks. A 

nuclear cross-section depends on the energy of the nuclei and their electromag- 

netic and nuclear interactions. In particular, the cross-section often exhibits 

resonant behaviour when the energy matches the energy needed to form a 

compound nuclear state. The unit usually used for nuclear cross-sections 1s 

the barn, which equals 10-8 m*; a particularly large nuclear cross-section will 

be as big as a barn, but millibarn and microbarn cross-sections are more 

common. 

Our chief concern is the cross-section for the fusion of two nuclei. At low 

energies this cross-section is proportional to the probability of penetration of 

the Coulomb barrier keeping the nuclei apart. We therefore use Eq. (4.12) and 

write the fusion cross-section for nuclei with relative energy E as 

1/2 
OLE) = ae o| (=) | (4.16) 

The energy dependence of the fusion cross-section is invariably dominated by a 

steeply rising probability of barrier penetration. The factor S(£), which is 

determined by the nuclear physics of fusion, varies much more slowly with 

energy; sometimes but it may peak when the energy is near a nuclear resonance. 

The factor of 1/E has been introduced because nuclear cross-sections at low 

energies are often proportional to the square of the de Broglie wavelength for 

the relative motion of the nuclei before fusion; if p is the relative momentum of 

the nuclei, \* = h*/p* = h?/2m,E. 
In practice it is very difficult to measure fusion cross-sections at energies 

directly relevant to astrophysics, i.e. at energies well below the Coulomb barrier. 

It is easier to use higher energies to measure larger cross-sections, the pre- 

scription for the fusion cross-section given by Eq. (4.16) is used to extrapolate 

the data to lower, more relevant energies. This prescription is also very useful in 

calculating the temperature dependence of thermonuclear reaction rates. 

, 

Thermonuclear reaction rates 

Consider a hot ionized gas containing nuclei of types A and B with concentra- 
tions n4 and ng which can fuse with a fusion cross-section denoted by o. For the 
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moment we will neglect the motion of the B nuclei and assume that all the A 

nuclei move with speed v. According to Eq. (4.15), a nucleus of type A travels 

an average distance of 1/ngo before fusing with a B nucleus, and the average 

time before fusion is Ty = 1/ngov. Thus, in unit volume of the gas, we have ny 

nuclei of type A which fuse at a rate R4g = n4ngov per second. 

Of course, both types of nuclei move and the fusion cross-section depends on 

the relative speed v, of the nuclei. If P(v,) dv, denotes the probability that the 

relative speed is between v, and v, + dv,, then the average value of the product 

of the fusion cross-section and the relative speed is 

(avr) — 1" ov,P(v;) dv,. (4.17) 
0 

When we take this averaging procedure into account, the mean time for a 

particular nucleus of type A to fuse with a B nucleus becomes 

1 
TA = eee (4.18) 

and the A—B fusion rate per unit volume becomes 

R4p = n4ng(ovy;). (4.19) 

Care is needed in using these equations when describing the fusion of 

identical nuclei. The product n4ng in Eq. (4.19) represents the number of 

possible pairs of nuclei that can fuse. It must be replaced by n(n — 1)/2, or in 

practice 7/2, when calculating the fusion rate for identical nuclei with con- 

centration n. 

In most astrophysical situations the nuclei form a classical, non-relativistic 

gas with a speed distribution given by the Maxwell—Boltzmann distribution. 

Furthermore, it is easy to show that Maxwellian distributions for nuclei A and 

B lead to a Maxwellian distribution for the relative speed, given by 

m ; 
P(v,) du, = (| ne |- 

M,;V 

2kT 
Arve du;. (4.20) 

20kT 

If this distribution is substituted into Eq. (4.17) and if the integration variable is 

changed to the energy E =} m,vu-, we obtain 

faa base Ler - | ere | =| dE. (4.21) 

If we substitute the prescription Eq. (4.16) for the fusion cross-section into 

Eq. (4.21) and use Eq. (4.19), we obtain the following expression for the 

thermonuclear fusion rate per unit volume 
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Rap = nang es kT ii S(E) exp Ripap Te ae 
r 0 

Note that in order to react at energy E, the nuclei need to borrow an energy E 

from the thermal environment, and the probability of a successful loan is 

proportional to the Boltzmann factor exp|—E/kT] in Eq. (4.22). Moreover in 
order to fuse, the nuclei must first penetrate the Coulomb barrier keeping them 

apart, and the probability of penetration is given by the factor exp[—(Eg/E)'/”) 

in Eq. (4.22). Once this has happened, nuclear forces can sometimes bring about 

a fusion. The nuclear physics of fusion is hidden in the factor S(£) in Eq. (4.22). 

Because the nuclear factor S(£) usually varies slowly with energy, the energy 

dependence of the integrand in Eq. (4.22) is governed by the exponential 

borrowing and penetrating functions. As illustrated in Fig. 4.3, the product of 

these two exponentials has a maximum when the energy E is equal to 

EE ce (Aided) 

1 i3 
Eg(kT) 

Ec= 4 (4.23) 

oo GN] 
= eol-G)" 

/ 

‘ FUSION WINDOW 
<+— ~ E=E,+A?2 FUSION PROBABILITY 

2kT 4kT 6kT 8kT 
ENERGY OF APPROACH E 

Fig. 4.3 The energy window for the fusion of nuclei with a Gamow energy Eg and 
temperature 7. To react at energy EF, the nuclei need to borrow an energy E from the 
thermal environment, and the probability of a successful loan is proportional to the 
Boltzmann factor exp[—E/kT]. To fuse, the nuclei must first penetrate the Coulomb 
barrier keeping them apart, and the probability of penetration is given by the factor 
exp[—(Eg/E)'/*]. The product of these two factors indicates that fusion mostly occurs in 
an energy window E + A/2. For the fusion of two protons at 2 x 10’ K, Eg = 290kT 
Ey = 4.2kT, and A = 4.8kT, as illustrated 
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Figure 4.3 also indicates that fusion dominantly takes place in a narrow energy 
range around a most likely fusion energy equal to Ey. We can find the width of 
this window for fusion by making a Taylor’s expansion about Ey to give the 
following approximation: 

; FE nipreke El? (E — Ey)\? 
o| kT (=) +o (45) Pie (“ae ) nel 24) 

where A, the width of the fusion window, is given by 

= 4 pl/6p 75/8 4.25 — 31/291/3 “~G ( : (4. ) 

These expressions for Ej and A show that fusion mostly occurs at energies 

determined by the temperature of the gas and the Gamow energy of the 

Coulomb barrier. We recall that the Gamow energy is simply related to the 

charges of the nuclei and their reduced mass via Eq. (4.10), namely 

= (waZ4Zp)2m,c?. 

For example, the Gamow energy for two protons is Eg = 493 keV. When the 

temperature is 2 x 10’ K, kT = 1.7 keV and the fusion of two protons is most 

likely at Ey = 7.2 keV. The half-width of the fusion window, A/2, is 4.1 keV. 

In many cases the nuclear factor S(£) is approximately constant across the 

fusion window. It can then be replaced by a constant S(£o) , and Eq. (4.22) 

simplifies to 

jill a 
kT E 

g 1/27 1 73/2 be 

ae —— —| S(£ Rap nana| =| 7 ( 0) | exp 

The value of the integral in this equation may be evaluated using the approx- 

imation (4.24) to give \/7A/2 times the maximum value of the integrand at 

E = Ep. When the numerical values for the various constants are inserted, we 

find a fusion rate given by 

1/3 
(oe 

4kT 

where A, is the reduced mass of the nuclei in atomic mass units and S(£o) is the 

nuclear fusion factor in units of keV barns. 

We now have a three-parameter model for thermonuclear fusion. The para- 

meters are the nuclear fusion factor S(Eo), the Gamow energy Eg, and the 

temperature 7. The nuclear factor depends on the specific nuclear reaction 

taking place; in practice it is usually measured in accelerator experiments. The 

dE. (4.26) 

Hos, (4.20) 
2/3 

+ -24 _ Ane EG Rap = 6.48 x 10 Alaa 5(E) (5) exp 
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Gamow energy depends simply on the charge of the nuclei and their reduced 

mass and, together with the temperature, it determines how the Coulomb 

barrier affects thermonuclear fusion. 

The main effects of the Coulomb barrier can be identified by focusing on the 

terms involving exponential dependence on Eg and T. If we do this, we find 

that the key factors in the expression for the fusion rate are 

Pe 1/3 

Rap « ngnpS( Eo) exp -: (35) | : (4.28) 

The exponential term in Eq. (4.28) can be thought of as a slowdown factor 

due to the Coulomb barrier. It clearly demonstrates why, if there are many 

species present, there is a strong tendency for those with the smaller Coulomb 

barrier to take part in thermonuclear fusion more rapidly. As an example, we 

compare 

p+d—-He+ 4 

and 

p+’C 3°N-+%. 

The Gamow energies for these two fusion reactions are 0.657 MeV and 35.5 

MeV, respectively. At a temperature of 2 x 10’ K these fusion reactions are 

slowed down by factors of exp(—14) and exp(—S52), respectively. 

The exponential term in Eq. (4.28) also demonstrates that the fusion rate 

increases rapidly with temperature. Indeed, Eq. (4.28) implies that 

“ar laer tT (4.29) 
dRas | Ec Rap 

4kT 

For the fusion of protons and deuterons at a temperature near 2 x 107 K 

ARpa re Rod 
ape 4.6 a (4.30) 

This implies that as T varies about 2 x 10’ K, the proton—deuteron fusion rate 

varies as T*°. In fact, when account is taken of the factor of T~7/ in Eq. (4.27), 
the fusion rate is approximately proportional to T+. The temperature depend- 

ence is more marked for fusion reactions with a higher Coulomb barrier. For 

the fusion of protons with '*C nuclei, the fusion rate near 2 x 10’ K is propor- 

tional to T!’. 
Even though the Coulomb barrier plays a dominant role in shaping the 

properties of all thermonuclear reactions, the actual rates depend on the inter- 
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actions that bring about the fusion. Nuclear strong, electromagnetic and 
nuclear weak interactions may be involved. The net effect is summarized by 
the nuclear factor S(£). We shall consider particular thermonuclear reactions 
later in this chapter. But at this stage it is useful to note that S(E) is necessarily 
small if the reaction relies on the nuclear weak interaction; such reactions 
involve the emission of a neutrino. It is larger for reactions which rely on the 
electromagnetic interaction and emit photons. It is larger still for reactions 
governed by the nuclear strong interaction. 

4.2 HYDROGEN BURNING 

Star formation begins with the gravitational collapse of a cloud composed of 

hydrogen, helium and traces of other chemical elements. The collapse is 

rapid until the atoms are ionized and energy can no longer easily escape from 

the cloud. The cloud then contracts slowly in a state close to hydrostatic 

equilibrium; half the gravitational energy released is lost as radiation and the 

other half heats up the cloud. This contraction will continue until the activation 

of a source of energy other than gravity. The first such source, which is 

activated when the temperature is about 10° K, is the thermonuclear fusion of 

protons with light nuclei, such as D, Li, Be and B. This involves fast, 

indeed bomb-like, reactions. But only a limited amount of energy is released 

because the light nuclei are only present in small quantities and are 

rapidly consumed. In order to properly begin its life as a star, the hot 

ionized gas must find some way of exploiting the nuclear fuel provided by its 

dominant nuclear constituent, protons. It must find a way of burning ordinary 

hydrogen. 
The net effect of hydrogen burning is to transform protons to *He nuclei. We 

note that protons must be converted into neutrons at some stage during a chain 

of reactions which burn hydrogen, and this transformation can only be effected 

by a nuclear weak process. The most likely process is p > n+ e+ + vy, and, in 

this case, the net result of a hydrogenburning chain is 

4p >*He + 2et + 21%. (4.31) 

The decrease in mass in this transformation implies a kinetic energy release of 

24.69 MeV. But each of the positrons will promptly annihilate with an electron 

and release a further 2/,c? = 1.02 MeV to give total energy release of 26.73 

MeV. However, a small percentage of this energy is associated with the kinetic 

energy of the neutrinos. This is not retained locally but escapes almost without 

interaction. , 

Hydrogen burning would be a straightforward and rapid process, if a 

bound state of two protons existed. Such a state would be an isotope of 

helium, 7He, and hydrogen would begin to burn via the electromagnetic 

reaction 
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Dapp? —*He +7, 

and each 2He would then beta decay to form a deuteron. But the nuclear force 

between two protons is not quite strong enough to produce a *He bound state. 

Indeed, the absence of a 7He bound state implies that hydrogen burning Is a 

subtle and slow process. In fact, as first explained by Bethe in 1939, there are 

two main ways of burning hydrogen, the proton-proton chain and the carbon— 

nitrogen cycle. 

The proton—proton chain 

One sure but slow way of bypassing the bottleneck formed by the absence of a 

2He bound state is to fuse protons via a weak nuclear reaction: 

ptpodt+er+n. (4.32) 

The underlying mechanism for this reaction is that one of the interacting 

protons undergoes inverse beta decay, p +n +e" + Ve, and the neutron pro- 

duced is then bound to the other proton to form a deuteron. The first step in 

this mechanism is a virtual process because an energy of least 1.8 MeV is needed 

to convert a proton into a neutron, a positron and a massless neutrino. But this 

energy is more than paid back by the formation of a deuteron with a binding 

energy of 2.225 MeV. 

However, the key feature of reaction (4.32) is that it is very slow. Indeed, this 

reaction is so slow that it has not been possible to measure its cross-section in an 

experiment on earth. But according to theoretical calculations, it has a nuclear S 

factor of S,,(0) = 3.8 x 10-7 keV barns. The mean lifetime of a proton before 
fusion and the proton—proton fusion rate in stellar material can then be found 

using this value for S,,, and Eqs. (4.18), (4.19) and (4.27). We can estimate the 

fusion rate at the centre of the sun by taking T = 15 x 10°K, p = 10° kg m >and 

a hydrogen mass fraction X; = 0.5. The concentration of protons is then n, = 

X1p/my = 3 x 10°! m3 and the proton-proton fusion rate is 5 x 10!3 s~! m-?. 
This implies that a proton in the centre of the sun has to hang around for about 

9 x 10° years on average before it fuses with another proton. This astronomically 

long time sets the timescale for the hydrogen burning phase of the sun’s life.’ 

Once deuterons are formed by the reaction (4.32), the way is open for much 

faster reactions to synthesize 4He nuclei: There are three sequences of reactions 

which form the main branches of the proton—proton chain. These branches, 

labelled I, II, and III, are shown in Fig. 4.4. 

' It is sometimes suggested that the timescale for hydrogen burning would be shorter if it were 
initiated by an electromagnetic reaction instead of the weaknuclear reaction (4.32). This is not the 

case, because the overall rate for hydrogen burning is determined by the rate at which energy can 
escape from the star, i.e. by its opacity. If hydrogen burning were initiated by an electromagnetic 
reaction, this reaction would proceed at about the same rate as the weak reaction (4.32), but at lower 
temperature and density. 
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REACTIONS OF THE PROTON -PROTON CHAIN 

p 23) —dt+et+ vz 

p+d—7*Het+y 

Htmahonrsh isiiianat | 
*He +7He — “He + 2p *He + “He — "Be + y 

e + Be + ’Li+», p+ Be + *B+y 
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O.g= 26.2 MeV Q,,= 25.2 MeV O.7= 19.1 MeV 
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Fig. 4.4 The three competing branches of the proton—proton chain with the net result 
4p —* He + QO.y. Here Q.y is the effective energy released by the branch; it includes the 
energy from the annihilation of positrons, but it does not include any of the energy 
carried away by neutrinos. Note, a pre-existing He nucleus acts as a catalyst in branches 
II and III, its destruction leading to two new *He nuclei. According to the Standard 
Solar Model, Bahcall (1989), the proton—proton chain in the sun is terminated by branch 
I 85% of the time, by branch II 15% of the time and by branch III 0.02% of the time 

A deuteron formed by reaction (4.32) is almost immediately snapped up by 

the second reaction in the proton—proton chain 

p+d-—He+¥. (4.33) 

The S factor for this electromagnetic reaction is S,q(0) = 2.5 x 10-4 keV barns, 

18 orders of magnitude greater than the S factor for the nuclear weak reaction 

(4.32). As a result, a deuteron in the centre of the sun lives for about a second 

before it fuses with a proton. Note that, since deuterons are produced by a weak 

nuclear reaction and consumed by an electromagnetic reaction, the equilibrium 

abundance of deuterons is expected to be low. If we apply Eq. (4.19) we find 

that the rate of change in the concentration of deuterons is 

dn ] 
— = 5% (Ur) pp = MpNg(OVr) ya (4.34) 

Hence the deuteron concentration will increase and reach an equilibrium con- 

centration given by 

Nd _ (Ur) pp Spp(0) (4.35) PO a hee 

Mp Lvr)pg 2Spa(0) 
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Thus the deuteron to proton ratio in the centre of a star like the sun is 

determined by the ratio of a nuclear weak cross-section to an electromagnetic 

cross-section. This ratio is tiny, of the order of 10~'*. In contrast, terrestrial 

deuterium is relatively abundant; about 0.015 % of the hydrogen atoms are 

deuterium atoms. It is clear that terrestrial deuterium cannot be a product of 

thermonuclear reactions in stars like the sun. It was, in fact, produced during 

the very early universe, minutes after the big bang. 

A 3He nucleus formed by reaction (4.33) can be processed in the two ways 

shown in Fig. 4.4. It can either complete branch I of the chain by fusing 

with another 3He nucleus, or it can fuse with a *He nucleus. The latter alter- 

native leads to the formation of ’Be, which can be processed in two ways, 

and to the termination of the proton—proton chain via branches IJ and III, as 

shown in Fig. 4.4. Note that a pre-existing *He nucleus acts as a catalyst 

when the proton—proton chain is terminated by branch II or III; it is destroyed 

when it fuses with a 7He nucleus but two more *He nuclei are formed sub- 

sequently. 

The proton—proton fusion reaction (4.32) is the first and slowest link in the 

proton-proton chain, and as such it governs the rate at which energy is released 

by the chain as a whole. This rate is simply the proton—proton fusion rate Rp, 

multiplied by the energy released in the chain per proton—proton fusion. Note, 

however, that two proton—proton fusions are needed to produce a *He nucleus 

via branch I, but only one is needed if the chain is completed via branches II or 

III. Hence the energy release by the chain per proton—proton fusion is sensitive 

to the relative importance of the three branches of the chain. According to the 

Standard Solar Model (Bahcall, 1989), the proton—proton chain in the sun is 

terminated by branch I 85% of the time, by branch II 15% of the time and by 

branch III 0.02% of the time. It follows that the average energy released per 
proton—proton fusion in the sun is 

0.85 x 26.2/2 + 0.15 x 25.7 = 15 MeV. (4.36) 

If we combine this with our earlier estimate of 5 x 10!5 m~3 s~! for the proton— 
proton fusion rate in the solar centre, we find an energy production rate of 
about 120 W m-?. 

Finally, it is useful to have an approximate expression for the energy produc- 
tion rate which clearly indicates how it depends on the temperature, density and 
mass fraction of hydrogen. The temperature dependence of the proton—proton 
fusion rate can be found by using the appropriate Gamow energy, Eg = 493 
keV, and Eq. (4.27); for temperatures close to T = 15 x 10° K, the typical 
temperature at the centre of the sun, the fusion rate R,, is approximately 
proportional to 7‘. This rate is also proportional to n, or to X7p>. Hence the 
energy production rate by the proton—proton chain is proportional to X¥??T*. 
If we normalize to an energy production rate of 120 W m~> at T = 15 x 10° K, 
p = 10° kg m™? and X, = 0.5, we find that the proton—proton chain produces 
energy at a rate given by 
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Epp = 9.5 x 10! X7p°T* Wm? (4.37) 

The carbon-nitrogen cycle 

The proton—proton chain can account for hydrogen burning in main sequence 

stars with masses comparable to the sun, but it fails in more massive stars. 

Even though the internal temperatures of such stars are only moderately 

higher than the sun’s, their luminosities are much higher, too high to be 

explained by the 7* dependence of the proton—proton chain. We recall that 

this temperature dependence is governed by the Coulomb barrier between two 

protons; see Eq. (4.29). To explain the luminosities of massive main sequence 

stars, such as Sirius A, a more temperature-dependent mechanism for hydrogen 

burning is needed, a mechanism which must be governed by a higher Coulomb 

barrier. Such a mechanism must involve heavy elements. But because, at best, 

these elements are present in low abundance, they must be recycled to prolong 

the hydrogen burning. 

In fact carbon, originally produced by helium burning in earlier generations 

of stars, can be recycled through an almost closed sequence of reactions called 

the carbon-nitrogen cycle. The net result of this cycle is the conversion of 

hydrogen to helium, as illustrated in Fig. 4.5. 

Even though the carbon-nitrogen cycle has no beginning or end, it is useful 

to think of it as commencing with the capture of a proton by a !*C nucleus. This 
is followed by a transformation of a proton into a neutron by a beta decay, the 

capture of two more protons, the transformation of a second proton into a 

REACTIONS OF THE CARBON-NITROGEN CYCLE 

pt+?c —=PN+y¥ [S(0) = 1.5 keV barns] 

3C + e*+0, 

pthc —-"“"N+y7 [S(0) = 5.5 keV barns] 

p+i4n —~POo+y7 [S(0) = 3.3 keV barns] 

ISN + e"+0, 

p+n —>"C +*He [S(0) = 78 keV barns] 

Fig. 4.5 Hydrogen burning by the carbon—nitrogen cycle. The net result of this 

sequence of reactions is 4p —‘He + Qe. The effective energy released Qt is 23.8 

MeV; this includes the energy from the annihilation of positrons, but it does not include 

the energy carried away by neutrinos. Note that nuclei of carbon and nitrogen are 

temporarily transformed but return to take part in subsequent operations of the cycle. 

The rates for these reactions are governed by the relevant Coulomb barriers and the 

approximate S factors indicated 
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neutron by another beta decay and finally the capture of a fourth proton to 

produce a new 7C nucleus and a 4He nucleus. The net effect of this sequence 1s 

the transformation 4p —*He + 2e* + 21, anda 12C nucleus still in circulation. 

Thus, carbon acts as a catalyst for hydrogen burning. In fact, other cycles also 

exist, particularly one involving 16Q. However, the carbon-nitrogen cycle ill- 

ustrated in Fig. 4.5 is by far the most important. 

The rate of energy production by the carbon—nitrogen cycle is governed by 

the slowest reaction in the sequence. By considering the Coulomb barriers and 

the S factors given in Fig. 4.5, we conclude that the slowest reaction is 

pt+4n =O +74. (4.38) 

The mean life for a '4N nucleus in the centre of the sun can be estimated by 

assuming a density of 10° kg m~, a temperature of 15 x 10° K, a mass fraction 

of hydrogen of 0.5 and a nuclear S factor of 3.3 keV barns. Substitution into 

Eqs. (4.18), (4.19) and (4.27) shows that a 14N nucleus in the sun has an average 

life of about 5 x 108 years before it fuses with a proton. The fusion rate per unit 

volume depends on the concentration of nitrogen nuclei in the solar centre. In 

the Standard Solar Model, the abundance of '*N at the solar centre is about 

0.6% which implies a concentration of nitrogen nuclei of about 0.006p/14my = 

2.6 x 1078 m-3. As each of these nuclei lasts for an average of 5 x 108 years, the 

fusion rate is approximately 1.6 x 10!? m~? s~!. In contrast, protons fuse via 

reaction (4.32) at a much faster rate of 5 x 10'5 m~} s~!. We conclude that the 

carbon-nitrogen cycle is not an important source of energy production in the 

sun. Indeed, accurate calculations show that 98.4% of the solar energy is due to 

the proton-proton chain and only 1.6% is due to the carbon—nitrogen cycle. 

However, the high Coulomb barriers involved in the carbon—nitrogen cycle 

imply fusion rates which increase very rapidly with temperature. In particular, 

if we calculate the Gamow energy corresponding to reaction (4.38) and use Eq. 

(4.27), we find a fusion rate proportional to T!*. The energy production via the 

carbon-nitrogen cycle has a similar temperature dependence, which is much 

more rapid than the 7* dependence of the proton—-proton chain. Thus, we 

expect the carbon-nitrogen cycle to be the dominant source of energy produc- 

tion in massive main sequence stars which burn hydrogen at temperatures 

higher than the central temperature of the sun. 

Finally we note that the carbon—nitrogen cycle has an important role in 

stellar nucleosynthesis. It not only transforms hydrogen to helium, it also 

transforms '*C, made by helium burning in a star of an earlier generation, 

into °C, '*N and !°N. Indeed, if we assume equilibrium conditions and if we 
neglect leakage from the cycle, the relative abundances of these nuclei are 

inversely proportional to their fusion rates. For example, in the centre of a 

star burning hydrogen by the carbon-nitrogen cycle at a temperature of 

50 x 10° K, the relative abundances of !2C, '3C, '4N and 'N are 4%, 1%, 
95% and 0.004%, respectively. The high abundance of '4N arises because its 

fusion rate is the slowest in the cycle. In fact, the vitally important nitrogen in 
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the solar system is a product of hydrogen burning by the carbon-nitrogen cycle 
in earlier generations of nearby stars. Other elements were also produced by 
other cycles of reactions which couple with the carbon-nitrogen cycle. 

Solar neutrinos 

There is no question that hydrogen burning, mostly via the proton—proton 
chain and the carbon-nitrogen cycle, provides a viable power source for main 
sequence stars. But few of the details are open to observation because the whole 
process is obscured by millions of kilometres of stellar matter. But the cover-up 
is not complete. Neutrinos created by hydrogen burning can escape almost 
without interaction straight from the heart of a star. In so doing, they carry 
inside information on what is actually happening at the centre. Detection of 
these neutrinos is clearly a formidable task. Not only do they hardly interact as 
they escape from the star, they hardly interact when they arrive at the earth. 
Nevertheless, neutrinos from out nearest star, the sun, were first detected in 
1968 in a pioneering experiment set up by R. Davis in the Homestake Gold 
Mine in South Dakota. This experiment has been developed and data has been 
taken for over 30 years. The long-standing problem of reconciling the results of 
this experiment with the theoretical predictions is called the solar neutrino 
problem. 

Hydrogen burning necessarily involves the emission of neutrinos. They arise 
when the nuclear weak interaction changes a proton to a neutron via 
p—>n-+e* +v,. This must occur twice during the hydrogen burning process 

4p —*He + 2e* + 2v,. The expected flux of neutrinos can be found by noting 

that the formation of each *He is accompanied by the release of two neutrinos 
and a thermal energy Q.y7, which according to Figs 4.4 and 4.5 is about 26 

MeV. Hence if hydrogen burning is the power source for the sun’s luminosity of 

Lo = 3.86 x 107° W, neutrinos must be released at a_ rate of 
2Lo/ Qe = 1.86% 107857}; 

To escape from the sun, each neutrino must travel a distance of about 

R>, i.e. 7 x 108 m. The probability of interaction during this escape is onRo, 

where o is the average interaction cross-section with an electron or a nucleus 

and n is the average density of electrons and nuclei in the sun. Since a is of the 

order of 10~*8 m? and v is approximately 10°° m~?, the probability of interac- 
tion is an insignificant 10~?. Thus, neutrinos do indeed escape almost unhin- 

dered from the sun and arrive some eight minutes later at the earth, a distance 

of 1.5 x 10!! m away. The neutrino flux at the earth is F, = 6.6 x 10'4 m=? s“, 
an intense but almost undetectable flow straight from the heart of the sun. 

This neutrino flux is the combined effect of a number of reactions and decays 

in the proton-proton chain and in the carbon—nitrogen cycle. These processes 
may be identified by inspecting Figs 4.4 and 4.5. Clearly each process emits 

neutrinos with an energy spectrum characteristic of the process, but with a rate 

which depends on the details of hydrogen burning inside the sun. The most 
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accurate predictions for these rates are based upon a detailed model of the sun, 

called the Standard Solar Model. This model, which is by Bahcall in his book 

Neutrino Astrophysics, is really an evolutionary sequence of models. The 

sequence begins with a star with a homogeneous composition similar to that 

observed on the solar surface, and successive models are then calculated by 

allowing for the changes in composition brought about by hydrogen burning. 

This sequence is required to fit the known data, namely the age, the mass, the 

radius, the surface composition and the present-day luminosity. 

The predictions of the Standard Solar Model for the flux of neutrinos from 

various processes taking place inside the sun are given in Table 4.1. As 

expected, the majority of the neutrinos originate from the primary reaction of 

the proton—proton chain, but these neutrinos have low energy, never exceeding 

0.420 MeV. The neutrinos from electron capture by ’Be, the reaction which 

initiates branch II of the proton—proton chain, are the next most plentiful. The 

flux of neutrinos from °B decay in branch III of the chain is four orders of 

magnitude lower, but these neutrinos are very energetic. In addition, there are 

contributions from 3N and !5O beta decay, two processes in the carbon— 

nitrogen cycle. These contributions are small because the carbon—nitrogen 

cycle only supplies 1.6% of the solar luminosity. When combined, the fluxes 

from individual processes should yield a net flux of F, = 6.6 x 10'* m~? s7! at 

the earth. 

The first experiment to detect solar neutrinos was developed by R. Davis. It 

was based on neutrino capture in the reaction 

ve +? Ghar eet. (4.39) 

The chief drawback of this reaction is that only neutrinos with energy above 

0.81 MeV can be detected. This high threshold energy implies that neutrinos 

from the primary proton—proton fusion reaction cannot be detected; as indi- 

cated in Table 4.1 they have a maximum energy of 0.420 MeV. Furthermore, 

the neutrinos from electron capture on ’Be only just exceed the threshold and 

the probability of capture in *’Cl is exceedingly low. However, most of the 

TABLE 4.1 Neutrino flux from some processes in Figs 4.4 and 4.5. The flux of 

neutrinos from particular processes in the proton—proton chain and the carbon— 

nitrogen cycle inside the sun. In addition there are small contributions from 

pt+e+—d+»y, and p +3 He >* He + e+ + %; see Bahcall (1989) for details. 

Process Neutrino flux Maximum neutrino 

(104mrzsaH) energy (MeV) 

ptprod+et+y, 6.0 (1 + 0.02) , 0.420 

e- +’Be —Li+ v, 0.47 (1 + 0.15) 0.861 

eB be + e +1, 78 10 tL eT) iS 

DN = C= ey 0.06 (1 + 0.50) 1.199 

BO SPN + et + % 0.05 (1 + 0.58) 1.732 
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neutrinos from *B decay have an energy well above the threshold for detection. 
Indeed, even though these neutrinos contribute a minor component of the 
neutrino flux from the sun, they are expected to dominate the capture rate in 
*7C\. Finally, the neutrinos from the two beta decay processes in the carbon— 
nitrogen cycle are sufficiently energetic to be detected. The actual capture rates 
depend on incident neutrino flux, the number of target >’Cl nuclei and the 
energy-averaged neutrino capture cross-section. For neutrinos from 8B decay, 
the average capture cross-section */Cl is @ = 1.06 x 10-46 m2, and a target 
containing N(?’Cl) nuclei should give a capture rate of 

R(*B) = F,(°B) N(?7Cl) & = 6.1 x 10736 NC7C1) per second (4.40) 

Because of the low probability of neutrino capture, a special unit called the 
solar neutrino unit (SNU) is used in neutrino astrophysics. This is the capture 
rate per second per 10°° target nuclei. We see from Eq. (4.40) that the capture 
rate of neutrinos from *B decay in the sun should be 6.1 SNU. Bahcall also 
shows that the capture rates of neutrinos from ’Be, '°N and !5O are expected to 
be 1.1 SNU, 0.1 SNU and 0.3 SNU, respectively. In addition, a capture rate of 
0.2 SNU is expected from solar neutrinos produced by p+ e~ +p > d+ 1,. In 
total the predicted rate for capturing solar neutrinos in 37C1 is 

Predicted rate = (7.9+ 2.6) SNU. (4.41) 

Davis and his colleagues have taken data and developed their experiment to 

detect solar neutrinos for over 30 years. It was one of the most ambitious and 

impressive astrophysics experiments ever embarked upon. The low probability 

of neutrino capture implies that a huge target containing *’Cl is needed. 

This was provided by 610 tons of a dry-cleaning fluid called perchloroethylene, 

C)Cly. By noting that 24% of naturally occurring chlorine is *’Cl and 76% is 

Cl, it is easy to show that this target contains 2 x 10°? ’Cl nuclei. A capture 
rate of 1 SNU in this target yields 2 x 10~° captures a second, or one capture 

every 6 days. Each capture is only detectable by virtue of the radioactive *’Ar 

atom produced. These radioactive argon atoms were flushed out with helium 

and counted by low background proportional counters. Then the background 

rate due to cosmic rays had to be subtracted. In 1984 Davis and his collabor- 

ators reported a *’Ar production rate of 0.462 + 0.04 atoms per day against 
a background rate of 0.08 + 0.03 atoms per day. The experimental data up 

to 1998 yields the following value for the capture rate of solar neutrinos by 

= 9s) Be 

Observed rate = (2.55+ 0.17 +0.18) SNU. (4.42) 

The discrepancy between the observed capture rate (4.42) and the predicted 

capture rate (4.41) of solar neutrinos in 37C] has and continues to be a subject of 
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lively and imaginative debate, a debate which is fully explored in the 500 pages 

of Bahcall’s book Neutrino Astrophysics .7 

Solar neutrinos can also be detected by neutrino-electron scattering. Indeed, 

data on solar neutrinos by this method was first obtained in 1987 by the 

Kamiokande II detector in Japan. The Kamiokande detector consists of a 

huge underground tank of water surrounded by photomultiplier counters that 

observe the Cerenkov radiation emitted by electrons which have been acceler- 

ated to speeds close to the velocity of light by an interaction with an energetic 

neutrino. This method of detection has important advantages over the *’Cl 

experiment. It can record the precise time of arrival and it is sensitive to the 

direction of the incoming neutrinos. Indeed, a clear peak is seen corresponding 

to neutrinos coming from the direction of the sun. This experiment also 

observes a solar neutrino flux that is smaller than expected; the observed rate 

is about one-half the theoretical prediction. 

But it is important to emphasize that the Kamiokande experiment and the 

37C] experiment can only detect energetic neutrinos. Accordingly, both experi- 

ments mainly record neutrinos from *B decay in branch III of the proton— 

proton chain, a very minor part of the hydrogen burning process. Experiments 

sensitive to branches I and II of the chain are needed before firm conclusions 

can be drawn about hydrogen burning in the sun. 

Two such experiments, the SAGE and GALLEX collaborations, began tak- 

ing data in late 1991. These are radiochemical experiments based on the reaction 

v, +° Ga S "Gere. (4.43) 

The threshold energy for this reaction is only 0.233 MeV, weil below the 
maximum energy of neutrinos from the primary proton—proton fusion reaction 
(4.32). Indeed, these neutrinos should provide half the counting rate in the 7!Ga 
experiments. But, as in the *’Cl experiment, there is a formidable problem in 
identifying the radioactive products of neutrino capture, in this case about one 
atom of "'Ge per day in a target containing several tons of gallium. 

The data from the SAGE and GALLEX experiments up to 1998 can be 
combined to give the following value for the capture rate of solar neutrinos by 
71 Ga: 

observed rate = (77 + 9) SNU. (4.44) 

These experimental results can be compared with two theoretical predictions. 
First is a minimum capture rate of 80 SNU in gallium, based solely on the 

2 Because this debate can lead to an uncomfortable feeling called confusion, it is useful to point 
out at least one positive outcome: the *’Cl experiment clearly confirms that the carbon-nitrogen 
cycle plays a minor role in the sun. According to the Standard Solar Model, 1.6% of the luminosity 
is generated by the carbon-nitrogen cycle and the contribution from the associated neutrinos from 
“N and °O beta decay to the solar neutrino capture rate is 0.4 SNU. If the carbon-nitrogen cycle 
were the dominant mode for hydrogen burning in the sun, the expected capture rate would be about 
25 SNU, more than ten times the observed capture rate. 



4.3 Helium burning 2G) 

requirement that the observed solar luminosity is due to nuclear reactions, 
regardless of the solar model. Second is an expected rate of 132 SNU predicted 
by the Standard Solar Model; see Bahcall (1989). As in the chlorine experiment, 
there is a clear indication that the number of neutinos arriving from the sun is 

less than expected. 

The premise underlying the original proposals for solar neutrino experiments 

was that solar neutrinos, once produced, are well behaved. The results of the 

experiments have undermined our confidence in this premise and have stimu- 

lated a reassessment of neutrino physics. Indeed, there are now theoretical 

reasons to believe that electron, muon and tau neutrinos are not well-behaved 

massless particles, but particles with small masses which can transform them- 

selves into each other as they propagate through matter. Indeed, a Kamiokande 

experiment on cosmic ray muon neutrinos in 1998 provided experimental 

evidence that muon neutrinos can transform to tau neutrinos as they travel 

through the earth. If electron neutrinos behave similarly, one could account for 

the low detection rate of solar neutrinos on earth, because none of the solar 

neutrino experiments would detect an electron neutrino emitted during hydro- 

gen burning if it changes to a muon or tau neutrino as it propagates through the 

sun or the earth. This is interesting particle physics but depressing astrophysics. 

It implies that astrophysical information carried by neutrinos is scrambled. 

The detection of muon or tau neutrinos from the sun would provide evidence 

for the transformation of electron neutrinos to muon or tau neutrinos. An 

experiment capable of doing this will commence in 1999 in Sudbury, Ontario. 

It is based on neutrino scattering in 1000 tonnes of heavy water. It is planned to 

measure the flux of solar electron neutrinos with the reaction 

Le qe Hikwp + pte, 

and the flux of all types of neutrinos with the reaction 

Vs toe n+) pr wy: 

In view of the current theoretical and experimental uncertainties, we have no 

alternative but to leave this section on solar neutrinos unfinished. The solar 

neutrino problem has focussed attention on the physics and chemistry of 

neutrino detection, on the reliability of the Standard Solar Model, and on the 

properties of neutrinos. It could be an experimental problem, a solar model 

problem or, most likely, a problem with neutrinos. 

4.3 HELIUM BURNING 

Helium burning produces two vitally important chemical elements, oxygen and 

carbon. Indeed, 65% of your body is oxygen and 18% is carbon. Moreover, 

0.85% and 0.39% of the matter in the solar system is composed of oxygen and 
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carbon; only hydrogen and helium are more abundant. Thus, helium burning is 

an important process. It is also an interesting process. 

Hydrogen burning at the centre of a star ceases when most of the hydrogen in 

the core has been converted into helium. In the absence of nuclear fusion, the 

core contracts and gravitational energy is converted into thermal energy. About 

half of this energy escapes from the core and the other half leads to an increase 

in temperature. The increased temperature promotes hydrogen burning in a 

shell surrounding the helium core, and as more helium is produced, the mass of 

the central core of helium increases. If the mass of the star is large enough, 

around 0.5M. or above, the helium core becomes hot and dense enough for 

helium burning, which normally takes place at temperatures between 10° and 

2 x 10° K and densities between 10° and 10° kg m~°. 
The end of hydrogen burning at the centre of a star and the subsequent onset 

of helium burning has a profound effect on the overall structure and on the 

outward appearance of the star. The increased internal temperature due to the 

initial contraction of the helium core leads to an increase in pressure and a large 

expansion of the outer envelope of the star. When helium burning commences, 

the energy released causes the core to expand and cool, and cooling produces a 

partial contraction of the outer envelope. The net effect is to produce a star with 

a dense core and a large extended outer envelope — a red giant. 

Helium burning 1s hindered by the absence of stable nuclei with masses 5 and 

8 to act as stepping stones to the formation of carbon. But the existence of 

carbon-based units like you and me implies there must be a sequence of 

reactions that produce carbon in stars, a sequence which neatly overcomes 

the bottleneck due to the absence of stable nuclei with masses 5 and 8. This 

sequence was first set out in 1952 by Salpeter. In 1954 Hoyle pointed out that 

the effectiveness of the sequence depended on the existence of a hitherto 

unknown excited state of carbon-12. There are three stages to the sequence: 

1. The production of a small, but transient, population of unstable *Be nuclei 
via 

*He +*He = Be. (4.45) 

2. The production of a small, but transient, population of carbon-12 nuclei in 
an excited state, denoted by !2C* via 

Hes Ree’ or (4.46) 

3. The decay of a tiny fraction of carbon-12 nuclei in this excited state to the 
ground state via ’ 

Ct 3?C+ {27 or (et +e7)}. (4.47) 

The net effect of this sequence is 
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“He +*He +*He =?C  [Q = +7.275 MeV). (4.48) 

This fusion of three *He nuclei, or three alpha particles, is called the triple- 
alpha process. Note that the first two stages of the triple-alpha process involve 
reactions which create and destroy nuclei. If these reactions are in thermodyn- 
amic equilibrium, it is possible to derive a simple and accurate expression for 
the rate of the triple-alpha process. To do so, we consider each stage of the 
process in succession. 

Production of *Be 

The ground state of “Be is a state with zero angular momentum and positive 
parity, J” = 0°. It is unstable because it is more massive than than two 4He 
nuclei, with a mass-energy excess of (mg — 2m4)c? = 91.8 keV. It decays with a 
mean lifetime of r = 2.6 x 10~!° s into two *He nuclei with the release of 91.8 
keV, 

’Be —*He +*He. (4.49) 

Conversely, two *He nuclei can fuse to form a *Be in the endothermic reaction 
which absorbs 91.8 keV, 

*He +*He —*Be. (4.50) 

In fact, the probability of the interaction of two *He nuclei is enhanced if they 

approach with a relative energy E near to 91.8 keV and with zero angular 

momentum. The enhanced probability of interaction arises because they can 

form an intermediate state, a resonance which corresponds to the ground state 

of ®Be. 
The formation of unstable *Be nuclei in a hot gas of ionized helium will be 

favoured if the resonance with energy of 91.8 keV falls within the energy 
window for the fusion of two *He nuclei. We recall from Section 4.1 that the 

joint probability for nuclei to borrow an energy E from a gas at temperature T 

and to penetrate the Coulomb barrier, which keeps them apart, has a maximum 

at E = Ep with a width A; see Fig. 4.3 and Eqs. (4.23) and (4.25). This energy 

window for fusion is determined by the Gamow energy for two *He nuclei, 

which according to Eq. (4.10) is 31.6 MeV, and by the temperature of the gas. A 

simple calculation shows that the window is in the right place for the formation 

of 8Be when the temperature is just above 10° K; in fact, at T = 1 x 10° K the 
fusion window is just below the resonance at E = (83 + 31) keV, whereas at 

T =2 x 10° K the window is just above at E = (132 + 55) keV. 
Of course, any *Be nucleus formed will rapidly decay back to two 4He nuclei. 

But at high density and when the temperature is above 108 K, the formation 

rate can be sufficient to generate a significant population of *Be nuclei in a gas 
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of 4He nuclei. Furthermore, if the decay (4.49) and the formation (4.50) reach 

thermodynamic equilibrium, the steady-state population of ‘Be can be found 

by equating the chemical potential of one ®Be nucleus to the chemical potential 

of a pair of 4He nuclei. 
According to Eq. (2.21), the chemical potential for nuclei with mass m,4 and 

concentration n, in a classical gas at temperature 7 iS 

4 10, 

jig =mgc —ki In [estos ; (4.51) 
A 

where the quantum concentration ng, is given by Eq. (2.2273 

Qnm4kT) >" 
noa = a ; (4.52) 

and g4 is an angular momentum multiplicity factor which equals unity for 

states with zero angular momentum, like the ground states of 4He and *Be. 

Substitution into the equilibrium condition 

lg = pa + pa (4.53) 

gives the following result for the population of ’Be nuclei in a gas of *He nuclei 

at temperature 7: 

yO, are 
= = 2/? ed exp[—(mg — 2g) c”/kT]. (4.54) 

Note the key role played by the Boltzmann factor involving the mass-energy 

difference of (mg — 2m4)c? = 91.8 keV; this is the energy that must be bor- 

rowed from the thermal environment in order to form one “Be. 

We can now estimate the population of *Be in a dense, hot gas of helium. 

For example, if the density of the helium gas is p= 10% kgm ° and the 

temperature is ZT =2.x 108 K, the concentration of *He nuclei is 
ng = p/m4=1.5 x 10°* m3 and the concentration of ‘Be nuclei is 
7 x 107° m~?. In other words, there is one ®Be nucleus present for every 20 
million *He nuclei. However, the Boltzmann factor in Eq. (4.54) indicates that 

the population of *Be falls off rapidly if the temperature is reduced. It equals 

exp(—5) at 2 x 108 K and exp(—10) at 1 x 108 K. At this lower temperature, 
there is only one *Be for every 2 billion *He nuclei. 
We conclude that when the helium core of a star reaches a temperature above 

108 K, a tiny fraction of the core is in the form of ’Be nuclei in a state of 

dynamic equilibrium. The turnover of this population is very rapid, with each 

Be nucleus existing for an average of 2.6 x 10~!® s. Nevertheless, these nuclei 

provide an adequate raw material for the next stage of the triple-alpha process. 
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Production of '7C* 

The next stage of the triple-alpha process depends on the existence of !7C* 

nuclei, carbon-12 nuclei in the 0* excited state. This seemingly accidental state 

is So important that its existence was predicted by Hoyle in order to account for 

helium burning in red giants. In particular, he showed that for helium burning 

to take place at temperatures as low as T = 1.2 x 10° K, there must be a 

resonant enhancement of the fusion of *He and ®Be. Moreover, he showed 

that this *He—*Be resonance had to be at an energy about 300 keV above the 

threshold. Such a resonance corresponds to an excited state of carbon-12 with 

an excitation energy of 7.65 MeV. 

This excited state of carbon-12 was subsequently found almost exactly where 

predicted. It has zero angular momentum and even parity, J” = 0*, and the 

excitation energy above the ground state of carbon-12 is 

(ms, — m2)c* = (7.6542 + 0.0015) MeV. (4.55) 

As illustrated in Fig. 4.6, this state has an energy which is just above the 

threshold for one *He and one *Be nucleus and just above the threshold for 

three *He nuclei. In fact, 

(m*, — m4 — mg)c? = 287.7 keV and (mj, — 3mg)c? = 379.5 keV. (4.56) 

We have already seen that in a dense gas of helium at a temperature near to 

108 K or above, *He nuclei occasionally fuse to form unstable ’Be nuclei, each 

of which will usually decay back to two *He nuclei. We now see that, very 

occasionally, these ®Be nuclei could fuse with *He nuclei to form 12C* nuclei, 

and each !2C* nucleus would have a brief existence before decaying back to “He 

and ®Be. This will happen if the resonance, which is at an energy of 287.7 keV 

above the *He-*Be threshold, is close to the window for the fusion of these 

two nuclei. It is easy to use Eqs. (4.23) and (4.25) to show this is the case 

when the temperature of the gas is just above 10° K; for example, when the 

temperature is T=2»x10* K, the window for 4He-*Be fusion is at 

Bea 232 T3Key: 

Thus, when the temperature of an ionized gas of helium exceeds 10° K, 

collisions between ‘He generate small numbers of unstable *Be and 12 nucle, 

The equilibrium population of ®Be is given by Eq. (4.54). The equilibrium 

population of '*C* can be found by considering the reactions 

4He +°Be =C", (4.57) 

and imposing the condition that 

pg + bg = Hy: (4.58) 
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4ue+4He+‘He <= ‘4He+*Be = 0'stateof!*Cat7.65 MeV 

2‘ state of '* C at 4.44 MeV 

0° ground state of |? C 

Fig. 4.6 Threshold energies and energy levels of carbon-12 relevant to helium burning. 

The 0+ state of carbon-12 at 7.65 MeV, denoted by !*C* in the text, is only 0.3795 MeV 
above the threshold energy for three *He nuclei. Carbon is produced by establishing 

transient populations of unstable *Be and '*C* nuclei which coexist with *He nuclei at 

high temperature and density. A small proportion of the '*C* nuclei opt out of this 

dynamic coexistence by decaying to the ground state of carbon-12. The activation energy 

for carbon production is the energy needed to produce a !*C* nucleus, 0.3795 MeV. The 

energy released by carbon production is the difference in energy between the threshold 

for three *He nuclei and the ground state of carbon-12, 7.275 MeV 

In complete analogy with Eqs. (4.53) and (4.54), we find that 

N}> 3 we h? “a 2) We al (3) scmakT exp[—(m}, — m4 — mg) c°/kT}. (4.59) 

We also recall that ng the concentration of *Be nuclei, is given by Eq. (4.54). 
Thus, we combine Eq. (4.59) with Eq. (4.54) to give 

exp[—(mj, — 3m4)c?/kT}]. (4.60) 

Note that, even though the unstable *Be nucleus plays a crucial role in establish- 
ing equilibrium, the population of '*C* is determined solely by the temperature, 
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the concentration of *He nuclei and the energy difference between a !2C* 

nucleus and three *He nuclei. Indeed, Eq. (4.60) can be derived directly by 

considering the equilibrium established by the reactions 

‘He +-"He-*He =". (4.61) 

We have already seen that the concentrations of He and *Be nuclei are respect- 

ively ng = 1.5 x 10°4 m3 andng = 7 x 10°° m~3 ina helium gas with density 10° 
kg m~? and temperature 2 x 10° K. We can now use Eq. (4.60) to show that the 
concentration of '*C* nuclei in sucha gas isn}, = 3 x 10'4 m~}. Wealso note that 
the Boltzmann factor exp|—(mj, — 3mmg4)c?/kT] in Eq. (4.60) implies that the 
concentration of !*C* nuclei falls off rapidly if the temperature is reduced. 

Thus, when the helium core of a star reaches a temperature above 10° K, the 

core contains a small population of '*C* nuclei which coexist in dynamic 

equilibrium with a larger population of *Be nuclei and a much larger popula- 

tion of *He nuclei. In the final stage of the triple-alpha process a small fraction 

of these '*C* nuclei opt out from this dynamic coexistence. 

Carbon production 

The first two stages of the triple-alpha process create Be nuclei and '*C* nuclei 

via the reactions 

4He +4He +*He =*He +°Be =". (4.62) 

Nearly all of the !7C* nuclei produced return from whence they came. Buta few of 

them leak away and decay to the ground state of carbon-12 in the following way: 

ot? Geddy or (eere™ (4.63) 

The mean time for this decay is r(’*C* -!*C) = 1.8 x107!°s and the energy 

released is 7.65 MeV. This irreversible leakage hardly effects the dynamic 

equilibrium set up by Eq. (4.62), because only a few of the '*C* nuclei, roughly 

1 in 2500, opt out by decaying to the ground state. Hence we can still use Eqs. 

(4.54) and (4.60) to find the populations of 8Be nuclei and !7C* nuclei. The rate 

of production of carbon-12 nuclei in the ground state is simply the concentra- 

tion of !2C* nuclei times the rate at which they opt out, i.e. 

Zs 2 (4.64) 

If we use Eq. (4.60), we obtain a production rate 

p 
diz _ ny “a 

) 

3 

*, — 3mg4) c?/kT). 4.65) i a ee a expl—(mity— Sma) P/RT). 
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Thus, the carbon production rate in a gas of helium at high temperature 1S 

given by aremarkably simple expression, Eq. (4.65). The simplicity arises because 

of the role played by 8Be and !*C* in establishing thermodynamic equilibrium. 

We note that the production rate depends on two parameters. The first is the 

mass-energy difference (7m;, — 3m4)c2 which enters as an activation energy for 

the process, i.e. the energy that has to be borrowed to create 12C*, the key 

intermediate state. The second is the mean time for '*C* to decay to the ground 

state, r('°C* —!2C). Both of these parameters have been accurately measured: 

the activation energy is 0.3795 keV and the mean decay time is 1.8 x [0 5: 

The energy released by the triple-alpha process follows directly from the 

carbon production rate. To produce a carbon-12 nucleus, an energy equal to 

(m*, — 3mg4)c? is first absorbed in order to create an intermediate '2C* nucleus, 

and then an energy equal to (7}, — 112 )c? is released when this intermediate state 

decays to the ground state. The net energy released is (374 — my2)c? = 7.275 

MeV, and the energy production rate by the triple-alpha process is 

9 dn 2 

E3q = (3mq4 — m)12)C° aa 5 (4.66) 

Asa specific numerical example, we reconsider helium burning in helium gas at 

T =2x 108 Kand p = 10° kgm_-°. According to Eq. (4.60), nj, = 3 x 10'4 m-?. 
According to Eq. (4.65), carbon-12 nuclei are produced at a rate equal to 1.9 

x 1039 m-* s~!. And according to Eq. (4.66), energy is produced at a rate of 
2.2 x 10'8 W m~?. However, this rate is very sensitive to the temperature. The 
temperature dependence of the triple-alpha rate is largely governed by the Boltz- 

mann factor in Eq. (4.65). The energy in the exponent, (mj, — 3mm) c? = 379.5 

keV, is the energy needed to form intermediate state the '*C*; it is the activation 
energy for carbon production. Because this activation energy is large compared 

with kT at helium burning temperatures, the Boltzmann factor changes markedly 

if the temperature is varied. For example, it falls from exp(—22) to exp(—44) 
when the temperature is reduced from 2 x 10® to 108 K. 

Carbon consumption 

Once carbon is present at the centre of a red giant, oxygen can be produced by 
the reaction 

*HeitteC ne PO 4: ah (4.67) 

The rate of oxygen production can be calculated using the standard equa- 
tions for thermonuclear fusion outlined in Section 4.1) According to Eq. (4.27), 
the fusion rate depends largely on the value of the nuclear S factor at an energy 
Eo in the window for the fusion of *He and !2C. There are no resonances within 
or near to this fusion window and the appropriate value of the S factor is small 
but uncertain; for Eo near to 300 keV, S is in the region of 0.3 MeV barns. 



4.3 Helium burning 1S 

The production of oxygen can be followed by the production of neon via the 
reaction 

*He +O Ne + +. (4.68) 

In practice this happens to a minor extent during the helium burning phase. 
Reaction (4.68) is clearly hindered by an increased Coulomb barrier. Moreover, 
it is not resonant at energies near to the fusion window. In fact, there is a 
J" = 2° excited state of *°Ne with excitation energy 4.97 MeV, which at first 
sight could give rise to an enhanced 4He-—'°O fusion rate. It does not because a 
*He and a '°O cannot couple to form a negative parity state with angular 
momentum 2; the ground states of both nuclei are 0+, and if they couple with 
relative orbital angular momentum / = 2 to give a state with total angular 
momentum J = 2, the parity is positive because 7 = (a i\! =-+1. As far as 
*He and '°O are concerned, the 2~ state of 2°Ne is a state of unnatural parity. 

Thus, helium burning dominantly consists of two processes, the triple-alpha 
process and the production of oxygen by radiative capture of He by !2C. The 
production of heavier nuclei, *?Ne, **Mg, **Si, etc., by radiative capture of 4He 
does not happen to any appreciable extent during helium burning. 
We also note that helium burning involves a jump from helium to carbon. It 

bypasses the stable nuclei between A = 6 and A = 11, namely °Li, °Be, !°B and 
'lB. This is consistent with the observed low abundance of these light nuclei in 
the solar system. These nuclei are not produced in stars, but are primarily 
produced by spallation reactions in the interstellar medium, i.e. collisions 
between high energy cosmic ray protons and nuclei like '*C. They were also 
produced in very small quantities during the big bang. 

What if ? 

We conclude by noting that the outcome of helium burning is finely 

balanced. During helium burning there exist two competing processes, the 

carbon-producing triple-alpha process (4.48) and the carbon-consuming oxy- 

gen production process (4.67). The relative proportion of carbon to oxygen in 

the solar system is largely an outcome of the balance struck between these two 

competing processes, and the total amount of carbon and oxygen present 

depends crucially on the ineffectiveness of the neon production reaction 

(4.68). It is interesting to speculate on how our surroundings would be affected 

if this balance were different. - 

For example, if oxygen production were enhanced by the presence of a 

resonance near the fusion window, carbon formed by the triple-alpha process 

would be consumed almost as fast as it is produced. This would lead to an 

oxygen-rich, carbon-poor environment. A similar situation would arise if the 

0+ excited state in carbon-12 were a little higher. The triple-alpha rate would be 

slower, as shown by the Boltzmann factor in Eq. (4.65), and any carbon 
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produced would be rapidly converted into oxygen. Furthermore, if the 4.97 MeV 

excited state of 27Ne had quantum numbers 2° instead of 2”, most of the carbon 

and oxygen produced by helium burning would be transformed into neon. 

These hypotheticals are of interest to advocates of the anthropic principle 

which in effect says that physics has to be just right in order for biological 

evolution to be successful. Helium burning seems to fit the principle quite well. 

It suggests that small changes in seemingly boring excited states of nuclei could 

easily have led to a solar system in which boredom would not be a problem, 

because nobody could be around to be bored. 

4.4 ADVANCED BURNING 

As a massive star evolves, there is a sequence of nuclear burning stages as the 

temperature and density at the centre of the star progressively increase. If the 

mass of a star is large enough, greater than 8M. or thereabouts, it will evolve 

beyond helium burning to advanced burning stages involving heavy nuclei. The 

following processes are thought to occur: 

1. When helium burning at the centre of a star ceases, a core of carbon and oxygen 

contracts and the temperature rises. Carbon burning begins when the tem- 

perature approaches 5 x 10° K at a density of about 3 x 10? kg m~?. Carbon 
burning produces neon, sodium and magnesium via reactions of the form 

2C4+"C Ne +*He, (4.69) 

eo alec — Na + p, (4.70) 

120 4.12C —3Mg +n. (4.71) 

2. Neon burning occurs after carbon burning if the temperature reaches 10° K. 
At this temperature, high energy thermal photons begin to break up 7°Ne 
nuclei by the photodisintegration reaction 

+ +>°Ne 3!°9 14He. (4.72) 

The *He nuclei released can then react with undissociated 2°Ne nuclei to 
form **Mg, 

“He +°Ne —*4Mg + 4. (4.73) 

3. After neon burning, the core of the star consists mainly of !°O and 4Meg. 
The oxygen burning phase begins if the temperature reaches 2 x 10° K, the 
most important product being ?*Si which is produced by the reaction 

l69 +169 +89) <4 Hee (4.74) 
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4. Silicon burning begins if the temperature reaches 3 x 109K. At this tem- 
perature silicon is gradually destroyed by high energy thermal photons 
releasing *He nuclei, protons and neutrons. These light particles then 
combine with undissociated nuclei to build more massive nuclei. A complex 
network of capture and photodisintegration reactions compete with each 
other, and the net effect is that loosely bound nuclei tend to be transformed 
into nuclei of higher stability. 

To some extent these advanced burning phases involve the same physics of 

thermonuclear fusion that we encountered when we considered hydrogen and 

helium burning. But a new type of physical phenomenon occurs when the 

temperature rises above 10° K: nuclei are broken up by high energy thermal 

photons and the nuclear material so formed is then reduced to its most stable 

form. We shall briefly illustrate these ideas by considering the role of the 

photodisintegration of nuclei in silicon burning. 

The photodisintegration of nuclei is the nuclear physics analogue of the 

ionization of atoms. We recall from Section 2.5 that atomic ionization becomes 

important at about 3000 K. Since nuclear binding energies are typically a 

million times larger than atomic binding energies, nuclear photodisintegration 

becomes appreciable at a temperature which is about a million times higher 

than 3000 K, i.e. about 3 x 10° K. 

A network of competing photodisintegration and capture reactions occurs 

during the silicon burning stage. To illustrate the underlying principle, we 

consider part of this network which is initiated by the production of *He nuclei 

through the photodisintegration of the tightly bound nucleus *8Si, 

1 +°8Si =4Mg +*He. (4.75) 

This process proceeds slowly because the thermal photon must have an energy 

above 9.98 MeV. The *He nuclei released by this photodisintegration can 

induce a sequence of reactions which produces sulphur, argon, calcium, etc., 

as follows: 

Si +4He ="S +4, 

2S +*He ="°Ar + 7, 

Ar +4He ="Ca + 4, 

and so on, until | 

52Fe +4He = Ni + 7. 

These reactions can take place more rapidly than the initial photodisintegration 

of 28Si which initiates this build-up process by releasing 4He nuclei. In fact, the 
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time scale for the build-up of heavier nuclei is governed by the slow photo- 

disintegration of the tightly bound **Si. Because the build-up reactions 

approach thermodynamic equilibrium, relative concentrations can be found 

by equating chemical potentials. For example, if we consider the first reaction 

in the sequence and equate the sum of the chemical potentials of **Si and 4He to 

the chemical potential of *’S, 

flog + 4 = 132; (4.76) 

we find that the concentrations of these nuclei are related by 

N2gN4 27m,kT 

h? 

3/2 
| exp(—Q/kT}, (4.77) 

132 

where Q is the energy needed to release a *He nucleus from a *S nucleus, 

> 

O = [mg + m4 — my|c° © 6.95 MeV, 

and m, is the reduced mass for the *8Si—*He system, 3.5 amu. We note from 

Eq. (4.77) that the abundance of 7S relative to **Si is determined by the 

temperature and the concentration of 4He during silicon burning. If this con- 

centration is 10°4 m=, say, then the equilibrium ratio of *°S to **Si is about | to 

4 at a temperature of 5 x 10’ K. 
Similar considerations can be used to explore the abundances of *°Ar, *°Ca, 

etc., relative to *8Si. We note that the abundances of these nuclei, and others, 

will be governed by Boltzmann factors exp[—Q/kT], involving their break-up 

energy. As a result, there will always be a tendency for the more tightly bound 

nuclei to be favoured. 

We recall from Fig. 1.3 that the binding energy per nucleon increases as the 

mass number A approaches 56. Hence the breakup of 78Si and the subsequent 
rearrangement of the nucleons favours the formation of the most stable nuclei 

in the periodic table near A = 56, namely the isotopes of Cr, Mn, Fe, Co and 

Ni. Because the binding energy per nucleon reaches a maximum at A = 56, 

energy is absorbed from the gas if light particles are captured to form nuclei 

with A > 56. For this reason nuclei beyond the iron group in the periodic table 

are not formed during silicon burning. 

Thus, silicon burning is a sequence of radiative capture and photodisintegra- 

tion reactions which in effect me/t silicon in a sea of alpha particles, protons 

and neutrons to create heavier elements with mass numbers in the range 30 to 

56. Indeed, silicon burning is often known as silicon melting. This terminology 

has the advantage of stressing that the underlying mechanism is different. Apart 

from neon burning, it is the only stage of nuclear burning that involves the 

disintegration of nuclei by high energy thermal photons. 

Finally, we point out that the timescales involved in the advanced burning 

stages are much shorter than the timescale for hydrogen or helium burning. 
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The primary reason is that the rate of production of nuclear energy is governed 

by the rate of energy loss from the star. The energy loss is large at the high 

temperatures reached during the advanced burning stages. For example, at 

these temperatures neutrinos can be produced by electron—positron collisions 

and by other mechanisms, and energy loss by neutrino emission can be large. 

The nuclear burning timescales for a star of mass 25M, are listed in Table 4.2. 

The nuclear burning sequence terminates with silicon burning; this yields 

a central core composed of the most stable nuclei in the periodic table with 

mass number near 56, from which no further energy can be extracted. We 

shall see in Chapter 6 that a star which evolves beyond silicon burning is 

heading for some sort of catastrophe because the central core will 

collapse under gravity when its mass exceeds the Chandrasekhar limit of 

about 1.4M.. 

TABLE 4.2 The time scale for the nuclear burning stages for a star of mass 

25 M. and the central temperature and density at which they take place. This 

data is based on the calculations of Weaver, cited by Rolfs and Rodney (1988). 

Stage Timescale Temperature Density 

(10° K) (kg m~*) 

Hydrogen burning 7x 10° years 0.06 5x 10* 

Helium burning 5x10° years 0.23 7x 10° 

Carbon burning 600 years 0.93 2x 108 

Neon burning 1 year ick 4x10? 

Oxygen burning 6 months 2.3 110" 

Silicon burning 1 day 4.1 3x10!° 
Sin epi sie eter sre GME » ue ort We es eae 2 

SUMMARY 

The physics of nuclear fusion 

e Nuclear fusion can take place at an energy E below the Coulomb barrier 

which tends to keep the nuclei apart. The probability of penetrating this 

barrier is approximately given by 

Eo\'? 
—|— 4.12 (3) | (4.12) 

where Eg, the Gamow energy, depends on the electric charges on the nuclei, Z4 

and Zp, and their reduced mass m,. It is given by 

Probability of penetration ~ exp 

Eg = (naZ4Zp) 2m,c’. (4.10) 
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e The energy dependence o(£) of the fusion cross-section is invariably domin- 

ated by the rapidly rising probability of penetration of the Coulomb barrier. 

It is usually represented by 

Eo\ 
Bb 

The function S(E) is determined by the nuclear physics of fusion and varies 

slowly with energy except at energies near to nuclear resonances. 

TLE) — Ata exp (4.16) 
E 

e The thermonuclear reaction rate per unit volume for the fusion of two nuclei, 

A and B, with concentrations n4 and nz is given by 

R4p = ng4ng(ov,). (4.19) 

e If the nuclei form a classical, non-relativistic gas at a temperature 7, their 

relative velocity uv, has a Maxwellian distribution (4.20), and the fusion rate is 

given by 

= ss Say iB ie SY Bad 
Rap = nane | rl | SD fsa ( E ) 

e The exponential in this equation is proportional to the joint probability 

that an energy E is borrowed from the thermal environment and that 

the Coulomb barrier is penetrated. This joint probability has a peak at 

E = Ep and a width A as shown in Fig. 4.3, where according to Eqs. (4.23) 

and (4.25), 

dE. (4.22) 

Be ae 
se 

Eg(kT) 4 ee: 4 

4 = 317291733 

As a result, thermonuclear fusion predominantly takes place at energies in 

the energy window Ey + A/2. 

e Ifthe nuclear fusion factor S(£) is approximately constant for energies in the 
fusion window, the fusion rate is given by 

BEV RoNals 
RapenO AS ul 0 eae Se jie epee 
AB Pavan ( 0) ART exp 3 AT Te Sind (4.27) 

This expression implies that the temperature dependence of the fusion rate is 
approximately given by 
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Hydrogen burning 

e Hydrogen burning transforms protons into *He nuclei. The most likely 
transformation involves the emission of two positrons and two electron 
neutrinos, i.e. 

4p —*He + 2e+ + 21,. 

When the annihilation energy of the positrons is included, the energy release 
is 26.73 MeV per *He formed: a small percentage of this energy is carried by 
the neutrinos which escape almost without interaction. 

e In the sun, hydrogen burning occurs mostly by the proton—proton chain 
illustrated in Fig. 4.4. There are three main branches denoted by I, II and 
II. The overall rate of the proton—proton chain is governed by the first 
reaction in the chain, 

pt+tpod+et+n. (4.32) 

In the sun the proton-proton chain is terminated by branch I 85% of the 
time, by branch II 15% of the time and by branch III 0.02% of the time. The 
energy released by the chain is 15 MeV per proton—proton fusion. This 

energy release together with the calculated proton—proton fusion rate leads 

to an energy production rate by the proton—proton chain given by 

ef PSR UX oe Win (4.37) 

where X; is the mass fraction of hydrogen. 

e In main sequence stars more massive than the sun, hydrogen burning pre- 

dominantly takes place via the carbon—nitrogen cycle illustrated in Fig. 4.5. 

This is a cycle of reactions in which '*C acts as a catalyst in the transforma- 
tion of protons to *He nuclei. 

e In principle, neutrinos released during hydrogen burning could provide direct 

information on the actual reactions involved. The expected flux of neutrinos 

from the sun due to particular reactions in the proton—proton chain and in 

the carbon—nitrogen cycle are listed in Table 4.1. Experiments designed to 

detect solar neutrinos consistently yield measured fluxes below the theoretic- 

ally expected result. 

e The solar neutrino problem has focused attention on the physics and chem- 

istry of neutrino detection, on the reliability of solar models, and on the 

properties of neutrinos. It could be an experimental problem, a solar model 
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problem or, most likely, a problem with neutrinos. In particular, evidence is 

accumulating which implies that election netrinos emitted in the sun may 

subsequently transform to muon or tau neutrinos. 

Helium burning 

e Helium burning produces carbon, some of which is converted to oxygen. 

e Carbon is produced by the triple-alpha process, Eqs. (4.45) to (4.47). The net 

effect is 

4He +4He +4He —'2C [OQ = +7.725 MeV]. (4.48) 

Unstable ®Be nuclei and carbon-12 nuclei in the excited 0 state ('?C* nuclei), 

play a key role in the triple-alpha process. Collisions between *He nuclei 

generate small numbers of 8Be and !7C* nuclei via the reactions 

4ne +4He +4He =*He +°Be = C*: 

The populations of the *Be and 12C* nuclei are given by Eqs. (4.54) and (4.60), 

respectively. A tiny fraction of the 12C* nuclei leak away from this dynamic 

coexistence by decaying to the ground state of '2Cin accordance with Eq. (4.63). 

The production rate of carbon-12 nuclei in the ground state is given by 

3 

| exp(—(m*, — 3m4)c?/KT]. (4.65) 
2 

dia _ ny 3/2 
dar wer? Gh-3¥6) QnmagkT 

This rate is governed by two parameters, the energy needed to form a *C* 
nucleus, the activation energy (mj, — 3ma)c?, and the mean time for a °C’ 
nucleus to decay to the ground state, 7('*C* !7C). 

e Some of the carbon produced is transformed into oxygen by the reaction 

*He +C 30 +4. (4.67) 

e The relative proportion of carbon and oxygen produced by helium burning 

depends on the relative effectiveness of the carbon-producing triple-alpha 

process and the oxygen production reaction which consumes carbon. Nuclei 

heavier than '°O are not produced in any quantity during helium burning 
because the rate of capture of *He by !°O is slow; see Eq. (4.68). 

Advanced burning 

e If the mass of a star exceeds a value of about 8 Mo, it will evolve beyond 

helium burning. Carbon, neon, oxygen and silicon burning stages can occur; 

see Table 4.2. 
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e The main new physical phenomenon that arises in advanced burning is the 
photodisintegration of nuclei by high energy thermal photons when the 
temperature is above 10° K. Indeed, silicon burning involves a rearrangement 
of nuclear material by a-network of photodisintegration and capture reac- 
tions. Because this rearrangement tends to reduce nuclei to their most stable 
form, nuclei close to iron in the periodic table are formed. 

e Once a star evolves beyond silicon burning, no further energy can be 
extracted from nuclear reactions in its iron core. The core of such a star 
collapses when its mass exceeds the Chandrasekhar limit of about 1.4 Mo. 

PROBLEMS 4 

4.1 

4.2 

4.3 

4.4 

Find the classical distance of closest approach for two protons with an energy of 

approach equal to 2 keV. Estimate the probability that the protons penetrate the 

Coulomb barrier tending to keep them apart. Compare this probability with the 

corresponding probability for two *He nuclei with the same energy of approach. 

We have seen that the quantum mechanical penetration of a Coulomb barrier 

plays a crucial role in thermonuclear fusion. It also plays a crucial role in the 

alpha decay of nuclei such as 7*°U. In the simplest model for alpha decay, the 
alpha particle is preformed and trapped within the nucleus by a potential similar 

to that shown in Fig. 4.1. The mean rate of decay is then the frequency v with 

which the alpha particle hits the confining barrier times the probability of 

penetration of the Coulomb barrier; this probability is given by Eq. (4.12). 

Write down an approximate expression for the decay rate in terms of v, Eg and 

the energy E released by alpha decay. The half-life for the alpha decay of 7°°U is 

1/2 = 0.69/A = 7.1 x 108 years and the energy released is E = 4.68 MeV. The 

energy released by the alpha decay of 7*’Pu is 5.24 MeV. Estimate the half-life 
of this isotope of plutonium. 

Assume that the solar luminosity of 4 x 10°° W is due to hydrogen burning by 

the proton-proton chain illustrated in Fig. 4.4. The expected flux of neutrinos 

from the primary proton-proton fusion reaction is then almost fixed if the 

relative importance of branches I and II is known. Find an upper limit and a 

lower limit for this neutrino flux. 

The flux of energetic neutrinos from *B decay in branch III of the proton— 

proton chain is very dependent on the central temperature of the sun. Confirm 

this by showing that the rate of the reaction producing Be 

p +’Be —*B + 4, 

is approximately proportional to T 4" when the temperature 7 is near to 

1.5 x 107K. In fact, the local production rate of neutrinos from *B decay is 
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4.5 

4.6 

4.7 

4.8 
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proportional to 74 when the temperature dependence of the reactions leading 

to 7Be formation is taken into account; see Bahcall (1989). 

Consider hydrogen burning by the carbon—nitrogen cycle illustrated in Fig. 4.5. 

Show that, at a temperature of 1.5 x 107 K, the slowest reaction in the cycle is 

p+4n 350 +4, 

and thereby estimate the temperature dependence of the carbon-nitrogen cycle 

in the sun. It is thought that about 1.6% of the solar luminosity is generated by 

the carbon-nitrogen cycle. Estimate by how much this would change if the 

central temperature of the sun were increased by 1%. 

Calculate the power per kilogram produced by helium burning in helium when 

the density is 10° kg m~? and the temperature is 10° K. By how much would this 

power change if the excitation energy of the 0~ state of carbon-12 were 7.66 

MeV instead of 7.65 MeV? 

The photodisintegration of nuclei plays an increasingly important role as a star 

evolves and as the temperature at its centre increases. Use the results of Section 

2.3 to obtain an expression for the number of photons per unit volume in a gas 

at temperature 7 with an energy above 9.98 MeV, the minimum energy needed 

to eject a *He nucleus from a 7*Si nucleus. Estimate the fractional change in the 
number of such photons that occurs when the temperature rises from 1 x 10? K 

to 4 x 10’ K. 

The practical exploitation of thermonuclear fusion as a energy source on earth 

depends on raising the temperature of a plasma containing ionized deuterium 

and tritium to an ignition temperature Tj, of about 2 x 10°K; at this temper- 

ature the rate of energy production by the fusion of deuterons and tritons is 

faster than the rate at which energy 1s lost by radiation. A considerable amount 

of energy is needed to heat the plasma to the ignition temperature. A greater 

amount of energy must be released by fusion in order to make the process cost- 

effective. Hence the hot plasma must be confined for a certain minimum time. 

Show that, if the plasma contains equal numbers of deuterons and tritons, this 

minimum confinement time 7 is approximately given by 

12k Tien 
(ov,) Odep 

niT > 

where n; is the number of ions per unit volume, o is the deuteron-triton fusion 

cross-section and Q¢ep is the energy deposited in the plasma per fusion. (This 

result is called the Lawson break-even condition. For a deuterium-tritium 
plasma at 2 x 10° K, n;r must exceed 1.6 x 107° m-3 s. This implies that a 
dilute plasma with n; = 107? m~ must be confined for at least 1.6 s to break 
even.) 



Stellar structure 

A complete analysis of stellar structure requires calculations of considerable 

complexity and the numerical solution of a coupled set of differential equations. 

The aim of this chapter is very modest by comparison. It is to use simple models 

to gain insight into some of the most basic ideas of stellar structure. The 

discussion will be restricted to stars with homogeneous chemical compositions. 

We shall consider the structure of main sequence stars, like the sun. We 

shall estimate the minimum mass of a main sequence star by considering the 

temperature needed for hydrogen burning, and the maximum mass by 

considering the destabilizing effect of radiation pressure. These lower and 

upper limits to stellar masses are shown to be comparable with a funda- 

mental stellar mass M,, whose value is determined by the mass of the nucleon 

and a dimensionless measure of the strength of the gravitational interaction 

between nucleons. We shall begin by reminding the reader of some concepts 

from earlier chapters that are particularly relevant to our discussion of stellar 

structure. 

5.1 PREAMBLE 

During most of its existence a star is in a state which evolves very slowly, a state 

which is very close to hydrostatic and thermodynamic equilibrium. The internal 

pressure gradient is just sufficient to hold up the star and, according to Eq. (1.5), 

dP Ps Gm(r)p(r) (5.1) 

where m(r), the mass enclosed by a sphere of radius r, is given by 

oe = 4nr’(r). (5.2) 
dr 
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The internal temperature gradient is just sufficient to maintain the power flow 

towards the surface. If energy transport is by radiative diffusion, we can use 

Eq. (3.28) and write 

ar 3 K(r)p(r) L(r) (5.3) 

where, according to Eq. (3.26), 

ep Anr’e(r). (5.4) 
dr 

We recall that L(r) is the power generated within a sphere of radius r and e(r) 1s 

the power density at r. 

Equations (5.1) to (5.4) are the fundamental equations of stellar structure. 

They are based on the assumptions of spherical symmetry, hydrostatic equili- 

brium under Newtonian gravity and the flow of energy by radiative diffusion. 

The radiative diffusion assumption often has to be modified to allow for energy 

transport by convection, as in the outer layers of the sun or in the core of a 

massive main sequence star, or energy transport by conduction as in a white 

dwarf. 

The static structure of a star can be found if the fundamental equations 

of stellar structure are supplemented by equations which relate the 

pressure, opacity and power to the density and temperature of the stellar 

material, i.e. 

P= Pp, 7), Seaside, @ = el, 7 J. (5.5) 

These equations for the properties of matter and radiation inside the star have 

been discussed in earlier chapters. We shall now recall some of the most relevant 

results. 

In Chapter 2 we considered the pressure generated by matter and radiation. 

Three important sources of this pressure were identified, namely classical 

electrons and ions, degenerate electrons, and radiation or photons. The number 

densities of electrons and ions in a completely ionized plasma depend on the 

mass fraction of hydrogen, helium and heavier elements, X;, X4 and X4, in the 

plasma. According to Eqs. (2.67) and (2.69), 

ne = (1+ Xi]p/2mu, (5.6) 
nj & [2X + 0.5X4]p/2my, (5.7) 

and 

nN=n. =n; = (1 + 3X, + 0.5X4]o/2my. (5.8) 
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As discussed in Section 2.1, these particles can form a classical or a quantum 
gas. In particular, at low density the electrons and ions form an ideal classical 
gas with a pressure 

P=nekT +n;kT = nkT. (5.9) 

At high densities the electrons form a degenerate quantum gas with a pressure 
given by Eq. (2.31), 

P = Kyern>/>? where Kye = hs 2h ral (3.10) 
J . Sme | 87 

But at very high densities the degenerate electrons become ultra-relativistic and 
the pressure approaches a value given by Eq. (2.34), 

P=Kyen?? wh y Re i 
= Kuprn;’” where humor ee fO-dL) 

Finally, at high temperature the pressure due to radiation or photons can be 
comparable with the gas pressure due to electrons and ions. The radiation 
pressure at a temperature T is given by Eq. (2.44), 

l 
Bena with ag=—_.. (5.12) 

The opacity of the stellar medium is determined by the interaction of radia- 

tion with electrons, ions and atoms. Three processes were mentioned in Chapter 

3. Thomson scattering by electrons yields a constant background opacity given 

by Eq. (3.18), 

Kee (ct x x. 0.02 m? kg, (5.13) 

Bound-free absorption and free—free absorption give rise to a density and 

temperature dependent opacity described by Kramers’ law (3.17), 

Kx pT ee (5.14) 

Bound-free absorption and free—free absorption are important at the low 

temperatures and high densities found in main sequence stars like the sun. 

But the constant background opacity due to Thomson scattering is dominant 

at the higher temperatures and lower densities found in main sequence stars 
more massive than the sun. 

The generation of thermonuclear power was discussed in Chapter 4. Several 

important chains of reactions were identified. In this chapter we shall only be 

interested in hydrogen burning in main sequence stars. In the sun, hydrogen 
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burning is dominated by the reactions of the proton—proton chain; according to 

Eq. (4.37), the power generated is given approximately by 

ea I5 e100 lie TW (5,15) 

5.2 SIMPLE STELLAR MODELS 

The fundamental equations of stellar structure, Eqs. (5.1) to (5.4), reduce the 

problem of calculating the structure of a star to the solution of four 

coupled first-order differential equations in four unknown functions, 

P(r), m(r), T(r) and L(r). Clearly four boundary conditions are needed to 

specify a unique solution. Two of them are straightforward. They are m(0) = 0 

and L(0) =0, which are satisfied because the mass and the energy generated 

within a sphere of radius r must tend to zero as r tends to zero. Two other 

boundary conditions can be obtained by specifying the pressure and the 

temperature near the surface of the star; in practice this requires some 

knowledge of the properties of the stellar atmosphere. We shall not 

discuss this procedure further. Instead, we shall consider approximate 

models of stellar structure based on Eqs. (5.1) to (5.4) which are simple 

enough to permit physical insight into some of the general features of stellar 

structure. 

A traditional way of proceeding is to combine the equation of hydrostatic 

equilibrium (5.1) and the equation describing the conservation of mass (5.2) to 

give the second-order equation 

| ae (5.16) 

This equation involves two unknown functions, P(r) and p(r). It can be reduced 
to an equation in one unknown function by assuming a simple relation between 
the pressure and the density which is valid throughout the star. This is the 
procedure adopted in polytrope models for stellar structure. In particular, a 
polytrope model with index n is obtained by imposing the following relation 
between pressure and density: 

Be (5.17) 

where K is a constant. When this relation is substituted into Ea: (516), 
we obtain the following non-linear second-order differential equation for the 
density inside the star: 

lLd([rd os Faxon = —4rGp. (5.18) 
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A unique numerical solution of this equation can be obtained by imposing two 
boundary conditions. Two such conditions on the function p(r) are 

d p=p- and = = 0 at r = 0, (5.19) 

where the second condition follows immediately from the substitution of Eq. 
(5.17) into Eq. (5.1) and the use of the boundary condition m(0) = 0. Thus, 
once a value for the central density p, is fixed, the numerical solution of Raq; 
(5.18) gives a density profile p(r). The radius R of the star is then the value of r 
for which p(r) is zero and the total mass of the star is M = m(R). The pressure 
inside the star can be found using Eq. (5.17), and the thermal properties of the 
star can then be deduced using an equation of state P = P(p, T) and the stellar 
equations (5.3) and (5.4). 

Polytrope models based upon the simple relation (5.17) between pressure and 
density played an important role in the development of stellar structure theory, 
particularly before the advent of powerful computers. Accordingly, they are 
fully described in many books on astrophysics. However, despite the drastic 
simplification represented by Eq. (5.17), polytrope models still involve a numer- 
ical solution of a messy differential equation. 

A simpler approach is to guess a suitable form for the density profile p = p(r) 

within the star, and to use this as a starting point for an approximate solution of 

Eqs. (5.1) to (5.4). These equations can then be tackled sequentially. Equations 

(5.1) and (5.2) can be integrated to give a profile for the pressure P(r). An 

equation of state P = P(p, T) can then be used to find the temperature profile 

T(r), which can be combined with an opacity « = K(p, T) to estimate the power 

flow L(r) by using Eq. (5.3). This power flow can then be compared with the 

power flow L(r) found by integrating Eq. (5.4) using a nuclear power density 

€ = €(p,T). There is, of course, no guarantee that the two expressions for L(r) 

will be similar, and in practice there is almost no similarity if the initial guess for 

the density profile is a simple function. 

A related approach was proposed by Clayton in 1986. The starting point is a 

simple parametrization of the pressure profile P = P(r) within the star. This is 

more successful than the approach based upon an initial choice for the density 

p(r), because the choice for the pressure can be shaped by constraints directly 

imposed by hydrostatic equilibrium. We shall see that the Clayton model can 

yield reasonably correct answers when applied to the sun. 

Pressure inside a star 

The pressure at the centre of the star will greatly exceed the average pressure 

inside the star. For example, the pressure at the centre of the sun is about 

2x 10'© Pa, which is about 200 times the average value given by Eq. (1.7), 

namely 
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(P) =- aa (5.20) 

where Eg, the gravitational potential energy, is 

GM2 Pees (5.21) EGR R. 

In order to model the large variation of the pressure inside a star, we note that 

the pressure gradient is directly constrained by the equation for hydrostatic 

equilibrium (5.1). It is easy to show that this equation implies that the pressure 

gradient tends to zero at the centre and at the surface. Near the centre, where r 

is small, the enclosed mass m(r) is approximately equal to 47r*/3 times the 

central density p., and Eq. (5.1) becomes 

Dorr (5.22) 

Near the surface, where r encloses most of the stellar matter, m(r) is approx- 

imately equal to m(R) or the total mass M, and Eq. (5.1) becomes 

on =-— ove, (5.23) 
dr 4 

Thus, hydrostatic equilibrium demands that the pressure gradient inside a 

star is zero at the centre, that it initially varies linearly with r, but that it 

eventually approaches zero again when the density decreases near the surface. 

The essence of the Clayton model is to guess a simple form for the pressure 

profile inside the star which takes these constraints into account. Such a guess 

can be a reasonable starting point for a stellar structure calculation, particularly 

for a star with a homogeneous chemical composition. 

If the chemical composition of the star is uniform, the variation in the 

pressure should be smooth, as shown in Fig. 5.1. Following Clayton, we shall 

model the pressure gradient inside such a star by the following expression for 

the pressure gradient: 

ot —F Gpbrexp(-P /a?), (5.24) 

where a is a length parameter which is yet to be specified. This expression gives 

an accurate representation of the pressure gradient at small r; see Eq. (5.22). In 
contrast, the representation at large r is very approximate. However, the 
necessary small pressure gradient near the surface of the star will be reproduced 
if the value of the length parameter a is small compared with the radius R of the 
star. This length parameter also fixes the position of the minimum of dP/drata 
distance r = a//2 from the centre of the star. 
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DISTANCE FROM CENTRE r 

PRESSURE GRADIENT dP/dr 

Fig. 5.1 The typical variation in the pressure gradient dP/dr inside a star with a 

homogeneous chemical composition. Near the centre the pressure gradient varies line- 

arly with r, and near the surface it is proportional to p(r)/r? 

The pressure inside the star is obtained by integrating Eq. (5.24) and impos- 

ing the boundary condition of zero pressure at r = R. This gives 

P(r)'= F Gpiat [exp(—1? /a’) — exp(—R?/a’)]. (5.25) 

This representation for the pressure inside a star defines a family of stellar 

models, each specified by particular values of p,, a and R. The corresponding 

expressions for the density and temperature can be found as follows. 

Density and temperature inside a star 

In order to find expressions for the density and temperature, we first calculate 

m(r), the mass of stellar material enclosed by a sphere of radius r. To do so, we 

combine Eqs. (5.1) and (5.2) to give 

which can be integrated to yield 

1 r dP 
G5mr(r) - an | re qo 

If we substitute the expression (5.24) for the pressure gradient, we obtain 
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where x is r/a and 

7 (x) = 6 i x exp(—x?) dx’ = 6 — 3(x* + 2x? + 2) exp(—x’). (5.27) 
J0 

Given this expression for m/(r), it is easy to find the density and the tempera- 

ture inside the star. The density p(r) can be found directly; it is given by 

1 dm x3 exp(—x’) 
No a, 5.28 
PN ae ap pe| B(x) | 28) 

The temperature T(r) requires a knowledge of the equation of state of the 

stellar material. For example, if we assume that the star is supported by an ideal 

classical gas, we can use Eqs. (5.8) and (5.9) to give 

P(r , 2my na oe | 5.29 
ds «ces mpmmmenna ile Sey eae e page 

The density and temperature distributions given by Eqs. (5.28) and (5.29) are 

expected to be more reliable at small r where the prescription (5.24) accurately 

reproduces the pressure gradient. In particular, we can use the small x beha- 

viour of the function ®(x), 

@(x) = |x° Sa PRE des nec (5.30) 
ial 4” 10° i ‘ ; 

to derive the following expressions for the density and temperature at small r: 

5 r 3r Be a Dip ee eli hima ag ey ptr) =e.|1- 354+] and T(r) r= 55+ fevers 

A star with a high central density 

The clayton model simplifies considerably if the mass of the star is concentrated 

towards the centre, so that the central density is much larger than the average 

density. If this is the case, the length parameter a is small compared with the 

stellar radius R, and terms proportional to exp(—a*/R?) can be neglected. We 

note that this is a reasonable approximation when the model is applied to the 

sun; in the next section we shall show that in this case a = Ra /5.4. 

When the parameter a is small, the total mass of the star is simply 
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4 : 3 ee 

M =(R) = EX &(R/a) my Sis (5.32) 

It follows that the average density of the star is about V6(a/R)* pe. Further- 
more, it is straightforward to show that the density at r = a is 0.53p,, and that a 
sphere of radius a contains 28% of the mass of the star. In addition, we can 
obtain a very useful relation between the pressure and the density at the centre 
of the star. Substituting r = 0 into Eq. (5.25) gives a central pressure of the form 

5 

Pes - Gpra. 

If we use Eq. (5.32) to express a in terms of M and p,, we find 

1/3 
ae 2/3_4/3 | 7 (43) Proce | 

where the numerical factor (1/36)'/3 is approximately 0.44. 

This equation predicts a relation between the pressure and density at the 

centre of a star which is expected to be approximately valid for any homo- 

geneous star in which the mass is concentrated towards the centre. Moreover, 

the relation does not depend on the specific value of the parameter a, as long as 

it is small. We note here that other models for stellar structure give a similar 

relation. For example, Eq. (5.33) is roughly consistent with polytrope models of 

stellar structure. A polytrope model with index n is defined by assuming Eq. 

(5.17) and solving the differential equation (5.18). It can be shown that a 

polytrope with index n = 3/2 gives 

P, = 0.48GM7/3 4/3, (5.34) 

and a polytrope with index n = 3 gives 

P, = 0.36 GM*3 4/3, (5.35) 

We also refer the reader to Problem 1.7. In the last part of this problem you are 

asked to show that under very general conditions there is an upper bound for 

the central pressure given by 

1/3 
Pog H GM?) 94/3, (5.36) 

Thus, in many situations, the central pressure needed to support a star is 

approximately given by Eq. (5.33). This equation provides a simple and mod- 

erately reliable way of imposing the condition of hydrostatic equilibrium in a 

stellar structure calculation. We shall use it in Section 5.4 to derive estimates for 
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the minimum and maximum masses for stars. It will also be used in the analysis 

of white dwarfs in Section 6.1. 

5.3 MODELLING THE SUN 

Heat transfer and thermonuclear fusion are the essential ingredients of a model 

of the sun. Realistic solar models take careful account of the chemical composi- 

tion, and the changes in the composition as the sun evolves. This chemical 

composition determines the opacity of the matter within the sun, with some 

elements of very low abundance having a large effect. Energy transport is usually 

governed by radiative diffusion, but convective transport dominates in a zone 

near to the solar surface. The equation of state, i.e. the relation between the 

pressure, temperature and density, takes into account the effects of electron 

degeneracy which begin to become significant near the solar centre; the equation 

of state also takes into account the pressure due to photons or radiation. Finally, 

thermonuclear energy is produced by the reactions of the proton—proton chain 

and, to a lesser extent, by the reactions of the carbon—nitrogen cycle. 

The Standard Solar Model is widely recognized as one of the most realistic 

models of the sun. It provides a framework for the interpretation of all obser- 

vational properties, including the flux of solar neutrinos. A full description of 

this detailed and sophisticated model is given by Bahcall (1989). 

But the purpose of this section is less ambitious. It is to obtain a rough 

understanding of the sun in terms of the Clayton model which is based upon 

the prescription (5.24) for the pressure gradient. This prescription is not appro- 

priate for today’s sun. Hydrogen burning during the last 5 billion years has led to 

a composition which changes abruptly near the centre of the sun. As a result, 

there is an abrupt change in the density and in the pressure gradient. However, 

the prescription for the pressure gradient is a reasonable starting point for a 

model of the early, chemically homogeneous sun. Such a simple model is very 

crude by the standards set by realistic models. But despite this, we shall see that it 

gives a useful insight into the variation of the pressure, density and temperature 

inside the sun. Moreover, we shall show that it yields the correct order of 

magnitude for the solar luminosity in two independent ways, firstly by assuming 

the release of nuclear energy by the reactions of the proton—proton chain, and 

secondly by assuming heat transport by radiative diffusion. 

Pressure, density and temperature 

Following Clayton (1986), we shall compare the predictions given by the simple 
model with the numerical results of a stellar structure calculation by Strémgren; 
these numerical results for a chemically homogeneous sun are tabulated in 
Table 6.5 of Clayton (1983). In particular, Strémgren obtained the following 
results for the pressure, density and temperature at the solar centre: 
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e=1.65x 10" Pa, pe =9.0x10'kgm—= and T.=13.7x 108 Ky 5.37) 

As indicated by Eq. (5.25), the clayton model is specified by three parameters: 
the central density p., the length parameter a and the radius R. For a star witha 
high central density we can use Eq. (5.32) to express the length parameter a in 
terms of the mass M and central density p.. Thus to model the sun we take 
R= Ro and M = M,, and p. equal to Stromgren’s value of 9 x 104 ke m7. 
This implies that the length parameter is a = R- /5.4. 

According to Eq. (5.33), the central pressure needed to support a star of high 
central density p. and mass M ; is 

P. © 0.44GM2/3 94/3, (5.38) 

This gives a central pressure P. = 1.9 x 10!© Pa, which is slightly higher than 
Stomgren’s value of 1.65 x 10!° Pa. To calculate the central temperature, we 
assume that the matter at the centre of the sun is an ideal classical gas with 
hydrogen and helium mass fractions of X; = 0.71 and Y4 = 0.27. This assump- 
tion yields a central temperature T. = 16 x 10° K. 

To find the variation in the pressure, density and temperature inside the sun, 
we adopt the appropriate value for the length parameter, a = Rj /5.4, then use 
Eqs. (5.25), (5.28) and (5.29) to give the results illustrated in Fig. 5.2. This figure 
shows impressive agreement between the results obtained from Clayton’s sim- 
ple model and obtained by Strémgren’s results numerical solution of the 
equations of stellar structure. 

The solar luminosity 

The temperature and density distributions illustrated in Fig. 5.2 can be used to 

estimate the luminosity of the sun in two independent ways. First, we can 

integrate Eq. (5.4) and relate the luminosity to the total power due to thermo- 

nuclear fusion. Second, we can use Eq. (5.3) and estimate the power flow that 

can be achieved by radiative diffusion. These two estimates should agree with 

each other. Indeed, in practice the highly temperature-dependent nuclear reac- 

tions in the sun adjust themselves so that the nuclear power generated equals 

the power lost by radiative diffusion towards the surface. Furthermore, these 

estimates for the luminosity should be comparable to the computed luminosity, 

which is about 3 x 107° W for the early homogeneous sun. 
To find the solar luminosity due to thermonuclear fusion, we assume that 

nuclear energy is generated by the reactions of the proton—proton chain in 

accordance with Eq. (5.15). In fact, the power produced by the proton—proton 

chain was slightly lower in the early sun because branch II of the chain was less 

effective when the helium-4 abundance was lower. If we substitute a slightly 

modified Eq. (5.15) into Eq. (5.4) and integrate, we obtain 
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PRESSURE (104 Pa) 
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DENSITY (10° kg m™) 

TEMPERATURE (10° K) 

RADIUS (10° m) 

Fig. 5.2 The pressure, density and temperature in a homogeneous sun with X; = 0.71 
and X4 = 0.27. The broken lines represent the results of a computer solution by B. 
Stromgren; see Table 6.5 of Clayton (1983). The solid lines correspond to the simple 
Clayton model described in Section 5.2 with a = R3/5.4 =1.29 x 108 m. 
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F »R: 

[oa = 84x 10 x9 | 4nr*[p(r))[T(r)}* dr. (5.39) 

If the density and temperature are given by Eqs. (5.28) and (5.29), we find 

Big = 814 10" Aras? TA 7, (5.40) 

where / is the integral 

rey fea /a $7 (x) ee) dx. 

0 rt 

To evaluate this integral we use the expansion (5.30) to give 

- - x », / Ne 

If a is small compared with R=, the upper limit of the integral may be extended 

to infinity to give a series of integrals. Each term in the series can be evaluated 

by using the standard integral 

vi exp(—ax’) dx = (1/4a)!/”, 
0 

and the integrals obtained by differentiation with respect to a. If the series is 

summed numerically, we find that 

I = 0.078(x/2)'. (5.41) 

Substitution of this result into Eq. (5.40) gives 

(Pe KIS Saale yon Be 
cc 

If we use Eq. (5.32) to express a in terms of the mass and central density of the 

sun, we find 

a 

Arv/6 
Pye MgX7p.T: (5.42) 

In order to obtain a numerical value, we insert X; = 0.71, pe = 9.0 x 104 kg 

m~} and T, = 16 x 10° K into Eq. (5.42) to give a solar luminosity of about 

5 x 1026 W. This estimate based on thermonuclear fusion by the proton—-proton 

chain should be compared with 3 x 107° W, the luminosity for the early, 

homogeneous sun given by computer calculations. 
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Heat transport by radiative diffusion provides a second way of estimating the 

solar luminosity. Only a rough estimate can be obtained. This is because 

the model makes no attempt to constrain the temperature gradient to ensure 

the heat flow is in accordance with the power generation within the sun; for 

example, the divergence of the heat flow should go to zero as the power 

generation falls off with increasing distance from the centre. Moreover, the 

model becomes increasingly poor at large distances, and the power flow L(r) 

can only be equated to L for values of r beyond the central power-generating 

region. Nevertheless, we shall see that the model can still give a useful estimate 

for the solar luminosity due to the radiative diffusion of heat. 

The relation between the temperature gradient and the power flow due to 

radiative diffusion in a star is given by Eq. (5.3). In order to avoid confusion 

between the length parameter a of the Clayton model and the radiation con- 

stant, which is also denoted by a, we express the radiation constant in terms of 

Stefan’s constant 0, which equals ac/4. Rearranging Eq. (5.3) then gives an 

outward power flow at radius r of the form 

,  16c4nrP (T(r) dT 
Linen RO) ae (5.43) 

We shall consider power flow in a central region of the sun where r is small so 
that the density and temperature are given by Eq. (5.31). If the opacity obeys 
Kramers’ law (5.14), its value at a small distance r from the centre of the sun is 
given by 

Lie o(r) & Ke l as ane ft” 

mA = eal 

where k, is the opacity at the centre of the sun. The temperature gradient can be 
obtained by differentiating the series for T given in Eq. (5.31). If we only retain 
terms of order r?/a’, we find that Eq. (5.43) yields the following approximation 
for the power flow at a small distance r from the centre of the sun: 

{bel 19 7 
Dir) ss 16 “ _ , (r) To naa [ ea (5.44) 

If we insert p, = 9.0 x 10* kg m-3, T. = 16 x 10° K and the appropriate value 
for the opacity at this density and temperature, «= 0.14 m2 kg~!, and use 
a = Ro/5.4 we obtain 

3 2 

L(r) = 3 x 1029 [ tty: a W. 5.45 RS R Sy) 
As expected, the power flow initially increases with r, but it does not approach a 
constant value as it would in a more realistic model. Despite this shortcoming, it 
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is encouraging to note that, when r is R5/10, the outward power flow given by 
Eq. (5.45) reaches 2 x 1076 W. Thus, the order of magnitude of the power flow 
due to radiative diffusion is comparable with 5 x 1076 W, our estimate of the 
solar luminosity due to thermonuclear fusion. In a realistic model of the sun, 
the power generated by thermonuclear fusion is precisely that necessary to 
supply the power transported towards the surface. If it were not, the sun 
would contract or expand until it reached the correct value. 

5.4 MINIMUM AND MAXIMUM MASSES FOR STARS 

In practice most main sequence stars have a mass in the range from about 

0.1M. to about 50M... Two questions immediately arise: What fundamental 

constants of nature determine the order of magnitude of the mass of a main 

sequence star? And why is the range in mass so limited? These questions were 

briefly considered in Chapter | and will now be considered in more detail. In 

this section we shall see that if the mass is significantly smaller than the solar 

mass, gravitational contraction will result in an internal temperature which is 

insufficient to ignite thermonuclear fusion and create a genuine star. We shall 

also see that if the mass of the star greatly exceeds the solar mass, then radiation 

pressure becomes dominant. As a result, the binding energy of the star is small 

and any small energy loss or gain is accompanied by large changes in the 

thermal kinetic energy and gravitational potential energy; in other words, the 

hydrostatic equilibrium of the star becomes precarious. 

The key ingredient in the calculation of minimum and maximum stellar 

masses is the condition for hydrostatic equilibrium. We shall impose this con- 

dition in a simple and approximate way by focusing on the pressure at the centre 

of a star. To do so, we recall Eq. (5.33). This states that the central pressure and 

density of a star of mass M in hydrostatic equilibrium are related by 

1/3 
P. & el GM7/ 94/3, (5.46) 

a relation which is approximately true for any chemically homogeneous star, in 

which the mass is concentrated towards the centre so that the central density 

greatly exceeds the average density. The pressure given by Eq. (5.46) is the 

central pressure needed to support the star. We shall see that expressions for the 

minimum and maximum masses of stars can be found by examining the source 

of this pressure. 

Minimum mass of a main sequence star 

In order to achieve stardom, a contracting system must be sufficiently massive 

to generate a central temperature which is high enough for thermonuclear 
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fusion to supply the energy loss from the surface. To derive the minimum mass 

needed to reach this ignition temperature, we consider a contracting cloud of 

ionized gas with mass M. 

Initially, the energy lost from the surface is supplied by gravitational con- 

traction. The pressure is low and, to a first approximation, the electrons and 

ions form an ideal classical gas so that the central pressure and temperature are 

related by 

Pawel (5.47) 
m 

where m = 2my/[1 + 3X1 + 0.5X4] is the average mass of the gas particles; see 

Eqs. (5.8) and (5.9). If the pressure generated by the ideal gas is close to the 

pressure needed to support the system, the contraction is slow and the cloud is 

in a state close to hydrostatic equilibrium. Equating the pressures given by Eqs. 

(5.46) and (5.47) gives the following expression for the central temperature 

during this period of slow contraction: 

1/3 

kT. © Z| GmM2/3 p}/3. (5.48) 

We see that the temperature rises steadily as the density of the contracting gas 

cloud increases. 
The temperature of a contracting cloud will continue to rise until either a 

substantial amount of energy is released by thermonuclear fusion, or the 

electrons at the centre become degenerate. In the former case, nuclear energy 

alone can supply the energy loss from the surface, thereby removing the need 

for contraction and the release of gravitational energy. In the latter case, 

electrons occupy the lowest possible energy states in accordance with the 

Pauli exclusion principle; these electrons resist compression and support the 

mass. Thus, true stardom will not be possible if the electrons become degenerate 

before the ignition temperature for thermonuclear fusion is reached. 

To estimate the maximum temperature achievable at the centre of a contract- 

ing gas cloud, we shall assume that a stage is reached in which the electrons at 

the centre are fully degenerate and the ions are classical. At this stage the central 
pressure is given by 

P, = Kyran? + njkT>, (5.49) 

where the constant Kye is given by Eq. (5.10). The number densities for the 
electrons and ions can be expressed in terms of the central density using 
Eqs. (5.6) and (5.7). However, in order to simplify the algebra, we shall assume 
the mass is entirely composed of hydrogen so that n. = n; = p./my. In this case 

5/3 
P. = Kyr | beolea al (5.50) 
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Again, hydrostatic equilibrium is achieved if this pressure equals the 
pressure needed to support the mass. Equating the pressure given by Eq. 
(5.50) to the pressure given by Eq. (5.46) leads to a central temperature given 

by 

a 1/3 : ats 

kT, & =| Gna — Kye) P) (5.51) 

Equation (5.51) gives the central temperature in a contracting mass of hydro- 

gen at a stage when the electrons at the centre are fully degenerate and the ions 

are classical. In contrast with Eq. (5.48), there are two terms. The first is 

associated with the classical ions and the second with the degenerate electrons. 

The second term becomes important at high density, and when it does, the 

temperature will cease to rise quickly as the mass contracts. This behaviour is 

illustrated in Fig. 5.3, which shows how the temperature at the centre of a 

contracting cloud with mass M./16 varies as the density increases. As expected, 

the temperature initially rises as p, increases. However, the temperature 

increases less quickly as the pressure due to degenerate electrons becomes 

more important; eventually the degeneracy pressure is dominant and the tem- 

perature ceases to rise. To find the maximum value of the temperature, we 

rewrite Eq. (5.51) in the form 

kT, = Api? — Boz”. 

CENTRAL TEMPERATURE (10° K) 

a 

20 40 60 
CENTRAL DENSITY (10° kg m™*) 

Fig. 5.3. The temperature at the centre of a contracting cloud of hydrogen with mass 

M,/16 as a function of the central density 
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Elementary calculus then shows that kT, reaches a maximum of A*/4B ata 

density of (A/2B)°. Substituting for A and B, we find that the maximum 

temperature reached at the centre of a contracting mass of hydrogen 1s 

2/3 G2 8/3 

Ah ee se polls HY lS (5.52) 
36 4Kwr 

A less accurate version of this equation was derived in Chapter 1; see Eq. (1.28). 

We can now impose the condition that the contracting mass achieves star- 

dom. This condition is that the maximum central temperature reaches the 

ignition temperature for the thermonuclear fusion of hydrogen. If we denote 

this ignition temperature by Tjgn, we find that the minimum mass for a genuine 

star is given by 

sa Rees oles 
M nin x | 5 373 [kT en | (5.53) 

m “My 

In fact, the ignition temperature of a material depends on its environment. It is 

the temperature at which the power produced in a particular region begins to 

match the power that escapes from the region. When this occurs the region gets 

hot and the ‘fire’ spreads. If we take the ignition temperature for hydrogen to be 

about 1.5 x 10° K, one-tenth of the central temperature of the sun, Eq. (5.53) 

gives a value of 0.05Mq for the minimum mass of a star; more accurate 

calculations give values closer to 0.08M >. 

Maximum mass of a main sequence star 

We recall from Section 1.2 of Chapter 1 that the hydrostatic equilibrium of a 

star becomes precarious if the pressure preventing gravitational contraction is 

supplied by a gas of ultra-relativistic particles. This implies that a star could be 

easily disrupted if radiation becomes the dominant source for the internal 

pressure. This general property sets an upper limit to the mass of a main 

sequence star. To derive this limit, we consider the pressure due to electrons, 

ions and photons at the centre of a hot, massive star and compare it with the 

pressure needed to support the star. 

We assume that the electrons, ions and photons are in thermal equilibrium at 

a temperature 7, and a density p, at the centre of the star. The central pressure 

P, is the sum of a gas pressure P, due to electrons and ions, and a radiation 

pressure P, due to photons.' At high temperature and low density, the electrons 

and ions form an ideal classical gas with a gas pressure given by 

' Of course radiation pressure can be thought of as a pressure due to a gas of photons. Despite this 
we will follow custom at this stage and use the adjective gas to describe the pressure due to 
electrons and ions. 
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P, = kT. (5.54) 

According to Eq. (5.12), the photons form an ideal quantum gas with pressure 

1 
P, = 3aTp. (5.55) 

It is convenient to describe the fractional contributions of gas and radiation 
pressure to the total pressure P. = P, + P, by introducing the parameter 3. We 
take 

fe= PP. and Py= (i = 6)\P.. (5.56) 

It is then straightforward to eliminate T. from Eqs. (5.55) and (5.54) and 
express P. in terms of (3 and p, to give 

Uist 4/3 
p= [pO | . (5.57) 

a m 

Again, hydrostatic equilibrium is achieved if this pressure equals the pressure 
needed to support the star. Equating the pressure given by Eq. (5.57) to the 
pressure given by Eq. (5.46) leads to 

Sa he 3(1—B) 1/3 K143 
att Sis | ees ae 

=] a E 4 | Fi Soa 

We recall that (1 — 3) and @ are the fractional contributions of ‘radiation’ and 

‘gas’ to the central pressure; by definition both are less than one. We note from 

Eq. (5.58) that M, the mass of the star, determines (@ and that @ decreases as M 

increases. Hence the radiation pressure P, = (1 — 3)P. is more important in 

stars with a large mass. We illustrate this in Fig. 5.4, which plots P,/P. as a 

function of the mass of the star; a value of 0.61 amu has been taken for mi. 

We recall from Chapter | that the binding energy is small for a star supported 

by a pressure due to the random motion of ultra-relativistic particles such as 

photons. Moreover, the release or the absorption of a small amount of energy 

in such a star is accompanied by large changes in the internal kinetic energy and 

gravitational potential energy. It follows that radiation pressure has a destabil- 

izing effect on massive stars. In practice the increasing importance of radiation 

pressure in massive stars illustrated in Fig. 5.4 imposes an upper limit on the 

mass of main sequence stars. An estimate of about 100 M.; for the maximum 

mass of a main sequence star can be obtained from Eq. (5.58) by requiring 

(1 — 8) to be less than 0.5; this corresponds to assuming that not more than 

50% of the pressure at the centre of the star is due to radiation. In fact, stars 

with a mass greater than 50M.j are very rare. 
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RADIATION PRESSURE FRACTION 

20 40 60 80 100 

MASS IN SOLAR MASSES 

Fig. 5.4. The fractional contribution of radiation pressure to the gas pressure at the 

centre of a star of mass M. Note that radiation pressure becomes increasingly important 

in more massive stars 

A fundamental unit for stellar masses 

We have seen how lower and upper limits for stellar masses are imposed by the 

need for thermonuclear fusion and by the destabilizing effect of radiation 

pressure. A lower limit can be found from Eq. (5.53) and an upper limit from 

Eq. (5.58). The range of masses for main sequence stars is surprisingly small, 

typically from about 0.1M, to about 50M. Thus, the solar mass seems to be a 

convenient unit for the mass of all main sequence stars. We shall now re- 

examine these results and identify the fundamental constants of nature which 

actually fix the mass of a main sequence star in the region of a solar mass. 

To begin with, we shall introduce a dimensionless measure of the strength of 

the gravitational interaction between two nucleons. Because the average mass 

of a neutron and proton is almost equal to the mass of a hydrogen atom, we 

shall denote the nucleon mass by my. The gravitational potential energy of two 

nucleons at a distance r is —Gm;,/r. The magnitude of this energy for nucleons 

separated by a fundamental distance ii/myc, in units of the fundamental rest- 
mass energy myc’, is 

Gm . 
op rH = 5.9 x 1079, (5.59) 

1C 

This small dimensionless number is a measure of the strength of the 

gravitational interaction between nucleons. A corresponding measure for the 
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strength of the electromagnetic interaction is the fine — structure 
constant, a = e7 /(4rr€o hc) = 1/137. Because we have usually used Planck’s 
constant in this book, we point out that the definitions of ag and a involve h 
or h/2r. 

The minimum mass of a main sequence star is given by Eq. (5.53). This 
equation contains the constant Kye which depends on Planck’s constant and 
the mass of the electron as shown in Eq. (5.10). If we use Eq. (5.10), we find that 
the minimum stellar mass can be rewritten as 

Kita vis —3/2 Minin © 16 | ag my. (5.60) = 
MeC- 

If we take Tign to be about 1.5 x 10° K, one-tenth of the central temperature of 
the sun, we find 

Mynin © 0.0306 °/>my. (5.61) 

An estimate for the maximum mass of a main sequence star can be obtained 
from Eq. (5.58) by requiring (1 — 3) to be 0.5: this corresponds to assuming that 
50% of the pressure at the centre of the star is due to radiation. Using Eq. (5.12) 
to relate the radiation constant a to Planck’s constant and the velocity of light, 
and assuming that the average mass ™ is 0.61, we find a maximum mass 
given by 

Mrnax © 5605)? my. (5.62) 

In view of Eqs. (5.61) and (5.62), we introduce the mass 

mg = 5.63 M, =ag "my = 1.85Mo, (5.63) 

and identify this mass as a fundamental stellar mass which determines the 

mass scale of main sequence stars. It depends solely on the mass of the 

nucleon and the dimensionless strength of the gravitational interaction between 

nucleons. A_ stable, long-lived main sequence star occurs if Mx M,, 

thermonuclear fusion is not ignited if M << M,, and radiation pressure desta- 

bilizes if M >> M,,. In view of this, it is no accident that the mass of the sun 1s 

comparable with M,. Finally, the role of M, as a fundamental stellar mass 

indicates that the number of nucleons in a typical star is solely determined by 

ag. This number is 

N, =— = 0g" =2 x 10°”, (5.64) 
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SUMMARY 

Preamble 

e Stellar structure calculations are based on four fundamental equations, 

Eqs. (5.1) to (5.4), which describe hydrostatic equilibrium, mass conserva- 

tion, heat transport and power generation within a star. These equations are 

differential equations for four unknown functions P(r), m(r), T(r) and L(r). 

They can be solved, in principle, if they are supplemented by an equation of 

state for the stellar material and expressions for the opacity and power 

generation. 

A simple model for a star 

e Insight into some of the features of stellar structure can be obtained by 

assuming the following simple analytic form for the pressure gradient: 

4; 2 a) 
roe — * Gerexp(—r/a). (5.24) 
dr Sule -<3 

This expression describes the pressure gradient correctly at small r and very 

approximately at large r. Once the mass, radius and central density of the star 

are specified, the parameter a is fixed and simple expressions can then be 

obtained for the density within the star; see Eq. (5.28). The temperature 

distribution can also be found if the equation of state is known; see Eq. (5.29). 

e Whenever the mass of the star tends to concentrate towards the centre, there 

is a simple relation between the pressure and the density at the centre of the 

star given by 

1/3 

P, | GM2/3 94/3, (5.33) 

Other models give very similar relations. This pressure—density relation can 

be used as a simple and direct way of imposing the condition of hydrostatic 
equilibrium, as in Section 5.4, in order to estimate the minimum and max- 
imum masses of main sequence stars. 

Modelling the sun 

e The pressure, density and temperature within the sun can be roughly repro- 
duced by assuming a structure derived from the pressure gradient (5.24); see 
Bigvow: 
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e The solar luminosity can be estimated by considering thermonuclear fusion and 
by considering heat transport by radiative diffusion. In both cases the estimates 
are comparable with the observed luminosity; see Eqs. (5.42) and (5.45). 

Minimum and maximum masses for stars 

e A fundamental stellar mass can be defined by 

M, = a4)" mg = 1.85Mo, (5.63) 

where ag is a dimensionless measure of the strength of the gravitational 

interaction between two nucleons, ag = Gmj,/fhc. This fundamental stellar 

mass is the natural unit for all stellar masses. It corresponds to a star 

containing 2 x 10°’ nucleons; see Eq. (5.64). 

e A contracting cloud of hydrogen achieves true stardom and ignites the 

thermonuclear fusion of hydrogen if its mass is greater than a mass given 

by Eq. (5.53). This minimum mass corresponds to 

Min = 0.03.M,. (5.61) 

e If the mass of a star exceeds a maximum value given by 

Mmax © 56M,, (5.62) 

the internal radiation pressure dominates the gas pressure, and the hydro- 

static equilibrium of the star becomes precarious. 

PROBLEMS 5 

5.1 Consider a star of mass M and radius R in which the pressure gradient is given 

by 

where a is a length parameter and p, is the central density; see Eq. (5.24). Derive 

an expression for the gravitational potential energy Ege of the star by using the 

virial theorem (1.7). Show that if the length parameter a is small compared with 

the radius R, the gravitational potential energy is approximately 

eg mw ROM? 
GA 7 AR 
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5.2 Consider a family of chemically homogeneous stars which are similar in every 

respect except for their masses and radii. The similarity of the stars is such that, 

for any member of the family with mass M and radius R, the density at distance 

r from centre can be written as a function of x = r/R in the following way: 

M 
=a F(x), p(r) 

where the function F’,(x) is common to the entire family. In a similar way, the 

mass enclosed by a sphere of radius r within the star can be written as 

WAT MELE), 

where, again, the function F,,,(x) is common to the family. 

Assume that the equation of state for the stellar material is the ideal classical 

gas equation, that the opacity of the material obeys Kramers’ law (5.14), and 

that nuclear energy is generated by the proton—proton chain in accordance with 

Eq. (5.15). Use the fundamental equations of stellar structure, (5.1) to (5.4), to 

derive the following scaling relations for the pressure, the temperature, the 

power flow due to radiative diffusion and the power flow due to nuclear fusion: 

Ma 

POF Re F,(x) 

T(r) — a F(x) 

M>5 

Lead\T) a “ROS Fad(x), 

6 M 
Lyus(r) = RT Felt), 

where, again, the functions are common to the family. 
Note that the power flow due to radiative diffusion increases slowly and the 

power flow due to nuclear fusion increases rapidly as the star contracts. In fact, 
this rapid increase in the fusion power only occurs after the central temperature 
reaches a value in the neighbourhood of 10 million degrees. By sketching these 
power flows as a function of the radius R, illustrate how stars belonging to this 
family will contract until they reach radii and luminosities which are approxi- 
mately given by 

Ra M°°"" and La M**5. 

Finally, show that this family of stars will lie along a line on the Hertzsprung— 
Russell diagram given by 

Lex TE, 



2.3 

5.4 
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where 7 is the effective surface temperature. 

Consider a family of stars in which the opacity is dominated by Thomson 

scattering by electrons,,and in which nuclear energy is generated by the 

carbon-nitrogen cycle. This implies that the opacity is independent of the 

density and temperature (see Eq. (5.13)), and that the rate of nuclear energy 

production is proportional to p*7'* (see Section 4.2). In analogy with Problem 
5.2, find for this family of stars a relation between the radius and the mass, and 

a relation between the luminosity and the mass. Find also the line on the 

Hertzsprung—Russell diagram describing the luminosity and effective surface 

temperature for these stars. 

Under very general conditions the central pressure P, supporting a star of mass 

M satisfies the inequality 

7 se a) r< (Flown 
where p, is the central density; see Problem 1.7. Assume that part of this 

pressure, denoted by (P-, is due to an ideal, classical gas of electrons and ions 

with average mass m, and assume the remaining pressure, denoted by (1 —) Pe, 

is due to radiation. Show that the above inequality can be used to derive an 

upper bound for the quantity (1—3)3*. Use this bound to set limits on the 

fraction of the pressure due to radiation at the centre of stars of masses Mo, 

4M, and 40 M.. 



u 

\. 

aie tcl) Le » 

; 
1h “TH” 19| | 

i nraqrioy 

} 
. ga! v uw VOY rebireJ he 

z faite W 

. oq! 

bs . ent 

; 7 ~ ath 

i | / «4 
af ae a e 2 Meg teh sian Lee ea apeez) Shi wi - au" bua (irran'y) ale ial “ns ¢ Pe ion nal ‘oa a i" 

7 fart ti 1} PE Bvteniob OPIN Lip i) i ee: lbhewe berm soon? gerry di 
MOR ONE 4 Nt7 VNeupellly suis ayy MY 6) nO tence ot sob a _ SR OG BITE > tee) pals ey ‘GR -~1) os aps lt ol eae) ae - : 
~~ WA Poet 1 “Th 



6 
The endpoints of stellar 
evolution 

A star passes through several stages of nuclear burning each of which postpones 
gravitational contraction. It also loses weight by a variety of mechanisms by 

ejecting matter into outer space. Eventually, nuclear fusion at the centre of the 

star can no longer supply enough energy to sustain a high thermal pressure and 

the star contracts under gravity. A compact object is formed which can be a 

white dwarf, a neutron star or a black hole. We shall begin this chapter by 

considering white dwarfs, compact stars largely supported by the pressure of 

degenerate electrons. Most importantly, we shall show that the mass of a white 

dwarf cannot exceed the Chandrasekhar limit of about 1.4M.. We shall give an 

introduction to the physics of neutron stars, compact objects which are largely 

supported by the pressure of degenerate neutrons, and consider the processes 

that lead to their formation. In particular, we shall address the crucial issue of 

the maximum mass of a neutron star and why we believe that all compact 

objects which exceed this mass must be completely collapsed objects whose only 

manifestations are intense gravitational fields. These disembodied remnants of 

matter are called black holes. 

6.1 WHITE DWARFS 

The sun will pass through its hydrogen burning phase and then a helium 

burning phase to form a star with a carbon—oxygen core surrounded by an 

envelope of helium and hydrogen. The temperature of the carbon—oxygen core 

will then increase as the core contracts under gravity. The increasing temperat- 

ures will accelerate the rate of helium burning in a shell surrounding the core, 

and the envelope will expand and drift away to form a planetary nebula. But the 

contraction of the core is unlikely to result in the high temperature needed to 

burn carbon. The core, having lost its envelope, is expected to emerge as a hot 
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white dwarf. As this white dwarf cools, the pressure generated by the thermal 

motion of the ions will become less important and eventually a pressure due to 

degenerate electrons will provide the bulk of the pressure needed to support the 

star. 

Mass and central density 

We begin by considering the relation between the density at the centre of a 

white dwarf and its mass. To obtain this relation, we first write the number 

density for electrons at the centre of the star in terms of the central density p, in 

the following way: 

ey le (6.1) € 9 

my 

where Y, is the number of electrons per nucleon; according to Eq. (5.6), Yz is 

approximately [1 + X,]/2. We now assume that the star is supported by the 

pressure of a gas of non-relativistic, degenerate electrons. This pressure is given 

by Eq. (5.10) which may be rewritten as 

(6.2) 
¥.0.153 

P = Kyan’!? = Kyr | | , 
H 

If we equate this to the central pressure needed to support the star, which is 

given approximately by Eq. (5.33), we obtain 

Ye 5/3 yaa 
ere a 2/3 4/3 Kye ae e | GM?)3 94/3, (6.3) 

Rearranging this equation and using the expression for Kyr given in Eq. (5.10) 
leads to the following prediction for the density at the centre of a cold white 
dwarf of mass M: 

pn MT mt (6.4 °" Y5 |My4 (h/mey?’ 4) 

where M, is the fundamental stellar mass defined by Eq. (5.63), i.e. 

M, = ag)?my = 1.85Mo.’ (6.5) 

In deriving Eq. (6.4), we have assumed that the white dwarf is supported by 
the pressure of a gas of non-relativistic, degenerate electrons. However, we saw 
in Section 2.2 that degenerate electrons become relativistic when the number 
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density of electrons is large compared with (m.c/h)°. In fact, the Fermi momen- 

tum of the electrons, which is given by Eq. (2.27), equals m.c when the number 

density is (87/3)(m.c/h)*. We conclude that the electrons in the white dwarf 

will be relativistic if the density is large compared with my/(h/mec)’. It follows 

that the non-relativistic Eq. (6.4) can only be valid if the mass M of the white 

dwarf is small compared with M,. 

As an example, we consider a carbon white dwarf of mass 0.4M.. The central 

density predicted by Eq. (6.4) is then 4.6my/(h/mec)’, or about 

5.4x 108 kg m~-?. At this density, electrons have a Fermi momentum of 

0.65m-c and a Fermi kinetic energy of 0.19m,c*. Hence the use of non-relat- 

ivistic kinematics is, at best, a rough approximation. It is clear that for white 

dwarfs more massive than 0.4M., one must completely take into account the 

effects of relativity in evaluating the pressure of the degenerate electron gas. 

When relativity is taken into account, the calculated central density of a white 

dwarf is higher than that predicted by Eq. (6.4). In particular, the density, 

considered as a function of the white dwarf mass M, increases more rapidly 

than M?. This arises because, as the density increases and the electrons become 

more relativistic, the equation of state is modified. In fact, when the electrons 

become ultra-relativistic at densities very large compared with my/ (h/mec)’, 

the non-relativistic equation of state (6.2) is replaced by 

P= Kurni? = Kur en A (6.6) 

where the constant Ky is determined by the fundamental constants h and c as 

indicated in Eq. (5.11). If this pressure due to ultra-relativistic electrons sup- 

ports a star of mass M, then 

YePec nae Tv ane 4/3 (6 7) 
doa nt he ean CA pen 

my 

In the context of a model where a white dwarf is solely dependent on degenerate 

electrons for its support, this equation should be viewed as an equation for the 

mass of the white dwarf whose central density is very large compared with 

my/ (h/mec)’, in effect a central density which tends to infinity. This mass is 

called the Chandrasekhar mass. Because the density cancels in Eq. (6.7), this 

mass is determined by Y, and fundamental constants like G, my and Kyp. It 1s 

given by 

van ES TT My G 

If we express the constant Kya in terms of h and c by using Eq. (5.11) and recall 

the definition (6.5) of the fundamental stellar mass M,, we find that 
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Mcn © 2.3Y2M, =4.3Y? Mo. (6.9) 

To understand the significance of the Chandrasekhar mass, consider a 

sequence of white dwarfs with increasing mass. As the mass increases, the 

degenerate electrons at the centre of the star become increasingly relativistic. 

When the mass is small, the central density will increase with mass in accord- 

ance with Eq. (6.4). As the mass becomes larger, the density increases 

more rapidly and, when the mass reaches Mcy, the density must daehe 

infinity. In reality the density becomes large compared with my/(h/m-.c)”, the 

star collapses and new physics must be sought to explain what fapipans 

next. For the moment, the only firm conclusion we draw is that a degenerate 

electron gas cannot support a star with mass larger than the Chandrasekhar 

mass. 

The physical significance of the Chandrasekhar mass can be made clearer by 

considering a more general model for a white dwarf. So far we have considered 

two extreme models based on Eqs. (6.2) and (6.6); namely, a star supported by a 

low density gas of non-relativistic, degenerate electrons, and a star supported by 

a high density gas of ultra-relativistic, degenerate electrons. We shall now 

consider a model which incorporates both the non-relativistic and the ultra- 

relativistic extreme. To do so, we consider a star supported by a degenerate gas 

of electrons whose kinematics are described by the exact relation between the 

energy and momentum, 

€ == mc re. (6.10) 

The pressure in such a gas can be obtained by using Eq. (2.13) and by noting 
that the velocity of a particle with momentum p is v, = pc?/e,. Because all the 
electrons in a degenerate gas fully occupy all the states with a momentum less 
than the Fermi momentum pr, the pressure is given by 

1 2 eC 
Si 6 ar ' “FX ep where g(p)dp ran Arp? dp. (6.11) 
Wh 

If we introduce dimensionless momenta x = p/m,.c, we obtain 

_ 8amic =f" i q 

The upper limit of the integral is the dimensionless Fermi momentum x-, which 
according to Eq. (2.27) is given by 

ie ie cin Aamo EW Ge ae 
~ | 8r| mc Samy (6.13) 

MeC 
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Some integration and a bit of tidying-up leads to the following expression for 
the pressure: 

P = Kygni?I(x;p), (6.14) 

where 

° 
2 k Bey 

I(x) = a xc ye(S - 1) + In[x + (1 4+.x?)'/}/, (6.15) 

Because we have used Eq. (6.10), the exact relation between energy and 
momentum, Eq. (6.14) gives the pressure due to an ideal degenerate electron 
gas of any density. This pressure is expressed in terms of the dimensionless 
Fermi momentum xr, which according to Eq. (6.13) depends on the density. At 
high density the Fermi momentum is large and xf >> 1. In this case the 
integral (x) tends to 1 and Eg. (6.14) gives a pressure in agreement with 
Eq. (6.6), the pressure of a gas of ultra-relativistic, degenerate electrons. At low 
density the Fermi momentum is small and x¢ << 1. The integral I(xp) now 
tends to 4x¢/5 and Eq. (6.14) gives a pressure in agreement with Eq. (6.2), the 
pressure in a non-relativistic, degenerate gas. 
We can now consider the hydrostatic equilibrium of a star supported by 

electrons which form an ideal degenerate gas of any density. If we equate the 
pressure given by Eq. (6.14) to the pressure needed to support a star of mass M, 
we obtain 

Vopohir tlds 2/3 4/3 Kur|—="| 1(xr) ¥ |ze | GM7 (fl3, (6.16) 
mu 

which can be rearranged to give the following expression for the mass of the 
star: 

M & [I(xp)|*?M cu, (6.17) 

where the Chandrasekhar mass Mcy is given by Eq. (6.9). 

Equation (6.17) gives the mass of a white dwarf in terms of x, which in turn 

depends on the central density p, via Eq. (6.13). Conversely, it gives the central 

density of a white dwarf with mass M. The results of an elementary calculation 

based on Egs. (6.17) and (6.13), with Y, = 0.5, are shown in Fig. 6.1. As 

expected, the central density increases as the mass of the white dwarf increases. 

Initially, the increase is in accord with Eq. (6.4), which is valid when the 

degenerate electrons are non-relativistic. The density then increases more 

rapidly as the electrons become relativistic. Finally, as the mass approaches 

the Chandrasekhar mass, the electrons become ultra-relativistic and the density 

approaches infinity. 
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Fig. 6.1 The density at the centre of a white dwarf of mass Msupported by the pressure 

of an ideal gas of degenerate electrons. Note the density tends to infinity as the mass 

approaches the Chandrasekhar mass Mcy 

Our estimate (6.9) for the magnitude of the Chandrasekhar mass is based 

upon the approximate relation between the central density and pressure given 

by Eq. (5.33). A more accurate estimate can be made if we use a polytrope 

model in which the relation between the density and pressure throughout the 

star is given by P(r) « [o(r)*, a relation which is consistent with Eq. (6.6), the 

pressure of a gas of ultra-relativistic, degenerate electrons. In this case the 

numerical factor in Eq. (5.33), which equals 0.44, is replaced by 0.36 and the 

value of the Chandrasekhar mass is predicted to be 

Mcy © 3.1Y2M, =5.8Y;Mo. (6.18) 

In most white dwarfs there are about two nucleons per electron and Y, = 0.5 

which, when substituted into Eq. (6.18), gives a Chandrasekhar mass of about 

14Mo. 
Chandrasekhar first deduced that there is a maximum value for the mass of a 

white dwarf in 1931. It was a momentous discovery with a profound implication 

which he emphasized in 1934 in the following way: 

The life history of a star of small mass must be essentially different from the 

life history of a star of large mass. For a star of small mass the natural white- 

dwarf stage is an initial step towards complete extinction. A star of large mass 

cannot pass into the white-dwarf stage and one is left speculating on the other 

possibilities. 
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Later in the chapter we shall see that this speculation has led to the conclu- 
sion that the other possible endpoints of stellar evolution are neutron stars and 
black holes. At this stage, we merely note that a star with a mass above the 
Chandrasekhar limit cannot form a stable white dwarf and that this instability 
can be traced to the fact that the degenerate electrons in the star are ultra- 
relativistic. This result is related to the general result discussed in Section 1.2: 
hydrostatic equilibrium becomes precarious for any star supported by a gas of 
ultra-relativistic particles. 

Mass and radius 

According to Eq. (6.4), and more generally Fig. 6.1, the density of a white dwarf 

is a rapidly increasing function of its mass. This implies that the size of a white 

dwarf decreases with mass. 

To explore the connection between the mass and radius of a white dwarf, we 

need a model for the density distribution. If the degenerate electrons are 

predominantly non-relativistic, the structure of the star is similar to a polytrope 

model with P « p*/*, in which case it can be shown that the average density is 
p-/6. This, together with Eq. (6.4), implies that the average density of a white 

dwarf of mass M is approximately 

0.51,M]? my 
Pe pt le aie PP nike BY (6.19) 

p) 7 ae (himec)? 

and that the radius is 

3m 11/3 «3[M Wa Oe tach 
re ie /3 | Max (eae 6.20 Re el 0.77Y: | agi (6.20) 

In obtaining this last equation, we have used the definition, of M, (6.5). Note 

that the characteristic size of a white dwarf is primarily determined by the 

fundamental constant ag = 5.9 x 10~*? and the electron Compton wavelength, 

h/m.c = 2.4 x 10- m. This characteristic size is 

ag? ee ea rip Pe (6.21) 
MeC 

We also note that the characteristic density is 

my ti/m.oy ~1x 10% kgm”. (6.22) 
h/mec 

Furthermore, if we use the sun as standard for mass and size, we find that a 

white dwarf with Y, = 0.5 has a radius approximately given by 
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1/3 

Rae bd | (6.23) 

As expected, the radius of a white dwarf is a decreasing function of its mass. 

In deriving this mass—radius relation, we assumed that the degenerate electrons 

were non-relativistic, and as such it is only applicable to low mass white dwarfs. 

Nevertheless, it is in rough agreement with the limited observational data on the 

masses and radii of white dwarfs. Table 6.1 lists some of this data; the data is 

limited because the mass can only be determined if the white dwarf is a member 

of a binary or triple system. We note that the observed radii are comparable 

with the estimate given by Eq. (6.23), and as expected, the radius is a decreasing 

function of the mass.” 

TABLE 6.1 White dwarf masses and radii from optical observations* 

White dwarf Mass /M- Radius / R; 

Sirius B (1.053 + 0.028) (0.0074 + 0.0006) 

40 Eri B (0.48 + 0.02) (0.0124 + 0.0005) 

Stein 2051 (0.50 + 0.05) or (0.72 + .08) (0.0115 + 0.0012) 

* See Shapiro andTeukolsky (1983) for further details. 

The mass-raduus relation (6.23) can be used to relate the luminosity of a white 

dwarf to its mass. We recall from Chapter | that the luminosity of a star depends 

upon its effective surface temperature 7 and radius R via the relation (1.33): 

GHAR oT, (6.24) 

The mass-radius relation (6.23) then implies that a white dwarf of mass M has a 

luminosity given by 

1 Pare rey ve 4 
Le aba soa Tae (6.25) 

For example, a white dwarf with M = 0.4M. and Ts = 104 K hasa luminosity 
of about 3 x 1073 Lo. 
We saw in Section 3.4 that the rate of cooling of a white dwarf is largely 

determined by radiative diffusion through an outer, insulating layer which 
surrounds a largely isothermal, degenerate interior. Equation (6.25) shows 
that, as a white dwarf of a given mass cools, its declining luminosity and surface 
temperature are such that L is proportional to T}. ‘This implies that a white 
dwarf cools along a specific line in the Hertzsprung—Russell diagram, as 

* The equations of stellar structure for white dwarf stars may be integrated numerically. The 
calculation is outlined in Problem 6.11, and the mass-radius relation given by the calculation is 
shown in Fig. 6.4. 
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LUMINOSITY IN UNITS OF Lo 

1046 1044 1042 Thies 1038 1036 

SURFACE TEMPERATURE T,(K) 

Fig. 6.2 Positions of white dwarfs on a Hertzsprung—Russell diagram. A model based 
on a star supported by a gas of non-relativistic, degenerate electrons leads to a relation 
between luminosity and surface temperature given by Eq. (6.25). The diagonal lines 
illustrate this relation for stars of mass M= 0.25M. and M = Ms. In fact, relativistic 

effects are important in massive white dwarfs, and their inclusion would reduce the 

predicted radius of the star with M = M. and the diagonal line would be shifted 

downwards. The observed positions of the white dwarfs in this diagram correspond to 

data compiled by Sweeney; see Shapiro and Teukolsky (1983) for further information 

shown in Fig. 6.2. Moreover, because the position of the line of cooling is 

determined by the mass of the white dwarf and because all white dwarf masses 

lie in a narrow range, all white dwarfs are expected to occupy a narrow strip on 

the Hertzsprung—Russell diagram. The narrow mass range for white dwarfs 

arises from a precise upper limit and a less precise lower limit. Clearly, the mass 

cannot exceed the Chandrasekhar limit of about 1.4M.,. Furthermore the finite 

age of the universe implies that the mass of any observed white dwarf cannot be 

too low; this is the case because any observed white dwarf must have evolved 

from a main sequence star, and this star will evolve very slowly if its mass is low. 

With a universe only 10—20 billion years old, there has only been enough time 

for the evolution and emergence of white dwarfs with masses larger than 

0.25Mo, or thereabouts. 

Finally, the mass—radius relation (6.23) can be used to estimate the strength 

of gravity on the surface of a white dwarf and to understand the gravitational 
red shift of radiation escaping from its surface. 
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We expect the acceleration due to gravity on a white dwarf to be very large by 

terrestrial or even solar standards. Using Eq. (6.23) we find that the acceleration 

on a white dwarf of mass M is 

ad bea age (6.26) 
M. 

MAL GM 

R? 

The numerical value of this acceleration on the surface of a star of mass 0.4M. 

is approximately 4 x 10° ms’. 

The gravitational red shift of radiation escaping from the surface is determined 

by the magnitude of the gravitational potential energy on its surface. According to 

general relativity, the fractional change in the wavelength of the radiation is 

26M I? GM 
ta (1 = | I (6.27) 
Via Re? "RO 

One naive way of understanding this result is to consider that a photon of 

frequency v has an effective mass m = hv/c? and a total energy hv — GmM/R 

on the surface. As the photon escapes, the gravitational potential energy 

increases and the frequency decreases in order to conserve energy. The change 

in frequency on escape is then Av = —GmM/Rh= —GMv/Rc*. Using the 

mass—radius relation (6.23), we find that the gravitational red shift for a white 

dwarf of mass M is approximately 

(6.28) 

For example, the observed red shift for 40 En B is 

AX/X = (7.97 £0.43) x 10-°. This white dwarf has a mass of 0.48M., and 

the red shift expected from Eq. (6.28) is A\/A ~ 6 x 107°. 

6.2 COLLAPSE OF A STELLAR CORE 

A star with a mass greater than 11M., or thereabouts, is expected to evolve 

through all the stages of nuclear burning. As outlined in Chapter 4, the process 

begins with hydrogen burning at about’2 x 10’ K and proceeds at successively 

higher temperatures through helium, carbon, neon, oxygen and silicon 

burning. Silicon burning at about 3 x 10° K leads to a star with a central core 

of iron surrounded by concentric shells containing silicon, oxygen, neon, carbon, 

helium and hydrogen. Because energy cannot be released by the thermonuclear 

fusion of iron, the central core contracts. Initially, this contraction can be con- 

trolled by the pressure of the dense gas of degenerate electrons in the core. But as 

silicon burning in the surrounding shell deposits more iron onto the central core, 

the degenerate electrons in the core become increasingly relativistic. When the 
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core mass reaches the Chandrasekhar limit of about 1.4, the electrons become 
ultra-relativistic and they are no longer able to support the core. At this stage the 
stellar core is on the brink of a catastrophe. 

The onset of collapse 

When a body contracts under gravity, gravitational energy is converted into 
internal energy. If this leads to the activation of exothermic nuclear fusion, the 

internal kinetic energy increases, the pressure rises and the contraction is 

opposed. The opposite happens if an energy-absorbing process is activated: 

kinetic energy is absorbed, the effectiveness of the pressure is diminished and 

gravitational contraction turns into gravitational collapse. Thus, a stellar boiler 

prevents gravitational contraction but a stellar refrigerator can trigger an 

uncontrolled collapse. 

There are two energy-absorbing processes, two possible refrigerators, which 

could drive the iron core of a star into an uncontrolled collapse. They are the 

photodisintegration of atomic nuclei and the capture of electrons via inverse 

beta decay. During photodisintegration, kinetic energy is used to unbind atomic 

nuclei; and during inverse beta decay, kinetic energy of degenerate electrons is 

converted into the kinetic energy of electron neutrinos which escape from the 

core. These energy-absorbing processes are so effective that the collapse of the 

stellar core is almost unopposed. Indeed, the core can collapse almost freely 

under gravity. According to Eq. (1.4), the timescale for such a collapse depends 

solely on the density of the core when the collapse is triggered. This density is 

expected to be around 10!* kg m~?, and the free-fall collapse time of the core is 

remarkably short: 

1/2 
tre = se, ~ 1 millisecond. (6.29) 

We shall briefly consider two energy-absorbing processes which could bring 

about a catastrophic collapse of this kind. 

Nuclear photodisintegration 

As the stellar core contracts, the temperature increases and eventually a stage is 

reached when thermal photons are energetic enough to photodisintegrate iron 

nuclei; tightly bound iron nuclei are broken up into less tightly bound nuclei, 

and energy is absorbed. In a realistic calculation the whole range of possible 

nuclei should be considered. However, a useful insight can be obtained if we 

assume that a stage is reached when tightly bound °°Fe nuclei coexist with 

neutrons and tightly bound *He nuclei, a coexistence governed by the forward 

and reverse reactions 
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+ +°Fe = 13*He + 4n. (6.30) 

In the following we shall label the reacting particle by its mass number 4. 

The photodisintegration of 56Fe is an endothermic reaction that absorbs 

energy 

QO = (134 + 4m — mse)c? = 124.4 MeV. (6.31) 

Thus, one kilogram of iron could absorb 2 x 10'4 J, the energy equivalent of 50 

kilotons of TNT. 

The fraction of iron dissociated at a given temperature and density can be 

estimated by using the same techniques we used when we considered atomic 

ionization in Chapter 2, and helium and silicon burning in Chapter 4. We 

assume that the reactions (6.30) lead to thermodynamic equilibrium, so the 

chemical potentials of the reacting particles satisfy the equation 

Ls6 = 13 p44 =F 4}. (6.32) 

According to Eq. (2.21) or Eq. (4.51), the chemical potential for a particle of 

mass number A is 

ug = mg? —kT In sree) (6.33) 
NA 

and the quantum concentration ngy 1s 

2nm4kT) >! 
noa = ey ‘ (6.34) 

It follows that the equilibrium concentrations of the reacting particles are given 

by 

(na)"?(m1)* _ (ga)'*(e1)* (nos)? (no1)* 
156 856 NQS6 

exp[—O/kT]. (6.35) 

The statistical factors g, depend on the angular momentum of the particle. For 

the spin 5 neutron, g; = 2. For the He and *°Fe nuclei we can take gq = | and 

gso = 1, if we assume that all the *He and *°Fe nuclei are mostly in their spin 0 
ground states. It is then easy to show that Eq. (6.35) implies that about three- 

quarters of the iron is dissociated when the density and temperature of the core 

reach:p = 10! kg m7) and. 7/10" K. 
At higher temperatures the *He nuclei are also expected to dissociate via the 

reactions 

7 +‘He = 2p + 2n. (6.36) 
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Again, it is straightforward to find the degree of dissociation by equating 

chemical potentials; see Problem 6.2 at the end of the chapter. 

It is easy to estimate the total energy that could be absorbed by these 

photodisintegration processes. Bearing in mind that the collapsing iron core 

has a mass comparable with the Chandrasekhar mass of 1.4M;, some 4 x 10“ 

J are absorbed by the photodisintegration of *°Fe nuclei and a further 1 x 10% J 
by a subsequent photodisintegration of *He nuclei. Thus, the total energy that 

could be absorbed by the photodisintegration of the iron core to neutrons and 

protons is approximately 

Bohs 1A x10" J. (6.37) 

This is a substantial energy, equivalent to the energy radiated by the sun over a 

period of 10 billion years. There is no doubt that the absorption of an energy of 

this magnitude could trigger an uncontrolled collapse of the stellar core. 

Electron capture 

In normal circumstances a neutron is an unstable particle with a half-life of 

10.25 minutes. It decays into a proton, an electron and a neutrino via the beta 

decay 

no>pt+e +. (6.38) 

The electron and the neutrino produced in this decay have a combined energy 

of 1.3 MeV, an energy equal to the mass-energy difference of a neutron anda 

proton. Thus, electrons with energies up to 1.3 MeV are produced when 

neutrons decay. It follows that neutrons will not be able to decay, if electrons 

with these energies cannot be produced. This can be achieved by immersing the 

neutrons in a dense gas of degenerate electrons so that all the electron states 

with an energy up to 1.3 MeV are fully occupied in accordance with the Pauli 

exclusion principle. The density of this electron gas can be found by recalling 

that the maximum momentum of an electron in a degenerate gas, the Fermi 

momentum, is 

ana 
=h|—|..., 6.39 

PF =] ( ) 

and that the maximum energy, the Fermi energy, is given by 

em pee mech (6.40) 

Furthermore, if the gas is denser, electrons with an energy greater than 1.3 MeV 

exist and they may be captured by protons to form neutrons by the inverse beta 

decay process, 
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e +prn+k. (6.41) 

This conversion of protons to neutrons is often called neutronization. 

In practice the protons in the core of an evolved, massive star are not free but 

bound in atomic nuclei. Nevertheless, they can still capture energetic electrons 

to form neutrons, and in so doing they produce nuclei which are increasingly 

rich in neutrons. Neutronization begins in the stellar core when °°Fe, the main 

constituent, can undergo the inverse beta decay, 

e~ +°6Fe >°°Mn + 1. (6.42) 

This will be energetically possible when the density of the contracting iron core 

reaches 1.1 x 10! kg m~3; at this density the Fermi energy of the electrons 
equals the threshold energy m.c? + 3.7 MeV needed for the inverse beta decay 

of °©Fe. Normally, a *°Mn nucleus beta decays to ~°Fe with half-life 2.6 hours, 
but in the stellar core it captures an electron from the dense degenerate gas to 

form a Cr nucleus. This in turn is capable of capturing an electron when the 

density reaches 1.5 x 103 kgm~> 
Electron capture by inverse beta decay on nuclei in the stellar core becomes 

very rapid when the density exceeds 10'4 kg m~*. The neutrinos that are 
produced interact very weakly with matter and carry away the energy originally 

stored by degenerate electrons. As the pressure generated by these electrons 

disappears, the stellar core collapses rapidly. 

It is easy to estimate the possible energy loss due to electron capture in the 

stellar core. First, we note that an iron core with a mass equal to the Chan- 

drasekhar mass contains about 10°’ electrons which could produce 10°” elec- 
tron neutrinos. Second, we assume that the average energy of a captured 

electron is around 10 MeV; this corresponds to the average energy of a degen- 

erate electron when the density of the core is 2 x 10'? kg m-?. Thus, the total 
energy that could be lost by electron capture is 

Ecay 10°" x (10 x 1.610 3 )i= 1.6 x 10% J. (6.43) 

This energy is carried away from the star by a burst of electron neutrinos. If 
the neutrinos escaped freely, the duration of this burst would be comparable 
with the millisecond timescale given by Eq. (6.29) for the free fall of the core 
under gravity. However, many of the neutrinos interact with the dense matter 
formed by the collapsed core. Indeed, theoretical calculations indicate that 
the neutrino mean free path becomes comparable with the size of the core 
when the core radius is a few kilometres and the density is 10'* kg m-3. 
Neutrinos, which earlier streamed out of the imploding core, are now trapped 
in the implosion. Because of this, most of the electron neutrinos formed by 
electron capture will be trapped for a few seconds before they diffuse out of the 
collapsed core. 
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The aftermath 

We have seen that electron capture and/or photodisintegration can trigger the 
collapse of the iron core of a massive star. The collapse is rapid and almost 
unopposed until a density comparable to the density of nuclear matter is 
reached. This density can be determined from the well-known formula for the 
radius of a nucleus containing 4 nucleons; a radius given by 

R=nA'? where rp =1.2x 107 m, (6.44) 

implies a nuclear density of 

3Amy 3myN 
diedlias Steioe 2.2% 10 kom, (6.45) Pnuc = 

where my is the nucleon mass. Clearly, neutron degeneracy and nuclear forces 
in the neutron-rich core will begin to be important when the nuclear density Prue 
is reached. Moreover, nuclear forces are expected to resist compression and 
bring the collapse to a halt when the core becomes two or three times more 
dense than normal nuclear matter. The core is expected to rebound strongly and 
set up a shock wave that travels through the material that is falling towards the 

centre. Theoretical calculations suggest that this shock wave may be able to 

reverse the inward fall of stellar material surrounding the core and produce an 

outward expulsion, a supernova. 

Supernovae are very energetic explosions: the observed kinetic energy of the 

debris is typically 10% J and the optical energy output, during the year follow- 

ing the explosion, is of the order of 10** J. The observational classification of 

these explosions places emphasis on the presence or absence of hydrogen lines 

in their optical spectra: type II supernovae have hydrogen lines and type I do 

not. There are other differences: type II supernovae are often associated with 

young stars and type I with older stars; and the type II luminosities decline in 

irregular and varied ways but the type I luminosities usually have a gradual and 

less varied decline. 

The collapse of the iron core of a massive star is the most likely cause of a 

type II supernova. Core collapse may be responsible for some type I super- 

novae, but most are thought to arise from a thermonuclear detonation of a star. 

This scenario involves a carbon—oxygen white dwarf which can increase its mass 

by drawing mass from a nearby companion star. When the mass of the white 

dwarf exceeds the Chandrasekhar limit of 1.4, it contracts and ignites the 

thermonuclear fusion of the hitherto quiescent carbon and oxygen. Because this 

material is degenerate, the fusion-control mechanism discussed at the end of 

Section 1.4 is not operative. We recall that an energy release in a star leads to an 

expansion and an accompanying decrease in the internal kinetic energy. The 

decrease in the internal kinetic energy normally implies a temperature decrease 

and a reduction of the fusion rate. But in degenerate matter, it lowers the energy 
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of the degenerate electrons and has little effect on the temperature, so the rate of 

fusion is uncontrolled. Thus, the sudden ignition of thermonuclear fusion in a 

white dwarf creates a star-sized fusion bomb. The white dwarf could explode 

more or less as a whole, leaving no residual core behind. 

We now return to the collapse of an iron core of a massive star. The collapse, 

the rebound and the associated shock wave, all three have very complicated 

physics. As we shall see in a moment, a gigantic amount of gravitational energy 

is released. But it is not certain how energy and momentum are transferred to 

the outer layers of the star, and it is by no means certain that core collapse is 

always accompanied by a supernova. Nevertheless, the collapse is expected to 

leave a core residue, either a neutron star or an overweight neutron star that 

collapses to form a black hole. We shall take a closer look at neutron stars and 

briefly comment on black holes later in this chapter. At this stage we shall 

concentrate on the energy of formation of a neutron star, the energy that must 

be released when the neutron star is formed. And we shall show that, if assessed 

in terms of energy, the fireworks of any accompanying supernova are an 

insignificant sideshow. 

The energy of formation of a neutron star is largely determined by the change 

in the gravitational binding caused by core collapse. Just before collapse we 

have a core with a mass comparable to the sun and a radius of about 1000 km. 

After the collapse we have a neutron star with a similar mass but with a radius 

of about 10 km. The initial gravitational binding is negligible and the gravita- 

tional energy released in the collapse is simply the gravitational binding of the 

neutron star. For a neutron star of mass M and radius R, this binding energy is 

approximately given by 

GM M17[10 km 
Ep e& = PG Ree a cae pe —— = 3x 10 | - | (6.46) 

We emphasize that the energy of formation implied by Eq. (6.46) is an order of 

magnitude greater than the energy needed to photodisintegrate the iron nuclei 

in the core; see Eq. (6.37). It is also an order of magnitude greater than the 

energy lost by electron capture; see Eq. (6.43). Moreover, it is much larger than 

the energy associated with the kinetic and visible effects of any supernova which 

may be triggered by the collapse; the typical kinetic energy of the debris of a 

supernova is only 10“ J and the optical energy output during the year following 

the explosion is only of the order of 10% J. Thus, we still have to account for 

about 90% of the energy released when a neutron star is formed by core 

collapse. There must be an important intermediate stage before the formation 

of a compact neutron star, a stage characterized by an energy loss of about 

3 x 10% J, the typical binding energy of a neutron star. 
This intermediate stage is thought to be the formation of a hot, bloated 

neutron star which then cools and contracts by emitting neutrinos. This bloated 

neutron star is, to a first approximation, a dense plasma of neutrons, protons, 

nuclei, electrons, photons and neutrinos held together by gravity; the typical 
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temperature and density are of the order of 10!! K and 10'4 kg m~3. The plasma 
is almost completely opaque to photons and little energy escapes by electro- 
magnetic radiation. Instead, cooling occurs by the emission of neutrinos. These 
weakly interacting particles can travel several metres in the plasma before 
interaction. They escape from the hot neutron star by a random walk process 
similar to that discussed in Section 1.4. If their mean free path is /, they will 
interact about R7//° times before they escape from the surface of a star with 
radius R. Hence the escape time will be of the order of R?//c. 

Only a fraction of the escaping neutrinos arise from electron capture. The 
hot, bloated neutron star is so hot that neutrino-antineutrino pairs are 
copiously produced. The simplest production mechanism, the annihilation of 
an electron—positron pair, was briefly discussed in Section 2.6, but other 

mechanisms are also thought to be important, e.g. plasmon decay, photo- 

neutrino production and neutrino bremsstrahlung. 

Three types of neutrino—antineutrino pairs can be produced. They are 

denoted by %, Y and v,,, V,, and v,, 7-. The v, neutrino is associated with the 

most familiar lepton of all, the electron. The neutrinos v,, and v; are associated 

with massive, unstable charged particles called muons and tauons, particles 

very similar to electrons but with masses 106 MeV/c? and 1784 MeV/c’. The 

antineutrinos Y,, V,, and V, are associated with the antielectron (positron), the 

antimuon and the antitauon, respectively. The various types of neutrinos and 

antineutrinos are very similar. They are all weakly interacting fermions with a 

mass which is either zero or very small. However, they do differ from each 

other, and this difference can be illustrated by how they interact. For example, a 

weak interaction could transform a v, into an electron, but not into a muon or 

a tauon. 
Because the masses of these neutrinos are either zero or very small, all three 

types of neutrino—antineutrino pairs are produced by thermal processes in the 

hot neutron star. In all, six kinds of weakly interacting particles are formed: 1 

y. and v,, V,, and v,, V,. These particles carry away the bulk of the binding 

energy of the neutron star. Moreover, each of the six kinds of weakly interact- 

ing particle is expected to carry away about one-sixth of this energy. Thus, each 

kind of neutrino carries away about 0.5 x 10% J if the binding energy of the 

neutron star is 3 x 10*° J. The timescale for this cooling process is the time 

needed for a neutrino to diffuse to the surface of the neutron star. This is of the 

order of R?/Iec. 
To summarize, the authentic signature of the aftermath of core collapse is not 

a supernova, but an intense pulse of neutrinos. An observation of the energy of 

these neutrinos and the duration of the pulse would reveal how gravitational 

collapse is shaped by weak interaction processes. 

The detection of neutrinos from core collapse is a formidable problem. If the 

neutrinos can escape from a hot neutron star and penetrate the outer layers of 

the collapsing star, they are more than likely to pass through any detection 

apparatus. Similar problems are met in the detection of neutrinos from the sun, 

as discussed in Section 4.2. But the techniques for the detection of neutrinos 
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from core collapse are different, and somewhat easier, because these neutrinos 

are more energetic than solar neutrinos. These techniques were successfully 

demonstrated for the first time on 23 February 1987, when two massive under- 

ground detectors, the Kamiokande II (KII) detector in Japan and the Irvine— 

Michigan—Brookhaven (IMB) detector in the United States, detected neutrinos 

from the supernova SN1987A. 

The KII and IMB detectors are similar in design, consisting of large volumes 

of ultrapure water surrounded by thousands of photomultiplier tubes. The 

neutrino burst from SN1987A was mainly detected via the reaction, 

Ue ps es (6.47) 

If the positron recoils with a velocity greater than the phase velocity of light in the 

water, it emits Cerenkov radiation which can be detected by photomultiplier 

tubes surrounding the water. The y, absorption reaction (6.47) is the most prob- 

able reaction involving neutrinos and antineutrinos from the supernova. Even so, 

less than | in 10!> of the incident 7, particles were detected. The data from the KII 

and IMB detectors is illustrated in Fig. 6.3. 

First we note that only 20 neutrinos were detected. 

Second, the duration of the neutrino pulse, as illustrated in Fig. 6.3, is about 

10 seconds. This time can be identified with R?//c, the typical time needed for a 

neutrino with mean free path / to diffuse from the cooling neutron star of radius 

R. For example, a time of the right order of magnitude is obtained if R = 100 

km‘and /=10-*R. 
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Fig. 6.3 Energy and time of arrival of neutrinos from the supernova SN1987A as 
registered by the Kamiokande II and IMB detectors. In all, 20 neutrinos were detected 
and the duration of the neutrino pulse was about 10 seconds 
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Third, when account is taken of the efficiency of detection and of the 
distance of supernova SN1987A, about 50 kpc, the data in Fig. 6.3 is consistent 
with 7, radiation with a total energy between 0.3 x 104° and 0.5 x 10% J, an 
energy comparable with one-sixth of the expected binding energy of a neutron 
star. 

Finally, the observed energies of the detected neutrinos are consistent with 
the energy spectrum expected from a ‘black body’ neutrino radiator at an 
effective temperature Tg ~ 5 x 10!° K, some ten million times hotter than the 
effective surface temperature of the sun.! Indeed, many of the qualitative 
arguments used in Chapter | to describe the diffusion of photons from the 
sun are applicable to the diffusion of neutrinos from a cooling neutron star. In 
particular, we can adapt Eq. (1.35) to find an approximate relation between the 
typical internal temperature 7; and the effective surface temperature 7, of the 
cooling neutron star, 
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If we assume that the characteristic mean free path for neutrinos inside the 

cooling neutron star is 10-+R, a value consistent with the observed duration of 

the neutrino pulse, then the typical internal temperature is between 10!! and 

10!° K. 

All in all, the detection of 20 neutrinos from SN1987A by the KII and 

IMB detectors gave credence to many of the theoretical expectations for 

the aftermath of the collapse of the iron core of a massive star. It was one of 

the most exciting astrophysical events of the century. It established a 

new branch of astronomy: extra-galactic neutrino astronomy. Managers of 

scientific research should take careful note that both the KII and IMB 

detectors were designed and built for another purpose, the observation of 

proton decay. 

6.3 NEUTRON STARS 

A neutron star is born as a hot residue of the collapsed core of a massive star. 

The typical internal temperature is initially between 10'! and 10!” K. It rapidly 

cools by neutrino emission and is expected to reach a temperature of the order 

of 10° K in a day and 10® K in a 100 years. These are high temperatures 

according to terrestrial and solar standards, but they are low when compared 

to the standards set by the high densities of the matter inside a neutron star; 

the electrons, protons and above all the neutrons inside a neutron star are 

1 In Problem 6.3 at the end of the chapter you are asked to show that the average energy of 

neutrinos from such a radiator at temperature T is 3.15k7. 
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degenerate and occupy the lowest possible states consistent with the Pauli 

exclusion principle. We begin by commenting on how the nature of the matter 

inside a neutron star depends upon its density. 

Matter inside neutron stars 

In normal circumstances the most stable form of nuclear matter consists of 

nuclei near *°Fe in the periodic table. Less massive nuclei are less stable because 

they have a higher fraction of their nucleons near the surface, and more massive 

nuclei are less stable because of the increased importance of Coulomb repulsion 

between protons. The best deal, with the lowest binding energy per nucleon, is 

struck near ~°Fe. 
This deal is changed by the presence of relativistic electrons. As described in 

Section 6.2, degenerate electrons in a collapsed star are sufficiently energetic to 

induce inverse beta decay. Protons are converted to neutrons, and nuclei rich in 

neutrons are formed. Coulomb forces now have a reduced importance and 

neutron-rich nuclei, heavier than *°Fe, are energetically favoured. For example, 

78Ni and 7°Fe are thought to be the most stable nuclei in an electron gas when 

the density is around 10'4 kg m-?. 
When the density exceeds 4 x 10'4 kg m-3, a new phenomenon occurs called 

neutron drip. Neutrons drip from neutron-rich nuclei so that free neutrons, 

nuclei and electrons coexist in equilibrium. The equation of state for this 

form of matter is well understood for densities below Prue = 2.3 x 10!’ kg 

m~°, the density of normal nuclear matter. At higher densities, nuclei begin to 

merge with each other and a dense gas of electrons, protons and neutrons is 

formed. The equation of state now strongly depends upon the interaction 

between nucleons, an interaction which is both complicated and uncertain. At 

densities around 10!* kg m~?, further complexities and uncertainties are intro- 

duced as it becomes energetically possible to produce pions, muons and hyper- 

ons. At even higher densities, the quark degrees of freedom are expected to play 

a role. 

In order to gain some insight into why neutrons are the dominant constituent 

of neutron stars, we shall crudely neglect interactions and consider an ideal gas 

of degenerate electrons, protons and neutrons. At high densities, neutrons are 

present in this gas because their normal beta decay mode, n —- p+e +, is 

blocked by the Pauli exclusion principle; the decay does not occur because it 

would involve the emission of either a proton or an electron into a state which is 

already fully occupied. 

It is sufficient to consider the possible decay of one of the most energetic 

neutrons present, one with an energy equal to the neutron Fermi energy e-(7). 

Such a neutron cannot decay if the emitted proton and electron have energies 

below the Fermi energies for protons and electrons, er(p) and ep(e). It follows 
that all the neutrons with energies up to e-(n) are stabilized by the Pauli 
principle if 
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€r(n) < €r(p) + €r(e). (6.49) 

Conversely, neutrons can beta decay if 

er(n) > er(p) + €r(e). (6.50) 

In fact, the coexistence in equilibrium of neutrons, protons and electrons at zero 
temperature is characterized by 

€r(n) = €r(p) + €r(e). (6.51) 

This result can also be obtained by noting that the chemical potential of a Fermi 

gas at zero temperature is the Fermi energy. Thus, Eq. (6.51) is a relation 

between chemical potentials which characterizes the equilibrium established at 

zero temperature by the processes, 

n—>pt+e 4+v. and e +p—-n+K, (6.52) 

with the neutrinos playing no part because they escape. 

The equilibrium concentrations of the neutrons, protons and electrons, n,, np 

and n,, implied by Eq. (6.51) can be found by noting that the Fermi momentum 

of a particle is related to its concentration by Eq. (2.27), namely 

1/3 
pr= Fa h. (6.53) 

When the density is of the order of Pnuc, the neutrons and the protons are 

approximately non-relativistic with Fermi energies and momenta related by 

2 2 
= > , Pr(n) = >, Pr(P) 6.54 

er (n) myc ao and ef(p) myc RGR : (6.54) 

The less massive electrons, however, are ultra-relativistic and the relation 

between the electron Fermi energy and the electron momentum is 

ep(e) © pr(e)c. (6.55) 

Bearing in mind that the matter of neutron stars is neutral, with equal numbers 

of electrons and protons, we set 7, = ny and find the following relation between 

the numbers of neutrons and protons in the ideal gas at equilibrium: 

1/3 0) (IN po) 2/3 72 e) PER 87 87 amp 87 2m, 

Given the neutron—proton mass difference of 1.3 MeV fetg its straightforward 

to find the relative numbers of neutrons and protons at any particular density. 
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; 7 = 
For example, at a typical neutron-star density of p= 2x 10!’ kg m-°, we 

find n, © 1 x 104 m-? and n, = ny © n,/200, i.e. 1 electron per 200 neutrons 

is enough to prevent neutron decay. We conclude that neutrons are the 

dominant constituent of neutron-star matter at densities of the order of 10!” 

kg m7?. 

The size of neutron stars 

We shall now take the simplistic, ideal degenerate gas model for the material 

inside a neutron star one step further, and investigate how the central density 

and radius of the star depend upon its mass. This can be done very simply by 

adapting the analysis of white dwarfs given in Section 6.1. This analysis 

assumed that a white dwarf is supported by the pressure of an ideal gas of 

degenerate electrons. We now assume that a neutron star is supported by the 

pressure of an ideal gas of degenerate neutrons. 

Because neutrons are the dominant constituent of the star, the number 

density of neutrons is directly determined by the mass density. At the centre 

of the star 

he (6.57) 

The corresponding equation for a white dwarf is Eq. (6.1). The white dwarf 

equations, Eqs. (6.2) to (6.4), can be modified so as to describe the hydrostatic 

equilibrium of a neutron star by changing the electron mass to the neutron mass 

and by setting Y, equal to one. We also ignore the difference between the mass 

of the hydrogen atom my and the mass of the neutron 7,; this difference is less 

than 0.1%. In this way, we deduce that a gas of degenerate, non-relativistic 

neutrons can support a neutron star of mass M if the central density is 

M)? Mp 
| (6.58) porsida1 ——... 

M,} (h/mc)° 

The fundamental stellar mass M, is given by Eq. (6.5), but in the context of a 

neutron star, it is best expressed in terms of the neutron mass as 

M, = a6)? m, = 1.85Mo. (6.59) 

The radius of the neutron star can be found by adapting Eq. (6.20). We find 
that 

M13 ery id 
reom| Te] ag! ee (6.60) 
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We note that the characteristic size of a neutron star is primarily determined by 
the dimensionless measure of the strength of gravity, ag = 5.9 x 10-29, and the 
Compton wavelength of the neutron, //m,c = 1.3 x 107'5 m. This character- 
istic size is 

wey: 
og! — = 17 km, (6.61) 

MnC 

which is about 2000 times smaller than the typical size of a white dwarf given by 
Eq. (6.21). 

It is important to emphasize that the expression (6.60) for the radius of a 

neutron star is very approximate and rests on a number of assumptions of 

doubtful validity. In particular, the interactions between the neutrons cannot be 

neglected at neutron-star densities. Moreover, relativistic effects can be impor- 

tant. Indeed, because neutrons in a degenerate gas have momenta comparable 

with m,c when the density approaches m,/(h/mne)’, Eq. (6.58) implies that 

relativistic effects are only unimportant in neutron stars with masses much 

smaller than M,. In addition, the gravitational fields in neutron stars are very 

large and Einstein’s theory of gravitation, not Newton’s, should really be used 

in establishing the condition of hydrostatic equilibrium. An indication of 

whether Newtonian gravitation is an adequate approximation is provided by 

the smallness of the ratio of the gravitational potential energy to the rest-mass 

energy of a particle on the surface of a neutron star. Using Eq. (6.60), we find 

that this ratio is 

Bia Fe be (6.62) 
Re? a M, 

We conclude that the gravitational fields of a neutron star are only Newtonian 

if the mass is small compared with M,. 

Despite these misgivings about the accuracy of Eq. (6.60), this equation for 

the radius of a neutron star can yield useful estimates of some important 

neutron-star properties. 

Gravitational binding energy of neutron stars 

We saw in Section 6.2 that the gravitational binding energy of a neutron star is 

an important property. It is approximately equal to the energy emitted as 

neutrino radiation during the collapse of a stellar core. It is straightforward 

to estimate this binding energy. Using Eq. (6.60), or more directly Eq. (6.62), we 

find that the binding energy of a neutron star of mass M is approximately 

GM Mie os LAL a 
~ een = pi 10% T. 6.63 Ep~— 0.2 ai genicnny (6.63) 
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This is compatible with the estimate we used when we considered the energy of 

formation of neutron stars in Section 6.2; see Eq. (6.46). We also note that the 

binding energy of a neutron star is only small compared with its rest-mass 

energy if its mass is small compared with M,. This is yet another indication that 

relativistic effects are important in massive neutron stars. 

Rotating neutron stars and pulsars 

The possibility of the existence of neutron stars was postulated very soon after 

Chadwick’s discovery of the neutron in 1932. In 1934 Baade and Zwicky 

tentatively linked supernovae with the collapse of ordinary stars to neutron 

stars, and the first theoretical models for neutron stars were developed by 

Oppenheimer and Volkoff in 1939. However, there was surprisingly little astro- 

nomical and theoretical interest in neutron stars until the accidental observa- 

tional discovery of pulsars by Hewish and Bell in 1967. 

Pulsars emit pulses of radiation at short and remarkably regular intervals. 

Many pulsars have been observed with periods ranging from milliseconds to 

seconds. But the most famous pulsar is at the heart of the Crab Nebula, the 

remnant of a supernova which, according to Chinese historical records, 

occurred in AD 1054. The Crab Pulsar has a period of 33 ms; it is also slowing 

down, so its period increases by a millisecond every 90 years. 

The identification in the late 1960s of newly discovered pulsars with rotating 

neutron stars stimulated a renewed interest in the physics of neutron stars. 

The principal argument identifying pulsars with neutron stars is based upon 

the shortness of pulsar periods. This argument can be understood by consider- 

ing the maximum speed of rotation of a star. Bearing in mind that matter will be 

thrown off the star if it rotates too quickly, we can find the maximum angular 

frequency, and the corresponding minimum period, by equating the gravita- 

tional attraction at the surface of the star to the centrifugal force tending to 

throw matter off the star; this is the condition for weightlessness on the surface 

of the star. This condition leads to 

GM : Qn Ry]? 
apa = Rei ar and Tmin = ee =) 77 aa E (6.64) 

If the radius is given by Eq. (6.60), we find that the minimum period of rotation 
of a neutron star of mass M is 

$y M, —1/2 h * 
Tmin ~ ll a AG myce == (KG Ae | ms. (6.65) 

This implies that a neutron star with the mass of the sun could rotate with a 
period as short as a millisecond without ripping itself apart. We note from Eq. 
(6.64) that the possibility of rapid rotation is a direct consequence of the high 



6.3 Neutron stars 195 

density of neutron stars; less dense objects, such as white dwarfs, could not 
rotate as quickly. Hence the pulsar at the heart of the Crab Nebula, whose 
period is 33 ms, cannot be a rotating white dwarf. It is almost certainly a 
rotating neutron star. 

The next property to be considered is the moment of inertia of a neutron star. 
The moment of inertia of a sphere of uniform density is 

MR?. (6.66) 

For a neutron star with radius given by Eq. (6.60), we find 

ln ‘aa ee eal : I = 0.24 | ag mp, Line = | 2.5 x 10°8 kg m”. (6.67) 

This estimate for the moment of inertia of a neutron star can be used to provide 
additional evidence in favour of the identification of the Crab Pulsar with a 
rotating neutron star. 

The Crab Pulsar is slowing down; its angular frequency, w = 190 s~!, is not 
exactly constant, but changes at a rate given by 

dw 
a= 724 hi ee Pe (6.68) 

which corresponds to an increase of about a millisecond in the period every 90 
years. If the pulsar is a rotating neutron star, its energy of rotation, E,o; = 51u, 
also decreases in accordance with 

Se (6.69) 

If we assume a moment of inertia consistent with the estimate given by Eq. 

(6.67), say J = 10°* kg m?, we deduce that the rate of loss of rotational energy of 
the neutron star at the heart of the Crab Pulsar is 4.6 x 10°! W. This energy loss 

is comparable with the estimated luminosity of the Crab Nebula, 5 x 10°! W. It 

is therefore highly likely that the power lost by a rapidly rotating neutron star is 

the source of the luminosity of the Crab Nebula. 

The most likely mechanism for the loss of energy by a rotating neutron star is 

magnetic dipole radiation; see any good book on electromagnetism, such as 

Barger and Olsson (1987). If a rotating neutron star has a magnetic dipole 

inclined at an angle to its axis of rotation, the spinning magnetic dipole radiates 

electromagnetic radiation; for a star with magnetic dipole m at an angle @ to an 

angular velocity w, energy is radiated at a rate given by 

P= “> | mu sin? 0. (6.70) 
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If this mechanism is responsible for the observed rate of energy loss of the Crab 

Pulsar, 5 x 103! W, then the neutron star in the Crab Nebula has a magnetic 

dipole given by 

msin6 = 4 x 1027 A m’. (6.71) 

It follows that the magnetic field on the surface of the neutron star is approx- 

imately 

Lom 
ab 8 2) 2 os © Tee (6.72) B 

if the neutron star has a radius R of about 10 km. This is a huge magnetic field, 

corresponding to a magnetic energy density B?/2j19 of 4 x 107! Jm~*. But such 
a field could arise by the trapping of magnetic flux during stellar collapse to a 

very compact neutron star. The magnetic flux through any loop moving with a 

fluid of high conductivity is constant. Thus, the contraction of an iron core of 

radius 1000 km to a neutron star of radius 10 km could enhance an internal 

magnetic field by a factor of 10%. 
There is a compelling historical argument in favour of magnetic dipole 

radiation as a mechanism for energy loss from pulsars: this mechanism yields 

an age for the Crab Pulsar that is consistent with the date of the supernova 

which produced the Crab Nebula, AD 1054. To show this, we note how Eq. 

(6.70) indicates that the mechanism predicts a rate of energy loss proportional 

to w*. Thus the rate of change of the rotational energy is given by 

dE fos os dw a | 

dt dr 

Hence the angular velocity of the star satisfies the differential equation 

dw 3 

where C is a constant time which, for the neutron star in the Crab Nebula, can 
be determined to be 3.5 x 107'® s by using the current values of the angular 
velocity and acceleration, w= 190 s~! and dw/dt = —2.4 x 10-9 s~?. If we 
integrate Eq. (6.73) and set w = w; at time t = 0, we find 

1 era 44 
se Yen Saeed (6.74) 

By substituting the current value for the angular velocity, we conclude that the 
neutron star in the Crab Nebula has been rotating for a time bounded by 

P< ee a e100 Sy, otek s = 1253 years. (6.75) 
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We note, with satisfaction, that this time is comparable with the historical age 
of the Crab Nebula, 1993 — 1054 = 939 years. In fact, this model gives the 
correct historical age if the initial angular velocity of the neutron star was about 
400 s~'. However, we should note that the decline in the angular velocity is not 
the steady decline described by Eq. (6.73). Small, abrupt increases in the 
angular velocity occur from time to time as the neutron star undergoes internal 
changes; for example, the Crab Pulsar’s 33 millisecond period suddenly 
decreased by about 3 nanoseconds on 29 August 1989. 

Finally, note that the physics underlying pulsar emission mechanisms is 
extremely complicated. Among other things, it involves the interaction of 
intense, rapidly rotating magnetic fields with the plasma surrounding neutron 
stars. As a result, many of the observed features of pulsars cannot be under- 
stood using simple models. 

The maximum mass of a neutron star 

To a first approximation, neutrons play the same supporting role in a neutron 

star as electrons in a white dwarf. They can also fail to support in similar ways. 

Just as degenerate electrons are unable to support a white dwarf with a mass 

above a critical limit, the Chandrasekhar limit, degenerate neutrons are unable 

to support a neutron star with a mass above a certain value. 

The physics underlying the Chandrasekhar limit is clear-cut. As the mass of 

the white dwarf approaches the limit, the central density increases and the 

degenerate electrons become increasingly relativistic. At the Chandrasekhar 

limit, the electrons are ultra-relativistic, the density approaches ‘infinity’ and 

the star collapses. A similar phenomenon involving neutrons is expected in a 

neutron star, but there are a number of important differences. First, the inter- 

actions between neutrons are very important at the high densities found in a 

neutron star. Second, the gravitational fields are very strong and Einstein’s 

theory, not Newton’s, should be used to describe the equilibrium of a neutron 

star under gravity. However, these important differences do not alter the 

fundamental result that there is a maximum mass for a neutron star. Their 

main effect is to make the calculation of this maximum mass very difficult. 

The actual value for the maximum mass of a neutron star plays a key role in 

the search for black holes in astronomy. The masses of the stars in a binary 

system can sometimes be determined from the observed relative motion. If one 

of the members of the binary is a compact object with a mass greater than the 

theoretical maximum mass of a neutron star, this object is almost certainly a 

black hole. 

We shall begin our discussion on neutron star masses by drawing upon our 

analysis of white dwarfs and finding the neutron-star analogue of the Chan- 

drasekhar mass. We shall crudely ignore the interactions between neutrons and 

equate the pressure of an ultra-relativistic gas of neutrons to the pressure 

needed to support a star of mass M. In analogy with Eqs. (6.7), (6.8) and 
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(6.18), we arrive at the following expression for the maximum mass supportable 

by an ideal gas of degenerate neutrons: 

M opr 3d Mage 5:8M et (6.76) 

In effect, we simply set Y, = 1 in the expression for the Chandrasekhar mass for 

a white dwarf. 

The interactions between the neutrons are important in a neutron star. They 

definitely have a role in determining the maximum value for the mass of a 

neutron star. These interactions are attractive at internucleon distances around 

1.4 fm but repulsive at shorter distances. This would suggest that neutron-star 

matter becomes harder to compress at high densities. But at high densities, the 

degenerate neutrons are sufficiently energetic to produce new particles, such as 

hyperons and pions. If this happens, the pressure due to energetic degenerate 

neutrons is reduced, but the pressure generated by the new particles is small. 

Thus, particle production is likely to make neutron-star matter more compress- 

ible, an effect which partially offsets the effect of short-range repulsion between 

neutrons. Overall, the interactions between neutrons tend to increase the theo- 

retical maximum mass of a neutron star. 

Einstein’s theory of gravity, general relativity, also plays a crucial part in 

determining the maximum mass of a neutron star. As indicated in Eq. (6.62), 

the gravitational binding energy of a massive neutron star is comparable with 

its rest mass, or more precisely the mass it would have if its constituent particles 

were at rest and isolated from each other. The estimate of 5.8M. given by Eq. 

(6.76) corresponds to the rest mass of a star. Gravitational binding implies that 

the actual mass is considerably smaller. But by far the most important effect of 

the relativistic effects of gravity is that the attractive nature of gravity is 

strengthened at very high densities and pressures. This will tend to reduce the 

theoretical maximum mass of a neutron star. 

To appreciate the role of the enhanced effect of gravity at high densities and 

pressures, we re-examine the equation for the hydrostatic equilibrium of a 

spherical mass distribution. In Chapter | we showed that the internal pressure 

gradient needed to oppose Newtonian gravity is given by Eq. (1.5), namely 

— = — (6.77) 

where m(r) is the mass enclosed by a sphere of radius r and p(r) is the density 
at r. The corresponding equation in Einstein’s theory of gravitation is 

dP Gmp " (1 + P/pc*)(1 + 4ar>P/mc?) 
dr re (1 — 2Gm/rc?) 

(6.78) 

Note that the Newtonian equation for hydrostatic equilibrium is recovered if c, 
the velocity of light, tends to infinity. 
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An essential difference between Newton’s theory and Einstein’s theory lies in 
the source of the gravitational field. In Newton’s theory it is the mass density, in 
Einstein’s theory it is the energy-momentum tensor, an entity which depends on 
the energy density and pressure. As a result, energy and pressure give rise to 
gravitational fields in very compact objects. This is illustrated in Eq. (6.78). The 
terms m(r)c? and p(r)c* are the energy enclosed by radius r and the energy 
density at r. More importantly, the pressure P occurs on the right-hand side of 

the equation. This pressure dependence of gravity has a dramatic effect on the 

stability of neutron stars. It implies that the progressive increase in pressure 

needed to oppose gravitational collapse is ultimately self-defeating because it 

leads to a strengthening of the gravitational field. Gravity is stronger and 

collapse is easier. 

Any realistic calculation of the properties of neutron stars is based upon the 

general relativistic equation for hydrostatic equilibrium, and an equation of 

state for neutron-star matter, P = P(p), which takes account of nuclear inter- 

actions. Equation (6.78) 1s integrated starting from p = p, at r = 0 to the sur- 

face at r= R where p=0. In this way, one finds a radius R and a mass 

M =m(R) for a given central density. In particular, the mass for which the 

star collapses can be found. The first calculation of this kind was by Oppenhei- 

mer and Volkoff in 1939. They found that the maximum mass of a star 

composed of non-interacting neutrons is 0.7M.. This is smaller than the 

estimate given by Eq. (6.76) because, in general relativity, the enhanced effect 

of gravity leads to a collapse at a finite density when the neutrons are becoming 

relativistic, not when they are ultra-relativistic. 

There have been a number of calculations using equations of state corres- 

ponding to a range of possible compressibilities for neutron-star matter. The 

predicted maximum masses range from M. to 3Mo. In fact, the detection of 

neutron stars with masses around 1.5M. in binary systems indicates that the 

compressibility of neutron-star matter is high. 

In order to explicitly illustrate the role of the enhanced effect of gravity in 

neutron stars due to general relativity, we shall consider an extreme but very 

simple model for matter inside a neutron star. We shall assume matter with a 

constant density po and which is incompressible at any finite pressure. 

We begin by finding the pressure profile inside a star of constant density po in 

hydrostatic equilibrium under Newtonian gravity. Integration of Eq. (6.77) 

implies that the pressure in a such a star is 

P(r) = G— p2(R’ 1°), (6.79) 

where the radius R is defined by P(R) = 0. We note that the pressure increases 

quadratically, and at the centre it reaches a value given by 

1/3 
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where M = m(R) is the mass of the star. We note that this pressure 1s finite for 

any finite value of the mass of the star. We conclude, without any surprise, that 

Newtonian gravity places no restriction on the mass of a star made from 

incompressible nuclear matter. G 

The corresponding general relativistic expression for the pressure inside a star 

of constant density can be found by integrating Eq. (6.78). A little private 

calculus leads to 

5 

af ~2GMr?/ Rc)? - (1 - ed 
P=—C : — (6.81) 

cand eit 2GM /Re2)!/? — (1 — 2GMr?/R3c2)"/” 

The pressure at the centre of the star is 

»lbimed lie 24M Re) 
peace Landd : APGd (6.82) 

3(1 —2GM/Re2)'/? — 1 

By considering the denominator of this equation, we see that the central 

pressure is finite only if 

GM 4 
——<-. (6.83) 
Rew-2 

This inequality can be rewritten in terms of the mass of the star and its constant 

density po. But before doing so, we shall express the constant density in terms of 

the neutron mass as follows: 

3m, h 
(ee where Try =fn 

4rr3 Mpc” 
(6.84) 

where f, is a dimensionless length parameter. Note the density of normal 

nuclear matter, Pryce = 2.3 x 10!’ kg m~3, corresponds to f, = 0.9. We can 

now rewrite Eq. (6.83) and show that the pressure at the centre of a neutron 

star of constant density is finite if its mass is smaller than 

Sf] ee | M,. (6.85) M THIS " 

Yet again we have found that the magnitude of a crucially important stellar 

mass is of the order of M,, the fundamental stellar mass defined by Eq. (6.59). 

We conclude from Eq. (6.85) that even incompressible matter can collapse 

under gravity. In particular, Einstein’s general relativity imposes an upper limit 

to the mass of a star made from incompressible nuclear matter; if this mass is 

exceeded, the internal pressure needed to support the star becomes infinite. This 

maximum mass depends on the value of the assumed constant density. For a 
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star made up of matter with a density equal to double the normal density of 
nuclear matter, the length parameter f, is 0.7, and the maximum mass is 2.7M, 
or 5Mo. 

In conclusion, we have two crude estimates for the maximum mass of a 
neutron star: one based on the stability of a compressible ideal gas under 
Newtonian gravity, Eq. (6.76), and one based on the stability of incompressible, 
constant-density nuclear matter under general relativistic gravity, Eq. (6.85). 
The usefulness of these estimates lies not in their numerical values, but in the 
physical ideas underlying their derivation. Realistic calculations must take into 
account the compressibility of neutron-star matter and general relativity. The 
consensus reached by these calculations is that the maximum possible mass of a 

neutron star is probably smaller than 3M. and definitely less than 5M... 

6.4 BLACK HOLES 

We now turn to the fate of a collapsing stellar core which is too massive to end 

its life as a neutron star. As the collapse proceeds, the gravitational field 

becomes stronger and stronger, and the internal pressure becomes larger and 

larger. But the source of the gravitational field in general relativity is the energy 

density and the pressure. Hence the increase in pressure accelerates the final 

stages of collapse. According to general relativity, the star enters a region of 

space-time called a black hole. Nothing can halt the collapse. Nothing can 

escape, not even light. And nothing is left of the collapsed stellar core apart 

from an extremely strong gravitational field. Gravitational collapse, the driving 

mechanism of stellar evolution, has progressed to its ultimate end, infinite 

compression. 
In the opening paragraph we attributed the collapse to a black hole to a 

progressively increasing force of gravitational attraction. But this description 

improperly treats space and time as two separate concepts. It is more accurate 

to describe a black hole in terms of a distortion of the unified concept of space— 

time. In general relativity, gravity is not’ a force, but a distortion of the 

geometrical properties of space-time due to the presence of matter and radia- 

tion. The sun only produces a slight ‘dent’ in space-time, but a collapsed core of 

a massive star can produce a ‘hole’. Nothing can escape from this hole because 

there are no outward paths in this distorted region of space-time; every path is 

towards the centre of the hole. It is a hole of no return. 

The size of a black hole depends on the mass of the collapsed object. It is the 

Schwarzschild radius” 

26M" (6.86) 

? By coincidence the correct expression for the Schwarzschild radius can be obtained by taking the 

Newtonian escape velocity of a particle from an object of mass M and radius R, 
and setting it equal to c. 
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For a collapsed mass equal to 10M=~ the Schwarzschild radius is 30 km. The 

Schwarzschild radius marks the boundary of the one-way surface of the black 

hole. This surface is not made of anything. It encloses an unobservable region 

of space in which all motion is towards the centre. 

A black hole is formed when the radius of a collapsing star reaches the 

Schwarzschild radius. If a distant observer could view the collapse, they 

would see the star frozen at this radius, because time in the intense gravitational 

field on the surface of the star appears to grind to a halt. This gravitational field 

leads to a gravitational red shift which ‘extinguishes’ the star as the Schwarzs- 

child radius is approached. In fact, the fractional change in wavelength of 

radiation escaping from the surface of a star is given by Eq. (6.27), and when 

This is rewritten in terms of the radius of the star and the Schwarzschild radius, 

it becomes 

—1/2 

=e | - “a =i (6.87) 

This indicates that the red shift tends to infinity as R approaches R,.,. The 

frequency of the radiation tends to zero, so the energy escaping from the star 

also tends to zero. Indeed, the luminosity decreases exponentially in accordance 

with 

Rscn 
Lax exp|- “| where 7 = = (6.88) 

7 

For a collapsed mass equal to 10M5, 7 = 10~* s. 

However, the star only appears to freeze and fade into darkness to a distant 

observer. To an observer within the Schwarzschild radius, the star is still active 

and lively. Indeed, such an observer would find out what happens to all the 

quarks, electrons, neutrinos and photons inside the black hole. Unfortunately, 

that observer will be cut off from the rest of the universe and will be unable to 

share the knowledge. 

The detection of a black hole, an object whose only manifestation is an 

intense gravitational field, is not an easy task. Any evidence for its existence 

must be circumstantial because it cannot be seen. But the immense gravitational 

attraction of a black hole can reveal its presence. 

For example, when gaseous matter is pulled towards a black hole, it acquires 

kinetic energy and becomes very hot. The resulting temperature of this gas and 

the nature of its radiation, before it is hidden for ever within the Schwarzschild 

radius, are a measure of the strength of the gravitational field it is entering. In 

particular, the accretion of matter onto a black hole is expected to be accom- 

panied by X-ray radiation. However, similar X-ray radiation can also be 

produced by gaseous matter entering the strong gravitational field of a neutron 

star. But the presence of a neutron star can be ruled out if the mass of the 

compact object involved exceeds the maximum possible mass of a neutron star. 
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The detection of any compact object with a mass greater than this limit is, by 
default, a black hole. 

The currently favoured method for detecting black holes is based upon the 
observation of compact X-ray sources, binary systems consisting of a visible 
ordinary star and an invisible compact object. X-rays are produced by mass 
flowing from the ordinary star into the strong gravitational field of the invisible 
compact object. Information on the relative motion of the binary system can be 
deduced from the spectrum of radiation from the ordinary star, and this 
information can be used to set limits on the mass of the invisible, compact 

object. If this mass is greater than 3M, the compact object is probably a black 

hole. If its mass is greater than 5Mo, it almost certainly is a black hole. 

According to McClintock (1992), four X-ray binary sources show strong 

evidence for the existence of stellar black holes. They are Cygnus X-1 and 

A0620-00 in our galaxy, and LMC X-1 and LMC X-3 in the Large Magellanic 

Cloud. In each case the mass of the unseen compact object in the binary system 

is above 3M. The estimate of the actual mass is model dependent. It depends 

on assumptions about the orientation of the orbit of the binary system and on 

the mass of the visible companion. However, plausible assumptions suggest that 

these four binary systems contain compact objects with masses which range 

from 6M. to 12M. These masses are significantly above the maximum poss- 

ible mass for a neutron star. 

The possibility that the evolution of a star could lead to the formation of a 

black hole was first recognized in the 1930s, soon after Chandrasekhar’s dis- 

covery of a maximum value for the mass of a white dwarf. The existence of this 

maximum implied that a massive stellar core could collapse into a region of 

space in which gravity was overwhelming. Many astrophysicists found this 

outcome for stellar evolution unacceptable, if not absurd. Eddington, as 

usual, made his view very clear when he wrote in 1935: 

The star apparently has to go on radiating and radiating and contracting and 

contracting until, I suppose, it gets down to a few kilometres radius when 

gravity becomes strong enough to hold the radiation and the star at last can 

find peace. ...I think that there should be a law of Nature to prevent the star 

from behaving in this absurd way. 

However, the current belief is that a black hole, like a white dwarf and a 

neutron star, is a respectable endpoint for stellar evolution. It is a belief based 

on firm theoretical foundations and supported by evidence from observational 

astronomy. 

Gravity is the driving force for stellar evolution. It leads to the formation ofa 

star and to temperatures which make thermonuclear fusion possible. The 

energy released by fusion only serves to delay the gravitational contraction of 

the matter inside the star. The endpoint may be a white dwarf or a neutron star, 

stars in which cold matter resists the force of gravity. An alternative endpoint is 

a black hole in which gravity is completely triumphant. This outcome is neat 
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and tidy — nothing is left of the collapsed matter apart from an intense gravita- 

tional field. 

SUMMARY 

White dwarfs 

e Toa first approximation, a white dwarf is a star supported by the pressure of 

an ideal gas of degenerate electrons. 

e The degenerate electrons at the centre of a white dwarf with a low mass are 

non-relativistic, and the central density increases with the mass M in accord- 

ance with 

317M]? my 
Be | = (6.4) 

Y? [M,| (h/mc) 

where Y, is the number of electrons per nucleon and M, is the fundamental 

stellar mass defined by Eq. (5.63). As the mass increases, the electrons 

become relativistic and the density increases more rapidly. As the mass 

approaches the Chandrasekhar limit, the electrons become ultra-relativistic 

and the central density tends to infinity, as shown in Fig. 6.1. In other words, 

the star collapses. 

e The Chandrasekhar limit is the mass of the white dwarf whose central density 

tends to infinity. As such, it represents the maximum possible mass for a 

white dwarf. The pressure—density relation (6.6) leads to an estimate for Mcy 

given by Eq. (6.9). A more accurate estimate, based on a polytrope model, is 

given by 

Mcu © 3.1Y2M,, (6.18) 

which corresponds to a mass of about 1.4 M, 

e The radius of a white dwarf is a decreasing function of its mass. For white 
dwarfs of low mass, the approximate relation between radius and mass is 

M,)'° h me 5/5 * =1/2 
RS 0.77 ie Aa | AG / Met * (6.20) 

This implies that the characteristic size of a white dwarf is 

ayy h ag) 3 x 10" m. (6.21) 
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If we use the sun as a standard for mass and size, and if Y, = 0.5 then 

Reta eye 
Ra lar ’ (6.23) 

This mass—radius relation can be used to derive expressions for the luminos- 
ity and gravitational red shift of radiation from a white dwarf in terms of its 

mass; see Eqs. (6.25) and (6.28). 

Stellar collapse 

e Nuclear photodisintegration and electron capture are two possible mechan- 

isms for the absorption of energy which could drive the iron core of a star 

into uncontrolled collapse. 

e The energy of formation of a neutron star, essentially the gravitational 

binding energy of a neutron star, 

GM? _ 46{ M]7 [10 km 

is an order of magnitude larger than the energy absorbed by nuclear photo- 

disintegration or by electron capture. The bulk of this energy is emitted in the 

form of neutrino radiation; see Fig. 6.3. 

Neutron stars 

e If we assume that Newtonian gravitation in a neutron star is opposed by the 

pressure of an ideal gas of degenerate, non-relativistic neutrons, then the 

radius of a star of mass M is given by 

M1? Si fh 
~ 0. = *“—., 6.60 R o.71| | er (6.60) 

This implies that the characteristic size of a neutron star is 

ae 6.61 Ye ! ——= @ 17 km. (6.61) 
G sige 

e Estimates for the typical mass and radius of a neutron star lend support to 

the hypothesis that pulsars are rapidly rotating neutron stars. 
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e Neutron stars cannot have a mass greater than a certain critical limit, the 

analogue of the Chandrasekhar limit for white dwarfs. However, the gravita- 

tional fields are strong and general relativity must be used. The exact value of 

the maximum possible mass of a neutron star is difficult to calculate because 

of the uncertainty in the compressibility of neutron-star matter at high 

densities. It is probably around 3M, and almost certainly below 5M... 

Black holes 

e If a collapsed stellar core has a mass greater than the maximum mass of a 

neutron star, it will undergo complete collapse and form a black hole. 

e Any method for detecting a black hole depends on observing the effects of its 

intense gravitational field. The observation of some compact X-ray sources 

indicates the presence of intense gravitational fields due to compact objects 

which are too massive to be neutron stars. These objects, by default, are 

thought to be black holes. 

PROBLEMS 6 

6.1 According to Eq. (6.4), the central density of a body supported by degenerate 

electrons goes to zero as the mass of the body goes to zero. This unphysical 

result arises from the neglect of electromagnetic interactions between electrons 

and ions. In fact, as the pressure falls, the density tends to a value corresponding 

to ordinary, uncompressed atomic matter. Because the size of an atom is of the 

order of the Bohr radius, this density is approximately given by 

my 
Patomic = ais 

aR 

where az, the Bohr radius, can be written as 

Sie 
a= : 

QEM MeC 

The fine structure constant agjy is a dimensionless measure of the strength of 
the electromagnetic interaction; it equals e?/(47e9 fic) = 1/137. Show that the 
central density of a body supported by degenerate electrons becomes compar- 
able with normal atomic densities when the mass of the body is comparable 
with 

3/2 
a 

Mp= ea My = a; M, = 0.001Ms. 
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Note we can roughly identify this mass with the maximum mass of a body 
containing ordinary atomic matter, i.e. the maximum mass of a body like a 
planet. Indeed, the mass of Jupiter is 0.00095M 5. 

The energy needed to dissociate one *He nucleus into two neutrons and two 
protons is Q@=28.3 MeV. Derive an expression relating the numbers of 4He 
nuclei, neutrons and protons coexisting at a temperature T in an equilibrium set 
up by the reactions 

+ +* He = 2n + 2p. 

Calculate the temperature for 50% dissociation when the density is 10! kg m~?. 

Assume that a hot, bloated neutron star emits thermal neutrino radiation from 

a surface of radius R at an effective temperature equal to T¢. Assume that three 

types of massless, or nearly massless, neutrinos, 1, v,,,v, and their antiparticles, 

are emitted in equal numbers, in thermal equilibrium with zero chemical poten- 

tial. Show that the luminosity is given by 

21 
L,=> oTpAnR’, 

where a is Stefan’s constant. Find an expression for the average energy for a 

neutrino in this radiation. [Hint: Look back at Chapter 2 and reconsider 

Problem 2.5.] 

The outward expulsion of the outer layers of a massive star by a shock wave 

generated by core rebound is the most promising mechanism for generating a 

supernova from gravitational collapse. A possible alternative mechanism 

involves neutrinos. Neutrino radiation from the collapsed core could transmit 

outward momentum and cause an expulsion. By reconsidering Problem 3.3, 

show that this mechanism could be effective only if the neutrino luminosity 

exceeds a value given by 

4nrcGM 
2 Mag are 

Ky 
Ly 

where M is the mass of the collapsed core and k, is the neutrino opacity. By 

noting that the neutrino opacity is of the order of 10~!° m? kg~!, show that the 

expected neutrino luminosity of around 10* W is insufficient to cause an 

expulsion. 

The detection of neutrinos (mostly 7.) from the supernova SN1987A at a 

distance of 50 kpc from the earth provided valuable information on the max- 

imum possible mass of the electron neutrino. Write down a general expression 

for the velocity of a neutrino of mass m and energy E as a fraction of the 
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velocity of light, and confirm that more energetic neutrinos move faster and 

arrive earlier at the earth. Show that, if the mass of the neutrino is 30 eV c~, 

then a 10s spread in the arrival time at the earth is expected for neutrinos with 

energy between 10 and 15 MeV. 

Consider an ideal degenerate gas of electrons, protons and neutrons, and the 

equilibrium established by the reactions (6.52). Assume equal numbers of 

electrons and protons and assume that the density is so high that all the 

degenerate particles are ultra-relativistic. Show that the number densities of 

the particles are in the ratio 

ey: Hy stip = Ls O. 

Estimate the maximum angular velocity of rotation of a typical white dwarf. 

The ratio of the Schwarzschild radius to the actual radius of a body is the 

crucial parameter for assessing the importance of general relativity. Show, that 

for a main sequence star, like the sun, with a typical interior temperature 77, 

this ratio is approximately given by 

Ieca? pa kT; 

RR myc2- 

Show that for a white dwarf 

Rak ns Me 

R my 

and for a neutron star 

Rech ~ | 

R 

The Crab Pulsar is a rotating neutron star formed by a supernova in AD 1054. 
At present it has an angular velocity and an angular acceleration given by 

w=190s-! and 7 ==2.4x 10° s-, 

If gravitational radiation were responsible for the Crab slowdown, the rate of 
loss of rotational energy would be proportional to w°. Use this model to derive 
an expression for the time dependence of w. Show that this model predicts an 
age which is less than the actual age of the pulsar. 

6.10 Reconsider Problem 3.3 in which you estimated the maximum luminosity, the 
Eddington luminosity, for a star of mass M. For a stellar mass of about Mo, 
show that the Eddington luminosity is about 10°! W 
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Consider a binary system in which matter accreting onto a compact object 
leads to a luminosity equal to 10°! W, close to the maximum possible value for 
a star of mass M5. 

e Show that if the compact object is a white dwarf then it radiates in the 

ultraviolet, but if it is a neutron star then it radiates in the X-ray region. 

e Use Eq.(6.62) to show that, if the compact object is a neutron star, 

the luminosity is consistent with a mass accretion rate of about 10-°M, 

per year. 

6.11 Assume the pressure in a white dwarf is entirely due to degenerate electrons, as 

given by Eq. (6.12): 

a Jo) (V+ 2)" 

Here xp is the dimensionless Fermi momentum. It is related to the density of 

the star at radius r by 

8imy 
> 

PF poet h 
AF >= = 

MeC MeC 

where Y, is the number of electrons per nucleon. 

e Show that 

APO sty er LOU Ey 
dp * mya 3 (1 + x3,)'/?' 

e The structure of the star is governed two coupled first-order differential 

equations for m(r) and p(r): 

dp Gm(r)p(r) dp 
dr i dP 

and 

dm 
hi Arr’ p(r). 

i . 

Devise a computational procedure for the numerical integration of these two 

coupled differential equations. 

The masses and radii of white dwarf stars given by a computation of this kind, 

carried out as part of an undergraduate project by Ian Glass and Simon Berman, are 

show in Fig. 6.4. 
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Fig. 6.4 The masses and radii of white dwarf stars given by the calculation outlined in 

Problem 6.11. Two values for the number of electrons per nucleon were chosen: 

Y. = 26/56 for an iron white dwarf and Y, = 6/12 for a carbon white dwarf. The 

existence of a maximum mass is clearly indicated. The masses and radii of three white 

dwarfs given in Table 6.1 are also shown 



7 
Helioseismology 

Helioseismology is the study of the internal oscillations of the sun. The sun, like 

any self-gravitating mass of compressible gas, can oscillate in a variety of ways. 

However, for small amplitudes of oscillation, any complex oscillatory motion can 

be considered as a superposition of simple motions called normal modes of 

oscillation, with each mode having a definite frequency and shape. The identi- 

fication of such modes of oscillation has provided information on the solar inter- 

ior, which has largely confirmed the main elements of the Standard Solar Model. 

In this chapter we shall describe the physics needed to understand helioseis- 

mology. First we consider two types of waves that can occur in the sun, pressure 

and gravity waves. We then consider the normal modes of oscillation of the sun 

and indicate how the shapes and frequencies of these modes may be obtained by 

solving a wave eigenvalue problem. We conclude with a short discussion of how 

helioseismic data has been used to test solar models. 
For a more advanced analysis, and for an extensive discussion of the obser- 

vational aspects of the subject, we refer the reader to Gough and Toomre 

(1991), Turck-Chieze et al. (1993) and Stix (1989). 

7.1. INTRODUCTION 

In 1975 it was discovered that a spectrum of discrete frequencies could be 

associated with patterns of vertical motion in the solar photosphere. In practice, 

several million modes of oscillation are present at any one time with vertical 

velocities which oscillate with periods between 3 and 12 minutes and with 

amplitudes of the order of 3cms~!. The superposition of these modes, with 

randomly distributed phases, leads to transient patterns of motion on the solar 

surface with amplitudes of the order 1 km s-!. The study of these modes of 

oscillation, helioseismology, has provided valuable information on the internal 

properties of sun. . 

One can identify a particular solar mode of oscillation by measuring two 

surface properties: the frequency of oscillation and the size of the undulations 
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on the solar surface. The size of the undulations is characterized by a horizontal 

wave number k;,, which gives the number of undulations on the surface in a 

distance of 27. We shall see later that it is useful to relate k;, to a positive integer 

/ via the equation 

De Mees (7.1) 
Re 

The integer / is called the degree of the mode of oscillation. 

The measurement of the frequency and horizontal wave number of a solar 

mode of oscillation is a formidable problem. One way to proceed is to observe the 

small Doppler shifts that arise from oscillatory motion; a red shift corresponds to 

motion away from the observer and a blue shift corresponds to motion towards 

the observer. An alternative approach is to observe the small fluctuations in the 

intensity of light from the sun. However in all observations, the general criteria 

for a measurement are governed by the principles of Fourier analysis. 

If the time resolution of the detector is At, then modes with frequencies up to 

1/At can be identified. If the observation time is T, then modes with frequen- 

cies as low as 1/T can be identified. The time of observation also determines the 

frequency resolution of the measurements: two frequencies vy and y + Av can be 
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Fig. 7.1 A frequency—degree diagram for observed solar modes of oscillation. A mode 
with degree / and frequency v is identified by a data point with coordinates (/, vv) ona two- 
dimensional plot with the horizontal axis representing the degree / and the vertical axis 
representing v. Note that the modes are located on a sequence of well-defined curves called 
ridges. Later we shall see that each ridge corresponds to a particular value of an integer 
called the radial order of the mode. (Reprinted, with permission, from Libbert K.G. and 
Woodward M.F. Nature ,345, 779. Copyright 1990 Macmillan Magazines Limited) 
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resolved in an observation time T if the phase difference developed, 27 Av T, is 
comparable with 27. 

Corresponding criteria apply to a measurement of the horizontal wave 
number k;, of a mode. If the spatial resolution is Ax, the highest wave number 
that can be identified is k, + 27/Ax. If the solar surface is scanned over a 

distance X, the lowest wave number that can be identified is k;, ~ 2n/X, and 

modes with wave numbers k, and k, + Ak), can be resolved if Ak, © 27/X. 

Once the horizontal wave number is measured, the degree / of the mode can be 

found from Eq. (7.1). 

The measured frequencies v and degrees / of solar modes of oscillation are 

not uncorrelated. The correlation can be illustrated on a two-dimensional 

diagram in which the vertical axis represents the frequency and the horizontal 

axis the degree. When modes are represented by a point with coordinates (/, v) 

on this diagram, they are found to be located on a sequence of curves, called 

ridges, as illustrated in Fig 7.1. The analysis of data like this has led to the 

identification of several thousand modes of oscillation. However, this wealth of 

helioseismic data can only be understood after we have addressed three key 

questions: What types of waves can propagate inside the sun, how are they 

trapped and how do they resonate? 

7.2 PRESSURE AND GRAVITY WAVES 

Pressure and gravity waves in an atmosphere involve pressure and density 

oscillations in a compressible gas. However, the restoring force responsible for 

these oscillations is different in the two cases. In a pressure wave the restoring 

force arises from fluctuations in the pressure gradient, but in a gravity wave the 

restoring force arises from the buoyancy of the gas in the gravitational field. In 

this section we shall explore the properties of pressure and gravity waves in a 

simple atmosphere in which the acceleration due to gravity is constant. 

Propagation of pressure waves 

The reader will have heard about pressure waves; they are sound waves if the 

frequency of oscillation is in the audible range between 20 and 20000 Hz. Our 

chief concern is the effect of gravity on pressure waves. In particular, we shall 

consider an atmosphere, whose density falls off with height because of gravity, 

and show that pressure waves can only propagate if their frequency exceeds a 

cut-off frequency which will be denoted by w-. 

Consider an elementary layer of atmosphere between heights x and x=Hdx. 

The weight per unit area of this layer is gp(x) dx, where p(x) is the density of the 

atmosphere and g is a constant acceleration due to gravity. The layer will be in 

hydrostatic equilibrium if this weight equals P(x) — P(x + dx), the pressure 

drop across the layer. When this is the case, an atmosphere, consisting of an 
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ideal classical gas of particles of mass m at a uniform temperature 7, has a 

density gradient given by 

where H = kT /mg is the scale height of the atmosphere; see Problem 7.1. 

When a pressure wave propagates vertically in the atmosphere, the gas 

particles will suffer small vertical displacements which in turn produce small 

fluctuations in density and pressure, denoted by p’(x,t)—p(x) and 

P'(x,t) — P(x). Let €(x, ft) denote the displacement at time ¢ of the plane of 

particles whose undisturbed position is x. The particles whose undisturbed 

position is x + dx will then be displaced by 

a3 
E(x + dx, t) = €(x,t) + ax dx. 

Thus, at time ¢, the particles that were originally located in a layer of thickness 

dx are now located in a layer of thickness (1 + 0€/0x) dx; 1.e. there is a 

fractional increase in thickness which is equal to 0€/Ox, as illustrated in Fig. 7.2. 

If the thickness of the layer increases then the density decreases, and vice 

versa. Indeed, for small changes, the fractional change in the thickness is equal 

and opposite to the fractional change in the density. Hence 

sage (7.3) 

If heat transfer to and from the layer is negligible, this density fluctuation is 

accompanied by a pressure fluctuation given by the adiabatic relation 

* (x,t) — = men ns t) - a ' 
P(x) p(x) Ei 

where y is the ratio of the constant-pressure specific heat to the constant- 
volume specific heat. Because of this fluctuation in pressure, the forces on either 
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Fig. 7.2 The vertical displacements of an elementary layer of gas particles caused by the 
propagation of a pressure wave. Note the increase in the thickness of the layer is given by 
E(x + dx, t) — €(x,1) = (dE/Ax) dx 
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side of the layer are no longer in equilibrium and the layer acquires a vertical 
acceleration which is given by Newton’s equation of motion, 

as a 
Pegg os BP nb): (7.5) 

It is straightforward to combine Eqs. (7.3), (7.4) and (7.5) and derive the 
characteristics of pressure waves in an isothermal atmosphere with an equilib- 
rium density given by Eq. (7.2). The essential steps are as follows. 

First, the equation of motion (7.5) can be rewritten as 

OE 3Of co 

Hie De FT Ox’ (7.6) 

where 

Cy SS ite W?.7) 

If the scale height H tends to infinity, the density of the atmosphere is uniform 

and the equation of motion for pressure waves reduces to the well-known wave 

equation for non-dispersive waves travelling at the velocity of sound, c;. 

Next we seek a sinusoidal wave with angular frequency w. The energy density 

of such a wave, } pu, is expected to remain constant as the wave propagates 

upwards with constant velocity in the direction of decreasing density p(x). With 

this expectation in mind we substitute! 

X (x) 
p(x) 

eit E(x, t) = 

into Eq. (7.6) and find that X(x) satisfies the differential equation 

> + we X =0, (7.8) 

where the frequency parameter w, is given by 

We-= Bc (7.9) 

We see immediately that ¥(x) = 4e~** is a solution of the differential equa- 

tion provided 

1 The actual wave is of course described by a real function, the real part of € (x, t), say. The use of 

complex exponentials is merely a device to ease the maths. 
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When we take the positive sign, which corresponds to a wave attempting to 

move vertically upwards, we find a wave with the following characteristics: 

When w > ux, 

oe +) 

Relé(x, 2)j = 7G cos(wt —kx) where k= fe 2 we) (7.10) 

When w < uy, 

Re(ext)) = a e **cos(wt) where x= — (7.11) 

We emphasize that propagation depends on whether the frequency is above or 

below the critical frequency w, given by Eq. (7.9). When w > w, the pressure wave 

can propagate vertically upwards at constant velocity into less dense regions of 

the atmosphere with an increasing amplitude proportional to p~!/? but with a 
constant energy density Lure? p, But when w < w, there is no propagation; we 

have an evanescent wave in which the displacements at all heights oscillate in step 

but with amplitudes that decrease exponentially with height. 

We conclude that w, = c,/2H is the minimum frequency for the propagation 

of pressure waves in an isothermal atmosphere with scale height H. If we had 

considered the more difficult problem of an atmosphere with a non-uniform 

temperature and a non-uniform gravitational field, we would have found that 
the cut-off frequency is given by 

dH 

Propagation of gravity waves 

In Eq. (7.5) we only included the restoring force due to the fluctuation in the 
pressure gradient. However, the buoyancy of the gas may also give rise to a 
restoring force which can sustain oscillations. To understand this, we consider a 
small vertical displacement of a pocket of gas. If it finds itself in a region where 
its weight is less than the upthrust due the weight of gas it displaces, it will 
continue to rise as a convection current. If the converse is true, the pocket of gas 
will sink back and oscillate about its equilibrium position The angular fre- 
quency of these oscillations is often called the Brunt-Vaisala frequency; we 
shall call it the buoyancy frequency and denote it by N. 
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We can derive an expression for the buoyancy frequency by extending the 
discussion of convection given in Section 3.2. When a pocket of gas is displaced 
upwards from x to x + Ax in an atmosphere, the upward force per unit mass of 
displaced gas is 

g F == [Ap — 6p), oe p| 

where Ap = p(x + Ax) — p(x) is the difference in atmospheric density at 
heights x + Ax and x, and 6p is the increase in the density of the pocket of 
gas that occurs when it is displaced. If we rewrite this force per unit mass as 

F=-N*Ax where N?=~-% re (7.13) 

it is evident that, when N? is positive, the pocket will oscillate with angular 

frequency N, the buoyancy frequency. We shall show in Problem 7.4 that 

(7.14) 
vat 40P.» 1.dT, ing pe ies oT i 

When buoyancy oscillations in adjacent elements of the atmosphere are 

appropriately coordinated, a gravity wave propagates. The simplest example 

is a wave that propagates in the horizontal direction when horizontally adjacent 

pockets of gas bob up and down with the appropriate phase. If the number of 

up-down bobs in a horizontal distance 27 is equal to k, the phase velocity of the 

wave is N/k. More complicated gravity waves can propagate in other direc- 

tions, but we shall not explore these complexities. Instead we shall emphasize 

the properties of gravity waves that are most relevant to our forthcoming 

discussion of waves inside the sun: 

e Gravity waves can only propagate in a region of stable stratification of an 

atmosphere; in a convective region, displaced pockets of gas do not return 

and oscillate, as shown explicitly in Problem 7.4. 

e The buoyancy frequency is the maximum possible frequency of a propagat- 

ing gravity wave. Horizontal gravity waves have angular frequency N. But 

waves in other directions have frequencies below N because the buoyancy 

restoring force is smaller for non-vertical displacements. 

7.3. WAVES INSIDE THE SUN 

In this section we shall describe how gravity and pressure waves propagate and 

become trapped inside the sun. Important roles are played by the cut-off 

frequencies, N and wy. 
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As a pressure wave crosses the sun its velocity is expected to change as 

illustrated in Fig. 7.3. This figure shows the square of the velocity given by 

the Standard Solar Model for a sun with an initial helium mass abundance of 

X4 = 0.28 and an age of 4.6 x 10° years. To understand the curve in Fig 7.3, we 

recall that c, is given by Eq. (7.7) and assume that the solar gas is approximately 

an ideal classical gas. We find that 

apna apt (EE (7.15) 
p m 

We see that c, is proportional to V7 and inversely proportional to /m. This 
implies that pressure waves speed up as they move closer to the hot central 

regions of the sun, but the tendency to increase is less marked when the region 

of nuclear fusion is entered; in this region the value of m is higher because 

hydrogen has been converted to helium. 

The order of magnitude of c, is easily found from Eg. (7.15). If we set 

T = T; = 6 x 10°K, a typical temperature inside the sun given by Eq. (1.31), 

and use m = 0.61 amu and y = 5/3 we find 

c, 2% 4x 10° ms!, (7.16) 

We can also make a rough estimate of w,, the minimum frequency for pressure 
wave propagation in the solar interior. Solar models indicate that the temper- 
ature is equal to T; = 6 x 10°K at a radius r~ R5/3 where m(r) ~ 0.7Mo. 

0.3 

0.1 

0 _— 

0.2 0.4 he a 0.8 1 
r/Ro 

Fig. 7.3 The square of the velocity of pressure waves inside the sun given by the 
Standard Solar Model for a sun with an initial helium mass abundance of X4 = 0.28 
and an age of 4.6 x 10° years 
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The acceleration due to gravity at this radius is g = Gm(r)/r = 6.3GM,/ 
R3 =6.3 x 274ms~? and, if m=0.6amu, the scale height is H ~kT;/ 
mg = 4.7 x 10’m. When this value for H and the estimate for c, given by Eq. 
(7.16) are substituted in Eq. (7.9), we find that the pressure wave cut-off 
frequency is 

Ww. 24x 1073571, TAT 

This frequency corresponds to a period of oscillation of about 25 minutes. 
The value of the buoyancy frequency AN inside the sun is more difficult to 

estimate because, as shown by Eq. (7.14), the value of N? depends on the 
difference of two terms, one determined by the pressure gradient and one 
determined by the temperature gradient. However, the value of N2 is positive 
in the non-convective solar interior, but in the solar convection zone, which 
begins at a radius r ~ 0.7R5, the steep temperature gradient responsible for the 
convection gives rise to a value of N? that is close to zero or negative. This 
means that the buoyancy frequency must go to zero at the bottom of the 
convection zone. 

We are now in a position to understand how pressure and gravity waves 

bounce around inside the sun. 

Gravity waves in the sun become evanescent when they approach a region 

in which their frequency exceeds the buoyancy frequency N. Solar model 

calculations show that the buoyancy frequency is roughly 3 x 10-7s7! 
throughout most of the solar interior and that it goes to zero, as expected, at 

the bottom of the convection zone at r~0.7R;5. Hence gravity waves with 

frequencies w below 3 x 10~*s~!, or periods above 35 minutes, can propagate 
in the interior, but they are reflected as they enter regions near the convection 

zone where N is smaller than w. Thus, internal gravity waves are largely 

trapped below the convection zone and are difficult to detect at the surface. 

Low frequency oscillations of the sun with periods of one hour and longer 

have been reported, but their identification -with internal gravity waves is 

uncertain. 
In contrast, pressure waves in the sun can penetrate close to the surface. The 

minimum frequency for propagation in the solar interior is approximately given 

by Eg. (7.17); this frequency, w. + 4 x 10-*s, corresponds to a period of 

25 minutes. As a wave approaches the solar surface, the decrease in c, leads 

to a rapid increase in w,, and, at 500 km above the visible surface, w, reaches a 

maximum value of 3.5 x 10-7s~!, which corresponds to a period of 3 minutes; 

see Problem 7.3. Hence waves with periods greater than 3 minutes are reflected 

downwards near the solar surface; they are reflected when they enter a region 

where the local value of w, reaches w. These trapped pressure waves are 

responsible for the oscillations which are observed in the solar photosphere 

with periods between 3 and 12 minutes. Indeed, the observed motion is a direct 

result of evanescent pressure waves. 
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7.4 NORMAL MODES OF OSCILLATION 

We now turn our attention to the normal modes of oscillation associated with 

trapped pressure waves inside the sun. We shall consider pressure waves within 

a spherical ball of gas with the radius of the sun and with temperatures 7, 

pressures P and densities p comparable to those inside the sun. The problem of 

finding the normal modes of oscillation of pressure waves trapped in this solar 

ball is a wave eigenvalue problem which is similar to the problem met by physics 

students when they study the hydrogen atom in quantum mechanics.” 

In Section 7.2 we considered pressure waves in an isothermal atmosphere 

with constant gravity. In particular, we showed that when the frequencies are 

well above the cut-off frequency w,, the wave disturbance p'/*€ can have a 

sinusoidal form with constant amplitude and constant undulation k = w/c,; see 

Eq. (7.10). In analogy, a pressure wave inside the sun will behave similarly when 

its frequency is well above the local value for w,. In this case the wave can be 

described approximately by the three-dimensional wave equation 

) 1 Oy 
Vw ce an = 0, (7.18) 

where c, is the local wave velocity. The scalar function (r,t) representing the 

wave disturbance can be taken as c5! 7 p'/E,, where €, is the radial displacement. 

The normal modes of oscillation with angular frequency w can be found by 

seeking a separable solution of Eq. (7.18) of the form 

wW(r,t) = Re[R(r) Yim(@, o) e“], (7.19) 

where r, 9, ¢ are spherical polar coordinates with origin at the centre of the sun, 

Yim(0, @) are spherical harmonics which describe the possible angular shapes of 

the modes, and R(r) are functions which describe the possible radial shapes of the 

modes. 

Spherical harmonics are labelled by the integers / and m; for each value of the 

positive integer /, the integer m has 2/ + 1 possible values ranging from —/ to +/. 

The / = 0 modes are spherically symmetric and modes with / = 1,2,3,... have 

angular shapes of increasing complexity. The integer / is called the degree of the 

mode. For each value of / there is a sequence of radial functions R(r), each of 

which is labelled by an integer n called the radial order of the mode. 

We also note that, because c, only depends on the radial coordinate r, the 

system has rotational symmetry and modes with the same values for n and /, but 

different values for m, will have identical frequencies This degeneracy is 

removed when the rotation of the sun is taken into account. Each frequency 

is then split into 27+ 1 components with a separation given by a rotational 

frequency of the sun, which on average is (2/27 ~ 440nHz. This effect is 

2 aah : 
The converse was true for Schrédinger. In his case the hydrogen atom problem was very similar 

to the wave eigenvalue problems he had met in classical physics. 
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analogous to the Zeeman effect in atomic physics where rotational symmetry is 
broken by the presence of an external magnetic field so that energy levels 
depend on the magnetic quantum number /. 

A possible mode of oscillation with / = 24 and n = 13 is illustrated in Fig. 7.4. 
It shows a circular cross-section through the centre of the sun in which regions 
of alternating motion towards and away from the centre of the sun are indic- 

ated by dark and light shades. 

If we substitute Eq. (7.19) into the wave equation (7.18), we find that the 

radial function R(r) satisfies the differential equation 

os 1(1 l ur al ) Sa NES |, (7.20) 
r? dr dr I or 

Now we can derive the relation between the degree of the mode and its 

horizontal wave number, something we mentioned at the beginning of Section 

7.1. We consider a set of Cartesian coordinates with the x-axis along a local 

1=24,n=13 

Fig. 7.4. A computer graphic for the radial structure of a solar mode of oscillation with 

degree / = 24 and radial order n = 13. It shows a circular cross-section through the 

centre of the sun in which regions of alternating motion towards and away from the 

centre of the sun are indicated by dark and light shades. The observed period of this 

mode is about 5.4 minutes. (After J.W. Leibacher, R.W. Noyes, J. Toome and R.K. 

Ulrich, 1985, Scientific American, 252, 40) 
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vertical axis passing through the centre of the sun, and y and z axes along 

local horizontal axes. If we seek a solution of the wave equation of the 

form 

wir, t) =Re f(x) deirhuta); 

the Laplacian V’ acting on ~ yields 

om 9 a] 

— —(k, +k,)\¥ Fe (ky, +k: ] y 

instead of the term 

bom 70 —1d+4) iF 

r2 Or . Or r2 

which occurs in Eq.(7.20). Comparison of these two expressions _at r= R; 

shows that the horizontal wave number on the surface, k;, = \/k; +k? and 

the degree / of a mode are related by 

eo eae (7.21) 

Thus, an observation of the solar surface which identifies the value of k;, 

determines the degree / of the mode of oscillation. 

Returning to the differential equation (7.20), we write R(r) = u(r)/r and find 

that the radial function u(r) satisfies 

me: 
= (7.22) 

r 

ab ii 1 ; 
Salas Pomeutaes) “3 = 0% where “kK = 
dr? 2 

7: 

Cs 

We seek solutions to this differential equation which satisfy the appropriate 

boundary conditions. The first condition is u(r) = 0 at r = 0; this ensures that 

the wave, which is proportional to u(r)/r, is finite at the origin. The second 

condition should ensure that u(r) begins to decrease near the solar surface so as 

to join onto an exponentially decaying wave in regions where w, > w. In this 

simplified calculation we shall simulate this behaviour by setting u(r) = 0 at 
Tee 

The differential equation (7.22) and its boundary conditions constitute an 

eigenvalue problem. Solutions, called radial eigenfunctions, only exist when the 

parameter w takes on specific values, called the eigenfrequencies of the normal 

modes of oscillation. For each value of / there is a sequence of eigenfunctions 

u(r) with an increasing number of nodes between r = 0 and r = Ro; the higher 

the number of nodes, the higher the values for the frequency of oscillation. This 
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sequence is labelled by the radial order. In fact, an eigenfunction with radial 
order n has n — | nodes between r = 0 andr = R=. 

Some of these eigenfunctions and eigenfrequencies are particularly sensitive 
to properties of the solar interior. This fact is most easily seen from Problem 7.6, 
which shows that radial eigenfunctions u(r) with degree / are proportional to 
r+! when kr << 1. This result implies that eigenfunctions with high values of / 
have small amplitudes near the centre of the sun, whereas eigenfunctions with 

low values of / penetrate deep inside the sun. 

Constant velocity approximation 

To illustrate the basic ideas underlying the eigenvalue problem for solar oscilla- 

tions, and to assess the order of magnitudes involved, we shall consider a very 

crude approximation in which pressure waves travel in the sun at a constant 

velocity given by Eq. (7.16), c; =4 x 10°ms"!. 
In this approximation it is trivial to find the eigenfunctions and eigenfre- 

quencies with / = 0. The radial eigenfunctions with / = 0, satisfying Eq. (7.22) 

and the boundary conditions u(r) = 0 at r= 0 and at r= Ro, are 

Ee helical u(r) =sinkr with kaa 
Dr] 

where n is a positive integer. Hence the eigenfrequencies of modes with / = 0 

and radial order n are 

Siig oP Ce 
y= = [eg ” ORs n (0.3 mHz) 

However, when we wrote down the wave equation (7.18), we assumed that the 

frequencies were well above the cut-off frequency given by Eq. (7.17); this 

frequency is w, =4x 107s! ory, = w,/2n = 0.64mHz. Thus the preceeding 

expression for the frequencies of / = 0 modes is consistent with this assumption 

only when the radial order 7 is large. 

We now turn to the evaluation of the frequencies of modes for a general value 

for /. They can be found by noting that the solution of Eq. (7.22), which satisfies 

the boundary condition u(0) = 0, can be written in terms of a spherical Bessel 

function of degree /; in fact 

u(r) = rji(kr). (o23) 

The possible eigenfrequencies are determined by the boundary condition at 

r= Ro; 

ji(kRo) = 0. (7.24) 
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For modes with KR» >> 1, this boundary condition has the form 

a sin(kRe — In/2) re 

on R. 
0, JKR) 

which implies that 

where the integer 7 is the radial order. It follows that the eigenfrequencies of 

modes with high values for n + //2 are 

l ‘ 
VS (+5) aa = (+5) (0.3 mHz). (2a) 

We note that the frequencies of modes with the same value for /, but with 

consecutive values for n, are equally spaced, 

Cs 
Yn+i — Ya © Tie. i (7.26) 

The frequency spacing is the inverse of the time for a wave to cross the sun, 

which is 57 minutes in the constant velocity approximation. In more realistic 

calculations, which take account of the variation in c, across the sun, frequen- 

cies with the same / value are almost equally spaced with a spacing which 

corresponds to a solar transit time of about 123 minutes. Figure 7.1 shows 

that the observed frequencies of oscillation are also approximately equally 

spaced. 

We also note that, in the constant velocity approximation, the high frequency 

modes with the same value for n + //2 are degenerate. In fact, the differences in 

frequency between these modes are small and sensitive to how the velocity of a 

pressure wave changes as it traverses the sun. 

WKB approximation 

The variation in the velocity of a pressure wave as it crosses the sun can be 

taken into account by using the Wentzel-Kramers—Brillouin (WKB) approx- 

imation. To do this we rewrite Eq. (7.22) in the form 

CLL: [K(r)]’u(r) =0 where [K(r)}° = 
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In the WKB approximation the function K(r) is assumed to vary slowly with r. In particular, when [K(r)]* is positive the function K(r) is a slowly varying wave 
number of an undulating eigenfunction u(r). 

It is evident from Eq. (7.27) that each eigenfunction has a [K(r)}° which 
decreases as the wave penetrates more deeply into the sun and reaches zero at a 
radius r = R, given by 

R; xe (i+ 1) (7.28) 

Thus, in the WKB approximation, the eigenfunction u(r) undulates with 
wave number K(r) when r> R,, but it decays exponentially when r < R,, 
where [K(r)]” <0. In other words, the eigenfunction is an undulating wave, 
with a wavelength which depends on rr, trapped in a cavity between the 
radii r= R» and r=R, . We note from Eq. (7.28) that the smaller the value 
of / the deeper the cavity. For example, if the velocity function illustrated in 
Fig 7.3 is used, Eq. (7.28) yields R, ~ 0.2R~ when / = 5, but R, = 0.7R5 when 
J=47, 

The eigenfrequencies are determined by the condition that the distance 
between the internal reflection and outer reflection points of the undulating 
wave is approximately equal to an integer number of half-wavelengths. More 
precisely, the phase difference between R, and R. is given by 

R; 
© = K(r) dr = (n+ a)7, (7.29) 

JR, 

where n is a positive integer, the radial order, and a is a parameter which 
ensures that the undulating wave in the cavity joins smoothly onto the evanes- 
cent waves outside the cavity. It is useful to rewrite this condition in the 
following form: 

pee f°) ey (7.30) 
a [es(r)}° ye 

The eigenfrequency, the radial order and the degree of each mode of 

oscillation approximately obey Eq. (7.30). We note that the integrand and the 

lower limit of the integral on the right-hand side are both functions of the 

variable s= ,//(1/+1)/w. It follows that the left-hand side of Eq. (7.30), 

(n + a)m/w, is also a function of s. This result is called Duvall’s law and is 
very useful in identifying the radial order n of observed modes of oscillation of 

the sun. . 

From Eq. (7.30) one can see how to test whether a solar model yields correct 

values for the velocity function c,(r). Observational data on frequencies and 
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horizontal wave numbers give values for w and /. And by analysing this data 

one can deduce the value of the parameter a and the value of the radial order n 

for a mode with degree / and frequency w. The value of (” + a)t/w for a mode 

with frequency w and degree / can then be compared with the value of the right- 

hand side of Eq. (7.30) calculated using a solar model. 

In fact, the use of an explicit solar model is not essential because the velocity 

function c,(r) can be evaluated directly by combining Eq. (7.30) with helioseis- 

mic data. The procedure in outline is as follows. Observation and identification 

of several thousand pressure wave modes provide data on w and /. The data can 

be used to deduce values for n and for the parameter a, and thereby to 

determine values for the left-hand side of Eq. (7.30) as a function of 

s = ,/I(I1 + 1)/w. Given this function and its derivative, call them F(s) and 

F'(s), and given a friend with some modest expertise in integral equations, we 

can invert Eq. (7.30) to yield 

4 3) t(r) / 

© = 6xp -2/ sie FAS) He a where it(r) = r/c,(r): (7.31) 
T J1(R5) (s2 — t2)'? 

When the integral is evaluated for a given value of c, we obtain the value of r for 

which this value of the velocity is appropriate. Thus, Eq. (7.31) is an implicit 

equation for the sought-after function c,(r). 

Concluding remarks 

When the theoretical errors due to the use of the WKB approximation are 

assessed, it is possible to make a meaningful comparison with helioseismic data. 

In fact, the data is consistent with the velocity of pressure waves given by the 

Standard Solar Model for a sun of age 4.6 billion years; this velocity is 

illustrated in Fig. 7.3. Furthermore, helioseismic data has been effective in 

ruling out solar models with a low abundance of heavy elements and in ruling 

out solar models in which the helium produced by fusion in the core is mixed 

with hydrogen from outside the core. In addition, it has confirmed there is a 

change in the curvature of the function c,(r) at the bottom of the solar convec- 

tion zone; see Problem 7.8. This has fixed the location of the bottom of the solar 

convection zone at a depth of (0.287 + 0.003)R., and has thereby helped to 

determine one of the most uncertain parameters in solar models — the mixing 
length parameter used to describe convection. 

However, helioseismic data does not impose severe constraints on a solar 

model because, as is evident from Eq. (7.15), any model which accurately 

represents the temperature and the average mass of gas particles at different 

locations inside the sun should yield correct values for the velocity function 
cs(r). Nevertheless, helioseismic data has confirmed the key elements of 
the Standard Solar Model. This suggests that the solar neutrino problem 
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discussed in Section 4.2 is less likely to be a problem with astrophysics and it is 
more likely to be a problem with neutrino physics. There is no doubt that 
helioseismology has had, and will continue to have, an incisive role in astro- 
physics. 

SUMMARY 

Introduction 

e The study of solar modes of oscillation is called helioseismology. A mode of 

oscillation can be identified by measuring two surface properties: the fre- 

quency of oscillation w and the horizontal wave number k,,. The criteria for 

a measurement of w and ky, are governed by the principles of Fourier 

analysis. 

Pressure and gravity waves 

e The minimum frequency of a propagating pressure wave is given by 

Cs 

mee 
We (7.9) 

e The maximum frequency of a propagating gravity wave is the buoyancy 

frequency N which is given by 

i y=lldP (1dr 
‘= - : 7.14 

Nf ly Paeiery dx ( ) 

Waves inside the sun 

e The velocity of pressure waves inside the sun is given by 

anne nae rea (7.15) 
p m 

The typical value for c, is around 4 x 10° ms". 

e The typical values for the minimum frequencies for propagating pressure 

waves are about 4 x 10~s~! inside the sun and 3.5 x 10-*s' near the sur- 

face. This implies that waves with periods below 25 minutes can propagate 

inside the sun, but all waves with periods below 3 minutes are trapped inside 

the sun because of reflection near the solar surface. 
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e Internal gravity waves with periods below 35 minutes can propagate inside 

the sun, but they are largely trapped below the convection zone. 

Normal modes of oscillation 

e The shape of a normal mode of oscillation arising from trapped pressure 

waves inside the sun can be described by a spherical harmonic with integer 

labels / and m and a radial function labelled by an integer n. The integer / is 

called the degree of the mode and the integer m7 is called the radial order of the 

mode. The relation between the degree of a mode and its horizontal wave 

number ky, is 

e The eigenfrequencies of solar modes of oscillation can be found by solving 

a wave eigenvalue problem which is specified by the differential equation 

Cu K()Pu(r) =0 where [K(r)? = _ ek! | (7.27) 

and by boundary conditions at the centre and at the surface of the sun. The 

main theoretical input to this eigenvalue problem is the velocity of a pressure 

wave inside the sun.* 

e Frequencies of modes with the same value for / but consecutive values for n 

are approximately equally spaced, 

Cs 

Vns1 — Val ~ 5 IR. (7.26) 

Modes with the same value for n + //2 are almost degenerate. 

e The velocity of a pressure wave inside the sun given by the Standard Solar 

Model is consistent with helioseismic data. Helioseismic data has been effect- 

ive in ruling out solar models with a low abundance of heavy elements, and in 

ruling out solar models in which the helium produced by fusion in the core is 

mixed with hydrogen from outside the core. It has fixed the location of the 

bottom of the solar convection zone at a depth of (0.287 + 0.003)R>;. 
a) 

In more precise calculations 

ixinp = 252k AED, BE) 
so that N and w,, the cut-off frequencies at different locations in the sun, are also needed. 
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PROBLEMS 7 
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7.4 

Show that the pressure gradient needed for hydrostatic equilibrium in an atmo- 
sphere, where the acceleration due to gravity is g, is given by 

dP : ae = ~8P(2)- 

Assume that the gas is an ideal classical gas with equation of state P = pkT /m, 
where ™ is the average mass of the gas particles, and show that the equilibrium 
density of the atmosphere is given by 

dp _ _ p(x) : —x/H 
a. Ro eet ee 

where H = kT/mg is the scale height of the atmosphere. 

Show that, when w > w,, the phase and group velocities of the wave given by 
Eq. (7.10) are 

Sketch vu, and vz as functions of w. 

At 500km above the visible surface of the sun, the temperature of the atmo- 

sphere reaches a minimum of about 4170K. At this height the average gas 

particle mass 7 is 1.26 amu and 7 is 5/3. Find the scale height H and show that 

the value of w,, which is approximately given by c,/2H, corresponds to a period 

of oscillation of about 3 minutes. 

Consider Eg. (7.13) for the buoyancy frequency N, and as in Section 3.2, assume 

that the displaced pocket of gas rapidly ‘adjusts its pressure to match the 

surroundings and expands adiabatically. Show that in this case 

pat ol Vet Elo hall 
(ewe: wo Pde 7. dx|- 

Show that the buoyancy frequency N becomes zero when the fall-off in tem- 

perature becomes steep enough to satisfy the condition for convection given by 

Eg. (3.23). This confirms that buoyancy forces in a convective region of an 

atmosphere do not lead to oscillations. 

Show that in an isothermal atmosphere 
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7.6 
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The propagation of pressure and gravity waves in the earth’s atmosphere 

provides a useful illustration of the role the cut-off frequency w, given by 

Eq. (7.9) and the buoyancy frequency N given by Eq. (7.14). Neglecting the 

variation in temperature in the earth’s atmosphere, show that the minimum 

angular frequency for pressure waves is 

wp LA Os 
c 

which corresponds to a period of about 5 minutes. Show also that the maximum 

angular frequency for gravity waves is 

N2=19x10*s-*. 

which corresponds to a period of oscillation of about 5.5 minutes. Note that 

any wave in the frequency interval between N and u, is an evanescent wave. 

Substitute u(r) « r into the radial differential equation (7.22) and show that, 

for small values of kr, 

u(r) or 

is a solution which satisfies the boundary condition u(r) = 0 at r= 0. 

By direct substitution into Eq. (7.22) and using the notation u; to denote the 

solution with / = 7, show that the solution with / = j + 1 is given by 

ui = — + G+). 

Given this recurrence relation and given the / = 0 solution uy = sinkr, show 

that the / = 1| solution is 

ur) = ene ae Sa hess 
r 

Show that the possible values of k for the / = 1 modes are given by the equation 

tan KRs => KRo. 

Solve this equation graphically and show that the two lowest values for k 
correspond tokRa =4.49 and kR, =7.73. 
Show that the frequencies of modes with / = | and large radial order n are given 

by 
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7.8 In a convective region of a star the temperature and pressure gradients are 

related by Eq. (3.29), i.e. 

dT y-1T4P 
dry Pdr’ 

Assume that the gas is an ideal classical gas and show that the radial variation 

of the velocity of pressure waves, c, = \/yP/p, is given by 

de? 

dr 
= —g(y- 1), 

where g is the acceleration due to gravity. 
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Hints to selected problems 

CHAPTER 1 

1.7 

Make use of Eqs. (1.6), (1.7) and (1.5). 

Use the equation before Eq. (1.19) to estimate the minimum mass that could 

condense under gravity at the temperature and density given. 

Bear in mind that the luminosity of a star of mass M is proportional to M° with 

a between 3 and 3.5; see Fig. 1.4. 

Find the energy flux from the sun at a distance of 10 pc. Such a sun would 

appear as a star of magnitude 4.72. Use Eq. (1.40) to compare the energy flux 

received from stars of magnitude 6 and 4.72. 

Let 

Gm(r) 
| and show that ail <i) 

dr 

The first lower bound on P, is given by the condition F(0) > F(R). 

The second lower bound and the upper bound on P, can be obtained by noting 

that 

4 4 
m(r) > = (er, m(r) < = Pets 

and using 
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1.8 When N;j is plotted along the y-axis and Ng is plotted along the x-axis for rocks 

with age ¢, a straight line is obtained with gradient 

N;(t) [ers! = 1] 

Ng(t) [ers! -- ule 

This gradient is 0.072, 0.236 and 0.859, respectively, for rocks with ages 1, 3 and 

5 billion years. 

1.9 Integration from r = 0 tor = R, yields 

[ ee dP a, 7 ie Gm(r)p(r)4ar r 

0 dr J0 “A 

The left-hand side can be integrated by parts to give 

R 

4nRpPc — a P(r)4ar? dr = 3VePc — 3(P)¢, 
0 

If the core is an ideal gas of non-relativistic particles, we can use Eq. (1.9) and 

equate the pressure to two-thirds of the translational kinetic energy density, i.e. 

(i $Exc/Ve. Hence the pressure on a core in hydrostatic equilibrium is 

given by 

3V.P. = 2Exc + Eee: 

Now assume that the core is an ideal classical gas of particles with average mass 

m,. at uniform temperature 7.. The number of particles in such a core is 

N. = M./m, and the translational kinetic energy is 

3 
Ere = Nek 1 

The gravitational potential energy depends on how the mass M, is distributed in 

a sphere of radius R,; according to Eq. (1.16) 

GM? 
Egc GC R. 

We conclude that the core will be in hydrostatic equilibrium if the pressure on 

the core is given by ; 
2 

3V.P, = 3N,kT, — eee 
€ 

If we use V. = 47 R?/3, we find that 
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A B 

ca a a 

where 4 and B are constants. 

CHAPTER 2 

2.2 Make use of Eq. (2.36). 

2.4 Derive the Saha equation corresponding to 7 + Hy = H + H, 

n(H)n(H) mmykT)]> 
a | 75 | exp[—(4.48eV)/kT], 

and use P = [n(H) + n(H2) JKT. Impose the condition for 50% dissociation, 

n(H2) = 2n(H). 

2.5 The calculation closely follows that leading to Eqs. (2.42) and (2.43). The 

substitution of massless fermions for bosons leads to integrals with a denomi- 

nator e* + | instead of e‘— 1. Expand each integral as a series, rearrange the 

series and express it in terms of the Riemann zeta function. For example, the 

relevant integral when calculating the density of fermions is 

™ xdx _, l ee. _) tS lee oF: pal beieee 

ae ee ited” oy | cog| We ot ri i 

Hence 

2.6 Consider the equilibrium established by 

yty=Het+e. 

Use Eq. (2.21) for the chemical potential of the dilute gas of positrons and the 

Fermi energy for the chemical potential of the dense gas of degenerate electrons. 

2.8 liPo= £. then 

1 
nekT = 3a, 

which yields T = 3.8 x 107K. 
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e Use L = 410 R?T? which yields R = 0.013Ro. 

e The average density is 3.4 x 10’ kg ia 

e Equation (3.43) yields kT; = 1.6 x 10° eV. Using the density find the average 

number densities of ions and of electrons. Using Eq. (2.27) show that the 

average Fermi energy is 1.7 x 10* eV, which is a factor of 10 bigger than kT7. 

e Find the magnitude of the electrostatic potential energy between two ions 

with charge Z at separation r = ni? Relate the ion concentration to the 

density and show that the magnitude of the potential energy is approximately 

Z5/3 91/3 eV, if p is in units of kgm’. 

CHAPTER 3 

Sih 

See. 

eRe) 

3.8 

The opacity is « = 1/p/ and the frequency-averaged mean free path is given by 

Eq. (3.14). 

The radiation pressure is P, = aT*/3, hence by Eq. (3.28) 

dP, pw L 

dre 4a? 

Equate this pressure gradient to the gravitational force on a unit volume of 

matter near to the surface of the star. 

Use Eq. (3.37) to relate the fractional differences in the temperature and 

pressure at nearby points in the envelope of the white dwarf, and compare 

with the condition for convection Eq. (3.22). 

Convection dominates if the temperature gradient is steeper than the limit given 

by Eq. (3.29). This condition is equivalent to the requirement that the power 

generated per unit mass within radius r exceeds the critical value given by 

Bq. (331); 

CHAPTER 4 

4.1 

4.3 

4.4 

4.5 

Make use of Eq. (4.12). 

Note that two proton—proton fusions are needed to produce a *He nucleus via 
branch I, but only one is needed if a *He nucleus is produced via branch II. 

Make use of Eq. (4.29). 

Use Eq. (4.29) again. 
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4.6 Make use of Eqs. (4.65) and (4.66). 

4.7 Use Eq. (2.46). In making the estimate, note that kT is small compared with 

9.98 MeV. 

4.8 Equate the energy produced by fusion in time 7 to the energy needed to heat the 

gas to a temperature T},,,. The fusion energy can be found from Eq. (4.19). The 

heating energy 1s approximately the kinetic energy of the particles in an ionized 

gas at Tj,,; confirm this by estimating the energy needed to ionize the gas. 

CHAPTER 5 

5.1 Relate Eg, to an integral involving P(r) and evaluate the integral using integra- 

tion by parts. For the last part use Eq. (5.32). 

5.2 The star contracts until Ly, reaches Lag. At this stage 

M® MM» 
Rr % ROS: 

For the last part use L x R°T?. 

5.4 If 

oP, « pki P, aT! 
pe? os ‘abl eT 

then 

The inequality for P. yields 

44 
(1 — p) <2 | T 32. 

CHAPTER 6 

6.3 This problem is a minor variation on Problem 2.5. It involves relating the power 

radiated by a neutrino black body radiator to the energy density in a neutrino 

gas; the discussion leading to Eqs. (2.45) and (2.46) may be helpful. Note also 

that, unlike photons or electrons, each neutrino has only one possible polariza- 

tion. 
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6.5 The velocity of a neutrino of mass m with an energy E is given by 

DA v AO afl 3 
=={|——— jf ESSme. 
Cc 2E 

A distance of 50 kpc is about 1. 5 x 105 light years. 

6.6 Show, in analogy with Eq. (6.56), that the concentrations of degenerate, 

ultra-relativistic electrons, protons and neutrons in a very dense gas are related 

by 

1/3 
ia 

1/3 Li i Te Say 

6.8 Make use of Eqs. (1.31), (6.20) and (6.60). 

6.9 Make the appropriate modifications to the analysis leading to Eqs. (6.73), (6.74) 

and (6.75). 

6.10 The Eddington luminosity is given by 

LE = Bae with « =0.02(1+X,)m’kg!. 

e Use the definition of the effective surface temperature, Eq. (1.43), make a 

reasonable assumption for the radius of the compact object and note that, 

according to Section 2.3, the average energy of a photon from a black body at 

temperature T is 2.70KT. 

e Assume that the luminosity is comparable with the rate of loss of gravita- 

tional energy of the matter accreting onto the surface of the neutron star. 

6.11 The simplest computational procedure is to start at r = 0 and m = 0, to choose 

a value for the central density and to integrate outwards. The density equals 

zero when the radius of the star is reached, and the mass of the star is the value 

of m(r) at this radius. A new value for the central density can then be chosen 

and the calculation repeated. The chosen central densities used in Fig. 6.4 

ranged from 10°kgm~> to 10!°kgm*. It is advisable to describe r, p(r) and 
m(r) using dimensionless variables and to use a fourth-order Runge-Kutta 

integration rule. 

CHAPTER 7 

7.2 The general expressions for the phase and group velocities for a wave with 

dispersion relation w = w(k) are 

dw 
wp => and i tT 
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7.4 All the essential ideas are to be found in Section 3.2. 

5 

do Take g = 10ms, T = 300K and + = 1.4. 

7.6 Find a quadratic equation for \ and select the root which ensures u(r) = 0 at 

pea 

7.7 The equation tankR= = kRz can be solved by finding the intersections of the 

curves y = tankR, and y=kRo. 
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PHYSICAL CONSTANTS AND eB SS) FACTORS 

Symbol Description 

Mp 
Myc? 
myc? 
uN 

fm 

b 

u 

Na 

velocity of light in vacuum 

permeability of vacuum 

permittivity of vacuum where c = 1/,/€op 

Planck constant 

h/2n 

gravitational constant 

elementary charge 

electronvolt 

fine structure constant, e?/47e9fic 

electron mass 

electron rest-mass energy 

Bohr magneton, ef/2m, 

Rydberg energy a2m,c?/2 
Bohr radius, {1/a) (f/m.c) 

angstrom 

proton mass 

proton rest-mass energy 
neutron rest-mass energy 
nuclear magneton, efi/2m, 
femtometre or fermi 

barn 

atomic mass unit, 4m('7C atom) 
Avogadro constant, atoms in gram mol 

triple point temperature 

Boltzmann constant 
molar gas constant, Nj4K« 

Stefan—Boltzmann constant, (7?/60)(x*/fi'c*) 

mass of earth 

mean radius of earth 
standard acceleration of gravity 

standard atmosphere 

solar mass 

solar radius 

solar luminosity 
solar effective temperature 

astronomical unit, mean earth-sun distance 

parsec 

year 

Numerical Value 

299 792 458 ms~ 
4n x 10-7 N AW2 
8.854 x 107'2 C2? N7! m-2 

| exactly 

6.626 x 10-4 Js 
1.055 x 10-4 Js 

6.673 x.107"! m* kg"! 3 

1.602 x 10-9. 
1.602 x 10-!9 J 
1/137.0 

9.109 x 1073! kg 
0.511 MeV 
9.274 x 10-74 JT7! 

13.61 eV 

0.5292 x 10-'° m 
10-'° m 

1.673 x 10-27 kg 
938.272 MeV 
939.566 MeV 
5.051 x 10-27 J} T-! 
10-5 m 
10-28 m- 

1.661 x 10-27 kg 
6.022 x 102 mol7! 

273.16 K 
1.381 x 10-3 J K7! 
8.315 Jmol7! K7! 
5.671 x 10-8 W m-2 K~4 

6.37 x 1074 kg 
6.4 x 10°m 
9.806 65 m s~, exactly 
101 325 Pa, exactly 

1.989 x 10°° kg 

6.960 x 108 m 
3.862 x 107° W 

5800 K 

1.496 x 10!' m 
3.086 x 10'° m 
3.156 x 10’ s 
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