


CRERDYOD 



, 

k 
20 OL2S7237 TELEPEN 

i ' 

1) 
COURSE 
IN 

CRYSTALLOGRAPHY 





A Ly ul veal . 

——S 

First Course 
in 

Crystallography 

A. H. WINDLE 
formerly Imperial College, Department of Metallurgy and Materials Science, London 

now Trinity College, Cambridge 

LONDON 

G. BELL AND SONS LTD 



(EWE 
CARDIEE 

NUMBE?. 

Copyright © 1977 

by A. H. Windle 

First published in 1977 by 

G. Bell and Sons, Ltd. 

All rights reserved 
no part of this publication may be reproduced, 

stored in a retrieval system, or transmitted, in any form 

or by any means, electronic, mechanical, photocopying, 
recording or otherwise, without the prior permission of 

G. Bell & Sons, Ltd. 

ISBN 0 7135 1796 4 hard eer 

ISBN 0 7135 1886 3 limp 

Printed by T. & A. Constable Ltd., Edinburgh 



Contents 

Preface 

1 Repeating Patterns and Lattices 
1.1 The One-Dimensional Lattice 
1.2 Patterns in Two Dimensions 
1.3 A Crystal as a Repeating Pattern 

2 Describing the Lattice (Part 1). Translation Vectors 
2.1 The Linear Lattice 

2.2 The Planar Lattice 

2.3 The Space Lattice 

3 Describing the Lattice (Part 2). The Lattice Unit Cell 
3.1 Primitive Cells 

3.2 Non-Primitive Cells 

3.3. Areas and Volumes of Unit Cells 

4 Elements of Symmetry—An Introduction 

4.1 Symmetry 
4.2 Translational Symmetry 
4.3 Rotation Symmetry 
4.4 Reflection Symmetry (Mirror Planes) 
4.5 Inversion Symmetry 
4.6 Symmetry Theory 

5 The Planar Lattices. Their Symmetry and Classification into Systems 

5.1 Planar Crystal Systems 
5.2 Parallelogram Lattice 
5.3 Rectangular Lattice 
5.4 Diamond or Centred Rectangular Lattice 
5.5 Square Lattice 
5.6 Triequiangular (or Hexagonal or Rhombohedral) Lattice 
5.7 Summary 

6 The Space Lattices. Their Symmetry and Classification into Systems 

6.1 Crystal Systems 
6.2 Stacking of Parallelogram Lattices 
6.3 Stacking of Rectangular Lattices 
6.4 Stacking of Square Lattices 



6.5 
6.6 

Stacking of Triequiangular Lattices 
Summary of Space Lattices 

7 Atomic Bonding, Packing and Crystal Structures 

ily Atomic Bonding 
(i) Metallic 
(ii) Covalent 
(iii) Tonic 
(iv) Van de Waals 
(v) Permanent Dipole 

Packing of Identical Spheres 
Packing of Non-Identical Spheres 
Ionic Crystals 
Examples of Ionic Structures based on Close Packed 
Anion Polyhedra 
More Open packing of Anion Polyhedra 
Covalent Crystals 

8 Conventions for Describing Actual Crystal Structures 

8.1 
8.2 
8.3 

Types of Motif (or Basis) 
Classification of Crystal Structure 
Examples 

9 Directional Indices 

oA 
Oe 
9.3 
9.4 
3 
9.6 

Definition of Indices 
Indices in Two Dimensions 
Determination of Directional Indices in Three Dimensions 
Symmetry and Directional Indices in Planar Lattices 
Symmetry Related Indices in Three Dimensions 
Examples of the Determination of Directional Indices 

10 Crystal Planes and Miller Indices 

10.1 
10.2 
10.3 
10.4 
10.5 
10.6 

Historical 
Indices of Atom Planes 

Recipe for the Determination of Miller Indices 
Zones of Planes 
Forms of Planes 
Miller—Bravais Indices 

11 Spacing of Lattice Planes. The Reciprocal Lattice 

11.1 
jig Be 
11.3 
11.4 
Li 

The Interplanar Spacing ‘d’ 
Introduction to the Reciprocal Lattice 
Miller Indices and the Reciprocal Lattice 
Non-Primitive Unit Cells 
The Use of the Reciprocal Lattice 

vl 



12 Stereographic Projection 

ita 
py 
1235 
12.4 
25 
12.6 
eae | 

The Problem 
Reference Sphere 
Reference Grid 
Stereographic Projection 
Projection of Important Directions and Planes of a Cubic Crystal 
Important Manipulations of the Stereographic Projection 
Exercises in the Use of the Stereographic Projection 
Exercise 1. Drawing a Cubic 001 Standard Projection 
Exercise 2. Rotation of a Cubic 001 Standard Projection to make a 

111 Standard Projection 
Exercise 3. Plotting Orientation Data derived from a Laue X-ray 

Photograph of a Cubic Singie Crystal 
Exercise 4. Plotting Zone Circles and Rotation to form a Standard 

Projection. The Unit Triangle 
Exercise 5. Two Surface Analysis 
Exercise 6. Standard Projection of a Hexagonal Crystal 

13. A Précis of Chapters 1-12 and a Look Forward to 14, 15 and 16 

13.1 
B2 

Chapters 1-12 
Chapters 14, 15 and 16: An Introduction 

14. An Introduction to Point Groups and Space Groups in Two Dimensions 

14.1 
14.2 
14.3 
14.4 
14.5 

Preamble 
Two-Dimensional Point Groups 
Packing of Two-Dimensional Motifs 
Two-Dimensional Space Groups 
The ‘P’ Shaped Molecule 

15 Point Groups (in three dimensions) 

15.1 
52 
15.3 
15.4 
15.5 
15.6 

Crystal Classes 
Stereographic Representation of Point Groups 

Proper and Improper Rotation Axes 

Combination of Non-Parallel Rotation Axes 

Tour of the Crystallographic Point Groups 

Summary of Point Groups and their Derivation 

16 Space Groups 

16.1 
16.2 
16.3 
16.4 
165 
16.6 
16.7 

Introduction 
Glide Planes 
Screw Axes 
The Possible Space Groups 
The Representation of Space Group Symmetry 

Equipoints | 

A Case Study: The Crystal Structure of Aragonite 

Vil 



Appendix 1 Shapes to cut out 

Appendix 2. Vectors from Scratch 

(a) Representation of a Vector 
(b) Vector Addition and Coordinates 
(c) Unit Vector and the Resolving of Vectors 
(d) Scalar Product 
(e) Vector Product 
(f) An Example of Vector Algebra 

Appendix 3 Understanding the Reciprocal Lattice 

(a) What is a Fourier Transform? 
(b) Lattice Planes and Reciprocal Lattice Points 
(c) Fourier Transform of a Crystal Structure 

Appendix 4 Notes and Answers for the Exercises 

Index © 

Viil 



Preface 

Crystallography today must be one of the most widely used disciplines across the whole spectrum of natural and applied sciences. Rather than remaining confined to its historical context of geology, it has become an accepted part of chemistry, physics, metallurgy, materials science, molecular biology and 
electronic engineering; also mathematicians continue to play a significant réle in the development of 
the subject in its own right. 

The aim of this book is to provide a course of instruction in crystallography for anybody meeting the 
subject for the first time, whether this be at school, college or university, or as a part of any other type 
of further education. The book is designed as a direct teaching aid rather than a detailed exposition of 
the subject; the result is a concise text amplified by many diagrams, exercises and worked examples. 
The exercises are not all confined to the end of each chapter but also appear at strategic points within 
the text itself. Most of the exercises can be answered within the book, require minimal reference to 
other works and form a convenient basis for continuous assessment. Appendix 4 contains notes and 
answers relating to some of the questions. 

The course is written within the context of existing crystallographic text books, and the author is 
indebted to the teaching and guidance he has obtained from these. 

Particularly recommended to the reader for further reference are: 

Crystallography and Crystal Defects A. Kelly and G. W. Groves 
Chemical Crystallography C. W. Bunn 
Crystals C. W. Bunn 
Elementary Crystallography M. J. Buerger 

The order and method in which the various crystallographic concepts are introduced has been 
largely influenced by the author’s experience in teaching the subject to materials science and 
metallurgy students. It has become apparent that an immediate plunge into formal crystallographic 
theory along the admittedly elegant lines of translational symmetry, point group symmetry, and space 
group symmetry tends to discourage all but the highly motivated students. In addition the teaching of 
the subject is often ‘hand in glove’ with elementary instruction in diffraction methods for structure 
analysis, and in this context familiarity with lattices, indices and the stereographic projection is of 
more immediate practical use than an understanding of point and space groups. ao 

The opening chapters deal with the analysis of repeating patterns and the description and 
classification of crystal lattices; this in turn leads to a first encounter with rotation, mirror and 
inversion symmetry elements. In Chapter 7 attention is turned to building up crystal structures from 
component atoms so as to give some insight as to why a given collection of atoms assumes a particular 
crystal structure and in Chapter 8 various real structures are analysed in terms of lattice and motif. The 
next three chapters explain the systems of directional and Miller indices and discuss the 
representation of lattice planes as a reciprocal lattice. Chapter 12 is devoted to teaching the use of the 
stereographic projection with particular emphasis being placed on practical exercises. A small but 
usable Wulff Net is printed on the back cover. 

The final three chapters contain a fairly detailed treatment of point and space group symmetry. The 
derivation and representation of space groups is illustrated by particular examples; and a case study 
on the structure of calcium carbonate (aragonite) serves to relate the view of a crystal as the natural 
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consequence of packing a group of atoms together to the analysis of its structure in terms of the 
various symmetry elements. 

I am grateful to many for help and advice during the preparation of this work. In particular I should 
like to thank Professor Charles Newey of the Open University for his constructive and penetrating 
comments on the manuscript, and Dr George Parry of Imperial College for his suggestions in 
connection with the final three chapters. 

The care with which Mrs T. Gillham typed the original student classwork notes greatly aided their 
development into the first manuscript draft, and I was especially fortunate to have many of the 
diagrams drawn by Mr Fred Huggins and Dr Stewart Murray whose draughtmanship was 
complemented by a knowledge of crystallography. Mr Hayward also helped with some of the 
photography; I thank him too. 

In addition my thanks are due to Professor J. G. Ball who is Head of the Metallurgy and Materials 
Science Department at Imperial College and Mr S. L. Dennis of G. Bell & Sons who provided 
encouragement to initiate and sustain this project, and also to Janet, my wife, whose considerable 
contribution was altogether of a more homely nature. 



I 
Repeating Patterns and Lattices 

1.1 The One-Dimensional Lattice 

Figure 1.1 shows part of a long freight train. It is also an example of a pattern which repeats itself 
periodically in one dimension. 

EV INEVLINE INV INH. NW INE IN 
CS Se ee SOS EO Se 

Fig. 1.1 A pattern which repeats itself in one dimension. 

Each identical wagon can be taken as one unit of the pattern, and the way in which they are 
arranged to form the train is best described by means of a lattice. 
A lattice is a geometric concept and can be defined as: 

‘An infinite, one-, two- or three-dimensional, regular arrangement 
of points, each of which has identical surroundings.’ 

In order to describe the arrangement of wagons, lattice points are placed at exactly equivalent 
positions within each unit of pattern, i.e. at the same point on each wagon. Let us choose, in this 
example, the centre of each left-hand wheel (Fig. 1.2). 

EV INV INE INE INE INE INE IN 
ZT pet bid 

CS ee vevvvwvwvvwe weve FE 

Fig. 1.2. A pattern with a lattice added. 

The arrangement of the wagons is now fully described by the position of the lattice points alone, in 
fact by the one-dimensional linear lattice drawn below. 

os dp fs 7 fs & és 
Fig. 1.3. The linear lattice. 

1.2 Patterns in Two Dimensions 

A pattern which is made up of identical units which repeat periodically in two dimensions can be ° 

described by a planar lattice. 

1 
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Fig. 1.4 A pattern repeating in two dimensions. 

Lattice points can be placed at equivalent positions within each of the repeating units, choosing 
perhaps, for the sake of convenience, the centre of the rose (Fig. 1.5). 

The resultant planar lattice (Fig. 1.6) fully describes the way the individual units are arranged to 
form the pattern. 

1.3 A Crystal as a Repeating Pattern 

A crystal is an excellent example of a pattern which repeats itself in three dimensions. The units of 
pattern from which the crystal is built up are either single atoms or groups of atoms. Each repeating 
unit is known as the motif. (The alternative term ‘basis’ is sometimes used.) The regular arrangement 
of the motifs in the crystal is described by assigning to each a lattice point and forming a 
three-dimensional or space lattice. A crystal structure is determined by the type, number and 
arrangement of atoms in the motif and by the relative positions of the motifs as defined by the space 
lattice. 

This can be written as: 

Lattice + Motif —> Crystal Structure 

Note: The + sign here is not used in the rigid arithmetic sense, for the motif is added to 
each and every lattice point. Strictly this is the process of convolution; so that one should 
say that a lattice convoluted with a motif generates a crystal structure. 

However the + sign will do for now. 



Fig. 1.5 As Fig. 1.4 but with a plane lattice added. 

Ice. 1.6 The planar latti Fig 



TO DO 

Draw lattices on the saan planar patterns: i 

12 

Figo? 

Fig. 1.9 Fig. 1.8 



The diagram below represents a crystal structure which contains equal proportions of two types 
of atom. 
Draw in some lattice points to form part of a space lattice and mark the atoms which belong to any 
one motif. 
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TO BE ABLE TO DO 

Define a lattice. 
Explain the significance of the following terms in the context of crystallography: 

(a) Lattice Point. 
(b) Linear, Planar and Space Lattice. 
(c) Structure. ; 

(d) Motif. 

Describe briefly the meaning of the statement: 

Lattice + Motif —» Crystal Structure. 



2 
Describing the Lattice (Part 1) 
Translation Vectors 

_ It would be most inconvenient if the only possible way of describing a lattice to another person was by 
drawing rows of dots on a piece of paper. Also the representation of a three-dimensional space lattice 
on a sheet of paper presents difficulties of its own. 
A simpler method of communication is achieved if the relative positions of the lattice points are 

“ora by Primitive Translation Vectors (also known as fundamental or conjugate translation 
vectors). 

2.1 The Linear Lattice 

A linear lattice can be described by just one Primitive Translation Vector a, drawn between two 
adjacent points. 

+ +¢—_—_-»> + + % + + 
a 

Fig, 2.1 

A vector drawn between any pair of points is called a Lattice Translation Vector, r. It is always an 
exact multiple of the primitive translation vector which is itself a special case of a lattice translation 
vector. 

Therefore, 

where u= any integer, positive or negative. 

2.2 The Planar Lattice 

To describe a planar lattice a pair of primitive translation vectors are required. 
They must be selected so that a suitable combination of them can define the relative positions of any 

two lattice points. A pair of such vectors are normally drawn from the same origin. 
The operation of linear combinations of the vectors a, and a, (Fig. 2.2) of the form ua,+ va, (where 

u and v are positive or negative integers) can give translation from one lattice point to any other. 
The vectors a, and a, therefore constitute a primitive vector pair. Similarly with a, and a,. 
These combinations are then equivalent to any lattice translation vector r as given by: 

r= Ua;t+ va 

4 



+ + + + + > 
+ + + —— + + y + 

te + + a, + 

+ + + 
- 4 : + + : : - a; 

+ a, + + + a, 

Fig. 2.2 Planar lattice showing two pairs of primitive translation vectors and one pair which are not primitive. 

However, no combination of the pair of vectors a; and a, with u and v still integers, can give a 
translation from their origin to lattice points such as xX,, x2, x3, etc. They are therefore not a primitive 
vector pair being merely two lattice translation vectors. 

2.3 The Space Lattice 

A three-dimensional space lattice can be described by three vectors forming a primitive vector group. 
They are normally drawn from the same origin (Fig. 2.3). 

Fig. 2.3. Primitive translation vectors in three dimensions. 

Any lattice translation vector, r, can then be described by a suitable combination of the three 
vectors forming the primitive group, 1.e. 

r= ua,t+ va,t+ wa; 

TO DO 

1. On the planar lattice below, indicate those pairs of vectors which are primitive. 
+ + + + 

+ + 

+ 

. yo 



2. On the planar lattice below draw in four different primitive vector pairs. 

+ + + + + + + 

Fig. 2.5 

3. Define the lattice translation vectors drawn below in terms of the primitive vector pair, a, and a. 

+ + + 

+ 

+ + 

Fr, = 
-<_—_+4__4 

ta Yr, as 

Fr, = 

+ re 

4. For the space lattice drawn below express r in terms of the primitive vector group, a), @, a3. 



TO BE ABLE TO DO 

Define the difference between a lattice translation vector and a primitive translation vector, — 

Illustrate that a planar lattice can be fully defined by a primitive vector pair, and a space lattice by 
a primitive vector group. 

Understand vector algebra (see Appendix 2). 

10 



3 
Describing the Lattice (Part 2) 
The Lattice Unit Cell 

The length and relative orientation of translation vectors constituting a primitive vector group is all 
the information needed to fully define a lattice. However, asketch showing three primitive translation 
vectors drawn from one lattice point does not readily convey to the eye the shape of the lattice. If a 
parallelepiped is drawn with the three vectors as three of its edges, it illustrates much more clearly the 
general shape and form of the lattice. The parallelepiped is known as a lattice unit cell. The lattice unit 
cell also provides a framework within which atoms forming a representative part of the crystal 
structure can be drawn. A cell containing this additional information is known as a structure cell. 

3.1 Primitive Cells 

Primitive vector pairs drawn on a planar lattice can be viewed as outlining parallelograms (Fig. 3.1). 
These parallelograms are examples of what are called primitive unit cells (or strictly speaking 

primitive lattice unit cells). 

Fig. 3.1 Three primitive unit cells of a planar lattice. 

The properties of such a primitive unit cell are: 

(a) The cell will completely cover the lattice area when it is repeated with its origin at each lattice 

point in turn. . Ee 

(b) The areas of different primitive cells are equal, irrespective of the choice of primitive translation 

_ vectors. (Verify this by measuring the three cells in Fig. 3.1. Parallelogram area = base x height.) 

(c) Each cell contains the equivalent of one lattice point. Take for example one of the cells in Fig. 

3.1. There is a lattice point at each of the four corners (total four lattice points), but each point is 

shared between a total of four cells and thus has an equivalent value of ;. 

For a space lattice any parallelepiped outlined by a primitive vector group is a primitive unit cell. 

11 



Fig. 3.2 A primitive cell and a non-primitive face centred cell drawn on the same space lattice. 

Fig. 3.2 shows a primitive unit cell drawn within a part of a space lattice. As with a planar lattice, the 
primitive cell of a space lattice also contains just one lattice point. The reasoning goes as follows: 
Maximum number of lattice points = 8 (one at each corner). But each point is shared between 8 

primitive cells, thus the equivalent value of each to one cell is . Therefore the total number of lattice 
points in the cell is 8x3 = 1. 

The most convenient test to check whether a particular unit cell is primitive is to add up the 
equivalent number of lattice points it contains. Any cell with more than one is non-primitive. 

3.2 Non-Primitive Cells 

The cell in Fig. 3.3 is a non-primitive unit cell because it is outlined by a pair of lattice translation 
vectors which do not constitute a primitive vector pair. 

Fig. 3.3. A non-primitive unit cell on a planar lattice. 

The number of lattice points it contains is worked out as follows: 

Number of lattice points Equivalent value Equivalent number 

Corners 4 } 1 
Edges 2 5 l 
Inside 2 1 2 

Total 4 

Similarly the non-primitive cell of a space lattice drawn in Fig. 3.4 can be shown to contain 8 lattice 
points: 

12 



Number of lattice points Equivalent value Equivalent number 

Corners 8 } 1 
Edges 12 , 3 
access 0 3 3 
Inside 1 1 1 

Total 8 

The volume of a non-primitive unit cell containing nlattice points is ntimes that of a primitive cell of 
the same space lattice. 

Fig. 3.4 A non-primitive unit cell built up from eight primitive ones. 

When a non-primitive unit cell is made up of a number of adjacent primitive cells as in Fig. 3.4, itis 
alternatively known as a multiple primitive unit cell. A non-primitive cell consisting of a group of 
smaller non-primitive cells is sometimes referred to as a multiple non-primitive unit cell. 

3.3 Areas and Volumes of Unit Cells 

(N.B. see Appendix 2 for an outline of vector algebra.) 

(i) The area of a planar unit cell 

Mo 

Fig. 3.5 

The area of the parallelogram in’Fig. 3.5 is given by base x height. 

The height = | r, | sin 6 

Therefore area=|r, | |r, | sin @ 

13 



This can be written in vector notation as a vector product: » 

Area =r, X br. 

The vector product is itself a vector of magnitude equal to the area of the parallelogram and 
direction perpendicular to both r, and ry. 

(ii) The volume of a three-dimensional unit cell 
The volume of a parallelepiped (Fig. 3.6) = base area x height 

Fig. 3.6 

The base area is the magnitude of the vector r, x r;. The height is the vector r, resolved in the 
direction perpendicular to the base, i.e. parallel to the vector r, X r3. 

Therefore, volume = (rXf3).t. 

TO DO 

1. On the planar lattice construct four different primitive unit cells. 

Fig. 3.7 

2. Calculate the number of lattice points contained within each of the unit cells in Fig. 3.8, and tick 
those which are primitive. 

14 



Cell No. No. of points 

BhWN + + 

Fig. 3.8 

3. What is the equivalent number of lattice points contained in the unit cell below? Isit primitive or 
non-primitive? 

Fig. 3.9 
Number of lattice points = 

Note: All unit cells so far considered are known fully as lattice unit cells. They refer only to 
the lattice and should not depict any features of pattern or crystal structure. 

TO BE ABLE TO DO 

1. Write down: 
(a) The properties of a primitive unit cell. 
(b) The vector formulae for the area and volume of unit cells. 

oe Explain the difference between primitive and non-primitive unit cells. 

15 



4 
Elements of Symmetry — 
An Introduction 

An understanding of the various forms of symmetry, their recognition and description, is of central 
importance in crystallography and symmetry theory will be discussed in some detail at a later stage. 

_ This chapter serves to introduce the topic and to provide the groundwork essential for the next two 
chapters which describe how symmetry is used as the basis for classifying the various forms of lattice. 

4.1 Symmetry 

If a lattice, or a shape, or an object can be moved in a certain way but still appear exactly the same, 
then it shows the property of symmetry. The movements which cause no change are known as 
symmetry operations, and the various different types of symmetry operation are classified as 
symmetry elements. 

4.2 Translational Symmetry 

The section of the freight train in Chapter 1 shows translational symmetry because any movement 
along the track by one or more truck lengths will leave the view of the train completely unchanged. 
Lattices illustrate the translational symmetry of the periodic patterns, and the translational symmetry 
operations are always lattice translation vectors. The translational symmetry element is defined for 
one dimension by a primitive translational vector and for two and three dimensions by primitive 
vector pairs and groups respectively. 

4.3 Rotation Symmetry 

We call shape A of Fig. 4.1 symmetrical, but shape B unsymmetrical. It is difficult to describe exactly 
the difference, but we can note some of the ways in which A is symmetrical. 

If A is rotated about an axis perpendicular to the page and passing through its centre, it will appear 
exactly the same after every 60° of rotation. It will take six such operations to bring the hexagon back 
to its starting position; the symmetry element is thus a six-fold rotation axis or hexad. 

It is impossible to find any such axis on shape B. 
If we think of shape A as a piece of uniform cardboard, identical on each side, then in addition to the 

hexad there are six two-fold axes of diads lying in the plane of the shape (Fig. 4.2). A two-fold axis 
means that after a rotation of 180° the shape will appear unchanged. 

16 



A B 
Fig. 4.1 Symmetrical and non-symmetrical shapes. 

¢ is the symbol for a diad 

& is the symbol for a hexad 

Fig. 4.2 A two-dimensional hexagon showing axes of rotational symmetry. 

An equilateral triangle has a three-fold axis or triad perpendicular to it and passing through its 
centre, and three diads in its plane; Fig. 4.3(a). 
A square has a four-fold axis or tetrad perpendicular to its centre, and four diads in its plane; Fig. 

4.3(b). 

A Pt 
Fig. 4.3. The rotational symmetry axes of a triangle and a square. 



If one is considering just geometric shapes then n-fold axes are possible. However, when the shapes 

are in fact unit cells of the lattice , they must fit together to fill all space. This places a restriction on the 

possible types of rotation axis. Those permissible in lattices are: 

two-fold = diad 
three-fold = triad 
four-fold = tetrad 

six-fold = hexad. 

Figure 4.4 gives a two-dimensional illustration of this principle. It shows that attempts to 

completely cover an area with shapes containing other symmetry axes are doomed to failure. 

C0, Pentagons Octagons 

Fig. 4.4 Attempts to arrange pentagons and octagons so that they completely cover an area. It is not possible (N.B. shapes - 
represent unit cells, not motifs). 

Fig. 4.5 Rotational symmetry axes of a rectangular brick. 

18 



Deciding upon the symmetry axes of three-dimensional shapes is a little more difficult. For 
example, a plain brick has three diad axes (Fig. 4.5). 
A cube has higher symmetry and possesses many more axes. In addition to diads and tetrads, it also 

has four triads. The three-fold symmetry is readily appearent if a cube is viewed along one of its triads 
as in Fig. 4.6. 

(b) 
Fig. 4.6 Three-fold rotational symmetry axes of a cube. There are also two-fold and four-fold axes which are not shown. 

4.4 Reflection Symmetry (Mirror Planes) 

The model of the head in the photograph has just one symmetry element — a mirror plane dividing the 
left side from the right (Fig. 4.7). If the bust was cut in two along this plane and one half laid flat on a 

mirror, the effect would be similar to the original. 
Mirror planes can be found in many geometric objects, and as with rotation axes, the higher the 

symmetry the greater their frequency of occurrence. 

Fig. 4.7. An example of mirror symmetry. 



Example: 
Theater equilateral triangle in Fig. 4.8 has three mirror planes perpendicular to its plane and 

parallel to the three diads. But, unlike the axes, the mirror planes would remain if one side of the 
cardboard was painted a different colour from the other; this action however would destroy the fourth 
mirror plane (Fig. 4.8(b)) which lies parallel to and bisects the triangle. 

(a) (b) 
Fig. 4.8 Mirror plane symmetry possessed by an equilateral triangle cut out of cardboard. 

4.5 Inversion Symmetry 

This symmetry element involves reflection through a point called the centre of symmetry. 
A three-dimensional structure possesses inversion symmetry if it remains unchanged when every 

small element of the structure with general coordinates (x, y, z) is reflected through the centre of 
symmetry (at 0, 0, 0) to an equivalent point at (—x, —y, —z). 

Another way of looking at inversion symmetry is to think of building a large structure from very 
many small but identical bricks. One can ensure that the structure has inversion symmetry if for every 
brick laid at coordinates (x, y, z) another is put down at (— x, — y, —z). E.g. for one brick at (—10,5, 
—3) another should be put at (10, —5, 3) etc. Again the origin of the coordinates will be the centre of 
symmetry (Fig. 4.9(a) and (5)). 

All infinite lattices have centres of symmetry at each lattice point and at other special positions. 
Crystal structures however do not necessarily show inversion symmetry. For those that do it can be 
said that for every atom at (x, y, z) an identical atom will be found at (— x, — y, —z) when (0, 0, 0) is 
positioned at the centre of symmetry — which is of course just a further statement of the definition of 
the inversion element. 

Centre of symmetry 

Centre of symmetry 

(b) 
Fig. 4.9 Two/examples of inversion symmetry. In each case every small unit of the structure can be reflected through the centre of symmetry without causing any change in the shape, orientation or position of the overall structure. 

20 



4.6 Symmetry Theory 

This chapter serves as only an introduction to some of the basic ideas of symmetry theory, a full 
treatment of the subject being a scientific discipline in its own right. It is worth noting at this stage, 
however, that inversion and reflection symmetry elements can combine with rotation axes to produce 
new elements which play an essential role in the formulation of what is known as point group 
symmetry (Chapter 15). A further development of symmetry theory involves all possible 
combinations of point group elements with the lattice translation operation to generate collections of 
self-consistent elements known as space groups (Chapter 16). 

TO DO 

1. Cut out and make up various geometric models using the outlines drawn in Appendix 1. 

2. On the hexagonal prism and the tetrahedron mark the points of emergence of the various 
symmetry axes as follows: 

diad $ triad A tetrad hexad @ 

Alternatively draw in the symmetry axes on the diagrams below. 

Ca 
3. Repeat the previous exercise using the cube and the regular octahedron. Alternatively draw in 

the axes on the diagrams. How many square base pyramids can you find in the octahedron? S 
Fig. 4.10 

Fig. 4.11 

Ah 



4. Mark in, either on the cube and hexagonal prism models or on the diagrams below, the traces of 

all mirror planes. ‘ 

Fig. 4.12 

5. List those of the above shapes which show inversion symmetry. 

TO BE ABLE TO DO 

1. Describe the four simple types of symmetry element: translation, rotation, reflection and 
inversion. 

Ze 



5 
The Planar Lattices 

Their Symmetry and Classification into 
Systems 

5.1 Planar Crystal Systems 

The symmetry groupings called ‘systems’ do not apply to lattices alone; they are a fundamental part of 
all symmetry theory. There are four planar crystal systems (the qualification ‘crystal’ here means that 
only systems based on diads, triads, tetrads and hexads are being considered — c.f. Section 4.3) and 
each has minimum symmetry entry requirements listed in Table 5.1. 

TABLE! 

Planar crystal system Minimum symmetry requirements 

Oblique None 

Rectangular One mirror plane 

Square One tetrad 

Hexagonal One triad or one hexad 

There are five distinct planar lattices. In the following sections they are analysed in terms of their 
symmetry elements and allocated to the appropriate crystal systems. 

5.2 Parallelogram Lattice Note: The lattices tend to be named after the shape of their unit cells. 

a 

+ cfs + + + 

+ - + + + 

la] 7A || a # 90° 

Fig. 5.1 
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The operation of a rotation axis perpendicular to the lattice plane and through a lattice point will bring 

all the lattice points into co-incidence every 180° of rotation. It is thus a diad and is also the highest 

order of rotation symmetry present. This rotation element, together with the absence of reflection - 

symmetry characterises the parallelogram lattice. 
There is, of course, a diad through every lattice point, but in addition similar axes appear midway 

between every adjacent pair of lattice points (Fig. 5.2). 

9: ov ores 

> @ 6 

; ¢ 0 
Fig. 5.2 A slightly enlarged unit cell of the parallelogram lattice (Fig. 5.1) showing the positions of the diad axes. 

In accord with Table 5.1 the parallelogram lattice belongs to the oblique system. 

5.3 Rectangular Lattice 

=P oF + 
a, 

a, + + 

ay - a + 

+ oP + + 

| a, | = | a | awn= Of. 

Fige 53 

A rectangular lattice is also characterised by two-fold rotational symmetry, but in addition it possesses 
mirror planes which distinguish it from the parallelogram lattice. There are two sets of mirror planes, 
each lying parallel to one of the rows of lattice points; they intersect at the diads (Fig. 5.4). 

Fig. 5.4 The positions of the diad axes and mirror planes on the primitive rectangular lattice. 
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The presence of mirror symmetry means that the rectangular lattice belongs to the rectangular 
system (as one would expect!). 

5.4 Diamond or Centred Rectangular Lattice 

Gy 
+ + + ¥ + 

arte > Aas) @ AAS 80°. 
Fig. 5.5 

At first sight a diamond lattice differs significantly from a rectangular one, but it shares the same 
, symmetry elements, i.e. diads and two sets of mirror planes (Fig. 5.6), and therefore also belongs to 
the rectangular system. In fact a rectangular unit cell can be drawn, but it has a lattice point at its 
centre as well as each corner and is therefore non-primitive (Fig. 5.5). 

Fig. 5.6 The positions of the diad axes and mirror planes on a centred rectangular lattice. 

The advantage of using a centred rectangular unit cell is that it immediately suggests the presence of 

reflection symmetry. Correspondingly, the lattice is more usually referred to as centred rectangular 

than as diamond. 
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5.5 Square Lattice 

es + + 

fe + + 

& a + + + 

la | = |a | ares “Oe 

Fig. 5.7 

The presence of four-fold rotation symmetry classifies a planar lattice as square and allocates it to 
the square system. 

In addition to a tetrad at each lattice point, there is one in the centre of every square cell. There are 
also diads at the midpoints of the square edges and both ‘square’ and diagonal mirror planes (Fig. 5.8). 

NV NZ 

fe 
Fig. 5.8 The positions of the diad and tetrad axes and the mirror planes on a square lattice. 

5.6 Triequiangular (or Hexagonal or Rhombohedral) Lattice 

a + PF 

Sp + 

+ ok + 
sae ' a 

va 1 x 
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; 
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+ ae? + 

| a; | > | a, | a = 120°. 

Fig. 5.9 



This lattice has six-fold rotational symmetry and also six sets of mirror planes. 
The combination of three differently orientated unit cells of the triequiangular lattice forms a 

multiple primitive unit cell with a hexagonal outline (Fig. 5.9). This cell is useful in that it shows at a 
glance the six-fold symmetry of the lattice. 

The six-fold rotation axes only occur at the lattice points, but there are further three-fold and 
two-fold axes as shown in Fig. 5.10. 

Fig. 5.10 The positions of diads, triads, hexads and mirror planes on the triequiangular lattice. 

The presence of hexads puts this lattice in the hexagonal system. 

5.7 Summary 

TABLE 5.2. THE PLANAR LATTICES 

Rotation and reflection 
Lattice Primitive unit cell elements present System 

Parallelogram 

Rectangular 

Diamond or 
centred rectangular 

Square 

Triequiangular 

| a; | # | a |a 4 90° 
| a | F | a [a = 90° 

| a; | = | a | a 4 90° 

| a; | = | a2 | a = 90° 

| a; | = | a2 | a = 120° 

diads 

diads, mirrors 

diads, mirrors 

tetrads, diads, mirrors 

hexads, triads, diads, mirrors 

Oblique 

Rectangular 

Rectangular 

Square 

Hexagonal 

1. On the planar pattern below draw in the lattice which illustrates its translational symmetry. Name 

the lattice, and the system to which it belongs. 



AUALGCE IS fine. eb onde SP snes 

IVALEICESYSUEDVAS, ates. Jase te oko cetnao 

Draw in on the pattern in question 1 (above) all mirror planes and rotation axes (perpendicular to 
the page) possessed by the infinite Jattice. 
Note that the symmetry elements do not apply to the pattern which has only translational 
symmetry. 

What system does the repeating pattern belong to? 
(This apparent paradox is discussed in Chapter 14) 

YOU SHOULD BE ABLE TO 

List five different planar lattices, and their characterising symmetry elements. 

Explain the advantage of describing a diamond lattice with a non-primitive, centred rectangular 
unit cell. 

Explain the difference between ‘planar system’ and ‘planar crystal system’. 
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6 
The Space Lattices 
Their Symmetry and Classification into 
Systems 

In this chapter the three-dimensional crystal systems are listed, and the distinct space lattices which 
represent the different possible ways of arranging points in space are built up by regularly stacking 
planar lattices. 

6.1 Crystal Systems 

Each of the three-dimensional crystal systems (normally referred to simply as ‘crystal systems’) 
corresponds to a permitted combination of rotation axes. The systems are listed in Table 6.1, together 
with in each case the minimum symmetry required by a crystal or lattice before it is eligible. 

TABLE 6.1 

Crystal system Minimum symmetry requirements 

Triclinic None 

Monoclinic One diad or one mirror plane 

Orthorhombic Three diads at right angles to each 
other (i.e. orthogonal) 

Tetragonal One tetrad 

Cubic Four triads orientated as the body 
diagonals of a cube 

Hexagonal One triad or one hexad 

The crystal system classification chosen for this text includes the trigonal (or rhombohedral) system 

with the hexagonal system. (See Section 15.1 for further comment.) 

6.2 Stacking of Parallelogram Lattices 

If parallelogram lattices are stacked with constant stagger, but with neither the lattice points nor the 

diads in vertical register, the two-fold symmetry is lost (Fig. 6.2(a)). A space lattice built up in this 

way is known as triclinic and belongs to the triclinic system. 
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Space Lattice Triclinic 
Rotational Symmetry None 
Unit Cell |a|7Ala| A/a | 

at # arvF a3 ¥ 90° APN 
[3 System Triclinic P peer 

If the parallelogram lattices are uniformly stacked with their lattice points directly above each 
other, the two-fold rotational symmetry is preserved, and a monoclinic space lattice is formed (Fig. 
6.2(b)). 

fare 
/ ea 

fp gai 
(a 

Fig. 6.2 Regular stacking of parallelograms to make either (a) a triclinic space lattice or (b) a monoclinic space lattice in which 
the diad axes are preserved. 

The existence of two-fold axes which do not pass through the parallelogram lattice points, provides 
the opportunity of stacking the lattices with the two-fold axes in register but with the lattice points 
staggered. Such a construction gives rise to a space lattice that is monoclinic as far as symmetry is 
concerned, but which possesses a primitive unit cell typical of the triclinic system with a, 4 a, 4 a,;# 
90°. It is always possible however to select non-primitive unit cells which are obviously monoclinic 
having a; = a7 = 90°, a; 4 90°. These cells can be either base centred with an extra lattice pointin the 
centre of one pair of opposing rectangular faces, or body centred with the extra lattice point in the 
middle of the cell. In Fig. 6.3(a), the diad in the centre of the parallelogram of each alternate layer is 
in register with the lattice point diad, whereas in Fig 6.3(b) it is the diad in the middle of the 
parallelogram edge that is arranged in this way. In each case the base centred unit cell is outlined. Itis 
standard practice to use the non-primitive unit cell as its shape immediately indicates that the lattice 
belongs to the monoclinic system. The lattice is also named after the cell chosen, for example, base 
centred monoclinic. 

As an exercise locate the body centred monoclinic cells for the arrangements in Figs. 6.3(a) and 
6.3(b). 
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Primitive triclinic cell 

Primitive triclinic cell 

Base centred monoclinic cell 

(a) (b) 
Fig. 6.3 Two methods of stacking parallelograms which give a monoclinic space lattice with the characteristic diads but no 

primitive monoclinic unit cell. In each case the monoclinic cell is non-primitive base (side) centred. 

Space Lattices Primitive Monoclinic 
Base Centred Monoclinic (A or B) 

Rotational Symmetry Parallel Diads 
Unit Cell | a; | ~ | ay | # fas | 

uP a i Je 90° 

a3 F 9° 
System Monoclinic 

6.3 Stacking of Rectangular Lattices 

If primitive rectangular planar lattices are stacked so that the two-fold rotation symmetry is 
preserved, it is possible to construct orthorhombic space lattices of the primitive, body centred, and 

base centred types (Fig. 6.4). (The base centred orthorhombic cell has additional lattice points 
positioned in the centre of any one pair of opposing faces.) 

+ + + 

e) oO oO (2) Oo [@) 

+ 

O oO oO 

+ 

Oo oO oO fe) oO ce) 

BODY CENTRED BASE CENTRED 
PRIMITIVE 

+ Position of points of planar lattices stacked at multiples of O, 2,4, 6 etc. 

O Position of points of planar lattices stacked at multiples of 1, 3, 5, 7 etc. 

Fig. 6.5 Plans of rectangular lattices illustrating how they can be stacked to make either primitive, body centred or base 
centred orthorhombic space lattices. 
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The stacking of rectangular planar lattices so as to preserve the two-fold rotational symmetry 

generates two additional two-fold axes at right angles to the first and to each other. Three orthogonal 

two-fold axes are the basic symmetry elements of the orthorhombic space lattice. 

A face centred orthorhombic cell can be built up by stacking centred rectangular lattices. It has an 

additional lattice point in the centre of each face (see Ex. 6.3). ) 

Space Lattices Primitive Orthorhombic 
Body Centred Orthorhombic 
Base (A, B or C) Centred Ortho- 
thombic 
Face Centred Orthorhombic 

Rotational Symmetry Orthogonal diads 
Unit Cell |a;| #|a| Az] a5 | 

ile ae ae 8, =o. 
System Orthorhombic 

6.4 Stacking of Square Lattices 

It is possible, by judicious selection of interplanar spacing, to stack the primitive rectangular lattices 
so as to produce a tetragonal space lattice with | a, | = | a, | Z | a3 |, but itis more convenient to think 
of the tetragonal lattice being built up by stacking square lattices so as to preserve the tetrad, but with 
a spacing not equal to the square edge length. 

Space Lattices Primitive Tetragonal 
Body Centred Tetragonal 

Rotational Symmetry Orthogonal tetrad and two diads 
Unit Cell | a; | = Ja | 4 | a3 | 

oy = ay = as = MP 
System Tetragonal 

If square lattices are stacked with the appropriate spacings, it is possible to generate the three 
different types of cubic space lattice (see Ex. 6.1). 
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Space Lattices Primitive Cubic 
Body Centred Cubic 
Face Centred Cubic 

Rotational Symmetry Four orthogonal tetrads, four triads 
along the cube body diagonals and 
diads parallel to the cube face 
diagonals 

Unit Cell \ 

lar | =| a] =| a3 | 
a, =a2=a3 = 90° 

System Cubic 

6.5 Stacking of Triequiangular Lattices 

Hexagonal space lattices can be built up by stacking planar triequiangular lattices directly above each 
other so as to preserve the hexads. 

If, however, the triequiangular lattices are stacked with the hexads in vertical register with the 
triads as shown in Fig. 6.9 (cf. also Fig. 5.10), a lattice is created which contains only two- and 
three-fold rotational symmetry, the hexads having been destroyed. By stacking in this way every 
fourth layer is exactly above the first, and it is therefore possible for the first and fourth layers to form 
the top and bottom of a non-primitive hexagonal lattice cell (Fig. 6.9). The cell contains the equivalent 
of three lattice points, one distributed at the eight corners and the other two evenly spaced along a 
long body diagonal. It is referred to as rhombohedral non-primitive and the lattice is correspondingly 
known as rhombohedral hexagonal. It is possible to choose a primitive unit cell for this lattice which is 
arhombohedron with | a, | = | a, | = | a; | and a, = a) = a; 4 90° (see Ex. 6.2), but the convenience 
of sharing the same unit cell as the hexagonal lattice tends to outweigh the advantages of the primitive 
cell. 

Le + 

a /P sal 

Lattice points at top and bottom of unit cell 

Lattice points at height & 

Lattice points at height 26 Oo x + 

L\ Triads which displace hexads on superimposition. 

Fig. 6.9 The stacking of triequiangular planar lattices which produces a rhombohedrally non-primitive (R. type) hexagonal 

space lattice. 
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Space Lattices Primitive Hexagonal 
Rhombohedral Hexagonal 

Rotational Symmetry Hexads, triads and diads in the primi- 
tive case but only triads and diads for 
the rhombohedral lattice. 

Unit Cell | a; |=| a | 4] asf 
1 ee oe 90° 

a3 >= 120° 

System Hexagonal 

6.6 Summary of Space Lattices 

The 14 possible types of space lattice are known as Bravais lattices. They are distributed between 6 (7) 
crystal systems and each has a name which includes that of the system to which it belongs (unlike 
planar lattices). The Bravais lattices are listed in Table 6.2. 

The various lattice types which may belong to the same system are distinguished with the help of the 
following abbreviations: 

Primitive Ix 

Body Centred I 

Face Centred F 

Base Centred A, B or C depending on whether centred face is 
parallel to a, and a;, a; and a, or a, and a, 

Rhombohedral R 

TABLE 6.2. THE BRAVAIS LATTICES 

Bravais lattice Abbreviation Crystal system 

Triclinic — Triclinic 

Primitive Monoclinic 2 . ms 

Base (A or B) Centred Monoclinic ae onoclinic 

Primitive Orthorhombic - 
Body Centred Orthorhombic _ 
Face Centred Orthorhombic — Oxthorarbic 
Base (A, B or C) Centred Orthorhombic — 

Primitive Tetragonal = 
Body Centred Tetragonal B-Cie eevee) 

Primitive Cubic wri 
Body Centred Cubic B.C.C. Cubic 
Face Centred Cubice~ Ge 

Primitive Hexagonal Hex. 
Rhombohedral Hexagonal R. Hex. seen 
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2. 

TO DO 

Drawn below are three square planar lattices. 
Mark on the first the position of the points of a planar lattice immediately above in a stacking 
sequence that will give a primitive cubic space lattice. Also record the spacing between the 
adjacent planes in terms of ‘a’. 
On the second, repeat the procedure but to give a body centred cubic lattice. 
On the third, repeat the procedure but to give a face centred cubic lattice. 
In each case draw in a plan of the unit cell on the lattice. 

(a) + + + 

* + +  PepPlanar spacing = 

+ + + 

(b) + * % 

e + + | Planar spacing = 

+ + + 

mwa i 

+ + + 
F Planar spacing = 

+ + + 

Fig. 6.11 

Drawn below is a lattice cell based on the full hexagonal prism. Its complete title is ‘multiple 

non-primitive rhombohedral hexagonal lattice cell’ and it contains the equivalent of nine lattice 

points. e 

Construct within it a primitive rhombohedral lattice cell. 

(a, =a.= 03490"; | a | = | a> | = | a3 |). 
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Fig. 6.12 

Y 

3. Show by sketches how centred rectangular lattices may be stacked to give: 

(a) A face centred orthorhombic lattice. 

(b) A base centred orthorhombic lattice. 

4. Below is the non-primitive unit-cell of the face centred cubic lattice. Draw within it the primitive 

unit cell of that lattice. The primitive cell is outlined by the vectors, a, a3, a). 

ball pee 

as 

a, 

Fig. 6.13 

YOU SHOULD BE ABLE TO 

1. List the 14 Bravais lattices and their distribution between the six crystal systems. 

2. Sketch the unit cells characteristic of each system. 
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7 
Atomic Bonding, Packing and Crystal 
Structures 

7.1 Atomic Bonding 

The way in which atoms pack together to form crystals depends only on the electrostatic forces, both 
attractive and repulsive, that exist between them. The repulsive forces are strong but short range, so 
that it is possible to think of an atom as a ball of finite size. The so-called rigid ball model is not too 
drastic a simplification and is a considerable help in the understanding of atomic packing. 

The packing of atoms of the same type to form a crystal is influenced solely by the directional nature 
of the bonding forces; but in the case where more than one type of atom is present several other factors 
must also be considered. These are: 

(a) the relative sizes of the atoms, 
(b) the direction and strength of the bonding forces associated with each atom type, and 
(c) the requirement of electrical neutrality of the crystal. 

Atomic bonding is the result of the redistribution of outer electrons when atoms are brought near to 
each other. 

An isolated atom is electrically neutral as the electrons completely screen the positive charge of the 
nucleus. Interaction between adjacent atoms will distort the electron clouds so that the centre of 
gravity of the negative charge does not coincide with that of the positive charge. An electric dipole of 
some form is thus created and electrostatic attraction between oppositely charged ends of nearby 
dipoles binds the atoms into a crystal. 

The various distributions of electron charge which occur as a result of interaction between adjacent 
atoms can only be fully understood in terms of wave mechanics, but they serve as a convenient basis 
for classifying the different types of bonding. 

There are five discernible types of bonding, three strong and two comparatively weak: 

(i) Metallic 

Properties: Strong, non-directional and can occur between both like and dissimilar atoms. 

Structure: The outer electrons are redistributed to form a fairly uniform cloud between the positive 

ions. They can be thought of as forming a kind of ‘glue’, in that the ions are bound together by virtue of 

their common attraction to the negatively charged cloud between them. 

a7 



ion cores even distribution 
of outer electrons 

Fig. 7.1 The metallic bond. 

(ii) Covalent 

Properties: Strong, very directional and normally occurs between like atoms, but there is often a 
substantial covalent contribution to bonds with ionic character between dissimilar atoms. 

Structure: One outer electron from each of two adjacent atoms is concentrated into the region midway 
between the two atoms. The electrostatic attraction of the positive ions to the negative electron cloud 
exceeds the mutual repulsion between the ions. There is therefore a net bonding force. 

distribution of one electron from each atom 

Fig. 7.2 The covalent bond. 

(iii) Tonic 

Properties: Strong, non-directional and can only occur between dissimilar atoms. 

Structure: If two types of atom are present, electron transfer occurs from the outer shells of the 
electropositive atoms to the outer shells of the electronegative ones, thus creating both positive and 
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negative ions. The electrostatic attraction between the dissimilar ions is the source of the bonding. 
There is invariably some covalent character to an ionic bond. 

porns 

¥ “¢ 7 

electron transferred into outer state of electronegative 
atom to give two oppositely charged atoms. 

Fig. 7.3. The ionic bond. 

(iv) Van de Waals 

Properties: Weak, non-directional and occurs between all atoms in solids, but only makes a significant 
contribution to total bonding where no other strong bond type is present (e.g. solid argon which melts 
at =169'C). 

Structure: Although, on average, the centres of gravity of the positive and negative charge within an 
atom coincide, at any instant there are likely to be statistical departures from this state, and hence 
momentary dipoles. A dipole on one atom will tend to encourage a similar orientated dipole on an 
adjacent atom, and therefore bonding results. 

Fig. 7.4 Van de V 
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(v) Permanent dipole 

Properties: Weak, directional and occurs between dissimilar atoms, one frequently being hydrogen, 

Structure: When a covalent bond between two different atoms has a significant amount of ionic 

character, there will be some distortion of the electron cloud forming the bond towards the more 

electronegative atom. The pair of atoms therefore constitute a permanent electric dipole and will 

bond to neighbouring dipoles of suitable orientation. A 

This type of bonding frequently occurs between dipoles in which the electropositive atom Is 

hydrogen. In this case the bond is known specifically as a hydrogen bond. 

covalent bond with ionic character 

oi
 

:) 

+ve charged end =-ve charged end 

Fig. 7.5 Permanent dipole bond. 

Two points: 

(a) These explanations are as detailed as is possible without recourse to the concepts of wave 

mechanics. 
(b) It must always be remembered that crystals in which there is only one form of bonding are the 

exception rather than the rule, although a predominant bond type can usually be identified. 

7.2 Packing of Identical Spheres 

The structure of a crystal in which the atoms are held together by non-directional bonding forces will 
be the same as that shown by spheres packed carefully together so as to occupy minimum volume. In 
the case of just one layer, spheres are packed most densely if each is centred on a point of a planar 
hexagonal lattice (Fig. 7.6). Such a plane is called a close packed plane. 
A close packed plane contains three close packed directions, these being the lines along which the 

spheres touch (Fig. 7.6). It is not surprising that the most densely packed three-dimensional structure 
will be obtained by stacking close packed planes. The stacking sequence can follow either of two 
regimes and produces a regular three-dimensional crystal with a close packed structure. Such 
structures are often found in crystals of metals and other solids which are built up from identical atoms 
with non-directional bonds. 

Figure 7.7 shows a close packed layer of atoms. The position of each atom centre is marked by a 
letter ‘A’. Asubsequent layer will fit snugly on the first if it is displaced sideways to put its atom centres 
either in positions “B’ or in positions ‘*C’. 

There are two possible regular stacking sequences which produce close packed crystal structures. 
The positional sequence ABABABAB .. . (or ACACACAC . . . or BCBCBCBC. . .) gives rise to 
the hexagonal close packed structure (h.c.p.), whereas the face centred cubic structure (f.c.c.) 
corresponds to the sequence ABCABCABCABC. . . . The stacking of the close packed layers to give 
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Fig. 7.7 The two possible ways of stacking a secondclose packed layer snugly on the first. The atom centres of the second layer 
are either at BBBB ... or CCCC.... 

these structures is illustrated in Figs. 7.8 and 7.9, and in sections (7) and (ii) below the two structures 
are described with the aid of structure cells. Section (iii) introduces another important crystal 
structure known as body centred cubic (b.c.c.) which although not close packed does contain some 
close packed directions. In each case the structure cell is drawn in two different ways. In the left-hand 
diagram (Figs. 7.10, 7.11 and 7.13) the atom positions are marked by spheres, much smaller than the 
actual atom sizes which are drawn to scale in the right-hand diagram. The type of presentation on the 
left is generally considered clearer and is much more widely used. 

(i) Hexagonal close packed structure (h.c.p.) 
The relationship between the h.c.p. structure cell and the ABABABAB.. . . type stacking of the close 
packed planes is shown in Fig. 7.10. The h.c.p. structure cell is based on the primitive hexagonal 

Al 
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Fig.7.8 The ARABA...stacking sequence of close packed Fig. 7.9 The ABCABCAB stacking sequence of close 

layers which gives the b.c.p. structure. (Reproduced by packed planes which leads to the f.c.c. structure. (Repro- 

permission from Pauling: The Nature of the Chemical Bond. duced by permission from Pauling: The Nature of the 

Cornell University Press.) Chemical Bond, Cornell University Press.) 

lattice unit cell (or rather the multiple primitive hexagonal lattice cell). The motif is of two atoms. It 

follows that there are two atoms/lattice point, the equivalent of two atoms/primitive unit cell, and six 

atoms/multiple hexagonal cell. 

——_ 5 ——_ 

Fig. 7.10 (Reproduced by permission from Smallman: Modern Physical Metallurgy, Butterworth.) 

(ii) Face centred cubic structure (f.c.c.) 
The f.c.c. structure, corresponding to the ABCABCABC . . . stacking sequence, contains three 
further sets of close packed planes each at about 70° to the stacked layers. The total of four sets of 
close packed planes are orientated as the faces of a tetrahedron and the structure has cubic symmetry. 
For this reason the hexagonal structure cell with four layers apparent in Fig. 7.9 is abandoned in 
favour of a face centred cubic cell in which the close packed planes are the major triangular sections of 
the cube (Fig. 7.11). One of the close packed planes in the cubic structure is clearly illustrated in Fig. 
7.12. The f.c.c. structure is built up by adding a motif of one atom to each lattice point of an f.c.c. 
lattice. 

(iii) Body centred cubic structure (b.c.c.) 
Another commonly occurring structure in metal crystals is body centred cubic, in which the atoms lie 
on the points of a body centred cube lattice. 

42 



Position of the 
centre of the atom 

<_—e—T - 

Fig. 7.11 (Reproduced by permission from Smallman: Modern Physical Metallurgy, Butterworth.) 
ot 
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Fig. 7.12 Part of an f.c.c. structure sectioned to show one of the close packed planes {111}. (Reproduced by permission from 
Pauling: The Nature of the Chemical Bond, Cornell University Press.) 

It is not a close packed structure and contains no close packed planes, however the planes lying on 
the diagonal sections (one of which is shaded on Fig. 7.13) each contain two close packed directions. 
These directions are along the body diagonals of the cube. 

{110 } plane 

= oC-—., 

apa 

Fig. 7.13 Unit cell of the b.c.c. structure with the (111) close packed directions drawn in. (Reproduced by permission from 
Smallman: Modern Physical Metallurgy, Butterworth.) 

7.3 Packing of Non-Identical Spheres 

The holes in between the atoms of a crystal, called interstices can house smaller atoms without 
appreciable distortion of the host lattice. Just how much smaller the interstitial atom has to be 
depends, of course, on the size of the hole and this is directly related to the particular arrangement of 
atoms immediately surrounding it. . : 

If one again thinks in terms of the rigid ball model, it is fairly easy to estimate the maximum size of 
an atom that can be accommodated in an interstice without forcing the surrounding atoms apart. This 
information is summarised in Table 7.1 
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TABLE 7.1 

RADIUS RATIO FOR 
TYPE OF INTERSTICE PERFECT FIT COORDINATION NUMBER 

i.e. arrangement of closely packed interstitial atom radius number of host atoms 
atoms immediately surrounding the host atom radius touching interstitial 

interstice atom 

Triangular PAS 0-16 3 

Tetrahedral ZN 0-22 4 

Octahedral aN 0-41 6 

Cubic jel 0-73 8 

o Centre of surrounding atoms. 
+ Centre of interstice. 

Close packed structures contain both tetrahedral and octahedral interstices, whereas in b.c.c., 

although both types of interstice can be recognised, they are distorted. If an interstitial atom is small 
enough to fit into either the octahedral or tetrahedral interstice of a close packed structure, it is most 

likely to be found in the tetrahedral one which is the smaller; for, in general, an interstitial atom will 

prefer an interstice in which it is smaller than a perfect fit, but smaller by as small degree as possible. 
(This however does not apply to ionic crystals.) 

Figure 7.14 shows the positions of the octahedral and tetrahedral interstices in the f.c.c. and h.c.p. 
structure cells. The coordinates of all the interstices found in both cells given in Table 7.2 (page 46) are 
expressed in terms of the lattice translation vectors marked in Fig. 7.14 (a) and (b) and the primitive 
translation vectors in Fig. 7.14 (c) and (d). It is a very valuable exercise to identify these interstices on 
ball models of the two structures. 

If an alloying element of similar atomic size is added to a close packed metal, there will not be room 
for the new atoms in either the octahedral or tetrahedral interstices. Instead they will substitute 
randomly for the host atoms producing what is known as a substitutional solid solution (Fig. 7.15). 

In some instances the bonding forces between two different types of atoms forming a metal alloy are 
significantly larger than those between like atoms. As a resulta particular atom will tend to be located 
so that it is completely surrounded by atoms of the other type. If there is a fairly simple ratio between 
the numbers of the two atoms present, it is possible that the alloy will become ordered, which means 
that the positioning of the atoms of different types will be related crystallographically. 8-brass (an 
alloy of 50% Cu and 50% Zn) at room temperature is an example of an ordered alloy (Fig. 7.16). 
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Tetrahedral interstices 

+  Octahedral interstices 

Tetrahedral interstices 
+ Octahedral interstices 

Fig. 7.14 The tetrahedral and octahedral interstices in the f.c.c. and h.c.p. structure cells. The open circles represent the 
positions of the interstices, and the full circles mark the centres of the atoms. 

(a) f.c.c. structure cell showing the octahedral interstices. 
(b) f.c.c. structure cell showing the tetrahedral interstices. 
(c) h.c.p. structure cell with octahedral interstices. 
(d) h.c.p. structure cell with tetrahedral interstices. 

(Based on Barrett and Massalski: Structure of Metals, McGraw-Hill, Figs. 10.8 and 10.10.) 

ys Noe 

So so ~ oS Ceeee 
SOO66 6006 
Fig. 7.15 A substitutional solid solution. 

@ Copper atoms centre 

O Zinc atom centre 

Fig. 7.16 The structure cell of ordered B-brass. 
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TABLE 7.2 

STRUCTURE INTERSTICE COORDINATES EQUIVALENT NUMBER 
per 

structure per 
cell atom 

1g 1 1 fic.c. octahedral 040 300 003 Middle 

130 310 103 of Cube 
443 4 ! 041 401 014 cube centre 

d wren |e 

tetrahedral MPhiLisiaa 3 
bg sak. sees 3 8 
444444 444 344 

ee el Sg See ee Ee ee oe Bee 

h.c.p. octahedral $44 ; 3} Via 6 1 
eas Tigizs 
33-4 363 493.34 

tetrahedral HOP Re eG 
129 et Tg 
3:38. 33: 853 3:8 

003 003 4 ys 

103 113 013 103 113 O18 on the vertical edges of the 
103 113 013 10% 113 013 multiple structure -cell 

7.4 Tonic Crystals 

Tonic crystals are built up from both positive and negative ions which must be present in exact 
proportions if electrical neutrality is to be maintained. For example, a crystal of calcium fluoride 
(CaF,) will contain two monovalent fluorine ions for each divalent calcium one. 

The strongest bonding in an ionic crystal is obtained if each ion of one type is completely 
surrounded by dissimilar neighbours. It is therefore realistic to think of an ionic crystal as consisting of 
the larger ions (normally the negatively charged anions) arranged in a particular crystal structure, 
with the smaller ions (positively charged cations) sitting in the interstices. In this context the figures 
used to illustrate the different types of insterstice in Table 7.1 are anion polyhedra. 
We must now consider the question: What will be the most probable ionic structure? Given that the 

ratio of cation radius to anion radius is fixed and also that the proportion of cations to anions is correct 
for electrical neutrality. To start with there are two ground rules. First, because of the strong 
attraction between anion and cation, the cation will select an anion interstice in which it can touch all 
of the anions at once, so that if anything the radius ratio will tend to exceed that for a perfect fit. Also 
for the same reason the distorted interstices between anions in a b.c.c. arrangement will not be good 
hosts for cations and accordingly this structural arrangement is not common. The second ground rule 
is that the crystal structure will be that which maximises the coordination number. 
When the cation has a charge of 1, 2 or 3, the anion polyhedra usually pack as closely together as 

possible. So that for tetrahedral and octahedral packing the final anion arrangement will be either 
h.c.p. or f.c.c., and for cubic packing, primitive cubic. The choice between the h.c.p. and f.c.c. 
structures will be determined by more subtle aspects of the bonding such as the presence of some 
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directional covalent contribution to the predominantly ionic bonds. Cation charges higher than 3 
usually lead to more open packing of the polyhedra. These structures are discussed in Section 7.6. 

As an example we will look at an imaginary ionic crystal A,B which has a cation/anion radius ratio 
of 0-3. Bearing in mind the necessity of trying to maximise the coordination number, it is best to 
consider first the possibility of cubic anion polyhedra which have the high coordination number of 8. 
This arrangement is ruled out because its critical radius ratio exceeds ():3 (see Table 7.1). The same 
applies to the octahedral anion polyhedra which have a critical radius ratio of 0-41. The most stable 
anion polyhedra will be tetrahedral, and these occur in both h.c.p. and f.c.c. anion arrangements. In 
each case it can be seen from Table 7.2 that there are two polyhedra per anion (each anion is of course 
shared by several polyhedra). So for crystal A,B, ‘A’ cations will fill all the tetrahedral interstices of 
the ‘B’ anion polyhedra. 

If the chemical formula had been AB with the same radius ratio then only half of the tetrahedral 
interstices would contain cations, and these would be regularly distributed throughout the crystal. 

Some general criteria for stable packing are given in Table 7.3. 

TABLE 7.3 

Radius ratio “ Stable packing Maximum cation/anion ratio 
5 in common anion arrangements 

0-16 to 0-22 Triangular — 

()-22 to 0-41 Tetrahedral 2201 imt.cce: and hic.p. 

0:41 to 0-73 Octahedral 1::1 in f.c.c. and h.c.p. 

0-73 to 1-0 Cubic 1::1 in primitive cubic 

These predictions are obeyed fairly closely by ionic crystals, and some well-behaved examples are 
listed in Table 7.4. 

TABLE 7.4 

< Predicted packing Observed packing 

SiO 0-29 Tetrahedral Tetrahedral 

NaCl ()-54 Octahedral Octahedral 

CsCl ()-93 Cubic Cubic 

7.5 Examples of Ionic Structures based on Close Packed Anion Polyhedra 

In this section the deductions which can be made about the structure of a selection of five simple ionic 

crystals on the basis of the observed proportion of anions to cations and the corresponding ionic radius 

ratio, are outlined in note form. Also given in each case is a brief description of the actual structure. 

As each structure is considered it is strongly recommended that a sketch be made of the appropriate 

structure cell. 

(i) Sodium Chloride NaCl 

te = 0.54 
ly 

Therefore sodium in octahedral interstices. Anion arrangement either f.c.c. or h.c.p. 

Cation/anion ratio = 1::1, therefore all octahedral interstices filled. 

Actual Structure: Chlorine ions in an f.c.c. arrangement with sodium atoms in all the octahedral 

interstices. 
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(ii) Caesium Chloride CsCl 

003 
A 

Therefore caesium in cubic interstices. Anion arrangement primitive cubic. 

Cation/anion ratio 1::1, therefore all cubic interstices filled. 

Actual Structure: Chlorine ions in a simple cubic arrangement with caesium ions in all the cubic 

interstices. 

(iii) Aluminium Oxide AI,O; 

Fe = 0-43 

Therefore aluminium in octahedral interstices. Anion arrangement either f.c.c. or h.c.p. 

Cation/anion ratio 2::3, therefore } of octahedral interstices filled. 

Actual Structure: Oxygen ions in an h.c.p. arrangement with aluminium ions filling 3 of the 

octahedral interstices of each layer. 

(iv) Lithium Sulphide LS 

IO h.33 
a 

Therefore lithium in the tetrahedral interstices. Anion arrangement either f.c.c. or h.c.p. 

Cation/anion ratio 2::1, therefore all the tetrahedral interstices filled. 

Actual Structure: Sulphur ions in an f.c.c. arrangement with lithium ions in all the tetrahedral 
interstices. 

(v) Calcium Fluoride CaF, 

f= 0-15 
a 

Therefore calcium in cubic interstices. Anion arrangement primitive cubic. 

Cation/anion ratio 1::2, therefore 4 of the cubic interstices filled. 

Actual Structure: Fluorine ions on a primitive cubic lattice with calcium ions in half of the cubic 
interstices. This structure however is usually depicted with the calcium cations in an f.c.c. 
arrangement and the fluorine anions filling all the tetrahedral interstices. Extend your diagram to 
show that both structure cells are representative of the same structure. 

7.6 More Open Packing of Anion Polyhedra 

In cases where the cation charge is greater than 3, the anion polyhedra do not fit together to form 
either close packed or primitive cubic structures, but are arranged so as to maximise the distance 
between the highly charged cations which strongly repel each other. 

This behaviour is well illustrated by two particular crystal structures: silica (SiO) in which four 
oxygen ions form a tetrahedron around each silicon ion, and rutile (TiO) in which six oxygen ions 
form an octahedron around each titanium ion. 

48 



The Si-O, tetrahedra of a form of silica called cristobalite are arranged in a cubic structure. Each unit is surrounded tetrahedrally by four other units, the oxygen ions at the corners being shared (Fig. 7.17). The lattice of this structure is f.c.c. with a motif of a pair of SiO, tetrahedra. If one tetrahedron of the pair is centred on the origin, 0, 0, 0, then the other will be at ne 
Check this for yourself by inspection of Eig 7 7. 

Fig. 7.17 The structure unit cell of the cristobalite form of silica. The Si-O, tetrahedra are formed at the corners so that each 
oxygen ion is shared between two silicon ions. (Reproduced by permission from Moffatt ef al.: Structure and Properties of 

Materials, Wiley.) 

It is worth noting that under some conditions silica may not crystallise at all but form a glass in which 
the tetrahedra are joined corner to corner to make a random network. 

The structure of rutile has a primitive tetragonal lattice with a motif of two TiO, octahedra, one at 
0), 0, 0, and the other in the body centred position at 3, 5, 5 (Fig. 7.18). The octahedra are arranged so 
that they share corners and some edges. Note that the lattice is not b.c.t. because the octahedron at 
5, 2, 7 IS orientated differently from those at the corners of the structure cell. 

In the case when the charge on a cation within an anion polyhedron equals the total anion charge, 
the unit is electrically neutral and hence a molecule. Such molecules can be bound together by either 
Van de Waals or permanent dipole bonds to form crystals; for example water molecules in an ice 
crystal are bound together by hydrogen bonds with the oxygen atoms arranged in an h.c.p. structure, 
whereas the tetrahedral molecules of silicon tetrafluoride (SiF,) which crystallise on a b.c.c. lattice 
below —90°C are held together by Van de Waals bonds. 

7.7 Covalent Crystals 

Some of the best examples of directional covalent bonds are those associated with the carbon atom. In 
the crystal called diamond each carbon atom has four tetrahedrally orientated covalent bonds. These 
hold the atoms together in a regular three-dimensional array and create a crystal that is in fact one 

giant molecule. The strength and well defined directionality of the bonds gives diamond its high 
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Fig. 7.18 The structure cell of TiO, (rutile). The octahedron around two of the titanium ions at the front of the cell have been 
omitted for clarity. (Reproduced by permission from Moffatt et al.: Structure and Properties of Materials, Wiley.) 

rigidity and hardness. The arrangement of the carbon atoms is the same as that of the SiO, tetrahedra 
in a quartz crystal (Fig. 7.17). The lattice is f.c.c. with a motif of two carbon atoms, one at 0, 0,0, the 
other at 4,3, 4, within the structure cell (Fig. 7.19(a)). The structure is known as diamond cubic. 

Silicon and germanium also crystallise in a diamond cubic structure. Compounds such as boron 
nitride and one form of zinc sulphide (Fig. 7.19(b)) have a similar crystal structure but with a motif of 
two unlike atoms; in addition in the case of the compounds there is a significant ionic contribution to 
the essentially covalent bonds. 

The long covalently bonded chain molecules of regular organic polymers repeatedly fold back on 
themselves and are held together to form a crystal by fairly weak Van de Waals bonds. The chain 
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Fig. 7. 19 (a) The atomic arrangement in diamond, compared with () that for zincblende (sphalerite). In both structures, the 
translational symmetry is face centred cubic with a basis of two atoms, one at 000 and the other at 141. Thus each atom has only 
four nearest neighbours, placed at tetrahedral angles. In zincblende, the four neighbours are all of the opposite chemical 

species. 
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structure is governed by the directional nature of the four carbon bonds, whereas the crystal structure 
depends on the packing of the chains. Fig. 7.20 shows the crystal structure of polyethylene. 

The lattice is primitive orthorhombic, and the motif consists of the repeating units of two chains, 
one at 0), 0, 0, and the second which is rotated about the chain axis by about 110° with respect to the 
first, at $, 4, 0. 

Fig. 7.20 (a) The arrangement of the molecular chains of polyethylene showing their zig-zag structure and the way they pack 
to give an orthorhombic structure cell. 
(b) A plan view of the structure cell. 

(Reproduced by permission from R. Hill (Ed.): Synthetic Polymers, Elsevier.) 
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8 
Conventions for Describing Actual 
Crystal Structures 

8.1 Types of Motif (or Basis) 

(a) One single atom. 
(b) A group of like atoms. Such groups are usually small but by no means necessarily so. For 

example, the structure of a Manganese has a body centred cubic lattice, but each motif contains 
29 Mn atoms. 

(c) A group consisting of atoms of more than one type. 

A motif may also include or consist of one or more statistical atoms. For example, in the case of a 
- disordered alloy containing 25% atoms A and 75% atoms B distributed at random, it is convenient to 

consider each atom as identical and having 25% A character and 75% B character. 

8.2 Classification of Crystal Structure 

The only really definitive way of describing a crystal structure is the method used in the previous 
chapter. That is in terms of its lattice (Bravais lattice type and unit cell dimensions) and its motif (atom 
coordinates expressed as fractions of unit cell dimensions). However a general classification of 
structure types known as the Strukturbericht System has been widely acknowledged. 

Each recognisable structure type is assigned a letter and a figure. 
The letter A signifies an element. 

For example: 

Al f.c.c. structure e.g. Copper 

A2 b.c.c. structure e.g. Iron 

A3 h.c.p. structure e.g. Cadmium 

A4 Diamond cubic e.g. Silicon 

A7 R. Hex. e.g. Bismuth 

Al2 (complicated) e.g. a Manganese 

The letter B signifies two types of atom in equal proportion. 

For example: 

Bl e.g. NaCl 

B2 €.g, CsCl 
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B3 e.g. ZnS cubic 

B4 e.g. ZnS hex. 

BS e.g. NiAs 

The letter Cimplies a chemical formula of the type AB, containing three atoms. 
For example: 

Cl e.g. CaF, 

The system becomes rather less explicit, however, on moving to the D series, which includes all 
structures with the general formula A,B,,. More complicated compounds are grouped in the series E 
to K while L type structures are alloys, S type: silicates and O type organic compounds. 

An alternative method of classification relies on three parameters: 

(a) Lattice system. 
(b) Lattice type (i.e. whether primitive, body centred, etc.). 
(c) Number of atoms/structure cell. 

The lattice system is described by a lower case letter and the lattice type by a capital, as follows: 

Triclinic a Primitive P. 

Monoclinic m Body centred I 

Orthorhombic 0 Face centred EB 

Tetragonal t Base centred A, Bor C 

Hexagonal h Rhombohedral R 

Cubic c 

So that, for example, the structure of ordered Cu;Au would be designated as cP4, and that of close 
packed hexagonal zinc as hP2; with in each case the figures indicating the number of atoms per 
structure cell. 

To describe the structure further, the point group symmetry of the motif can be listed using the 
standard symbolic notation. We will not look at this further at this stage. 

8.3 Examples 

Complete the following table by inserting lattice type, motif (atom positions in the unit cell), and/or a 
sketch of the structure cell as required. 

Material Lattice Motif Structure cell 

DLT DiC.Cc. 
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a See eee 

Material Lattice Motif Structure cell 

Ni Ni atom at 0, 0, 0, 

Ge iC. Ge at 0,0,0 & }, 3, 5 

Alloy of 

Cu 
(no atomic 
order 
present) 

han Zt Zrat0.0, 0, & 4, 4, 4 
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Material Lattice Motif Structure cell 
Ordered Primitive 

Cu;Au cubic 

PbO, Pb 2 
Pb a @=Pb 

O 0-31, 0-31, 0 
O (1-0-31), (1-0-31), 0 
O (340-31), (¢-0:31),3 oc 
OG -0-319,45 40-31), 3 

Mark in the oxygen positions 

Poly- (describe in words) Refer to Fig. 7.20 and the figure in 
ethylene question 3, Chapter 15 

a =7-40 
b = 4-93 
c =2-53 

C-C distance = 1:54 A 
C-H distance = 1:10 A 
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Material Lattice Motif Structure cell 

Perovskite 

CaTiO, @Ca 

Ti 

Oo 

FeS Primitive Fe 0, 0, 0 

Hexag- Fe 0, 0, 3 

onal Seed 
Ses tns 

Cu,0 

@Cu 

Oo 
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9 
Directional Indices 

9.1 Definition of Directional Indices 

In Chapter 2, a lattice translation vector r was defined for a space lattice as: 

r= ua,+ vat was. 

Where u, v, w are integers and a,, a, and a; constitute a non-coplanar primitive vector group such as 
may be selected to outline a primitive unit cell. The direction of the vector r relative to the lattice is 
defined by the ratio of u:: v :: w. 

u, v and w divided by their highest common factor (H.C.F.) are the indices describing the direction 
of r. They are enclosed in square brackets to signify the fact, ie. 

% u, Vv, W 

their H.C.F. 

9.2 Directional Indices in Two Dimensions 

+ ap oP a + 

+ + + ~? + 

+ + _ + 
a, 1 ead r 

+ + oP 
a, 

Fig. 9.1 

Consider the direction of the arrow A in Fig. 9.1. This is not a lattice translation vector because it does 
not end ata lattice point. If it is extended until it meets a lattice point, it becomes the translation vector 

r, where r=a,+3a. 
The indices of the direction are then [1 3]. 
If one were to consider the exactly opposite direction to arrow A, then: 

r=—la,;—3a. 

The indices are not written [—1 —3] but [1 3] and pronounced bar one, bar three. 
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Another example, based on Fig. 9.2: 

N 
N 

+ '™ + 
Fig. 9.2. The indices of the direction A are [21] (pronounced bar two, one). 

Three points to note: 

(a) If an alternative primitive vector pair to that in Fig. 9.2 is chosen, the indices describing the same 
direction will be different. It can be seen from Fig. 9.3 that the indices of direction A are now 
so2 |: 

+ "'™® + 
Fig. 9.3 Same lattice and direction as Fig. 9.2, but different unit translation vectors. 

(b) If A is an arbitrary direction it may have to be extended a very great amount before meeting a 
lattice point. Its indices would then be very high, e.g. [47 196]. Directions leading to high indices 
are known as irrational, but fortunately are seldom important in a crystallographic context. 

(c) If vectors a, and a, are not a primitive pair, and outline a non-primitive unit cell there is a 
possibility that u and v may not be integers. This, however, has no effect on the final form of the 
indices because they express the ratio of u to v. 

In Fig. 9.4 direction A is extended to r. 

+ + + + 

Fig. 9.4 A planar lattice described by a non-primitive unit cell. 

58 



= 1 
pS 7a, — 7a. 

The H.C.F. of wand v is 4, therefore indices of direction A are given by: 

Bi 1 

9.3 Determination of Directional Indices in Three Dimensions 

Three-dimensional lattices are most usually represented by a sketch of a primitive, or non- -primitive unit cell. So it is sensible to formulate a method for the determination of indices of a direction drawn 
within a unit cell. 

Recipe to determine the indices of a particular direction (referring to Fig. 9.5). 

a4 

is 
Fig. 9.5 

(1) Draw the direction as a line so that it intersects the unit cell twice, once at a lattice point. 

(2) Take the intersected lattice point as the origin of the translation vectors, a,, a, a; on which the cell 
is based. 

(3) oe off the coordinates of the point P as fractions of the translation vectors (in example: 
aL 5, eal}: 

(4) Divide these by their H.C.F. and express as indices. 

H.C.F. =} 
Directional indices = 1 I 3]. 

With experience it is often possible to mentally extend the line until it intersects a lattice point, the 
coordinates of which give the indices directly. 

9.4 Symmetry and Directional Indices in Planar Lattices 

The possession of symmetry elements by a lattice renders particular sets of directions Ee We 
will again illustrate the principles by first considering planar lattices. 
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(i) Parallelogram lattice ; 

All lattices possess centres of inversion symmetry at each lattice point; hence on the parallelogram 

lattice drawn in Fig 9.6 direction A is equivalent to direction B, / 
es 

Fig. 9.6 Parallelogram lattice illustrating the general rule of the equivalence of opposite lattice directions. 

i.e. direction A [11] = direction B [11] or in general [uv] = [v0]. 
The operation of the diad rotation axis perpendicular to the plane would also render [uv] = [wz]. 

(ii) Rectangular lattice 
A rectangular lattice (primitive or non-primitive) possesses two orthogonal sets of mirror planes (Fig. 

9). 
MIRROR PLANE 6 

\ 
1 
1 

+ + + + + 

1 

MIRROR PLANE a 

[12] t [72] 

Fig. 9.7 A primitive rectangular lattice showing two orthogonal mirror planes and the four equivalent directions (12>. The 
lattice also possesses diad symmetry elements (cf. Fig. 5.4). 

Starting with the direction A [12], the operation of centre of symmetry and/or diad leads to the 
equivalent direction [12]. 

The operation of mirror plane a and/or B generates [12] and [12]. In general terms 
[ uv] = [wd] = [wo] = [ud]. All the directions of the ‘wv type’ are equivalent and are written in diamond 
brackets as (UU) rectangular: 

(iii) Square lattice 
The existence of the tetrad and additional mirror planes in a square lattice lead to additional 
equivalent directions (Fig. 9.8). 

Again starting with direction [12], the operation of the tetrad generates [21], [12] and [21]. 
Operation of any of the mirror planes a;, 8;, a2 and > will generate the four further equivalent 

directions [21], [12], [21] and [12]. Follow these through on the diagram. 
So, in general terms, 

[wo] = [a5] = [a0] = [5 
= [vu] = [6a] = [du] = [vi] = (uv) square: 



| 
' 
' 

' 
* ' 

» MP Bo * t ba ad 

NS * 7 ra M.P By 

ae % 1 Z Me 
mie 4 | ' i 

i \ ! i eg 

~~ / 4 

* + : (27 ] : [21] / * *. 
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Heth / ween as il adedieS TM bale : 

Fig. 9.8 A square lattice with the eight equivalent directions <12). 

(iv) Hexagonal lattice (Fig. 9.9) | 
| / 

fe ae MP 

Fig. 9.9 A hexagonal lattice showing the symmetry elements which are responsible for generating eleven directions 
equivalent to [13]. 

The operation of the hexad and mirror planes on the direction [13] generates the following equivalent 
directions: 

23] [32] [31] [21] [12 [ ix] a 5 Bi Fi I (Check these for yourself.) 

The indices however give no indication of their equivalence. 

61 



(v) Hexagonal lattice (alternative indexing system) ' 
The generally accepted way round the difficulty that symmetrically equivalent directions have 
mathematically non-equivalent indices is to index the directions using three translation vectors a, @ 
and a; as axes which define a multiple planar unit cell as drawn in Fig. 9.10. So 

r= Ua,+ Va,+t Ia,. 

(J is used rather than W which is reserved for the additional index required to define a direction in 
three dimensions.) 

Now, there are a tremendous number of possible combinations of U, V and I which will give r. For 
example the direction B, drawn in Fig. 9.10, which has ‘conventional’ directional coordinates in terms 
of a, and a, of [uv] =[41], could be defined in the three-index system as: 

[UVa = (212) 
or [521] 

and many others... 

The system only becomes sensible when the additional condition is imposed that U+ V+ I=0. 
Equivalent directions then have mathematically equivalent indices. 
In the case of directions which are perpendicular to one of the three axes, the determination of 

indices is straightforward. For example direction A (Fig. 9.10) which is perpendicular to a, will have 
indices: [ UVI] = [101] (i.e. r, = 1a, +0a,—la,; and U+ V+ I=0). 

+ + 

a + 

+ + 

+ + + 

+ + 

+ + + 
Fig. 9.10 A planar non-primitive hexagonal cell defined by the three vectors: a,, a and ‘a3. 
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For a more general direction such as B (Fig. 9.10) the determination by inspection of the indices [ UVI] which define the direction and also satisfy the condition U+ V+ I=0 can be a little tedious — 
to say the least. 

It is possible, however, to find the indices in a systematic way by the procedure outlined below. 

Referring again to direction B in Fig. 9.10 the first stage is to project either point X or the end of the 
vector as a perpendicular on to the three axes in turn. 

For point X this gives intercepts at: 

xa, along a, 
—za, along a, 
—3a;, along a;. 

If the coefficients are divided through by their highest common factor, i.e. 4, we obtain the indices 
of the direction as [725]. 

If 7a,’s, —2a,’s and —Sa,’s are laid off on Fig. 9.10 (or rather an extension of it!), they add up toa 
vector in direction B but exactly three times the length of B. This factor of three is not too important as 
far as planar indices are concerned, but it must be kept in mind when determining three-dimensional 
hexagonal indices; it is also accounted for by the appearance of the fraction § in the equations below. 

The directional indices [uv] and [ UVI] are related as follows: 

S U=3(2u- 
BE a tart ios) 

T=—3(utv)=—(U+V). 

These equations also apply for the three-dimensional systems [uvw] and [UVIW] with the 
additional relation> 

w=W. 

To summarise for two dimensions: 

(1) The existence of a centre of inversion symmetry puts [ui] =[uv]. A two-fold rotation axis 
perpendicular to the plane has the same effect. 
Example: parallelogram lattice. 

(2) Two orthogonal sets of mirror planes as found in a rectangular lattice put [uv] and [wo] = [wv] 
and [uv]; i.e. all permutations of sign (positive or negative) possible, but u and v are not 
interchanged. 

(3) Both the four-fold rotation axis and the four sets of mirror planes possessed by the square lattice 
render directions equivalent which have all permutations of sign and order. 

(4) Equivalent directions in a hexagonal lattice have indices which do not always bear a numerical 
relationship to each other. 

(5) The reference of directions on a planar hexagonal lattice to three axes (translation vectors) gives 
indices [ UVI] which, in the case of equivalent directions, appear equivalent, U, Vand J being 
interchanged as regards sign and position. In this indice system the condition U+ V+ I= 0 must 
always be upheld. 
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9.5 Symmetry Related Indices in Three Dimensions \ 

Let us build up a monoclinic lattice by stacking parallelogram lattices directly above each other (see 
Chapter 6). Now, [uv] is only =[ud] but because a vertical plane through this lattice is planar 
rectangular we have: 

UW = DW = DW= U 
uw = uw = uw = UW 

Therefore, [uv w] =[wow] = [uvw] = [vow] 

So that (UUW) monoctinic represents four equivalent directions. 

For a tetragonal lattice built up by stacking square lattices on top of each other 

[uv] = [uo] = [ud] = [a] = [vu] = [oa] = [du] = [va] 

i.e. signs and positions variable (square lattice condition). But in planes perpendicular to the square 
lattices the rectangular condition holds in which only the signs of v and w are variable 

Hence, [vw] = [vw] = [vw] =[dw] 

and [uw] = [uw] = [uw] =[aw] 

It follows from these combinations that, for equivalence, the only restrictions on the signs and 
positions of the three indices for the tetragonal lattice is that the w index must appear in the third 
position. 

Hence [uvow] = [vow] = [ dow] = [vow] 

and repeated with w 

[vuw] = [duw] = [vuw] =[vuw] 

and repeated with w 

Therefore (UUW) reTRAGONAL Fepresents 16 equivalent directions. 

The number of equivalent directions can be reduced if either a pair or all of the indices wow are 
equal, or if one or two of them are zero. 

E.g. for the tetragonal case, for direction type (100)rer 

[100] = [100] = [010] = [010] 1.e. four equivalent. 

For type (111) rer 

[111] = [111] = [111] = [111] = [111] = [111] = [111] =[111] ice. eight equivalent. 



But for (121);e7 there are the full 16 different but equivalent directions. 

Verify these for yourself. (See notes on question 4.) 

Remember: Equivalent directions in a lattice do not necessarily apply to a crystal structure where 
the motif symmetry may be less than that of the lattice. 

9.6 Examples of the Determination of Directional Indices 

wpb 

See 
a 

Intercept with unit cell at origin and 0a,, 1a, 1a;, therefore direction = [011]. 

‘J SIRS 

a, 

Intercept at 1a,, ja, 4a, direction = [432]. 

Intercept at —a;, —4a), —a, direction = [212]. 

4. On the cell below draw in direction [123]. 

Draw in [123]. Intercepts at 3a,, 1a, 1a; and 0, 0, 0. 
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5. On the orthorhombic cell below draw in (101. 

a, 

Ae 
a, i: ape 

First determine equivalent combinations, i.e. [101] [101], [101] [101]. 

6. To determine indices of directions A, B and C in its hexagonal cell (Fig. 9.16) using both the 

three- and four-index systems. (Equivalent to two- and three-index systems of a planar 

hexagonal lattice.) A 

(i) Three-index system. Using a,, a and c¢. 

Direction A: 

Mentally translate so it passes through origin (dotted line). Intercept at —a,, —a, ¢, therefore 

[wow] = [111]. 

Direction B: 

Intercept at —3a,, —3a, ¢ [wow] =[1 2 3]. 

Direction C: 

Intercept at 5a,, a, —7¢ (mentally transposing origin to middle of top hexagon) [wow] =[1 2 1]. 

(ii) Four-index system. Using a,, a, a and c. 

Direction A: 

Transpose as before and apply the system outlined in Section 9.4(v). Coordinates of projections of 
direction on to a,, a, and a, are —}+ —3 1. 
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therefore OVA 
(U+ V+I=0). 

But the length of the vector —a,, —a), +2a, is three times the component of vector A in the basal 
plane. Therefore the intercept on the c axis will be at 3c. Hence 

[UVIW] = [1123]. 

Checking back by calculation using relations from section 9.4: 

Therefore [uvw] = [333] or [111]. 

Direction B: 

Because this direction is perpendicular to a, it is fairly easy to obtain its vector components as — 38), 
‘4a; and c. So the indices are [0113]. 

Alternatively one can draw perpendicular projections of the basal plane components on to a) and 
a;. This gives 0a,, — 5a), 3a; and hence 011 which represents a basal plane component three times the 
drawn length. The c intercept is therefore 3c and the indices [0113] as before. 

Checking back by calculation: 

Therefore [uvw] = [123]. 

Direction C: 

The direction is perpendicular to a,. Therefore by inspection 

= [0111] 

Checking: a 
u=U-I= 
v = V-I=2 
w=W =1. 

Therefore [uvw] = [121]. 
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TO DO 

1. Referring to the hexagonal cell below: 
(i) Insert directions of the type <121). 
(ii) Write out the directional indices of these directions [uow]. 
(iii) Read off their indices in the four-index system. 
(iv) Check the relationship by calculation. 

2. In an orthorhombic lattice four of these directions are equivalent. Ring them. 

[112] Se gti2} [21] 
EE td Eo Mate ead 

3. Draw on the cubic unit cell below examples of all directions of the types (111) and (110). 

4. On the unit cell below draw in all directions of the type C191 



Remember: These s ymmetry groupings do not necessarily apply to a crystal structure based on the lattice. 

YOU SHOULD BE ABLE TO 

Write down the recipe for determining directional indices in three-dimensional structures, and also describe the four-index system for hexagonal lattice S together with its advantage. 
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10 
Crystal Planes and Miller Indices 

10.1 Historical 

The prominent school of crystallography which grew up at Cambridge during the last century under 
the leadership of Professor W. H. Miller, developed a system of describing the relative orientation of 
naturally occurring crystal faces. The system was based, not on angles, but on three-figure groups 
known subsequently as Miller indices. ; 

Each face was assigned a set of indices as follows: 

(i) The lines of intersection of three of the most prominent faces were taken as axes (x, y, 2). 

(ii) Another prominent face was selected which intersected the three axes. It was known as the 
reference face. 

(iii) The distances between the origin of the axes and their points of intersection with the reference 
face were measured (A,, A, and A; on Fig. 10.1). 

Reference Face/Plane 

Plane1 

Plane 2 

y 
Fig. 10.1 A sketch representing crystal facets to illustrate Miller’s method of indexing. 
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(iv) Similar distances were measured for other faces (B,, B, and B;, etc.) and the indices of these faces taken as the ratio: 

A,,. A,.. A Bo! 3B 3B, expressed as whole numbers, hk. 

Example: 

The following intersection distances were measured for the planes in Fig. 10.1: 

Reference plane Plane | Plane 2 

x ()-82 ()-21 By projection —0-60 
()-82 (0-42 0-80 

Z ()-82 oe) By projection —0-60 

Therefore indices of plane 1 

0:82 0-82, 0-82 
0-21" 0-42°" © 

Indices of plane 2 

UN) eS) a i 
OS ROAR, ae WT h ::k ::1= (434). 

By the same token the indices of the reference plane are (111). 

Two points to note: 

(1) As with directional indices, negative indices are written using the bar notation. 

(2) Unlike directional indices, Miller indices are written in curved brackets. 

Examination of many crystals, showed that the indices hk/of both natural and cleavage faces, were 
invariably small numbers. Another crystallographer, A. R. J. Hay, summed up these observations 
as ‘the Law of Rational Indices’. He also proposed that the law was a natural consequence of some 
periodic internal structure of the crystal. Or, in other words, that the crystal was built up from many 
identical units. 

10.2 Indices of Atom Planes 

The classic X-ray diffraction experiments of Laue, Bragg and others confirmed that a crystal was a 

periodic array of atoms in three dimensions. It was found that both natural faces and cleavage planes 

corresponded to the more prominent atomic planes (i.e. those most densely populated by atoms). 
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Atomic plane which does not 
have any atoms within the 
structure cell drawn. 

Fig. 10.2 

Miller therefore, in ascribing indices to crystal faces, was in fact indexing prominent planes of atoms. 
Consider now a primitive cubic structure cell (Fig. 10.2). 
It is likely that a crystal with this structure would, in the bulk, show facets which correspond to the 

cube faces, and intersect to generate suitable axes, x, y and z (Fig. 10.1). A typical reference face 
might have corresponded to those atomic planes drawn within the cell (Fig. 10.2). In Miller 
terminology, the reference face would define the three distances A,, A, and A; along the x, yand z 
axes. Scaled down about 100,000,000 times, these distances from the primitive vector group a, a, and - 

a, which defines the unit cell. 

The points of intersection of any other atom plane with the three vectors of the primitive group can 
be determined, and their distances from the origin (p,, p2, ps), expressed as fractions of the vector 
lengths, 1.e. 

Pi... Po... Psp: wie ae (Fig. 10.2) 

But, Miller had chosen to express his ratios in terms of 

Ar., Ay. As e Ee, 

so that the fractional intercept distances from the unit cell have to be inverted (reciprocals taken) 
before they can be expressed as a ratio to give Miller indices. 

Miller may have decided on his particular system so as to avoid the appearance of infinities in his 
indices. Somehow a zero is cleaner looking. In the context of modern crystallography his choice has 
proved more than just convenient. This is because diffraction effects which are utilised for crystal 
structure analysis are described best in terms of the Fourier transform of the crystal lattice (the 
reciprocal lattice), and Miller’s indices of a plane turn out to be virtually the coordinates of the 
corresponding reciprocal lattice point. (See Chapter 11 and Appendix 3 for explanation of these 
concepts. ) 

If a different plane had been chosen as the reference face, the indices derived for other faces would 
be different. This would be equivalent to choosing a different group of translation vectors and hence a 
different unit cell. 
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10.3 Recipe for the Determination of Miller Indices 
(i) Consider a plane drawn in a unit cell. 

Fig. 10.3 

Fig. 10.4 

(iii) Measure the distance along each axis from the origin to the point of intersection with the plane 
and express as a fraction (or multiple) of the corresponding translation vector. In some cases the axes 
may have to be projected in a negative direction before the intercept is located. 

Fig. 10.5 Intercepts of 3a, ao, a3. 

(iv) Take reciprocals of each of the fractions (multiples) and multiply through by a suitable factor to 

convert to the three smallest possible integers, i.e. 

Dietcle wl 
(> eae eat 

which are the Miller indices of the plane. 
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10.4 Zones of Planes 
a 

| 

A zone of planes is a series of non-parallel planes which are all parallel to (or contain) one particular 

direction known as the zone axis. 
A zone of planes is drawn within the unit cell in Fig. 10.6. The determination of the indices of these 

planes is summarised in Table 10.1. 

Plane 

NYA nN FP WN — 

Fig. 10.6 A zone of planes. 

TABLE 10.1 

Axes transfer to 
give non-zero 

intercepts Intercepts 

None © 100 

None =3, 9°93 

None =e ea 

None i ale a 
Transfer origin to B Saal ed | 

None {1-3 

None 1oo—] 

Reciprocals 

010 

333 
121 

343 

lil 

PAW 

101 

Indices 

010 

141 

121 

343 

111 

212 

101 

A degree of numerical symmetry can usually be detected in the indices of planes belonging to the 
same zone. In the example above h+/=0. 
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The Miller indices of planes of one zone (hk/) are related to the directional indices of the zone axis 
[uvw] as follows: 

hut kv+lw=0. 

Hence in the example above the zone axis is [101]. 
Formally one can determine the directional indices of the intersection between two planes h, k, |, 

and h, k, lL, as follows: 

“= k, : a kl, 

US l, h-tb h, 

Wis hy k— hy ky. 

Apply these equations to any two planes in the example, and check that the zone axis is [101]. 
The grouping of planes into zones is completely independent of the crystal system: 

10.5 Forms of Planes 

A form of planes is a series of non-parallel planes related by a particular symmetry element. As in the 
case of equivalent directions, the number of planes of one form depends on the symmetry of the lattice 
or crystal structure, and increases as the symmetry increases. 

The various permutations of Miller indices, which describe lattice planes of the same form, depend 
on the lattice system in much the same way as directional indices. The rules are summarised in Table 
102. 

TABLE 10.2 

Permutations of Miller indices Number of planes of 
e.g. system for planes of the same form type (hkl)* in form 

Triclinic All indices positive, or all negative 

Monoclinic Two particular indices (e.g. h and k) with the same sign 

Orthorhombic All possible permutations of sign 

Tetragonal All possible permutations of sign and two indices may be interchanged 
(those derived from the two equal axes) 16 

Cubic All possible permutations of sign and indices 48 

Hexagonal Indices of the same form may bear no numerical relationship to each 
other (see below) 24 

(For the R. Hexagonal lattice the number of planes in a form is 
reduced to 12) 

* i.e. three, non-zero different indices. 

Planes (hkl) and (hkl) are parallel, and in the case of lattice (rather than atomic) planes. They are 

identical. They are counted separately though in the totals in the third column of Table 10.2. 

If the symmetry of a crystal structure is less than that of the lattice, then the number of planes in any 

form is likely to be reduced. 
A form of planes is designated by the indices hkl enclosed in curly brackets, e.g. {hkl}. Double 

curved brackets are sometimes used, e.g. ((hk/)). 
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Example: 

Draw in planes of the form {123} on the tetragonal lattice cell (a, = a7 as). 

Fig. 10.7 Planes of the form {123} in a tetragonal lattice. 

Planes belonging to this form are: 

(a) (123) (123) (e) (213) (213) 
(b) (123) (123) (f) (213) (213) 
(c) (123) (123) ( ) 
(d) (123) (123) ( 

Therefore there are eight distinguishable equivalent planes which are drawn in on Fig. 10.7. 

Label the planes on the figure (a), (b), (c), etc. 

10.6 Miller-Bravais Indices 

The Miller-Bravais system is a four-index system (hkil) based on a non-primitive hexagonal cell 
(hexagonal prism). It has the same advantages as the four-index system used for directions and 
endows planes belonging to the same form with indices which are numerically related to each other. 

For example, consider the form of planes parallel to the c axis in Fig. 10.8. 

Fig. 10.8 A hexagonal cell depicting three distinct planes of one form. 
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Plane I Plane 2 Plane 3 
In the three-index system: 

Indices based on axes x, y and c (110) (210) (120) 
In the Miller-Bravais system: 

Coordinates of points of intersection 
with axes x, y, z and c 11—}00 -4110 —1 }=—10 
Reciprocals to give indices (hkil) (1120) (2110) (1210) 

Unlike the four-index system for directional indices in hexagonal lattices considered in the previous 
Chapter, the method for finding Miller-Bravais indices does not vary in principle from that used for 
three-index Miller indices. In effect one simply adds in a fourth index i which is the negative of the sum 
of hand k. The result is numerical symmetry between indices for planes of the same form, which is not 
always obtained when just three indices are used. 

TO DO 

1. Insert on the monoclinic cell below the {121} form of planes. 

Fig. 10.9 

2. Four of the following planes belong to the same zone. Determine the direction of the zone axis. 

(234) (201) (111) (241) (221) (432) (101) (010) (432). 

PAAR Rea ca ocgivenradenrass rcnererr’ 
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3. Draw in on the tetragonal cell below the following: 
(111), [111], (130), [130], {100}. 

Malte era 

y 

Xx 
Fig. 10.10 

4. The f.c.c. cell below contains a primitive unit cell of the lattice. 
Determine the Miller indices referred to the non-primitive cell axes, of {100} j:imitive- 
Determine (hk1) primitive OF another plane which belongs to the same form as {100} jimitive 

( hk 1) primitive = 

Fig. 10.11 
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5. On the hexagonal non-primitive cell below insert the form of planes {1012}. Determine their indices in the Miller system. 

Fig. 10.12 

TO BE ABLE TO DO 

1. Write down: 

(a) The recipes for determining Miller and Miller-Bravais indices. 
(b) The definitions of a zone and form of planes. 

2. Explain the meaning of the four different types of brackets used to identify crystallographic 
indices. 
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Il 
Spacing of Lattice Planes, the Reciprocal 

Lattice 

This chapter sets out to introduce the reader to the geometry and construction of the reciprocal lattice. 
Additional background material is grouped in Appendix 3. 

11.1 The Interplanar Spacing, ‘d’ 

The spacing of a particular set of planes (hk/) is the perpendicular distance between adjacent planes of 
the set (Fig. 11.1). i 

7 

Fig. 11.1 A set of planes. 

The spacing is a function of (hkl), and the size and shape of the lattice unit cell. In general, the 
higher the indices, the smaller the spacing. 

Geometric formulae relate the interplanar spacing, written d),,, to the indices and unit cell 
parameters. For example, for a cubic lattice: 

r. a 

see Coes eae ove 
For a hexagonal lattice: 

Qi = ety harris 
A(h?+ hk + k?) P 

For the triclinic lattice however: 

1 eats 2 : 2 : 2 a =[W ava; sin’at ka?ay sin’B + Pa?Pay sin-yt+2hka,a,ax (cos a cos B —cos Y) 
i 

+2kla,? aya, (cos B cos y —cos a )+2hla, aya; (cos y cos a —cos B)|/ 
[a,’ay’ax (1—cos?a—cos’B —cos*y +2 cosa cos cos Y)| 
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where a, a, and a, are the side lengths of the unit cell, and the angles between aa, a)d;, and a3a,, 
are y, aand B respectively. 

This relation represents crystallographic trigonometry at its most complex. It serves its best purpose 
as a background against which one aspect of the usefulness of the reciprocal lattice concept can be 
clearly seen. 

11.2 Introduction to the Reciprocal Lattice 

Mathematically the reciprocal lattice is the Fourier transform of the real lattice. An amplification of 
this statement together with a more detailed explanation of the reciprocal lattice concept forms the 
basis of Appendix 3. Here, we will confine ourselves to the practical aspects of the reciprocal lattice 
and its usefulness in the field of crystallography. 

The orientation and spacing of a set of planes can be fully defined by just one vector which we will 
call d. The vector is perpendicular to the set of planes and of length proportional to the interplanar 
spacing, d. 

Now, if: 
(a) a vector g is defined which is parallel to d but with a length proportional to the reciprocal of 
the interplanar spacing d, 
and 
(b) g vectors corresponding to all the sets of planes in the lattice are drawn from the same origin. 

then 
Points at the tips of all the g vectors will themselves form a lattice, the ‘reciprocal lattice’. 

ilo 
% 
‘010 

\ 

Y 

‘A 

‘ 

eo 
\ 

~~ ON 
x 

s 

000 
i. b, 
a 
rN ite 
HN, 
! \ 
‘ \ 

Tee 
010 % 

(a) (b) 110 

Fig. 11.2 (a) Section of a space lattice showing edge-on views of the planes (100) (010) and (110). (b) Part of the reciprocal 

lattice with the points corresponding to these planes. 

_ Asit happens it is not possible to build up the complete reciprocal lattice in this way, for one has to 

include also all possible multiples of the g vectors. Another way of looking at this Is to say that 

additional hypothetical lattice planes with ‘d’ spacings which are simple fractions, 1.€. 7,3, 4, ete. of 

the spacing of the actual lattice planes must be included. Also for each reciprocal lattice vector g there 

is an equivalent vector —g. Therefore g= n/d where nis a positive or negative integer. 
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Figure 11.2@ shows three sets of lattice planes which are perpendicular to the page drawn on a 2 
section of a space lattice and in Fig, 11.24 the reciprocal lattice points corresponding to these p : 

The g vectors are the lattice translation vectors of the reciprocal lattice and can therefore be defend’ 
in terms of the reciprocal lattice vectors b,, b,, bs which form a primitive vector group so that 

= hb, + &b.+ My. 

The reason for choosing the letters A, &, L for the three integers rather than, say, w, 2, was in 
Chapter 2, will become obvious in the next section. 

~ 11.3 > Miller Indices and the Reciprocal Lattice 

Look at Fig. 11.2 again. The reciprocal lattice point labelled 110 because it corresponds to the (110) 
set of planes also has coordinates in terms of b,, b, (and bs) of 1-1, 0! 

So we can say that: gio = [b,— 1b, +0b.. 

Or in general that: gaan) = Ab, + kb,+ Ib,, 

where hkl are the Miller indices of the lattice plane. 

Also, doa = 2/gcaay = n/(hb,+ kb.+ Ib,). 

Figure 11.3 shows a section of a real lattice, and the traces of some of lattice planes perpendicular to 
the section. On the right is a part of the corresponding reciprocal lattice in the same onentation. 

As an exercise index each reciprocal lattice point in two ways: 

(a) with the Miller indices of the corresponding lattice planes, 

(6) with its coordinates in terms of b, and b,. 

If the real lattice parameter in the x direction is 3 3A, calculate the scale of the reciprocal lattice as 
drawn in A~'Yem. (Assume the real lattice to be triequiangular.) 

HW RV W ° 

: <—— 
VA nN ind 
JI A\ZARNL | 000 a 

as ® 

Seale factor = SAS SS SSA SS 

Fig. 11.3 Some lattice planes and the corresponding reciprocal lattice. 
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Once the unit cell of the reciprocal lattice has been determined — and this must be based on a primitive vector group corresponding to the (100), (010) and (001) planes of the real lattice or the direct relationship between the Miller indices and the reciprocal lattice coordinates will not hold— it is then a straightforward matter to calculate g and hence the interplanar spacing of any set of planes. 
If the above equation for d,,,is written without vectors being used we get, for the most complex case 

of the triclinic lattice, the relation: 

1 

A nx) 
= hb?+ 2b?+ Pbe+2hkb, by cos y +2klbsbs cos a +2hlb,bs cos B. 

Compare this equation with that near the end of Section 11.1 which was derived without recourse to 
the reciprocal lattice concept and see also Appendix 2f, 

11.4 Non-Primitive Unit Cells 

Consider the (110) set of planes of a lattice indexed according to a non-primitive body centred cubic 
unit cell. The spacing of these planes is the same as for a primitive cubic cell with 

di a 

where a=cube edge length. 
Therefore 

|g |iuo=n ea (| g | means magnitude of vector g). 

However because of the extra lattice point at the centre of the b.c.c. cell, the spacing of the (100) 
planes is a/2 (compared with ‘a’ for a primitive cubic cell). So 

| g lio =n al . 

Representing these g vectors as a part of a reciprocal lattice, we obtain points with coordinates 
which are multiples of 2, 0, 0 only (Fig. 11.4). 

The completed reciprocal lattice is similar to that corresponding to a primitive cubic real lattice, but 
with certain points systematically absent. _ 

The missing points relate to lattice planes of a spacing that is halved by the presence of the body 
centred lattice point. The indices of such planes can be determined either by inspection or by algebra. 
A lattice point having coordinates x, y, z (referred to the unit cell axes) will lie on the plane hklif: 

hx+ky+ lz = zero or an integer. 

Therefore, by substituting the fractional coordinates of the lattice points which render the cell 
non-primitive, it is possible to detect combinations of hk! which do not satisfy the above relation and 
are therefore coordinates of the missing reciprocal lattice points. 

The body centred cubic cell is rendered non-primitive by the lattice point atx=3,y=3,2 2 The 
reciprocal lattice points are missing if the sum of their coordinates is an odd integer. Verify this 
statement for yourself. 
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Fig. 11.4 Two rows of a reciprocal lattice derived from a b.c.c. real lattice. 

Hence for b.c.c.: 
(hkl) 
100 Reciprocal lattice points with coordinates 100, 300, 500, etc. missing. 

110 No points missing. 
111 Points with coordinates, 111, 333, 555, etc. missing. 

If this procedure is continued and the hknlayers of the reciprocal lattice drawn, it can be seen from 

Fig. 11.5 that the reciprocal lattice is face centred cubic. 

+ + + e Positions for hkn layers 
“4 ! be whenn=0,+2,+4,+6........ 

+ + + Positions for hkn layers 

hf : 000 be * when n=+1,+3,+5.......- 

+ e@ *+ @ + @ + 

eo +e + @ + @ 

Fig. 11.5 A projected plan view of the f-c.c. reciprocal lattice derived from the b.c.c. real lattice. 

It is important to appreciate that if the b.c.c. lattice had been indexed according to a primitive unit 
cell, the reciprocal lattice would be exactly the same; only the primitive vector group and hence point 
coordinates would be different, all combinations of hk! being present. 

11.5 The Use of the Reciprocal Lattice 

The reciprocal lattice leads to simplified geometric expressions for the spacing of crystal planes. This 
in itself is useful in studies of crystals using the techniques of X-ray, electron or neutron diffraction. 
There is, however, a much more direct relationship between diffraction and the reciprocal lattice; for 
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a recorded diffraction pattern is simply a projection of part of the Fourier Transform of the crystal 
which is much the same thing as the reciprocal lattice. The positions of the diffraction spots and hence 
reciprocal lattice points define the crystal lattice, whereas the crystal motif determines the relative 
intensity of the spots. 

Diffraction is the pre-eminent tool of crystallographers; and it cannot be fully employed without a 
sound grasp of the reciprocal lattice concept. Correspondingly it is impossible to demonstrate the full 
elegance and usefulness of the concept in a book which tacitly avoids description of diffraction 
techniques. 

TO DO 

1. Draw and index the h0/ section of the reciprocal lattice of a primitive tetragonal lattice with 
a=2-4A and c=7:2A. Restrict your diagram to values of h and /<+4, and state the scale 
chosen. 
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(Scales are arbitrary) 
Tick:. A 

B 
e 
None of these. 
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3. Draw the hk0 and hk1 sections of the reciprocal lattice corresponding to the face centred cubic 
space lattice. Determine the missing indices by drawing planes in the f.c.c. unit cell below: but if 
in doubt use the algebraic relation as a check. Of what type is the reciprocal lattice? 

\ 

BS AVE ose notin s+. Fig. 11.9 

TO BE ABLE TO DO 

1. Construct any of the important sections of the reciprocal lattice from each of the 14 Bravais 

lattices. 

2. Obtain, by geometric construction, an approximate value for the interplanar spacing and 

orientation of any set of planes in any space lattice. 

3. Determine which points of a reciprocal lattice appear to be missing, when the corresponding real 

lattice is indexed according to a non-primitive unit cell. 
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12 
Stereographic Projection 

12.1 The Problem 

We have seen that crystallographic directions and orientations of lattice planes can be described using 
systems of indices. Indices, by definition, require reference axes which can either be taken as the 
intersection of crystal faces or, more normally, from the unit cell of the crystal structure. 

Situations frequently arise in which the measurement and recording of the orientations of directions 
and planes is necessary before they can be identified and indexed. An example is the determination of 
the orientation of a single crystal and the identification of its symmetry elements by the Laue 
technique of X-ray diffraction. 

Crystallographers have developed a method of graphic representation which enables the spatial 
orientation of crystal planes and directions to be drawn on a piece of paper. The method uses 
stereographic projection and it is possible to measure stereo angles directly from the drawing. 

12.2. Reference Sphere 

We are only concerned with the relative spatial orientations of crystal directions and planes. For this 
reason the directions and planes can be translated in space, as long as their orientations are not 
changed, until they all pass through one point: the origin. 

The next step is to draw a reference sphere of unit radius, centred on the origin, and focus attention 
on the intersections of the directions and planes with the surface of the sphere. 

The directions, represented of course by lines, will each intersect the sphere surface at two 
antipodal points. These points are usually referred to as poles. 

The planes will intersect the sphere surface to give circles known as great circles. (Circles on the 
surface of a sphere whose planes do not pass through the centre are small circles.) 

In practice it is often neater to represent the orientation of a plane by its normal, i.e. by a pole rather 
than a great circle. 

12.3 Reference Grid 

At this stage the information about the relative orientations of directions and planes is displayed as a 
series of poles and great circles on the surface of the reference sphere. Now, the distance between two 
of the poles is directly proportional to the angle between the directions they represent, as long as this 
distance is measured along a great circle. 

It would be ideal if there was also drawn on the surface of the sphere a great circle, calibrated in 
ae rie passed through the two poles. The angle between the two directions could then be read 
olf directly. 
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Unfortunately, in order to cater for all possible positions of the poles, the sphere surface would have to be smothered in calibrated great circles. Instead, a limited number of great circles is drawn so that they all pass through two antipodal points and are spaced, say, every degree around the axis joining the points. These great circles are exactly analogous to lines of longitude drawn on models or maps of the earth, and the two antipodal points correspond to the North and South Poles. 
The calibration marks on the great circles can be joined together to form a series of small circles 

(lines of latitude). The calibration marks at 90° from the North and South Poles join up to give another 
great circle (equator). 
How can this grid of great and small circles be used for measuring the angle between the directions 

represented by poles A and B (Fig. 12.1) which do not lie on the same great circle? It is possible to 
bring one calibrated great circle into register with both poles (to within a degree anyway) by suitable 
rotation of the whole grid, but not the reference sphere, about the axis shown. 

| 
Fig. 12.1 Calibration grid of great and small circles marked on a reference sphere. 

axis of rotation for calibration grid 

At this point the analogy with lines of longitude and latitude is lost, for the axis joining the North 
and South Poles is the axis of the earth’s rotation and cannot be rotated at will. 

12.4 Stereographic Projection 

So far we have had to think of directions and planes passing through an origin and intersecting a 
sphere centred on that origin. In practical terms we would have to construct a sphere and mark the 
poles, etc. on its surface. It would also be necessary to make a calibrated wire grid which would fiton 
the sphere and be slid over it to bring a particular great circle into line with both poles. Such operations 
using a model sphere are obviously far from convenient and are only likely to be performed for 

ing purposes. 
ok have been faced with this problem for centuries and they have developed various 
systems of projecting information such as maps, lines of longitude, etc. from the surface of a sphere on 
to paper. 
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Crystallographers have appropriated one of these systems known as stereographic projection, and 
use it to project the information on the surface of the reference sphere together with the calibrated 
reference grid onto flat paper. The general choice of the stereographic projection for crystallographic 
purposes derives from two of its properties: 

(a) Allcircles, great and small, on the reference sphere or forming the reference grid are projected as 
circles or as arcs of circles. ; 

(b) Angles of intersection on the surface of the reference sphere are projected without distortion. 

The geometry of the stereographic projection is as follows: 
All information on the north half of the reference sphere is projected in the direction of the South 

Pole on to the equatorial plane. 
Information on the southern hemisphere can also be projected on to the equatorial plane in the 

direction of the North Pole, but it must then be suitably annotated to prevent confusion with that from 
the northern hemisphere. 

Except in the case of the representation of the operation of symmetry elements, information from 
one hemisphere is often sufficient. 

The two poles A and B in the northern hemisphere of Fig. 12.2(a) when projected towards the 
South Pole on to the equatorial plane give the stereographic projection in Fig. 12.2(b). 

Reference sphere Projection 

(a) (b) 
Fig. 12.2 Two directions AA’ and BB’ intersect the northern hemisphere of the reference sphere at A and B. The 

stereographic projection of these poles is drawn on the right. 

In order to measure angles between the projected poles it is necessary also to project the calibrated 
grid. It must be possible, however, to rotate the grid about an axis parallel to the plane of its equator 
(Fig. 12.1) to bring any two poles on to the same great circle. For this reason the grid is projected with 
its North and South Poles positioned on the equator of the reference sphere. 
A grid projected in this way is shown in Fig. 12.3 and is called a stereographic net or Wulff net after a 

Russian who helped popularise its use in crystallography early this century — although such nets had 
been prepared for naval navigation purposes many years earlier. 

To facilitate the use of the stereographic projection in conjunction with a Wulff net, the projection 
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is normally drawn on tracing paper and has the same diam eter as a Wulff net printed on card. A pinor peg in the centre of the net locates the projection and enables both to be rotated relative to each other 
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Fig. 12.3 Stereographic projection of the calibrated grid of great and small circles known as a Wulff net. 

12.5 Projection of Important Directions and Planes of a Cubic Crystal 

Consider three important groups of directions: 

<100> Parallel to the cube edge. 

{110> Parallel to the face diagonal. 

(111) Parallel to the body diagonal. 

Imagine the crystal at the centre of the reference sphere with [001] coincident with the N-S axis of 
the sphere. The [100] and [010] directions will lie in the equatorial plane (Fig. 12.4(a)). 

The stereographic projection of the poles on the northern hemisphere and on the equator (this 
being a special case in which each direction gives rise to two poles [hkO] and [hkO] on the 
circumference) is shown in Fig. 12.4(b) and (c). This forms the basis of what is known as the 001 
standard projection of a cubic crystal. 
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Fig. 12.4 The stereographic projection of the important directions and planes in a cubic crystal oriented with [001] parallel to 
the N-S axis of the reference sphere. (Reproduced by permission from Wood: Crystal Orientation Manual, Columbia 

University Press.) 

12.6 Important Manipulations of the Stereographic Projection 

A. To measure the angle between two poles: 

(i) Rotate the stereographic projection (stereogram) over the Wulff net until both poles lie on 
the same great circle. (There may not be a great circle drawn at exactly the correct angle, but 
it is easy to align the poles so that they are exactly the same distance from the nearest great 
circle on the Wulff net.) 

(ii) The angle can then be read off using the calibrations on the great circle (n.b. insome smaller 
Wulff nets the calibrations are every 2°). 

B. To plot the trace of a plane when a pole representing its normal has already been plotted. 

(In the special case of a crystal with cubic symmetry the normal to the plane (hkl) is the direction 
[hkl].) 

(i) Rotate the projection until the pole lies on the equator of the Wulff net. 
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(ii) Count 90° along the equator passing through the centre of the net, and mark a second point. 

(iii) Trace the great circle that passes through this point. 

C. Givena stereographic projection of a crystal in a particular orientation; to draw another projection 
of the crystal after it has been rotated in space to a new orientation. (This procedure can be used 
to change a general projection into a standard one, or a standard of one type (e.g. 001) into one 
of another (e.g. 111).) 

(i) Decide which pole will be in the centre of the projection after the crystal has been rotated. If 
it does not already appear on the projection, draw it in. 

(ii) Rotate the projection until this pole lies over the equator of the Wulff net and count the 
number of degrees along the equator between the pole and the centre. 

(iii) Move all other poles by that number of degrees in the same direction (i.e. all to the left or all 
to the right) along their own small circles. 

(iv) Poles that move off the net are dropped. 

(v) Strictly, one should determine the poles which are moved into the active (northern) 
hemisphere and hence on to the stereogram by the rotation, and plot them. In practice it is 
usually easy to fill in these poles on the basis of symmetry criteria. 

12.7 Exercises in the Use of Stereographic Projection 

Equipment: 

(i) Wulff net with central pin or peg, preferably mounted on a board. The net on the back cover is 
calibrated in 2° intervals and is too small for precise work. It is adequate, however, for these 
exercises. 

(ii) Squares of tracing paper large enough to cover the Wulff net. 

(iii) Some means of reinforcing tracing paper around central pin, e.g. Sellotape or Scotch tape. 

Exercise 1. Drawing a Cubic 001 Standard Projection 

Only plot information from one half of reference sphere and index all poles and traces of planes; try to 

have a cube in front of you as you proceed. 

(a) Draw in [001], [010] and [100] poles (see Fig. 12.4). 

(b) Draw in traces of (100), (010) and (001). 

(c) Draw in poles corresponding to <110) directions and traces of the {110} planes. 

(d) Measure the angle between [101] and any direction in the plane (IOS: Angler notaey. tater 

(e) Draw in (111) and measure [111 [111]. Angle = .............5 

(Relevant angular data appears below.) 

(f) Draw in the trace of the plane (111) and count the number of (110) directions which are parallel 

to the plane. Number = ................. 
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(g) Measure the following angles 
= 

(ODT A011) sc cnen aero 

(O01 STs eee 

(O11) (111) ET SA Legs 

Note that the angle between two planes is the angle between the normals to these planes. 

Cubic data: 

{100} {100} = 0°, 90° {100}" {110} = 0°, 60°, 90° 
{100} -{110} = 45°, 90° {110} _ {111} =35-3°, 90° 
{100} {111} = 54-7° {111} {111} =0°, 70-5° 

Exercise 2. Rotation of Cubic 001 Standard Projection to make a 111 Standard Projection 

(a) Trace the poles (only) from the 001 standard projection on to another stereogram. 

(b) Rotate the stereogram until [111] is on the equator of the Wulff net and replot and re-index all 
points as described in Section 12.6C. Angle of rotation of the crystal to bring [111] to the centre of 
the stereogram = ten ie: 

(c) What type of crystal rotation symmetry axis is [111]? ...........00000.. 

(d) Measure the angle [111f [11]] .............. Aye, . 

Exercise 3. Plotting Orientation Data previously derived from a Laue X-ray Photograph of a Cubic 
Single Crystal 

The Laue X-ray diffraction method is used for determining the orientation of single crystals. It is 
possible to obtain the orientation of zone axes by measuring the recorded diffraction pattern. Before 
exposure three orthogonal reference axes are marked on the crystal: 

z = parallel to beam (positive direction towards X-ray tube), 

x = horizontal (positive to the right when viewed from tube), 

y = vertical (positive upwards). 

By measuring the film (not shown) the orientations of three prominent zone axes (low index crystal 
directions) were determined as: 

a i 
direction 1 124° 10° 

ae dt: 9° 

Dee SOR emo: 

a is the angle between the positive y direction and the crystal direction projected onto the xy plane 
and it is positive clockwise when viewed from the tube. vis the angle between the crystal direction and 
the xy plane and is positive when the ‘end’ of the direction used to define a is rotated towards the tube. 
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_ The geometry of the back reflection X-ray method means that vis always positive and that acan have 
values within the complete angular range 0-360°. 

(a) Consider the z (beam) direction to be perpendicular to the stereogram which is viewed as from 
the X-ray tube. Mark in the poles xx’ yy’ and z on the stereogram. 

(b) To plot the first direction count a degrees around the perimeter of the stereogram from y and 
mark a small point. Next rotate the stereogram so that this point lies on either end of the meridian 
or equator, count y degrees towards the centre and plot the pole. 

(c) Repeat the procedure. for the other two poles. 

(d) Measure the angles between all the poles. If the angle is greater than 90° express as 180°-0. 

OL 613 Eee sunroe 

(e) By comparing these angles with those tabulated in Exercise 1, index the poles: 

Pole Indices 

Exercise 4. Plotting Zone Circles and Rotation to form Standard Projection. The Unit Triangle. 
(Using data and stereogram from Exercise 3.) 

An addition to the plotting procedure in the previous exercise can generate a few more poles from the 
existing data. It involves plotting zone circles and can only apply to cubic crystals. 

The directions plotted so far are those of prominent zone axes. The normals to all the planes in the 
zone (i.e. parallel to the zone axis), will, in a cubic crystal, lie in one low index plane which has the 
zone axis as its normal. 

The low index planes associated with several zone axes will intersect along low index directions. 
These can be plotted to give the additional poles. 

(a) On your stereogram from Exercise 3, draw in the traces of the planes of which the plotted poles 
are normals. These traces are also known as zone circles. 

(b) Measure the angles between the poles at the intersection of these traces and hence index. 

(c) Measure one or two angles between the poles generated by the intersecting zone circles and the 
poles originally plotted. Check they are compatible with the indexing. 

The poles plotted represent a projection of a cubic crystal but not in standard form. 

(d) Rotate one of the (100) poles into the centre and also move all other poles to give a rudimentary 
001 standard projection (see Manipulation c above). 

(e) Rotate the poles corresponding to x, y and z axes also. 
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(f) Match up the rotated crystal directions with the poles on the previously prepared 001 cubic 
projection, and trace the x, y and z poles on to this standard projection. 

In a cubic crystal all directions belonging to either (100), 110) or (111) are equivalent. Therefore the 

triangle joining the poles [001], [011] and [111], often called the unit triangle, is typical of all other 

angularly similar triangles on the stereogram. It follows that the orientation relationship between the 

crystal and any random direction can be expressed by plotting the pole of the direction within the unit 

triangle. 

(g) By making one or more 90° rotations of the stereogram about the (100) tetrad axes move the pole 
defining the y axis into one of the eight triangles in the centre of the stereogram. The poles at the 
corners of this triangle can then be taken as: [001],[011] and [111]. 

(h) Measure the following angles: 

yang (OL... 

yakis “Ol =... 

Vax # 

Exercise 5. Two Surface Analysis 

The crystal which was the subject of Exercises 3 and 4 possesses two flat faces which intersect along a 
line p q. (Fig. 12.5). Face A is perpendicular to the X-ray beam (z axis), Face B is at an angle of 70° to 
the y axis and the line of intersection between the two faces is parallel to the x axis. 

Mechanical deformation of the crystal has led to slip on one well defined set of crystal planes, called 
slip planes. The intersection of these planes with faces A and B gives rise to dark lines known as slip 

- lines. The slip lines on faces A and B make angles a and f respectively with the edge pq. 

y 

(0 58° 

B = 157-5° 

Fig. 12.5 
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It is required to determine the indices of the slip plane. 

The first stage is to plot the trace of the slip plane on the stereogram. 

(a) Prepare a stereogram looking along the z direction. The Face A will be represented by the 
perimeter, draw in the trace of Face B as well as the poles yy’ and xx’ which represent the y and x 
axes. 

(b) Plot the poles representing the directions of the slip lines; these will lie on the traces of the 
corresponding faces. 

(c) The slip plane will be parallel to both sets of slip lines so its trace will pass through both poles. 
Draw in this trace. 

If Exercise 3 has already been completed, i.e. the crystallographic orientation of the crystal 
determined, it is possible to find the indices {hkl} of the slip plane. 

(d) Superimpose the trace of the slip plane on to the crystal stereogram before it was rotated to give 
an 001 projection, and align xx’, yy’ and z. 

(e) What are the indices of the slip plane? 

Slipyplanents a eras } 

Exercise 6. Standard Projection of a Hexagonal Crystal 

(a) Calculate the angles (0001f 41011} and (0001¥ {1121} titanium which has a c/a ratio of 1-48. (A 
sketch of a hexagonal unit cell will help here.) 

(b) Plot the normals to the planes of the forms: {1010}, {1011}, {1120}, {1121} on an 0001 standard 
projection. 

(c) Calculate the angle [1121[ [0001] and plot the [1121] pole. 
[1121] (1121) ASEAN hse creas Soieielas areete 

(d) Re-index the poles of the planes belonging to the same form as {1121} in the three-index (hkl) 

system. 

These planes are: 
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13 
A Précis of Chapters 1-12 and a Look 
Forward to 14, 15 and 16 

13.1 Chapters 1-12 

A crystal is a crystal for two reasons: first it is made up of myriads of identical units which are either 
individual atoms or small groups of atoms. Secondly, the units are arranged regularly and periodically 
in three dimensions. 

The units are referred to as motifs and their periodic arrangement is best described by using a 
lattice, so that in effect the crystal structure is broken down into two components; the lattice and the 
motif. The lattice can be thought of as the imaginary scaffolding which positions in space each and 
every motif unit and displays what is known as the translational symmetry of the crystal. 

One of the basic achievements of the science of crystallography is the classification of the different 
observed crystal types into recognised groups. The first steps in the classification sequence can be 
made in terms of the crystal lattice (although this was not the historical approach), while the nature of 
the motif can be used as a basis for determining further groupings and subgroupings. 

Before the classification of space lattices 1s considered in detail, however, it is sensible to find the 

most convenient methods by which they can be described. A description can be made either 
algebraically in terms of translation vectors which make up a primitive vector group, or by drawing a 
lattice unit cell bounded by eight lattice points. The lattice unit cell is particularly useful in that its 
shape can indicate at a glance the type of lattice, and it is an easy matter to mark in on it the 
appropriate dimensions and angles. It also provides a convenient framework within which atoms can 
be drawn to depict the crystal structure, such a cell is then known as a structure cell. 

Symmetry operations are essentially operations on a three-dimensional shape, a crystal, a lattice, or 
whatever, which leave it unchanged in appearance. All space lattices (which we take as being of 
infinite extent) have translational symmetry and inversion symmetry with the centres of symmetry at, 
and midway between, the lattice points. Lattices are classified on the basis of the rotational and mirror 
symmetry elements which they possess. It is possible to build the different types of space lattice by 
regularly stacking planar (two-dimensional) lattices and in this way the development of the various 
characteristic rotational and mirror symmetry elements can be clearly followed. There are 14 different 
ways of arranging points in space and these give rise to the 14 Bravais lattices. The symmetry criteria 
group these lattices into seven Crystal Systems each with a characteristic unit cell. It is however 
convenient for both the system based on one triad and that based on the hexad to be described in terms 
of a hexagonal unit cell, and for this reason they are often (as in this text) grouped together into one 
system. The total of seven systems is then reduced to six. 

For the analysis and description of crystal structure, the space lattice is an invaluable aid. However, 
as far as the actual physical process of crystal growth is concerned it is no more than a figment of the 
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imagination. The individual atoms do not crystallise by ‘looking round’ for their allocated lattice point 
and moving smartly on to it, rather they simply pack together as closely as possible under the influence 
of the interatomic bonding forces. The final crystal structure is therefore determined solely by the 
packing behaviour of the individual atoms. Several factors can be identified which control packing and 
ultimately the crystal structure. In markedly covalent crystals such as diamond the directionality of 
the bonds plays a large part in determining the final structure. In cases where directional bonding is 
not strong, the atomic packing is similar to that of hard spheres. For crystals with only one type of 
atom the two most closely packed structures are face centred cubic and hexagonal close packed. The 
body centred cubic structure is a little more open, but is preferred in some circumstances. The 
presence of atoms of different sizes in ionic crystals makes the packing possibilities more varied. The 
cations are usually smaller than the anions, and will surround themselves with as many oppositely 
charged anions as they can touch at the same time. The packing will therefore depend on the ratio of 
the anion and cation radii; and the arrangement of anions which will provide the appropriate number 
of suitably sized interstices will dictate the final crystal structure. However, in cases where the cation 
charge is greater than three the overall anion arrangement will also be influenced by the repulsion 
between the cations, and will tend as a result to be somewhat less close packed. 

There are two particular crystallographic conventions which are widely used. They are based on 
groups of three indices and relate the orientations of crystallographic planes and directions to the 
orientation of the crystal lattice. The indices are referred to the set of translation vectors which 
outlines the chosen unit cell. 

Directional indices represent the ratios in which the three translation vectors must be combined to 
give a resultant vector parallel to the direction in question. They are identified as such by enclosing 
within square brackets. Directions which are related by symmetry elements within either a lattice or a 
crystal are known as equivalent directions and are represented en bloc by one set of positive indices 
within diamond brackets. 

The orientations of crystal or lattice planes are described by Miller indices; they are derived by 
expressing the intersections of a plane with the three translation vectors in terms of the vector lengths, 
and writing the indices as three whole numbers which give the ratio of the reciprocals of the three 
lengths. Miller indices are written in curved brackets while equivalent, symmetry related planes are 
distinguished by curly brackets. 

The spacing between different parallel planes can be calculated using appropriate geometric 

formulae which although simple in the cases of cubic and hexagonal lattices, become more 

cumbersome as the symmetry of the lattice is reduced. The interplanar spacing is a very important 

crystal parameter, especially as far as diffraction effects are concerned, and its calculation is greatly 

aided if the lattice is expressed as its own Fourier transform which turns out to be another lattice when 

plotted as a function of (length)~'. It is correspondingly called the reciprocal lattice and has a 

designated origin. The reciprocal lattice vectors are perpendicular to sets of planes in the real lattice 

and their length is proportional to the reciprocal of the interplanar spacing. An important property of 

the reciprocal lattice is realised if its points are given coordinates based on a set of primitive translation 

vectors which correspond to the faces of the unit cell of the real lattice. The coordinates of the 

reciprocal lattice points are then equal to, or multiples of, the Miller indices of the corresponding real 

lattice planes. 
sr, 

Systems of indices refer orientations of directions and planes to the crystal lattice. The nature and 

orientation of the lattice however is not always known in advance and it is often necessary to consider 

the relative orientations of directions and planes in direct angular terms. The intersection of directions 

and planes with the surface of a reference sphere serves as a good basis for angular measurements, but 

it is more convenient still if the information on the sphere surface is put into a planar format using the 

stereographic projection. An identical projection of the angular calibration marks on the sphere 
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surface (similar to lines of latitude and longitude) forms what is known as a Wulff net. It is used to - 
make angular measurements from the stereographic projection in addition to acting as a guide for 
plotting projected directions and planes. 

13.2 Chapters 14, 15 and 16: An Introduction 

The symmetry shown by a crystal is a complex combination of translation, rotation, reflection and 
inversion elements. There are 230 possible combinations and the rather informal approach to 
symmetry used in the previous chapters is not the best way of deriving them. A systematic listing is 
necessary of the different symmetry elements and their interactions one with another. This constitutes 
the formal core of crystallography and has been left to the end of this book for reasons outlined in the 
preface. 

Chapter 14 is a two-dimensional treatment of both point and space group symmetry. It serves as an 
introduction to the concepts and ideas which form the basis of Chapters 15 and 16. 

Chapter 15 is devoted to the description and derivation of the 32 point groups of symmetry elements 
found in crystals. Space group symmetry, which is described in Chapter 16, is built up as the result of 
the repetition of the point groups by lattices of the same crystal system. The interactions of rotation 
axes and mirror planes with the translational symmetry produces screw and glide plane elements. 
These new elements are also incorporated into the overall pattern of space group symmetry. 

The rate at which new ideas are introduced in these final chapters is somewhat higher than in the 

previous twelve. It is therefore likely that progress through this part of the course will be a little 
slower, and it will be helpful to refer to one or two of the other texts listed. 

For the symmetry theory, Elementary Crystallography by M. J. Buerger has been chosen as the 
definitive source in matters of terminology and logic. 
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14 
An Introduction to Point Groups and 
Space Groups in Two Dimensions 

14.1 Preamble 

As the symmetry of lattices has been discussed in Chapters 5 and 6, we are now in a position to 
consider the symmetry exhibited by the complete crystal structure; and for this purpose it is still 
convenient to think of a crystal in terms of its motif and lattice. The symmetry of the motif is looked at 
in much the same way as that of the various shapes in Chapter 4; it can be described in the first instance 
using elements passing through one point and known collectively as a point group. The natural 
combination of the point group symmetry of the motif with the symmetry of the lattice generates what 
are known as space groups. A space group fully defines the symmetry of a crystal. The principles of 
point group and space group symmetry are best introduced by first considering two-dimensional 
patterns: and that is the purpose of this chapter. 

14.2 Two-Dimensional Point Groups 

A point group is a collection of symmetry elements possessed by a shape or form which all pass 
through one point in space. 

In the case of two-dimensional shapes the symmetry elements making up the point group are 
rotation axes and mirror planes, both of which are perpendicular to the plane of the shape. Also, for 
two dimensions the operation of the inversion element cannot be distinguished from that of a diad, 
and it is in fact automatically included with tetrads and hexads as well. 

Let us consider a shape which has as low a symmetry as possible. The letter P will do fine as the only 

symmetry element it possesses is a one-fold rotation axis — which is trivial (Fig. 14.1). 

P 
Fig. 14.1 

If we wanted to illustrate a mirror plane we could choose the letter B, or if a diad axis the letter S 

(Fig. 14.2). Instead, we will produce patterns to illustrate point group symmetry which are 

multiples of the letter P, by operating on this symbol with the appropriate point group elements. An 

ae S 
Fig. 14.2 

example of the operation of a tetrad on P to make a pattern with four-fold symmetry is shown in Fig. 

14.3. 
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The ten possible two-dimensional point groups based on permissible combinations of rotation axes 

and mirror planes are tabulated in Fig. 14.4. They are assigned to systems using the same symmetry 
criteria as for lattices (see Table 5.1). Rotation axes of order 5 and 7 upwards have been omitted 
because they cannot exist in a repeating structure such as a crystal (see Section 4.3). For this reason 
the point groups based on one-, two-, three-, four- and six-fold axes are known specifically as 
crystallographic point groups. 

International Two-dimensional 
Operation Point group symbol system 

One one-fold axis p 1 Oblique 

Pp 
One two-fold axis ¢ 2 Oblique 

One mirror plane a m Rectangular 

One two-fold axis, ‘two mirror 2 

planes 2mm Rectangular 

OX 

Y, 

Q 
One three-fold axis A 3 Hexagonal 

Yo) 

é 

2 
8) 

One three-fold axis, one mirror 
plane which is operated on by the d b 
axis to produce two others 3m Hexagonal 
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One four-fold axis | 4 Square Ms q 

One four-fold axis, two mirror g p 
planes at 45° to each other, the 
tetrad generates the other mirrors O.. A) 4mm Square 

Oo je 

Q 
One six-fold axis o e 6 Hexagonal 

ee 

l/s 
OX Z8) 

One six-fold axis, two mirror 
planes at 30° to each other, the X ~ 
hexad generates the other mirrors d b 6 mm Hexagonal 

Fig. 14.4 The ten two-dimensional point groups. 

It is important to note however that there is nothing to prevent the packing of shapes based on 
‘forbidden’ rotation axes into a repeating pattern. For example octagons fit nicely on to a square 
lattice and regular polygons with many sides would pack in a similar way to circles. But in each case 
there is no way in which the ‘forbidden’ symmetry axis of the motif can be transmitted to the final 
repeating structure. 

14.3. Packing of Two-dimensional Motifs 

~ Motifs with a one-fold rotation axis will, on symmetry grounds, pack together to give a repeating 

pattern based on a parallelogram lattice (cf. Section 5.1). It is perhaps conceivable that motifs with 

this symmetry might pack on a rectangular lattice with a = 90.0000° — but this would be most 

unlikely. Motifs with the point group symmetry 2 will also pack to give a parallelogram lattice, 
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whereas a rectangular lattice requires motifs having the point groups mor 2 mmwhich contain one or 

more mirror planes. 
One can now begin to formulate a general rule that a particular motif will pack regularly to give a 

lattice which displays its point group symmetry elements. 
It follows that motifs with point groups 4 and 4 mmwill pack ona square lattice and those with 6 and 

6 mm on to a triequiangular one. In some cases, however, the lowest symmetry lattice which displays 

the symmetry elements of the motif point group will also contain some elements of higher order. 

Motifs with point group 1 pack on a parallelogram lattice which contains diads, and motifs with point 
groups 3 and 3 m will pack to give a triequiangular lattice which contains hexads. 

In short, the lattice will tend to belong to the same two-dimensional system as the motif. (This 
statement, though, is a little too general and not strictly true in the case of the glide reflection groups 
discussed in the next section.) — 

At this point we must question why the planar repeating patterns in Chapter 1 have very much lower 
symmetries than their lattices (see also Exercise 5.1), with the motifs most certainly not belonging to 
the same systems as the lattices. The anomoly is nothing to do with glide-reflection groups and can be 
best understood by thinking about a bathroom finished in square tiles, each with an identical but 
asymmetric flower painted on it. The lattice describing the repeating pattern would also be square and 
have the corresponding symmetry elements of tetrads, diads, mirrors, etc.; however, the complete 
pattern would not have any of these elements because of the asymmetry of the motif. The reason why 
the lattice in this case has a much higher symmetry than the pattern as a whole, is that the important 
symmetry as far as packing is concerned is the square shape of the tile, the painted flowers having no 
influence on the lattice type — as long as they are the same way up. Similarly with the patterns of 
Chapter 1; the lattice is in no way a direct consequence of the design forming each motif, and would 
have been chosen before the motifs were added. 

In three dimensions the symmetry elements possessed by a group of atoms forming a motif are 
usually directly related to the external shape of the motif and hence influence the packing and 
resultant lattice symmetry. One does not have to consider the implications of designs drawn on the 
surfaces of atoms! In creating two-dimensional analogues to help understand crystal symmetry it is 
important however that the patterns chosen for motifs are plain and as simple as possible so as to avoid 
any features which might affect the motif symmetry but have no influence on the packing. 

14.4 Two-Dimensional Space Groups (Plane Groups) 

Thinking about the packing of motifs can give a good idea of the relationships between point group 
and lattice symmetry. But it is necessary to formalise in symmetry terms the addition of motifs to a 
lattice. The combination of a point group with the symmetry of a lattice gives rise to what is knownasa 
space group, or more correctly for two dimensions, a plane group. The straightforward combination 
of the ten two-dimensional point groups with the planar lattices of the corresponding systems 
generates 13 of the 17 possible plane groups. These 13 groups are listed in the third column of Table 
14.1 and are designated by the combination of a lower case letter which indicates whether the lattice is 
primitive or centred (p for primitive, c for centred) and the point group symbol. 

Before discussion of the four glide reflection groups it is worth noting the occurrence of the pair of 
plane groups p3m1 and p31m based on the point group 3m. The two groups arise because the point 
group mirror planes can be aligned parallel to either the sides or the medians of the triangles which 
make up the triangular lattice. Fig. 14.5 shows these two groups and incidentally serves as an 
introduction to the graphic method of representing space groups by superimposing the symmetry 
elements on the planar unit cell. 
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TABLE 14.1. PLANE GROUPS 

ee ee es ee ew 

System Point group Plane group 
(Lattice type) Based directly on Glide-reflection 

point groups groups 
er a a ec St ee 
Oblique 1 : pl 

(p Parallelogram) 2 p2- 

Rectangular : pm 
(p Rectangular) m pg 
(c Rectangular) cm 

p2mm Sometimes 
om p2mg abbreviated 

p2gg by omitting 
c2mm the2:. 

Square . p4 
(p Square) 

pie { p4mm 

p4gm 

Hexagonal 3 p3 
(p Triequiangular) 

p3m1 p31m 

Fig. 14.5 The plane groups p3m1 and p31m. 

Now for the glide-reflection groups: 
Mention has already been made that different symmetry elements can interact to produce new 

elements (Section 4.6). In the realm of plane groups it is possible for a mirror plane to combine with 

the translational symmetry of the lattice to produce what is called a glide-reflection element. It 

involves reflection across a mirror plane and subsequent translation of the reflection parallel to the 

plane by half of the lattice repeat distance in that direction. 

Figure 14.6 shows the simplest glide reflections group designated pg. The glide planes, like the 

mirror planes, are perpendicular to the planar cell but are distinguished by drawing their traces as 

dashed lines. 
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Fig. 14.6 The plane group pg. 

A more complex plane group, p4gm, which includes a glide-reflection element is shown in Fig. 14.7. 

7 
Fig. 14.7 The plane group p4gm. 

Follow through the operation of the glide-reflection elements on the symbol P in Fig. 14.7 and note 
that there are both mirror planes and glide planes at 45° to the cell edge. In writing the plane group 
designation, mirror planes take precedence over glide planes parallel to them, so the group is p4gm 
rather than p4gg. Similarly the group cm contains a set of glide planes which do not appear in the 
designation (Fig. 14.8). 

Fig. 14.8 The plane group cm. 

The 17 plane groups are all illustrated in the International Tables of X-ray Crystallography and are 
also reproduced in Crystallography and Crystal Defects by Kelly and Groves. Instead of showing the 
operation of the symmetry elements on a symbol such as P._, International Tables use a simple circle, 
and in cases where its mirror image occurs a comma is added as a distinguishing mark. The circles 
which are related by the symmetry elements mark what are called equivalent positions or equipoints: 
they are discussed in greater detail in Chapter 16. Because the symmetry elements are drawn in 
black, they are depicted on a separate unit cell plan from the symbols on which they operate; the plane 
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Coie (abbreviated to p4g in International Tables) represented in this way is drawn in 
18 

Fig. 14.9 The plane group p4gmas illustrated in International Tables of X-ray Crystallography. 

14.5 The ‘P’ Shaped Molecule 

As a postscript it is worth considering that if the symbol P represented a two-dimensional molecule; 
what would be the most likely plane group for the packing of the molecules? 

It appears that there are two arrangements which give compact motifs that can pack closely on a 
lattice (Fig. 14.10). 

Qu aa!) p2 
( a) CV QU (parallelogram lattice) 

“= SM ae ote he Gs 
(b) <O = WAYA- fa Os 

Fig. 14.10 Two probable packing arrangements for the planar ‘P shaped molecules’. 

Obviously the arrangement (b) would only be a contender if the two-dimensional molecules are 

available in left- and right-handed versions. 

TO DO 

1. Write down the point groups which describe the symmetry of the following letters: 

Point group 
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2. Group together several letter T’s to give a design which has the point group symmetry 3. 

3. Drawn below are several motifs. Write down their point group symmetry and the two- 

dimensional crystal system to which they are likely to belong. 

Point group System 

(a) a 

(b) a 

(c) ie 

(4) sos 

evens 

(f) O- 

oy 
4. The plane group p31m drawnin Fig. 14.5 also contains some glide reflection planes which are not 

shown on the diagram. Draw in all the p31m symmetry elements on the cell outline below. 



5. Identify the plane groups and symmetry elements of the following patterns. 

Symmetry elements Plane group 
(draw within unit cell) 

(2) =H H H 

. aves é 

aa aoe ae 

6. Using a motif based on a collection of the symbols ‘§’ (and mirror image of same) draw patterns 
having the following plane groups: 

(a) pmg (c) p6 

(b) pl (d) peg 
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7. When you next take afternoon tea determine the two-dimensional point group symmetry of the 
cake doily. 

TO UNDERSTAND 

For two dimensions: 

1. The way in which point group symmetry elements can be illustrated by considering their 
operation on the symbol P. 

2. The method of representing plane group symmetry elements on a planar unit cell. 

3. The interaction between the mirror and translation symmetry operation to produce a 
glide-re flection element. 
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5 
Point Groups (in three dimensions) 

15.1 Crystal Classes 

The shape of a faceted crystal and its measured physical properties such as elastic modulus, thermal 
expansion, electrical resistance, etc. show symmetry characteristic of the crystal type. The symmetry 
elements observed in this way show no translational component. They all pass through one point in 
space and hence constitute a point group. 

Translational aspects of symmetry can only be revealed when the atomic arrangement within the ~ 
crystal is examined using techniques such as X-ray diffraction. 

Crystals are grouped into 32 classes on the basis of their point group symmetry alone and the classes 
are further grouped into 6- or 7-Crystal Systems (see Fig. 15.9). 

__ The 7-System grouping is probably the neater as far as point group symmetry is concerned, for each 
System corresponds to a particular order of principal rotation axis. In the 6-System notation, the 
Crystal Classes based on a triad axis are grouped into the Hexagonal System along with the 
hexad-based Classes. The logic of this approach is that each system is linked to the most convenient 
lattice unit cell, and the structures of both triad and hexad-based Crystal Classes are best displayed on 
a hexagonal unit cell. 

In this book lattice unit cells and crystal structures are considered in detail before point group 
symmetry theory is introduced. For this reason the 6-System notation has been chosen. 

15.2 Stereographic Representation of Point Groups 

_ The arrangement of the symmetry elements forming a point group is best illustrated on a 

stereographic projection. It is also possible by this means to show the results of the operation of the 

point group on a symbol of general orientation. 

Take for example the point group called 3m. The triad is taken as parallel to the N-S axis of the 

reference sphere and the mirror planes which are parallel to the triad are therefore projected as 

straight lines (Fig. 15.1(a)). As far as the stereographic projection is concerned the most convenient 

symbol for demonstrating the operation of the point group elements is a line with one end at the centre 

of the reference sphere (i.e. at the ‘point’ of the point group). The pole where this line intersects the 

northern hemisphere of the reference sphere is plotted as a single point on the projection, or in cases 

where the intersection is on the southern hemisphere, as a small ring. 

The full stereographic representation of the point group 3mis shown in Fig. 15.1(b). Note how the 

poles have been multiplied by the operation of the symmetry elements. — 

-As the symbol represented by the poles or rings is simply a line it 1s important that it is in a general 

orientation compared with the symmetry elements. If, for instance, it was sited on one of the mirror 

planes of the point group 3m, the final arrangement of the poles would not in any way reveal the 

operation of the mirror symmetry elements (Fig. bal(c)). 
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Mirror planes 

£S 
Triad axis (end on) 

(a) (b) (c) 
Fig. 15.1 (a) The stereographic representation of the symmetry elements of the point group 3m. 

(b) The result of the operation of the symmetry elements on line symbol in general orientation. 

(c) The effect of placing the symbol in a special position on one of the mirror planes. 

Another point group known ae has a mirror plane perpendicular to the diad axis. The projection 

of the mirror plane is therefore coincident with the circumference of the stereographic projection 

itself and is drawn more heavily (Fig. 15.2). Note how the mirror plane has generated pairs of poles 

immediately above each other. 

Ne oaeet 
© 4 me 

Fig. 15.2 Stereographic projection of the point group a Fig. 15.3. Stereographic projection of the point group m3m. 
showing the mirror plane perpendicular to the diad. Note the triad axes at 55° to the tetrads. 

In the cubic system symmetry axes and mirror planes occur at acute angles to the projection plane. 
This can be seen clearly in the projection of the cubic point group m3m (Fig. 15.3). 

The logic behind the symbols which are used to name the point groups will become apparent later in 
the chapter. It will suffice at this stage to note that a number describing a rotation axis followed by the 
letter ‘m’, implies a mirror plane either parallel, or at a predefined angle, to the axis. On the other 

hand the axis number apparently divided by ‘m’, as in an represents a mirror plane perpendicular to 

the axis. Many accepted point group symbols are in fact simplified versions, m3 mis one such, and do 
not in themselves fully communicate the symmetry elements present, fulfilling instead more the role 
of labels. 

Exercise A. Complete the following stereograms of point groups by operating with the elements 
shown on the single pole. 
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15.3 Proper and Improper Rotation Axes 

There are two types of symmetry element which are really basic to the derivation of the 
three-dimensional point groups: rotation symmetry and inversion symmetry. These two elements can 
also operate together in a compound fashion to generate another element known as a roto-inversion, 
or simply, improper axis. 

An nth order roto-inversion symmetry element executes normal (or ‘proper’) rotations of a each 

of which is followed by an inversion. The element is designated by writing the order of the rotation 
axis with a ‘bar’ over it. Improper axes are represented on a projection by modifications of the proper 
axis symbols (Fig. 15.4). 

+ +O 

2 4 

3A 

® S| 

°@ 
Fig. 15.4 The symbols used to identify the different typesof Fig. 15.5 The stereographic representation of the point 

roto-inversion axis. group based on the roto-inversion axis 4. Note that the group 
does not have a centre of symmetry. 

A stereographic representation of the operation of a four-fold roto-inversion axis is shown in Fig. 

15.5. Follow through the sequence of operations and note that this element, as with 2 and 6 axes does 

not itself contain a centre of symmetry. However the | and 3 axes are equivalent to the operation of 

the inversion element subsequent to the complete operation of their proper counterparts (Fig. 15 6). 

+ INVERSION = 

+INVERSION = 

3 - 

Fig. 15.6 Diagrams to illustrate that 1 and 3 point groups can also be generated by the addition of the inversion symmetry 

element to the point groups 1 and 3. 

113 



Exercise B. Complete the following stereograms of point groups by operating with the elements 
shown on the single pole and decide which have a centre of symmetry. 

e 

& 

The various permissible combinations of the two basic and one composite element (rotation, 
inversion and roto-inversion) can generate all 32 possible point groups. Mirror planes are not required 
to generate any of the groups, but both a two-fold roto-inversion axis on one hand, and any even-fold 
proper or improper axis with the subsequent operation of an inversion element on the other, are 
equivalent to a mirror plane perpendicular to the axis. Examples of these relations are shown in Fig. 
15.7. It is crystallographic convention to refer to such elements in terms of the mirror plane rather 
than the various combinations of rotation and inversion symmetry. 

(a) 2 m 

+ INVERSION = 

(b) 4 

+ INVERSION = 

4 4 

Fig. 15.7 (a) The equivalence of the elements 2 and m. i 
(b) Stereograms showing that the addition of the inversion element to the point groups 4 and 4 generates in each 
case the point group A. The positioning of m in ES indicates that the mirror plane is perpendicular to the tetrad. 
The addition of the inversion element to 2, 2, 6 and 6 also generates similar perpendicular mirror planes. 
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We are now in a position to summarise some of the more important relationships between point 
group symmetry elements (Table 15.1). 

TABLE 15.1. RELATIONSHIP BETWEEN SOME 
SYMMETRY ELEMENTS 

lor3 + Inversion ———> 1 or3 

2,40r6 + Inversion ———> 

si 4or6 + Inversion ——> 

2=m 

If any of the elements or element combinations in the right-hand column of Table 15.1 occur as a 
part of a point group symbol; then that point group has a centre of symmetry. 

It should be noted that the alternate operation of a rotation axis and a perpendicular mirror plane 
produces another type of improper rotation element known as a roto-reflection axis and written f. 
This element, however, does not lead to any symmetry operations which cannot also be generated by 
roto-inversion axes (see Exercise 15.1), and in this text the term ‘improper axis’ refers to the 
roto-inversion type. 

The 13 point groups which can be generated by suitable combinations of one rotation axis and the 
inversion element are listed in Table 15.2. 

TABLE 15.2. POINT GROUPS BASED ON ONE ROTATION AXIS 

One Proper Axis 1 2 3) 4 6 

One Improper Axis 1 2=m 3 4 6 

Either Proper or 

Fr oe 3) & o Improper Axis + (1) # (3) in 

Inversion 

15.4 Combination of Non-Parallel Rotation Axes 

So far we have only discussed three-dimensional point groups based on one rotation axis. The next 

stage is to ask if it is possible to combine, at a point in space, two or more non-parallel crystallographic 

rotation axes so that they are self-consistent. The answer is ‘yes’, but only for a few specific 

configurations. The permissible combinations can be determined by using a geometric construction 

due to Euler and the subsequent solution of a spherical triangle. For a description of this analysis see 

Chapter 5 of Buerger’s Elementary Crystallography. 

The permissible combinations, omitting the trivial situation with two one-fold axes, are shown in 

Fig. 15.8. : 

The axial combinations illustrated are those which define the resulting point groups; with the 

exception of 222, it can be seen that operation of the rotation axes on each other will generate 

additional axes not shown in the diagrams. vA 

Further point groups can be produced by combining proper and improper versions of the above 
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B09 60° 322 

45° 422 30° 622 

Fig. 15.8 The permissible combinations of proper symmetry axes at a point. 

axes, but with the restriction that two of the axes must always be improper. Point groups of this type in 
which the three symbols are interchanged in order are equivalent. The permissible distinct 
combinations are listed in Table 15.3. 

The first stage in sorting out these particular combinations of elements is to look for those which 
have a centre of symmetry; they can be recognised by the presence of a 3 axis. The combinations in 
Table 15.3 which have a centre of symmetry are boxed and re-grouped on the right with their other 
axes modified as a result of the operation of this element upon them and in accordance with the 
relations in Table 15.1. 
We must also consider the creation of new point groups by the operation of the inversion element 

on the axial combinations which do not already have a centre of symmetry. Point groups produced in 
this way are listed in Table 15.4. 

Table 15.5 summarises the point groups which can be derived from the permissible axial 
combinations. In accordance with standard practice the substitution of mfor 2 has been made (e.g. 
222 becomes 2mm). 
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TABLE 15.3. PERMISSIBLE AXIAL COMBINATIONS 

222" 2) 

322 322 cer ioe 

422 433 423 
622 622 622 

233 2 3 3 (both) 
432 433 #3 2 (woth) 

TABLE 15.4. ADDITION OF CENTRE OF 
SYMMETRY TO AXIAL COMBINATIONS 

(222 or 222) + Inversion = 7 - 

(322 or 322) + Inversion = 3 es ids 

(422, 422 or 422) + Inversion = a = os 

(622, 622 or 622) + Inversion = = 2 

233 + Inversion = 4 Chet bs 

(432 or 432) + Inversion = 2 3 at 

* These point groups have already been generated by simple proper/improper combinations of the same axes (see Table 15.3). 

TABLE 15.5 POINT GROUPS BASED ON NON-PARALLEL AXES 

New groups produced by 
Inherent centre of addition of centre of 

No centre of symmetry symmetry symmetry 

222 2mm eee 
322 3mm 

422 4mm 42m 22 a AOE 

622 6mm 6m2 tO ee 
233 o- 33 
432 43m fig 

The 19 point groups listed in Table 15.5 together with the 13 groups based on one rotation axis listed 
in Table 15.2 make up the 32 crystallographic point groups. These are displayed in detail in Fig. 15.9. 

15.5 Tour of the Crystallographic Point Groups 

We have already mentioned that the various crystal classes or point groups can be grouped into 
systems on the basis of the order of the principal rotation axis. This scheme works fine as long as any 
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SYMMETRY OPERATIONS TRICLINIC MONOCLINIC (1st setting) 

One Proper Rotation Axis. 

One Roto-Inversion 
(improper) Axis. 

One Proper Axis combined 
with Centre of Symmetry 
or improper axis with 
inherent centre of symmetry. 

hor. = ; ) 
inversion 1 | + inversion 

222 

MONOCLINIC (2nd setting) ORTHORHOMBIC 

2 
m 

; (12 2) 
Permissible combinations of 
the non parallel proper axes. 

222 222 

2mm 

ae 2 F 42 =m) 
Combinations of two improper 
axes and one proper axis 
which do not contain a centre of 
symmetry. 

222 2mm 

Same operations as the 
row above. 

mmm i 
: We 

(42+ inv. =F) 

Permissible combinations of 
these non parallel axes 
which either have an in- 

herent centre of symmetry or 222 
have had one added. ee 

222 

both 

+inversion 

Fig. 15.9 The 32 three-dimensional point groups. 
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TETRAGONAL HEXAGONAL 

(TRIGONAL) 

4 

4 4 

4 

40r4 Pees ae 

both 30r3 both 233 
+ inversion + inversion + inversion + inversion 

422 
622 

oF ee 
422 622 

p} or 

622 
or all ‘ 

+ inversion +inversion + inversion 

or 

422 
or all 

+ inversion 

eu) 



other symmetry elements are either perpendicular or parallel to the principal axis, but in the case of 

the point groups based on the axial combinations 233 and 432, the triads are at 54 44’ to the first 

named axis. These groups do not fit logically into any of the systems based on a principal axis and are 

therefore collected into a system of their own, the cubic or isometric system. 

Figure 15.9 is a schematic arrangement of all 32 three-dimensional point groups. The crystal 

systems more or less correspond to the columns; and the development of various point groups as 

additional symmetry elements are brought to bear, can be followed by moving down each column. 

Each point group or crystal class is represented by a stereogram showing the important symmetry 

elements (in colour) and the repetitions of a symbol, plotted as a pole, asa result of the operation of 

these elements. The key to the arrangement of the information grouped around each stereogram Is 

given in Fig. 15.10. International symbol : ; iin this corner indicates 
(with any alternative) hese ves that the point group has 

a centre of symmetry 

m3m(4 3m) 

Combinations of axial and 
inversion symmetry elements 
on which this point group 
is based. 

Stereogram 

432 

432 

432 + INV. Full point 
group symbol 

Fig. 15.10 Key to the arrangement of information around the stereograms in Fig. 15.9. 

The simplest point groups are those containing one rotation axis of order 1,2, 3, 4 or 6 which can be 
either pure rotation (proper) or roto-inversion (improper) axes. These are represented by 
stereograms in the first two rows of Fig. 15.9, with the exception of 1 and 3 which, because they have a 
centre of symmetry, are put in row three. Also, the cubic groups are put on one side for the moment. 

2 is conventionally described in terms of a mirror plane, m, but the two elements are synonymous. 
The third row down shows the result of the operation of an inversion element on the point groups in 

either of the first two rows. 
The fourth row contains the point groups based on combinations of three non-parallel rotation 

axes. In the first column one diad lying in the plane of the stereogram is identical to the same axis 
perpendicular to the page, i.e. the point group is 2. This, however, has appeared before and belongs to 
the monoclinic system — which now takes over column 1. Similarly the point group 222, along with 
further groups of higher symmetry based on a two-fold axis, is in the orthorhombic rather than 
monoclinic system, and the column heading is changed accordingly. The point group 322 is generally 
known as 32 because the second diad can also be generated by the operation of the triad on the first 
diad. 

The point groups in the fifth and sixth rows are based on the permissible combinations of rotation 
axes which include two improper axes but do not have a centre of symmetry. In row 5, the 
combination of a proper principal axis with two improper axes at 90° to it produces point groups which 
can also be derived in terms of adding mirror planes parallel to the principal axis, and this approach is 
found in some texts. 

The bottom row contains point groups generated by the operation of the inversion element on the 
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permissible combinations of non-parallel axes. A point group produced in this way is the same 
irrespective of whether the original axes were a mixture of proper and improper, or all proper. If one 
or more of the non-parallel rotation axes is | or 3 then the point group already has a centre of 
symmetry and will be grouped in the final row without further symmetry operation. For example, the 
point group 3m can be produced by the operation of a centre of symmetry on 32, but it is also the 
symmetry resulting from the combination of the axes 322. 

The basic symmetry elements of the cubic system are four triads directed towards the corners of a 
cube, along with a diad perpendicular to each cube face. If the triads are improper axes the group has'a 
centre of symmetry and three orthogonal mirror planes (row 3). 

The combination of rotation axes 432 also belongs to the cubic system (row 4). If two of these axes 
are improper, the resulting point group will be either 43m or if the triad is improper, m3m in which 
case a centre of symmetry will also be present. 

15.6 Summary of Point Groups and Their Derivation 

A schematic summary of the 32 crystallographic point groups, using the full derived notation, is given 

in Table 15.6, and Table 15.7 is a chart laying out the logic processes involved in their derivation. 

TABLE 15.6. THE CRYSTALLOGRAPHIC POINT GROUPS 

Proper axis 1 2 3 4 6 — Enantiomorphous 

Roto-inversion m 4 6 
(improper) \ 

3 

Added , 6 Centre of 

centre of - an ni symmetry 

symmetry 
| 

3 proper axes 222 322 422 C228. | 225 432 — _ Enantimorphous 

; 2mm 3mm 4mm 6mm | : 
3 8 with Bes Dm 6m2 | Ree 43m 

improper 345 : nie Cenmre ot 

422 O22 442 symmetry Added centre of 2 22 422 Gre am 

symmetry 

The classification of 11 point groups as ‘enantiomorphous’ (opposite-shape) derives from the observation of left- and 

right-handed editions of some crystals. This phenomenon is only observed when the crystal point group contains neither a 

centre of symmetry nor any roto-inversion axis (and by implication no mirror planes). 
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tr. 

TO DO 

By drawing stereograms in the circles below show that each of the roto-reflection axes 12,34 

and 6 is equivalent to a roto-inversion axes. 

YTS 
2 Determine the point group symmetry of the following: 

Point group symmetry 
(a) a plain cube 

(b) a regular octahedron 

(c) a regular tetrahedron 

A cube has a series of letters printed on its surfaces as shown in the diagrams below. (Letters on 
opposing faces are the same way up.) 
In each case determine the point group symmetry (n.b. it need not belong to the cubic system). 

La/ Point group 

© [sf 
L=/ 

(uf 
nag 

(c) rls top and bottom faces blank 

Py 
(d) sp top and bottom faces blank 

ema, 

(e) rs’ top and bottom faces blank, all 
‘S’s the same way up 

(f) fob all faces blank but with one 
corner cut off to give a small 
equilateral face 
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, 
4 ; 

_ 4. The normals to the facets of a crystal are plotted on the stereogram below: determine the point 
group symmetry, and mark in all the elements you can find. 

Point group = 

Note that many of these poles will be in special positions and hence lie onthe symmetry elements, 
try not to be confused by them. It may help to point out that poles immediately above a horizontal 
diad will appear double (i.e. ©) while those above or below a 2 axis will remain single. 

Repeat the exercise using the stereogram below: 

Point group = 

And again with this stereogram: 

Point group = 

5. What are the point groups (at a lattice point) of the 14 Bravais lattices? 

Lattice Point group symmetry 

Triclinic (P) 

Monoclinic (P) 

Monoclinic (1) 

Orthorhombic (P) 

Orthorhombic (A, B or C) 

Orthorhombic (1) 

_ Orthorhombic (F) 
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Lattice Point group symmetry 

Tetragonal (P) 

Tetragonal (I) 

Hexagonal (P) 

Hexagonal (R) 

Cubic (P) 

Cubic (I) 

Cubic (F) 

TO LEARN AND UNDERSTAND 

1. The way in which rotation and inversion symmetry elements can interact to form a roto-inversion 
axis. 

2. The distinction between a roto-inversion element, and the successive operation of both proper 
rotation and inversion elements in their own right. 

3. The representation of the various point group symmetry elements and operations on a 
stereographic projection. 

4. The relationships between symmetry elements as summarised in Table 15.1. 

5. The way in which the permissible combinations of three non-parallel rotation axes can form the 
basis for the derivation of 19 of the 32 point groups. 

TO PONDER AND DISCUSS 

When one views the image of oneself in a mirror left and right are reversed but not head and feet. 
Why? 
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16 
Space Groups 

16.1 Introduction 

The concepts behind the derivation of space groups have already been introduced in Chapter 14 for 
the two-dimensional situation. In three dimensions the combination of the 32 point groups with the 14 
Bravais lattices leads to the formation of 230 different’space groups. The systematic derivation of 
these groups is a protracted procedure, and is most ‘at home’ in crystallographic reference texts. For 
example in M. J. Buerger’s Elementary Crystallography the theory and derivation of space groups 
occupies 325 out of the 525 pages. 

Just as the addition of the motif to each and every lattice point forms the crystal structure, so the 
combination of point group symmetry and translational symmetry creates a ‘space group’ of elements 
which fully defines the symmetry of a crystal. However in the derivation of space groups one must take 
into account the fact that mirror planes and rotation axes interact with the translation elements to 
make two new types of element. These are known as glide planes and screw axes respectively and are 

_ described in Sections 16.2 and 16.3. 
Space groups therefore are built up by distributing a particular type of point group ona lattice of the 

same system; but with additional variations made possible by the fact that the point groups can be 
compounded by the operation of screw axes and glide planes. 

This chapter provides an outline of the methods of space group derivation, and concentrates in — 
some detail on the representation of space group symmetry and its application to real crystal 
structures. 

16.2 Glide Planes 

A glide plane is the three-dimensional equivalent of the glide-reflection element discussed in Chapter 

14. It involves ‘reflection’ across the plane, as if it were a mirror plane, followed by translation in a 

direction parallel to the plane by } of a lattice translation vector (Fig. 16.1). 

Fig. 16.1 The glide-reflection space group symmetry element. 

The possible three-dimensional glide-reflection elements are summarised in Table 16.1. It can be 

seen that in addition to glide in the direction of the unit cell axis, it is also possible along the face 

diagonals, and in the case of a body centred cell, along body diagonals. 

| 



TABLE 16.1. THE GLIDE PLANE ELEMENTS ~ 
Oe ee a ee 

Glide plane Translation component 

element Direction Magnitude Symbol 
et a, ot Se a ee 

a tee a ; 
Axial glide || to a axis 7 

b 
Axial glide || to b axis > b 

Axial glide || to ¢ axis = c 

+ + 
Diagonal glide || to face diagonal a”, a = n 

Diamond glide || to face diagonal atb bt+e cta 

for, face centred cell poe re 4 r 

|| to body diagonal atbte 
| for body centred cell 4 

16.3 Screw Axes 

In three dimensions we must also consider the interaction between rotation axes and parallel 

translations. The combination of one unit of rotation of an radians due to an n-fold axis followed by a 

translation of a along the axis, where a is a lattice repeat vector and man integer, give rise to anew 

symmetry element known as a screw axis. All possible variants of screw axes can be described using m 
values from 1 to n—1 because the lattice itself produces translations which are multiples of n, so in 
practice the general symbol of a screw axes n,, always has m<n. 

The permitted screw axes together with the motifs used to identify them are shown in Fig. 16.2. 
The operation of the 3, axis is straightforward and by convention the rotation is clockwise looking 

along the direction of translation and produces a right-handed thread. Now look at the 3, axis. The 
first symmetry operation translates the figure ‘7’ two-thirds of the way down the unit cell and rotates it 
120°, the second operation translates it out of the unit cell and one-third of the way down the next, also 
rotating it a further 120°. However, the operation of lattice translation repeats the figure, which has 
now been rotated 240°, at a position one-third of the way down the first cell. The net result is that the 
screw axis 3, 1s equivalent to 3, but with its sense of rotation reversed, i.e. a left-handed thread. Such 
pairs of axes are known as enantiomorphous and are analogous to the enantiomorphous pairs of axial 
point groups. They are of particular significance when considering the crystallography of helical 
polymers where especially close packing can be obtained between enantiomorphic pairs of 
molecules. 

16.4 The Possible Space Groups 

The simplest approach to the derivation of space groups is to take a particular point group symmetry, 
e.g. m3m, and add it to one of the Bravais lattices of the same system, say face centred cubic, to form 

the space group Fm3 m. Note that the letter designating the type of unit cell (P, F, I, etc.) is written as a 
capital. The lattice type chosen must of course be compatible with the system in question (cf. Table 
6.2). It remains to examine all possible combinations based on the substitution of the different types of 
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2 : 2; 

| { 

3 3; = 

| 
L 

4 4, 4, 4, 

| 
L 

6 6, 6, 6, 6, 65 

Fig. 16.2 The different types of screw axes. (Reproduced by permission from Azaroff: Elements of X-Ray Crystallography, 
McGraw-Hill.) 

three-fold screw axis for the triads (in this example) and the various glide elements for the mirror 
planes. The resultant groups of symmetry elements must be self-consistent (i.e. one component must 
not invalidate another) and those which are equivalent to each other in spite of having apparently 
different arrangements of elements must be identified. When one considers the number of 
combinations of elements that must be reviewed and that groups of non-parallel screw axes may not 

‘ necessarily intersect, the complexity of the task becomes apparent. 
A branch of mathematics known as group theory can conveniently be applied to space group 

derivation and provides the most elegant solution to the problem. However, the manipulation of 
symmetry operations by means of group theory represents one of the more advanced aspects of 
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crystallography and is beyond the scope of this text. We will, however, illustrate some of the first 
principles of space group derivation by generating the space groups based on the simple monoclinic 
point group, 2. 

For this case the Bravais lattice types which are relevant are those compatible with the monoclinic 
system, that is, primitive (P) and base centred (A or B). Four possible combinations of lattice and 
point group elements which must be considered are shown in Fig. 16.3. The B centred cells, which for 
the monoclinic system are equivalent to the A centred ones, are not treated separately. The 
monoclinic cell is viewed, by convention, along the diads which are parallel to the c axis (i.e. in the 
‘first setting’ cf. Fig. 15.9). 

The circles on the cell plan represent symmetry related positions, called equivalent positions or 
equipoints, which are created by the operation of all the space group symmetry elements on one point 
in a general position at x, y, z. The symbol + by some of the circles and 3+ by others indicates that the 
equipoints are displaced in the c direction by a positive fraction of the unit cell height in the first case, 
and by the same positive fraction plus 4 of the unit cell height in the other. Note how the equipoints 
demonstrate the operation of the 2 and 2, axes. 

O+ oF 
O Or 

Ot 

A2, 
Fig. 16.3 Examples of monoclinic space groups. 

Out of the four space groups P2, P2,, A2 and A2,; A2 and A2, cah be seen to be equivalent with 
only the unit cell origins different. There are therefore three unique space groups based on the point 
group 2, and the symbol A2, is not used. 

16.5 The Representation of Space Group Symmetry 

In the previous section it was a comparatively simple matter to display the unidirectional 2 and 2, axes 
perpendicular to a plan of the unit cell. We will now consider how the symmetry elements of a more 
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complicated space group can be represented, by looking at, as an example, the space group Pama 
which is one of 28 such groups based on the point group mmm in the orthorhombic system. 

Pnma is more fully written as pas 2 G» and consists of three orthogonal 2, screw axes 

perpendicular to: .a diagonal glide plane, a mirror plane and an a glide plane respectively. By 
convention the first named axis is parallel to the a axis of the unit cell, the second parallel to the b axis, 
and the third parallel to c. It may happen however that, say, the b axis of a conventionally labelled 
structure cell is perpendicular to the axial glide plane instead of the mirror plane. This situation can be 
best handled by shuffling the space group symbols into the appropriate order to give one of the 
equivalent combinations listed in Table 16.2. Note that axial glide direction is always perpendicular to 
the diagonal glide plane, so that it is a‘b’ glide plane when the diagonal glide plane is perpendicular to 
the b axis of the unit cell, etc. 

TABLE 16.2. EQUIVALENT COMBINATIONS OF Pnma 

The conventional way of displaying the symmetry elements forming Pnma, is illustrated by Fig. 

16.4 which is the reproduction of the appropriate page from the International Tables of X-Ray 

Crystallography. In the top left-hand corner the crystal system and class to which Pnma belongs are 

named; at centre top there is the full space group symbol; while at top right is the accepted abbreviated 

symbol together with a symbol belonging to another notation due to Schoenflies — in this case D ,/ — 

which will not be considered further here. 

The left-hand of the two unit cell plans shows the equipoints generated by the operation of the spa
ce 

group symmetry on a point at the general position x, y, z. Equipoints marked with a °,° are mirror 

images of those with no‘ ,’ and the meaning of the 2+ type symbols are the same as for the P2, and 
A2 

space groups discussed in the previous section. The significance of equipoints together with the 

information below the two unit cell plans will be discussed further in the next section. The symmetry 

elements included in the full space group symbol are drawn on the right-hand plan, and both plans are 

drawn perpendicular te the c axis with the a axis vertical down the page. 

Focusing attention on the plan bearing the symmetry elements we will consider in turn each element 

of the full space group symbol, Pon me 
| 

The 2, axes in the a direction (down the page) are drawn as split arrows just outside the cell plan. 

The values, 4, by each arrow indicate that these 2, axes are displaced in the c direction by ac. The 

diagonal glide planes perpendicular to these axes are drawn as chain-dotted lines. He 

The 2, axes in the b direction are also represented by split arrows, but they are not displaced in the c 

direction. The mirror planes perpendicular to them are drawn as bold solid lines. 
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Orthorhombic mmm P 2,/n 2,/m 2,/a No. 62 
16 
2h 

Origin at T 

ioe Lenina Co-ordinates of equivalent positions Conditions limiting 

and point symmetry possible reflections 

General: 

8 d 1 x,y,z; 44+x,4-y,4-z; 44,7; 4-,9,4423 hkl: No conditions 

%,Y,zZ; 3—x,h+y,3+2; Xp oes Ia) PS Okl: k+l=2n 
hOl: No conditions 
hkO: h=2n 
h0O: (h=2n) 
OkO: (k=2n) 
OO/: (/=2n) 

Special: as above, plus 

4 c m  x,4,2; 3,2; 4-x,2,44+2; 44+-,4,4-z. no extra conditions 

4 b T0055 597 032535" 450/059 7420. 
hkl: h+l=2n; k=2n 

4 a 17 10,0,0;, 0;3,05" 3,0:25. 93 tubs 

Symmetry of special projections 

(001) pgm; a'=a/2, b’=b (100) cmm; b’=b, c'=c (010) pgg; c’=c, a’=a 

Fig. 16.4 Representation of the space group Pnma reproduced from International Tables of X-Ray Crystallography. 

The 2, axes perpendicular to the page are represented by the standard symbol introduced in 
Fig. 16.2 while the presence of an axial glide parallel to the page is shown by a right-angled arrow at 
the top right of the plan. The arrow points in the a direction (the direction of axial glide), and the 
figure ; by the side of it indicates that the glide plane is displaced by jc out of the page. 

The positions of centres of symmetry are shown by small circles, and the fact that the origin of 
the unit cell is taken at one of these centres is confirmed by the statement ‘Origin at 1’ below the 
plans. 
A summary of the various graphic symbols used to plot space group symmetry elements on a unit 

cell plan is given in Table 16.3. 
Higher order screw and rotation axes are shown with the conventional symbols which may be drawn 

in perspective for axes parallel to the page. 
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TABLE 16.3. SYMBOLS FOR SPACE GROUP SYMMETRY ELEMENTS 
(Based on International Tables of X-Ray Crystallography) 

Symbol 
Element Normal to page ; Parallel to page 

a, b ep ve ne eee Aare 

sees 

° e snes 

n ee ee 

ANS d ee 

- ) 
. 6 

Centre of symmetry ° 

ie a centre of symmetry is coincident with an axis perpendicular to the page the symbol is modified (e.g. a 32 axis appears as 
} 

16.6 Equipoints 

The equipoints shown in Figs 16.3 and 16.4 represent symmetry related positions within the unit cell. _ 
If one could visit all such positions in an actual crystal structure, the similarity between each site would 
be readily apparent. The differences, beyond those of spatial orientation, would be confined to 
Variations associated with mirror images and inversions. 

The equipoints illustrated are generated by the operation of the various symmetry elements on a 
point in a general position. In the case of space group P2 (Fig. 16.3), there are two such equipoints per 
unit cell. The rank of the equipoints is therefore 2, and the possible coordinates x, y, z; x, y, z. The 
operation of P2 on a point in a special position, which in this case means intersecting a diad, will 
generate only one equipoint in each unit cell. A summary of the positions of equipoints for the space 
group P2 are given in Table 16.4. 

TABLE 16.4. EQUIPOINTS FOR SPACE GROUP P2 

Rank Point group symmetry Coordinates of equipoints 

2 1 Xs Vii 2s sky! Vos, 

1 2 0, 0, z 

1 2 0,4, z Special — 

1 2 4.0, z positions 

1 2 2,4, 2 

Equipoint information can be a valuable asset to crystal structure determination. Let us say we have 

a compound AB, which crystallises in the monoclinic system with one molecule per unit cell and we 

know its space group is P2. The number of molecules per unit cell can be calculated from a knowledge 

of the molecular formula, unit cell volume and crystal density. The single atom of A in each unit cell 

must be in a special position of rank 1, for any attempt to put it ina general position will require a 

second atom in the same unit cell. The B atoms however will either both be in special positions or ina 

pair of equivalent general positions. Obviously the coordinates of the atoms will still have to be 
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determined, but in a case as simple as this the combination of equipoint information with 
stereochemical data such as ionic size will provide a good estimate of the structure. 

The equipoint information for the more complex space group Pnma is listed beneath the two unit 
cell plans in Fig. 16.4. The lay-out is much the same as that for P2 in Table 16.4, except that each of the | 
equipoints is additionally distinguished by a letter of the alphabet. The letter a is assigned to what 
might be called the most specific special position, in this case the equipoints at centres of symmetry at 
000, 030, 503, 333; the letter b is assigned to the next most specific special position and so on up to (in 
this case) the letter d for the general position. This notation is due to Wyckoff. Also in Fig. 16.4, there 
is information describing which X-ray ‘reflections’ can be expected to be missing as a result of this 
particular space group symmetry. It is expressed in terms of the conditions necessary for a reflection to 
be present. 

16.7 A Case Study: The Crystal Structure of Aragonite 

Aragonite is a crystalline form of calcium carbonate (CaCO) which is stable at room temperature. It 
belongs to the orthorhombic system, the mmm crystal class, and possesses the space group symmetry 
Pnma which we have already described in some detail. 

(a) Synthesis of structure from component atoms 

It is convenient, as a starting point, to consider the CO; group as one of the building blocks of the 
aragonite structure. The C** ion has a radius of only 0-16 A while the three O?- ions each have a radius 
of 1-4 A. The ratio of these two ionic radii is 0-11 which is not far removed from the ratio 0-16 which 
will allow the small ion to fit exactly in the middle of a triangle of three large ones (cf. Table 7.1). Itis 
not surprising therefore that the CO; ~ group assumes triangular form, and the problem is reduced to 
one of describing the packing of Ca’* ions of radius 1-0 A together with the CO; ~ triangles. There is 
however a significant covalent contribution to the bonding between the carbon and oxygen atoms 
which also encourages the triangular arrangement of the oxygens. So that it is possible that the 
triangular format would be observed even if the radius ratio had a value very different from 0-16. 

It has been determined that the calcium ions are in a hexagonal close packed arrangement (but not 
actually ‘closepacked’ in that the ions do not touch). The COs ~ triangles which have an overall edge 
length of 5-6 A are sited in the octahedral interstices between the calcium ions with the planes of the 

Fig. 16.5 Plan of the aragonite structure showing the positions of the oxygen ions in relation to an h.c.p. cell of calcium ions. 
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triangles parallel to the basal plane of the hexagon. The triangles fit in the rather open calcium 
octahedra either at ¢ cell height (3 of the octahedron height in a direction parallel to the c axis of the 
h.c.p. cell) or, after rotation by 180°, at } height. Steric hindrance between oxygens in adjacent 
triangles means that out of the three octahedral interstices in the bottom half of the h.c.p. cell, two 
have COs ~ triangles at é cell height and the third, one at 3 height. The crystal structure, as a result of 
this arrangement, is relegated from the hexagonal to the orthorhombic system. A plan of the structure 
Benne the c axis showing the pseudo h.c.p. cell and the atom centre positions is drawn in 
ig. 16.5. 
The fact that there are three oxygen ions to every calcium and that both ionic radii are similar, 

means that in packing terms the calcium ions will be within coordination polyhedra of oxygens. It can 
be joy =a Fig. 16.5 that each calcium ion has nine oxygen nearest neighbours. (Check this for 
yourself. 

(b) Identification of space group symmetry elements 

Fig. 16.6 shows two projections of the aragonite unit cell looking along the b and c axes respectively. 

Space group symmetry elements are drawn in, and it can be seen that the three orthogonal 2, axes are, 
in turn, perpendicular to a mirror plane, an axial glide plane and a diagonal glide plane. 

_ With reference to the two projections of the atom positions, personally verify that each of the six 

symmetry elements is marked in at the correct location, and draw in the 2, axes on the c projection. 

The symmetry elements are those of the space group Pnma drawn in Fig. 16.4 and previously 

described at length. The mirror plane is perpendicular to the a unit cell axis, the axial glide is in the c 

direction with the glide plane perpendicular to the b axis and the diagonal glide plane is perpendicular 

to the c axis. 
The full space group designation is therefore: 

p22 2 or Pmen for short. 
mcn 

(c) X-ray diffraction and the aragonite structure 

Let us suppose that an X-ray diffraction photograph of aragonite has been prepared and each 

reflection indexed (i.e. assigned the indices of the diffracting planes which were responsible for it). 

_ The shape and dimension of the unit cell could then be determined from the photograph to be: 

orthorhombic, a= 4-94 A b=7-94 A, c=5-72 A. 

Because the translations associated with space group symmetry occur in increments of a few 

Angstroms, the symmetry elements do not influence the external crystal form and for this reason 

space group symmetry is sometimes called internal symmetry. Space group symmetry however, has a 

marked effect on X-ray diffraction with glide and screw elements causing certain ‘reflections’ to be 

absent. 
. 

Examination of the indexed diffraction pattern of aragonite will reveal that no reflections having 

general indices hk/ are absent. The lattice type is therefore confirmed as primitive. 

Reflections of the type 00, 0k0 and 001 will be missing where h, k or / are odd numbers. This 

135 



ap Calcium 

@ Carbon 

(oa) Oxygen 

a=5.0A 

b=8.0A 

c=5.75A 

z= 0.08 

y= 0.07 

Fig. 16.6. Two projections of the structure cell of CaCO; (aragonite) showing the space group symmetry elements. The circles 
represent the atom centre positions and are smaller than the scale atomic size. 

indicates that there is a 2; screw axis parallel to each of the principal axes. Reflections h0/ will be 
absent where / is odd revealing an axial glide plane perpendicular to the b axis witha glide direction c. 
Also hk0 reflections are missing when h+k is odd, this is evidence for a diagonal glide plane 
perpendicular to the c axis. The presence of the mirror plane leads to no systematic absences, but the 
elements so far recognised are sufficient to fix the space group as Pmcn. The conditions for reflections 
to be present are listed in the right-hand column of Fig. 16.4. 
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Working on the assumption that the oxygen ions form a triangle around the carbon ions, we can 
make the next move in the structure determination by considering the equipoint information in 
Fig. 16.4. There are four CaCO; molecules in each unit cell. The Ca and C ions will therefore be 
distributed amongst the special positions listed. Because the carbon ion is surrounded by a triangle of 
O- ions it cannot be at a centre of symmetry and the four carbons are therefore sited on the mirror 
planes. The CO3 ~ triangles will have to be either parallel to these planes or at right angles, with their 
medians lying in the plane. In the first case the 12 oxygen ions will occupy three sets of special 
equipoints on the mirror planes, in the second only four oxygens will lie on the mirror planes, the 
remaining eight lying on one set of general equipoints. The calciums may lie either on the mirror 
planes or at either of the two sets of equivalent centres of symmetry. In the latter case hkl reflections in 
which both k+/ and h are odd integers, may be recognisably less intense than other hkl reflections 
because calcium ions at centres of symmetry will make no contribution to them. An absence of this 
effect on the diffraction pattern will suggest that the calciums are also on the mirror planes. 

Now, if all oxygens are on the mirror planes, it will be necessary to fit six oxygen atoms (radius 1-40 
A) and two calcium atoms (radius 1-06 A) (+ two carbons) into an area of 5-72 7-94 A. The area of 
each mirror plane intersected by ions will then be 43 A? whereas the total area of the plane is only 45-4 
A’. Such packing is impossible, it would also be impossible if the calciums were at the centres of 
symmetry after all, so it must be concluded that the CO3~ triangles are perpendicular to, and bisected 
by, the mirror planes. 

Armed with this positional data, which is in accordance with the known structure, an approximate 
structure can be determined on the basis of most probable packing. The structure must be 
commensurate with the symmetry elements, and in particular with the centres of symmetry and mirror 
planes which cannot intersect an ion unless they are at its exact centre. The trial structure can be 

checked and refined by the use of more advanced X-ray methods involving calculations based on the 
measurement of the intensity of individual diffraction spots. 

TO APPRECIATE 

1. The combination of lattice translational symmetry with rotation axes and mirror planes to 

produce elements which are unique to space group symmetry. 

2. The motifs used to indicate the various symmetry elements on a unit cell plan. 

(a) Rotation axes. 
(b) Roto-inversion axes. 
(c) Centres of symmetry. 
(d) Mirror planes. 
(e) Screw axes. 
(f) a, band c glide planes. 
(g) Diagonal and diamond glide planes. 

3. The presentation of space group information in the International Tables of X-Ray Crystallo- 

graphy. 

4. The means of representing equipoint information ona unit cell plan and its usefulness in crystal 

structure determination. 

5. The relationship between space group symmetry elements and X-ray reflections. 
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1. 

TO DO 

By referring to Fig. 16.2, list below the possible pairs of enantiomorphous screw axes. 

Drawn below is a representation of a space group 

What is the full space group symbol? .................. 
(Note that the third axial element of the symbol will be at 45° to be second, and that where 
different types of symmetry element are parallel, the space group symbol lists only the most basic 
element; i.e. rotation axis rather than screw axis, or mirror plane rather than axial glide plane 
rather than diagonal glide plane, and screw axis rather than rotoinversion axis). 
What symmetry element does the symbol @ signify? .................. 
Draw in on the above diagram the equipoints derived from the general position x, y, z and check 
that they are consistent with all the symmetry elements. 

The polyethylene molecule crystallises in the form of a planar zig-zag. The molecule itself has a 2, 
screw along its axis and perpendicular mirror planes bisecting each CH, group, see Fig. 7.20. 

The polyethylene unit cell is orthorhombic with the molecules aligned along the c axis. 
Looking along this direction at a unit cell plan, there is a molecule at each corner and one in the 
centre which has been rotated 110° about its axis. The unit cell is conventionally chosen so that 
the carbon atoms are at 25% c and 75%. c. 
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© O 
(a) Draw in all the space group symmetry elements you can find on the above diagram. 
(b) Determine the space group ...... Poe 2 
(c) Mark in the positions of the centre of symmetry. 
(d) What is the rank and point group symmetry of the equipoints corresponding to the carbon ° 

atom and hydrogen atom positions? a 

Rank Point group symmetry 

ROAVERIU I) arc es | oe or castings 

Penn ee aoe Be ou ver st acins 

The structure unit cell of diamond is face centred cubic with additional carbon atoms at 444, 331. 

133 and 313. The structure of a ZnS is derived from diamond cubic, with the zinc atoms forming 

the f.c.c. cell and the sulphur atoms at the positions listed above. Diamond has a centre of 

symmetry, « ZnS does not. 
Select the space groups of each of these two structures from the following list: 

Fim  FA32) F433 % 
m m d'm 

Fi3c FA32 p32 
ne AC hb ee 

Space group of diamond = 

Space group of a ZnS = 

Where, in unit cell coordinates, is the diamond centre of symmetry? 

(It will be helpful to draw a plan of the unit cell remembering that the triad axes point to the cell 

corners; but do not necessarily expect to find the four-fold axes at the centre of the unit cell. A 

ball model of the unit cell would also be useful.) 
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~The four diagrams below and overleaf, show some space groups of the hexagonal system. 

Determine which one of the four describes the symmetry of the hexagonal close packed 

structure. 

h.c.p. space group = 

65252 

mcm 

Fig. 16.10 
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Fig. 16.11 

Fig. 16.12 
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Cube 
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Octahedron 

Hexagonal prism 
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Appendix 2. Vectors from Scratch 

(a) Representation of a Vector 

The wind has both direction and magnitude. It is therefore a vector quantity and can be represented as 
an arrow which points in the direction it is blowing with a length proportional to its speed. Another use 
of a vector is to describe the relative positions of two points, say on a map or in acrystal structure. The 
length of the vector is proportional to the distance between the two points and its orientation is the 
relative orientation of the points. 
A vector is indicated algebraically by either underlining the symbol or printing it in bold type, i.e. 

the vector ‘a’ is written a or a. In contrast to a vector, a quantity which has only magnitude but not 
direction (e.g. density, temperature, etc.) is called a scalar. 

(b) Vector Addition and Coordinates 

Consider moving from lattice point A to lattice point C on the planar lattice in Fig. A2.1. It is possible 
to go either directly there as described by vector r or via (say) point B along a and b. 

In this case the vector r is the same thing as the sum of vectors a and b, and this is indicated by the 

relation r=a+b. 

Fig. A2.1 

Alternatively it is possible to go from A to C via point D along the vectors cand d. The vector dis of 

the same length and orientation as a but points in the opposite direction. It can therefore be written as 

—a. 

So r=c+d=c—a. 

Any vector in the above lattice can be described in terms of the addition of multiples of one pair of 

primitive vectors (cf. Chapter 2). In Fig. A2.1 for example we could take a and b as the primitive 

vectors in which case r= 1a+1b (as above), c=2at+b and t=2a—b. 

The vectors a and b could also be drawn from the same origin, say ‘A’, in which case they will form 

the basis of coordinate axes. In terms of such axes the point ‘C’ will have the coordinates 1,1 the point 

‘D’ 2,1 point ‘B’ 1,0 and point ‘A’ 0,0. 
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(c) Unit Vector and the Resolving of Vectors 

A vector a can be split algebraically into its component parts. Its magnitude, a scalar quantity, can be 

written as | a | or simply ‘a’ and its direction represented by a unit vector A which has the direction of 

a but unit magnitude. It follows that a= |a| A. 
Frequently one wishes to know the component of a vector a in a particular direction which we will 

designate by a unit vector B (see Fig. A2.2). 

'@ 

Fig. A2.2 

By simple trigonometry the component of the vector a in the direction of B is | a| cos 0. The 
magnitude of this component can be considered as the product of the magnitudes of B (=1) and a 
multiplied by cos 6. 

(d) Scalar Product 

In the previous section the magnitude of the resolved vector a was given by | a| | B| cos @. Thisisin 
fact a particular example of what is know as a Scalar Product . of two vectors. In general the scalar 
product of the vectors a and b is a scalar of magnitude | a|.|b| cos @ and is written a. b (it is also 
known sometimes as a ‘dot product’). 

(e) Vector Product 

The magnitude of the vector product of the two vectors a and b is given by | a| | b| sin 6 where @ is 
the angle between them. The product is written axb and sometimes referred to as a ‘cross 
product’. However unlike the scalar product, the vector product is itself a vector. The 
direction of this vector is perpendicular to both a and b, and its direction is such that a 
clockwise screw in this direction would produce a rotation which would pass through a 
before b when the angle between a and b is less than 180° (Fig. A2.3). 

Fig. A2.3 
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(f) An Example of Vector Algebra 

In Section 11.3 the expression for the spacing of lattice planes is written as: 

Sheer iS OR 
w)™ (hb, + kb, + Tbs) 

This can be expressed in non-vector terms by multiplying the expression by itself to give the scalar 
product. It is also convenient to work in terms of 1/d. 

Therefore: 

1 1 1 

Genkty Acnery A? (ner 

bs =, (hb, + kb,+ Ib;) « (hb, + kb,+ Ib) 

Enumerating the scalar products between the vectors term by term, we have 

hb, r hb, = hb? 

kb, . kb, ake b,? 

lb,- [b; = Pby 

hb,- kb, = hkb,b, cos y (twice) 
kb,- [b; = klb,b3 cos a (twice) 
Ib; - hb, = [hb3b, cos B (twice) 

therefore 

= = - (h2b,2+ k2b.2+ Pb;+2hkb,b, cos ¥ +2 klbzb cos a +21hb3b, cos B) 
(hkl) 
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Appendix 3 Understanding the 
Reciprocal Lattice 

‘The Reciprocal Lattice is the Fourier Transform of the Real Lattice’ 

(a) What is a Fourier Transform? 

A violin playing ‘B’’ makes a very different sound from a French Horn playing the same note. 
There are two ways of explaining this difference. It is possible i in one case to speak in terms of the 

sound waveforms produced and say that the violin makes a ‘saw tooth’ wave whereas the horn’s note 
has a more rounded waveform (Fig. A3.1). 

m| LALA LA) 
mt ZXZNIXININL 

Wave- > 
length Distance 

Fig. A3.1 The recorded sound waveforms of two musical instruments (schematic only). 

One can, on the other hand, explain the difference between the two sounds in completely different 
terms. It can be said that the overtones or harmonics of the two instruments have different relative 
amplitudes. Here one is talking in terms of pure sine waves and saying in effect that any waveform can 
be viewed as a series of sine waves; a fundamental with the same wavelength as the waveform and 
overtones with wavelengths which are simple fractions of the fundamental, i.e. 3, 3, 4, 4, etc. 

t 
Maximum 
Amplitude 

Violin 

Rees Oe > 
Frequency Wavelength 

f 
Maximum Horn 
Amplitude 

pa eee PES eee nt, 
Prequeny Wavelength 

Fig. A3.2  Frequency-amplitude diagram for the sinusoidal components of the waveforms in Fig. A3.1. 
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Now, for conditions-of constant sound velocity, the wavelength is proportional to the reciprocal of 
the frequency, so it is possible to represent any waveform by plotting the frequencies of the 
fundamental and overtones against the maximum amplitude of the sine wave in each case (Fig. A3.2). 
We have said nothing about the relative phases of the fundamentals and overtones; these are best 

taken care of by using two maximum amplitude-frequency plots, one for sine and the other for cosine 
components. The necessity for both sines and cosines can be avoided however, if the peaks of the 
original waveform are symmetrical as in the case of the horn. 

J. B. J. Fourier who was a scientific adviser to Napoleon was the first to appreciate that any 
waveform could be broken down into component sine waves, and the mathematical relationship 
between Fig. A3.1 and Fig. A3.2 is known as a Fourier transform. 

The transform is fully defined as: 
fe.) 

Fig) = | fis P79 dr 
foe) 

where r is a vector with units of length and s is a vector with units of reciprocal length. 

A waveform is really, by definition, a periodic function and the transform of such a function will be 

periodic too. Correspondingly the transform of a non-periodic function will itself be non-periodic. 

(b) Lattice Planes and Reciprocal Lattice Points 

Imagine moving through a crystal structure in a direction perpendicular to a particular set of planes, 

say (100). One would observe a periodic variation in electron density which can be represented as a 

waveform. In the case of a lattice, rather than a structure, the planes are infinitely thin and the 

waveform will appear as in Fig. A3.3. 

1-0 

Plane 

Probability 

7 pce omy x ——_ 

Fig. A3.3 

This waveform differs in two ways from those considered in the previous section: 

(i) Its amplitude is always positive. 

(ii) It is discontinuous, the peaks being infinitely sharp. 

In terms of the Fourier analysis (i) is taken into account by including a further
 ‘d.c.’ type component 

which has effectively infinite wavelength. The transform of this component gives an infinitely sharp 

peak at the origin on the 1/ wavelength axis. The fact that the waveform is infinitely sharp means that 

the amplitude of the sine components remains constant right up to very high values of n. 

The Fourier transform of one set of lattice planes is shown in Fig. A3.4. Because of the equal 

amplitude of the components the diagram can be simplified to a row of points at intervals of 1/d, in fact 
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a one-dimensional reciprocal lattice, stretching on either side of the origin to plus and minus infinity 

(Fig. A3.5). 

Fig. A3.4_ The Fourier transform of one set of planes. 

Single set of planes Reciprocal lattice 

Fig. A3.5 A single set of planes and their Fourier transform drawn as a one-dimensional reciprocal lattice. 

If one considers various sets of planes all perpendicular to the page, then their Fourier transforms 
will build up an infinite two-dimensional reciprocal lattice (Fig. A3.6). 

In both two and three dimensions the Fourier transform of a lattice is another lattice in reciprocal 
space. The translation from the origin of the reciprocal lattice to any lattice point is described by a 
vector which has a magnitude equal to the reciprocal of the wavelength of one of the Fourier 
components of the real lattice. It is called the reciprocal lattice vector and is frequently designated g. 
This should be distinguished from the wave vector used by physicists which is defined with a 

magnitude 2”. 
nh 

\| | | we ® ® ® © © 

to Oe 
| | | © © © © © 

+ + + © © @ © C} 

SAX cs © © © 
+ \— + 7 oe ap 

va IN ©. 1 4e 7 ewe Se 

Fig. A3.6 A section of a real lattice showing a series of planes perpendicular to the page and the planar reciprocal lattice 
corresponding to these planes. 
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Each row of reciprocal lattice points passing through the origin is derived from a particular set of 
lattice planes. The (100) set of planes will therefore give a row of reciprocal lattice points with 

 coordingtes +000, 100, 200, 300 . . . expressed in terms of the reciprocal lattice vectors b,, b,, bs. 
; Ree the set of planes (124) will give a row of reciprocal lattice points with coordinates +000, 124, 

Pe Ct, ; 
_ There is a general pattern then that the coordinates of the reciprocal lattice points are equal to, or 

_ exact multiples of, the Miller indices of the lattice planes from which they are derived. However for 
this statement to be always true, the coordinates must be based on a pair of translation vectors 
(primitive or lattice) of the reciprocal lattice which correspond to the planes of the real lattice forming 
the faces of the lattice unit cell. 

(c) Fourier Transform of a Crystal Structure 

A crystal structure can be built up by positioning a motif unit on every lattice point. Mathematically 
this is the process of convolution of two functions one of which happens to be the lattice. Now, there is 
a theorem which states that the Fourier transform of the convolution of two functions (in this case the 
crystal structure) is equal to the product of the Fourier transforms of the individual functions. 

The implications of this theorem are far reaching. The transform of a crystal structure is simply the 
transform of the crystal lattice, i.e. the reciprocal lattice, multiplied by the transform of the motif. It 

_ still looks like a reciprocal lattice but the amplitude at each of the points is variable as it is modulated 
by the transform of the motif. 
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Appendix 4 Notes and Answers for the 
Exercises 

Chapter 1 

2. The sodium chloride lattice is face centred cubic. There are two atoms, one sodium one chlorine, 
in each repeating unit, any adjacent pair will do. 

Chapter 2 

1. Vector pairs [il and [2] are primitive. Combinations of vectors. [3] will not give translations to all 
the lattice points. 

sy i wy =a,+2a, 

| ye —2a, 

| ie —5a,—2a, 

ri 28,—@. 

4. r=—a,t+a +a. 

Chapter 3 

1. A primitive cell can only have lattice points at its corners. There must be none within it or cutting 
its sides. 

2. Cell-no. 2 lattice points. 1 
Cellno.2 1 lattice point, therefore primitive. 
Cellno.3 4 lattice points. 
Cellno.4 = 1 lattice point, therefore primitive. 

3. Two lattice points. 

Chapter 4 

2. Hexagonal prism 1 hexad, 6 diads. 
Tetrahedron 4 triads, 3 diads. 

3. Cube 4 triads, 3 tetrads, 6 diads. 
Octahedron | 4 triads, 3 tetrads, 6 diads. 
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4. Cube 9 Mirror planes. 
Hexagonal prism 7 Mirror planes. 

5. Tetrahedron does not. 

_ Chapter 5 

1. The lattice is centred rectangular. 

Chapter 6 

1. (a) Planar spacing = a. 
(b) Planar spacing = a/2. 

(c) Planar spacing = a/ V7. 

2. Take the central lattice points of the top and bottom hexagons as two Opposing corners of the 
primitive cell. 

Chapter 8 Section 8.3 

The following clues may help: 
_ B Zr has two atoms per unit cell while nickel has four. The structure cell of Ge 1 is f.c.c. with the Ge 
atoms at lattice points and in half of the tetrahedral interstices. Both Au and Cu are f.c.c. and the 
structure cell of a Zr is h.c.p. 

It might be true to say that the structure cell of ordered Cu;Au is f.c.c. 
FeS can be thought of as two non-primitive h.c.p. cells on top of each other with one rotated 60° 

around the c axis with respect to the other. 

Chapter 9 

1. The directions of the type (121) in both index systems are: 

[121] [0111] (3i1] (011] 
(211] [1011] [111] [1101] 
[121] [0111] (i11] {i101}. 

In addition to these six there are also a further six equivalent and exactly opposite directions in 

which the indices are as above but with all the signs changed, i.e. [121] [0111], etc. 

2. [112] = [112] = [112] = [113]. 

3. 111) — body diagonals. 
(110) — face diagonals. 

4. [121] [211] [121] [211] [121] [211] (121] [211]. 

And opposite directions ((121], etc.) in each case. 
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Chapter 10 | 

1. (121), (121) and the opposite equivalents, (121), (121). 

2. The planes in the zone are: (010) (201) (221) (432). 

Ass (A1P)(111). (111). 
The plane (111)non primitive does not correspond to any plane of the type {100} rimitive but because of 
the cubic symmetry it must belong to the same form. In fact (111)non primitive = (11) stestcet 

The primitive unit cell therefore contains four equivalent planes with the indices (100) (010) 
(001) (111). . 

5. Miller indices: (102) (012) (112) (102) (012) (112) — and their opposite equivalents. 

Chapter 11 

Section 11.3 0-193A~/cm. 

DE ARS 

Pose -C.C 

Chapter 12 

2. (b) Angle of rotation 54-7°. 
(c) Triad. 
(d) [111] could well not have been plotted on the 111 standard projection as it does not appear 

on the 100 standard. Observe however the behaviour of [111] during rotation from the 100 to 
the 111 standard. After 35° rotation it reaches the perimeter of the stereogram and as it 
disappears [111] appears at the diametrically opposed point and moves into the stereogram 
during the remaining 20° of rotation. 

3. (e) Direction 1 <110). 
Direction 2 <100). 
Direction 3 (110). 

4. (h) Angle between y axis and [001] = 36°. 
Angle between y axis and [011] = 16°. 
Angle between y axis and [111] = 25°. 

5. Slip plane = {111}. 

6. (a) (0001S {1011}  =59-66°. 
(0001) {1121} = =71-33°. 

(c) [1121] [0001] =63-74°. 
IQ 21) es 76". 

Chapter 14 

1. 1,2mm, 2mm, 2, m. 

156 



e 

3: 

4 

5 

The likely systems are: 

(a) Parallelogram (d) Parallelogram 
(b) Hexagonal (e) Rectangular 
(c) Rectangular (f) Square 

(g) Hexagonal. 

The glide-reflection planes in p31m are parallel to the mirror planes. 

Plane groups: 
(a) clmm (c) p3ml 

(b) pomm (d) p2gg. 
(a) Start by first opposing reflected pairs of symbols commensurate with the point group 2m. 

These can be arranged at the corners of a rectangular cell with another inverted pair at the 
cell centre to give pmg. 

(b) In order to create the plane group p1 the two fold symmetry inherent in the symbol must be 
suppressed. This can be done by combining two of the symbols with different orientation. 
They can either be superimposed or adjacent. The multiple symbol can then be placed on a 
parallelogram lattice. 

(c) In this case the neatest approach is to superimpose three symbols to form a composite one 
with point group symmetry 6. These can then be placed at the corners of a hexagonal cell. 

(d) One symbol at each corner and one reversed at the centre of a rectangular unit cell will form 
this plane group. 

Chapter 15 
Bt. 

( : 

(a) 233; (b) 433; (c) 222; (d) 222; (¢) 422; (f) 3m. 
42m oe 2mm. 

wr S|V 3[y xl[w yl 

SIV S[V ZS [VW s[VZl[VyHZlw yl 
S[palpsl[yalyx[ypyl[y— 

Oo 

S[Psl[wxyl[yyl|v Z([Wglwx[w yx |v 
SlAS|A SR w ZlaR[HA RIA - Wi 

~ Note that all the lattice point groups are centrosymmetric. 
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Chapter 16 

2: Because of the absence of triads at 35° to the unit cell plan, the space group is not cubic but 
tetragonal. The main axis is 4, perpendicular to a diagonal glide plane (n), there is a 2, axis 
horizontal on the page perpendicular to a c glide plane, and 2 and 2, axes diagonal on the page 
which are perpendicular to both mirror and glide planes. 

The insertion of equipoints will confirm the lattice as primitive. 

(b) PR a 
In diamond one of the four-fold axes is positioned (in cell plan coordinates) at 3, 4. 
The centre of symmetry in diamond is at 334 and lattice related positions. 

First consider one close packed layer of atoms. A hexad will pass through each atom centre anda 
triad through each of the small triangular holes between the atoms. 

If these layers are now stacked according to the ABAB . . . type regime (Fig. 7.8) to give an 
h.c.p. structure, the hexads will be converted to triads which, because they are perpendicular to 
mirror planes, are in effect 6 axes. 

Therefore, in the unit cell plans drawn, the atom centres of both the A and B layers are 
positioned on the 6 axes. 

At the points where the triads (i.e. triangular holes) of both the A and B layers coincide, the 
symmetry is that of 6; axes. (ct. Fig. 16.2). 

eel eles and Poe 2 contain 6, axes — which narrows the choice of space groups down to 

Focusing attention on coe the two atoms positioned on the 6 axes within the space group 
plan are not in the same layer; this is not consistent with the mirror plane which bisects the line 
joining both 6 axes. 

p32 2 By elimination the space group of h.c.p. is therefore mm ¢ (OF P6s/mmc for short). 

158 



Anion polyhedra, 45, 47, 48 
Aragonite, 134 

_ Atomic bonding, 37 
Atomic packing, 41 

Ball model, 37 

Base centred monoclinic lat- 

tice, 30 

Base centred orthorhombic 

lattice, 32 

Basis, 2, 52 

Body centred cubic lattice, 33 
Body centred cubic structure, 

41, 42 

Body centred monoclinic lat- 
tice, 30 

_ Body centred orthorhombic 
lattice, 32 

Body centred tetragonal lat- 
tices 32 

Bravais lattices, 34 

Centre of symmetry, 19 
Centred rectangular lattice, 25 
Classes, 111 
Close packed direction, 41 
Close packed plane, 41 
Close packed structure, 41 
Convolution, 2, 153 

Co-ordinates, 147 
Co-ordination number, 44 
Covalent bond, 38 

Covalent crystals, 49 

Crystal 
class, 111 

planes, 70 
structure, 2 

system, 29 
system (planar), 23 

Crystallographic point groups, 
117; (two dimensions), 101 

Cubic space lattice, 33 
Cubic system, 29, 120 

Index 
‘d’ spacing, 80 
Diad, 17 

Diamond cubic structure, 50 

Diamond lattice, 25 

Diffraction, 84 

Directional indices 

definition, 57 

determination of, 65 

in two dimensions, 57 

of a hexagonal lattice, 62 

Electric dipole, 37 

Enantiomorphic point groups, 
121 

Equipoints, 130, 133 

Equivalent directional indices, 
59, 64 

Equivalent space group com- 
binations, 132 

Face centred cubic lattice, 33 

Face centred cubic structure, 
41, 42 

Face centred orthorhombic 

lattice, 32 
Form of planes, 175 

Fourier transform, 81, 150 

Glide plane, 105, 127 

Glide-reflection group, 105, 
27 

Great circle, 88 

Hexad, t/ 

Hexagonal 
close packed structure, 41 
planar crystal system, 23, 
102 
planar lattice, 26 
space lattice, 33 

Improper rotation axes, 113 
Internal symmetry, 135 

159 

Interplanar spacing, 80 
Interstice, 43 

Interstitial atom, 43 

Inversion symmetry, 19 
Ionic bond, 38 

Ionic crystal, 45 

Lattice 
Bravais, 34 
centred rectangular, 25 
diamond, 25 

hexagonal (planar), 26 
linear, 1 

parallelogram, 23 
planar, 1, 27 
plane, 80 
point, 1 

rectangular, 24 
rhombohedral, 26 
square, 26 
translation vector, 7 

triequiangular, 26 
unit cell, 11 

Law of Rational Indices, 71 

Metallic bond, 37 

Miller Indices, 70, 73 

Miller-Bravais Indices, 76- 

Mirror plane, 19 
Monoclinic space lattice, 30 
Monoclinic system, 29 
Motif, 2-52-5103 

Non-Primitive unit cell, 12 

Parallelogram lattice, 23 

Permanent dipole bond, 40 
Planar crystal systems, 23 

Planar lattice, 1, 27 

Plane groups, 104 
Point groups, 111 
Point groups (two dimen- 

sions), 101 



Poles (stereographic), 88 
Primitive translation vector, 7, 

8 
Primitive vector group, 8 
Primitive vector pair, 7 
Proper rotation axes, 113 

Radius ratio, 44 

Rank of equipoint, 133 
Rational indices, 71 

Reciprocal lattice, 80, 81, 150 

Rectangular lattice, 24 

Rectangular planar crystal sys- 
tem, 23, 102 

Reference grid, 88 

Reference sphere, 88 
Reflection symmetry, 19 
Rhombohedral hexagonal 

space lattice, 33 

Rhombohedral planar lattice, 
26 

Rigid ball model, 37 
Rotation axis, 17 
Rotation axes (non-parallel), 

115 
Rotational symmetry, 17 

Roto-Inversion axis, 113 

Roto-Reflection axis, 115 

Scaler product, 148 
Screw axes, 128 
Slip lines, 96 
Slip planes, 96 

Small circle, 88 

Solid solution, 44 
Space groups, 127 
Space groups (two dimen- 

sions), 101 
Space lattice, 2, 29 
Square lattice, 26 

Square planar crystal system, 
23,. 102 

Standard projection, 91 
Stereographic projection, 88 
Structure unit cell, 11 

Strukturbericht notation, 52 
Symmetry 

centre of, 19 

elements, 16 

inversion, 19 

operations, 16 
reflection, 19 
rotational, 17 

translational, 16 

System 
cubic, 33, 120 

hexagonal, 34 

hexagonal (planar), 23 
monoclinic, 31 

oblique, 23, 102 
orthorhombic, 32 

rectangular, 23, 102 

square, 23, 103 

tetragonal, 32 

triclinic, 29 

trigonal, 29 

Tetrad, 18 
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Tetragonal space lattice, 32 
Tetragonal system, 29 
Translation vectors, 7 
Translational symmetry, 16 
Triad, 18 
Triclinic space lattice, 30 
Triclinic system, 29 
Tri-equiangular lattice, 26 
Trigonal system, 29 
Two surface analysis, 96 

Unit cell 

area of, 13 
lattice, 11 

multiple, 13 
non-primitive, 12 
primitive lattice, 11 

structure, 11 

volume of, 14 

Unit triangle, 96 
Unit vector, 148 

Van de Waals bond, 39 

Vector product, 148 
Vectors, 147 

Wulff net, 90 
Wyckoff notation, 134 

X-ray diffraction, 84 

Zone axis, 74 

Zone of planes, 74 
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