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Preface 

This book is the English translation of a teaching manual for French 

undergraduates. 

In it, I have used my teaching experience to give the reader as 

straightforward an account as possible of the general principles of crystal- 

‘lography using only mathematical tools accessible to the average science 

‘undergraduate. 

During my years of teaching I have realised that many students have 

difficulty in visualising objects in space; for this reason I have given 

_ considerable importance to geometrical crystallography, and I describe in 

detail the stereographic projection as a means of tackling this problem. The 

more difficult parts of the course are illustrated with the help of exercises of 

various lengths and complexities. Solutions are given, but these have 

deliberately been kept brief in order to encourage the reader to think for 
himself or herself. 

Some changes have been made since the first edition: I have corrected a 

number of typographical errors and added several more illustrations and 

exercises. There is now a chapter on the numerical calculations used in 

crystallography, and a PC disc containing programs accompanying and 

illustrating the course is included with the book. Many of the illustrations were 
in fact produced from these programs, which, I believe, will be of help to 

students who are studying the subject on their own. Throughout the book 
vectors are printed in bold characters and the letter j is used for complex 

numbers. 

I would like to thank most sincerely my colleagues, Professors A. Bulou and 

G. Courbion for their views and comments, and Mr. A. James for his kind 

collaboration in producing this translation. 

Le Mans, October 1997 
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Historical background 

Crystallography is the science of crystals. It concerns the external shape, the 

internal structure, the growth and the physical properties of crystals. 

The word ‘crystal’ is of Greek origin (krustallas) and means ‘solidified by 

cooling’; the Greeks thought that rock crystal (quartz) was formed through a 

transformation of ice by cooling. 

Originally, crystallography was purely descriptive and was considered a 

branch of mineralogy. Later it was realised that the crystalline state is not 

confined to mineral salts alone and that it is actually a very common state of 

matter; by the middle of the nineteenth century crystallography had become a 

‘science in its own right. 
For a long time it has been thought that the external appearance of crystals 

reflects some regular internal ordering of matter. The first references to this are 

to be found in the work of Johannes Kepler (1619), Robert Hooke (1665) and 

Christian Huyghens (1690). Studying the birefringence of calcite, Huyghens 

suggested that its optical properties could be explained by the rules governing 

the internal arrangement within the crystal. 

The first quantitative law of crystallography (the law of constant angles) was 

foreseen in 1669 by Nils Steensen from measurements of the angles between the 

faces of a quartz crystal. The law was formally expressed in 1772 by Jean- 

Baptiste Romé de I’Isle in his ‘Essai de Cristallographie’. 

The second law (the law of rational indices or simple truncations) was stated 

in 1774 by the Abbé Réné-Just Hatiy. He had noticed that when a crystal of 

calcite cleaved, the pieces obtained had shapes identical to that of the original 

crystal. He assumed that crystals are made up of identical parallelepipeds 

which he called ‘molécules intégrantes’. This proposition leads to the fact that 

the position in space of each face of a crystal can be described by three whole 

numbers. 

The ideas of Haiiy were refined by W.H.Miller who introduced the methods 

of analytical geometry into crystallography and who proposed the notation 

system which is still in use. 

The contribution of Auguste Bravais to crystallography is particularly 

important. In his 1849 work “The Lattice Structure of Crystals’, he stated the 

following postulate, which has become the basis of crystallography: 
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THE BRAVAIS POSTULATE: 

Given any point P in a crystal, there exists an infinite number of discrete points, 

unlimited in the three directions of space, around each of which the 

arrangement of matter is the same as it is around the point P. 

From this postulate there comes the notion of the three-dimensional crystal 

lattice and all the symmetry considerations involved. Bravais also introduced » 

into crystallography the fundamental notion of the reciprocal lattice (the dual 

space of mathematicians). 

Following the work of Bravais, numerous studies were carried out on the 

problems of crystal symmetry, aided by the development by mathematicians of 

group theory. In particular, the problem of enumerating and classifying space 

groups was solved by Sch6nflies and Fedorov. 

This theoretical work could not have been carried out without the work of 

the engineers who developed crystallographers’ measuring instruments. The 

first goniometer (application goniometer) was made in 1782 by Carangeot. 

Babinet and Wollaston designed the first one-circle goniometers in 1810, and 

Wulff devised his net and developed the first two-circle goniometers; these were 

perfected by Fedorov (1853-1919). 

Until the beginning of the twentieth century, crystallography was purely 

axiomatic. The first X-ray diffraction experiments were performed in 1912 by 

W.Friedrich and P.Knipping, following the ideas of M.von Laue; the work of 

W. and L.Bragg then confirming the accuracy of the Bravais postulate. 

Diffraction measurements gave direct experimental proof of the regular 

arrangement within crystals. 

The introduction of new experimental diffraction techniques enabled the 

rapid development of X-ray crystallography. Finally, since 1960, computer 

tools have been used systematically for processing the data from diffraction 

experiments on crystals. 

Today, in a well equipped laboratory, a few days are sufficient for the 

absolute structure determination of a newly synthesised inorganic crystal. 



Part | 

GEOMETRICAL 
CRYSTALLOGRAPHY 

a 
& QV 



noe 
z 

7 

eat =sett #6 obhahe puatel of dixcrete B if 

‘er qece | wettind each of ahem 

~~ ate i visa, itt pote P. 

: a le "i AA af (yp three ¢ the 

c 

cha 

a 

‘ 

™~ y 

ve 

‘ 

¥ 

> tjoge © 4 ‘ <yaehvod haw 
ne me, cae a 

et 7 ne en ee SS eR 

= erin | 
eae TAROT ; ras 

ck oye oot Agee eee Grped out wilhout ie 
~siog eabert.. Sipesuring initrane ty 

1 oo cur) was made io T7H2 arth 

5 (2eteed Se Owl me iat gonlewneters iit i. ) 

oa ~~ faxt (ponies £0 HOLMAN, F 
~S i 

~e=!) aoitery, crvetalldgraphy_ oa Y 

Hi) Gian oaccantes wen pertonned I TRE 
* Kaiidaby. 1. erelag Oy eed ct M.von Lave’ the 

tas oat, a eis m (¢ the ftrnvals 

“ae e ya linrexmal prool of 2 

“s : » . 



Chapter | 

The Postulates of 
Crystallography 

One of the principal features of the crystalline state is anisotropy of physical 

properties, and this anisotropy can actually be seen in a crystal’s external 

appearance, with its natural flat surfaces. 

Before stating the postulates of crystallography we shall briefly review the 

two experimental laws relating to the shapes of crystals which led to the 

formulation of these postulates: the law of constancy of angles and the law of 

rational indices. 

1 THE LAW OF CONSTANCY OF ANGLES 

Certain crystals will cleave perfectly in definite directions. When cleavage 

occurs, the position of the crystal face changes, but not its orientation. 

Quartz crystals are in the form of 

a right prism of hexagonal section 

with pyramidal ends. Figure 1.1 

shows right sections of two quartz 

crystals with the normals to the faces 

Figure 1.1 of the prism. 

For every sample of quartz ever examined, the same dihedral angle has been 

found between adjacent faces: exactly 120°. 

For a given crystalline species, the dihedral angles between the faces are 

constant. On the other hand, the relative position in space of the faces can vary 
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from one sample to another. The faces of a crystal are thus defined in 

orientation but not position, and this leads to the law of constancy of angles: 

The bundle of lines originating in any peint in a crystal and normal to the 

faces of the crystal is an invariable characteristic of the crystalline species. 

NOTE: The position—and in some cases the number—of faces on a crystal. 

depends on the conditions in which the crystal grew; these conditions are nearly 

always anisotropic (e.g. gravity, impossibility of matter being transported to the 

face on which the crystal is lying). Note that the faces we observe are those whose 

growth rate was small, since rapidly growing faces are eliminated during growth. 

Figure 1.2 shows the appearance of a crystal at different stages of growth, with 

identical and non-identical rates; the higher the growth rate, the smaller the face. 

Figure 1.2 

2 THE LAW OF RATIONAL INDICES 

The faces of a crystal are not formed of arbitrary polyhedra. Suppose we decide 
to study a crystal; we take a suitable system of coordinates and we choose three 
non-coplanar axes a, b and ec. If we imagine a plane intersecting these three 
axes, we can define the lengths a/b, b/c and c/a. All we are interested in here is 
the direction of the faces, not their position, and so the absolute values of a. } 
and ¢ are irrelevant. 

Any face of the crystal will 

intersect the axes to give 

lengths pa, qb and re. From 

our preceding remark, only the 

ratios pa/qb, qb/re and re/pa 
concern us. 

Figure 1.3 shows as an 

example a section of a crystal 
through a plane a,b with lines 
representing two faces. 
(continuous line: p= 1, g=1) 

Figure 1.3 (dotted line: p= 1, g=2). 
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THE LAW OF RATIONAL INDICES: The numbers p, q and r that characterise 

a face are small integers which are relatively prime. 

If the three numbers are not relatively prime, then they have a common 

denominator n. The face defined by p'=p/n, q'=q/n and r’=r/n is a face 
parallel to the face defined by p, g and r. Since we are only interested in the 

orientation of the faces we can impose the condition that the indices be 

relatively prime. As a consequence of the law, the crystal must be made up of a 

regular three-dimensional stack of identical parallelepipeds. The basic 

parallelepiped is constructed along the three vectors a, b and c, and the 

stacking of elementary cells leads us to the notion of the lattice. Thus on the 

microscopic scale, the majority of the faces of a crystal have a step structure, 

but on the macroscopic scale appear to be smooth. We also note that this law 

_implies the law of constancy of angles. 

3. THE POSTULATES OF CRYSTALLOGRAPHY 

The law of rational indices was formalised by Bravais in a much more general 

- form as follows: 

THE BRAVAIS POSTULATE: Given any point P in a crystal, there exists an 

infinite array of points in the three directions of space, around which the 

arrangement of matter is the same as around the point P, and with the same 

orientation. 

At the end of the nineteenth century, this postulate was expanded and 

reformulated virtually simultaneously and independently by Schénflies and 

Fedorov: 

THE SCHONFLIES-FEDOROV POSTULATE: Given any point P in a crystal, 

there exists an infinite array of points in the three directions of space, 

around which the arrangement of matter is either the same as around the 

point P, or is an image of that arrangement. 

The difference between this postulate and that of Bravais is that it no longer 

requires an identical orientation of the environment around equivalent points, 

and the notion of image (symmetry with respect to a point) is introduced. This 

leads us to distinguish proper operations, which leave the orientation of space 

unchanged, and improper operations which modify the orientation. The 

consequences of this postulate are both numerous and important: the set of 

homologous points in a crystal constitutes a periodic space lattice, characterised 

by three basic translations. Any given lattice is characterised by a set of 
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symmetry operations or translation operations defining displacements in space 

that leave the lattice invariant overall. The periodicity of the lattice greatly 

limits the number and nature of symmetry operations that leave the lattice 

unchanged. For a given crystal, the set of translation operations is 

mathematically known as ‘an orientation symmetry group’ or ‘a space group’ 

or ‘a Schonflies—Fedorov group’. 

4 LATTICES, PATTERNS AND STRUCTURES 

An ideal crystal is made up of a regular repetitive arrangement of atoms. 

Knowledge of the whole crystal only requires knowledge of the three vectors 

which define the lattice and the arrangement of atoms within the unit cells. The 

latter constitutes the basic repeating unit of a pattern, and a crystalline 

structure is the periodic repetition of this unit by lattice translations. 

Pattem 

a 

Lattice 

dg 

Structure 

Figure 1.4 
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Two-dimensional equivalents of crystal structures can be found in wallpaper, 
pavings and tilings. ; 

NOTE: The lattice only describes the periodicity of the structure and hence 

only the symmetry properties. The nodes of a lattice do not correspond to any 

physical entity and must not be confused with the atoms themselves. In 

particular, the lattice origin is completely arbitrary and may be chosen to lie at 

any point in a unit. In figure 1.4, we pass from one point to another analogous 

point—for example from one fish eye to another fish eye, by a lattice 

translation equal to n.a+m.b (n,.m are integers). 

5 SYMMETRIES OF POSITION AND ORIENTATION 

-The symmetry operations which, as far as macroscopically observable 

' properties are concerned, bring the medium to a position indistinguishable 

- from the initial position, form a group which mathematicians refer to as a 
‘point group’. The symmetry operations concerned (orientation symmetries) are 

also those which leave unchanged a bundle of lines emanating from any 

_ arbitrary point O in a crystal. 

The relation between the symmetries of orientation and position of a crystal 

is simple: the former is on the macroscopic scale, while the latter is on the 

microscopic scale. 

~ The orientation symmetries only involve changes in spatial orientation, 

because in symmetry operations translation takes place at the atomic level, and 

is undetectable at the macroscopic level. 

Point groups describe the symmetry of finite objects whereas space groups 

describe the symmetry of infinitely repeating structures. 

6 THE CRYSTALLINE STATE 

A perfect crystal is totally ordered over a long distance. Real crystals are never 

perfectly ordered; their structures are all more or less disordered, but certain 

types of disorder allow us to define a perfectly ordered average structure. In 

particular, in a real crystal there is thermal vibration of the atoms about a 

mean position: translational symmetry exists only over a time-averaged 

structure. There is also chemical disorder: although the sites available to the 

atoms form a periodically repeating pattern, actual occupation of the sites by 

various types of atom may be more or less random. Finally, there are point 

defects (holes and interstitials), dislocations, grain boundaries (interfaces 

between two crystalline regions with different orientations), all of which 
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perturb the crystalline order. However, when the number of defects is fairly 

small compared with the total number of atoms, we can use the ideal crystal 

model. 

With advances in the techniques of solid state physics and X-ray 

crystallography, came the discovery, around 1980, of structures which have 

long-distance order but which are not strictly periodic: the incommensurables 

and the quasi-crystals. 

In incommensurables, certain atoms are displaced from their ideal positions 

according to a modulating wave whose wavelength 4 is incommensurable with 

the lattice translation T in the same direction (A/T is an irrational number). 

The first reported example of a quasi-crystal was in 1984 by Shetchtman (by 

rapid quenching of the alloy Algg;Mnj4). Quasi-crystals have symmetries 

(particularly five-fold) which are incompatible with lattice symmetries. These 

structures are now known to result from the aperiodic tiling of space by several 

types of unit cell. 

Recent mathematical work shows that incommensurables and quasi-crystals 

can be studied using crystallographic systems in spaces of more than three 

dimensions. 
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Point Lattices 

1 THE DIRECT LATTICE 

1.1 Definitions 

Consider three vectors defining a 

right-handed trihedral which can 

be oblique: a, b, c. 

Let a, B,.y be the angles 

between these vectors, where: 

a= {b,c}, B= {a,c}, y= {a,b} 
The vectors a, b, ¢ are the base 

vectors. 

The parallelepiped constructed 

Figure 2.1 on these three vectors is the unit-cell. 

Let the vector OP=r=u.a+v.b+w.e 

If u, v, w are integers, r is said to be a row and the point P a node. The infinite 

set of nodes forms the lattice. 

In the case of a crystal, this lattice describes the periodicity of the structure 

and it makes up the crystal lattice. 

The base vectors, which are in general arbitrarily chosen, form an oblique 

coordinate system. For a given lattice, there exists more than one possible 

choice of base vectors and hence of unit-cell; this is illustrated in figure 2, which 

shows a two-dimensional lattice. 

A unit-cell is said to be primitive if it 

only has nodes at the vertices of the 

corresponding parallelogram (in two- 

dimensional lattices) or prism (in three- 

dimensional lattices). A primitive unit- 

cell is the smallest entity enabling all the 

nodes to be generated by whole trans- 

Figure 2.2% Primitive unit-cells in grey lations of the lattice. 
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If further nodes exist (inside the unit-cell, on the faces or on the edges), the 

cell is said to be multiple. 

In a two-dimensional lattice, the area of every primitive unit-cell is identical. 

Similarly, for a three-dimensional lattice, the volume of a primitive unit-cell is 

constant and corresponds to the volume around each node. 

Using matrices, we can represent a row by: 

a u 

r=u.a+v.b+w.c. = (u,v,w)| b | = (a,b,c). | v 

c w 

The scalar product of the two vectors is: 

Ty rn = (ut; at Vv) -b + W) .C).(Uy.a + D>.b + W .C) 

which can then be expressed in the form: 

a ab ac u 
< 2 r).0, = (u),0;,W,).| ab bo be] .| v 

2 

ac he ce W> 

Te 
=u; .M.u, 

The row matrix u? is the transpose of the column vector u, and the matrix M 
represents a tensor called the ‘metric tensor’. 

1.2 Double Vector Product 

The following vector products hold: 

a A (b Ac) = b.(a.c) — c.(a.b) (1) 

(a A b).(e A d) = (a.c).(b.d) — (a.d).(b.c) (2) 

1.3. Volume of the Unit-cell 

It can be shown, for example by expressing the base vectors in an orthonormal 
frame, that the determinant of the matrix M is equal to the triple scalar product 
(a, b, c) and hence to the square of the volume of the cell. We then deduce: 

V = abc[| — cos’ « — cos” B — cos” y + 2cos a.cos B.cos y]!/? (3) 

We can also consider the identity: 
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({lal|.|Ib A e||)°.cos? 6 = (|lal|.||b A ¢{])°(1 — sin26) 
(a.(b A c))” = (a,b,c) = a°.||b A e||? — [ia A (b A ) ||? 

and from this directly deduce the cell volume: 

a .|\b A cl|? = @b’c? sin? « = eel — cos” a) 

lav (bAc)|/? = ((a.c).b — (a.b).c)? = ab? c(cos? B+cos?y=2 cosa.cosf.cosy) 

1.4 Planes in the Direct Lattice 

Consider a plane having the equation: 

x pe 
h—-+k—-4+l-= a i nnd ; (4) 

For y= z=0 (Figure 1), we obtain the intersection A of this plane with the 

axis Ox. From equation (4) we have: 

a b c 
A=- = =.— O h OB k OC i 

boa Casa c b 

In a crystal lattice, a plane passing through three nodes and hence containing 

an infinite number of nodes is a lattice plane. The set of parallel lattice planes is 

a family of planes containing all the lattice nodes. If the points A, B and C are 

nodes, then: 

OA = x = u.a, OB = y = v.b, OC = z = w.c,, where u, v, w are integers. 

The general equation of the lattice planes in a family h, k, / is therefore, from 

equation (4), of the form: 

hutko+lw=n 

The first plane in the family which does not contain the origin has the equation: 

hu+k.o+iw= 1 

h, k and Lare the reciprocals of the lengths of the intercepts of this plane on 

the axes# 
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Each node of the lattice belongs to a lattice plane and as a result, for a crystal 

lattice, h, k and / are integers. These three indices define a family of lattice 

planes, and it is always possible to choose them to be relatively prime, since we 

do not distinguish parallel planes characterised by h, k, / and by H=nh, 

Keonk, Lanl: 

1.5. Nomenclature 

According to international convention, we call a row r=u.at+v.b+w.c of a 

crystal lattice [uv v wl]. Undices between square brackets without separating 

commas). Negative indices have bars: u,V,w. 

e.g.: [132], [100], [10 1] 

The family of lattice planes with the equation h.u +k.v+/.w=n is denoted (hk 

l). (Indices between brackets without separating commas). 

e.g.: (234), (010), (101) 

The indices u, v, w for the rows and h, k, / for the planes are the Miller indices. 

2 THE RECIPROCAL LATTICE 

The reciprocal lattice! may appear rather artificial, and is by no means essential 

in geometrical crystallography; however, it does very often simplify 

calculations. In addition, the reciprocal lattice makes a natural appearance 

in the study of diffraction of periodic structures. 

2.1 Definition 

The reciprocal lattice has its base vectors defined from those of the direct 
lattice, together with the unit-cell volume, by the following relations: 

(6) 

‘Geometrically, the direct and reciprocal lattices are interrelated by a polar reciprocal transform 
and analytically by a Fourier transform. ; 
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We can also use the equivalent formulation, based on the scalar product: 

A*.a = B*.b = C* .c= 1 

A*.a = A*.c = B*.a = B*.c = C*.a= C*.b=0 

These relations can be abbreviated as: 

(7) 

- For the reciprocal lattice, just as for the direct lattice, we can define nodes, 

‘rows and families of lattice planes. 

NOTATION: Throughout this book, all reciprocal values are given an asterisk (*). 

2.2 An Example of a Reciprocal Lattice 

B* Figure 3 shows the direct and 

reciprocal base vectors of a mono- 

clinic lattice with: 

C= y= 1/2, Pp > h/2; ae Fc. 

A* |b, A* Le 

Cr bra 

BY | a; B¥ le 

In this example, vectors b and B* 

are colinear. 

Figure 2.3 G=o =) —4* 7/2) 

In tri-orthogonal lattices (c= =y=7/2), all the base vectors of the direct and 

reciprocal lattices are colinear. The lengths of the reciprocal axes are the 

reciprocals of those of the direct axes (hence the term reciprocall!). 

2.3 Calculation of Reciprocal Values 

© ANGLES BETWEEN BASE VECTORS 

The angles «*, #* and »* between the base vectors of the reciprocal lattice can 

be expressed in terms of the angles «, 6 and y through the scalar product A*.B*. 
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a is the angle between b and c, f is the angle between a and ¢, y* is the angle 

between A* and B*. According to the relations in definition (6), 

)At|| AY —bcsing. Vay 
Using relation (2), we have: 

* 

A .B 
» (bAc)(cAa)  (b.c).(a.c) — c?.(a.b) — b.c.cos a.a.c.cos B — a.b.c’.cos y 

eS 4 eae v? * V2 | 

Direct calculation of the scalar product gives: 

b.c.sin &.a.c.sin B.cos y* 
A* .B* — A*.B* .cosy* =< 5 

V- 

Comparing the two expressions we have: 

cos «.cos f — cosy 

sin x. sin B 
COSY t= 

By cyclic permutation we obtain: 

COS &.COS y — COS 
cos §* = i B 

sin «. sin y 

cos y.cos B — cos « 
cosa* : 

sin y. sin B 

Similarly, the angles of the direct lattice are deduced from those of the 
reciprocal lattice by relations of the form: 

cos y*.cos B* — cos a* 
cosa = aera 

sin y*.sin p* 

O MODULUS OF THE BASE VECTORS 

Taking the vector product of the reciprocal lattice base vectors, we obtain 
through relations (1) and (2): 

A* , Be — DADA CAa) c.(b, ¢, a) = 7 ee | 

Calculation of the moduli of the first two terms gives: 

|A* A B*}] = b.c.sin %.c.a.sin B.sin y* Lie 

V? P 
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Hence: V=a.b.c.sin «.sin B.sin y* =a.b.c.sin «*.sin B.sin y=a.b.c.sin «.sin B*.siny 

b.c.sing i l 
a.b.c.sina.sinB.siny* a.sinB.siny* — a.sin B*.siny 

bAc 

V 
\|A*l| = | 

2.4 Properties of the Rows of a Reciprocal Lattice 

O ORIENTATION 

Consider the reciprocal vector N¥,,; = h.A* + k.B* + 1.C* and the plane ITI of 
the direct lattice which we denote (h k /), whose equation is: 

(eae ae es 
a b C 

‘Since this plane intersects the direct axes at A, B and C, the vectors AB and BC 
he in the plane II. From relations (5) and (7) we have: 

Nx, AB = (hA* + kB* + /C*). ( = ;| sf) 

The scalar products N%¥,,;.AB and N%,,;.BC are null and it follows that: 

Nix L (Ak 1) 

The reciprocal row N*,,;; is normal to the planes (h k /) of the direct lattice. 

O MODULUS OF THE RECIPROCAL ROWS IN A CRYSTAL LATTICE 

If the plane I is a lattice plane, then it belongs to a family of equidistant 

parallel planes denoted (hk /). Let d,,; be the distance between any two planes 

in the family. This distance is the projection of the vector OA onto the normal 

to the plane, the normal being in the direction of the vector N*),,: 

N*,y-OA  (hA*+kB*+/C*) a 
IIN* all [Niu “hh \INFaall 

Ce a 

nx \INinall = 1 (8) 

we | Any family (hk l) of planes in the direct lattice can be associated with the 

reciprogal row [h k 1]* which is orthogonal to it. 
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2.5 A Property of Reciprocal Planes 

Relation (7) defining the reciprocal lattice is symmetrical in a; and A*. The 

reciprocal lattice of a reciprocal lattice is the initial direct lattice. Any family 

(u v w)* of reciprocal lattice planes can be associated with the direct row, 

denoted [u v w], which is orthogonal to it. Let D7,,, be the distance between two 

planes in the family, and n,,,, the normal direct row. From relation (8) we have: © 

* 

D ww-||Bwwl| = 1 

3. MILLER INDICES 

Many notation systems for lattice planes have been suggested in the past 

(Lévy—Des Cloizeaux, Weiss-Roze, Nauman, Goldschmidt) but the system 

which finally won the day was that of Miller in 1839. 

A family of lattice planes which has as its normal the reciprocal row of 

indices [h k /]* is denoted (h k 1). This new definition of Miller indices is 

equivalent to the one given in paragraph 1.4: the Miller indices of a family of 

lattice planes are the reciprocals of the intercepts on the axes by the first plane 

of the family (which is the plane of equation h.u+k.v+/.w =1). 

The main advantage of Miller indices is that the notations of a family of 

lattice planes in the direct lattice (reciprocals of the intercepts) and reciprocal 

lattice (indices of the normal) are identical. 

SPECIAL CASE: If a plane is parallel to an axis, it intercepts it at infinity and the 

corresponding Miller index is therefore null. Consequently, planes containing 

base vectors have the notations: 

xOy > (001) yOz> (100) xOz = (010) 

In the example shown in figures 2.4 and 2.5, the planes (102) have been 
drawn in a lattice in which « = 8 =y=2/2 and B> 2/2 (monoclinic lattice). 

The first plane in the family intercepts the Ox axis at a distance a, the Oy axis 
at infinity and the Oz axis at c/2. 

In figure 2.5, which is drawn in the xOz or (010) plane, lattice nodes and 
several planes in the family (102) are shown, together with their normal N*jo2 
which enables the constant spacing of the dig) = 1 /\IN%o2|| planes to be 
determined. 



Point Lattices 17 

2a (102) 

Figure 2.4 Figure 2.5 

Figure 2.6 is for an orthorhombic lattice (a 4 b # c, «= B = y = 2/2) where 

the lattice planes of the families (001), (101) and (111) have been drawn. 

Figure 2.6 

NOTE: Weiss indices are the reciprocals of Miller indices and correspond to 

the intercepts on the axes by the first plane in the family. 

4 TRANSFORMATIONS OF THE COORDINATE SYSTEM 

4.1 Covariance of the Miller Indices of Planes 

Consider two direct coordinates a, b, c and a’, b’, c’, in a lattice, such that: 

al = 0)).8+ %)7.b+4+ 43.€ 

b’ = O7,.a + X.b + Xy3.€ (9) 

¢ = 3 a + 037. + H33.C 
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We can associate these with the reciprocal coordinates A*, B*, C* and A”, 

Boe. 

Consider a reciprocal row [h k J*. This will be an invariant in the coordinate 

transformation: 

Ni, = h.A* + k.B* + 1.C* 

In the new coordinate system, this row becomes [h’ ake 

Nix = h .A’* + k’ .B* + 1a Cea 10 
h.A’* +k B* +1.C*=h.A* + k.B* +805 ce 

Scalar multiplication of both sides of (10) by the vector a’ (9) gives: 

(A + k'B* 4 1.C*).a' = 
(h.A* + k.B* + L.C*).(a,).a aa 017. + 13-C) 

Now: A’*.a’ = A*.a = 1... and B“.a’ = B*.a = C*.a = C*.a=0... From 

which we deduce that: 

h’ = 01,-A + 17.k + 33.1 

We can similarly show that: 

k' = O>1-h + Oy9.k + 53.1 

ik = 3, -A + 039.k + 33.1 

In a coordinate transformation, the Miller indices of reciprocal rows (or 

planes in the direct lattice) are transformed as base vectors of the direct 

lattice. 

EXERCISE: 

Establish the relations between the Miller indices of a direct plane, expressed in 

the new coordinates, in terms of the plane indices in the old coordinates. Show 

that the transformation matrix is the reciprocal of the transpose of the matrix 
which relates the base vectors. Hint: the row r=u.a+v.b+ w.c is an invariant in 

the transformation. 
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4.2 Generalisation 

Consider a transformation from coordinates a, b, c,"to coordinates aj, bj, ¢1. 

The relations between the base vectors, the reciprocal vectors, the direct rows 

and the reciprocal rows are written in the following matrix forms: 

ay a AY A* uy u h, h 
b, }=(A)( b |,{ BY }=(a%)[ Be |, vo, |= 0 |. & |=ant 
Cc; c Cr Cc* W, w l, l 

With (U’) denoting the transposed matrix of (U), we also have: 

(uy, 0), Ww) = (u, v, w).(U") 

The direct row r, the reciprocal row R* and their scalar product r.R* are 

‘the invariants of this transformation: 

a a a 

_ r=(u,0,w) () = (u,, Vi, W) e = (u,v ,w) (U")(A) () = (A) =(U’)! 

c Cc; c 

A* Ay 

R*= (h,k,1)| B* |=(h,k,,4)) By |= 

C* ras 

A* 

(h, k, )(A")(A*)| B* |=>(A*) = (H’) | 
C* 

h hy 

rRt = (u, Ds w) k = (uy, Ui, W1) ky = 

l ; 

h 

(u,v, w)(U)(H) | k | > (A) = (U7) 

We also have: (A7)~! = (U) and (H”)7' = (U) = (A*). From this we deduce 

the relations 
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(A*) = (A?) =U) 
(HW) =(A) 

The base vectors and the indices of the planes (hk 1) transform covariantly, 

whereas the reciprocal base vectors and the indices of the rows [u v w] 

transform contravariantly. 

ce 

5 LATTICE CALCULATIONS 

These calculations are often made simpler by use of the reciprocal lattice. 

O ZONES AND ZONE AXES 

DEFINITION: A zone is formed by the set of direct lattice planes which 
intersect each other along parallel lines. The common direction of these 

lines is the zone axis. In a crystal they correspond to the edges of the 

faces. 
The reciprocal row [hkl ]* (= N jx) is perpendicular to the plane (/ k /), and 

is therefore perpendicular to all rows [u v w] (=Yr,,,) contained in this plane. 

The scalar product N7jx).t,yy is therefore null and the indices of the zone axis 

row [u Uv w] are related to the indices of the planes of the zone by the relation: 

hu+k.o+lw=0. 

Zone axis PA A 

Figure 2.7 
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_ Consider two planes (A; k, /,) and (hp ky ly). Their zone axis is the row [uv w} 
such that h).u+k).v0+l,.w=0 and hy.u+k,.v+bh.w=0. 

We deduce from this the relations: 

u= k,.L == l, .k 

(b= iF hy oar h, .l, 

w= h,.k, = k, Ay 

0 DIRECT Rows 

Consider the direct row [u v w] associated with the vector: r = u.a+ v.b+ w.c. 
Its modulus is the square root of the scalar product r.r; the reciprocal of this 

- modulus is equal to the constant distance D%,,,, between the planes (u v w)* of 

_ the reciprocal lattice to which the row [u v w] is normal. 

r= rt J (ua + vb + we).(ua + vb + we) 

OG RECIPROCAL Rows 

Consider the reciprocal row [h k /|* associated with the vector: 

Its modulus is the square root of the scalar product Njjz;. Nj; the reciprocal of 

this modulus is equal to the constant distance d,;,; between the planes of the 

family (h k /) of the direct lattice. 

O ANGLES BETWEEN DIRECT ROWS 

Two lattice planes intersect along a row. In a crystal the faces are parallel to the 

lattice planes and the edges are therefore parallel to the rows. The simplest 

method for determining the angle between two edges of a crystal is to 

determine the indices of the rows parallel to the edges in question and then 

calculate the angle between these edges using the scalar product. 

The angle 0 between the rows [w v w] and [u’ v’ w’] is such that: 

(ua + vb + we).(u'a + u'b + we) 
cos@ = 

ad [owl L-| |tnvrw/ II 
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O ANGLES BETWEEN RECIPROCAL ROWS 

Since the reciprocal row [h k /]* is orthogonal to the family of lattice planes 

(h k 1), the angle between two reciprocal rows is the supplementary angle to the 

dihedral angle between the corresponding planes. 

O TORSION ANGLE 

In descriptions of molecules, the torsion angle is often invoked: in a chain of 

atoms A, B, C, D, the torsion angle is the dihedral angle between the planes 

ABC and BCD. 

We can determine the torsion angle 

as the angle between the normals to 

the planes ABC and BCD. These 

normals are obtained from the vector 

products AB A BC and CD A BC. We 

can also use the metric relation in 

triangle AEF: 

cosp = (AE’ + EF’ — AF’)/(2.AE.AF) 

We also have: 

AE = 1,, sin 0, 

EF = /,, sin 6; 

AF’ = AD? = DF? = i, — DF? 

Figure 2.8 DF = EB+ BC+ DH 

a li +133 + Ba — [hg — 2hylycos 05 — 2 shacos 0; + 21)1;4c0s 0,c0s 03 cos ~Y : 
2112/34 Sin Oy sin 03 

6 THE INTERNATIONAL FRAME 

Calculations in the Bravais lattice can often be rather tricky in systems other 
than tri-orthogonal, and certain calculations are carried out in a direct tri- 
orthonormal frame i, j, k called ‘the international frame’, defined by: 
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= aN Gs pu Cc 

wear hsinfarG?) eo C* 

nk ae 
=a) 

- 6.1 Reciprocal Vector in the International Frame 

Figure 2.9 shows the projection of the 

international frame on the plane j, k. 

Consider the reciprocal row: 

Nix, =h.A* = k.B* +1.C* 

The components x, y and z of Nix) 
in the international frame are such 

Figure 2.9 that: 

xi+yj+z.k =h.A* + k.B* + 1.C* (11) 

Scalar multiplication of (11) by the unit vector i gives: 

x = h.A*.i = h.A*.i.cos{A*,a} = h.A*.cos{A*,a} 

A*.a ] V Se = asia Atal ab cane 

x=h.A* sinp*.sin y 

Similarly, y and z are calculated by scalar multiplication of relation (11) by / 

followed by C*. We finally obtain: 

x =h.A*.sin f.sin y 

y = —h.A*.sin B*.cosy + k.B*.sin a* 

G =A COs Pp kD COSA LC” 

Using the relations between the direct and reciprocal lattices, we can also 

write: ° 
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aha 

y = —h/atany +k/b.sin y 

z =h.A*.cos B* + k.B*.cos a* + 1.C* 

6.2 Direct Rows in the International Frame 

In the direct lattice, consider the row OD=u.a+ v.b+ w.c 

The coordinates of D in the international frame can be calculated by analogy 

with the previous calculation: 

x = u.a+v.b.cosy + w.c.cos B 

y = v.b.siny — w.c.sin B.cos «* 

z= w.c.sin B.sin a* 

APPLICATION: Calculating the volume of the unit-cell. In the international 

frame, the components of the base vectors a, b, ¢ are: 

a, 0,0; b.cosy, b.siny, 0; c.cos B, — c.sinB.cos «*, c.sin B.sin o*; 

Calculation of the scalar product (a, b, ¢) gives: 

V = a.b.c.sin a*.sin B.sin y 

EXERCISE: Write the relations of paragraphs 6.1 and 6.2 in matrix form and 
check that the second matrix is the reciprocal of the transpose of the first. 

7 FRACTIONAL COORDINATES 

To locate the position of a point P in a cell, we often use fractional coordinates. 

If the absolute oblique coordinates of a point P in the frame characterised by 
the base vectors a, b, ¢ are x.a, y.b and z.c, then the triplet (x, y, z) is known as 

the fractional coordinates of P. 

It is always possible, by whole lattice translations, to bring the point P to 

coincide with an identical point inside the original unit-cell. We therefore adopt 
the following convention for fractional coordinates: 
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a, OA 

CeiNia 
[uv w] 

(hk 1) 
[h k 1]* 
(uv w)* 

(hk 1) 
{hk ]} 

Summary of notation used _ 

Vectors in the direct lattice (bold characters) 

Vectors in the reciprocal lattice (bold and *) 

Row in the direct lattice 

Plane in the direct lattice 

Row in the reciprocal lattice 

Plane in the reciprocal lattice 
Family of direct rows 

Family of equivalent planes (form) 



Chapter 3 

The Stereographic Projection 

1 THE STEREOGRAPHIC TRANSFORMATION OF A 
POINT 

DEFINITION: Consider a sphere with centre O, radius R, a diameter NS, a point P 

on the sphere and the intersection p of SP with the equatorial plane normal to NS. 

The point p is called the stereographic transformation of point P, and vice versa. 

PROPERTIES OF THE TRANSFORMATION: 

@ Itisa Positive inversion of the centre S whose 

power is SP.Sp = 2R’ denoted: 

3(S,2R). 

It transforms the sphere into an equatorial plane 
which is the plane of the projection. 
@ Any circle drawn on the sphere is trans- 
formed into a circle (or a straight line) on the 
equatorial plane. 

@ Angles are conserved during the transforma- 
Figure 3.1 tion. 

2 THE POLE OF A FACE 

We assume the crystal to be at the centre O of the sphere. From this point we 
take normals Op; to the faces; the points P; at the intersections of the normals 
with the sphere are called the poles of the faces. 

The inversion 9(S,2R?) when applied to the poles P; gives the points jee 
which are the stereographic transforms of these poles. These points are outside 
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_ the equatorial circle when the poles are in the hemisphere containing S 
- (southern hemisphere), and are inside when the poles are in the northern 

hemisphere. The following convention is used so that all the transforms are 

inside the equatorial circle. 

CONVENTION: For poles in the northern hemisphere, we use S as the centre 

of inversion, and for poles in the southern hemisphere we use N. In order to be 

able to distinguish the two types of poles easily, we denote those in the northern 

hemisphere by a cross and those in the southern hemisphere by a circle. 

3. THE STEREOGRAPHIC PROJECTION OF A POLE 

The normal to a face has a direction defined by two angles {COA} = y 

(azimuth) and {NOP} = p (inclination). 

ey ao¥h 
ee a ae: a Nn FUT Ky 

hse teed: San POE GAVE 

er PEE PA. [ Stiaran| e\ ieee | O i / a NYA \ C 

a WO Ne) \ cal ae 

rowle o Tey . Si 
\. \ | ) ye onl me Sn 

Saas ay [ae /AAE = 9 AeA 2 
‘. aN j Ve 

Ss 
Figure 3.2 

On actual crystals, interfacial angles are determined by optical measure- 

ments with a two-circle goniometer. One commercial model works as follows: 

The crystal is glued onto a goniometric 

head mounted on a drum with hor- 

izontal axis Ox, graduated to display y. 

This drum can turn about a vertical 

axis Oz. The angle of rotation p is 

measured on a second graduated drum. 

The viewing system comprises a light 

source and telescope with optical axes 

symmetrical about a horizontal plane 

containing the axis Oz. The light source 

filament forms an image at infinity 

which, after being reflected from the 

face of the crystal, can be observed in 

the telescope; the corresponding values 

, Figure 3.3 of y and p are then read off. 
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CONSTRUCTION OF A POLE: To obtain the transform p (figure 3.2 right), we 

draw the equatorial circle, then, from the azimuth origin OC, we construct 

the point A on the circle such that the angle {COA} is equal to y. We then 

perform a rotation about OA. After this rotation, S becomes S,, N becomes 

N, and P becomes P,. The point P, is such that the angle {N,OP,} is equal 

to p. 

The point p, which is the intersection of OA and S,P,, is the required 

stereographic transform. 

4 THE WULFF NET 

4.1 Description 

In practice, the construction described above can be avoided by using the 

‘Wulff net’. This net is the stereographic projection of a network of parallels 

and meridians drawn on the projection sphere viewed along the equator. 

The resulting network is usually graduated in steps of 2°, forming great 

circles and small circles orthogonal to the former (figure 3.4). A Wulff net is 

shown on page 403. 

The small circles EFG (figures 3.4 and 3.5) are projections of parallels 

drawn on the sphere (they are intersections with the sphere of cones of 

axis CD). 

Figure 3.4 Figure 3.5 

The great circles are projections of meridians drawn on the sphere; these 
are great circles on the diameter CD of the projection sphere (figures 3.4 
and 3.6). 
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SPECIAL CASE: When studying cubic crystals, 

we have to draw the projections of planes 

(diagonal mirror planes) with normals char- 

acterised by the angles: 

p= t/a C= 0) 8/2, 37/2 

The stereographic projection of the plane 

defined by p= 72/4 and y=0 is the great 

circle of centre A with radius R,/2 (see 

Figure 3.6 figures 3.6 and 3.7 and paragraph 9). 

Ss 

| 4.2 Constructing a Stereogram 

PRELIMINARY NOTE: Only the angular graduations on the axes AB and CD of 

the net (figure 4.4) can be used for the constructions. 

The stereogram (figure 3.7) is drawn on transparent paper which can be 

rotated over a Wulff net. 

We begin by plotting the projection 

of the axis AB (the origin of the 

azimuths) on the transparent paper: 

A pole of angle y = 0 lies on AB 

at a point p, situated on the great 

circle of inclination p. 

If p =0 pis at O, 

If p = 2/2 p is at B. 

A pole of angle y lies on OE and 

on the great circle perpendicular to 

OE making an angle (2/2 — p) with 

Figure 3.7 the plane of projection. 

The point can be found by bringing the line AB of the net to coincide with 

the line OE of the tracing by rotating the latter. 

This rotation must be carried out so as to use an axis of the net (here, AB) 

for which the angular graduation is correct. 
4 ¢ 
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For any angle p, the pole lies at the intersection of OE and the great circle of 

inclination p. If p = 0 the pole is at O (for any angle y); if p = m/2 the pole is at 

E. The poles of inclination 2/2 (such as the pole s in figure 3.7) have their 

projections located on the circle and are represented with a cross. 

4.3 Using the Wulff Net 

In practice the Wulff net enables a number of measurements and constructions 

to be carried out quite simply. 

O THE ANGLE BETWEEN TWO POLES 

The angle between the normals to two faces of a 

crystal is equal to the angle between the poles p 

and q of the faces. 

By rotating over the net the transparent paper 

on which the stereogram is drawn, we find the 

great circle passing through the two poles in 

question. The angle between the two poles is read 

Figure 3.8 off directly on this great circle (figure 3.8). 

OG THE POLE OF A ZONE 

We seek the pole (figure 3.9) corresponding to a zone axis. The latter is defined 

by the great circle (zone circle) which passes through the poles of the planes in 

the zone. By definition, the zone axis is normal to the plane of the zone 

(Op = 7/2). 

Zone circle 

gS 
x We seek the great circle passing through the 

poles in question (p and q in figure 3.9). This great 

circle is the zone circle. On the axis normal to this 

zone circle, we move round 90° to obtain the pole 

a which is the zone axis under consideration. 

SPECIAL CASE: The centre O of the projection is 

the zone axis formed by the faces for which the 
Figure 3.9 angle p is 1/2. 
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| © ANGLE BETWEEN TWO ZONE CIRCLES 

We seek the great circle having the point p as 

pole (or zone axis), p being the intersection of 

the two circles of the zones Z1 and Z2 under 

consideration. 

The arc ab which is intercepted on this 

great circle by these two zone circles gives the 

Figure 3.10 required angle (figure 3.10). 

} O ROTATION OF y ABOUT AN AXIS IN THE PLANE OF PROJECTION 

| Rotation axis 

Uy an ee The net is rotated to bring the axis in 
Btivs question onto the diameter normal to the 

ie small circles. For each rotated pole, we 

a A look for the small circle on which it is 

A B constrained to move, and we then move 

through an angle y on this circle. 

To determine y, we use the intersections E 

and E’ of the great circles, orthogonal to the 

small circles, with the axis AB (figure 3.11) 

~/ 

S 
Nach 

LLL. 
LEE » 7 

re we 

ad 

/ / 

Figure 3.11 p=) G4 

5 BASIC SPHERICAL TRIGONOMETRY 

While spherical trigonometry is not indispensable to geometrical crystal- 

lography, it does sometimes simplify calculations. 

The most useful relations are given below. 

Consider the spherical triangle ABC on the surface of a sphere of unit radius 

with centre ©. 



Syd 

Figure 3.12 
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The sides of the spherical triangle (see 

figure 3.12) are the arcs BC, CA and AC 

with lengths a, b, c respectively. 

The angles A, B and C of the spherical 

triangle are respectively equal to the 

dihedral angles {BAO, CAO}, {ABO, 

CBO} and {ACO, BCO}. 
Consider the point Al on the great circle 

AC such that OA1.O0C = 0, and BI the 

point’such that OB1.OC = 0. 

A1 We can write: 

OA = cos b.OC + sin b. OA1 

OB = cos a. OC + sin a. OB1 4 

The dihedral angle {OAC, OBC} equal to C 

is also equal to the angle {OA1, OBI} 
Figure 3.13 Since cos c = OA. OB, we have: 

COS C = COS. 

Circular permutation gives: 

cosa =cosb. 

cosb = cose. 

cosb + sina. sinb.cosC (1) 

cosc + sinb. sinc.cosA (2) 

cosa-+ sinc. sin a.cos B (3) 

The reciprocal relations are of the form: 

cos A = —cosB. cosC + sinB. sinC. cosa (4) 

Finally from (1) and (3) we have: 

eae a) ees 2A sin* a( sin” c. cos” B — sin“ b. cos* C) = cos” b — cos? ¢ + cos” a.( cos’ ¢ — cos” b) 

ba ae =~ . 
sin’ a( sin’ c. cos’ B — sin? b, cos” C) = (cos b — cos” c).(1 — cos? a) 

pane) Den : ‘ : A Sinac.cos Bo. Laci east — sin’? b + sin? bcos? C 
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| from which we deduce: 

| which can be generalised as: 

(5) 

6 CRYSTAL MEASUREMENTS BY GONIOMETER 

6.1 Principle of the Method 

| We wish to measure the unit-cell angles «, 6, y and the length ratios of the 

axes, and to index the faces of the crystal. 

To do this, we use a two-circle goniometer to measure the angles of azimuth 

and inclination for all the faces of the crystal. To make the calculations simpler, 

we adjust the goniometer head on which the crystal is mounted so that the 

latter has a symmetry axis coinciding with the origin of the inclination axis of 

the goniometer. We then draw the corresponding stereogram; the chosen 

symmetry axis will be at the centre of the diagram. Although this stereogram 

' does not enable very precise calculation of the angles, it does give very useful 

approximate values. 

On the diagram (figure 3.15) we choose 

pe-eore epee three faces, denoted arbitrarily (001), 

: a a (010) and (100), and a fourth, so-called 

I \ ‘parametric face’. We thus obtain the 
' b! \ spherical triangle ABC (figure 3.14). 

Sf neen ya i Since the faces are identified by their 
4 normals OA, OB and OC, the lengths of 

\ A C the sides a, b and c of the spherical 

\ A triangle correspond to the angles between 

: Be \ Wie the faces. ae 

eG paar The angles A, B, C between the sides of 

the spherical triangle are the supplemen- 

tary angles to those between the edges of 

Ejgure 3.14 the faces. 
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This is because the zone circles AC, AB, BC are planes which contain the 

normals to the faces, and the edges between the faces are therefore normal to 

the zone planes. 

6.2 Determination of «, B and y and the Length Ratios 

In general we take as the parametric face one which cuts the three initial faces, ~ 

indexed (111). The stereogram then has the appearance shown in figure 3.15. 

The notation is clear: for example, (110) is the face at the intersection of the 

zones (100)-(010) and (001)-(111). 

In what follows, the axes are denoted Ox, Oy and Oz, the parametric face is 

(111) and the lengths of the sides intersected on the axes by the parametric face 

BUS @, lo, 

O UNIT-CELL ANGLES 

The angles between the sides of a spherical triangle are supplementary to those 

between the zone edges. 

Since y is equal to the angle {Ox, Oy}, we can also write that » is the 

supplementary angle to that between the zones (001)-(010) and (001)-(100). 
Similarly: 

«is supplementary to the angle between the zones (001)-(100) and (010)-(100). 
B is supplementary to the angle between the zones (100)-(010) and (010)-(001). 

Figure 3.15 
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Figure 3.16 

© BASE VECTOR RATIOS 

We can immediately determine the ratios of the base vectors from the elements 

of the spherical triangle (see figures 3.15 and 3.16). 

@ sing, ¢ singe c sing, 
a ° > — . > — ; 

b sing, b sings’ a_ sing, 

6.3 Indexing the Faces 

To index the faces, we choose three axes and a parametric face. Once these 

are chosen, we can index all the poles of the other faces. Suppose we wish to 

_ index the pole (hk/). We pass two zones through this pole: (A)k1/{)-(A2k2l2) and 

(h3k3l3)(hakal4). The equation of a zone- plane is of the form: 

hu+k.v+lw=0, the row [uw v w] being the zone axis. We calculate the 

indices of the row which is the axis of the first zone: 

u= kL — lik 

D= lho 7 hl 

w= hk, — kh, 

and from the equation h.u+k.v+/.w=0, we deduce an initial relation between 

the indices h, k and /. 

We repeat the operation with a second zone and deduce a second relation 
between the andices, and then, for one of the indices, we choose an arbitrary 
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value (there are not always enough faces to be able to pass three zones through 

a pole) from which we deduce the remaining two. 

This method enables all the poles in a stereogram to be indexed. The 

calculations can also be made by noting that if three planes are in a zone, the 

determinant A of their indices is zero. 

nh ky 
A = hy ky lL, 

h, k l, 

EXAMPLE: Consider a crystal having a threefold axis which has been placed at 

the centre of the diagram (figure 3.17). The poles of the faces (100), (010) and 

(001) are respectively A, B and C. The parametric face (111) has its pole at the 

origin of the diagram. The faces (011), (101) and (120) have already been 

identified and we require the indices of the face (hkl). 

Two zones are seen to pass through this face: Z1, which also passes through 

the poles of the faces (101) and (011), and Z2, which passes through (001) and 

(120). 

The axis of zone Z1 is thus the row [1 1 1] and 

the indices h, k and / are such that: 

+h—-k+I=0 

Similarly, the axis of zone Z2 is the row 

[2 10], hence 

rau) | 
sO a 29) 79) 2h+k=0 
is ; 4 : (200) of Putting h = 1, we obtain the required indices: 

ae (hkl) = (123) 
Figure 3.17 

NOTE: The choice of reference faces and of the parametric face is arbitrary. 
If this choice is to coincide with the simplest unit-cell of the crystal, the 

symmetries which appear on the stereogram must be used, remembering that 
low index faces belong simultaneously to several zones. 

Geometric crystallography alone cannot provide a definitive answer to the 

problem of determining the unit-cell; only the ratios of the lengths of the sides 
are available by optical methods. The use of X-ray crystallography techniques 

is necessary to obtain absolute values of the parameters and to confirm the 

accuracy of choice of unit-cell axes. 
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‘7 EXAMPLE OF MEASUREMENTS 

The interfacial angles of a crystal.of gypsum (CaSO4.2H2O), measured with a 

two-circle goniometer, are as follows: 

Table 3.1 

Faces d p q h e m n s 

7) 0° 90° 270° 180° O° = 34.58° -325.41°  145.41° 
p 90° 90° 90° 20 8.96° 90° 90° 90° 

Faces t f g i J 

Y 214.58 331,61 28.39. 7151.61 (208.39 
p D0: 41° 41° NBSP = 5 BE 

7.1 Plotting the Stereographic Projection 

!Line of 
O }projection 

i 
[100] 

Projection on (010) 

Figure 3.18 

7.2 Analysis of this Stereographic Projection 

SYMMETRY ELEMENTS: The plane containing the faces d, e and h is a plane of 

symmetry bringing into relation m and n, q and p, s and t, f and g and so on. 

The directjon OB corresponds to a twofold axis relating m and s, g andi, n and t. 
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O is a centre of symmetry: the crystal belongs to the class 2/m (monoclinic). 

The counterpart of face e cannot be measured as it is the face by which the 

crystal is attached. 

We therefore choose d=(100), p=(010), e=(001), g=(111). 

INDEXING THE FACES: Face m belongs to the zone containing e and g; from 

this we deduce that for the face m: h=k. m also belongs to the zone whose axis 

is [100], hence /= 0. m is a (110) face. Using symmetry we can index all the 

other faces: s = (110), i=(11 1), h = (100) and so on. 

UNIT-CELL PARAMETERS: In the spherical triangle ABC the angle B, equal to 

n—B, is t/2—p.; hence B=1/2 + pe= 98°58’; a=y=2/2. 

The angle y is equal to pm which is 34°35’. yp, = 2/2—y~, = 55°25’. 

a/b = sin vy, / sin yg, = 0.6893 

Using the Wulff net, we find that the circle of the zone (010)-(111) corresponds 

to an inclination close to 37°30’. Hence y3 © 28°30; w4 © 52°30’ and c/a°~0.60. 

A rigorous calculation is more complex. The following method can be used: 

Consider a hypothetical face w (010) and 

construct WDG, a spherical triangle 

formed from the poles of w, of g and by 

[001]. 
The angle W is equal to m/2. 

cos W = —cosG.cos D+ 

sin G. sin D. cos g = 0 

Hence: cot G = tan D. cos ¢ 

Figure 3.19 The exact value of 3 is therefore 28°26’. 

8 STEREOGRAPHIC PROJECTIONS OF CUBIC 
CRYSTALS 

Cubic crystals contain oblique symmetry elements, and when stereographic 
projections are constructed and interpreted, certain features become evident. 
Take for example a crystal containing the forms {100} (cube), {111} 
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(octahedron) and {110} (rhombic dodecahedron). Figure 3.20 shows how the 
projection of face (011) is constructed, together with plane D which is both the 
plane of the zone axis [011] and an oblique plane of symmetry. 

Figure 3.20. Stereographic projection of the poles of the northern hemisphere and plane 
D (full line: northern hemisphere; dashed line: southern hemisphere). 

The following three projections may be used for all cubic crystals. In this 

system, the position of the poles is independent of the unit-cell parameter, and 

it is therefore possible to construct the stereographic projections a priori. 

In figure 3.21, a fourfold axis has been positioned normal to the plane of 

projection (standard projection). For the sake of clarity, only selected poles of 

the northern hemisphere are shown. The reader could, as an exercise, finish the 

projection and calculate the interfacial angles y and p. 
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> 110 

Figure 3.22. Cubic with fourfold axis normal to the plane of projection 
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In figure 22, the projection has been chosen to show the threefold axis. We 

Shall see later that for trigonal crystals, the general arrangement of the poles is 

identical, but that their positions then become dependent on the angle « of the 

unit-cell. 

The last projection (figure 3.23) is less often used; it corresponds to a crystal 

with a twofold axis normal to the plane of the projection. Using the properties 

of the lattice we can show that the poles of the faces (001), (111) and (110) are 

contained in the plane of the projection. 

112 eo” 
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Figure 3.23. Twofold cubic axis normal to the plane of the projection 

O CHARACTERISTIC ANGLES 

Figure 3.24 

Figure 3.24 shows the various angles between 

the symmetry axes of the cubic system. 

These angles can easily be calculated from 

the dot product of rows parallel to the axes. 

Thus the angle between the threefold axes 

[1 1 1] and [1 I 1] (rows of modulus a¥V3) is: 

(a+b+c)(—a—b+c) 4 

al3.a/3 
(i= aAlGnCOs 

= 109 28 10 



Chapter 4 

Symmetry Operations in 
Crystal Lattices 

1 DEFINITION OF A SYMMETRY OPERATION 

The fundamental postulate of geometric crystallography is that the crystal 

lattice remains unchanged during certain ‘displacements’ in space, i.e. it is 

transformed into itself with no deformation. These displacements are called 

tiling operations or symmetry operations. The displacements which have the 

effect of bringing the lattice back to coincide with itself are, if we limit ourselves 

to symmetry of orientation: 

—translation 

—rotation 

—inversion 

—improper rotation (rotation combined with inversion). 

If we include symmetry operations of position, we must add: 

—rotation combined with translation. 

1.1 Translation 

In this symmetry operation, there is no fixed point 

(except for the null translation). Thus in a crystal 

lattice, translations only constitute symmetry opera- 

tions if the lattice is infinite. 

The vector T of the translation must be a vector 
equivalent to a linear combination of the base 
vectors of the lattice so as to leave the latter 
unchanged after the operation. In this symmetry 
operation, the initial and final objects are strictly 

Figure 4.1 superimposable. 
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An operation which leaves the initial object unchanged will be denoted ‘E’; this 
is the identity operation. 

1.2 Rotation 

Rotational symmetry operations leave a set of points (the rotation axis) 
unchanged. Figure 4.2 left shows a rotation in two-dimensional space (the 
plane of the rotation). In this case there is only one point unchanged: the centre 
of rotation. 

Rotation axis 

Figure 4.2 

Rotations are defined by the axis of rotation u and the angle of rotation y. 

They are usually denoted: R(u, yy). 

If py =2z/n (n being an integer), we refer to an n-fold rotation axis (or an axis 

of order n) and we denote this C,. After m operations we have the initial 

situation again: (C,)"=C),=E 

For n=2 we have a twofold axis (denoted C2), threefold for n=3 and so on. 

In a rotation (figure 4.2 right) the initial and final objects are strictly 

superimposable after a series of infinitesimal rotations. 

1.3 Inversion 

Inversion! I is a symmetry operation which transforms a vector into its inverse, 

leaving only one point in space unchanged (this point is the centre of 

symmetry). 

Iu) = Lu = —u 

'Do not confuse the inversion referred to here with the geometrical transformation of the same 

name used in stereographic projections. 
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i 

“ 
-U 4 y 

_| Inversion centre 

or. 
Figure 4.3 

Note that after an inversion, it is not possible by a continuous 

transformation of space (and hence with no change of orientation of that 

space) to have the initial and final objects perfectly superimposed. (See figure 

4.3 left where the arrow on the initial object is pointing forward while that of 

the final object is pointing the other way). 

The final object is the mirror image of the initial object (like right and left 

hands). Such objects are known as ‘enantiomorphs’. 

1.4 Products of Symmetry Operations 

In the study of crystallography, combinations of symmetry operations are 

required, and a symmetry product is the symmetry operation resulting from the 

successive application of two elementary symmetry operations. In general, the 
final result depends on the order in which the two operations are carried out; 
the product is then non-commutative. 

1.5 Review of Some Products 

O ROTATION-INVERSION PRODUCT 

An inversion I is followed by rotation through an angle y about a rotation axis 
u which contains the centre of inversion. 
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This product of rotation and inversion is 

denoted R 

LR(wg) = R(u,g).I = Rug) 
In this particular case, performing the opera- 

tions in the reverse order gives the same final 

result. 

Inversion is in fact commutative with all 

rotations. Again, the initial and final objects are 

enantiomorphs. 

If p=2.n2/n (where nv is an integer), the product 

Figure 4.4 operation is denoted C,, or I). 

_After performing the operation n times, we obtain the initial element 

(C, =f, =). 

© THE MIRROR PLANE: THE PRODUCT OF INVERSION AND A TWOFOLD 

AXIS 

Two-fold axis ee Two-fold axis 

= ars 
te 

Be Fis 
ae ¢ 

are ¢ 
tke ’ 

, 
f 

¢ 

2 

, 

Figure 4.5 

The product of a twofold symmetry axis (C2) and an inversion whose centre is 

located on the axis, denoted C, = I.R(u, 2), is a plane of symmetry or mirror 

plane (see figure 4.5 left), also denoted o* where: 

o6 =1.C, =I1.RQ, z) 

_ *Horizontal mirrpr planes are denoted ch and vertical mirror planes ov. 
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This mirror plane is perpendicular to the axis and contains the centre of 

inversion. Figures 4.5 right are stereographic representations (with the twofold 

axis normal to the plane of the figure or in the plane) of this product, which is 

commutative; 

R(u, 2) 

The result of the sequence: ee rmen’ ¢ 

R(u, 2 

is identical to that of: 1 = 2b ai 3 

The relation ¢ =I.C) shows that the presence of the third symmetry 

operation is implied by the presence of the other two. 

O PRODUCT OF C, AND A MIRROR PLANE PERPENDICULAR TO 

THE AXIS 

This product is denoted S(u, vy), u being the vector of the C, axis and » the 

angle of rotation. This operation is sometimes called ‘roto-reflection’, while 

that of rotation and inversion is called ‘roto-inversion’. 

S(u, v) = o.R(u, vg) = R(u, ¢).o 

S, = 6.C,= Ca and o= UR a) 

S(u,g) = I.R(u,z).R(u.g) = R((ug + 2) 

Thus a ‘roto-reflection’ is a ‘roto-inversion’ through an angle o+ 7. 

In descriptions of symmetry properties, one or other of the two systems may 

be used. Generally, physicists use the ‘roto-reflections’ of the Schénflies system 

whereas crystallographers tend to use the ‘roto-inversions’ of the Hermann— 

Mauguin system. 

3 
: Oni ® 

: H / i2 , 
S4axis / S2axis / \ 

; ro) 

1 x 1X 

Figure 4.6 

As an example, figure 4.6 shows the stereographic projections of the S4 and 
So axes. 
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For the S4 axis, a rotation of 2/2 (1=>2) followed by the operation of a 

/ mirror plane normal to the axis (23) is seen to be equivalent to inversion 

| (l= 2’) followed by rotation through 32/2 (2'>3). We thus have S} = 1} and 

Py pase of the values of the rotation angles we can show that 

Sj = = Sz! = = |}. Since Si and 1% are equivalent to a twofold axis, for n =4 roto- 

inversions correspond to roto-reflections. 

—We can similarly show the correspondence between S¢ and Ij and between S; 

and I,!. 

—An S¢ axis is equivalent to a C3 axis normal to a mirror plane. (The S2,, axes 

where n is odd are equivalent to a C, axis normal to the mirror plane). 

_ —The Sp» axis is equivalent to a pure inversion I (figure 4.6 right). 

—An S; axis is equivalent to a mirror plane. 

,o PRODUCT OF TWO INTERSECTING TWOFOLD AXES 

Consider two twofold axes C and C%, intersecting at O and defining a plane I. 

| These two axes are at an angle » to each other (figure 4.7). 

Their product is a rotation through 2y about an axis u normal at O to the 

plane I. The direction of rotation is that in which we encounter the first axis 

_ (written to the right) in the product with the second (written to the left). 

If the rotation angle vy is equal to z/n where n is an integer, the rotation axis 

| is a C, axis. We can then write: C, = C>.C. 

Furthermore, C).C) = C} = E, so on multiplying 

on the right by C) the two terms of the relation 

above, we have: 

ChGp= ©) C10, Cx 

¥ Similarly: C5.C, = C> 
; The inverse element of the product is thus: 

ORC) S.C. C6 = Ce 

where: C,!.C! = Cl.c;! =E 

Figure 4.7 Note that (2) is below the plane of the figure. 

Thus the product of two intersecting twofold axes at an angle of 7/4 is a C4 

maxis. ‘ 
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O PRODUCT OF TWO INTERSECTING MIRROR PLANES 

Consider two mirror planes o and o’ whose planes 

. intersect along a line u. These two planes are at a 

| dihedral angle of y. Their product is a rotation by 

’ angle 2y about the axis u. The direction of this 
rotation is that in which we encounter the first axis 

in the product with the second. 

If p=2/n, the axis is C,: o’.c=C, and we also 
: have: C,.c=a’ and o’.C,=o. 

Figure 4.8 Note that (2) is above the plane of the figure. 

O PRODUCT OF A C, AXIS AND A C,, AXIS PERPENDICULAR TO C, 

We assume that y=7/n, n being an integer. The results above show that the 

product is a twofold axis perpendicular to the C,, axis at an angle of + y/2 with 

the initial twofold axis, the sign depending on the order of the factors in the 

product. The same analysis can be performed for the product of a mirror plane 

by a C, axis contained in the mirror plane. The product is a mirror plane, also 

containing the axis, and at a dihedral angle of +y/2 to the initial mirror plane. 

If there exists one C, axis normal to a C, axis, then there exist n axes. 

Similarly, if there exists one mirror plane containing a C,, axis, then there 

exist n axes. 

CO PRODUCT OF TWO ROTATIONS ABOUT INTERSECTING AXES 

Consider the two rotations R(OA, 2~) and R(OB, 2) whose axes intersect at 

O. We let {AOB} = W. Consider the sphere of centre O and A and B the traces 

of the rotation axes (rotation poles) on this sphere. 

Al N The product of the two rotations is a 

\ sk rotation about an axis OC through an 
| WS C ce angle 2y. We draw on the sphere the great 

uae BN circles AC at an angle + « to AB and BC an 

| A eh, PCN angle —f to AB. Similarly we draw the 
" e : ¥ B t > B great circles AC; and BC; at angles —« and 

LO eae + B to AB. The rotation R(OA, 2a) brings 
SOWA op ae C to C; and the rotation R(OB, 2) then 

brings C; to C. C is unchanged in the 
operation and is therefore the rotation axis 

Figure 4.9 product. 
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On applying the product of rotations to the vector OA we obtain the vector 

|. OA;, producing a rotation angle of 2y. In the spherical triangle ABC, the 

angles ~ and y are supplementary. From trigonomettic relations we have: 

cosy = —cos¢g = cosa. cos f — sin. sin 8. cos U 

This product is not commutative; to achieve the reverse operation, the trace 

of the rotation axis will be C; and the angle of rotation produced is again + 2y. 

NOTE: If both axes are twofold (2a=2f=7), we find the rotation angle 

product is equal to 2W. 

1.6 Proper and Improper Rotations 

A pure rotation can be replaced by a continuous transformation of space in 

| which spatial orientation is unchanged. An object and its image after the 

operation are strictly superimposable. Such a rotation is called a proper 

rotation. On the other hand, operations such as inversion, which change the 

orientation of space, and for which object and image are not superimposable, 

; are called improper rotations. 

1.7. Product of a Rotation and a Translation 

We denote by (R, T) the product of a rotation R(u, y) and a translation of 

vector T. In this operation, the vector X is associated with its image Y such 

that: 

Y =(R,T).X 

NOTE: If we apply in turn (R, T) then 

(R’, T’) to X we obtain: 

x =(R, T)X 
X” =(R’, T)X’ = (RET arD.x 

(R’, T’).(R, T) = (R’.R, R'.T + T’) where: 

Figure 4.10 R’ R=Ru, ¢+¢) 

O EQUIVALENT OPERATIONS 

If we perform a translation of the origin of the initial frame, characterised by a 

vector S, this translation modifies the operator (R, T) and, in the new frame, 

we have: Y’ = (R’, T’).X’. 



50 Basic Crystallography 

The vector S is chosen such that (R’, T’) is equivalent to an operator (R”, 0) 

containing no translation operation: 

(R’, T’) = (R", 0) = RW, ¢) 

In the change of frame we have: X = X’ +S. 

If E is the identity rotation operation, this relation can be written in the . 

form: 

X = X'+S+(E,S).X’ => X' =X-S=<4, —S).x 

yy’ =, - S).¥ = (Ro, bak 

Yy’ = (E—S).Y = €E, —S).(R, T).X =, —S).(R, T).E, S).x’ 

(E, —S).(R, T).(ESS) = (8, FT) 

Taking the product of the three symmetry operations, we have: 

(er) (RRs 25 

We look for the vectors S which, if possible, enable elimination of the 

translation part T’=R.S—S + T from the product operation (R’, T’); for if T’ 

is null, the product of the rotation R(u, p) and the translation T is equal to a pure 

rotation R(u', yp). 

We can decompose the vectors S and T into a component parallel to the 

rotation axis u and a perpendicular component: 

This decomposition of the translation vectors gives rise to the following four 

possibilities for composing a rotation, which can be proper or improper, with 

parallel or perpendicular translation. 

O THE PRODUCTS OF A PROPER ROTATION AND A TRANSLATION 

@ S parallel to u. 

In this case, the effect produced by the 

rotation upon the translation vector is the 

invariant R.S// =S,/. It is then impos- 

sible to eliminate T’ by changing the 

origin. Successive images lie on a helix of 
axis u and pitch T. 

Figure 11 corresponds to an axis R(u, y 
= 2n/3),T (C3 helical) applied four times 

Figure 4.11 in succession. 
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we | The product of a rotation R(u, ~) and a translation T parallel to the 
rotation axis u is a ‘screw axis’ with axis u and an angle equal to ¢. 

In a crystal, a screw axis can only be a symmetry element if the values of y 
and T are compatible with the lattice tiling operations (In figure 4.11, if 1 is a 
node, 4 must also be a node). 

@ S perpendicular to u. 

Figure 4.12 is drawn in the plane 

perpendicular to the symmetry axis u at 

A containing the vector T. 

If S is such that S, —RS, =T, 

then: 

R(u, g),T = R(v, ¢),0 

By taking B, the trace of v on the plane 

of the figure, on the bisector of T, with 

the angle (BAC) = y/2, we transform 

the product R(u, y),T into a pure 

rotation through an angle y, but with 

Figure 4.12 the vector v//u as axis. 

In this product, B is an invariant point and BH= Tanto) 

The product of a rotation R(u, vy) and a translation T, normal to the 

«# | rotation axis u, is a rotation through an angle ~ about an axis v lying on the 

bisector of the vector T. 

O PRODUCT OF AN IMPROPER ROTATION AND A TRANSLATION 

@ S is parallel to u. 

It is thus always possible to eliminate T’ by changing the origin. 

(& | There are no improper screw axes. 

@ S is perpendicular to u. 
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Figure 13 is drawn in the plane perpendicular 

to the symmetry axis containing the vector T. In 

the general case S — R.S # 0 can be eliminated. 

On the other hand, in the special case of a 

mirror plane [axis C) =o = R(u, 2)], we have: 

RS S=S=RS 

B It is therefore impossible, in the product of a 

translation and a mirror plane, to eliminate the 

Figure 4.13 translation by changing the origin. 

ce | The product of a mirror plane and a translation is a glide plane. 

In a crystal lattice, only values compatible with the lattice tiling operations 

are allowed for the glide vector T. 

2 THE MATRIX REPRESENTATION OF SYMMETRY 
OPERATIONS 

2.1 Rotation Matrices 

Consider a vector OP and its image after a rotation operation OP’. This 

rotation can be represented by a matrix which enables the coordinates of P’ to 

be calculated in terms of those of P. In a cartesian coordinate frame, rotation 

matrices? are particularly simple. If OQ, the projection of OP on xOy, is at an 

angle 0 to Ox, its image OQ’ after rotation through an angle y about the axis 
Oz will be at an angle 0+ ~ to Ox. The coordinates of the point Q are x=Rcos 0 

and y=Rsin@, while those of Q’ are x’‘=Rcos(0+y) and y’=Rsin(@+ y). In 
cartesian coordinates, the rotation matrix about the axis Oz is then written: 

cosp —sing 0 

R(v) =| sing cosp 0 
0 0 1 

The determinant of this orthogonal matrix is equal to +1 and its trace (the 
sum of the terms on the main diagonal) is equal to: Tr + 2.cosy. 

A : : : 
Do not confuse rotation matrices (new coordinates of a point in the frame after rotation) with 
frame-change matrices related to a rotation of the axes (new axes which are functions of the old 
axes). 
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In linear algebra, it can be shown that the determinant and the trace of a 

matrix are invariant during a change of coordinate frame. 
ce 

The determinant A of the matrix representing a proper rotation is always 
equal to +1. 

2.2 Inversion Matrices 

In a cartesian frame, the inversion matrix is written: 

—1 Or FO 

i= 0-1 0 

0 0 =-1 

Its determinant is equal to — 1. Since an improper rotation is the product of 

a proper rotation (A =1) and an inversion (A = —1), it can be represented by a 

matrix whose determinant is also equal to —1. 

2.3 Affine Transformations 

In general, a geometrical symmetry operation can be represented by an affine 

transformation of the type: 

x} em Uap 1A x] ty 
/ 

Xo f= tra fo 3 |-| XP FL 
/ 

x3 ay Tay 153 X3 by 

which can also be written: 

x =Rx+t 

The elements rj of the matrix R represent a proper or an improper rotation 

and ¢; a translation. 

2.4 Homogeneous Matrices 

To represent symmetry operations, homogeneous matrices can also be used; 

these are 4x4 matrices which enable the new coordinates to be calculated in 

terms of the old ones according to the relation: 
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fy te Ta 9 

ry 22 123 9 

Tome 37 ges 0 
by en iyte teloubeyd 

(x4 x4 x4 1) = 2 3 D:- 

The elements r; represent a proper or an improper rotation and ¢; a translation. . 

3 THE SYMMETRY AXES POSSIBLE IN A CRYSTAL 

LATTICE 

The postulate of the invariance of crystal lattices implies that during a rotation 

through an angle y characterised by a matrix (Ry), any lattice vector (which 

will have integer coordinates) will be transformed into another lattice vector 

which also has integer coordinates. Thus, all the elements of the matrix (Ry), 

expressed in the frame of the base vectors, are integers and hence the trace of 

(Ry) is also an integer. The trace of a rotation matrix, which is unchanged in 

any change of frame, is equal to: 

Tr(R(g)) = £(1 + 2.cos¢) 

The + sign corresponds to proper rotations and the — sign to improper 

rotations. The values of y compatible with the nature of the crystal lattice must 

satisfy the relation: 

1 + 2.cosg = m (integer) 

which possesses only five solutions of the form y = —2z/n, where n=1, 2, 3, 4 

and 6: 

Table 4.1 

nM=s3 cosp = +1 Dis) TE eee Identity 

m= 2 cosp = +1/2 yp = +2n/6 Ce 
qe Il cosp = 0 yp = +2n/4 C4 
m= cosp = —1/2 p27) 3 C3 
m=-—I1 cosp = —1 yp = 2n/2 Cy 

= The only possible symmetry axes in a crystal lattice are thus, apart from 

identity, 2, 3, 4 and 6-fold axes. 

The following equivalent proof can also be used: 
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Consider a lattice vector T 

normal to the axis of rotation 

of the angle y. If O is a lattice 

node, the ends of the 4 vectors 

1 St VSR: o)sierend 
a t a v1 Che T'-T" “a T’=R(u,-y).—T are also 

i ae AT nodes. 
~ va The vector T’ — T” is thus a 

@ a a Pp lattice vector parallel to T such 
+7 0 T that: 

Figure 4.14 T —T’ =mT (man integer). 

By projection onto an axis parallel to T we obtain: 2.cos y =m. 

It is possible to tile a plane with parallelograms, rectangles, squares and 

regular hexagons. On the other hand, tiling is impossible with regular 

_ pentagons, or regular polygons with more than six sides. 

4 SYMMETRY OPERATIONS AND SYMMETRY 
~ ELEMENTS 

Symmetry operations are transformations of space in which an object is 

transformed into a corresponding object strictly superimposable on the 

original or its mirror image. If we consider only orientation symmetries, the 

Operations comprise pure rotations, reflections, inversion, roto-reflections and 

roto-inversions. In crystals, the possible values for the order of a rotation are 1, 

2, 3, 4 and 6. In all of these symmetry operations, there exist fixed points 

(unchanged in the operation). 

The set of fixed points (points, lines or pune in a symmetry operation is 

called a symmetry element. 

These symmetry elements are used in the graphic representation of the 

Operation with which they are associated. The most effective way of 

representing symmetry operation in a crystal is to draw the stereographic 

projection of its symmetry elements; those involved in crystallography are: 

—the centre of symmetry associated with an inversion, 

—the mirror plane associated with reflections; 

—the proper (C,,) or improper (S,,) rotation axes, which may be interpreted as 

the combination of several simpler symmetry elements (mirror plane, 

inversion,’axis with a lower index). 
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Examples of symmetry elements 

; a a 

Na Pe 
inversion or Two-foid rotation Four-fold rotation 

centre of symmetry axis : C2 axis - C4 

V4 | | X 
K e 

(2 \ 
yr 

Mirror plane Two-fold rotation Four-fold inversion 
axis : C2 axis : S4 

aw mM A ee 
eo” Glide plane Two-fold screw 

axis 
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Crystallographic Point Groups 

Numerous classification schemes for the crystallographic point groups have 

been developed since the work of Bravais, and here we have chosen the method 

of Burckhardt!. This elegant method, which only uses elementary notions of 

group theory, is easily handled by non-specialists. The review below is for the 

benefit of readers unfamiliar with group theory; the examples given all relate to 

crystal symmetry operations. 

1 GROUP STRUCTURE 

1.1 Definitions 

A set G of elements X, Y, Z... is a group if: 

@ it is subject to an internal associative composition law which relates to the 

ordered couple (X, Y) of elements in G, another element from G, called the 

product, and denoted X.Y (e.g.: The product of two rotations). 

This product may be non-commutative (X.Y#Y.X). If the product is 

commutative, the group is called an abelian group. 

@ G contains a neutral or identity element E such that: 

Vice Gor oN at 

@ Any element G can be associated with another element in the set, called the 

inverse of G: 

vx €G, IX? €G with: XxX’ =E=X7)X 

(e.g.: X = Rotation K(u, ¢); X7! = Rotation R(u, — ¢).) 

The order g of a group G is equal to the number of elements it contains. 

a... BURCKHARDT Die Bewegungsgruppen der Kristallographie, Basel (1947). 
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O EXAMPLES OF GROUPS: 

@ Consider a vector r. The two operations E and I form the group {E,]}: 

E: identity (( =E.r) I: inversion (—r = Lr). 

@ Group {E, C} 

E: identity C>: rotation R(u,z) about an axis in R3. 

@A group formed from an element and its powers {A, A? = Aca 

A3... A” =E} is called a cyclic group. The rotations 27/n (n an integer) 

about an axis are C, cyclic groups. For example, the group C3 contains the 

elements: 

C; = {C! = R(u, 27/3), C3 = Rw, 42/3), C= hig 2t) = EB} 

@The groups formed from A and B and containing the elements 

eA ae eb, BB A A”-!_B...} are dihedral groups Dy. 

Thus the 6-element group: 
a | WH 
Sek. Ee 
> (Cl aN 2n/ sec. = ys 

ee As Co = R(u, 2), C3.Co = RC, 2), 

te Cc, = C).C3 = Kw, T)} 

is the dihedral group D3 (formed from a C3 and an 

Figure 5.1 orthogonal C).) 

NOTE: groups are abstract objects, but we can associate representations with 

them. For example, for a group composed of symmetry operations, the 
matrices associated with each element in the group form a representation which 
is related to the choice of origin and frame used. 

cg | tt ts important to make the distinction between a symmetry element and the 
associated operator(s) which are element(s) of the group of symmetry 

operators. For example, in a group containing a fourfold axis (a symmetry 
element) ia ¢ 
ona ) there are the four operators C4, Cz, Cj, Ci = E (elements in the 
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P12 Subgroups and Co-sets 

& Suppose G is a group of order g. A subset H of Gris a subgroup of G if H is 
itself a group subject to the same rule of composition defining the group G. 
EXAMPLE: C; is a subgroup of D3; 

@ Let G be a group of finite order g and Ha subgroup of G of order h distinct 
from G; there exists at least one element A of G, not contained in H. 

WIG, AKVSGWAX ¢ H 

All the A.X (when X describes H) are external to this subgroup and form a 
set of h distinct elements, denoted AH and called a co-set. 
G can be decomposed into a union of disjoint subsets, defined from H: 

G=EH+AH+BH+... 
Ai Bete Beal ... 

_ The order h of a subgroup H is a divisor of g, the order of the group 

(i = g/h). iis the index of the subgroup H with respect to the group G. 

EXAMPLE: H = C;3 is a subgroup of index 3 of G = D3. (D3 = E.C3 + C2.C3) 

1.3 The Orthogonal Group O(3) 

We consider the set of rotations leaving one point unchanged. The 

determinants of the matrices associated with these matrices are equal to +1. 

We also consider the inversion operator which transforms the vector r into —r 

and which is commutative with the rotations. The set of rotations and rotation- 

inversions makes up the orthogonal group O(3). 

1.4 Direct Product of Two Subgroups of a Group 

Suppose G is a group and H and K are two subgroups of G. G is said to be the 

direct product of these two subgroups if: 

@ All elements g of G appear as the product of an element A € H and an 

element k €K:g=/A/.k; 

@ This decomposition is unique for a given element g of G; 

@ The elements of H and K are commutative. 

The usual notation for the direct. product is as follows: 

e G = He Ke (HEC GakeGG) 
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2 PROPER AND IMPROPER POINT GROUPS 

These are the subgroups of the group O(3), and there are an infinite number. 

Here, we shall list the crystallographic point groups, i.e. those compatible with 

the symmetry of a crystal lattice. 

We distinguish two types of group: 

@ proper groups which only contain rotations (determinants of the matrices 

are equal to +1); 

@ improper groups which contain rotations (determinants of the matrices are 

equal to + 1) and rotation-inversions or roto-inversions (determinants of the 

matrices are equal to —1). 

OG THEOREM OF IMPROPER GROUPS 

In an improper group G;, the proper operators constitute a proper subgroup of 
index 2. 

Consider an improper group G;. In G; there exist proper symmetry 

operations (at least the identity operation E). Consider the proper operators 

in G/2BPR, Ro) Ra they P Teonstitutes”’ a) Sproper * ‘subgroup: 

G, = {E, R, R; .. . Ry} the determinants A of whose matrices are equal to 41. 

_ Consider Re an improper element, (A=—1) and R@! its inverse: 

R.R7! = E; (RY is a proper element (since A = +1) hence (R)? = R; 

We now form the co-set associated with the subgroup G,: 

R.G;'= {ReRRe jee ReRee eRe Bs | 

Consider R, any improper element: 

R.R’ isa proper element (A = —1.—1=+1)>R.R’=R, 

RURR=RUR, but  R1=R.Re 

R' =R.RR, =RR,, 

R’ belongs to the associated co-set R. G, and all the improper elements of G; 
belong to the co-set associated with G;: 
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O TYPES OF IMPROPER GROUPS 

@ Improper groups containing an inversion 
The decomposition of G; into co-sets can be written G; = G, + LG, 
The group {e, I}, like G,, is a subgroup of G;. G; appears as the direct 
product G; = {E, I} ®@G,. This relation leads to an obvious method for 
constructing improper groups containing the inversion. 

© Improper groups not containing the inversion 

Consider R (#1) as the element chosen for the second co-set in the 
decomposition of G;, hence G; = G,+R.G, (I ¢G;). Now, R=LR 
(R =I.R), where R is a proper operation not contained in G,; it is not 
contained in G; either, since its inverse R~! would also be contained 
together with R.R7! = I.R.R7! =I, which would be contrary to the initial 
hypothesis. 

Consider the set: G’ = G, + R.G,; we show that it constitutes a group of the 

same type (It is said to be isomorphous with G)). 

Let P,Q... be the elements of G,. By hypothesis G; is a group, hence: 

(R.P).Q, Q(R.P) € G; and ERG, 

(R.P)(R.Q) € G; and €G, 

gear VP, Q €G, we have: 

R.P.Q = I(R.P.Q) and Q.R.P =1(Q.R-P) € RIG, = KPO, OR Pe RAG, 

Therefore: 

(R.P).(R.Q) = (I.R.P).(ILR.Q) = (R.P).(R.Q) € G, 

And finally: 

(RP)ae RIGJ=> @eP)ixe RG; 

G’ thus forms a group which contains only proper rotations. 

Construction of the improper groups G; which do not contain the inversion 

could be done by starting with proper groups G’ which admit an invariant 

proper subgroup G, of index 2, replacing the element R, the factor of the 

second co-set of the decomposition, by the product of R and inversion. 
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3. ENUMERATION OF POINT GROUPS 

3.1 Method of Enumeration 

To enumerate the crystallographic point groups, it is only necessary to 

determine all the proper groups and follow the above reasoning to deduce the 
improper groups. 

The proper groups correspond to rotation axes. Since the rotation axes_ 

compatible with lattice symmetry are the 1, 2, 3, 4 and 6-fold axes, the 

crystallographic point groups must contain the cyclic groups C), C2, C3, C4 and 

Cs. The purpose of enumeration is to find which associations of rotation axes 

C,, Cm... are compatible with a group structure. 

NOTATION: We consider a sphere of centre O, the meeting point of the 

rotation axes of the group under study. A ray coming from O crosses the sphere at 

P. We denote by |P> the vector OP. By analogy with the stereographic 

projection, P is called the pole of the ray. 

3.2 Finding Proper Groups of Order n 

OG CONJUGATE POLES 

Let 'C, be an axis of order n whose operators belong to G,, and |'P;> its pole. 
The group of rotations about this axis is: 

‘Cpe iEe Re Rn. Re 

This is a cyclic subgroup of index j, =n/ny. 
If all the symmetry operations are applied to the point M, we obtain (n,—1) 

points different from M, hence (n; — 1) different identity operations correspond 
to the pole |'P; >.(With a four-fold axis are associated Ci, C3; Ce Coa ae 
We decompose G, into co-sets associated with the group !Cy1: 

Gp = (Cu +*Ro' Cu +... +'RI1Cy} IR: € G,, 'R; ¢ Cy 

The operator 'R; is a rotation about an axis with a pole different from |!P\> 
wie brings this pole into a position |'P,>, equivalent to |'Pj>. The pole 
| Pj> is thus also the pole of an axis of order Ny. 

Using the (j;—1) operators 'R;, we can construct (j1—1) distinct poles 
equivalent to |'P\>. 

Let us suppose 

'R;.|'Pi> = 'R,.|!P,> 

Then 

)P.> = E.|'P> =('R)'R,.|'Pi> = CR)" RPS 



Crystallographic Point Groups 63 

| Hence 

('R,)1.'R; € 'Cn (Since the product leaves |'P,> unchanged) 

As the group is cyclic, we have: 

GR) R= CRiy andeR, CRje R= 'RACR PE 

"Ry = RiCRyY eR Cy 

This is contrary to the hypothesis, therefore: 

'R;.|'Pi> & 'R,.|'Py> 

The set of j poles |'P;> forms a ‘conjugate’ system of poles defining axes of the 

same order. 
For example, we shall see that in group 432 there exist six poles which 

correspond to the three tetragonal axes. 

O PARTITION INTO CONJUGATE SYSTEMS 

Let 'C, be an axis of order 7) whose operators belong to G, and whose pole 

|?P;> does not belong to the conjugate system of |'P;>. This axis defines a 

cyclic subgroup of G, of order nz, 7C; and with index j,=n/no. 
From *C; it is possible to define a new system of conjugate poles formed 

from the set of 2 ?Pj> poles. The two systems have no common pole: for if 

'R;.|'Pi> =?R,|°P; we would then have: 

CRoe GR) {Pe ares 

>P\> would be one of the poles |!P;>, which is contrary to the hypothesis. 

Using this method, all the poles of axes can be partitioned into h conjugate 

systems. 

O ENUMERATION OF PROPER ROTATIONS OF Gp 

For the system of poles |'P;>, there exist (n;—1) different neutral-element 

operators per pole. There are j; =n/n; poles, i.e. j;/2=n/2n, rotation axes and 

therefore n.(n, — 1)/2m different identity operators of order m;. The group C, is 

trivial and so summation over the h sets of poles gives: 

h 

ered n,—1)=n-1 (1) 

’ n>n,>2 (2) 
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Dividing both sides of (1) by n/2 gives: 

Ba y) 

ig ey = 3 pee 242 (3) 

The conditions imposed by (2) are very restrictive: 

Sd 
h fet; 

22 = pute oS 5 ‘ a die, = 2 

Hence: h 

h-2+-< 5 since / is an integer we have: h<3 

® 

tf ee 
nZ2n, > -> ee 

ae I aa chew 

Hence: aS 

h-2+-2- since fh is an integer we have: h>2 
neon 

The only possible values for the number h of conjugate systems are 2 and 3. 

For the case h=2 

Equation (3) gives: 

Leael : ' 
ce + rea which has the unique solution: 

1 nN 

ny =n=n 

There are two systems of conjugate poles each formed from a single pole, 

which corresponds to an n-fold axis (the axis crosses the sphere at two points). 
This cyclic group can have, a priori, any order whatever, but to enumerate the 

crystallographic groups we need only the groups Cj, C2, C3, C4, Co. 

We can draw up a table of these five groups, showing the two crystal- 

lographic notations in common use: 



Crystallographic Point Groups 65 

Table 5.1. Proper Groups 

Cyclic group Schonflies ; Hermann—Maugin 

Cy C, 1 
C2 C) Z 
C3 C3 3 

Cy 4 C2@C2 C4 4 
Cop=C3@C? Ce 6 

we | It is suggested that the reader should construct the stereographic projection 

of the symmetry elements of groups being studied and check the results 

against the illustrations in the next chapter or the atlas. 

For the case h=3 

Equation (3) is written: 

l 1 1 2 
—4+—+4+—=14+- 
ny n2 n3 n 

_@ Let 7, be the smallest of the nj: 

t Bie 5 Deo B 
—4+—4—<=S314+-<= 
mn mW Mm NY firey 

The left hand side is strictly greater than | and the right hand side is greater 

than 1 if 1; is less than 3, hence: mj =2. 

@ Let > be the smallest of the 1, n3: 

1 1 2. 1 
+—<-> 

Ny n3 ny 2) 

but 7 is strictly less than 4: m.=2 or 3 

@ h=3, ny =2, m.=2 

Equation (3) gives n3=n/2. The indices of the subgroups will be: 

fiHnf[2 fpsnf[2 fp=2 

The pole diagram thus contains: 

—2 poles diametrically opposed to each other which are the poles of an axis 

of order n3=n/2; 

—2 conjugate pole systems each containing n/2 twofold axis poles. 
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These twofold axes are equivalent if j is odd (D3) but form two different 

classes if j is even (D2, D4, Deo). 

These groups are thus dihedral groups Dy. In this way we obtain four 

additional crystallographic proper groups: 

Table 5.2. Dihedral Groups 

Dihedral group Sch6nflies Hermann—Maugin 

D, D> 222 
D; D; 32 
D4 D, 422 
Dg Ds 622 

EXAMPLES: 

Group Ds Group D3 

(n= 8, n3 = 4, j) = 4, pp = 4) (n = 6, ny =3) jp =3, hb =3) 

oe Fe oe 
PP a mle igh oe na w | Be < pS 

/ i. F 1 as \ si / \ f SS . os \ 

Ip >“ mlb sie 7 : | Py \ | P,/ ‘ es [ 

4 Mi 
a a y 

r 4, 2a Ee nest 1 ees eee 
| Py,” ny oe | PY 3 i iy ston 

1 ~\ 
& 

| Py I'P,> 

Figure 5.2 Figure 5.3 

@ h=3, ny =2, nn =3 

Equation (3) gives 

n3 can take the values 2, 3, 4 or 5. 

@ n3=2 
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This case corresponding to two subgroups of index 2 has already been met, 

- and need not be studied further here. 

@ 13=3 

ipa) ee ee nie 

The subgroup indices are: 

A=6 p=st jp=4 

Thus in this group we find six poles of twofold axes, four poles of threefold 

axes and four poles of threefold axes. 

The group, of order 12, contains three twofold and four threefold axes. 

The four poles of threefold axes lie symmetrically 

on the sphere, since a rotation of 27/3 about one 

of the axes (e.g. No.1) must make the other three 

axes coincide: 

(4) > (2), (2) > GB), B) > @) 

The poles of the twofold axes must also bring the 

threefold axes into correspondence two by two. 

The four threefold axes are oriented along the 

diagonals of a cube or along the normals to the 

Figure 5.4 faces of a regular tetrahedron. 

The twofold axes are normal to the faces of the cube. The angle between 

two threefold axes is 109°28’ and the group is that of the tetrahedron 

(denoted T or 23) which in group theory is associated with an abstract group 

denoted Aq. 

@ 13=4 

The subgroup indices are: 

’ WeH12 j=8 jxrb 
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In this group are found twelve twofold axis poles, four threefold axis poles 

and six fourfold axis poles. 

The group, of order 24, contains a total of three fourfold axes, four 

threefold axes and six twofold axes. Symmetry considerations require the 

fourfold axes to be rows in a cube, of the type [100], the threefold axes to be 

rows of the type [111] and the twofold axes to be rows of the type [110]. This 

is the octahedron group (denoted O or 432) with which the abstract group II, | 

is associated. 

@ 13=5 

i= hs — Oa = eT — 00) 

This group (the icosahedron group) has fivefold axes. It must therefore be 

excluded from the list as it cannot be a crystallographic group. 

O SUMMARY OF PROPER GROUPS FOUND 

In enumerating the crystallographic groups, we have found five cyclic groups, 

four dihedral groups and two special groups making a total of: 

eleven crystallographic proper groups. 

3.3 Finding Improper Groups G, 

GO IMPROPER GROUPS CONTAINING INVERSION 

According to the theorem of improper groups we have: 

G; = G, + 1.G, = {E, I} @G, ie.: G; = G, ® Cy 

From the eleven proper groups, we can construct eleven improper groups 
containing the inversion. 
The product of the inversion and a C), axis is a mirror plane normal to the 

axis of symmetry. For the groups of classes Cp, C4, Cs, D2, D4 and De, we 
obtain a mirror plane co, normal to the principal axis. For the classes T and O 
we obtain three oy type mirror planes normal to th x e twofold axes of cl 
to the fourfold axes of class O. is 
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Table 5.3. Improper groups containing the inversion 

Proper groups Improper groups 

Hermann— Abstract Abstract Hermann— 
Sch6nflies Maugin group group Maugin Schonflies 

C, 1 Ci C) ® C2 ‘| G 

C) 2 Cr C2 ® Cy 2/r m Cy 

C3 3 C3 C3 ® Cy 3 So = Ci 
C4 4 C4 C4 @ Cr 4/m Cay 

Ce 6 C6 Ce ® C> 6/m Con 

D, 2) D> Dz ® Cp mmm Do 

D; By D3 D3 ® C2 3m D3q 

D, 422 D4 D4 ® Cz 4/mmm Day 
Deg 622 De Db ® C2 6/mmm Den 

iT 23 Ay Ag ® Cz m3 Th 

O 432 IT 4 TI 48 Cr m3m Orn 

For the groups from classes D2, D3, D4, Ds and O we also obtain o, mirror 

planes normal to the twofold axes. 

© IMPROPER GROUPS NOT CONTAINING THE INVERSION 

We showed in paragraph 2 that: G;=G, + R.G, (I ¢ G;) and that, to construct 

the improper groups G; which do not contain the inversion, we can start with 

proper groups G’ admitting an invariant subgroup G, of index 2, replacing the 

element R, a factor in the second co-set of the decomposition, by its product 

with inversion. 

We can thus decompose the group G=C, into G=C3+C,.C3 and the 

corresponding improper group is: G;= C3 + C¢.C3 

The groups C;, C2 and T have no subgroup of index 2, whereas D4 and De 

can both be decomposed into different subgroups. We thereby obtain 

(11—3+2)=10 new improper groups which do not contain the inversion. 

The group C> gives the group S; (mirror plane), C4 gives S4 and C¢ yields 

C3n (a C3 axis plus a normal mirror plane op). From the groups D2, D3, D4 

and Dg we obtain the groups Coy, C3y, Cay and Cy (comprising a number n of 

oy mirror planes containing the principal axis). The second decompositions 

D4 and Dg give respectively the groups Dog (principal axis S4, two twofold 

axes and two twofold oa, axes at 45°) and D3, (principal axis S3, three twofold 

axes and three o, containing the twofold axes). Finally, the group O gives the 

group Ty (three S4 axes, four threefold axes and six diagonal mirror planes at 

45° to the Sy). 
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Table 5.4. Improper groups not containing the inversion 

Group G’, Improper group G; 

Hermann— 
Sch6nflies G,+R.G, G,+ R.G, Schonflies Maugin 

C Cr= Cy + Cr.C} Cyt Cy. Cy SpeGe 2=13 

Gy C4= C2 + Cy.C> 3+ Gy.G S4 4 

Co Ce=C3+ C6.C3 Cars. Cs S4, Can 6 

D, Dy= C+ C,.G Cet G.C Coy mm2 
D; D3 = C3+ C2.C3 C35 OC, C3, 3m 

D4 D4= Gia C>.C4 ’ Gh aie Cr.C4 Ce 4mm 

D, Dy= D2 + Cy.D2 D2 + C4.D2 Dra 42m 
De Do = Co+Cr.Ce Get Cz.Ce Ca 6mm 

De Do = D3 + C,.D3 D3+ CE .D3 D3 62m 

O TI, = Ag+ Cy.Ag Ag+ Cp.Ay a 43m 

3.4 Summary of Point Groups 

The following crystallographic point groups have been found: 

—l1 proper groups 
— 11 improper groups with inversion 
— 10 improper groups without inversion 

making a total of 32 point groups. 
To fully understand the notions involved in point groups, it is an invaluable 

exercise to construct them according to the directions given. Constructing 
stereographic projections of proper groups is simple. For improper groups, 
where the products of symmetry elements are involved, the composition laws 
given in chapter 4 should be used. 

The study of cubic groups is rather tricky, and it can help to make models 
with cardboard and glue. After appendix D the reader will find instructions for 
several models. 

These include a pentagonal dodecahedron. The attentive reader will find the 
following symmetry elements: 1 centre of inversion, 15 mirror planes, 15 twofold axes, 10 threefold axes and 6 fivefold axes! However, since the indices 
of the faces are irrational, this polyhedron cannot represent a crystal. 

Apart from these 32 groups which are compatible with operations of orientation symmetry in crystals, there does exist an infinite number of non- crystallographic point groups. In appendix A is a brief account of the way they are listed. They are extremely relevant to molecular physics, since the absence of constraints imposed by the lattice allows the existence in molecules of rotation axes of order 5, 7, 8 etc. 
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The symmetry class of a crystal, which is related to the nature of its lattice, 

should not be confused with any symmetry in the objects making up its 

repeating unit. Thus, in benzene, which crystallises in the class mmm (group 

Pbca), the repeating unit is the molecule of benzene with the symmetry 6/mmm. 

Similarly, crystals of fullerene are cubic close packed (class m3m) whereas the 

molecule (C¢o) has the symmetry 53 2. (an icosahedral group having 6 As, 10 A3. 

15 A> axes, 15 mirror planes and a centre of symmetry). 



Chapter 6 

Classes, Systems and 
Crystal Lattices 

1 CRYSTAL CLASSES AND CRYSTAL SYSTEMS! 

Each of the 32 point groups forms a crystal class. 

All the operations in a point group G, to which a crystal structure belongs 

transform the crystal into an entity which must be superimposable on the initial 

structure through lattice translations. 

Consider now a point group H of the lattice. Some operations of H, 

operations which bring all the lattice nodes into coincidence with lattice nodes, 

may transform the structure in such a way that it is impossible to return it to its 

initial position by a simple translation. 

In general the point group G, to which the structure belongs is only a 

subgroup of H; the orientation symmetry of the lattice is greater than that of 

the structure. 

1.1 Enumerating Lattice Point Groups 

Since the crystallographic point groups are all known, the quickest way of 

enumerating the point groups H of a lattice is by considering them as point 
groups having special properties. 

© THE GROUPS H CONTAIN THE INVERSION 

If the vector T is a lattice translation, then so is the vector —T; all the groups H 
must necessarily contain the inversion. 

'Syngonies is also used. 
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0 IF H CONTAINS A C,, (1>2), THEN IT ALSO CONTAINS THE GROUP C,,, 

Consider a lattice vector a in a plane normal to the C,, axis and the vector 

b = C,(a). 

If n = 4, the mirror plane o, defined by the Cy axis and a transforms the 

vectors a and b into a and —b, leaving unchanged the set of lattice vectors 

normal to the C4 axis. Since the vectors parallel to an axis are unaffected by 

this rotation, the set of lattice translations in the group is invariant in Cy. 

If n = 3 or n=6, the mirror plane o” defined by the C3 axis (for the case 

n = 3, or contained in the C¢ axis for the case n = 6) and normal to a, leaves the 

set of lattice translations unchanged. The set of lattice translations of the 

groups is thus invariant in C3, and Cgy. 

Among the thirty two point groups, eleven contain inversion and there are 

seven which also satisfy the above condition. These are: 

1 (C); fm (Con): mmm (Dy); 3m (Dag); 

fmm (De); MM (Day); m3m (O}). 

Each of these seven groups is associated with a crystal system. 

Each of the seven systems possesses a particular set of dimensions 

corresponding to the symmetry of the lattice. 

Each lattice is also characterized by one or more particular directions: those 

of the lattice symmetry elements. 

Table 6.1. The seven crystal systems 

System Lattice group H_ Lattice characteristics Lattice geometry 

Triclinic 1G) 1 centre a= bi-tc 

; ax PpAyAn/2 
Monoclinic Ps (Con) 1 twofold direction DA by-Kc 

(axis or mirror plane CBN me 3/0 
normal to this direction) £ > 1/2 

Orthorhombic mmm (D>) 3 twofold directions Tha [Ss 
Cap =p 7/2 

Trigonal 3m (D3a) 1 threefold direction CG 
C= Bey = /2 

Tetragonal 4 mm (D4)) 1 fourfold direction Oe ac 
C= p= 7 =1/2 

Hexagonal iu mm (De¢n) 1 sixfold direction UW (Dea 
= Pi 9/2 
Mest 27/3 

Cubic m3m (O,) 4 fourfold directions = D=NC 
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We can establish a hierarchy between these systems: 

The system S1, characterised by the group H1, is said to be inferior to the 

system §2 characterised by the group H2, if: Hl C H2. 

Consider a class of which the group G, is a subgroup of H1, and such that 

there exists no system S2 inferior to S1 for which G, is also a subgroup of the 

group H2 defining S2. 
The class in question is said to belong to the system S1. From this definition 

of the hierarchy, we can assign the 32 crystal symmetry classes to the seven 

systems as shown in table 6.2: 

Table 6.2. Classification of point groups into systems 

Triclinic a 
Monoclinic 2, m, 2/m 

Orthorhombic 222, mm2, mmm 

Trigonal 3, 3, 32, 3m 3m 

Tetragonal 4, 4, 4/m, 4mm, 422, 4 2m, 4/mmm 

Hexagonal 6, 6, 6/m, 6mm, 622, 6 2m, 6/mmm 

Cubic 23, m3, 432, 4 3m, m3m 

International notation (Hermann-Mauguin) 

Triclinic Cy, C; | 
Monoclinic Co, C,, Con 

Orthorhombic D», Cry, Don | 

Trigonal C;, Ca. Ds, Co... Daa | 

Tetragonal C4, S4, Can, Cay, Dg, Daa, Dan 
Hexagonal Ce, Can, Cen, Cov, De, D3n, Den 
Cubic T, Th, O, Ta, On 

Schonflies notation (lattice groups in bold) 

1.2. The Conventions of International Nomenclature 

The symbols used to name the classes are as follows: 

1, 2, 3, 4, 6, 1, m, 3, 4, 6, 2/m,4/m and 6/m. 

The symmetry axes are oriented along the axes of the coordinate frame of the 
system being studied. In the case of mirror planes, the direction of the normal 
to the plane is taken. In systems with a symmetry axis higher than twofold, 
(principal axis), the direction of the vector ¢ is that of the highest-order 
symmetry axis in the group. The classes in the trigonal system do not, however, 
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follow this rule. Here, use is made of the ‘Miller scheme’ which gives 
prominence to the threefold axis. In this scheme, the stereographic projections 
of the trigonal classes are drawn using the direction’of the threefold axis normal 

to the plane of projection. 

For historical reasons, in the monoclinic system, the direction of the vector b 

is taken along the direction of the twofold axis and the vectors a and ¢ are then 

chosen to have B>P/2. 

In international nomenclature (Hermann—Mauguin), the name of the group 

contains three symbols. They are written in an order indicated in the table 

below which also specifies the directions of the symmetry operators. 

Note: For centro-symmetric groups, the symbol 2. sometimes written 2/m for 

typographical reasons, is often replaced by the symbol m. For example, 222 is 

written mmm. 

If, in naming a class, we wish to specify the choice of convention for the 

- orientation of the unit-cell axes, the axes of order 1 may be added to the name. 

— The notations 121 and Im1 correspond respectively to the classes 2 and m if 

the axis b is chosen parallel to the twofold axis direction. 

—112 and 11m correspond to the same classes when axis ¢ is chosen parallel to 

the twofold direction. 

For the tetragonal and hexagonal systems, the second and third symbols enable 

the distinction to be made between two twofold classes and two mirror planes oy. 

Table 6.3. The order of symbols and orientations 

Systems Ist symbol 2nd symbol 3rd symbol 

Triclinic loreal 

Monoclinic b 
Orthorhombic a b c 
Tetragonal c a,b a+b, a—b 

Hexagonal and 
Trigonal (P cell) c ‘a, b 2a Die 

Cubic Dissent atbto.. . acbs ae 
2- or 4-fold axes 3-fold axes oblique 2-fold axes 

1.3. Holohedral and Merohedral Classes 

The seven classes having the same point group as the lattice of their system are 

called holohedral classes (they are shown in bold in table 6.2). The other classes, 

with symmetry lower than that of the lattice, are called the merohedral classes. 

If the merohedral class is a subgroup of a holohedral class of order 2, it is a 

hemihedral class; subgroups of order 4 and 8 are named tetartohedral and 

ogdohedra]. This nomenclature, used mainly by mineralogists, enables another 
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classification to be defined for point groups, where classes are gathered 

together according to the nature of their generators. The classes may thus be 

regrouped into centred hemihedral, (4/m, 6/m . . .), pyramidal hemihedral 

(mm2, 4mm, 6mm, 3m), enantiomorphic hemihedral (1, 2, 222, 32, 422, 622, 

432) and so on. 
This re-classification brings out the similarities in physical properties of 

crystals belonging to the classes under study. For example, crystals in the | 

enantiomorphic hemihedral class can be optically active. (see page 214). 

For space groups other than cubic, the classification proposed in table 4, 

based on the nature of the group generators and their associations, also shows 

analogies which may exist between different groups. 

Table 6.4. Point symmetry classes 

n= 1, 2, 3, 

4,6 Triclinic Monoclinic Orthorhombic Trigonal Tetragonal Hexagonal 

n 1 2 3 - 6 
7 1 m 3 4 6 
n 2 25 6 
m m m m 

n2 97219) 32 422 622 
nm. mm2 3m 4mm 6mm 
am 3m 42m 62m 
mm mmm 4mm &£mm 

1.4 Stereographic Projections of the 32 Classes 

In presenting a crystal class, we generally use the stereographic projection of all 
its symmetry elements. From this projection it is easy to determine all the 
directions which are equivalent to a given direction. 

In a given class, the set of planes (or faces) equivalent to a family of planes 
ag | (or to the face) of indices (h k 1) is called a form and is written th k 1}. 

Similarly the set of rows equivalent to a row of indices [u v w/] is 
written (uv w). 

It should be remembered that the projection of a symmetry axis has only one 
or two points, these being the projections of the intersections of the axis with 
the projection sphere. The dotted lines joining the two points are simply there 
for clarity. The circles and full lines correspond to mirror plane projections. 
The following diagrams show how symmetry elements and their stereographic 
projections are related for two simple systems. 
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ED e & 

@& Class 222 

The international symbols used on projections to show axes of symmetry are 

as follows: 

Ophea, a 
is 2axis 3axis 4axis 6axis 3 axis 4axis 6ax 

- The stereographic projections of the symmetry elements of each of the 32 

classes are shown on pages 78 and 79. Also shown on each projection are the 

poles of the most general form in the group {h k /}. Thus the multiplicity of the 

class (the number of equivalent general directions) can readily be determined. 

In appendix A will be found the detailed stereographic projections and 

representations of the forms possible in each of the classes. 

2 THE LAUVE CLASSES 

Obtaining experimental evidence for the presence or absence of a centre of 

symmetry in a crystal is often tricky. In particular, in the classical diffraction 

methods used in X-ray crystallography, a centre of symmetry is systematically 

introduced into the diffraction pattern, even when the crystal being studied is 

non centrosymmetric (by Friedel’s law). We consequently have to re-group 

symmetry classes which differ only by the presence or absence of inversion. 

The result of classification following these criteria is the Laue classes. The 32 

point groups are distributed among these 11 classes as shown in table 5. In this 

table, the group at the top of each column listing the classes is the 

centrosymmetric group; it is this which defines the point symmetry of the 

Laue class being considered. 
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Non-cubic point groups 
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Cubic point groups 

4- and 3-fold symmetry axes —_2-fold axes and mirror planes _ Diagonal mirrors intersecting 

normal to the 4-fold axes along [111] 

(The numbers on the planes are 
those of the projection of class 

fi m3m) 

a9 
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Table 6.5. The ll Laue classes 

eal 3, 3 4/m, 4, 4 ; 
2/m, m, 2 3m, 32, 3m 4/mmm, 422, 4mm, 42m 

mmm, 222, mm2 6/m, 6, 6 m3, 23 
6/mmm, 622, 62m, 62m  m3m, 43m, 432 

3 THE BRAVAIS LATTICES 

If the base vectors are chosen in accordance with the lattice symmetries, a 

simple unit-cell, i.e. one containing a single node, is not necessarily obtained. (A 

parallelepiped in a lattice has eight corners, and each corner is shared among 

eight unit-cells). 

For simplicity, we shall illustrate this in a two-dimensional rectangular 

lattice having a mirror plane parallel to the direction Ox. 

Let T1 be a single lattice translation, i.e. where the vector 5 T1 is not a lattice 

translation. T2, the mirror image of T1, is a lattice translation. T1+T2 and 

T1—T2 are two orthogonal vectors defining a rectangular unit-cell. If 

T1+ T2 and T1—T2 are two single translations (figure 6.1 right), the lattice can 

be described either by a single diamond cell or a multiple rectangular cell (a 

centred cell). 

If $(11+T72) and 5(T1—T2) are two single translations (figure 6.1 left), we 
obtain a simple rectangular unit-cell. Only by considering a multiple unit-cell 

can we bring out the entire lattice symmetry. 

fren : ; fre ] 

Figure 6.1 

For each system, we find we have to consider not only the primitive lattice 
constructed entirely from whole lattice translations, but also lattices containing 
semi-translations which conserve the symmetry of the system. To specify the 
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nature of the lattice obtained; we associate a letter characteristic of the lattice 

- type with the basic name of the system. 

In addition to the primitive lattice (type P), we Have to examine the face- 

centred lattices comprising type A: (100) faces; type B: (010) faces; type C: (001) 

faces; type F*: all faces centred; and type I°: body centred. In addition to 

whole lattice translations, we include in type C the translation T = S(a +b), in 

type I the translation T= i(a+bte), and in type F, the translations 

= $(a+b), b= $(b+c) and T;= $(c+a). 

These various types are not all necessarily present in each system; with a 
suitable choice of base vectors, it is sometimes possible to obtain a unit-cell of 

lower multiplicity which conserves the lattice symmetry. The 14 lattice types 

were first identified by Bravais around 1850. 

THE TRICLINIC SYSTEM 

- Multiple unit-cells that can be constructed in this system possess no more 

symmetry than the initial cell. 

Only type P need be considered. 

- THE MONOCLINIC SYSTEM 

Two types are possible: P and C. 

The transformation a; = — c, c; =a changes type A into type C. 

The transformation a7 =atc, ¢2=c changes type I into type C. 

The transformation a3 =a, ¢3 = $(a+c) changes type F into type C. 

Type B is equivalent to type P. 

THE ORTHORHOMBIC SYSTEM 

There exist four possible types: P, C, I, F. 

Types A and B are equivalent to type C after permutation of the base vectors. 

Initial letter of the German word Flachenzentrierte. 

Initial letter of Innenzentrierte. 
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THE TRIGONAL SYSTEM (Rhombohedral unit-cell) 

In this system, a single type is possible: the 

primitive type, denoted R (for rhombohedron). 

Type C (face centred) lattices are incompatible . 

with threefold symmetry. 

Types F and I are equivalent to type R. Figure 

xy 6.2 shows the transformation of an F type cell 

Figure 6.2 into an R type cell. 

THE TETRAGONAL SYSTEM 

Two types are possible: P and I. 

Types A and B are incompatible with tetragonal eye 

Type C is equivalent to type P for the transformation a; = 5 Li(asbb), c7ae. 

This same transformation converts type F into type I. 

THE HEXAGONAL SYSTEM 

Only one type is possible: primitive, type P. 

Types A, B, C, I and F are incompatible with the sixfold symmetry of the 

lattice. On the other hand, the P type hexagonal unit-cell is compatible with 

trigonal symmetry elements. 

THE CUBIC SYSTEM 

Three types are possible: P, F and I. 

Types A, B and C are incompatible with the lattice symmetry. 

Table 6.6. The 14 Bravais lattice types 

Triclinic 1p Tetragonal Pel 

Monoclinic Rie Hexagonal Ip 

Orthorhombic Pe Gel, Cubic eee 
Trigonal R 

For F and I type lattices, the primitive unit-cell is rhombohedral (cf. § 5.6) 

The 14 Bravais lattice types are given in table 6.6 and illustrated on page 83, 

where the main characteristics of each system can be seen. 
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The Bravais lattices 

Orthorhombic P — Orthorhombic C —- Orthorhombic F_— Orthorhombic I 

Tetragonal I Hexagonal P Trigonal R 

Cubic I Cubic F 
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4 RECIPROCAL BRAVAIS LATTICES 

Reciprocal lattices have the same symmetry as the lattices from which they are 

derived. In the case of direct lattices, the symmetry is not always evident in the 

unit-cell, and the same is true for reciprocal lattices. We shall begin with type C 

lattices, where the result is easy to visualise. 

GO RECIPROCAL LATTICE OF A TYPE C LATTICE 

Figure 6.3 

Let a2, by and c2 be the base vectors of the face-centred unit-cell and aj, b,; and 
c, the base vectors of the primitive unit-cell. 

a, =a, — bj; b, = a, +b,; C, =; 

On constructing the reciprocal lattices (At 1 by, ¢;---), we obtain: 

1 1 
AZ = 5 (Ai — Bi) By =5(Ai+Bi) | Ch=Ct 
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The lattice constructed using the vectors A}, B} and C4 has the correct 
- symmetry, but certain nodes are missing. Only the nodes such that h+k = 2n 

(where n is an integer) are present. There is a systematic absence of node if 

h+k is odd. 

O ANALYSIS 

We have shown that the base vectors of the reciprocal lattice are contravariant 

with those of the direct lattice. If (A) and (A*) denote the transformation 

matrices for the base vectors, we have: 

(A*) = (a7) 
For any C type lattice, we can write: 

a, { 0 ay 

b, | = [cOn| eat 
Co 0 1 Cc; 

After inverting the transpose of matrix (A), we have: 

A% EDAD A* 
Boole el/2aely) 2oeOe hele 
eH Oe oh rol Ct 

We can therefore write: 

A‘ = 1/2(A7 — B}) BS = 1/2(A7 + B7) C5 = C, 

For the primitive unit-cell, the nodes of the reciprocal lattice are such that: 

Ri =A.At+k.Bi+1C7 

Consider the vector: R%3=/'.A3+k.B3+1'.C3 

| 1 / / / 

We can also write this: R} = 5h + k').At+ x(k —h').BY + 0.Ct 

In this second coordinate frame, the points defined by R%¥ are nodes if the 

coefficients and A*, B* and C7 are integers, i.e. if h’ +k’ is even. 

© RECIPROCAL LATTICES OF F AND I LATTICES 

Within the F type unit-cell we can define a primitive unit-cell (figure 6.4) 

characterised by the base vectors: 

1 1 1 
a, = 5 (be +) b, = 5 (a2 + €,)2 cj = 5 (@ +b») 

a, = 7a,+b,+¢, b, =a, —b +c; c, =a, +b, —¢; 
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The matrix form of these relations is: 

a, Tepes a 
Bp | OP aa eb 
Co 1 1 1 Cc; 

For the reciprocal lattices we can therefore write: 

At pet yea pd eles 
Bra hi/2 0 1/2 Fa) Be 
ce Vp ae re, 

Figure 6.4 

We write: R35 = A’.A3 +k'.BS 4 1'.C3 

i.e.: R35 =h(k' +/).A4 +500 +1).By +30 +K).C% 

In the multiple unit-cell, the points defined by R%¥ are nodes if the coefficients of 

A*, B% and C% are integers, i.e. if h’, k’ and /’ all have the same parity. 

We can see by construction that a lattice whose nodes all satisfy this condition 

\ 2/a 

ae one! B 
| 000 |'200 

aS : 
| 220 

pis 
Even sides Odd sides 

Figure 6.5 

is a type I lattice with parameter A* =2/a. 
A similar analysis can be made of a direct type I lattice; it is easier in fact to 

note that the reciprocal of the reciprocal is identical to the original. The 
reciprocal lattice of an I lattice is thus an F type lattice (only reciprocal nodes 
such as h+k+/=2.n exist in the lattice). 

The reciprocal lattice of an F lattice is an I lattice and vice-versa. 
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5 GEOMETRICAL RELATIONSHIPS IN THE LATTICES 

5.1. The Triclinic System 

The triclinic lattice has the most general unit-cell possible: 

ax b Penn - pit yom /2 

The lattice plane spacing of a family (4 k J), djxi, is equal to the reciprocal of the 

modulus of the reciprocal vector Njx;. In the general case we can thus write: 

eS hr .A*? + k? BY? + PC? +4 2.h.k.A*B*+ 2.4.1. B*.C* + 2.1.0.C*.A* 
hkl 

In all the other systems, this general formula for the interplanar spacing of 

lattice planes can be simplified. For the triclinic system, the reciprocal values 

used should be obtained from the following general relations, established in 

_.chapter 2 on lattices: 

cos y. cos B—cos a cos a. cos y—cos f cos a. cos B—cos y 
=> — , COS oa SS cos a*= - , cos p* - - ; > : : 

sin y. sin B sin a. sin y sin a. sin B 

— ° . Pan =. . * . > . ° * 

a. sin B. sin y” b. sin a*. sin y c. sin. sin B 

V =a.b.c. sina. sin B. siny* = a.b.c. sina*.sinf. sin y = a.b.c. sin a.sinB*. sin y 

5.2 The Monoclinic System 

Monoclinic lattices have the following unit-cell characteristics: 

Gch D Ane, 6 = Vi= 1/2, /P & M2 

For this system we therefore have: 

a. sin B’ c. sin B b 

p* =n —B, cos B* = —cosf, a* =y* => = ; : - 
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From this can be deduced the following expression for the lattice interplanar 

spacing in terms of the direct lattice parameters: 

sin 
Ann = 7 

2, 2 _k.sin’ B _ 2.h.1.cos B 
ae Pass a ee 

The volume of the unit-cell is: V = a.b.c. sin B 

5.3 The Orthorhombic System 

For orthorhombic lattices, the unit-cell is defined by: 

GA be, oP» =e 2. 

[oR 1/a, Be 1/b, Cr= Lie OP ss pa = Po ee 

Here, calculation of the lattice spacing is simple, giving: 

— 

Ani = 

SSR 
-- St 

ined 

+ 

isl ars 

The volume of the orthorhombic unit-cell is: V = a.b.c. 

5.4 Hexagonal and Rhombohedral Lattices 

The hexagonal lattice P (unit-cell a=bAc,a=B=n/2.y=2n/3) is 
compatible with all the trigonal and hexagonal groups. On the other hand, 
the rhombohedral unit-cell R (@=b=c, «=f =y 47/2) is only compatible 
with the five trigonal groups. As calculations are generally trickier to carry out 
for a rhombohedral cell R than for a hexagonal cell P, rhombohedral structures 

are often represented with a multiple hexagonal unit-cell. 

© RELATIONS BETWEEN THE R AND P LATTICES 

It is possible to construct a multiple hexagonal cell P which contains a single 
rhombohedral cell R. 
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Figure 6.6 

Inside the P lattice (figure 6.6 left), in the prism defined by the vectors A, B 

~ and C, we add two nodes with fractional coordinates (2/3, 1/3, 1/3) and 

(1/3, 2/3, 2/3). From these nodes we can define the cell R characterised by the 

base vectors a, b and c. Figure 6.6 right is a projection of the base vectors of the 

two lattices onto a plane normal to the threefold axis. 

The matrices for passing from one coordinate system to the other are thus as 

follows: 

Hexagonal = Rhombohedral Rhombohedral => Hexagonal 

a jiilecewe A A ON aa 
bi] = zi joi B Boi Orel oe! b 

c 2 C C | SN ce c 

From these matrices, the relations between the cell parameters can be 

deduced: 

_ Boe 
a=zV3.A+C A = 2.4. sin, 

4. @ 3.A 
sin = = =avV3+6 2 2/34 +O (C=) + 6cosa 

All that is necessary to express the Miller indices of a family of planes or of a 

direct row in the two frames, is to make use of the covariance of the lattice 

plane indices and the contravariance of the row indices. 
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O GEOMETRICAL RELATIONS 

TRIGONAL LATTICE: 

Two parameters determine the cell geometry: 

C= Ca=pHyF- ze 

For the trigonal lattice, the parameters of the reciprocal lattice are: 

* J 
a. Sin &. sin «* 

i cos’ « — cosa 
C37 = 

sin” o 

The expression for d),; is thus: 

a.(1 — 3.cos? « + 2.cos? «) 

[i + +P). sin? «+ 2.(h.k + kl + Lh).(cos?  — cos) 
Ce = 

The volume of the rhombohedral cell is: V = a*.(1 — 3. cos” « + 2. cos* a) t/?, 

HEXAGONAL LATTICE 

The geometry of the unit-cell again depends on two parameters: 

a=bf¢¢tja=pPp=x2/2,7= 22/3 

1 
A* = B* = —— ONS ath hen 

The expression for d),; is much simpler than for the rhombohedral cell: 

a 

Anka = 

Vice +k? + hk) +P (a/c) 

The volume of the hexagonal cell is: V = 3 sc, 

O BRAVAIS—MILLER INDICES 

R and P lattices present an additional problem: in all the other lattices, it is 
easy to determine the indices of equivalent faces by considering the symmetry 
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operations of the class. (In lattices where the principal axis is oriented along 

- Oz, a mirror plane (001) changes / into —/, a twofold axis [100] changes & into 

—k and /into —/, in the cubic classes the threefold Axis [111] leads to circular 

permutation of the 3 indices h, k and /, and so on.) 

In a hexagonal unit-cell, a system with four indices is required to denote the 

Miller indices of the faces. 

In the plane (100) we take a fourth axis with Baar indies (figure 6.7): 

d = —(a+b) 

One face is then redundantly denoted (h k j J). To establish the relation 

-between the four indices, consider a plane with the classical notation (h k 0). 

This plane intersects the axes of the 

(001) plane at A, B and D; d);;, which 

is invariant in the change of coordi- 

nate frame, is equal to the projection 

of the vector OA or the vector OD 

onto the unit vector normal to the 

plane. 

Digs: | Nix |= 

: js And considering asA* =}, 

Figure 6.7 a.B* = 0... we have: 

(hA* + kKB* +/C*) a en(ZAt +kB* +1C*) ad (hA* + kB* +/C*) —(a+b) 

N hkl ie Ni, hkl ea Ni, hkl i 
Cr a 

js (+ kh) 

NOTE: The calculation is proposed as an exercise; in fact the relation is obvious 

given the covariant character of the Miller indices of the faces. 

With this choice of indices, equivalent faces are deduced from each other by 

a circular permutation over the first three indices. 
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NOTATION CONVENTION: Since the index / is a linear combination of / and k, it 
is omitted from the notation of the face and replaced by a full stop. A (1121) 

face will be denoted (11.1). 

EXAMPLE: The table below indicates the three types of notation possible in the 

hexagonal system for a (100) face. In appendix A will be found the notations of 

all the special hexagonal forms in (hk./) notation. 

(hk I (100) (010) (110) (100) (010) (110) 

(hk jl (1010) (0110) (11.10) (1010) (0110) (1100) 

(hk .D (10.0) (01.0) (11.0) (10.0) (01.0) (11.0) 

5.5. The Tetragonal System 

For tetragonal lattices the unit-cell is defined by: 

C=) 6 hp = y=) 2 

AS Be WarG* = 1/c. 0% payee 

From which we deduce: d);; = g and V=a’.c. 

Vie +? +P(a/cp 
5.6 The Cubic System 

O GEOMETRICAL RELATIONSHIPS 

In cubic lattices the geometry only depends on one parameter: 

a=b=c,a=P=y=n/2 

A* = B* = C* = 1/a, o* = ft =y* = 2/2 

We obtain: dj,.. =“. and V= @ 
VW +P +P 

In the cubic system the reciprocal lattice is homothetic with the direct lattice. 
Now, the reciprocal row [h k /|* is normal to the direct planes (h k J), and so: 

In the direct lattice any direct row [uv w] is normal to the planes of the direct 
lattice (uv w). In the reciprocal lattice any reciprocal row [h k 1]* is normal to 
the reciprocal planes (h k 1)*. 
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In the other systems this property does not in general hold. Only rows 
; parallel to the symmetry axes are normal to the dele? planes (having low 

indices and hence high node densities). 

QO THE FACE CENTRED CUBIC LATTICE 

> - 
far) 

The unit-cell of a face centred cubic lattice 

(figure 6.8) is a rhombohedron with: Sh 

p\e = wl ewe 

2 
AR ae i100 

(The rhombohedral angle is the angle 

between the cubic rows [110] and [101].) 

The base vectors of the rhombohedral cell 

are obtained by joining a corner of the 

Figure 6.8 cube to the face centres. 

a = a +c) 
2 

b= Gs +c) 
2 

es 
Gi 5 fa +b) 

© THE BODY CENTRED CUBE 

The unit-cell of a body centred cubic lattice (figure 6.9 left) is a rhombohedron 

with: 

ree rae a = 109°28" 

(The rhombohedral angle is the angle between the threefold axes of the cube). 

The base vectors of the rhombohedral cell are obtained by joining a corner 

of the cube to the centres of adjacent cubes. 

1 ee all 
a =5(-atb +o) b= Z(a—bte) Se 

The unit-cel] is obtained by completing the rhombohedron (figure 6.9 right). 
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NOTE: The presence of species at (0, 0, 0)and (1/2, 1/2, 1/2) in cell in a given 

structure does not imply that its lattice is type I. The two species must be 

identical and have the same environment. 

Thus the CsCl lattice is primitive. A lattice is type I if, to any object with 

coordinates (x, y, z), there corresponds an identical object with coordinates 

(x+4, y+4, z+4), ie. if the vector T= i(a+b+c) is a lattice translation. 

oa 

Figure 6.9 

6 POINT GROUP RELATIONSHIPS 

Relationships can be established between one class and those which are derived 

from it by the loss of one or more symmetry elements. The derived classes are 

subgroups of the initial class. This relationship is obvious when it is between a 

holohedral class and the merihedral classes of a system. Loss of a symmetry 

element may also involve a change of crystal system in the resulting group. The 
relationships between the holohedral classes of the various systems are as follows: 

Cubic ity Hexagonal 

— ee i 
Tetragonal rn Be 

a v 

peta pee Trigonal 

Orthorhombic De 

vo a 
Monoclinic 

{ 

Tniclinic 
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_ EXAMPLES OF RELATIONSHIPS BETWEEN GROUPS: 

m3m 

m3m 

4/mmm 

mmm 

mm2 

6/mmm 

6/mmm 

=> 

{ Jb gg Y J 

=> 

3m 

4/mmm 

mmm 

mm2 

m 

6mm 

mmm 

(4 A3-— single A3) 

(loss of threefold axes) 

(Aq > Ad) 

(loss of centre of symmetry) 

(loss of twofold axis) 

(loss of centre of symmetry) 

(Ag — Az) 

The table of relationships is reproduced on page 357. 
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Chapter 7 

Space Groups 

Point groups enable us to describe the macroscopic symmetry of crystals. To 

study microscopic symmetry we have to use the Schénflies-Fédorov postulate 

and the resulting description of symmetry through space groups. The 230 space 

groups were first enumerated by Fedorov in 1895, and later independently by 

Schonflies. 

1 THE SPACE GROUP OF A CRYSTAL 

The most general type of symmetry operation in a lattice, where we pass from a 

_ point to another equivalent point, can be described as the product of a proper 

or improper point symmetry operation R and a translation t. This general 

operation is denoted (R, t). We recall! that the action of this operation on a 

vector X is: 

Y=(R,t).X=RX+t 

A pure translation is denoted (E, t) and a pure rotation by (R, 0) 

The space group of a crystal is the set Gg ={(R, t)} of symmetry operations 

which transform any point in the crystal to an equivalent point. 

1.1. Group Properties 

@ There exists a law of internal composition: (R’, t’).(R, t) 

(R’, v).(R, t).X =(R’, t).(RX+t =R(RX+H+U=R.RX+ R’t4+t 

(R’, t’).(R, t) = (R’R, R't+t/) 

'Cf. § 1.7 of chapter 4 on lattice symmetry elements. 
- 
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@ The law is associative. 

@ There exists a neutral element (E, 0). 

@ There exists an inverse for all elements: 

Suppose that (R’, t’)=(R, t)*! hence: (R’, t’).(R, t) =(E, 0) = (R’R, 

Rt+¢) 
The inverse exists if: 

R’ R=Eor R’ =R © and if: R’t+t =O0ort =—-R t= =Ro 

(R, t)'=(R"!, =R* 6) 

The set Gg = {(R, t)} is an infinite non-commutative group. 

1.2 Associated Point Group 

If Gg = {(R, t)} is a space group, the associated point group is the subgroup 

of Gr: 

Gp = {(R, 0)} 

1.3. Crystal Space Groups 

The periodicity of the crystal lattice imposes restrictions on the symmetry 

operations allowed in the space groups. 

© ROTATION RESTRICTIONS 

If the space group is that of a crystal, the associated point group is a crystal 

point group which therefore contains only axes of order 1, 2, 3, 4 or 6. 

The only rotations possible in crystal space groups are those of order 1, 2, 3, 

4 or 6. 

O TRANSLATION RESTRICTIONS 

Consider (R, t), an operation of Gr. 

(R, t) = (R’,R.t+ t) 

(R, t) = (R°,R? t+ Rt +4) 

(R, t)” =(R”, R"'t+R"?t+...4+Rt+Et) =(R”,[R].t) 

[Rl = R2* SeiR aA hee F 

If the axis is n-fold, then (R, t)” = (E,[R].t) must be a lattice translation T. 
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we | The translations t in crystal space group operations (R, t) must satisfy the 

condition: [R].t=T. 

T is necessarily a lattice translation, whereas t is not necessarily one. 

2 SPACE GROUP SYMMETRY ELEMENTS 

We must add to the orientation symmetry operations for point groups, those 

operations which are the product of orientation and translation. We have 

already studied the general laws of composition of rotation—-translation 

products, with the following results: 

Consider a symmetry operation characterised in a given coordinate system 

by (R, t) and a new coordinate system defined by a translation vector S, with 

the origin of the original coordinate system. In the new system, the operation is 

characterised by: 

(R’, t) =(R,.R.S-S+t) 

If the translation part of the operations can be eliminated by suitable choice 

of the vector S, we return to an orientation symmetry operation or else we 

induce a new symmetry operation. 

@ The product of a proper rotation of an axis u and a translation t parallel to 

u is a screw axis. 

@ The product of a proper rotation of an axis u and a translation t 

perpendicular to u is a proper rotation through the same angle about an axis 

lying on the bisector of t. 

@ The product of an improper rotation of an axis u and a translation t parallel 

to uis an improper rotation whose centre of inversion is translated along the 

axis of the vector t/2. 

@ The product of a mirror plane and a translation t parallel to the mirror 
plane is a glide plane. ; 

When enumerating the crystal space groups, we must also take into account 

the constraints set by the relation [R].t = T, imposed by the lattice periodicity. 

3 SCREW AXES IN THE CRYSTAL SPACE GROUPS 

© ALLOWED TRANSLATIONS ; 

For an n-fold axis, we must have: [R].t=T where [R] = 25_,R’, R"=E 

Consider an n-fold symmetry axis parallel to Oz, characterised by a lattice 

translation of vector c. [R] is the sum of matrices RP 
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cos ony —sin 222 0 

P => 

sin one cos 22 0 

0 0 1 

n 

We write S = es — eri? 4 i ezimn/n 

p=1 

Now: S.evnn es etin/n elit/n i aed bts eZimn/n Lis e2in/n aeTe 

Hence: S.e2"/" = S, Se?" —1) =0 > S=0 GfnF 1) 

A similar calculation with St, the complex conjugate of S, leads to St= 0. In 

the matrix representing [R], the sums of the 7 cosines and n sines are null: 

0)0..20 
[RESO 0-0 

ORG: th 

The translation t is a vector parallel to the rotation axis and T is a lattice 

translation equal to m.c (where m is an integer). The relation [R]t=T 

becomes: 

C= 0re0 0 0 

[Rit= 1.0. .0) 0912 Osi 0 Sant = me 

On Oe t m.c 

The possible values of the vectors t are such that: 

t=—c 
n 

We can set m<n since, by hypothesis, two whole lattice translations cannot be 
distinguished. 

We can now enumerate the screw axes compatible with the symmetry 

properties of the lattice. According to international conventions, the principal 

axes of the group being studied are shown perpendicular to the plane of 
projection, which is by convention the (001) plane. For two-fold axes, axes 
parallel to the plane of projection, are also shown. The graphic symbols used to 
represent the rotation axes in these projections are those in the International 

Tables. 
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O TWO-FOLD AXES 

n=2>m=—0,1. 

m= 0 = ‘normal’ two-fold axis Symbol 2” 

m= | >Two-fold ‘screw’ axis Symbol 2 

Representation of axes parallel to (001). 

@ +z ing Riggs net raring anager Bese RPE 8 
+2 b i 

b/2 -Z 
: Axis 2 : is 2 @ -2 en? i 

Figure 7.1 

The axes are in the plane (001) and thus of height 0. Since the axis 2; is oriented 

along Oy, the translation t is b/2. 

Representation of axes perpendicular to (001) 

$95 6 * tn © 42% @ ® +2 

Avcheads —- Axis? ee eee Axis 2; 

Figure 7.2 

The axes are | to the (001) plane. Since the 2; axis is oriented along Oz, the 

translation t is ¢/2. 

O THREE-FOLD AXES 

n=3 => m=0/1;2: 

m=0 = ‘Normal’ three-fold axes Symbol 3 

m=1,2 => Three-fold ‘screw’ axes Symbols 3, 32 

perce ay EY We BA/3...- ABB, 

OL. gy @ 2353. Dd 1 @ BIRD 

© 
1... Axis 3 Axs 3 0, 1 

Figure 7.3 
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For the 3; axis, successive heights of equivalent positions are: 0, 1/3, 2/3, 1, 

4/3=1/3... (Two positions which only differ by whole lattice translations are 

indistinguishable.) For the 32 axis the heights are: 0, 2/3, 4/3=1/3, 2=1... 

The 3, axis is the image of a 3; axis in a mirror parallel with the rotation 

axes. A 3, axis corresponds to a clockwise rotation and a 3) axis to an 

anticlockwise rotation. The two axes are said to be enantiomorphs. 

© FOUR-FOLD AXES 

n=4 =i 0,1, 2,.3. 

n= = ‘Normal’ four-fold axes Symbol 4 

m=1,2 = Four-fold ‘screw’ axes Symbols 44, 4), 4. 

_- 2322... ee, eee a 2 

fya74.vas4 {927 ins vag .g 4,744, oes teees OC Ss See 

Ol... Axis 4, OF Axis 4, Q1.. Axis 4, 
Figure 7.4 

The 4; axis corresponds to a clockwise rotation and the 4; to an anticlockwise 
rotation. These two axes are enantiomorphs. 

OG SIX-FOLD AXES 
n=6 = m= 0; 1, 2,3, 4,5 
m=0 = ‘Normal’ six-fold axes Symbol 6 
m= 1...5 => six-fold ‘screw’ axes Symbols 64... 6s. 

The graphic symbols for these axes are as follows: 

a 

ee nk Xp & 
6 axis 6 1 axis 6 2 axis 6 3 axis 6 4 axis 6 5 axis 

Figure 7.5 

Axes 6; and 65 are enantiomorphic, as are axes 62 and 64. 

4 GLIDE PLANES 

© ALLOWED TRANSLATIONS 

In the case of mirror planes, a translation parallel to the plane of the mirror 
causes a glide plane to appear. 
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Let aj, ay and as be the lattice vectors which define the given symmetry plane. 
The condition for the existence of the translational symmetry element is 
written: : 

[R].t =e nya, + Na + 71383 

For a mirror plane we have: [R]=o+ E. Suppose the mirror plane is (001); the 

matrix representation of [R] is then: 

130.0 Le) 40 Ze 0's af) 

[Ri OF Ot se OT Obes | 0) ane 

D: FOr ea tay OV Oned) 

Now, t=«a.a; + f.a2 (vectors parallel to the (001) plane). 

Dr MD roolG) aay 20.a4 nN .a, 

ie 1 002° 0 (Bar = Tope P= | a | Se =, 28 Sm 

ODOT 0 0 0 0 

We can impose the conditions 0<(m, n2)<1 since whole lattice translations 

are indistinguishable. The translations possible for mirror glide planes parallel 

to (001) are thus: 

This reasoning must be repeated for all mirror plane orientations allowed by 

point symmetry. There must also be taken into account non-integral lattice 

translations allowed in certain Bravais types. In particular, for orthorhombic 

lattices F, tetragonal I and cubic F and I, the so-called ‘diamond’ translations 

must be considered; these are equal to: 

1 1 1 1 
t; =7(a +b), te = Ge +b), t =Garto and t =Z(at+b+e) 

The various types of mirror planes possible are shown in the following 

table: 
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Conventions for showing glide planes 

Representation | Representation // 

to plane of projection to plane of projection 

Diagonal 

glide plane 

Diamond 

glide plane 

Figure 7.6 

(1) It is assumed that the plane of the mirror lies at a height 0. 
(2) The arrow indicates the direction of translation. 
The mirror planes a and b are shown by dashed lines, ¢ by dotted lines, n by 

dash-dot lines and d by dash-dot lines with arrow. Heights of mirror nlamex 
parallel to (001) are only included on the projections if they are other than zero. 
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In the latest edition of the International Tables, further specific symbols are 

found for oblique mirror planes and cubic groups. 

5 SPACE GROUP NOTATION 

We shall identify space groups using the international (Hermann-Mauguin) 

symbols, whose meaning is much clearer than those of Schénflies, which 

consists of adding a number of arbitrary size to the name of the point group 

from which the given space group is derived (e.g. (C3°, D3,, D3, .. .)etc.). 

@ The name of the space group is prefixed with a capital letter (lower case 

letters are reserved for the 17 plane groups) indicating the type of lattice: 

Pra, BiCphoPeR: 

@ In the name of the point group, the symbols 2, 3, 4, 6 and m may be replaced 

by symbols corresponding to symmetry operations of translation existing in 

the given space group. 

Symbol in the crystal class Symbols in the space group 
Didi 

3 3, 31592 
4, Asay) Ao.) 4s 
6 6, 61, 62, 63, 64, 65 
m m, a, b, c, n, d 

Conversely, the symbol for the crystal class is derived from that of the space 

group by eliminating references to the translational parts of symmetry 

elements. The letter characterising the lattice is eliminated, screw axes are 

replaced by rotation axes and glide planes are replaced by mirror planes (m). 

EXAMPLES: 

Group Pnma or D3? 

The class is orthorhombic mmm; the lattice is primitive. 

The mirror plane (100) normal to Ox is type n:t = 4 (b+c). 

The mirror plane (010) normal to Oy is an ordinary mirror plane. 

The mirror plane (001) normal to Oz is type a:t = 5 a. 

Group “md or Dj? 

The class is tetragonal 4/mmm; the lattice is body-centred. 

The four-fold (quadratic) axis is type 4;:t = t c. 

The mirror plane (001) is a glide plane: t = 5 a. 
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The mirror planes (100) and (010) are-ordinary mirror planes. 

The diagonal mirror planes (110) are type d:t =} (a+b+c). 

6 CONSTRUCTION OF SPACE GROUPS 

To construct space groups, we combine the symmetry operations of point 

groups with the infinite set of lattice translations.We can do this in two 

steps: 

@ For each of the 32 classes, we consider the effect of translations related to 

the lattice types, for each lattice type of the system to which the class 

belongs. We thus obtain the 73 symmorphic groups which have been 

generated solely from simple symmetry elements.7 

@ We repeat the process, systematically replacing each simple symmetry 

element in the group by all the derived elements of translational symmetry, 

again taking account of possible lattice types. 

For example, to obtain the groups derived from the class mmm, we must 

consider the types P, A, B, C, I and F. Then, for each type, we can replace the 

first mirror plane m by m, b, c or n, the second by m, a, c or n and the third by 

m, a, b or n. (no type a mirror plane normal to Ox can be found). If the lattice 

is F mode, mirror planes d must also be included. 

wg | The groups so obtained are not all distinct since the combination of different 

symmetry elements can yield the same space group. 

As an example, we shall determine which space groups are derived from the 

monoclinic class ‘2’ by deducing the group symmetry elements from equivalent 

positions of an object in the lattice. 

Space groups derived from class 2 

For this class, we must consider, a priori, the groups P2, P2;, C2 and C2). 

The projections are made onto the (001) plane and the direction of the two- 
fold axis is [010]. The position of the origin is arbitrary in a lattice, and here we 
shall take it as lying on the two-fold axis. 

If the row [010] is a two-fold axis, all parallel rows are also two-fold axes: 
two-fold axes pass through x = 1, z=0; x =0,z=1;x=1,z=1 etc. 

These groups may nevertheless contain translational symmetry elements. 



Space Groups 

Group P2 

0 Or Zz!) b 

@ +z (1) 

RB -2z(2) 

Figure 7.7 

107 

We consider atom | lying at a 

height +z and in a general posi- 

tion (it is not lying on a symmetry 

element). 

Its image (2’), given by the two- 

fold axis, is at a height —z. Atom 

(2), deduced from atom (2’) by a 

lattice translation a is equivalent 

to atom (1). (1) 1s transformed into 

(2) by a two-fold axis passing 

through = 122 = 0! 
In this space group there exist 

two equivalent general positions: 

Coy, Zz) and (= x, are Fi esl SX, y, +z) =H — x, y, 1—2Z) 

The equivalent atoms (x, y, z) and (1 — x, y, | — z) are both contained in the 

lattice and can be deduced from each other by a two-fold axis passing through 

0 oz 2. 

Group P2; 

® -z(Q2 0 ZI(2K) OF, 

@ +z (1) 

® -z (2) 

a 

Figure 7.8 

Group C2 

Consider an atom (1) lying at a 

height +z in a general position. Its 

image (2’), given by the 2; axis, is 

at a height —z. Atom (2) deduced 

from(2’) by lattice translation a is 

equivalent to atom (1); we trans- 

form (1) into (2) by a 2; axis 

passing through x =1/2, z=0. 

The coordinates of the two 

equivalent atoms are: (x, y, Z) 

and (—x, y, +1/2 —z) 

For group C2, the translation mode C equal to 5 (a + b) must be added to the 

whole lattice translations. If there exists an atom (1) lying at (x, y, z), then there 

also exists an equivalent atom (3) lying at (x +4, y +4, 2). 
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The image (1’) of (1) given by 

axis 2 is the height —z, Atom (2) 

Hox Wana b deduced from (l’) by lattice 
—— > translation a is equivalent to 

atom (1); similarly (3) may be 

® -z(4) transformed into (4) by symmetry 

about the two-fold axis followed 

by a translation a. Atom (4) is 

——s similarly deduced from atom (1) 

Wie by an axis 2; passing through 

a ee he ee 
The coordinates of the four 

Figure 7.9 equivalent atoms are: 

fw +2 (1) 

@ +z G3) 

(ey 2) — eZ) (Xe iy 2. Zz); 2 Xa 1/2, —2z) 

Similar operations performed on the group C2, give an identical result to 

that of C2. The symmetry elements are identical (2 and 2; axes); only the lattice 

origin is modified, and C2;=C2. 

The space groups derived from class 2 are thus: P2, P2; and C2. 

REMARKS: 

@ To construct the group we do not need to know all of the symmetry 

elements since some of the latter (called the group generators) imply the 

presence of the others. 

@ In this example, the only symmetry elements to be sought are the 2 or 2; axes 

(the product is obtained of the two-fold axis of the point group and the 

translations). 

@ This simplified method of seeking symmetry elements of space groups, based 
on a study of equivalent positions of atoms in the unit-cell, works correctly 

in simple cases (a single symmetry element). However, it cannot be used for 

more complex groups, since the relative positions of the various symmetry 

elements in the unit-cell are, a priori, unknown. 

7 POSITION OF SYMMETRY ELEMENTS IN THE UNIT- 
CELL 

@ The product of a proper rotation through an angle 2g and a perpendicular 
translation fis a rotation through the same angle about an axis lying on the 
bisector of the translation vector at a distance d = t/2.tang 
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@ Equidistant from two two-fold axes, equivalent by a whole lattice 
translation, there exists another two-fold axis. 

@ Equidistant from two mirror planes, equivalent by a whole lattice 

translation, there exists another mirror plane. 

7.1 Symmorphic Groups with Primitive Cell 

We shall take as an example the group P4mm 

The class is tetragonal 4/mmm; the lattice is primitive. 

The symmetry elements are: 

(E, 000), (C4, 000), (C7, 000), (C}, 000) 

(C2x, 000), (C2,, 000) 
(Cox 000), (Crazy, 000) 
(on, 900) 

(ox, 000), (ay, 000) 

(dx), 000) o%,, 000) 

(S4, 000), (I, 000), (S?, 000) 

Four-fold axis [001] 

Two-fold axes [100] 

Two-fold axes [110] 

Mirror plane (001) 

Mirror plane (100) 

Mirror planes (110) 

4-axis [001] CYUYYYYY 

In the corresponding point group, there are 16 equivalent general directions. 

There must exist 16 equivalent general positions (and 16 symmetry operators). 

The lattice translations (E, 100), (E, 010), (E, 001) must also be included. To 

construct the group, we proceed in two steps: 

~@At the origin, place all the symmetry elements in the point group, 

followed by all the elements deduced from them by whole translations of 

the lattice. 

eee a 
ee ~S 

<— (es 
VARY K a 

y ies ta | Kv class 4mm 

Figure 7.10 Figure 7.11 

@ Add the elements resulting from the product of symmetry operations and 

translations. 
# 
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. 1 K i | Th d fC y 7 alge I e€ product o 4 passing 

through the origin and a trans- 

lation a is C4 passing through 

the centre of the cell. 

The product of an inversion I 

and a translation t is an 

inversion at the centre of the 

vector t. 

The product of (C4)? =e 

and the translation a is C2 passing 

through the centre of vector a. 

The position of the mirror 

Figure 7.12 planes m is obvious. 

The product of (¢,,, 000) and a translation by the vector a can be written: 

a+b a-—b 
Gz; a) = (om Magrntr 5) ) = (G56 tusk t//) 

The normal component of the translation can be eliminated by placing the 

mirror plane at x =1/4, y =1/4; the parallel component cannot be eliminated, 

and gives a mirror plane n. 

NOTE: Symmetry elements form a group and so the product of two 

elements in the group is itself an element in the group. Thus to generate a 

group it is not necessary to use all of its elements—it is sufficient to select a 

suitable number. 

7.2 Symmorphic Groups of a Centred Cell 

We place all the symmetry elements of the class at the origin and position the 
elements which can be deduced from these by whole lattice translations. Next 
we place all the symmetry elements of the class at the extremity of the 
translations which are proper to the lattice type. Finally, we take the product of 
all these elements and the translations related to the lattice type, and then their 
product with whole translations. 

EXAMPLE: 

The group Cmm2 (Class mm2). 
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4 

Figure 7.13 

In addition to the whole translations we must include the translation 

CS 5 (a+b), whose product with the mirror planes m produces mirror planes 

of type a at y=1/4 and type b at x =1/4. 

7.3 Non-symmorphic Groups 

- Here the presence of translation means that the symmetry elements are not 

necessarily concurrent, and so we must begin by determining the relative 

positions of the symmetry elements chosen to generate the group. 

-Group P4bm (Class 4mm). 

2 
-a/2 

class 4mm 

Figure 7.14 Figure 7.15 

The mirror planes mand bare positioned at the origin and we take their product: 

(Og. 0).(«, 3] = (. gs Oxy (3)) = (Cs, -5) 
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The product of a C4 axis and a translation normal to the axis is a C4 axis 

passing through 

x=—-1/4, y=-1/4 

If the new origin is taken on the fourfold axis, the symmetry elements become: 

a+b a+b 
(C4, 0), Ox, ple > Oxy oom 

The position of the other mirror planes m, b and n is obtained by taking the 

product of the 4-fold axis and the mirror planes. The product with mirror 

planes m gives the two-fold axes. 

& 

bana 

iy 

B a 

t 
~~ 2 

Figure 7.16 

Group Ama2 (Class mm2). 

We take the translation t=1/2 (b+c). The origin is placed at O, the 
intersection of mirror planes m and a. 

o9 z é § 3 The product of mirror plane m (o,, 

- Ox | 
0) and mirror plane a (cy, a/2) gives 

O : : the two-fold axis (C), a/2). 
| The product of mirror plane a (o,, a/2) 
: and the translation $(b+c) gives a 

mirror plane (,, (a+b+c)/2), and 
| hence a mirror plane nat y=1/4. 

| | The product of the axis 2 (C), 0) and 
é ¢ + 8 the translation 5 (b+ ¢c) gives an axis 

2 M4 2; situated at x =1/4, y =1/4. 
i, WE Can now place the origin at O, on 

Figure 7.17 the two-fold axis. 
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8 GENERAL AND SPECIAL POSITIONS 

When we know the nature and position of all the symmetry elements in a space 

group, we can determine the m equivalent positions of objects placed in the 

unit-cell (the general orbit of the group). 

If n is the number of equivalent general directions in the class from which the 

group comes, the number m of equivalent general positions is n if the lattice type 

is P or R, 2n if the mode is A, B, C or I and 4n if the mode is F. 

EXAMPLES: 

Group Fm3m 48 x 4 = 192 equivalent general positions. 

Group Ama2 4 x 2 = 8 equivalent general positions. 

Group P4/mmm_ 16 x | = I6equivalent general positions. 

If an object is situated on one or more non-translational symmetry elements it 

' is not repeated by those symmetry elements: the object is then in a special 

position. The set of equivalent positions constitutes a special orbit with 

multiplicity m’ which is a sub-multiple of the multiplicity of the general orbit. 

The symmetry of objects placed on special sites must correspond to the 

_ symmetry of the sites. 

EXAMPLES: 

Group Ama2 (m = 8). 

Atom on the two-fold axis at (0, 0, z): four equivalent positions: 

(0, 0, z); (1/2, 0, 2); (0, 1/2, 1/2+z); (1/2, 1/2, 1/2+z) 

Atom in a mirror plane m at (4, y, z): four equivalent positions: 

(1/4, J» Zi (-1/4, = Z); (3/4, 1/2, aa) Zz); (1/4, V2 AEy; Z) 

If the object is placed on a screw axis or a glide plane, its position remains 

general owing to the translational part of the symmetry element. 

9 CONCLUSIONS 

This brief analysis of a few simple examples shows the principle by which space 

groups are constructed. These space groups are distributed as follows among 

the different systems: 

(Appendix D contains the list of standard names for the 230 groups). 
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Triclinic system 2 Tetragonal system 68 

Monoclinic system 13 Hexagonal system 27 
Orthohombic system 59 Cubic system 36 

Trigonal system 25 

For certain groups (and especially cubic groups) working out the 

construction can be long and tricky. Use should be made of the ‘International . 

Crystallographic Tables’ which contain all the information relating to the 230 

space groups. 

Classification of structures according to geometrical crystallography 

All crystalline 
structures 

| 

230 space groups 

(symmetry of position) = 

14 Bravais lattices | 32 crystal classes | 

1] Laue classes 
| (centrosymmetric classes) v 

Merthedries lHotohedeies 

| 
| 7 Bravais cells ae or 7 crystal systems | 

Lattices Symmetry of 
orientation 

Figure 7.18 
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Using the International Tables 

The information below is designed to help the reader who may be unfamiliar 

_with the ‘International Tables for Crystallography’. A considerable amount of 

further information is to be found in the explanatory articles in the 

- introduction to volume A of the tables. 

References here are to volume A of the third edition of the tables, 

published in 1983 and revised in 1989 by the ‘International Union of 

Crystallography’!. 
This third edition should be used rather than the second (1952 edition) as it 

contains numerous improvements: 

O For monoclinic groups, the projections corresponding to both approved 

~ conventions (two-fold axis oriented along b or along ¢) are shown. In both 

cases, three orthogonal projections are drawn with either [100], [010] or [001] 

normal to the plane of projection. 

G For orthorhombic groups, the unit-cell axes are usually chosen so as to 

obtain the standard name as the name of the group. This standard name, 

which is meant to be as good an indication as possible to the symmetry 

of the crystal, is not always the most appropriate. Projections are given 

for the six direct coordinate frames possible, with the corresponding 

names. 
© Projections of cubic groups are now drawn, and new symbols specific to 

cubic groups have been introduced. 

O Group symmetry operations are listed and the optimum choice of 

generators to use is specified. 

On the following pages, explanations of the various features of the tables will 

be found facing the reproductions of each of the two pages of the International 

Tables devoted to the group Pmaz2, taken here as an example. 

International Tables for Crystallography edited by Theo Hahn, Kluwer Academic Publishers, 

Dordrecht, Hplland (1989). 
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@ Pma2 Cy 

Oy Nee 28 Pma2 

G) Pma2 

tt 
| i | 
ee os Bees ee 
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I | | 
¢—1____t 

@) P2cm 
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© Origin on 1a2 

© Asymmetric unit 0<x<1/4; 
@ Symmetry operations 

(1) 1 (2) 0, 0, z 

mm2 

Basic Crystallography 

Orthorhombic 

Patterson symmetry Pmmm 

® 
| qe — 

OQ 

& + > 
AY 

g-- — 

Ot O+ 

O+ O+ 

@O+ Ort 

Or Or 

O+ Ot 

O+ O+ 

0<y<l; 0<z<l 

G\igie Onz (4) m 1/4, y, z 

From International Tables for Crystallography, Volume A 

Reproduced by permission of the International Union of Crystallography 

@ The heading comprises: 
The standard name of the group in shortened Hermann—Mauguin notation 

(Pma2). 
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The Schénflies symbol C3, of the group. 

The class or point group (mm2). 

The crystal system (Orthorhombic). 

@ The group number (the initial choice is arbitrary). 

The group symbol in full Hermann—Mauguin notation: 

e.g. the group P2,/c is denoted P14 

The group symmetry of the Patterson function. 

(Always centro-symmetric and symmorphic). 

@) Diagram(s) of the symmetry elements of the group; the number of 

diagrams depends on the crystal system. 

If it is the projection of the axis which is shown on the diagram, then the 

name of the axis is indexed with a ‘p’ (ap is the projection of a onto the 

plane of projection). 

@) Illustration of a set of equivalent general positions. 

The position of an atom is shown by the symbol © to which is affixed the 

height. In the expression for the height, the letter z is systematically 

omitted. Thus + and —correspond to +z and —z; similarly, 1/2+ denotes 

Li2 ez: 

() Initial object. 

G) Object deduced from the initial object by an inversion, a roto- 

inversion or a mirror reflection (enantiomorph of the initial object). 

G 1) Notation used for two superimposed positions in the case of a mirror 

plane parallel to the plane of projection. 

©) Position of the origin. 
The position of the origin is stated through its symmetry (symmetry 

elements intersecting at the point in question). In the example, the origin 

has been chosen as the intersection of the two-fold axis and the mirror 

plane a. 

© Definition of the smallest volume whose repetition by the group symmetry 

elements will generate the whole crystal. 

@ List of the symmetry elements of the group. Each element is identified by 

an ordering number: (1), (2) etc. 

The nature of each symmetry element is specified: 1, 2, a etc. 

The position of the element in the cell is given: 0, 0, z etc. 
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© CONTINUED No. 28 Pma2 

@ Generators t(1, 0,0) +t(0, 1,0); t0, 0,1); (2); (3) 

selected (1); 

® Positions 

Multiplicity Coordinates Reflection 

Wyckoff letter conditions 

Site symmetry 
General: 

4dl (1) xy; = Q) Hy, 2 GB) xt 1/2, y, z (4) X+1/2, y, zhO1 :h=2n 

h00: h=2n 

Special : as 

above plus 

25c Miss 1/4, y, Zz 3/4, y, Z no extra 

condition 

DAS oP? On ez 1 Deeli Deez hkl: h=2n 

Pike oP 0, 0, z 4, OE hkl: h=2n 

@® Symmetry of special projections 

Along [001] p2 mg Along [100] plm1 Along [010] pllm 

a'=a b’=b a’=b b’=c a=c b’=1/2a 

Origin at 0, 0, z Origin at x, 0, 0 Origin at 0, y, 0 

© Maximal non-isomorphic subgroups 

I IPDI2@2) 1-2 
O (2]Plal(Pc) 1;3 

[2]Pm11(P- 1;4 

m) 
Ila none 

Ib [2]Pba2 (b’=2b); [2]Pmn2, (c’=2e); [2]Pca2; (c’=2c); [2]Pen2 (c’=2c)(Pnc2); 

(am [2]|Ama2 (b’=2b, c’=2c); [2JAba2 (b’=2b, c’=2c) 

© Maximal isomorphic subgroups of lowest index 
IIc [3]Pma2 (a’=3a); [2]Pma2 (b’=2b); [2]Pma2 (c’=2c); 

@ Minimal non-isomorphic supergroups 
I [2]Pccm; [2]Pmma; [2]Pmna; [2]Pbcm 

I [2]Ama2; [2]Bma2 (Abm2); [2]Cmm2; [2]Ima2; [2]Pmm2 (2a’=a) 

From International Tables for Crystallography 

By permission of Kluwer Academic Publishers 

@ Simplified heading. 

@) A minimal set of generators is specified. The symmetry operations are 
noted by their ordering number in the list of operations in the group, and 
the translations are indicated by the vector components. 

G) List of general and special positions. 
The following information is given for each set of positions: 
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The multiplicity (in order of decreasing multiplicity). 
The Wyckoff symbol for the site (see note 1). 

The local symmetry of the site. 

The coordinates of the equivalent positions receded by the number of the 
symmetry operation which generates the positions (see note 2). 

The existence conditions for diffraction spots. (see note 3). 

@ For each group, three orthographic projections along the symmetry axes 
are given. Each projection is accompanied by the direction of the 

projection, the name of the corresponding space group, its axes and 
origin. 

© @© Maximum-order subgroups. 
I: Translations are the same as for the initial group. 

II: The crystal class is identical to that of the initial group. 

a: The same unit-cell (centred groups); b, ¢: larger unit-cell. 

¢ (©): Subgroups with the same standard symbol as the initial group. 

© [2] Order of the subgroup; Plal: complete symbol for the subgroup; 

L] (b’=2b): base of the lattice; (For Ila, b and c); 

© (Pc): conventional symbol for the subgroup; 

© 1;3: list of symmetry operations. 

@ Minimal order supergroups. 

These tables are the inverse of those for the subgroups. The notation is 

identical to that used for the subgroups. 

Additional remarks: 

1—Following the work of Schénflies and Fedorov, Wyckoff determined the 

coordinates of the general and special equivalent positions for all 230 groups. 

His classification appeared in the first ‘International Tables’ and has been kept 

ever since. The notation is still used in crystallography and solid state physics 

as it enables a simple characterisation of the sites in a crystal. 

2—The coordinates of the equivalent positions are fractional coordinates. To 

display as clearly as possible the nature of the elements in a group, the 

coordinates are given by points which do not all belong to the initial unit-cell. 

Coordinates of equivalent points in the unit-cell are obtained by adding whole 

lattice translations. 
3—The general existence conditions for diffraction spots of indices h, k, / 

depend on the translations and translation elements of the group. 

The notation ‘h0/:h=2n’ means that reflections of indices h0O/ are only 

allowed if h is even. If the atoms are in a special position, new systematic 

absences may occur; these will be related to the symmetry of the lattice and not 

to the contents of the repeating unit. These supplementary conditions are listed 

for each of the special positions. 



120 Basic Crystallography 

Lattice-related absences 

Type of cell Reflection conditions 

Primitive P None 
Face centred C h+k=2n 
Face centred A k+l=2n 
Face centred B h+l=2n 
Body centred I h+k+l=2n 
Face centred F h, k, all even or odd 

Examples of absences related to translation symmetry elements: 

Type of element Reflection conditions 

2; axis along [001] OO =2n 
4, axis along [001] 007 : /=4n 
2, axis along [100] h0O:h=2n 
Mirror plane a (001) hkO0: h=2n 
Mirror plane a (010) h01:h=2n 

Mirror plane n (001) hk0:h+k=2n 

Proof of absences engendered by symmetry 

elements will be given in chapter 10. 

In volumes B and C of the numerical tables are to be found wavelengths, 
atomic diffusion factors, coefficients of absorption etc. together with copious 
information on the experimental methods of X-ray diffraction. 
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Chapter 9 

X-rays 

1 PRODUCTION OF X-RAYS 

_ X-rays were discovered by R6ntgen in 1895, and their wave nature was shown 

in 1913 when the first diffraction experiments suggested by von Laue were 

carried out. Later, Barkla demonstrated that X-rays are transverse waves, 

thereby establishing that they are electromagnetic. 

X-rays range in wavelength from 0. 1A (the lower limit of y-rays) to 100A 

(the upper limit in the far ultra-violet); this corresponds in energy to the range 

0.1-100 keV. The energy (in electron-volts) of an X-ray photon of wavelength y 

(in A) is: 

12400 
Vi) CaS a 

A 

(E=hv=hc/y and | eV=1.6x 107”? joules) 

X-ray crystallography uses X-rays of wavelength between 0.5 and 2.5 A. 

O THE ORIGIN OF X-RAYS 
X-rays are produced when electrons which have been accelerated by an electric 

field strike a target (the anode). The efficiency 7 is low as can be seen from the 

following empirical formula: 

__ photon energy = lel x 10° 2Z.V 
electron energy 

where Z is the atomic number of the target metal and V the accelerating 

potential of the electrons (in volts). For a tungsten anode at a potential of 

100 kV, the efficiency is of the order of 0.8%. 
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O SEALED X-RAY TUBES 
A typical X-ray tube configuration is illustrated in figure 9.1. 

The anode block is made of steel. It is equipped with four windows made of 

thin sheets of beryllium, which is transparent to X-rays (figure 9.1). The metal 

disc which is the target is brazed to a water-cooled copper block. The tube 

terminates in a glass neck at the bottom of which are fixed the electrical 

contacts. The tube is under high vacuum. A tungsten filament, heated by a |. 

variable current (to set the temperature which controls the level of emission 

and hence the tube current), is made negative with respect to the anode. 

Filter 

Target 
= Vi 

) </ FA, -THT 
Focusing 

i ah2 

)) 
ee 

/ Kw 
Filament \ Beryllium window 

Figure 9.1 

For safety reasons the anode is kept at earth potential. A focusing cup 

concentrates the electron beam onto a small rectangular zone on the target. On 

leaving the tube, the X-ray beam is given a defined geometry by the use of 

collimators. 

The X-ray source is ‘seen’ over an 

angle of incidence of about 6°, and both 
ce: is Sn spot and line foci are available. (figure 

ca Fe et 9.2). 
ee ee baie cae ee The electrical power dissipated in a 
( i normal X-ray tube is around 1.5-2kW. 

soe: ar n'a ny warn Since nearly all the power is converted 
“| E -Linear focus to heat, the anode must be cooled. To 

improve the cooling, the anode can be 
cc Window rotated; the dissipating capacity of 

rotating anodes is of the order of 
7. 20kW. However, the high cost of the 
a Point focus apparatus (pump, rotating seals, power 

supply) limits its use to applications 
where high energy beams are necessary. 

——S— = Filter 

Figure 9.2 
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After emerging from the beryllium windows, the beam can be passed 

_ through filters. 

O POWER SUPPLIES 
An X-ray tube is self-rectifying, but for reasons of stability it is supplied with 

DC, adjustable over the range 30k V—100 kV. The tube current can be set from 

a few mA to 60mA. 

The consumption depends on the current AGAihe through the X-ray tube 

and modern equipment uses current and voltage feedback control. Highly 

insulated transformers and wiring are required to handle the very high 

voltages. Modern switching power supplies enable the construction of compact 

and reliable equipment. 

In a few specialised centres (Orsay (Lure), Grenoble (ESRF), Hamburg, 

Daresbury, Brookhaven, Stanford), synchrotron radiation is used to produce 

a very intense beam of X-rays. Synchrotron radiation is generated through 

- the motion of electrons moving close to the speed of light in a storage 

ring. The radiation is emitted tangential to the trajectory in a white 

spectrum. The beam is 10*-10° times as intense as that of a conventional 

generator. 

2 THE ANODE SPECTRUM 

Figure 9.3 shows the spectrum emitted by a tungsten anode at an anode- 

cathode potential of 100 kV. 

This emission is made up 

of a continuous spectrum on 
which is superimposed a line 

* spectrum (K,, Kg, L, etc.) 

| | The lines occur in series 

(K, L, M etc.) and close 

‘ study shows that they have 

quite a complex structure. 

Kp Lp The intensity of these lines 
is very much higher than 

that of the continuous 

spectrum (by a factor of 

>100 for the K, line of a 

copper anode). The contin- 

uous spectrum is charac; 

terised by a sudden 

discontinuity on the low 

Figure 9.3 wavelength side. 

Intensity 
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2.1 Continuous Radiation 

This radiation is known as Bremstrahlung'. It is the result of the emission of an 

electromagnetic wave by electrons in the incident beam which undergo a 

sudden deceleration on interacting with electrons in the target. The 

discontinuity at low wavelengths is due to the total transfer of the energy of 

the incident electron to the emitted X-ray photon: 

h. 
W=eV= Viner a mie = Vnind = ei = es 

Ymin eV Vvoit) 

As the efficiency depends on the atomie number of the anode metal, to obtain 

‘white’ radiation, a target of high atomic number at high voltage must be used. 

2.2 Characteristic Radiation 

The line spectrum is characteristic of the target metal, and is the result of 

electronic transitions between atomic energy levels in the target. The photons 

from the continuous radiation have enough energy to cause the inner electrons of 

an atom to ionise. The atom leaves the resulting excited state by emission due to 

internal transitions; however, an atom ionised by loss of a K electron does not 

necessarily emit a K photon; the energy liberated by the transfer of an outer 

electron to the K shell can also be used to eject an electron (Auger emission). X- 

ray line spectra can be completely interpreted through the rules of atomic physics; 

figure 9.4 shows the energy level diagram and the associated quantum numbers. 

Bovetly byt 

K : 1 * * % j l 0 1/2 Ss 

a2 al f2 

| Bl ; Z 0 1/2 2s 
by : 

f 1 1/2 2p 

i t 1 3/2 2p 

| | Bl 

See we 
M ie t coals a6 

= 15 32 3 

K series L series 2 5/2 

Figure 9.4 

'German for braking radiation. 
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—The principal quantum number n denotes the shells K, L, M etc. 

_—The orbital angular quantum number / denotes the orbitals s, p, d etc. 

(0</<n—1). ; 

—The magnetic quantum number m takes the values —/ < m < 1. 

—The spin quantum number s takes the values +1/2. 

—The total angular quantum number / takes the values j=/+ s. 

If the K shell is ionised, the atom is in a state having an energy Ex. The 

resulting electron hole will be filled by an electron from one of the outer shells 

of the atom. 

A series is named according to the level of the shell to which the electron 

goes; thus a transition L—K is written K,, a transition M—K is written Kz 

and so on. 

Orbital energies within the same level are very close, and this gives rise to the 

formation of multiplets with closely spaced wavelengths: 

Ky > K —L;, Ky > K—Ly; Kg, 3 K—Ms3; Kp > K—N3; Kp > K—N)... 

It can be shown in atomic physics that allowed transitions (those with a 

probability other than zero) satisfy the following selection rules: 

n>=i,Al=+1, Aj=0+1 

The limit of a series corresponds to an unbound electron jumping to the 

ionised level; the wavelength of the limit is therefore: yx =hc/Ex. 

For a series S (S=K, L, M etc.) to be emitted, the incident electrons must 

have an energy higher than Es, i.e. the accelerating potential difference must be 

greater than the ionisation threshold Vs of level S. 

The intensity of a line is proportional to the transition probability for 

the electron between the initial and final levels. The lines K,; and K,, have 

roughly the same starting energy, but the population of the 2p”? level 

(4 electrons) is twice that of the 2p* level; the intensity of the K,; line 

is roughly double that of the K,) line if the atomic number Z lies 

between 20 and 50. For the same range of values of Z we also have: [xg ~ 

0.2 Tut 

The wavelengths for the most commonly used anodes in X-ray crystal- 

lography are given in table 9.1. (The value for )xy1cu radiation taken as a 

measurement standard is 1. 5405974A). 
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Table 9.1. Wavelengths 

Target Wavelengths/A 
Threshold V,. 

Type VE Kyo —Ky Kz K limit /volt 

Chromium 24 2.2935—2.2896 2.0848 2.070 5950 
Iron 26 1.9399-1.9360 1.7565 1.743 7 100 
Cobalt Dy 1.7928—-1.7889 1.6208 1.608 7 700 
Nickel 28 1.6616—1.6578 1.5001 1.488 8 300 
Copper 29 1.5443—1.5406 123922 1.380 9000 
Molybdenum 42 0.7135—0.7093 0.6323 0.6198 20.000 
Tungsten 74 0.2138—0.2090 0.1844 0.1783 69 500 

Note: To a first approximation, X-ray emission lines are not affected by 
chemical bonds, as the excitation takes place in the inner shells of the atoms. 
The frequencies depend only on the atomic number Z of the atom according to 
Moseley’s empirical law: 

Jv = A(Z — B) (A and B are constants characteristic of the series). 

Wavelengths are chosen according both to the cell parameters of the compound 
under study and to the chemical elements present. For example, it is not 
recommended to use a copper target for a compound containing iron since the 
energy of the K,, photons is high enough to ionise the K level of the iron, which will 
then emit its own characteristic radiation, thereby increasing the intensity of the 
white spectrum. 

3 ABSORPTION OF X-RAYS 

Total absorption is the result of two phenomena: scattering and the 
photoelectric effect; however, the effects of scattering are more or less 
negligible compared with those of the photoelectric effect. The latter is the 
result of coherent scattering, in which no change of wavelength occurs 
(Thomson scattering) and of incoherent scattering (Compton scattering). 

A Photoelectric 
Ao effect 

seay Auger 
electrons 101) 

SS 
Sa ae 

Incident 
beam = 

Scattering 
A> Ap 

Figure 9.5 
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3.1 Mass Absorption Coefficient 

Consider a monochromatic beam of unit cross-section passing through a 
homogeneous screen. It will lose energy dI proportional to the mass of the 
screen per unit surface (dp), and at an incident intensity I: 

dI = —y.I.dp 

is the mass absorption coefficient of the screen. On integrating we have: 

Sent? e5he* 

(x is the thickness of the screen and p is the density). 

-3.2 Variation of the Mass Absorption Coefficient 

The mass absorption coefficient depends on both the atomic number of the 

element and the wavelength. 

O VARIATION WITH WAVELENGTH 

A plot of mw against wavelength presents discontinuities due to the 

photoelectric effect, i.e., absorption of a photon by the atom with expulsion 

of an electron. Secondary radiation is emitted (so-called ‘fluorescence’) and this 

may be accompanied by Auger electrons and secondary electrons. 

For a shell to be ionised, the energy hv of the primary proton must be greater 

than the binding energy of the electron. A given shell, for instance the K shell, 

will only be ionised by radiation of frequency v higher than vg such that 

hvy = Wx =he/Ag. The wavelength must be lower than: 

4 h.c h.c 12394 
Ax A = 

We eVe Ve(volt) 

As soon as / is lower than Ax, the K shell becomes ionised and absorption by 

this shell is at a maximum which then decreases with 2. The same phenomenon 

occurs with the L shell but the relative amplitude of the discontinuities is 

smaller. 
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Figure 9.6. Variation of the coefficient for a tungsten screen 

In the regions between the discontinuous zones, the mass absorption 

coefficient of an element varies in close accordance with C.Z°.2° (The Bragg— 

Pierce law). 

© VARIATION WITH THE TYPE OF ELEMENT 

Absorption increases with the atomic number of the element; light elements are 

weak absorbers whereas heavy. elements are strong absorbers. yw does not 

increase continuously with Z and the discontinuities have the same origin as 

above. 

If, for example, we consider the K, line of copper (A = 11.542A), elements 

with an atomic number equal to or lower than 27 (that of cobalt) have a critical 

wavelength Ax higher than AU, Co = 1.608A). The reverse is true for the 

elements after cobalt (nickel: A, Ni = 1.489A) and ionisation of the K shell 

then becomes impossible. For 2, Cu radiation, there is a sharp decrease in the 

coefficient between cobalt and nickel. 

3.3 Applications 

0 WINDOWS AND SCREENS 
Problems of absorption govern the choice of material used in X-ray 
crystallography. Windows in tubes and detectors are made in materials of 
low absorbency which therefore have low atomic numbers. As organic 
materials do not support a vacuum sufficiently well, beryllium, despite its 
difficult workability, remains the principal material here. Ordinary glass 
absorbs highly, and so special glasses (Lindemann glass) have to be used for 
sample containers. On the other hand lead with its high absorbency is the most 
commonly used material for screens, either in the form of sheet metal or lead 
glass windows. 
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O FILTERS 

_ A screen with a discontinuity at A, is a strong absorber of radiation at 
wavelengths shorter than Ax. : 

The K, doublet is close to the Kg 

line whose relative intensity is quite 

high. The diffraction phenomena 

Ko due to the K, radiation have those 

due to Kg superimposed on them, 

thus complicating the interpretation 

of diagrams. Since the Kg line has 

a shorter wavelength than that of 

K,, a filter can be provided to 

>i absorb much of the Kg and little 

Figure 9.7 of the K,. 

wu A 

| 
| 
| | 
| 
| 3 

To make the filter, we require an element whose K discontinuity occurs 

. between the two lines. Note that although such a filter enables the Kg line to be 

eliminated, it does not eliminate the white spectrum, nor the separation 

between the K,, and K,, lines. 

To obtain a true monochromatic beam, crystal monochromators must be 

used (see chapter 12, section 8). 

Table 9.2 gives the types of filters used with the most common anodes 

for eliminating the Kg line. Thicknesses are calculated to give a ratio of 

1: 100 between the intensities of the Kg and K, lines. As can be seen from 

the transmissions, filtering reduces the incident intensity by a factor of 

about 2. 

Table 9.2. Filters for the most common anodes 

Filter 

Type of ‘ % transmission % transmission 

anode K,/A Type  thickness/m K, Kz 

Cr DODS)I| V 11 58 3 
Fe 19371, Mn 11 59 3 
Co 1.791 Fe 12 57 3 
Cu 1.542 Ni 15 52 2 
Mo 0.710 Zi 81 44 1 
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In the case of the chromium anode, as it is impossible to produce 

very thin vanadium sheet, the filter is made from vanadium oxide with a 

binder. 

4 X-RAY DETECTORS 

4.1 Fluorescent Screens 

Although X-rays are invisible, they may be transformed into visible 

radiation: they have the property of “making certain substances such as 

zinc sulphide fluoresce; the greater the intensity of the X-ray beam, the 

brighter the light emitted from such a screen (this is the principle of clinical 

radiography). Screens are now only used to locate beams during 

adjustments. 

4.2 Photographic Films 

For many years photographic film was used for accurate determination of the 

position and intensity of lines in diffraction patterns, but this practice has now 

been abandoned in favour of other more precise techniques. The photographic 

emulsions used were of large-grain silver bromide; an X-ray photon acting on 

an Ag” ion transforms this into an atom of Ag®, producing a latent image of 

the pattern in the emulsion. The film is then developed and all the Ag* ions in 

a grain of emulsion containing an atom of silver are transformed into Ag®. At 
the same time, a few non-activated grains develop spontaneously, giving rise to 

a clouding of the image. The undeveloped grains are then removed by a fixer. 

For medium intensities, the darkening of the film is proportional to the 

exposure time. However, intensity measurements are of poor precision, even if 

the films are processed with great care, and the use of film is now limited to 

techniques where it is not required to measure the intensities of diffraction 

patterns. 

4.3 Gas Counters 

O THE GEIGER-MULLER COUNTER 
When an X-ray photon interacts with an atom of an inert gas (e.g. Xenon), the 
atom can be ionised into a “positive-negative ion’ pair. The energy required is 
of the order of 20-30 eV (20.8 eV for xenon). A K,c, photon possesses an 
energy of 8.04 keV, and it is thus capable of creating about 350 ion pairs in the 
gaseous medium. 
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The Geiger—Miiller (G-M) coun- 

ter is made up of an earthed metal 

= R tube through which passes a wire 
: High tensi =e eed (.\ High tension (the anode) held at a potential of 

around 1500-2000 V. The tube is 

hin filled with a mixture of gases and 
77 —7 Amplifier has’a window transparent to X- 

isi = rays. The electrons produced by 

the ionisation process in the gas are 

attracted to the anode, the positive 

Figure 9.8 ions to the body of the tube. 

The electrons are accelerated by the electric field around the anode and 

acquire sufficient energy to ionise any neutral gas atoms encountered. There is 

an avalanche effect (the amplification factor is between 10* and 107 and 

. depends on the intensity of the electric field). The burst of electrons arriving at 

the anode causes a drop in potential at the capacitor connected to the anode. 

The resulting pulse is amplified, shaped and sent to a counter. The positive ions 

produced take a certain time to disappear (the dead time), and if a new photon 

enters the tube during this time, it is not detected. At high intensities, the 

counter becomes saturated and its response is not linear. Manufacturers of 

G-M tubes therefore use gaseous mixtures designed to give the shortest 

possible dead times (~ 10-+ s). 

- O PROPORTIONAL COUNTERS 

If a weaker electric field and a gain lower than 10° are used, the amplitude of 

the output voltage pulse from the tube becomes proportional to the energy of 

the photon. The signal has to be amplified much more than with a conventional 

G-M counter, but on the other hand the dead time is much lower. Moreover, 

since the amplitude of the pulses is proportional to the energy of the photons, 

discrimination can be made between the ‘right’ photons, 1.e. those that 

correspond to the right wavelength, and the others. Only those pulses 

corresponding to photons with energies between certain well-defined limits (the 

‘window’) are transmitted. 

This technique of ‘pulse height selection’ has enabled a considerable 

improvement in the signal-to-noise ratio by eliminating the white spectrum and 

fluorescence of the sample. 

4.4 Scintillation Counters 

In this type of detector, the energy of the photon is converted into electrical 
energy in a two-stage process. In the first stage, the X-ray photon’ is 

transformed into a visible photon (phosphorescence). A  thallium-doped 

sodium iodide crystal is generally used; this re-emits at around 4100A. In 
e 
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the second stage, the visible photon energy is transformed into electrical energy 

by a photomultiplier. Photomultipliers give very high gain, are easy to adjust 

and have a very rapid response. The dead time is very short and the response is 

practically linear over a wide range of intensities. 

In sophisticated work, use is also made of position detectors; these can either 

be gas counters with metal grid electrodes or scintillation counters coupled to a 

charge-transfer image amplification system. Also used are matrices of ° 

semiconductor detectors (reverse-biased diodes in which X-ray photons create 

electron-hole pairs) coupled with charge-transfer devices. 

5 COUNTING ERRORS 

X-ray emission is a random phenomenon; all measurements involved are 

therefore subject to statistical laws. The emission distribution obeys the 
Poisson law which, for a suitably large number of events N, can be 
approximated by a Gaussian law. The distribution is then symmetrical about 
the mean Np. If ¢ = ./Np is the standard deviation, then with N sufficiently 
large we have: o + JN . For a Gaussian distribution, there is a probability of 
68.3% that the value of N will lie in the interval N-+o, a probability of 95.4% 
for an interval N+2o and a probability of 99.7% for an interval of N+3<. 

Counting errors are random errors, and the accuracy of the measurement is 
a function of o. Another indicator of probable error is the relative standard 
deviation é: 

l gota (%) = N~ YN JN 
When measuring the intensity of a line, the background noise is superimposed 

on the signal, thereby increasing the uncertainty in the measurement. Let N be the 
total count, Mp the background and NV. = N — N, the real count; to evaluate M, 
two measurements are generally carried out, one on either side of the line. The 
standard deviations on N and N,are o and Oy, and the standard deviation on N. 
iS: 

G.=\/0 +o,=/N+N, 

and the relative uncertainty (background of 68.3%) is: 

> 

fi 2 
Ne 

N, Cc 
N+N, 
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For accurate intensity measurements, counts as large as possible should be used, 
- witha sufficiently high signal-to-noise ratio; however, extremely long counts are not 

advantageous owing to long-term fluctuations in the power supplies. 

6 X-RAY OPTICS 

6.1 Geometrical Optics 

According to the classical theory of electromagnetic waves, the refractive index 
of a pure substance tends to | at high frequencies according to the relation: 

NAL 

2n um”? 

_ (Where: N is the Avogadro number, r, = (1/4789) (e*/m.c’) = 2.82.10°' m is 

_ the classical radius of the atom, Z is the atomic number of the medium, M is 

the atomic mass, p is the density and J is the wavelength). 

With p expressed in MKSA units, 2 in A and Z/M close to 1/2, we 

have: 

n=1—e=]— 

a 1.3 < 107° ps” 

The refractive index of the medium for X-rays is thus very slightly less than 

‘1 and optical systems for X-rays cannot therefore be constructed easily; the 

X-ray telescope mirrors used in astrophysics have complex profiles. 

If a beam travelling through a vacuum meets a medium of lower refractive 

index, then if the angle of incidence exceeds the limiting angle of reflection 

there is total reflection. 
For X-rays, this angle is several minutes, and this property has been used for 

the absolute measurement of wavelengths of ‘soft’ X-rays (A > 50A), using 

metal gratings and very small angles of incidence. The property has also been 

used in the study of surfaces by X-rays, and also in synchrotron beam focusing. 

6.2 Physical Optics 

For interference and diffraction to occur, the structures of the objects viewed 

must have dimensions of the same order of magnitude as the wavelength of the 

incident radiation. 
In crystals, lattice distances vary from a few tenths of angstroms to several 

dozen angstroms, and these distances are compatible with diffraction of 
radiation of the order of an angstrom. 

In the following chapters we shall only deal with elastic scattering of X-rays, 

where the diffracted rays have the same wavelength as the incident rays. 
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Like all ionising radiation, X-rays are potentially dangerous for the 

operator. 
The X-rays used in crystallography are not very penetrative and can 

cause serious burns to the dermis (radio-necrosis). 

X-ray generators are periodically given safety inspections. 

It is important not to ‘bypass’ any of the safety measures. 



Chapter 10 

Fundamentals of Diffraction 

Theory 

1 REVIEW OF DIFFRACTION 

1.1. Fraunhofer Diffraction 

ae aS 

pn 

) 

a 

=~ 
lng Consider a diffractor illuminated by 

a plane wave X0 of wave vector Sp. 

Beth he aca The diffraction pattern is observed 

My Oniney So ad infinitum in a direction charac- 
= b2 terised by the wave vector s; (this is 

=y equivalent to making the observa- 

y ' tion in the focal plane of a convex 

Figure 10.1 lens). 

The point O of the diffractor is chosen as the origin of the phases. Let 21 and 

¥2 be the wave planes passing through O and through P characterised by the 

vector r. The phase difference between the two wave planes is equal to: 

2¥ (S$) — 
7 

p= TH 8) 228 
(s == A >) 

We denote by A(r) the scattering aperture (for a screen with slits, the 

transparency is equal to one for the slits and zero for the opaque regions). We 

assume that the amplitude dA scattered by the diffracting element around 

point P is proportional to the length dr of this element. With these 

assumptions, the scattered amplitude at M is: 



138 Basic Crystallography 

ee | A(r).c?""5 dr (1) 
Diffractor 

In Fraunhofer diffraction, the diffraction pattern is the Fourier transform 

of the diffractor aperture function. 

1.2 Diffraction by a Plane Lattice 

Consider an optical grating with N slits of width a, and a distance b apart, 

whose height is large compared with a and b. The grating is illuminated with 

coherent light of wavelength A, and the light transmitted in a plane parallel to 

the grating at a distance D from it is observed. We let x be the distance from 

the point of observation P from the optical axis of the system and we write: 

x.b b 
[p= 

a titan 
It can be shown that the luminous intensity at P is equal to: 

5 Re. 
SIN sin Ni 

lhe = 16. = C.D Ay (2) 
T.U sin 7.u 

k 

This formula is quite general: 

The diffraction pattern of a periodic structure is equal to the product of the 
we | diffraction pattern of the repeating unit, D, and the function A%, 

characteristic of the periodicity of the structure. 

Figure 10.2. Variation of Ip) with u for a seven-slit grating with k = 2.5 (in the domain 
—-45<u<+4) and D envelope curve 
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The function A%, has the following properties: 

@ It is a periodic function: 4}, (u+n) = A%, (u) if n is an integer. 
@ For N integer, it has principal maxima at intensity N? 

. D; . . 

= (Si me, coll: Nt ten, asin Nw 
lim —,—— = lim ——— = lim N’*. ——, = 
u>0 sin’ 7.u u>0  (7.u) u>0  (N.7.u) 

@ It has N — 1 minima between two principal maxima: 

A; (u) = 0 ifsinn.N.u = O0ie.u= - (m integer) 

The intensity of the first subsidiary maximum is: 

I 1 4.N? 
Pi RR SOL 0.04.N? 
sin (G./2.N) Gin/2.Ny 9.2 

We can draw several important conclusions from this study of optical 

gratings and the relation for the diffracted intensity at P: I~) = CDA%: 

© The position of the maxima in the diffraction pattern of a periodic structure 

(the term A%)) is a function only of the periodicity of the structure. 

© The intensity of the maxima in the diffraction pattern is a function of the 

repeating unit of the structure. 

0 In a diffraction photograph, the quantity which we can determine is the 

luminous intensity, and this is proportional to the square of the amplitude of 

the diffracted waves. The phases of the waves, on the other hand, are 

impossible to determine. 

OG From the interference pattern, the periodicity of the structure can readily be 

determined, but the aperture function of the repeating unit is not easy to 

determine. 

2 SCATTERING OF X-RAYS BY AN ELECTRON 

Apart from fluorescence radiation, matter illuminated by X-rays emits 

radiation of wavelength equal to or longer than that of the incident radiation; 

this is scattered radiation. Its intensity is very low, but radiation scattered 

without change of wavelength enables interference phenomena to be studied 

provided the medium in question is periodic. 
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2.1 Incoherent Scattering, or Compton Scattering 

This was discovered by A.H. Compton in 1926. Scattering is the result of the 

impact between an incident photon and an electron. We assume the electron 

to be initially at rest (energy mc’). Its velocity after the impact is v; we let 

fb =v/c. The momentum of the incident photon is p=hy/c. From the 
conservation of energy and momentum we obtain the following system of © 

equations: 

'/ Scattered > 
: mc 

[hv+me? =hy + a 
VI-B 

| ny ; h.v ae m.v 
nciden — = — cos ———— cos 
photon V1l— p H 

i Electron 
v Ss hv mV F 

0 = —— sind+ sin y Figure 10.3 eo tae: Tp 

On solving the equations we have: 

h 
A ae (1 — cos 6) (3) 

The wavelength of the scattered photon depends on the direction of 
observation. There is no phase relation between the incident and scattered 
waves. The waves scattered by the various electrons never interfere—their 
intensities simply add. In X-ray crystallography, Compton scattering is a 
parasitic phenomenon which increases the background noise. 

2.2 Coherent or Thomson Scattering 

Under incident radiation with a wave vector So and an electric field Eo, the 
electron undergoes an acceleration y and emits secondary radiation which, far 
from the source, has the structure of a plane wave polarised in the plane Eo, so. 
The amplitude of the scattered electromagnetic field is proportional to the 
acceleration. 
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The motion of the electron is given by 

the relation: 

Ih 

= + i + m.005.X =|—e.Fp.e™ 

If the electron is weakly bound, 

damping and restraining forces are 

negligible; the acceleration of the 

m 

Electron electron is then: 

e ; 
eee jot 

Figure 10.4 ae 

The scattered amplitude at P is equal to! 

= ye? sing 5, bos Ye sin? 

Aan AG 

NOTE: Electrons of light atoms and external electrons of heavy atoms behave 

towards X-rays as free electrons, since their binding energy with the nucleus 

corresponds to natural frequencies very much lower than those of the incident 

radiation. For inner shell electrons of heavy atoms, the binding energy is 

comparable to that of the radiation, and coupling, giving rise to scattering, 

may result. 

2.3 Polarisation Factor 

We take a coordinate frame in which the Ox axis coincides with the incident 

wave vector Sg and such that the plane xOy contains the point of observation P. 

The incident electric field can be written E=E,+ E,. The incident radiation is 
the sum of a large number of incoherent vibrations the effect of which is 

obtained by taking the sum of the intensities. 

If the incident radiation is unpolarised, the mean values of Ey and E, are 
equal and hence: /,=/,=/J/2. The contribution to the scattered wave of the 
component along Oy of the incident wave is: 

'For a proof of this, refer to an account of radiation by antennae. 
4 
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p{ & e sin Y1 ; I 
Y\4nm r yp 

similarly: 

pe (Ho & sings rsh 
eee G73 | Malt A “ 

Now, ¢2 = 2/2 and 20 + y = 1/2. 

By summing the intensities we then 

Figure 10.5 . deduce Thomson’s formula: 

Ladiffused _ { Fo aie cos’ 6 (4) 

cident = An m7? 2 

Writing: 

1 ‘ 1 220 
ane #3081810 Snivande (Qi s oe ees 

4.1.€) M.C? D) 

(Where r; is the classical radius of the atom and P(@) the polarisation factor), 

the intensity scattered by an electron can be written in the form: 

2 

Ej =n(*) PO) (5) 

0 The scattered radiation is partially polarised. 

On emerging from a crystal monochromator, the radiation, unlike that from 

the anode of an X-ray tube, is not isotropic. 

O In Thomson’s formula, the mass occurs in the denominator as its square. 

The same calculation can be applied to the nucleus; the proton-scattered 

intensity is (1840) times smaller than the electron-scattered intensity. 

In the scattering of X-rays by matter, only the contribution of electrons is 

significant. 
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3 SCATTERING OF X-RAYS BY MATTER 

3.1 Electron Density Function 

The contribution of the atomic nucleus to X-ray diffraction is negligible, and 

the degree of transparency to X-rays is thus determined by the electron density. 

~ In quantum mechanics the single point electron of classical theory is replaced 

by a charge density p(r) = |W(r)|?, where Y(r) is the wave function of the 

electron. The volume du is assumed to contain a charge V(r) du and to scatter a 

wave whose amplitude is that scattered by the electron multiplied by p(r)dv. 

The electron density function has maxima at the centres of the atoms and 

minima between the atoms. The total amplitude diffracted by the sample in a 

direction defined by the vector S = (s; — So)/A (So is the incident wave vector, $ 

the diffracted wave vector) is then: 

A; = Ag, | TL). er id, 

Sample 

A, is the Fourier transform of the electron density. Through the inverse 

transform we can determine: 

p(r) ss [Ace*"5¢ Vs 

The function As is a complex function: 

A, = ||Asll-e?* "© 

The intensity, which is observable, is proportional to the square of the 

amplitude: 

Is = ||Asll’ 

If the function p(r) is known, it is possible to determine || As|| and hence the 

intensity. On the other hand, measurement of the intensity does not enable the 

phase of As to be determined. It is therefore impossible to calculate p(r) a priori 

from experimental measurements alone. For structure determination, the 

crystallographer has to use models whose validity has been tested by comparing 

values of intensities calculated from the model with experimental ones. 
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3.2 Atomic Scattering Factor 

© CALCULATION PRINCIPLES 

X-ray diffraction can be studied, to a first approximation, by assuming that 

matter is composed of independent atoms and that the effect of chemical bonds 

on the electron distribution can be ignored. To determine the intensity 

scattered by an isolated atom, the shell model can be used: the electron density 

is a function only of r. If z is the number of electrons, we can write: 

| p(r).41.r°.dr — 7 (6) 

If A.; is the amplitude scattered by an isolated electron, the volume element 

dv containing p(r)do electrons will scatter an amplitude of dAs = A,)p(r)dv. 
The phase of the wave scattered by the volume element du is ¢. (The nucleus is 
taken as phase origin). 

The intensity scattered by the atom is thus: 

As = [| | 4o-009.0% ao = 4a | | | o(re'.de 

Let so and s; be the incident and diffracted wave vectors, as before. We set 
20 = {So, $1} and we denote by ON the vector normal to the bisector of {So, S1} 
and a the angle {OP, ON}. 

The path difference for the point P is then: 

6 =F; —¥.S9 = r.(S; — So). 

The phase difference between the points P 
and O is thus: 

2n 2n 
s r.(S So) = F 

Oo= r.||S_ — So||. cos « 

4.n. 
If we set t= = sin 0, we can write: 

p=tr.cosa 

All points P on a circular crown of axis 
ON, thickness dr and width r.da will have 

Figure 10.6 the same values of r and of the angle «. 
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The volume of this elementary crown is: 

dv = 2arsina.r.dadr = 2nr’ sin adadr 

- Since dy/da = —t.r. sina, we can write du in the form: du = —(2.2/r)r.dy.dr 

eo TE: 
A; = —Au| | | pcre. i .dy.dr 

We calculate the integral by varying « from 0 to z and r from 0 to infinity. (In 

the shell model hypothesis we can separate the variables): 

[o.e) +r 

pte).rdr| dy 
math 

A, = Aa | 

L Jo 

We finally obtain the following expression for the diffracted amplitude: 

sin(4.z.r. sin 8/4 

4.m.r.sin 0/2 
TNS Aa p(r). 4.n.r°.dr (7) 

0 

The function p(r) must be known to carry out the calculation. 

We let: 

Ags = A.).f (sin 0/2) 

The term f(sin 6/2), which is the Fourier transform of the electron density, is 

called the atomic scattering factor. 

O PROPERTIES OF THE ATOMIC SCATTERING FACTOR 

@ It is a decreasing function of sin 0/2. 

@ Much work has been devoted to calculating its values. Reliable data are 

tabulated in the ‘International Tables for Crystallography’. 

@ According to relation (7), if @ is zero, f is equal to z, the number of electrons 

in the atom or ion. e.g. if @ is zero, f is equal to 18 for K*, Ar and Cl-. 

@ The electrons which are most involved in coherent diffraction are those in 

the outer shells; the scattering factors of an atom and its ions only differ for 

small values of @. Similarly, the contribution of bonding electrons, which are 

diffusely spread out, decreases very rapidly with 0. , 

@ When a wave is scattered by an atom, there is generally a phase shift of z 

and the scattering factor is real. If the frequency of the incident wave is close 
to the discontinuity in the K absorption of the atom, damping and 
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one Fi al 9! 9 sino/ 

Figure 10.7. Variation of atomic scattering factors of K and Cl~ with 2sin0// (A in A) 

restraining terms in the equation of motion of the electron can no longer be 

neglected, (cf § 2.2). Coupling of the frequencies results in scattering which is 

referred to as anomalous scattering. The atomic scattering factor becomes: 

yO ay (8) 

The phase shift is then no longer equal to x and the atomic scattering factor 

includes an imaginary part. To a first approximation, it can be assumed that 

the correction terms are independent of the diffraction angle 0. Af” is always 

positive, Af’ is negative if @ is less than wo and positive otherwise. The values 
of the correction terms are also tabulated for the common values of 2. 

3.3 Diffraction of X-rays by a Crystal 

In a crystal, the electron density p(r) is assumed to be the overlap of individual 

electron densities p,(r’), centred on the points r;, of the atoms making up the 

crystal: 

crystal 

pr) = > oir — 1) 

The expression for the diffracted amplitude: 
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Ag=t Az: | p(r).e?**S do, 

Sample 

then becomes (V = (a, b, c) = V* —'1): 

As | 
A, = Ag) | es pAr —1)).e? "8 dv, = oa (| piR2**S oR, eu 

In a crystal the electron density is three-dimensional. If a, b and ¢ are the 
base vectors of the lattice, we have: 

P(r) = p(t + u.a + v.b + w.c) where r = x.at+ y.b+z.¢ 

(u, v, w integers and 0 < x, y, z < 1) 

The expression for As can also be written: 

A. 
A, = 4*el » p(r).e** d, e2-u.ate.b+w.c)S (9) 

epysial lattice 

If we write: 

A, Fy = ia | p(r).e™S do, (10) 
lattice 

and if m,n, p are the number of cells along Ox, Oy, Oz, we conclude: 

m n P 

A. ad Fe 2 spa S eee: : cr (1 1) 

u=1 DvD=1 w=1 

Each sum is equal to: 

Sin 1.g.a;.S 
A a;.S — a 
(4-5) sin za;.S 

The function F's is the Fourier transform of the electron density of a cell, and 

is known as the structure factor. 

The diffracted intensity is then: 

I = ||Fs||?.4;,(a.S).A7(b.S).A27(c.S) = ||Fs||?.L? (12) 

We thus obtain the general result stated in paragraph 1.2: 
# 



148 Basic Crystallography 

The diffraction pattern of a periodic structure is equal to the product of the 

diffraction pattern of the repeating unit and a function dependent only on 

the periodicity of the structure. 

4 DIFFRACTION BY A THREE-DIMENSIONAL 
LATTICE 

4.1 Laue Conditions 

Since the number of cells in a crystal is extremely large, the scattered intensity 
(expression 12) is zero throughout (see § 1.2) unless the three functions A,(a;.S) 
are at a simultaneous maximum, i.e. the products aS are integers. 

The vectors S then obey the Laue conditions: 

a.S=h 

bS=k h, k, l integers 

CS = 

NOTE: The diffraction directions for a three-dimensional lattice can readily be 
found using the following method: 

Consider a row of point diffractors separated by a distance, a, illuminated by 
a plane wave of wave vector sy, which we observe to infinity in the direction s). 

The phase difference between the 
incident wave and the diffracted wave 
is between the points O and P, equal to: 

__ 2.71.a.(S; — So) 

e A 
Putting: 

oe (S; — So) 
y\ ) 

Figure 10.8 we obtain: y = 2.7.aS. 



Fundamentals of Diffraction Theory 149 

_ Constructive interference occurs if the phase difference between two 
Successive nodes is equal to an integral number times 27, ie. if aS=h 
(integer). The result can be generalised to three dimensions. 

-~© THE NATURE OF THE VECTOR S 

Let the angle between the wave vectors s; and sg be 20. The modulus of the 

vector S is equal to: ||S|| = (2sin #)/2 . The Laue conditions can be written: 

b a \ c 
Soho aan MESS ee 
h k ae 

Hence: (a/h — b/k).S = 0 (a/h—c/).S =0 
_ The vectors a/h — b/k and a/h —c/I/ belong to the plane h(x/a) + k(y/b) + 
U(z/c) = 1 in the family of lattice planes (k/). The vector S is normal to two 

vectors contained in the first lattice plane of the family of indices h, k and / 

which does not pass through the origin, and it is therefore normal to the family 

of planes (Ak/). 

The distance d;,; between two planes in the family is equal to the projection 

of the vector a/h onto the unit vector normal to these planes: 

S 1 
ayy = = 

ee Sil SII 
a 
i 

The vector S is thus equivalent to the reciprocal vector N om, 

ecm | The vectors S are vectors of the reciprocal lattice. 

_ The allowed diffraction directions in the lattice are those defined by the rows 

of the reciprocal lattice. 

GO DIFFRACTION DOMAINS 

From relation (12) the diffracted intensity can be written in the form of the 

product of a form-factor L? and a structure factor F’. As S is a reciprocal 

vector equal to: Nig = h.A* + k.B* +/.C*, the form factor L can be written as 

the product: 
4 

m n Pp 

Ls = S eit nuh S el2-tv-k y eit twl 

u=1 Deal w=1 
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This is the product of three geometrical progressions that can be written: 

sinz.m.h sin w.n.k sint.p.1 

sinz.h sinz.k sinz.l 

The interference function corresponding to the diffracted intensity is equal to - 

Le 
For an infinite crystal (m=oo, n= oo, p=oo), this function is zero 

throughout except for integral values of h, k and /, when it is infinite. This is a 

Dirac peak distribution over the lattice nodes. 

For a finite crystal, there will be a three-dimensional function with principal 

maxima for integral values of h, k and / and secondary maxima separated by 

minima of zero. Only the principal maxima have substantial intensity, and in 

reciprocal space they form a three-dimensional distribution of diffraction 

domains with dimensions 2A*/m, 2B*/n and 2C*/p (the distances between the 
first zero minima); for a finite crystal, the diffracted intensity is not immediately 

cancelled on departing from the Laue conditions. 

Diffraction occurs when the end of a diffracted ray remains inside the 

diffraction domain of the node in question. There is then said to be relaxation 

of the diffraction conditions. 

Two other formulations equivalent to the Laue conditions are often used: 

Ewald’s construction and Bragg’s law, which are based on simple geometrical 

constructions. 

4.2 Ewald’s Construction 

A wave vector beam Sp strikes the crystal diffractor at O. 

The so-called Ewald sphere has its 

centre at O and radius R=1/A4. The 
incident beam AO crosses the sphere 

through I. If the vector IM=S= 

(S; — $9)/A is such that OM is a diffraction 
direction, then M is a node in the 
reciprocal lattice constructed with the 
point I as origin (the node 000). The 
straight line AM is parallel to the lattice 

Figure 10.9 planes giving rise to diffraction. 
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Conversely, the diffraction directions which are possible are those defined 

_ by straight lines joining the origin O to nodes of the reciprocal lattice which lie 

on the Ewald sphere. With a randomly oriented crystal there is in general no 

diffracted ray; the crystal must be rotated about O to bring a reciprocal lattice 

node onto the sphere. 

When the crystal is rotated about 

O, the reciprocal lattice rotates 

about the point I. Figure 10.10 

shows the intersection of the Ewald 

sphere with a lattice plane (001)* in 

the reciprocal lattice. Since the node 

M lies on the sphere, it defines the 

direction of OM. In the example 

shown in this figure, diffraction by 

Figure 10.10 the (310) planes is occurring. 

NOTE: If the Ewald sphere is constructed with a radius equal to Ro, the 

reciprocal lattice must be constructed to the scale o* = RoA(a.A* = 0’, 

b.A* = 0 etc.) 

4.3. The Bragg Equation 

O BRAGG’s LAW 

Ewald’s construction (figure 10.10) enables us to write: 

IM =S =Nay =h.A* + k.B* + 1.C* 

The modulus of the reciprocal vector is ||Npx|| = eae 

This is related to the interplanar spacing (Ak/) by ||Naxil|-dixi = 1. From this we 

deduce the following relation, which is Bragg’s law: 

2.dnkI- sind = A (13) 
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O SOME REMARKS ON BRAGG’S LAW 

@ For diffraction by a family of lattice planes (which contains all the lattice 

nodes) to occur, the condition A < 2d); must hold; however, for diffracted 

rays to be observed, @ must not be too small: 

In X-ray diffraction experiments, the wavelength 2 used must be of the same 

order of magnitude as the lattice interplanar spacings dy; in the crystal. 

@ Consider the family of planes (H K L) such that H, K, L are relatively prime 

and the family (h k 1) = (nH nK nL) with n an integer. We then have: dpx; = 

dix./n. Bragg’s law can therefore also be written: 

2duxrsind = nd (14) 

The nth order reflection (with path difference 6 between two consecutive rays 

equal to nd from the planes (H K L) can be interpreted as a first order reflection 

(6 = 4) from the fictitious lattice planes (nH nK nL) separated by a distance 

duxzy/n. (In a family (nH nK nL), only one in n planes contains nodes). 

OG CONVENTIONAL INTERPRETATION OF BRAGG’S LAW 

The lattice is represented by a succession of parallel equidistant lattice planes. 

For nodes in the plane, there is phase agreement between the scattered rays if 

the diffracted beam obeys the Snell—Descartes laws. The angles of incidence 

and diffraction are equal and it can be verified from figure 10.11 that the 

optical path lengths for nodes NO and NI1 are equal when this condition is 

fulfilled. 
There must also be phase agreement between waves from different planes. 

The path difference between nodes N1 and N2, which is 2dsin 6, must be equal 

to nA with n an integer: 

2Qdpki Ssimgi— na 

Figure 10.11 
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If the Bragg condition is satisfied, reflection of the incident ray from the lattice 
_ planes will occur according to the Snell—Descartes laws. 

NOTE: For this proof to hold, it is not necessary for the nodes to be ordered 
within the lattice planes, and the proof does not account for all the phenomena 
involved. 

4.4 Conclusions 

The Laue conditions, the Bragg equation and Ewald’s construction are three 

«@ | equivalent representations of the same phenomenon: the directions of 

diffraction in a lattice are determined by its reciprocal lattice. 

The nature of the repeating unit only influences the diffracted intensity, not 

the directions. Measurements of X-ray diffraction angles in a crystal only give 

information about the translational lattice; diffraction directions are 

determined using one of the above methods, according to the nature of the 

‘problem and the diffraction technique actually used. To determine the position 

of atoms within the unit-cell, intensities within the diffraction pattern must be 

also be measured. 

5 DIFFRACTION INTENSITIES 

5.1 The Temperature Factor 

In a crystal, one atom is bound to the others by various forces; its equilibrium 

position is that which minimises its energy. Any perturbation will result in an 

oscillation of that atom about its equilibrium position, and in particular, 

thermal agitation will change the diffracting power of the atoms. A complete 

analysis of these phenomena is rather long and complex, and here we shall limit 

ourselves to an explanation of the calculation principles. 
We assume that the equilibrium position of the atom is chosen as origin, that 

the probability of finding the centre of that atom at r’, is p(r’) and that the 

electron density at r when the centre is at r’, is p,(r—r’). The electron density 

modified by thermal motion (the average obtained by integrating over all 

displacements) becomes: 
4 

ne [ate y)p(e).ar 
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Here we assume that the shape of the electron cloud is unchanged by 

movements of the nucleus. The mean atomic scattering factor is the Fourier 

transform of p,(r). According to the above expression, p,(r) is a convolution 

product, and its Fourier transform is therefore equal to the product of the 

Fourier transform of the convoluted functions. The Fourier transform of the 

probability function is called the temperature factor, or Debye-Waller factor. 

4S) = | pore (15) 

If thermal agitation is taken into account, the atomic scattering factor f, to 

be considered is thus equal to the product of the classical atomic scattering 

factor f, which is the Fourier transform of p(r), and the function q(S). 

Assuming that the thermal agitation movement has spherical symmetry, p(r’) is 

isotropic and can be described by a Gaussian function: 

ATU aS Minted Ba) POT peat : J et 2/2U 

U = (r’2) is the deviation from the equilibrium position. 

The Fourier transform of p(r’) is also a Gaussian distribution: 

HS) =e 2% US = ge ir OM Sg Ber OF (16) 

B=8n°U is the atomic temperature factor. ; 
Thermal agitation has the effect of making the electron density more diffuse 

(the lattice planes have a ‘thickness’), and of lowering the atomic scattering 

factor: the closer the lattice planes (and hence the higher the diffraction angle), 

the lower the atomic scattering factor. At ambient temperatures, values of U 
are typically 0.01-0.1 A’, and for harmonic vibrations U is a substantially 

linear function of temperature. Thermal agitation is, in general, anisotropic. If 

we assume that p(r’) is represented by a three-dimensional Gaussian 

distribution, the surfaces of equal probability are ellipsoids centred on the 

mean positions of the atoms in the crystal. The temperature factor representing 

the ellipsoid of thermal agitation in the reciprocal lattice becomes: 

g(s) =-expl=2r (Ui + Un. YO" + Ua ee 

+ 2U,2.X*.Y* + 2.U13.X*.Z* + 2.Uy3.Y*.Z*)] 

The six parameters Uj define the directions and lengths of the axes of the 
thermal ellipsoid. 
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5.2 Structure Factor 

- In the calculations of the intensity scattered by the crystal, we derived the term: 

Es= Ay | p(r).e?**S do, 

cell 

which is the structure factor. The following equivalent expression (making use 

of the atomic scattering factors) is more commonly used: 

n n 

Fs et Fis i SiGe Sate Re (17) 

=! i=) 

The term A,, is the same for all the atoms in the cell, and is therefore omitted 

_in this expression for the structure factor. The effect of chemical bonds is 

neglected and the summation is carried out over the n atoms in the cell. The 

atomic scattering factors of each atom must be corrected for thermal agitation 

effects. The scattered intensity in a direction defined by the vector S is 

_ proportional to the product of F,,; and its complex conjugate F hkl: 

TInt & Fr Finks 

5.3 Example of Structure Factor Determination 

We consider cesium chloride, CsCl. This has a simple cubic lattice with unit-cell 

composed of a Cl~ ion and a Cs" ion. If we set the origin on the chloride ion 

(0, 0, 0), the reduced coordinates of the cesium ion are 1/2, 1/2, 1/2. The 

structure factor is therefore: 

2 
2jn(h.xmtkVmtlZm) —_ jm(h+k+l) 

Fi = y Ry eS ang aay Et fee (oe ed 
m=1 

If ht+k+/ iseven Fix = fa- + fest Lp sc =/( > 

If h+k+1 is odd Fi = fo-fcst eeikeaas: i, 

For this compound, if the sum of the indices of the diffracted line is even, then 

the line is strong; if the sum is odd, the line is weak. 
@ 
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5.4 The Relation Between the Structure Factor and the Reciprocal Lattice 

If the intensity scattered in a direction S is zero, we can consider that the 

corresponding node in the reciprocal lattice does not exist. This will enable us 

easily to establish a number of properties of the reciprocal lattice. 

EXAMPLE: What is the reciprocal lattice of a cubic I-lattice? 

An atom with coordinates x, y, z corresponds to one with coordinates: 

e+ 1/2, y+ 1/2, 2+ 1/2; 

Gathering together the n atoms of the cell in pairs, we can express the g log p p 
structure factor in the form: 

n/2 

Fu = Dy fon (CT Om tk YmtL zm) eFC AL/2)44. Um +1/2)41.Gm+1/2))y 

m=] 

n/2 

2jn.(h.Xm+k. m+l.Zm in(h+k Fig = 5 ime 2jm.(h.x y Md is eltlht tO) 

m=1 

Ifh+k-+1is odd, Fix; is always zero. 

We see immediately that a cubic lattice with cell parameter a, and having no 
nodes with an odd sum of indices, is actually an F-lattice with cell parameter 
2a. We have thus established that the reciprocal lattice of an I-lattice is an F- 
lattice. 

5.5 Friedel’s Law 

Consider a reflection from a family of planes (hk/), characterised by a vector S, 
and one from a family (hk/), with diffraction vector —S. The structure factor 
for the family (hk/) is: 

n 

on oe S —2jt.tyS 
Fra = Tne sine 

m= 

If the atomic scattering factors f, of all the atoms in the cell are real, the 
structure factor of the family (hk/) is the complex conjugate of the structure 
factor of the family (hkl): Fg; = Fix. From this we deduce Friedel’s law: 

Tit = Tita & Fina (18) 
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The intensities of the reflections (h k 1) and (hk 1) are equal even if the 

crystal is non-centrosymmetric. 

The diffraction pattern will always have a centre of symmetry, even if the 

crystal itself is non-centrosymmetric. Diffraction methods enable the Laue 

class to be established, but not its point group. In fact the law is approximate 

~ since it assumes that the atomic scattering factors are real. If we choose a 

wavelength at which at /east one atom presents anomalous dispersion, then 

Friedel’s law is no longer applicable. In certain cases this method is used to 

distinguish between (h k J) and (h k /) reflections. 

5.6 Lorentz Correction 

In an ideal infinite crystal, the nodes of the reciprocal lattice are points. In a 

real crystal of finite dimensions with defects, the reciprocal nodes occupy a 

non-negligible volume of space in the reciprocal lattice. The longer a node 

remains in the diffraction position, the stronger the corresponding reflection. If 

all the nodes scattered in the same time period during an experiment, this 

would not matter, but in classical diffraction methods, the times for the various 

_ reciprocal nodes to cross the sphere are different. The diffraction time depends 

on the position of the node in the lattice and the speed with which it crosses the 

sphere. Consider, for example, a crystal rotating with constant angular velocity 

w@ about an axis of rotation normal to the direction of diffraction of the node in 

question. 

Figure 10.12 

The reciprocal lattice rotates about I at the same velocity w. If Vy is the 

component of the linear velocity of the node in the direction of diffraction, the 

Lorentz factor is defined by: 

L(0) = 
@ 

Vy 
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This factor is proportional to the time which the node takes to cross the 

Ewald sphere (R = 1/A). The linear velocity of M is: V = ((S*{|.@ = 'S*'o. The 

projection of V onto the direction of the refracted ray s; is Vy = S*.cos8, 

Using the Bragg equation we can write: 

[ 2. sig ‘Si pnteae oO. 
SR ae => Vis de sind sin: 

In this example, we find: 

L(@) = 1/ sin 20 

L(0) depends on the diffraction technique used: 

For powder methods we find: 

1 
L(¢) = —~———_-, 
\ sin’ 8. cos 0 

and for a rotating crystal (radius normal to the axis of rotation): 

wh 1 

~ sin 26 
L(0) 

6 REFLECTING POWER OF A CRYSTAL 

In our study of diffraction by a crystal, certain phenomena have been 

neglected: some of the primary and secondary radiation is absorbed by the 

sample, and the secondary radiation from the sample can be re-diffracted. 

These effects are taken into account by an absorption correction term denoted 

by A. The value of A can only be calculated if the sample has a simple shape 
such as a sphere or a cylinder. 

The intensity diffracted by a crystal can now be written in the final form: 

Q2 Inna = C.m.L(0).P(8)-A IMF nll? 

@ C is a constant which includes A?, (the intensity scattered by an isolated 
electron) and the intensity of the primary radiation. 

mis the multiplicity of the line and corresponds to the number of equivalent 
families of lattice planes which give the same diffraction line. 

@ L(@) is the Lorentz factor corresponding to the velocity with which the 
reciprocal node under consideration crosses the Ewald sphere. 

 P(@) is the polarisation factor. This factor is equal to (1+cos? 26)/2 for a 
non-polarised incident beam. 
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_ @ Ais the sample absorption correction. 

~ @ is the sample volume and V the unit-cell volume. 

@ Fix; is the structure factor which involves: 

—the atomic scattering factors of the atoms in the repeating unit, corrected if 

necessary for abnormal scattering; 

_—the Debye factors, which depend on temperature, on the nature of the atoms 

in the unit-cell and their environments; 

—the relative positions of the atoms in the unit-cell. 

Given the approximations made in the determination of some of the 

parameters, the accuracy obtained for the diffracted intensities is of the order 

of a few percent. Intensity measurements are always relative since it is difficult 

to determine precisely the value of the constant C, which depends on the 

incident beam. 

~ We conclude this chapter with the following diagram which summarises the 

steps followed in this study of diffraction by crystalline structures. 

Crystal | 
eh Diffraction pattem 

| Usieten H 

i | Crystal Diffraction direction [ Laue, Bragg and Ewald | 

lattice = reciprocal vectors conditions | 

| Isolated electron: 

x the Thomson factor 
} Zs y a 

Atom: Atomic 

scattenng factor f 
14 

a ss: 

Cry stal Diffracted mtensities 
fornmila unit 

‘[Unit<ell: Structure | 

factor F 

Crystal: 

I=mCLPAFF* | 

Figure 10.12A 



Chapter 11 

The Laue Method 

1 PRINCIPLE OF THE METHOD 

A single crystal placed at random in a beam of X-rays will not in general 

emit diffracted radiation. The Bragg equation 2d,,;sin 6 = must be satisfied 

for diffraction to be observed. With a single crystal, this can be done in two 

ways: 

—using monochromatic radiation and rotating the crystal with respect to the 

beam; this is the rotating crystal method; 

—using polychromatic radiation and a stationary crystal; this is the Laue 

method, and historically was the first to be used. (The first experiment was 

carried out in 1912 by W. Friedrich and P. Knipping after suggestions by 

M.von Laue). 

Laue diagrams exhibit the following characteristics: 

@ One spot on the diagram corresponds to one family of lattice planes. 
@ For a given spot, the wavelength of the incident beam is unknown; it is not 

therefore possible to deduce information on the dimensions of the 
diffracting unit from the diagram. 

@ The intensity of emission from an X-ray tube anode is not constant with 
wavelength, and it is therefore not possible to obtain information from the 
intensity of the diffraction spots. 

@ The diagrams show the relative positions of the various lattice planes and 
therefore enable internal symmetries of the specimen to be revealed. 
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2 EXPERIMENTAL METHOD 

The specimen (Figure 11.1) is generally stuck to a goniometer head (see Figure 

11.10) which allows the crystal to be precisely oriented with respect to the 

incident beam. The beam is obtained by placing a collimator perforated with 

pinholes against the X-ray tube window. This collimator limits the divergence 

of the beam. With a conventional tube, usable wavelengths lie between 

Amin © 12 400/V (A in angstroms and V, the difference in potential between the 

filament and the anode, in volts) and Amax of the order of 3 A. The generator 

has to supply a ‘white’ radiation as intense as possible, and a tungsten anode is 

used; this is held at as high a voltage as possible without exciting the K series. 

The diffraction spots are usually recorded on flat photographic film place a few 

centimetres from the crystal, perpendicular to the incident beam. 

Film The diffraction patterns are either 

recorded by transmission (for thin 

or weakly absorbing specimens), as 

in figure 11.la, or by reflection (for 

large specimens, giving ‘back pat- 

terns’) as in figure 11.1b. 

The direction of the incident beam 

remains fixed in relation to the speci- 

men. A family of lattice planes (hk/) of 

interplanar spacing d),,; making an 

angle @ with the direct beam will 

diffract the wavelength 2g when the 

Bragg condition ndg = 2d); sinO is 

satisfied. 

Each spot on a Laue diagram 

corresponds to a family of lattice 

planes whose orientation with 

respect to the incident beam can be 

deduced from the reflection condi- 

Figure 11.1b tions. 

Sample 
Collimator 

Figure 11.la 

3 CONSTRUCTION OF THE LAUE DIAGRAM 

Diffraction directions are defined by the intersections with the Ewald sphere of 

nodes in the reciprocal lattice constructed around the origin I. 
# 
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Since the wavelength is unknown, the — 

radius of the Ewald sphere is arbitrarily — 

taken as equal to Ro. The reciprocal — 
lattice should be constructed to the scale — 
o’ = RA; it is in fact drawn to an : 

arbitrary scale. If the scale is made to — 
vary with A, each node N of the lattice 

moves along the row IN. For a certain 

value of A, the node will lie on the Ewald 

sphere at P. The straight line OP then 

defines the direction of the diffracted 
beam corresponding to the node N. 

The intersection of this line with the 
plane of the film defines the position of 

Figure 11.2 the diffraction spot. 

The reciprocal vector IP, which is normal to the family of lattice planes that 

diffract in the direction OP, has the modulus: 

|| IP || = IP =2Ry sin 8 = Rod/dyyy (1) 

REMARKS: 

@ All the nodes of a given reciprocal row IN give the same point P, and hence 

a single diffraction spot: the ‘harmonics’ (nh nk n/) of a family of planes (hk 

/) with h, k I relatively prime, all reflect under the same angle of incidence 0. 

We could equally well consider that the family (h k /) which gives first-order 

diffraction at wavelength J under the angle of incidence 0, also gives second, 

third, fourth order, etc. diffraction at wavelengths 4/2, 1/3, 1/4 etc. 

@ Not all reciprocal lattice nodes can give rise to diffraction, since the range of 

wavelengths used is limited. 

We consider the reciprocal lattice and the spheres of radius 1/Amin and 1/Amax- 

Only nodes in the grey area defined by 

the two spheres can give rise to diffrac- 
tion. 

The low wavelength limit is effectively 
determined by the anode supply voltage. 
The high wavelength limit depends in 

general on the crystal. 

If dy is the largest interplanar spacing 
in the direct lattice, the longest wave- 

LSD Pa Atha Ines length capable of giving a diffraction spot 
Figure 11.3 is, according to Bragg’s law: Amax = 2dy- 



The Laue Method 163 

@ Figure 11.2 is constructed with the incident beam parallel to a reciprocal 

row. In this particular case, the construction of diffraction directions shows 

that families of lattice planes symmetrical with respect to the beam give 

symmetrical diffraction spots. 

Although the Laue technique gives no useful information on the unit-cell 

parameters, it does show the relative arrangement of the lattice planes and 

hence the internal symmetries of the specimen. If the beam is oriented parallel 

to a symmetry element of the crystal, the diffraction pattern shows the same 

symmetry. 
The method does not, however, enable distinction to be made between 

centrosymmetric and non-centrosymmetric crystals; this is due to Friedel’s law. 

The applications of the Laue method are thus: 

—identifying symmetry elements in unknown specimens; 

—orienting crystals of known symmetry. 

4 FEATURES OF LAUE DIAGRAMS 

GO BLIND REGION 

The minimum value of IP (cf relation 1) is RoAmin/dy; in the centre of 

Laue diagrams there is an area with no diffraction spots, called the ‘blind 

region’. 

O ZONE CURVES 

We remember that planes (/;k;/;) are said to be in a ‘zone’ if they all contain the 

same row [uvw] called the ‘zone axis’. For all planes (A;k;/;) in the zone, the 

reciprocal directions [h,kjl)* are perpendicular to the zone axis and are 

contained in the reciprocal plane (uvw)*. Each plane in the zone therefore 

satisfies the relation: hju+k;v+/w=0. The direction of the zone axis is 

determined by the intersection of two planes in the zone. 

In Laue diagrams, the diffraction spots are seen to lie on ellipses (figure 

11.5) or hyperbolas. These curves are the loci of spots corresponding to families 

of lattice planes with the same zone axis. Consider for example the planes 

(h;k;l;) having the row [wvw] as zone axis (Figure 11.4). The reciprocal plane 

(uvw)*, normal to the zone axis, intersects the Ewald sphere in a circle. This 

plane contains the reciprocal rows [h;k;l;]* = Aj. 
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Figure 11.5. Pm3m crystal with three- 
fold axis parallel to the beam. Theore- 

Figure 11.4 tical direct pattern 

There corresponds to each reciprocal node A; a diffraction spot a; on the 

film. The diffracted beams OA,a; are in general generators of a cone whose axis 

is the zone axis. The zone curve of axis [uvw] is thus the section of the cone 

through the plane of the film. Let « be the angle between the zone axis and the 

incident beam. If the Laue diagram is obtained by transmission, « is less than 

45°; the zone curves are then ellipses. For back patterns (« >45°), they are 

hyperbolas. 

This feature is used to orient crystal by the technique of back-pattern Laue 

photography. If the incident beam is parallel to a symmetry axis, the zone 

curves are symmetrical about the centre of the pattern. 

The so-called Greninger diagrams, on which are drawn networks of 

hyperbolae, enable this symmetry to be identified and facilitate orientation of the 

crystal with respect to the beam. If it is possible to determine the indices of 

the zone axis from those of certain spots in the zone, indexing the other 

spots on the zone curve becomes easier. 

5S INDEXING A LAUE PHOTOGRAPH 

A Laue photograph cannot generally be interpreted by inspection since the 
relation between the diffraction pattern and the reciprocal lattice is not simple. 
The gnomonic projection! method can be used for photographs obtained with a 
symmetry element of the crystal parallel, or nearly so, to the direction of the 
incident beam. Under these conditions this method enables diffraction spots in 

'From the Greek Gnomon meaning sundial. 
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the photograph to be indexed. If, however, the crystal is randomly oriented 
with respect to the beam, the stereographic projection method has to be used. 
The stereogram obtained generally enables symmetry elements to be identified 
and also enables calculation of the angles through which the specimen must be 
rotated in order to bring a symmetry element into line with the incident 
beam. 

5.1 Gnomonic Projection 

The normal IP to the planes (hk/) which 

gives rise to a diffraction spot p on the 

film makes an angle (z/2 — 0) with the 

direction of the incident beam OI. Let x 

be the plane parallel to the plane of the 

fim and lying at a distance IJ=1 

(arbitrary unit) from it. 

R is the film-specimen distance. 

The point Q at the intersection of IP 

with z is the gnomonic projection of 

the plane (Ak/). 

From Figure 11.6 we have: 

I) Si Lcot 6 

Hence: 

r = IJ.cot(; arctan Ip/R) (2) 

Figure 11.6 

If the distance r=f(Ip) has previously been calculated, the gnomonic 

projection can be drawn directly from the Laue photograph. 

The gnomonic projection of the reciprocal lattice of the specimen is thus 

constructed; it is closely analogous to a ‘shadow-graph’ projection, since the 

pattern obtained is easy to identify, providing the object is practically parallel 

to the plane of projection. For this method to give usable results it is therefore 

necessary to have a significant lattice plane parallel to the plane of the film. 

To enable the gnomonic projection to be drawn rapidly, a rule (Mauguin’s 

rule) is graduated to one side of the centre in Ip (linear graduation) and along 

the other in r = JQ. The centre of the rule is set at the centre of the photograph 

(at the point of impact of the incident beam); the rule is then rotated so that its 

edge touches the centre of a spot. The distance from the centre is then 
measured in centimetres; the gnomonic transform lies at the corresponding 
graduation on the other side of the centre (see Figure 11.7). 

@ 
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The projection cannot be interpreted by inspection. Consider for example a 

cubic crystal in a beam parallel to the direction of a fourfold axis. Figure 11.8 

shows the projection onto (010)* of the reciprocal lattice, the film and the plane 

of the gnomonic projection. A rotation is also carried out of the gnomonic 

projection onto the plane of the pattern (the (001)* plane). 

Ji, 

Sr ee 

102 

ee eee 

Figure 11.8 

The plane x of the gnomonic projection is parallel to the reciprocal plane 
(001)*. The transforms of the (hk0) planes are at infinity. The normals to the 
(Akl) planes meet z in a network of squares of side IJ (dotted lines). 

The normals to the (hk2) planes meet z in a network of squares of side IJ /2 
(dashed lines). In general, planes with indices h, k / have normals passing 
through the points: h//; k/J; /: the gnomonic projections have the coordinates hjl 
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_and k// (in units of IJ). A spot which gives a transformed point of indices 5/3, 

3/2—i.e. 10/6, 9/6—has indices of 10, 9 and 6. 

In this example the diffraction spots resulting from ‘harmonic’ planes, can 

be seen superimposed both on the film and on the gnomonic projection. 

This construction, then, gives quite an accurate representation of the reciprocal 

lattice. Its drawback is that all the reciprocal planes are superimposed on the 

projection. It enables diffraction spots in the photograph to be indexed provided 

the direction of the incident beam is very close to that of a symmetry element. 

5.2 Stereographic Projection 

If the crystal is randomly oriented with respect to the incident beam, gnomonic 

projections cannot be used. A method of stereographic projection in which the 

angles are conserved is then used. Consider the Ewald sphere of radius R and the 

diffraction spot p corresponding to the reciprocal node P defined by an angle 20. 

Figure 11.9 

We construct a sphere of centre I and radius.p. The equatorial plane of this 

sphere, which is also the plane of the film, is the plane of the stereographic 

projection. The straight line IP intersects the sphere St at Q. If the point N is 

taken as the centre of inversion, the straight line NQ intersects the plane of 

projection at q which is the stereographic transform of the reciprocal node P. 

In figure 11.9, the angle {SNQ} is half the angle {SIQ} and hence: 

I d 
lay ptan( 5 (5 — a) = 2.0 = arctan = = arctan 

lot p3t ne q:=p.tan 7 jee R 
_ 
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Using this relation, a rule can be constructed and used to plot the stereographic 

projection by the same method as described for the gnomonic projection. In this 

way we obtain the stereographic projection of the reciprocal lattice of the crystal. 

Indexing the photograph is equivalent to indexing the stereogram; the latter is easier 

if we note that the planes in a zone with the row [wvw] give spots on the film which are 

distributed along a zone curve (ellipse or hyperbola), the stereographic projections 

of whose reciprocal nodes lie on a circle with the row [uvw] as zone axis. As angles are 

conserved in the stereographic projection, it is generally possible to identify the 

position of symmetry elements on the stereogram and to determine their orientation 

with respect to the incident beam. (The latter is normal to the plane of projection). 

This method can also be used for back-projections; the plane of the film then 

intersects the axis of the beam at I’ but the origin of the reciprocal lattice remains at I. 

5.3. Conclusions 

The Laue method reveals the symmetry elements of a crystal. The Laue class 

can in principle be determined by taking several photographs with different 

orientations of the specimen; however, more sophisticated techniques are now 

used, including Buerger’s method and the four-circle goniometer, to establish 

the symmetry elements. Practically the only use for Laue diagrams now is for 

the orientation of large specimens. 

With a classical X-ray tube and normal film, an exposure time of one hour is 
generally sufficient to obtain a usable photograph. With ultra-sensitive films, 
the exposure time can be reduced to a few minutes. The accuracy of orientation 
of the crystal will be of the order of 10-20 minutes if a good quality 
goniometric head is used. 

Figure 11.10. A goniometer head. | and 2: rotation cradles (concentric with the centre 
of the specimen); 3 and 4: sliding tables. 5: base 



Chapter 12 

The Rotating Crystal Method 

1 PRINCIPLE OF THE METHOD 

When a crystal is bathed in a beam of monochromatic X-rays, diffraction only 

- occurs if a node in the reciprocal lattice lies on the surface of the reflection 

- sphere. In order to bring reciprocal lattice nodes onto the Ewald sphere, the 

crystal is rotated about an axis normal to the incident beam. Rotation of the 

crystal results in rotation of the reciprocal lattice. 

If the crystal rotation axis is randomly oriented with respect to the crystal 

lattice, the diffraction pattern will generally be highly complex and unusable. If on 

the other hand the crystal rotates about a row n,,,,, the diffraction pattern will be 

particularly simple: the family of lattice planes (uwvw)* of spacing D%,,, in the 

reciprocal lattice will be normal to the rotation axis, and during rotation these 

planes will intersect the Ewald sphere in circles So, $1, S2... of spacing D%,,,,. 

aa 4, CS SS 

a Mow tee at Reciprocal 
planes (uvw)* 

Figure 12.1 
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The diffracted rays will thus be spread ott on a series of cones of revolution 

with apex at C bearing on the circles So, S1, Sz. 

2 CYLINDRICAL FILM ROTATION CAMERA 

The crystal C is glued to a goniometer head GH and rotates about the axis of a 

cylindrical cassette of radius R inside which a film is held. 

Figure 12.2 

The circumference of the 

cassette is usually 180 mm; 

Imm of unrolled film then 

corresponds to 2°. 

A collimator directs the 

incident beam onto the crys- 

tal; the beam then exits along 

a tube T to a lead glass beam 

trap; the collimator and tube 

together eliminate the rays 

diffracted by the air in the 

cassette. 
With this apparatus, the 

diffraction cones intersect 

the film in a series of non- 

equidistant circles, and once 

the film is unwound, the 

diffraction spots lie on 

straight lines called layers. 

3 DETERMINING THE PARAMETER OF THE 
ROTATION AXIS ROW 

Figure 12.3 

There exists a simple 

relation between the per- 

iod along the rotation 

axis Ni, and the distance 

between the layers on the 

film. Consider a Ewald 

sphere with radius R 

equal to that of the 

cassette. The reciprocal 

lattice must be con- 
structed to the scale: 
Ri=o?. The distance 
between two reciprocal 

planes (uvuw)* is D* 
uvw* 
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For the layer of order p, we have: 

sin ei) I'P/R = P.Diivy/R OF Divy-|[Mewl| = RA = o 

Dow = p.A/sin Pp 

On the film we measure IQ=y,. From this we deduce ¢, = arctan yp/R and 

the value of the parameter of the rotation axis row: 

2 2 

sae Gy eal (1) 
Yp 

The accuracy can be improved by taking the two symmetrical layers which 

-are the furthest from the origin layer (the equatorial layer). 

_ This method enables absolute measurement of the parameters of the rows in the 

direct lattice. It therefore enables the unit cell parameters to be calculated. 

4 INDEXING THE PATTERN 

4.1 The Blind Region 

‘Rotating the crystal about n,,,,, results in rotation of the reciprocal lattice about 

IN (figure 12.3). During this rotation, only those nodes within the toroid 

generated by the rotation of the circle of centre C and radius R about IN will 

penetrate the Ewald sphere. The nodes lying outside this toroid will lie in the 

blind region of the cassette. 

4.2 Relation Between the Rotation Row Indices and Indices of the p-layer 

Spots 

Consider a spot in the layer p corresponding to a reflection from the lattice 

planes (A k /). The reciprocal lattice node h k / will lie on the p-th reciprocal 

plane (uvw)* above the origin. The vector normal to this family (uwuow)* is the 

direct lattice vector: n,,y =u.a+v.b+ w.c 

From the relation D*,,,||n,,,.|| = 1, we deduce that the unit vector normal to 

the (wvw) planes is: 

| Bae a = (u.a+v.b + w.c).Di.,, 
| Davy I 

4 

The projection of the row [A k /]* onto the normal to the planes (uvw)* is 

equal to. D¥ zy: 
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(h.A* +k.B* +1.C*)/.(w.a + 0.b + w.e).Diioy = P-Diow 

The indices h, k, / of the diffraction spots of the p-th layer are related to the 

indices u, v, w of the rotation row: 

hut+tko+lw=p (2) 

If, for example, the rotation axis is [110], the spots on the equatorial layer 

(p =0) will have the indices h, —A, /, and those of the first layer (p= + 1) will 

have the indices h,—h-+ 1, /, and so on. 

4.3 Zero-layer Indexing 

The distance of a diffraction spot from the centre of the pattern is 2R0, The 

angle @ is defined by the Bragg equation: 

i 2dyjS10 0 (3) 

If the specimen makes complete rotations, a single node will penetrate the 

sphere twice, giving rise to two spots symmetrically disposed about the origin 

of the pattern. Nodes equidistant from the origin I of the reciprocal lattice will 

give the same diffraction spots; in particular, nodes symmetrical about the 

origin I, will give superimposed diffraction spots. If the pattern is not 

symmetrical (as in the case of incomplete rotations), the position of the direct 

beam in relation to the film must be established. From measurements of the 

angle 0, the values of the d),; spacings can be deduced. 

Indexing the zero-layer is analogous to indexing a Debye—Scherrer 

photograph, but in the former case, only those diffraction spots corresponding 

to nodes in the reciprocal lattice plane containing the origin, appear on the 

photograph. In practice, to index the zero-layer spots, the reciprocal lattice is 

constructed to the scale o? = R/ and the positions of the spots are marked ona 

circle of radius R. The angle 20 is deduced from the distance x between the spot 

and the centre of the pattern. The reciprocal lattice is rotated about I (figure 

12.4) to locate the spots on nodes of the reciprocal lattice, and from this are 

deduced the indices of the spots in this layer. 

NOTE: For a cubic or tetragonal crystal rotating about [001], the lattice planes 
corresponding to spots in the zero-layer have indices (hk0) and their spacings 
are equal to a/./(h* +k’). 

The distances between the layers enable the rotation row parameters to be 
calculated. For a tetragonal crystal, a single photograph will enable the two 
unit-cell parameters to be determined. 
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4.4 Indexing Spots in Other Layers 

_ As shown in figure 12.3, reciprocal nodes in the plane of order p intersect the 
Ewald sphere along a small circle of radius R, such that: 

Paty R, = VR? — p?.D? 
uvw 

The diffraction spots are 

see Boece 

- ae ——+t+ 
SS Re ree Pe 

; 
transferred onto this circle; 

the angles € are deduced 

from the arcs x’ (see figure 

5) by: 

x = RE 

4s The reciprocal lattice is 
a Layerp “Layer o then rotated about I’, the 

= ae projection of the origin of 

the p-th reciprocal plane in 

the plane of the pattern 

(figure 12.4). 
Figure 12.4 

To determine the position of I’, the position of the axes of the unit-cell of the 

reciprocal lattice must be calculated in terms of the indices of the rotation row. 

4.5 Coordinates of a Spot on the Photograph 

Consider a reciprocal node lying on the Ewald 

sphere. There will be a corresponding diffrac- 

tion spot M from the p layer. The diffracted ray 

CM will make an angle 26 with the incident ray 

CI. We also have: 

MH | HC and MH 1 CI. 

The distance MH=y, between the layer p and 

the zero layer is characterised by the angle 

W(tan y= yp/R). 
On the film the distance x’ is equal to Ré. 

From the vector equation: 

MC = MH+ HC 

we have: 

MC.CI = MH.CI + HC.CI 

|IMC||.Rcos 20 = R’cos é ¢ ) 

Figure 12.5 
a 

cos 20=cos w.cos € | 
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The diffraction spot of indices h, k, / belongs to the p-th layer; from this we 

deduce y, and yw. From the value of dj; of this spot, relation (4) can be used to 

determine € and the value of x’, and hence the position of the spot on the film. 

4.6 The Advantages of the Method 

The rotating crystal method enables the unit-cell parameters to be determined. 

On the other hand, determining the angles between the base vectors using this 

method alone is not always simple, as during complete rotations, diffraction 

spots corresponding to different reciprocal nodes are superimposed on the 

photograph. Moreover, constructing the reciprocal lattice from diffraction 

photographs requires geometrical constructions which can be quite complex. 

For this reason, other methods have been developed. 

5 THE WEISSENBERG CAMERA 

OF PRINCIPLE 

The Weissenberg camera differs from the Bragg camera in two ways: 

@ Translation of the film is coupled with rotation of the specimen. 

@ The angle € between the incident beam and the axis of the camera can be 

modified (figure 12.8). 

With this camera, a single reciprocal plane is recorded on the film. A metal 

screen shields the film from reflections arising from any other reciprocal planes. 

To determine the correct position of the screen, a photograph is first produced 

without translation, with €=90°, in order to determine the distance D%,,, 

between the reciprocal planes. If x and z are the coordinates of the spot on the 

film, @ the rotation speed of the specimen and R; the radius of the film, we 
have: 

2094 re 

2  2aRe 
2.6 

Cameras are usually constructed so that K; =2°mm—!. 

Since the speeds of rotation and translation are both uniform we have 

w= K).z. The gearing is arranged so that K; = Ko. 

O THE ZERO-LAYER PHOTOGRAPH 

For a row IM’ of the zero layer passing through the origin I of the reciprocal 
lattice (figure 12.6 left) we have w=0. The indices of this row will be, for 
example, h, 0, 0 or 0, k, 0. During rotation of the crystal, the nodes of this 
row penetrate the Ewald sphere one by one, diffracting. 
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Figure 12.6 

The coordinates x and z of a spot on the film are related by the expressions: 

1 K Genie ties = B22, 5) 1x 7-2 x K, 

If K,=K> then this is the expression for a straight line of slope 2. The 

diffraction spots corresponding to the reciprocal row IM’ will be spread out 

along a straight line passing through the origin Ip. When w=7/2 the row is 

parallel to the incident beam and at the edge of the film. For w > 7/2 the spots 

lie on a new straight line parallel to the first (figure 12.6 right). For a=@+7, 

there is a change of sign of the index which varies during rotation. The same 

analysis must be carried out for the other base vector of the reciprocal lattice. If 

¢* is the angle between the two reciprocal base vectors, two parallel systems of 

straight lines are in fact observed (indexed 1 and 2 on figure 12.7), separated by 

a distance z corresponding to a rotation m=¢*. 

Thus, from a zero layer photograph, the parameters of the base vectors of 

the reciprocal plane normal to the rotation row, and the angle between these 

reciprocal vectors, can be determined. 

For a row PJ which does not pass through the origin (figure 12.7 left) the 

relation w= 6 no longer holds: the diffraction spots are no longer spread along 

a straight line, but lie on festoons as shown in figure 12.7 right. 

If ¢ is the angle between IP and the reciprocal axis coincident with the beam 

for o=0, we have: w=x—(2/2—0)—¢. 

The equation for the festoons is therefore: x = 2(K,/K,)z — (1/2 — $).Ky 
a 
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Each festoon corresponds to a reciprocal row whose nodes have a common 

index. On the film there are two families of festoons corresponding to the two 

axes of the reciprocal plane being studied. The intersection of the festoons sets 

the position of the diffraction spots. 

Figure 12.7 

The spots can be indexed rapidly with the aid of charts. 

O OTHER LAYERS 

aah l ee Like the Bragg camera, the Weis- 

A, senberg camera has a blind region. 

All the nodes of the plane can be 
studied by tilting the axis of 

rotation and translation with 

respect to the incident beam. 

In figure 12.8, the point P is the 

origin of the plane being studied. 

During rotation about IP all the 

nodes in the plane penetrate the 
Ewald sphere. A screen enables 

the diffraction spots of this plane 
Figure 12.8 alone to be selected. 
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In this method, a diffraction spot. corresponds to a single node in the 

_ teciprocal lattice, simplifying measurement of the intensities of the diffraction 

spots. On the other hand, indexing cannot be carried out by inspection, but 

requires the use of charts. Weissenberg photographs are now only used to 

determine unit-cell parameters. Only the zero layer is studied, intensities now 

being measured using other techniques. 

6 THE BUERGER PRECESSION CAMERA 

6.1 Description of the Method 

This method enables an undistorted representation of the planes of the 

reciprocal lattice of the diffracting crystal to be obtained directly, without the 

_use of additional constructions. This in turn enables the unit-cell parameters to 

-be determined immediately. Indexing of spots is also very simple, and the 

systematic absences in the plane being studied, appear clearly. 

Figure 12.9 

In this method, the planes of the reciprocal lattice and of the film are kept 

parallel. Under these conditions, we have from figure 12.9: I’P’=IP.f/R and 

putting R=OI=1, we obtain the relation: I’P’=f.IP. 

In Buerger’s method, the diffraction pattern on the film is homothetic with 

the corresponding plane of the reciprocal lattice. 

It is because the planes of the film and of the reciprocal lattice are kept 

parallel that the proportionality factor, f, between the reciprocal lattice and the 
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pattern on the film is constant. To obtain a diffracted ray, a reciprocal node 

must lie in a reflection position, i.e. on the Ewald sphere. In this method, this is 

done by having the plane of the reciprocal lattice precess about the normal 

which passes through the origin.. 

6.2 The Zero-Level Plane 

While the crystal is rotating, the normal IN to the reciprocal plane containing 

the origin I describes a cone of angle p whose axis is the incident beam (figure 

12.9). During this movement (figure 12.10), the plane of the origin intersects 

the Ewald sphere along a circle Co. If a node P in the reciprocal lattice 

penetrates the Ewald sphere, diffraction occurs and the ray OP strikes the 

plane of the film at Pf. The diffraction spots thus lie on the projection of the 

circle Cp onto the film, i.e. on a circle Co, since the plane of the film is parallel to 

Co. The observable diffraction spots lie inside the circle of centre I’ and radius 

equal to 2 sin p/A. 

op 

Motion of the / a ‘ 
reciprocal plane _” Motion of the film 

(inked to motion Be f (coupled with motion 

of the crystal) of the crystal) 

Figure 12.10 

These spots give a homothetic image of the reciprocal lattice. The lattice 
parameters can thus be measured directly on the photograph, corresponding to 
zero level. 
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6.3 The Other Planes 

‘If another plane of the reciprocal lattice, situated at level n, is to be observed 
without distortion and to the same scale, the plane of the film must be moved a 
distance: h = n.D%j,).£/R. 

Layer0 

Figure 12.11 

Recordings of planes at level m are especially important for the study of 

systematic absences in the specimen. Figure 12.11 shows that blind regions are 

present in the photograph and so account must be taken of the fact that nodes 
lying inside the circle of radius I,Q cannot penetrate the sphere and are 

therefore invisible in diffraction. 

6.4 The Use of Screens 

To isolate diffraction spots from the level n plane, a perforated circular screen, 

is used; this only allows through diffracted rays making an angle (« with the 

axis of revolution of the system. The spacing between the reciprocal planes 

being studied must first therefore be determined. 
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" Film layer n 
Reciprocal plane 
layer 0 
layer n 

Figure 12.12 

6.5 The Advantage of the Method 

Each photograph is a homothetic image of a reciprocal lattice plane; from the 

zero layer, the unit-cell parameters can be obtained (these are the moduli of the 

base vectors and the angle between them). Absent spots on the photograph 

enable systematic absences to be identified unambiguously and to determine 

the space group. Other methods (e.g. the Rimsky and De Jong-Bouman 

retigraphs) enable undeformed images of the reciprocal lattice to be obtained. 

However, the relative ease of use of the Buerger camera makes it practically the 

only one actually used. 

7 THE FOUR-CIRCLE GONIOMETER 

Measuring intensities on the film is tricky and rather inaccurate, and use is now 
made of single-crystal diffractometers with electronic detectors (proportional 
or scintillation counters). The crystal is positioned in the beam using a 
goniometer, the most widely used being the four-circle model with Euler cradle. 
The Euler cradle (x circle) drives a goniometric head TG on which the crystal is 
fixed. The cradle turns about the principle axis AP of the system, this axis being 
normal to the incident beam RX. The angle q is defined by the rotation of the 
cradle about AP and the angle ® by the rotation about the axis of the 
goniometric head (figure 12.13). The detector rotates about AP in the equatorial 
plane. The angle between the incident beam and the axis of the detector is 20. 
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Figure 12.13 

The angle 26 is zero when the detector is aligned with the primary beam; y is 

zero when the axis of the goniometer head is parallel to the principle axis; @ is 

zero when the plane of the cradle is perpendicular to the beam. The origin of 

the angle @ is arbitrary. In principle, the angles 7 and @ are sufficient to place a 

reciprocal node in the equatorial plane in the diffraction position, but steric 

hindrance problems make w necessary too. The four movements are achieved 

with computer-controlled motors. 
Another type of goniometer, the kappa goniostat, is also used. This is simpler in 

construction and there is more room available for temperature control of the 

specimen. 

‘ Figure 12.14 
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To study a crystal using these devices, the following steps are followed: 

@ The specimen is stuck to the goniometer head and optically centred on the 

beam. 

@A random search for diffraction spots is carried out. From the data 

collected, the orientation of the crystal in the frame of the laboratory is 

determined (the orientation matrix)! and the unit-cell parameters are 

estimated. 

@ The unit cell parameters are refined. The values calculated in the previous 

step enable the diffraction directions to be defined. The directions calculated 

for high values of @ and for a suitable number of spots are tested and refined. 

At the end of this operation, accurate values for the unit-cell parameters and 

the orientation matrix are available. 

@ The intensities of diffraction spots are recorded. 

Once the unit-cell parameters and orientation matrix are known, the values 

of ®, y, w, and 6 for which a given node Ak/ is in the diffraction position can be 

calculated. The intensities of several thousand spots are recorded. 

Using this technique, intensities are recorded spot by spot; it is therefore not 

suitable for use with substances such as proteins which are degraded by X-rays. 

8 CRYSTAL MONOCHROMATOR 

In diffraction methods using monochromatic radiation, the use of a filter for 

eliminating Kg radiation is often insufficient, and there remain in the spectrum 

both high and low wavelengths which can excite fluorescent radiation in the 
specimen. In addition, overlapping of the K,; and K,» lines complicates the 

interpretation of spectra. 

The solution is to use a monochromator which isolates the chosen radiation. 

A crystal reflection from a family of lattice planes can be used, such that the 
Bragg equation: nA = 2d),;sin @ is satisfied for the chosen K,; radiation. The 

harmonics 4/2, 4/3, A/n etc. are white background radiation, and hence of 

much lower intensities than the K,, line. The drawback is that exposure times 

are much longer with a crystal monochromator than with a filter. To increase 

the useful size (and energy) of the beam, a mechanically deformed crystal can 

be used, in which the diffracting lattice planes have the form of a cylinder of 
revolution. Various types of monochromators are available and we shall 
describe the most widely used model, that of Johansson. 

'For a detailed study, consult the International Tables. 
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The Johansson monochromator 

A parallel-faced cylindrical disc is cut from a block’ of crystal; this disc has a 
radius 2R and its cylindrical generators are parallel to the lattice planes. 

Using a press, the disc 

is applied to a cylinder 

M of radius R; the 

radius of curvature of 

the lattice planes is 

then 2R. All rays com- 

ing from the source S 

will make the same 

angle @ with the lattice 

planes. The normals to 

the lattice planes pass 

through the centre of 

curvature N of the 

disc. All angles SPN 

and NPF are equal to 

n/2—6. 

All the diffracted 

rays converge on F 

giving a monochro- 

matic and _ stigmatic 

Figure 12.15 image of S. 

Now, SA=H=2R sin 6 and nA=2d);;s8in 8; hence the distance between the 

source and the centre of the disc must be: 

A 
H = R— 

nx 

If the source S is at the focus of the tube, the energy concentrated at F will be 

very large. The discs used must be able to withstand the processes of cutting 

and elastic bending and have high reflecting power. Quartz, graphite and 

silicon are the most commonly used substances. The crystal must be cut and 

the press machined to very high accuracy to ensure constant curvature of the 

disc. 
Monochromators are supplied in the form of compact units which fit directly 

onto the cathode of the X-ray tube (front monochromator); alternatively, if 

space is instifficient, they are placed between the crystal and the detector (back 
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monochromator). When making intensity measurements, it should be 

remembered that the radiation from the monochromator will be polarised. 

In the simplest case, the initial beam, the beam from the monochromator 

and the diffracted beam will be co-planar. If @), is the angle of reflection from 

the monochromator, the polarisation factor is: 

cos’ 26.|cos 20x4| + 1 
POy= 
) 1+ |cos 20\4| 

sriyeest 1) 



Chapter 13 

X-ray Diffraction of 
Polycrystalline Materials 

_ Powder diffraction methods are widely used in the study of crystalline 

materials; they enable materials to be characterised both quantitatively and 

qualitatively without the need for single crystal specimens. 

Qualitatively, diffraction techniques on powder materials enable, among 

. other things: 

—the chemical composition of the powder to be determined by comparing 

—the spectrum of the sample with those contained in data base; 

—the presence of impurities to be detected; 

—the crystallinity of the material to be assessed. 

Quantitatively, these methods allow a study of: 

—the crystal parameters a, b, c, a, B, y; 

—the atom positions and space group for the simplest cases; 

—powder mixtures and solid solutions; 

—the presence of any structural disorder; 

—the dependence on temperature of the sample parameters. 

1 PRINCIPLE OF THE METHOD 

The method, invented by P. Debye and P. Scherrer, involves diffraction of a 

monochromatic beam of X-rays by a sample made up of a large number of 

randomly oriented single crystals. The size of the crystals is of the order of 

0.01—0.001 mm, and given the very large number (from 10’ to 10'*) contained 

in the sample, there will always be a large number for which a family of lattice 

planes (hkl) makes an angle 0 with the incident beam to satisfy the Bragg 

equation n= 2dyy, sin 0. 
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Figure 13.1 

Each suitably oriented microcrystal thus gives a diffracted beam deflected by 

20 from the primary beam. The set of reflected beams forms a cone of angle 20 

with the incident beam as axis. 

The problem may also be approached through the Ewald construction: the 

set of microcrystals can be replaced by a single crystal rotating about O; the 

reciprocal lattice then rotates about I and each reciprocal node N describes a 

sphere centred on the node at the origin I (000). Each of these spheres intersects 

the Ewald sphere in a circle C normal to the primary beam (figure 13.1). 

The intersection of these cones with a flat film normal to the incident beam 

produces circular rings; if there are insufficient microcrystals, the rings appear 

incomplete. Each value of d),;; corresponds to a diffraction cone and hence to a 

line on the film, a study of which enables a list of lattice spacings to be made for 
the sample. 

2 THE DEBYE-SCHERRER CAMERA 

The specimen is inside a cylindrical cassette (figure 13.2); all the diffraction 
lines for planes where dj; > 1/2 are obtained. The apparatus is comprised of: 

—A collimator to limit the aperture and control the direction of the incident 
beam. 

—A beam trap to absorb the primary beam as close as possible to the 
specimen, in order to reduce diffusion by air, which tends to fog the film and 
reduce contrast. 

—An excentrically mounted specimen holder to centre the specimen in the 
beam. 
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—The film, wrapped round the inside of the cassette; the circumference of the 
latter is either 360mm (1° per mm) or 180mm. 

The film may be positioned in three ways (figure 13.2): 

1—Normal mounting, enabling all 

lines for which 6 < 7/4 to be 
observed (transmission). 

2—Van Arkel mounting, enabling 

all lines for which 6 > 1/4 to be 
observed (reflection). 

3—Stroumanis mounting, enabling 

both transmission and reflection 

lines to be observed; this is the 

Figure 13.2 most common system. 

The incident beam is controlled by the collimator and made monochromatic 

either by a filter, in which case it will consist of Ax, and Ax. radiation, or by a 

crystal monochromator. 

The specimen is rod-shaped with a diameter of 0.3 to 0.5mm. The powder is 

obtained by grinding and sieving and 1s either stuck to an amorphous whisker 

or contained in an X-ray transparent capillary (the Lindemann tube). 

NOTE: Each correctly oriented microcrystal will diffract in a single direction 

0, giving a spot on the film; the lines are the result of the average effect of all the 

microcrystals. This averaging effect can be enhanced by rotating the specimen 

about an axis normal to the beam with a motor fitted to the cassette. 

With a cylindrical cassette, the 

diffraction cones form elliptical 

lines on the film; these have a 

minor axis of 4R0, and it is 

unnecessary to record the 

whole ring. If a Kg filter is 

used, this will allow through 

Axa, and Axy2, giving rise to 

two superimposed diffraction 

od Figure 13.3. patterns. 
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For a given family of planes we have: 

Akal = AK 

sind, sin@, dix = 

For Agxycy we have: 

Ax _ 1.5405 _ sin 0, 

hear (5445-0 sin; 
een PS 

The separation between lines is perceptible from angles @ > 15°, and for 

@ = 80° the gap A@ is 0.8°. When making measurements it is advisable to sight 

the inner edge of the line for transmission spectra (for an unresolved doublet) 

and the outer edge of the line or the outer line when the doublet is resolved. 

Under these conditions the wavelength will be taken as Aq. 

When the doublet is unresolved, the centre of the line can be sighted and the 

wavelength taken as Ax, = 1/3(2AKa1 + 2K,2). This weighting takes account of 

the relative intensities of the two components of the doublet. 

Figure 13.4 

Using Straumanis mounting, for a transmission line (0 < 6 < 2/4) of 

‘diameter’ D, the angle @ is given by: 

D/2nR = 4/2n. 

For reflection (1/4 < 0 < 2/2), D'/2nR = (2x — 40) /2n. 

3. INDEXING PATTERN LINES 

3.1 Measurement of Values of d,;; 

Diffraction line diameters must be measured as accurately as possible, care 
being taken to minimise systematic errors. Special care must be taken when 
centring the specimen and sighting the lines. For very precise measurements, a 
calibration compound may be mixed with the sample under study, and 
measurements of d),; refined by interpolations. Neglecting the error in A, the 
relative uncertainty is: 



X-ray Diffraction of Polycrystalline Materials 189 

Odi) 1 A 
Z Aiki Ani . sin 6 

) = —cot 0.66 

Thus the higher the value of 0, the smaller the uncertainty; the most precise 
measurements are in principle made on the outermost reflection lines, but the 
width of these (related to the natural width of the K, line) makes precise 
sighting less easy. With care and a methodical approach, it is possible to obtain 
values of djx; to a precision of 0.002 A. 

3.2 Indexing Pattern Lines 

From the Bragg equation, an equation of the type: 

1 4.sin? 0 
abe ai = PA? +17. BY 47.0? 4+ 21K.A*B* + 2.h.LA*CH 

hkl 

+ 2.k.L.B*.C* 

_is obtained for each line. The reciprocal vector parameters are the same for all 

the equations and the indices h, k and / are integers characteristic of each line. 

The resulting system of equations with six unknowns is capable of solution and 

several computer programs are available which can deal even with compounds 

of low symmetry. 

When searching a solution ‘manually’, various types of possible lattice can 

be tried, starting with cubic lattices. For these: 

a 

dig = i Veer «5 

(s=h?+k*+I/ is a number which can be Cm positive integer except 

s = (8p +7)"). 
Rings can be indexed rapidly by the following pened using a slide-rule. ae 

sliding scale is removed and slid back so that its figures are upside down, its x?- 

scale being in contact with the x-scale on the fixed part of the rule. If now the 1 

of the sliding x-scale is placed opposite a number a on the fixed scale, any 

number n on the sliding x*-scale will be opposite a //n on the fixed x-scale. The 

measured lattice spacings are now marked off on the fixed x-scale and the 

sliding scale is moved until all the lattice spacings are opposite an integer; the 

value of the lattice parameter a will now be found opposite | on the slide rule, 

A graphical method can also be used: the abscissa is graduated in values 

x1) d’ and the ordinate is graduated in the possible values of s. The value 

of a’ is obtained directly from the straight line passing through the points so 

obtained an@ the origin. 
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—— 

NY 2 Oo @ 
\ 

\ 

Graphical indexing of a cubic-I crystal Gil 
s =2, 4,6, 10, 12, 14... 

Figure 13.4a 

If the indices are indifferent, the lattice is type P. If for all the lines the values 

of hkl are such that the sum h + k + /is even, the lattice is type I (as in the case 

of the figure above). If for all the lines the values of hk/ are such that h, k, / are 

simultaneously even or odd, the lattice is type F. 

Using a calculator the sequence of values K; = 1 [dinky can be calculated, 

and the sequence S; = Ki/K/ deduced from this. If the crystal is simple cubic, 

S; is the sequence of integers (except 7, 15, 23 .. .). If 2S; is a sequence of even 

integers, the lattice is cubic I. If 3S; produces the sequence 3, 4, 8, 11, 12, 16..., 

the lattice is cubic F. 

NOTE: 3 

—An examination of table 13.1 reveals that to distinguish a cubic P type lattice 

with parameter a from a cubic I type lattice with parameter a//2, at least 
seven lines are necessary. 

—Rays may be missing from the pattern because of systematic absences. 

If the search for a cubic lattice fails, lattices with principal axes (tetragonal, 
trigonal and hexagonal) are tried. Charts (the Hull chart and the Bunn chart) 
are available to facilitate the search. Manual searching of lattices of lower 
symmetry is very unreliable. 

It should be noted that the lower the symmetry, the greater the number of 
lines; e.g. the six reflections 100, 010, 001, 100, 010, 001 are superimposed for a 
cubic compound but give two distinct lines with a tetragonal compound and 
three with an orthorhombic compound. This degeneracy in hkl (line 
multiplicity) must be taken into account when measuring the intensities of the 
lines. 

The classical Debye—Scherrer method thus enables the lattice dimensions to 
be established but not the symmetry. 
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Table 13.1. Possible values of s according to lattice type. 

hkl P I F 
h-hh l=2n hkl same parity 

100 
110 py) D 
111 3 3 
200 4 4 4 
210 5 
211 6 6 
220 8 8 8 

300, 221 9 
310 10 10 
Sui! 11 11 
227, 12 12 12 
320 13 
Be 14 14 
400 16 16 16 

410, 322 17 
411, 330 18 18 

Boil 19 19 
420 20 20 
42] DA 
332 22 Ds 
422 24 24 24 

4 SPECIAL CAMERAS 

4.1 Variable temperature cameras 

e Figure 13.5 

To enable the specimen tempera- 

ture to be controlled, the upper and 

lower covers of the camera are 

perforated, a black paper mask 

protecting the film from ambient 

light. Temperature control of the 

powder specimen is achieved with a 

gas blower. Using this type of 

camera, the variation of unit-cell 

parameters with temperature may 

be followed. 
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4.2 Focusing Cameras 

One of the major drawbacks of the Bragg camera is that the lines are often 

excessively wide, and this limits the accuracy of sighting and of intensity 

measurements. One solution is to use focusing cameras, which give very narrow 

lines. 

O THE GUINIER CAMERA 

The specimen is in the form of an arc of a circle C; it is bathed in a beam from a 

crystal monochromator converging at F on the parafocusing circle C. The 

diffracted beam also converges on the circle C. This type of camera can be used 

in transmission but only for small diffraction angles. 

Monochromator 

Figure 13.6 

O THE SEEMAN-BOHLIN CAMERA 

The specimen is in the form of an arc of a 
circle C; it is bathed in a divergent beam from 
the point F of the parafocusing circle C. The 
diffracted beam also converges on the circle C 
at the point G. This camera can be used in 
reflection with large diffraction angles. With 
these focusing cameras, exposure times are 
much shorter than with standard cameras and 

Figure 13.7 the lines are very narrow. 
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5 AUTOMATIC DIFFRACTOMETERS 

The classical Debye-Scherrer camera, often involving very long exposure 
times, and requiring development of the film and analysis of the image, is now 

hardly ever used. Instead, there are now diffractometers; these are quicker to 

use and give results in the form of data which can be interpreted automatically. 

O PROPORTIONAL COUNTER DIFFRACTOMETER 

The specimen (figure 13.8a) is placed on a flat support which can rotate about a 

vertical or horizontal axis, according to the type of apparatus. A proportional 

counter can move about the same axis of rotation. S is the image of the source 

from the monochromator (using the front monochromator system). When the 

specimen support rotates through an angle 0, a system of gears causes the arm 

carrying the detector to rotate through 26; this means that when the Bragg 

~ condition is satisfied for a given position of the specimen, the detector is 

- positioned correctly to receive the diffracted photons. To eliminate the Ax,» 

line, a crystal monochromator can be used, placed this time between the 

specimen and the detector (back monochromator). 

A system of vertical slits (Fl, F2, FD) 

and horizontal slits (Soller slits FS) 

enables a beam of large height (1 cm), 

and hence of high energy, to be used. 

The rotation speed of the specimen can 
Sstreven by ; oe el \ Pacose be set between epee 2° min 

beets y : and 0.125°min~. Angles are read off 
\ curcle - Goniometer/ Ae a 
Sue eet vA the goniometer to a precision of 0.01°; 

NS es using goniometers fitted with optical 

coders, a resolution of one thousandth 

of a degree may be obtained. 

Figure 13.8b 
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With the specimen rotating continuously, the output of the counter is fed to 

an integrator; this has a time constant which smooths out fluctuations in the 

recorded signal, but which distorts the lines. With stepwise rotation, however, 

the integrator is unnecessary and the line profiles can be recorded undistorted. 

In both cases, the rotation speed must be slow enough for random fluctuations 
in the count rate to be negligible, even for weak lines. At the slowest speed, the 

complete recording of a spectrum requires about ten hours. This is comparable 

with the time for recording a spectrum on film. 

A computer data acquisition system controls the motor driving the 

diffractometer, records the intensities of the diffracted beams, determines the 

positions of the lines and calculates values of d,,;. For routine analyses an 

automatic specimen changer can be fitted. 

With vertical axis goniometers it is difficult to make the powder stick to the 

support; the powder has to be mixed with a binder and pressed. Preferential 

orientation of the powder grains is then very difficult to avoid; the 

microcrystals are no longer randomly oriented and measurements of line 

intensities are erroneous. With horizontal axis goniometers, on the other hand, 

the powder can simply be sprinkled onto the support and the risk of 

preferential orientation will be smaller. 

Figure 13.9 shows an example of a powder spectrum recorded with an 

automatic diffractometer using monochromatic radiation. The recording was 

made in stepwise mode with steps of 0.03°. The compound examined is 

orthorhombic, which accounts for the rather large number of lines. 

Root Cu Ket 

ul . Nakalat enc 
{> toa Wet ai eee 8 |, whoa 

60 80 400 12 20 

Figure 13.9 
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© LINEAR DETECTOR DIFFRACTOMETER 

In this type of diffractometer, the 

specimen is immobile and horizontal. 

The anode, in front of which is a 

crystal monochromator, is placed on a 

moving arm rotating abut a horizontal 

axis. The detector is also fixed to an 

arm rotating about the same axis. The 

motions of the two arms are linked so 

that the angle between the incident 

beam and the diffracted beam is 20. 

‘ Ps . Seer The detector, which has an aperture 

angle of about 10°, is connected to a 

Figure 13.10 - multichannel recorder. 

The detector is a proportional counter with a resistive grid as cathode; it has 

a very linear response with angle and has a maximum resolution of the order or 

-0.005°. The specimen support is a temperature-controlled platinum leaf. The 

apparatus can be used both as a standard diffractometer and as a static mode 

diffractometer (without rotation); in this mode the continuous behaviour of the 

small detected zone in the diffraction spectrum can be studied. This is 

particularly useful in the study of kinetics, of the temperature variation of unit- 

cell parameters and of phase transitions. 

O CURVED DETECTOR DIFFRACTOMETER 

A specimen contained in a capillary tube or placed on a holder is interposed 

between the beam and the detector D. The radiation from a focusing 

monochromator is used. : 
The detector is a curved counter 

with a 120° aperture, fitted with 

a continuous metal blade. This 

blade detects the electrons pro- 

duced by conversion triggered in 

an exchanger gas by the photons 

diffracted by the specimen. The 

electrons produce an electric 

current on the blade, and this 

current separates into two cur- 
<— rents i, and i, which take times 

X-rays + and 1 to reach the ends of the 

. Figure 13.11 detector. (T= t, +h) 
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As T is known, measurement of t) — ft, enables t, and ft) to be determined 

and hence the position of the diffracted photon on the blade (figure 13.12). The 

memory of the corresponding channel is then incremented. Using a 120° 

detector and a 4096-channel memory, a precision of the order of 0.03° in the 

position can be achieved. The dead time of the detector is comparable to that 

of a proportional counter. 

eee a X-ray era y ,t2 
: a Electrons 

i xey,T. 

Channel selector 

| 

Multichannel | | 
recorder Saleen | 

Figure 13.12 

The control program of the analyser enables the contents of the memories to 

be displayed permanently on the screen, so that the spectrum can be watched as 

it builds up. The advantage of the curved detector is that a spectrum over 120° 

can be obtained very quickly (less than ten minutes), compared with at least ten 

hours using a Debye—Scherrer camera or standard detector. However, the 

angular linearity is not perfect and careful calibration is necessary. 

6 APPLICATIONS OF POWDER METHODS 

6.1 Identification of Crystallised Compounds 

Each crystalline compound gives a unique powder photograph, a sort of 
‘signature’. 

The analysis of powder diffraction photographs is a powerful method of 

identification. During the 1930s a data file, the Hanawalt System, was started. 
This was taken up again around 1940 and developed by the American Society 
for Testing and materials (ASTM) who published it, first in bound volumes, 

then as file cards, and finally in microfiche form. ! 
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—27—1085 

Cs) NaAlF)> 2CsF-NaF.3AIF3 

Cesium Sodium Aluminium Fluoride 

Rad. CuKa,/ 1.54051 Filter d-sp 

Cutoff Int. I/Icor 

Ref Courbion, G. et al., Mater. Res. Bull., 9 425 (1974) 

Sys. Rhombohedral S.G.R#m (166) 

a 7.026(3) b ce 18.244(5) A C 2.5966 

a B y Z3 mp 

Ref 5) 

D, D, SS/FOM Fs = 19(.040,24) 

Prepared by heating CsF, NaF and AIF; in a closed system 

under Ar between 600 and 800C for 12 hours, quneched to 

room temperature. Rhombohedral parameters: a = 7.310, 

@ = 57.43> PSC: ARIS: 

© 1994 JCPDS—International Centre for Diffraction. All rights reserved. 

Reproduced by permission of the International Centre for Diffraction Data. 

Figure 13.13. A JCPDS file card 

Int. 

A Filter 

Int. 
4 

SG: 

c A 

») /é, 

5 
SS/FOM 

6 ey Sign 

q 

Figure 13.14. Zones of a JCPDS file card 
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By 1970 the database held around 30 000 entries and in 1986, 44 000; there 

are now close to 60000 entries. An international organisation, the Joint 

Committee for Powder Diffraction Standards (JCPDS), updates and 

distributes the database and user software. A CD-ROM version is now 

available, affording compactness and fast and easy access to data. 

Classification of the database is based on the lattice spacings of the three 

families of planes giving the most intense diffraction lines on the photograph. 

Intensities are expressed as a percentage of the intensity of the strongest line 

which is conventionally given an intensity of 100. Figure 13.13 shows a JCPDS 

file card, and figure 14.14 shows the various data zones: 

1—Code number (serial number followed by the compound number in the 

series 1-1500 for inorganic compounds and 1501-2000 for organic 

compounds). 

2—The chemical formula, chemical name and mineralogical name. 

3—The structural formula (‘dot’ formula). 

4—Experimental conditions: Rad = source, 4 = wavelength, d-sp = method, 

Cutoff = maximum measurable d,,;, Int = method, I/Cor = ratio between 

the intensities of the strongest lines for the specimen and for corundum 

(50-50 mixture by weight). 

5—Physical data for the specimen: Sys = crystal system, S.G. = group symbol, 

a, b, c, «, B, y = lattice parameters, A = a/b, C = c/b, Z = number of units 

per cell, mp = melting point, Dx = calculated density, Dm = measured 

density, SS/FOM = Smith—Snyder factor of merit. 
6—Optical data: ex, yop, sy =refractive indices, Sign = optical sign, 

2V = angle between the optical axes. 

7—Additional information (chemical analysis, method of synthesis etc.) 
8—Quality mark. A star * denotes very accurate data, an i fairly accurate, a 

circle © unreliable, a C, data calculated from the structure and an R 

refinement by the Rietveld method. 

9—List of all the d,;;, with intensities and Miller indices. 

With modern software tools it is very easy to compare powder spectra 
recorded on an automatic diffractometer with ones on the database and thus to 
identify a compound or mixture of compounds. 

6.2 Quantitative Analysis of Crystalline Compounds 

Consider a mixture of crystalline species whose mass concentrations c; we wish 
to determine. For each species i we measure the intensity I, of a strong line and 
compare this with the el I; of the same line measured in a mixture of 
known concentration c; . The concentration ratio c? /c; should in principle be 
equal to the intensity ratio 1 /1;; in practice the relation does not in general 
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hold owing to absorption by the specimen. A reference calibration mixture, for 
which the relative intensities of the lines are known, must be added to the 
specimen and absorption effects then corrected. The composition of a mixture 
can be determined to within a few percent. 

6.3 Determination of the Unit-cell Parameters 

The principles governing the determination of unit-cell parameters are given in 
paragraph 3.2. The method is rapid and the measurements of the parameters 
can reach a precision of 107°. When such precision is required, the specimen is 

mixed with calibration powders (silicon, diamond etc.) whose d,,; are known to 

a precision of 107°. The positions of the lines of the compound being studied 

are refined by interpolation with those of the standards. 

If the specimen holder is fitted with temperature control, the technique can 

be used to study the temperature variation of the parameters (thermodilato- 

metry); it is the most precise method available for determining coefficients of 

thermal expansion of materials. 

6.4 Textures 

In some materials, microcrystal orientations are not random, certain 

_orientations predominating. This preferential orientation, or texture, may 

arise from the geometry of the microcrystals or from treatments the material 

has undergone. 

In the case of fibre textures, the crystallites have one of their rows [uvw] 

oriented in a common direction (the fibre axis); the diffraction pattern obtained 

is intermediate between that for a crystal rotating about the row [wvw] and a 

powder photograph (the lines having uniform intensity): at the points where 

spots would be recorded for a rotating crystal there are lines with 

reinforcements in the form of centred arcs. 

With layer textures, the crystallites tend to have normals to the plane of 

layers oriented in the same direction: only those reflections which correspond 

to the planes of the layers appear on the photograph (00/ lines for the (001) 

planes). 

6.5 Phase Transitions 

With a temperature controlled specimen holder, structural phase transitions 

can be studied. The appearance in the crystalline medium of a new peridodicity 

which is a multiple of the initial periodicity results in the appearance of new 

diffraction lines in the photograph; these are called superstructure lines. If the 

lattice spacing d,,; for a family of lattice planes (hkl) becomes ndj,;, the 
reciprocal parameter Nix, becomes Nix) /n. 
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If the phase transition is accompanied by a lowering of symmetry, the 

degeneracy of certain diffraction lines may be lifted. For example, during a 

cubic & tetragonal transition, a cubic line (100) of multiplicity 6 splits into two 

components: a (001) line of multiplicity 2 and a (100) line of multiplicity 4. 

Analysis of the splitting enables the relationship between the groups of the 

different phases to be established. 

The method can also be used to study order—disorder transitions. Consider 

for example the alloy AuCu, which exhibits such a transition. In the disordered 

phase, obtained by quenching the compound at a temperature higher than 

425°C, the atoms are distributed randomly. The diffraction pattern is identical 

to that of a crystal having the same lattice (P in this case) and a single type of 

atom C. If f, and fg denote the atomic diffusion factors of the components A 

and B, present in the proportions pa and pg (pa + pp = 1), then the atomic 

diffusion factor of the imaginary single atom C is (pa. fx + pp. fp)- 

In the disordered phase, the imaginary atoms C = [1/4Au + 3/4Cu] can be 
considered to occupy the sites 0, 0, 0; 5, 5, 0; 5, 0, 3 and 0, 5, 5 . In the ordered 
phase, obtained by annealing, the atomic positions will be: 

Au at 0, 0, 0; Cu at 5, 5, 0; 3, 0, 5 and 0, 4,4. 

The structure factors for the diffraction lines are thus: 

for h, k, 1 of the same parity: 

(Fikdora =Sau + 3hcu 

(Fi)ais =S au + 3fcu 

and for mixed parities: 

(Fikiora = Sau — fcu (Superstructure lines) 

(Fixvais =) 

The diffraction pattern of the ordered phase has the same lines as for the 
disordered phase with, in addition, the so-called ‘superstructure lines’ which 
are much weaker than the ‘normal’ lines. 

6.6 Structure Determination 

Certain very simple structures such as NaCl, CsCl and rutile, depend on only a 
few parameters, and can be solved very rapidly by the Debye—Scherrer method. 
In general, however, crystal structure determination involves solving a system 
having nine unknowns for each atom in the repeating unit: the three position- 
coordinates and six thermal agitation parameters; a powder photograph will 
only provide us with between 20 and 40 spectral line intensities as data. 
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When large enough single crystals are not available, however, the powder 
method is the only resort. In 1969, Rietveld proposed a method enabling 
structures of medium complexity to be solved using powder diagrams. This is 
based on profile refinement of the diffraction lines. An initial model for the 
structure is proposed, and this model is then refined by point-by-point 
comparison with calculated and measured profiles. The spectrum is recorded in 

stepwise mode. From the positions of the lines, the unit-cell parameters are 

deduced; from the indexing and possible systematic absences, a space group is 

proposed; and from physico-chemical considerations or by comparison with 

other compounds similar to the one studied, a structural model is proposed. 

For each step i, the intensity J; is calculated and compared with the 

measured intensity /°°. The least-squares method is used to minimise the 

quantity: 

S=) > @,|R? -— FP 

(w; 1s a weighting factor which depends on the quality of the measurement and 

T; is the sum of the contributions of the Bragg lines close to the step 7 under 

’ consideration). 

F=s. )_ my.LP,.\F;|?.G(A0,) + P 
k 

- is the white background intensity, s a scaling factor, mx the line multiplicity 

factor, Lp, the Lorentz polarisation correction, F;, the structure factor, AO; = 

2(0; — 9,) and G(A@;,) is the reflection profile function. 

There exists a large number of possible analytical functions G: Lorentzian, 

Gaussian or mixtures of Lorientzian and Gaussian (pseudo-Voigt) functions 

can all be used. In the latter case, if L, is the width at half-maximum, then after 

normalisation (0 < x < 1) we have: 

I 2\-1 In2 1 4 inax? =x. — 4.X; RS) 2A eee er a G x nL; (1 ae i) + ( x) Fe is e 

The convolution of a Lorentzian by a Gaussian (pure Voigt) can also be used 

for G. 

In the Rietveld method, the parameters to be adjusted are those for the unit- 

cell and atomic positions, thermal parameters, the function G and the 

background intensity. Several powerful computer programs are available for 

routine use of this method, but the user should first become familiar with the 

working of the apparatus by testing standard specimens. Care also should be 

taken to obtain a perfectly random distribution of microcrystals in the 
specimen. ‘ 
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The method is widely used in neutron diffraction, where it is often impossible 

to grow large enough single crystals. 

This list of applications of powder methods is by no means exhaustive and 

shows how useful the technique is in routine laboratory work. 

fea yignet s+ 



Chapter 14 

Neutron and Electron 

Diffraction 

Techniques using the diffraction by crystals of neutrons and electrons are 

complementary to X-ray diffraction. Here we give the reader a general idea of 

these special methods; for a fuller account, specialised works should be 

consulted. 

1 NEUTRON DIFFRACTION 

1.1 Production and Detection of Neutrons 

During fission reactions in nuclear reactors, very fast high-energy neutrons are 

produced; the associated de Broglie wavelength 2 = h/mv is very small and of 

little use in diffraction experiments. The flux of neutrons is therefore passed 

through a moderator (heavy water or graphite) to ‘thermalise’ them through 

collisions. Once the neutrons have undergone a large number of collisions with 

the atoms in the moderator, they are in thermal equilibrium with these atoms 

and their average kinetic energy is related to the temperature in the moderator 

medium by: 

smn = Sk 

The average wavelength is therefore: 

2 ° 

i h mee E -- one (A in A, T in Kelvin) 
mv SID OT 

At a temperature of 0°C, the wavelength is 0.55 A and therefore suitable for 
diffraction by crystals. Since the speeds obey the Maxwell distribution law, the 
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radiation is polychromatic. A crystal monochromator (Ge, Cu, Zn or Pb) is 

used to select a particular wavelength. Figure 14.1 shows how a neutron 

diffractometer functions. A cadmium collimator directs the incident neutron 

beam onto the monochromator crystal; a second collimator is used to select the 

useful radiation. The neutrons are detected by detecting the charged particles 

which are created during a nuclear reaction in the detector with boron, which 

has a sufficiently large capture cross-section for thermal neutrons. 

nj) + By => Li} + He 

The diffracted rays are analysed by proportional counters filled with boron 

trifluoride or by scintillators enriched with B'° which detects the charged 

particles formed during ionisation of the light atoms produced. 

Reactor shielding 

Monochromator 

Co Specimen 

Detector 

Figure 14.1 

Neutrons can also be produced by a process known as spallation: pulses of 
high energy protons (~ 1MeV) are directed onto a uranium target; each proton 
generates about 25 high energy neutrons which are emitted over a very short 
time (about 0.4 ys). 
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1.2 Neutron Scattering 

Neutrons interact with matter on two levels: they interact with the nuclei, and 
their magnetic moment, associated with their spin, interacts with the magnetic 
moments of the target atoms. 

@ Neutron-nucleus interactions depend on short-range nuclear forces. Nuclear 

dimensions (~ 107'°cm) are negligible compared with the wavelengths 

associated with the incident neutrons; the nucleus behaves as a point, and 

the nuclear scattering factor by is independent of the angle of diffraction. 

The neutron-nucleus interaction results in the formation of an unstable 

nucleus which returns to its ground state by emitting a neutron. For certain 

energies a resonance effect can occur and the scattering factor can be 

negative (for H!, Ti*8, Mn°>) or may contain an imaginary part (Cd!!3). 
Calculation of scattering factors is complex, and the values actually used are 

empirical. 

The capture cross-section depends on the configuration of the nucleus, and is 

not related to the atomic number Z of the atoms; it is, however, very sensitive 

to the isotopic configuration of the nucleus. Diffraction amplitudes of neutrons 

_and X-rays (for 9 = 0) are compared in table 14.1 (units are 107"? cm). 

Table 14.1. Scattering coefficients of X-rays and neutrons 

b f (0=0) 
Element ZL, neutrons X-rays 

H! 1 —0.38 0.28 
IH? 1 0.65 0.28 
O 8 0.58 DIS 
Si 14 0.40 S305 
Fe™ 26 0.42 7.30 
Fe 26 1.01 7.30 
Fe?’ 26 0.23 7.30 
Pb 82 0.96 23.1 

@ The magnetic moment / of the nucleus can affect neutron scattering. The 

neutron spin can couple with /in parallel or antiparallel mode to give a total 

spin J=/+1/2 and scattering coefficients b* and b~. There are a total of 

{2 + 1/2) + 1} + {2 — 1/2) + 1} = 2(2T + 1) possible states of which there 

is a fraction 

+ 204+1/2)+1_ +1 
q ae SPP em 



206 Basic Crystallography 

for parallel spins with a factor b* and a fraction 

_ EEE Sy ee ea 
— 2 OOTeiy eet 

for antiparallel spins with a factor b~. The scattering factor 

by =a*bt +@ b is responsible for the coherent contribution to the 
nuclear moments. . 

@ Atoms having an orbital magnetic moment arising from unpaired electrons 

interact with the magnetic moment of the neutron, giving an additional 

scattering factor which depends on sin 6/2. 

Magnetic and nuclear scattering factors have comparable orders of 

magnitude; when calculating the values of scattering factors, account must 

be taken of isotope abundances in the specimen nuclei. 

1.3 Special Features of Neutron Diffraction Methods 

© Interactions are 10°-10* times weaker than with X-rays; high fluxes and 
large crystals are needed if a reasonable signal to noise ratio is to be 

achieved. : 

0 b and Z are not related: it is possible to distinguish atoms with closely 

similar atomic numbers (e.g. by, = 0.36 and bp, = 0.96) and to localise 

light atoms accurately. Hydrogen atoms, which are practically invisible in 

X-ray diffraction, have a scattering factor which makes them easily located 

with neutrons. 

O When determining structures by Fourier analysis, positions of nuclei are 

obtained from nuclear coefficients and spin density distributions from 

magnetic coefficients. 

© Nuclear coefficients are independent of sin @/A: with diffraction at large 

angles precisions greater than those obtained with X-rays can be 
achieved. 

O The energy of a neutron with a wavelength around 1A is of the order of 
0.08 eV. This is comparable with the energy of thermal vibration in a crystal 
and there is inelastic scattering of thermal neutrons; the scattered radiation 
no longer has the frequency Q of the incident radiation, but has a new 
frequency Q' = Q+., w being the frequency of the scattering elastic wave. 
For X-rays, 2 and @ are respectively of the order of 10!8 and 10!2 Hz; the 
change in frequency is therefore undetectable. 
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On the other hand, the energy difference between the incident and scattered 

- neutrons is readily measurable and represents the phonon fiw responsible for 

the scattering. Since it is the geometry of the experimental apparatus which 

determines the value of the wave vector of the phonon, inelastic scattering of 
neutrons enables dispersion curves for elastic waves in the crystal to be studied. 

1.4 Time-of-Flight Method 

Using spallation sources, time analysis of the diffraction pattern can be carried 

out, instead of the usual angular analysis. For this, the technique of pulsed 

neutrons, introduced in 1981, is used. The neutrons produced, slowed down by 

a moderator, are all produced simultaneously but have different energies and 

- speeds. In the time-of-flight method, neutrons of different wavelengths are 

detected according to their time of arrival at the detector. If L is the total 

distance travelled before reaching the detector, mv = mL/t = hd. The detector 
receives neutrons scattered at a fixed angle 09. A family of planes (hk/) diffracts 

the wavelength Aj,;= 2d), sin 0, and for this family the time of flight will be: 

m m é 
lnk = 5 EA => pe aana sin 05 

(For a dj. 1A and Lsin 0) © 14m, the time of flight is of the order of 7 ms). 

1.5 Magnetic Structures 

Neutron diffraction directly reveals the pattern of magnetic moment 

orientations in crystals. Consider for example the compound MnO. Above 

120 K, X-ray and neutron diffraction patterns are identical. The compound has 

a cubic structure of the NaCl type, with a unit-cell parameter (the chemical cell) 

a=4.43A. At temperatures lower than 120K (the Neel temperature), the 

neutron diffraction spectrum shows extra lines and interpretation of the data 

shows that the unit-cell parameter (the magnetic cell) is equal to 8.86A. 

Analysis of the spectra shows that in one (111) plane, the magnetic moments of 

the Mn** ions are all parallel, and that in two successive (111) planes the 

moments are antiparallel (the compound is antiferromagnetic). 

Neutron diffraction is a powerful tool widely used to study complex 

magnetic strictures (ferromagnetic, antiferromagnetic, helimagnetic etc.) 
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Figure 14.2. After Shull et al. Phys. Rev. 83 1951. Indices in bold type: chemical cell 

lines. Indices in italics: magnetic cell 

1.6 Neutron Absorption 

For neutrons, a coefficient of mass absorption can also be defined; values are 

much smaller than for X-rays and only a few elements (boron, cadmium, 

gadolinium) have substantial coefficients. Table 14.2 gives some examples of 

coefficients 4 of mass absorption (in cm’ g~') together with the thickness of 

material ¢ (in cm) required to produce an attenuation of 99% of the incident 

beam for various radiations. 

Table 14.2. Coefficients of mass absorption 

Radiation Be Al Cu Pb 

X CuKka L=1e50 L=48.6 [=52..9 H=232 

(8 keV) t=1167 TOMS t=0.01 t=0.0017 
X MoKa p=0.298 = IG p=50.9 p=120 
(17 keV) : os t=038 t=0.01 t=0.0034 
Neutrons (Aw 1.5 A) p=0.0003 p=0.003 u=0.021 | p=0.0003 
(0.035 eV) t=8900 t=600 t=26 t=1430 
Electrons (100 keV) Bo10-@ 42.10" | ay 0.6.10~4 
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2 ELECTRON DIFFRACTION 

2.1 Production and Detection 

Electron beams are obtained by emission from a heated filament and are 
accelerated by a high potential V. Their kinetic energy is: 

5 mv? = eV 

The associated wavelength is therefore: 

patel hepa 
mv /2meV 

. When the relativistic mass correction is included, the associated wavelength 

_ becomes: 

ii) 12.26 

/ EQ + 0.979 x 10-%E 
(A in A, Ein eV) 

At energies lower than 100 keV, the relativistic correction can be neglected 

and the simplified relation used: 

1s p2 
A= — e (in A, EineV) 

VE 

At a potential of 100 keV the wavelength is 0.037 A. 

A monochromatic beam is thus obtained. Electromagnetic lenses reduce the 

divergence of the beam to 107? or 10~4 radians. Two energy ranges are used: 

high energy electrons (V © 50-120 kV, corresponding to 4 ~ 0.05 A) and low 

energy electrons (V © 10-300 V, 4 ¥ 4-1 A). 

Absorption by matter is substantial (see table 2) and transmission diffraction 

can only be carried out with very thin specimens (t =10~ 5-107’ cm). 

Lenses P (hkl)* 

Specimen 

| (000)* 

* Figure 14.3 
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Because of the high absorption, detectors must be capable of working in a 

vacuum with no window. A fluorescent screen enables the diffraction pattern to 

be observed directly, allowing real-time positioning of the specimen in the 

beam. Photographic film is highly sensitive to electrons; other detectors include 

scintillation devices and silicon p-n junctions connected to charge transfer 

devices. 

2.2 Electron Scattering Factor 

The interaction of electrons can interact with matter can be classified as 

follows: ‘ 

© Absence of interaction. 

© Elastic scattering due to the coulombic potential of the nuclei. 

© Inelastic scattering through interaction of electrons with the target. 

The scattering coefficient f; of electrons can be expressed in terms of the 

scattering factor f§ of X-rays and the atomic number Z by the Mott equation: 

eee me 2 

~ Arte 2h? sin? 0 fs (Z —f8) 

Expressing fs and A in terms of m, we have: 

2 

f§ = 2.40 x 108 (Z—fs) 
sin? 0 

2.3 Special Features of Electron Diffraction Methods 

© Electron scattering factors are greater than those of X-rays, and so very 
small specimens can be used. 

© The dependence of f on atomic number Z is less pronounced than for X- 
rays; light atoms in the presence of heavy atoms can therefore be more easily 
located. 

© As the wavelength 2 is very small in comparison with lattice spacings, sin 0 
can be assimilated to 6. The Bragg equation then becomes: 

20d px) = nh 

Diffraction angles are of a few degrees. 

gion ae 
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0 The radius of the Ewald sphere (OI in figure 14.3) is very large compared 

with the base vectors of the reciprocal lattice; the, sphere can be assimilated 

to its tangent plane and a flat film used as detector. 

© In transmission, the specimen thickness must be very small because of 

absorption; the Laue conditions are substantially relaxed in the direction 

normal to the plane of the specimen. If the beam is parallel to the direct row 

[uvw], the reciprocal plane (uvw)* passing through the origin appears on the 

photograph. The spots in this plane, characterised by the vector S=IP, 

correspond to reflections h, k, / such that: hu+ kv+lw =0. 

The diffraction pattern is the gnomonic projection of the reciprocal plane 

containing the origin. 

O Since diffraction patterns can be obtained for microcrystals, this technique 

can be used for detailed analysis of polycrystalline specimens. 

.G Because of absorption, electron diffraction techniques can only be used to 

study surfaces. 

Parallel beam electron diffraction is usually coupled with an imaging system 

(in the transmission electron microscope). In the imaging mode, the 

microcrystals are selected; their diffraction patterns are then analysed (figure 

. 14.4). 

L : electrostatic or magnetic lenses (objective, intermediate, projection). 

a: diffraction mode. _b : imaging mode. 

Figure 14.4. The transmission electron microscope and diffraction device 



Chapter 15 

Determination of the Atomic 

Structure of Crystals 

The positions of spots in a diffraction pattern depend only on the unit-cell 

parameters; the amplitude of the diffracted radiation, on the other hand, 

depends on the positions of the atoms in the unit-cell. For a given structure it is 

easy to determine a priori the diffraction pattern, but the reverse process, 

determining the structure from the diffraction pattern, is much more difficult; 

only the intensity of the diffraction spots, which is proportional to the square 

of the amplitude of the diffracted wave, is experimentally available. The phase 

of the diffracted wave can only be arrived at from experimental data by indirect 

methods. The problem is tricky, but it can be solved more easily with the 

powerful tools that are now available for numerical calculations. 

Before carrying out a structure determination, the crystallographer must first 

gather the data: the unit-cell parameters, the overall constituents of the unit- 

cell, the point group and space group of the crystal. Here we shall simply give 

the principles behind structure determination methods. 

1 DETERMINATION OF THE UNIT-CELL 

1.1 Determination of the Unit-cell Parameters 

Using a two-circle goniometer, optical measurements on a single crystal will 
give the angles between the base vectors and the ratios of the latter. This 
facilitates subsequent orientation of the crystal for further study. Several 
diffraction methods can be used to determine the parameters; the rotating 
crystal method will give the row parameters unambiguously, but it requires 
precise orientation of the crystal. The powder method does not require a single 
crystal, and enables higher precision to be achieved, but it is difficult to apply 
to compounds of low symmetry. Four-circle diffractometers also give 
satisfactory precision. 
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1.2 Constituents of the Unit-cell 

Once the chemical formula has been determined by chemical or spectroscopic 
analysis, the molar mass M can be determined. Knowing the unit-cell 
parameters enables the volume V of the unit-cell to be calculated. Next the 

density 4 of the compound is measured, and the number of structural units z 

per unit-cell is calculated from the equation: z = w.VN/M (N is the Avogadro 

number), z must be an integer. The measured density is usually lower than the 

theoretical value owing to inclusions in the specimen. 

2 DETERMINATION OF THE POINT AND SPACE 
GROUPS 

2.1 Determination of the Point Group 

To determine the crystal class, the data obtained are treated as follows: 

‘GO MORPHOLOGY 

When shapes peculiar to a certain class or associations of shapes are present, 

the crystal class and the orientation of its axes may be determined directly. To 

avoid any ambiguities related to shapes not modified by merohedries (e.g. the 

cube is only one of the shapes possible in all the cubic classes), a large number 

of crystals grown in various ways should be studied, since the method of 

growth can have a considerable influence on the crystal habit. When nucleation 

embryos are viewed under the microscope, high growth-rate forms appear; 

these embryos subsequently disappear, but their presence can indicate the 

crystal class. 

[ CORROSION PATTERNS 

When a crystal is attacked by a solvent, a negative image of the rapid growth 

forms is revealed, and the symmetry of these corrosion patterns provides 

evidence for the crystal class. This technique can be used on crystals with no 

natural faces. 

O EXAMINATION UNDER POLARISED LIGHT 

Under polarised light, cubic crystals are isotropic, crystals with a principal axis 

are uniaxial and the rest are biaxial. It should however be borne in mind that 

accidental birefringence, or alternatively birefringence too weak to be 

observed, cafi occur. 
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OG LAUE PHOTOGRAPHS 

The Laue method enables the Laue class of the specimen to be determined, the 

symmetry of the photograph indicating those symmetry elements in zone with 

the incident beam. Because of the Friedel law, it is impossible to say from the 

photograph alone whether or not the specimen is centrosymmetric; this can 

only be done after various additional physical studies. 

O PHYSICAL PROPERTIES! 

@ Some crystals become electrically polarised under a change of temperature: 

this is called pyroelectricity, and the effect can only exist in the so-called 

polar classes in which the symmetry operations leave the pyroelectric vector 

unchanged. The ten possible polar classes are: 

1: the vector can have any direction. 

m: the vector is parallel to a mirror plane. 

2, mm2, 3, 3m, 4, 4mm, 6, 6mm: the vector is parallel to the unique axis. 

@ The piezoelectric effect is the appearance of an electric dipole when the 

crystal is mechanically stressed (the direct effect) or a deformation of the 

crystal under the effect of an electric field (the inverse effect). A study of the 

effect of symmetry operations on the coefficients of the piezoelectric tensor 

(third rank) shows that the effect is possible in all the non-centrosymmetric 

classes with the exception of the class 432. 

@ Optical rotation or optical activity is the rotation of the plane of polarisation 

of a beam of light on passing through the crystal. The phenomenon can be 

represented by a gyration tensor (axial, second rank). Examination of the 

effect of crystalline symmetry on the components of the tensor shows optical 

rotation to be possible in the following enantiomorphic classes: 

2, 222, 3, 32, 4, 422, 6, 622, 23, 432, together with the classes: 

1, m, mm2, 4, and 42m. 

@ The electro-optical effect is the result of non-linear phenomena occurring 

when intense light passes through a crystal. Non-centrosymmetric crystals 

can induce light of twice the frequency. This effect (to which there 

corresponds a third rank tensor) is possible in all the non-centrosymmetric 

groups except group 432; it is highly sensitive and is now often used to detect 

non-centrosymmetric crystals. 

From a theoretical point of view, the physical properties of a crystal are of 
obvious interest; however, these theoretically possible phenomena may not be 

'See for example J. F. NYE, Physical Properties of Crystals, Clarendon Press, Oxford (1985). 
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experimentally detectable and in practice few crystals actually exhibit positive 

effects. 

2.2 Determination of the Space Group 

This is based on a study of systematic absences. Using an appropriate method 

such as the Weissenberg or Buerger camera, as many diffraction spots as 

possible are obtained and then indexed. Systematic absences, which depend on 

lattice mode and translational symmetry operations of the group, are deduced. 

If the class is known, the space group can be now be deduced. Three types of 

extinctions can be distinguished, according to the number of dimensions in the 

reciprocal lattice which are involved in their periodicity. 

© THREE-DIMENSIONAL PERIODICITY RELATED TO LATTICE MODE 

In table 15.1 are listed the possible reflection conditions for the various types of 

lattice. 

Table 15.1. Extinctions related to lattice mode 

Type of cell Reflection conditions Translations 

‘Primitive P None a,b,c 

Face centred C h+k=2n 5 (a+b) 

Face centred A k+1=2n 5 (b+) 

Face centred B h+l=2n 5 (ate) 

Body entred I h+k+1=2n 5 (a+b+c) 

Face centred F h,k,| 5 (atb), 5 (ate) 
all even or all odd 1 (b+e) 

GO TWO-DIMENSIONAL PERIODICITY RELATED TO A PLANE OF 

TRANSLATIONAL SYMMETRY 

Consider as an example a type a glide plane parallel to (010). This brings into 

correspondence an atom with coordinates x, y, z with an atom of coordinates 

x+ 5, — y, z. If the unit-cell atoms are grouped in pairs, the structure factor can 

be expressed in the form: 

n/2 
) Qjm.(A.Xp_+K Vy +L.z, Qjn(h.(Xm_+1/2)-kK.Vm+l.Zm) Figs feule 2jTe.(h.Xm+K. Vin m) ah e Lim. (h.(X; /2)—K.Ym ‘m ) 

* m=1 
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n/2 snlerarkct: 

Hence 7 Fo) = Dineen oe aan) eke ) 

m=1 

Fi; is other than zero only if h is even. 

Table 15.2. Extinctions related to glide planes 

Type de mirror Reflection conditions Translations 

Mirror a (001) hk0:h = 2n Aa 
Mirror a (010) hOlsh=2n Aa 
Mirror b (100) Okl: k =2n 4b 
Mirror b (001) hkO: k =2n 4d 
Mirror c (100) Okl: 1 = 2n Ke 
Mirror c (010) hOl = 2n Ae 
Mirror z (001) Ak0:h+k=2n 4 (a+b) 
Mirror d (001) hkO:h+k=4n % (atb) 

OG ONE-DIMENSIONAL PERIODICITY RELATED TO A SCREW AXIS 

Consider a two-fold screw axis parallel to [010] and passing through x = 1/4 

and z = 0. It brings into correspondence an atom with coordinates x, y, z with 

an atom of coordinates 1/2—x, 1/2+y, —z. If the unit-cell atoms are grouped 

in pairs, the structure factor can be expressed in the form: 
n/2 

Furi = eae (eI Om tm +h2m) a eee nt Liye net U2 hem) a 
m=1 

n/2 

Hence : Foxo = outs evel 4 el) 

m=1 

Foxo 18 other than zero only if k is even. 

Note that the position of the axis in the unit-cell is unimportant; only its 

direction matters. (As an exercise, repeat the calculation with another position 

of the axis). 

Table 15.3. Extinctions related to screw axes 

Type of axis Reflection conditions Translation 

2, axis along [001] O0l: l=2n 5 c 

2, axis along [010] 0k0: k=2n 5b 
2, axis along [100] h00: h=2n 5a 
4, axis along [001] O00l: l=4n i c 
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In the case where all the unit-cell atoms occupy special positions, there may 
additionally exist special extinctions. 

All of the systematic and special extinctions are listed for each group in the 
International Tables (Volume A). 

Unequivocal determination of the space group is not always possible, in 
which case the calculations are performed for all possible groups, and the most 
likely solution is adopted. 

3. DETERMINATION OF THE POSITIONS OF THE 
ATOMS IN THE UNIT-CELL 

This is a complex problem; for each atom we must determine the three spatial 
coordinates and the six thermal vibration parameters, making a total of nine 
parameters per atom in the case of anisotropic thermal vibration or four if the 

thermal vibration is isotropic. 

3.1 Trial and Error Method 

For simple structures of high symmetry, it sometimes possible to determine the 

- structure without any calculations. The space group and the number of atoms 

of each type in the unit-cell may be sufficient to determine the structure. When 

searching for a suitable structure, the lists of equivalent positions in the 

International Tables can be used; certain physical considerations should also 

be taken into account, including typical bond lengths, atomic or ionic radii and 

isostructural rules (crystals with similar chemical formula often have the same 

structure). 

To confirm a hypothesis, theoretical intensities of diffraction spots are 

calculated (with suitable corrections according to the experimental technique 

used) and compared with the measured intensities. Structure types entirely 

determined by the space group include: CsCl, NaCl, CaF) (fluorite), ZnS (zinc 

blende), diamond, CaTiO3 (perovskite). 

Thus diamond has the face centred cubic structure (h k / of the same parity) 

with eight atoms. per unit-cell; only reflections of the _ type 

h= 2n+1 orh+k+1=4n are present in the diffraction pattern. From the 

International Tables, the only possibility for the space group of diamond is 

F4,/d 3 2/m with the atoms in sites 8a. 

If only limited calculating power is available, the trial and error method can 

be used, provided that the structure depends only on one or two parameters. A 

classic example is the determination of structures of the rutile (TiO) type; the 

group is PA/mmm and the atom coordinates are: 
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Ti: 0, 0,0; 1/2, 1/2, 1/2 O: + (x,x,0; 1/24, 1/2 =x, 1/2). 

To determine the structure it is only necessary to find the value of x which 

gives the best agreement between the calculated and measured intensities. 

When the trial and error method cannot be used (i.e. when an initial model 

cannot be proposed), or when it gives incoherent results, Fourier harmonic 

analysis methods have to be used. 

3.2 Methods Using Fourier Synthesis 

O THE PHASE PROBLEM 

When the atom positions and thermal vibration parameters are known, the 

structure factors and the amplitude of the diffracted waves can be calculated. It 

has been shown that: 

j.2n1S “> Z 
i 2.1.(u.a+v.b+w.c).S 2.2.(h.ut+k.v+l.w Ani Dire... cde: nee howe Ss S Pa Pr Fibs BP 

crystal cell crystal 

where: Bost = s rletak vue ea re 

cell 

If n is the number of atoms in the unit-cell, the structure factor can also be 
written in the form: 

Frag = De Gay COS 20(A.Xm + KVm + 1.2) 
m=1 

(1) 
+5) Ome Sin 20(h. Xn + Km + LZ) = VA ngs + 7-Bins) 

m=1 

The diffracted intensity J,,; is proportional to Aina + Bi. The electron 
density can be calculated using the inverse Fourier transform: 

+00 +00 +00 y 1 me or 2jr.1S Ree, ; —2jn(h.x+k.y+Lz 
Pryz = Ie F(S).e .dS = vy, ) ) Fip€ 2jm(h.x+k.y+L.z) (2) 

=—00 k=—o00 I=—oo0 

now: Fig = V(Ang +3.Biaa)s Fre = V(Ame —J-Biya) 
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Pryz — |Aooo +25 S> So (Anns Cos 2n(h.x + ky + 1.2) 
h=\ k=—00 l=—00 (3) 

+B,,;.sin 2n(h.x + k.y + 1.z)) 

In the series, the coefficient Aog9 = Foo9/V is equal to the total number of 

electrons po in the unit-cell. Booo is always null and in centrosymmetric 

compounds, all the By; are null. In practice, summations of the indices h, k, / 

are limited to the domain of measured spots. As a result there arises an 

uncertainty which can be diminished by working with a shorter wavelength, 

thereby increasing the number of spots in the pattern. 

The electron density can also be written in the form: 

Pie = Pore ya 

h=l (k=00) 

|Cyxi|-cos[21(h.x + k.y + 1.2) + oni] (4) shJe > 

The modulus of the coefficients can be obtained directly by experiment, but 

the phase a ie remains unknown 

If the general solution to the phase problem is not known, various 

approximate methods are available which give satisfactory results and allow 

even very complex structures to be determined. 

O THE PATTERSON FUNCTION 

We consider P(U), the self-convolution function of p(r), i.e. the product of the 

convolution of p(r) and p(—r): 

P(U) = p(®) * p(-*) 

1 I I 
ru = | p@.0 + U).dr = v| a ay | dz.p(x, y, Z).p(x tu, y+u, z+w) 

0 0 0 
V 

The Fourier transform of a convolution product is equal to the product of 

the Fourier transforms of the convoluted functions. The Fourier coefficients of 

p(r) are proportional to the Fx; (equation (2)). But since: 

Pax = Fig SOL eT Fig 

the Fourier coefficients of p(—r) are proportional to the Fj,,; and the Fourier 

coefficientseof the Patterson function P(U) are proportional to the intensities 
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Tit = k-Fra-Fix, Which are known. This function is therefore always 

centrosymmetric. 
To interpret the Patterson function, the structure can be idealised by 

replacing each atom in the unit-cell by a point charge equal to the number of 

electrons z(r;). The function then becomes: 

134 ss z(r;).z(r; + U) 
i=] 

This function is null throughout unless U is an interatomic vector. In a 

structure containing heavy atoms (p) and light atoms (J), the values of the 

function P according to the vectors U will be: 

Vector U Function P 

Heavy atom—heavy atom Zp.Zp high 

Heavy atom-light atom Zp-Z| Intermediate 

Light atom—light atom z).z,; small 

The periodicity of the Patterson function is the same as that of the crystal 

and its unit-cell has the same dimensions. In contrast, the number of ‘peaks’ in 

the function is much greater than the number of atoms n; there are n? peaks of 

which n correspond to vectors rj; of null length and n(n— 1) distributed through 

the unit-cell, corresponding to vectors ry. 

The figure below shows projections of a structure with three atoms per unit- 

cell, and the corresponding Patterson function. The peaks in the Patterson 

function are spread out more than the electron clouds of the atoms and if there 

is a large number of atoms in the cell, peaks become superimposed. 

Cr G) coe } a 
+ a SA, a | 2 7° Ss “Pe Ste \y 

rid S 3) $ ia) AR % CA : a QO of | 

4 @ @ G— — a 
eye 2 ye O- es 

| | : 
ie 

GO— & , o os — ae ee 

Figure 15.1 

As all the vectors are brought to a common origin, the symmetry elements of 
the cell of the Patterson function must also be translated to this origin, when 
they lose any translational components. The 230 space groups give rise to only 
24 Patterson groups. 
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O THE HEAVY-ATOM METHOD 

An atom which is much heavier than the others can be located easily because 

the corresponding peaks are very strong. Structure factors of atoms of this type 

are therefore calculated by assuming that it is these which determine the phase 

of the strongest reflections. This phase is attributed to the corresponding 

intensity values and the Fourier series is calculated; from this are deduced the 

approximate positions of a certain number of atoms and the phases of the 

other reflections. The whole structure is determined by successive iterations. If 

the compound in question does not contain a heavy atom, synthesis of an 

isostructural compound which does contain such an atom can be attempted, 
and the structure then determined. Even if this second compound is not strictly 

isostructural, important information on atom positions can be obtained. 

- © PATTERSON VECTOR METHOD 

The peak positions of the Patterson function of a structure containing the 

atoms 1, 2... N in the cell can be obtained by superimposing the images MM, 

M>...My obtained when the atoms 1, 2...N are positioned successively on 

_the origin. Solving the inverse problem is much more difficult but it is feasible 

when the stereochemistry and the structure of fragments assumed to be rigid 

are known. From this starting point, successive iterations are performed. 

The main drawback of the Patterson method is that with increasing numbers 

of atoms in the unit-cell, overlapping between peaks becomes considerable and 

the atoms can no longer be identified. 

3.3. Direct Methods 

These methods are all based on the fact that the electron density is a strictly 

positive quantity, and this implies a certain number of relations between the 

structure factors. Through statistical analysis of the amplitude of the structure 

factors, information on phases can be partially reconstituted and an 

approximate structure arrived at. 

O THE BASIS OF THE METHODS 

Assuming that all the atoms in the unit-cell vibrate isotropically and 

identically, the structure factor can be expressed in the form: 

Fe = eB sin® A 

and if the’structure factor is independent of temperature: 
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Fy = = fice eu (h. Xj i +k. yj+.z;) 2 ee elt 

cell 

The unit structure factor is defined by: Us = F/2;f; and the normalised 

structure factor by: 

JUs? __|Fsl- 
(Us?) (FsI°) ei= 

In a domain AS =S~—S' in reciprocal space (Asin@ in the laboratory 

frame), we have: 

(Fs. Fs*) sey sae 

If the atoms in the unit-cell are positioned randomly with a normal 

distribution (all positions have the same probability), the phases @, are also 

random and therefore (6, — 6,) =0 if p # 4. 

From this we deduce Wilson’s relation: 

([Fs|’) = of § ; Esl =IFsl'/) fp 

From the above hypotheses generalised structure factors can be calculated. 

The results for centrosymmetric and non-centrosymnmetric structures are 

different. 

Table 15.4 

Centrosym. Non-centrosym 

(EI) 1 1 
(\E}) 0.798 0.886 
(\E° — 1]) 0.968 0.736 
%\|E| > 1 32 Sil 
%\|E| > 2 5 1.8 
Vole 3 0.3 0.01 

As there are considerable differences between the two distributions, 

statistical analysis of spot intensities should make it possible to decide whether 

or not there is a centre of symmetry in the structure. It is worth noting that 
there are only three factors in one thousand for which |£| is greater than 3 in 

the centrosymmetric case. If the atoms are randomly distributed in the unit- 
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cell, the probability of finding a direction in which a large number of atoms 

diffuse in phase is very small. 

Statistical relations on phases (the inequalities of Harker and Kasper), were 

first established in 1948. The foundations of statistical analysis of data and the 

principles of the direct methods were set down between 1950 and 1960 by the 

mathematician H.Hauptman and the physicist J.Karle. 

O THE SAYRE RELATION 

In 1953, a statistical relation was established by Sayre between the phases and 

amplitudes of strong reflections. The relation is based on the following 

observation: for a structure composed of atoms whose electron densities do not 

overlap, the electron density function and its square are two similar functions. 

For these two functions, the positions of the maxima (on the atoms) and the 

' minima (between the atoms) are identical. We can write: 

1 ~ 1 inS.¥; I ~ i inS.0; 

kD a a Do 
i=1 i=l 

The Fourier transform of pg is F,/V where: 

N 

7 i ,2jtS.1j 
Ls = ) pe j 

i=1 

Assuming all the atoms in the cell to be identical we have: 

: SS gies f 2jTS.1; . rhs inS.¥; PES 
ie ae tek site et 

When the atoms are different, these relations become: 

For lahensoag 
C2) 

The Fourier transform of pe is the convolution product LF, * 4 Fy. F,. Since 

F, is defined only on the nodes of the reciprocal lattice, the convolution integral 

reduces to the summation: 

if 
Se Ce: y 

From this we deduce the Sayre relation: 
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F. — Ys ye F. ia roe 
s V - s 

For large values of S (large angles of diffraction), values of F tend to zero; it 

is therefore preferable to work with unitary structure factors. 

If U, is large, the signs of the large terms in the sum U,.U,_, must mostly be 

that of U,. We can therefore write: 

; sig(U,) = sie( Uy. U,«) 

In this deterministic form, the relation is of little use since the signs of every 
term must be known to obtain a single one. The probabilistic version is much 

more fruitful; if U, is large, it is /ikely (but not certain) that the signs of the 

terms in the summation are correct. The larger the products Uy.U,_,, the 

greater this probability. If we denote the sign of the reflection vector S by 

sig(S), the latter observation can be expressed by the relation: 

sig(S) © (sig(S’). sig(S — S’) 

or by the equivalent relation: 

sig(S). sig(S’). sig(S — S’) © +1 

The sign © indicates that the relation is no more than probable. 

For non-centrosymmetric structures, the Sayre relation can, after rendering 

the phases explicit, be written: 

[Fle = - S- Fe. |-lF lett s-s”) 
s/ 

On comparing the real and imaginary parts, we obtain the tangent formula 
from which the value of ¢, is obtained: 

-_ 5 Pike [Fecel sin(¢, ae D7) % tan ¢, = : 
oS CY |Fy|. Fasc cos(¢, tr pss) 

Statistical analysis of the diffracted intensities also gives information on the 
symmetry elements, allowing detection of elements not revealed through 
systematic absences. 
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O DIRECT METHODS 

Once numerical calculation tools had been developed, the probabilistic 
approach of Hauptman and Karle to the phase problem proved extremely 
fruitful. 

The direct methods now in use are derived from the so-called symbolic 
addition method of Karle. From an initial set of known signs (known by the 
choice of origin or through inequalities) and unknown signs, to which are given 

symbols, the greatest possible number of signs are generated for the 

centrosymmetric structure. All the signs of the strongest terms can be obtained 

by a series of iterations. 

Experience has shown that only a small number of symbols need be 

introduced (fewer than six), and it is therefore possible to make an exhaustive 

study of all the possibilities. This is because in a structure, the number of 

_ directions in which many atoms diffuse in phase is small. 

Various computer programs (SHELX, XTAL, NRCVAX, MULTAN, CRYSTALS 

etc.), based on complex iterative algorithms, are now available to crystal- 

lographers for the determination of structures by successive approximations. 

Before the development of modern numerical methods, use was made of an 

-analogue method based on a photographic summation of terms in the Fourier 

series. Using exposure times proportional to the amplitudes F,,;, a film was 

exposed, with sinusoidal fringes of pitch and orientation dependent on the 

values of h, k and /. The method is limited to the first terms in the Fourier 

series, but it is these which are the most important. 

3.4 Structure Refinement 

Because of the limited number of spots which are taken into consideration, and 

the various approximations used, the results obtained are imperfect and the 

structures must be refined so as to reduce the discrepancies between the 

measured and calculated intensities of all the diffraction spots. 
Before this can be done, the results must be analysed and in particular 

checked for plausible interatomic distances and bond angles which conform to 

stereochemical requirements. Similarly, ellipsoids of thermal vibration must 

have volumes compatible with those of neighbouring atoms. 

Powerful software is available for drawing the structures obtained. 

Stereoscopic images can be produced to allow three-dimensional views, the 

two images being calculated for the angle of vision of each eye. 

Confidence in a hypothetical structure is measured by the reliability index R, 

or R factor, defined by: 

dona VI R= Dna In = Te where k nana oa LE 

$ mt VIn nk JI, 
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To carry out structure refinement, crystallographers make use of programs 

(generally part of a structure determination package) which use the least mean 

squares method to find the best values for the parameters of each atom in the 

unit-cell. 
If any doubt remains about the space group of the compound, the structure 

and reliability index for each of the possible groups are determined for a 

maximum number of independent spots. The structure factor giving the lowest 

R factor is adopted. In practice, R factors lower than 0.05 are seldom obtained. 

The quality of a structure determination depends on the quality of the crystal 

which has been used for the measurements; the greatest care must be taken in 

choosing a suitable specimen. ‘ 



Chapter 16 

Structural Chemistry 

1 INTRODUCTION 

From a structural point of view we can consider two types of crystal: 

molecular crystals, in which the molecules remain individual, and 

macromolecular crystals formed from periodic three-dimensional networks. 

In molecular crystals the molecules are held together by Van der Waals 

forces or by hydrogen bonds, both of which are weak. In macromolecular 

crystals there may be three-, two- or one-dimensional networks; in the 

‘latter two cases sheets or fibres are held together by Van der Waals forces 

or hydrogen bonds. The strong bonds in these crystals are either localised 

and covalent, or ionic, or delocalised as in metals. Structural chemistry 

attempts to predict structures a priori; this is a difficult exercise and very 

often an explanation of the observed facts a posteriori is all that can be 

given. 

1.1. Chemical Bonds in Crystals 

For strongly electronegative atoms, it is possible to predict the kind of bonds 

set up between them. 

O HIGHLY ELECTRONEGATIVE ELEMENT WITH HIGHLY 

ELECTROPOSITIVE ELEMENT 

The electropositive element (e.g. Na) tends to lose its electron, which is weakly 
bound and the electronegative element tends to gain an electron; the result is 

the formation of ions (Na* and Cl~) and an ionically bonded (heteropolar) 

structure with cations and anions in electrostatic equilibrium. 
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6 ASSOCIATION OF HIGHLY ELECTRONEGATIVE ELEMENTS 

The two atoms are both ‘hungry’ for electrons; with non-metals there is a 

sharing of valence electrons through the creation of molecular orbitals and 

covalent or homopolar bonding. 

© ASSOCIATION OF HIGHLY ELECTROPOSITIVE ELEMENTS 

This is the case for metals. The valence electrons are weakly bound and 

circulate freely throughout the structure; a simple model is that of a lattice of 

nuclei bathing in a sea of conduction electrons. 

Oo ACTUAL BONDING 

The extreme cases described above are rare, and bonds are usually of an 

intermediate type. Other phenomena must be taken into account, including 

long-range forces and polarisability; for example, small highly charged cations 

can deform the electron cloud of large anions, causing a bond which should be 

ionic to acquire a marked covalent character. 

O RELATIONS BETWEEN STRUCTURE AND PROPERTIES 

The physical properties of a material are strongly influenced by the nature and 

strength of the bonds and the arrangement of the electrons in the solid. The 

bond energy affects the hardness, melting point, plasticity and many other 

properties, while the arrangement of the electrons affects the electrical and 
optical properties of the material. 

1.2 The Ionic Bond 

The energy of an ionic crystal arises from two terms: a negative term due to 

coulombic interaction between the ions and a positive term due to the repulsion 
occurring when the electron clouds from different ions begin to overlap; it is 

this which confers on the ion a certain radius. If the Van der Waals forces are 

neglected, the energy can be written in the form: 

inne ings an +38 Cat 

The repulsive term can be written in the form: Br” (n~9). 
For crystals made up of monatomic ions, such as NaCl, it is quite easy to 

calculate the electrostatic energy; if R is the shortest distance Na‘t—Cl-~ in the 
crystal, the Coulombic energy is written: 
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qq RN on e 
——— | —-+4-——_~— —4+--M... } =———— 

Fr Ee as ~ Arey: -R aa 1 BS) Ue Z 4néy-R 

(There are 6 Cl~ at R, 12 Na® at RV? etc.) 

The sum of the series is called the Madelung constant M, and it is a function 
of the type of structure. Values of this constant are given in table 1 for several 

structures: 

Table 16.1. The Madelung constant for some typical structures 

Type M Type M 

CsCl 1.76267 CaF, 2.5194 
NaCl 1.74756 ~ TiOp (rutile) 2.408 
ZnS (wurtzite) 1.64132 CdCl 2.2445 
ZnS (blende) 1.63806 Cdl, 2.1915 

In an ionic structure, the ions appear as undeformable charged spheres 

surrounded by the greatest possible number of oppositely charged neighbour- 

-ing ions compatible with the overall electrical neutrality of the structure. 

1.3. The Covalent Bond 

Here it is the sharing rather than the transfer of electrons which gives rise to the 

forces of attraction between the ions in a crystal. A complete account of 
_ covalent bonding is beyond the scope of this introduction; suffice it to say that 

the rule of 8—N can be used to determine the number of covalent bonds 
formed by an atom: an element in the Nth column of the periodic classification 
will acquire an inert gas configuration by establishing 8—N covalent bonds 
(4<N<7) with neighbouring ligands. These bonds have well-defined 
directions in space which are determined, according to the molecular orbital 
models in general use, by orbital hybridisation. 

1.4 Other Types of Bonds 

O METALLIC BONDING 

-The electron-sea model is too simplistic, and band theory (the Bloch model) 
should be uSed to obtain a correct interpretation of the behaviour of metals. 
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O VAN DER WAALS BONDING 

Van der Waals forces arise from interactions between intrinsic or induced 

dipole moments (The Keesom and Debye forces) or higher order induced 

moments (London forces). To a first appre. these forces together 

produce an attractive force varying as r °. At very short range, the London 

force becomes very large and repulsive, comaliaata in an impenetrable region. 

For atoms, this domain is a sphere whose radius is the Van der Waals radius. 

OG HYDROGEN BONDING 

This results from the association between a molecule H—A (A =O, N, S, C 

etc.) and a group B (O, N, Cl, F etc.) possessing an electron pair. The bond is 

symbolised A-H ...B, and its stability arises from the electrostatic attraction 

between the polar bond A-H and the lone pair on B, and also from the 

polarisation of this pair through the action of the dipole A-H. The energies 

involved are small. 

1.5 Rigid Sphere Models 

In a structural array, the positions occupied by the atoms are a result of the 

equilibrium between the forces of attraction and repulsion; this conveys the 

idea that the atoms are rigid spheres, and in many cases the atoms can indeed 

be considered as rigid incompressible spheres. Since the forces of attraction 

between atoms depend on the nature of the bonding, for a given atom several 

radii must be considered: a Van der Waals radius, a metallic radius, several 

ionic radii depending on the charge on the ion, and covalent radii dependent on 

the type of bond. 

Table 16.2. Ionic radii 

Lin 0.74 Mg** 0.72 ABt 0.53 Ex 1:33 
Nat 1.02 Cart yih00 Ga3* 0.62 Cis 1.81 
ke 1.38 Ba: “ies Cet jueOt6) Br- 1.96 
Rb* 1.49 Zi SORTS Fe?* 0.64 rs 2.24) 
Gs= E20 Gul" 0578 TA? 40.60 O?- 1.40 

'Schannon R.D., Prewitt C.T —Acta Cryst., B25, 925 (1969) & B26, 1046 ete 
Schannon R.D. Sita Cryst., A32, 751 (1976). 
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Various tables giving these radii are available. As an example, table 16.2 
gives values of ionic radii selected from the table of Schannon and Prewitt,! 
and table 16. 3 gives several values of metallic radii. 

Values in A, based on an O7~ radius of 1.40A and for 6- coordination. These 
values are affected by the coordination, the spin state and the polarizability of 
the atom. 

Metallic radii given for 12-coordination or 8 for the alkali metals (Values 
in A) 

Table 16.3. Metallic radii 

Li 1.52 Mg 1.60 Al 1.43 Ag 1.44 
Na 1.86 Ca 1.97 Ga 1.35 Au 1.44 
K 2.30 Ba 2.22 Cr 1.28 Cd 11 
Rb 2.47 Zn 1.34 Fe 1.26 Hg 1.51 
Cs Dp Cu 1.28 wi 1.46 Pb 1.75 

1.6 Coordination 

The immediate environment of the atom is characterised by the 

coordination number and the coordination polyhedron. The coordination 

number is the number of nearest neighbours of an atom. In simple 

structures, all the immediate neighbours of an atom are much closer to it 

than the second furthest neighbours and it is easy to state the coordination 

number; the situation is more ambiguous for more complex structures where 

the environment of the atom is heterogenous (through the nature and/or the 

distances of the atoms). 

Unless otherwise stated, we shall assume that the central ion is a cation M 

surrounded by anions X. The coordination polyhedron is obtained by joining 

the centres of the anions. The simplest polyhedra are shown on figure 16.1; 

here, coordinated atoms are represented in ‘compact’ mode, with atomic radii 

to the scale of the diagram, and in ‘ball-and-stick’ mode, with atomic radii 

reduced so as to show the bonds. On the projections of the polyhedra the 

heights of the central cations are given in italics. 

These polyhedra are useful in two ways: they can be used to depict chemical 

entities such as (SiO,4)*~ tetrahedra and (MF,)*~ octahedra, and they enable a 
structure to be described by an assemblage of polyhedra which can be linked by 

the corners the edges or the faces. 



232 Basic Crystallography 

Ball and stick Packing Polyhedron Projection 
diagram diagram 

Figure 16.1 
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2 IONIC CRYSTALS 

2.1 Conditions for Stability 

O THE RELATION BETWEEN RADIUS AND COORDINATION 

NUMBER 

Consider a structure in which a small cation is surrounded by a number of 

anions. Y = the maximum possible coordination will depend on the relative 

dimensions of the two ions (the radius ratio), and is obtained when the ions are 

touching each other and the central atom. If the anion radius increases any 

further, the anions will push each other apart and will no longer be touching the 

central ion; the potential energy will increase and the system become unstable. A 

new assemblage, with a different coordination number, is produced. 

’ @ 4-coordination 

The four anions are located at the corners of a tetrahedron of side 2a at the 

centre of which is the cation. The limiting case with the anions touching each 

other occurs when: 

_ 2R7 =2a; 2.(R* +R) =av6 (the diagonal of the tetrahedron); R* =a(./3/2-1). 

RE RD =4/3/2—1= 0.2247. 

-@ 6-coordination (NaCl) 
The six anions are located at the corners of an octahedron at the centre of 

which is the cation. The limiting case occurs when: 

2R7 = aV2/2 ie. RX =aV2/4; now, R* +R” =a/2. Rt =a(2 — V2)/4. 

Rt /R =V2-1=0.414. 

@ 8-coordination (CsCl) 

The eight anions are located at the corners of a cube and the cations are at the 

centres of the cubes in octahedral interstices. The limiting case occurs when: 

R= a/2.R* 1 R- =a./3/2 hence: R’ =a(,/3 — 1)/2 

Rt/R’ = V3 —1=0.732. 

@ 12-coordination (BaTiO3) 

The Ba2* cation is at the centre of a cage of twelve O?~ ions constituting a 

cubeoctahedron (see figure 16.1). 2R~ =aV/2/2; Rt' +R =ay/2/2; Rt = 

a,/2/4 hence: R™/R™ = 1 
If the ratio is lower than this limit, the cation will no longer be touching the 

anions and¢ only a lowering of coordination can reduce the energy of the 
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system. The stability conditions deduced from these purely geometrical 

considerations are given in table 4. 

Table 16.4. Limiting values of radius ratios 

Coordination Ga Rig Re Examples 

al BaOj2: 1.08 Perovskite 
8 0.732 < to < 1.000 CaFs : 0.80 Fluorite 

6 0.414 < to < 0.732 TiOg¢ : 0.50 Rutile 
4 0.224 < to < 0.414 S104 : 0.30 Quartz 
3 0.155 < to < 0.224 , 

The purely geometrical constraints of the rigid sphere model are not in 

themselves sufficient to specify the type of structure. 

O PAULING’S RULES 

Pauling stated a number of rules for ionic crystals, based on energy 

considerations; the three most important are as follows: 

@ A coordination polyhedron is formed around each ion. The anion-cation 
distance is determined by the sum of the ionic radii, and the coordination 
number by the radius ratio. 

@ In a stable ionic structure, the valency (or ionic charge) of each anion is 
equal or very close to, and opposite in sign from, the sum of the electrostatic 
valencies of the adjacent cations. The electrostatic valency v of a cation is its 
charge divided by its coordination number. 

EXAMPLE: The perovskite structure. 
-LaAlO3 (Each La’* is surrounded by twelve ©2-and each AL+ js 

surrounded by six O77) 

v La-O = 3/12 = 1/4; v Al-O = 3/6 = 1/2. 

The oxygen is surrounded by two Al and four La, hence the sum of the 
electrostatic valencies of the adjacent cations= 2x} cn ee 
KNbO; (Each K* is surrounded by evelves O*- and each Nb*+ is 

surrounded by six O?-) 

vK=1/12; vNb-O=5/6. 

The oxygen is surrounded by two Nb and four K, hence the sum of the 
electrostatic valencies of the adjacent cations = 2 x 5 f64-4 xthyfl Qe 2: 

a ne Bret Deo. 
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@ The stability of the structure decreases if the coordination polyhedra are 
linked by edges and still more if they are linked by, faces. The effect is greater 
the higher the charge on the cation and the lower its coordination. 

2.2 Examples of Binary Structures 

O THE CSCL STRUCTURE (CESIUM CHLORIDE) 

This structure occurs when: 0.732 <R*/R~ <1. There is a single formula unit 
per unit-cell (Cl: 0, 0, 0; Cs: 1/2, 1/2, 1/2). The lattice is cubic simple 
(a = 4.123 A). 

EXAMPLES: CsCl, CsBr, CsI, RbF, TIC], NH,Cl, Agl. 

© THE NACL STRUCTURE (SODIUM CHLORIDE) 

Figure 16.2a. CsCl Figure 16.2b 

This structure occurs when: 0.414< R*/R~ <0.732. 

The space group is Fm3m. There are four formula units per unit-cell 

(a = 5.64 A). 
This is the structure of numerous halides and oxides such as SrO, MgO, 

BaO, CaO. 

Table 16.5. The ratio R*/R~ for the alkali halides 

Raa RF Li Na K Rb Cs 

F 
GI 

Br 
I 

“ Light shaded: NaCl type structure. Dark shaded: CsCl type. 
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Figure 16.3a. NaCl Figure 16.3b 

O THE CAF, STRUCTURE (FLUORITE) 

The space group is Fm3m (a = 5.463 A). The reduced coordinates are: 

Ca: 0, 0, 0+cubic face-centred. 

F: 1/4, 1/4, 1/4, 1/4, 1/4, 3/4 + cubic face-centred. 

The coordination of the anion is four, and of the cation eight. 

Figure 16.4a. Fluorite Figure 16.4b 

This structure occurs when: 0.732 < R*/R~ <1. Examples include: 

Table 16.6 

Compound CdF) CaF> HgF2 SrF2 PbF> BaF 

aA ; 5.39 5.45 5.54 5.81 5.94 6.18 
RAt/A 0.97 0.99 1.10 1.13 1.2 1.35 
Rc/RA 0.73 0.744 0.827 0.849 0.909 1.015 

Certain oxides such as ThO 2, UO2, ZnO also have this structure. 



Structural Chemistry 237 

O THE TIO; STRUCTURE (RUTILE) 

The space group is P4)/mnm (a = 4.954 A, C= 2,958 A). There are two formula 
units per unit-cell. 

Figure 16.5a. Rutile Figure 16.5b 

The reduced coordinates are: 

TienO, 0,.0;1b/ 2541/2, 1/2sief Orch (wx, Opi Qoerix, 4 Qi— vem /2) oie 01305). 

The titanium is six-coordinate and the oxygen three-coordinate. 

This structure occurs when 0.41 < R*/R~ <0.73 and is found in many oxides 

such as SnO2, PbO2, MnO», MoOs, and also in fluorides such as FeF>, CoF>, 

ZnF>, NiF2, MnF>. 

O THE SIO, STRUCTURE (CRISTOBALITE) 

This form of silica is stable only at high temperatures (T> 1470°C). Its space 

group is Fd3m (a= 7.06A) and there are eight formula units per unit-cell. 

Figure 16.6 shows the structure and its projection on the plane (001) where 

heights are given in units of 1/8 of the cell parameter. Each silicon is at the 

centre of a tetrahedron of oxygens, and the structure is built up with chains of 

SiO, tetrahedra linked through a corner. This compound has a very 

pronounced covalent character. 

Fifure 16.6a. SiOz Figure 16.6b 
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2.3. Ternary Structures 

O THE SrTiO; STRUCTURE (PEROVSKITE) 

The space group is Pm3m. There is one strontium at the centre of the unit-cell, 

one titanium at each corner and three oxygens at face centres (figure 16.7). 

This type of ABX; structure is found in I-IV associations (BaTiO3), IJ-III 
(LaAlO3) and I-IV (KNbO3). It is formed of a three-dimensional network of 

TiOs octahedra linked by their corners. The Sr?* ions are at the centre of the 

octahedra of oxygens; if the cavity is too small, the structure is distorted. If we 

assume that the ions B (Ti) and X (QO) are touching, the cell parameter 

a is such that: a/2 = Rp, + Ry. If the ions 

A (Sr) and X are also touching, we have a /2/2 = Ry + Ry. 

A coefficient g called the Goldsmidt coefficient can be defined such that: 

Ry +Ry =g.V2.(Rg + Ry). 

For an ideal perovskite structure, this coefficient is equal to one. If 
0.8 < g <1 the perovskite is distorted, and if g>1 there will be a different 
structure. 

Figure 16.7a. SrTiO; Figure 16.7b 

O THE MgAl,O,4 STRUCTURE (SPINEL) 

The /Spinels are double oxides with the general formula MO.M30; or 
MM20, (M = Mg, Fe, Mn, Zn, Ni: M’ = Al, Fe, Cr). The MgAlO, structure 
is cubic (space group Fd3m, a = 8.08 A) with eight formula units per unit-cell. 
Figure 16.8 shows projections on the plane (001) of the various types of atoms 
with their heights given in units of 1/8 of the cell parameter. 
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Figure 16.8 

The anions, which are larger than the metallic cations, are in a cubic close- 

packed arrangement; the cations are in tetrahedral (A sites) or octahedral (B 

sites) interstices. To every 32 oxygens there correspond 64 A sites and 32 B 

sites. In normal spinels eight A sites are occupied by the divalent cation and 

16 B sites by the trivalent cation (e.g. FeAl,O4, NiAl,O4). In inverse spinels, 

the A sites are occupied by half of the trivalent cations and the B sites by the 

divalent and the rest of the trivalent cations (e.g. FeNiFeO,4, ZnSnZnO,). 

From the point of view of magnetism, each type of site is considered to 

correspond to a sub-lattice whose occupying species have parallel spins, the 

two sub-lattices themselves being anti-parallel (spinel ferrimagnetism). Well- 

defined compounds are rare in nature, but there do exist many solid 

solutions. 

2.4 Assemblages of Complex Ions: Calcite 

In many cases, structures which have complex ions can be deduced from ones 

possessing only simple ions. ; 

As an example, the structure of calcite, CaCO3, may be derived from that of 

NaCl by replacing Na* ions with Ca** ions and Cl~ ions with (CO3)?~ ions, 
and then stretching along the threefold axis. 
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Figure 16.9b. Calcite 

67 | 67 

Figure 16.9c. Aragonite 

Figure 16.9a. Calcite 

The unit-cell is trigonal (a = 6.31 A, a= 46°6’) with two formula units per 

unit-cell. The space groups is R3c. Figure 16.9a is a projection in the pseudo- 

compact mode of the structure on the plane (001) of the multiple hexagonal 

unit-cell. Figures 16.9b and 16.9c show the arrangement of carbonate and 

calcium ions in calcite and in aragonite, which is another variety of calcium 

carbonate, belonging to the orthorhombic system with space group Pbnm. In 

both structures the carbonate ion is planar, with the carbon at the centre of an 

equilateral triangle of oxygens. In calcite each calcium ion is coordinated with 

six oxygens and each oxygen with two calcium ions. The (001) planes of the 

hexagonal unit-cell (the trigonal (111) planes) are alternate layers of calcium 

ions and carbonate ions. 
This type of structure also occurs for nitrates (e.g. AgNO3, KNO3, NaNOs), 

borates (e.g. InBO3, AIBO3) and carbonates (e.g. FeCO3, MgCO3, NiCO3, 

ZnCQs3). 

3 CLOSE PACKED STRUCTURES 

Most metals crystallise in one of the following systems: face centred cubic, 

hexagonal close packed, body centred cubic. 

The first two systems correspond to two ways of packing identical spheres in 
space so as to occupy a minimum volume. This applies to all the alkali metals, 
the alkaline earth elements, the transition metals, beryllium, magnesium, 
copper, gold and silver. The high coordination which characterises metallic 
structures is related to the physical properties of metals and especially their 
isotropy. Compounds which crystallise in the cubic close packed are more 
malleable than those which crystallise in the other two systems; this is due to 
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slipping between dense lattice planes. In alloys, the presence of different atoms 

affects the regularity of the lattice and hinders slipping. 

3.1 Close Packed Layers 

We imagine that we wish to fill space as compactly as possible with identical 

spheres touching each other. If we set out to construct lattice layers with a 

maximum density, we shall obtain a maximum compactness in the layer by 

placing the centres of the spheres on the nodes of a hexagonal lattice; each 

sphere in the layer is then touching six other spheres (figure 16.10a). when we 

come to position the next layer, we note that there can be one, two or three 

points of contact (figure 16.10b). The arrangement is obviously most compact 

when each sphere B in the upper layer is touching three spheres A in the first 

layer. According to the position of the third layer, two arrangements are 

‘possible, leading to the highly compact packings ‘cubic close packed’ and 

_ ‘hexagonal close packed’. 

3.2 Cubic Close Packing 

_The third layer is projected onto the sites C (figure 16.10a) and the fourth is 

directly above the first. We thus obtain the sequence: ABCABC.... (figure 

16.10c). 

O LATTICE SYMMETRY 

The unit-cell, shown as a hatched diamond shape in figure 16.10a, is hexagonal. 

The fractional coordinates of the atoms are: A= 0, 0, 0; B = 1/3, 2/3, 1/3; 

C = 2/3, 1/3, 1/3. If D is the diameter of the spheres, the unit-cell parameters 

are:a = D,b=Dand c = 3.D\/2/3 (c is equal to three times the height of the 

tetrahedron of side D). The ratio c/a is 3,\/2/3 = 2.4495. 

p Figure 16.10a Figure 16.10b Figure 16.10c 
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This lattice can be described by a unit-cell of higher symmetry: the grey 

quadrilateral AB,CB) with orthogonal diagonals equal to 2D is a square of side 

2.R/2. This packing actually corresponds to a cubic face-centred lattice with 

the unit-cell in bold lines in figure ‘16.10a. 

OF STRUCTURE PACKING 

Examination of figure 16.10a will show that there are: 

—12 nearest neighbours at a distance D (6 of type A in the layer, 3 of type B3 

in the lower layer and 3 of type B; in the upper layer); 

—6 second nearest neighbours at a distance D../2 (type B;); 

—24 third nearest neighbours at a distance D./3 (6 of type A. 6 of type C; 6 of 

type B, in the upper layer and 6 of type By, in the lower layer). 

There exist four directions of maximum compactness (the threefold axes of 

the cube). 

O INTERSTICES 

When spheres are _ packed 

together, there remain empty 

spaces called interstices. In the 

cubic close packed structure there 

are two types of interstice, tetra- 

hedral and octahedral. In a cubic 
coordinate frame, the tetrahedral 

interstices are centred at 1/4, 1/4, 

1/4. . .; the octahedral interstices 

are located at 1/2, 1/2, 1/2... The 

spheres labelled A, B, C in figure 

16.11 correspond to the different 

Figure 16.11 packing sites. 

3.3 Hexagonal Close Packing 

The third layer is directly above the first, and we obtain the sequence ABAB... 
(figure 16.12b). This sequence is identical to the sequence ACAC... 

The unit-cell is hexagonal (figure 16.12c) and contains two atoms: A at 0, 0, 0 
and B at 1/3, 2/3, 1/2. The space group is P63/mme (atoms at the sites Qe): 

sealer lias 
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> OD > wD PY 

Figure 16.12 

Examination of figure 16.12a will show that there are: 

—12 nearest neighbours at a distance D (6 of type A in the layer, 3 of type B; in 

the lower layer and 3 of type B, in the upper layer). 

—6 second nearest neighbours at a distance D../2 (type Bo). 

-—18 third nearest neighbours at a distance D./3 (6 of type A and 

12 of type B3). 

‘. This structure is thus slightly less compact than cubic close packing and 

has a single direction of maximum compactness (the [001] axis) instead of 

four. 
Assuming the spheres are undeformable we have: c/a = 2,/2/3 = 1.63299... 

Elements with this structure actually have slightly different values because of 

distortion by electron clouds. The values of the ratio c/a for various metals are: 

Zn —> 1.86; Co— 1.633; Mg— 1.6235; Zr— 1.59 

NOTE: 

@ Other sequences of layers are also possible, e.g. for the lanthanides La, Nd, 

Pm and Pr the sequence is... ABAC... and for Sm the sequence 

s... ABACACBCB... 
@ Whatever the compact packing arrangement of touching spheres, the space 

filling ratio is the same and equal to 2/(3V/2) i.e. 74%. 

3.4 Body Centred Cubic 

In body centred cubic packing of identical spheres, the space filling ratio is 

2/3 i.e. 68%. 
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The difference is slight compared 

with close packing, but there is a 

change of coordination from 12 to 8. 

Figure 16.13 shows the eight nearest 

neighbours and six next nearest neigh- 

bours. A number of elements occur 

with this structure: Li, Na, K, Rb, Cs, 
Figure 16.13 Ta and W. 

3.5 Structures Derived from Close Packing 

Close packing also occurs with compounds of neighbouring elements such as 

certain metal alloys. Solid solutions are obtained by quenching a liquid mixture 

and in the disordered alloys obtained the atoms are distributed randomly. 

When the mixture is cooled slowly, however, a partial or total segregation can 

occur, or there may be crystallisation of an ordered alloy of specific 

composition. Thus gold and silver are miscible in all proportions and form 

solid solutions with a random distribution of atoms. 

O COPPER—GOLD ALLOYS 

Gold and copper are miscible in all proportions, but for the compositions 

AuCu and AuCu3, ordered phases may be obtained. The alloy AuCu is 

tetragonal and in the ordered state there is a succession of layers of gold and 

copper along the tetragonal axis. AuCU;3 is face centred cubic in the disordered 

state; in the ordered state the fractional coordinates of the atoms are: 

Au: 0, 0, 0; Cus 203 LAD, Ose FE OP hige 12 

Figure 16.14. AuCu Figure 16.15. AuCu3 
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O CSCL TYPE PACKING 

This is a structure often found in binary 1:1 compounds such as MgAg, AlFe 
and CuZn. 

There exist also ‘superstructures’ of the CsCl type with a unit-cell which is a 
multiple of the CsCl unit-cell and sites occupied by different types of atoms. 
For example, consider the super-cell composed of eight unit-cells with four 
types of site A, B, C and D and having projections with heights as shown in 
figure 16.16. 

ae ()\{ ae. 
=, \. 

“Thay The ee ay, 

See aes 

YA Ay {8 
= ae woe Ce 

Figure 16.16a Figure 16.16b 

According to the nature of the occupied sites, the following structures occur: 

Table 16.7 

A B Cc D Type Examples 

Al Fe Fe Fe Fe3Al Li3Bi, Fe3Si 
Al Mn Cu Cu MnCu,Al 

an Na Tl Na NaTl LiA, LiZn 
As Mg Ag MgAgAs LiMgAs 

Ca F F CaF> CuF), BaCh, Li20 

Zn S ZnS (zinc blende) SiC, GaAs, CuCl 
Cc @ Diamond Si 

Na Cl NaCl LiH, AgF,MgO 

4 COVALENT STRUCTURES 

4.1 The Diamond Structure 

Diamond, silicon and geranium all have the same structure; the space group is 
Fd3m and the unit-cell contains 8 atoms (the formula unit is formed of atoms 

at (0, 0, 0),.(1/4, 1/4, 1/4)-+ cubic face centred). The unit-cell parameter is 
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a = 3.5668 A. Each carbon atom is’ at the centre of a regular tetrahedron of 

carbon atoms. The length of the C—C bond is 1.54A and the bond angles are 

109°28’. 

Figure 17a. Diamond Figure 17b 

If the structure is viewed along the threefold axes, a lattice of distorted 

hexagons in the ‘chair’ configuration can be seen. 

4.2 The Zinc Blende or Sphalerite Structure 

If the carbon atoms in diamond are alternately replaced with sulphur and zinc 

atoms, the sphalerite or zinc blende structure is obtained. In this type of 
structure, the total number of valence electrons is four times the number of 

atoms. 
Other examples include IV-IV compounds such as fSiC, III-V compounds 

such as BP, GaAs and InSb, II-VI compounds such as BeS, CdS, HgS and 

ZnSe and I-VI compounds such as CuCl and AglI. The space group of zinc 

blende is F43m, the unit-cell parameter is 5.409 A and the ZnS distance is 

2.43 A. 

Figure 18a. Zinc blende Figure 18b 
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- For each type of atom the coordination number is four (figure 16.18), with a 

- regular coordination tetrahedron. If the structure is viewed along a threefold 

axis it can be seen to consist of a cubic close packed stacking (ABCABC . . .) 

with alternate layers of sulphur and zinc. 

4.3. The ZnS or Wurtzite Structure 

In wurtzite the layers are hexagonal close packed (ABAB . . .) with alternate 

layers of sulphur and zinc. The space group is P63mc; the fractional 

coordinates of the atoms are: 

Tn0010 42,4 

$3 0,0,0.375,...$955,0:875 

_ The unit-cell parameters are: a = 3.81 A and c = 6.23A (c/a = 1.635). Zn—S 
bond lengths parallel to [001] (2.336 A) are slightly greater than those parallel 

to the plane (001). Again the coordination is four for both types of atom, but 

the coordination tetrahedron is no longer regular. Figure 16.19b shows the 

projection of the hexagonal unit-cell on the plane (001) and figure 16.19a shows 

a semi-compact model assembled from three unit-cells. 

Figure 16.19a. Wurtzite Figure 16.19b 

4.4 The Graphite Structure 

This is a hexagonal structure with the space group P63mc; the parameters are: 

a= 2.456A and c = 6.696A. The fractional coordinates of the atoms are: 

0050; 0x0, 3; Wid 

1 
pa Wits iH b) =) 

[eey ls é 

This structure is obtained by a stacking of layers. Layers of integral heights are 

type AB and those of half-integral heights are type AC. Within the planes of 

the layers there are strong covalent bonds, each carbon atom being linked to 
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three others (C—C = 1.42 A), whereas the layers themselves are linked by Van 

der Waals forces (C—C = 3.35 A). The conductivity is high within the layers, 

but very low in the perpendicular direction. 

Figure 16.20a. Graphite Figure 16.20b 

4.5 The Cu,O Structure (Cuprite) 

The oxygen lattice is body centred cubic while the copper lattice is face centred 

cubic; the unit-cell parameter is 4.27 A. Each oxygen is at the centre of a 

tetrahedron of copper and the Cu—O distance is 1.849 A. This structure might 

be considered as an interstitial solution of oxygen atoms in a lattice of metallic 

copper, though the oxygen atoms are too large to fit the cavities in the copper 

lattice. The bonds are not really covalent and the compound has a pronounced 

metallic character as evidenced by the relatively high conductivity of cuprite. 

Figure 16.21a. Cuprite Figure 16.21b 

5 STRUCTURE BUILDING WITH POLYHEDRA 

Crystal chemists now work on more and more complex compounds for which a 
description based simply on the positions of the atoms is no longer adequate. 
However, a number of structures can be described in terms of assemblages of 
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polyhedra linked in various ways. This kind of approach simplifies structure 

- descriptions and brings to the fore certain properties of the materials studied 

such as cages, channels and preferred orientations. This introduction to crystal 

chemistry will be limited to a brief presentation of a few types of assemblages 

of Mx, octahedra. For an account of the silicates, where numerous and 

complex arrangements of SiO, tetrahedra are found, the reader is referred to 

specialised works. 

5.1 Octahedra Linked by Corners 

O THE PEROVSKITE STRUCTURE (ABX3) 

The structure of normal cubic perovskites (CaTiO3, KZnF3 etc.) can be 

described as a framework of BX¢ octahedra linked by their corners, each X 

being shared by two octahedra; the ions A occupy the cavities between the 

octahedra. In this way we obtain a three-dimensional assemblage of octahedra 

whose tetragonal axes coincide with those of the unit-cell. If the relative 

dimensions of the octahedra of ions A are incompatible with this configuration, 

_the basic structure becomes distorted (the octahedra may rotate about one, two 

or three axes, become distorted etc.), causing a lowering of the symmetry. 

Figure 16.22a. CaTiO3 Figure 16.22b 

O THE TETRAFLUOROALUMINATE STRUCTURE (ABF4) 

The typical structure (TIAIF,, figure 16.23) has layers of octahedra AlF¢ linked 

by corners and separated by layers of thallium ions. The octahedra have 

tetragonal symmetry and their symmetry axes are parallel to those of the unit- 

cell. ’ 
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Figure 16.23a. TIAIF4 Figure 16.23b 

The bonding is very strong within the layers but weaker in the direction of 

the fourfold axis (giving a laminar structure which cleaves readily in the plane 

of the layers). There exist numerous variations of this structure such as those 

with rotation of the octahedra about one, two or three axes and staggering of 

the layers. 

O THE RUTILE STRUCTURE (RX2) 

This structure, which has already been described above, can be considered 

either as a compact assemblage of oxygens with the titanium ions occupying 

half the octahedral cavities, or as an assemblage of TiOg octahedra linked by 

corners. In either case the oxygen is shared between three octahedra. 

Figure 16.24a. Rutile Figure 16.24b 
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5.2 Octahedra Linked by an Edge 

O MX, TYPE CHAINS 

Two octahedra linked by an edge correspond to a composition (MXs)z, that of 

the pentahalides. A whole chain of octahedra linked by an edge will correspond 

to a composition MX4. 

NbCl, 2rCl, 
Figure 16.25 

In this way there occur either linear chains such as NbCl, and NbIy or chains 

with more complex conformations such as the zigzag configuration of ZnCl4. 

O MX; TYPE LAYERS 

Assemblages of octahedra linked by 

an edge can also produce layers of 

composition MX3. The layers are 

stacked in such a way that the 

atoms X form a close packed 

arrangement. This type of structure 

occurs in many trihalides such as 
Figure 16.26. AlCl; AICI; and CrCl. 

O MX> TYPE LAYERS 

Cdl, 

Figure 16.27a. Cdl» Figure 16.27b 
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In this type of arrangement (figure 16.27) each octahedron in the layer is 

linked to six neighbours. Each halogen is shared between three octahedra in the 
layer and the assemblage of the halogens is either hexagonal close packed as for 

example in Cdl), Pbl,, MgBr2, CrBr2, Mg(OH) 2, Fe(OH) 2, SnS2 and AgF, or 

cubic close packed as in CdCly, MgCl» and FeCl. 

5.3 Polyhedra Linked by Faces (NiAs) 

The compound nickel arsenide is hexagonal (P63/mmc) with two formula units 

per unit-cell: 

Ni: 0, 0,0; 0, 0, 1/2 

Ke WoW, 28 Vor a 

This structure occurs in many compounds RX such as AuSn, CrS, CrSb, 

FeS, FeSb, MnAs, MnBi and NiSb. 

Figure 16.28. NiAs 

Each atom X is at the centre of a right triangular prism of atoms R (an 
example of non-octahedral six-coordination). Each atom R has eight nearest 
neighbours (six X and two R). The structure can be considered as an 
assemblage of prisms stuck together by a face. 
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Special Techniques 

In part two of the book we gave a detailed account of the classical techniques in 

X-ray crystallography. Here we give a brief description of techniques which 

_ require special apparatus and techniques for dealing with substances which are 

- not crystalline in the strict sense of the word. 

1 SCATTERING BY NON-CRYSTALLINE SUBSTANCES 

We shall simply outline the principles involved in studying scattering by non- 

crystalline substances; for a more detailed study, which is outside the scope of 

this work, the reader should consult, e.g. ‘X-ray Diffraction’ by A. Guinier. 

O SCATTERING CAPACITY 

The diffracted amplitude in a direction characterised by the vector 

S— So 

fia Fi 

is the Fourier transform (Tr F’) of the electron density p(n): 

N 

AS) = | po). do, = fue" 
n=1 

(the integral is over all the object space) 

The observed property is still the intensity, which is the square of the 

modulus of the amplitude: J,(S) = |A(S)|?. For a diffracting object composed 

of N identical entities (atoms, unit-cells), we define a unit scattering capacity: 

I(S) = In(S)/N. 
If Fis the structure factor of the elementary entities (atomic scattering factor 

or structure,factor), we can then introduce the interference function: 
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118) 19) _W) 
F2  N.F? 

O SCATTERED INTENSITY 

The total scattered intensity is the product of the unit scattering capacity, the 

number of entities (after correcting for absorption) and the scattered intensity — 

of an isolated electron. It can be expressed in the following two ways: 

@ As a function of atomic scattering factors: 

N N 

Iy(S) = A(S).A*(S) = She ae S fip.e Sta 

l 1 

Iy(S) = yy 9 fcfy © FSW) 

For n =n’ there are N terms whose sum is: Df*. 

For n#7n’ there are N(N — 1)/2 pairs of conjugate terms equal to: 

Sita [cos 21.S(r, — ¥,) + cos 27.S(r,, — r,,)] 

Writing rr, =, —¥,, we obtain: 

N 
I,(S) = 2 vite: a ox Taty- COS 2S Boy 

1 nZ£n' 

@ In terms of the electron density 

Iy(S) = A(S).A*(S) = | | p(u).p(v).e 27° .do,.dv, 

Writing r = v — u we obtain: 

TAS) = | [.otu +r).e-7"5* du, .dv, 

Using the generalised Patterson function P(r) = J p(u).p(u+r).dv, the 
expression for the intensity becomes: 

Iy(S) = | Pen." do, & P(r) = | t0(S).0°%"5" do, 

The intensity in reciprocal space is the Fourier transform of the Patterson 
function in direct space. The observable property is actually an average 
intensity which is a function of the statistics of the distribution of diffracting 
objects in direct space. 

Iy(S) = Tr F(P@)) 

een ee a: 
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O SCATTERED INTENSITY FROM AN INFINITE HOMOGENEOUS OBJECT 

~ Consider a volume V containing on average N objects (N is large); the average 

volume available to an object is vu) = V/N and the probability of finding an 

atom in the volume dv at a distance r from the object chosen as origin is: 

Iy(S) = Tr F(P@) 

p(r) is the distribution function for the atoms. In a crystal, this function is null 

if r is not a lattice vector. In disordered substances an atom’s radius of 

influence extends no further than a few atomic distances and so at large 

distances the positions of the atoms are not correlated and for large r, p(r) = 1; 

fluctuations of p(r) around | correspond to short-range order. To take account 

of this, a Dirac peak z(r) = 6(r) + p(r)/vp can be introduced into the function 

for the probability of finding an atom at a distance r from the atom at the 

- origin. 

To show the short-range variable part we can write this in the form: 

mr) = 1/v9 + d(r) + (PO) — 1)/vp- 

-This probability is related to the average value Pa(r) of the Patterson function 

applied to the volume being considered. In calculating Pa(r), the terms 

p(u).dv,, which contain one atom, are equal to | and the others are null. The 

integral is equivalent to the sum of 1/vp terms p(u +r) whose average value is 

n(r): 

Pa(r) = x(r)/vy 
The Fourier transform of x(x) is: 

II(S) = 1 + 5(S)/v9 + 1/v9.Tr Fp) — 1) 

For a perfect crystal made up of N unit-cells of volume Vc the distribution 

function is a series of Dirac peaks centred on the lattice nodes. The Fourier 

transform is the written: 

1 
(Ss) = gue 5(S — Nixa) 

¢ hkl 

© SCATTERED INTENSITY FROM A FINITE HOMOGENEOUS OBJECT 

Let y(r) be a function (the form factor) equal to 1 inside the specimen and null 

elsewhere. If p(r) is the electron density of the infinite object, that of the finite 

object becomes p’(r) = p(r).p(r). The Fourier transform of ¢(r) is: 
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@(S) = | ewe ** do, 

The Fourier transform of p’(r), which is the amplitude scattered by the finite 

object, is the product of the convolution of the transforms of p(r) and ¢(r), 1.e.: 

A(S)= [4.08 —u).dv, 

It can be shown that the interference function can be written: 

IS) = 7 | Mwy. ios — wp dv, = 5 M(w)*1@(8)P 

58) =1|(1+¢ [ire —ne*"av) *1018)F + - aS") 
The second term of the sum is equal to: 

_ 1@(S)I’ 
V v9 

— 5(S)*1@(S))* = —- | d(w. lS - u)/?.do, 
Uo Uo 

While the first factor of the first product only varies slowly with S in an 

object displaying long range order, the function ®(S) has a very sharp 

maximum for S = 0 for all but very small objects. The convolution product can 

be assimilated to the product of the first factor and the integral of |®(S)|? in the 

neighbourhood of the origin, i.e. V. 

718) =1+4 [ine — nego 4 SOF U.V 

In this general expression for the interference function, the second term represents 

the peak in the form function ®(S). Physically, it corresponds to very small 

diffraction angles and it is only detectable for diffracting objects of very small size 
for which there is negligible spreading of the form function in reciprocal space. The 

first term is a function only of the statistical distribution of objects in the specimen. 
For a perfect crystal, the interference function 

IS) = Mu) |@(S)/ 
is equal to: 

IS) = oz YS = Nig) OS) +7 < 1@S - Nil 
© hkl Ve hkl 

The domain of reflection around the actual nodes in the reciprocal lattice 

depends on the shape and size of the specimen. 
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- On the reciprocal lattice nodes (S = Nix) we have J(S) = V" I VV WN ek 

Ty = N°f?. 

QO THE DEBYE FORMULA 

An object moving in such a way that all orientations relative to the incident 
beam are equally probable, is equivalent to a perfect powder (or a gas or a 
dilute solution). For a given orientation of the scattering object, we have: 

Iy(S) = Yt Dd J) COS2RS Fy 
nZén’ 

The average scattering capacity is the sum of the means: 

Ty(S) = a 5 I a ee PLAS a 
n£n' 

To calculate the average value, we may write a = {S,r,,,} and B is the angle 

between the normals to an arbitrary reference plane and the plane S.r,,,. 

COS(27.S.F,,,. COS &).27. sin a.da 
ax dp i _ sin(27.S.tj,) 

T Jo A 27.S Dany 

cosln Sit k= | 
0 

oe 22.8. WS) = Yh See 

In this relation, only the /engths of interatomic vectors are involved. The 

maximum occurs at S* = 0 and secondary maxima occur for S.r,,, =1.2295 

2.2387; 3.242... (zeros of tan(u)—u). 

This series when calculated gives the intensity of the lines in a powder 

diagram but it is by no means a trivial exercise to show that it is formally 

equivalent to the classical expression for the scattered intensity. 

G X-RAY SCATTERING BY AMORPHOUS SUBSTANCES 

@ Perfect gases 

—Monatomic gases: the distribution function p(r) is always equal to | since the 

probability of finding an atom at a given point is constant by hypothesis: 

n(r) = 1/v9 + 0(r). The interference function is always equal to 1 and ‘the 
scattering capacity is equal to the square of the atomic scattering factor; no 

interference occurs. Incoherent or Compton scattering must also be considered. 
a 
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For a gas, the two effects are of the same order of magnitude, but for coherent 

scattering the intensity decreases with 6, whereas the opposite is true for 

incoherent scattering. 

—Polyatomic gases: For diatomic gases with interatomic distance a and atomic 

scattering factor f, the Debye formula gives: 

= 5 sin(27.S.a) 

IS) = 2f (1 A ioe e ) 

At small angles, the intensity is equal to 4f * (the interference effect), tending to 

2f? at large angles, corresponding to dissociated molecules. Oscillations should be 

observed on the /(0) curve, with a first‘maximum for an angle 4) such that 

2a.sin 9 © 1.231; however, the oscillations are damped and displaced by the effect 

of f decreasing with @ and by incoherent scattering. For polyatomic gases the 

curve of scattered intensity is obtained by summing the contributions of each type 

of atom pair. The maxima overlap and the scattering curve is difficult to interpret. 

X-ray diffraction is thus unsuitable for the study of gases. Intensities are not 

negligible, however, and in diffraction experiments on solids, scattering by air 

is a considerable source of interference. 

@ Condensed amorphous states 

The condensed amorphous states of matter—compressed gases, liquids and 

glasses—are intermediate between perfect gases without any order and the 

crystalline state where the order is perfect. Diffraction patterns obtained 

depend on the distribution p(r) of the atoms. In the case of a liquid, p(r) can be 

calculated using as a model hard impenetrable spheres of diameter a. The curve 

of intensities deduced from this model shows very weak intensities at small 

angles, rising to a first maximum at S=1/a; there then follow damped 

oscillations with an interference function tending to | at large values of S. In 

the absence of long-range order, fluctuations in interatomic distance 

completely average the phase term 27Sr in the Debye relation. 

The diffraction pattern of an amorphous substance is characterised by the 

appearance of one or more diffuse rings; if there exists a large number of pairs 

of atoms separated by a distance xo, then corresponding to them in the Debye 
relation there will be the same term sin(27Sxo)/22Sx 9, which has a first 
maximum at Spo = 2sin 69/4 © 1.23/xp. 

The order of magnitude of the average distance between nearest neighbours 
can be determined from the diameter of the first ring, but for a rigorous 
analysis of the patterns, the Fourier transform of the diffraction curve 
(corrected for interfering phenomena) must be calculated, and the radial 
distribution of atoms in direct space is then obtained. 

Using a suitable thermal process, it is sometimes possible to crystallise glass. 
It then becomes evident that the diffuse rings of the amorphous material are in 
fact the envelope of the diffraction lines of the crystallised material. 
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15 20 25 30 35 40 45 50 55 60 65 70 7S 

PB2ZNGAF9 (Glass) 1.5406 A 20 

DS spectrum of a fluoride glass 

2 EXAFS 

© PRINCIPLE 

An electron can be ejected from an atom by X-ray photons provided their 

- energy hv is higher than the binding energy E; of the electron. The curve of 

absorption as a function of energy shows edges K, L ... corresponding to the 

excitation of ls, 2s, 2p ... electrons. Beyond the edge corresponding to the 

element, absorption decreases uniformly for a gas, but oscillates in a solid. 

These oscillations can extend from 600 to 1000eV with periods of the order of 

50-100 eV depending on the environment of the photo-excited atom. 

KMnk 
Mn edge: 6545 eV 

Absorption (arbitrary units) 
a | 

6400 6600 6800 7000 Energy in eV 
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The reason for these oscillations is that the photo-electron ejected by the 

atom is propagated in the form of a spherical wave which is then back- 

scattered by neighbouring atoms. The phenomenon is known as EXAFS 

(Extended X-ray absorption fine structure). 

The effect provides information on the symmetry of the local environment; 

although it has been known since 1930, use has only been made of it since the 

development of synchrotron radiation generators giving ‘white’ sources of — 

sufficient intensity. 

© STERN’S FORMULA : 

Spectral oscillations are characterised by: 49 B mt (K) 

(kK) is the absorption by an isolated atom. 

Stern, Lytle and Sayers established the following formula which is now used 

in interpreting spectra: 

1 (1, k 

je S © 3cos*(R;, E) ie uF sin(2k.R, + 26 + 0,).
077 © e°R/A® 

J a 

iP the label for any neighbour located at R; 

(z.k)\: the back-scattering amplitude for the atom 

Ue the back-scattering phase for the atom j 

3.cos’(R;j, E): a polarisation term related to the angle between the 

electric field E and R; 

6: a phase term characterising the excited atom 

In the Debye-Waller term, which takes into account the variations in the 

values of Rj, o is the standard deviation of the R; distribution. The final 

exponential term corresponds to damping from inelastic scattering; the mean 

free path of the electrons A(k) is close to k/4 (in eV). The wave-number (in 
A_!) is written: 

ie (ee iat 
= 9520 Rea (energies in eV) 

The edge energy Ep is slightly dependent on the environment of the excited 

atom, and is adjustable. The phase shifts ¥; and 6 together with back- 
scattering amplitudes have been calculated for most atoms. It is often 

preferred to carry out phase determination in a compound with known 
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structure as similar as possible to the one being studied; phase shifts obtained 

in this way, when applied to the compound of unknown structure, usually 

give good results. - 

O EXPERIMENTAL APPARATUS 

The incident beam passes through a two-crystal monochromator which 

keeps the direction of the beam constant. The intensity is measured before 

and after passing through the specimen, using ion chambers. Solid 

specimens (sieved powders) are stuck in a thin layer onto adhesive tape 

and placed in the beam. 

A data collection system controls the rotation of the monochromator, 

enabling the curve p(k) to be calculated and recorded. 

Data acquisition 

lonisation chambers 
Monochromator 

© ANALYSIS OF EXAFS SPECTRA 

First the modulation y(k) of the curve p(k) is extracted by smoothing the 

spectrum to give the curve pio(k). If possible a comparison is made with a 

reference specimen having chemical and crystallographic properties as similar 

as possible to the compound being studied, so as to ensure a reliable transfer 

of the phases. Stern’s formula shows that ky(k) « sin(2kR + y(k)) and 

hence a Fourier transform must be performed which will give, in real space, 

the peaks of a function for the distributions of distances between pairs of 

atoms. ; 

Assuming that y(k) = ak + B, the peaks of the transform give the distances 

Ra=R+4/2. 
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Al 99% + Cu 1% 

a a ee ee ee, > 

2 4 6 R (A) 

AlzCu 

r tap af a — f a fs 4 

Fourier transforms of x(k) (From Fontaine et al. LURE document, 1979) 

The upper curve is that of a solid solution of 1% copper in an aluminium 

matrix; the reference compound is the alloy Al»Cu. In the Fourier transforms 

obtained, the main peaks correspond to layers of first and second nearest 

neighbours. In the alloy, the Al-Cu peak is at 2.13 A while the value obtained 

by diffraction is 2. 487 A. For the solid solution, the Al-Cu peak is at 

a 37A= 2.13 A+0. 24A; in the solid solution, the Al-Cu peak is thus close to 
2.49A+0.24A ie. 2.73 A. 

In more complex cases (e.g. where there are several different atoms in the 

first layer), or if spectral amplitudes are required (for the measurement of N 

and o), a different strategy must be used: an attempt is made to reconstruct the 

spectrum from the theoretical formula. In order to limit the number of 

variables, the peak to be studied in the Fourier transform is filtered and 

inverted to obtain the specific EXAFS signal; the reconstruction is then 

attempted by adjusting the parameters relating to the layer in question. 

O APPLICATIONS 

@ This technique is a local one since only nearest neighbours can be 
distinguished. 

@ EXAFS is highly selective since the edges of the various elements in the 
compound are excited separately. In a binary compound AB, the pairs BB 
are not involved when the edge of A is studied. EXAFS can be used to 
analyse dilute systems and in particular to determine chemical impurities. 
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@ EXAFS can be used provided there exists a /ocal radial order, but there need 
be no long-range order; the technique is thus usable with liquids, amorphous 

substances and glasses. It should be remembered however that fluctuations 

in the radial order strongly dampen the signal and generally in disordered 

media only the first layer is visible. 

A well-resolved EXAFS spectrum will yield: 

—The distances between the excited atom and its neighbours (Ar ~ 0.01 A). 

—The number N of nearest-neighbour scatterers (AN ~ 0.2 to 0.5). 

—An estimate of the fluctuations in the values of Ri (Ao? © 0.01 A’). 

The technique is now widely used to study amorphous substances, glasses, 

saline solutions and crystal defects. 

3 X-RAY FLUORESCENCE SPECTROMETRY 

O PRINCIPLE AND APPARATUS 

A suitably excited element will emit characteristic radiation. The excitation can 

be by impact with accelerated particles or by high energy photons from an 

anode or a radioactive source. For analytical purposes, electrons (the 

spectrometer is linked to a scanning electron microscope) or X-rays are 

generally used. Here we shall only give a brief description of X-ray fluorescence 

~ and the problems involved in its use.! 
In X-ray fluorescence, energy analysis is performed on the emission 

spectrum of a specimen bombarded with primary photons. The photons ionise 

the target atoms, which then return to their ground state by emission of a line 

spectrum with characteristic wavelengths. There are few lines in the spectra, 

which are therefore simpler to interpret than those of classical emission 

spectrometry. The intensity of a emission line depends on: 

—the probability of ionisation in the initial energy level; 

—the probability of the hole being filled by an electron at the final energy level; 

—the probability of the photon leaving the atom before being re-absorbed. 

This latter probability gives rise to fluorescence defined by: 7 = n;/n, where n 

is the number of primary photons causing ionisation of a given level, and n; is 

the number of secondary photons emitted by the atom; n — ny is the number of 

re-absorbed photons (the Auger effect). The amount of fluorescence depends 

on the initial ionised layer and on the element; it is very small when Z is small 

(0.018 for carbon) and tends to | for large values of Z (0.859 for tin). 

'For a detailed study, consult, e.g., R. Tertian and F. Claisse, Principles of Quantitative X-ray 
Fluorescencg Analysis, Heyden, London (1982). 
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Detector 

X-ray tube 

In this type of spectrometer, high efficiency frontal anodes, often of 

rhodium, are used. The electrons are emitted by an annular cathode and 

focused onto the anode by electronic optics. The emitted photons pass through 

a beryllium window followed by a primary filter. The secondary photons 

emitted by the specimen pass through a diaphragm and a collimator into the 

analysing crystal where the different wavelengths are separated according to 

the Bragg equation nA = 2dsin 0. The detector is geared to the analysing crystal 

with a 2:1 speed ratio, and measures the intensity /(A) of the beam. 

Several analysing crystals are mounted on a turret, and the crystal is 

selected to cover the required wavelength range. The most widely used 

crystals are (100) or (110)-cut lithium fluoride, in first or second order, and 

PET (pentaerythritol, C(CH2OH),4). The output of the detector, which can be 

a scintillation counter or, for light elements, a gas flow counter, is fed to 

wave shaping circuitry and energy discriminators. To avoid air fluorescence 

the whole system is under vacuum. Powder specimens are compressed into 

pellets or sintered. Binding agents used contain only light elements which are 

invisible under fluorescence (e.g. borax, lithium tetraborate). The bead 

technique is also used: the sample is fused with a flux (borax), giving a highly 

homogeneous solid solution. 

For quantitative analysis, the analyser and detector are placed in the 

reflection of a line of the element. Intensities measured on a series of samples 

can be converted into concentrations of the element. 

For qualitative analysis, the analyser and detector rotate at uniform speed 
and the scattered intensities are measured; it is then only necessary to identify 
the characteristic lines to identify the elements present in the sample. 
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PRIMARY AND SECONDARY FLUORESCENCE 

—Primary fluorescence 

The figure shows the absorp- 

(a) W(Fe) tion curve mw of iron, in which 
there is a discontinuity at Ape 

and lines Ky. and K gre, together 

with the emission curve of the 

generator. Only those photons 

with a wavelength shorter than 

AxFe Can ionise the K level of iron; 

this is primary fluorescence, 

which is the type which occurs 

for pure elements. 

—Secondary and tertiary fluorescence 

This occurs when the element is associated with another element of higher 

_ atomic number. An example is a stainless steel (Fe-Ni-Cr) in which the nickel 

~ fluorescence is also excited, with emission of the line K,x; (whose wavelength is 

shorter than for K,p,) which then induces secondary fluorescence of the iron 

and which in turn can cause tertiary fluorescence of the chromium 

(Kani < Kare < Kacr). 

—The intensity of fluorescence radiation 

Let y, and gy, be the incident and emergent beam angles for a sample, 

A=siny,/sin Y, i the incident intensity and £; the excitation factor (equal 

to the product of the ionization probabilities of the initial level, the probability 

of emission of the line in question and the fluorescence efficiency). 

C; is the concentration of element 7 in the sample, hi its absorption 

coefficient and 

= CE 

the absorption coefficient of the sample. 
In calculating the intensity of fluorescence, absorption by the Bae of 

incident and emergent radiation according to the Beer law must be taken into 

account. , 
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For a thick sample, it can be shown that the intensity of primary fluorescence 

radiation 1s: 

AK Ag 
A i; p.dA 

I, x B.C. | a ¢@ 

jy Ha + Ad 

For monochromatic excitation of intensity J * this formula becomes: 

2 ’ ay G 
EF & BC gg = Bick where: ut = Ly = p+ Api 

t ods t 

Thus the intensity of fluorescence is proportional both to the concentration of 

the element and to the reciprocal of the effective attenuation coefficient u* of 

the compound, which itself depends on C;. Hence the intensity of fluorescence is 

not a linear function of concentration. The other elements in the compound 

increase or decrease the contribution of the element in complicated processes 

through matrix effects. The situation becomes even more complex if secondary 

and tertiary radiations are taken into account and if a polychromatic excitation 

source is used. 

O QUANTITATIVE ANALYSIS 

The previous paragraph gives an idea of the complexity of the problem and 

underlines the need to use external calibrations to take into account inter- 

element effects. Once the experimental conditions have been optimised for the 

element being analysed, sample and reference data are collected and subjected 

to one of the many methods of correction which have been developed to take 

into account the inter-element effects. The overall quality of an X-ray 

fluorescence spectrometer depends as much on the quality of the hardware as 

on data processing software. 
This method of non-destructive testing is a powerful tool for metallurgists, 

enabling rapid (a quarter of an hour) and accurate (a few percent) 

determination of the composition of an alloy. Although it can be applied to 

liquids, it is used above all for finely divided solids (powders and dusts). It is a 
highly sensitive method and traces (tens of parts per million) can be detected. 
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| es SRS 303 

1 Franc coin 

K ai K acu Kaco Kare 

SS me see a ee Uae teaie tepid 
30° 40° 6 

As an example, the figure above shows part of a spectrum (30° < 0 < 45°) of 

~a coin of one French franc; semi-quantitative analysis gives the following 

composition: nickel 97%, magnesium 0.4%, silicon 0.4%, iron 0.13%, cobalt 

0.5%, copper 0.1%, fluorine 0.5%, bromine 0.1%, rubidium 0.2%, tantalum 

0.2% and thallium 0.2%. 

4 DIFFRACTION OF X-RAYS BY SURFACES 

© X-RAYS AND SURFACES 

The refractive index of a pure element to X-rays is given by: 

4 

n=1-—r,.Z.—— (V=volume of unit-cell) 
2nV 

r, is the ‘classical’ radius of the atom (2.82 x 10~'° m). 

For a crystallised compound with m atoms per unit-cell, the index is: 

n=1—eée-—jo 

ae m 2 in 

where ¢ = re Ony A +g,) and 6= one hy 

Z,, g, and h, are respectively the atomic number, the real part and the 

imaginary part of the dispersion correction for the atom k. Below a critical 

angle of incidence %, + /2e there is total reflection; the incident wave is 

evanescent in the crystal and the penetration depth becomes extremely small (a 

few tens of angstroms) compared with several thousand angstroms by the time 
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the angle of incidence is three or four times the critical angle. As ¢ is of the 

order of 10~°, «, is of the order of milliradians. 

Furthermore transmission and reflection are strongly dependent on the angle 

of incidence; the Fresnel formulae gives the transmission as: 

; 2 
2 Sin O; 2 

T(a;) = |= 5 5 
SIN &; + 4/N* — COS’ O; 

which has a pronounced maximum at a; = «,: a very small change in the angle 

of incidence near the critical angle has a large effect on the transmitted and 

reflected intensities. The shallow depth of penetration for glancing incidence 

means that diffraction at very small angles can be used to study surfaces. 

When elastic scattering of X-rays occurs in a periodic structure, with a form 

function ZL and a structure factor Fig) of the formula unit, the scattered 

intensity is of the form [(S) « || Fis) | eed oie 

S is a reciprocal vector equal to hA* + kB* + /C*, and in a three-dimensional 

lattice formed from N,.N>.N3 cells, the form function becomes: 

eee sinz.N>.b.S sin 2.N3.¢.S 

sin 7.a.S sin z.b.S sin 7.¢.S 

The scattered intensity is concentrated around the reciprocal nodes. For a two- 
dimensional lattice with base vectors a and b, the third term L disappears 
owing to the loss of periodicity in the c direction and there is no longer any 
restriction on the values of the index / which now appears as a continuous 
variable. 

NTNCINCIN VINIENTN 

The reciprocal lattice of a plane lattice is composed of ‘rods’ along which the 
intensity decreases continuously with distance away from the nodes in the 
plane defined by A* and B*. Any modulation of the intensity along these rods 
would be due to a finite thickness of the lattice. Note that during diffraction at 
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glancing angles the diffraction pattern of the interior of the crystal will be 
superimposed on that of the surface. 

O EXPERIMENTAL EQUIPMENT AND DATA TREATMENT 

The angular divergence and energy of the incident beam are critical and the 

angles of incidence and observation must be perfectly controlled. 

Because of adsorption by surfaces, it is generally necessary to work in an 

ultra-high vacuum, which sets additional constraints on the geometry of the 

diffractometer. Measurements of intensity profiles along normals to the plane 

of the reciprocal lattice can be facilitated by using position detectors. Surface 

atoms are few in number and diffracted intensities are weak, and so high fluxes 

are required. The numerous geometrical constraints make it necessary to use 

apparatus having many degrees of freedom, such as four-circle devices. 

In the treatment of the data, the same problems arise as for three- 

- dimensional structures; if a model of the surface can be obtained (e.g. by tunnel 

effect microscopy or electron diffraction), the structure is refined by 

comparison of measured and calculated intensities. Otherwise the Patterson 

method must be used to determine the inter-atomic vectors. 

OG THE STRUCTURES OF SURFACES 

The real surface of a crystal cannot be treated as its simple section by a plane 

parallel to the surface; surface atoms have dangling bonds and a reorganisation 

process occurs to minimise the energy. This surface reorganisation results in 

movements of atoms (both normal and parallel to the surface) leading to base 

vectors a> for the surface cell which are different from the vectors f/ defining 

the parallel internal planes. This effect is particularly marked in the case of 
covalent crystals, which have highly directional bonds. Even when the plane 

under investigation is a lattice plane it is difficult to obtain perfectly flat 

surfaces; real surfaces are stepped and in addition are contaminated by 

pollutants, making it necessary to work in an ultra-high vacuum as mentioned 

above to eliminated adsorbed atoms. 

O EXAMPLES OF SURFACE STUDIES 

An understanding of the surfaces and interfaces in semiconductor materials is 

vital in electronics technology, which is why much of the work on surfaces has 

been carried out on these materials. Surface diffraction on semiconductors has 

shown the existence of surface cells made up of adventitious atoms positioned 

at the nodes of a plane lattice whose base vectors are related to those of the 
crystal lattige by relations of the form: a° = mf’ and b* = ng” where m and n 



270 Basic Crystallography 

depend on the type of surface. Thus for the (001) surfaces of gallium arsenide, 

GaAs, arrangements of the following type have been suggested: 

COS gO BOBO CP On ro: 

O 

om oA 

O 
eo 
° 
O 
fo) 

Og 

fo) 
0 

The surface plane is composed of pairs of arsenic dimers bound to arsenics in 

the first internal layer. 

The surface cell here is of the 4 x 4 type. 

(From Sauvage-Simkin et al., Phys. Rev. 83 1989). 

For silicon and germanium (111) surfaces, it has been found that the surface 

atoms are situated above the internal atoms and form 2 x 2 cells. In the case of 
the interface Si (111)-metal (Au, Al), the metal atoms form a hexagonal lattice 

with a cell having parameters ./3 times those of the surface. 

This method has also been used to study the transition zone in heteroepitaxy 

and to follow the state of surface roughness during epitaxial growth in the 

vapour phase or by bombardment. By choosing a suitable angle of incidence it 
can be arranged that two successive stepped surfaces diffract in opposite phase 

to each other, and it is then possible to follow the growth of the specimen layer 

by layer. 

Present day techniques such as tunnel effect microscopy enable models to be 

proposed for surfaces, but for materials with an ordered structure these models 

must be refined by diffraction to obtain precise information on the positions of 
the atoms. Surface diffraction is, however, a technique requiring the skills and 
equipment only found in larger laboratories. 
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Crystallographic Computing 

Progress in crystallography is closely linked to the growth of computing power, 

and crystallographers today have at their disposal powerful computing tools 

_ that have been developed over the last forty years. 

Personal computers can now be used to display simple structures and to 

calculate the positions of diffraction spots for a crystal of known structure; 

however, to determine a structure, the long and complex calculations on a large 

amount of data require the use of complex software on high-power computers. 

Manufacturers of diffraction apparatus supply a suite of programs with 

their equipment which will handle all the tasks involved: 

@ Controlling the instrument (accurately positioning the specimen and 

detector). 

@ Entering and storing the data. 

@ Processing the data. 

@ Displaying the results (files, 2D and 3D structure projections, stereoscopic 

views, thermal agitation ellipsoids etc.) 

Processing and display software has been developed by pluridisciplinary 

teams of mathematicians, computer scientists and crystallographers in research 

centres served by major laboratories. 

After first explaining briefly the basic notions! we shall examine structure 

refinement by the least squares technique and then give a few simple examples 

of programs. 

'For a study in depth of programming methods for crystallography, see, e.g., the summary articles 

featured in volumes B and C of the International Tables. 
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1 THE BASIC NOTIONS 

1.1. Crystallographic Frames 

O THE DIRECT LATTICE 

The ‘natural’ frame is that of the base vectors in which lattice translations are 

represented by triplet of integers or semi-integers. For low-symmetry unit-cells, 

there exists more than one choice of base vectors. There is, however, a cell, 

called the Niggli reduced cell, which enables the lattice to be described 

unequivocally; this is a primitive cell constructed on the three shortest non- 

coplanar translations. There are various programs for determining this cell. 

The defining characteristics of the direct lattice are the base vector lengths a, 

b and c, the angles between the vectors a, 6 and y and the unit-cell volume: 

V = abc{1 — cos’a — cos’B — cosy + 2cos «.cos B.cos y]'/ 

In this frame, a direct row [wvw] is represented by the vector: 

Dy =r=uatub+ uc 

When programming, matrices are often use to represent the vectors: 

a u 
r=u.a+uv.b+ w.c = (u, v, w).| b | = (a,b, c).| v 

c 

The matrix formulation of the scalar product is: 

2 
a ab ac Uy 

ea f 
Tt, = (4, 1, W,).| ab b? be].| v. | —ul.Mu, 

ac be ¢ W> 

QO THE RECIPROCAL LATTICE 

The parameters defining the reciprocal lattice are expressed in terms of the 
direct values by the following relations (cf. § 11.6): 

A* =|| A* ||= b.c.sina.V—'; B* = a.c.sin B.V~'; C* = a.b.siny.V~ 

cos y.cos B — COS despre cosa.cos y —cos B gy 298 a.cos B — cosy Sit ted eo ES 008 )*§ = cosa?t= : : siny.sin B sina.siny sina.sin B 
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0 LATTICE CALCULATIONS 

From the scalar product, the modulus of the rows and the angle between them 

can be calculated. In the direct lattice, the modulus of a row is the square root 

of the scalar product r.r; the reciprocal of this modulus is equal to the 

interplanar spacing D*,,,, between the planes (u v w)* of the reciprocal lattice to 

which the row [uw v w] is normal. 

The modulus of a reciprocal row is the square root of the scalar product 

Nixu-Nixu; the reciprocal of this modulus is equal to the interplanar spacing dyx; 

between the planes of the family (A k /) in the direct lattice. To determine the 

angles between these rows, the scalar product is again used. Interatomic 

distances and bond angles are calculated in the same way. 

O LATTICE TRANSFORMATIONS 

A structure described in a frame chosen according to standard crystallographic 

“practice is not always the most convenient; thus a physicist studying the 

transition between a monoclinic 2/m phase and a tetragonal 4/m phase will 

prefer to describe the monoclinic phase with the two-fold axis oriented along 

Oz rather than the normal choice, Oy. 

Lattice transformations are frequent in calculations since at least two 

reference frames are involved: that of the diffraction pattern, in relation to the 

laboratory, and that of the crystal, in relation to the positions of the atoms. 

~ In general, the base vector frame related to the crystal is not orthonormal and 

is therefore unsuitable for numerical calculations. For example, in this frame the 

distance between two atoms of coordinates (x1, y1, 21) and (x2, V2, 22) 1s: 

D=X?+Y?+Z? +2XYcosy+ 2¥Zcos «+ 2XZcos B 

where: X¥ = a(x; —X)); Y=b(, —y2); Z = c(Z — 22) 

The calculations are therefore performed in an orthonormal frame related to 

the crystal. There are an infinite number of ways of orthogonalizing the crystal 

frame but in most cases the ‘international’ frame, IF, is used. 

O THE INTERNATIONAL FRAME 

This right-handed orthonormal frame (O, i, j, k) is defined by? 

% Pere, 2a Ch eA P f= Wen Ae AGE sina ry aCe 

>There exists another definition of IF in which k is parallel to ¢. 
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The frame-changing matrix M in the transformation J=(M).A and its 

inverse are respectively (cf. § II.6): 

b/a 0 0 
(M)= | —cosy/(a.siny) 1/bsiny 0 

A*.cos p* B* LOS GGA 

a 0 0 

A= | b.cosy b.sin 0 I=(M").I 

aces Bi —esinp.cosa* 21 /C* 

When using this transformation, the covariance of the Miller indices of the 

lattice planes and the contravariance of the row indices must be taken into 

account. 

Consider a row in the direct lattice OD = u.a + v.b + w.c; the coordinates of 

the point D in IF are: 

x =u.a+o.b.cos y+ w.c.cos B 

y =v.b siny — w.c sin B.cos a* 

Z=w.c sin p.sin a* 

Consider the reciprocal row OE: Nj,,;=h.A*+k.B*+1C*. The co- 

ordinates of E in IF are: : 

x =h.A* sin f*.sin y 

y =h.A*.sin B*.cos y+ k.B*.sin «* 

z =h.A*.cos B* + k.B*.cos a* + 1.C* 

In IF, the distance between two atoms of coordinates (x1, y1, z1) and (x2, V2, 
Z2) is simply (in a cartesian frame): 

D=aV+yY47 

where: X = (x, — xy); Y = (y; — yo); Z = (2, — 2) 

O THE TRIGONAL LATTICE 

It is best with this lattice to transform to trigonal hexagonal before going into 
IF. The base vectors of the trigonal cell are converted to those of the hexagonal 
cell by: 
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A aid eal a 
Bert Ot TL b 

C Looe ete Cal i 

If the results are required in the trigonal frame, the 1 inverse transformation is 

simply applied. 

1.2 Representation of Rotations 

NOTE: Rotation matrices give the coordinates of the image of the object which 

has undergone a rotation in terms of the coordinates of the object. The base 

vectors are unchanged. 

© ROTATION IN AN ORTHONORMAL FRAME. 

‘In an orthonormal frame i, j, k, rotations through an angle » of a vector r 

about axes directed along i, j, k generate vectors t' = Ri,.r, t? = R{,r, Rir 
where (anticlockwise rotations are positive): 

1 0 0 . cosy 0 sing 

R,.=.| 0 cosp —siny RLS 0 1 0 
0 sing cosy —sny 0 cosy 

cosy -—siny 0 

RE =s1.Ssimwyipcosy 0 

0 0 | 

For rotoinversions, all the +1 must be replaced by —1. 

These relations are only valid if the frame is orthonormal and if the rotation 

axis is a base vector. 
eae 

O ROTATION IN THE FRAME OF THE CRYSTAL 

The simplest way of representing a rotation through an angle y about a 

direction OS in the crystal (frame A = 0, a, b, c) is to choose an orthnormal 

frame (I = 0, i, j, k) whose base vector is parallel to OS: J = (M).A. 

Rotation about i is Ecoreeniad by the matrix RS In frame A this rotation 

will be: R =(M").R.(M")!: 
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© COMPOUND ROTATIONS 

@ About a single axis: 

We simply take the product of the two matrices representing the rotations 

(respecting the order!) 

@ About different axes: 

If the axes are orthogonal, we can take the product of the matrices R’, which — 

represent the rotations. Otherwise we have to use, for example, Eulerian 

angles. 

O EULERIAN ANGLES 

Consider two orthonormal frames: 

I (0, i, j, k) and I’ (0, i, j’, k’) 
These can be made to coincide by three 

successive rotations: 

1—Rotation through y, about k (i= OT) 

2—Rotation through gy, about OT 

(k=k’) 
3— Rotation through 3 about k’ (i=7’) 

The coordinates X (x, y, z) and X’ (x, y’, 

z’) in the two frames are related by: 

ae = Ry.X 

where Rz is the Eulerian matrix: 

Figure 18.a R; = Ri. eae 

Any rotation is decomposed into a series of three rotations. 

1.3 Generating Equivalent Positions 

To obtain the coordinates of all the atoms in the unit-cell it is sufficient to 
know the positions of the atoms in the formula unit and to apply the symmetry 

operations of the group generators. The group symmetry operations can be 

represented by affine transformations of the type: 

X3 faietigou igs X3 ls 
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The elements rj of the matrix represent a proper or improper rotation and 1; 
_a translation. Homogeneous or Seitz matrices are generally used; with these 
4x4 matrices the new coordinates can be calculated from the old ones by the 
relation: 

ry Ni nh; O 

a) To. I3 0 

3) 132 133 O 
ty ty ty 1 

(x; x) x4 Li Coie Xo X31): 

An n-fold axis will give rise to n homogeneous matrices (including the identity 

matrix). 

Examples of homogeneous matrices: 

2, axis||[001] at (1/4, 0, z) 21 axis||[010] at (0, y, 0) Mirror n||(010)y = 1/4 
3, Cage a ae 1 0. sxbaeo beat gyri o0 
mei 0° 0 er ie 0 (gee wale 
‘aR are er Cee (rece 
12 Oxpal Jo%el Leos 0 1 lg = ew a 

1.4 Calculation of the Structure Factor 

The algebraic expression for the structure factor, which is: 

n n 

27 rS 2jn h.x; k. i 1.2; 

Ee i Uitncrupaty ner = ne +. se ia 
i=] i=l 

will be transformed into F, = A, + i.B, where: 

A, = ) (fi) (cos2n(h.x; + k.y, +1.2,); Bs = )-(f),-Sin2n(h.x; + k.y; + 1.2) 
i=l TI 

If g is the order of the crystal space group and m the number of atoms in the 
formula unit, the total number of atoms in the unit-cell will be N = mg, 

provided that all the atoms are in general positions. To include atoms in special 

positions we let p; be the number of equivalent positions for the atom j and 

d; = pj/g. 
If (Bx) is the 3 x 3 matrix for anisotropic thermal agitation of the atom k we 

write 2, = (S").(Bj).(S) where: (S') = hA* + kB* + IC*. 
Following these conventions we obtain the general relation: 

m & 

Aaa by: ashes ds e** cos2an(h.x; + k.y; + L.z;) 
= i 
J il 
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Atomic scattering factors are tabulated for all the elements in terms of sin@/A; 

to find the value of f; for a given value of the vector S we use interpolation. Since 

these tables take up considerable memory space, the variation of f with sind/A is 

often represented as a sum of Gaussian functions f(sin0) = S~”_, a;.e°" Oe 
and f; is calculated from this. For very precise calculations we take n = 4; twelve 

values are sufficient for each type of atom. 

Structure determination by numerical methods requires fairly powerful . 

calculation facilities; for example, consider a cubic structure with a unit-cell of 

4 A where it is required to know the positions of the atoms to 0.05 A. The 

electron density must be determined at (4/0.05)>=512000 points; if 750 

reflections are used, a Fourier series to 750 terms will have to be calculated for 

each point, giving a total of around 4x 10° values. 

rh) 

2 STRUCTURE REFINEMENT 

In refinement methods, the parameters of each atom (coordinates, thermal 

agitation factors) are varied so as to minimise the reliability factor: 

R=} ws(\FS"| — KFS") = > os. AFS 
S Ss 

@g is the weighting of each refraction spot of the reciprocal vector S and k is a 
scaling factor relating calculated and observed factors. 

O LEAST SQUARES METHOD 

R is a function of the N parameters x; (nine parameters per atom in the 
anisotropic thermal agitation model and four in the isotropic model): 

Rema oR X04 , ssi Mil 5 benseacigg) 

When the minimum value of R is reached, all the derivatives OR/Ox; are zero 
and: 

iN ahem 

Ox; 1 
0 

JAFs 
7 => 2 PsAlsel S| as. AFs. 

S 1 

Initial determination of the structure gives the approximate values x; of the 
parameters x;. We now seek the set of best values Ax;= X;—Xj. 

For the initial values we have: 
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k FE" | 

i 

OR 
#0 

To the first order we can write: 

OR i) Ok. FE" | 
rss 23a ss 

The best values of x; are solutions of the system of N linear equations (normal 
equations): 

LDS ng OFS T A|k.Fs”| ee 
Ou; id 3 Ou; 

Writing: 

tig OM FS"| lk. Fs". Olk.FS” 
= Ou; Ou; z Ou; 

‘the system of normal equations is then: oj. Ax;= yj. 

Solving this system requires the inverse matrix of « which is symmetrical: 

Ax; = (a); 

The operation is by no means a trivial one. Consider for example a structure 

with thirty atoms in the formula unit; in an anisotropic thermal agitation 

model there will be 30x9 parameters plus one more (the value of k). The 

matrix of rank 271 contains 271 x 35 = 36 585 different terms, and each term is 

the sum of several hundred elements! 
To simplify the problem, we note that each element in the matrix «; is the 

sum of the product of partial derivatives whose signs are random. If i is 

different from /, the sum will a priori be small. On the other hand, if i=/, all the 

products will be positive and it will then be possible to ignore all but the terms 

on the main diagonal of the matrix; this will very substantially simplify the 

calculations. This method becomes invalid if there are interactions between the 
elements of the matrix; there is, necessarily, coupling between the values of the 

coordinates and the thermal agitation parameters of a given atom and hence a 

middle path is usually adopted between calculation of the full matrix and use of 
the diagonal least mean squares approximation. 

With terms relating to a single atom, 9 x9 or 4x 4 blocks are constructed 

(depending on the thermal agitation model used). These blocks are spread 
along the main diagonal; the other elements are assumed to be zero in this 
block diaggnal approximation. To take into account interactions between 
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atoms (in the case of molecules), larger blocks can be used. In this way, there 

are far fewer terms to calculate; furthermore, specific methods for the inversion 

of this type of matrix are available. 

Recently new algorithms using fast Fourier transform (FF T) methods have 

been developed and successfully used to reduce the calculation time. 

O STRUCTURE DETERMINATION PROGRAMS 

There are available today complete systems for structure determination. With 

this modular software, the initial structure is obtained and then refined. A 

survey of articles in Acta Crystallographica shows that the most widely used 

among them are SHELX (for one third of all structures), OAK RIDGE 

Program (one third) and XRAY (one sixth). The first versions of these 

programs were developed in the late sixties and they are now constantly 

updated to keep pace with theoretical and technological progress. 

O THE PROGRAM SHELX 

This was developed by the Sheldrick team and can be used in computers of 

modest size, which explains its popularity. 

It has two modules: SHELXS for structure solving and SHELXL for 

refinement. Each module has about 6000 lines of Fortran code. 

The SHELLXS module calculates normalised structure factors E,, performs 

the Patterson interpretation and uses direct methods of structure calculation. 

The structure factors of all the elements (but not ions) are stored internally. 

From the name of the group the program checks the symmetry data entered by 

the user. Because of the presence of symmetry elements, the reciprocal domain 

being studied will have equivalent spots; the experimental data are surveyed to 

enable a set of independent reflections to be selected. 

The module SHELXL automatically takes account of the constraints on the 

values of the parameters Uj imposed by the symmetry; it offers the choice 

between the ‘full matrix’ method and the ‘block cascade’ method; it also takes 

account of the fact that the crystal used for recording the intensities may be 

twinned. There is now a PC version of the program. 

As an illustration, here is an example of a data file used by the program. The 

crystal was NaCaCrF6, and was twinned. 

The commentaries are in italics; the sign = indicates line continuation. 

TITL NACACRF6 STOE 

CELL 0.70926 9.103°9.103 5.120 90. 90. 120.4, a, b, c, a, B, y 

ZERR 3 0.002 0.002 0.0015000 standard deviations 

LATT sal 

SYMM =o ae Sos es 

SYMM Ne rs 

Centrosymmetric 

Symmetry elements 
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SYMM NAO Sh 

_SYMM -X,Y-X,-Z 
SYMM X-Y,-Y,-Z Calculating Fhk] values (ions) 

SFAC NA 3.2565,2 16671, 3.9362,6.1153,1.3998, 0.2001, 1.0032),.14.039 = 

0.4040; 0°. 0310),0.50257112'-2,1-.02 22.9898 

SFAC CA 15.6348 -0.00740 7.9518 0.6089 8.4372 10.3116 0.8537 = 

25.9905 -14.875 0.203 0.306 1264 1.00 40.08 

SFAC CR 9.6809,5.59463,7.81136,0.334393,2.87603,12.8288 = 

OL 113575, 3258760, 06518275, 0.284 ,0'.624,2526,0.615 51.996 

SFAC FS. 632; De20 DO, S.50057 , 4. 1353 ,L 20064, 0.442258, 0:940706 = 

47.3437,0.653396,0.014,0.010,49.99,1.30 18.9984 

UNIT B25 NSS 

i. .S'. 5 

ACTA 

TWIN TAO: Ht 10, OFONOMIS2 Twin (type and number) 

WGHT -010300 0.0190 

EXTI 
_BASF 
_FVAR 
CA 

0 

0.106090 

0.43138 Twin coefficient 

0.68620 Initial data 

2 0.62946 10.00000 10.00000 10.50000 0.01004 0.01103 

0.00860 0.00009 0.00005 0.00552 

1 0.28859 10.00000 10.50000 10.50000 0.01411 0.01311 = 

0.01390 0.00234 0.00117 0.00656 

3 10.00000 10.00000 10.00000 10.16667 0.00833 0.00833 = 

0.01082 0.00000 0.00000 0.00417 

CR2 3 10.33333 10.66667 0.50089 10.33333 0.00820 0.00820 = 

0 

4 

0 

4 

0 

4 

0 

0 

4 

NA 

-CR1 

-00858 0.00000 0.00000 0.00410 

0.53017 0.77857 0.28599 11.00000 0.01302 0.01893 

.01698 0.00886 0.00501 0.00752 

0.79857 0.91159 0.79549 11.00000 0.01293 0.01914 

.01748 -0.00898 -0.00471 0.00870 

Fl 

F2 I 

F3 

-13689 0.55037 0.71597 11.00000 0.01223 0.01524 = 

-01684 -0.00214 0.00509 0.00470 

HKLF Read intensity file 

END 

After refinement (4709 reflections analysed of which 1778 were independent), 

the following results were obtained (the program also calculates all the 

interatomic distances and bond angles): 

NACACRF6 

ATOM x y Zz U11 U22 U33 U23 U13 U12 

Ca 0.62947 0.00000 0.00000 0.01004 0.01107 0.00862 0.00013 0.00007 0.00553 

0.00002 0.00000 0.00000 0.00005 0.00007 0.00006 0.00010 0.00005 0.00004 

Na 0.28863 0.00000 0.50000 0.01420 0.01327 0.01385 0.00237 0.00119 0.00664 

0.00006 0.00000 0.00000 0.00014 0.00020 0.00019 0.00041 0.00020 0.00010 
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Cr1l 0.00000 0.00000 0.00000 0.00835 0.00835 0.01084 0.00000 0.00000 0.00418 

0.00000 0.00000 0.00000 0.00006 0.00006 0.00009 0.00000 0.00000 0.00003 

Cr2 0.33333 0.66667 0.50093 0.00821 0.00821 0.00862 0.00000 0.00000 0.00410 

0.00000 0.00000 0.00007 0.00004 0.00004 0.00006 0.00000 0.00000 0.00002 

Ba 0.53017 0.77859 0.28619 0.01295 0.01877 0.01719 0.00892 0.00499 0.00745 

0.00009 0.00010 0.00013 0.00024 0.00027 0.00020 0.00024 0.00022 0.00023 

H2 0.79854 0.91157 0.79552 0.01287 0.01906 0.01748 -.00891 -.00471 0.00860 

0.00009 0.00009 0.00011 0.00023 0.00032 0.00019 0.00026 0.00022 0.00023 

* 

E3 0.13687 0.55036 0.71599 0.01229 0.01524 0.01693 -.00219 0.00513 0.00471 

0.00008 0.00008 0.00012 0.00023 0.00030 0.00021 0.00021 0.00019 0.00021 

R1 = 0.0148 for 1767 Fo > 4.sigma(Fo) and 0.0150 for all 1778 data 

wR2 = 0.0348, GooF = S=1.109, Restrained GooF = 1.109 for all data 

In spite of these powerful programs, structure determination is still an art 

requiring experience and a critical mind. 

3 EXAMPLES OF SIMPLE PROGRAMS 

3.1 Diffraction Pattern Synthesis 

It is relatively simple to determine the position of diffraction spots for a known 

crystal structure; the calculation of intensities on the other hand requires many 

more calculations: structure factors, and thermal agitation, Lorentz and 

adsorption corrections. 

These pattern synthesis programs are mainly for teaching purposes, but 

there do exist commercial programs which, from a single Laue photograph, 

enable calculation of the angle through which the crystal must be turned for a 

given direction to be parallel to the beam; such programs are extremely time- 

saving when setting up the crystal. 

Diffraction pattern synthesis for rotating crystal methods is also possible. As 

an example we give the flow diagram for calculating the spectrum of a rotating 
crystal in a Bragg camera with complete rotations. For partial rotations or 

Weissenberg photographs, the programming is rather more tricky since the 

moment must be determined at which the reciprocal nodes penetrate the Ewald 
sphere. 
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Cylindrical film rotation method 

Input Data 

a, b,c, o, B, y, X 

At BE Ct Ge pe. 
Hmax = 2/(A*.2) ... 

= 

Select reflection 

conditions 

Input rotation 
axis [U V W] 

[Compute UV'W' inRI 

rian nuvw, Duvw | 

H =-— Hmax 

pide bee S=0 | 

YY = S*Duvw 

Compute Y w= ArcSin(A* YY) 

fs Y=R*tan y 
=— Lmax 

Possible reflection 

Yes 

ie > RL 
Nhkl 
dhkl = 1/Nhk1 
@ = AreSin(A/2d) 
C = ArcCos(Cos20/cosy) 

X=R*C 

Plot X, Y 

Figure 18.1 

283 
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3.2 Stereographic Projections 

Plotting a stereographic projection by classical drawing methods is a long 

operation requiring care and method even for an experienced operator. These 

projections can be calculated and either drawn on paper or displayed on a 

monitor. 

In what follows, we assume that the crystal is oriented such that the base 
vectors i and j in the international frame are contained in the plane of the 

stereographic projection. The projections will then be such that the crystal 

symmetry elements are in agreement with the conventions of the International 

Tables. 

O PLOTTING A POLE WHEN y AND p ARE KNOWN 

We wish to determine the coordinates x and y, in the plane of the projection, of 
the point p, the projection of the pole of the face, in terms of the angles y and p 
of the pole. The axis Ox is at the origin of the azimuths. 

: Given that SOp and SPN are similar triangles, 
(ee on ey \ we have: / | 

les bs i? eoelal se _ SO.PN 
oO SS \ i] Op = 

~ / SP 

_ oD / PN = 2R sin p/2, SP = 2R cos p/2. 
a ie Op = R tan p/2. Hence : 
Sees x =R cos y.tan p/2 

Figure 18.b y=R sin ¢.tan p/2 

O PLOTTING A POLE OF INDICES h, k AND / 

Except in the case of cubic crystals, the parameters of the direct and reciprocal 
lattices must be known. The coordinates xo, yo and zo of the pole (A k /) in the 
international frame are then sought. Let P be the pole of the face (h k J); this 
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will be the intersection of the normal to the face, OP, with the projection 

-sphere. OP is collinear with the vector Nj, of the reciprocal lattice: 

OP = 1.(h.A* + k.B* + 1.C*) 

| OP I= R= A. || Naxz ll 
R 

V/N.N 

Hence in the international frame (refer back to the section) the coordinates 

are: 

Xo = AHA*sin B* sin y) 

Yo = A(—hA*sin B* cos y + k.B sin a*) 

Zy = A(hA*cos B* + kB* cos a* +1C*) 

from which we deduce y and p where: tan y = = COs p= 3 
0 

© PLOTTING A ZONE CIRCLE 

Let (h; k; 1) and (hp kp ly) be the two planes of the poles p; and p2 through 

which we wish to pass a zone circle. The stages in the construction are as 

follows: 

a) Determine the zone axis [uw v w] of (ty ky 1) — (Az ka b). 

This is a direct row where: 

u= k,.L —_ 1, ky 

v= L, Ay — hy .L 

w= h, .k, = hy.k, 

The row is collinear with the direct lattice vector OQ. 

The coordinates of Q in the international frame are x’, y’ and z’. 
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b) Calculate the angles y and p of 

the zone axis where: 

y = arctan (y'/x’) 

p'= arccos (z /R). 

c) Calculate the angles yyy and py 

of the point M which is the 
intersection of the zone circle with 

OQ. 

d) Calculate the coordinates xy 

Figure 18.c and yy of the point M. 

e) Calculate the radius of the zone circle Rj = R/sin py. 
f) Calculate the coordinates X and Y of the centre C of the circle. 

X=xXy —-R, sin Yu Y= Vy Ri COS Ym 

g) Draw the arc AB of the great zone circle, inside the projection circle. This 

arc, with centre at (Y, Y) has a radius Rj, starts at the point B defined by the 

angle (yy — Py) and subtends an angle 2py. 

3.3 Representation of a Structure 

O GENERATING THE ATOMS 

We take the reduced coordinates of the atoms of the formula unit and the 
homogeneous matrices of the space group to which the structure belongs, and 

by successive application of these we generate all the equivalent positions. Any 
non-integral translations related to the lattice mode are added to these. Next, 

whole lattice translations are applied to generate all of the atoms contained in 

the volume in question. This method leads to ‘doubletons’ which must be 

identified and eliminated. The coordinates of the atoms are then calculated in 
an orthonormal frame. 

To show the threefold and sixfold symmetries of trigonal and hexagonal 

structures, two extra unit-cells can be generated from the initial unit-cells, by 
using the following relations: 
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MHVrx YWH-X B4=2 
Xy=—y yn =X—-y Z2=2Z 

O PRINCIPLE OF THE PROJECTION METHOD 

The positions of the atoms are calculated in an orthonormal frame (O, x, y, zy. 
To observe the structure from different angles, the observer is moved. 

The viewing direction is defined 

by the angles @ and y. 

The structure is projected onto a 

normal plane (a window screen) to 

the right of the viewing direction. 

x a The distance of the plane from 

: ¢ ve the origin is determined so as to fill 

Figure 18.d as much of the screen as possible. 

If the direction of observation is a row [{u v w], the angles y and @ are 

deduced from the scalar products (va+ub+we).(ua+ vb) and (vat vb).(ua). 

In the frame of the plane of projection, the coordinates Y, Y and Z of an 

atom situated at x, y, z are: 

X = —x sin@+ycos@ 

Y=x cos @.siny — y sin é.siny + z cosy 

Z =x cos@.cosy+y sin é.cosy~ +z sing 

The coordinate Z is inverted. Once the calculations have been made, the atoms 

are sorted according to the value of Z. To draw the projection, we begin with 

the atoms furthest from the observer; these will be progressively hidden by 

nearer atoms, giving a simple and effective method (the Z-buffer method) of 

handling the hidden parts. 

Hidden zone elimination of coordination polyhedra and bonds is much more 

difficult, requiring complex algorithms which need considerable computing 

power. 
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Exercises 

LATTICES AND MILLER INDICES 

-1—A small crystal of barytine (orthorhombic) was measured with a two-circle 

goniometer. The angles between the normals to the faces were as follows: 

(110)(010) = 48°47’ (001)-(0) = 36°32’ 
(001)-(111) =63°26' (001)-(p) = 20°51’ 
(001)-(m) = 56°30’ (001)-(q) = 52°44’ 

Calculate the ratios a/b, b/c and c/a. 

. State the indices of the faces p, 0, m and q. 

2—Construct the stereographic projection of a rhombododecahedron (cubic 

system), given that the angles of azimuth and inclination are as follows: 

Faces a b c d e 

y 0° 45° 90° SES” 0° 
p 45° 90° 45° 90° ii" 
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Az .—Indicate all the symmetry elements on 

Fo this projection. 
eo \ a —Calculate the angle between faces a and 

7 a ae \ . band between b and d. 
ve Pe —Determine the indices of the edges 

Be en es Mb ad between faces a and b and between 

roi . Pee digit faces b and c. Deduce from these the . 

wee ee value of a. 

3—Consider a crystal of lead chloride, PbCl). It is in the mmm class. The 

indices of faces b and c are respectively (010) and (001). 

The angles of azimuth and inclination are: 

Faces b c d e f g 

yp 90° = 30.72° 30.72° 90° 90° 
p 90° 0° 66.76° 49.34° 6f.2F° 30.735> 

Given that face d is a (111) face, determine the values of the ratios a/b, c/a and 
b/c and determine the indices of the faces e, f and g. 

4—In a crystal lattice, can there be a row [wvw] normal to a plane (hk/)? Make 

a general survey and then examine the following particular cases: 

—cubic lattice, 

—tetragonal lattice, 

—monoclinic lattice. 

5—Express the base vectors A*, B* and C* of a reciprocal monoclinic lattice in 

terms of the values of a, b, c and f in the direct lattice. 

6—For a monoclinic crystal with angle B=94°12’, the following row 

parameters were determined by X-ray diffraction: 

[100]=5.81A [010]=8.23A [001]=6.11 A. 
[110]=5.04A [011]=10.3A [101]=8.76A. 

What type of lattice has the crystal? 
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7—Show that in a cubic crystal the row [110] is normal to the plane (110). 

Show that this plane contains the rows [001], and [110] and [111]. Calculate 

the angle between [001] and [111] and that between [111] and [110]. Determine 
the angle between an Ay axis and an Aj axis, and then the angle between two 

A> axes. 

8—In a hexagonal crystal the parameters of the rows [101]=6.16 A and 

[110]=6. 22 A were measured by diffraction. Calculate the ratio c/a. 

9—Show that the rows [211], [120], [142] are coplanar. Does the lattice type 

have to be taken into account? What are the Miller indices of the plane 

containing these rows? 

10—Calculate the spacing between the planes (321) and (123) of a tetragonal 

- lattice, then of a hexagonal lattice, when a=4A and c=6A. 

11—Exercise on transforming Miller indices with change of frame: 

The primitive unit-cell (C) of a face-centred cubic lattice (F) is actually a 

rhombohedral cell (R) with «=60°. Any rhombohedral unit-cell can be 

~ represented by a multiple hexagonal unit-cell (H). 

ay = by — CR 

by = Cr — ap 

Cy = ap + by + CR 

pop ete the transformation matrices R = (C > R), H=(R — H) and 

=(C—> H). 

en the multiplicity of the cells R, C and H. 

—Give the Miller indices in the lattice R of a plane indexed (111) in C, and 

then those of a plane with indices (345). 

—Repeat the previous exercise for the lattice H. 
—Give the indices in C of a row indexed [001] in H, then those of a row 

indexed [135]. 

12—Calcite, CaCO, crystallises in the trigonal (rhombohedral) system. he 

primitive unit cell has the parameters a=6. 36A and «= 46°10’. The crystals 

cleave into rhombohedra whose edges define a multiple unit-cell with 

parameters a’ and a’ where: . 

a’ =3a—b-ce 
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—Determine the multiplicity of the cleavage cell. 

—Calculate a’ = f(a, «), and then a’ = g(a,a). 

—Give the Miller indices of the faces of the cleavage rhombohedron in the 

initial frame. 

13—Using spherical trigonometry, calculate the volume of the cell constructed 

on the base vectors a, b and c. 

14—The pentagontrioctahedron 

Consider the general form {321} of the cubic class 432; the corresponding 

polyhedron is a pentagontrioctahedron; two enantiomorphs (right- and left- 

handed) exist. 

—Complete the indexing of the stereographic projection. 

—Show that one of the edges of face a is parallel to a threefold axis. 

—Determine the indices of the edges of face a and calculate the angles between 

the faces. 

—Assuming all the faces have the same development, show that there exists a 

simple geometrical relation between certain edges. 

1 . F < 
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15—The characteristic angles of the icosahedral point groups 

The regular icosahedron, in which the twenty faces are equilateral triangles, 
belongs to the 53m point group. The symmetry elements of this non- 
crystallographic group are: 6 A5, 10 A3, 15 A2, 15M and 1C. 

Build a model of the solid and use it to identify the symmetry elements. 



Exercises 

aad 

295 

The following method can be 

used to determine the character- 

istic angles of this point group: 
A projection is constructed of the 

icosahedron on the xOy plane (Ox, 

Oy and Oz are the twofold axes). 

Given that the side of a pentagon is 

related to the radius R of its circum- 

scribed circle by the equation: 

a= 5/10 -2v5 

calculate the angles between the 

twofold and fivefold axes, the 

threefold and fivefold axes and 

the twofold and threefold axes. 

Using a Wulff net, construct the stereographic projection of the point group 

and 53m of the icosahedron. 

STEREOGRAPHIC PROJECTIONS 

1—A crystal of iodic acid, HIO3, was measured using a two-circle goniometer. 

The following results were obtained: 

Faces a b c d f g h i 

y OF 93 2D S80 322 2226-4173 22 B16 41 316.4 4624 17 
p 90° x 290° 90° - A90°. 52°48’ 43°51’ 54°25’) 34°57’ 52°48’ 

Faces j k ] m p q r S 

7) 93°22’ 136°41’ 136°41’ 46°41’ 226°41’ 136°41’ 316°41’ 180° 0° 
p AES SIG BYES DIO AEE srs IDs Sisy ISTO! ISP 

Construct the stereogram of the crystal. Indicate the symmetry elements and 

determine the class for iodic acid. X-ray diffraction gives the indices (110), 

(110) and (401) respectively to the faces a, d and g. 
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Determine the values of the ratios bla, c/b and c/a and then index all the 

faces. 

2—Measurements on a crystal of barium bromate with a two-circle goniometer 

gave the following results: 

Faces a b c d e id g h 

y 0° AS? SO0aP 73°45" L06tS SBI 10S 180s Ta228{500S ssa 
p 90° 90° 90° 90° 90° 90° 90° 90° 

Faces 1 j k | m n oO p 

Y 28015. S110 180° 0° 30°21. .329°39  149°39 21 
p 90° 90° S305" 45°12 S6TLAs oO GPP 430 1259354 36 e. 

Construct the stereogram of the crystal. Indicate the symmetry elements and 

determine the class for barium bromate (faces with p > 120° are invisible). The 

faces f and k are given the indices (100) and (001); place the hypothetical face 

(010). Determine the angles a, 6 and y. If the indices of | and m are (101) and 

(211), determine the ratio c/a and then index all the faces. 

3—The unit-cell parameters for topaz (class mmm) are: 

a=4.65A b=880A c=840A; a=fR=y=7/2. 

Consider a crystal having the associated forms {001}, {101}, {111}, {110}, 
{120}, {011}, {021} and {112}. For each form, calculate the angles y and p and 
construct the stereographic projection of the crystal. 

4—Show that if two faces (pqr) and (xyz) are in a zone, the face (hk | ), where 
h=p+x,k=q+ty and /=r+z, belongs to the same zone. 

APPLICATION: Using this relation together with the zones drawn on the 
stereogram, complete the indexing of the following trigonal stereographic 
projection in Miller coordinates. 
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-A crystal in the class 4 mm (tetragonal holohedron) exhibits a set of associated 

forms. From measurements with a two-circle goniometer the following angles 

y (azimuth) and p (inclination) of the five faces were made: 

Faces hkl indices y p 

p (001) st 0° 
q ‘ On 68°18" 
r ¢ 0° oh tee y 
s ? 45° 74°17' 
t ? 45° 60°38’ 

1—Construct the stereographic projection of the crystal. 

2—From a number of possibilities for the Miller indices of the face q, two have 
been selected: 

hypothesis a: q = (111). 

hypothesis b: q = (011). 

For each hypothesis, calculate the ratio c/a and determine the indices of the 
faces r, s and t. 
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3—Assuming that the crystal lattice is type P, that q is the face (011) and that 

the parameter a is equal to 3.777 A, determine the indices and the parameter of 

the row [wow] parallel to the edge between faces q and t. 

4—We wish to construct the reciprocal lattice planes (hk/)* normal to the row 

[uvw] above. 

—Establish a relation between the indices of the nodes in the plane (hk/)* 

which passes through the origin, and the indices of nodes in the next higher 

(hkl)* plane. 

—Construct the plane (hk/)* which passes through the origin (o* = 5 x 10-* cm’). 

— Position the projection of the next higher plane (Ak/)* on this plane. 

SYMMETRY AND SPACE GROUPS 

1—The product of symmetry elements. 

Perform the following multiplications: 

a: Two intersecting twofold axes at an angle a. 

b: Two intersecting mirror planes at an angle a. 
c: A twofold axis and a mirror plane whose normal makes an angle « with 
the axis. 

d: We assume that the intersections of the symmetry in the three cases above 
are also centres of inversion. 

Determine the resultant overall symmetry for « = 90°, 60°, 45° and 30°, and 
construct the sixteen corresponding stereographic projections. 

2—Miultiply the one-, two-, three-, four-and sixfold axes by the inversion 
element and indicate the resulting symmetries. 

3—Working in an orthonormal frame Ox, Oy, Oz: 

a: Show that the rotation matrix: 

reo 
001 
010 

represents a rotation through 2/2 about the Ox axis. 
b: Using analogous matrices, show that the existence of two fourfold axes 
implies the existence of four threefold axes, and state their orientation. 
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c: Show that the inverse of the above implication is false. What does the 
presence of four threefold axes oriented as in question b imply? 

d: Obtain the product of a fourfold axes oriented along [001] and a threefold 

axis along [111]. 

4—Multiply a rotation C,, (n = 2, 3, 4, 6) by a translation t normal to the axis. 

5—Multiplication of symmetry operators 

The following notation is used for symmetry operators: 

Pure translation > (E|t). Pure rotation > (C,|0). 

Rotation followed by translation > (C,|t). 

-A mirror plane (010) normal to Ox is denoted o,, a rotation through z about an 

~ axis || to Ox is denoted C2,, and so on. 

In a tetragonal frame, a (110) mirror plane is denoted o,, or 045. 

Perform the following multiplications: 

(C2,| 0).(C2,| 0) (c,| 0).(0,| 0) 
(c,| 0). 0) (C2,| 0).(| 0) 

(C4,| 0).(C2,| 0) (C2,| 0).(C4,| 0) 

(C6,| 0).(C2,| 0) (C2,| 0).(C6,| 0) 

(60| 0).(,.| 0) (430| 0).(@,| 0) 

Perform the following multiplications in an orthorhombic lattice by seeking 

those displacements from the origin which reduce to a minimum the translation 

parts: 

(C2,|0)(E| 1/2(a+b)) — (o,| 0).(B| 1/2(a + b)) 
(g,| 0).(E| 1/2(a + b)) (o,| 0).(0,| 1/2(b + ©) 
(c,| 1/2(a + b).(c,| 1/2)(b + ¢)). 

Repeat the above exercise for a tetragonal lattice: 

(C4,| 0).(E| a) (C2,| 0).(E| a 
(C2,,| 0).(E| a). 

(C4!) 0).(E| 1/2(a +b + ¢)) (C42 0).(E| 1/2(a + b + ¢)) 

(C2,| 0).(E| 1/2)a +b + ¢)) (C2,,,| 0).(E| 1/2(a + b + ¢)) 

(c,,| 0).(E| 1/2(a +b + ¢)) (o,,| 0).(E| 1/2(a + b + ¢)) 

(g,| 0).(E| 1/2(a+b+c)). 
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6—Determine all the space groups derived from the class m. 

7—Does the group Pmbm exist? 

8—Explain the apparent contradiction between the two diagrams below: 

2) axis Mirror plane b 

9—Group Cmc?; 

State to which point group this group belongs and draw the stereographic 

projection of the symmetry elements on (001). 

Deduce from this the number of general positions for the group. 

Complete the projection of the given group below. 

(m => mirror plane m L to Ox; c > mirror plane c L to Oy; 2; => 2) axis // to 

Oz at O) 
Determine the coordinates of the general positions equivalent to x, y, z. 

Indicate the positions of a few special coordinates. 

Determine the conditions for systematic absences in the group. 

oe Sot aa ee SEs eee Reser 

g 

“90 

10—Group Amm2 

Do the same exercises as for the group Cmc2). 
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11—Consider a p-fold axis, normal to O in the plane of the figure. 

- Show that a rotation R(O,6) through 27/p about O, followed by a translation t 

perpendicular to the rotation axis is equivalent to a rotation R(I,6). 

OO 

OG 

HINT: Take the axis Ox parallel to t and use the rotation matrix: 

cos@ —sin@ 

sin 0 cos 0 

and then determine the coordinates of the point I in the plane xOy. 

APPLICATION: Study of group I4. 

With which three lattice translations can this group be generated? 

Using the theorem above, state the symmetry elements obtained when a 

- fourfold rotation is combined with the lattice translations. 

NOTE: fourfold axis = {R(O, 2/2); R(O, 2); R(O, 32/2); Identity}. 

- Draw the projection of the group symmetry elements on (001) and indicate 

the equivalent positions. 

12—Construct the group I4;/a. 

13—Show that a tetragonal C lattice is equivalent to a tetragonal P lattice. 

—Show that a monoclinic F lattice is equivalent to a monoclinic C lattice. 

—Show that a hypothetical hexagonal F lattice is actually an orthorhombic I 

lattice. 

14 Write the matrix for rotation about Oz in a hexagonal lattice. 

STRUCTURE FACTORS 

1—Diamond crystallises in the cubic F (face centred) system with eight TOES) 

per unit-cell (0, 0, 0) and (1/4, 1/4, 1/4) + face centred translations. 

State the fractional coordinates of the eight atoms in the cell. 

_ Determine the values of / for which the reflections (hhh) have a systematic 

absence. ~« 



302 Basic Crystallography 

2—The alloy Fe3Al exists in three forms: 

A phase; Cubic cell of side a. Occupied sites: (0, 0, 0) and (1/2, 1/2, 1/2). The 

iron and aluminium atoms are distributed randomly between the two sites. 

B phase: Cubic cell of side a. The (0, 0, 0) sites are all occupied by iron; the 

(1/2, 1/2, 1/2) sites are occupied randomly by iron or aluminium. 

C phase: Cubic cell of side 2a. The sites occupied by iron atoms are: 

(0,0,0), (C172, 1/2, 0) C172, 020) (0, 1/2,0) (1/4, 3/4, 1/4) ( 3/4, 1/4, 1/4) 

(0, 0, 1/2) (1/2, 1/2, 1/2) (1/2, 0, 1/2) (0, 1/2, 1/2) (1/4, 1/4, 3/4) ( 3/4, 3/4, 3/4) 

Those occupied by aluminium atoms are: 

(1/4, 1/4, 1/4 ) (3/4, 3/4, 1/4) (1/4, 1/4, 3/4) (1/4, 3/4, 3/4). 

—What are the Bravais lattices for each phase? 

—If the atomic scattering factors for iron and aluminium are ff. and fa}, what 

atomic scattering factor must be attributed to the sites occupied randomly in 

phases A and B? 

—Diffraction experiments are carried out on the three phases using the same 

apparatus. Give the theoretical interpretation of the spectra and present the 

results in the form of a table in the rows of which are indicated the line 

indices and the structure factors for each phase. In a given row, enter the 

lines corresponding to a given diffraction angle. Complete the table up to 

line (111) of phase A. Draw conclusions. 

POWDER DIFFRACTION PATTERNS 

1—The interplanar spacing djx; obtained from a Debye-Scherrer photograph 
are as follows (values in A): 

S.28> 313" 28221 O85 Sl Aee eo, SG. eo 

Show that this pattern corresponds to a mixture of two face centred cubic 
species. One of the species has extra systematic absences compared with the F 
lattice. The series of spacings associated with this species could be considered 
as those of a P lattice; however, index them in an F lattice. Given these 
assumptions, determine the parameter of each species and index all the lines. 
We assume that the chemical formulae of the two species are AB and AC. By 

making a simple assumption on the values of the atomic scattering factors fa 
and fc, explain the extra systematic absences shown by compound AC. 

2—Barium titanate, BaTiO3, is cubic above 120°C with a parameter 
a, =4.01A. At room temperature it is tetragonal with ag =3.99A and 
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cz = 4.03 A. Show that the powder photograph of the f phase has lines at 

about the same angles as for the « phase but that certain lines are doublets or 

triplets. Under what conditions will an hk/ line remain single? 

3—From a JCPDS file have been extracted the intensities for four cubic 

compounds. For each compound deduce the unit-cell parameter, the indices of 

~ the lines and the type of lattice. 

Barium (Ba) CsCl Diamond Copper 

DiAdord leeeikini Di Aiedisrthklons DIAA 5 dw chkbvuoDiAcw Ly ohkel 

35) 100 412 45 2.06 100 2.088 100 
D3 20 2917 “100 1.261 25 1.808 46 
2.051 40 Al) eo Nt} 1.0754 16 1278)" 20 
1.776 18 2.0627 “17 0.8916 8 1.090 17 
1.590 12 1.844 14 0.8182 16 1.0436 5 
1.451 6 1683) 925 0.9038 3 
1.343 14 1.457 6 0.8293 9 
1.1852 6 1.374 5 0.8083 8 
1.1236 4 1.304 8 

4—From a JCPDS file have been extracted the lists of d,,; values and intensities 

for four cubic compounds. For each compound deduce the unit-cell parameter, 

the indices of the lines and the type of lattice. 

O For NaCl and KCI explain the low intensity of the lines whose three 

indices are all odd. Why is the phenomenon more pronounced with KCl? 

0 For « iron, state why there are not enough data to be able to draw 

unambiguous conclusions. 

0 Forsilicon, explain why there are absences in addition to those induced by 

the lattice mode. 

% iron NaCl KCl Si 

DA Tf (kK DIA F bl D/A woh stl wide baal 

2.0268 100 3.26 13 3.633 1 3.1355 100 

1.4332 20 2.821 100 3.146 100 O20 18S 

1.1702 30 1.994 55 DD Set G35 530 

1.0134 10 1.701 , Lass Sl Vass 26 

0.9064 12 1.628 15 1.8169 10 1.2459 11 

0.8275 6 1.410 6 1.5730 5 1.1086 12 
1.294 1 1.4071 9 1.0452 6 
1.261 11 1.2839 5 0.9600 3 
E1545 7 LI 1 1 0.9180 7 
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5—Time-of-flight method 

Packets of neutrons are produced by periodic bombardment (f= 24 Hz) of a 

heavy element target. This bombardment, of typical duration 0.4 ws, produces a 

large number of neutrons (25 n for 1 p) by spallation of the target. The 

neutrons produced have too high an energy to use directly in diffraction 

experiments and they are slowed down by a moderator. 

The resulting neutrons, produced at the same original time, have different — 

energies and hence speeds (a continuous range of speeds is observed) and can 

be used for fixed angle diffraction. Using the de Bréglie relation, show that if 

the neutrons have different speeds, they will have different wavelengths J. 

Using the Bragg equation with a fixed angle 6), show that there exists a relation 

between the time of flight t of the neutrons between the source and the detector 

through the specimen (distance L) and the interplanar spacing dj; of the 

diffracting layers. State the relation between t (ms), L (m) and dyx; (A). 

Given that h=6.62x10-™ Js and m, =1.675x10~7/ kg, which layers are 

the first to diffract? 

The spectrum of a cubic substance was recorded at the ‘Argonne National 

Laboratory’ with Lsin 0) = 13.94m. The last six diffraction peaks emerged at 

the following times f: 

Peak t/ms drial A Akl 

13.503 
ESS 
9.549 
8.760 
7.796 
(Te350 RePNWABUAD 

Complete the table and deduce the unit-cell parameter of the substance. 

Structure Analysis: Rutile, TiO, 

The space group is P4,/mnm (a=4.594A, c=—2.958A and z= 2): “The 
fractional coordinates are: 

Ti: 0/0,0 £1253 

Or se (x, x, Os 1/2 2 7 Oe) (X%=0;305)., 

Draw a projection of the structure on (001) and determine the coordination 
of the atoms. Show that there are two types of Ti—O bond and three types of 
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~O—O bond and calculate their lengths. Draw a projection of the structure on 

(110), taking several unit-cells along Oz. Deduce from this a model for the 

structure. 

Calcium Titanate (CaTiO3) 

CaTiO3 occurs naturally as the mineral perovskite; it crystallises in the group 

Pcmn (standard name: Pnma), with: 

a=5.37A, b=7.63A, c=5.44A, 2=4. 

The coordinates of the atoms are: 

Ti (site 4a): 1/2 , 0,0. Ca (site 4c): 0, 1/4 , 0.03. 

Ol (site 4c): 1/2 — 0.037, 1/4, —0.018. 

O2 (site 8d): 1/4 —0.018, —0.026, 1/4 —0.018. 

Draw a projection on (010) and show that the structure can be described by a 

pseudo-cubic unit-cell with a=c~3.82A, b3.82A, B ~ 90°. 

Determine the transformation matrix. 

State how the structure differs from that of an ideal perovskite. 



Problems 

Cuprite, Cu,O, crystallises in the cubic m3m class. Draw the stereographic 

projection of the point group, indicating the positions of the poles of the faces 

for the forms {100} (cube) and {111} (octahedron). 

On a powder photograph the following lattice spacings were measured 

(values in A): 

3.020; 2.465; 2.135; 1.743; 1.510; 1.287; 1.233; 

— From these measurements, deduce the cell parameter, the indices of the 

lines and the lattice mode. 

The fractional coordinates of the atoms are: 

1 ma 
NO ’ N)- 

— Draw the stereographic projection of the structure on (001) and indicate 
the positions of the symmetry elements; deduce the space group from this. 

— Using the structure factor, indicate the h, k and / values for which there 
are systematic extinctions. 

— The diffraction pattern of a crystal rotating about [110] is obtained using 
a camera with a circumference of 360mm and a copper target 
(ka = 1.5402 A). Calculate the spacing on the film between the layers 
K=2 and K = —2. What relation is there between the indices of the spots 
in layer K and those of the rotation layer? 

Using this relation, construct the reciprocal plane passing through the origin; 
state the scale used. 
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THE CUBIC-TRIGONAL TRANSITION 

1 Express the base vectors A*, B* and C* of the reciprocal lattice in terms of 
the base vectors a, b and ¢ of the direct lattice. The value of each reciprocal 

vector should be expressed in the form of the quotient of a vector product 

and a scalar triple product. We let o? = 1. 

2 The rhombohedral cell is characterised by: 

pa=y#~ = b = a lal] = [|b] = llell ao 5 

Show that the volume of this cell is equal to: 

V=avV1—3cos2« + 2cos?« 

A method of calculation is suggested in the following diagram. 

p={a,b+c} a= {a,b} 

ow = {b, b+} 

, 

3 Knowing that: 

(aA b).(¢ Ad) = 

ah (a.c).(b.d) — (a.d).(b.c) 

ee and using the results of ques- 

: tions 1 and 2, show that in a 
trigonal lattice: 

1 W&+k +1) sin? «+ 2(hk + kl + hl).(cos” « — cos a) 

Cs a2(1 + 2cos « — 3cos? a) 

4 Since calculations in a trigonal cell are complex (see above), we generally 

work in the triple hexagonal cell containing the nodes whose fractional 

coordinates are: / 

Oates 2) Sl Bui uly use [3512/3 
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Using the projection of the two cells on 

(001), express the base vectors of the 

trigonal cell in terms of those of the 

hexagonal cell and vice versa. 

5 Certain compounds exhibit a cubic }- 

trigonal transition involving a stretching 

(or compressing) of the cubic cell along a 

threefold axis of the cube. 

The angle « of the rhombohedron obtained is close to 2/2 (a=2/2—8). 

By comparing the expressions for dj; values for the cubic and trigonal 

systems (see 3 above), show how the phase transition lifts the h, k and / 

degeneracy in the diffraction lines of a Debye—Scherrer photograph. In the 

expression for the dj; values in the trigonal phase, the approximations 

arising from the smallness of ¢ should be made. State how the cubic lines 

(111), (200) and (110) change during the cubic } trigonal transition. 

6 Application: Consider the compound PbLi, which is cubic (CsCl structure) 

above 214°C and trigonal at lower temperatures. 

At room temperature, a powder photograph is produced using a 360mm 

circumference camera and a copper anode (Ax,,= 1.540 A). The diameter of 

the first diffraction ring is 50.22 mm. Complete the table below, using the 

simplified expression for d),; in the calculations. (a~7/2). 

a=? a=? 

Arxi|A Taxi hkl 

? 100 100 
2.515 70 110 
2.493 70 110 

? 10 nA 
2.040 ? 117 
1.770 40 200 
1.590 50 24.0 
1.580 9 rth 

? 2 210 



Problems 309 

DETERMINATION OF THE SPACE GROUP OF NiO 

We wish to determine to which structural family (NaCl or ZnS) the compound 

NiO belongs. The diffraction angles and line intensities are given for the 

powder photograph of NiO obtained with a copper anode (wavelength 

_AkKaCu= 1.5402 A). Determine the values of d),; and index the lines. 

20 Intensities dn (A) hkl 

37.283 57 
43.279 100 
62.729 45 
75.265 14 
79.310 10 
94.887 4.5 

106.592 6.3 
110.636 14.9 
128.423 13.2 

Calculate the intensities of the reflections and compare the values with the 

experimental intensities; limit the exercise to the reflections (111), (200), (220), 

(311) and (222). 
The following expression for the atomic scattering factor of the atom k (A in 

A) should be used: 

AAO, 2) = Ay-exp(—a,.sin’ 0/1) + B,.exp(—b.sin’ 6/27) + C, 

Ax ak By by Cy 

Ni** 12.76 2.637 8.638 19.88 5.65 

— 4.758 7.831 3.637 30.05 1.594 

The diffracted intensity is given by: Iyj=m.L.P.F’nx where: 

m= the multiplicity of the reflection, 
L=1/sin? 6.cos 0, the Lorentz factor. 
P=(1+ cos? 26), the X-ray polarisation factor, 
Fix; the structure factor for the reflection (hk/) given by: 
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Fis = fe XP(—2jn.S.1;) 
k 

The atom positions are given in the following table: 

NaCl type ZnS type 

OF 0 0 0 0 0 0 

1 } 2 0 2 2 : 
PERE Se WA RT 

1 2 0 2 2 0 2 

Ni** 5 0 0 5 I f 

ne day Clee Bae onal aa 
bs acesliaaliactoe dua 
1 1 1 1 3 3 
2 2 2 4 4 4 

After adjusting the strongest reflection to 100 (multiply J;,; by a coefficient of 
proportionality k), fill in the table for the two types of structure proposed. 

NaCl Zns 

Akl Int 0 LP om fO {Ni Fis Tad en «= ge 

eal 
200 
220 
Sei 
D4 

Draw conclusions from the exercise. 
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OXIDES OF IRON 

_ Consider the three crystallised compounds A, B and C which are all oxides of 
iron. 

Compound A is cubic with a type F lattice, the unit-cell parameter a is 4.31 A 

_ and the density is 5.97 g/cm’. 

Compound B is also cubic with an F type lattice, the unit-cell parameter a is 

 8.37A and the density is 5.20 g/cm’. 

Compound C is trigonal, the triple hexagonal unit-cell has the parameters 

~a=5.03A and c=13.74A. Its density is 5.26 g/cm’. 

The atomic mass of iron is 55.85; that of oxygen is 16. 

— Calculate the volume of the unit-cell volume for each compound. 

—Deduce from this the chemical formulae of each compound and the 

number of formula units per cell. 

— Give the indices of the first three diffraction lines that would normally be 

observed on a powder photograph of compound A. Calculate the 

diffraction angles that would be obtained using a copper anode 

(xy = 1.54A). 
. —A rotating crystal photograph of compound A is obtained using a 360 mm 

diameter camera with an iron anode (Ax, = 1.98 A). The rotation row is 

[001]. Give the x and y coordinates of the spot (111) using the point of 

impact of the incident beam with the film as origin. 
-— Diffraction spots with all indices even are seen to be stronger than the 

other spots on the photograph. Propose a structure for compound A 

which takes account of this phenomenon. 

THE STRUCTURE OF KIO,F, 

The appearance of the crystals and measurements with a two-circle goniometer 

suggest the possibility of a unit-cell with orthogonal axes. Using a rotating 

crystal camera of diameter 180mm and a cobalt anode (Ax, = 1.7889 A), the 

following exposures are made: 

—a rotation about [001]; the distance between layers 2 and —2 is found to be 

27.05 + 0.09 mm. 

—a rotation about [001]; the distance between layers 2 and —2 is found to be, 

26.90 + 0.09 mm. 

The parameter b is 5.97 + 0.02 A. 

Determine a and c and indicate which crystal systems are possible. 
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When examined under a polarising microscope, the crystal is found to be 

biaxial. To which system does it belong? 

Its density is 3.8gcm~?; deduce the number of formula units per cell 

(Ki= 39, T= 127, O=16, F= 19). 
After indexing, a survey of systematic absences showed that the possible 

groups are Pbcm and Pca2}. 

— Give the number of general equivalent positions for the group Pbcm. 

What conclusions can be drawn if the compound belongs to this group? 

Draw the group on a (001) plane. Take as origin a centre of symmetry in the 

mirror plane b (the mirror plane is at a height 1/4). Indicate the coordinates of 

the general equivalent positions. 

— Draw a projection of the group Pca2; on (001). Indicate the coordinates 

of the general equivalent positions. State the conditions limiting the 

possible reflections for the spots hkl, Ok/, hkO0, h00, OKO, 00/, hO/. Take as 

origin a 2; axis in the mirror plane a. 
When examined for the piezoelectric effect, the crystal gave doubtful results, 

but it was found to be pyroelectric. Indicate the space group and point group of 

the compound. 

PSEUDOSYMMETRY 

A monoclinic holohedral crystal (class 2/m) has the following unit-cell 

parameters: — : 
a=10.07A b=14.28A c=8.64A B=125°40' 

— Two rotating crystal photographs were obtained using a 240 mm diameter 

camera with a useful height of 80 mm. The incident beam entered the 

camera normal to its axis at half-height (Ax, = 1.54 A). 
How many layers are obtained if the crystal rotates about the row [001] and 

then about the row [010]? 

— Calculate the angle between the planes (201 ) and (001). 
—A lattice has a unit-cell bounded by the planes (201), (010) and (001) and 

has a symmetry other than monoclinic; what is this lattice, and how could 
its actual symmetry be revealed? 

— After indexing, the only systematic absences were found to be for 0k0 
spots where k=2n+ 1. Explain this and give the space group of the 
compound. 

—Give the general equivalent positions together with a few special 
positions. 
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_ THE AuCu PHASE TRANSITION 

A powder photograph of a sample of AuCu quenched at high temperature 

(phase A) is obtained. In this cubic phase the atoms are distributed completely 

randomly. The measured values of dj,; (in A) are: 

2.293 1.982, 9 WA0S ¢ 1.195 41,146, 10.992 ...0.912 

— Calculate the unit-cell parameter, the lattice mode and the theoretical 

density (Cu = 64, Au = 197). 

After suitably annealing, the structure of the alloy becomes completely 

ordered (phase B); the (001) planes are alternately entirely copper or entirely 

gold. In the initial cubic frame, the fractional coordinates are then: 

CWS0A0 De A Ded OreAn LeOd 2s. Odi2, 1/2 

— Show that the lattice is tetragonal and construct a primitive unit-cell. In 

order to compare the diffraction spectra of the two phases, phase A is 

represented in this new frame; show that phase A is tetragonal I with 

c/a= V2 . Index the lines in phase A in this frame. 

A powder photograph of a sample of phase B is obtained. This photograph has 

many more lines than that of phase A; the increase in the number of lines arises 

from two phenomena: tetragonalisation and the appearance of superstructure 

rings. 

Tetragonalisation. Using the expression for interplanar spacing, show that in 

the transformation from a cubic P unit-cell to a tetragonal P unit-cell, there is a 

tripling or a doubling of certain lines (set c/a = /2 — ). How do the first eight 

lines in a cubic P lattice change? 

Superstructure. Using the structure factor (calculated in a_ unit-cell 

containing four atoms), show that the phase B photograph has the same 

lines as for phase A, with additional weak lines. 

Reorganise these results and give the appearance of the powder spectrum of 

phase B. 

CESIUM BROMATE (CsBrOQ3) 

This compound crystallises in the tetragonal system. Measurements with a two- 

circle goniometer gave the following results: 

Faces a b Cc d if / 

p 0° 54°27 54°27 54°28’ 90° 
y — 105°20' 229 18 345°21' eysyily 
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Only those faces used in the following part of this problem are featured in the 

table. In particular, there exist other faces in zone with face f. Face a is assumed 

to be a (111) face and b a (100) face. 

Determine the ratio c/a of the corresponding hexagonal unit-cell. 

Using a copper anode and a camera with a 360° circumference, a rotating 

crystal photograph is made with the axis of rotation normal to face a. The 

distance between the zero layer and layer 3 is 38.9 mm. 

When the rotation axis is a row normal to face f, the distance between the 

zero layer and row 3 is 53.5mm; deduce the ratio c/a. 

TETRAHEDRON AND OCTAHEDRON 

A crystal has tetrahedral and octahedral forms associated. 

Five faces were measured with a goniometer: 

Faces p r t u Vv 

p 54°20! 125°40’ 63°05’ LNGES 5) 116°55 
7) 45° 359 90° 0° 90° 

Construct the stereogram and deduce from it the crystal class. 

The crystal habit suggests that the unit-cell axes are in the directions Ox, Oy 

and Oz in the figure, and that face p has the indices (111). 

Deduce the ratios a/b and c/a and the indices of face t. 

An X-ray study confirms the choice of axis direction and shows that spots 

such as h+k+Il=2n-+1 are absent. With rotating crystal photographs, the 
rotation row parameters were determined with: 
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— the crystal rotating about the edge AB; 
— the crystal rotating about the edge BC between Pp and t. 

The respective values n, = 5.27 A and Ny = 6.33 A were found. 
Show that these results are incompatible with the notation (111) for face p. 

Index this face correctly and determine the unit-cell parameters. 

SODIUM CHLORATE (NaClO3) 

A crystal of sodium chlorate (cubic system) exhibits the following association 

of forms: pentagon dodecahedron {021} and tetrahedron {111}. Which class 

corresponds to the simultaneous presence of these two forms? 

A rotating crystal photograph is obtained with rotation about the row 

common to (210) and (210). The parameter is 6.56 A. 

a" We 
jo Pas. ‘ ,.. “ Starting from a glancing beam on (210), 

hee of oi \ Rat \ by how much must the crystal be rotated 

Bows Vor 210) pice to obtain a reflection from this family of 

What is the parameter of the row 

common to (111) and (210)? 

eeaieety to We tecky: planes? (2 = 1.54 A). 
aa i ae i 44: es 

HEXAGONAL CLOSE-PACKED STRUCTURE 

A powder photograph of magnesium, which crystallises with a hexagonal 

close-packed structure, has been obtained. 

— Establish the relation giving the values of d),; in a hexagonal lattice. 

— Complete the following table and determine the values of the parameters 

a and c. 
4 

Any A 2.778 2.605 2.452 ” 1.6047 ° 
hkl ? 002 101 102 110 200 
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— Calculate the ratio c/a for the hexagonal close-packed structure using the 

rigid-sphere model. Compare it with the value for magnesium. 

The fractional coordinates of the unit-cell atoms are: 

2/3, 1/3, 1/4 1/3, 2/3, 3/4; 

— List the tetrahedral and octahedral vacancies in the unit-cell. 

What is the maximum radius of atoms that can be placed in the two types of 

vacancy without modifying the packing? 

— What is the index n of the 6, screw axis positioned at the origin? 

— Complete the projection of the space group and name it. 

— Determine the general reflection conditions of the group. 

BORON PHOSPHATE (BPO,) 

This compound crystallises in the group I4. 
The distance between layers 3 and 4 in a rotating crystal photograph with 

rotation about [001], a 360mm diameter camera and a copper anode 
(Aka = 1.5406 A) is 55. Smm. 

The values of dix (in A) obtained from a powder photograph : 

3.6351 3.3207 3.0699 2.254 1.97419 

— Determine c, a and c/a. 

The fractional coordinates of the atoms are: 

B:0,-1/2, 14° Pr0p0.0' “OF 014096 O13 

— Draw a projection on (001), quoting heights. 



_ Problems Sy 

-A unit-cell with axes x’ and’y’ at 45° to the initial axes is required. 

— Write the transformation matrices to change the axes and coordinates. 

— Use these to deduce the new coordinates of the boron and potassium 

atoms in the new unit-cell. Calculate c’/a’. 

— Show that if this ratio is slightly modified, the boron and potassium atoms 

can be seen to be assembled in a classic binary structure. 

~ DETERMINATION OF THE SPACE GROUP 

_ A compound to be analysed is orthorhombic; its density is 6.05 gcm~? and its 

molar mass is 375g. 
A rotating crystal photograph is obtained with the crystal rotating about the 

row [100], a camera of circumference 180mm and a copper anode 

~ Ax, = 1.541 A). Determine the parameter of the rotation row given that the 

_ distance between layers 7 and —7 is 81 mm. 

The figures below show the positions of the spots in the central area of a set 

_ of Buerger photographs obtained with a molybdenum anode ((Ax,, = 0.7903 A). 

For each of the four photographs the geometry was such that 

A.a=o*=Ro.d where Ro=60mm. The direction of the incident beam is 

shown for each photograph. The notations layer 0 and layer 1 correspond 

respectively to the reciprocal planes containing the origin and the next higher 

parallel plane. 

— Determine the unit-cell parameters for the compound. 

—Calculate the number of formula-units in the unit-cell. 

— Draw the projection on (001) of the space group Cmca. The generators to 

be used are a mirror plane m (100) at x =0, a mirror plane c (010) at 

y=1/4 and a centre of inversion at (0, 0, 0). 

—Jndicate the positions equivalent to the general positions x, y, z and the 

conditions for systematic absences of this group. 

— Show from the Buerger photographs that the compound could belong to 

the group Cmca. 
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Layer 0 
Beam // b 

Layer 1 
Beam // b 

Ww x , x A > 5 : a 

AS yA 4 

"4 > x aK A ’ NS 

x x x xK x x 

Layer 1 Layer } 
am /Ic Beam //c 



Solutions to the Exercises 

LATTICES AND MILLER INDICES 

1—Barytine 

faces (110) and (010) > a/b = 0.876; 

faces (111) and (110) > c/a = 1.504; b/c = 0.758 

p=(104) o=(102) m=(101) q=(011). 

: 2—Dodecahedron 

a=(101) b=(110) c=(011l) e=(101) d=(110) 

One edge is a row: {a,b} = 2/3 {b,d} = 1/2%a'= 109228 

3—Lead chloride 

a/b = 0.5942 c/a=2.002 b/c = 0.8406. 
e=(112) f=(021) g=(012). 

4—Rows normal to the lattice planes 

4 

[wow] L (hkl) = [wow]//[Akl|* hence: hA* + kB* + 1C* = A(ua + vb + we) (1) 

The scalar products of (1) and a, b and ¢ give: 



320 Basic Crystallography 

h = A(ua’ + vb.a + we.a) 

k = A(ua.b + vb’ + we.b) 

1 = A(ua.c + vb.c + we’) 

Integers h, k, / must be found to obtain integers u, v, w. 

Cubicnh-= Ku.—k-=Ko»-1-=-Kw 

We can take K=1 =»h=u, k =0x!l = wVu, 0, w 

For all h, k, 1 we have (Ak/) 1 [hkl]. 

Tetragonal:h= Ku k=Kv l=Jw 

J#K since ac. If we take K= 1 => J#1: there is no general solution 

where h k and / take any value. 

The solutions are (hk) | [hk0] and (00/) L [00/]. 

Monoclinic:h = Ku+Jw k=Mov 1l=Ju+Nw 

A single solution exists: the twofold axis (010) L [010]. 

The symmetry axes are normal to the lattice planes. 

5—Monoclinic reciprocal lattice 

Noting that A* and C* are linear combinations of a and ¢ we have: 

(The vectors a, c, A* and C* are coplanar) 

1 
a (5 - feos) Bt =? Ca d (£-Zcosp). 

~ asin’ B a cu 

6—Monoclinic lattice 

The lattice is type C since the row [110] contains a node at a/2, b/2, 0. 

7—Cubic lattice 

001 (A4) 
171 (A3) 711 a3) The row [wow] is normal to the plane (Ak) if: 

hu+kv+lw=0. 

140 (A2) 710 (A2) The figure shows those rows contained within 
the (110) plane which are symmetry axes. 

8—Hexagonal crystal [101] > a+e c/a= 1.3937. 
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- 9—Coplanar rows 

The determinant of the indices is null and hence the 3 rows are 
=0(0 coplanar [and contained within the plane (213)]. This result is general 

dl 
0 
D and does not depend on the crystal system. Ce leet SO) 

- 10—Interplanar spacings Using the distance relations in chapter 6, we 

_ have: 

Tetragonal: d3., = 1.0909 A Dion 3385 A. 

Hexagonal: dy, = 0.7878 A dioy = 1.0954 A. 

11—Change of frame 

04 4 0 1 -l 0-5 3 

Raa 0 2) 62] bal ON sek = |e 0s 

+ 5 0 lant ana! Arita ot 

Det = 1/4 Det=)3 Det = 3/4 

Multiplicities obtained either by calculating the volume or from direct counting 

of nodes: ; 

cell C 45 ScellRe— 1 Feell = 3. 

The Miller indices are covariant with base vectors: 

(1De > U1 Dp B45)¢ > 987) U1 De => (003)q B45)c => (1224), 

The row indices are contravariant with base vectors: 

[001], => [11 1]c [135], => [139 8] 
4 
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12—Calcite 

v=(a,b,c) v =(a,b,¢)=160 a =aV11 — 10cosa = 12.83 A. 

a’.b’ = a°(6.cosa — 5) =a’(11 — 10. cosa).cosa’: a’ = 101°S8’. 

Cleavage face (100) => (112). 

13—Volume of any general unit-cell 

Let «1, B1 and yl be dihedral angles between the 

planes containing the base vectors. 

The area of the parallelogram constructed on 

the vectors a and b is ab. siny. 

From C(OC = c) we drop a perpendicular BC 

onto xOy and from B we draw BA normal to Ox. 

AC = c.sin 8B BC = AC. sinal =c. sin B. sina]. 
V = abc. sinal.sin f. siny. 

In the spherical triangle we have: cosa = cos B.cosy + sin f. sin y. cos a1. 

Hence: 

cos a — cos f. cos 
cosali= aca bret Ta 

sin B. sin y 

followed by the values of sin «1 and finally that of 

Ve= a.b.c../1 — cos? a — cos? 8 — cos? y + 2 cos «. cos B. cos y. 

14—Pentagontrioctahedron 

Indices of the faces: 

a = (321), b = (213), c = (132), d= G12), = 612), f= @31) 

Indices of the edges: 

BC = [571], AB = [539], AE = [593], ED = [111] = A3, CD = [157] 



| Solutions to the Exercises 323 

_ Angles between the edges: 

{ABC} = 126°; {BAE} = 77°; {AED} = 126°; 

{EDCY= 94°; {DCB} = 116" 

The row OC is a threefold axis, hence: BC = CD. 

The row OA is a fourfold axis, hence: AB = AE. 

15—Icosahedron 

The points O, A, B, C, K are in the plane of 

the diagram. OB is a fivefold axis. OK is 

normal to the face whose projection is BC 

and it is a threefold axis. 

Let « be the angle Oy (A2) and OB (45) 

and P be the intersection between the two 

orthogonal lines OB and AC. The five 

triangles with a common vertex B are 

projected onto a plane normal to OB as a 

pentagon with centre P. We have: 

AP. Ru? 
ABU a /10=2/5 

COS 4 = 

From this we deduce «=31.717°. From: sina = AB/2OB, we _ have: 
OB = a/2sina. 
We write Y = {OB,OK}. K is the centre of gravity of the triangle whose 

projection is BC hence: 

KB av3 

SE OBIE TOE 

and W = 37.38°.{OC,0K} =20.90°, 
Spherical trigonometry can also be used: 
Consider a spherical triangle whose vertices are stereographic projections of 

three fivefold axes. The angles of triangle (A) are 360°/5 = 72°. The sides of 

triangle (a) are defined by the angle between two fivefold axes. Now, in a 

spherical triangle, we have: 
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cos A = —cosB.cosC + sin B. sinC. cosa 

From which we deduce a = 63.4349° which is twice the angle between a 

twofold axis and a fivefold axis. 

The above calculations enable us to 

position the symmetry axes within a 

. plane xOy. Four of the threefold 

axes of the group occupy the same 

position as in the cubic group m3m. 

The projection shown opposite is 

obtained. The poles of the faces of 

the icosahedron coincide with the 

threefold axes. (The poles of a 

pentagonal dodecahedron coincide 

with the fivefold axes). The faces 

can be indexed with (hk/) notation 

but A, k and / are then irrational. 

Thus the pentagonal dodecahedron can be denoted (Olt) where 

t=1(/5 +1). 

THE STEREOGRAPHIC PROJECTION 

1—lodic acid 

if x 

i . O \ 

\ 
— The only symmetry elements are twofold: the 

class is 222 (D>) (orthorhombic lattice) 
: 

ae 
| 

02) 6 (113) ‘; The parameter ratios are: 

‘ bik y 
ag | / b/a = 1.0606 

ol cami tegh. eee C/a = 1.3976 

c/b = 1.3176 
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2—Barium bromate 

oe ar Class 2/m (monoclinic) 
\ 

: Ce y = 90° 

ees Bp = 93°30’ 
(130) | c/a = 1.072 

rf Indexing is easier if zone circles are drawn. 

eo Faces for which p is 90° have [001] as a zone 

axis (their index / is zero). 

b is in the plane of the projection and c is 

perpendicular to this plane. 

3—Topaz 

(001): p=.--- 2.0: 

(101): p=0° p=61.03° 
(111); y =27.85° p = 63.92° 
(110): y = 27.85° p =90° 
(120): ~ = 46.58° p = 90° 
(011): y=90° p= 43.67° 
(021): y=90° p= 62.35° 
(112); o = 2785" 0 = 45.61" 

4—Trigonal 

Let [uvw] be the zone axis; hence we can write: 

pu+qu+rw=0 

xu+yo+zw=0 

Taking the sum we have: (p+ x)ut+(q+yu+(r+z)w=0 
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311) 

4101) » (710) 

LT 

£7112) (727) 
Va eo oe? (010) 

: (017) 
4071 Ne yeahe~s 

[ton Ae 

RECIPROCAL LATTICE 

Hypothesis a: c/a = 1.778 r = (113) s = (021) t= (011). 

Hypothesis b: c/a = 2.515 r = (013) s = (111) t= (112). 

For the chosen hypothesis we have: c = 9.4916 A. 

The row common to q and t is [111]. The parameter of this row is 10.9 A. 
A direct row (vector ua + vb + we) is normal to a reciprocal row (vector 

hA* + kB* + /C*) if: hut+k.o+lw=0. 
The reciprocal plane normal to [111] and passing through the origin is such 

that its rows [hk/|* have indices which satisfy the relation: h—k+/=0. 

For the next higher plane we have: h—k+/]= 1. To generate this plane we 
must find two non-collinear rows which define a primitive plane unit-cell. 
We can take [110] and [101] with N[110] = 1.875cm and N[101] = 1.424cm. 

The angle between these two rows is 48°54’. Note that rows [110] and [112] 
are orthogonal but do not define a primitive unit-cell. Another possible choice 
is [110] and [011]. The next higher plane is identical to the plane containing the 

origin (add | to the third index), but its origin (the node 001) does not project 
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_ onto node 000. To construct the projection of node 001 on the plane containing 
- the origin, we note that [001] L [110] and that [001] and [112] are coplanar and 

at an angle of 60.6°. 

202 T12 

This exercise illustrates the method used for indexing the various layers of a 

rotating crystal photograph. (Rotate the reciprocal lattice about node 000 for 

the zero layer, about A for layer 1 and so on). 

SYMMETRY AND SPACE GROUPS 

1—Miultiplication of symmetries 

Using the composition laws for symmetry elements, we find the following point 

groups: 

a a) A2-A2 b) m—m c) A2-m d) +inversion 

90° oD mm2 mm2 mmm 

60° 32 3m Sills |, 3m 
45° 422 4mm 42m 4/mmm 
30° 622 6mm 62m 6/mmm 

We can also draw the initial symmetry elements on a _ stereographic 

projection, apply them to deduce the images of a pole and then determine all 

the resulting symmetries. 

2—Product of C, and an inversion 

|e 

af +1 4+1 6+1 
4/m 6/m 

tT 3 
2/m 3 
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1 0 0 
>{00 1 

010 

The matrices for rotation +2/2 about Oy and Oz are: 

nee. 1750 
Oy => 1 0 {ai 0 0 

0 0 ie, I 

The matrices for rotation about threefold cube axes are: 

3—Cubic groups 

The matrix for rotation about Ox is: 

{0 oy 
0 cosy —siny pour y = 

0 siny cosy 
Nila 

SS 6 j= 

[111] [111] [l 1 1 

Om0 Fl Cu ee ae 

1216.20 0 1 00 1 

0 1 0 0 0 a) a = OS & 

The product of a rotation through +z/2 about Oy and a rotation through 

+n/2 about Ox is therefore (non commutative product): 

0 
1 
0 

The product of a rotation through +7/2 about Ox and a rotation through 

+m7/2 about Oy is: 

— 2 © 

1 z 
| Rotation through = about [111]. - 

0 

01 9 Bret of p 
0 0 1 Rotation through — about [111]. 

3 
VEO 0 

Using the relation cosy = cosa.cos B — sina. sin B.cos ¥, which gives half 
the rotation angle produced by multiplying two rotations of intersecting axes, 

we have: 

v/s =f =7/4, = 2/2) 

The presence of two fourfold axes 1 implies the presence of four threefold 
axes oriented along the diagonals of the cube (and also of three fourfold axes 

normal to the faces of the cube). 
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Inverse case: the product of two threefold axes. We have to consider the 

}- case [111].[111] with © ~ 70° and the case [111].[111] with © = 109°28’. The 

first case corresponds to a twofold axis oriented along [010] (or along [001] 

for the inverse product) and the second to a threefold axis oriented along 
[111]. The presence of four threefold axes oriented along the diagonals of a 

cube only implies the presence of three twofold axes normal to the faces of 

the cube. 

The product of a rotation about a threefold axis oriented along [111] 

followed by a rotation about a fourfold axis oriented along [001] is a twofold 

axis oriented along [011]. The inverse product corresponds to a twofold axis 

oriented along [101]. 

mes) (2 = 12/4, B = 2/3, cosy = 1/V3) 

1080 0: Ol 
follj>|o 0 1) floys]o0 1.0 

Qrodiho 10 0 

-4—Product of C, and a translation 

The product of a pure rotation through an angle @ and a translation normal to 

the axis is a pure rotation about an axis situated on the mid-line of the vector t 

at a distance h = ¢/2. tan 0/2. 

| 
4 

Kase 
¢ U 

5—Products of symmetry operators 

Point groups: 
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(C2, |0).(C2,|0) = (C2,|0) product of orthogonal twofold axes. 

(o,|0).(o,|0) = (C2,|0) product of orthogonal mirror planes. 

(o,|0).(1|0) = (C2,|0). 

(C2,|0).(1|0) = (2,10) 
(C4,|0).(C2,|0) = (C2,5|0) — twofold axis [110]. 

(C2,|0).(C4,|0) ditto. 

(C6,|0).(C2,|0) = (C239|0) twofold along [21.0]. 

(C2, |0).(C6,|0) = (C2_39|0) twofold along [110]. 

(4 60|9).(6,|0) = (C3,|0). 
(639|9).(0,|0) = (C6,|9). 

Space groups. 

The translation is resolved into t, and t,. By a suitable choice of the position 

of the axes and mirror planes, the normal component of the translation can be 

eliminated. (For the axes see exercise 4, for the mirror planes, these must be 

placed on the mid-line of t,). In the present examples, t, is printed in italics. 

Orthorhombic cell: 

(C2,|0).(E|;(a + b)) = (C2, |$a + 5b) 2,[100] axis at y=+ 

(c,|0).(E|(a + b)) = (0,56 + ja) mirror plane b(010) at x= 4. 

(c,|0).(E|5(a + b)) = (0, |5a + 4b) mirror plane ae at yay 

(o,0).(o,|4(b + €)) = (C2,|be + 4b) 2,[001] axis at y= 1. 
(o,|;(b + a).(a,|;(¢ + b)) = (C2,/4e + 4a) product (mirror plane c at y = 4) 

and (mirror plane b at x = 4) = 2,[001] axis at x =}. 

Tetragonal cell: 

(C4,0).(Ela) = (C4,|a) 
(C2,|0).(Ela) = (C2.|a) 
(C2,,|0).(Ela) = (C2,, 4a + b) + Ya — b)) 

(C4!/0).(E(a + b +) = (C4! de + Ya + b)) 

(C420).(Ej(a + b + ¢)) = (C2,/he + (a + b)) 

(C2,.|0).(E|(a + b + ¢)) = (C2, |6a + Ke + b)) 

(C2,,|0).(E(a + b + €)) = (C2,,|5(a + b) +4) 

(0,,0).(E|(a + b + ¢)) = (o,|He + b) + ta) 

fourfold axis at } » , Z, 

twofold axis at | a Ose 

2, axis // to [110] at G, 0, z) 

or G ss re Zz). 

4, axis at 0, 4 nes 

2, [001] axis at 4,1 i, 

2,[100] axis at x, 4 4 1 

2,[110] axis height +. 

mirror plane n(010) at x = 4 



Solutions to the Exercises 331 

(¢,,|0). (Ela + b +¢)) = (o,/5¢+3(a+b)) mirror plane c (110). 
(o,|0).(E|(a + b + ¢)) = (¢,|5(a +b) + Se) mirror plane n (001) height 4. 

This method can be used to generate space groups; first, a list is made of the 
symmetry operators for the point group (there are as many operators as there 
are equivalent directions), and they are then combined with non-integral and 
integral translations. 

6—Groups derived from class m 

Pc is transformed into Pa by permuting the axes a and c, and by changing the 

origin (O’ at 0, i 0) Cm is transformed into Ca and Cc into Cn. 

Strictly speaking, the group Pn should also be considered, but changing the 
axes a = a/2, b' = b/2, ¢ =c/2 brings us back to the group Cc. 

7—The group Pmbm 

Such notations are impossible; the symbol b in the second position corresponds 

to a mirror glide plane perpendicular to Oy with a translation b/2 parallel to 

Oy! , 
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8—lIdentical results from different operations 

Two different operations (a 2, screw axis and a mirror plane b) appearing to 

give the same result arises from the fact that the object transformed is plane 

and that the heights of the objects are not indicated. To obtain coherent 

representations, objects with relief must be used with the heights quoted in 

order to have a faithful representation of the symmetry operation. 

9—The group Cmc?2, 

This group is derived: from the class mm2 with eight general equivalent 

positions. 

1 1 - 
X,Y, Z 5a Xs + V, Z 

1 1 1 era xX, —\Vr,5tZ 5 Xt — Yo 572 

1 1 
X,Y, Z 5 he TY, 2 

1 1 1 ( 
—_— XxX, =, 51-2 go Xk Vig tT 2. 

+ 

be W2+ 
set-e OED #op-e-0 

i i] i] i] 
KES 

i i] i t 

; 

g 

1 i | | 
ELD 

| I | i] 

Kak He kk) 

i 

+ 

ete CD 

Ol =i oa | EE 0-0-4 -0- OX 2 0-4-0 

o LN} + 

(e) 

EED -o-e-4-0-0 

Ox 

10—The group Amm2 

This group is derived from the class mm2 with eight general equivalent 
positions: 

X,Y, Z x, s+y, 542 

Lae 1 xj yz 15 — Jig 

— X,Y, Z —X, 54), 247 
1 

x, SS 4 X,5—VF+z. 
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© 0 OED O08 8 OED 

FOSOM2+ J 122+0 A ODay 

_ 11—Product of a translation and a rotation 

| If we choose Ox || t, the coordinates of A” will be: 

x” = x.cos@— y.sind +t 

y’ =x.sin@ + y.cos 0 

In a frame centred on J (the centre of the equivalent rotation), we will have: 

Xt = Xy.cos 0 — y;.sin@ a) 

yy = xy. sin 8 + y,.cos 0 

IA” = 10+ OA’ IA=1I0+0OA 
Mi = —h ae x" Vi — Sik +y" 

xy =—-h+x y=—k+y 

Solving system (1) above gives: 

i t 
b= — 2 

2 2. tan 0/2 
Xx 

These two equations determine the position of the point J which is the centre of 

rotation equivalent to the product of a rotation and a subsequent translation. 

Application to group 14 

The relevant translations are tl = [100], t2 = [010] and t3 = 51 11] C1 lattice). 

R(O,n/2) + tl > R(A,n/2) R(O,n/2) + t2 > R(A,n/2) 
R(O,n/2) +13 > R(F,2/2) + 4e(4) 
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R(O,n) + tl > R(E,7) R(O,n) + t2 > R(F,7) 

R(O,n) + t3 > R(G,z) + $e(2) 

R(O,3n/2) + t1 > R(A,37/2) R(O,32/2) + t2 > R(A,32/2) 

R(O,32/2) + t3 > R(E,2/2) + 3e(4) 

12—The group I[4,/a 

The projection is deduced using the method of the previous exercise. 

For this group, bear in mind the transformation of 4; into 4; and the 

presence of 4 axes (with their centre of inversion at a height 0). 
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13.a—Tetragonal C = tetragonal P 

The transformation: 

a’ = @.—b), 
b= mae, 

of 

gives a primitive tetragonal cell. 

13.b—Monoclinic F = Monoclinic C 

The transformation: 

a =a; 

b' =b, 

e = (ate). 

gives a face-centred cell. 

The transformation: 

a’ = (a —b), 

b =a 1b), 
ec =c 

0':0, 5, 3. 

gives a centred orthorhombic cell. 

14— Rotation matrix in a hexagonal lattice 

We let OA= a, OB = b, {OA,OB} = 120° 
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OD = A, OB = B (orthonormal frame). 

» 1 
OD = OH + HD = 5 ¥3a t+ 3V3b. 

Consider a vector: 

r=xat+yb=xXA+ Y.B 

in the plane. 

After rotation through wy about an axis 

normal to the plane at O, this vector becomes: 

r=x.at+yb=X.A+Y.B 

-0(0)-(" YO) 
“0 ()-(2-P)G) 

: 

= 
| 
)=w-9 (5) (G) wre 
) 

xX 

Y 

eC New ta ee IL 
siny cosy 

x =H) Rae lle 109 :,) TRG) (T) = RE 

st aa —2,/3sin y 

eS 

3 sin p cosy — 1/3 sin yp 

In particular: 

_ Tt Hy _ il , 2m OS — ll 
Ine=F R= (| 9.) and itp == R)=(f zy 

The coefficients of matrices representing rotations compatible with the 
notion of the lattice, are integers when these matrices are expressed in the frame 
of the base vectors. 
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STRUCTURE FACTOR 

1—Diamond 

& = oO © 

BIW ope 

es Oo = Nir 

Al . ao Ale BIW NIH = BIW NI 3 Al sie S BIW < BIY pe BIW NI Al S 

Fann = 1 + 3. cos(2h) + cos(32h/2) + 3.cos(7h/2). Hence: 

Fin, = 0 if h = 4n + 2. 

2—Fe;Al 

‘Phase A: Body-centred cubic, since all sites are eourvaioor: 

Phase B: Simple cubic since the sites 0, 0, 0 and } > Ss 3 are not equivalent. 

Phase C: Face-centred cubic. 

: 3 
Phase A: f, = See es for all sites. 

Ease Bs, = fre + Jai ms for all sites + . 5 1 (Fe and Al have equal probabilities). 

Qsin6/A hkl, hklp = hklg.~— Fg Fp Fo 

2a//3 = + 111 j/2( fre — fat) 

a = 100 200 (fe — fai) 5( fre — Sar) 

a//2 110 110 220 3Sretfa) sGSretSa) Spe + fai) 

Ra/V/1l = 311 —j/2(fre — fai) 

a/V3 - fi 4222 see ia) | FU I) 

Extra lines of weak intensity are found in the ordered phases; these are the 

superstructure lines. 

POWDER DIFFRACTION PATTERNS F 

1—Miixture of cubic species 

For face-certred cubes the normal sequence of interplanar spacings is: 
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alV3 a/V4 a/V8 a/V11 a/V16 a/V19--- 

If the line at 3.24 A is the 111 line of one species we have a, = 5.62 A. 

d111=3.24A d200=2.81A d220=1.985A d311=1.69A d222=1.62A 
d400 = 1.40A 

If the line with d= 3.13 A is the line 111 of the other species, we have 

a, = 5.42 A, but the series obtained does not fit. , 

If this line is the line 200 of the other species we have ay = 6.26A. 

420 =3.13A d220=2.21A d222~=181A 4001.56 Aw d420 = 140% 

(It is, however, also possible to perform the indexing with a p cell of 

parameter 3.13 A). 

If we assume that f, = fc, and that the structure is of the NaCl type, the 

lattice appears to be type P. (See KCl in exercise 4). 

2—Barium titanate 

~ ee i ap : 
(h? Bay a [2)1/? hkl (h? aR ae P(a/cy)'? 

a 
nx = 

Ay © Ap ajec= late Sdig® ae, lajcy Al — Je 

—For an Akl line of the cubic phase we have: 

ie = Kr +k + Py '? 

The interplanar spacings are identical for the lines klh, Ihk, hlk, Ikh, khl. 
—For the tetragonal phase, on the other hand: 

di, = KW +k +P —2.2.2P)-? (ditto for Ehi), 

diy, = KW +h +02 —2.2.h)-'” (ditto for ikh), 

dg = KW +R +2 —2.¢.k)-'? (ditto for hik). 

Ifh#k #1, a line of the « phase gives 3 lines in the B phase. 
Ifh=k #1, a line of the « phase gives 2 lines in the f phase. 
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Ifh=k=l,a line of the a phase gives | line in the f phase. 

Tetragonalisation results in a lifting of the degeneracy i in the values of h k / 

for certain cubic lines. 

3—Cubic crystals 

Barium: a=5.025A 1 lattice. 
CsCl. a=4.123A P lattice. 

Diamond: a = 3.5667 A F lattice (Note the absence of h+k+/=4n+ 2). 

Copper: a=3.615 A F lattice. 

Barium (Ba) CsCl Diamond Copper 

D/A I hkl D/A T hkl D/A. I bel D/A TIT hkl 

eS) 100 110 4.12 45 100 20 Cp LOOM tel 2.088 100 111 
2.513 20 200 ZIT 1007 WAL0 1e261ae 25220 1.808 46 200 
R051 40 211 272380 13 i 0745 16311 eZ) 20 20) 
me776.¢ 18. 220 2.062 apo 200 0.8916 8 400 1090. Aldo S11 
oo99. 12 310 1844 14 210 0.8182 16 331 10436) ee 0222 
1.451 GO 222 h(a 2B) Bill 0.9038 3 400 
1.343' 14, 321 1.457 69 '220 OFS2937 19) S381 
Balss2) 16) 330 1.374 2 eal 0.8083 8 420 
1.1236 4 420 1.304 Smo 

4—Cubic crystals 

a iron: As there are only six lines in the photograph we might assume a P lattice 

with a parameter of 2.0268 A. In fact the lattice is I and the parameter is 2.8664 A. 

NaCl: a = 5.6402 A F lattice. 

KCI: a=6.2917A F lattice. 
The fractional coordinates are: Cl: 0. 0. 0 + FCC; Na: 5. 0. 0+ FCC. 
For lines with odd indices the structure factor is: 

Fi = 4S) — 4-fNa- (Fini is therefore weak.) 

For KCI the scattering factors of K* and Cl” are practically the same and 

the intensities of lines with odd indices are close to zero. 

If: a= 5.4309 A F lattice. 

The fractional coordinates of the atoms are: 

Si: 0,0,0+FCC; 1114.FCC, 
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Calculation of the structure factor shows the absence of lines such as 

Haske lean 422. 

% iron NaCl KCl Si 

DfA Tes hkl D/A “It hki D/A FT! pI DyAY Te 

2.0268 100 110 3.26 1S Lt 3.633 Lt AL 3.1355 WOOmatn 
1.4332 20 200 2.821 100 200 3.146 100 200 1920125 550220 
LLP O2s SO 21 L994 1555220 Ds aes) 220 1:6375)7 30 5 3h 
1.0134 10 220 1.701 Dee Lael Soils Bll 1.3577 6 400 
0.9064 12 310 RGD 5 eel ee LST 10 222 1.2459 Wl 33 
O82 Se OMe, 1.410 6 400 ESB 400 1.1086 12 422 

1.294 rel 1.407 420 1.0452 6 Sill 
1.261 11 420 1.284 422 0.9600 3 440 
LYS 7 422 Pte 440 0.9180 7. Sot —NnOown 

5—Time-of-flight method 

Let L be the distance travelled up to the detector. We have: mv = mL/t = h/d. 
The detector receives neutrons scattered at the fixed diffraction angle 0). A 
family of planes (hk/) diffracts the wavelength Ajj) = 2d),;.sin 09. For this 
family the time of flight will be: 

m m ; 
thks = 5 EA = 27 Lb dnxe- sin 05 

peak t/ms di hkl 

6 13.503 1.916 220 
5 11.515 1.634 311 
4 9.549 1355 400 
3 8.760 1.243 331 
2 7.796 1.106 422 
l 7.351 1.043 511/333 

The cell parameter is 5.419 A. 

The Structure of Rutile 

(For the diagram see page 237 of chapter 16). 
The fractional coordinates are: 
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Ole 0 04: $—x, 5+, $ 

O27 T= 1 =x, 0 “OS sax x, /1 

O03: 54+ %,5—%,5.7. 06) 1 =x, 1= x, 1. 

Til: 0, 0, 0 Tide a 0 
Ti2: 0, 1, 0 Tis. 4. 
Ti3: 1, 0, 0 Ti6: 0, 1, 1. 

_ The oxygens are at the centre of a triangle of titaniums and the titaniums are at 

_ the centre of an octahedron of oxygens. The interatomic distances are: 

d=@ Ax yea Py —y) a +7) .c 

_ Ti—O bonds: 

| TiS—O4 (Til—Ol) d= V2:x.a © 1.98 A. 

TiS—O1(Ti2—04) d = (2.6 — x)’.a° + 1 e2y3 =~ 1.947 A. 

O—O bonds: 

01-05 d=c2.96A. 

01-02 d= J2.(1 — 2x).a © 2.53A. 

01-04 d=(b—2dxy ag tig they? 3278 A. 

The TiO, octahedra have orthorhombic symmetry. 

Calcium Titanate 

On the projection of the structure on (010), the values of x, y and z close to zero 

have been doubled to increase the distortion. 

Parameters of the pseudo-cubic cell: 

a’ = }(a+c) babe, c = (¢ a) 

d= =3822A. b' =3.82A.  tan(B/2)=c/a> Bp =90°44. 

Axis transformation matrix: 

Ne1 Onl 
(aS ==) 

NI—| Onl Se 
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This structure differs from that of ideal perovskite in the displacement of the 

calcium and the rotations of the TiO, octahedra about x and about z. Note the 

alternating heights of the oxygens above and below the (010) plane. 
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Cuprite 

‘Indexing: 

Ore. 3.020 Gs, 2145 ease 510 [E2835 

Indices 110 111 200 PAM 220 311 222 

a=427A P lattice. 

Group Pn3m (only symmetry elements normal to (001) are shown; for a 

complete projection, see the International Tables). 

Structure factor: 

- Se TY Fy, = fy. cll MEO] BL ein tktt)) 

thoy (1 pee Mth) A elthtl) es ei) 

191) Seis eoae 

. h, k, | of different parities (e.g.: 300). 

n{110] = 6.038 A. 1, * 6.8 cm. 

hutkotiw=kK. Here: h+k=K. 
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For the zero layer K = 0: the nodes in the reciprocal plane are of the form 

hhl. The plane can be generated from rows [001] and [110]. 

Trigonal = Cubic Phase Transition 

1—See chapter 2 for definitions of the reciprocal lattice. 

2—V=(a, b,c) =a’. sina. sing 

a.(b+c)=a.b+a.c = |a|.b+c|.cosy > cosy = cosa/ cos «/2 

1 3-5 = A+B +E C? + 2h.k.A.B + 2h.LA.C + 2k.1.B.C 
hkl 

4 a: 

Now: A.A Sci a and AB= Ghee, ag. 605.2) 
v2 

from which the equation in the problem follows. 

4 — See the chapter on lattices. 

5 — The hkl lines conserved by the threefold axis remain degenerate; the others 

are resolved. 

a=2/2—e=>sina=cose~1 and cosa=sineeE 

Dy Cth +l? —28.(hk +k + hl) Amer 4 
iene 2 d2-Cub = 2 

hkl G Tix g 

Cubic line (111): 

@ 111 and 111 gz = 5a Intensity = 2 

OMA hia sits i 52 = es Intensity = 6 
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Cubic line (200) unchanged. 

} Cubic line (110): 

| 110, 011, 101, 110, 011, 101 r= oe Intensity = 6 
a 

- 110, O11, 101, 110, 011, 101 ig. pei "Intensity = 6 
a 

1 6- diy =a=3.542A. 1-6=0.9917 2 = 89°30. 

diy, = 2.062 A. dyjy = 1.580 A. 

1.1 Structure of NiO 

After indexing, one parameter a = 4.183 A is found. 

2.0 Intensities Anni|A hkl 

37.283 =f 2.4090 111 

me 43.279 100 2.0880 200 
02.729 45 1.4796 220 
75.265 14 1.2612 311 

79.310 10 1.2067 222 

94.887 4.5 1.0454 400 

106.592 6.3 0.9605 331 
110.636 14.9 0.9365 420 
128.423 3) 0.8552 422 

hkl Int 0 LP m fO8 fNi?t 

1-1 57 18.641 16.868 8 5.98 20.709 

200 100 21.640 12.104 6 5.28 19.383 
220 45 31.364 5,231 12 3.657 15.984 
Bil) I 14 37.632 3.606 24 3.016 14.460 
D2 2 10 39.655 3299 8 2.855 14.049 

Type NaCl Type ZnS 

hkl Fix Tnx KI Fix Tix KI ny 

111 —58.889 467974 66 23.9-82.8.; 1003130 100 
200 98.655 706835 100 —56.41 231095 2Bu tp 

22 0 78.566 387467 55 78.56 387467 38 

5 1 1 —45.778 181363 DS VASE ST fo 302125 30 
UphDe 67.616 120662 17 —44.77 52899 5 
—- 3 
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The structure is of the NaCl type. The differences between the calculated and 

measured intensities arise from terms neglected in the calculations (thermal 

agitation and absorption). 

Oxides of Iron 

w=n.M/V.N 

V,=a@ = 80.06 A° 

V,=a° =586.4A° 

V- = a@.C. sin(60°) = 301.06 A’. Primitive cell Vc = 100.35 A’. 

Possible formule: 

FeO Fe,0; Fe304 

M 71.85 [5957 231-55 
M/N/(10-”) 1.193 2.652 3.846 
uV/(g/A3x10-*) 4.78 5.28 30.49 
n 4 (A) 2) 8 (B) 

Compound A FeO 4 formula units per cell F lattice. 

Compound B Fe30,4 8 formula units per cell F lattice. 

Compound C Fe,0; 2 formula units per cell R lattice. 

For a cubic F lattice, we have [,,, 4 0 if h, k, ] are of the same parity. 

Possible lines dia/A O(sin 0 = y/2dnx1) 

111 2.4883 18 

200 2ASS 20.9° 

220 1.5238 30.35° 

If the rotation row is [001], the spot 111 is on layer 1. 

y = RK. tatia where « = /A/e> y= 29.6 mm 

There are two possible methods of determining x: 



Solutions to the Problems 347 

—use the method explained in the text: cos 20 = cos B. cosa where x = R.f 
—use a graphic method based on the reciprocal lattice. 

Layer | cuts the Ewald sphere 

in a circle of radius R, such 

Ss Ty 111 that R} = R? — D2o) ie. 
B 

2 Sieg? 

At R, = Ry/-L* = 51.16 mm 
n 001 

001 101 

The node 111 penetrates the 

Ewald sphere at A, hence: 

EEE RSENS) 

Trigonometric relations in triangle OAI give cos B = 0.7796 

hence B = 0.677 Rd and x = 38.78 mm. 

The structure is thus of the NaCl type. 

KIO,F, 

R?+y A 1 
ET ey bY aula won| 

y n Ray ey 

a=8.38+0.025A; c=8.41+0.025A. 

The crystal is thus either orthorhombic or tetragonal; in fact it is orthorhombic 

since it is biaxial. uw =1n.M/V.N, n= 4. 
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Basic Crystallography 

Group Pbem. 

Eight general equivalent positions: 

K and I occupy special positions. 

V2 —x,1/2+y,z 

—X, ie art x, 1/2-y, eA 

x,y, 1/2-—z —x,1/2+y,1/2-—z 

—x, -y,1/2+z x, 1/2—y, 1/24+z. 

Group Pca2}. 

Four general equivalent positions. 

Xs V5 x+1/2, -—y,z 

1/2—x, y, 1/2+z —x,-y, 1/2+2z 

hkl: no condition. 

OKI: 1=2n. hOl: h=2n. 

hk0: no condition. 

h00: h=2n. 

OKO: no condition. 

O0l Dik 

taney =40/R=2/3 Onn, = 464° 

Tye sin K = KA Tora 

Rotation about [001] Kee 

Rotation about [010] | ae 

General method: 

COSUs— 

=e sin Oe) A. 

= 4.05 = 9 layers (including the zero layer). 

= Goh 13 layers. 

Nae Naas —2A.C+C’ 

Direct method 

N3o1-Nio0 V4e — 4A.C + C?).C? ¥ 
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Vectors a and ¢ are drawn in the plane (010). 

The plane 201 cuts a length —a/2 on the Ox 
axis and a length c on the Oz axis. 

a/2c = 0.582 
cos y = cos 54°20’ = 0.582. 

a The two planes are orthogonal. 

| The suggested cell is pseudo-orthorhombic. 

_ The actual symmetry is deduced from diffraction photographs and physical 

properties. 

_ The systematic absences for 0k0 where k = 2n + 1 are compatible with 2, axis 

_ parallel to [010]. The group is P2;/m. 

General Positions: 

F Ae eS —x,1/2+y, -z _ —y,Z —x,1/2-y, -z 

_ Special positions: 

O70; 0 OF 2-0 |r Ue Vert 230 

AuCu 

: On indexing we find: a = 3.97 A. 

2.293 A 1982A 1405A 15195 A.¥.4:1,146,A\% 0.992 Ae 0.912 A 
111 200 220 311 222 400 331 

F lattice uy = 14¢/cm* 

The alternating layers of copper and 

gold imply a tetragonal lattice with a 

primitive unit-cell such that the coor- 

dinates of the atoms are: Cu 0, 0, 0; Au 

Wp Ml yw Woe: 

a, = 1/2(ap + bp) 

b, = 1/2(ap — br) 

Cc; = Cp / 

(c/a), = ap. V2/ ap = /2. 
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To establish the new indexing, the covariance of the Miller indices is used: 

Cubic F 111 200 220 311 222 400 331 

Tetragonal I 101 110 200 Pai\il 202 220 301 

Cubic phase: (1/d)},, Cub = (h? +k? +1’ /a’) 

For phase B, c/a = /2—e> (a/c?) =1/2+¢ 

l Tetragonal phase: Tea 2" +k eh (a/cy _h +h + 1/2 Zhe 

hkl a d 

hhh lines unchanged, hh/ doubled, hk/ tripled. 

Cubic 100 110 111 200 210 PAN! 220, _22\—300 

Tetragonal 100 110 CT 200 210 211 220 221-212 
001 101 002 201 112 202 300-003 

012 

Structure factors calculated for one unit-cell: 

Phase A: Fixy = 1/2(fou + fan). + oO "*) 

h=k-+T= 20 Fit = Sou +fau 

Bk + h=2n el Fay = 0. 

Phase B: Figg =foy thay re 

h+k+l=2n Fret = fou + fan 

At+k+l=2n+1 0 Fag =fou—Sfau- 

Setting c/a = 2 we obtain the values of dp; for the various lines: 

100a 100 a/V2 111a,/2 2004/2 210a/V5_— 211 ay/- 220545 

001 a/2 101 ay/4 002 a//2 201 a2 112 a/2 202 ~7e 

102 a/V3 
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| | | [| | mrasen 
202 011 110 200 124 220 

| | | | | | || | | | | Phase B 
A On: 0219210 

) 001 100 101 110 002 112 200 121 202 220 

| Cesium Bromate 

| In the hexagonal cell the Miller indices are: 

H=h-k; K=k—-l, L=h+k-4l. (11Dp > (00.1)q and (100)p > (10.1) 
-, ie * * * 

-Noo.1-Nio.1 = |Noo.11-INio.11- Cos pp 

: cc Eric MUA RS Oar VC) ap W215 

_ The row normal to face a is [001]y noo; = 8.228 A. 

The row normal to face fis [110] ny;9 = nyoo = 6.773 A. 

B (c/a), — 1-215: 

Tetrahedron and Octahedron 

Class 42m. 

P= (111) > c/a ~ 0.98. 

t = (0k1) ck/al = tan(63°05’) Khe t= (021). 

The condition for systematic absences indicates an I lattice. 

AB is the edge between (111) and (111) ice. [110]. 

BC is the edge between (111) and (021) ice. [112]. 

We deduce a=b=5.27A. 

[112] = 6.33 Ais incompatible with the value of c/a. 

We try: c/a“ 2. 
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with this hypothesis (111) = (112) and (021) => (011). 

AB remains [110] and a = b = 5.27A. BC becomes [111]. 

The lattice is body-centred, hence the parameter of this row is 

2633 A=82,66 Ae 

Inj,| = 2a? +? > c= 10.2A. 

Sodium Chlorate 

Class 23. 

The rotation row is [001]: the cell parameter is 6.56 A. 

d19 = a/J/5. 

Ni 2.dpx- sin 0. = 15° 132 

The row is [121] and its parameter is a.J/6 = 16.07 A. 

Hexagonal Close Packed 

Hexagonal lattice: a=b#c,,a=fPp=2/2, y =2n/3. 

a 

Ay x1 = 

Vi (2 + kse + hk) + I2.(a/c? 

The line 002 enables us to determine the parameter c = 2.2 x 605 = 5.21 A. 

The line 110 enables us to determine the parameter a = 2.1 x 6047 = 3.2094 Ey 

Cia = 1.62335. 

° 

dni A 2148 2.605 2.452 1.9006 1.6047 1.389 
hk.1 10.0 00.2 10.1 10.2 11.0 20.0 

—With the rigid sphere model of the hexagonal close packed structure, the 

ratio c/a is 1.e.: 2.,/2/3 i.e. 1.63299. This model fits the data for magnesium. 
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The fractional coordinates of the atoms in the HCP cell (assemblage ABAB..) 

are: 0, 0, 0; (type A) and 1/3, 2/3, 1/2 (type B). The choice suggested (2/3, 1/3, 

1/4) (1/3, 2/3, 3/4) i.e. 4(2/3, 1/3, 1/4) involves a change of origin to conform to 

the coordinates chosen in the Tables. 

There are as many octahedral vacancies as there are atoms (one atom is 

surrounded by six vacancies and one vacancy is surrounded by six atoms); 

however, there are twice as many tetrahedral vacancies as atoms. 

If R is the radius of the atoms in the octahedral vacancies, we can introduce 

atoms i such that Ri/R< 0.414. For the tetrahedral vacancies we have 
Ri/R < 0.2247 (see the section on coordination in ionic structures). 

The screw axis 6, at the origin is a 63 axis (a translation of c/2 between two 

adjacent atoms). The group is P% me. 

The mirror planes normal to Ox are types m and a; diagonal mirror planes 

(|| to Ox) are types c and n. The pattern of 2 and 2; axes is repeated around the 

lines of each of the vertical axes 63 and 2). The centre of inversion of the 6 axes 

~~ is at a height of 1/4 (in the horizontal mirror plane). 

General conditions for systematic absences in the group: 

hh.l where | = 2n. (mirror plane c: x, y, Z > y, x, Z+1/2). 

00./ where / = 2n. (63 axis) 
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BPO, 

The parameter c is 6.642 A. 

Since the lattice is type I we have h +k+1=2n. 

The line where d),; = 3.3207 A is therefore (002). 

If we assume that the line of dj; = 3.0699 A is (110), we have: 

a = 4.342 A. The line where d),) = 3.6351 A is (101) and 2/a = 1.5297. 

Coordinates of the oxygens with the inverse fourfold axis: 

xX, Ye Ney, Z; yee os Varnes as 

the translations of the I lattice must then be added. 

Heights in hundreths of c 

The coordinate changing matrix (X) is the transpose of the inverse of the 
coordinate changing matrix (A). 

i Te 1/2 1/2 0 
(A) =| 1otie}0" > OO 12 meio. oO 

es a 0 Ore 

In the new cell, the sub-lattices of boron and potassium are type F. In this cell 
c/a = 1.0816 © 1 (Close to a cubic lattice). 
The assemblage of boron and potassium atoms is identical to that of sulphur 

and zinc atoms in zinc blende. 
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Group cmca 

The parameter is 13.20 A. ¢ 
The symmetry in the diffraction photographs corresponds to the Laue class 

mmm. Since the lattice is triorthogonal, the reciprocal vectors are in the same 

directions as the direct vectors. In the photographs with the beam || to b, 

reciprocal planes of the type (A01)* are obtained; with the beam || to c, (Ak0)* 

planes are obtained. 

In both types of photograph the vector A* is horizontal and normal either to 

B* or to C*. To index the photographs correctly the systematic absences must 

be taken into account. 

On the photographs, from the measurements: 

18A* = 58.2 mm. 8B* = 56mm. 6C* = 50 mm. 

we deduce: , ‘ ; 

aw 13.2 A; bx 6.1 A; cx 5.1 A. 

From the density, the number of formula units is close to 4: Z = 4. 

ua he 

Systematic absences: 

Lattice C: x, V,Z— > 1/24+x,1/2+y,z hkl h+k=2n. 

mirror c||(010): x, y,z> x,—y, 1/2+2z DI =2n and h= 27: 

mirror al|(100): x, y, z—> —x, 1/2+y, z Oki kk =n: 

mirror al|(001): x, y, z > 1/24+x, y,-—z hkO0O h=2n and k = 2n. 
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2)-axis || Ox: x, y,z21/24+%,-y, -2 h0OO h=2n. 

2; axis || Oy: x,y, Z—> —x, 1/2+y,-2 OKO k =2an. 

2, axis || Oz: x,y, Z> —x,—y, 1/242 OO) Ji 21. 

Group Cmca 

There are sixteen general equivalent ~ 

positions: 

xX, Vs Z; aes Ys @ oe a LE 

bbs. Benes her ay 2 ke Sal, woe 1/2+y, 1/2 
=esen seaeaseunace x, > Z; x, y> —Z, 

tle m2 : eK 
i : i : a —x,1/2+y,1/2—z;  x,1/2—y, 1/2+2z; 
[peered ye ey —__- 

i : 1 : : ie X,—Y, — Z; —X, y, Z. 

eeceeses We---5----§ > ae 
' i ¥ 144 Since the lattice is type C, the transla- 

\ | (pecor p= (lif2y 1/2: 0) 
must be added. 



Crystallographic point groups 
and their subgroups after 
Hermann 

48 +— (p 293) 

24 + 

Multiplicity of the general positions 

The indices 2 and 3 are the 
number of ways of going from 
group to subgroup. 

Figure 1. Point groups and subgroups 

The holohedral classes are in grey. A connecting line between two groups 

means that the lower group is a subgroup of the upper group. The links 

between classes in the same system are shown by bold lines. The vertical scale 

shows the number of general equivalent directions (the order of the group). 
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Appendix A 

Atlas of 
Crystallographic. 
Forms 

This atlas contains the crystalline forms (the set of equivalent faces in {hk/} notation) of 
the 32 classes of symmetry point groups; the classes are arranged into the seven crystal 
systems, each system beginning with the holohedral class (i.e. the class which has the 
symmetry of the lattice). First the general form, then the special forms are given (the 

pole of a face coinciding with a symmetry element). For the holohedral-classes, all the 
stereographic representations and all the corresponding solids are given, but for the 
merihedral classes, only those forms are given which differ from the holohedral forms. 

The dotted lines on the stereographic projections are simply visual aids and should 
not be confused with projections of the symmetry elements. Hidden faces of solids are 
only represented if there is no resulting confusion. Certain forms do not enclose space; 
in a real crystal these forms cannot exist alone. In order to show symmetries more 
clearly and to simplify the art work, solids have been represented with the same 
development for all faces; the habits of actual crystals are often very different from those 
of the ideal solids shown in this atlas. Crystals usually possess several associated habits 
and different faces often have different developments according to how the crystal was 
grown. 

In the nomenclature, common terms are used for well-known forms such as the cube, 
tetrahedron, octahedron and rhombohedron. The pinacoid involves two parallel planes. 
For the cubic forms the following systematic system is used: the suffix ‘hedron’ (face) is 
preceded by a numerical prefix (Greek not Latin) indicating the number of faces. Thus 
we have the tetrahedron, hexahedron (cube), octahedron and dodecahedron. To this 
base are added the prefixes bi, tri, tetra, hexa etc. to indicate that the number of faces is 
doubled, tripled etc. Thus a trioctahedron is a solid in which each of the faces of an 
octahedron has been replaced by a triangular pyramid. A second prefix specifies the 
shape of the faces; e.g. for the pentagontrioctahedron the faces in question are 
pentagons. 
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The frame used is indicated on the first projection in each system. Axes out of the 

plane of projection are dotted, and the axis normal to the plane is shown by a dot ina 
circle. " 

GC, 
Pinacoid 

Triclinic System 

Class 1 (C;) Element: C 

q. 
Monohedron 

Crystal of albite NaAISi;Og 

Class 1 

: {001} Pinacoids 

: {010} 
cad} 

{110} 
{111} 

ee Bet uie 

2& 

om) 

oad 
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Monoclinic prism 

Pinacoid 

Monoclinic System 

Class 2/m (C2,) Elements: RC 
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Class 2 (C,) Element: A, 

Dihedron 

Pinacoid 

Dihedron 

Monohedron 

Pinacoid 
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Orthorhombic System 

Class mmm (D2) Elements: eC 

Orthorhomic octahedron 

Orthorhomic prisms 

Pinacoids 
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Class mm2 (C2,) Elements: A, M’ M” 

Orthorhombic pyramid 

Dihedron 

Orthorhombic prism 

Pinacoids 

ae 
Monohedron 
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Class 222 (D2) Elements: 3A; 

Orthorhombic tetrahedron 

Orthorhombic prisms 

Pinacoids 

ERLE IES 
oo Crystal of calamine: Zng(QH)2Six07,H2O 

Class mm2 

{100} Pinacoid 
{010} Pinacoid 
{001} Monohedron 

{301} Dihedron 
{110} Prism 
{121} Pyramid 
{031} Dihedron 
{O11} Dihedron 

{101} Dihedron ra PRA ge 

Trigonal system 

Classes in the trigonal system are compatible with a hexagonal lattice. 

Class 3m (D3g) Elements: A3 aM G 

Trigonal scalenohedron 
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ee * Zan 

{hk} 

poo ----===- === 

h+k+1=0 Dihexagonal prism 

© 
Hexagonal dipyramid 

Hexagonal prism 

Hexagonal prism 

365 
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{hhl} 

Rhombohedron 

Pinacoid 

Ka 
Trigonal trapezohedron 

: e eee ; 
h+k+1=0 ae Ditrigonal prism 
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Trigonal dipyramid 

Hexagonal prism 

Trigonal prism 

Rhombohedron 

Pinacoid 

Class 3m (C3,) Elements: A3 3M’ 

{hk} 

Ditrigonal pyramid 
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Ditrigonal prism 

Hexagonal pyramid 

Trigonal prism 

Hexagonal prism 

Trigonal pyramid 

Monohedron 
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Class 3 (Ss) Element: A3C 

{hkl} 

Rhombohedron 

{hkl} ; 

Atk +1=0 Hexagonal prism 

{hk} 
Rhombohedron 

Hexagonal prism 

Hexagonal prism 

Rhombohedron 

Pinacoid 

=e 

Na Bee des 
}-- 

<r 

Trigonal pyramid 
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{hk} 
h+k+I1=0 

{hkl} 

h+1=2k 

Hexag. 

{10.03 
{10.1} 

1.1} 
{01.1} 
Silo Ta AONE eps 

Tetragonal system 

Anos 2A Class 4/m D. El ts: p43 — 2 ass 4/mmm (D4) ements Mon SM 

Trig. 

{112} 
{100} 
{412} 

{221} 
{412} 

Trigonal prism 

Trigonal pyramid 

Trigonal prism 

Trigonal prism 

Trigonal pyramid 

Monohedron 

Crystal of quartz, right-hand. 

Class 32 (hexagonal lattice) 

Forms 

Hexagonal prism 
Rhombohedron 

Ditrigonal pyramid 
Rhombohedron 

Trapezohedron 
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VY 
Tetragonal dipyramid 

Tetragonal prism 

Pinacoid 
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Class 422 (D4) Elements: Ay 2A, 2A; 

Tetragonal trapezohedron 

Tetragonal dipyramid 

Ditetragonal prism 

Tetragonal prism 

Pinacoid 

Ditetragonal pyramid 
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Tetragonal pyramid 

Ditetragonal prism 

Tetragonal prism 

{001} OK Monohedron 

Class 4/m (C4,) Elements: aac 

{hk]} 

Tetragonal dipyramid 

Bt Tetragonal dipyramid 

{hhl} 
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pO 

Tetragonal prism 

Tetragonal prism 

Pinacoid 

W 
Tetragonal scalenohedron 

0 
Tetragonal dipyramid 
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WY 
Tetragonal tetrahedron 

Ditetragonal prism 

Tetragonal prism 

Pinacoid 

As 
Tetragonal pyramid 

Tetragonal pyramid 

Tetragonal prism 

Tetragonal prism 

Monohedron 
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Class 4 (S4) Element: Ay 

Tetragonal tetrahedron 

Tetragonal tetrahedron 

Tetragonal prism 

Tetragonal prism 

Pinacoid 

Hexagonal System 

For crystals with a Hexagonal lattice, the five classes of the trigonal system must be 
added to the Hexagonal system. 

Class 6/mmm (Dg,) Elements: Mae ae 

Dihexagonal dipyramid 
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Dihexagonal dipyramid 

Hexagonal prism 

Pinacoid 
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Class 622 (Ds) Elements: Ag 3A5 3A5 

WY. 
Hexagonal trapezohedron 

Hexagonal dipyramid 

Dihexagonal prism 

Hexagonal prism 

Pinacoid 

Dihexagonal pyramid 

Class 6mm (Cs) Elements: Ag 3M 3M’ 

Hexagonal pyramid 



Atlas of Crystallographic Forms 379 

Dihexagonal prism 

Hexagonal prism 

Hexagonal dipyramid 

Hexagonal dipyramid 

Hexagonal prism 
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Hexagonal prism 

Pinacoid 

Class 62m (D3,) Elements: AS 3A) 3M" 

Va 
Ditrigonal dipyramid 

Hexagonal dipyramid 

Trigonal dipyramid 
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Ditrigonal prism 

Hexagonal prism 

Trigonal prism 

Pinacoid 

Hexagonal pyramid 

Hexagonal pyramid 

Hexagonal prism 

Hexagonal prism 

Monohedron 
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> 
Trigonal dipyramid 

Class 6 (C3,) Elements: a 

( 
Trigonal dipyramid 

Trigonal prism 

Trigonal prism 

Cubic System 

3A4 4a, Class m3m (O,) Elements: 3M a 

Hexaoctahedron 
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Trigontrioctahedron 

Tetragontrioctahedron 

Octahedron 

Tetrahexahedron 
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Cube (Hexahedron) 

Class 432 (O) Elements: 3A4 4A; 6A, 

Tetragontrioctahedron 

{110} Rhombododecahedron 
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Class 43m (Ty) Elements: 3A4 4A3 6M’ 

{hkl} 

Hexatetrahedron 

{hhl} 

h>1 

Tetragontritetrahedron 

{hhl} 

h<l 

Trigontritetrahedron 

{111} 

Tetrahedron 
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Tetrahexahedron 

Rhombododecahedron 

Didodecahedron 

Trigontrioctahedron 

Tetragontrioctahedron 

Pentagondodecahedron 
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Rhombododecahedron 

{100} Cube 

Class 23 (T) Elements: 3A, 4A; 

Pentagontritetrahedron (lefthand) 

Tetragontritetrahedron 

Trigontritetrahedron 

{hhl} 

2 h>1 

{hhl} 

h<]l 

Pentagondodecahedron 

Rhombododecahedron 
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Non-crystallographic Point Groups 

These are listed by the same method as for crystallographic point groups, but free of 

lattice-related constraints. 

Cyclic groups n 5/8 Dl Oieerien OS) 

Dihedral groups n2 5D DAS 2592 2 ee Ose 

Improper groups a an ae: Pale en Ue ae 

n/m 8/m, 10/m..., oo/m (n even) 

nm 5m, 7m, 8mm, 9m, 10mm... , com 

a2 52, 72, 82m, 92,10m2... 
am & mm, 12mm... Sm — 20.2 (n even) 

Icosahedral groups 532, 33% (several principal axes) 

Continuous groups have one isotropy axis (oo). There also exist spherical groups 

(with several isotropy axes) co co and oo/m oo/m. The symmetry of objects in the group 
oo oo is that of a sphere filled with an optically active liquid; objects in the group oo/m 
oo/m have the symmetry of a sphere. 

The five continuous groups with an isotropy axis may be represented by the following 
objects (which can be used in applying the Curie laws): 

Cone rotating at uniform speed 

Cylinder rotating at uniform speed. Axial 
vector (antisymmetric tensor, transformation 
law: r, = ajyr;) 

Cone of revolution. Polar vector (tensor, 
transformation law: r; = ajrj) 

Infinite righthand screw or cylinder filled with 
optically active liquid 

ais Bly Cylinder of revolution 
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Gnomonic and Orthographic 
Projections 

1 GNOMONIC PROJECTIONS 

- Because it conserves angles, the stereographic projection is the most widely used method 

- of representing crystals; however, a highly developed visual imagination is certainly 
required. To overcome this drawback, other methods of representation have been 
developed. One of these is the gnomonic projection (Laue’s method); although angles 
are not conserved, it is nevertheless possible to deduce from this orthographic 
projections which are fairly faithful representations of the crystal. 

Figure 24.1 

© PRINCIPLE 

We consider a crystal Cr, a point M inside 
the crystal, the bundle of normals from M: 
MP, MQ, MR, MS..., and the plane of 

projection G. 
The traces of these normals in G are the 

poles of the of the faces and the set of these 
poles constitutes the gnomonic projection 

of the crystal. 
Let P, Q, R be planes in zone. Their 

normals will be contained in a single plane 
which is the zone plane. (This plane is 
normal to the edge common to the zone 
planes). The poles p, q, r of the faces of the 
zone lie on the straight line which is the 

intersection of the zone plane with the plane 
of the projection. This line is the zone line. 
The direction of the edges of the faces in 

zone is the zone axis. 

In a gnomonic projection, the faces in zone have their poles aligned on a zone line. 
# 
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O CHARACTERISING A FACE 

Basic Crystallography 

The angles ¢~ and p are measured with a two-circle goniometer. 

Figure 24.2 

In a gnomonic projection, the elements 

which characterise a face are: 

@ The plane of projection G, 

@ the origin M of the normals to the 

faces, 
@ the normal MC to the plane of 

projection, from M. 

We let MC =D. The normal to the 
face P, which penetrates the plane of 
projection at p, will be defined by the 
angle {CMP}=p (inclination) and 
{Ocp =}y (azimuth). 

CO, an arbitrary direction in the plane G, is chosen as the origin of the azimuths. The poles 
of faces which have an inclination of 90° lie at infinity. 

GO CONSTRUCTING THE POLE OF A FACE 

Figure 24.3 

O GEOMETRICAL CONSTRUCTIONS 

In the plane G, draw a circle of radius 
CD = MC = d; this is called the gnomonic 
circle. 

Take the line of origin CO; the pole of face P 

lies on the line Cx which makes an angle @ 
with Ox. 
To obtain the position of p on Cx, the plane 

CPM is folded onto plane G , taking Cx as 
hinge line. The angle of inclination 
{CMP} = p applied to {Cmp} then gives the 
position of p. 

A few geometrical constructions can be made from a gnomonic projection. Here we 
shall describe the construction of the alignment point, and of the edge between two faces. 

Angles between two faces 

Let p; and p> be the poles of the faces and LZ their zone line. 
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What we actually determine is the angle {P, MP} = {p; Mp>} between the normals to 
_ the faces. The plane normal to the zone line passing through M intersects this line at H 
and also contains the centre C of the gnomonic circle. By folding the zone plane about 
LZ onto the plane G, {p1Mp2} can be measured. We proceed in two steps: 

— In the plane G draw the normal HC to the zone line LZ, passing through the centre 
of the circle, and then fold the plane HMC about HC up onto the plane G (M arrives 
at m and HM = Hm). 

—In G, the normal to HC at C intersects the gnomonic circle at the point m; from this 
deduce the point A such that Hm = HA. 

Figure 24.4a Figure 24.4b 

The required angle is {p;Ap2}. The point A is the pole under which all the poles ofelyZ, 

are seen at their real angles, and is called the alignment point of the zone line. 

The edge between two faces 

The edge between two faces P, and P is parallel to their zone axis: it is therefore normal to 

the zone plane P;MP> and to HM. 

Figure 24.5a Figure 24.5b 
+ 
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We represent the edge by its pole R. To.construct this pole, rotate about HC; since MR 
is normal to MH, R lies on the intersection of HC and the normal to Hm. 

2 FRONTAL PROJECTION 

This is a projection onto a plane parallel to the gnomonic projection plane. The edges 
which define the crystal faces are perpendicular to the zone lines of intersecting planes 
and the gnomonic projection enables the direction of these edges to be determined—but 
the lengths of the edges depend on the conditions under which crystal growth took 
place. In the frontal projection, the faces can be more or less developed so that an 
accurate representation of the crystal is obtained. 

Our example is zinc bromate, Zn(BrO3)2.6H,O (cubic) which, when grown in aqueous 
conditions, exhibits the forms {100} and {111}. 

O CONSTRUCTING THE GNOMOGRAM 

This construction is carried out from measurements of the interfacial angles. 

The faces (100) and (010) have their poles at 
infinity. (9 = 90°). The face (111) has angles 
y = 45° and p = 45°44’. 

The poles of the {111} form-faces lie at the 

corners of the square circumscribing the 
gnomonic circle, since: 

tanp = RV2/R = V2 = tan54°44’, 

The various zone lines are drawn on the 
gnomogram, but poles with an angle p > 

d 90° are omitted so as not to encumber the 
Figure 24.6 diagram. 

© CONSTRUCTING THE FRONTAL PROJ ECTION 

To do this it is only necessary to construct the normals to all those zone lines which 
correspond to an edge. 

In figure 24.7, the construction lines are shown for the edge between the faces (001) 
and (111); similarly, the edge between the faces (111) and (111) and the corresponding 
zone line are shown in bold lines. 

In this example, the relative developments of faces having the same form have been 
made identical. 
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Figure 24.7 

3 ORTHOGONAL PROJECTIONS 

OG CONSTRUCTING THE GUIDE LINE 

To draw the crystal, a normal projection is made onto a plane which is oblique to the 
plane of the drawing. To visualise correctly all the faces, the plane on which the 
projection is to be made must be chosen to be neither parallel not perpendicular to any 

of the crystal faces. 

A projection plane which is often used is 
that passing through M whose trace GL 
on the gnomonic plane makes an angle 
y = 108° and an angle p = 9°. 
Figure 24.8 shows how to construct the 
guide line GL and its alignment point A. 

Figure 24.8 (CA since Hm = HA). 

O CONSTRUCTING THE LINES OF PROJECTION 

The normals to the frontal plane are normal to the guide line GL of this plane. In the 

oblique projection, the corners of the crystal therefore lie on the perpendiculars to GL 
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from the corresponding corners of the frontal projection. These perpendiculars are the 

lines of projection. Note that edges normal to the frontal plane coincide with the 

projection lines. 

O CONSTRUCTING THE EDGES 

In this construction we seek the edge between two faces P; and P2 whose poles p; and pz 
are on the zone line LZ. This edge is normal to the zone plane p;Mp> and hence to all 
lines in this plane. If B is the intersection of the zone line LZ and the guide line GL, the 

edge will be normal to MB. 
When the oblique projection plane is swung about GL onto the plane of the drawing, 

the point M arrives at A (the alignment point of GL) and the point B remains stationary 
since it lies on the hinge GL. : 

In the plane of the figure, the edge being sought is thus normal to the line AB. To 
construct, for example, the edge between (111) and (111) we determine the point Bop and 
draw the straight line ABp. In the frontal projection the edge will be bounded by F and 
G; in the oblique projection the edge will be normal to AB and bounded by the lines of 
projection from F and from G. Similarly, the edge EF between the faces (001) and (111) 
is normal to AB,, and the edge GK between the faces (010) and (111) is normal to AB». 

To draw the orthographic projection, we begin by drawing consecutively all the edges 

of one face, followed by the adjacent faces. If the figure obtained is not satisfactory, the 
relative development of the faces can be modified in the frontal projection, or the angles 
of the guide line can be modified 

Frontal 
projection 

Gnomogram 

Zinc bromate 

{100} and {111} 

Figure 24.9 



Appendix C 

The Seventeen Plane Groups 

_ Apart from their academic interest, plane groups find application in surface physics. The 
groups relate to the regular tiling of a plane surface, and the Dutch engraver Maurits 

Cornelius Escher! made numerous illustrations involving such tiling. An excellent 
exercise is to take his engravings and look for the groups used in them and the symmetry 
elements. 

1 AXES OF ROTATION AND PLANE LATTICES 

The lattice must remain unchanged during tiling operations, and the only direct axes 
possible are therefore 1, 2, 3, 4 and 6. Only axes normal to the plane are taken into 
account in two-dimensional lattices. For plane symmetries with one twofold axis, 
(centre of symmetry), the inversion operation is identical. In plane geometry, we must 
also consider symmetry about a straight line. This line may be considered as the trace of 
a mirror plane normal to the plane; this ‘mirror-line’ is denoted m. 

Only four systems are possible, given the restrictions on symmetry operations 

compatible with the periodicity of a plane lattice. 

O THE HEXAGONAL SYSTEM 

The cell is such that: a = b and y = 27/3. It is compatible with sixfold or threefold axes. 

aa Z es /\ 

“ : . 

V7 w 
we \/s Ae! yy B V 

Figure 25.1 

'M.C.ESCHER, The Graphic Work, Oldbourne, London (1960). 
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A sixfold axis at O will generate nodes B, C, D, E and F starting from node A, while a 

threefold axis at O will only generate nodes C and E. But if the cell is part of a lattice, 

there also exists a threefold axis at C which will generate nodes B and D starting from 

node G; the final result is thus identical. 

O THE SQUARE SYSTEM 

The base vectors are: a= and y = 7/2. The cell is compatible with fourfold axes. 

O THE OBLIQUE SYSTEM 

The base vectors are general: a #b and y # 7/2. The cell is compatible with twofold 

axes. 

O THE RECTANGULAR SYSTEM 

The cell has a# band y = 77/2. 
For the lattice to remain unchanged, any mirror-line must be parallel to one of the 

base vectors and normal to the other; the lattice is thus rectangular. 

2 THE BRAVAIS LATTICES 

Non-integral lattice translations which conserve lattice symmetry are sought. For the 
hexagonal system, translations of the type: tl = 1/3a + 2/3b and t2 = 2/3a + 1/3b are 
possible, but there exists a simple cell with the same symmetry. In all the lattices, the 

translations a/2 and b/2 must be excluded either because they do not conserve symmetry 
(hexagonal and square systems) or because they enable smaller cells_to be defined 
(oblique and rectangular systems). 

The translation (a +b) does not conserve hexagonal symmetry and leads to a 
smaller cell in the square and oblique lattices, but it does conserve symmetry in a 
rectangular cell which will then be centred. 

Thus there exist five plane Bravais lattices: 

primitive oblique p, 

primitive rectangular p and centred rectangular ec, 

primitive square p, 

primitive hexagonal p. 
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To distinguish plane from three-dimensional lattices, Bravais lattices are denoted by 
_ lower-case letters. 

3. PLANE POINT GROUPS 

- The combination of plane symmetry operators (axes and mirror-lines) leads to the ten 
plane groups (with notations identical to those of the point groups). In table 1, the four 
holohedral classes (which have the symmetry of the lattice) are in bold letters and the six 
Laue classes in italics. 

Table 25.1. The ten plane classes 

Oblique 1 2 
Rectangular m 2mm 
Square 4 4mm 
Hexagonal 3 3m 6 6mm 

4 PLANE GROUPS 

The product of point symmetry operations and the group of translations is a single 

operation of new symmetry, the mirror glide line, denoted g, and shown by dashed lines. 

Combining all the possible operations leads to seventeen plane groups sharing the 
same construction principals as for space groups. The notation used is also identical. 

Table 25.2. The seventeen plane groups 

Classes Groups 

1 pl 

2 p2 

m pm pg cm 
2mm p2mm p2mg p2gg c2mm 

4 p4 
4mm p4mm p4gm 

3 p3 
3m p3ml p3lm 

6 p6 
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The seventeen plane groups are illustrated below. The whole set of equivalent objects 

within the cell is shown wherever clarity is not thus compromised. 

Figure 25.1b 

pm 

Figure 25.1d 

cm 

(cg) 

Figure 25.1f 

plme. te 

(p2gm) -&*~ 

GQGPa-- &S.-- l | 
Figure 25.1h 

p2 

Figure 25.1c 

ps 

== 

Figure 25.le 

p2mm 

Figure 25.1g 

p2eg 
; : 

° 

! 
Figure 25.1i 
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p4 

Figure 25.1k 

Figure 25.11 Figure 25.1m 

Figure 25.1n Figure 25.1o 

Figure 25.1q 

Figure 25.1r 



Appendix D 

The 230 Space Groups 

Classes Space groups 

Triclinic 2 groups (1 to 2): 

Pl 
Pl 

Monoclinic 

2 
m 
2/m 

13 groups (3 to 15): 

P2 P2; e2 

Pm Re Cm 
P2/m P2;/m C2/m 

Orthorhombic 

222) 

mm2 

59 groups (16 to 74): 

P222 P222, R222 
1222 12)2,2, 
Pmm2 Pmec2, Pcc2 
Pba2 Pna2, Pnn2 
Abm2 Ama2_ Aba2 
Ima2 

Pmmm Pnnn Pccm 
Pcca Pbam _ Pccn 

Pbca Pnma Cmcm 
Ceca Fmmm_ Fddd 

Tetragonal 

4/m 
422 

4mm 

42m 

68 groups (75 to 142): 
P4 P4, P4, 
P4 14 
P4/m P4,/m = P4/n 
P422 P42;2 + P4,22 
P432;2 1422 14,22 
P4mm P4bm P4.cm 

P4,b¢ «14mm _—s 14cm 
P42m = P42 P42,\m 
P4n2 14m2 142c 

P4322 

P4,mc 

P4b2 

(continued) 
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(continued) 

4/mmm P4/mmm P4/mce P4/nbm P4/nnc P4/mbm P4/mnc P4/nmm 
P4/ncc P4,mmc P4,/mcm P4,/nbe P45/nnm 14;/amd 14,/acd 
P4,/nmc P4,/mbc P4,/mnm14/mmm 14/mcm 

P4,/ncm 

Trigonal 25 groups (143 to 167): 

a} P3 P3, P32 R3 
8 P3 R3 
32 P3i2 P321 P32 eS (2 ees le ee e352) R32 
3m Pomp  P3im. | (P3ci P3lc R3m R3c 
3m P3im P3lc P3ml _  P3cl R3m ~=—- R3c 

Hexagonal 27 groups (168 to 194): 

6 P6 P6, P65 P62 P64 P63 
| 6 P6 
| 6/m P6/m P63/m 

622 P622 R622) P6522 R622) R622) P6322 
6mm Poémm  Pécc P63;cm P63mc 

62m P6m2 Péc2 P62m P62c 
6/mmm P6/mmm P6/mcc P63/mcm P63/mme 

Cubic 36 groups (195 to 230): 

2. P2358 23 123 _ P23 12,3 a RS 
“m3 Pm3 Pn3 Fm3 Fd3 Im3 Pa3 Ia3 
432 P432 P432 F432 F4,32 1432 P4332 P4,32 

a 14,32 is S s é 2 
43m P43m = =F43m —=—s«s143m P43n F43c 143d = 
m3m Pm3m = Pn3n Pm3n Pn3m Fm3m Fm3c Fd3m 

Fd3c Im3m ____Ia3d 

Groups in this table are classified into ‘standard groups’ as in the International Tables 

(i.e. base vectors are chosen in accordance with conventions). If alternative base vectors 

are chosen, this normally involves modifying the name of the group. In order to follow 

the notation in the International Tables, the cubic classes m3 and m3m are denoted m3 

and m3m. Note also the nomenclature of trigonal groups which have a hexagonal cell. 
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Making three-dimensional models 

Tetrahedron, octahedron, pentagonal dodecahedron and rhombohedron 

ABEL 
r > 

en 

Begin by gluing the 
two pieces together 

by tab 1. y a. 

To make a dodecahedron, cut out two identical 
pieces. Remove the dotted tabs on one of the 

pieces. 

Figure 26.1. Copy figures (after enlarging if desired) onto thin card. Score the lines with 

a ball pen to make folding easier. Cut out, bend and assemble using universal glue. The 
cube is made in a similar way to the rhombohedron. 
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Strengthen the centres of the net and the transparent paper with adhesive tape. On 

the transparent paper, draw a circle with the same radius as the net. Use a pin as 
common axis of rotation for paper and net. 

3 Transparent paper 

=e 6 «Net 

Figure 26.2 

Spherical trigonometry relations 

Angles of the triangle: A, B, C. Sides of the triangle: a, b, c 

cosa = cosb. cose + sinb. sinc. cos A 

cos A = —cos.B.cosC + sin et cosa 

sina sinb_ sinc 

snA sinB_ sinC 

Reciprocal lattice relations 

Awe pe —f43 cx 24d 

V Vv Vv 

cos f. cos y — cosa ane cos B*. cos y* — cos a* 
2h GL ACS a ee x= 5 : sin B. siny sin B*. sin y* 

Cosine 

1 1 
|A*]] = = 

a.sinB*.siny — a.sin B. sin y* 

* * 

Nau al. (hkl) Nucl -Qaxs =1 

The axis [www] of a zone containing the plan (hk/) is such that: 

hut+tko+lw=0 

—— 



Appendix E 

Using the Programs 

The programs on the disk which accompanies the book are designed to help you 
through the more difficult parts of the course. All the programs have graphic displays, 

many of which were used in the numerous illustrations. This appendix consists of a brief 

- description of what you can do using each of the programs. I have designed all the 
programs to run under Windows, now that this has become a standard. When I first 
started writing the programs the only available user-friendly interface was Microsoft’s 
‘VisualBasic’, which explains my choice of programming language. Many PCs are now 
equipped with Windows 95, but to ensure compatibility with Windows 3.1x, the 
programs are all in 16-bit versions. 

Thus the applications all follow Windows standards and conventions. 

—IJn certain menus, you have to supply information into a dialogue box. 
—All these dialogue boxes are ‘modal’, i.e. you have to close them before the program 

can continue. If a value you enter would lead to a ‘fatal’ error the program waits for 
you to enter an allowed value before continuing. If the error would not be ‘fatal’, the 
erroneous value is simply replaced by zero. 

—You must fill in all the data fields before closing the dialogue box. You can pass from 

one field to another by using the tabulation [Tab] key. You can go back to the 

previous field by pressing [Shift][Tab]. 
—Some of the programs have an external help file. This file has to be in the same folder as the 

application. [F1] gives the Help summary page. When a menu has been opened, [F1] gives 
direct access to the relevant page in the Help file. These help files contain both information 
on using the application and theoretical notes on the topic involved. 

—Several applications can be used at once; to switch from one to another, use the 

Windows task bar (Windows 95) or [Alt][Tab] (Windows 3.1x). 

Minimum system requirements: 
A 386 processor with 8 Mo of RAM. For reasonable response times I recommend as a 
minimum configuration a Pentium 100 or 486DX4-100. The programs have been tested 
with VGA and SVGA graphic cards. To ensure compatibility, I have only used 16 
colours. You must of course have a mouse. The graphics have been successfully tested 

on practically all the Hewlett-Packard ‘Laserjet’ and ‘Deskjet’ printers. 
As well as printing, you can create HP-GL format files which are recognised by most 

popular word processor and graphics applications. 

FORMS 
This program enables you to visualise convex solids and crystals. To display an object, 
use the menu ‘File/Load’ to select the folder and the name of the file in the list (double 
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click on the name); the files have the extension ‘.FOR’. The commands available are 
displayed in a window. [+] and [—] keys are those on the number pad. The difference of 
effect between [+] and [PgUp] is only apparent when you are in perspective mode. You 
can rotate the object, change its size and display it in perspective or isometric projection. 
In transparent mode the hidden faces are displayed dotted. 

You can create your own objects. You are advised to print a list (Menu ‘Print /Print 

data’) of the data relating to a few of the objects supplied (starting with simple examples 
such as the cube and the octahedron) so as to understand the system of representation. 
Next, make a rough sketch of your object, and determine the Miller indices of its faces. 
By using fractional indices you can give the faces different developments. Finally, you 
use the Gp program (with the correct parameters) to calculate the coordinates of the 
vertices. You can then create your data file (Menu ‘File/Create a file’). It is essential to 
enter the indices of the face vertices in trigonometrical sense for the test of face visibility 
to function correctly. Several examples of actual crystals are included together with all 
the crystalline forms in the atlas. 

GP: Point Groups 

See chapters 2, 3 and 6. 

1—Lattice calculations: 
First, you must select a group of the system to which the compound you are studying 
belongs (e.g. mmm for an orthorhombic compound)), then enter the lattice parameters 
(Menu: ‘Options/Choice of parameters’). You can then use the various options in the 
‘Calculations’ menu: calculate the modulus of a reciprocal or direct row, the angle 
between rows, the coordinates of a vertex, the indices of an edge between two planes 
(Zones option) and so on. 

2—Stereographic projection: 
With this program you can display the stereographic projections of the 32 symmetry 
point groups together with projections of the poles (representing the normals to the 
crystal faces). You can work either with angles or Miller indices. The program 
automatically generates all the equivalent directions in terms of the symmetry 
operations of the group. Simultaneous display of several forms is possible, together 
with various operations such as zone tracing and rotation of the diagram. 

With the Menu ‘Net’ you can print out a Wulff or polar net; these nets enable certain 
functions in the program to be carried out manually. 

SYM: Symmetry Elements 

See chapters 4, 6 and 7. 
This program has been designed to enable you to display the elementary symmetry 

operations and to show the essential difference between the internal symmetry of an object and the symmetry elements which can be applied to that object. 
Using the menu ‘Selection/Symmetry element’, choose one of the symmetry elements from the list. You can adjust the viewing angle, the size of the objects and the mode of projection using keyboard commands. The latter are identical to those in the FORMS program. With the command ‘Selection/Helix’ you can display screw axes. The menu ‘Objects’ allows you to choose different objects with internal symmetries 1, m, mm2 or mmm. 

LAUE: Simulation of Laue Diagrams 

See chapters 10 and 11. 
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Initially, this program was written as an aid to crystal orientation by the Laue 
method. A photograph is first produced and, in the program, the orientation of the 
crystal is modified so as to make the calculated pattern and the pattern actually obtained 
coincide. In this way the difference between the actual position and the required position 
can be determined. It then only remains to adjust the crystal orientation accordingly to 
obtain almost perfect adjustment. 

In the ‘File’ menu, choose the option ‘Input data’ and enter the lattice parameters (a, 
b, c, «, B, y). Modify the minimum and maximum wavelengths if necessary (the 
minimum wavelength depends on the X-ray tube supply voltage). Choose the film- 
specimen distance. Select the systematic extinctions for the space group of the 
compound (consult the ‘International Tables’ if you are not sure). 

In the menu ‘Drawing/Rotation’, select the mode of determination of the crystal 

orientation; the default setting is ‘Row’ it is also possible to work with angles. In the 
same menu select either the transmission (Direct spectrum’) or reflection (‘Back 
spectrum’) method. The theoretical diagram is then calculated and displayed. If you 

select ‘Gnomonic’ the gnomonic projection is calculated instead of the spectrum. You 
_can also determine all the spots which are in zone with a given row. 

The default values in the dialogue boxes will display the diffraction patterns of cubic 

structures. Values of the “Upper indices’ in the dialogue boxes are calculated values; 

these can be decreased. The program has a Help file with a few notes on the theory, and 
in particular a page describing orientation of the crystal in the laboratory frame. 

’ BRAGG: SIMULATION OF ROTATING CRYSTAL PATTERNS 

See chapters 10, 12 and 13. 

This program simulates the common methods of monochromatic X-ray diffraction. 

“Only spot positions are calculated, not intensities which would require the use of much 
more sophisticated programs. 

In the menu ‘File’ select the option ‘Input data’ The dialogue box is practically the same as 
in the Laue program. Enter the lattice parameters (a, b, c, «, B, y). Choose the X-ray 
wavelength; a list of the common anodes is given, but you can set a different value if you wish. 
Select the systematic extinctions for the space group of the compound by clicking in the list 

displayed. (Again, consult the ‘International Tables’ if you are not sure). 
In the menu ‘Choice’, select the technique used. For single crystal methods, choose 

the rotation row. For the Weissenberg method, you must also specify the reciprocal row 
chosen as origin for the rotation of the crystal. For the three methods using a single 
crystal, print-outs are given in formats of the most common cameras (12 x 12cm for 

Buerger photographs, 180mm circumference Bragg and Weissenberg photographs). 
This enables experimental results to be compared with those calculated by the program. 

In the Bragg method, the rotation is assumed to be complete, and there are therefore 

superimposed spots. One option enables you to eliminate from the list of spots all those 

which correspond to the same angle of diffraction. 
This same option is offered for powder diagrams. In this mode, the program displays 

a sorted list of lattice spacings and the corresponding indices. 

CRYS: Studying crystal structures 

See chapter 16. 
This program displays the internal structure of crystals. Select the menu ‘File/Open’ 

and in the dialogue box open the folder containing files with the extension *.CRI’. 
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Double click on the chosen file to load it. The data for the compound selected are 

displayed and on clicking on ‘OK’ the unit cell is displayed. The default mode is 
‘transparent’, which gives the greatest clarity; the atoms are shown as transparent circles 

whose radius is a quarter of the real radius. In compact mode (menu ‘Structure/ 
Compact mode’), the atoms are represented by opaque discs with a radius equal to that 
of the atom. By selecting the menu ‘Structure/Increments’, you can change the direction 
of observation of the structure to suit the aspect you want to study, using either the 

keyboard arrows or the mouse (click on the on-screen arrows). You can also set a 
particular row or direction along which you wish to look, using the menu Structure/ 

Along a row. 
It is not always easy to understand the internal pattern in a crystal through a single 

unit-cell. Using the option ‘Structure/Multiple’ you can increase the volume of space 
depicted; the maximum number of atoms is limited to 400. 

The display can be modified with various other options: display the base vectors, the 
unit-cell, a caption, numbering of the atoms to enable them to be identified. The radii of 

the atoms and their colour can both be modified. If you wish you can save any 
modifications in a new data file. 

The commands in the menu ‘Coordinations’ enable you to examine the the 
neighbourhood of an atom. With the command ‘Lengths’ you can find the distance 
between two atoms, and the command ‘Angles’ is used to find the angle between two 
bonds. ‘Normal mode’ enables you to select those atoms surrounding a given atom 

which fulfil certain conditions (type of atom and distance from the given atom). Finally, 
using the ‘Automatic’ command you can draw the coordination polyhedra of the 
structure. 

With the command ‘Structure/Lines’ you can draw lines anywhere on the structure, 
for example to show bonds; these can be printed but any rotation of the structure will 
caused them to be erased irreversibly. 

Several printing options are included in the menu ‘Print’. Before using the option 
‘Print/HP-GL file’, it is advisable to check that the filter in the importing program used 
recognizes such files properly. If the ‘Colour Print’ option is selected when using a black 
and white printer, the results will, depending on the printer configuration, either be a 
range of greys or pure black and white. 

You can create your own data files. Using a text editor such as ‘NotePad’, you should 
study the structure of the data files included with the program and read the associated 
Help file. If you are considering using homogeneous matrices, you should carefully read 
the corresponding page in the Help file. 

GRAPH: A Graphic Calculator 

This is not a crystallography program but a simulation of a numeric/graphic calculator. 
You can draw curves Y = f(X, K) where X is a variable and K a parameter. The 
function to be studied, the range of X and the step are written in a dialogue box. If the 
step is equal to zero, the value of the function is calculated for the value of X which 
corresponds to the lower bound. If the step is different from zero, the program plots the 
curve Y = f(X) in the selected range. By modifying the values of the lower bound and 
the step, it is possible to avoid values that would lead to a division by zero. You can 
work in cartesian coordinates, polar coordinates or semi-logarithmic coordinates (Bode 
diagram). In this system of coordinates, the lower bound must of course be positive. The 
program uses the usual priority rules for operators. In case of doubt, you can use 
brackets. The program detects any syntax errors in the functions but does not indicate 
where they are. 
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Brehmstrahlung radiation, 126 
Buerger Method, 177-80 

Cadmium fluoride, 236 
Calcite, 239 

Calcium fluoride (fluorite), 236 
Calcium oxide, 235 
Camera 

Buerger precession, 177-80 

cylindrical film rotation 170 
Debye-Scherrer, 186-91 
Guinier, 192 

Seeman—Bohlin, 192 

Weissenberg, 174-7 

Centre of symmetry, 43 : 
Centred hemihedral class, 76 
Centrosymmetric group, 77 

Cesium chloride, 155, 217, 235 
packing, 245 

Change of coordinate system, 17—20, 90 
Characteristic radiation, 126 
Classes, Laue, 77 

Close packed structures, 240 
Cobalt fluoride, 237 
Coefficient of X-ray absorption, 129 
Compton scattering, 128 
Computer programs, 280-3 
Condensed amorphous states, 258 
Continuous radiation, 126 
Coordinates, fractional, 24 
Coordination, 231-4 

Copper-—gold alloys, 244 
Co-set, 59 

Counters, 132-4, 193 
Covalent structures, 245 
Covariance, of Miller indices, 17 
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Crystal class, 72 

Crystal, ionic, 233-40 
Crystal lattice, 9 

Crystal system, 73, 82 

Crystobalite, 237 
Cubic close packing, 241 
Cubic system, 38-41, 67, 74, 92-94 

atlas, 328 
Cuprite, 247, 306 

Debye formula, 257, 258 
Debye-Scherrer method, 186-91 
Debye-Waller factor, 154 
Density, electron 146-7 
Detectors, X-ray, 132-4 
Diamond, 217, 245 
Diffraction, 137 

by amorphous substances, 257-9 

by plane lattice, 138 

by surfaces, 267—70 
by three-dimensional lattice, 148-53 

electron, 209-11 
Fraunhofer, 137 

intensity, 153-8 

neutron, 203-8 
pattern, 138 
X-ray, 146-59 

-Diffractometers, automatic 
curved detector, 195-6 

linear detector, 195 
proportional counter, 193-4 

Direct lattice, 9, 272 

Electron density, 143, 144, 146-7 

Electron diffraction, 209-11 
microscope, 211 
scattering factor, 210 

Elements of symmetry 37, 55—6, 99, 

108-113 
Enantiomorph, 44, 102 

Equation, Mott, 210 

Equatorial layer 171 
Ewald construction, 150 
Ewald sphere, 150, 169, 170, 171, 173, 178 

EXAFS, 259-63 

Exercises, 291—305 
Extinctions, 216-7 

Face, crystal 
and law of rational indices, 4-5 

poles of, 26 
indexing, 35-6 
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Factor 
Atomic scattering, 144-5 
Debye-Waller, 154 
atomic scattering, 144-6 
form, 149-50 
Lorentz, 157-8 
structure, 147, 155-6 

Ferrous carbonate, 240 

Ferrous fluoride, 237 
Filter, X-ray, 125, 131-2 
Fluorescence, X-ray, 263-7 
Fluorite (calcium fluoride), 236 

Fourier transform 
structure factor, 147 
Debye-Waller factor, 154 

in EXAFS, 262 
of electron density, 223, 253 

Fractional coordinates, 24 
Frame, international, 22—24 
Friedel’s law, 77, 156-7, 163 

Gallium arsenide, 246 
Gases, 257-8 
Geiger—Miiller counter, 132 

General positions, 113, 118 
Geometric relationships 87-94 
Glide plane, 52, 102-4, 215-6 
Gnomonic projection, 164-7 
Goniometer, four-circle, 180—2 

two-circle, 27, 33-4 

Graphite, 247 

Group 
abelien, 57 
cyclic, 58, 63 
dihedral, 58, 66 
generators, 108 
non-crystallographic, 388 

plane, 395-9 

point, 57-79 
proper and improper, 60-1 

space, 97-114 

structure of, 57 
Guinier camera, 192 

Hemihedral class, 76 
Hermann—Mauguin, 66, 69-70, 75, 105 

Hexagonal close packing, 242 

Hexagonal lattice 88, 352 

Hexagonal system 74, 82 

atlas, 376 
Holohedral class, 75 
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Improper group, 60—1, 68-70 
Indexing 

faces, 35-6, 38 
diffraction spots, 171-4 
diffraction lines, 188—91 

Indices, Miller, 12, i6é 
Indium antimenide, 246 

Indium borate, 240 
Intensity, diffracted, 153-8 
International frame, 22-24, 273-4 
International symbols, 77, 101—2, 104 

International Tables, 100, 115 
Inversion, 26, 42, 43-44, 72 
Ionic crystals, 233-40 

stability, 233 
Ionic radii, 230 

JCPDS file card, 197 

K shell, 126 

Lattice, 9-12 

body centred, 81 
body centred cubic, 92 
Bravais, 80 

calculations, 273 
direct, 9) 272 
face centred, 81 

face centred cubic, 92 
hexagonal, 88 
node, 9 

plane, definition, 11 
primitive, 81 

reciprocal, definition, 12-16, 272 
relationships, 87-94 
rhombohedral, 88 
row, 9 

transformations, 273 
trigonal, 274-5 

Laue 

classes, 77, 80 
conditions, 148 

diagram, 161-4 
method, 160 

photograph, 164-8 
Law 

Bragg 151-3, 155 

Brage—Pierce, 130 
Friedel, 77, 156-7 
Moseley, 128 

of constancy of angles, 4 

Basic Crystallography 

of rational indices 5 

Layer, 170, 171-4, 176-7, 179, 180 
zero, 172, 174-6, 175 

Lead dioxide, 237 
Lead fluoride, 236 
Lorentz factor, 157-8 

Madelung constant, 229 
Magnesium carbonate, 240 
Magnesium oxide, 235 

Manganese dioxide, 237 

Manganese fluoride, 237 
Mauguin rule, 165 
Matrix, 52—54 

homogeneous, 53-4 
inversion, 53 
rotation, 52 

Mercuric fluoride, 236 

Merohedral class, 75 
Metallic radii, 231 
Metric tensor, 10 

Miller indices, 12, 16 

Mirror planes, 45-8, 55, 103-4 
Models, molecular, 232 

Molybdenum oxide, 237 
Monochromator, 182-4 
Monoclinic 

lattice, 16 

system, 38, 73-5, 81, 87 
atlas, 360 

Mott equation, 210 
Multiplicity, 77 

Neutron 

absorption, 208 

diffraction, 203-8 
scattering, 205-6 

Nickel arsenide, 252 
Nickel carbonate, 240 
Nickel fluoride, 237 
Node, 9, 55, 85-6 
Non-centrosymmetric crystal, 157 
Non-crystalline substances, 253 
Non-symmorphic group, 111-2 

Ogdohedral class, 75 
Operations, symmetry, 42-4, 55 

product of, 44-49 
Orthorhombic system, 74, 81, 87 

atlas, 362 

Patterson function, 219-21 
Pauling rules, 234 
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 Perovskite, 234, 238, 249 

Phase problem, 139, 143, 218-9, 225 
' Phase transitions, powder, 199 

Piezoelectric effect, 214 

Plane group, 395-9 
- Point group, 57 

co-set, 59 

cubic, 79 

definition, 57 
determination, 212-5 

dihedral, 66 
enumeration, 62 
examples, 58 
improper, 60—1, 68-70 
international nomenclature, 74 

lattice, 72 
non-cubic, 78 

~ orthogonal, 59 
product, 59 
proper, 60, 63-8 
relationships, 94—5 

sub-group, 59 
Polarisation factor, 141 
Pole, 26-30, 62 

conjugate, 62 

plotting, 284-5 
- Polyhedra, structure building, 248-52 

Positions, general, 113, 118 
Positions, special, 113, 118, 119 

Potassium nitrate, 240 
~ Powder methods, applications, 196-202 

Powder photographs, 185 

Product 
of symmetry operations, 44-9 

convolution, 223 
vector (double), 10 

Projection 
frontal, 392-4 
gnomonic, 165-7, 389-93 

orthogonal, 393-4 
stereographic, 26-41, 76-7, 167-8, 

284-6 
Proper group, 63-8 
Pyroelectricity, 214 

Radius 
ionic, 230 
metallic, 231 

Radius ratio, 233, 235 
Reciprocal lattice, 12, 16, 85-6, 272 
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Reflection conditions, 120 
Rigid sphere model, 230-1 
Row : 

direct, 12; 21 
definition, 9 

reciprocal, 13, 15, 21 
Rhombohedral unit-cell, 82 

Rotation, 43, 46-51, 275-6 

enumeration, 63 
proper, 49, 55 
improper, 49, 55 
row, 170-1 

Roto-inversion, 45, 46 
Roto-reflection, 46 

Rutile, 237, 250 

Sayre relation, 223-4 

Scattering, 139 
by electrons, 139 

coherent, 140 
Compton, 140 

incoherent, 140 
Thomson, 140-141 

by matter, 143 
factor, 144-6 

Sch6nflies, 7, 66, 69-70, 80, 87 
Scintillation counter, 133 
Screw axis, 51, 99, 216 
Seeman-—Bohlin camera, 192 

Silica (cristobalite), 237 
Silver nitrate, 240 
Sodium chloride, 235 

Sodium nitrate, 240 
Space groups, 97, 308 

construction, 106-8 

crystal, 98 
determination, 215-7 

notation, 105 
properties, 97 
symmetry elements, 99 

Spacing, interplanar 
and Bragg’s law, 151-2 
by Laue method, 161-162 
by rotating crystal method, 169 

Special positions, 113, 118, 119 

Spectrum, X-ray 
continuous, 125 

line, 125 
Sphalerite, 246 
Sphere, Ewald 150, 170, 173, 186 
Spinel, 238 
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Stereogram, 29, 34 

Stern’s formula, 260 
Stereographic projection, 37-41, 167-8, 

284 
Strontium fluoride, 236 
Strontium oxide, 235 
Structure determination 

by computer, 280-3 
powder method, 199-202 

Structure factor, 147, 155-7, 277-8 
Structure refinement, 225—6, 278-80 
Superstructure line, 199 
Symmetry 

axis, 33, 45-9, 54, 74 
centre of, 55 
class, point, 76 
element, 37 55-6, 99, 108-113 
operations, 42—4, 55 

product of, 44-49 
orientation, 8, 81 

Symmorphic group, 109-11 

System, crystal, 72-75, 76, 80, 81-2, 87-8, 
92, 94 

Tensor, metric, 10 
Tetartohedral class, 75 
Tetrafluoroaluminate structure, 249 
Tetragonal system, 74, 92 

atlas, 370 
Thomson formula, 142 
Thomson scattering, 128 
Thorium oxide, 236 
Tin oxide, 237 

Titanium oxide (rutile), 237 

Transformation, stereographic, 26 
Transition metals, 240 

Translation, 9, 42-3, 72-3, 80-81, 94 
affine, 53 

and space groups, 97-114 
allowed, 99, 102 

product with rotation, 49-52 

Triclinic system, 74, 81, 87, 274 
atlas, 359 

Trigonal system,74, 82, 73, 278 
atlas, 364 
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Trigonal lattice, 274-5 
Trigonometry, spherical, 31—3 

Unit-cell, 87-9 
atom positions in, 25 
definition, 9, 34, 38, 108 

multiple, 10, 80 
number of electrons in, 219 
parameters, 172, 199, 212-3 

primitive, 9 
volume, 10, 12 

Uranium oxide, 236 

-Vectors, base, 9, 12, 13-14, 19-20 

Voigt, 201 

Weissenberg method, 174-7 
Wulff net, 28, 403 
Wurtzite, 247 
Wyckoff symbol, 119 

X-ray 
absorption, 128 

counting errors, 134 
detectors, 132-4 
diffraction, 123-36 

diffraction by surfaces, 267—70 
filters, 130-2 

fluorescence spectrometry, 263-7 
optics, 135 

production, 123 

power supplies, 125 
scattering, 139 
tubes, 124 

wavelengths, 128-30 

Zinc blende, 246 

Zinc carbonate, 240 

Zinc fluoride, 237 
Zinc oxide, 236 

Zinc sulphide (Wurtzite), 247 
Zone, 34—6 

definition, 20 

curve, 163-4, 168 

axis, 20, 30, 163-4, 168 
circle, 30-1, 285-6 
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- eo Basic Crystallography deals with the basic principles of 
= geometrical crystallography which are introduced through the 
=) study of lattices, symmetry operations and the enumeration and 
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=) projection is used to enable students to visualise crystallographic 
ay structures in real space. 

The author devotes the second part of the book to X-ray 
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depend on the lattice and how spot intensities are related to the 

Se iunit-cell. To give students an understanding of the principles of 

= structural determination, the classical techniques of diffraction 

= and methods of interpreting spectra are examined. To tackle the 
more challenging aspects of the subject, help is given to the 

| student in the form of exercises with answers and a computer 
| | — disk accompanies the book EViCe\W ilar Mast=(e(-1e-m (OM Weld aalcelele|al 
Sa exercises and plot their own crystallographic data. 

e. | Written primarily for final year undergraduate students of 

| physics, chemistry, materials science and geometry the book will 
also be useful for engineering students. 
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