
w'wj



V \
V -, • _^ '



Ex Libris



Digitized by tine Internet Archive

in 2010

http://www.archive.org/details/introductiontocrOOphil







AN INTRODUCTION TO CRYSTALLOGRAPHY





AN INTRODUCTION
TO CRYSTALLOGRAPHY

BY

F. C. PHILLIPS, M.A.

Lecturer in the Department of Mineralogy and Petrology

University of Cambridge

WITH 500 DIAGRAMS

LONGMANS, GREEN AND CO.

LONDON • NEW YORK • TORONTO



LONGMANS, GREEN AND CO. LTD.
OF PATERNOSTER ROW

43 ALBERT DRIVE, LONDON, S.W. 1

9

NICOL ROAD, BOMBAY
17 CHITTARANJAN AVENUE, CALCUTTA

36A MOUNT ROAD, MADRAS

LONGMANS, GREEN AND CO.
55 FIFTH AVENUE, NEW YORK, 3

LONGMANS, GREEN AND CO.
215 VICTORIA STREET, TORONTO, I

FmsT Published, December, 1946

Code Number 85365

PRINTED IN GREAT BRITAIN BY ROBERT MACLEHOSE AND CO. LTD.

THE UNIVERSITY PRESS, GLASGOW



PREFACE

Text-books of science, in the mind of the discerning critic, usually

fall readily into one or the other of two groups, the helpful and the

impressive, accordingly as the author's outlook is directed mainly to-

wards the reader's progress or towards the enhancement of his own
reputation. I cannot claim that this book is anything more than ' un

ouvrage d'enseignement ', in which I have tried to set clearly before the

student the elements of the science of crystallography. There appears

to be a real need for such a text. The early development of crystallo-

graphy lay almost entirely in the hands of mineralogists, and excellent

text-books of mineralogy exist. More recently, the expanded interest

in crystallography consequent upon the rapid development of the study

of crystal structure has prompted the production of crystallographic

texts without any mineralogical emphasis. Many of these are small

books designed to interest those who wish to learn something of the

achievements in this field without themselves embarking on crystallo-

graphic studies ; most of the larger volumes are written primarily for

physicists, and aim at imparting just sufficient knowledge of elementary

crystallography to allow the student to pass on quickly to the appUcation

of X-ray methods to the study of internal structure.

The fact that the main centre of interest in crystallographic studies

has been changed by the discovery, by Friedrich, Knipping and von

Laue, of the diffraction of X-rays by crystals is indisputable. As a con-

sequence, the behef is now widely held that external morphology is no

longer of interest or importance, and we are urged to adopt a ' new

view-point ' and to begin the study of crystallography in terms of the

structural pattern of crystals. Twenty years' experience of teaching the

subject, however, has convinced me that an historical approach is still

by far the best for elementary students. The critic will look in vain

through this Introduction for any detailed exposition of the interaction

of X-rays and crystals, not because I am inappreciative of the immense

importance of recent achievements in this field but because I hold firmly

that what I have presented here is the minimum of basic knowledge

essential to real progress in any branch of crystallography.

It is not the least serious drawback of teaching from the ' new view-

point ' of the conception of a pattern based on a space lattice that the

student is asked to accept at the outset so much that he cannot immedi-
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ately investigate for himself. He cannot see and handle the atomic

structure, and check for himself the regular arrangement, in the same

direct way in which he can handle the crystals themselves and check the

regularity of the angular relationships of the faces by direct gonio-

metrical measurements until the existence of an orderly structure in

the crystalline state becomes something much more real to him than a

plausible explanation of certain diffraction effects. A friendly critic

has suggested that I should describe this book as an introduction to

classical crystallography, but I am convinced that it can fairly be con-

sidered an introduction for all who hope one day to claim the title of

crystallographer.

The illustrations throughout have been specially drawn. A pre-

Hminary review of pubhshed figures revealed so many mistakes in stan-

dard reference works that this seemed to be the only safe course.

Though real progress can be made only by handling actual crystals and

crystal models, it is essential to any understanding of a book of this kind

that it should be freely illustrated. I am greatly indebted to the pub-

hshers and to their draughtsman, Mr. H. C. Waddams of Emery Walker

Ltd., for the care which they have devoted to the preparation of my
original drawings for reproduction, though I cannot hope that I myself

have avoided all errors. The figure of a stereographic net is reduced,

by permission of the Council of the Mineralogical Society, from a net of

2\ ins. radius originally published by the late Prof. A. Hutchinson in the

Mineralogical Magazine.

In the chapter on mathematical relationships I have tried to be

reasonably exact without becoming ponderous, keeping in mind the

needs of the student of hmited mathematical abiUty. Mathematically-

minded readers can derive proofs where I have omitted these. It seemed

essential to present a proof of the fundamental Law of Rational Sine

Ratios, and I have chosen one combining simphcity with reasonable

elegance ; though often ascribed to G. Cesaro, who pubhshed a version

of it in 1916, it is essentially the same as one used much earher by Story-

Maskelyne.

The development of the thirty-two crystal classes and the discussion

of space groups are conducted in the Hermann-Mauguin notation. The

only manageable notation for space groups, this is certainly also the

most elegant for the crystal classes, and it is greatly to be hoped that it

will be adopted also by those whose primary concern does not pass

beyond external morphology. In view of its use in the authoritative

International Tables for the Determination of Crystal Structures I have
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accepted this notation almost without modification, though on a few

points I have ventured to express a personal opinion. Chapter XI is not

to be regarded as a rigid derivation of all the space groups but rather

as an indication of the manner in which a more formal mathematical

approach enabled these groups to be built up. It is essential that the

student should be trained from the outset to picture a space group as a

three-dimensional scaffolding of symmetry elements, and I have there-

fore introduced clinographic views of certain groups though such figures

are hable to be confusing in all but the simplest examples.

The concluding chapter deals briefly with a subject which has been

strangely neglected by British crystallographers ; I hope that it will

support in the mind of the reader my contention that the study of

crystal habit is still far from being a matter of mere historical interest.

As a teacher I owe much to the generations of students who have

passed through my classes and to my colleagues, past and present, who
have given me generous help. In particular, I am indebted to Dr.

N. F. M. Henry and Dr. W. A. Wooster for much constructive criticism

of the manuscript and to Mr. A. G. Brighton and Dr. Henry for

invaluable help in the correction of proofs.

' Le but de I'enseignement, et surtout celui de I'enseignement

superieur,' wrote Friedel, ' doit etre moins d'instruire que d'eduquer et

de faire reflechir ; moins d'entasser des connaissances que d'apprendre

a en digerer quelques-unes ; moins de gUsser sur les difficultes que de

les mettre en lumiere; moins de laisser croire a TinfaiUibihte des

methodes en usage et a la certitude des resultats que d'en montrer les

points faibles et de cultiver ainsi I'esprit de critique et de Ubre examen,

base necessaire de I'esprit de recherche.' This book is an introduction

;

its success will be measured by the number of its readers who finally

lay it aside and, ' throwing off the shackles of the text-book ', set out

upon their own crystallographic investigations.

Cambridge, 1946 F. Coles Phillips
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PART I

THE EXTERNAL SYMMETRY OF CRYSTALS

CHAPTER I

THE NATURE OF THE CRYSTALLINE STATE

Crystallography is the science of crystals, and so we must ask ourselves

at the outset—what is a crystal? To most of us, the word recalls at

once such familiar examples as sugar, salt or ice, or the alum which

we grew from aqueous solution in early experiments in the school

laboratory. We thus fasten immediately upon some of the essential

characteristics—a crystal is a sohd bounded by a series of plane ' faces ',

and usually these faces appear obviously to have some kind of regu-

larity of arrangement. We may be famihar with the beautiful examples

of crystals displayed in a mineralogical museum, and the word Kpv-

crraAAos- (icc) was indeed first appUed to the naturally-occurring oxide

of siHcon, the common mineral quartz, which was thought to be water

congealed by intense cold. From the mineral specimens of the museum
it is a natural step to the faceted gems mounted in rings and other

articles of human adornment, but the step may lead us into a popular

error. A cut gem is indeed bounded by plane faces regularly disposed,

but their disposition is at the whim of the lapidary who cut and polished

the stone, and is determined largely by the size and shape of the par-

ticular specimen on which he is at work. True crystal faces, on the

other hand, are the outcome of a natural process, natural in the sense

that, even if crystalhsation is taking place under controlled conditions

in a laboratory, the nature and disposition of these faces are directly

related to the process of growth of the crystal without human inter-

ference. We can define a crystal as a homogeneous sohd bounded by

naturally-formed plane faces. The arrangement of these faces is an
expression of the manner in which the matter of the crystal is assembled

as it grows, and we shall find abundant evidence in the course of our

work that this assemblage takes place in a regular manner, so that the

naturally-formed external faces which we study are related to a regular

internal arrangement.

During the earUer part of our investigations we shall be engaged in

p.c. A
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attempting to draw from a study of these external faces inferences

about the nature of this internal arrangement, until it ultimately

becomes clear that it is the pattern of this arrangement which is all-

important. Not only the external shapes of its crystals, but all the

physical properties of a particular substance, depend upon its particular

internal structure. After a close study of all the properties of crystals

of corundum, AI2O3, for example, we shall be able to dispense with

the external shape as an aid to identification ; a fragment of such a

crystal, bounded externally only by irregular fractures, still possesses

the same internal structure resulting, for instance, in the same optical

properties. If we are unfortunate in our choice of jeweller, and have

been sold a ' paste ' (glass) imitation of the gem we are seeking, the

artificial nature of the external facets will no longer be a bar to dis-

covering the deception, for such a glass lacks the regular internal

structure—it is not crystalline. Finally, after a thorough study of the

orderly arrangements underlying the well-formed crystals which will be

our main subject of discussion here, we shall be in a position to recog-

nise less complete orderliness, until eventually we come to discover

some degree of crystaUinity in many substances not capable of existing

in well-formed single crystals. The modern crystallographer includes

in his field of study such initially unpromising materials as rubber and

synthetic plastics, silk and wool, and by the same methods investigates

even Hquids and gases. Crystallography is no longer merely the science

of crystals, but of the crystalline state. If we confine our attention here

mainly to the narrower field of well-developed crystals, it is only to

lay a secure foundation on which to erect the towering superstructure

in which modern crystallography, in the widest sense, has found some

of its most striking appUcations.

CRYSTAL SYMMETRY
One of the most noticeable features of many

crystals, as we have already seen, is a certain

regularity of arrangement of the faces, and we
proceed to study the nature of this regularity in

greater detail.

If we examine a number of drawings of typical

crystals or, better still, a number of crystal models,

it is at once apparent that there is a strong ten-

dency for faces to be so arranged that the edges

of sulphur. formed by a number of them are parallel. This
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feature is very evident, for example, in the crystal of sulphur represented

in Fig. 1. Such a set of faces constitutes a zone, which we can define

as a set of faces whose mutual intersections are all parallel. The
common direction of edge is that of the zone axis of that particular

zone.

The next regular feature we might notice is the frequent occurrence

of similar faces (of the same size and shape) in parallel pairs on opposite

sides of the crystal. Many crystals are bounded entirely by such pairs

effaces, the sulphur crystal of Fig, 1, for example, and are said to show

a centre of symmetry. A solid such as the regular tetrahedron, how-

ever, in which a face on one side is opposite a point (or

coign) on the other, does not possess a centre of sym-

metry. In examining more complex models, we shall

sometimes discover examples in which some of the faces

occur in parallel pairs whilst others have no similar

face parallel to them; a crystal does not show a

centre of symmetry unless every face has a similar

face parallel to it.

Many of the models will show another kind of regu-

larity of arrangement ; the crystal in Fig. 2 is bilaterally p,Q 2. a crystal

symmetrical—it shows a plane of symmetry. Highly showing a plane of

regular crystals may be bilaterally symmetrical about

several planes cutting them in different directions ; they have several

planes of symmetry. Thus in a cube there are three planes of

symmetry of the kind shown in Fig. 3, parallel to the faces of the

Fig. 3. The three planes of symmetry parallel to the faces of a cube.

cube ; but there are also six diagonal planes, shown in Fig. 4. There

is one important characteristic, however, about a crystallographic plane

of symmetry which differentiates it from our ordinary conception of a

plane of geometrical symmetry ; not only must the plane be such that

it divides the crystal into two equal portions, but these two portions

must be so situated that they are mirror images of each other with

respect to the plane. Thus, while a cube has the six diagonal symmetry
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Fig. 5.

Fig. 4. The six diagonal planes of symmetry in a cube.

planes shown in Fig. 4, the rectangular parallelepiped of Fig. 5 has no

such planes. The plane marked in this figure does divide the soUd

into two geometrically similar wedges, but they

are not situated as reflections of each other in

the plane. The only crystallographic symmetry

planes present here are parallel to the three

pairs of faces.

A third kind of crystallographic symmetry

is symmetry about a line, termed an axis of symmetry. If a cube is

rotated about a line normal to one of its faces at its mid-point (Fig. 6),

it will turn into a congruent position every

90°, and therefore four times during a complete

revolution; the normal is an axis of fourfold

symmetry, a tetrad axis, and a cube clearly

possesses three such axes, one normal to each

of the three pairs of parallel faces.

We can thus define an axis of symmetry as a

line such that after rotation about it through

360°jn the crystal assumes a congruent position

;

the value of n determines the degree of the axis.

If n = 1, the crystal must be rotated completely

through 360° before congruence is achieved.

Such an axis is termed an identity axis, and

every crystal clearly possesses an infinite number
of such axes. This concept is of httle use to us at present, but will be

helpful later in our study.

Fig. 6. One of the tetrad

axes of a cube.
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If «=2, the crystal must be rotated through 180°, and the axis is

termed a diad axis.

If « =3, congruence is achieved every 120°, and the axis is a triad.

If « = 4, the corresponding angle of rotation is 90°, and the axis is a

tetrad.

If « = 6, giving congruence every 60°, the axis is a hexad.

We shall be in a position later to prove that these are the only

possible values ; investigation of other laws of crystal architecture will

show that a degree of symmetry higher than 6 is impossible, and will

also account for the absence of the value « = 5 (a pentad axis is not a

possible crystal symmetry axis).

We have already seen that a cube possesses a centre of symmetry,

nine planes of symmetry (three of one kind, and six of another) and

three tetrad axes. It has also other axes of symmetry; it may be

rotated about a solid diagonal through 120° to reach congruence (Fig.

7), and such a hne, of which there are four, is therefore a triad axis.

Fig. 7. One of the triad axes of a cube. Fig. 8. One of the diad axes of a cube.

Finally, a line joining the middle points of a pair of opposite parallel

edges proves to be a diad axis (Fig. 8), and there are six of these

present in the cube. The full crystallographic symmetry of the cube is

thus: , c
centre of symmetry

3 planes 1 r> i t- -, a
. ^. , , [9 planes. Figs. 3, 4.
6 diagonal planes j

3 tetrad axes]

4 triad axes r 13 axes, Fig. 9.

6 diad axes J
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By handling models, it soon becomes evident that this same group

of symmetry elements is present in many other crystals of quite differ-

<<^
Fig. 9. The thirteen axes of symmetry

shown by a cube.
Fig. 10. The octahedron.

ent shapes from that of the cube. It is the symmetry, for example, of

the octahedron (Fig. 10) and of the rhombic dodecahedron (Fig. 11).

A rhombohedron (Fig. 12), on the other hand, shows considerably

less symmetry. It may be looked upon as derived from a cube by

compression (or extension) along one of its triad axes. The upper

Fig. U. The rhombic dodecahedron. Fig. 12. A rhombohedron.

and lower coigns are no longer right-angled, but the diagonal joining

them is still a triad axis. It is the only triad axis which the model

possesses, however, for the six remaining coigns are formed by two

kinds of edge, a polar edge ab running down from the emergence of

the triad axis and two edges forming part of the zig-zag ' waist-line

'

of the model. There is no axis of symmetry (other than an identity
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axis) passing through these six coigns, and the full symmetry of the

rhombohedron can be worked out to be

Centre of symmetry,

1 triad axis,

3 diad axes,

3 planes.

Just as other models beside the cube show the same characteristic

group of symmetry elements which we derived from the cube, so we
find the above group, derived from the rhombohedron, shown also by

other crystals of quite different shape. A little consideration will show,

too, that the total number of different symmetry groups which can be

constructed from all the possible kinds of crystallographic symmetry

elements is comparatively limited, since the symmetry elements react

on each other. A plane of symmetry, for example, will repeat any

axis of symmetry inclined to it at an angle other than 90°, so that

in the only possible combination consisting of one plane of sym-

metry and one axis, whether diad, triad, tetrad or hexad, the axis must

be normal to the plane. The symmetry of the rhombohedron derived

above is an example of a group containing one triad axis ; if a second

triad axis were present, inchned to the first, there must be three such

inchned axes, since by definition the whole group must be rotated into

congruence for every rotation of 120° about the first triad. It is thus

not possible to have a symmetry group with two triads, or with three

triads—if more than one triad is present there must be four, and we

have already encountered such a group in discussing the symmetry of

the cube.

THE SEVEN CRYSTAL SYSTEMS
On the basis of considerations of this kind, crystals are grouped

according to their symmetry into seven major divisions, the seven

Crystal Systems. We shall define these systems at present in terms of

axes of symmetry.

The Triclinic (Anorthic) system has no axes of symmetry.

The Monoclinic system has one diad axis (and no axes of higher

degree).

The Orthorhombic system has three diad axes.

The Tetragonal system has one tetrad axis.

The Cubic (Regular, Isometric) system has four triad axes.

The Trigonal system has one triad axis.

The Hexagonal system has one hexad axis.
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Though these definitions, and indeed the present method of approach

to the study of crystal symmetry, are not quite rigid, and we shall

eventually modify them shghtly, study of a number of crystal models

will show that in spite of the simplicity of the classification there is no

difiiculty in allotting a symmetry group to the appropriate system. The
rhombohedron, for example, belongs to the trigonal system, possessing

the characteristic feature of one triad axis. The cube, octahedron and

rhombic dodecahedron, showing four triad axes, all belong to the cubic

system. A combination of axes not mentioned in the definitions of

the systems will be found always associated with some other charac-

teristic combination; any crystal showing three tetrad axes, for

instance, will also be found to possess four triad axes, and so falls

naturally into the cubic system.

Each of these systems will later be subdivided into a number of

symmetry groups, the Crystal Classes, all possessing in common the

characteristic symmetry of the system. Thus a crystal in the trigonal

system may possess a triad axis only as its sole element of symmetry,

or a triad axis and a centre, or various other combinations of one triad

axis with diad axes or with symmetry planes, or with both. A rigid

discussion will reveal that there are in all 32 crystal classes. For the

time being it will not be necessary to consider any others than the most

symmetrical {holosymmetric) class within each system, but we may note

here that in some countries it is customary to consider the trigonal

system as a subdivision of a larger hexagonal system. There would

thus be only six different crystal systems, but the total number of

different symmetry groups, the crystal classes, distributed among the

systems is of course the same in either arrangement.

FORM AND HABIT

So far, the examples which we have used in the discussion of crystal

symmetry have all been composed en-

tirely of similar faces—the six faces of a

cube are all equal squares, the twelve

faces of the rhombic dodecahedron are

all equal rhombuses. Frequently, how-

ever, a crystal shows faces of several

different shapes. A cube-like crystal

may have small equilateral triangular

faces developed in place of each coign of
Fig. 13. A cubejith modified

^^^ g-^^pj^ ^^^^ (p^g 13)^ ^nd the full
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symmetry of the cube implies that if one coign is replaced by such a

triangular face, then all eight coigns must be similarly modified. The

crystal then consists of six octagonal faces, which are part of the original

cube faces, and eight of the new equilateral triangular faces ; it is said

to show faces of two different forms. This word is used in a special

sense in crystallography, and we must be careful to avoid its use if we

wish only to imply a general idea of shape. A rigid definition of a

form is ' the assem.blage of faces necessitated by the symmetry when

one face is given '. The full imphcation of this definition can only be

appreciated gradually, as we proceed to study in turn crystals belonging

to the different systems, but some important points can be brought out

by a comparison of the cube with the rhombohedron.

All eight coigns of the cube are similar (if they were not, the normals

to the cube faces would not be tetrad axes), and the appearance of a

small face replacing one coign necessitates, as has been remarked, a

similar replacement of all eight coigns ; the new crystal is a combina-

tion of two forms, the six-faced cube and the eight-faced new form.

The eight coigns of a rhombohedron are not all ahke, six of them (hke

the one marked a in Fig. 12) being hke each other and unlike the two

similar obtuse coigns {b. Fig. 12), If a new form appears replacing

one coign a, then all six of these coigns must be replaced, and the new

form is six-faced (Fig. 14). The obtuse coigns b are not modified by

Fig. 14. A rhombohedron with one Fig. 15. A rhombohedron with the

set of coigns modified. trigonal coigns modified.

faces of this new form; they in their turn may be modified by

faces of a third form, and if one is so modified they must both be

modified or the crystal will no longer possess, for example, a centre of

symmetry. This third form therefore consists of two faces (Fig. 15).

Study of crystals composed of more than one form introduces a

further new factor. In the single forms, the faces were all the same

size and shape; in the cube with its coigns replaced by faces, which

we may think of as developed by actually cutting away the original
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coigns of the cube, what determines how large the new triangular faces

should be—how much of the coigns we shall cut off? If only a little

is removed, the appearance is that of Fig. 16; if more is cut away, the

Fig. 16. Fig. 17.

cube faces may be reduced to squares (Fig. 17), but if the process of

paring away is continued further the new faces will meet in a new set

of edges and will be hexagonal instead of triangular (Fig. 18). The

Fig. 18. Fig. 19.

logical completion of the process is illustrated in Fig. 19, where we are

left with only eight faces constituting what is now easily recognisable

as the octahedron. Thus all the crystals of Figs. 16, 17 and 18 are

cubo-octahedra, combinations of the two forms cube and octahedron,

and differ from each other only in the relative development of these

forms. Fig. 16 is a cube modified by small faces of the octahedron,

whilst Fig. 18 ipay be described as an octahedron modified by smaller

faces of the cube. This relative development is called the habit—' the

habit of a crystal is the general aspect conferred by the relative develop-

ment of the different forms '.

Variability of habit is the first source of difficulty on passing from a

study of crystal models to a study of actual crystals. It would not be

easy, at present, for us to recognise at sight that the crystals of Figs.
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16 and 18 are crystallographically identical in the sense that they show

the same forms, and differ only in habit. Experiments in the labora-

tory, crystalUsing the same substance under different conditions, show

that some of the important factors affecting the habit of growth of a

particular substance are the conditions of crystaUisation—the solvent

used, the temperature at which crystallisation takes place, the presence

of impurities, and so on. Sodium chloride grows from pure aqueous

solution as simple cubes, but the addition of urea to the solution causes

crystals to grow resembhng Fig. 16, cubes modified by small octahedral

faces
;
potassium chlorate crystalhses from pure aqueous solutions as

thin platy crystals (a tabular habit) with a rhombus-like outline, but

the addition of even a trace of certain dyes such as methyl orange

changes the habit to that of slender needles (an acicular habit). The

chemist's customary preparation of his final crystalline product by

repeated re-crystallisation from solution in a pure solvent selected

from a relatively small range (such as water, alcohol, ether or acetone)

results in a reasonably constant habit in a given substance, and he is

fortunate that he is not perplexed by the bewildering variety of habit

which sometimes confronts the mineralogist, whose crystals have been

produced in nature under a wide variety of conditions and from

solutions often containing all manner of other substances as impurities.

Models of crystals of varying habit have still one important feature

in common ; they will all yield on inspection the same group of sym-

metry elements, and no possible variation of habit can change the

crystal class and system to which a given substance is allocated. What-

ever the relative sizes of the faces of the two forms in a cubo-octahedron

may be, all cubo-octahedra are clearly closely connected, since they all

possess the full group of twenty-three elements of symmetry shown by

the simple cube. When we transfer our attention to actual crystals we

are confronted with a difficulty of a much more acute kind than mere

variation of habit. Most of us have grown crystals of alum from solu-

tion, and have been told that alum crystalhses from aqueous solution

in octahedra; though by suspending a small seed-crystal in the

solution on a piece of cotton we may finally have

succeeded in growing a fairly regular-looking

octahedron, most of the crystals formed on the

bottom and sides of the beaker probably looked

more hke Figs. 20 and 21, distorted and irregular-

looking, with faces very far from being the same

size and shape. Clearly such a crystal would Fig. 20.
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not yield on examination many, or even any, of the twenty-three

elements of symmetry which we have found in the regular octahedron.

How is this difficulty of the irregularity and

geometrical distortion of natural crystals to be

reconciled with the previous discussion of crystal

symmetry conducted in terms of regularly-

FiG. 2L developed models?

THE LAW OF CONSTANCY OF ANGLE

The acuteness of the difficulty is well brought out by the fact that it

held up the discovery of the fundamental law underlying the growth

of crystals until as late as 1669. In that year Nicolaus Steno,* a

remarkably versatile scientist, published in Latin at Florence a dis-

sertation entitled De Solido intra Solidum naturaliter contento Disserta-

tionis Prodromus, a translation of which, ' EngHsh'd by H.O.', was

pubhshed in London in 1 67 1 . In this work, amid a variety of geological

and mineralogical observations, Steno describes and illustrates measure-

ments which he had made on crystals of the mineral quartz, SiOa-

By cutting sections from differently distorted crystals and tracing their

outline on paper he was able to show that analogous angles in the

different sections, whatever the actual size and shape of the sections

themselves, were always the

same. Thus, sections cut at

right-angles to the vertical edges

ab (Fig. 22), though regular

hexagons only in an undistorted

crystal, always had angles of

120°. Sections cut at right-

angles to edges of the kind ac

gave values different from 120°,

but still all such sections could

be arranged so that each side of

a given section was parallel to a crystal.

corresponding side of every other section. The right-hand portion of

Fig. 22 is a diagrammatic reproduction of one of Steno's figures.

* Niels Stensen (Nicolaus Steno) was born in 1638, the son of a goldsmith in

Copenhagen where he first studied. His earliest work was in the fields of anatomy
and physiology, and at Florence he held the position of physician-in-ordinary to

Grand Duke Ferdinand IL He later became interested in geological studies, and
the Prodromus was planned as a preliminary to a larger treatise which was never

published. In 1672 he was appointed Professor of Anatomy in Copenhagen;
died at Schwerin in 1686.

OOA<=30

Fig. 22. Diagramatic reproduction of one of
Steno's figures, showing sections of a quartz

he
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Steno was laying the foundation for the erection of a Law of Con-

stancy of Angle, the fundamental law of crystallography. A further

century elapsed, however, before the law was firmly estabhshed.

Steno's work was extended and generahsed by Domenico Guglielmini *

over the years 1688-1705, and finally confirmed by the work of Rome
de risle,t who carried out a very extensive series of measurements and

published his results in the period 1772-83. The Law of Constancy of

Angle may be formally stated in the following way :
' In all crystals

of the same substance, the angles between corresponding faces have a

constant value.'

GONIOMETRY
It will be observed that the law refers to interfacial angles, and not

to the plane angles of the faces themselves. It is these interfacial

angles which we must measure when comparing crystals of different

development. Steno, as we have described, accompHshed this by the

rather crude method of cutting sections normal to the edges in ques-

tion and tracing the outhne of such sections on paper. De I'lsle had

at first to adopt similar devices, but during the course of their work

his assistant, Carangeot, in 1780 invented the earliest type of crystal-

measuring instrument, the contact goniometer. The essential feature of

this device (Fig. 23) consists of two flat bars pivoted together hke a

pair of scissors and capable of being clamped in any position by means

of the screw pivot. The angle between the bars is read oflFon a graduated

semicircle. In simple types such as those used by students when
measuring crystal models the straight base of the graduated scale may
serve in place of one arm ; in others, the two arms can be removed

* Domenico Guglielmini was born in Bologna in 1655. His early work was
mainly concerned with hydraulic engineering, but in 1688 he published in Itahan at

Bologna a paper entitled Riflessioni filosofiche dedotte dalle figure de' salt, in which
he seems to have accepted Steno's work and to have used it as a foundation for
further studies. The paper is remarkable, in particular, as containing one of the
earUest suggestions of a theory of crystal structure. Guglielmini was later Pro-
fessor of Mathematics successively at Bologna and Padua, and his only other
publication of crystallographic interest was produced in Latin at Venice in 1705,
by which date he had been appointed Professor of Medicine at Padua, where he
died in 1710.

t Jean Baptiste Louis Rome Delisle (so spelt on the title-page of his earlier

publications; later he wrote de I'lsle) was born in Gray, in eastern France, in 1736,
and for the first part of his life followed a military career in the East. Returning to
Paris in 1764 on pension, he helped to support himself by giving private lectures in

mineralogy. His first publication of interest from our present point of view, Essai
de Cristallographie, ou Description des Figures Geometriques, propres a differens

Corps du Regne Mineral, connus vulgairement sous le nom de Cristaux, appeared in

Paris in 1772; and this was followed eleven years later by a much-expanded second
edition in four volumes with a slightly modified title. He died in Paris in 1790.
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together from the graduated semicircle. The method of use is almost

self-evident; the crystal is fitted between the two arms, so that the

plane of the instrument is normal to the edge in question, and the two

faces are pressed closely one against each arm. The required angle is

Fig. 23. A contact goniometer.

then read from the graduated scale, the screw pivot being tightened

before transference of the arms to the scale when using an instrument

with removable arms. In quoting the value of this angle it has become

the custom universally (for reasons which we shall shortly appreciate)

for crystallographers to use not the actual value of the solid angle but

the supplement of this angle, which is the angle between the normals

to the crystal faces. Thus a crystallographer speaks of a hexagonal

prism as having interfacial angles of 60°, and not of 120° as we are at

first tempted to say.

Though the contact goniometer is still useful in the examination of

large crystals, particularly those with rough or irregular faces, and is

the best instrument for use by students in conjunction with crystal

models, it has been entirely replaced for all accurate work on small

crystals by some type of reflecting goniometer. The first description of

such an instrument was given by W. H. WoUaston * in 1809. A modern

* William Hyde Wollaston was born at Chislehurst, Kent, in 1766. After

graduating at Cambridge he took up medical practice, but relinquished this in 1801

to devote himself to chemistry. His versatility of achievement was remarkable,

enabling him to make original discoveries in the fields of pathology, chemistry,

crystallography, physics, astronomy and botany. He is well known as the inventor

of the camera lucida and the discoverer of the elements Palladium and Rhodium.
He died in 1828.
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version is illustrated in Fig. 24. Suppose that a fixed mirror (Fig. 25)

is illuminated by parallel light from a distant source (or from a col-

Hmator) and that a part of the beam

falls also on the crystal, which is

fixed on an axis parallel to the

mirror and a short distance above

it and so adjusted that the edge

over which we wish to measure

the inter-facial angle is parallel to

the axis. The image of a fixed

signal such as a horizontal sht is

seen, when the eye is suitably

placed, reflected in the fixed mirror

and also in the upper face of the

crystal. The latter is rotated until

these two images coincide, a reading

Fig. 24. A reflecting goniometer of the
type devised by Wollaston.

of the graduated circle attached to the axis is taken, and the crystal

rotated on the axis until coincidence is similarly obtained for the re-

flected image seen in the second face. This will occur when the second

face has been turned into a position parallel to that originally occupied

by the first face, and a second reading of the graduated circle gives by

difference the normal crystallographic angle

between the two faces. Moreover, any further

faces belonging to the same zone (p. 3) can

obviously be brought into a position to reflect

by further rotation, so that after adjusting one

pair of faces we can measure with the re-

flecting goniometer all the interfacial angles

in a given zone without further readjustment

of the crystal.

In the simplest instruments the axis is hori-

zontal (i.e. the graduated circle is vertical)

and the eye is unassisted by a telescope. If

there is no coUimator (Fig. 24) the signals

are provided by a distant lamp or screened

window, and it is convenient in practice not

to use the image of the same signal reflected both in the mirror and

in the crystal face. The former, the ' fixed signal ', is usually a hori-

zontal sHt, whilst the latter, the ' moving signal ', is a small diamond

aperture more brilliantly illuminated. The crystal-adjusting apparatus

Fig. 25. The principle of the

Wollaston goniometer.
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must allow movement parallel to the plane of the graduated circle, for

centring the crystal on the axis, and movement in two planes at right-

angles, normal to the plane of the circle, for adjustment of the zone-

axis parallel to the axis of the instrument.

Greater convenience of manipulation is afforded by further elabora-

tion of the instrument (Fig. 26). A collimator provides the signals.

Fig. 26. A WoUaston goniometer with collimator and telescope.

and the eye is assisted by a telescope. If the latter is fitted with cross-

webs one may dispense with the mirror, and an extra lens swinging

in front of the objective enables one to focus the crystal itself for

convenience in adjusting. The crystal-adjusting apparatus, too, is

improved ; two centring screws and two tangent screws provide the

necessary movements. Such an instrument is often built as a horizontal-

circle goniometer (Fig. 27).

In using any single-circle instrument, the crystal must be dismounted

and readjusted for measurement of each successive zone. To overcome

this disadvantage, more elaborate goniometers have been designed in-

corporating two, or even three, graduated circles. Such instruments

have special advantages in relationship to particular problems, or for
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the investigation of very minute crystals, but we may conclude with

one of the most experienced of crystallographers, Prof. P. Groth,* ' The

main problems of crystallographic enquiry can be solved, without any

Fig. 27. A horizontal-circle goniometer.

more complicated instruments, by the use of the simple single-circle

goniometer.'

Thus furnished with some variety of optical goniometer we are in a

position to make more expeditiously the kind of measurements on

which Steno and de ITsle founded the Law of Constancy of Angle.

Practical advice on goniometry will be given later (p. 93), but it is

already evident in what way we must modify our early discussion of

symmetry in order that it may apply to crystals of diverse habit and

distorted growth—we must seek faces with similar angular relation-

ships rather than faces of a given size and shape. Thus, a crystal-

* Paul Heinrich Ritter von Groth was born at Magdeburg in 1843. After study-

ing at Dresden, Freiberg and Berlin he was appointed in 1872 Professor of Minera-
logy at Strasbourg, moving to the Chair at Munich in 1883. Here he worked
for forty years and established for himself an international reputation as a chemical

crystallographer. In his five-volume Chemische Krystallographie he assembled
crystallographic data for over 7000 substances, and in 1877 founded the Zeitschrift

fur Krystallographie und Mineralogie, a periodical in which very many important
papers have since appeared. He died at Munich in 1927.

P.C. B
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lographic plane of symmetry divides a crystal in such a way that for

every face on one side of the plane there is a corresponding face sloping

at the same angle on the opposite side of the plane ; a triad axis pro-

duces from a given face two further faces symmetrically disposed

around the axis and making the same angle with it, and so for the other

elements of crystallographic symmetry. In fact, the size and shape of

individual faces of a crystal are purely incidental features determined

merely by the conditions of growth of the particular crystal under con-

sideration, but the angular relationships of these faces reveal the under-

lying crystallographic symmetry. By measuring a model or a regularly

developed crystal, the student can estabUsh that the angle over the edge

of a regular octahedron is 70° 32' ; measurement of distorted crystals

of alum (Figs. 20, 21) reveals that whatever the degree of geometrical

distortion the angle over any edge between two adjacent faces still has

this same value.



CHAPTER II

METHODS OF PROJECTION

CRYSTAL PROJECTION

Since the sizes and shapes of the faces of a crystal are merely inci-

dental, their variation serves only to obscure the true symmetry

relationships, and a discussion of such relationships is carried out most

conveniently in terms of some representation of the crystal in which the

essential angular relationships are preserved whilst the trivial features

are unrepresented. This is achieved by some type of crystal projection,

in which each face is represented by a dot, which has neither size nor

shape but has still particular angular relationships with respect to other

dots in the projection.

If from an origin within the crystal we imagine normals to be drawn

to all the faces (extended in their own plane if necessary), these normals

radiate from the origin in directions depending upon the crystal-

lographic interfacial angles; whether a given face on a particular

crystal is large or small its normal will still have the same direction,

relative to the normals to other faces, as in every other crystal of the

same substance. Illustrating the matter first in two dimensions. Fig. 28

Fig. 28. Normals to a zone
of faces at 60°.

Fig. 29. The bundle of normals to

the faces of a crystal.

demonstrates that a zone of faces at 60° will give the same set of normals

whatever the dimensional distortion of individual faces. Carrying

this process through in three dimensions (Fig. 29) and concentrating

our attention only on the bundle of radiating normals, we have in

part achieved our objective, but such a bundle is difficult in conception

and awkward for pictorial representation, and so the projection is
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carried further. A sphere is imagined described about the crystal with

its centre at the origin of the normals, which are then produced to cut

the surface of the sphere, and at each point of intersection a dot (the

Fig. 30. Spherical projection of the normals of Fig. 29.

pole of the corresponding face) is marked on the sphere (Fig. 30). The

essential angular relationships of the crystal are now represented in

spherical projection.

STEREOGRAPHIC PROJECTION
Such a projection, however, is still three-dimensional, and we finally

adopt some device for representing the projection on a plane sheet of

paper. The problem is similar to that of the geographer who attempts

to represent the surface of the earth on a plane map, and we might

choose any one of the various methods which he at times adopts. The

particular choice will be dictated by a desire to preserve angular truth,

so far as possible, in the projection, whilst areal truth is of little con-

cern. The method most widely used in crystallography is that of the

stereographic projection, a projection known in ancient Greece in the

second century B.C. but first utiHsed in this way by F. E. Neumann *

in 1823 and subsequently brought into general use by W. H. Miller.f

* Franz Ernst Neumann was bom at Joachimsthal in 1798, and studied in Berlin.

His book Beitrage zur Krystallonomie was published in 1823. A few years later

he was appointed Professor of Mineralogy and Physics at Konigsberg, and his

interests gradually turned to the wider field of mathematical physics, in the develop-

ment of which in Germany he played an important part. He died in 1895.

t William Hallowes Miller was born at Velindre, near Llandovery, S. Wales,
in 1801. After graduation at Cambridge as fifth Wrangler, he first occupied himself
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The plane of the paper is regarded as passing horizontally through
the centre of the spherical projection, which it intersects in the primitive

circle (Fig. 31). Each pole on the sphere is then projected on to the

Fig. 31. The principle of stereographic projection.

plane of the paper by joining it to the lowermost point P of the sphere,

the pole being marked by a small dot on the paper at the point of

intersection of this join. The upper half of the crystal thus projects

as a series of poles lying within the primitive (Fig. 32), whilst the poles

of any faces normal to the paper he on the primitive itself. If the con-

struction be applied to poles on the lower hemisphere, the joining line

must be produced to intersect the paper, and the corresponding pole

in projection will lie outside the primitive. Whilst this is sometimes

the most convenient method of representation, it extends the projection

unduly, since the projections of poles low down on the sphere near P
will he at an almost infinite distance from the centre of the primitive.

It is customary, therefore, to restrict the projection to the area within

the primitive ; to accomplish this, poles on the lower hemisphere are

with mathematical work, but in 1832 he was appointed to succeed Whewell in the
Chair of Mineralogy, a position which he occupied to the end of his Ufe. In 1839
he pubUshed A Treatise on Crystallography, a classic work on mathematical crystal-

lography the substance of which was reproduced in more condensed form later as
A Tract on Crystallography (1863). A mass of original observations on the crystal-

lography of minerals was incorporated in the second edition of An Elementary
Introduction to Mineralogy by W. Phillips, which Miller produced jointly with H. J.

Brooke in 1852. In another field, he did valuable work in connection with the
construction of a new Parliamentary standard of weight. He died at Cambridge in

1880.
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joined upwards to the point P' on the sphere diametrically opposite /*,

and to indicate that this has been done, and that the pole in projection

Fig. 32. Stereographic projection of the upper hemisphere of the spherical

projection of Fig. 30. The poles marked as open rings are in the rear.

represents a face on the lower half of the crystal, the intersection is

marked on the paper as a small open ring instead of a dot.

We now proceed to project stereographically the crystal represented

in Fig. 33, showing the faces of the cube, the octahedron and a third

Fig. 33. a modified cube. Fig. 34. Stereographic projection of some
of the faces of the crystal in Fig. 33.

form with twelve faces. The cube faces can be readily inserted; the

pole of the uppermost face hes at the centre of the primitive, and the

lowermost face, parallel to this, is represented by a small ring drawn
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around this dot (Fig. 34), The four vertical faces give poles lying on

the primitive itself (notice that dots only will appear on the primitive

;

a ring in this position could only mean the same face, normal to the

paper, which the dot represents).

Considering next the twelve rectangular faces, it is clear from the

parallelism of edges (Fig. 33) that they he in sets of four in zones with

the cube faces. Normals to all the faces in one zone will lie in a plane

at right-angles to the zone-axis, and this plane will cut the sphere in a

great circle. (A great circle on a sphere is a section of the surface of

the sphere by a plane passing through the centre of the sphere ; the

Meridians and the Equator are great circles on the terrestrial globe.)

In the projection (Fig. 34) one of these great circles is the primitive

and the others, vertical great circles passing through the projecting

point P, project as diameters of the primitive. Measuring the angle

from a "cube face on to one of the adjacent rectangular faces gives an

interfacial angle of 45°. The four poles on the primitive are readily

inserted in the projection, by means of a circular protractor, but for

the remaining poles we require to find the correct distance in projec-

tion corresponding to an angular distance of 45° from the summit of

the sphere (Fig. 34). From a vertical section of the spherical projection

(Fig. 35), the distance S, from the centre of the primitive in projection, of

the pole of a point at an angular

distance 9 from the summit of

the sphere is seen to be r tan dj2,

where r is the radius of the

sphere of projection (and there-

fore of the primitive). Using a

value ^ = 45° this distance can

be determined graphically by a

reproduction of Fig. 35, and be

transferred with dividers to the

projection (Fig. 34). (The be-

ginner will find it easier at first

to use a separate auxiliary dia-

gram for such constructions,

with a circle of radius equal to that of the primitive, though the

practised crystallographer makes use of the primitive itself for this

purpose, see construction 2, p. 27.) The four upper faces lie sym-

metrically disposed around the vertical tetrad, at this determined

distance from the centre, and the remaining four beneath are represented

Fig. 35. Derivation of the value of S in

stereographlc projection.
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by rings around these four dots, since the lower part of the crystal is

similar to the upper half.

The twelve faces of the new form have now been projected (Fig. 34)

;

each face is normal to one of the diad axes of the cubic symmetry

group in question, and the form is therefore the rhombic dodeca-

hedron (Fig. 11). The next step is the projection of the octahedral

faces. From the parallelism of edges, again, it is evident that each

octahedral plane lies in a zone with a face of the cube on the one side

and a face of the rhombic dodecahedron on the other. (In the investiga-

tion of an actual crystal, instead of a model, this zonal relationship

would be revealed in the course of the goniometrical measurements.)

The octahedral poles can therefore most easily be inserted in the pro-

jection by locating on it the intersections of the traces of these zones.

Their intersections with the sphere, however, are in four instances

great circles inchned to the plane of the projection, and we must first

discuss one of the fundamental properties of stereographic projection

—that any circle drawn upon the sphere will be projected as a circle. (It

is interesting to note that this property was clearly reahsed as early as

the thirteenth century.)

We have seen that great circles are of special importance in crystal-

lography, since the poles of all faces in a zone will he on a great circle.

The property, however, is a

general one and we shall

prove it by consideration of

the general case of a small

circle (Fig. 36). (A small

circle is a section of the sur-

face of the sphere by a plane

not passing through the centre

of the sphere; parallels of

latitude are small circles on

the terrestrial globe.) Fig. 37

is a vertical section of the

sphere, V is the centre of the

small circle on the sphere,

and LM the trace of its plane

in the section. The right

Fig. 36. Illustrating the stereographic projection section (through LN) of the
of a small circle drawn on the sphere.

cone of which LPN is a cross-

section is therefore an ellipse, and LM is the trace of one of its circular
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sections. Symmetrically inclined to the axis PVin such a cone there is

a conjugate circular section QN. Draw MR parallel to the plane of the

projection; then

LRMP = LPLM (on equal arcs RP, PM)
= LPNQ (since LM, QN are conjugate sections).

is parallel to theHence MR, and therefore the plane of projection

circular section QN of the

cone. Parallel sections of a

cone are similar, and there-

fore the section of the cone

by the plane of projection

is a circle (Fig. 36). Inci-

dentally it is clear from the

figure that, since the projec-

tion of V does not he half-

way between the projections

of L and M, the centre of

the circle in projection does

not coincide with the pro-

jection of the centre of the

circle on the sphere.

The student faniiUar with

the geometry of inverse loci

wiU observe that this property of stereographic projection follows

directly from the proposition that the inverse of a circle is a circle, the

locus of the intersections with the pro-

jection being the inverse of the circle on

the sphere. For, if L be a point on

the sphere at an angular distance 9

from the summit, and / its stereo-

graphic projection, PL = 2r cos 912, and

Pl = r sec 9/2, whence PL.Pl^ 2r^.

Returning now to the completion of

the projection of the simple cubic crystal,

each octahedral pole can be located at

the intersection of the traces of three

^ ,„ „
, , , , e zone-circles (Fig. 38). For each pole.

Fig. 38. Completed stereogram of v o / r
:>

the crystal in Fig. 33. The three zone one of thesc zone-circles in projection
circles intersecting in one of the octa- . c • c -j. j- iu it.

hedral poles are drawn in thicker lines. IS Ot mhmte radms, the Others are

Fig. 37.
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circular curves the centre of which in projection can be located by
bisecting the chords joining the appropriate poles of the cube and
rhombic dodecahedron. (The beginner should note that it is merely an
accident of the geometry of a cubic crystal that the centres in projection

of these first inclined zone-circles to be drawn happen to lie on the

primitive. The centre of a great circle in projection may lie anywhere

between the centre of the primitive and a point at infinity, depending on

the inclination of the great circle to the plane of projection.) The
addition of four rings to represent the four lower octahedral planes

completes the stereogram of this crystal. In Fig. 39, the arcs of the

Fig. 39. Completed stereogram of the same crystal (Fig. 33), projected entirely

from the lower projecting point P.

great circles are continued beyond the primitive to locate these poles

in a version of the stereogram in which the lower half of the crystal

also is projected from the point P; the device of changing to the

opposite point P', however, is almost universally used.

STEREOGRAPHIC CONSTRUCTIONS
Since a stereogram will be constantly used as a representation of

a given crystal in later discussions, it is opportune to consider here

various constructions for which a need will gradually arise. It is not

necessary to master them all immediately.

1. Projection of small circles.

{a) About the centre of the primitive. The stereographic representa-

tion of the angular radius is plotted outwards from the centre of the
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primitive along any diameter, and the circle drawn with its centre in

projection at the centre of the primitive. Note that this is the only

instance in which the centre of a small circle in projection coincides

with the projection of its centre on the sphere.

(b) About a pole within the primitive. Draw the diameter of the

primitive passing through the centre V of the required small circle, and

on it plot points L and M at stereographic distances from the given

pole on either side corresponding to the angular radius of the required

small circle (Fig. 40). L and M must thus represent the opposite ends

(P)

Fig. 40. The stereographic projection of small circles.

of a diameter of the small circle, and the centre in projection must lie

at the mid-point of LM. If the value of the stereographic distance

from the centre for the point L exceeds r, the radius of the primitive

L must of course be plotted beyond the primitive (i.e. in Fig. 35 the

projecting point P is used throughout, whether the point on the sphere

lies above or below the plane of the paper).

(c) About a pole on the primitive. The construction (b), extended

outside the primitive, covers this case also, but there is a more con-

venient construction which the student should verify for himself. From
the pole W on the primitive locate a point S at an angular distance

along the primitive equal to the radius of the required small circle

(Fig. 40). At S draw a tangent SQ to the primitive, cutting the

diameter through the given pole at Q. Then Q is the centre and QS
the radius of the required small circle in projection.

2. To find the ' opposite ' of a pole. The opposite of a pole K(Fig. 41)

is the projection of the other end of the diameter of the sphere passing

through V. This is usually projected as a small ring V equidistant

from the centre on the side remote from V. As the ring indicates, this
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position arises by changing from tlie lower to the upper projecting

point, and for certain constructions it is necessary to find the true

position V" of the opposite if the lower end of the diameter also is

projected from the same pro-

jecting point as the upper end.

Suppose that the projecting

sphere is rotated through 90°

about the diameter of the prim-

itive passing through V; the

projecting points P and P' then

temporarily occupy positions in

the plane of the paper (Fig. 41),

the position of V, which is on

"^)^=:i;i2Il_—
--"^ the axis of rotation, being un-

FiG. 41. The stereograohic projection of changed. From P project V
an opposite.

^^^j^ ^^ ^^ ^^^ ^^^^^ ^^ ^^^

sphere, draw the diameter of the sphere, and project its lower end from

P to give the point V". Restoring the sphere to its original attitude,

the position of V", likewise on the axis of rotation, is unchanged and is

the required projection of the opposite of V. Now from the figure it

is clear that, since the diameter subtends an angle of 180°, the /. VPV"
at the circumference = 90°. Hence V" can be quickly located in practice

by placing a set-square with its right-angle at P and one side passing

through V.

3. To draw a great circle through two poles within the primitive. The

required great circle passes also through the opposites of the given

poles V and W (Fig. 41). One of these opposites is constructed as in

construction 2, and a circle constructed passing through the three poles

V, W and V". This is the required great circle, and the arc included

within the primitive (the only portion usually represented in projec-

tion) will have as chord a diameter of the primitive.

4. To find the pole of a great circle. The pole of a great circle is a

point on the sphere 90° from every point on the circle ; that is, it is the

point where the normal to the circle intersects the surface of the sphere.

If the great circle be a zone-circle, then its pole is the point of emergence

of the zone-axis, regarded as drawn through the centre of the sphere.

The procedure resembles that which we used in construction 2. If

ACB (Fig. 42) is the projection of the given great circle, draw the

diameter CD of the primitive normal to the chord AB. Project the

pole C from B, measure an arc of 90° around the primitive over
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the pole A, and re-project from B to give the required pole D. From
the figure it is clear that, if the angle at the centre = 90° then l CBD
at the circumference =45°, and use of the appropriate set-square is

again the quickest means of locating the pole D.

Fig. 42. The stereographic projection
of the pole of a great circle.

Fig. 43. Measurement of an arc of an
inchned great circle.

5. To measure a given arc on an inclined great circle. L, M (Fig. 43)

are two poles on an incUned zone-circle, and it is required to determine

the value of the arc LM. Locate the pole D of the great circle by con-

struction 4, and from D project the poles L, M on to the primitive at

/, m. Then the arc Im (measured, of course, by the angle which it

subtends at the centre of the

primitive) gives the required

value.

This construction can also

be used for the inverse problem

of finding a pole M on an in-

clined great circle at a given

distance from a fixed pole L.

The proof of this property of

the pole of a great circle be-

comes clear when we reahse

that the straight Unes DLl and

DMm are the traces in pro-

jection of small circles passing

through D and the lower pro-

jecting point on the sphere.

In Fig. 44 the great circle Al'n'

Fig. 44. Spherical projection to explain the
construction shown in Fig. 43.

intersects the great circle Aln (the primitive of the stereographic pro-

jection) in the diameter AB. Ifd is the pole of the circle Al'n' and P the
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pole of the circle Aln, then any circle, great or small, such as dl'lP passing

through d and P cuts off equal arcs Al', Al on these two great circles.

Hence Al' =Al, An' =^An, and therefore I'n' =ln. In stereographic pro-

jection, the arc I'n' projects as the arc LN, the pole d projects to D and

the circles dl'l, dn'n project as the straight lines DLl, DNn. Hence In

is a measure of the arc LN; in general, the arc ml projected on the

primitive (Fig. 43) is a measure of the arc ML on an inclined great

circle.

GNOMONIC PROJECTION
Neumann described the adaptation to crystallographic work of other

methods of projection in addition to the stereographic. Of these, the

most important was the gnomonic projection, first used in astronomy

in the seventeenth century. Little use was made of this method of

projection, however, until Mallard * employed it extensively some fifty

years later. Its relationship to stereographic projection is illustrated in

Fig. 45. The plane of projection, instead of passing through the centre

Fig. 45. The principle of gnomonic projection, and the relationship of a gnomono-
gram to a stereogram.

of the sphere, is tangential to the sphere at the uppermost point P'.

Each face is projected by direct extension of its normal to intersect the

plane of projection. The distance G of any gnomonic pole from the

centre of the projection is thus r tan 6, where r is the normal distance of

the origin from the plane of projection (the radius of the sphere in

Fig. 45). Fig. 46 is a gnomonogram of the cubic crystal represented

in Fig. 33.

One special advantage of this method of projection is at once

* Frangois Ernest Mallard was born at Chateauneuf, central France, in 1833.
He became a mining engineer, and was later appointed Professor of Mineralogy at
the School of Mines in Paris. He published a large number of papers on crystallo-
graphy and mineralogy ; his best-known work is a Traite de Cristallographie, of
which three volumes were planned but only two appeared (1879 ,1884). He died in
Paris in 1894.
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apparent. The normals to a set of faces in a zone lie in one plane, and

therefore when produced to intersect the plane of projection will give

a series of collinear poles—the zone-

circles of the stereogram are represented

by straight zone-lines in the gnomono-

gram. On the other hand, small circles

will project as conic sections, which are

not easily reproduced graphically
;
poles

of faces normal to the plane of projection

lie at an infinite distance from the centre

of the projection ; and the projection is

not angle-true (angles between zone-Unes

on the projection are not equal to the

angles between the corresponding zone-

axes). For these reasons, the gnomonic

method is not so generally useful in elementary work as is the stereo-

graphic, and we shall make little direct use of it at present.

Fig. 46. A gnomonogram of
the crystal in Fig. 33.

CYCLOGRAPHIC AND LINEAR METHODS
Two further methods of representation were suggested by Neumann.

In the cyclographic method, each face is represented by the stereo-

graphic trace of a parallel plane passing through the origin (in Fig. 42,

a face-pole at D would be replaced by the trace of the great circle ACB).
Since the face is thus represented by a plane instead of a point, this

method is specially applicable to certain problems in crystal optics

and other branches of crystal physics, in which it is necessary to

reproduce in projection lines drawn on the crystal face.

A linear projection is related to the usual type of gnomonogram in

the same way as the cyclographic is related to the usual type of stereo-

gram. If the origin-planes, parallel to the crystal faces, are extended

to intersect a non-central plane of projection, each face can be repre-

sented by a face-hne thus obtained. Little use is made of this projec-

tion at the present time.

AUXILIARY DEVICES FOR GRAPHICAL WORK
If much graphical work is to be carried out, a number of helpful

devices soon suggest themselves. Thus if we restrict our projections to

a constant radius (2^ ins. will be found generally convenient, or 10 cms.

for more accurate work) the edge of a square protractor can be

graduated to correspond to distances r tan djl from ^ = 0° to 6 = 90°
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(Fig. 47) for stereographic work, or to r tan 6 for use in gnomonic

projections. Among a number of devices of this kind which have been

Fig. 47. The principle of the stereographic protractor.

proposed from time to time, the Hutchinson * protractor is perhaps the

best combination of utiUty with simphcity. It combines a stereographic

and a gnomonic scale, and a special method of graduation affords

useful help in a number of constructions.!

A stereographic net on which great and small circles of various radii

are drawn (Fig. 48) is also useful. Printed on tracing paper, it can be

Fig. 48. A stereographic net.

* Arthur Hutchinson was bom in London in 1866. After graduating at Cam-
bridge he studied at Wiirzburg and Munich. Returning to Cambridge in 1891 to a
teaching post in Chemistry, he became in succession a demonstrator, a lecturer and
(1926) Professor of Mineralogy. A highly successful teacher, he played a prominent
part in the development of the Department of Mineralogy. Many of his publica-

tions were concerned with graphical and instrumental methods in crystallography.

He died in Cambridge in 1937.

t Obtainable from W. H. Harling, 117 Moorgate, London, E.C. 2.



METHODS OF PROJECTION 33

placed over the projection and used both for measurement and for

plotting (the required pole being pricked through on the stereogram).

In more advanced work, this arrangement may conveniently be reversed,

and the projection be carried out on tracing cloth rotated above a printed

net. Such a stereographic net is often called a Wulff net, after G. V.

Wulff,* who published a reproduction of a net 20 cm. in diameter in

1902; similar devices had been used much earlier by other crystal-

lographers, and an excellent reproduction of a net accompanies a work

on astronomy published early in the seventeenth century.

* G. V. Wulff was a Russian crystallographer, whose name should strictly be
transcribed as Jurii (Georgii) Viktorovich Vulf. Born at Nezhin in 1863, he
graduated at Warsaw University, where he later held the Chair of Crystallography
and Mineralogy. In 1907 he was appointed Professor of Crystallography at Moscow
University. Many of his papers on crystallography and crystal optics, written
originally in Russian, were translated into other languages and in the German
translations he used the version of his name, G. Wulflf, by which he is usually known
outside Russia. He died in Moscow in 1925.

IP.C.



CHAPTER III

THE DESCRIPTION OF CRYSTALS

THE WORK OF HAUY AND THEORIES OF
CRYSTAL STRUCTURE

So far we have thought scarcely at all about possible reasons for the

external regularities exhibited by the crystals which we have been

measuring, but even the earliest crystallographers naturally began to

speculate about the probable internal structural arrangements. Gugliel-

mini made observations on the constancy of cleavage directions in a

given substance—planes in the crystal along which it could be caused

to split regularly—and he beUeved that the ultimate units from which

a crystal is built up must themselves be miniature crystals with plane

faces. Nearly a hundred years later, in 1784, the Abbe Haiiy * pub-

lished a work entitled Essai d'une theorie sur la structure des crystaux

appliquee a plusieurs genres de substances crystallisees, setting forth

ideas to which he, also, had been led by observations on cleavage. By

an accident during the examination of a group of crystals of calcite

(trigonal CaCOg) in the mineralogical collection of an amateur and

friend, one of the larger crystals broke off. It seems clear that Haiiy

himself (by a ' fortunate awkwardness ' in view of all that sprang from

the accident) had let the group fall, but his forgiving friend presented

him with the broken crystal. ' The prism had a single fracture along

one of the edges of the base, by which it had been attached to the rest

of the group. Instead of placing it in the collection which I was then

making, I tried to divide it in other directions, and I succeeded after

several trials in extracting its rhomboid nucleus.'

Finding thus that a rhombohedral cleavage nucleus could be ex-

tracted from this particular crystal, he was led to experiment in turn

with calcite crystals of other habits, and found that the shape of the

rhombohedral unit obtainable by cleavage was constant, and inde-

pendent of the external habit of the crystal from which it was obtained.

After many similar experiments on other substances, he propounded

* Rene Just Haiiy was born in St. Just, nortiiern France, in 1743, and studied in

Paris at the College of Navarre and the Cardinal Lemoine College. From the study
of physics he turned to Mineralogy, and published a four-volume Traite de mine-
ralogie in 1801, whilst keeper of the cabinet at the School of Mines. He was later

appointed Professor of Mineralogy in the Museum of Natural History, and ulti-

mately filled a Chair in the new University of Paris. As an honorary canon of Notre
Dame he is usually known as the Abbe Haiiy. He died in Paris in 1822.
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the view that continued cleavage would ultimately lead to a smallest

possible unit, a molecule integrante, by a repetition of which the whole

crystal is built up. External faces parallel to the directions of cleavage

are easily reproduced by regular stacking of the units, but Haiiy went

on to show how faces with other slopes could be supposed to be formed

by omitting rows of units regularly in successive layers. Fig. 49 is a

reproduction of one of his figures illustrating the construction of the

' dog-tooth ' habit of calcite from rhombohedral units.

J"

n
/ i

Fig. 49. A reproduction of one of Haiiy's figures, showing how a crystal of dog-
tooth spar may be considered to be built up from rhombohedral units.
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The shape of the fundamental unit was supposed by Haiiy to be

one appropriate to the particular system of symmetry to which the

substance belonged, and we may imitate his experiments in the cubic

system by stacking small unit cubelets. A crystal of simple cubic habit

corresponds to straightforward orthogonal stacking of cubelets, but by

omitting rows regularly as we proceed it is possible to develop planes

parallel to the faces of the rhombic dodecahedron. This method of

stacking is illustrated in Fig. 50, whilst Fig. 51 shows the completed
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developed other means of attack by which to discover the probable

structural unit in such cases. More seriously, as the atomic theory of

matter developed it appeared likely that the interior of a crystal is

only partly occupied by solid matter, that much of it is ' empty space '.

Wollaston, in 1812, suggested that the unit cubelets in cubic crystals

should be replaced by inscribed spheres, and in this suggestion was

reviving views put forward by the versatile Robert Hooke * as early as

1665, when he wrote in his Micrographia: ' There was not any regular

Figure, which I have hitherto met withall, of [Metals, Minerals, Precious

Stones, Salts and Earths] that I could not with the composition of

bullets or globules, and one or two other bodies, imitate, even almost

by shaking them together.' Even this picture does not help greatly in

the case of substances in which we must suppose there are atoms of

several kinds, or groups of atoms united to form molecules (which can

scarcely be pictured as spheres). Yet such difficulties did not prevent

Haiiy from making the most important single discovery in crystal-

lography, v/hich justly entitles him to be considered ' the father of

crystallography '. We are only concerned at present with the geo-

metrical consequences of the existence of a fundamental unit, and we

can avoid these difficulties by replacing each unit by a representative

point such as its centre of gravity. If we join adjacent points (Fig. 53)

a new unit is outlined, but it is now a

structural unit—a unit of pattern—and

we make no specific statement about its

contents except that it must be supposed

to contain a complete representation of

the substance of the whole crystal.

In our discussion of the simplest forms

of a cubic crystal it was observed that

a face of the rhombic dodecahedron

occurs in a zone between two cube faces

(Fig. 54), and makes an angle of 45 with Fig. 53. Development of a structural

^ , ^ , unit to replace solid cubelets.

each of these. Suppose that a further new

face is developed in this zone ; will it likewise cut the cube-dodecahedron

edge symmetrically, so that it makes angles of 22^° with each of these

faces? Haiiy's work suggests that the answer is negative ; the new face

* Robert Hooke was born in the Isle of Wight in 1635. From 1662 to the end
of his life he was curator of experiments to the Royal Society, and he also held

a professorship of geometry in Gresham College. His alert and enquiring mind
led him to investigate a wide range of physical phenomena, and the pages of his

Micrographia make fascinating reading. His name is most familiar in application

to the Law Ut tensio sic vis. He died in London in 1703.
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will slope at an angle determined by the type of stacking which develops

it, missing two rows in one direction for one in the other (Fig. 55). It

I—(I—II—

•

I—(I

—

tr

Fig. 54. The relationship of a face of the

rhombic dodecahedron (shaded plane) to

the structural units.

Fig. 55. Plan of the development
of a further face modifying a cube
edge.

is therefore the tangent of the angle of slope which is halved, and the

angle the tangent of which is \ has the value 26° 34' (Fig. 55).

Measurement of a crystal, (of calcium fluoride CaFo for example),

showing this form will confirm this predicted value.

If the crystal in question be one of lower symmetry the underlying

unit must also be appropriately less symmetrical. An orthorhombic

crystal, for example, will be supposed to be built with rectangular

parallelepipeda (the shape of the ordinary brick), but the appearance

of new forms is still determined by the regular steps of the stacking.

The particular dimensions of the unit, in such a system of lower sym-

metry, depend on the particular substance, and we cannot predict

beforehand the value of a particular angle. From one measured angle,

however, we can predict the value of

others, for the tangents of the angles of

slope are still simply related (Fig. 56).

Moreover, as Haiiy himself pointed out,

the total number of different slopes

found in actual crystal faces tends to be

small, corresponding to simple varia-

tions of the method of stacking. Still
,

treating the problem in two dimensions .J'°-,^^-
The slopes of some pos-

° ^ sible planes in a crystal based on
for simplicity, the full lines of Fig. 56 an orthorhombic structural unit.

represent slopes corresponding to the three schemes

:

Miss two units to the right, and miss one upwards.

„ one „ „ „ „ one

„ one „ „ „ „ three

1 1
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The dotted line corresponds to the more comphcated scheme of miss-

ing three to the right and five upwards, and it will be seen that the

significant points are very sparsely distributed in such a plane, suggest-

ing that it may have little importance as a possible face.

We can illustrate these points by a study of the crystal of ortho-

rhombic barium sulphate, BaSO^, shown in Fig. 57. In the prominent

Fig. 57. A crystal of barium sulphate.

zone aXmxb the edges am and mb are modified by smaller faces of the

forms A and x ; measuring the angles which these faces make with a,

and taking the tangent of the angle am as a standard for comparison,

the following results are obtained

:

Tangent

0-407

0-815

2-444

RatioInterfacial angle

aA = 22°10'

flm = 39°ir

ab = 90° 0' oo oo

The particular value of the angle am is evidently determined by the

shape of the structural unit of barium sulphate, but the faces A and x
in the same zone slope at angles the tangents of which are simply

related to the tangent of this angle am. Similar results are obtained

from other zones

:

Ratio

1.

2

1

2

Interfacial angle
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THE LAW OF RATIONAL INDICES

These considerations lead us, as they led Haiiy, to the formulation

of the Law of Rational Indices. This, the most important law of crystal-

lography, is perhaps also the most difficult for the beginner to grasp

correctly. We shall consider its formulation in three stages.

First, we have to choose a set of axes to which the geometry of the

crystal can be related after the manner of use of axes in solid geometry.

The simple relationships between slopes of faces which have been

deduced above obviously depend on measuring the intercepts made by

various planes in terms of the lengths of the edges of the underlying

structural unit, though certain alternative choices of direction would

have given an equally simple result. In Fig. 55, for example, the

diagonals of the square units would serve just as well as the sides.

Whilst therefore the set of axes chosen

must be related to the internal structural

unit, it will not always be possible to

choose them unambiguously from the

external appearance of the crystal. Often,

indeed, as in a crystal founded on a

pattern of parallelograms (Fig. 58), there is

no unique structural unit. The parallelo-

FiG. 58. Various choices of a unit grams Outlined are all equal in area, and
parallelogram in a given pattern. , , , j ^i.any one would serve to reproduce the

given pattern of dots. These points can be summarised in the formal

statement

:

I. Choice of reference axes. Any three straight lines, not in the

same plane, parallel to actual or possible edges of the crystal. (It

is convenient where possible to choose these parallel to prominent

axes of symmetry.) They are called crystallographic axes ; note

that they cannot necessarily be chosen orthogonal.

We next proceed to choose a unit plane to define the units of mea-

surement to be employed when measuring along each of the crystal-

lographic axes. This plane is called the parametral plane, since it

defines the units or parameters for the crystal. Its choice presents little

difficulty; a plane parallel to any observed face on the crystal will

serve, provided that it cuts all three axes (when extended, if necessary)

:

II. Choice of parametral plane. Any plane, parallel to a crystal

face, which is not parallel to any of the crystallographic axes. Let

it make intercepts a, b and c on these axes.
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We are now in a position to describe the slopes of any other observed

faces in terms of the unit intercepts thus determined

:

in. Definition of Indices. The intercepts made on these axes by

any other face can be expressed as 7 ? t » 7 where //, k, I are

simple rational numbers or zero. These numbers are termed the

indices of the face.

The Law of Rational Indices is implicit in statement III, that the

indices of any face, thus defined, are always rational. This particular

crystallographic notation (essentially the only one surviving in present

usage) was popularised by the work of W. H. Miller (p. 20), though the

first conception of it appears in works by earlier authors, and hence

the numbers are known as the Millerian Symbol of the face. The three

figures are written without intervening commas (except in the rare

cases involving double figures), but are always read separately. Thus

411 is read as four one one; 100 as one nought nought. The indices

of a particular face are written, and printed, either unenclosed—as 321

—or enclosed in smooth brackets—(321), (In X-ray crystallography,

concerned with ' reflection ' by structural planes in various orienta-

tions, it has become a convention to use the unbracketed symbol to

denote a family of structural planes and to bracket the index to denote

the actual crystal face. Thus 1 10 ' reflections ' arise from structural

planes parallel to the face (110)). If the symbol is enclosed in braces

—{321}—it denotes all the faces ofthe/orm generated from the face (321)

by the operation of the symmetry in question. The special significance

of square brackets or crotchets—as [321]—will be described later

(p. 203).

Considering the formulation set out above, it is clear that the follow-

ing is the rule for determining the indices of a particular face

:

Divide the intercepts made by the face into the standard para-

metral intercepts a, b, c. Multiply the result, if necessary, to clear

of fractions.

Applying this result to the parametral plane itself, the indices will

be a/a, bjb, c/c, i.e. HI; this is the symbol of the parametral plane in

any crystal, whether the symmetry be cubic or triclinic, whether the

intercepts it makes on the axes be all equal or unequal. The index 1 1

1

merely shows which plane was chosen to determine the units, and since

different observers may make different choices it is possible to have

diff'erent descriptions of a single crystal, aU equally correct.
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In Fig. 59, ABC, DBC and DEE represent the slopes of three faces

in a crystal the structural unit of which, with edges of lengths

a, b, c, is represented on the right of the figure. Suppose that,

for this particular substance, the ratios a : b : c of the actual unit

= 0-816 : 1 : 0-924. (It is customary to express the ratio a : b : c inthe

form ajb :\ : c/b, reducing b to unity.)

The first observer selects the plane ABC as parametral plane; he

therefore assigns to it the index 111. From its slope in relation to

the three axial directions he would determine axial ratios of values

BP -.AP \ CP, 0-408 : 1 : 0-924.

Dp A p (~'p

The index of the plane DBC is -^ ^ ^ , i.e. 121.

__„. BP AP CP . ,_
» DBE IS^ j^ ^, I.e. 122.

The second observer selects the plane DBC as 111, and hence calcu-

lates axial ratios BP : DP : CP, 0S16 : I : \S4S.

RP DP CP
The index of the plane ABC is -frz^ —

^

^^ , Ul, i.e. 212.^ BP AP CP

DBE is
BP DP CP

, i.e. 112.
BP DP EP

To the third observer, DBE seems the best choice as HI. His

calculated axial ratios, BP : DP : EP = 0S16 : 1 : 0-924, are actually

those of the edges a : b : c of the structural unit.

BP DP FP
The index of the plane ABC is -=rzz -—= -p^, 144, i.e. 211.^ BP AP CP ^^

„_,^. BP DP EP ,,, -^,
M DBC IS— ;^ ^. Hi i-e. 221.
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Tabulating these results, we have three correct but diflferent descrip-

tions of the slopes of the three planes present on the crystal

:
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of crystal drawings in terms of the cubic system, and in this system it is

possible so to choose the parametral plane that the axial units are all

equal, a : a : a. To construct an axial cross for the cubic system we

Fig. 60. The conventional orienta-

tion of crystallographic axes.

Fig. 6L A cube drawn in

perspective.

therefore require a representation of three equal straight lines at right

angles.

When an artist draws a picture of a cube, he represents it in some

such way as Fig. 61 ; drawing ' in perspective ' he makes edges which

run away from the observer converge towards a point, although he is

well aware that these edges are actually parallel on the cube itself.

Since parallelism of edges on a crystal reveals the important zonal

relationships, we shall clearly not adopt any such convention as this.

Whatever the particular method of projection chosen, it must be one

of parallel perspective so that all edges which are parallel on the actual

crystal are drawn as parallels on the paper.

If a cube be held with its y and z axes parallel to the plane of the

paper its elevation projects by parallel perspective on to the paper as

a square. Such elevations (and plans projected parallel to the r axis)

were widely used by the early crystallographers ; they are, for instance,

almost the only kind of illustration in Brooke and Miller's Mineralogy.

To most readers, however, a ' three-dimensional ' representation is

more satisfactory than separate plan and elevations; Haiiy used this

type almost always, and there is little doubt that the excellence of his

illustrations was a great help in gaining rapid acceptance of his views.

If the cube, held as above, is now rotated through a small angle 6 about

the 2 axis towards the left, the right-hand vertical face becomes visible

(Fig. 62); the x axis, foreshortened to a point in the elevation, is repre-

sented as a length depending on the value 6, but it is still coUinear in

projection with the y axis (which has been slightly foreshortened in
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projection by the rotation). Finally, to reach a ' three-dimensional

'

figure we can either tilt the cube towards us through an angle cf> (the lines

of projection remaining normal to

the paper) to give an orthographic

projection, or raise the point of view

so that the lines of projection are

inclined at the required angle
(f>

to

the normal to the paper, giving a

clinographic projection.

Early drawings on an axial cross

were made by orthographic projec-

tion, but this method is now little

used (though we shall later employ

orthographic projection in a draw- Fig. 62. Plans and elevations of a cube

J 1 I J- -^L viewed by parallel projection. In the left-

mg procedure which dispenses with hand elevation the direction of view is

tVif« Qvial r-rncc\ TVif" cf>r-nnrl parallel to the x-axis, whilst the right-handme axiai cross;. ine secona
l^^^^^^^^ shows the effect of a small

method was popularised by Nau- angular rotation about the z-axis.

mann, * who published a simple construction for a clinographic projection

of an axial cross. The appearance to the casual observer of drawings
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made by these two methods is closely similar, as shown in Figs. 63 and 64,

the former representing a cube on orthographic projection, whilst the

latter is constructed on clinographic axes.

CONSTRUCTION OF AN AXIAL CROSS IN
CLINOGRAPHIC PROJECTION

(a) General construction. Let Q be the chosen angle of rotation

about the z axis, and let ^ be the angle of elevation of the line of pro-

jection above the normal to the paper.

Draw a vertical hne AOB (Fig. 65) equal in length to 2a, where

o

N,P

M,Q

7 ^^^51
^

—J—p
—^^x '

—I- 1 <
-y q

Fig. 65. Construction of an axial Fig. 66. Plan of the construction of
cross in clinographic projection. Fig. 65 on a plane normal to the z-axis.

After rotation about the z-axis through
an angle e, the negative j-axis would
project orthographically as a length OQ
on the paper ( = zq = a cos 0) and the
X-axis as a length OP( = zp—a sin e).

a is the chosen length of the axes in space. At its mid-point O
draw a normal to AB, and mark off OQ = a cos 9. Along OQ mark oflF

OP = a sin 9.

At Q draw a normal to QO upwards, and mark off on it

QM = a sin 9 tan
(f).

At P draw a normal to QO downwards, and mark off on it

PN=a cos ^ tan 0.

Join MO and NO.
Then N, M, A represent unit points on the required x, - y and z axes,

at equal distances a from the origin.

(b) Simplification following Naumann. The above construction can

be simplified by the choice of convenient standard values for 9 and
<f).

Naumann proposed the values ^ = 18° 26' (tan^=|) and </> = 6°20'



THE DESCRIPTION OF CRYSTALS 47

Fig. 67. Elevation of the construction of Fig. 65. Clinographic
projection at an angle <t> above the plane of Fig. 66 projects -y
to a point M(QM=qm — a sin e tan 4>) and +x to a point
N(PN—pn = a cos etan <l>).

(tan
(f>
= i), and these have been extensively employed, though it is

customary nowadays to work with a rather larger ^ value, such as

^ = 9° 28' (tan <j) = ^). Following Naumann, we can propose a simplified

construction for the axial cross

:

Begin by drawing the base-line OQ. Mark off OP = ^OQ, and from

Pdva.w a. normal PN = \PO. Join NO. At g draw a normalgM = J/>A^.

Join MO. Draw OA normal to OQ, and mark off OA = OS, where

QS = OP = kOQ.

Fig. 68. Two clinographic views of a
rectangular parallelepiped 3x2x1. A
line is drawn on one of the largest faces
parallel to the longest edges. When the
parallelepiped is turned to bring the inter-

mediate edges parallel to the x-axis fore-

shortening makes the cross-section seem
almost square.

Fig. 69. Two further views of the same par-
allelepiped as Fig. 68, with the longest edges
set parallel to the x axis.
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Then NO, MO and AO represent unit lengths on the required v,

-y and z axes. (The student should verify that this particular case

agrees with the general construction given above.)

A set of axes thus constructed serves as a basis for the production

of crystal drawings which in general give a very satisfactory impression.

From the method of construction, however,

it is clear that edges parallel or nearly par-

allel to the jc-direction are very much fore-

shortened in the resulting drawing, and

the beginner must keep this constantly in

mind when attempting to assess the relative

dimensions of a crystal in various directions

from the inspection of a clinographic

drawing. Figs. 68, 69, 70 represent a brick

with edges a, ajl, a/3 drawn in six different

attitudes in relationship to the x, y, z axes.

The line drawn near one edge enables one Fig- 70. The same paraileie-

. piped as in the preceding figures,

to compare these attitudes, and it will be seen with the longest edges set

seen that if the longest edges are set parallel
^^'^^^^^ ^° ^^^ ^ ^^''

to the X axis (Fig. 69) one receives at first the impression of a very

much more nearly cubic object than when these edges lie parallel to

the yz plane (Figs. 68, 70).

The use of this axial cross in constructing drawings of cubic crystals,

and its adaptation to drawings of crystals of lower symmetry, will be

developed gradually. We have now discussed in outline the successive

steps in the routine crystallographic examination of a substance. We
first make a complete set of goniometrical measurements and from these

construct an accurate stereogram. From this stereogram the crystal-

lographic symmetry can be determined, an appropriate set of crystal-

lographic axes be chosen, selection made of a parametral plane, and

a consistent set of indices be assigned to all the faces present. This

involves also the determination of the angles between the crystallo-

graphic axes X y z and of the axial ratios a : b : c. Finally, an axial

cross is constructed, and a drawing made to represent a typical crystal.

There is much more to learn in detail about each of these successive

steps, but this knowledge is most easily acquired during a more detailed

study of each of the crystal systems in turn.



CHAPTER IV

A GENERAL STUDY OF THE SEVEN CRYSTAL
SYSTEMS

THE CUBIC SYSTEM, HOLOSYMMETRIC CLASS

Our initial study of this group of symmetry was brought to the stage

of inserting on a stereogram (Fig. 38) the poles of the faces of the

three forms, the cube, the rhombic dodecahedron and the octahedron.

The next step is the choice of the axes x y z. The three directions of

cube edge are prominent zone axes, they are parallel to tetrad symmetry

axes, and thus provide an orthogonal set of crystallographic axes

entirely in accord with the formulation of the Law of Rational Indices.

We have seen that in crystal drawings the z axis is set parallel to the

margins of the paper; when making the corresponding projection,

the z axis is placed to coincide with the Une PP' of Fig. 32, with + z

upwards, +y horizontal to the right and +x running towards the

observer. Hence in the stereogram +jc runs downwards parallel to

the margins of the paper (Fig. 71),

+ y towards the right-hand margin,

and + z normal to the plane of the

paper.

There is in the projection at

present only one plane so situated

that it can be chosen as parametral

plane—an octahedral plane—and

to it we assign the indices 111.

From the symmetry it is clear that

this plane makes equal intercepts

on all three axes, so that the axial

ratios are 1 : 1 : 1 (the parametral

units are equal along the three

axial directions). Against the pole of the upper right-hand front face of

the octahedron (cutting all three axes positively) we write the index 111,

and to the other three poles of the same form on the upper hemisphere

we allot the indices ill, III and 111 (Fig. 71). It is not usual in a

stereogram to write indices against the rings representing faces on the

lower hemisphere (unless the lower face only is present); the corre-

010

iTo/^
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spending index is clearly that of the dot above it with the z index made

negative (e.g. the face below Til is TlT) and the insertion of all these

indices crowds the stereogram unduly. We have thus indexed the form

{111}; it is redrawn in Fig. 72, with the corresponding index placed on

some of the faces.

To draw this form on the axial cross, we require to draw in position

a series of edges between faces the indices of which are now known.

Consider first the edge between the faces 111 and ill. From the

indices, each of these faces passes through the point one unit along

Fig. 72. The octahedron with
the front faces indexed.

Fig. 73. Drawing the octahedron
on the axial cross.

+ X, which is therefore a point on the required edge ; similarly, each of

the faces passes through a point one unit along the +z axis, and the

edge is therefore correctly represented by joining unit point on the

+ x axis to unit point on the +z axis (Fig. 73). Remembering the

presence of the triad axes, it is unnecessary to use the indices of other

faces for further reasoning; the drawing is completed by repeating

this construction symmetrically.

Turning next to the cube, from the positions of the poles of its faces

in the stereogram, it is clear that each face is parallel to two of the

axes, but intersects the third. Parallehsm corresponds

to an infinite intercept and the corresponding index is

therefore zero ; the cube is the form {100} (Fig. 74), and

the indices can be inserted in the stereogram (Fig. 71).

Each face of the rhombic dodecahedron is parallel to

one of the crystallographic axes, but intersects each of

the others; the required index is therefore of the

type hkO. Since the pole of each dodecahedron face

lies at 45° between the adjacent cube poles, the intercepts m on

Fig. 74. The cube
with the front faces
indexed.
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these two axes are equal. The indices are therefore \ — L
[m m oo

)

or in

simplest terms {110}. (Note particularly the exact procedure followed

here; the index of a face of the rhombic dodecahedron is not 110

because it makes equal intercepts on two of the axes ; it is 1 10 because

it makes on these axes intercepts in the same proportion as those made
by the parametral plane, and it is an accident of the high symmetry of

the system that the parametral units are equal.) Eight of the poles of

this form are indexed in Fig. 71 ; the remaining four poles are on the

lower hemisphere.

A drawing of the form is repeated in Fig. 75, with some of the

indices inserted on the corresponding faces. To make this drawing

we consider as before the indices of faces on either side of a particular

edge. The indices 110 and 101 have only one figure in common, giv-

ing one point on the required edge at unit distance along the + x axis.

Fig. 75. The rhombic dodecahedron
with the front faces indexed.

Fig. 76. Drawing the rhombic
dodecahedron.

To obtain another point on the edge, we must reason as follows : from
the y and z figures of the index 110 this plane, when extended, would
intersect the yz axial plane in a fine parallel to the z axis through unit

point on the +y axis (Fig. 76), and similarly the crystal plane 101

would intersect the yz axial plane in a line parallel to y through unit

point on the +z axis. Drawing these two fines (Fig. 76) they must
intersect in a point, in the yz axial plane, which is common to the two
crystal planes and therefore lies on the edge between them. Joining

this point to the unit point on the +x axis we have constructed the

required edge. Since the x axis is a tetrad symmetry axis, the con-

struction may be repeated around it (using in turn unit point on
negative y and unit point on negative z) to give the other three direc-

tions of edge required. The faces of the rhombic dodecahedron are
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all rhombuses, which will reproduce in clinographic drawing as paral-

lelograms ; the drawing is therefore quickly completed by drawing the

appropriate edges parallel to the four constructed lines.

In examining a number of cubic crystals, we should soon encounter

specimens of more complex habit than the simple combination of three

forms shown in Fig. 33. In what positions are the faces of further

forms likely to appear? The predominance of simple zonal relation-

ships which we have already stressed leads us to investigate the pos-

sibility of a new form appearing as faces modifying all the edges of the

type ab in Fig. 33, the edges between adjacent cube and octahedron

planes. The most Ukely shape for such faces is dictated by the prob-

ability that its other pair of opposite edges will likewise be parallel,

the face falling also in a zone between two adjacent dodecahedral faces.

The pole of this face can be inserted in the stereogram (Fig. 77) by

Fig. 77. Stereogram of a cubic crystal.

drawing the zone-circles from 100 to 111 and from 110 to 101; the

required pole lies at their intersection. Symmetry demands that there

should be three such faces around the triad axis normal to 111, tWenty-

four faces altogether in the complete form. The symmetrically-

modified crystal is illustrated in Fig. 78.

What is the index of this form? The student may have noticed

already, in Fig. 71, that there is apparently a simple relationship be-
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tvvecn the indices of faces falling in one zone. The indices 100 and 010

add up to give the index 1 10 of a face between them in the same zone

;

1 10 adds up with 001 to give the index 111, and so forth. We shall be

able to prove later that this result can be generalised from the law of

rational indices ; all the poles of possible faces lying in a zone between

two given faces hkl and pqr have indices of the type mh + np, mk + nq.

Fig. 78. Fig. 79. The icositetrahedron {211}.

ml + nr obtained by adding m times the index hkl to Ji times the index

pqr, where m and n are small whole numbers. In the zone between

100 and 1 1 1 lies the pole 211, and since this index can also be obtained

by adding 110 and 101, it must be the index of the pole at the inter-

section of these two zones. The new form is {211}; developed alone

it has the shape of Fig. 79. We shall call it an icositetrahedron ; some

crystallographers call it a trapezohedron, but we shall reserve this name

for certain forms without planes of symmetry which will be encoun-

tered later in classes of lower symmetry. (A trapezoid is a quadri-

lateral none of whose sides are parallel, whilst the more familiar term

trapezium is applied to any irregular quadrilateral, but especially to one

with one pair of opposite sides parallel. It can therefore be maintained

that the name trapezohedron is correctly applied to this cubic form,

but the restriction which we propose to observe is a convenience in

crystallographic nomenclature.)

To draw this form on the axes, we proceed as before from a con-

sideration of the indices of the pair of faces meeting in a particular

edge. The figure 2 in the index indicates that some of the intercepts

are fractional, but since in clinographic projection there is no fore-

shortening of distances, the required points are located on the axes,

by measurement with a scale, half-way between the origin and the unit

points. In Fig. 80 the drawing is being taken a step further, and the

simple icositetrahedron is being modified by small faces of the rhombic

dodecahedron {110}. To draw such a combination of forms, the icosi-
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tetrahedron alone is first drawn completely ; we then require to find the

direction of an edge between an icositetrahedral and a dodecahedral

plane, such as the edge 211-110. Ref-

erence to the stereogram (Fig. 77) shows

that these planes lie in the dodecahedral

zone 110-101, and the direction of the

required edge is therefore found by the

method of Fig. 76. This being a combin-

ation of forms, however, the qualitative

problem of the habit arises, and from a

point on the icositetrahedral edge chosen to

give a dodecahedral face of the desired size

an edge is drawn parallel to the constructed

direction. The method of completing the

drawing will be evident from Fig. 80.

Examining the characteristics of the four forms now described, we
can see that each owes its shape to the particular relationship of each

of its faces to the symmetry elements. Starting with a face normal to

a tetrad axis, the symmetry demands six such faces in all, and the cube

{100} is thus developed. Similarly, the rhombic dodecahedron {110}

arises from the operation of the symmetry on any face normal to a

diad axis, and the octahedron from any face normal to a triad axis.

Each face of the icositetrahedron {211} is normal to one of the diagonal

planes of symmetry, and lies between a cube and an octahedral plane.

Yet this particular relationship does not demand that the index need

be {211}, for it is true of any face of the type hi I where h>l; developed

on the crystal of Fig. 33 such a face will have only one pair of opposite

edges parallel (Fig. 81), and in projection its poles will He somewhere

Fig. 80. Drawing the form {211}
and modifying it by faces of the
form {110}.

Fig. 81. Fig. 82. The icositetrahedron {311}.

on the arcs shown heavily printed in Fig. 77. Thus, whilst there is only

one cube, one rhombic dodecahedron, one octahedron, there is a whole
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family of possible icositetrahedra of which {21 1} is the simplest. Such

forms as {311} Fig. 82, {322} Fig. 83, and {411} are all of the same kind

of shape, in this particular crystal class, but differ in the values of

corresponding interfacial angles.

A further possibility arises from consideration of faces modifying

Fig. 83. The icositetrahedron {322}. Fig. 84.

an octahedron-dodecahedron edge (Fig. 84). Such a face, also, is

normal to a diagonal plane of symmetry, but its pole hes between those

of octahedron and dodecahedron on one of the zones marked with

dashed hues in Fig. 77. The index of the form is of the type {h h I},

where h>l, and the simplest example is {221}. It is again a twenty-

four-faced form, and is conveniently called a trisoctahedron (Fig. 85).

(This is sometimes written in full as triakisoctahedron ; another term,

Figs. 85-87. Trisoctahedra. {221} {331} {332}.

' three-faced octahedron ', should be regarded only as a convenient

colloquiaHsm.) Two further members of the family of trisoctahedra

are illustrated in Fig. 86—{331}, and Fig. 87—{332}.
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The edge between cube and dodecahedron has yet to be modified

(Fig. 88). The index of such a form is of the type {h k 0}, the simplest

example being {210}. Each face is normal to one of the cubic planes

of symmetry, between the tetrad and diad axes, and the poles He on

Fig. 89. The tetrahexahedron {210}.

the dot-dash zones of Fig. 77. Again twenty-four-faced, these forms

are tetrahexahedra {tetrakishexahedra, ' four-faced cubes '). Fig. 89

illustrates the form {210}).

The six kinds of form thus far developed—three unique forms aris-

ing from faces normal to axes of symmetry, and three families of forms

arising from faces normal to planes of symmetry but not to axes

—

have used up all the possible positions for a face specially related to

the elements of symmetry. Since they show this special relationship

these six kinds ofform are called special forms of this class of symmetry.

Any other possible face on the crystal will be quite generally related to

the symmetry ; it will not be normal or parallel to an axis of symmetry

or to a plane of symmetry, or symmetrically incUned to two axes of

symmetry or in fact have any particular kind of attitude in relation

to the elements of symmetry which we can formulate in words. The
poles must lie within the spherical triangles outlined in Fig. 77 (the

smallest triangle outhned on the sphere by the planes of symmetry is

Fig. 90. Fig. 9L The hexoctahedron {321}.
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sometimes called the systematic triangle) and there will be forty-eight

faces in all, six in each of the eight octants of space (Fig. 90). The
index will be of the type {h k /}, and the simplest example is {321} (Fig.

91). The appropriate name is hexoctahedron {hexakisoctahedron, ' six-

faced octahedron '), and from its general relationship to the symmetry
it is called the generalform of this class of the cubic system.

Tabulating our results, we have now described the following kinds

of form :

Special forms. Cube {100}.

Rhombic dodecahedron {110}.

Octahedron {111}.

Icositetrahedra \hll) (h>l).

Trisoctahedra {hl^l} (h>l).

Tetrahexahedra {h kO}.

General forms. Hexoctahedra [hkl].

There are thus only seven essentially different kinds of possible

shapes for individual forms in this class of the cubic system, six of

which belong to special forms and one to the general form. We shall

see later that the six special forms are not uniquely characteristic of

this particular class—the holosymmetric—of the cubic system
; {100},

for example, is the cube, and {110} the rhombic dodecahedron in all

the classes of the cubic system
; {111} is an octahedron in two further

classes, though it is a different shape in some of the remaining classes,

and so for the other special forms. The hexoctahedron, hov/ever, is

uniquely characteristic of this particular class ; only if the symmetry

group under consideration comprises the thirteen axes, nine planes

and centre of this particular class is the face 321 repeated forty-eight

times by the symmetry elements to produce

the hexoctahedron as the general form.

We can therefore now label this class the

hexoctahedral class of the cubic system.

Fig. 92 illustrates a crystal of a substance,

Fe304, crystallising in this class, though the

specimen illustrated does not show the

general form. The predominance of the

rhombic dodecahedron determines the

habit ; we recognise also small square faces

of the cube {100} and equilateral triangular

faces of the octahedron {111}. The remaining form shows twenty-four

faces, and parallelism of edges reveals that the faces he in cube-

FiG. 92. A crystal of magnetite.
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Fig. 93. A crystal of spinel.

octahedron-dodecahedron zones, between the cube and octahedron

faces. The index is therefore of the type {h 1 1} and the form is an

icositetrahedron. It is clearly not the icositetrahedron {211}, however,

since its faces do not lie in a zone with adjacent dodecahedral faces

on either side. The particular index could only be determined by

measurement.

In Fig. 93, a crystal of spinel, Mg AI2O4, of octahedral habit, shows

also small faces of the cube {100}, the rhombic dodecahedron {110}

and the icositetrahedron {211}. The re-

maining form is shown by its zonal relation-

ships (and hence also by its relationships

to the symmetry elements) to be a trisocta-

hedron {h h I), and the parallelism of edges

between the pairs of faces hhl-2\\ and

hhl-2\\ shows that it is the particular

trisoctahedron {221}.

The student should practise drawing on

the axes some of the forms discussed above

and simple combinations of them. The

general procedure to be followed has been

outlined in relation to Fig. 80, and we shall add only one further

observation here. It may be required to construct the direction of

an edge between two faces the indices of which show no figure in

common. It then becomes necessary to construct two points each of

which is known to lie in the required edge. Suppose (Fig. 94) it is

required to find the direction of the edge

between the planes 221 and lT2. These

planes meet the xy axial plane in the lines

joining -^ on x to ^ on jf and joining 1 on

X to T on y respectively. Drawing these

lines, they intersect to give a point L on

the edge. Similarly, a point of intersection

M is determined in the xz plane or a point

A^ in the yz plane. The points L, M, N
thus obtained are colhnear, giving the

required direction of edge, and only the Fig. 94. General construction of

two more conveniently obtained in any
an edge on the axial cross,

particular case need be located (it is usually best to avoid an inter-

section in the xy plane, since this plane is so much foreshortened in

the standard chnographic projection).
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CUBIC CRYSTALS OF LOWER SYMMETRY
Though we shall be chiefly concerned in this chapter with the

holosymmetric classes of the various systems, some of the points in

the above discussion will be clearer if we examine briefly here some

examples of cubic crystals belonging to classes other than the holo-

symmetric.

Iron disulphide, FeSg (the mineral pyrite), frequently crystallises as

cubes with characteristically striated faces (Fig. 95). Accepting these

striations as an expression of the symmetry of the underlying structure,

we find that such a crystal still shows the group of four triad axes which

is the mark of the cubic system. The normals to the cube faces, how-

ever, are no longer tetrad axes since the cube must be rotated through

180° about any one of these normals before reaching a completely con-

FiG. 95. A striated cube of
pyrite.

Fig. 96. Stereogram showing the elements of
symmetry of the crystal of pyrite in Fig. 95.

gruent position. There are still three planes of symmetry parallel to

the cube faces, but the diagonal planes are no longer planes of sym-

metry, since they run at an angle to the striations and do not reflect

them. The substance belongs to the cubic system but to a lower class

of which the symmetry consists of four triads, three diads, three planes

and a centre. Marking this symmetry on a stereogram (Fig. 96), we

can insert the poles of various specially-situated faces and find how
often they are repeated by the symmetry. A face 111, normal to a

triad axis, is still repeated eight times, so that the form {111} in this

class of the cubic system, also, is the octahedron. Similarly, we should

find that {211} and {221} are the same twenty-four-faced forms which

we have already described. The face 210, however, is repeated only
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twelve times, since there is no inclined plane of symmetry or diad axis

normal to 110 to produce the face 120 when 210 is given. {210} in this

class is therefore a twelve-faced form, the pentagonal dodecahedron

(Fig. 97). (From its frequent occurrence on crystals of pyrite, this form

is sometimes called a pyritohedron ; but since it is a special form its

Figs. 97-98. Pentagonal dodecahedra {210} {320}.

occurrence is not confined to crystals of this class and the use of this

name is undesirable.) As in the case of the tetrahexahedra of the

holosymmetric class, a family of such pentagonal dodecahedra {h k 0}

exists, and two further examples are illustrated in Fig. 98—{320}, and

Fig. 99—{410}.

If a face occurred in a position 120 on such a crystal it would hkewise

be repeated twelve times as indicated by crosses in Fig. 96. The form

Figs. 99-100. Pentagonal dodecahedra {410} {120}.

{120} is another pentagonal dodecahedron of the same shape as {210},

but with a different attitude in space (Fig. 100). Since each of these

forms possesses half the number of faces shown by {210} in the holo-

symmetric class, they were termed by early crystallographers hemi-

hedral forms ; the number of faces in a form, however, depends directly

on the class of symmetry in question, and here each of the forms {210}

and {120} is an independent entity, with the faces of- the one showing

a different relationship to the underlying structure from those of the
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Other. The term hemihedral (and the related term tetartohedral, where

a form shows one-quarter of the number of faces in a related holo-

symmetric form) should therefore not be used. The general form of

this class is a twenty-four-faced form which we shall examine later.

Crystals of cuprous chloride, CuCl, often have the shape of a regular

tetrahedron, Fig. 101. Normal to each equilateral triangular face is

a triad axis, which emerges through a coign on the opposite side of

Fig. lOL The tetrahedron {111}. Fig. 102. Stereogram showing the symmetry
of the tetrahedron.

the crystal. An axis of symmetry of this kind is called uniterminal,

and we are evidently deahng here with an example of crystallisation in

yet another class of the cubic system. The symmetry displayed by the

tetrahedron consists of four triad axes, three diad axes, and six diagonal

planes (as marked on the stereogram,

Fig. 102). The uniterminal character

of the triad axes indicates that in this

class there is no centre of symmetry.

Inserting the pole 111 of the face

normal to a triad axis, it is clear that

such a pole is repeated only four

times ; the form {111} comprises only

the four planes 111, TTl, iTT and TlT,

the tetrahedron of Fig. 101. If we
had started with the face 1 T 1 this also

would have been repeated four times,

giving another tetrahedron {iTl}

(Fig. 103), identical in shape with {1 1 1} Fig. 103. The tetrahedron {in}.
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but differently situated with regard to the axes. These two tetrahedra

would formerly have been described as hemihedral forms of the octa-

hedron, but they are to be regarded rather as two special forms

appropriate to the class of the cubic system under consideration. Some
authors refer to {111} as a positive tetrahedron, whilst {ill} is termed

a negative tetrahedron, but this use of positive and negative is open to

grave objections, and we shall prefer to distinguish them by quoting

their appropriate indices.

If we insert a pole 210 in the stereogram of Fig. 102, it will be seen

that the pole 120 is introduced by the operation of a diagonal plane of

symmetry, and the form {210} in this class has the shape, the tetra-

hexahedron, which we have already described in the holosymmetric

class. A general pole hk I is only repeated twenty-four times, but the

form thus generated is, of course, a different one from the general

form of the pyrite class. This brief discussion, then, should have helped

to make clear that some of the special forms may differ in shape in two

different classes, whilst others remain the same, so that no special form

is uniquely characteristic of any one particular class—we shall again

encounter the pentagonal dodecahedron and the tetrahedron in still

other classes of the cubic system. Only the general form has a shape

uniquely related to the symmetry of a particular class, and so we shall

be justified eventually in naming each of the thirty-two crystal classes

by reference to the thirty-two different general forms.

THE TETRAGONAL SYSTEM. (HOLOSYMMETRIC CLASS)

Mercurous chloride, HgCl, can be prepared in crystals which some-

times have the shape of Fig. 104. At first sight, this might be a cubo-

octahedron. The three directions of
' cube ' edges can be selected as the

directions of crystallographic axes x y z,

and the ' octahedral ' plane satisfies the

requirements for a parametral plane 111.

Measurement of such a crystal, however,

will show that the angles over the edges

of each triangular face are not all equal

;

from 111 on to the front face of the

crystal =49° 5', which is the value also

of the angle from 1 1 1 to the side face,

but the angle made by 1 1 1 with the top face = 67° 50'. The triangular

faces are isosceles, not equilateral, and there are no triad axes normal

Fig. 104. A crystal of mercurous
chloride.
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to them ; mercurous chloride does not crystalhse in the cubic system.

The vertical axis is still a tetrad axis, but the jc and y directions are

diad axes only; the crystal be-

longs to the tetragonal system.

There are other symmetry ele-

ments also present, and the com-

plete group is inserted in the

stereogram. Fig. 105; there is a

vertical tetrad axis, with four

planes of symmetry intersecting

in it, a horizontal plane of sym-

metry, four horizontal diad axes

(one normal to each of the vertical

planes of symmetry) and a centre.

We now proceed to study the

number of possible different kinds

of special forms, and the nature

Fig. 105. Stereogram of a holosymmetric
tetragonal crystal.

of the general form, exactly as we did for the holosymmetric class of the

cubic system.

The face 100,* normal to the x axis, when repeated to satisfy the

symmetry, has associated with it the faces

010, Too, OTO, and no others. There is

nothing in the symmetry of this class to

demand the presence of the face 001 (nor

of OOT) if the face 100 is given; that is,

the form {100} here consists of four

vertical faces only, a square-sectioned

tube with open ends (Fig. 106). All the

forms which we discussed in the cubic

system enclosed space—they are closed

forms, any one of which could be present

alone on an actual crystal, and we may
have thought that this was a necessary

Looking back at the definition of a form

Fig. 106. Tetragonal prism {100}

characteristic of any form.

* The student should note that this method of inserting indices in the projection
as we go along is adopted only for teaching purposes—the lecturer ' knows the
answer ', and can insert indices before the projection is complete. In actual practice

(p. 95) the crystal is measured completely and a projection is made before it is

possible to determine the symmetry and hence even the correct system. Only then
can the axes x y z he chosen, a parametral plane be selected and the indices of the
other forms present be determined. In an actual problem, therefore, never index
until the projection is complete.
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Fig. 107. Basal pinacoid {001}.

(p. 9), it will be seen that this is not so ; a form is an ' assemblage ' of

faces, but if a particular form does not enclose space it clearly cannot

exist by itself on an actual crystal. In {100} of the tetragonal crystal

we have encountered for the first time an open form. Faces parallel to

the vertical axis are called prism faces, and {100} is a tetragonal prism

ov square prism. The plane 001 is thus not necessarily present on a

crystal showing the form {100}. It is

present, however, in the crystal of Fig.

104, and we insert the corresponding

pole in the stereogram ; OOT is then also

present (by the operation of the centre

of symmetry, for example), and {001}

consists of a pair of parallel faces. Such

a form, again, is open (Fig. 107), the

planes having no defined shape until

we know what other forms are present

on the crystal. A plane normal to the

vertical axis is described as basal, and a form composed of a pair of

parallel faces is a pinacoid {-niva^, a board), hence {001} is a basal

pinacoid.

The pole of one of the triangular faces of Fig. 104 Hes on the trace

of a diagonal plane of symmetry (Fig. 105), since the face itself is

normal to the plane of symmetry. In a stereo-

gram of mercurous chloride, the pole is inserted

at the correct distance from the centre to cor-

respond to the measured angle of 67° 50', and

is repeated to give eight positions in all—the

eight triangular faces of the crystal (Fig. 104)

all belong to the form {111}. This somewhat
resembles the octahedron of the cubic system,

but the faces are isosceles, not equilateral,

triangles, and only the horizontal edges form a

square. The top and bottom halves are sym-

metrical, repeated over the horizontal plane of

symmetry, and the form is called a tetragonal

bipyramid (Fig. 108). In the cubic system {111}

was generated from a face which occupied a

unique position normal to a triad axis, but here

there is no such unique position anywhere along the diagonal symmetry
plane between the vertical tetrad axis and the horizontal diad axis.

Fig. 108. A tetragonal
bipyramid.
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Hence {111} is now typical of a family of tetragonal bipyramids {h h I},

which differ from one another only in being relatively more acute if

h>l and more obtuse (Fig. 109) if /z</.

Similarly, since there is no diad axis

normal to the possible face 101, there is

no unique position for an /z / pole any-

where in the zone between 001 and 100.

All forms {h /}, including {101}, are

members of another family of tetragonal

Fig. 109. Another member of the family
of tetragonal bipyramids {h h /}.

Fig. 110. Tetragonal
bipyramid {h 01}.

bipyramids (Fig. 1 10) which are exactly the same kind of shape as the

{h h 1} bipyramids, and differ from them only in presenting a face to the

front instead of an edge.

The possible face 110 occupies a unique special position, for it is

normal to one of the horizontal diads. To it belong also the faces 1 TO,

TTO and TlO, and the form {1 10} (Fig. 1 1 1) is a tetragonalprism identical

in shape with {100} and differing from it only in the same way as the

bipyramids {h h 1} differ from the bipyramids {h /}. This difference

has sometimes been termed a difference of order,

the family {h h 1} being described as tetragonal

bipyramids of the first order, whilst the family

{h /} comprises tetragonal bipyramids of the

second order. Just as we supposed that cubic

crystals were built from a unit of pattern which

was itself a cube, so we assume that the under-

lying unit in a tetragonal crystal is a right square

prism the dimensions of which depend upon

the particular substance under consideration.

The two famiUes of bipyramids therefore bear different relationships

to the underlying structure, but the distinction as one of order serves

no useful purpose. In Fig. 104 the crystal of mercurous chloride is so

orientated that we have naturally taken the diad axes which are normal

Fig. 111. Tetragonal
prism {110}.
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Fig. 112. Ditetragonal
prism {h k 0).

to the vertical faces as the x and y axes. The other pair of diad axes

could equally well be so chosen, the crystal being turned through an

angle of 45° about the vertical axis. This alternative choice of axes

interchanges the forms of first and second order ; we shall therefore

distinguish the related forms by quoting the appropriate indices for a

given choice of axes.

There remains one further kind of special position, that of a face

hkO, parallel to the tetrad axis but not normal to a diad axis. Such

a prism face is reflected across the vertical

planes of symmetry and repeated by the tetrad

axis, so that there are eight faces in the

form. It is not called an octagonal prism,

however; true octagonal symmetry is im-

possible in crystals, and the significant feature

in this kind of form is that the faces meet

alternately in more obtuse and more acute-

edges, four of each kind. We therefore term

it a ditetragonal prism. It is an open form

(Fig. 112).

Any further position for a possible face must be a general one, and
it remains to examine the nature of the general form. A pole such as

321, lying off the trace of any element of symmetry in the stereogram

(Fig. 105), is repeated eight times above the

primitive and symmetrically eight times below.

As with the ditetragonal prism, however, the

repetition is not regularly eightfold, but in four

pairs, and the appropriate name is that of a

ditetragonal bipyramid (Fig. 113). We have

been studying the ditetragonal bipyramidal class

of the tetragonal system. (Objections have
sometimes been raised to the use of the two
prefixes di- and hi-, and some crystallographers

write ditetragonal dipyramid. We shall find it

useful, however, to use the prefix hi- to denote

that a form consists of two portions repeated

over a plane of symmetry, and the prefix di- to

denote repetition of pairs of faces around an
axis, as explained above.)

If the pole 211 is inserted in the stereogram, by drawing the appro-

priate zones, and repeated to satisfy the symmetry, it will be found

Fig. 113. Ditetragonal
bipyramid {// k I}.
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that {211}, like {321}, is a ditetragonal bipyramid—a general form.

How does it happen that such a ' special '-looking index as 21 1 belongs

to a general form? We must remind ourselves that we have now passed

from the very regular cubic system to one in which it is no longer pos-

sible to select a parametral plane which makes equal intercepts on all

three axes. The assignment of the index { 1 1 1} to a particular bipyramid

{h h 1} defines the ratio of the c unit of measurement, parallel to the

z axis, to the a unit of measurement parallel to the x and y axes ; it

has fixed the axial ratio c : a for this description of the crystal. The

a a c
parametral plane makes on the axes intercepts in the ratio

1 1 1

A face h h I makes intercepts in the ratios 7 : 7 : y , and is thus sym-

metrical to the diad axes which are the x and y axes—it belongs to a

special form, a tetragonal bipyramid. A face such as 211, however,

makes intercepts in the ratios ^ : y : t , and is thus in no way specially

related to the elements of symmetry—it belongs to a general form.

We may tabulate here the various kinds of form which are found in

this class of the tetragonal system

:

Special forms. Tetragonal prisms {100}, {110}.

Ditetragonal prisms {h k 0}.

Basal pinacoid {001}.

Tetragonal bipyramids {h h /}, {h /}.

General forms. Ditetragonal bipyramids {hkl}.

Fig. 114 represents a crystal of tetramethylammonium iodide,

NCCHg)^. The tetragonal prisms {100} and {110} are clearly both

present; in the setting of the figure, {100} is

large and {110} small. The larger terminal

faces belong to a tetragonal bipyramid {h h 1}

and could be indexed as {111}. The edges of

this bipyramid are modified by small faces of

a bipyramid {h /}, which, from its zonal rela-

tionships with {111} is clearly the form {101}.

No faces of a general form are present, so

that we could not be certain from the appearance

of this particular crystal that it is correct to

assign the substance to the ditetragonal
_

° _ Fig. 114. A crystal of tetra-

bipyramidal class. methylammonium iodide.
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Fig. 1 1 5 illustrates a crystal of mercurous chloride of more complex

development than the simple habit of Fig. 104. The tetragonal prism

Fig. 115. a crystal of mercurous chloride.

{100} is small; there are four different tetragonal bipyramids {hhl}

(any one of which might be chosen as the parametral form {111}), one

tetragonal bipyramid {h 1} and one ditetragonal bipyramid.

THE ORTHORHOMBIC SYSTEM (HOLOSYMMETRIC CLASS)

(The abbreviation of the name of this system to Rhombic, sometimes

used, is undesirable.)

In Fig. 116 is illustrated a crystal of lead sulphate, PbS04. The

rectangular shape of certain of the faces suggests the presence of diad

axes, and measurement of such a crystal would show that these faces

are mutually orthogonal. The only other symmetry elements are three

Fig. 116. a crystal of lead
sulphate.

Stereogram of a holosymmetric
orthorhombic crystal.
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planes of symmetry (one normal to each diad axis) and a centre. This

symmetry is marked on the stereogram, Fig. 117. We shall naturally

choose the directions of the diad axes as the crystallographic axes

X y z. There are three unique special positions, normal to each of the

three diad axes. A face such as 100 is repeated only once, in the position

Too, to give a pinacoid {100} ; similarly, {010} and {001} are two further

possible pinacoids, the latter often called a basal pinacoid by analogy

with the use of this name in the tetragonal system.

In the zone between 100 and 010 will lie possible faces hk(i, of

which 110 is the simplest, and these will give rise to a family of special

forms since they occupy a special kind of position normal to a plane of

symmetry (and therefore also parallel to a diad axis). Since the crystal

is orthorhombic and not tetragonal in symmetry,

however, we must suppose that the underlying

unit of pattern is a rectangular parallelepiped (a

brick-shaped unit) and not a right square prism.

Hence even the face 110 will not lie at 45°

between 100 and 010, but will make unequal

intercepts on the x and y axes (Fig. 1 1 7). The face

is repeated four times by the symmetry elements

—110, ITO, TTO, TlO—and the form {110} is an

open prism form (Fig. 118). Unlike {1 10} in the

tetragonal system, the right cross-section is now a rhombus and not a

square, and all the forms {h k 0} make up a family o{ orthorhombic prisms.

A face {0 k 1} is Hkewise repeated four times to give a similar open

Fig. 118. Orthorhombic
prism {h k 0}.

Fig. 119. Dome {Ok I}.
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form (Fig. 119) with a rhombus cross-section, but differently situated

in space. Such forms {0 k 1} are called domes from their resemblance

to the gable-roof of a house (8a)/xa). Forms {h /} comprise a family

of similar domes {Fig. 120) with their edges parallel to the y axis.

We have now exhausted the possible kinds of special position, and

any other possible plane hk I must be generally related to the elements

of symmetry—the systematic triangle (p. 57) is now a quadrant of the

stereogram. It may be surprising at first to reaUse that even {111} is

thus a general form, but we must remember that in a structure built

Fig. 120. Dome{/iO/). Fig. 121. Orthorhombic
bipyramid [hk I).

from brick-shaped units it is impossible to choose a parametral plane

making equal intercepts even on one pair of axes ; the axial units a,

b, c are now perforce all unequal (in other words, neither of the axial

ratios a/b, c/b can be unity in the orthorhombic system). Thus the plane

111 makes intercepts a/1, b/\,cl\ on the three axes; these are unequal

and unrelated, and the plane is generally situated. Any such plane is

repeated by reflection to give four faces above the primitive (Fig. 117)

and four faces symmetrically below, and belongs to a general form of

the orthorhombic bipyramidal class (Fig. 121).

From the customary list of forms, it will be seen that as the symmetry

falls from system to system this hst is gradually growing simpler

:

Special forms. Pinacoids {100}, {010}, and (basal) {001}.

Prisms {h k 0} and domes {h /}, {0 k /}.

General forms. Orthorhombic bipyramids {h k /}.

It was formerly a convention that an orthorhombic crystal should be

so orientated before description that it was possible to choose a para-
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metral plane giving alb<l. The x axis, along which the shorter units

of measurement were employed, was then called the brachy-axis and the

y axis the macro-axis {^paxvs, short
;

^xaKpos, long). This was some-

times also symboUsed a, b, c. Forms such as {100} and {hOl), de-

veloped from faces parallel to the macro-axis, were then called macro-

pinacoid and macrodomes respectively, whilst {010} was the brachy-

pinacoid and {0 k I) brachydomes. It is now recognised that analogies

between the structural plans of related substances are sometimes better

expressed by an orientation in which alb>\ for a particular substance,

and once this convention is not rigidly observed the corresponding

nomenclature is almost valueless. We shall not use it here, but shall

distinguish the forms by their appropriate indices just as we distinguish

' order ' in the tetragonal system. It is clear, for example, that the

pinacoid {010} consists of a pair of faces parallel to the direction which

we have chosen as the x axis, quite independently of the relative values

of a and b units. Finally, it may be observed that the three diad axes

are all of similar crystallographic significance and any one might be

selected as the z direction, so that there are in all six possible ways of

orientating every orthorhombic crystal. There is no real difference

ultimately between the ' basal ' pinacoid and the pinacoids {100} and

{010}; nor between prisms and domes. For this reason we have

listed them as equivalent above, and some authors talk of ' domal

prisms ', but once a particular diad has been selected as the z direc-

tion it is convenient to retain the term prism for forms {h k 0} parallel

to it.

Fig. 122 represents a crystal of caesium perchlorate, CSCIO4, of some-

what tabular habit. The three pinacoids {001}, {010} and {100} are

Fig. 122. A crystal of caesium Fig. 123. A crystal of sulphur,

perchlorate.

developed, the last very small. There are present also one prism,

one dome {h /}, one dome {0 k 1} and one orthorhombic bipyramid,

In Fig. 123 is represented a crystal of orthorhombic sulphur of simple



72 AN INTRODUCTION TO CRYSTALLOGRAPHY

habit. (Sulphur is polymorphous, or allotropic, and also crystallises,

under different conditions, in crystals not be-

longing to this system. The substance we

are considering here is the modification which

is formed also under natural conditions as a

mineral.) The basal pinacoid {001}, a dome

{0 k 1} and two bipyramids are developed. Fig.

124 represents a much more highly modified

crystal of the same substance ; the three pina-

coids are all present, and there are five domes,

a prism and fourteen examples of the general

form.
Fig. 124. A highly-modi-
fied crystal of sulphur.

THE MONOCLINIC SYSTEM (HOLOSYMMETRIC CLASS)

Fig. 125 illustrates a crystal of borax, Na2B407 . IOH2O. There is a

number of vertical ' prism ' edges, indicating an obvious choice for the

z direction. There are edges normal to this, running

right and left, which can be chosen to determine

the y direction as in the previous systems. The

right-hand vertical face, however, shows no direc-

tion of edge normal to the z direction, and exam-

ination of a number of crystals of borax would

convince us that such a direction is not a ' possible

edge '. We must suppose that borax crystals are

built up from a unit of pattern which is not an

orthogonal prism (Fig. 126), and acting in con-

formity with the formulation of the Law of Rational

Indices it becomes impossible to describe such a

crystal in terms of a set of orthogonal axes. The y and z directions

can still be chosen normal to each other, but the x direction, whilst

lying in a plane through the z axis normal to the y z plane, slopes at

an angle to the z direction which is not 90° (Fig. 126) ; hence the name

of the system

—

monoclinic, one axis inclined.

The figure of a borax crystal shows clearly the lack of a horizontal

plane of symmetry, but there is still a vertical plane of symmetry

(parallel to the plane of the .v 2 axes which we have chosen) and a diad

axis normal to this (parallel to the y direction) ; the only other element

of symmetry present is a centre. It is now a universally-accepted con-

vention that in a monoclinic crystal the diad axis shall be chosen as

the y direction; conventionally, also, the .x: direction slopes downwards

Fig. 125. A crystal

of borax.
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Fig. 126. Structural unit of a monoclinic crystal and the crystallographic axes
derived from it.

towards the observer, so that the angle /S between + x and + z is always

obtuse. There has been some confusion over this latter point, however,

and we shall refer to it again shortly.

The non-orthogonal character of the axes opens up a new difficulty

in making a stereographic projection ; if the z direction is still placed

normal to the paper, as hitherto, the y direction still runs right and left

in the plane of the paper, but + x emerges in front below the plane of

the paper whilst -x projects at the back above this plane (Fig. 127).

This is the method of projection most widely used at the present time,

but for some purposes it is better to make the projection in a diiferent

Fig. 127. The relationship of the crystal- Fig. 128. The relationship of the crystal-

lographic axes of a monoclinic crystal to a lographic axes to a stereographic projection
stereographic projection on a plane normal on a plane normal to the >'-axis.

to the z-axis. (Formally, the axes should be
represented only by their poles, since the

stereogram is a projection of the surface of
the sphere ; it is often convenient in practice,

however, to insert the axes as they would be
seen inside a transparent sphere.)

attitude. The plane of the paper is passed through the spherical pro-

jection normal to the y axis instead of to the z axis ; the projecting
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point P is situated on the - y axis, so that the plane of projection is

parallel to the crystallographic plane 010 (Fig. 128). The x and z

directions, making the angle ^ with each other, lie in the plane of the

paper, whilst the y direction is normal to the projection. The student

should practise the use of both orientations, but for the present we shall

follow the former method, projecting on a plane normal to the z axis.

In such a projection, the vertical faces of Fig. 126, meeting in edges

parallel to the z axis, must project as poles lying on the primitive

circle. The face 100 is parallel also to the y axis, and so its pole can

be inserted in the stereogram (Fig. 129) ; it is repeated at TOO, so that the

form {100} is a pinacoid. The face 010 is normal to the y axis, and

with the parallel face OTO constitutes another pinacoid. The face 001

100

Fig. 129. The poles of the planes 100,

010 and 001 inserted in the projection in

Fig. 127.

Fig. 130. Plan on the xz plane,
showing the relationship of the axial

angle p to the interfacial angle 100 ''OOl.

is parallel to the y axis and also to the direction selected as the x axis

;

it is therefore not normal to the z axis, and its pole no longer lies at

the centre of the stereogram, but at an angular distance from the centre

corresponding to an inclination forwards equal in amount to the in-

clination of the X axis below the horizontal. This relationship is most

clearly seen in a plan of the crystal on the xz plane (Fig. 130); since

the .\' axis is parallel to 001 and the z axis is parallel to 100, it is clear

from this figure that the normal crystallographic angle 100^^001 =

180° -jS, where j8 is the obtuse angle between -\-x and +z. This normal

crystallographic angle can be measured directly on the crystal, and the

pole 001 is then readily inserted in the projection (Fig. 129). It, also,

belongs to a pinacoid, {001}, a basal pinacoid by analogy with the

preceding systems.

We noted above the two conventions applying to the orientation of

a monoclinic crystal^—the diad axis is always selected as the y axis, and

the +x axis always slopes downwards towards the observer. The
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angle ^, defined as the angle between + x and + z, must therefore be

obtuse, and the crystallographic angle 100^^001 must be acute. In

accordance with this, we find for example in Groth's Chemische Krystal-

lographie that in lead chromate, PbCr04, /3 = 102° 27'. This substance

occurs as a mineral, crocoite, and if we consult a mineralogical refer-

ence book we shall probably find the entry j8 = 77°33'. Such state-

ments seem to have arisen from an impression that an acute value

of an angle was more easily understood and manipulated than was an

obtuse value ; in some books they are partially justified by defining ^
as the angle between - x and + z, but this subterfuge only adds to the

confusion, as in the next system, the tricHnic, the definition cannot be

retained. This perverse habit is slowly being abandoned in current

texts, and the student should cultivate the habit of quoting an acute

value if he refers to the crystallographic angle 100 •^001 and the cor-

responding obtuse value if he refers to the axial angle /3. Meanwhile

he will keep clear of this awkward trap if he gets firmly fixed in

his mind that crystallographers never orientate a monoclinic crystal

with + X projecting upwards in front.

Returning now to a discussion of the possible forms in this symmetry

group, we consider next the repetition of a face h k 0. Such a face is

reflected across the plane of symmetry to give h k 0, and the diad axis

(or the centre) adds two further faces to give the form {h k 0}, an open

prism. Strictly speaking, this is a general form; the only possible

special positions in this group are the unique position of 010 normal to

the diad axis, and the family of positions /z / (of which 100 and 001,

considered above, are particular examples) parallel to the diad axis.

This class is therefore called the prismatic class of the monoclinic

system. The list of possible forms is now quite brief:

Special forms. Pinacoid {010}.

Pinacoids {h /}.

General forms. Prisms {h k I}.

It is customary in practice, however, to depart from this somewhat

rigid position and to name various forms differently if they bear a differ-

ent relationship to the crystallographic axes. (Compare the distinctions

of ' order ', p. 65.) We began to do this above, when we suggested

calling {001} a basal pinacoid, and though this irregularity of nomen-

clature may seem undesirable at first sight, it is extremely convenient

in practice in view of the close relationships which often exist between

certain orthorhombic and allied monoclinic crystals.

The y axis is normal to the z axis, and may be called the ortho-axis.
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whilst the inclined x axis is termed the clino-axis. {100} is then dis-

tinguished as the orthopinacoid, and {010} as the clinopinacoid
; {001},

though not normal to the z axis, is, by analogy with the orthorhombic

system, the basal pinacoid. Forms {0 k I] can be called clinodomes,

and forms {h /} orthodomes ; the latter, strictly speaking, are hemi-

domes, since the presence of /i / does not imply the necessary presence

of hO I, and each form consists only of two faces. Finally, {h k 1}

forms are by analogy hemi-pyramids, but we must recognise the in-

formahty of this nomenclature by keeping to the correct name for the

class, the prismatic class. The relationship between the two kinds of

nomenclature may be tabulated

:

Chnopinacoid {010}.

Orthopinacoid {100}.
|

Basal pinacoid {001}. V

Hemi-orthodomes {h /}. j

CUnodomes {0 k /}.
]

Prisms {h k 0}. I

Hemi-pyramids {hkl). j

Clinopinacoid {010}.

Pinacoids {h /}.

Prisms {hkl}.

Fig. 131 illustrates a common habit of hydrated calcium sulphate,

CaS04 . 2H2O, the mineral gypsum. The clinopinacoid {010} is well-

developed and is accompanied by two examples of the general form.

The simplest indices which we could allocate to these would be {110}

and {Oil}, determining the x

and z directions parallel to

the edges bounding the face

010, though in the conven-

tional description of gypsum

this has not been done. The

crystal of sodium bicarbon-

ate, NaHCOg, depicted in Fig.

132, is rather pronouncedly

tabular parallel to the clino-

pinacoid, which is here ac-

companied by four examples

ofthe general form. The con-

ventional indexing describes

one of these as the ' prism ' {1 10}, and assigns the indices {1 1 1}, {121} and

{Hi} to the remaining ' hemi-pyramids '; the value of ^ is 93° 19' in

this description (notice the pseudo-orthorhombic aspect of Fig. 132),

Fig. 131. A crystal of
gypsum.

Fig. 132. A crystal of
sodium bicarbonate.
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corresponding to the choice of a possible edge, and not an actual

edge, of the crystal of Fig. 132 as

the X axis. The crystal of trona,

Na2CO3.NaHCO3.2H2O, Fig. 133,

illustrates a different kind of habit,

elongation parallel to the y axis re-

sulting from a prominent development

of the pinacoids (including ' hemi-

orthodomes ') {h /}, of which four

examples are present; in addition,

there are three examples of the general form.

Fig. 133. A crystal of trona.

THE TRICLINIC SYSTEM (HOLOSYMMETRIC CLASS)

Fig. 134 illustrates a crystal of hydrated ferrous sulphate, FeS04. 5H2O
(not to be confused with ' green vitriol ', FeS04 . 7H2O, which is

monoclinic). Measurement of such a crystal would fail to reveal any

Fig. 134. A crystal of FeSOi • SHjO. Fig. 135. Structural unit of
triclinic crystal.

orthogonal relationships; there are no mutually perpendicular faces

or edges, and we must conclude that the underlying unit of pattern

is a non-orthogonal parallelepiped (Fig. 135); any suitable choice of

prominent directions of edge will result in a set of non-orthogonal

axes (Fig. 136), in which no one of the axial angles a, /3, y is 90° (hence

triclinic, all three axes inclined). There are no axes of symmetry and

no planes of symmetry; the only remaining symmetry element is a

centre.

In constructing a stereogram nothing is gained by any departure

from the usual convention that the z axis shall be normal to the plane

of projection. Neither the x direction nor the y direction will then
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lie in the plane of the projection ; as in the monoclinic system, the angle

^ between +x and +z is conventionally obtuse, so that +x projects

Pig. 136. Crystallographic axes of
a triclinic crystal.

Fig. 137. Stereogram of a triclinic crystal.

below the paper in front as before (Fig. 137) whilst +y projects above

or below the paper according to the acute or obtuse value of the angle

a. Since there are no symmetry elements to guide the conventional

choice of even one axial direction, it will be readily seen that different

observers may make widely differing selections in different descriptions

of the same substance ; attempts have been made from time to time to

introduce conventional rules, but it cannot be said that any are widely

accepted at present, except perhaps that a, as well as ^, shall be obtuse.

The directions of the x and y axes cannot be inserted in the stereo-

gram in actual practice until the planes 100, 010 and 001 have been

projected. Since 100 and 010 are parallel to the z axis, their poles lie

on the primitive. If the xz axial plane is still set north-south on the

projection, 010 occupies its usual position on the primitive (Fig. 137).

Measurement of the crystallographic angle 010^^100 enables us to

insert 100, and 001 must be located by the intersection of two small

circles of radii corresponding to the measured crystallographic angles

100^001 and 010^001. Since the x axis is parallel both to 010 and

to 001, it is the zone-axis of the zone through these two faces, and its

point of emergence can be located as the pole of the corresponding

great circle ; similarly, the y axis emerges at the pole of the great circle

through 100 and 001 (Fig, 137). This relationship between the axial

directions and the associated great circles enables us to mark in the

projection the angles which correspond to the values of the axial

angles a, )3, y. The angle a, for example, is the angle between +y and

+ z ; but y is normal to the zone 100 - 001 and z is normal to the zone

100-010, so that a is given by the angle between these two zones.
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Similarly, we can indicate the values of /3 and y, and it is clear at once

that there is an important difference here from the corresponding

aspect of the monochnic system ; whereas in the monochnic crystal the

crystallographic angle lOO'^OOl is simply related to the axial angle ^

(i8
= 180° - lOO'^OOl), there is no such direct relationship in a triclinic

crystal between the measured interfacial angles lOO'^OlO, 010^^001,

001 '^100, and the axial angles a, ^, y.

The discussion of possible forms now becomes very brief. Since no

special relationship to a centre is possible, the distinction of special

forms from general forms has disappeared in this class. Every form

consists of a pair of parallel faces, a pinacoid ; the class is the pina-

coidal class of the triclinic system. Once the crystallographic axes have

been chosen, it is occasionally convenient to carry over here, also, the

nomenclature of the orthorhombic system and to speak of domes and

pyramids in relation to this particular set of axes, but if this departure

from strict nomenclature is tolerated it must be constantly borne in

mind that each form consists only of a pair of parallel faces. Some

typical tricHnic pinacoidal crystals will be illustrated later, when we

return to study the tricUnic system in greater detail; an illustration

would add nothing at this stage, since we have seen that every form

present must be a pinacoid.

THE HEXAGONAL SYSTEM (HOLOSYMMETRIC CLASS)

A crystal such as Fig. 138 portrays clearly possesses a hexad axis,

and so must be allocated to the hexagonal system. The simplest

assumption we can make about the unit of pattern of such a crystal is

Fig. 138. A crystal showing
a hexad axis.

Fig. 139. Structural units of
a hexagonal crystal.

that it has the shape of one of the right prisms based on a 60° rhombus

shown in Fig. 139. The vertical prism edges of such a unit (and there-

fore of the prism form of Fig. 138) will clearly be chosen as the direc-

tion of a vertical z axis. Normal to this direction are the horizontal
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Fig. 140. Hexagonal (Miller-Bravais)
crystallographic axes.

edges of the prism units of Fig. 139; two of these edges can therefore

be used to determine x and y directions normal to z. The x and y
axes thus make an angle of 120° with

each other, but which of the three

possible directions shall be selected as

the X direction and which as y1 The

three directions are all of equivalent

significance, and so it is customary in

this system to use all three; hexagonal

crystals are thus described in terms of

four crystallographic axes (Fig. 140),

three horizontal axes x, y and u, at an

angle of 120° to each other, normal to

the vertical z axis. The Millerian index

notation which we have used in the

preceding crystal systems was adapted to this set of crystallographic

axes in the hexagonal system by A. Bravais,* and the indices which

we shall use are therefore known as Miller-Bravais Indices. They are

written to refer to the axes in

the order xyuz, and each index

symbol thus contains four figures

—e.g. lOTl, 1122, or generally

hkil. (Some authors write this

general symbol hi k I, or even

hkli, causing unnecessary con-

fusion, but the order of reference

to the axes is always that which

we have described.) It will be

clear that the first three indices

are not independent, since they

refer to the intercepts on three

fixed coplanar axes ; the student

can soon prove for himself that

h + k + i = 0. The reason for the

pi.
K^

Fig. 141. Prism showing holosymmetric
hexagonal symmetry.

use of a redundant index in this way will be more easily understood when
we have had some practice in the Miller-Bravais notation (see p. 83).

Auguste Bravais was born at Annonay, southern France, in 1811, and became
a naval officer. His interests in astronomy and other branches of mathematical
physics ultimately led him to a Chair of Physics in Paris, but he is best known to
crystallographers for his work on the theory of crystal structures, to which we shall

refer later. He died at Versailles in 1863.
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The symmetry of the holosymmetric class of the hexagonal system is

illustrated by the hexagonal prism (Fig. 141). There are six vertical

planes of symmetry intersecting in the hexad axis, six horizontal diad

axes, a horizontal plane of

symmetry and a centre. This

symmetry is marked on the

stereogram (Fig. 142), where

the conventional orientation

of the axes is also illustrated.

The diad axis chosen as the

y direction runs horizon-

tally to the right, as before,

so that the +x direction

now runs downwards to-

wards the left and the +u
direction upwards towards

the left. The z direction is of

course normal to the paper,

the plane of projection.
Fig. 142. Stereogram of a holosymmetric

hexagonal crystal.

To begin a study of the possible kinds of form, we can insert the

basal plane, the index of which must be 0001. It is repeated in OOOT

to give the basal pinacoid {0001}. As in the earlier systems discussed

above, this is an open form with no defined shape until it is known
what other forms are also present. The prism, the faces of which

intersect the basal pinacoid in the chosen xyu directions, may now be

inserted. These faces are parallel to the z axis, and their poles there-

fore Ue on the primitive ; each pair of faces is parallel to one of these

horizontal axes. Each face makes equal intercepts, of opposite sign,

on the two horizontal axes which it intersects ; the index of the form

is therefore {hOh 0}, or in simplest terms {lOTO}. The six faces neces-

sitated by the symmetry make up an open hexagonal prism (Fig. 143).

Fig. 143. Hexagonal prism {1010}.

P.c.

Fig. 144. Hexagonal prism {1120}.
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Truncating the edges of this prism are the faces of a second possible

prism, cutting two horizontal axes symmetrically ; its index is {h h 2h 0},

i.e. {1120}. It is a further hexagonal prism (Fig. 144). Any further

possible prism face h k iO, such as 2130 (bear

in mind that h+k + i = 0), is not normal to a

vertical plane of symmetry and is therefore

repeated twelve times altogether, in six pairs

;

the form {h k i 0} is a dihexagonal prism. The

form {2130} is illustrated in Fig. 145, closed by

the basal pinacoid {0001}.

A possible face in the zone 0001-lOTO will

have indices hO fi I, of which the simplest

example is lOTl. Such a face is repeated six

times around the vertical hexad axis and six

times symmetrically below ; the forms {hO h 1}

constitute a family of hexagonal bipyramids

Fig. 145. Dihexagonal

prism {2130} with basal
pinacoid {0001}.

(Fig. 146). The particular slope of the face lOTl, of course, depends

upon the dimensions of the unit of pattern and therefore upon the

particular substance under consideration. The plane lOTl may be

considered as the parametral plane of this system (an index 1111 is,

clearly, impossible), since its slope defines the

ratio of the a units of measurement along the

X, y and u axes to the c unit of measurement

along the z axis, determining an axial ratio c/a of

similar significance to that of a tetragonal crystal.

One further special position remains to be

considered. Just as {hO h 1} bipyramids modify

the edges between the prism {lOTO} and the basal

pinacoid {0001}, so there is also a family of

forms {hhlhl}, such as {1121}, in the zones

between the faces of the prism {1120} and the

pinacoid {0001}. These are a further family of

hexagonal bipyramids, geometrically similar to

the forms {hO h /}, but presenting an edge towards

us where the latter present a face (Fig. 147). The distinction between

these two families of bipyramids, and between the hexagonal prisms

{lOTO} and {1120}, is sometimes described as one of order, but similar

objections apply here to those which we advanced against this method

of distinction in the tetragonal system (p. 65), and we shall continue

to make the distinction by quoting the appropriate indices.

Fig. 146. Hexagonal

bipyramid {h /; /}.
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No Other specially related position of a face is possible. A face

hkil, such as 2131, is generally related (its pole Ues within the sys-

tematic triangle) and is part of a general form. Such a face is repeated

Fig. 147. Hexagonal bipyramid {/)/; 2/i /). Fig. 148. Dihexagonal bipyramid {A /c / /}.

(Fig. 142) to give six pairs of faces above the plane of projection and

six pairs symmetrically below (Fig. 148); we have been studying the

dihexagonal bipyramidal class of the hexagonal system.

The complete list of forms in this class now reads

:

Special forms. Basal pinacoid {0001}.

Hexagonal prisms {lOTO}, {1120}.

Dihexagonal prisms {h kiQ).

Hexagonal bipyramids {h h I), {h h 2h /}.

General forms. Dihexagonal bipyramids {h k il).

It is now easy to see, from a consideration of the indices of any one

of these forms, why the redundant u index is not omitted altogether.

Below are set down the indices of the six faces of the hexagonal

prism {1120}, and the three-figure version which would be obtained by

omission of the u index

:

1120 110

T2T0 T20

2110 210

TI20 no
1210 120

2TT0 210

It is easy to see the connection between the six four-figure indices,

but this connection is quite obscured in the curious collection in the
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Fig. 149. A crystal of beryl.

right-hand column. Omission of either the x or the y figure would

secure no more symmetrical result, and so the three are always retained

in morphological descriptions. (If, however, the emphasis is placed

on the kind of plane and it is not important to distinguish which par-

ticular face of a form is concerned, as in many problems dealing with

the internal structure, a dot or an asterisk

may be used in place of the third figure.

Thus 1 1 .0 planes are structural planes par-

allel to any face of the prism {1120}.)

Fig. 149 illustrates a crystal of beryUium

aluminium silicate, BegAlaCSigOig), the

mineral beryl, of typical prismatic habit.

In the setting shown, the prism {lOlO} is

large and the prism {1120} smaller. Be-

tween these prisms and the basal pinacoid

{0001} are one example of a hexagonal

bipyramid {// h 1} and two of the bi-

pyramids {li hlhl). There is also one

dihexagonal bipyramid present. If we assign to the bipyramid {h h I)

the simplest possible index {1Oil} the evident zonal relationships indicate

that the other hexagonal bipyramids are {1121} and {1122}, whilst the

general form is {2131}.

THE TRIGONAL SYSTEM (HOLOSYMMETRIC CLASS)

Fig. 150 represents a simple crystal of calcite, CaCOg. A first glance

suggests a connection with the hexagonal system, but examination of

the terminal faces reveals that the vertical axis is a triad axis only—the

system is trigonal and not hexagonal. There

is a centre of symmetry but no horizontal

symmetry plane. Three vertical planes of

symmetry meet in the triad axis, and normal

to these three planes are three diad axes which

we shall select as the x y u directions of a

Miller-Bravais axial scheme, the r direction

being parallel to the triad axis.

Beginning a study of the possible kinds of

form, {0001} is a basal pinacoid as before. By

inserting the poles in a stereogram (Fig. 151)

and repeating them to satisfy the symmetry,

the student can convince himself that {lOlO} fig. 150. a crystal of calcite
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and {1 120}are hexagonal prisms, {h kiQ]Q. family of dihexagonalprisms,

and {// h 2h 1} a family of hexagonal bipyramids exactly as in the

Fig. 15L Stereogram of a holosymmetric trigonal crystaL

hexagonal system. We must continue to use the term hexagonal for

these forms, though they are special forms of a class of the trigonal

system, since their faces are disposed regularly every sixty degrees

around the triad axis. This reappearance of a number of special forms

emphasises the close connection between the trigonal and hexagonal

systems, and is one of the reasons why some crystallographers prefer to

group all the classes of these two systems together in sub-divisions of

one large hexagonal system,

A new feature arises, however, when we consider the repetition of

a face h Oh I, such as lOTl, normal to one of the vertical planes of

symmetry. The operation of the

triad axis gives only three such

faces, lOTl, TlOl andOTU on top,

and the operation of the centre

(or of the horizontal diads) gives

three parallel faces below. There

are no faces of this form sym-

metrically below the upper faces

(see the separate stereogram (Fig.

152), and the form {lOll} is not

a bipyramid but a rhombohedron

(Fig. 153). The forms {hOhl}
^.^ ^ r- -1 c ^ 1

Fig. 152. Stereogram of the form {1011} of
constitute a family ot rhombo- a holosymmetric trigonal crystal.
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Fig. 153. Rhombohedron {1011}.

hedra which become more and more acute (Fig. 154) as the ratio

h : I becomes larger. Though the face 01 Tl is not a part of the form

{lOTl} it is a possible face on such a

crystal, and its relationship to the sym-

metry elements shows that it, also, is

repeated to give a rhombohedron (Fig. 155)

geometrically similar to {lOTl}, but present-

ing an edge towards the observer where

the latter presents a face. Developed

equally together on a crystal, these two

rhombohedra would simulate a hexagonal

bipyramid, but even then each form would

retain its own particular characteristics; in calcite, for example, {lOTl}

planes are directions of perfect cleavage.

Various nomenclatorial devices have been introduced to differentiate

a rhombohedron such as {lOTl} from its geometrically

similar ' complementary ' rhombohedron {01 Tl}. Thus,

one has been called a positive rhombohedron (with an

upper face towards the observer) and the other a

negative rhombohedron, but this mode of distinction

seems specially undesirable in view of the estabhshed

usage of + and - in optical work. Direct and inverse

are more satisfactory terms, but they are not very widely

used. We shall distinguish the rhombohedra by their

indices; with the conventional setting of the axes,

rhombohedra {hOhl} clearly present an upper face

towards the observer (Figs. 153, 154), whilst rhombo-

hedra {0 k k I] present an edge in this position (Figs.

155, 156, 157}. Bearing in mind the observed simple

zonal relationships of common crystal faces, we shall acute i-hombohe-

expect that the rhombohedra most frequently found dron {h o /; /}.

developed together will be groups such as {0221}, {lOTl} and {01 12}

Fig. 155. Rhombohedron {OlTl}. Fig. 156. An obtuse rhombohedron {0 ^ ^/}
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developed by successive truncation of polar edges. (The polar edges

of a rhombohedron (p. 6) are those which intersect the triad axis.)

No other kind of special relationship to the symmetry elements is

possible, and a face such as 2131 must belong to a general form. Such

a face is reflected across a plane of symmetry to give 3T21, and this

Fig. 157. An acute rhombo-

hedron {Qkk /}.

Fig. 158. Stereogram of the form {2131} of
a holosymmetric trigonal crystal. ,

pair of faces is repeated three times around the triad axis. The edges

between these six upper faces, however, are not now all ahke ; it is a

question of alternate like and unlike edges, not of six similar edges.

The form is ditrigonal and not hexagonal. Moreover, there is no

horizontal plane of symmetry, or any other element

of symmetry which operates to give six faces sym-

metrically below; the upper faces are repeated

by the centre (or by the horizontal diad axes) as

shown in Fig. 158, and the form {2131} is clearly

not a bipyramid. Each face of the form is a

scalene triangle (Fig. 159), and so the form is

called a ditrigonal scalenohedron. The name scaleno-

hedron is sometimes used for forms in other

systems, so that we should strictly always use the

full name for this particular form ; when the system

under discussion is clear, however, the adjective

ditrigonal is often omitted. We have been con-

sidering the scalenohedral class of the trigonal^ ®
Fig. 159. Ditrigonal

system. scalenohedron {h k i I}.
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The list of forms for this class of symmetry now reads

:

Special forms. Basal pinacoid {0001}.

Hexagonal prisms {lOlO}, {1120}.

Dihexagonal prisms {h k i 0}.

Rhombohedra {h h /}, {0 k^ /}.

Hexagonal bipyramids {h h 2h I).

General forms. Ditrigonal scalenohedra {h k i /}.

Fig. 160 depicts a crystal of corundum, AlgOg, of tabular habit due

to the prominent development of the basal pinacoid {0001}. The other

predominant form is a rhombohedron

{h h I}; in addition, there are small faces

of the prism {1120}, a rhombohedron

{0 k ic 1} and a hexagonal bipyramid. If

the predominant rhombohedron is chosen

as {lOTl}, the other rhombohedron present

is {0221}, whilst the bipyramid is {2243}.

There are no faces of a general form present

on this crystal.

A crystal of calcite of more complex

Fig. 160. A crystal of corundum. Fig. 161. A crystal of calcite of
scalenohedral habit.

development than the simple habit of Fig. 150 is portrayed in Fig. 161.

The forms present are the prism {lOTO}, one rhombohedron {hOhl},

three rhombohedra {Ok k 1} and two scalenohedra. The predominance

of one of the latter confers a scalenohedral habit on the crystal.

AN ALTERNATIVE METHOD OF INDEXING
TRIGONAL CRYSTALS

Miller himself did not use a four-index notation in the hexagonal

and trigonal systems, but used a three-index notation throughout. In

relation to crystals with a true hexad axis his procedure was very clumsy,

and it is now never used in the hexagonal system. In the trigonal

system, however, his method has certain advantages over the Miller-

Bravais method in some kinds of crystallographic problem and we

shall explain it briefly here. His choice of crystallographic axes

represents a departure from the recommendation embodied in our
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Fig. 162. Miller axes of a trigonal
crystal, parallel to the edges of the funda-
mental rhombohedron.

formulation of the Law of Rational Indices (p. 40), that ' it is con-

venient where possible to choose these parallel to prominent axes of

symmetry ', for if we follow this suggestion it is impossible to select a

set of three non-coplanar axes which

are symmetrically related to the triad

axes. Miller therefore chose crystal-

lographic axes parallel to the three

polar edges of thefundamental rhom-

bohedron (Fig. 162) (the one which we
have indexed in Miller-Bravais nota-

tion {lOll}), and thus not parallel to

symmetry axes.

The axes are equally inclined to the

triad axis and are non-orthogonal, but

make equal angles with each other;

this angle between the axes is the plane

angle of the face of the fundamental

rhombohedron (not the crystallo-

graphic interfacial angle), and it

depends upon the shape of that

rhombohedron in the particular substance in question. Instead of a

characteristic axial ratio for each substance, we therefore have in this

method of description a characteristic axial angle a.

The crystals are still set up

as before with the triad axis

vertical, and are projected on

a plane normal to the triad

axis. Since the edges of the

fundamental rhombohedron

define the directions of the

crystallographic axes, the in-

dices of the three upper faces

must be 100, 010 and 001

(Fig. 163). Notice, however,

that the three axes do not

emerge through the poles of

these faces, since they are

parallel to edges and not to

face normals. The points of emergence of the axes xyz can be

located in the projection by finding the poles of the zones 010-001,

Fig. 163. The upper hemisphere of the projection
in Fig. 151 indexed in Miller notation.
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001-100 and 100-010 respectively. Bearing in mind that the three axes

are equally inclined to the plane of projection, we can easily determine

the Miller indices of some of the forms which we have already described

in the Miller-Bravais notation. Thus

:

{0001} ^{111},

{1120}-{10T},

{10T0}^{211}.

The indices of further forms can be obtained by the process of add-

ing indices in two zones (p. 53) and one example will suffice. The
pole of a face of the rhombohedron complementary to {100} hes in a

zone with 111 and 112, and also in a zone with 100 and T2T (Fig. 163).

Adding the first pair gives 22T, and since this is also in a zone with the

second pair (300 + T2T=22T) it is the required index. The two com-

plementary rhombohedra are thus indexed as {100} and {22T} respec-

tively, and this distinction is often a great advantage when studying

trigonal crystals, in which these two forms are quite differently related

to the underlying structure. (On the other hand, it was a grave

disadvantage in the hexagonal system, where the adjacent faces of a

single form, a hexagonal bipyramid, acquired two such different-looking

indices as 100 and 22T; as mentioned above, this notation is now
never used for truly hexagonal crystals.)

It may sometimes be necessary to convert an index p q r of a. face in

Miller notation to the corresponding index h k i I in Miller-Bravais

notation, or vice versa. This is readily accomplished on a stereogram,

and the faces of a number of forms on the upper hemisphere have been

indexed in Fig. 163. If we adopt the convention that the particular

face 100 in the one notation shall always be indexed lOTl in the other,

the following conversions may be useful

:

h=p-q k = q-r i=r-p l=p+q + r.

p=h-i + l q = k-h + l r = i-k + l.

GNOMONIC PROJECTION
We have used stereographicjprojection exclusively to illustrate the

foregoing discussions, and its special advantages should by now be

more apparent to the reader. In studies of zonal relationships and

problems related to the allocation of indices an equally clear picture is

presented by a gnomonogram, and we add here a few examples of this

type of projection. Fig. 164 is a gnomonic projection of the crystal of

tetragonal mercurous chloride illustrated in Fig. 115. The gnomono-
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A Too

tlOO

Fig. 164. Gnomonogram of the crystal of mercurous chloride in Fig. 115.

gram of a trigonal crystal (Fig. 165) should be compared with the

corresponding stereographic representation (Fig. 151). In a gnomonic

projection of a crystal on a plane normal to a prominent axis of

symmetry it is usually convenient to complete only a segment of the

aToio

11010

Fig. 165. Gnomonogram of a holosymmetric trigonal crystal.
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projection ; Fig. 1 66 is a quadrant of a gnomonogram of the complex

orthorhombic sulphur crystal (Fig. 124). To determine the index of

tioo \iio

Fig. 166. Gnomonogram of the crystal of sulphur in Fig. 124.

a face projecting in a position such as the one marked by a cross in

Fig- 166, we write down the x and y coordinates in terms of the unit

distances 001-101 and 001-011 and add 1 as the z index, clearing of

fractions if necessary. For the position marked, the index is 1^ ^ 1,

i.e. 312.



CHAPTER V

GONIOMETRY

PROCEDURE IN OPTICAL GONIOMETRY

The student should by now be occupied with measurement and pro-

jection of actual crystals, and we insert here a chapter describing

the procedure to be followed in optical goniometry.

From the crop of crystals under investigation we select a few

specimens which appear (to the naked eye or under a lens) to show
well-developed plane faces. The number of individual crystals to be

measured in a given instance must vary with the nature of the problem

in hand, but the earlier tendency to measure ten or even twelve crystals

from every crop has now given way to a realisation that the objects

of crystal measurement are usually satisfactorily achieved in a much
shorter time by the measurement of only two or three carefully selected

crystals.

Freehand sketches must be made of each crystal before beginning

measurement—plans and elevations from different aspects will serve

—

and a letter (or number) assigned to every identifiable face so that

subsequent readings on the goniometer can be allocated to the correct

face and the measurements of successive zones be correctly correlated

with each other. If the crystal shows one well-developed zone this

should be chosen tentatively as a prism zone and set vertically. The

sketch completed, measurement is conducted by investigating one zone

at a time, beginning with the most prominent.

To adjust a zone, the crystal is mounted on the goniometer head by

means of a small pellet of wax or plasticine, the zone-axis in question

being set as nearly as possible parallel to the axis of the instrument and

a prominent face in the zone orientated so that its plane is as nearly

as possible parallel to the plane of movement of one of the adjusting

screws (p. 17). The crystal is centred approximately on the axis, and

the image from this first face located. The face is then set accurately

normal to the graduated circle by bringing the image centrally on the

origin (the fixed slit or cross-wires according to the type of instrument),

using for this setting the other adjusting screw. A second non-parallel face

in the zone, preferably at an angle of between 60° and 90° to the first, is

then adjusted in similar manner, but using only the first adjusting screw
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to which the first face was set parallel. In this way the setting of the

first face suffers little or no disturbance, though we must turn back to

its image and correct the setting if necessary by a touch on the second

adjusting screw. By this means, using only the adjustment appropriate

to the particular face, the two faces are soon set accurately normal to

the graduated circle, and the whole zone is therefore ready for measure-

ment, with its axis parallel to the axis of rotation. If the crystal has

been noticeably displaced from the actual axis during the setting, it is

re-centred before measurement is begun.

Measurement involves merely bringing the image of each face in

turn accurately on the origin, by rotation of the graduated circle, and

entering the corresponding readings against a tabulation of the appro-

priate letters assigned to the zone in the sketch, (As a practical point,

it is wise to acquire the habit of rotating the circle in such a direction

that these readings decrease as they are recorded downwards on the

paper.) The measurement is completed by a second reading from the

first face measured, as a check that the crystal has not been displaced

and to ensure that every face in the zone has been afforded an oppor-

tunity to reflect. During the measurement, the reading only is recorded

opposite the corresponding face-letter ; subtraction of these readings

to give interfacial angles is carried out later. A brief experience of

goniometry, however, will soon reveal that the images afforded by

crystal faces in practice are of very varied quality, and this quality

must be recorded for each reading either in words or by any con-

venient device such as one or more underlinings for readings from

particularly sharp images and one or more sets of brackets around

those corresponding to diffuse or otherwise unsatisfactory images.

Further zones are adjusted and measured in a similar manner, until

every visible face has been included in at least one zone. The number

of zonal measurements necessary will vary with the complexity of the

crystal habit ; at least three suitably related zones are obviously neces-

sary before the crystal can be projected without unjustified assump-

tions. (The student must beware, for example, of assuming that an

apparent ' base ' on a prismatic crystal is really normal to the prism

zone without showing by measurement that it makes an angle of 90°

with two non-parallel faces in that zone.) If several crystals are to be

measured, each is treated similarly in turn, and averaged angles may
be used in the construction of the stereogram. It is in the selection of

angles to be used in striking an average that the notes on the quality

of images first become useful, and more reliance should be placed on
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one difference obtained by subtracting two readings corresponding to

excellent images than on a number of differences derived from doubtful

images.

Images for which satisfactory readings are difficult to obtain may be

of three kinds. Coloured images should always be ignored ; they may
arise by total internal reflection after refraction through the crystal or

by diffraction from a very narrow or striated face, and from our present

point of view are of no significance. Blurred and distorted images arise

from departures of a particular face from a true plane, due either to

imperfections of crystal growth or to subsequent attack by a solvent

;

so far as possible, crystals with such defective faces should not be used

for goniometrical study. Multiple images, consisting for example of

three or four sharply-defined images regularly grouped in a triangle or

square, indicate that an apparent plane face on the crystal actually

consists of several portions not quite coplanar. Such are called vicinal

planes and are of great interest in the study of crystal growth. They
sometimes depart from a coplanar disposition only by a fraction of a

degree, and if indices were assigned to them these would be fantastically

high. We may look upon them at present as an indication of slight

departures from perfectly regular repetition of the unit pattern. When
they are encountered during measurement the group should be set

symmetrically on the cross-wire, and a note or sketch to describe its

appearance added to the reading.

From the disposition of the poles on the stereogram the crystal

symmetry and hence the system are determined. There follows the most

convenient choice of axes, and only then is a parametral plane chosen

and the indices of the remaining faces determined. This determination

and that of the axial constants (the appropriate axial angles and axial

ratio or ratios) we can at present only effect graphically. The greater

accuracy of optical goniometry over contact goniometry justifies the

use of more precise methods, and we shall discuss later the appropriate

methods of calculation.

AN EXAMPLE OF A SET OF MEASUREMENTS
The crystal (of barium sulphate) shows an elongated habit, flattened

parallel to one pair of faces so as to be almost tabular. We select the

long edges tentatively as prism edges, set them vertically and draw the

crystal in this attitude. The prism zone has only six faces, so that one

elevation together with a plan will serve to show all the faces on the

crystal (Fig. 167). We next letter the faces, avoiding pairs of letters
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(such as e and / if small letters are used) likely to cause confusion later.

The oblique fracture on the lower end of the crystal seems to be largely

determined by a series of cleavage planes, which

appear also as cracks in the body of the crystal.

A note is made of this in the drawing, for we shall

probably obtain reflections from these planes

in the course of measurement and thus acquire

further crystallographic information. The shape

of this particular crystal will enable us easily to

correlate its attitude on the goniometer at any

time with the attitude shown in the drawings,

but with a very symmetrically-developed crystal

we must note carefully in the drawings any

c^ i/c-7 01 . u A 1 visible markings or flaws. In extreme cases it
Fig. 167. Sketched plan ^

and elevation of a crystal may be necessary to spot one face with Indian ink
to be measured. ..

1 r-i • ^1 ^ • ^ ^•

to avoid any risk of losing the correct orientation.

Measurement begins with the prism zone abcdef. In the actual

investigation on which this description is based the large face a was set

parallel to the plane of movement of one of the adjusting screws, but

the image aff'orded by it was diffuse, and so the crystal was twisted on

the wax and the faces b and c (at an angle approaching 90°) were used

for adjustment of the zone.

(71° 8')

b 18° 23'

c 303° 5

r

d 251° 10'

e 198° 24'

/ 123° 49'

a (71° 7')

52° 45'

74° 32'

52° 41'

52° 46'

74° 35'

52° 42'

.(1)

Note that the measurements return to the face from which they start,

a second reading being taken from the face a. The image aff'orded by

this face is marked as the least satisfactory in the zone whilst those from

the pair of parallel faces c and / were exceptionally sharp and clear.

Subtracting the readings to give the interfacial angles we naturally

look with interest for any evidence of symmetry, but it cannot be too
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Strongly emphasised that the proper stage for the deduction of sym-

metry is not reached until one has constructed a projection showing

all the faces present on the crystal. A prism zone, for example, show-

ing a succession of faces at angles within a few minutes of 45° may have

nothing to do with cubic or tetragonal symmetry, a conclusion to which

the student is apt to jump at this stage, but may be revealed later as

merely a pseudo-tetragonal zone in, perhaps, a monoclinic crystal.

Before passing to the next zone we may add up the interfacial angles

to check that the sum differs from 360° only by the difference between

the two readings for the face a ; this is a check only on our arithmetic,

but experience proves it to be a useful one!

The next prominent zone is dghkmnopa with its obvious parallelism

of edges. The faces d and m (avoiding a) may be used for adjustment.

d
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the angular distance of r from the good prism face/, expecting from our

knowledge of the prevalence of simple zonal relationships that the zone

fr will pass through one of the faces k, h or g (probably through k to

judge by the apparent parallelism of edges visible on the crystal), and

possibly also through w. Adjusting the zone by means of/ and r, we

find that k does he in this zone, and if necessary we can use k and /
for the final adjustment.

c 237° 54'
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measured; setting the zone on the goniometer, we find it passes also

through o.

7 310° 36'
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Fig. 168. Stereogram constructed
from measured zones.

rather large radius in projection, so that it is convenient in practice

to draw only the circle of radius 58° 9' and to prick through th? point of

intersection from a superposed stereographic net.) The face k having

been inserted, we can draw in turn the zones (2) (which proves to be

vertical) and (3) and plot the faces upon them. Finally the zones (4),

(5), (6) and (7) can be plotted. The

stereogram completed to this stage is

shown in Fig. 168.

The high quality of most of the reflec-

tions and the excellent agreement of the

readings leave us in no doubt, in this

particular instance, about the positions

of any of the faces. Suppose, however,

that the face x had been of much poorer

quality and only showed a brightening

without a definite image during the

measurement of the zone cwhxf. This

shows that it Hes in that zone, some-

where between h and /, but we rnight be

in doubt about its exact position. The projection may then afford

suggestions for further zonal measurements. We see in Fig. 168 that

X appears to lie in the zone exmb and also in the zone dxra (this can

be checked by superposing a net) and either or both of these zones

could be set up and measured ; since both m and a give rather poor

reflections there is little to choose between them.

Having completed the projection we are in a position to determine

the symmetry. The symmetrical distribution of the pairs of faces k

and n, h and o, g and p about m indicates the presence of a diad axis

normal to m. The stereogram shows also bilateral symmetry about

the zone dma; there must be a vertical plane of symmetry passing

through the diad axis, and this combination automatically gives rise

to a second plane of symmetry at right angles to the other (and hence

coinciding with the zone circle gmr). Since the lower portion of the

crystal is terminated only by cleavages we cannot determine by gonio-

metry whether there is a centre of symmetry, though the determination is

easily made by other methods (see p. 155). If we assume for the present

that the crystal is centro-symmetrical, there will arise also a horizontal

plane of symmetry at right angles to the vertical diad axis and also

two horizontal diad axes normal to the vertical planes of symmetry

—

on this assumption, the crystal is orthorhombic holosymmetric.
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Student may prefer to omit the remainder of this chapter until he has

studied Chapter VIII.

The axial ratio ajb is determined by the slope of the face 110 in

relationship to the x and y axes :

ajb = tan 100^^ 1 10 = tan ^(average values of be and ef)

= tan 37° 17'

= 0-734.

Similarly, the ratio cjb is determined by the slope of the face Oil in

relationship to the z and y axes

:

c/Z> = tan 001 ^01 1 =tan (average value of mk and mri)

= tan3r49'
= 0-620.

DESCRIPTION OF THE CRYSTAL OF BARIUM SULPHATE
Symmetry. Orthorhombic holosymmetric (assuming the presence

of a centre of symmetry).

Axial ratios, a : b : c =0-734 : 1 : 0-620.

Forms represented. Pinacoids {010}, {001}.

Prism {110}.

Domes {01 1}, {021}, {041}, {101}.

Bipyramids{lll}, {241}.

The form {101} is a cleavage form.

(This description differs from the one given in standard texts, owing

to the different choice of axes mentioned above.)



CHAPTER VI

THE THIRTY-TWO CLASSES

THE THIRTY-TWO CLASSES OF CRYSTAL SYMMETRY

In
our first approach to the study of crystal symmetry we utiHsed only

the simple symmetry elements—a centre, one or more planes of

reflection symmetry, and one or more rotary axes of degree 2, 3, 4 or 6,

At the same time it was stated that there were in all thirty-two different

crystal classes (possible combinations of these symmetry elements,

together with a completely asymmetric class). Actually it is possible to

build up only thirty such classes on the basis of these simple assump-

tions, and for this and other reasons we must modify this description

shghtly before proceeding further. The centre of symmetry, as a funda-

mental element, is now no longer used, though the concept of centro-

symmetry is still useful; crystal symmetry is described in terms of:

one or more planes of reflection symmetry, symbolised m
;

rotation axes, symbolised in terms of their degree 1, 2, 3, 4 or 6;

axes of rotary inversion (or inversion axes), symbolised also in

terms of their degree, T, 2, 3, 4 or 6.

The new symmetry elements, inversion axes, are compound symmetry

elements. They carry out on a given crystal plane the operation of

rotation through the angle indicated

by the degree together with inversion

across a centre. Thus an axis 4 (read

' bar four ') normal to the paper oper-

ates on a pole 1 (Fig. 170) to rotate it

through 90° (to a position above the

ring 4), followed by inversion to the

position 2; this compound operation

is then repeated until the original

position is again reached. Thus from

position 2 the pole is rotated a further

90° and inverted to position 3 ; rotated Fig. no. stereogram to show the

c -4.1. r\f\o J • _i J J. -i- operation of an inversion tetrad axis 4.
a further 90 and mverted to position ^

4; rotated a further 90° and inverted to resume position 1. The final

disposition of two planes above the paper and two symmetrically

related planes below is a crystaUographically possible arrangement
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which has more than twofold symmetry and yet clearly does not

possess a true tetrad axis. The symmetry, in fact, is that of one of the

thirty-two classes which we could not have derived from our simple

approach to the study of crystal symmetry.

Fig. 171 shows by the distribution of poles on stereograms the

operation of the remaining inversion axes, and it will be seen that

each of these could also be

described in terms of the

simple elements which we
first utihsed. Thus T pro-

duces the same distribution

of planes as does a centre

of symmetry. 2 is equiv-

alent to a reflection plane

in the plane of projection

(i.e. 2 = m). 3 is equivalent

to a triad axis combined

with a centre. 6 is equiv-

alent to a triad axis normal

to a plane of symmetry.

Having agreed to abandon

the use of the centre as an

independent element of

symmetry in our descriptions, we shall in future symbolise all these

symmetry groups in terms of the appropriate inversion axis. It should

be clearly understood that this particular choice is made only for

convenience, and that there are often many possible alternative descrip-

tions of a symmetry of distribution. In the past, indeed, another kind

of compound symmetry element, an alternating axis, was used in place

of inversion axes. Such an axis combined a rotation with a reflexion

across a plane normal to the axis. It will be a useful exercise for the

student to convince himself of the following identities

:

an alternating axis 1=2,

an alternating axis 2 = 1,

an alternating axis 3=6,

an alternating axis 4=4,

an alternating axis 6 = 3,

but the concept of alternating axes should be abandoned in favour of

that of inversion axes in modern crystallography.

Fig. 171. Stereograms to show the operation of

inversion axes 1, 2, 3 and 6.
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On this basis we proceed to build up the thirty-two crystal classes

systematically. The principal axis (normal to the paper in a projec-

tion) is first set down ; it may be either a rotation axis or an inversion

axis and is denoted by the appropriate symbol. If there is a reflection

2
plane normal to this axis, the symbol m is added as — (read ' two over

em ', but usually printed for convenience 2/m). A reflection plane

through the axis is written without the stroke {2m, read ' two em ').

If both kinds of plane are present the symbol is Ijmm. A horizontal

diad axis (normal to the principal axis) is indicated by adding a figure

2 (as 32, which must be read as * three two ' and not as thirty-two).

Using the general symbol X to denote a principal axis of any degree

we may have the foUowing combinations

:

X rotation axis alone.

X inversion axis alone.

Xjm rotation axis normal to a plane of symmetry.

Xm rotation axis with a vertical plane of symmetry.

Xm inversion axis with a vertical plane of symmetry.

X2 rotation axis with a diad axis normal to it.

Ximm rotation axis with both kinds of plane of symmetry.

(It may be observed that the symbols Xjm and X2 do not appear; why
not?)

The chart on p. 106 shows the complete scheme of thirty-two classes,

illustrated by stereograms of the general forms, developed on this

principle. Beneath each stereogram is the appropriate symbol for the

class, and it will be seen that this symbol is not in every instance

precisely the one which would be derived from the position of the class

on the chart. Where the two differ considerably, the systematic symbol

is placed in brackets on the right whilst the customary symbol is un-

bracketed. The class 2m, for example, is to be symbolised mm, and

the class 21mm is always denoted mmm. These changes are made in

view of the demands which we shall presently make on this notation

when we come to study the vastly greater number of possible types of

arrangement in the internal structure of crystals. The changes consist

mainly of the use in the customary symbol of elements of symmetry

which arise automaticafly from combination of those indicated by the

systematic symbol. The class 2/mm, for example, can be seen from its

stereogram to be the orthorhombic bipyramidal class which we have

already studied, and the customary symbol mmm lists the three planes
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THE 32 CRYSTAL CLASSES
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of symmetry which we know this class to possess. Other similar changes

will be clear when we have studied the classes in detail.

The grouping of the classes into systems also requires some explana-

tion, for it is apparently not quite in accord with our earlier statements.

Classes 1 and T in the triclinic system call for no comment. Classes

2, m and Ijm in the monoclinic system are correctly described as

possessing ' one diad axis '
(p. 7) now that we recognise m as the

equivalent of an inverse diad axis. Of the classes mm. 111 and mmm
in the orthorhombic system, mm shows only one true diad axis, though

we may consider the two planes of symmetry as equivalent to 2 axes

;

the class is placed in the orthorhombic system because the symmetry

of its optical and many other physical properties is the same as that of

the two other classes in this system. In the trigonal system are five

classes, each of which possesses an axis 3 or 3 ; the classes 3/m and 3//77m

are assigned to the hexagonal system, since the principal axis in each

has the symmetry 6. The seven classes in each of the tetragonal and

hexagonal systems then call for no further comment. The cubic system

contains five classes of which each symbol includes a figure 3, denoting

a secondary triad axis (a triad not in the position of the principal axis,

since it does not appear first in the symbol). Further details of the

application of this notation to the classes of the cubic system will be

given a little later (p. 141) when these are described in detail.

We shall now discuss each class of symmetry in turn, describing the

possible forms and mentioning some substances which crystallise in

the class in question. It is convenient to reverse the procedure of the

preceding chapter and, following the chart, to build up the symmetry

gradually, beginning with the completely asymmetric class.

TRICLINIC SYSTEM
CLASS 1. (Asymmetric, triclinic pedial.) No symmetry. The

crystallographic axes are chosen parallel to any suitable edges (Fig. 172).

Forms. There are no special forms. Every form consists of a single

face, a pedion {-nehiov, a plain), and an actual crystal must show at

least four forms.

Examples. The substance usually quoted as an example of trichnic

pedial symmetry is calcium thiosulphate, CaSgOg . 6H2O. Two described

habits are illustrated in Figs. 173, 174, but we shall see later that it is

not easy always to be quite certain of the correct assignment of a

crystal to this class, and the examples figured may be distorted habits

of crystals showing pinacoidal symmetry (class I below).
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Fig. 172. Glass 1 ; the crystallographic axes and a
stereogram of the general form. (See the note to the
legend of Fig. 127.)

Fig. 173. A crystal of
calcium thiosulphate.

Fig. 174. Another habit of calcium
thiosulphate.

Fig. 175. A crystal of
rubidium ferrocyanide.

Fig. 176. A crystal of strontium
hydrogen tartrate.

Fig. 177. Another habit of strontium
hydrogen tartrate.
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Other examples are rubidium ferrocyanide, Rb4Fe(CN)6 • 2H2O
(Fig. 175); strontium tartrate, SrH2(C4H406)2 • 4H2O (Figs. 176, 177).

Amongst minerals, parahilgardite, Ca8Bi8033Cl4 . 4H2O, is placed here.

CLASS T. (Triclinic holosymmetric, tricUnic pinacoidal.) An in-

version identity axis equivalent to a centre of symmetry (Fig. 178);

Fig. 178. Class 1; the crystallographic axes and a stereogram of the general
form. The centre of symmetry is denoted by a thick ring.

as in class 1, the crystallographic axes are chosen parallel to any

suitable crystal edges.

Forms. There are no special forms. Every form is a pinacoid.

Examples. Copper sulphate, CUSO4 . SHgO
;

potassium persul-

phate, K2S2O8 (Fig. 179); bismuth nitrate, Bi(N03)3 • 9H2O (Fig. 180).

Fig. 179. A crystal of

potassium persulphate
Fig. 180. A crystal of

bismuth nitrate.

Fig. 181. A crystal of axinite.

Amongst minerals the plagioclase felspars, an isomorphous series

between albite NaAlSigOg, and anorthite CaAl2Si208, are all triclinic

pinacoidal ; kyanite, AlgSiOg ; sassoUne, B(OH)3. The mineral axinite,

a complex borosiUcate, is often placed here, an ideaUsed crystal being

represented as in Fig. 181, but the crystals show the property of pyro-

electricity (p. 155) and must be assigned to class 1.
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MONOCLINIC SYSTEM
CLASS 2. (Monoclinic hemimorphic, monoclinic sphenoidal.) One

diad axis (always chosen as the y crystallographic axis, Fig, 182).

Fig. 182. Class 2; the crystallographic axes and a stereogram of the general form.

Special forms.

General forms.

Pedions {010}, {010}.

Pinacoids {h /}.

Sphenoids {h k I).

The open wedge-like form obtained by repetition of a face around a

diad axis is called a sphenoid {<j^r]v, a wedge). Geometrically the pair

of faces resembles those of a dome, but this term is restricted to a form

developed by reflection over a plane. Note that the forms {100} and

{001} are included amongst the pinacoids {h /}, and the forms {h k 0}

amongst the sphenoids {h k I), since of the crystallographic axes x, y, z

only J is a symmetry axis.

Examples. Lithium sulphate, Li2S04 . HgO ; sucrose and some other

sugars; quercitol, C6H7(OH)5; tartaric acid COOH(CHOH)2COOH

Fig. 183. A crystal of tartaric acid. Fig. 184. A crystal of tartaric acid which is

the enantiomorph of the crystal in Fig. 183.

(Figs. 183, 184). The figures of this substance illustrate clearly two

important features of the crystallography of this class. First, there is a
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different facial development at opposite ends of the diad axis (the y
crystallographic axis, running left and right) ; such an axis is said

to be uniterminal (p. 61) or polar, and the class may be called

the hemimorphic class of the monoclinic system. Important physical

properties which we shall mention later are associated with this type

of symmetry. Secondly, the crystal can show either of two different as-

pects which are enantiomorphous ; they are mirror images of each other,

and like a right and a left hand are not superposable in space. This

feature, also, is related to a particular type of symmetry and is associated

with special physical properties (p. 153).

Other examples in this class are ethyl-

ammonium bromide, NHgCgHgBr, and the

corresponding iodide, NH3C2H5I (Fig. 185).

Very few minerals belong here, the best example p^^^ 185. a crystal of

being pickeringite, MgS04 . Al2(S04)3 . 22H2O. ethylammonium iodide.

CLASS m. (Monoclinic cUnohedral, monoclinic domatic.) An in-

version diad axis (equivalent to a plane of symmetry, which is always

set normal to the y crystallographic axis, Fig. 186).

Special forms. Pedions [h /}.

Pinacoid {010}.

General forms. Domes {h k /}.

By analogy with the special forms in the orthorhombic bipyramidal

class, which we have already described, the general forms obtained here

Fig. 186. Class m; the crystallographic axes, showing their relationship to the

plane of symmetry, and a stereogram of the general form.

by reflection of a generally-situated face across the plane of symmetry

are called domes ; they are two-faced open forms, and include {h k 0}

and {hkQ)). The forms {100}, {001}, {TOO} and {OOT} are, of course,

included amongst the pedions.

Examples. Potassium tetrathionate, K2S4O6 (Fig. 187); the sodium

silicate, Na2Si03 . 5H2O (Fig. 188) ;
potassium nitrite, KNO2. Minera-

logical examples are provided by cUnohedrite, HaCaZnSiOs; scolecite,
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Fig. 187. A crystal of
potassium tetrathionate.

Fig. 188. A crystal of
NajSiOa.SHoO.

Fig. 189. A crystal

of hilgardite.

CaAlaSigOio . 3H2O; hilgardite, Ca8Bi8033Cl4 . 4H2O (Fig. 189); and

the clay minerals kaohnite, nacrite and dickite Al2Si205(OH)4.

CLASS Ijm. (MonocUnic holosymmetric, monocUnic prismatic.) A
diad axis (chosen as the y crystallographic axis) normal to a plane of

symmetry, involving a centre of symmetry (Fig. 190).

Fig. 190. Class 2/m; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. Pinacoid {010}.

Pinacoids {h /}.

General forms. Prisms {hkl}.

This is the class of the monocUnic system which we have already

studied, and the student may be reminded of the more usual informal

nomenclature (p. 76).

Examples. Very many substances crystallise with the symmetry of

this class, and we can quote only a few typical examples: sodium

carbonate, NagCOg . lOHgO ; sodium bicarbonate, NaHCOg (Fig. 132)

;
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potassium chlorate, KCIO3 ; numerous sulphates such as FeSOi . THgO
and double sulphates and selenates such as (NH4)2Mg(S04)2 . 6H0O; a

wide range of organic compounds such as naphthalene, anthracene and

glycine. Amongst minerals we have already figured borax (Fig. 125),

gypsum (Fig. 131) and trona (Fig. 133); here belong also a great

number of rock-forming minerals such as the micas, chlorites and

many members of the families of pyroxenes, amphiboles and epidotes.

ORTHORHOMBIC SYSTEM
CLASS mm. (Orthorhombic hemimorphic, orthorhombic pyra-

midal.) Two planes of symmetry at right-angles, intersecting in a diad

axis (always chosen as the z crystallographic axis, Fig. 191).

—^1

—

Fig. 191. Class mm; the elements of symmetry, crystallographic axes and a
stereogram of the general form. The planes of symmetry, parallel to different
pinacoids, are differently shaded.

Special forms. Pedions {001}, {OOT}.

Pinacoids {100}, {010}.

Prisms {hkO}.

Domes {h /}, {0 k /}.

Pyramids {hkl}.General forms.

The diad axis (z axis) is here uniterminal, so that the general forms

are open four-faced pyramids and {h kl) is a separate form from

{h k I).

Examples. Bismuth thiocyanate, Bi(CNS)3; triphenylmethane,

CH(C6H5)3
;
picric acid, C6H2(N02)3 . OH ; resorcinol, C6H4(OH)2. As

mineralogical examples: pirssonite, CaNa2(C03)2 . 5H2O (Fig. 192);

struvite, NH^MgPOi . 6H2O (Fig. 193); hemimorphite (smithsonite,

electric calamine), Zn4(OH)2Si207 . H2O (Fig. 194) ; bertrandite,

Be4(OH)2Si207; natroUte, NaAlgSisOio . 2H2O.
P.C. H
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Fig. 192. A crystal of
pirssonite.

Fig. 193. A crystal of
struvite.

Fig. 194. A crystal

of hemimorphite.

CLASS 222. (Orthorhombic sphenoidal.) Three mutually perpen-

dicular diad axes (Fig, 195), always chosen as the directions of the

crystallographic axes x, y, z.

• o

—()

—

o •

Fig. 195. Class 222; the elements of symmetry, crystallographic axes and a
stereogram of the general form. The flags of the three diad axes, normal to

different pinacoids, are diiferently shaded.

Special forms. Pinacoids {100}, {010}, {001}.

Prisms {h k 0}, {0 k I), {h /}.

General forms. Sphenoids {hkl).

The three diad axes, which are chosen as the directions of the x, y, z

crystallographic axes, are all of similar crystallographic significance, so

that there are six possible settings for every crystal in this class. Once

a setting has been adopted, it is customary to refer to forms {0 k 1} and

{h /} as domes, restricting the term prism to forms {h k 0} which are

developed from faces parallel to the particular diad axis chosen as thg
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z direction. The general forms are sphenoids, closed four-faced wedge-

like forms resembling the tetrahedron of the cubic system but possess-

ing no planes of symmetry (Fig. 196). Some crystallographers call

Fig. 196. Orthorhombic sphenoids {h k 1} and {h k I}.

such a form a bisphenoid (or disphenoid), regarding it as made up of

two of the sphenoidal pairs of faces composing the open sphenoidal

forms described in class 2 (the sphenoidal class of the monochnic

system). This usage is inconsistent in view of the meaning which we
have attached to these two prefixes; the former imphes a plane of

symmetry and the latter a repetition of pairs of faces around an axis,

and neither of these types of symmetry is displayed by the forms in

question. We shall call them simply {orthorhombic) sphenoids.

Figs. 196, 197 show also that there are two related types of sphenoid

in this class, the one right-handed and the other left-handed, so that

Fig. 197. The sphenoids in Fig. 196 redrawn in a different orientation to display
more clearly their enantiomorphous relationship.

the form {h k I) is the mirror-image of the form {h k /}. This is there-

fore a further class in which crystals may exhibit the property of

enantiomorphism.

Examples. Typical examples are provided by magnesium sulphate

(epsomite), MgS04 . VHgO (Fig. 198); zinc sulphate (goslarite),

ZnSO^ . THgO, and a number of related sulphates and chromates.
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Fig. 198. A crystal of epsomite. Fig. 199. A crystal of tartar emetic.

Tartar emetic, K(SbO)C4H406, frequently assumes a markedly sphen-

oidal habit (Fig. 199). The series of tartrates of which Rochelle salt,

KNaC4H406 . 4H2O, is a member, are usually of prismatic habit, but

the presence of sphenoidal forms reveals the true symmetry ; in Fig.

200 the forms developed are, on the customary indexing, the pinacoids

Fig. 200. A crystal of Rochelle salt. Fig. 201. A crystal of asparagine.

{100}, {010} and {001}; prisms {210}, {110} and {120}; domes {101} and

{Oil}; sphenoids {211} and {ill}. Strontium formate, Sr(HCOO)2:
and the similar compounds of barium and lead; methylurea,

CONHaCNHCHg) ; asparagine (Fig. 201) and a number of alkaloids

such as narcotine, atropine, strychnine and codeine afford further

examples. Amongst minerals, in addition to those already mentioned,

may be noted austinite, CaZn(OH)ASO4 ; olivenite, Cu2(OH)As04;
and chalcomenite, CuSeOg . 2H2O.

CLASS mmm. (Orthorhombic holosymmetric, orthorhombic bi-

pyramidal.) Three planes of symmetry intersecting in three mutually

perpendicular diad axes (chosen as the directions of crystallographic

xy z) and a centre of symmetry (Fig. 202).
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Fig. 202. Class nimm ; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. Pinacoids {100}, {010}, {001}.

Prisms {h k 0}, {h /}, {0 k I).

General forms. Bipyramids {h k /}.

This is the orthorhombic bipyramidal class, which we have already

studied. It may be useful to point out again here that once a particular

setting has been adopted the prisms {h /} and {0 k I) are usually called

domes.

Examples. This class ranks next in importance to the class 2/m from

the point of view of the number of substances belonging to it, and we
can here only select a few examples at random. Sulphates R2SO4 of

the alkali metals, and the isomorphous selenates
;
perchlorates of these

metals, and some permanganates
;
potassium thiocyanate, KCNS, are

selections from a wide field of inorganic representatives. Oxalic acid,

(COOH)2; thiourea, CS(NH2)2; many long-chain paraffins such as

nonicosane, C29H60; o-nitraniline, C6H4(N02)(NH2), will serve to

represent the organic field, whilst as mineralogical examples may be

mentioned anglesite, PbS04 (Fig. 116), and the isomorphous barytes,

BaSOi, and celestine, SrS04; sulphur (Figs. 123, 124); stibnite,

SbgSg; brookite, TiOg; forsterite, Mg2Si04, and other members of the

olivine group.

TRIGONAL SYSTEM
CLASS 3. (Trigonal hemimorphic, trigonal pyramidal.) A single

triad axis (set vertically, and chosen as the z direction in the Miller-

Bravais notation. Fig. 203).

Special forms. Pedions

Trigonal prisms

General forms. Trigonal pyramids

Miller-Bravais

{0001}, {0001}.

{h k i 0}.

{h k i /}.

Miller

{111},{TTT}.

{pq-p+q}.

{p q r-}-
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Fig. 203. Class 3 ; the crystallographic axes, showing their relationship to the
triad axis, and a stereogram of the general form.

It will be noticed here (as in many other classes of low S3mimetry)

that the general form considered alone, or in certain combinations,

appears to present more symmetry than is proper to the class. Thus a

trigonal pyramid closed by a basal pedion appears to show three

vertical planes of symmetry, and it is only the combination of two or

more general forms, or of a general form with a particular type of

special form, which will reveal the true lack of symmetry. In a trigonal

prism combined with a trigonal pyramid in this class, the prism edges,

for example, need not lie in the same vertical planes as do the edges of

the pyramid.

Examples. Sodium periodate, NaI04 . SHgO, was for a long time the

only substance placed with certainty in this class. The usual habit dis-

plays several trigonal pyramids and a large development of the basal

pedion {TIT} (Fig. 204) ; the forms present on the particular example

illustrated are : three upper (' positive ') pyramids, usually indexed

{100}, {110}, {llT}; three lower ('negative') pyramids {TOO}, {iTT},

{131} ; basal pedion {111}; and one trigonal prism {lOT}.

Fig. 204. A crystal of
i^sodium periodate.

Fig. 205. A crystal of magnesium
sulphite.

Magnesium sulphite, MgSOg . 6H2O, and the similar compounds of

nickel and cobalt, are now assigned to this class. The crystals are
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clearly hemimorphic (Fig. 205), but usually lack decisive morphological

evidence of the absence of vertical planes of symmetry.

The carbonate Na2Mg(C03)2 may belong here, and a mineralogical

example may be provided by the recently-described mineral gratonite,

Pb9As4Si5, but a final decision has not proved possible from an examina-

tion of the material so far available.

CLASS 3, (Rhombohedral.) An inversion triad axis (equivalent to

a rotation triad axis and a centre) (Fig. 206).

Fig. 206. Class 3 ; the inversion axis, flagged with open triangles, crystallo-

graphic axes and a stereogram of the general form.

Miller-Bravais Miller

Special forms. Pinacoid {0001}. {111}.

Hexagonal prisms {h k iO). {pq -p + q).

General forms. Rhombohedra {h kil). {p qr).

The rhombohedron, which we have already encountered as a special

form in our description of the holosymmetric

class of the trigonal system, is here a general

form. The remarks made above concerning the

apparent high symmetry of the general form in

some classes clearly apply here, since a rhombo-

hedron developed alone displays geometrically

three planes of symmetry and three diad axes.

We shall discuss later (p. 151) methods by which

we might show that the underlying structure of

such a rhombohedron in this class does not

possess these symmetry elements, but meanwhile

we may note that if two or more rhombohedra

are developed together (Fig. 207) the absence of

these elements of symmetry is clearly indicated. ^'°' ^
d^optase^^^^'

°^
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Examples. The substance usually regarded as the type of this class

is the silicate of copper, HgCuSiOi, dioptase (Fig. 207) (though it is

possible that the true symmetry of the structure is only that of class 3)

;

sodium sulphite, NagSOg; the periodate,

(NHJgHglOe (Fig- 208) ; the lithium com-

pounds, Li2BeF4, LigMoOi, Li2W04; and

Fig. 208. A crystal of
{NH4)2H3lOe.

Fig. 209. A crystal of phenacite.

amongst minerals (in addition to dioptase) dolomite, CaMg(C03)2;
willemite, Zn2Si04

;
phenacite, Be2Si04 (Fig. 209). The figure of this last

substance illustrates a combination of eight different general forms.

CLASS 3m. (Ditrigonal hemimorphic, ditrigonal pyramidal.) Three

vertical planes of symmetry intersecting in a triad axis (Fig. 210).

2L

Fig. 210. Class 3m; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Millei-Bravais Miller

Special forms.
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The triad axis in this class (as in class 3) is uniterminal ; the presence

of the three planes of symmetry introduces a number of special forms.

The three kinds of prism should be noted ; a prism face normal to a

plane of symmetry, lOTO or OlTO, is part of a trigonal prism, whilst the

face 1120, symmetrical to two planes of symmetry, is repeated six

times to give a true hexagonal prism, but any other prism face h k iO

is repeated to give three pairs of faces. Such prisms (Fig. 211) are

ditrigonal prisms in our nomenclature.

Fig. 211. Ditrigonal prism {h k i 0}. Fig. 212. A crystal of lithium
sodium sulphate.

Examples. Lithium sodium sulphate, LiNaS04 (Fig. 212); the com

pound LiNa3(S04)2 . 6H2O and related chromates, selenates, molyb

dates and tungstates; potassium bromate,

KBrOg. Mineralogical examples are pro-

vided by the ' ruby-silvers '—pyrargyrite

AggSbSg and proustite AggAsSg—and by

the important complex borosilicate, tourma-

line, after which this class is often named.

The crystal of tourmaUne, illustrated in

Fig. 213, shows a development of two

trigonal pyramids and one ditrigonal pyr-

amid at the upper end, the hexagonal prism

and one trigonal prism, and one trigonal

pyramid at the lower end, the uniterminal

character of the triad axis being clearly

evident.

CLASS 3m. (Trigonal holosymmetric, ditrigonal scalenohedral.)

Three vertical planes of symmetry intersecting in an inversion triad

axis (equivalent to three vertical planes of symmetry intersecting in a

triad axis, three horizontal diad axes normal to the symmetry planes,

and a centre), Fig. 214.

Fig. 213. A crystal of
tourmaline.
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A
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Fig. 214. Class 3m; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. MiUer-Bravais

{0001}.

{1010}, {1120}.

{h k i 0}.

{hOhj},{Okkl}.

{hhlh /}.

Pinacoid

Hexagonal prisms

Dihexagonal prisms

Rhombohedra
Hexagonal bipyramids

General Forms.

Ditrigonal scalenohedra {h k i I)

Miller

{111}.

{211}, {lOl}.

[pq-p + q].

{pqq)Appq)-
{pqlq-p).

{p q r)-

Since the class 3/ww at the foot of the trigonal column in the chart

(p. 106) is removed to the hexagonal system in virtue of its possession

of an inverse hexad axis, the class 3m under consideration ranks as the

holosymmetric class of the trigonal system and as such has already

been described (p. 84).

Examples. The type substance in this class is the trigonal modifica-

tion of calcium carbonate, CaCOg, the mineral calcite (Figs. 150, 161).

Fig. 215. Class 32; the elements of symmetry, crystallographic axes and a
stereogram of the general form.
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The isomorphous carbonates FeCOa, MgCOg, MnCOg and ZnCOg also

belong here. Further examples are found in corundum, AlgOg (Fig.

160); hematite, FcaOg; sodium nitrate, NaNOg; cadmium chloride,

CdClg ; magnesium hydroxide, Mg(0H)2 (the mineral brucite).

CLASS 32. (Trigonal trapezohedral.) A triad axis normal to three

diad axes (Fig. 215).

Special forms. Miller-Bravais Miller

Pinacoid {0001}. {111}.

Hexagonal prism {1010}. {2lT}.

Trigonal prisms {2Tl0}, {1120}. {iTO}, {lOT}.

Ditrigonal prisms {h k i 0}. {p q -p+q}.
Rhombohedra {h Oh J}, {Okie /}. {p q q), {p p q}.

Trigonal bipyramids {h h 2h I), {p q 2q -p),

{Ihhhl). {p2^pq}.
General forms.

Trigonal trapezohedra {h kil). {p ^r).

The general form in this class is a closed form composed of similar

upper and lower portions (Fig. 216). It differs in an important respect

from those forms which we have termed bi-

pyramids, for there is no horizontal plane of

symmetry. Each face is an irregular quadrilateral,

and for such a form (we shall encounter related

ones in the tetragonal and hexagonal systems) we
shall use the term trapezohedron. (This name is

also given, by some crystallographers, to the

forms {h 1 1] in the cubic system which we have

called icositetrahedra (p. 53), but the faces of

these forms have pairs of equal edges.) Corre-

sponding to any one trapezohedron there can

exist another, the faces of which are mirror-

images of those of the former; the two forms

are enantiomorphs, similar in shape but not Fig. 21 6. Trigonal

superposable in space, and the class is another of
trapezohedron {hkii}.

the important groups of symmetry displaying the phenomenon of

enantiomorphism (p. 111). Fig. 217 illustrates a pair of trapezohedra

orientated in such a way as to display this relationship clearly.

Examples. The best-known example in this class is the mineral

quartz, the crystaUine modification of SiOg stable at ordinary tempera-

tures. Crystals of quartz frequently display special forms only—the

hexagonal prism, rhombohedra, and sometimes a trigonal bipyramid

—
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but examples showing one or

more trapezohedra are not un-

duly rare. The forms present

on the crystal illustrated in

Fig. 218 are usually indexed

{lOTO}, {lOTl}, {OlTl}, {1121},

{5161} (or, in Miller's notation,

{2TT},{100},{22T},{412},{4T2});

the crystal of Fig. 219 is the

enantiomorph, showing the

forms {lOTO}, {lOTl}, {OlTl},

{2111}, {6T51}. Other substances belonging here are potassium dithi-

onate, KgSaOg, and the similar rubidium compound; lead dithionate,

Fig. 217. Trigonal trapezohedra drawn in an
orientation which displays clearly their enantio-
morphous relationship.

Fig. 218. A right-handed
crystal of quartz.

Fig. 219. A left-handed
crystal of quartz.

PbSaOg . 4H2O (Fig. 220), and the similar compounds of calcium and
strontium ; rubidium tartrate, Rb2C4H406 ; and, as a further mineral-

ogical example, cinnabar, HgS (Fig. 221).

Fig. 220. A crystal of lead dithionate. Fig. 221. A crystal of cinnabar.
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TETRAGONAL SYSTEM
CLASS 4. (Tetragonal hemimorphic, tetragonal pyramidal.) A

single tetrad axis (Fig. 222).

Fig. 222. Class 4; the crystallographic axes, showing their relationship to the
tetrad axis, and a stereogram of the general form.

Special forms. Pedions {001}, {OOT}.

Tetragonal prisms {h k 0}.

General forms. Tetragonal pyramids {h k /}.

There is a close analogy between many of the classes of the tetragonal

system and the related classes of the trigonal system. Thus class 4

resembles class 3, except that the rhythm is fourfold instead of three-

fold. The general form is an open tetragonal pyramid, and the true

Fig. 223. A crystal of barium
antimonyl tartrate.

Fig. 224. A crystal of
iodosuccinimide.
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lack of symmetry may not be revealed by the crystallographic develop-

ment, unless a suitable combination of forms is present. The tetrad

axis is uniterminal.

Examples. Barium antimonyl tartrate, Ba(SbO) 2(0411406)2 • HgO
(Fig. 223); iodosuccinimide, (CH2CO)2NI (Fig. 224); metaldehyde,

CH3CHO ; but the placing here is based in all three instances on other

considerations than the morphological development (see p. 151). The

Fig. 225. Class 4; the crystallographic axes (the inversion tetrad axis flagged by
open squares) and a stereogram of the general form.

mineral wulfenite, PbMo04, was formerly assigned to this class but it

has now been shown to possess higher symmetry.

CLASS 4. (Tetragonal sphenoidal.) A single inversion tetrad axis

(Fig. 225).

Special forms. Pinacoid {001}.

Tetragonal prisms {h k 0}.

General forms. Tetragonal sphenoids {hkl).

The general form in this class is a closed four-faced wedge-shaped

form (Fig. 226), which we shall call a (tetragonal)

sphenoid by analogy with the similar forms in class

222 of the orthorhombic system (p. 115). As was

mentioned in the description of the latter class, some

crystallographers call a closed form of this kind a

bisphenoid or disphenoid, and to them class 4 is the

bisphenoidal (or disphenoidal) class ofthe tetragonal

system. Since we are using such prefixes to denote

the presence of further elements of symmetry, class

4 is in our nomenclature the sphenoidal class of the

sphenoid {h kl}. tetragonal system. The difference between a tetra-
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gonal sphenoid and a form of rather similar appearance in the

orthorhombic system lies in the isosceles triangular shape of the

faces of the former in contrast with the scalene triangular faces of

the latter. As in many other classes of low symmetry, a single

general form developed alone appears to possess vertical planes of

symmetry, but this appearance of higher symmetry is no longer true

of suitable combinations of forms ; Fig. 227 represents a combination

of three sphenoids, and the absence of any symmetry other than an

inversion tetrad axis is clear.

Examples. This class of symmetry was formerly devoid of any satis-

factory examples. A synthetic calcium aluminium silicate, quoted in

Fig. 227. A combination of
three tetragonal sphenoids.

Fig. 228. An ideahsed crystal

of cahnite.

most text-books, appears to have been a member of the melilite series

of minerals and as such belongs to a higher class. Pentaerythritol,

C(CH20H)4, is placed here on other grounds than morphological

development; other examples are probably to be found in boron

phosphate, BPO4, and the corresponding arsenate BASO4. An excel-

lent mineralogical example is afforded by a recently-described mineral

cahnite, Ca4B2As20i2 • 4H2O; Fig. 228 is an ideahsed representation

of a crystal of this substance, the natural crystals so far found being

well terminated at one extremity only. Schreibersite, FcgP, may also

belong to this class.

CLASS 4/m. (Tetragonal bipyramidal.) A tetrad axis normal to a

plane of symmetry, and a centre (Fig, 229).
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Fig. 229. Class \\m ; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. Pinacoid {001},

Tetragonal prisms {h k 0}.

General forms. Tetragonal bipyramids {h k /}.

Examples. The tungstates and molybdates of calcium, barium and

lead afford characteristic examples. Fig. 230 illustrates a crystal of

scheelite, CaW04, showing four tetragonal bipyramids. The crystal of

wulfenite, PbMoOi (Fig, 231), shows how the combination of a prism

Fig. 230. A crystal of scheelite. ' Fig. 231. A crystal of wulfenite.

with a single bipyramid may reveal clearly the absence of vertical planes

of symmetry. Further examples are found in the anhydrous periodates

NaI04, KIO4,

CLASS Amm. (Ditetragonal hemimorphic, ditetragonal pyramidal.)

Two pairs of planes of symmetry at right-angles intersecting in a

single tetrad axis (Fig, 232).
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Fig. 232. Class 4mm; the elements of symmetry (with the two pairs of planes

of symmetry differently shaded), crystallographic axes and a stereogram of the
general form.

Special forms. Pedions {001}, {001}

.

Tetragonal prisms {100}, {110}.

Ditetragonal prisms {h kO}.

Tetragonal pyramids {h /}, {h h /}.

General forms. Ditetragonal pyramids {h k /}.

This class of the tetragonal system may be compared with class 3>m,

the ditrigonal pyramidal class of the trigonal system. It will be noticed,

however, that whilst the three planes of symmetry in class 3m are all

similar planes, related to each other by the triad axis, the planes of

symmetry in class 4mm belong to two pairs, differently shaded in

Fig. 232. The first m of the symbol refers to the pair normal to the

directions chosen as crystallographic x and y ; the second m introduced

into the symbol refers to the pair of planes set diagonally to these.

Examples. The general form of this class has probably never yet

been observed on actual crystals, so that

the allocation of any substance to this

class must have involved other consider-

ations to be discussed later. The best

example is provided by the mineral dia-

boleite, Pb2CuCl2(OH)4, of which a re-

cently-described example is illustrated in

Fig. 233.

CLASS 42m. (Tetragonal bisphenoidal, tetragonal scalenohedral.)

Two planes of symmetry at right angles intersecting in an inversion

tetrad axis, and two diad axes normal to the planes (Fig. 234). The
diad axes are chosen as x and y axes (see Chart, p. 106).

P.C. I

Fig. 233. A crystal of diaboleite.
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Z
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Fig. 234. Class ^Im ; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. Pinacoid {001}.

Tetragonal prisms {100}, {110}.

Ditetragonal prisms {h k 0}.

Tetragonal bipyramids {h /}.

Sphenoids [h h /}, {h h I}.

General forms. Bisphenoids {h k /}.

In this class the sphenoids are all special forms, developed from faces

h h I OT hh I normal to a plane of symmetry. Fig. 235 illustrates a

sphenoid {h h /}, which thus shows (structurally as well as morpho-

FiG. 235. Tetragonal sphenoid {h h /}. Fig. 236. Tetragonal bisphenoid {h kl).

logically) two planes of symmetry. The general form consists of four

pairs of faces (Fig. 236), since a generally-situated face hk lis reflected

across both planes of symmetry. Consistently with our usage of the

prefix bi-, we shall call such forms bisphenoids ; those crystallographers
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who have already appropriated this name for the four-faced sphenoids

use the alternative name tetragonal scalenohedron. (Considerable con-

fusion has arisen in the past owing to this confused application of the

terms sphenoid and bisphenoid (or disphenoid). One well-known text-

book, for example, terms the class

under consideration sphenoidal,

though referring to the general form

as a tetragonal scalenohedron, and

applies the term tetragonal disphen-

oidal to class 4, a quite indefensible

proceeding! The confusion will abate

as the internationally-accepted sym-

boUc notation becomes more widely

used, but for us meanwhile class 4 will be the sphenoidal class of the

tetragonal system, and class A2m the bisphenoidal class.)

Examples. Tetraethylammonium iodide, N(C2H5)4l (Fig. 237);

mercuric cyanide, Hg(CN)2 (Fig. 238); urea, CO(NH2)2 (Fig. 239);

Fig. 237. A crystal of tetraethyl-

ammonium iodide.

Fig. 238. A crystal of mercuric cyanide. Fig. 239. A crystal of urea.

potassium dihydrogen phosphate, KH2PO4 and the isomorphous

ammonium compound. Amongst minerals, the best example is

afforded by chalcopyrite, CuFeSa, after which the class is often

named ; Fig. 240 illustrates a typical sphenoidal habit, a combination

of a sphenoid {hhl} with a general form, whilst Fig. 241 displays

a different habit owing to the predominance of bipyramidal special

forms. Other examples are provided by the melilite group of

sihcates.
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Fig. 240. A sphenoidal crystal
of chalcopyrite.

Fig. 241. A chalcopyrite crystal

of bipyramidal habit.

CLASS 42, (Tetragonal trapezohedral.)

two pairs of diad axes (Fig. 242).

A tetrad axis normal to

Fig. 242. Class 42 ; the elements of symmetry (the two pairs of diad axes have
differently shaded flags), crystallographic axes and a stereogram of the general
form.

Special forms. Pinacoid {001}.

Tetragonal prisms {100}, {110}.

Ditetragonal prisms {h k 0}.

Tetragonal bipyramids {h /}, {h hi}.

General forms. Tetragonal trapezohedra {h k I}.

This class is the tetragonal analogue of the class 32 of the trigonal

system, and the general form (Fig. 243) is of the type which we have

agreed to call trapezohedral; corresponding to each trapezohedron

{h k 1} there can exist another, {k h /}, which is its enantiomorph. Notice

that in this class, although, as in class 32, there is no centre of symmetry,

the even degree of the vertical axis results in the horizontal diad axes

not being uniterminal.

Examples. The general form has not been very frequently observed.

Of the few examples available we may mention methylammonium iodide,
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Fig. 243. Tetragonal
trapezohedron {h k I}.

Fig. 244. A crystal of
methylammonium iodide.

NHgCCHg)! (Fig. 244); guanidine carbonate, 2CNH(NHo)2 • HgCOg;
and, as a mineralogical example, phosgenite, (PbO)2CCl20 (Fig. 245).

Further examples are found in substances placed here for reasons other

than form development, and crystals show only special forms, as in

nickel sulphate, NiS04 . 6H2O (Fig. 246); ethylene diamine sulphate,

C2H4(NH2)2 . H2SO4 ; ammonium uranyl acetate, NH4U02(CH3COO)3.

Fig. 245. A crystal of phosgenite. Fig. 246. A crystal of nickel
sulphate.

CLASS 4/mnmi. (Tetragonal holosymmetric, ditetragonal bipyra-

midal.) A tetrad axis at the intersection of two pairs of planes of

symmetry, two pairs of horizontal diad axes normal to these planes, a'

plane of symmetry normal to the tetrad axis and a centre (Fig. 247).

Special forms. Pinacoid {001}.

Tetragonal prisms {100}, {110}.

Ditetragonal prisms {h k 0}.

Tetragonal bipyramids {h /}, {h h I}.-

General forms. Ditetragonal bipyramids [h k I).
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z

Fig. 247. Class A\mmm ; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Examples. We have already illustrated tetramethylammonium iodide

(Fig. 1 14) and mercurous chloride (Fig. 1 1 5). As further examples may
be mentioned cassiterite, SnOg ; rutile and anatase, both of composition

TiOg ; zircon, ZrSi04 ; vesuvianite, a complex calcium aluminium silicate.

HEXAGONAL SYSTEM
CLASS 6. (Hexagonal hemimorphic, hexagonal pyramidal.) A

single hexad axis (Fig. 248).

Fig. 248. Class 6; the crystallographic axes and a stereogram of the general form.

Special forms. Pedions {0001}, {OOOT}.

Hexagonal prisms {h /: / 0}.

General forms. Hexagonal pyramids {h kil).

The hexad axis is clearly uniterminal ; the class should be compared

with class 3 and class 4.

Examples. This is a further class in which the necessary com-
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bination of forms to enable one to place a substance indubitably

in the class on morphological grounds is rarely found. Crystals are

usually of simple habit, and are placed here on evidence other than

that of form development. We may mention lithium potassium

Fig. 249 .A crystal of
lithium potassium sulphate.

Fig. 250. A crystal of lead
antimonyl tartrate.

Fig. 251. A crystal of
nepheline.

sulphate, LiKS04 (Fig. 249) ; iodoform, CHI3 ; lead antimonyl tartrate,

Pb(SbO)2(C4H406)2 (Fig. 250); nepheline, NaAlSi04 (Fig. 251).

CLASS 6, (Trigonal bipyramidal.) An inversion hexad axis (equi-

valent to a triad axis normal to a plane of symmetry, 6 = 3/m, Fig. 252).

Fig. 252. Class 6 ; the inversion axis (flagged with open hexagons), crystallo-

graphic axis and a stereogram of the general form.

Special forms. Pinacoid {0001}.

Trigonal prisms {h k i 0}.

General forms. Trigonal bipyramids {h hi I).

This class is one oftwo formerly placed in the trigonal system but now

allocated more appropriately to the hexagonal system. The vertical

axis is morphologically a triad axis, and the adjective trigonal must
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Still be used in describing the prisms and bipyramids. Structurally,

however, a crystal belonging to this class would show a more sym-
metrical arrangement around this axis than that necessitated by a

rotary triad axis—the arrangement consistent with an inversion hexad
axis.

Examples. Only one substance, the unstable silver phosphate

Ag2HP04, has been tentatively assigned to this class, but the evidence

is insufficient, and we must regard class 6 as at present without an

established representative amongst known crystalline substances.

Fig. 253. Class 6/m; the elements of symmetry, crystallographlc axes and a
stereogram of the general form.

CLASS 61m. (Hexagonal bipyramidal.) A hexad axis normal to a

plane of symmetry, and a centre (Fig. 253).

Special forms. Pinacoid {0001}.

Hexagonal prisms {h k i 0}.

General forms. Hexagonal bipyramids {h k i I).

Examples. This is yet another class with few known representatives,

and the best examples are found in the

apatite group of minerals. Fig. 254

represents a crystal of apatite itself,

(CaF)Ca4(P04)3 ; the development of

one example of the general form shows

clearly the presence of a horizontal

plane of symmetry and the lack of any

vertical planes of symmetry.

CLASS 6mm. (Dihexagonal hemimorphic, dihexagonal pyramidal.)

A hexad axis at the intersection of two sets of three planes of sym-

metry (Fig. 255).

Fig. 254. A crystal of apatite.
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Fig. 255. Class (smm ; the elements of symmetry (the two families of planes of
symmetry are differently shaded), crystallographic axes and a stereogram of the
general form.

Special forms. Pedions {0001}, {OOOT}.

Hexagonal prisms {lOlO}, {1 120}.

Dihexagonal prisms {h k i 0}.

Hexagonal pyramids {hQh /}, {hhlh /}.

General forms. Dihexagonal pyramids {h k 1 1}.

This class of the hexagonal system should be compared with class

3m of the trigonal system and with class 4mm of the tetragonal system.

It is a further class with a clearly uniterminal principal axis.

Examples. The general form in this class has rarely been observed,

a common type of habit being that of the crystal of zincite, ZnO,
illustrated in Fig. 256, Fig. 257 illustrates a recently-described speci-

men of artificially-crystalUsed ZnO in which a general form, indexed

{2133}, appears on the lower portion of the crystal; the other forms pre-

sent are the pedion {0001} small, the pedion {OOOT} large, hexagonal prism

{lOTO}, hexagonal pyramids {1Oil} and {1122}. Other examples of this

Fig. 256. A crystal of
zincite.

Fig. 257. A more highly
modified crystal of zincite.

Fig. 258. A crystal

of triethylammonium
chloride.
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symmetry are found in greenockite, CdS ; wurtzite, ZnS ; iodyrite, Agl

;

bromellite,_BeO; triethylammonium chloride, NH(C2H5)3C1 (Fig. 258).

CLASS 6/w2. (Ditrigonal bipyramidal.) An inversion hexad axis at

the intersection of three vertical planes of symmetry (equivalent to a

triad axis normal to a plane of symmetry, three planes of symmetry
intersecting in the triad axis, three diad axes lying in these planes

normal to the triad axis, 6m = 3/ww, Fig. 259).

Fig. 259. Class 6m2 ; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. Pinacoid {0001}.

Trigonal prisms {lOlO}, {OlTO}.

Hexagonal prism {1120}.

Ditrigonal prisms {h k i 0}.

Trigonal bipyramids {h h I}, {0 k k /}.

Hexagonal bipyramids {h hlhl).

General forms. Ditrigonal bipyramids {h k i /}.

This is the second class in which an axis which is morphologically

one of threefold symmetry

has structurally the higher

symmetry 6, and the class

is therefore placed in the

hexagonal system.

Examples. The only cer-

tain example of this class

of symmetry is found in

a rare mineral, benitoite,

BaTiSigOg. Usually only

Fig. 260, A crystal of benitoite. special forms are present
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(Fig. 260), but crystals have also been described showing rather

dubious examples of a general form (Fig. 261). Notice that these

figures are orientated so that

the crystallographic axes x,

y and u are chosen normal to

the planes of symmetry, and

therefore not parallel to the

diad axes ; it is for this reason

that the symbol of the class

is written 6m2, and not merely

6m, but we shall explain the

significance of this introduc-

tion more fully when we come

to study the symmetry of the internal structural pattern in such crystals

(p. 256).

CLASS 6.1 ( Hexagonal trapezohedral.) A hexad axis normal to

six diad axes (Fig. 262).

Fig. 261. A crystal of benitoite showing a

general form.

Fig. 262. Class 62 ; the elements of symmetry, crystallographic axes and
stereogram of the general form.

Special forms. Pinacoid {0001}.

Hexagonal prisms {lOTO}, {1120}.

Dihexagonal prisms {h k i 0}.

Hexagonal bipyramids {h h /}, {hh 2h /}.

General forms. Hexagonal trapezohedra {h kil}.

This class is to be compared with class 32 of the trigonal system and

class 42 of the tetragonal system. The general form is such that a form

{h k i I) is the enantiomorph of the form {/ khl) (Fig. 263), but such

forms have apparently never yet been observed on actual crystals.
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Fig. 263. An enantiomorphous pair of hexagonal trapezohedra.

Examples. Since the general form has never been observed, other

considerations have been used to place in this class lithium iodate,

LilOg; barium aluminate, BaAl204; high-quartz (the modification of

crystalUne SiOg stable between 573° C. and 870° C.) ; dibenzalpenta-

erythritol; kalsilite, KAlSiOi.

CLASS 6/mmm. (Hexagonal holosymmetric, dihexagonal bipyra-

midal.) A hexad axis at the intersection of two sets of three vertical

planes of symmetry, two sets of three diad axes normal to these planes,

a plane of symmetry normal to the hexad axis, and a centre (Fig. 264).

/^
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have already studied. The third m of the symbol refers to the second

set of three planes of symmetry which arises automatically from the

operations indicated by the symbol 6/mm.

Examples. The best example is afforded by the mineral beryl,

BegAlaSigOis, a crystal of which is illustrated in Fig. 149 (p. 84).

CUBIC SYSTEM
In this system are placed all those groups of symmetry elements

(crystal classes) which contain four triad axes. These axes, however,

cannot exist alone. By inserting on a stereogram poles, in a general

position, to satisfy the four triad axes (compare Fig. 266) the student

can show that three diad axes at right angles are automatically intro-

duced ; thus the class of lowest symmetry in the cubic system possesses

four triad axes and three diad axes.

In the conventional setting of a cube with one set of edges vertical

the triad axes, the diagonals of the cube, occupy an inclined position

;

this is denoted in the symbol of each class by the appearance of the

figure 3 in a position other than at the beginning, such as 23. A
special convention must be observed, too, in the use of the symbol m
to denote the presence of a plane of symmetry, for we have seen already

that there may be present planes parallel to the cube faces, planes

parallel to the dodecahedral faces, or both kinds of symmetry plane

together. The former type, passing through the vertical principal axis

of symmetry but not through a triad axis, is symbohsed by a letter m

Xm3 X3m

Fig. 265. The symbolisation of the two kinds of plane of symmetry possible in

cubic crystals ; the figures show only one plane of each family.

preceding the figure 3, as Xm3 ; the latter type passes also through a

triad axis, and its symbol is therefore placed after the figure 3, as X3m
(Fig. 265). The vertical axis may be a diad axis, an inversion tetrad

axis or a rotation tetrad axis, and trial will show that the five symbols
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in the first column below represent all the diflferent combinations

possible

:

Full symbol Abbreviated symbol

23 23

432 43

2m3 m3
43w 43w
4w3m2 rnim

These symbols are conventionally abbreviated to those in the second

column by omitting symmetry elements which arise automatically

from a given combination. Thus in the class with four triad axes

and symmetry planes parallel to the cube faces, diad axes normal to

the cube faces will inevitably arise, so that the full symbol 2w3 is

sufficiently indicated by the abbreviated version m'i.

CLASS 23. (Tetrahedral pentagonal dodecahedral.) Three mutually

perpendicular diad axes and four triad axes (Fig. 266).

Fig. 266. Class 23 ; the elements of symmetry, crystallographic axes and a
stereogram of the general form. The outUne of the cube has been added to the
drawing of the elements of symmetry to help in visuaUsing their arrangement in

space.

Special forms. Cube {100}.

Rhombic dodecahedron {110}.

Pentagonal dodecahedra {h k 0}, {khO}.

Tetrahedra{lll}, {iTl}.

Tristetrahedra [hi I), {h Tl).

Deltoid dodecahedra {h h /}, {h hi}.

General forms. Tetrahedral pentagonal dodecahedra {h k /}.
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The first four types of special form we have akeady described in our

preliminary study of the cubic system ; it may be observed that the

appearance of pentagonal dodecahedra as special forms in this class

supports our objection to the alternative name pyritohedra (p. 60), for

this is not the class to which the mineral pyrite belongs. The tristetra-

hedra (sometimes, hke other names of this kind, written in full as

triakistetrahedra) belong to two families, {h 1 1} and {h 1 1}, of which the

representatives {21 1} and {2Tl} are illustrated in Figs. 267 and 268 ; the

Fig. 267. The tristetrahedron {211}. Fig. 268. The tristetrahedron {2Tl}.

two families are distinguished by some authors as ' positive ' and
' negative ' tristetrahedra respectively. Fig. 269 illustrates a further

member, {3 1 1}. The deltoid dodecahedra similarly occur in two famiUes

{h h I] and {h h /}, of which {221} and {221} are illustrated in Figs. 270

and 271 . Notice that neither of these pairs of famihes displays enantio-

morphism, for a ' negative ' form can be brought into congruence with

Fig. 269. The tristetra- Fig. 270. The deltoid Fig. 271. The deltoid

hedron{311}. dodecahedron {221}. dodecahedron {221}.

the corresponding ' positive ' form by a rotation of 90° about the

vertical axis. The general forms (the most appropriate name for these

seems to be the lengthy but descriptive tetrahedral pentagonal dodeca-

hedron) do display enantiomorphism, however, since corresponding to
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every form {h k 1} there can exist a form {k h 1} which is its mirror image.

Fig. 272 illustrates the form {321} and Fig. 273 its enantiomorph {231},

whilst the enantiomorphous pair {321} and {231} are shown in Figs.

274, 275. In conclusion, we may note that the triad axes in this class

are uniterminal (Fig. 266).

Figs. 272-275. Tetrahedral pentagonal dodecahedra {321} {231} {321} {231}.

Examples. The classic examples of this class of symmetry are pro-

vided by sodium chlorate, NaClOg, and sodium bromate, NaBrOg.
Figs. 276, 277 represent the habits of crystals obtained from aqueous

solution at ordinary temperatures; as usually described, the forms

represented are the cube {100}, rhombic dodecahedron {110} and

Fig. 276. A crystal of Fig. 277. A crystal ofsodium Fig. 278. A crystal show-
sodium chlorate. chlorate which is morphologi- ing a tetrahedral pentagonal

cally the enantiomorph of the dodecahedron in combina-
crystal in Fig. 276. tion with special forms.

tetrahedron {iTl}, with the pentagonal dodecahedron {210} in Fig. 276

and the pentagonal dodecahedron {120} in Fig. 277, but the two

combinations are morphologically enantiomorphs. The general form

has rarely been observed, but Fig. 278 illustrates the ideal symmetrical

development of a crystal of tetrahedral habit in which a tetrahedral

pentagonal dodecahedron is combined with the tetrahedron {111},

tetrahedron {iTl}, cube {100} and rhombic dodecahedron {110}.

Further examples of this class of symmetry are found in Schlippe salt,

Na3SbS4 . 9H2O; sodium calcium sihcate, Na2CaSi04; sodium uranyl

acetate, NaU02(CH3COO)3; and the minerals ullmannite, NiSbS,

and cobaltite, CoAsS. The nitrates of strontium, barium and lead

were formerly placed here but are now assigned to class m3 (below).
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CLASS m3. (Di(akis)dodecahedral.) Three diad axes at the inter-

sections of three mutually perpendicular planes of symmetry, four triad

axes and a centre (Fig. 279).

^
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ships which are not characteristic of didodecahedra in general. The

combination of the cube {100} with this form (Fig. 283) is of some

interest, since it appears at first sight to consist of thirty similar rhombus

faces, and therefore apparently to possess axes of pentagonal symmetry.

Fig. 283. The didodeca-
hedron {421}, modified by
faces of the cube.

Fig. 284. A crystal of
pyrite.

Fig. 285. A crystal of tin

iodide.

(Parallehsm of edges occurs in a didodecahedron {h k 1} if k^ = hi, so

that {421} is the only example Ukely to be encountered in practice.)

Examples. The type example is found in the mineral pyrite (iron

pyrites), FeSg. Fig. 284 illustrates a crystal showing the cube {100},

pentagonal dodecahedron {210}, octahedron {111} and one example

of the general form. The crystal of tin iodide, Snl4, in Fig. 285, dis-

plays only special forms, but the twofold symmetry of the crystal-

lographic axes is clearly evident. Also placed in this class are the alums,

R'R"'(S04)2.12H20; the nitrates Ca(N03)2, Sr(N03)2, Ba(N03)2,

Fig. 286. Class 43m; the elements of symmetry, crystallographic axes and a
stereogram of the general form.
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Pb(N03)2 ; zinc bromate, Zn(Br03)2 . 6H2O. Further mineralogical

examples are provided by hauerite, MnSg; sperrylite, PtAsg; bixbyite,

(Fe,Mn)203.

CLASS 43m. (Hexa(kis)tetrahedral.) Three diad axes (actually

these are inversion tetrad axes), four triad axes and six planes of

symmetry (Fig. 286).

Special forms. Cube {100}.

Rhombic dodecahedron {110}.

Tetrahexahedra {h k 0}.

Tetrahedra{lll}, {iTl}.

Tristetrahedra {h 11), {h II).

Deltoid dodecahedra {h h /}, [h h I).

General forms. Hexa(kis)tetrahedra {h k /}, {h k /}.

Corresponding to each hexatetrahedron {h k I] (Fig. 287) there is a

possible related hexatetrahedron [h k I] (Fig. 288), but owing to the

Fig. 287. The hexatetrahedron {321}. Fig. 288. The hexatetrahedron {321}.

presence of planes of symmetry in this class the two forms are morpho-

logically identical and are not enantiomorphs. The triad axes in this

class are clearly uniterminal. The general appearance of crystals

possessing this symmetry varies considerably according to the pre-

FiG. 289. A combination of the
rhombic dodecahedron {110} with
the tristetrahedron {311}.

Fig. 290. A combination of
the forms {110}, {111}, {100}
and {311}.
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dominance of ' tetrahedral ' forms (the tetrahedra, tristetrahedra, deltoid

dodecahedra and hexatetrahedra) or of the apparently holosymmetric

special forms (the cube and rhombic dodecahedron). Fig. 289 shows

a combination of the forms {110}, {311}; whilst Fig. 290 illustrates a

more highly modified crystal in which {100} and {111} are also present.

Examples. The type substance in this class is the mineral zinc blende

(sphalerite), ZnS, the commonest representative of a group of sulphides,

selenides and tellurides of berylhum, zinc, cadmium and mercury belong-

ing here (though a number of these substances are dimorphous, and

also occur in modifications with the symmetry of class 6mm). Also placed

here are the cuprous halides CuCl, CuBr, Cul ; aluminium metaphos-

FiG. 291. A crystal of eulytine. Fig. 292. A crystal of fahlerz.

phate, A1(P03)3 ; silver phosphate, Ag3P04 ; eulytine, Bi4(Si04)3 (Fig. 29 1)

;

sulvanite, CU3VS4; the fahlerz series between tetrahedrite, CugSbSg,

and tennantite, CU3ASS3 (Fig. 292) ; zunyite, Ali3Si502o(OH,F)i8Cl.

CLASS 43. (Pentagonal icositetrahedral.) Three tetrad axes, four

triad axes and six diad axes (Fig. 293).

Fig. 293. Class 43; the elements of symmetry, crystallographic axes and a

stereogram of the general form.
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Special forms. Cube {100}.

Rhombic dodecahedron {110}.

Tetrahexahedra {h kO}.

Octahedron {111}.

Icositetrahedra {h 1 1}.

Trisoctahedra {h h /}.

General forms. Pentagonal icositetrahedra {h k I), {k h /}.

In the absence of planes of symmetry and of the operation of inver-

sion, the general forms of this class {pentagonal icositetrahedra, some-

times called gyroids) can exist as true enantiomorphs (Figs. 294, 295).

Figs. 294-295. Pentagonal icositetrahedra {321} {231}.

The class lacks a centre of symmetry, but the triad axes are not uni-

terminal, and the special forms are all identical with those of the

holosymmetric class.

Examples. This is one of the two possible classes (the other being

6, p. 136) for which no actual representative

amongst known crystalline substances has yet

been clearly established. Cuprous oxide, CugO
(cuprite), was formerly placed here on account

of the supposed development of faces of

pentagonal icositetrahedra (Fig. 296); the

indices of these doubtful forms, however, were

high ({968} and {13, 10, 12} in specimens from

two different localities), and cuprite is now
believed to be holosymmetric.

CLASS W73/W. (Cubic holosymmetric, hex(akis)octahedral.) Three

tetrad axes, four triad axes, six diad axes, three cubic planes of

Fig. 296. A cube modi-
fied by the pentagonal icosi-

tetrahedron {968}
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symmetry, six dodecahedral planes of symmetry and a centre

(Fig. 297).

Fig. 297. Class w3w; the elements of symmetry, crystallographic axes and a
stereogram of the general form.

Special forms. Cube {100}.

Rhombic dodecahedron {110}.

Tetrahexahedra {h k 0}.

Octahedron {111}.

Icositetrahedra {h I /}.

Trisoctahedra {h hi}.

General forms. Hex(akis)octahedra {h k /}.

Examples. Many metals—such as copper, silver, gold, lead,

platinum and iron—belong here. Fig. 298 illustrates a crystal of silver

showing a hexoctahedron {751} predominant,

together with {211}; most of the other

metals mentioned usually show only special

forms. Further examples are provided by the

halides of the alkah-metals, and the oxides, RO,

sulphides, RS, selenides, RSe, and tellurides,

RTe, of calcium, strontium, barium and lead.

This series provides mineralogical examples in

halite, NaCl; periclase, MgO; galena, PbS;

alabandite, MnS ; clausthalite, PbSe ; altaite,

PbTe. We may mention also fluorite, CaFg; the spinels, R"R2"'04

(including magnetite, Fe304, Fig. 92) ;
garnets, R3"R2"'(Si04)3.

Fig. 298. A crystal of
silver.
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developed a number of auxiliary lines of approach, of which we shall

note four briefly.

1. Etch figures.

Just as the regular geometry and external symmetry of a crystal are

an expression of the orderly manner in which the units of construction

are built up during the growth of the crystal, so when a crystal is

attacked by a suitable solvent the initial dissolution often takes place

in a manner which is visibly related to the underlying structure. After

contact with the solvent for a period of time (from a few seconds to

several hours, depending on its potency and determined by trial) the

crystal faces will be seen to show a number of pits or cavities where

solution has been most pronounced. The pits are usually bounded by

sloping planes along which the solvent has acted most rapidly, and

solution cavities of this kind which have definite shapes are known as

etch figures. Their particular shapes are partly dependent on such

factors as the nature of the solvent and its concentration, but the

symmetry of their shape and of their attitude on different crystal faces

may be considered an indication of the symmetry of the underlying

structure. In Fig. 299 are shown diagrammatically a series of etch

m3m m3 43m 43 23

Fig. 299. Idealised etch figures on 100 and on 110 faces of crystals belonging to

the various classes of the cubic system.

figures which might be developed on {100} faces and on {110} faces of

crystals belonging to each of the five classes of the cubic system. If the

etch figures on cube faces, for example, were square in outhne but were

skew to the outline of the cube face itself, it seems a reasonable infer-

ence that the axis normal to the cube face is probably a tetrad axis but

that there are no planes of symmetry passing through this axis (class

43). It is important to note, however, that the only safe inference is of

the maximum probable symmetry of the underlying structure as indi-

cated by any evident lack of symmetry in the etch figures ; square pits
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symmetrically situated on the cube faces might appear on this form

in any class of the cubic system, if the solvent develops only etch pits

bounded by planes of the rhombic dodecahedron. Etching experi-

ments on cuprite, for example, have always produced etch figures

consistent with the full symmetry of class w3m, but these results

alone cannot be considered d.proof o^ holosymmetry, though they point

strongly in that direction,

2. Optical activity (optical rotatory power).

The routine examination of the optical properties of a crystal will

generally suffice to place the crystal in one of five groups. Cubic

crystals are optically isotropic for any direction of transmission ; crystals

belonging to the trigonal, tetragonal and hexagonal systems are opti-

cally uniaxial, being isotropic only for transmission parallel to the

principal axis of symmetry; whilst crystals belonging to the ortho-

rhombic, monoclinic and tricUnic systems are optically biaxial, and

each of these last three systems is distinguished by the extinction-

relations in principal zones. Such methods will not afford any indica-

tion of the particular class of symmetry, but there is one optical effect

which can be shown to be possible only in crystals belonging to certain

of the classes of lower symmetry within each system. This effect is

known as optical activity (or rotatory polarisation), and is most easily

observed by passing a plane-polarised beam through the crystal

parallel to a supposedly isotropic direction—in any direction in a cubic

crystal, parallel to the principal symmetry axis of a uniaxial crystal,

or parallel to one of the optic axes of a biaxial crystal. If the crystal is

optically active it is then observed that the emergent beam, still plane

polarised as we should expect, is no longer vibrating parallel to the

original direction of vibration, but that the vibration has been rotated

during the transmission through the crystal. Different specimens of

the same substance may rotate the plane of polarisation in opposite

senses, and in many substances (such as tartaric acid, Figs. 183, 184,

and quartz. Figs. 218, 219) the sense or ' hand ' of the rotation can be

correlated with the morphology of enantiomorphous developments of

the crystal. For example, the quartz crystal illustrated in Fig. 218

shows faces of the trigonal trapezohedron {5161}, developed in zones

between the faces of the trigonal bipyramid {1121} and the prism {lOTO}

;

if we cut a basal section from such a crystal and transmit through it a

beam of plane polarised fight we find that the plane of vibration of the

emergent beam has been rotated in a right-handed (clockwise) sense as
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seen by an observer looking towards the source. The enantiomorphous

development shown in Fig. 219 is due to the presence of the trapezo-

hedron {6T51}, in zones between the faces of the bipyramid {2TTl} and

of the prism {lOTO} ; a basal section cut from such a crystal imposes a

left-handed (counterclockwise) rotation on the vibration direction of

the transmitted plane-polarised beam. We therefore associate this

effect primarily with those classes in which true geometrical enantio-

morphism is possible, and for this the class must show no plane of

symmetry and no operation of inversion. The eleven enantiomorphous

classes are therefore found in the first row and the sixth row of the

chart on p. 106. Grouped in systems, these classes are:

Triclinic - - - Class 1

Monoclinic - - „ 2

Orthorhombic - - „ 222

Trigonal - - - Classes 3, 32

Tetragonal - - „ 4, 42

Hexagonal - - „ 6, 62

Cubic - - - „ 23, 43

Many of the substances which we have quoted above as examples of

these classes of symmetry show optical activity, and in some instances

this is the chief evidence for allocation to a particular class, since the

general form may be rarely, or never, developed. Thus, in class 42

(p. 132) ethylene diamine sulphate usually crystalUses in simple bi-

pyramidal or tabular crystals showing only tetragonal bipyramids and

the basal pinacoid and could be holosymmetric, but it is strongly

optically active. It is therefore placed in the enantiomorphous class

of the tetragonal system in which tetragonal bipyramids are possible

special forms—i.e. in class 42.

Notice particularly that this argument must not be reversed ; a sub-

stance may possess a structure which results in the symmetry of one of

the enantiomorphous classes without this structure being the kind which

produces optical activity (see p. 254). If, therefore, a crystal shows a

clear development of an enantiomorphous general form it is correctly

allocated to the corresponding enantiomorphous class, even though

optically inactive ; whilst the lack of optical activity exhibited by cuprite,

for example, is no more conclusive evidence that its symmetry is not

that of class 43 than is the failure to produce asymmetric etch figures.

Finally, we may note that it is theoretically possible * for a crystal

• See, for example, W. A. Wooster, A Text-Book on Crystal Physics, Cambridge,

1938, pp. 156-160,
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belonging to any one of four non-enantiomorphous classes

—

m, mm,

4, 42m—to show optical activity, but no example of this has yet been

clearly established,

3. Piezo-electricity and pyro-electricity.

It has been known for a long time that the subjection of certain

crystals, such as quartz, tourmaline and hemimorphite (electric cala-

mine), to mechanical stresses causes the separation of electric charges

on the surface of the crystal. This phenomenon of piezo-electricity

(TTte^eLv, to press) is now of immense practical importance, but its

interest to crystallographers lies primarily in the fact that it is physically

possible only in crystals possessing a structure lacking a centre of

symmetry. If such a crystal be heated or cooled, electric charges are

again developed, the phenomenon being termed pyro-electricity (ttCp,

fire), and we can use either of these tests to help in the allocation of a

crystal to its proper class—a definite pyro-electric or piezo-electric

effect indicates a non-centrosymmetrical class. Thus axinite (p. 109),

which is pyro-electric, must be assigned to class 1 in spite of the usual

apparent pinacoidal development represented in idealised drawings

(Fig. 181), but here again the argument must not be reversed, since it

appears that some crystals with a clearly non-centrosymmetrical general

form may exhibit no detectable piezo-electric effect.

There are 21 classes without^a centre of symmetry:

Triclinic - - - Class 1

Monoclinic - - Classes 2, m
Orthorhombic - - „ mm, 222

Trigonal - - - „ 3, 3m, 32

Tetragonal - - „ 4, 4, 4mm, 42m, 42

Hexagonal - - ,,6, 6, 6mm, 6m2, 62

Cubic - - - „ 23, 43m, 43

but it can be shown that in class 43, as a consequence of the high

symmetry, piezo-electricity is not to be expected in spite of the lack of

a centre of symmetry.

4. Laue photographs.

For the sake of completeness we describe briefly here the extent to

which X-rays can be used to help directly in the determination of the

symmetry of a crystal structure. When a beam of X-rays covering a

range of wave-lengths is passed through a crystal plate diffraction

occurs, as was first demonstrated by M. von Laue in 1912. If the
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diffracted beams are received on a photographic plate the symmetry of

the diffraction pattern (the Laue photograph) thus recorded is related

to the symmetry of the crystal structure about the direction of trans-

mission of the original X-ray beam. If this direction were the principal

axis of a tetragonal crystal, for example, the photograph would display

four-fold symmetry, and if the crystal belonged to class 4mm the

pattern would also be symmetrical about four planes passing through

the tetrad axis. We could thus distinguish a tetragonal class such as

class 4 from a ditetragonal class such as class 4mm, but the method
has an important limitation ; it is impossible to tell whether the crystal

is centro-symmetrical or not, for the pattern obtained from a non-

centrosymmetrical class is indistinguishable from that yielded by a

crystal belonging to the higher class generated by the addition of a

centre. The thirty-two classes of symmetry give only eleven different

groups distinguishable by means of Laue photographs

:

Triclinic - 1 and T indistinguishable

Monoclinic - 2, m and Ijm indistinguishable

Orthorhombic mm, 222, jmnm indistinguishable

Trigonal - 3, 3 show trigonal symmetry

3w, 3m, 32 show ditrigonal symmetry

Tetragonal - 4, 4, 4/w show tetragonal symmetry

477mi, 42m, 42, 4lmmm show ditetragonal sym-

metry

Hexagonal - 6, 6, 6/m show hexagonal symmetry

6mm, 6m2, 62, 6/mmm show dihexagonal sym-

metry

Cubic - - 23, m3 show a two-fold principal axis

43w, 43, m3m show a four-fold principal axis

THE RELATIVE NUMERICAL IMPORTANCE OF THE
VARIOUS SYSTEMS AND CLASSES

It is of interest to enquire how known crystalline substances are dis-

tributed over the various systems and classes of symmetry. Precise

figures are, of course, impossible of attainment, but the industry of the

compilers of works of reference published from time to time enables

us to trace the gradual accumulation of accurate data. An early

example of such a work, published in 1842, describes about 700 dif-

ferent substances. Groth's Chemische Krystallographie (p. 17), pub-

lished over the period 1906-1919, included about 7,350 substances. At

a time when the total had passed 10,000 some estimates were made of
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the numerical importance of the different systems, and it is interesting

to notice that these proportions are preserved, though the actual

numbers of substances involved are almost exactly doubled, for the

systems so far tabulated in a pubUcation which began to appear in

Russia in 1937. It seems that we may place the present total at some-

thing approaching 20,000, (of which about 2,000 have been found to

occur in nature as minerals and many of these are of extreme rarity).

Of this vast number, 50 per cent, belong to the monoclinic system, a

further 25 per cent, to the orthorhombic, and about 15 per cent, to the

trichnic. Thus these three systems account for about 90 per cent, of

the crystal kingdom, leaving only a few per cent in each of the remain-

ing more symmetrical systems. The order of decreasing numerical

importance of these seems to be—cubic, tetragonal, trigonal, hexagonal.

Within each system, the vastly greater proportion of its representatives

belong to the holosymmetric class and, as we have seen above, there is

difficulty in finding even a single representative for some of the less

symmetrical classes. The numerical unimportance of the more sym-

metrical systems is a help rather than a hindrance so far as determina-

tive problems are concerned, for whilst all cubic crystals of the same

symmetry have identical interfacial angles the number of variables

increases steadily as the symmetry diminishes.



CHAPTER VII

PARALLEL GROWTH AND COMPOSITE
CRYSTALS

So far, discussion has centred almost entirely on individual crystals.

In practice one is often concerned with crystalline aggregates ; in a

crystaUisation taking place, for example, in an open vessel the first

crystals to form may adhere to the walls or float freely in the solution,

but, if much further material separates, an aggregate of more or less

interlocking crystals is ultimately produced. Adjacent crystals in such

an aggregate may be in quite haphazard juxtaposition, but frequently

one observes a strong tendency to parallel growth, manifested by the

parallehsm of corresponding edges and corresponding faces of various

individuals. Octahedra of alum, for example, frequently have the

arrangement of Fig. 300, a number of individuals being associated with

Fig. 300-301. Parallel growths of octahedra.

one tetrad axis in common and the other crystallographic axes parallel

throughout the group. A less symmetrical parallel grouping of octa-

hedra is represented in Fig. 301, where individuals of different sizes are

aggregated with the tetrad axes in parallel position throughout.

Crystals of cubic habit are often grouped together in branching

{dendritic) aggregates extending in the directions of the four triad axes

;

such a dendritic group, growing outwards from the centre (Fig. 302),

may gradually fill up during crystallisation to give a single large cube.
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but the manner of growth is frequently revealed by sUght irregularities

in the placing of the individuals, and these irregularities, resulting in a

departure of the cube-faces of the large composite individual from a

Fig. 302. Parallel growth of cubes
along triad axes.

Fig. 303. Parallel growth of cubes
along diad axes.

truly plane surface, remain to reveal the lineage-structure of the whole

composite growth. Variations of this in detail are found where the

aggregation has been along the directions of the diad axes (Fig. 303).

In still other cases, the cubelets may be grouped to simulate a large

octahedron (Fig. 304). Where the particular conditions of growth tend

Fig. 304. Cubes in parallel growth
simulating an octahedron.

Fig. 305. Parallel growth formed during
crystallisation on a plane surface.

to emphasise a particular plane, as for example when a shallow drop

of solution is evaporating on the surface of a micro-shde, the parallel

growth may extend along certain directions in this plane ; the crystals

of Fig. 305 are all orientated with a triad axis normal to the plane of

the figure and are aggregated along the direction of the three diad axes

in this plane. In parallel growths of this kind, individual crystals are

frequently very distorted dimensionally, and some of the faces of the

different forms present are altogether suppressed ; in the aggregate of
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copper crystals in Fig. 306 the directions of elongation of individuals,

as also of aggregation throughout the growth, are all parallel to cube-

dodecahedron or cube-octahedron edges (see inset on figure), A
similar dimensional distortion with occasional suppression of faces has

Fig. 306. Parallel growth of
copper crystals.

Fig. 307. Parallel growth of hematite.

produced the composite platy crystal of FcgOg (hematite) illustrated in

Fig. 307 by a plan on 0001. A famihar example of this mode of

aggregation in hexagonal crystals is found in the myriad variety of

grouping of ice-crystals in ' snow crystals ' (Fig, 308) and arborescent

frost-growths.

Under some conditions of growth there may be a tendency for

material to be added more rapidly at some points on the face of a

growing crystal than at other points on the same face, A crystal lying

with a face in contact with the bottom of the vessel containing the

saturated solution, for instance, easily receives further material around

Fig. 308, A ' snow crystal.' Fig. 309. An idealised hopper cube.
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the edges of that face by diffusion of the saturated solution towards

the growing crystal, but if crystallisation is rapid little or none of this

solution may penetrate to the central area of the face. The crystal

grows by addition of layers of material around the edges, rather than

by addition of layers extending right across the face in question, and
the completed crystal is in part skeletal. An ideahsed drawing of such

a skeletal cube (a ' hopper crystal ') is shown in Fig. 309 ; in practice

one may frequently find that certain faces of a form have a more pro-

FiG. 310. Hopper development of a
rhombic dodecahedron.

Fig. 311. Hopper development of
an octahedron.

nounced skeletal development than others. Fig. 310 shows a similar

habit in the rhombic dodecahedron. In the octahedron of Fig. 3 1

1

the hopper development is due to the appearance of a second form,

the steps being built up by an alternation of octahedral and cubic

Fig. 312. a crystal of sulphur showing
partial hopper development.

Fig. 313. a spiral hexagonal crystal,
such as ice sometimes builds.

planes. In the crystal of sulphur illustrated in Fig. 312 the faces of

one bipyramid show no tendency to this skeletal development. The
student may eventually encounter many varieties of this type of skeletal
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growth amongst crystalline substances; one further example is por-

trayed in Fig. 313, where a hexagonal crystal has grown as a hollow

hexagonal prismatic spiral.

Alternating development of the faces of different forms sometimes

produces the appearance exemplified by the octahedron of Fig. 314.

The octahedral habit is built up by the addition in each octant of layers

parallel to the octahedral planes, but bounded by planes of the rhombic

Fig. 314. Alternating development of
octahedron and rhombic dodecahedron.

Fig. 315. a twinned octahedron.

dodecahedron. Crystals with regularly striated faces often result from

this kind of alternating development ; with differing relative develop-

ments of the two forms present, Fig. 314 might present the appearance

of an octahedron with faces bearing equilateral triangular striations or

of a rhombic dodecahedron with faces striated parallel to the longer

diagonal of each rhombus.

A different kind of composite crystal from

those which we have so far considered is repre-

sented in Fig. 3 1 5. The crystal is clearly related

to an octahedron, but the front lower portion

is in a reversed position. If we imagine an

octahedron divided symmetrically by a plane

parallel to one pair of external faces (Fig. 316),

the crystal of Fig. 315 could be obtained by

rotation ofthe lower portion through 180° about

the triad axis normal to the face 111. A crystal of this kind is called a

twin crystal (German Zwilling, French made). Each portion of a twin

crystal has its own proper orientation, but the two orientations are

simply related to the crystallography of each portion. Usually such a

composite crystal has grown as a twin crystal, with the two orientations

Fig. 316.
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present from the beginning of crystallisation, but it is convenient in

description to talk of the operation of ' rotation ' which would bring

one orientation into congruence with the other. (In some substances,

a related kind of composite crystal, usually also called a twin crystal,

can be produced by mechanical deformation after growth, but such

secondary twins show important differences from the growth twins

under discussion here.) The line about which the rotation, necessary

to achieve congruence, must be made is called the twin-axis, and in the

most frequent type of twinning it is normal to an important crystal

face. Re-entrant angles, such as those of Fig. 315, are frequently an

indication of twinning, simple crystals usually presenting only salient

interfacial angles.

The differing orientation of the two portions of the twinned octa-

hedron of Fig. 315 could also be related by reflection in the shaded

plane of Fig. 3 1 6, parallel to the face 1 1 T, and a plane related in this

way to the two portions is called a twin-plane. Usually the concept of

reflection in a twin-plane affords the easiest, picture of the morphology

of the twin, whilst we shall find later that the concept of rotation about

a twin-axis is more readily applied to the study of stereograms of twin

crystals. Where the simple crystal belongs to a centro-symmetrical

class of symmetry the operation of rotation through 180° about a twin-

axis and the operation of reflection across a twin-plane normal to this

axis produce identical results, and either description can be used at will

—the crystal of Fig. 315 may be described as twinned about a triad

axis or, alternatively, as twinned on a face of

the octahedron. In crystals lacking a centre

of symmetry, however, these operations do

not produce identical results, and care must

be taken to use the description which correctly

applies to the twin in question. The crystal

shown in Fig. 317 is composed of the two

complementary tetrahedra {111} and {iTl},

the faces of the latter form being shaded to
^^^ ^^^ ^ combination

emphasise the structural difference between of_the tetrahedra {ill} and

the planes 111 and iTl. The twin obtained ^*^*^-

by rotation about the triad axis normal to the face 111 is illustrated

in Fig. 318, and this is clearly not identical with a reflection-twin on

llT (Fig. 319). The reflection-twin is described as a. symmetric twin,

whilst for the rotation-twin the obsolescent term hemitrope, introduced

by Haiiy, may still be used (t^jui = half, rpo-nos = a turn).
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Fig. 318. A rotation twin of the

crystal of Fig. 317.

Fig. 319. A reflection twin of the

crystal of Fig. 317.

The plane along which the two portions of a twin crystal appear to

be united is called the composition-plane. (There is usually no physical

discontinuity marking this plane, the change across it being merely

one of change of orientation of the structure ; sometimes, however, it

is a plane of easy splitting—a parting.) In Fig. 315 the composition-

plane is identical with the twin-plane, and this is frequently the case,

but not always. The twin crystal illustrated in Fig. 320 clearly consists

of an upper and a lower portion united on a composition-plane parallel

to the basal pinacoid, but the disposition of the faces of the shaded

form reveals that this plane is not the twin-plane. The twin-plane

Fig. 320. A twin of the mono- Fig. 321. The reflection operation which
clinic (pseudohexagonal) crystal gives the two orientations shown in the twin
illustrated in the upper portion of crystal in Fig. 320.

the figure. The shaded faces belong
to the form {110}.

must be normal to the basal pinacoid (Fig. 321); or, in other words,

the twin-axis lies in the composition-plane. This kind of twin is called

a parallel twin, in contrast to the normal twins which we have described

above. Parallel twins are much less frequently found than normal twins

;

for the sake of completeness, we must mention briefly a third kind of

twin, still more rarely found, in which the twin-axis is not a possible

crystal edge, but is a hne in a crystal plane normal to a possible edge.

The three types of rotation-twin are thus

:
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Normal twins. The twin-axis is the normal to a possible crystal face,

the twin plane, which is the composition-plane of the twin.

Parallel twins. The twin-axis is a possible crystal edge (a zone axis)

lying in the composition-plane (which is not necessarily a possible

crystal face).

Complex twins. The twin-axis is a line in the composition-plane

normal to a possible crystal edge.

It will be seen from the foregoing discussion that an axis of sym-

metry of even degree (2, 4 or 6) cannot function as a twin-axis, since

no new orientation is produced by rotation through 180° about such

an axis. Nor can a plane of crystallographic symmetry function as

the twin-plane in normal twinning, though it may be the composition-

plane in parallel or in complex twinning.

In the twins so far described the two orientations have developed

one on either side of a well-defined plane ; the impression received is

of the two portions in contact along this

plane, and such twins are described as

contact-twins. The tetrahedra making

up the composite crystal illustrated in

Fig. 322 show no such plane of contact,

but rather appear to be grown through

each other; the crystal is an inter-

penetrant-twin. The concept of a com-

position-plane is here no longer appli-

cable, but the two orientations are still Fig. 322. An interpenetrant twin

related by the appropriate operation of tetrahedra.

of rotation or of reflection. Twin crystals of sodium chlorate, class 23,

with the habit of Fig, 322 are deposited from aqueous solution at low

temperatures, and the two tetrahedra are found to be built on structures

showing opposite hands of optical activity ; the two orientations must

therefore be related by an operation of reflection, and the twin is cor-

rectly described as a reflection-twin on a face of the cube {100}—it is a

symmetric twin and not a hemitrope. The distinction of contact-twins

from interpenetrant-twins on the score of their outward appearance is

a convenient one in practice, but there is a complete transition possible

from one to the other. Examination of thin sections of twinned

crystals reveals continuous gradations from types in which the two

orientations are developed on either side of a clearly-defined plane,

through examples in which the dividing surface is sHghtly irregular,

to completely interpenetrant-twins in which the two orientations are
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intimately intergrown in the central portions. Yet, however intimate

the intergrowth, the orientation of the structure at any particular point

is always that of one or the other of the two attitudes in question.

The reasons for the formation of twin-crystals, as for many other

features of crystal habit, are not yet completely understood. Some
substances are never found as twins, whilst others may scarcely ever

crystaUise as simple individuals. Others, again, are found sometimes

twinned but sometimes simple, and it is clear that the environment

during crystallisation plays some part. The most important factor,

however, is beheved to lie in the geometry of the internal structure of

the particular substance, the substance being by chance almost sym-

metrical about the direction of a twin-axis {axis ofpseudo-symmetry)

or almost symmetrical over a twin-plane {plane ofpseudo-symmetry).

In the structural pattern a unit can be marked out, larger perhaps than

the true smallest unit of pattern, which approximates in symmetry to a

higher class ; when a portion of the structure is in twinned orientation

this pseudo-unit extends almost without deviation over the two orienta-

tions ahke. Though we are not yet in a position to examine this pro-

position in relationship to the details of the internal structural pattern,

we shall often find that the pseudo-symmetry is already clearly sug-

gested by the external morphology of the simple crystal.

Fig. 323 represents a simple crystal of potassium sulphate, K2SO4,

class mmm. The angle 110^lT0 = 59° 36', so that 110-^010 = 60° 12',

?1

^^^ii^^ v
Fig. 323. A crystal of
potassium sulphate.

Fig. 324. A contact twin
of potassium sulphate.

Fig. 325. Repeated contact
twinning.

and the prism-zone is thus morphologically pseudo-hexagonal; in

agreement with the above suggestion, potassium sulphate shows a

strong tendency to twinning on {110} planes. Fig. 324 is a simple

contact twin of this kind, whilst in the crystal illustrated in Fig. 325 the

twinning is repeated. In Fig. 326 the twinned individuals interpenetrate,

and where three different orientations are present we may also find

either a contact twin (Fig. 327) or an interpenetrant association (Fig.

328). To emphasise the number of individuals composing such twins
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Fig. 326. An interpenetrant
doublet.

Fig. 327. A contact twin
of three individuals.

Fig. 328. An interpenetrant
triplet.

we may speak of doublets, triplets, etc., but repeated change of orienta-

tion is generally termed, rather loosely, ' multiple twinning '. The plan

on the basal plane of an interpenetrant triplet (Fig. 329) shows how
such a group may be described as an association, in twinned orienta-

tion, of individuals II and III on either side of individual I. In such

Fig. 329. Basal plan of an
interpenetrant triplet.

Fig. 330. Basal plan of a twin like Fig. 329
with the deep re-entrant angles filled up.

twins, there is a strong tendency for the re-entrant angles between

adjacent {010} faces to fill up during crystalHsation. The {110} faces

of individual I are co-planar with faces of the same form in individuals

II and III, so that the only external indication of twinning in a com-

pletely filled-up crystal is afforded by the shallow re-entrant angles on

the two side faces (Fig. 330). In substances which are closely pseudo-

hexagonal in simple crystals, these re-entrant angles amount only to a

few minutes of arc, and a twinned crystal imitating so nearly the sym-

metry of a higher system is called a mimetic twin (Fig. 331).

Imitative twinning of this kind is very frequent in orthorhombic

pseudo-hexagonal substances, and we can discuss some further possi-

bilities most easily in terms of plans on the basal plane. The direction

of the X-axis (the zone-axis of the zone between 010 and 001) is fre-

quently marked by striations in this direction on the basal pinacoid
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(Fig. 332). In a regular interpenetrant triplet such as Fig. 330 the

nature of the twinning is then rendered evident by the arrangement of
V-shaped striations (Fig. 333), but this feature often serves to show

Fig. 331. Clinographic view
of a mimetic twin of potassium
sulphate.

Fig. 332. Striations parallel to the
X-axis on the 001 plane of an ortho-
rhombic pseudohexagonal crystal.

Fig. 333. V-shaped striations on the basal
plane of an interpenetrant triplet.

Fig. 334. A twin like Fig. 333, less

regularly developed.

Fig. 335. As a result of repeated
contact twinning the outline of this

twin is formed entirely by 010 faces.

Fig. 336. In this example the development
is quite irregular, and the directions of stria-

tions show that the bounding planes belong
partly to {010} and partly to {1 10}.
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that the association of the different orientations is much more irregular

(Fig. 334). In the ideal twin of Fig. 333 the prism faces of the twin all

belong to the form {110} of the variously orientated individuals, but a

variation of this arrangement may lead to a mimetic twin bounded

entirely by faces of {010} (Fig. 335) or by faces belonging partly to

{110} and partly to {010} (Fig. 336).

STEREOGRAPHIC PROJECTION OF TWIN CRYSTALS

By the ' operation ' of twinning, the spherical projection (from

which the stereographic projection is derived) is rotated through 180°

about the twin-axis. By this rotation, every great circle passing through

the twin-axis is turned around to coincide with itself in reversed

position. On the stereogram, the traces of all such great circles pass

through the pole of the twin-axis. Thus, to obtain the twinned position

of a pole P (Fig. 337), draw the great circle through P and the pole of

Fig. 337. Construction of the twinned
position P of a pole P at an angular

distance e from the pole of the twin axis

T.A.

Fig. 338. Stereogram of an octahedron
twinned about the normal to 111. Only
the four upper faces ofthe original orienta-

tion are indexed, but the position of all

eight faces in the twinned orientation are

shown by underlined indices.

the twin-axis, and mark the pole P in the same great circle at an equal

angular distance on the opposite side of the twin-axis. Then P^ is the

twinned position of P.

The stereogram in Fig. 338 shows in this way the twinned positions

of the poles of an octahedron twinned about the triad axis normal to

the plane 111. The pole iTl, for example, is at an angular distance of

70° 32' from the pole of the twin-axis, and is at this same angular

distance on the opposite side after twinning, in the great circle through

lTl-1 1 1-010. Since 1 1 1 -^010 = 54° 44', the twinned position of 1 1

1
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is on the lower hemisphere at an angular distance 70° 32-54° 44'

from 010, in the position marked ijA. This convention of underlining

the index of a pole in a twinned position is widely followed. Before

the relationship of twinning to a pseudo-symmetry of the underlying

structure was clearly understood, it was believed that faces in a twinned

position could be given new rational indices related to the original set

of crystallographic axes. It is now reahsed that such a supposition is

groundless, and that the faces of the portion of a crystal in twinned

orientation must be given indices related to its own set of crystallo-

graphic axes, derivable by the operation of twinning from the original

set. A symbol such as iTl, therefore, must be read ' the position to

which the face iTl of the original crystal is brought by the operation

of twinning adopted to describe the crystal under consideration '.

Though the general construction described above will always suffice

to project the twinned position of a pole, we can sometimes proceed

more easily by first constructing the

twinned position of an arc on which

the required pole must he. Fig. 339

is a projection of an orthorhombic

crystal in which the zone of domes

{0 k 1} is pseudo-hexagonal. In

chrysoberyl, BeAl204, for example,

011-^011=60° 14', and we might

confidently expect twinning on a

plane of the form {011} to yield a

mimetic twin. Such twinning would

bring faces of the bipyramid {111}

into strict parallehsm in adjacent

portions of the twin—TTl, for

example, twinned about the normal

to oil would coincide with iTl. Examination of actual twins reveals

that there is a minute re-entrant angle between adjacent bipyramidal

faces, and we must seek a different explanation of the twinning. Since

001-^011 =30° 7', therefore 001^031 =60° 7', andthe pole 031 is

90° 14' from the pole OTl, 89° 46' from the pole Oil. A rotation of

180° about the normal to 031 will therefore bring 01 T almost into

coincidence with OTl, but not quite (the pole OlT is displaced outwards

in the figure for clarity). TOO coincides with 100, so that the twinned

position of the zone 100-OlT-TOO almost coincides with the original

zone 100-OTl-TOO. The pole TlT lies on this zone at an angular

100,100

Fig. 339. Stereogram to illustrate twin-
ning about the normal to a plane k I in

an orthorhombic crystal.
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distance from 100 equal to the angle 100-^ iTl; it therefore makes
a minute angle (19' in chrysoberyl) with the pole iTl, and the existence

of this re-entrant in the actual specimens is adequately accounted for

by a description of the twinning in terms of the normal to the face 031

as twin-axis.

COMMON TYPES OF TWIN IN THE DIFFERENT
CRYSTAL SYSTEMS

Cubic system.

The crystallographic axes (normals to cube faces) are symmetry axes

of even degree in every class of the cubic system, and thus cannot

function as twin-axes according to the description of twinning which

we have presented here. (A face of the form {100} may be a twin-plane

of the rare symmetric twins in those classes lacking the cubic planes of

symmetry, as described above (p. 165) for sodium chlorate.) In class

m3m, the normals to the faces of {110} are diad axes, and the triad

axes are the first important crystallographic directions likely to function

as twin-axes. Cubes twinned about a triad axis may be associated as

contact-twins (Fig. 340), as in copper, or may be interpenetrant, as in

Fig. 340. Contact twin of a cube
twinned about a triad axis.

Fig. 34L Interpenetrant cubes twinned
about a triad axis.

fluorspar, CaFg (Fig. 341). Similar variations are presented by crystals

of dodecahedral habit twinned on the same law (Figs. 342, 343). The

twinned octahedron, which we have already discussed (Fig. 315), is

usually a contact twin ; it is very characteristic of a group of sub-

stances R"R2"'04 named, from the member MgAl204, the Spinels,

and hence is usually called the spinel twin. It is found in many
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Fig. 342. Contact twin of
rhombic dodecahedra twinned
about a triad axis.

Fig. 343. Interpenetrant dode-
cahedra twinned about a triad

Other cubic substances, such as gold and diamond, the twin crystals

being often tabular in habit as a consequence of extension of the crystal

faces parallel to the composition-plane (Fig. 344). The twinning

may be repeated, either about the same triad axis (Fig. 345) or about

different triad axes (Fig. 346). In classes 23, m3 and 43w, in which

Fig. 344. A spinel twin
flattened parallel to the
composition plane.

Figs. 345-346. Repeated spinel twinning.

the normal to a dodecahedral face is not a diad axis, this direction

may function as a twin-axis, as for example in interpenetrant tetrahedra

(Fig. 322) in the non-enantiomorphous class 43m. Occasionally other

twin-laws are found, as on 211 planes (sodium uranyl acetate) or 441

planes (galena).

Tetragonal system.

The common twinning in crystals of the holosymmetric class, 4/mmw
has a face of a tetragonal bipyramid, {h /} or {h h I), as twin-plane,

often a face of the form indexed {101}. A simple contact twin of a

prismatic crystal on this law produces a geniculated crystal or elbow-

twin (Fig. 347). Repeated twinning may take place in such a manner

that the 2-axes of the various portions in different orientations all lie

in one plane (Fig. 348). It may also occur partly on planes of type

Oil and partly on planes 101 of the same form; the z-axes of the
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Fig. 347. Elbow twin of
a tetragonal crystal.

Figs. 348-349. Repeated twinning of the type

shown in Fig. 347.

portions of a multiple twin of this kind (Fig. 349) do not all lie in the

same plane, and in this way repeated twinning sometimes gives rise to

remarkable composite crystals, as in the minerals rutile, TiOg, and

cassiterite, SnOg. Twins on this law may also be interpenetrant, as in

calomel, HgCl (Fig. 350). If the axial ratio c/a of a tetragonal crystal

Fig. 350. A twin crystal of
mercurous chloride.

Fig. 351. Pseudo-octahedral aspect of

a twinned tetragonal crystal.

is near unity, the crystal is morphologically pseudo-cubic and we may

expect mimetic twinning. By twinning on Oil the tetrad axis is turned

almost through 90°, and an interpenetrant triplet may in such a case

simulate very closely a cubic habit (Fig. 351).

In classes of lower symmetry, further possibihties arise. We have

quoted iodosuccinimide above as an example of a substance belonging

to class 4, but it also crystallises with the habit of Fig. 352, in which the

tetrad axis is apparently not uniterminal. Such crystals are twinned by

reflection in the basal pedion, and illustrate once again how twinning



174 AN INTRODUCTION TO CRYSTALLOGRAPHY

can be regarded as an apparent attempt to achieve a higher symmetry;

for the basal pedion is not a plane of symmetry of the simple

crystal, whilst the twin does apparently possess

a symmetry plane in this direction. If re-entrant

angles are visible, as in the figure, the twinning is

easily detected, but if these are filled up during

growth the crystal would appear externally as a

simple individual of bi-pyramidal habit. (Mimetic

twinning of this kind, which raises the apparent

symmetry of a crystal to a higher class within

the same system, is sometimes distinguished as

supplementary twinning.) The presence of twinning

in such a crystal would be revealed by etch-

figures, which might be asymmetric pits pointing

in opposite directions on the upper and lower

portions of an apparently single prism-face ; or by

a test for pyro-electricity, the upper and lower p,q 352. A'twin crystal

terminations showing similar electrification with of iodosuccinimide.

a region of opposite sign around the middle of the crystal.

Orthorhombic system.

We have already described the frequent twinning on a prism-face (or

a dome, according to the setting of the crystal) in substances in which

the prism-zone is morphologically pseudo-hexagonal. If the angle

iTO^^llO of an orthorhombic substance is approximately 90°, con-

ferring a pseudo-tetragonal habit, we may likewise find mimetic

twinning on a face of the form {110} to increase the resemblance to

a tetragonal substance. In the minerals of the marcasite group the

prism-angle is near 72°, and it is interesting to find repeated twinning

on a prism-face is frequent here also, for the pseudo-pentagonal
' fivelings ' thus produced do not, of course, simulate a possible higher

crystallographic symmetry.

Twinning on faces of an orthorhombic bipyramid, {h k I}, is not

common, though sometimes found in association with twinning on a

face of a dome or prism; chalcocite, CugS, for example, shows twins

on 110 (mimetic, pseudo-hexagonal), on 032 and on 112; stauroUte

on 032, on 230 and on 232.

In the hemimorphic class trim, supplementary twinning on a basal

pedion may raise the apparent symmetry to that of class mmm, and is

described in many of the substances which we have used (p. 113) as
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illustrations of this class. Fig. 353 depicts a twin of struvite, and Fig.

354 one of bismuth thiocyanate, on this law. If repeated twinning

of this kind were present on a very fine (perhaps submicroscopic)

scale in a crystal of class mm, it would be diflScult to determine readily

Fig. 353 Supplementary twin
of struvite.

Fig. 354. Supplementary twin of
bismuth thiocyanate.

that it lacked the higher symmetry of class mmm. The silicate topaz

(OH,F)2Al2Si04, apparently affords an example of this, since, although

many specimens show a bipyramidal habit and yield symmetrical etch-

figures, others give a definite pyro-electric and piezo-electric effect,

especially if crushed into fragments before testing
;
presumably, there-

fore, the true unit of the underlying structure has the symmetry of

class mm only, but many natural crystals are built up by intimate

supplementary twinning.

Twinning in crystals of class 222 is rare, though symmetric twins of

enantiomorphs, related by reflection in a face of the prism {110}, have

been described in some substances.

Monoclinic System

The only crystallographic Une which cannot function as a twin-axis

in this system is the diad axis of classes 2 and 2/m, and the plane of

symmetry is hkewise inadmissible as a twin-plane in classes m and 2/m.

The commonest twins are those on planes parallel to the y-axis (planes

hOl, including those indexed 100 and 001) or about a crystal edge

normal to the >'-axis. The crystal of potassium chlorate, KCIO3,

shown in Fig. 355, is a simple contact twin on 001 ; this twinning is

often repeated, so that an apparently simple crystal is found to be built

up from a series of thin lamellae alternating in orientation (Fig. 356).

Such repeated twinning is described as polysynthetic, and seems hkely
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to be developed most finely in substances in which the pseudo-structural

unit (p. 166) extends across the composition-plane with the least

possible deviation. In extreme cases, the individual lamellae may be

Fig. 355. Contact twin of
potassium chlorate.

Fig. 356. Polysynthetic twinning
in potassium chlorate.

of submicroscopic width, and the crystal may acquire a plane of

apparent symmetry parallel to the composition-plane—a further

variety of mimetic twinning. (Secondary twinning (p. 163) is often

polysynthetic.) Gypsum, CaS04.2H20, may be quoted as an example

of twinning on more than one face in the zone parallel to the >'-axis.

Twins on 100 are common, either as contact-twins (Fig. 357) or inter-

penetrant (Fig. 358), but rather similar ' swallow-tail ' twins also occur

in which the twinning is on the face 101 (Fig. 359).

Fig. 357. A contact
twin of gypsum, twin-

ned on 100.

Fig. 358. An interpenetrant
twin of gypsum ; the twin law
is the same as in the crystal in

Fig. 357.

Fig. 359. A contact twin
of gypsum, twinned on 101.

Mica affords an example of parallel twinning in a monoclinic crystal,

with composition-plane 001 (Fig. 320); the Carlsbad twin in ortho-

clase is also a parallel twin, the twin-axis being the z crystallographic

axis and 010 the composition-plane.
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In classes 2 and tn, supplementary twinning on the plane 010 or

about the j-axis respectively may raise the apparent symmetry to that

of class 2/m,

TricUnic System

Since no planes of symmetry and no axes of symmetry are present

in this system, twinning can occur on any crystal plane or about any

crystallographic direction. Usually a twin-plane will be an important

crystallographic plane in the most convenient setting of the crystal,

such as faces of the pinacoids {100}, {010} or {001}. Polysynthetic

twinning may occur on two or more such planes, and is often mimetic.

Such twinning has been studied in great detail in some minerals ; the

plagioclase felspars, for example, show at least twelve types of twin

on normal, parallel and complex laws. Supplementary twinning may
account in some instances for the apparent pinacoidal development of

crystals which prove to be pyro-electric, and which must therefore be

allocated to class 1

.

Hexagonal System

Since there is no crystal class with more than one hexad axis, it is

perhaps theoretically unhkely that twinning will often occur in such a

way as to produce a composite group with inclined hexad axes. The
hexad axis itself, being an axis of even

degree, cannot function as a twin-axis;

nor can the plane normal to it be a twin-

plane in the classes in which there is a

horizontal plane of symmetry. In agree-

ment with these suggestions, the only

important twinning in the hexagonal

system is supplementary twinning on the

plane 0001 in the classes 6 and 6mm, in

which the hexad axis is uniterminal. The
true symmetry of such a twin is revealed,

as in the corresponding cases in the tetra-

gonal system, by the disposition of pyro-

electric charges or by the nature of the

etch-figures. Fig. 360 illustrates the

appearance sometimes presented by crystals of zinc oxide, ZnO, in

which two pyramidal crystals of different sizes are united in twinned

orientation.

Fig. 360. Crystals of zincite in

twinned orientation.
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Trigonal System

The chief interest of twins in this system hes in the fact that the prin-

cipal axis of symmetry, the triad axis, can function as a twin-axis since

it is an axis of odd degree.

Thus even in the holosymmetric

class 3m a variety of twins are

found corresponding to hemi-

tropy about the triad axis (or

twinning over the plane 0001).

Fig. 361 illustrates a contact-

twin of this kind in chromium

oxide, CrgOg, of tabular habit

;

Fig. 362 is a twin on the same law of a scalenohedral crystal of classes,

calcite, CaCOg. An interpenetrant development is frequently found in

crystals of rhombohedral habit (Fig. 363). In the enantiomorphous

classes, careful distinction must be made between twins by rotation and

twins by reflection. Quartz, for example, in class 32, shows different kinds

Fig. 361. A twin crystal of chromium oxide.

Fig. 362. A twinned
scalenohedron.

Fig. 363. Interpenetrant twin of
rhombohedra.

of twin in which the triad axis has the same direction for both orienta-

tions ; in the Dauphine twin, parts in different orientation are of the

same hand, and the twinning is correctly described as hemitropy about

the triad axis, whilst in the Brazil twin structures of opposite hand are

found in twin-association—the twin is a symmetric twin by reflection

in a face of the prism {1120}. Both types are usually irregularly

interpenetrant.
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Fig. 364 is an example of parallel twinning in a crystal of

NagLiCSOJa . 6H2O, class 3w, Though the composition-plane is 0001,

the two portions are clearly not in

orientations related by reflection in this

plane; the twin-axis is the normal to

a face of the prism {1120}, and is thus

a possible crystal edge in the plane 0001.

Twinning on this law is shown also by

pyrargyrite and proustite; if the two

portions are grown together without

re-entrant angles, the hemimorphic

character of the true symmetry ceases

to be evident and the apparent sym-

metry is raised to that of class 3m. In

a few substances in which this twin law is known, normal twinning on

the plane 0001 has also been observed (Fig. 365).

Twinning on a face of a rhombohedron produces a twin-association

in which the triad axes of the two orientations are inclined at an angle

depending upon the slope of the twin-plane. In calcite,

0001^10Tl=44°36i',

and the triad axes are almost at right-angles (Fig. 366). In such twins,

there is frequently a tendency for the re-entrant angles between the two

portions to fill up during crystallisation by the extension of certain

faces of a form at the expense of others (Fig. 367) ; the continuation

Fig. 364. Parallel twinning in a
trigonal crystal.

Fig. 365. Mimetic twin of a
trigonal crystal.

Fig. 366. Scalenohedra twinned on a
rhombohedral plane.

of this process may lead to the complete suppression of some faces,

and the interpretation of the morphology of the resultant ' butterfly

twin ' (Fig. 368) is not always evident at first sight.
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Fig. 367. The twin in Fig. 366 with Fig. 368. A ' butterfly ' twin, in which

the re-entrant angle partly filled up. the re-entrant angle is completely filled.

As in other systems, supplementary twinning of substances built on

a non-centrosymmetrical structure may explain the observation of

anomalous pyro-electric effects in crystals (such as dioptase) with

apparently centrosymmetrical morphology.

THE FREQUENCY OF OCCURRENCE OF TWINNING

We have already pointed out that, whilst some substances have never

been observed in twinned aggregates, twinning is so constantly present

in others that this feature is of distinct diagnostic value, and we have

suggested that the frequency of twinning is related to the degree of

pseudo-symmetry exhibited by the underlying structure. It is of

interest to enquire how widespread such pseudo-symmetry may be. A
review of the whole crystal kingdom is a task of enormous magnitude,

but mineralogists have paid close attention to the study of twinning in

naturally-occurring minerals, and we confine our observations to this

field. Twinned associations have been described in about 20 per cent,

ofknown minerals ; two-thirds of these twinned minerals show twinning

on one law only, whilst in the remainder two or more laws are known.

Normal twins are ten times more frequent than other types. Amongst

the different systems, twinning is most important in the monoclinic and

orthorhombic, and decUnes in importance through the cubic, trigonal,

tetragonal, triclinic and hexagonal systems. We may remark again

that, as with other features of crystal habit, the environment during

crystaUisation plays a certain part in determining the abundance of

twinned individuals in a particular crop.



CHAPTER VIII

SOME MATHEMATICAL RELATIONSHIPS

One reason for the extensive use of the stereogram for the represen-

tation of crystals lies in the fact that since all circles drawn on the

sphere are represented as circular arcs in stereographic projection, the

stereogram lends itself readily to graphical work. The accuracy of the

measurements which we can carry out with the reflecting goniometer,

however, justifies an order of accuracy in subsequent computations

higher than that which we can easily maintain in graphical work ; an

equally important feature of the stereogram is the ease with which we

can carry out calculations upon it by using the formulae of spherical

trigonometry. A spherical triangle is a figure on the surface of a sphere

(in crystallography the spherical projection) bounded by the arcs of

three great circles. Thus all the triangles into which a stereogram is

divided by zone-circles are representations in projection of spherical

triangles. The arcs are termed sides of the triangle ; the three sides and

three angles collectively make up the parts (or elements) of the triangle.

In Fig. 369, the arcs a, b, c are the sides and the angles A, B, C the

angles of the spherical triangle ABC
inscribed on a sphere centred at O. The

various formulae relating the parts of a

spherical triangle can readily be manip-

ulated by any student familiar with the

nomenclature of plane trigonometry

once he has grasped that the sides of a

spherical triangle, being arcs of circles,

must be expressed in angular, and not

in linear, measure. Thus, in the triangle p,g 359

ABC of Fig. 369, the sides a, b, c are

measured by the angles BOC, COA, AOB respectively, which they

subtend at the centre of the sphere; where A, B, C are the poles of

crystal faces, the sides a, b, c are the normal interfacial angles measured

in optical goniometry. The angle C of the triangle is measured by the

angle between the tangents at C to the arcs AC and BC\ that is, it is

the dihedral angle between the planes AOC and BOC. If the arcs

AC and BC are portions of zone-circles, the angle C is the angle be-
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tween two zone-axes. It is therefore the angle between two possible

crystal edges and can be represented as a plane angle of a crystal face.

THE ESSENTIAL FORMULAE FOR CRYSTALLOGRAPHIC
CALCULATIONS

If any three parts of a spherical triangle are of known magnitude,

formulae can be derived to determine the values of the remaining three

parts. (Remember that the sum of the three angles of a spherical

triangle is not constant, and that three angles define a spherical triangle

completely, since the radius of the sphere is immaterial.) We shall use

the following formulae in our calculations

:

To determine a side in terms of the remaining sides and the included

angle.

cos c = cos a cos ^ +sin a sin b cos C (1

To determine an angle in terms of the three sides.

a+b+c, A
tan 2

= sin {s - b) sin {s - c)
where s = (2)

sin s sin {s - a)

Formula (1) may also be rewritten

_, cos c - cos a cos Z>

cos C =
-. -.—

r

,

sm a sm b

but this is not so convenient for logarithmic calculation.

To determine a side in terms of two angles and one other side, or to

determine an angle in terms of two sides and an angle not included by

them.
sin a sin b sin c

(3)
sin A sin 5 sin C

The proof of these formulae is really outside the scope of crystallo-

graphy, but we may illustrate the

method of proof of formula (1),

from which the others may be

derived.

At C on the sphere (Fig. 370)

draw CD, CE tangents to the arcs

AC, BC at C. Since these tangents

lie in the planes AOC, COB respec-

tively, they will intersect the radii

OA, OB at D and E. The plane

angle ECD thus equals the angle C
of the spherical triangle ABC. Fig. 370.
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In AECD, DE^ = CD"^ + CE^-2CD . CE cos C,

and in A EOD, DE^ = OD^ + OE^ - 20D . OE cos c,

and by subtraction

:

0=^OD^-CD^ + OE^-CE^ + 2CD . CEcos C -20D . OEcosc.

Since the A 's OCE, OCD are right-angled at C,

02)2 _ C2)2 = OC^ = OE^ - CE^.

Therefore = 20C^ + 2CD . CE cos C -20D . OE cos c

;

oc oc ce cd
'"'''^oeod'^oeod''''^

= cos a cos ^ + sin a sin b cos C.

THE SOLUTION OF RIGHT-ANGLED (NAPIERIAN) TRIANGLES

Though these general formulae are ultimately essential for calcula-

tions in the less symmetrical systems, we can often effect a great simpU-

fication by using for calculations in the more regular systems spherical

triangles in which one part (whether an angle or a side) is a right-angle.

The simpUfied formulae could be derived from formulae 1,2,3 above

;

thus, if C = 90°,

cos c = cos a cos Z), from (1),

sin a = sin .4 sin c, from (3), etc.

It is tiresome, however, to need to remember six distinct, yet rather

similar, formulae, and Napier long ago described a device by which

the required formula can be written down at sight. Since these simplified

formulae and the device for their derivation apply only to right-angled

triangles, such triangles are often termed Napierian triangles. In Fig.

371 the five parts of the triangle (excluding the right-angle) are num-

bered in order, as they are encountered by moving around the triangle

from the right-angle. On the right of the figure is drawn a five-com-

partment diagram, three compartments on the left of the vertical stroke,

each filled in with the symbol 90° - , and two on the right. This device

must be sketched by the student every time a Napierian triangle is to be

solved; the numbered parts of the triangle are then written in the

appropriate compartments, starting from the horizontal line as we
start from the right-angled part of the triangle, and proceeding from

compartment to compartment in the same sense as we proceed around

the triangle. Since the triangle is soluble, two of the parts 1, 2, 3, 4, 5

are already of known magnitude ; any other part which we may require

must be situated either in such a way that it and the two known parts
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^ 5

Fig. 37 L Napier's device for the solution of right-angled spherical triangles.

are all three in adjacent compartments, or in such a way that two of

the compartments in question are opposite the third. All the required

formulae are then summarised in the two statements

:

^The product of the tangents of adjacent

parts,

or

The product of the cosines of opposite

parts.

Fig. 372 {a) shows an adjacent arrangement, with the middle part

ringed, whilst in Fig. 372 {b) the arrangement is that of a middle part

The sine of a middle part =

Fig. 372.

and two opposites. (Note that it is not necessary that the unknown

should be the middle part of the formula ; an intermediate auxiliary

solution is therefore never necessary, and we can always go straight to

the required answer for any of the three unknown parts.)
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Fig. 373.

THE CALCULATION OF AXIAL ANGLES AND AXIAL RATIOS
One of the earliest occasions on which the need for calculations of

spherical triangles may arise follows directly after the measurement of

a crystal. Having made a complete projection, determined the

symmetry, selected the appropriate set of

crystallographic axes and a parametral

plane, we next require to calculate the con-

stants for the substance—in the most general

case the three axial angles a, j8, y and the

axial ratios a/b and clb. Any symmetry

revealed by the projection enables us to

average the actual measured values of

angles thus seen to be theoretically equal,

and these averaged values are used in cal-

culation.

The general problem of a trichnic crystal may be studied first. In

Fig. 373 there is portrayed the upper front right-hand corner of a

crystal determined by the planes 100, 010 and 001, and across the

corner is drawn the trace of the para-

metral plane LMN. Since the edges

010-001, etc., have been chosen as the

directions of the crystallographic axes,

the axial angles a, ^S, y are the plane

angles of the faces 100, 010, 001, so

marked in the figure. The parametral

plane cuts the three axial edges in

lengths proportional to a, b and c. In

the corresponding projection, Fig. 374,

the primitive zone 100-0 10 is normal to

the z-axis, the zone 010-001 is normal

to the X-axis, and the zone 100-001 is

normal to the j^-axis. The axial angles

a, jS, y are therefore given by the angles

between these zones and are readily

seen to be the supplements of the angles A, B, C of the triangle ABC.

From the plane triangles of Fig. 373, we can derive the relationships

a sin (f)i
c _ sin </>6 c _ sin ^3

b sin (f)o
' b sin ^5 ' a sin ^4

The angle ^1 is the acute angle between the edge 100-001 and the

010

Fig. 374.
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edge 111-001 ; it is therefore the acute angle between the correspond-

ing zones on the stereogram, the angle ACm so marked in the projec-

tion. The other
(f>
angles can be identified in the projection in a similar

manner. We shall now proceed to apply these formulae to calculations

in the various systems in turn.

In the cubic system, a, j8, and y each = 90°, and the axial ratios are

unity (the auxiliary </> angles each = 45°).

In the tetragonal system, a =^ = y = 90°. Also ^i=<f>2= 45°, whence

alb = l. The ratio c/a ( = c/b) is required. From Fig. 375,

.^6=001-^011 =90°- 9^5

;

Fig. 375.

whence the axial ratio = tan 001-^01 1, a result easily derived also from

simple geometrical considerations, for Oil is a plane cutting the

orthogonal z and y axes in the ratio c/b (Fig. 376).

Fig. 377.
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In the orthorhombic system, the axial angles are again 90°. By either

of the above methods of reasoning (Figs. 377, 378),

a/Z>= tan 100^110, c/Z)= tan 001^011.

In the monoclinic system,

,a = y = 90°, iS = 180°-(<A3+<^4) = 180° -100^001 (Fig. 379).

100

Fig. 379.

also

a 0='-.—v^=tanc6i,
' sin 02

sin <^3 sin 001 ^101"^'^- '- 401*

,, sin (^6 * ,

,
bill (Oo Sill

ca= ^^ = -^
sin 04 sin 100-

Alternative simple geometrical reasoning follows a shghtly different

course in deriving values for alb and cjb, since the angles ^^ and ^g

are not directly related to interfacial angles

derived from goniometric measurements (note

particularly that, since 001 is not normal to '^-

faces in the primitive, ^i is not equal to the

angle 100^^1 10). In Fig. 380 the tangent of

the angle 100^^110 can be expressed in terms

of the. crystal constants, but the x axis is now
no longer in the plane of the section drawn—it is inclined at an angle

j3 - 90° below the plane of the paper. The intercept made by the trace

Fig. 380.
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of the face 110 on the normal to 100 is thus no longer a, but

a cos (jS -90°), i.e. a sin ^, whence

a sin /3

and similarly

tan 100/^110

tan 001^011 = c sin j3

(1)

.(2)

(By writing down a Napierian solution for the triangle 100 - 110 -001

the student should verify that the relationship (1) above is equivalent

to the statement fl/6 =tan ^j.)

Of the edges of a monoclinic crystal which are selected to determine

the directions of the crystallographic axes, only those parallel to y
are specially related to the symmetry elements. A prominent zonal

direction is then selected as the z direction

and set vertically; a form indexed {110} is

therefore very frequently present in practical

problems on actual crystals, and a/b may be

calculated by formula (1) above. It does not

follow, however, that the form {01 1} is equally

likely to be present, and instead forms {h 1}

are often prominent. It is then easier to

calculate c/a from consideration of the face

101 (or any hO 1 or hO I face) and to derive

c/b ultimately from the product c/a x a/b. The
geometrical derivation of c/a from the plane

101 is illustrated in Fig. 381. The x and z axes intersect at the obtuse

angle ^3; from the triangle AOC formed by the axes and the trace of

the face 101,
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.. .t- . • , „^ sin 02 sin (180° -Cm.4)
and from the triangle BCm, _ ^2 _ v j

whence

sin Bm sin EC '

a _ sin 01 _ sin Am . sin EC
b sin 02 sin Em . sin /IC

sin 100^ 1 10 . sin 010^001
sin 010-^ 1 10 • sin 100^001

'

In the hexagonal system, we proceed most easily by a simple geo-

FiG. 382. Fig. 383.

metrical derivation. From the projection, Fig. 382, and the diagram.

Fig. 383, it is readily apparent that tanOOOl^lOTl =^-^^^^q5
•

Alternatively, one may calculate from the position of the pole 1121,

fortanOOOl-^ini =4^, whence c/a=itan 0001^1121 (Fig. 384).
a/2

Fig. 385.

In the trigonal system, using Miller-Bravais notation, the calculation

of the axial ratio, of course, proceeds precisely as in the hexagonal

system. In Miller's three-index notation the axial units are all equal,
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and we require to calculate the angle a,

between the axes, characteristic of the

substance. Since the zones 100-001 and

100-010 are normal to the rhombohedron

edges including the angle a (Fig. 385),

we require to calculate the angle be-

tween these zones on the stereogram

(Fig. 386). If the interfacial angle of the

rhombohedron {100} has been measured

goniometrically, the triangle marked on

the stereogram is soluble by a Napierian

solution to give one-half of the supplement of the required angle a.

Fig. 386.

SOME EXAMPLES OF THE CALCULATION OF
AXIAL RATIOS

Tetragonal system.

In mercurous chloride (p. 62), the average value of the angle

100-^111 was determined as 49° 5'. We require to solve a triangle

for the angle 001^^011 (Fig. 387); since the crystal is tetragonal, the

Fig. 387. Fig. 388.

angle of the triangle at 001 =45°, and the side 111-^011 =90° -49° 5'.

The angle of the triangle at Oil =90°, and we can derive a Napierian

solution. Sketching Napier's device (Fig. 388), we can select the

equation sin 001 ^^01 1 =tan 45° tan 40° 55',

whence 001^011 =60° 5'

and cja = tan 60° 5' = 1-738.

Orthorhombic system.

In potassium sulphate, the following average values were obtained

as the result of measurement of several crystals

:

100^111 =43° 52', 001^111=56° 11'.
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The values are inserted in a quadrant of the stereogram (Fig. 389), and

we draw the Napierian device for the triangle outlined (Fig. 390).

100

46 8

Fig. 389. Fig. 390.

Writing down the appropriate solutions

:

sin 46° 8'= sin ^2 sin 56° 11', cos 56° ll'=cos001^011 cos46°8',

whence i>^
= 60° 12', whence 001 -^011 = 36° 34',

^ = cot<^o = 0-573. J = tan36°34'=0-742.
b b

MonocUmc system.

(1) The following average values were obtained by measurement of

crystals of lead chromate

:

110-^110 = 86° 19',

110-^001 =80° 57',

010^011 =48° 13'.

The triangle outlined in Fig. 391 is first solved for the value of the

Fig. 391.
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side 100^^001, giving the supplement of the required axial angle jS.

From Napier's device (Fig. 392) we write down

cos 80° 57' - cos 43° 9^' cos 001^ 100,

whence 001-^100 = 77° 33'

and i3 = 102°27'.

The axial ratio
fl tan 100-^110

b sin jS

^ tan43°9i'

sin 102° 27'

= 0-960.

Alternatively, we might solve for the angle ^^ from the Napierian

device

sin43°9i'=sin80°57' sin.^1.

whence
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the sloping planes being indexed {111}.

The interfacial angles obtained by meas-

urement are

:

010^110 = 55° 45',

010-^111 =71° 54',

110^111 =49° 9'.

These three angles give the values of the

three sides of a non-Napierian (or oblique)

spherical triangle (Fig. 394), and we must

clearly begin by solving this triangle for

one or more of its angles. We shall solve

for 04 ( = 100^101), and also for the

auxiliary angle 0; the most convenient formula is number (2), p. 182

The solution is set out in detail belov^^.

a = 49° 9',

b = 7r54',

c = 55°45',

2
1

176° 48'
,

^ = 88° 24'.

Fig. 394.
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001 - 101 - 1 1 1 (Fig. 395). From the Napierian diagram (Fig. 396) we
write down

:

cos 71° 54' = cot 60° 0' tan 001-^-101,

whence 001-^101 =28° 17',

cos<^i = sin60°0'sin71°54',

whence ^i = 34°36'.

= tan
(f>i

= 0-690.

180° -iS = 100--- 101 + 101-^001

= 52° 24' +28° 17',

^3 = 99° 19'
.

rru •
1 *• c sin 001-^101

The axial ratio - = -.—rjr^—r—

r

a sin 100^101

_ sin 28° 17'

~
sin 52° 24"

, c c a 0-690 X sin 28° 17'
whence -=_x-= -.

—^^- ^^,
—

-

b a b sin 52° 24'

= 0-412 .

The crystallographic constants of gypsum in this setting are thus

:

)8 = 99°19'; a :Z) :c=0-690 : 1 :0-412.

Triclinic system.

In basic mercurous nitrate, SHgNOg . 2HgOH, the following

measurements were made

:

100^110 = 42° 58' 010/-011 =37° 29'
,nn/snni =60° r

110^010 = 33° 33' 011-^001=44° 3'

To determine the axial angles, we must solve for all three angles of

the oblique triangle ABC (Fig. 397).

BOIOJ

A 100

Fig. 397.
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log sin

a = 81° 32', s-a = 32°0', T-7242.

b = 69°l', 5 -Z) = 44° 31', T-8458.

c = 76°31', s-c=3ri', T-7796.

2
I

227° 4'

j = 113°32'. 5 = 113° 32'. 1-9623.

logtan^=i(T-6254-T-6865) log tan | = i(T-5038 -T-8081)

= T-9694. =T-8478.

^=42° 59'. 1 = 35° 10'.

a = 180°-85°58'
i3
= 180°-70°20'

= 94° 2'. =109° 40'.

log tan ^ = i(T-5700- 1-7419)

= T-9140.

^ = 39° 22'.

y = 180° -78° 44'

= 101° 16'.

_ .
, ,. a sin 42° 58' sin 81° 32' , ,„„.

The axial ratio r = -.—,,o o.^/ •

—
^no 1/ (P- lo9)

b sm 33 33 sin 69 1

= 1-306,

.
, ,. c sin 44° 3' sin 76° 31'

and the axial ratio r = -—-,o r.^,
—

zns
—

tt
b sin 37 29 sin 69 1

= 1190.

We have thus determined the constants

a = 94° 2';
i3
= 109° 40'; y = 101°16'; a : Z> : c = l-306 : 1 : M90.

The trigonal system.

A single example of the calculation of an axial angle in Miller's

notation will suffice. In calcite, the cleavage angle 100-^010 = 74° 55'

(Fig. 398) ; the Napierian triangle of Fig. 399 is soluble for one-half

of the supplement of a. From the Napierian diagram (Fig. 400)

:

cos 60° = sin ^^ cos 37° 27^',
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Fig. 398. Fig. 399. Fig. 400.

whence 2 = 39°2i',

a = 101° 55'.

THE CONSTRUCTION OF AN AXIAL CROSS FOR
CRYSTAL-DRAWING

If an investigation is to be illustrated by drawing a typical crystal on
a set of axes, the chnographic projection of the three equal orthogonal

axes of the cubic system (p. 46) must be modified in each of the other

systems to accord with the values of axial angles and axial ratios

calculated as we have shown above.

In the tetragonal system the x and y axes remain unaltered, but the

z axis must be modified to agree with the calculated ratio cja. The

actual length of the z axis in the drawing

of cubic axes (which represents, of course,

the same length as the x and y axes in

space) is measured on a convenient scale,

multiphed by the ratio cja for the par-

ticular substance, and the new position of

±z plotted on the axial cross.

In the orthorhombic system the z axis

is modified as in the tetragonal system;

the apparent length of the x axis of the

cubic cross is hkewise measured, and this

also is modified in accordance with the

calculated ratio ajb. Fig. 401 represents

the correct axial cross for potassium sulphate, for which we have

determined

a :b :c = 0-573 : 1 : 0-742.

Fig. 401. Cubic axial cross mod-
ified to accord with the axial ratios
of potassium sulphate.
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In the monoclinic system the unit-length x axis is first rotated in the

xz axial plane to make the appropriate angle j8 with the z axis. A plan

of the necessary construction on the xz axial

plane is shown in Fig. 402 ; a point M is found

on Ox such that OM = Ox' sin p = Ox sin j8, and

a point A^ on the negative z axis such that

ON = Ox' cos ^ = 0z cos ^. The required new
position Ox' of the x axis is then the diagonal

of the rectangle MONx'. Adapting this con-

struction to the cHnographic representation of

the cubic axial cross, the point M (Fig. 403)

must be located by
Fig. 402. Plan on the xz

measuring the apparent plane of the rotation of the

1 _li- c /^ .L J ^1 jc-axis to accord with a par-
length or Ox as represented on the paper ticuiar value of p.

and multiplying this by sin ^ ; A'' is similarly

located on the negative z axis, measuring the apparent length of

the z unit distance and multiplying this by cos /S. Mx' and Nx' are

then drawn parallel to the original axes, to meet at x'. Then Ox'

represents the new axis, still the same length as Oy and Oz in

space but sloping at the correct angle ^. Finally, the lengths Ox'

and Oz on the paper are modified to accord with the calculated ratios

afb and cjb.

In the tricUnic system we again'proceed by first constructing a set of

axes of unit length correctly inclined at the calculated angles a, ^, y.

Fig. 403. Construction for

rotation of the .v-axis on the
axial cross.

Fig. 404. Construction of a
triclinic axial cross.

The X axis is moved downwards in the original xz plane to the correct

/3 value precisely as in the monoclinic system. The y axis must be

moved back and up (or down) to make both y and a agree with the

calculated values. This is accomplished by means of co-ordinates OL,

LM, MN (Fig. 404), measured parallel to the original y, x and z

directions respectively.
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MN=ON COS a = cos a X original length of Oz on the paper,

ML =OM cos 6 = ON sin a cos 9

= sin a cos 6 X original length of Ox on the paper,

OL =OM sin 6 = ON sin a sin

= sin a sin ^ X original length of Oy on the paper,

where 9 = angle OML.
Moreover, the crystal face 010 is parallel to the axial plane x'z and

therefore is parallel to the plane NML
;

whilst the crystal face 100 is parallel to the axial plane yz and there-

fore is parallel to the plane NMO,
whence 9 is the interfacial angle 100^^010, and we can thus determine

the values of the co-ordinates OL, LM, MN. Having thus constructed

a set of unit axes at the required angles a, ^, y, the x' and z unit lengths

are finally modified to agree with the calculated axial ratios ajb and c/6.

In the hexagonal system the y axis is retained in its original position,

and new x and u axes are constructed, still in the plane normal to z

but making angles of 120° with y. Seen in a plan on the xy plane

this involves the construction illustrated in Fig. 405. The original x

Fig. 405. Plan on the xy
plane of the construction of
a Miller-Bravais axial cross.

Fio. 406. Construction of a
Miller-Bravais axial cross

axis is produced to a point P, so that OP = Oy tan 60° = l-lZOy = 1-73

X original length of the x axis. P is then joined to ±y, and L, M are

the middle points of Py, Py. Joining L and M to the origin gives the

new + X and - u axes. On the cUnographic axes (Fig. 406) the apparent

length of Ox as measured on the paper is multipUed by 1-73 to give

the point P, and the points L and M are found as before. In drawing

a particular substance, the z axis is modified in the usual way to agree

with the calculated axial ratio cfa.

In the trigonal system, earlier crystallographers developed special
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methods for drawing crystals. These have now been completely super-

seded, and if a drawing is to be made on an axial cross, Miller indices

are first converted to the corresponding Miller-Bravais symbols, the

appropriate axial ratio is calculated and the drawing is made on the

corresponding hexagonal axes. Drawings are often made, however,

directly from the projection by methods to be described later (r.

Chapter IX).

THE EQUATIONS OF A NORMAL
The crystallographer usually defines the slope of a crystal face in

terms of its Miller indices hkl, but the same result might be achieved

by stating the angles which the normal to the

face makes with the crystallographic axes (the

student famihar with analytical methods will

recognise here the use of direction-cosines). In

Fig. 407 the plane hkl cuts the axes at the points

H, K, L; thus if 0H=^, OK=r ^ndOL=j
n K I

Draw ON normal to the plane from the origin.

Then



200 AN INTRODUCTION TO CRYSTALLOGRAPHY

From the stereogram (Fig. 409) it is readily seen that

A^^^Y = 90°-i(94°52') =42° 34',

Ar^^ = 90°-i(73°34') =53° 13',

A^^r = 90° -i(36° 40^') =71° 39^'.
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given crystal form by a letter, as in the form z{135} above. Such

lettering is a great convenience in crystal descriptions and tabulations,

for it avoids the necessity for constantly repeating the full index.

Haiiy lettered the faces of his ' primitive forms ' P, M, and T from

PriMiTive, and a systematic use of lettering is fairly widely observed

in French literature. Crystallographers in other countries have un-

fortunately never adopted either the French or any other scheme

unif*ormly and the ultimate authority for the use of a particular letter

for a particular form is the author of the original description, or a

recognised work of reference such as Groth's Chemische Krystallo-

graphie. The following are fairly generally used: a {100}, ^{010},

c {001} (or capital letters A, B, C to avoid confusion with axial units)

;

m{110}, ci{lll}; M {110} where this is a different form from w{110}.

In the hexagonal system c{0001}, w{10T0}, a{1120}, 5{1121}. In

the trigonal system c{lll}, r{lOO}, a{lTO}, e{110}. Individual faces

of a form may be distinguished by apostrophes, as a (100), a' (TOO).

In the monoclinic and triclinic systems, some or all of the angles

N^^Xy N-^y, N^^z are no longer measured by the crystallographic

interfacial angles h k l^^lOO, hk l^^OOl, and the equations to the

normal are less directly useful. They may, however, be expressed in

terms of goniometrical angles. In the monoclinic system, for example

Fig. 410. Fig. 4n.

(Fig. 410), we can write down a Napierian solution for the triangles

.V NS, z NS. From the appropriate diagram (Fig. 41 1),

cos A'''^A- = cos x-^S cos N^^S;

and, similarly, cos N^^z = cos z^^S cos N^^S.
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From the equations to the normal,

whence

Y COS N'^x = r cos A^^^ v = 7 cos N-^z,
h k -^

I

a be
7 =cos x-^S cos N^^S = J cos A''-^v =7 cos z-^S cos N^^S,
h k -^

1

but x^5' = 90°-/2 0/-^001,

N^S = 90" -N^y,
z^S = 90" -hOl-^lOO.

Therefore

f sin A l^OOl =j cot N^y = y sin /i /^ 100,
h k -^

I

in which form the equations may sometimes be useful in this system.

(We have derived one of these equations already during our calculations

of axial ratios.)

THE ANGLE BETWEEN TWO FACE-NORMALS
Having turned our attention to the possibility of determining a face-

normal in terms of the angles N^^x, N^^y and N-^z, we may enquire

whether this leads to a simple expression for the value of the angle

between two such face-normals. The appropriate formulae are

readily available in analytical soUd geometry, but they are extremely

cumbrous in the less symmetrical systems. In the tricUnic system the

expression for the value of the cosine of the angle 6 between the normals

to two faces hi k^ 1^ and /jg ^'2 12 involves the axial angles a, j8, y, the axial

units a, b, c, and the two sets of indices. Even with the simplification

introduced by the orthogonal axes of the orthorhombic system the

required expression reads

:

J J
be , . ca 1 , ab

nih2— +kik2-r + k k—
„ a be

cos 6
be , „ea , „ab , „be , „ea , „ab

and it is clear that the crystallographer's method of calculating directly

by the solution of the appropriate spherical triangle is much more

manageable than this approach.

In the cubic system, however, the further simphfication introduced

by equal axial units results in the formula

hi h^ + kiki + li I2
cos 6 =

A'+'ti' + /i'A'+^a' + ^2''
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and in this form it is often useful. Thus, to calculate the angle between

two triad axes in the cubic system, since these are normal to octahedral

faces, e.g. Ill, 111,

1-1 + 1

cos (f =

whence

J3 J3

= 0-3333,

^ = 70° 32',

a solution which is even more rapid than the solution of the appropriate

Napierian triangle, but it must be repeated that this simplified formula

is applicable only in the cubic system.

THE ZONE SYMBOL
We have already defined a zone as a set of faces with mutually

parallel intersections, this common direction being termed the zone-

axis. To specify the direction of a zone-axis, we may regard it as a

line drawn through the origin of the crystallographic axes and quote

the co-ordinates of a point on the line. If

the co-ordinates are U, V, W, the zone-axis

is the diagonal of a parallelepiped of sides

all, bV, cW {¥\g. 412). These co-ordinates

UVW constitute the symbol of the particular

zone in question; note especially that they

are used as true co-ordinates, and are there-

fore multipliers of the axial units a, b, c,

and not divisors hke face-indices. They are

distinguished from face-indices by enclosure

in square brackets, or crotchets, as [UVW];

to assist in keeping this important distinction in mind, it is best to

refer to them always as zone symbols rather than as zone indices, a

term used by some crystallographers. If the indices of two faces

defining the zone-axis are h^kili and /j2^2^2» then it can be shown that

W^h^kz -kji^.

A geometrical demonstration of these relationships is clumsy, and

we shall not give one here. They are readily derived analytically ; the

Fig. 412. Co-ordinates of a
point on a zone axis.
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equations of the planes through the origin, parallel to the crystal

faces hikJi and hJc^U respectively are

, X . y J
z

^a ^b ^c

0,

0,

and the equations of the line at their intersection are therefore

X _ y _ z

a {k-Ji - h^d b {l^h^ -h-J^ ~ c {h-Jc^, - kji^
'

The numerical values of U, V, W for a given pair of faces are written

down in practice by a convenient device known as cross-multiplication

(the crystallographer's own adaptation of the determinant notation of

the mathematician). Each index is written down twice, the second

below the first. The first and last figures are crossed off, and the

figures joined by the arms of each cross are multiplied, the product of a

pair joined by a stroke downward to the left being subtracted from the

product of the associated pair joined by a stroke downward to the right

:

h
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we obtain [001] which, from consideration of the faces which define it,

must be the symbol of the z crystallographic axis. In the monoclinic

and trichnic systems this direction [001] is clearly not normal to (001).

Still less, then, will it be true in general that a symbol [p q r] represents

a direction normal to {p q r).

THE WEISS ZONE LAW.
If any other face hkl lies in the zone [UVW] defined by the faces

h ik^lI, h^k^l2, then Uh+Vk+WI = (1)

(for the equation to the plane through the origin parallel to (h k I) is

h-+k{ + r=0, (2)
a b c

and if the three planes are tautozonal this must contain the line

aU bV cW ^^

X V z
and, by substituting in (2) the values of -, i) - derived from (3), we
arrive at equation (1)).

This important relationship, the zone law or zonal equation, was

first enunciated by C. S. Weiss * (though he did not express it in the

Millerian notation now used) and may conveniently be referred to as

the Weiss Zone Law. It is the foundation of the ' adding rule ' by

which we have found indices of other faces lying in a zone between

two given faces (for it wiU be readily seen that any index of the type

mh^ +nh2, rnk^ +nk2, ml^ +nl2 must satisfy the Weiss equation).

In addition to its use for verifying the tautozonal relationship of

given faces, the zone law also provides the means by which we can

locate on a projection a zone which is referred to by its symbol. Sup-

pose, for example, we wish to locate the zone [lT2]. By the zone law,

for all faces hk I'm this zone,

h-k-2l = 0.

Hence, if / = then h=k, and 110 is a face in the zone;

and if A: = then /i = 2/, and 201 is a face in the zone.

* Christian Samuel Weiss was born in Leipzig in 1780. After studying mineralogy
under Werner at Freiberg he worked also in Vienna and Paris. He first drew
attention to the zone law in a translation into German of Haiay's treatise on miner-
alogy. His name is usually associated with a crystallographic notation involving

the actual parameters of a face instead of sub-multiples of these, a notation which
has scarcely survived to the present time, but he did in fact anticipate Whewell and
Miller in using also our modem index notation. In 1810 he was appointed Professor

of Mineralogy and Director of the Mineralogical Museum in Berlin, where he died

in 1856.
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The trace of the required zone-circle can thus be drawn as the great

circle passing through the poles (110) and (201).

INDEX OF A FACE AT THE INTERSECTION OF TWO ZONES
If a face Qikl) lies at the intersection of two zones [UVW] and

[U'V'W], then h, k, I must satisfy the equations

Uh+Vk +Wl =0,

U'h + V'k+W'l = 0,

and we require to solve these equations for the ratios h : k : I. This is

easily accomphshed by the same device of cross-multiplication

:

u
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(conveniently that for the u axis) and the resultant co-ordinates are of

course referred to the three remaining axes. To indicate this omission,

the symbol may be written {UV-\ W]; we shall not attempt here to

derive a meaning for a possible figure to insert in place of the f , since

the three-index symbol is complete in itself and can be used both in

geometrical construction and in calculations such as those involving

the zone law. The figure -(U+V) must not be inserted in such a

zone symbol. When, however, the calculation leads ultimately to a

face index {hk* I) the third figure can be re-inserted, since we know
that for all Miller-Bravais face symbols h+k + i = 0.

As an example of work in this notation, we may derive the index of

the face at the intersection of the zones [2021, 01 TO] and [lOTO, 01 Tl].

The cross-multiplications are performed with the pairs of indices

[20*1, 01*0] and [10*0,01*1]:

2
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a simplified demonstration that on the basis of our assumptions con-

cerning the relationship of crystal faces

to the underlying structural pattern,

this ratio must have some simple value.

In Fig. 413 a portion of a crystal

pattern is drawn on a plane normal to a

prominent zone-axis, and the directions

of four faces in this zone are shown

by Hnes 1, 2, 3, 4 passing through a

common point of the pattern.

From plane triangles we have

sin ^12 Im sin
<i>

and

/ /
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Similarly, from the A 's j Pi P^ and y P^P^:

cos y\ sin 6^^ + cos y^ sin 6^^ = cos y^ sin ^14.

By division,

cos Xi sin ^42 + cos X4 sin 612 cos Xg

cos ^-i sin ^42 + cos y^ sin ^^g cos jo

Now, from the equations of a normal, we can write

a b
^

'

7- cos X-, = ^- cos Vi, etc.,

/?i
'

/Ci

and eliminating y^, y^ from equation (3)

:

cos Xi sin ^42 + cos x^ sin d^2 cos Xg

(3)

a ki . „ a /:4 . ^ a A:2
,- 7- cos X. sm Pio + T F^ cos X4 sm d-.^ -r y- cos Xo
b hi " b hi b «2

,

[jf
-
j^J

cos Xi sin ^42 - (^^ - ~J cos X4 sin d^^,

sin ^12 _ ^1 ^2 ~ ^1 ^2 cos Xi /14

sin ^42 /12 ^4 ~ ^2 K cos a:4 A^

From consideration of the poles Pi, P^, P^ in place of Pi, P^, P4, it

follows similarly that

sin ^13 hik^- ki /13 cos Xi h^

and by division

:

sin ^43 hs ^4
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THE LAW OF RATIONAL SINE RATIOS (MILLER'S LAW)
The above relationship was first published by W. H. Miller, in his

Treatise on Crystallography, in 1839, but seems to have been already

realised by other crystallographers also. The values of U, V, W on

the right-hand sides of the equations, being zone indices, must be

whole numbers, and it thus follows that the sine ratio offour tautozonal

faces is a commensurable number. The Law of Rational Sine Ratios

thus established is the basis for formal proof of many of the proposi-

tions for which we have already assumed results. We can now prove,

for example, that a pentad symmetry axis is impossible by showing

that four tautozonal faces 72° apart would result in an irrational sine

ratio, and by generalising the method of attack we can prove that the

only possible axes of rotational symmetry are those of degree 2, 3, 4

and 6.

The equations (4) are used in practice to solve two problems of

constant recurrence in crystallographic calculations

:

(1) Given the angular positions of four faces in a zone, and the

indices of three of the faces, to determine the indices of the

fourth.

(2) Given the indices of four faces in a zone and the angular relation-

ships of three of them, to determine the position of the fourth.

The method of working is most easily displayed in terms of actual

examples. It must be impressed upon the student that orderliness is

essential; the poles should be numbered 1, 2, 3, 4 along the zone in

question, and the calculation of zone symbols be carried out in strict

conformity with the subscripts of the angles. To calculate [t/43 F43 W^^,

for example, write down the index 4 twice for cross-multiplication, and

the index 3 twice below it ; reversal of this order would change the sign

of the co-ordinates, and the calculation would be incorrect unless the

42 indices were also reversed.

Examples.

(1) In a triclinic crystal, 001^ 111 = 42° 29' ; 001^ 112 = 28° 55'.

A fourth face occurs in this zone, between 112 and 111, at an angular

distance of 35° 16' from 001 ; what is its index ?

1 2 3 4

001 112 hkl 111 1

10

12 11

1,2 [TlO]
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sin 28° 55^ A 1 2
sin 35° 16^ k h 0_
sin 15° 34' ~ 1 T

"

sin 9° 13' l-k J^ZTj Y^

10

k I h k

211

1

/

1,3

i =
l-k l-h
k h

3h = 3k=2l

h_k^l

and the required index is (223).

(2) In another triclinic substance,

100^010 = 79° 6'
;

What is the angle 100^120 ?

4,2

[khO]



212 AN INTRODUCTION TO CRYSTALLOGRAPHY

^. ,
sin 52° 59'

, n^o .,

^"^'-^•sir26°rsin79°6-+^"^^^
'

= 0-9237 +0-1926

= 1-116

6' = 41°51'

TRANSFORMATIONS OF THE SINE RATIO
1. The co-tangent relationship.

sin '12

The sine ratio IJE^e^ sin 9., sin (^„ -^.3)
Sin ^42 sin ^13 - sin (^14 - ^12)

sin ^43

_ sin ^12 (sin ^u cos ^13 - cos 6^^ sin ^13)

sin ^13 (sin ^^4 cos d^^. ~ cos ^14 sin ^^g)

_ sin ^12 sin ^13 sin ^^4 (cot 6^^ - cot d^^

sin ^12 sin ^13 sin ^14 (cot ^12 ~ cot ^14)

_ cot ^13 - cot ^14

cot ^12 ~ cot ^14

'

whence, if the numerical value of the ratio = - , we have

/7 cot ^12 - ^ cot ^13 = (/) - ^) cot ^14, (5)

a form in which calculations can be readily carried out with the help

of a table of co-tangents.

In example (2) above, for instance,

^12 = 26° 7', ^14 = 79° 6', ^=h

cot 26° 7' - 2 cot ^13 = - cot 79° 6',

cot ^13=1(2-0398 +0-1926)

= 1-116,

whence ^i3=41°5r.

2. 77?e tangent relationship.

If ^14 = 90° a still further simplification arises, since the sine ratio

sin 012

sin ^13 tan 6^2

cos ^12 tan ^1

cos ^,0

whence tan d^^ = - tan^



SOME MATHEMATICAL RELATIONSHIPS 213

and we can work directly with a table of natural tangents (or more

rapidly still, with one of ' multiple tangents '). It is often possible in

all the more symmetrical systems so to select P^ and P^ for a given

calculation that /*i'^P4 = 90°, and this important simplification is

effected.

THE GRAPHICAL SOLUTION OF SINE RATIOS

If in Fig. 413 the line / t7i n p were parallel to face 4, we can write

sin ^1

sin ^1

sin 6.

Im

"hi

sin ^43

Similarly, in Fig. 415, if four face-poles are situated on the primitive

zone circle at P^, P^., P3, A and a line / tn n be drawn across their

normals parallel to the normal to P4, then

the value of the sine ratio is given by

Ini
This leads to a simplethe ratio

In

If ^13 and ^14 are known, and all four
Fig. 415. Graphical solution

of sine ratios.

graphical solution of the two problems of

p. 210. If the angular relationships of

all four faces are known, we can plot

them around a circle, draw their normals,

draw Imn across the pencil of normals

parallel to OP^, and read off the ratio

Im

In

indices, we can mark off along the line

/ n the calculated value of the sine ratio, and thus construct the normal

to the face P.,. (Graphical solutions are also possible when other

pairs of angles, such as 6^^ and ^34 are known, but such cases are

unUkely to arise in practice.)

A special interest of the graphical solution lies in its abiUty to detect

at sight the particular case where lm=mn, and the ratio =^, the

harmonic ratio of mathematicians. Harmonic ratios are particularly

common as a consequence of the usual simplest relationship of the

indices of actual faces (possibly 95% of calculations in crystallography,

excluding the province of minerals where complex habits are more
frequent); notice that both the examples (p. 210) are harmonic. In

such cases, formula (5) (p. 212) simplifies still further:

cot ^12 + cot ^14 = 2 cot ^13.



CHAPTER IX

CRYSTAL DRAWINGS

DRAWING CRYSTALS FROM A PROJECTION

The only method of crystal drawing which we have so far discussed

has involved the preparation of the appropriate axial cross in clino-

graphic projection. On this cross we have represented faces and edges

by consideration of indices as representing sub-multiples of the axial

units. The derivation of zone symbols provides another method of

construction, particularly useful sometimes if high indices are involved.

To determine the direction of the edge between the faces 896 and 98S,

for example, in a pentagonal icositetrahedron {968} (Fig. 296), we need

not divide the axial units into eighths and ninths, but instead cross-

multiply the indices and plot co-ordinates proportional to the resulting

values of U, V, W. Drawing on an axial cross is a valuable exercise

for the student, for it brings out very clearly the meaning of indices

and the relationships between indices and intercepts ; it is the quickest

method of representing single forms and simple combinations, but it

suffers from grave disadvantages when one is dealing with crystals of

more complex development. If the point of view adopted for the

standard clinographic axial cross proves unsuitable for giving a clear

representation of a particular habit, a change of direction can be

effected only by construction of a completely new axial cross. More-

over, in developing a complex habit by successive modification of

simpler combinations it is very difficult to control in detail the precise

habit of the finished drawing. The practised crystallographer therefore

draws all but the simplest combinations directly from a projection

(whether stereogram or gnomonogram), in which all the required

information concerning inclination of edges is incorporated in the

representation of the corresponding zones.

DRAWING FROM THE STEREOGRAPHIC PROJECTION
The first step is the preparation of a plan of the crystal as seen by

parallel projection from above—an orthographic plan on the plane of

stereographic projection. In such a plan all the edges between faces

in any one zone will be represented by a series of parallel lines, and the

common direction for any one zone is given by the normal to the
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diameter of the zone circle in the stereogram. In Fig. 416 is developed

the plan of the crystal of borax of Fig. 125, and the different stroke

used for each zone shows clearly the manner of derivation. It is easy

\ /

Fig. 416. Construction of an orthographic plan from a stereogram.

to make such a plan as closely representative of a particular habit as

we may wish ; allowance must be made for the decrease in apparent

width of faces as they slope more steeply to the vertical axis, but this

decrease is proportional to the cosine of the angle of slope, and can thus

be precisely evaluated. Compare, for example, the plan view of the

complex crystal of sulphur. Fig. 417, with the finished representation

made from it. Fig. 124.

The finished parallel-perspective drawing is obtained by constructing

a new ' plan ' as a projection on a non-crystallographic plane normal

to the chosen direction of view. Since

this, also, is an orthographic plan, the

drawings finally obtained are orthographic

representations, and not cUnographic draw-

ings like those which we have hitherto con-

structed on the Naumann axial cross. As

already suggested by Figs. 63 and 64, the

difference in appearance is inappreciable in

practice.

Fig. 417. The orthographic The next Step, then, is to insert in the

lTch°Firi24tasco2uSed! Stereogram the pole of the direction parallel

to which the crystal is to be viewed, and here

appears the second feature in which this method ofdrawing is much more
flexible than a construction on an axial cross. The conventional view-

point lies in the right-hand upper front octant at a position W, involv-
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ing a rotation 9 of about 18^° and an elevation
(f)
above the horizontal

plane of between 6° and 10° (Fig. 418), the plane of the required pro-

jection being the great circle

AQB of which W is the pole,

but we can easily vary the

values of 6 and
(f)

at will to

change the point of view.

The great circle AQB is now
traced on the stereogram ; if

this trace shouldpass through,

or very near, the pole of a face

on the crystal, such a face will

be foreshortened almost into

a line in the final drawing ; it

is then advisable to change

the position of W, by suitable

changes in the values of 6 and (/>, before proceeding further.

To find the direction in the new ' plan ' of edges corresponding to a

particular zone we require, in effect, to rotate the projection until W
lies in the centre, when the normal to the diameter of the zone in this

new position gives the required direction as before. Suppose such an

inclined zone NQM cuts the plane of projection AQB at Q. Then OQ

Fig. 418. Construction of the direction of a

zone axis in an orthographic drawing.

Fig. 419. The relationship of an orthographic projection on an arbitrary plane to

an orthographic plan on the plane of stereographic projection.

is the diameter of the zone on the plane of projection AQB, and we

know from the properties of the pole of a zone (p. 29) that if Q is

projected from W to q on the primitive the arc AQ = arc Aq. Hence
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the tangent to the primitive at q gives the zonal direction which we

require in our drawing.

Having obtained the required direction of edge we must now deter-

mine its correct length, and this is found from the original orthographic

plan on the plane of the primitive. All vertical lines in the crystal will

project normal to the diameter AB, that is, as parallels to OW, and by

drawing a series of such parallels from the coigns of the original plan

we can limit the lengths of edges in the finished drawing. The relation-

ship of the two ' plans ' is most easily seen by reference to Fig. 419.

The coigns F, G, H, K of the crystal project as /, g, h, k in the plan on

the plane of stereographical projection, and as F\ G^, H^, K^ on the

chosen plane of orthographic projection. If now the plane of ortho-

graphic projection were revolved about the line AB (the diameter AB
of Fig. 418) to coincide with the plane of stereographic projection, it is

clear that F^, G\ H^, K^ will fall respectively on the lines /v, gs, ht, kw,

normals to AB from/, g, h, k.

The simplest way to follow this description is to carry the instruc-

tions out in practice, and the student is advised next to reproduce for

Fig. 420. Drawing the rhombic dodecahedron in orthographic projection.

himself the construction of Fig. 420, illustrating the drawing of a

rhombic dodecahedron. The four zone circles intersect the trace of

the plane of orthographic projection in the points L, M, N, P, which

are projected on to the primitive from W to give the four directions of

edge required. This simple example shows no vertical edges; such

edges on a crystal project, of course, as parallels to O W, and their
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length is easily chosen to give a correct representation of the required

habit, in proportion to the size of the terminal faces. In centrosym-

metrical crystals, the lower half can be completed by drawing parallels,

since no new zonal directions are involved ; in crystals without a centre

of symmetry the faces on the lower half must be correctly represented

in the stereogram, but it is convenient to replace all such poles by the

pole of the parallel face on the upper hemisphere before beginning the

drawing.

DRAWING FROM THE GNOMONIC PROJECTION
Instead of starting from a stereogram we may draw directly from a

gnomonogram, which indeed was the type of projection from which

this method of drawing was first evolved. An orthographic plan on the

plane of gnomonic projection is first prepared, a proceeding precisely

analogous with the corresponding step in stereographic procedure.

The required directions of edge are found as normals to the correspond-

ing zone-lines. The trace of the intersection of the plane of the final

orthographic projection is also drawn (corresponding to the great

circle AQB of Fig. 418) at a distance r tan from the centre and in-

clined at the chosen angle d. This trace is known as the guide-line.

We now require to find the corresponding angle-point, at which any

two points on the guide-hne subtend in the projection the true angle

between the directions which they represent. (The guide-line, of course,

is not a zone-hne ; the angle-point is used in ordinary gnomonic work

to measure the interfacial angles between poles on a zone-line.) In

Fig. 421 (a) the construction is represented in three dimensions. O is

(a) (b)

Fig. 42L The angle-point construction.

the centre of the sphere, OP the normal to the plane of gnomonic

projection; Q and R two points on the guide-fine. Then the angle
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QOR at the centre of the sphere is the angle we require to measure.

Draw SP normal to QR and produce toW; H SW= SO it is clear that

QWR = QOR. In projection (Fig. 421 {b)) we draw PS normal to QR,

and PO' normal to PS and equal to the radius of the sphere of projec-

tion. Then WYiqs, on SP produced, at a distance SW = SO'.

Having located the angle-point of the guide-line we can proceed in

gnomonic projection perhaps even more easily than in stereographic.

For any required zonal direction, join the angle-point to the inter-

section of the zone with the guide-line, and draw the edge in a direction

normal to this join. The method is shown in Fig. 422, where it is used

to complete a drawing of borax from a plan similar to Fig. 416.

TTo

\
221.
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point of the equivalent guide-line (for which reason we have used the

letter W throughout, from the German Winkelpunkt). In Fig. 423, a

S P w

Fig. 423.

vertical section of the sphere through OW, SO =SW from the angle-

A 90° - (^ 90° - 6pomt construction; hence POW=—^-, PW = OF tan—y—, so

that W is the correct distance from the centre of the projection to

represent stereographically the pole of the plane of orthographic

projection.



PART II

THE SYMMETRY OF THE INTERNAL
ARRANGEMENT

CHAPTER X

T-Tf-

i'-t-
.'t:

THE SYMMETRY OF INTERNAL STRUCTURE
THE FOURTEEN BRAVAIS LATTICES AND THE INTERNAL

STRUCTURE OF CRYSTALS

So far our direct observations have been confined to the external

geometry of the crystal, except when the discussion of such a pro-

perty as crystal cleavage has brought us to a brief consideration of the

interior. The regularities which we have observed, however, and which

are summarised in the laws of constancy of angle and of rationaUty of

indices and in the groups of seven crystal systems and thirty-two crystal

classes have all combined to convince us that a crystal is an orderly

assemblage obtained by the regu-

lar repetition of some unit of ,*'--f-

pattern. The symmetry of this

unit determines ultimately the

external symmetry of the crystal,

and hence the particular system

into which it will fall. We no

longer suppose with Haiiy that

these units are solid parallele-

pipeda, and have replaced each

unit by a representative point such

as its centre of gravity (Fig, 53).

We have already used this picture

in representing a cubic crystal as

an assemblage of skeletal cubelets,

a tetragonal crystal as one of right square prisms, and so forth. By the
repetition of the unit cubelets by parallel translations we have built up
a cubic space lattice (Fig. 424), an arrangement of points in space, with
cubic symmetry, such that the environment of any one point is identical

in arrangement and orientation with that of any other point (the array

•'-ir--'--)*'-|-i--)--t*^-fr-i---}*
1 1 '

^^^±=^iIz^f^fT,^
ir--

14-

-

-^ - u _ J -
:J---iv:fl-

FiG. 424. A portion of a primitive cubic
space lattice. A unit of the lattice is heavily
outhned.
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being considered to extend indefinitely). The unit of this space lattice

is the simple cube outlined in the figure.

There are, however, other ways of arranging points with identical

environment in parallel orienta-

tion so that the whole array

displays the four triad axes

characteristic of cubic symmetry.

If we start with a unit cube which

has a lattice point at the inter-

section of the body-diagonals as

well as at the corners, we obtain

by translation the arrangement

of Fig. 425, and examination will

show that in such an arrangement

all the points have identical en-

vironments in parallel orientation

—it is a further type of cubic

space lattice. A third possible

arrangement is developed by

starting with the unit cube de-

picted in Fig. 426, with lattice points at the centre of each cube face

in addition to the corners. The immediate environment of every point

in each of these arrangements is shown in Fig. 427. The simple cube

is a primitive unit, denoted by the letter P ; in the cubic P space lattice

every point has six nearest neighbours. The body-centred cube unit is

Fig. 425. A portion of a body-centred
cubic space lattice. A unit of the lattice is

heavily outlined, with an open ring in the
body-centring position; throughout the
lattice, however, both dots and rings have
identical environments.

Fig. 426. A face-centred
cube.

Fig. 427. The immediate environments of points in the

cubic P, I and F space lattices.

denoted by the letter / (German Innenzentrierte) ; in the cubic / space

lattice every point has eight nearest neighbours. The face-centred

cube unit is denoted by the letter F; in the cubic F space lattice every

point has twelve nearest neighbours.

In the tetragonal system the simplest unit which we can propose is

the right square prism of our earlier discussions, a primitive unit cell
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which will produce by translation a tetragonal P space lattice. A body-

centred unit cell also produces by translation a true lattice, a tetragonal

I space lattice. When we pass to consideration of the possibilities of

face-centring, a new feature arises. The 001 (or C) faces can be centred

without the symmetry demanding also the centring of the prism faces.

--A-'

Fig. 428. A primitive tetragonal unit cell (full lines) outlined in a portion of a
space lattice built up from a tetragonal C face-centred unit (broken lines).

This arrangement proves to be a true lattice, but by an alternative

choice of ;c and y axes at 45° to their original directions (Fig. 428) the

arrangement can be produced by translation of a primitive unit cell of

smaller dimensions—a tetragonal C space lattice is not a new type of

arrangement, but merely equivalent to a tetragonal P space lattice in

a different orientation. If we next try centring the prism faces alone,

Fig. 429. The full lines show the different environments of two points in a portion
of an array built up from a tetragonal unit cell centred on the prism faces.

which the symmetry allows, the arrangement proves not to be a true

space lattice, for some points have an environment different from that

of 'others (Fig. 429). Finally, we may centre all the faces, prism and

basal pinacoid together, and the student should satisfy himself that

translation of such a unit cell produces a true lattice but that it is no
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new type of arrangement—a tetragonal F space lattice is equivalent to

a tetragonal / space lattice in a new orientation. Thus there are only

two tetragonal space lattices : P{ = C) and I( = F).

In the orthorhombic system the simplest arrangement is again a

primitive space lattice, orthorhombic P. Centring any one pair of

pinacoid faces leads to a true space lattice, but there is a difference of

orientation only, and not of type of arrangement, between the products

of centring the 001 (C) planes, the 100 (A) planes, or the 010 (B) planes.

Conventionally, the orthorhombic one-face-centred arrangement is

denoted the orthorhombic C space lattice. Body-centred and all-face-

centred arrangements are also possible, so that there prove to be four

orthorhombic space lattices, P, C, ( = A=B), I and F (see the chart on

p. 226.)

In the monoclinic system we again start with a primitive arrange-

ment. Centring the B (010) faces produces nothing new, for by a

change in the choice of the direction of

the z axis (Fig. 430) or of the x axis we
can make use of a P cell. Centring the

C (001) faces does produce a new type of

arrangement, a monoclinic C space lattice,

and A face-centring is equivalent to this

with a change of orientation. No further

new arrangements are possible—the

student should convince himself that the

monochnic space lattices F and / can be

described as monochnic C space lattices

by the appropriate choice of x and z axial

directions. We thus have two different

arrangements in the monochnic, P (^B),

and C( = A^F^I).
In the trichnic system only a primitive

unit cell is necessary, since with no restric-

tions on the choice of axial directions we can always outhne a P cell

in any triclinic arrangement which is a true space lattice.

In the trigonal system we may choose a rhombohedron as the most

appropriate shape of unit cell. Body-centring or face-centring this

unit (the symmetry makes all-face-centring the only type of face-

centring allowable) produces no new type of arrangement, since we

can always choose a new set of rhombohedral edges to outhne a

primitive cell (Fig. 431). There is thus only one kind of arrangement,

Fig. 430. A monoclinic P cell

outlined in a portion of space
lattice built up by translation of a

monoclinic cell centred on 010
(broken lines).
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which might be denoted as a trigonal P space lattice, but it is con-

ventionally given a special symbol, and is described as the trigonal

R space lattice.

In the hexagonal system, also,

only one kind of arrangement

proves to be possible, and the

unit cell conventionally chosen

is a right prism based on a

rhombus with an angle of 60°

(see chart, p. 226). The best

choice of unit cell in trigonal

and hexagonal crystals, how-

ever, is not always so straight-

forward as in the other systems,

pnH vjp' chsill rpfpr fr, it mnrp FiG. 431. Primitive rhombohedral unit cellsana we snail reter to it more
^^.^jj ^^^^^^ outlined in portions of space lattices

fuUylater (p. 259), merely noting built up from body-centred and from face-

here that the unit prism of the

hexagonal arrangement is denoted C (and not P, in spite of its primitive

character), and that it sometimes proves to be the most convenient unit

to use in describing the internal arrangement of crystals which are

morphologically trigonal.

We have thus arrived at fourteen different space lattices

:

Cubic P, I, F.

Tetragonal P, I.

Orthorhombic P, C, I, F.

Monochnic P, C.

Triclinic P.

Trigonal R.

Hexagonal (and trigonal) C.

The unit cells, in terms of which we have developed these arrangements,

are illustrated together on p. 226. The establishment of the existence

of these fourteen different arrangements was the outcome of the work

of several mathematicians and crystallographers in the first half of the

nineteenth century. Frankenheim* pubhshedhis first results in 1842,

but believed that he had estabhshed fifteen different arrangements.

Six years later Bravais advanced a more rigid demonstration of the

* Moritz Ludwig Frankenheim was born in Brunswick in 1801. After teaching
for a short time in the University of BerUn he was appointed to the Chair of Natural
Philosophy at Breslau. His crystallographic publications deal chiefly with the

elasticity and related physical properties of crystals. He died in Dresden in 1869.

p.c. p



Tetragonal P Tetragonal /

Orthorhombic P Orthorhombic C Orthorhombic I Orthorhombic /

MIA

lonoclinic P Monoclinic C Triclinic P

Trigonal R Trigonal & Hexagonal C

THE FOURTEEN SPACE LATTICES
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possible existence of fourteen different arrangements, pointing out that

two of Frankenheim's fifteen were in fact identical. The fourteen

space lattices are consequently often called Bravais lattices.

The mode of development which we have used differs, of course,

from that originally employed by Bravais, It is clearly convenient to

describe all the space lattices within one system in terms of a similar

set of axes—all cubic lattices in terms of three equal axes at right-

angles, all monoclinic lattices in terms of a set of axes in which the x

and z directions he in a plane normal to the diad axis, and so on

—

just as we did when studying the external morphology. For this reason

we have been forced to select in some cases a multiply primitive unit

cell—one with which more than one equivalent point is associated. In

the cubic P cell there is only one equivalent point per unit cell, since

each corner is used eight times in the complete assemblage produced

by translation. In an / cell, there are two equivalent points per unit

cell—the cell is doubly primitive—whilst an F cell is quadruply primitive.

We may note here, however, that it is possible to outline a primitive

unit for each of the fourteen arrangements. The primitive unit cell of

the cubic F space lattice is the rhombohedron outhned in Fig. 432, a

rhombohedron with a plane angle of 60° ; the primitive unit cell of

-i

—

1
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symmetric classes of the various systems to which they belong, and

Bravais himself realised that the reason for the lower symmetry ex-

hibited by many crystals must lie in the particular arrangement of the

structural units (single atoms, groups of atoms, or molecular units)

which the identical points of the space lattice represent. The external

symmetry elements,—rotation axes, inversion axes and reflection planes

—in terms of which we have developed the 32 crystal classes, must all

arise from the symmetry of the grouping of the structural units around

the lattice points, but perhaps there is more than one kind of internal

arrangement which will result in a given external symmetry. If the

crystal morphology reveals a vertical diad axis 2, then we may suppose

that some structural unit is arranged in pairs about this direction (Fig.

434 a) ; but another kind of two-fold regularity is possible. A rotation

through 180° about the diad axis together with a translation parallel to

the axis will also produce a regularly two-fold arrangement (Fig. 434 ^).

Such an axis is termed a screw diad axis, and is denoted 2i ; in diagrams,

the screw character is indicated by the ' tails ' seen affixed to the oval

•^

•-

I

k

(a)

2i

(b)

Fig. 434. The operations of axes
2 and 2i.

(a) (b)

Fig. 435. The operations of axes
3 and 3].

flag in the figure. If a morphological diad axis may actually be a

screw diad axis in the structure, what are the possibilities with axes of

higher degree? Around a direction of three-fold symmetry the struc-

ture must show a three-fold arrangement, and the axis may be a true

rotation axis 3, normal to plane trigonal groups (Fig. 435 a). If, how-

1
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ever, every rotation through 120° is combined with a translation

parallel to the axis—if the axis is structurally a screw triad axis—we
may have the arrangement of Fig. 435 b. Here each rotation through

120° in an anticlockwise direc-

tion is combined with a trans-

lation upwards, the fourth

position lying in the same ver-

tical plane through the axis as

does the first position. Such an

axis is conventionally denoted

3i, but it is not the only kind of

screw triad axis possible. If we

combine the same translation

with the opposite sense of ro-

tation (or translate 2/3 with the

same anticlockwise rotation)

we have another arrangement

around a screw triad axis, 3 2,

which is enantiomorphously

related to that around 3i. The

two arrangements are illustra-

ted in Fig. 436, with spirals sketched in to help illustrate this relationship.

In Fig. 437 they are shown in plan, and it can be clearly seen how
the trigonal relationship about the triad axis persists in spite of the

different levels indicated by the difference of shading.

^^ ^5.
Tetrad axes present yet another

Fig 436. Diagrammatic illustration of the
enantiomorphous relationship of axes 3i and 3^.

o
2

3

A-
1&5)

-A O
2
3

0,1 0,1

possibiUty. Screw tetrad axes 4i

(translation 1/4 upwards for an

anticlockwise rotation of 90°) are

enantiomorphously related to

screw axes 43 (translation 3/4

upwards for the same sense of

rotation). We may also have,

however, an arrangement about

an axis 42, where a translation 2/4

is combined with each rotation of 90°, and such an axis has no definite

sense of screw, for the same arrangement is reached whether we
consider the rotation to be anticlockwise or clockwise. The three

arrangements are illustrated in plan in Fig. 438; note the particular

devices which display the character of the axis.

Fig. 437. Plans showing the operations
of axes 3i and 32-
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The possibilities arising when a rotation hexad axis is revealed by

the external morphology should now be clear. There may be true

rotation axes 6 in this direction in the internal structure also ; but the

details of the internal arrangement in some crystals may be consistent

only with screw hexad axes. For an axis 61, the translation is 1/6 up-

wards for a rotation anticlockwise through 60°, whilst 65 is the symbol

^ 4 I nA^

0.1 0,1 .1 ^5

4i 43

O
0,1

62 64

JO P^0.1 -^

Fig. 438. Plans showing the operations of Fig. 439. The indicating de-
the three kinds of screw tetrad axes. vices used to show the five kinds

of screw hexad axes.

of the enantiomorphous arrangement. 62 denotes a translation of 2/6,

and 64 the enantiomorphous arrangement. 63, with a translation 3/6,

has, hke 42, no definite sense of screw. The indicating devices for these

five kinds of screw hexad axes are shown against the corresponding

symbols in Fig. 439.

If a rotation axis in the morphological symmetry of a crystal may be

the representative of screw axes in this direction in the internal struc-

tural arrangement, what can we deduce from the detection of an ex-

ternal plane of reflection symmetry? We shall expect to find planes in

the structure in this direction on either side of which structural units

are situated with an enantiomorphous relationship. If the external

symmetry plane m is also a true reflection plane in the structure the

arrangement is that illustrated in two dimensions in Fig. 440 a, where

the figure sevens represent some particular structural unit. But the

arrangement of Fig. 440 b, of the kind famiUar to us all in consequence

i
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V 7

7

V

(») (b)

Fig. 440. Illustrations of mirror reflection and of glide reflection.

of its popularity as a basis for wallpaper designs, is a closely related

one. The reflection operation, however, has been combined with a

translation in the plane of the diagram ; the vertical plane indicated in

cross-section by the heavy dashed Une is a glide reflection plane. The
difference between these two types of internal arrangement would not

be appreciable externally, for either would give rise to external crystal

planes symmetrically disposed about the plane of reflection.

Where more than one plane of symmetry is revealed externally, any

or all may correspond to a ghde reflection internally. We illustrate this

for the present in two dimensions. Fig. 441 represents a pattern of

sevens obtained by the repetition, about the representative points of a

rectangular net, of a group of four sevens showing two reflection planes

A L

7 V

\ L

7 V

A L

7 V

A L
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at right-angles—one of the elements of design in the border ornament

of the ' choice sporting neckerchief ' designed by Ruskin's friend.* In

\ L XL
7 V 7 V 7 T

. A ^ \ L

7 V 7 V 7 T

\ L \ L

7 V 7 V 7 V
Fig. 442. In this pattern there is one set of mirror reflections and one set of

ghde reflections.

Fig. 442 the pattern shows true reflection planes in one direction only,

and glide reflections in the direction at right-angles, whilst in Fig. 443

the pattern is founded wholly on glide reflections.

A A

7 L^ L^

7 ,7 ,7

T, Y^ Y

7 7 7
Fig. 443. A pattern based on glide reflections only.

Thus it appears that the class of symmetry to which a crystal belongs

is determined by the symmetry of grouping of the structural units

which we associate with the points of the underlying Bravais lattice.

If we place around every point of a monoclinic space lattice (whether

* The Two Paths, Lect. Ill, ' Modern Manufacture and Design '.
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monoclinic P or monoclinic C) a group which itself possesses a plane of

symmetry and a diad axis, then the resultant structure will build up a

crystal belonging to the holosymmetric monoclinic class 2//n; but if

the units themselves show only a plane of symmetry, or only a diad

axis, then the structure will be one appropriate to class m or class 2

respectively. Moreover, many different types of internal arrangement

will result in the same external symmetry. In class in, for example,

the underlying lattice may be P or C, and the plane of symmetry may
be represented internally, in either case, by true reflections or by gUde

reflections. In class 2, whether the underlying lattice be P or C, there

may be true rotational diad axes parallel to the y direction in the

structure, or there may be screw diad axes, whilst in the holosymmetric

class Ijm we must consider possible combinations of rotation diads or

screw diads with reflection planes or glide planes and base the patterns

on either of the appropriate space lattices—there are several (in some

cases many) possible types of structural symmetry isomorphous * with

each of the 32 crystal classes.

These ideas developed gradually in the half-century following the

work of Bravais. L. Sohncke.f adapting to crystallography some

results obtained by pure mathematicians, was the first to investigate

the result of admitting screw axes. In a Bravais space lattice the en-

vironment of every point is identical with that of every other point and

is similarly orientated ; but Sohncke showed that if identity of environ-

ment only, but without necessarily similar orientation, be required, there

are 65 such regular point systems. (In his first account, published in

1879, he arrived at a total of 66 but later showed that two of these were

identical.) In this way he was able to suggest possible types of struc-

tural arrangement which would confer on crystals the symmetry of

many of the lower classes, but others, notably those which we have

described as hemimorphic, were stiU unaccounted for.

The final development of considering the introduction also of the

operations of reflection and inversion marks ' one of the most remark-

* This is the term customarily used by mathematical crystallographers to describe

the relationship of a group of symmetry elements (a spaee group, p. 235) to the
crystal class (or point group, p. 235) to which it belongs. The same word is also

used in chemical crystallography to describe the relationship between two or more
substances of related chemical constitution and similar morphological development,
but slightly different values of corresponding interfacial angles.

t Leonhard Sohncke was born in 1 842 ; he published his first important crystallo-

graphic work, Entwickeluiig einer Theorie der Krystallstruktur, in 1879 whilst

Professor of Physics at Karlsruhe. He later held posts at Jena and at Munich
and produced important further contributions to crystallography. He died in

1897.
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able instances of independent discovery on record '. E. S. Fedorov *

began to publish his results in 1885, and completed them by 1890, but

as he wrote in Russian his work was not at first noticed by crystal-

lographers of other nationalities. A. M. Schoenflies f published his

work in German in 1891, and three years later a British scientist,

W, BarloWjJ also independently announced the conclusion of his own
investigations. Though they approached the problem from different

points of view, all three arrived at the same result, that these new

operations admit the possibility of 165 further types of arrangement, a

total of 230 in all. In this way all the 32 classes were accounted for,

and in the next chapter we shall investigate the nature of the groups

of symmetry elements which underHe these different kinds of arrange-

ment.

* Evgraf Stepanovich Fedorov, a celebrated Russian crystallographer and miner-
alogist, was born at Orenburg in 1853. After a brief career in the army he took up
the study of geology, and at the time of publishing his important contributions to

the theory of crystal structure he was in charge of the collections of the Russian
Geological Survey. In 1905 he became Professor of Crystallography and Mineralogy
at St Petersburg, a post which he held for the rest of his life. He devised many
special instruments to help him in his investigations of crystals, including a two-
circle goniometer and a universal microscope-stage. At the time of his death in

1919 he had completed the formidable task of classifying and tabulating all the
available data relating to the morphology of crystalline substances, and had evolved
a method of crystallochemical analysis by which any substance in the tables could
be identified by goniometric measurements. Das Krystallreich; Tabellen zur
krystallo-chemischen Analyse was published posthumously (written in German) as

a memoir of the Russian Academy of Sciences in 1920.

t Arthur Moritz Schoenflies was born at Landsberg in 1853. He published his

book Krystallsysteme unci Krystallstructur, describing the 230 different arrangements,
in 1891 whilst Privat-dozent in Mathematics at Gottingen University. In 1911 he
became Professor of Mathematics at Frankfurt am Main, where he died in 1928.

X William Barlow was born at Islington in 1845, and his career presents an
interesting contrast with those of the professional crystallographer Fedorov and the
mathematician Schoenflies, for he was a London business man who soon acquired
independent means and leisure to devote to studies which attracted him. His first

paper on the internal symmetry of crystals appeared in 1883, eleven years before he
published his derivation of the 230 possible kinds of arrangement. He died at

Stanmore, Middlesex, in 1934.



CHAPTER XI

SPACE GROUPS

THE 230 SPACE GROUPS

The work of Sohncke, Fedorov, Schoenflies and Barlow established

the number of different kinds of arrangement possible in crystal

structures. The actual number of different arrangements possible is,

of course, infinite; in our two-dimensional pattern of figure sevens

(Fig. 441) we might have grouped the sevens more widely or more

closely, or have chosen other figures as representing other kinds of

structural groups, but the pattern would still show the two sets of

planes of symmetry evident in Fig. 441. What we now require to

work out is the 230 different kinds of symmetry scaffolding on which

such patterns, in the three-dimensional crystal, may be based. Such

an arrangement of symmetry elements is called a space group ; though

we shall study the 230 space groups chiefly by means of patterns of

points or of geometrical units such as triangles, it is important to grasp

at the outset that it is not these units themselves, but the elements of

symmetry of their arrangement, which constitute the space group.

The procedure which we shall generally follow will be to work out

for each crystal class in turn all the space groups isomorphous with

that class. This we shall do by associating with every point of the

appropriate Bravais space lattices the elements of symmetry indicated

by the crystal class, taking into account the possibilities of rotation

axes in the external symmetry being represented by screw axes in the

space group, and of reflection planes in the external symmetry being

represented by glide planes in the space group. Whereas the symmetry

elements of a space group extend through space (the group being

regarded as extending indefinitely), the symmetry elements of a crystal

class can all be regarded as passing through a single point, the origin

of our crystallographic axes, which point is thus not repeated by the

symmetry operations. In the study of space groups, therefore, the

32 groups of symmetry which we have established are termed point

groups.
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TRICLINIC SPACE GROUPS
Point group 1

.

The only Bravais lattice in question is the primitive triclinic space

lattice P. No symmetry elements other than an identity axis are to be

associated with each point of this lattice, so

V^ /I/+
that the symbol of the one possible space

group is P\. Fig. 444 represents diagram-

matically in plan a portion of the structure of

y*
\J'^ a crystal based on this space group ; a unit of

Fig. 444. A portion of a the Structure (represented conventionally as a

gfoup"pi'^^^'^
°" ^^^ '^""^^ scalene triangle) at some height above the

base of the unit cell, indicated by the symbol

+ , is repeated throughout the structure only by the translation of the

unit cell.

Point group T.

Here again only the triclinic space lattice P need be considered, but

at each of the lattice points is placed a centre of symmetry (the equi-

valent of an axis T). An atomic group associated with the unit of

pattern is inverted across a centre to give an enantiomorphous atomic

group at an equal distance (-) below the plane of the diagram, as

indicated by a shaded triangle (Fig. 445), and translation of this unit

(a) (b)

Fig. 445. (a) A portion of a pattern based on the space group P\.

(b) Plan of a unit of the space group PI.

produces the pattern, a portion of which is shown in the figure. In

Fig. 445 a only the centres of symmetry at the corners of the unit of

pattern are shown (by thick small circles), but it is clear from the

arrangement that other centres of symmetry have arisen, and a plan

of a unit of the complete space group PI is shown in Fig. 445 b.

Thus in the tricHnic system there are only two space groups, PI and

PI, but the possibility of describing the structure of an actual triclinic

crystal in terms of one of these symbols depends on the correct choice

of the crystallographic x, y and z directions to correspond to a primitive
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unit cell. If these directions have been chosen by reference to the

external morphology only, they may correspond to a crystal orientation

based on a multiply primitive unit ; symbols such as CT, Fl and /T

thus denote the same space group as PI, but with a different orientation.

MONOCLINIC SPACE GROUPS
Point group 2.

The underlying space lattice may here be either monoclinic P or

monocHnic C, and the diad axis of the point group may be parallel to

rotation axes or to screw axes in the isomorphous space groups, so

that we must consider the possibilities represented by the symbols P2,
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If a pattern is based on a monoclinic C space lattice, any element of

the pattern associated with the origin 000 of the unit cell is associated

also with the point i^O. In Fig. 448 a portion of a pattern based on

the space group C2 is illustrated; a triangle at a height + is turned

Fig. 449. A portion of the space group
P2, viewed along the y axis.

Fig. 450. A portion of the space group
F2i, viewed along the j-axis.

over by the operation of a diad axis to one at height - , this pair of

triangles is repeated also about the C-face-centring point, and the whole

pattern is obtained by the appropriate translations. Further diad axes

have arisen, as in Fig. 446, but a new feature is evident in the appear-

ance also of screw diad axes between the rotation diad axes. This

appearance of screw axes parallel to a direction indicated as one of

rotation axes in the space group symbol is a direct consequence of our

use of a multiply primitive unit cell. It involves the important deduction

here that our suggested space group Cl^

will not be a new arrangement, for if we

A associate screw diad axes with the y edges

of the unit of a monocUnic C space lattice,

rotation diad axes will also arise in this

' direction, and the pattern will again be

based on the same symmetry as that of Fig.

$ 448, with the arbitrarily chosen origin dis-

placed ^ in the x direction. There are thus

A only three possible arrangements for an in-

finite group of parallel diad axes. Portion

of the three space groups P2, P2i, and C2,

viewed along the y direction, are illustrated
Fig. 451. A portion of the space . ^. AAn Acn j aci *• i

group C2, viewed along the j-axis. m Figs. 449, 450 and 451 respectively.
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Though there are only three distinct space groups isomorphous with

the point group 2, the descriptions which we have given depend on the

choice of a particular unit cell. Bearing in mind what was said above

(p. 224) concerning the number of different space lattices in the mono-

chnic system, it should be clear that a different orientation may lead,

for example, to the symbol Bl^ in place of P2i, or to a symbol A2, F2
or 72 for the space group conventionally denoted C2.

Point group m.

In this point group the space lattices monoclinic P and monochnic C
are to be associated with planes of symmetry normal to the y crystallo-

graphic direction, but the mirror reflection plane m of the external

symmetry may be represented in the isomorphous space groups either

by true reflection planes or by planes of glide reflection. A glide plane

is given a symbol denoting the direction of the glide component ; this

will be an im.portant crystallographic direction, and in a conventional

description of these space groups it is always chosen as the direction

of the crystallographic z axis and thus is denoted c. The possible

space groups which we must consider are thus Pm, Pc, Cm and Cc.

A portion of a pattern based on the space group Pm is illustrated in

Fig. 452. Vertical reflection planes parallel to the B faces of the unit

Fig. 452. A portion of a pattern
based on the space group Pm.

Fig. 453. A portion of a pattern
based on the space group Pc.

cell are denoted by the thickened lines, and it will be seen that in

addition to those reflection planes coinciding with the faces of the

unit cell, further true m planes arise half-way between them. In Fig.

453, based on the space group Pc, the vertical planes are c glide planes,

indicated in cross-section by dotted lines ; a structural unit at a height

+ above the base of the unit cell is raised to a height i + by the opera-

tion of glide reflection, and further c glide planes arise in a similar

manner to the extra m planes of the space group Pm.



240 AN INTRODUCTION TO CRYSTALLOGRAPHY

Fig. 454 is a portion of an arrangement based on the space group

Cm, and is derived from Fig. 452 by associating with the C-face-

centring point -^iO a group of structural units identical with the

group associated with the origin 000. Remembering that we are using

a doubly primitive unit in this description, we might be prepared to

find that extra symmetry elements arise automatically—planes such as

the one marked ab in Fig. 454 are planes of glide reflection. The
structural unit 1 would reflect in the plane ab to the position shown
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components involved in the glide. (No new group Pn would have

arisen if we had recognised earlier the possibility of existence of this

further type of glide plane, for by the appropriate choice of z axis we
can describe Pn as Pc.)

We have thus established the existence of four space groups, Pm,

Pc, Cm and Cc, isomorphous with the point group m. As before,

these particular symbols imply the selection of a particular orientation

which may not always agree with an initial choice based on external

morphology, so that a number of synonymous symbols can be derived

corresponding to other orientations. Bm, for example, represents the

same space group as Pm ; Pa and Ba correspond to other choices of

the X and z crystallographic axes in the space group Pc, whilst the

space groups Cm and Cc might be described in terms of the monocUnic

space lattices A, F or I, each of which is equivalent to the monoclinic

C space lattice.

Point group Ifm.

The possibilities within this point group are now fairly evident. In

the isomorphous space groups based on a primitive space lattice the

y direction may be parallel to rotation diad axes or to screw diad axes,

whilst the m planes of the point group may correspond to true reflec-

tion planes or to glide planes in the space group. Pljm, P2Jm, Pljc

and P2xlc are therefore four different space groups. When the under-

lying space lattice is C-face-centred, however, screw diad axes will

automatically arise parallel to rotation diad axes in the y direction

(compare p. 238), so that the only new arrangements here are Clfm
and Cljc. Moreover, in C2/m there will be a ghde planes parallel to

the m planes of the space group, and in Cljc the c glide planes will be

interleaved by n glide planes.

This much should be clear from the preceding study of monoclinic

space groups. A further important point arises from consideration of
the particular point group now in question. The combination of a
diad axis normal to a plane of symmetry resulted automatically in the

production of a centre of symmetry in this crystal class ; so also in all

the space groups isomorphous with the point group 2/m centres of
symmetry will automatically arise, though it is no more necessary to

indicate them in the symbols of the space groups than it was to do so

in the point group symbol.

We may illustrate some of these features by working out the space
group dim. Fig. 457 is part of a pattern built up on a C-face-centred
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lattice by the operations of reflection in m planes parallel to 010 com-
bined with rotation about diad axes parallel to crystallographic y.

Only these elements of symmetry are inserted in the figure, but the

nature of the pattern reveals the presence of further symmetry elements

;

;i
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ing first those based on the primitive orthorhombic P space lattice, the

planes parallel to 100 and 010, respectively indicated by the first and

second letter m of the point group symbol, may be represented in the

space groups either as true reflection planes or as ghde planes, and we
must try all possible combinations. Postulating first that the 100

planes are m planes, those parallel to 010 may be m planes, a planes,

c planes or n planes, and we have the four space groups Pmm, Pma,

Pmc and Pmn. If the 100 planes are c glide planes, we may have the

groups Pea, Pec and Pen. (The combination represented by Pern is,

of course, the same as Pmc, but in a new orientation with the x and y
directions interchanged.) Since the z direction is uniquely determined

as the direction of the intersections of the two sets of vertical planes, we
must distinguish also the cases in which the 100 planes are glide planes

involving a horizontal component, and we thus derive further new

space groups Pba and Pbn. Finally, the 100 planes may be diagonal

ghde planes n, but the only new combination arising here gives one

further space group, Pnn. Thus there are in all ten space groups based

on a primitive space lattice isomorphous with the point group mm.
Before proceeding further we may illustrate some features which

arise at this stage by drawing out a pattern based on one of these

space groups. Fig. 459 is based on the

symmetry elements of the space group

which we have derived as Pbn. In the

figure, however, there are diagonal glide

planes n parallel to 100, and a glide

planes parallel to 010 ; Pna is the same

space group as Pbn, but in an orienta-

tion corresponding to the interchange

of the X and y directions. In the posi-

tions shown dotted in the figure screw

diad axes can be detected, and this

should be no surprise to us. Since the

point group mm involves a diad axis in

the z direction, all space groups isomorphous with it must show diad

axes in this direction ; they may be true rotation diads or screw diads

(as in the example figured). The student should work out for himself

at this stage patterns based on some of the further space groups we have
derived and convince himself that these diad axes do always arise.

Passing next to space groups based on a one-face-centred space

lattice, we consider first those based on an orthorhombic C lattice.

Fig. 459. A portion of a pattern
based on the space group Pna.
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We know already that, as a consequence of the doubly primitive char-

acter of the orthogonal unit cell which we are using, further planes of

symmetry arise automatically parallel to any which we may insert in

developing a particular space group. Thus the space group Cmm will

contain glide planes (with a horizontal component of ghde) parallel

both to 100 and to 010 (b planes and a planes respectively). Hence

such symbols as Cma, Cbm and Cba do not indicate any new combina-

tion of symmetry elements and are not used in practice ; the conven-

tional symbol for a given space group shows the highest symmetry

element in a given direction, true reflection planes m taking precedence

over glide planes a, b or c, and these glide planes taking precedence

over diagonal glide planes n. One does represent a new combination,

and we know that in this space group there will be b glide planes parallel

to 100, interleaved between the m planes, and n glide planes parallel to

010, interleaved between the c planes. Finally, we may have a space

group Ccc in which no true reflection planes are present, but c planes

and n planes alternate parallel both to 100 and to 010. In all three

space groups Cmm, Cmc and Ccc vertical diad axes of some kind are

of course present. There are still other space groups based on a one-

face-centred space lattice to be considered, for in this crystal class the

pinacoid C{001} normal to the planes of symmetry is of different signi-

ficance from the pinacoids /1{100} and 5(010} parallel to the planes of

symmetry. We must next work out the possible arrangements based

on an ^-face-centred space lattice ; a change of orientation of these

will correspond to descriptions in terms of fi-face-centring. As in the

preceding group, we are working in terms of a doubly primitive unit

cell, so that extra elements of symmetry will arise. Amm and Ama are

new space groups, which can be denoted Bmm and Bbm respectively

if the X and y directions are interchanged. Amc and Amn, however,

are not new arrangements, for there are c planes in Amm parallel to

010 and n planes in Ama parallel to the a glide planes. Abm is also a

new arrangement, for we must distinguish a horizontal gUde parallel

to the centred face from a horizontal ghde parallel to the uncentred

010 planes. Finally, Aba is a further new arrangement, in which no

true reflection planes exist. As an exercise the student may show that,

in all four of these space groups, both rotation diad axes and screw diad

axes are present in the z direction.

In the body-centred / space lattice the point i i i is equivalent to

the origin 0, so that diagonal ghde planes n will arise parallel to

true reflection planes m, and c ghde planes parallel to a and b planes.
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The space group Imm is thus the same as the arrangements which might

be denoted Imn and Inn. Ima is a new space group, but such arrange-

ments as Imc, Ina and //7c (and their synonyms Icm, Ibn and Icn cor-

responding to a change of orientation) are equivalent to it. Lastly, Iba

is new, but contains also c glide planes parallel both to 100 and to 010
—lea, Ibc and Ice are no new arrangements.

The quadruply primitive character of the unit cell of the ortho-

rhombic F space lattice and the similar significance of the centred

A and B faces restrict even more the number of new arrangements

which we can build up on this lattice. Only those arrangements can

exist in which the 100 planes and 010

planes are of the same kind. The M+ |\|+

space group Fmm possesses glide —p. > -:.'*• ^
r7~

planes, which are at the same time v W F
C and a (or b) planes, parallel to the Fig. 460. Diagram to show the operation

true reflection planes, and these re-
o a p

ane.

flection planes are also n planes ; the only further new space group

possible is one in which diagonal glide planes only are present in both

directions. These are of a kind which we have not so far encountered,

for the glide components are only one-quarter of the primitive trans-

lations. For these the symbol d is used, and the planes are indicated

in cross-section by the dot-dash line of an n glide plane to which are

added arrows showing the direction in which the glide component in

a positive direction is \ (Fig. 460). The space group Fdd completes

our hst of twenty-two space groups isomorphous with the point group

mm, and we tabulate these below before proceeding further.
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Point group 222,

In space groups, isomorphous with this point group, which are based

on a primitive space lattice, there may be rotation diad axes in all three

A
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ing the crystal morphology, the three figures of the symbol show the

character of the ;c, y and z directions in that order. If the setting of a

particular orthorhombic sphenoidal substance is already determined

Fig. 463. A portion of the space group /'2i2i2.

by custom, we may need to write Pll^l^ or P2i22i, for example, to

describe the space group P2i2i2 in a different orientation.

Fig. 464. A portion of the space group P2i2i2j.

The equivalence of the points and i i in the unit cell of an

orthorhombic C space lattice necessarily involves, as we know (p. 238),

the presence of screw diad axes parallel to any rotation diad axes

postulated in the [100] or [010] directions. In the space group C222

there are both rotation diad axes and screw diad axes in the x and y
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directions but only rotation diad axes in the z direction. The only

other possible arrangement based on an orthorhombic C lattice is

C222i, in which the z direction shows screw diad axes only. Change of

Fig. 465. A portion of the space group 1111.

orientation would give ^2i22 or B11{1 as synonyms; these symbols

do not represent new space groups, since in the crystal class 222 the

pinacoids {100}, {010} and {001} are all of similar significance.

Fig. 466. A portion of the space group /2i2i2j.

The translations involved in an / space lattice result in the space

group 7222 possessing screw diad axes, parallel to the rotation diad

axes, in all three axial directions. We might well conclude that no other
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arrangement based on an / lattice is possible, but in fact there is a

second way of arranging screw diad axes parallel to rotation diad axes.

Instead of a set of mutually intersecting axes 2 parallel to a set of

mutually intersecting axes 1^ as in 7222 (Fig. 465), there can also exist

a space group in which non-intersecting diad axes 2 are parallel to

non-intersecting screw diad axes 2^ (Fig. 466). To derive a suitable

symbol for this second arrangement, we must countenance a departure

from the convention that a figure 2i in the symbol of a space group

indicates screw diad axes only, and no rotation diad axes, in the cor-

responding direction. The arrangement of axes in Fig. 466 is that of

the space group denoted /2i2i2i (by analogy with the non-intersecting

screw diad axes of the group Pl^lili), in spite of the existence of rota-

tion diad axes in all three principal directions.

Lastly, there exists the space group F222, in which screw diad axes

also are present in all three directions. We have derived nine space

groups isomorphous with the point group 222.

p
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tions possible. In this way, if we pursue the matter to a conclusion,

we shall find that the sixty-four different symbols represent only six-

teen actual different space groups, as shown in the table below. Highly

symmetrical groups such as Pmmm and Pnnn have the same symbol

whatever the orientation of the axes ; for others there may be two,

three, or six synonymous symbols, and the blanks in each horizontal

row are to be filled in by repeating the one, two or three symbols in

the row regularly across the columns.

For purposes of indexing and cataloguing, one symbol is selected as

corresponding to the ' normal setting ' for each space group, and a

set of artificial rules has been established to determine it. The symbols

in the first column correspond to this normal setting, but we shall not

discuss the rules here since in descriptions of the structures of actual

substances we may be called upon to use any one of the possible

permutations.

xy z
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n planes ; or a planes, which will also be b planes. The eight possible

symbols represent six new space groups

—

Cmmm, Cmma, Cmcm
( = Ccmm), Cmca ( = Ccma), Cccm and Ccca. As in the space groups

isomorphous with the point group 222, the similar significance of the

X, y and z directions in this point group mean that no new arrange-

ments of symmetry elements can be derived if we base our description

on an A- or a fi-face-centred unit; symbols such as Ammm or

Bmab correspond to C-face-centred groups with a different axial

orientation.

If the lattice be body-centred, m planes parallel to any one of the

pinacoids involve also n planes in this direction. Glide planes a, b or

c will occur in sets of two kinds of plane, according to the direction in

question ; thus b planes parallel to 100 will be accompanied by c

planes in this direction also, c planes parallel to 010 by a planes, and

so forth. The eight symbols we can derive thus represent only four

further space groups

—

Immm, Imma, Imaa, Ibca.

Finally, based on the quadruply-primitive F cell there are two space

groups, Fmmm and Fddd, making a total of twenty-eight space groups

isomorphous with the point group mmm.

c
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In drawing patterns of this kind to display the symmetry of space

groups we have so far placed the indicating triangles within the unit

cell without any special relationship to the symmetry elements—they

are in general positions, and their repetition displays the number of

1

l^/UI\l

^'^'-

2

--f

^-
''

'-.
iu. "4

-•^•^
f

Fig. 467. A portion of a pattern based on the space group Pnma.

general equivalent positions of the same kind in each unit of pattern.

It must not be supposed, however, that all the atoms in actual crystals

occupy such general positions, or that atomic groups are necessarily

centred about such positions. Some, or all, of the units may be

specially related to the symmetry elements—they may be centred at

special equivalent positions on axes of symmetry or on planes of sym-

FiG. 468. A diagrammatic representation of a portion of the structure of aragonite,
with the elements of symmetry indicated.
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metry or at centres of symmetry. Fig. 468 represents diagrammatically

a portion of the accepted structure of orthorhombic calcium carbonate,

aragonite, CaCOg, projected on the xy plane. The space group is

Pmcn ( = Prima). The centres of the Ca ions (indicated by circles) lie

on the m planes, as also do the centres of the C atoms (in the middle of

each equilateral triangle). Of the three oxygens of each CO3 group,

centred at the apices of the equilateral triangles, one lies on an m plane

and is thus not repeated by it, but the other two occupy general posi-

tions. A unit cell of the structure contains only four CaCOg equi-

valents, though there are eight general equivalent points per unit cell

in the space group Prima. Notice, however, that whilst the number

of equivalent positions is halved, compared with the number of general

equivalent positions, for special positions on m planes or on rotation

diad axes there is no corresponding reduction for positions on gUde

planes or on screw diad axes. In aragonite the C atoms are situated on

the intersections of the m planes with c planes (Fig. 468), but this does

not further reduce the number of such equivalent positions. In the

space groups to be studied below we shall encounter three-fold, four-

fold and six-fold reductions of the number of equivalent positions for

special situations on rotation axes of corresponding degree.

TETRAGONAL SPACE GROUPS
Point group 4.

The vertical tetrad axis of the point group may be paralleled in the

space group by axes 4, 4i, A, or 43, whilst the space lattice in question

may be tetragonal P or tetragonal /. The translation | ^ | involved

in the doubly-primitive / cell, however, gives rise to A, axes parallel to

the rotation tetrad axes in the space group 74 (Fig. 469), and to 43 axes

parallel to the A^ axes in the group lA^. (Notice also in Fig. 469 that

diad axes arise parallel to the tetrad axes.) Hence there are only six

distinct space groups isomorphous with the point group 4

:

p
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the phenomenon of optical activity exhibited by some substances

crystaUising in such an enantiomor-

phous class. If the structure is based

on a space group containing screw

axes of one kind only, as in the group

P4i or the enantiomorphous group

P4^, then it would seem highly prob-

able that the appropriate physical

characteristics would be present which

result in the substance being optically

active. A structure based on such a

space group as P4 or PA^, however,

seems less hkely necessarily to possess

these characteristics and so may build

Fig. 469. A portion of a pattern based up a crystal which, while evidently
on the space group 74.

, • , , •

correctly assigned to the enantiomor-

phous class 4, does not show optical activity (cf. p. 154).

Point group 4.

Since there is only the possibility 4 for the vertical axes, there are

only two space groups, P4 and 74, isomorphous with this point group.

Point group Ajm.

With the introduction of horizontal planes of symmetry, vertical axes

with a definite sense of screw (4^ or 43) would be converted by reflec-

tion to their enantiomorphs (43 or 4i respectively). Hence in all space

groups isomorphous with the point group 4/w, either the vertical tetrad

axes will be axes 4 or A^ (without sense of screw), or axes 4i and 43 will

occur in parallel sets. If the horizontal planes are m planes, only axes

4 and A^ are possible, giving the groups PAjm and PA^jm based on a

P lattice. The same is true if the planes are n planes, for the translation

by an n plane brings one vertical axis into coincidence with another of

the same kind (see the arrangement of axes in Fig. 469), so that there

arise two further groups PAjn and PAiln. In the group lAjm both m
planes and n planes occur interleaved.

A final possibility may best be envisaged by remembering that the

/ cell may be described as an all-face-centred F cell by an alternative

choice of x and y axial directions at 45° to the original. In the two
sets of tetragonal space groups described above, this alternative choice

merely gives rise to synonymous symbols

—

FA for 74, 7^4 for 74, and so

on. Planes of symmetry parallel to the centred 001 face of such a cell.
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however, may be d planes (p. 245), and so there arises a new arrange-

ment FAild (conventionally described as /4i/a to correspond to the

original setting), in which axes 4i and 43 occur in parallel sets. There

are six space groups in all isomorphous with the point group 4//n.

p
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The above table gives the customary symbols for these space groups.

Each group is sufficiently defined by the letters indicating the nature of

the two kinds of planes of symmetry. If, however, we develop a

pattern based, for example, on a tetragonal P lattice and the planes cm

we find that the only kind of tetrad axes which arise are axes A^ ; on the

' rule of priority ' adopted in other point groups the symbol should

read PA^cm. The symbols in the following table show the highest

kind of tetrad axes present in each group.

Axes 4
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and hence diagonally in the alternative C cell. We might describe such

space groups in terms of the C cell, but it is simpler to retain the

primitive cell and to indicate the new setting, with the x and y crystal-

lographic axes normal to the planes of symmetry, by writing the

symbol Ami instead of Aim. Planes in the space groups in this attitude

may be m, b, c or n planes; rotation diad axes in the diagonal

position, parallel to the [100] and [010] directions of a C cell, will be

accompanied by sets of parallel 2^ axes so that only rotation diad axes

2 will figure in the symbols. We thus derive four further new space

groups based on a primitive cell (see the table below).

In space groups based on an / cell planes set in the attitude 4lm
are parallel to the {100} faces of an F cell, and so may be m planes

(accompanied by c planes) or d planes. In the setting 4ml they may be

m planes (paralleled by n planes) or c planes (paralleled by b planes).

Only axes 2 will appear in the symbols. We thus have derived twelve

distinct space groups isomorphous with this point group.

p
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axes will consist of sets of rotation diad axes parallel to sets of screw

diad axes in both [100] and [110] directions, so that only two further

space groups arise.

p
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Axes 4
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Fig. 473. Clinographic view of the unit cells shown in Fig. 472

Fig 474 Basal projection showing the relationship of the hexagonal C cell to an

orthogonal unit cell.

Fig. 475. Clinographic view of the unit cells shown in Fig. 474.



SPACE GROUPS 261

to use the hexagonal unit which we have already figured (p. 226). This

unit is a right prism based on a rhombus with edges parallel to

the X and y crystallographic directions. It is itself primitive, but if

orthogonal axes were chosen (Fig. 474) the corresponding unit cell

would be C face-centred and so it has been given the symbol C The

relationship of the C cell to an orthogonal cell is shown in cUnographic

view in Fig. 475.

Point group 3.

In space groups based on th& C space lattice the triad axes may be

all rotation triad axes 3, screw axes 3i or screw axes 30. The R lattice,

however, itself involves translations of | and f parallel to the vertical

Fig. 476. A portion of a pattern based on the space group R3.

axis, SO that the space group R3 has sets of 3i axes and 32 axes parallel

to the rotation triad axes (Fig. 476). There are thus four distinct space

groups isomorphous with this point group.

c
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Point group 3.

The only possibilities here are C3 and i?5. Both space groups, of

course, include centres of symmetry; in C3 only rotation triad axes

are present (3 being equivalent to a rotation triad axis together with a

centre, p. 104), whilst in R3 there are all three kinds of axes 3, 3^

and 32-

Point group 3m.

In morphological descriptions of crystals belonging to class 3m we
have been accustomed so to set the crystal that the x and y directions

are normal to planes of symmetry (Fig. 477).

In the isomorphous space groups the vertical

symmetry planes may be m planes or c

planes, giving space groups C3m and C3c

based on the C lattice; remembering the

translations involved in an orthogonal C
cell, we shall realise that there are sets of

glide planes parallel to the m planes of the

group C3m, with a horizontal glide com-

ponent, and sets of n planes parallel to the

c glide planes of the group C3c. Instead of

setting the symmetry planes in the space group normal to the x and y

axes of the hexagonal C cell, however, we may build up further groups

by introducing planes parallel to the vertical faces of the cell. These

directions are normal to the edges of a possible triply primitive unit cell

Fio. 478. Basal projection showing the relationship of the triply primitive H
cell to the hexagonal C cell.
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Fig. 479. A clinographic view of the H cell.

(Figs. 478, 479), to which the symbol H has been given, and we might

denote the corresponding space groups Him amd //3c. More simply,

we can adopt a device (similar to the one

which we used in the point group 42m) to

indicate the choice of x and y axes in the

planes of symmetry instead of normal to

these planes, and write 31m (Fig. 480)

instead of 3m (1), the figure 1 referring to

identity axes in the corresponding direc-

tions; the symbol H is then unnecessary.

The two new space groups which we have

derived are then written C31m and C31c.

Fig. 48 1 shows in plan a part of the space group C3m with the base of

the C cell outUned, whilst Fig. 482 shows the relationship of the

Fig. 481. a portion of the space group dm. The base of the C cell is outlined
by double lines.
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Fig. 482. A portion of the space group C31w. The base of the Ccell is outlined
by double lines, whilst broken double lines show the direction of the x and y axes
of the H cell.

symmetry planes to the C cell and to the axes of the H cell (dashed hnes)

in the group C31m.

Two further groups arise, based on the R lattice, for which we may
write the symbols R3m and R3c. A hexagonal cell is sometimes used in

o 0,1

©2/3

Fig. 483. Basal projection of part of a rhombohedral space lattice showing the
R cell, hexagonal cell and (broken lines) the sextuply primitive orthogonal cell.
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1 1 and I i i being equivalent todescribing these groups, the points 333
the point 0, so that the cell is triply primitive (Figs. 483, 484). Fig.

Fig. 484. Clinographic views of the R cell and hexagonal cell of Fig. 483.

483 shows also in dashed outUne the base of the smallest orthogonal

cell, a sextuply primitive one, which could be used in place of the R
cell. Of these we shall only need at present to use the R cell, together

with the C cell described above.

We may now tabulate the six space groups isomorphous with the

point group 3m.

c
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As with space groups isomorphous with the point group 3m, we may
construct further groups by placing the planes of symmetry parallel to

the faces of the C cell instead of normal to them. To indicate this

change of orientation of the point group in relation to the x and y

Fig. 486.

axes (Fig. 486), we must write the symbol 31m instead of 3m{l).

(Notice particularly that the symbol is not written 32m; a figure 2

in the second place in the symbol would denote the presence of diad

axes in the secondary positions (parallel to the x and y directions), as

it does in 42m. In the new orientation here in question the x and ;;

directions are identity axes, and we must symboUse this by the figure 1,

as in 31w). Two further space groups C31w and C31c arise, and

finally on the R lattice we may build two more, R3m and R3c.

c
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groups the rotation diad axes alternate with screw diad axes, but there

are, of course, no centres of symmetry. Space groups such as Ch^L and

C322 constitute enantiomorphous pairs.

c
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Point group 6/m.

Two space groups arise, C6/w and C6Jm. In both there are rotation

triad axes 3, either rotation diad axes 2 or screw diad axes 2^ parallel

to the vertical hexad axes, and centres of symmetry along the axes of

even degree.

Point group 6mm.

Each of the two sets of vertical planes may be reflection planes m or

glide planes c, giving four space groups C6mm, C6mc, C6cm and C6cc.

GHde planes with a horizontal glide component will alternate with m
planes in either position, whilst c planes will be interleaved by n planes.

Since in two of these groups the only hexad axes present are axes 63 it

would be preferable to use the symbols C63WC and C^^cm respectively

for these groups.

Point group 6m2.

Setting the planes of symmetry in this point group in the conven-

tional attitude normal to the x and y crystallographic axes (Fig. 489),

the diad axes are in the tertiary positions( normal to the crystallographic

axes), and not in the secondary positions as they were in the group 3m.

This fact is indicated by the figure 2 appearing in the third place in the

symbol; on the C space lattice we build up the space groups C6m2

and C6c2. If the planes of symmetry are set parallel to the vertical

faces of the C cell, the diad axes coincide with the x, y directions (Fig.

490) ; they occupy the secondary positions, and we write the symbol

62w. The further space groups resulting are C62m and C62c. As
before, glide planes with a horizontal glide component alternate with

m planes, and n planes ahernate with c gUde planes ; there are sets of

both rotation diad and screw diad axes in all four groups, and reflection

planes normal to the inversion hexad axes.
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Point group 62.

Six possibilities clearly arise here, denoted C62, C6i2, C622, C632,

C642 and C652. There are sets of screw diad axes parallel to the rota-

tion diads in all these groups. C6i2 and C652 are enantiomorphous

pairs, as also are C622 and C642.

Point group 6Jmmm.
Only reflection planes m arise as possibilities normal to the hexad

axis, and we can derive the four new space groups from those groups

isomorphous with the point group 6mm by the addition of such planes.

They are the groups C6jmmm, CGjmmc, €6/mem and CSjmcc (the second

and third preferably symbolised C6^lmmc and CSJmcm respectively).

CUBIC SPACE GROUPS
Study of the cubic space groups in detail involves rather special

difiiculties, since the obhquity of axes and planes of symmetry to the

crystallographic axial planes makes their portrayal on paper decidedly

awkward. We shall not attempt a rigid discussion here, but rather

content ourselves with a brief outline of the number of different space

groups which arise.

Point group 23.

The space groups isomorphous with this point group show a close

analogy with those isomorphous with the group 222 (p. 249), the

orthorhombic cell being specialised so that all three axial directions

are equivalent. We may have a group P23, with rotation diad axes

only, and a group ^2^3 with screw diad axes only. No arrangements

with cubic symmetry are possible based on a C face-centred unit. The

groups 723 and i^23 include sets of screw diad axes parallel to the

rotation diad axes. One further group arises, however, by speciaUsa-

tion of the orthorhombic group /2i2i2i. Like this orthorhombic

group it contains sets of non-intersecting screw diad axes parallel to

sets of non-intersecting rotation diad axes, and we must again forego

our ' rule of priority ', and denote the group by the symbol /2i3 in

spite of the presence in it of rotation diad axes. There are thus j&ve

space groups isomorphous with this point group.

p
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Point group m3.

In groups based on the cubic P lattice, the planes of symmetry may
be m planes, gUde planes with an axial ghde component, or n ghde

planes. The groups Pm3, Pa3 and Pn3 are speciaUsations of the ortho-

rhombic groups Pmmm, Pbca and Pnnn (p. 250). By speciahsing the

orthorhombic groups Immm and Ibca we derive the cubic groups Im3

and Ia3, and from Fmmm and Fddd there arise groups Fm3 and Fd3.

It should be unnecessary to particularise the further sets of planes of

symmetry which arise in the groups based on / and F cells, or the diad

axes and centres of symmetry present in all the groups.

p
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all of them there are sets of rotation diad axes alternating with screw

diad axes in the [110] directions.

p
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The Distribution of the 230 Space Groups between the

32 Classes

Triclinic System



CHAPTER XII

CRYSTAL HABIT

THE RELATIONSHIP OF CRYSTAL HABIT TO THE
STRUCTURAL PATTERN

With the publication of the work of Schoenflies, Federov and

Barlow the geometrical theory of crystal structure was sub-

stantially complete at the end of the last century. This work, however,

afforded no indication whether stable crystals could in fact be built up

on all these patterns, nor was it possible to determine the actual space

group appropriate to a given crystalline substance. Attempts were

made, it is true, to deduce the probable space groups in certain cases

;

quartz, crystalHsing in enantiomorphous modifications in class 32 and

displaying optical activity was naturally assigned to the groups C3i2

and C322 or to the groups C3il2 and Cl>2\2, and Sohncke argued in

favour of the former alternative; calcite was referred to the space

group R2>c. An unambiguous determination of the space group on

which the structural pattern of a given crystal is based first became

possible with the development of crystal structure analysis by means of

X-rays which followed rapidly upon Laue's discovery (p. 155). Logi-

cally we should next proceed to a discussion of these methods, but the

field is too vast for inclusion within the scope of this introduction, and

we offer in this concluding chapter some observations on the relation-

ships between the structural pattern and the external morphology of a

crystal. Though a fuller understanding of these relationships has been

achieved only in the last few years, on the basis of the results of in-

vestigations using X-rays, it will appear that it is in fact often possible

to reach an unambiguous determination of the space group from a

study of crystal habit alone.

Throughout our earher discussions we have made frequent use of

the concept that the planes which are most likely to appear as external

faces are those most densely occupied by significant points of the unit

of pattern. Fig. 491 shows in plan normal to [001] the traces of three

sets of planes— 100, 110, 210—from the [001] zone of a primitive

orthorhombic arrangement. Of these three sets the 100 planes are

most densely beset with significant points, followed in order by the 110

and the 210 planes. The more densely occupied the planes are, the

P.O. s
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more widely they are spaced—the interplanar spacing d of a. given type

of plane is directly proportional to the reticular density or inversely

y

Fig. 491. Lattice planes in an orthorhombic P space lattice.

proportional to the reticular area S (the area of the smallest mesh in

the net of points in the plane).

Fig. 492 illustrates similarly the corresponding sets of planes in a

C-face-centred net, and it is clear that with the introduction of a doubly
primitive unit of pattern some conditions have changed. The actual

reticular area of the 100 planes is the same as that of the corresponding

Fig. 492. Lattice planes in an orthorhombic C space lattice

planes in Fig. 491, but the interplanar spacing is halved; the 110

planes, with the same spacing as in Fig. 491, are twice as densely

occupied; the 210 planes, like the 100 planes, show the same reticular
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area, with a spacing which is halved, when compared with the corre-

sponding planes in the primitive pattern. Thus we might expect from

Fig. 492 that the order of decreasing relative morphological importance

of the three forms would be {110}, {100}, {210}, in contrast with the

order {100}, {110}, {210} derived from Fig. 491. Consideration of

further sets of planes would show that in a pattern based on a C-face-

centred lattice the interplanar spacing is halved (and hence the reticular

area S is doubled) for all sets of planes hklfor which h+k is not even.

With the all-face-centred unit of an F lattice the halving occurs for all

planes in which any of the sums h+k, k + l, l + h is not even—only

planes with indices composed of three odd figures are unchanged in

spacing in comparison with a pattern based on a P lattice. In a body-

centred arrangement, only planes for which h+k + l is even are un-

changed in spacing.

If we restrict attention for the moment to the cubic system, the

calculation of the relative spacings of different sets of planes is simple.

If flo is the side of the unit cube of the pattern, the spacing of a set of

planes h k I in a. primitive pattern is given by

dkki =
Jh^ + k^ + l^'

and hence in terms of S, the reticular area, Shkioch^ + k^ + P. Calcu-

lating thus for a few simple planes

:

hkl
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Rewriting the forms in the order of importance indicated by increas-

ing reticular area, we obtain the Ust

111, 100, 110, 311, 331, 210, 211, 511, 531, 221 ...
,

suggesting that cubic crystals based on an F lattice may be expected to

show the octahedron predominating over the cube {octahedral mode,

contrasting with the hexahedral mode of those based on a primitive

arrangement).

For a body-centred / lattice we must double any index for which

the sum of the figures is not even.

hkl
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As an example from the orthorhombic system we may choose ortho-

rhombic sulphur. Simple crystals (Fig. 123, p. 71) show the bipyramid

Fig. 493.

{111} predominant, with {113}, {001} and {Oil}, suggesting the ortho-

rhombic ' octahedral ' mode and an F lattice. This suggestion is con-

firmed by the kind of index characteristic of the forms developing on
more complex crystals. In Fig. 124, the additional forms present are

the pinacoids {100}, {010}; the prism {110}; domes {101}, {103},

{031} and {013}; bipyramids {112}, {113}, {114}, {115}, {117}, {221},

{331}, {311}, {313}, {315}, {131}, {133}, {135}. The striking feature in this

list is the predominance of planes with odd indices, precisely what we
should expect if the crystal is built on an F lattice. Calculation of the

values of S^, doubUng mixed indices in view of the lattice type, gives

the following relative values

:

hkl 002
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the unit of pattern may also play a significant part in relation to the

dominant habit. In a crystal with very unequal unit cell dimensions

some planes of relatively high indices may have a smaller reticular area

than others with simpler indices, and so we may expect the former

rather complex forms to develop fairly frequently on specimens of such

a substance.

Considerations of this kind were known to early crystallographers.

They were discussed by Frankenheim and elaborated by Bravais

(though not quite in the form in which we have developed them here).

The statement that the forms which tend to occur most frequently on

crystals are those with faces parallel to planes of smallest reticular

area has consequently been termed the Law ofBravais. It may be noted

that the Law of Rational Indices, as we developed it from considera-

tion of Haiiy's decrements, is implicit in this further law. Bravais

himself, and Mallard following him, developed the principle on a

theoretical basis, and at first it received little attention outside France.

The ultimate recognition of its importance was largely due to the work

of another French crystallographer, G. Friedel,* who by publishing

many convincing examples of its application (including the discussion

of the forms of orthorhombic sulphur which we have used above)

estabhshed it firmly as a fundamental law of observation. We may
conclude that there is convincing evidence of a relationship between

the kind of structural pattern on which the crystal is based and the

morphological importance of various forms.

The picture presented thus, in terms of the Bravais lattice only, is

incomplete, however. In the example of sulphur, though the corre-

spondence in general is excellent, there are certain anomaUes. {001}

at the head of the list suggests a predominance of the basal pinacoid,

and hence probably a tabular habit, and the other pinacoids are of

* Georges Friedel was born at Mulhouse, Alsace, in 1865. The son of another
mineralogist, C. Friedel, he inherited his father's interests, although his earlier life

was spent in the Corps des Mines. In 1919 he became Professor of Mineralogy and
Crystallography in the University of Strasbourg. His original work covered many
fields in crystallography, mineralogy and geology, and he published text-books of
mineralogy and of crystallography. He died at Strasbourg in 1933. The spirit of
much of his work may be illustrated by some excellent advice offered in the preface

to his Lemons de Cristallographie (1926): ' Trop souvent on enseigne aux jeunes

gens . . . que lorsqu'ils veulent entreprendre une recherche, leur premier et d'abord
unique soin doit etre d'en reunir et d'en compulser la " Literatur ". Ce n'est que
lorsqu'ils se seront farci la tete de tout ce qui a ete ecrit sur le sujet, et par conse-

quent de dix erreurs pour une verite . . . et auront ainsi perdu toute fraicheur d'im-

pression, qu'ils seront admis k regarder les faits par eux-memes. . . . Celle que nous
preconisons est autre. La lecture, cela va de soi, y tient sa place, mais au second
rang. L'essentiel, avant de lire, est de se mettre en face des faits, d'observer,

experimenter et reflechir sans subir a priori I'influence de ce qu'ont pu dire X ou F.'
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minor morphological importance compared with their positions

third and sixth in the Hst. The eighth form in order of increasing

reticular areas, {012}, and the eleventh, {102}, are essentially unknown
on sulphur crystals. The correspondence, in fact, is really far from

perfect.

If we return for a moment to the simpler case of the cubic system

we are faced again by the incompleteness of the explanation so far

offered. We have recognised hexahedral, octahedral and dodeca-

hedral modes, but how are we to account for a habit such as that

typical of the garnets, in which the icositetrahedron {211} is often

developed alone, or with {110} subordinate? Even in the list for an

/ lattice the form {211} is preceded by {1 10} and {100}. In the develop-

ment of the space groups we recognised that a rotation axis in the

external symmetry may be paralleled by screw axes in some of the

isomorphous space groups; if the spacing of a given set of planes

normal to a rotation diad axis 2 be d, the effect of the presence of screw

diad axes 2i is to reduce the spacing to djl (Fig. 494). Thus the

-e-

-^

-^

-e-
I
2
_±

-e- ^-

^^ ^

-^

-^

(a) (b)

Fig. 494. The effect of an axis 2i on the spacing of planes normal to it; the

arrangement of planes inchned to the axis is the same in both (a) and (6).

reticular area, inversely proportional to the spacing, is in effect doubled,

and the corresponding form will recede in morphological importance

to a place in the list appropriate to the doubled S value. Notice, how-

ever, that this effect appUes only to planes normal to the axis, for in

directions inclined to the axis there do not arise new equidistant struc-
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turally equivalent planes (Fig. 494) as a consequence of the screw

character of the axis. Whilst in considering the effect of a particular

lattice type we must work with general indices hkl (including also, of

course, special planes such as /i A: and h 0), the presence of a screw

axis affects only planes normal to the axis.

A screw triad axis 3 1 or 3 2 will reduce the spacing of planes normal to

it by a factor 1/3 (Fig. 495), so that the effective reticular area will be

multipHed by 3 in comparison with a structure based on a space group

containing only rotation triad axes. The Bravais principle applied to

the study of quartz places the basal pinacoid {0001} first in order of

expected morphological importance, but the expectation that screw

triad axes are present in the appropriate space group justifies calcula-

o

o Of

io -A

o Oo,i

Fig. 495. The reduction of spacing effected by a screw triad axis.

tion with {0003}, and the base recedes to a position in accordance with

its rarity as a growth form on quartz crystals. We may summarise

the effects of all the types of screw axes which we have encountered

:

Axes 2 1 or 42 or 63 multiply the S values of planes normal to them by 2.

3i or 32

4i or 43

61 or 65

62 or 64

3.

4.

6.

3.
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In the cubic system, for example, the order of morphological import-

ance for structures based on the space group P23 or P43 will be the

one which we calculated from consideration of the Bravais lattice alone

(p. 275):

100, 110, 111, 210, 211 ... .

In the groups Pl^Z and ^423, however, we must calculate with the

index 200, and the cube recedes in importance to third place

:

110, 111, 100, 210, 211 ...,

whilst in the groups P4i3 and P433 the value S\oo = 16, and the cube

has fallen still further to the tenth position

:

110, 111, 210, 211, 321 ... .

Extending this argument we may examine next the effect which the

presence of gUde planes in a space group may bring about in the cal-

culation of the appropriate reticular areas. Fig. 496 shows in plan a

(a) (h)

Fig. 496. In (a) the horizontal planes of symmetry are m planes, and the reflec-

tions of the open rings are vertically above and below them. In {b) the black
circles arise from the open rings by reflection in a gUde planes.

portion of an orthorhombic P pattern with reflection planes parallel

to 001 and the corresponding arrangement if the 001 planes in the

space group are a ghde planes. The new points, shown black, intro-

duced by the glide planes result in the spacing of certain planes in the

zone [001] being halved. Of those drawn in the figure, 100 and 110

planes are ' halved ', but the spacing of 210 planes, in which h is even,

is the same in both diagrams. In calculating S values for the second

arrangement we should use the doubled indices 200 and 220 ; or, in

general, double any index hkO'va. which h is odd. As with screw axes,

this effect of ghde planes is speciaUsed, applying only to the zone of

planes normal to the ghde plane (compare the full and broken planes

in Fig. 497), and certain planes are thus decreased in morphological

significance. Diagonal glide planes n parallel to 001 are accounted for
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by calculating with indices h kO modified, if necessary, so that h+k is

even (Fig. 498), whilst if d planes are present the indices h kO used in

calculating must all be of the type with h+k a multiple of 4.

Planes of this last type are present in the accepted structural arrange-

ment of orthorhombic sulphur, for which the space group is Fddd, and
their presence will modify the order of expected morphological import-

ance deduced from consideration of the lattice type alone. Instead of

002, 020, 200 we must calculate with 004, 040 and 400, since these

^e^

^e-

-^^

1
-^-

-e^

Fig. 497. The full lines represent in
cross section any family of lattice planes
normal to the glide plane (not merely
a set of planes normal to the paper).
The spacing of all such planes is halved
by the action of the glide plane.

Fig. 498. The black circles arise from
the open rings by reflection in horizon-
tal n planes.

pinacoids are normal to d planes. The form {001} becomes second in

importance to the prominent bipyramid {111}, and the morphologically

unimportant pinacoids {010} and {100} recede down the Ust. Similaily,

012 must be calculated as 048 and 102 as 408, with the result that these

forms also recede to positions of little morphological significance ; the

first form unobserved on sulphur has dropped from the 8th to the 20th

place in the list.

hkl
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Anhydrous sodium sulphate, Na2S04, referred to the same

space group, shows interesting analogies with orthorhombic sulphur

in its morphological development, although the different values

of the axial parameters, of course, introduce some variations in

detail.

This important generalisation of the Bravais principle by considera-

tion of the space group rather than the lattice type only was first ad-

vanced as recently as 1937 by two crystallographers working at the

Johns Hopkins University, Bahimore—J. D. H. Donnay and D. Harker.

Whatever the possibility of establishing a theoretical justification, we

must extend to the wider Donnay-Harker Principle the same recog-

nition as a law of observation which was formerly given to the

narrower Bravais Principle. The latter, of course, is included in the

former, since the deductions from the two are identical for crystals

based on those space groups containing neither screw axes nor glide

planes.

We proceed next to a more detailed examination of some of the

implications of this principle, once more turning first to the cubic

system with its greater regularity. The Bravais Principle enabled us

to establish three different series for decreasing morphological signifi-

cance of various forms corresponding to the hexahedral, octahedral

and dodecahedral modes. Such a series is termed by Donnay and

Harker a morphological aspect, and we have already examined the

effect of the presence of screw axes in modifying the morphological

aspect appropriate to cubic crystals based on a primitive lattice.

Similarly, the presence of n glide planes parallel to the cube faces (as

in Pn2> and Pn2>m) will decrease the importance of {h k 0} forms unless

h+k is even. Glide planes n in the dodecahedral directions (P43«,

Pm2>n, Pn3n) will affect {h h I] forms unless / is even. In structures

based on an F lattice or an / lattice, d planes may be present and will

reduce still further the importance of certain [h k 0} forms (in Fd2>,

Fd3m and Fd3c) or of certain {h h /} forms (in IA3d and Ia3d). In

this way the three morphological aspects appropriate to the cubic

system on the principle enunciated by Bravais give place to seven-

teen different aspects under the generaUsed principle. We shall not

attempt to derive them all here ; the table below (which the student

can check on his own account) Usts the first five forms in order of

decreasing importance for each aspect. (Where the first five forms

are identical, differences would appear amongst the less important

forms.)
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lowest index is most important
; {311} may exceed {21 1} in importance

(gold, magnetite (Fig. 92)); {331} may be morphologically of greater

importance than its simpler relative {221}, as in the spinels and micro-

lite. Certain aspects are characteristic of one space group only—con-

sideration of the common habits of garnets places them unequivocally

in the group laM—but others apply to two or more space groups

isomorphous with different point groups, and distinction between the

latter must be effected by some of the means which we have discussed

above (p. 151).

An interesting point arises in the space group Pa?>, to which pyrite

can be uniquely assigned on account of its clear didodecahedral

morphology (class w3) and the observed order of importance {100},

{111}, {210}, .... The pentagonal dodecahedron {210} appears third

on the hst, in agreement with the frequent development of such a form.

The a ghde planes, however, demand calculation of all hkQ planes

with h even, so that while {210} appears thus high in the list the reticular

area of the planes of its complementary form {120} must be calculated

from the index 240, and this form is relegated to the fourteenth place.

Only if both h and k are odd will complementary pentagonal dodeca-

hedra {h k 0} and {k h 0} rank equal in importance ; X-ray evidence

shows clearly that {210} is vastly more important than {120} as a growth

form, and Donnay and Harker have shown that so far as data are

available there is remarkable agreement between theoretical prediction

and the facts of observation concerning the development of penta-

gonal dodecahedra with higher indices.

Similar considerations arise when the generaUsed principle is apphed

in other crystal systems, and these authors have tabulated 97 different

morphological aspects covering the 230 space groups. This expansion

of the fourteen aspects arising from the Bravais Law proceeds from

similar considerations to those which we have employed in our discus-

sion of the cubic system
;

pinacoids or prisms normal to screw axes

are decreased correspondingly in expected morphological importance,

whilst certain forms in every zone normal to glide planes likewise

acquire effectively larger reticular areas. We may illustrate the ex-

pected resultant effect on crystal morphology by some simple calcula-

tions for a holosymmetric orthorhombic crystal based on a primitive

lattice. Suppose that a: Z?: c=0-9: 1 : 0-8. If the symmetry planes

parallel to 100 are reflection planes m, the order of increasing reticular

area in the zone [100] is

010, 001, Oil, 021, 012. 031, 013, 032, 041, 023 ... .
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If there are b glide planes parallel to 100, however, we must calculate

only with indices Ok I m which k is even, and the appropriate order

becomes

001, 010, 021, Oil, 041, 023, 012, 043, 061, 031, ...
,

in which the specially noticeable feature is the predominance of the

dome {021} over the simpler form {01 1}. The presence of c glide planes

parallel to 100 gives the order

010, 001, 012, Oil, 032, 021, 014, 052, 034, 031, ...
,

in which the predominant dome is now {012}. n glide planes would

give the order

Oil, 010, 001, 031, 013, 021, 051, 012, 053, 015, ... .

We may next calculate the order of increasing reticular area for

hkO planes, on the assumption that the planes of symmetry parallel

to 001 are reflection planes m, and compare the relative importance of

dome and prism forms. For any group Pm*m we have

:

Prisms 110 120 210 130 310,230 320....

Domes Oil 021 012 031 013

whilst any group Pb*ni gives

Prisms 110, 120 210 130, 310, 230, 320, 140

Domes 021 Oil 041....

This clearly implies a predominance of prisms over domes in the

second case, so far as the morphological effect of these two kinds of

plane of symmetry is concerned. We are reminded of the prominent

development of domes {0 k /} in the carbonates of the aragonite group,

for example (permutation Pmcn of the space group Prima in the usual

crystallographic setting) compared with the prismatic habit of such a

substance as topaz (permutation Pbnm).

The predominance of particular forms is sometimes so closely related

in this way to the characteristic elements of the underlying space group

that it is possible to read the space group from an examination of

a Ust of forms in order of relative importance, but we must first pay

attention to a further important point. When choosing a parametral

plane to establish the axial parameters for a given description of a

crystal, we have been at some pains to point out that there is no one

particular plane which must be selected ;
' any plane, parallel to a

crystal face, which is not parallel to any of the crystallographic axes

'

(p. 40) will serve, though we have often found that one choice may
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lead to a simpler set of indices than does an alternative choice. When
consideration is given to the details of symmetry of the structural

pattern, however, it is essential that the plane indexed 111 should in

fact cut the crystallographic axes in the ratios of the lengths of the sides

of the actual unit of pattern—the structure defines a set of 1 1 1 planes

uniquely. The corresponding form can usually be selected unambigu-

ously, for it will tend to be one of high morphological importance lying

at the intersection of prominent zones. Thus for topaz Dana gives the

axial ratios a : b : c =0-528 : 1 : 0-477, but on this description [iTO],

[102] and [012] are prominent zones, with {201}, {021}, {041}, {221},

{111} and {223} as forms of considerable morphological significance.

If we double the vertical axis, by selecting Dana's plane 221 as the

parametral plane, we simplify this Ust of forms to read {101}, {Oil},

{021}, {111}, {112} and {113} (Fig. 499), and we can confidently expect

Fig. 499. A gnomonogram of topaz. The plane indexed 111 is Dana's 221.
The sizes of the circles are proportional to the observed morphological impor-
tance of the corresponding forms.

on the arguments we are developing that the edges of the true unit of

pattern will be in the ratios Oq : b^ : Cq =0-528 : 1 : 0-954. Again, in

brookite, a study of the relative frequency of forms in terms of the

mineralogists' axial ratios a : b : c =0-842 : 1 : 0-944 gave the order

100, 110, 122, 001, 104, 021, 102, 112, 010, 210, 043, HI, 121 ...
,

and a glance at a projection shows that the plane here indexed 122 is

the probable structural 111 plane (Fig. 500). In terms of this para-

metral plane, the axial ratios become a : b : c = 1-684 : 1 : 0-944, and
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APPENDIX

NOTE ON SCHOENFLIES' NOTATION FOR POINT GROUPS
AND SPACE GROUPS

Though the student is advised always to work in the elegant Hermann-

Mauguin notation, which we have used, it will be necessary in more

advanced work to consult older descriptions in which the notation

devised by Schoenflies is employed. We therefore append a summary

account of this notation.

Schoenflies described crystal symmetry in terms of a centre, reflection

planes, rotation axes and rotary-reflection axes (' alternating ' axes,

p. 104). A single rotation axis of degree n is denoted by the symbol C
(from Cyclic) and appropriate numerical suffix—C„. Thus the symbols

Ci, C2, C3, C4 and Cg are equivalent to our symbols 1, 2, 3 4 and 6

respectively. The addition of a plane of symmetry normal to the axis

(a horizontal plane) is symboUsed C„''. (In earher work the plane of

symmetry in classes m and 2/w was conventionally set horizontal.)

Hence

Ci^ is the equivalent of m.

C^ „ „ „ 21m.

C^^ „ „ „ 3/w (and hence of 5).

Ci^ „ „ „ 4//W.

C^^ „ „ „ 61m.

To denote the presence of a plane of symmetry through the axis (a

vertical plane) Schoenflies wrote C„^.

Ci*' is the equivalent of Ci'', and is not used.

Ca" „ „ „ mm.
C " 3/M
^—Z " >' " Jill.

Q" „ „ „ 4mm.
Cg^ „ „ „ 6mm.

An axis of rotary-reflection of degree n is written S^ (from Sphen-

oidisch).

Si is the equivalent of Cj^, and is not used.

<r T•' ^ *}. «« ** 1% ^

.

^Z »' " 5» *-'3 >

'-'4 »» '» »> •

'-'6 >> »» »» -'•

P.C. T

and is not used.
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A rotation axis of degree n with n diad axes normal to it is written

Dn (from Diedergruppe).

Di is the equivalent of Cg, and is not used.

-t^2 " " " ^^^'

-t^3 J> 55 )) -'^'

D, „ „ „ 42.

2>6 »' " " 62.

Adding to the groups Z)„ a horizontal plane we derive further

groups D^".

Dg'' is the equivalent of mmm.

A" »' " » lm{ = Zlmm).

Di" „ „ „ Ajmmm.

A" „ „ „ eimmm.

The addition of a vertical plane to groups D„ instead of a horizontal

plane would produce the same results if the vertical plane passes through

one of the horizontal diad axes. To groups Dg and D^, however, we

may add a diagonal vertical plane.

Z>2'* is the equivalent of 42/w.

X/3 ,, ,, ,, jfn.

In the cubic system, the symbol T is used in tetrahedral symmetry

groups (four triad axes with three diad axes) and the symbol O in

octahedral groups (four triad axes and three tetrad axes).

T is the equivalent of 23.

Th „ „ „ /w3.

Ta „ „ „ 43m.

O „ „ „ 43.

O^ „ „ „ m3m.

We have thus established the Schoenflies symbols for the 32 point

groups, but for a few of these alternatives have been used. A centre

of symmetry is denoted by the letter /. For even values of n, C„* is,

of course, equivalent to C„^ and the symbols are unnecessary ; for odd

values

:

Cj denotes a centre alone ( = T), and is a synonym for 5*2.

C3' is equivalent to 3, and is a synonym for S^.

A single plane is sometimes denoted by the letter s (from Spiegelung,

reflection).

Cs is a synonym for C^'', and is perhaps to be preferred since crystal-

lographers now conventionally set the plane vertical and not horizontal.
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The equal significance of the three diad axes in groups 222 and mmm is

sometimes expressed by a special symbol V (from Vierergnippe, leading

some English authors to use the expression Quadratic group and the

symbol Q).
F is a synonym for D^,.

V n ^
' h »9 »» " -^2 •

The use of V^ as an alternative to D^*^ seems less desirable, since the

vertical axis in this group is an inversion tetrad axis and not merely a

diad.

Triclinic
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a glide plane, 240
Abbe Haiiy, 34
Acicular habit, 1

1

Aggregation of crystals, 158
Alabandite, 150
Albite, 109
Alkaloids, 116
Altaite, 150
Alternating axis, 104, 289
Aluminium metaphosphate, 148
Alums, 146, 158
Ammonium dihydrogen phosphate, 131— uranyl acetate, 133
Amphibole, 113

Analcime, 284
Anatase, 134
Angle between two face-normals, 202
Angle-point, 218, 220
Anglesite, 117
Anharmonic ratio, 207
Anorthic system, 7
Anthracene, 1 1

3

Apatite, 136
Aragonite, 286— structure, 252
Asparagine, 116
Aspect, morphological, 283
Atropine, 116
Austinite, 116
Axes, crystallographic, 40— of rotary inversion, 103
Axial angle p, 72, 75

in trigonal system, 89, 195— cross, 44, 46, 196
modification, 196— ratios, 42
calculation, 185

examples, 190
Axinite, 109, 155
Axis, alternating, 104, 289— crystallographic, 40— inversion, 103— screw, 228—-.symmetry, 4

degree, 4— twin, 163— uniterminal, 61

p angle in monocUnic system, 73, 75
Barium aluminate, 140— antimonyl tartrate, 125, 126— formate, 116— molybdate, 128— nitrate, 144, 146— sulphate, 39, 95, 117
— tungstate, 128

Barlow, W., 234, 235, 273
Barytes, 39,95, 117
Basal pinacoid, 64
Basic mercurous nitrate, 194
Benitoite, 138, 139
Bertrandite, 113

Beryl, 84, 141

Biaxial crystals, 153
Bipyramid, 64— dihexagonal, 83, 140— ditetragonal, 66, 133— ditrigonal, 138— hexagonal, 83, 136— orthorhombic, 70, 117
— tetragonal, 65, 128— trigonal, 123, 135

Bismuth nitrate, 109
— thiocyanate, 1 1

3

twinning, 175
Bisphenoid, 115, 130
Bixbyite, 147, 284
Body-centred space lattice, 222
Borax, 72, 113— drawing, 219
Boron arsenate, 127
— phosphate, 127
Brachy-axis, 71— domes, 71— pinacoid, 71

Bravais, A., 80, 225, 227, 233.

278
— lattices, 227
— Law of, 278
Brazil twin, 178
Bromellite, 138
Brooke, H. J., 21, 44
Brookite, 117, 288
Brucite, 123
Butterfly twin, 179

c glide planes, 239
C space lattice, 223
Cadmium chloride, 123

Caesium perchloride, 71

Cahnite, 127
Calcite, 84, 88, 122, 273
— axial angle, 195— twinning, 178, 179
Calcium dithionate, 124
— molybdate, 128— nitrate, 146— thiosulphate, 107, 108
— tungstate, 128
Calomel, 62, 68, 134
— twinning, 173

Carangeot goniometer, 1

3
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Carlsbad twin, 176
Cassiterite, 134— twinning, 173

Celestine, 117
Centre of symmetry, 3, 103
Chalcocite, twinning, 174
Chalcomenite, 116
Chalcopyrite, 131, 132
Chlorite, 113
Chrysoberyl, twinning, 170
Chromium oxide, twinning, 178
Cinnabar, 124
Classes, thirty-two, 103, 106
Clausthalite, 150
Cleavage, 34
Chno-axis, 76— domes, 76
— pinacoid, 76
Clinographic axes, 45— projection, 45
Clinohedrite, 111

Closed forms, 63
Cobaltite, 144
Codeine, 116
Complex twin, 165
Composite crystals, 158
Composition-plane, 164
Compound symmetry elements, 103, 104
Constancy of angle, 12

Contact goniometer, 13, 14— twin, 165
Copper, 150, 160— sulphate, 109
Corundum, 88, 123

Co-tangent relationship, 212
Cross-multiplication, 204
Crystal, 1— class, determination, 151— classes, thirty-two, 103, 106— cleavage, 34
— drawings, clinographic, 45, 51, 54, 58

orthographic, 45, 215— projection, 19

cyclographic, 3

1

gnomonic, 30, 90
linear, 3

1

orthographic, 45
spherical, 20
stereographic, 20— structure, 34, 221

— symmetry, 2, 5, 103— systems, 7, 106
relative importance, 156

Crystalline state, 2

Crystallographic axes, 40, 73, 80, 89
Cube, symmetry, 3, 5

Cubic system, 49, 141, 151

didodecahedral (m3) class, 145

hexatetrahedral, (43w) class, 147— — hexoctahedral {niim) class, 49, 149

Cubic system, pentagonal icositetrahe-

dral (43) class, 148
tetrahedral pentagonal dodecahe-
dral (23) class, 142

Cubo-octahedron, 10
Cuprite, 149, 153, 154
Cuprous bromide, 148— chloride, 61, 148— iodide, 148— oxide, 149
Cyclographic method of projection, 31

d glide planes, 245, 255, 270
Dana, E. S., 287
Dauphine twin, 178
Degree of axis of symmetry, 4
De I'Isle, Rome, 13

Deltoid dodecahedron, 143
Dendritic growth, 158
Diaboleite, 129
Diad axis, 5

inverse, 104
Diagonal glide planes, 240, 245, 255
Diakisdodecahedron, 145

Dibenzalpentaerythritol, 140
Dickite, 112
Didodecahedron, 145
Di'edergiuppe, 290
Dihexagonal bipyramids, 83, 140— prisms, 82, 85, 137, 140— pyramids, 137
Dioptase, 119, 120, 180— twinning, 180
Diploid, 145
Direct rhombohedron, 86
Disphenoid, 131

Distorted crystals, 11, 160, 179
Ditetragonal bipyramids, 66, 133— prisms, 66, 129, 130, 132, 133
— pyramids, 129
Dithionates, 124
Ditrigonal prisms, 121, 138
— scalenohedron, 87, 122
Dodecahedral mode, 276
Dodecahedron, deltoid, 143— diakis-, 145— pentagonal, 60, 145— rhombic, 6, 36, 51
— tetrahedral pentagonal, 143

Dolomite, 120
Dome, 69, 70, 1 1

1

Donnay, J. D. H., 283, 285
Donnay-Harker principle, 283
Doublet, 167
Doubly primitive unit cell, 227
Drawing crystals, 43, 214

from gnomonic projection, 218
from stereographic projection,

214
on an axial cross, 43, 51, 58, 196



GENERAL INDEX 295

Elbow twin, 172
Electric calamine, 113, 114

Elements of a spherical triangle, 181

symmetry, 3, 103, 228
Enantiomorphism, 111, 115, 124, 144,

149, 153, 229, 257, 267, 269

Epidote, 113

Epsomite, 115, 116

Equations of a normal, 199

Equivalent positions, 252
Etch figures, 152
Ethylammonium bromide, 1 1

1

— iodide, 1 1

1

Ethylene diamine sulphate, 133, 154

Eulytine, 148, 284

F space lattice, 222
Face-centred space lattice, 222

Face common to two zones, 206
— symbol, 41

Fahlerz, 148

Fedorov, E. S., 234, 235, 273

Felspars, orthoclase, 176
— plagioclase, 109, 177

First order prisms, 65
Fluorite, 150— twinning, 171

Form, definition, 9
— general and special, 56
— open and closed, 63
— symbol, 41

Forsterite, 117

Frankenheim, M. L., 225, 227, 278

Friedel, G., 278
Fundamental rhombohedron, 89

Galena, 150
— twinning, 172
Garnet, 150, 285
General equivalent positions, 252
— forms, 57
Geniculated crystal, 172

Glide reflection planes, 23

1

Glycine, 113

Gnomonic projection, 30
Gnomonogram, 30, 91, 287
— drawing from, 218

Gold, 150, 285
Goniometer, contact, 14
— horizontal circle, 17
— reflecting, 14, 15, 16, 17

— two-circle, 16
— Wollaston, 15

Goniometry, 13, 93

Goslarite, 115

Graphical constructions, 26, 31, 213

Gratonite, 119

Great circle, 23, 28
measurement of arc, 29

Greenockite, 138

Groth, P., 17, 156, 201

Guanidine carbonate, 133

Guglielmini, D., 13

Guide-line, 218
Gypsum, 76, 113
— axial ratios, 192
— twinning, 176

H cell, 263
Habit, 10, 273
— acicular, 1

1

— tabular, 1

1

Halite, 150
Harker, D., 283, 285
Harmonic ratios, 213

Hauerite, 147

Haiiy, R. J., 34, 40, 163, 201, 221

Hematite, 123, 160
Hemi-domes, 76
— pyramids, 76
Hemihedral forms, 60
Hemimorphic crystals, HI, 113, 117,

120, 125, 129, 134, 137

Hemimorphite, 113, 114

Hemitrope, 163

Hermann, C., 271, 289

Hexad axis, 5

inverse, 104

Hexagonal bipyramids, 82, 85, 136
— prisms, 81,85, 119, etc.

— pyramids, 120, 134
— system, 79, 1 34

ditrigonal bipyramidal (6w2) class,

138
dihexagonal bipyramidal (6lmmm)
class, 79, 140

hexagonal bipyramidal (61m) class,

136
hexagonal pyramidal (6) class, 134

trapezohedral (62) clasj, 139

trigonal bipyramidal (6) class, 135

— trapezohedron, 139, 140

Hexahedral mode, 276

Hexakisoctahedron, 56 57

Hexakistetrahedron, 147

Hexatetrahedron, 147

Hexoctahedron, 56, 57

High-quartz, 140

Hilgardite, 112
Holosymmetry, 8

Hooke, R., 37

Hopper crystals, 161

Horizontal-circle goniometer, 17

Hutchinson, A., 32
— protractor, 32

/ space lattice, 222

Ice crystals, 160, 161

Icositetrahedron, 53, 55, 145, 149, 150
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Icositetrahedron drawing, 54— pentagonal, 149
Identity axis, 4

inverse, 104
Indices Millerian, 41— Miller-Bravais, 80
Intercepts, 43
Interfacial angles, 13, 18

calculation, 202, 210
Interpenetrant twin, 165
Interplanar spacings, 274
Intersection of zones, 206
Inverse rhombohedron, 86
Inversion axes, 103
Iodoform, 135
lodosuccinimide, 125, 126— twinning, 173, 174
lodyrite, 138
Iron, 150
Isometric system, 7
Isomorphous groups, 233
Isotropic crystals, 153

Kalsilite, 140
Kaolinite, 112
Kyanite, 109

Laue, M. von, 155, 273— photographs, 155— symmetry, 156
Law of Bravais, 278

constancy of angle, 12
rational indices, 40

sine ratios, 210
Lead, 150
— antimony 1 tartrate, 135— chromate, axial ratios, 191— dithionate, 124— formate, 116— molybdate, 126, 128— nitrate, 144. 146— sulphate, 68, 117— tungstate, 128
Lettering of crystal faces, 201
Leucite, 284
Lineage structure, 159
Linear method of projection, 31
Liihium iodate, 140— potassium sulphate, 135— sodium sulphate, 121— sulphate, 1 10

m planes of symmetry, 103
Made, 162
Macro-axis, 71— domes, 71— pinacoid, 71

Magnesium hydroxide, 12?— sulphate, 115, 116— sulphite, 118

GENERAL INDEX

Magnetite, 57, 150, 285
Mallard, F. E., 30, 276, 278
Mathematical relationships, 181
Mauguin, C. 271, 289
Melilite, 127, 131
Mercuric cyanide, 131
Mercurous chloride, 62, 68, 134

axial ratio, 190
twinning, 173

Metaldehyde, 126
Methylammonium iodide, 133
Methylurea, 116
Mica, 113— twinning, 176
Microlite, 285
Miller, W. H., 20, 41, 44, 210
Miller-Bravais indices, 80, 83
Millerian indices, 41

^ in trigonal system, 88, 90
Miller's law, 210
Mimetic twinning, 167
Mode, 276, 284
Molecule integrante, 35
Monoclinic system, 72, 1 10

domatic {m) class, 1 1

1

orientation of projection, 73
prismatic (21m) class, 72, 112
sphenoidal (2) class, 110

Morphological aspects, 283
Multiply primitive unit cell, 227, 264,

265

n glide planes, 240
Nacrite, 112
Naphthalene, 113
Napierian triangles, 183
Napier's device, 184
Narcotine, 116
Natrolite, 113
Naumann, C. F., 45, 47
Negative rhombohedron, 86— tetrahedron, 62
Nepheline, 135
Net, stereographic, 32— Wulf, 32
Neumann, F. E., 20, 30, 31
Nickel sulphate, 133
o-nitraniline, 1 1

7

Nonicosane, 117
Normal crystallographic angle, 14, 15, 19— equations of, 199— twin, 164

Octahedral mode, 276
Octahedron, 6, 50, 145, 149, 150
Olivenite, 116
Olivine, 117
o-nitraniline, 1 17

Open form, 64
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Opposite of a pole, 27
Optical activity, 153, 254
— properties, 153— rotatory power, 153, 254
Order of prisms, 65, 82
Ortho-axis, 75— domes, 76— pinacoid, 76
Orthoclase, twinning, 176
Orthographic projection, 45, 215
Orthorhombic bipyramids, 70, 117
— prisms, 69, 113, 114, 117— sphenoids, 115
— system, 68, 113

bipyramidal (mmm) class, 116
pyramidal {mm) class, 1 13

sphenoidal (222) class, 1 14

Oxalic acid, 117

P space lattice, 222
Paraffins, 117
Parahilgardite, 109
Parallel growth, 158
— twm, 164
Parametral plane, 40
Parting, 164
Parts of a spherical triangle, 181

Pedion, 107
Pentad axis, 5, 210
Pentaerythritol, 127
Pentagonal dodecahedron, 60, 142, 145,

285— icositetrahedron, 149

Periclase, 150
Phenacite, 120
Phosgenite, 133
Pickeringite, 1 1

1

Picric acid, 1 1

3

Piezo-electricity, 155

Pinacoid, 64, etc.

Pirssonite, 113, 114
Plagioclase felspars, 109
Plane of symmetry, 3, 103, 231

Platinum, 150
Point groups, 235
— systems, 233
Polar axis, 1 1

1

— edges of rhombohedron, 6, 87
Pole of a face, 20

great circle, 28
Polysynthetic twinning, 175, 177
Positive rhombohedron, 86— tetrahedron, 62
Potassium bromate, 121
— chlorate, 113

twinning, 175, 176— dihydrogen phosphate, 131— dithionate, 124— nitrite, 1 1

1

— periodate, anhydrous, 128

Potassium persulphate, 109
— sulphate, axial ratios, 190

twinning, 1 66— tetrathionate. 111, 112
— thiocyanate, 117
Primitive circle, 21
— space lattice, 222
Prism, 64— dihexagonal, 82, 88, etc.

— ditetragonal, 66, 129, etc.

— ditrigonal, 120, 123, 138
— hexagonal, 81, 85, 119, etc.

— orthorhombic, 69, 113, 114, 117
— tetragonal, 65, 125, etc.

— trigonal, 117, 120, 121, etc.

Projection, 19— clinographic, 45— cyclographic, 3

1

— gnomonic, 30, 90
— linear, 3

1

— orthographic, 45
— spherical, 20
— stereographic, 20
Protractor, stereographic, 32

Proustite, 121
— twinning, 179
Pseudo-symmetry, 166

Pyramid, dihexagonal, 137
— ditetragonal, 129
— ditrigonal, 120
— hexagonal, 120, 134
— orthorhombic, 1 1

3

— tetragonal, 125, 129
— trigonal, 117, 120

Pyrargyrite, 121
— twinning, 179

Pyrite, 59, 146, 285
Pyritohedron, 60, 143

Pyro-electricity, 155

Pyroxene, 113

Quadratic group, 291

Quadruply primitive unit cell, 227
Quartz, high, 140— low, 123, 124, 273
— — twinning, 178

Quercitol, 110

R cell, 259
R space lattice, 225, 259
Rational indices, law of, 40
Reflecting goniometer, 14

Reflection-twin, 163

Regular system, 7

Resorcinol, 113

Reticular area, 274
— density, 274
Rhombic dodecahedron, 6, 51, 142, etc.

drawing, 51, 217
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Rhombohedral class, trigonal system, 1 19
Rhombohedron, 85, 86, 87, 119, 122, 123— polar edges, 6— symmetry, 7

Rochelle salt, 116
Rotation axes, 4, 103— twin, 163

Rubidium dithionate, 124— ferrocyanide, 108— tartrate, 124
Ruby silvers, 121

Rule of priority in space group symbols,
244, 249, 256, 258, 269

Rutile, 134— twinning, 173

Sassoline, 109
Scalenohedron, ditrigonal, 87, 122— tetragonal, 131

Scheelite, 128
Schlippe salt, 144
Schoenflies, A. M., 234, 235, 271, 273, 289— notation, 289
Schreibersite, 127
Scolecite, 111

Screw axes, 228
Second order prism, 65
Secondary axis, 107, 266— twinning, 163, 176
Seven crystal systems, 7, 107

Sextuply primitive cell, 264
Silver, 150
— phosphate, 136, 148
Sine ratio, 207

graphical solution, 213
Small circle, 24, 26
Smithsonite, 113, 114
Snow crystals, 160
Sodium bicarbonate, 76, 112— bromate, 144— calcium silicate, 144— carbonate, 112
— chlorate, 144— lithium sulphate, 121— nitrate, 123— periodate, 118

anhydrous, 128— sulphate, 283
— sulphite, 120— uranyl acetate, 144

twinning, 1 72
Sohncke, L., 233, 235, 273
Space groups, 235
— — cubic, 269

hexagonal, 267
monoclinic, 237
orthorhombic, 242
tetragonal, 253
triclinic, 236
trigonal, 259

Space lattices, 221, 226
cubic, 221

— hexagonal, 225
monoclinic, 224
orthorhombic, 224
tetragonal, 222
triclinic, 224
trigonal, 224

Special equivalent positions, 252— forms, 56
Sperrylite, 147
Sphalerite, 148
Sphenoid, 110, 115, 126, 130— monoclinic, 1 10— orthorhombic, 1 14
— tetragonal, 126, 130
Spherical projection, 20
— triangles, 181— — solution, 182
Spinel, 58, 150, 285
— twinning, 172
Square prism, 64
Staurolite, twinning, 174
Steno, N., 12

Stereogram, 26
Stereographic constructions, 26— net, 32— projection, 20

drawing from, 214— protractor, 32
Stibnite, 117
Strontium dithionate, 124
— formate, 116— hydrogen tartrate, 108
— nitrate, 144, 146
Striated faces, 162
Structural unit, 37, 221
Structure of crystals, Haiiy's theory, 34
Struvite, 113, 114
— twinning, 175

Strychnine, 116
Sucrose, 110
Sugars, 110
Sulphur, 2, 71, 72, 117, 215, 277
— axial ratios, 199
Sulvanite, 148
Symbols of crystal classes, 105, 141

Symmetric twin, 163

Symmetry axis, 4, 103, 228
— centre, 3, 103
— plane, 3, 104, 231

Systematic triangle, 57
Systems, seven crystal, 7, 107

Tabular habit, 1

1

Tangent relationship, 212
Tartar emetic, 1 1

6

Tartaric acid, 110
Tennantite, 148

Tetartohedral forms, 61
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Tetrad axis, 5

inverse, 103
Tetraethylammonium iodide, 131

Tetragonal bipyramids, 64, 65, 128, 130,

132, 133— bisphenoid, 130, 131
— prisms, 63, 64, 65, 125, 126, etc.— pyramids, 125, 129— scalenohedron, 130, 131
— sphenoid, 126
— system, 62, 125

bipyramidal (4^m) class, 127

bisphenoidal (42m) class, 129
ditetragonal bipyramidal {A(mmm)
class, 62, 133
ditetragonal pyramidal (4mm)
class, 128
pyramidal (4) class, 125

scalenohedral (42m) class, 129

sphenoidal (4) class, 126
trapezohedral (42) class, 132

— trapezohedron, 132, 133

Tetrahedral pentagonal dodecahedron,
143, 144

Tetrahedrite, 148
Tetrahedron, 61, 142, 147— negative and positive, 62
Tetrahexahedron, 56, 147, 149, 150
Tetrakishexahedron, 56
Tetramethylammonium iodide, 67, 134
Thiourea, 117
Thirty-two crystal classes, 103, 106
Tin iodide, 146— oxide, 134

twinning, 1 73
Topaz, 286, 287— twinning, 175
TourmaUne, 121

Trapezohedron, 53, 123
— hexagonal, 139— tetragonal, 132
— trigonal, 123

Triad, axis, 5

inverse, 104
Triakisoctahedron, 55
Triakistetrahedron, 143

Triclinic system, 77, 107
pedial (1) class, 107

— — pinacoidal (1) class, 76, 109

Triethylammonium chloride, 137, 138

Trigonal bipyramids, 123, 135, 138
— prisms, 117, 121, 123, 135, 138
— pyramids, 117, 120
— system, 84, 117

ditrigonal pyramidal (3/m) class, 120

ditrigonal scalenohedral (3m) class.

84, 121

pyramidal (3) class, 117

rhombohedral (3) class, 119

Trigonal bipyramids, trapezohedral (32)

class, 123— trapezohedron, 123, 124
Triphenylmethane, 113

Triplet, 167
Triply primitive H cell, 262, 263

hexagonal cell in rhombohedral
lattice, 265
rhombohedral cell, 259

Trisoctahedron, 55, 145, 149, 150
Tristetrahedron, 143, 147
Trona, 77, 113

Twin-axis, 163
— crystals, 162

stereographic projection, 169
— plane, 163

Twinning, 162
— complex, 165
— contact, 165
— frequency of, 180
— interpenetrant, 165
— mimetic, 167
— multiple, 167
— normal, 164
— parallel, 164
— polysynthetic, 175, 177
— reflection, 163
— rotation, 163
— secondary, 163, 176
— supplementary, 174, 177, 180
— symmetric, 163, 178

Twiiming and pseudo-symmetry, 166

UUmannite, 144
Uniaxial crystals, 153

Uniterminal axis, 61, 111, 113, 121, 134,

137, 147

Unit of pattern, 37, 221

Urea, 131

Vertical-circle goniometer, 1

6

Vesuvianite, 134
Vierergruppe, 291

Weiss, C. S., 205
— zone law, 205
Whewell, W., 205
Willemite, 120
Winkelpunkt, 220
Wollaston, W. H., 14, 37

Wooster, W. A., 154
Wulfenite. 126, 128

WulfF, G. v., 33
— net, 32

Zinc blende, 148
— bromate, 147
— sulphate, 1 1

5

— sulphide (blende), 148

(wurtzite), 138
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Zincite, 137— twinning, 177
Zircon, 134
Zone, 3— axis, 3, 203

GENERAL INDEX

Zone indices, 203— law, 205— symbol, 203
Zunyite, 148
Zwilling, 162
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AgjAsSs, 121

AgaHPO*, 136
Agl, 138
Ag3P04, 148

AgaSbSa, 121

AlaOg, 88, 123
A1(P03)3, 148

AlaSiOs, 109
Al2Si206(OH)4, 112

BASO4, 127
B(OH)3, 109
BPO4, 127

BaAlaOi, 140
BaMo04, 128
Ba(N03)2, 146
BaS04, 39,95, 117
Ba(SbO)2(C4H406)2 . H^O, 125, 126
BaTiSisOg, 138, 139
BaW04, 128
BeAl204, 170
Be3Al2(Si60i8), 84
BeO, 138
Be4(OH)2Si20„ 113
Be2Si04, 120
Bi(CNS)3, 113, 175
Bi(N03)3 . 9H20, 109
Bi4(Si04)3, 148

*^29tl60» 11'
CH(C6H5)3, 113
CHI3, 135
C6H2(N02)30H, 113
C6H4(OH)2, 113

QH,(OH)b, 110
CO(NH2)2, 131

CONHaCNHCHs), 116
(COOH)2, 117
CS(NH2)2, 117
CaAlaSiaOs, 109

CaAlaSisOio . SHjO, 112

CagBisOssCU . 4H2O, 109, 112
CaC03, 84, 88
CaFa, 150, 171

(CaF)Ca4(P04)3, 136
CaMg(C03)2, 120
CaMoOi, 128
CaNa2(C03)2 . 5H2O, 114
Ca(N03)2, 146
CaS04 . 2H2O, 76, 176
CaSaOa . 6H2O, 107, 108
CaW04, 128
CaZn(0H)As04, 116
CdCla, 123

CdS, 138, 148

CoAsS, 144
CrjOa, 178
CSCIO4, 71

CU3ASS3, 148
CuBr, 148
CuCl, 61, 148

CuFeSa, 131, 132
Cul, 148

CuaO, 149
Cu2(OH)As04, 116
CujS, 174
CUSO4 . 5H2O, 109
Cu3SbS3, 148

CuSe03.2H20, 116
CU3VS4, 148

FeC03, 123
Fe203, 123, 160
(Fe,Mn)203, 147, 284
Fe304, 57, 150
Fe3P, 127

FeSa, 59, 146
FeS04 . 5H2O, 77
FeS04.7H20, 113

H2CaZnSi06, 111

HaCuSiOi, 119
Hg(CN)2, 131

HgCl, 62, 68, 134, 173
HgS, 124, 148
KBr03, 121

KCNS, 117
KCIO3, 113, 175, 176
KH2PO4, 131

KIO4, 128
KNO2, 111

KNaC4H40e . 4H2O, 116
K2SO4, 166
K2S2O6, 124
K2S2O8, 109
K2S4O6, 111, 112

K(SbO)C4H40e, 116

LiaBeFi, 120
LilOa, 140
LiKS04, 135

Li2Mo04, 120
LiNaS04, 121

LiNa3(S04)2 . 6H2O, 121

02804. H2O, 110
LijWOi, 120
MgAl204, 58, 172
MgCOg, 123

MgO, 150
Mg(OH)2, 123
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MgSOa.eHzO, 118

MgSOi.THjO, 115

MgS04 . AljCSOJa . 22H2O, 1 1

1

Mg2Si04, 117
MnCOs, 123

MnS, 150
MnSz, 147

N(CH3)4l, 67, 134
N(QH5)4l, 131

NH(C2Hb)2C1, 137, 138

NHsCCHg)!, 133
NH3(C2H5)Br, 111

NHaCQHs)!, Ill

(NH4)2H3l06, 120
NH4MgP04 . 6H2O, 114
(NH4)2Mg(S04)2 . 6H,0, 113
NaAlSi04, 135
NaAlSiaOg, 109

NaAlaSijOio . 2H20, 113

NaaBiOj. IOH2O, 72, 113
NaBrOa, 144
NaCOs. IOH2O, 112

NaaCOs . NaHCOa . 2H2O, 77
NaaCaSiOi, 144
NaCl, 150
NaClOa, 144
NaHCOj, 76, 112
NaI04, 128
NaI04.3H20, 118
Na3Li(S04)2 . 6H2O, 179
Na2Mg(C03)2, 119
NaN03, 123

NajSOs, 120
Na2S04, 283
Na3SbS4 . 9H2O, 144
Na2Si03 . 5H2O, 111, 112
NaU02(C2H302)3, 144, 172
NiS04 . 6H2O, 133

NiSbS, 144

(OH, F)2Al2Si04, 175

Pb9As4Si5, 119
Pb2CuCl2(OH)4, 129
PbMoOi, 126, 128
Pb(N03)2, 146
(PbO)2CCl20, 133
PbS, 150
PbS04, 68, 117

PbSaOs . 4H2O, 124
PbSe, 150
PbTe, 150
PbW04, 128
PtAs 147
Rb4Fe(CN)6 • 2H2O. 108
Rb2S206, 124
Sb2S3, 117
Snl4, 146
SnOj, 134, 173

Sr(HCOO)2, 116
SrH2(C4H406)2 . 4H.,0, 108
Sr(N03)2, 146
SrS04, 117
Ti02, 117, 134, 173

anatase, 134
brookite, 117

rutUe, 134, 173
Zn(Br03)2 . 6H2O, 147
ZnCOa, 123
ZnO, 137, 177
ZD4(OH)2Si20- . H2O, 1 14

ZnS, 148, 138
blende, 148
wurtzite, 138

ZnS04.7H,0, 115

ZnaSiOi, 126
ZrSiO*, 134
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