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PREFACE 

This book is intended to be a complete and clear introduction to the field 

of crystallography for undergraduate and graduate students and lecturers in 

physics, chemistry, biology, materials and earth sciences, or engineering. It 

includes an extensive discussion of the 14 Bravais lattices and the reciprocal 

to them, basic concepts of point group symmetry, the crystal structure of 

elements and binary compounds, and much more. Besides that, the reader 

can find up-to-date values for the lattice constants of most elements and 

about 650 binary compounds (half of them containing rare earth metals). 

The entire notation in this book is consistent with the International Tables 

for Crystallography. 

We have made all possible effort to attract the reader with high quality 

illustrations showing all basic concepts in this area. Our purpose was to 

show rather than describe “using many words” the structure of materials and 

its basic properties. We believe that even readers who are completely not 

familiar with the topic, but still want to learn how the atoms are arranged in 

crystal structures, will find this book useful. 

The text is organized into six chapters. Chapter I introduces basic 

concepts and definitions in the field of crystallography starting with one- 

and two-dimensional structures. Chapter II provides a detailed description of 

the 14 Bravais lattices. Chapter III describes the most important crystal 

structures of the elements with special emphasis on the close-packed 

structures and the interstices present in them. Chapter IV presents the 

structures of the most important binary compounds and reports the lattice 

constants of about 650 of them. Chapter V is devoted to the reciprocal 

lattice. Chapter VI, which is the final one, shows the relation between a 

direct lattice and its reciprocal. 

All chapters are accompanied by exercises designed in such a way to 

encourage students to explore the crystal structures he/she is learning about. 

Our goal always is to help the reader to develop spatial intuition by solving 

the exercises graphically. Since computers are an essential part of today’s 

education, we invite the reader to make use of crystallographic databases. In 

most of the database web pages, it is possible to visualize crystal structures 

in 3D either directly from the web browser or by downloading input files 

with the coordinates of the structures. Some of the freely available (or with 

open access options) databases are: 
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e ICSD for WWW-interface with free demo access 

(http://Acsd.ill.fr) 

e American Mineralogist Crystal Structure Database (AMCSD) 

(http://rruff.geo.arizona.edu/AMS/amcsd.php) 

e Crystal Lattice Structures 

(http://cst-www.nrl.navy.mil/lattice/index.html) 

e Crystallography Open Database (COD) 

(http://cod.ibt.It). 

We also encourage more advanced readers to create their own input files 

with crystal structure coordinates or download them from the web. The 

structures can be then viewed with, e.g., the freely available software called 

Jmol (http://www.jmol.org). This program allows for the structure to be 

manipulated, 1.e., rotated, scaled, and translated, and allows for the 

measurement of internal coordinates, e.g., bond lengths and angles. 

We hope the reader will enjoy this book and will use it as a gateway for 

understanding more advanced texts on this topic. 

N. Gonzalez Szwacki 

Houston, USA 

T. Szwacka 

Mérida, Venezuela 

July 2009 
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ABBREVIATIONS 

The following abbreviations are used throughout this book: 

bec body centered cubic 

ccp . cubic close-packed 

dhcp double hexagonal close-packed 

fcc face centered cubic 

hcp hexagonal close-packed 

sc simple cubic 

thcp triple hexagonal close-packed 

NN Nearest Neighbors 

NNN Next Nearest Neighbors 

TNN Third Nearest Neighbors 

RE Rare Earth 

™T™ Transition Metal 
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I. CRYSTAL STRUCTURE 

1. Introduction 

Many of the materials surrounding us (metals, semiconductors, or 

insulators) have a crystalline structure. That is to say, they represent a set of 

atoms distributed in space in a particular way. Strictly speaking, this is the 

case when the atoms occupy their equilibrium positions. Obviously, in the 

real case they are vibrating. Below we will see examples of crystal 

structures, beginning with one-dimensional cases. 

2. One-Dimensional Crystal Structures 

A one-dimensional crystal structure is formed by a set of atoms or 

groups of them distributed periodically in one direction. In Fig. | there are 

three examples of one-dimensional crystal structures. In all three cases, the 

whole crystal structure may be obtained by placing atoms (or groups of 

them), at a distance a =|a| one from the other, along a straight line. When 

we translate an infinite structure by vector a we obtain the same structure. 

The same will occur if we translate the structure by a vector equal to the 

multiple of vector a, that is, na, where ne Z. The vector a is called a 

primitive translation vector. A clear difference can be seen between the 

crystal structure from Fig. la and the other two structures in this figure. In 

the structure from Fig. la all the atoms have equivalent positions in space, 

while in the case of structures from Figs. 1b and Ic this does not occur. It 

can be easily observed that in the structure from Fig. 1b the nearest neighbor 

(NN) atoms of the atom labeled as 1 (open circles) are of another type (filed 

circles) and the NNs of the atom labeled as 2 are atoms of type 1. In the 

case of the structure from Fig. lc, the atom labeled as | has its NN on the 

right side, while the atom labeled as 2, on the left side. 

The fact that after translating an infinite crystal structure by the 

primitive translation vector a or its multiple, na, we obtain the same 

structure characterize all crystal structures. This is the starting point to 

introduce a certain mathematical abstraction called lattice — a periodic 

arrangement of points in space, whose positions are given by vectors na 

which can have as an initial point any point of the one-dimensional space. 
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Figure 1 Three different one-dimensional crystal structures: (a) periodic repetition of 

identical atoms, (b) periodic repetition of a building block composed of two different atoms, 

and (c) periodic repetition of a building block composed of two identical atoms. 

The atomic arrangement in the crystal structure looks the same from any 

point (node) of the lattice, what can be seen in Fig. 2, where we show two 

different arrangements of lattice points respect to atoms of the crystal 

structures from Fig. 1. Therefore, all lattice points have equivalent positions 

in the crystal structure, what we cannot say in general about the atoms. As it 

is shown, e.g., in Fig. 1b the equivalency between the neighborhood of the 

atoms does not exist when the crystal structure is made up of more than one 

type of atoms. Fig. 1c shows that the distribution of atoms in space can be 

another possible source of inequivalency between the atoms. The lattice is a 

mathematical object that possesses the information about the translation 

symmetry of the crystal structure. The relation between the structure and its 

lattice will be discussed in details below. 

Let us now determine the number of atoms in a volume defined by 

vector a. When the initial and final points of vector a coincide with the 

center of atoms (see Fig. 2a), one half of each atom belongs to the volume in 

consideration, so the volume possesses one atom. Besides that, segment a 

may have other atoms, what is shown in Figs. 2b and 2c. The volume 

defined by vector a always contains the same number of atoms, 

independently on the position of the initial point of the vector. 

The primitive translation vector a called also the basis vector of the 

lattice defines a unit cell of this lattice, which contains exactly one lattice 

point. This cell is called a primitive cell and its “volume” is equal to a= [al : 
From now on, the volume of the primitive unit cell will be denoted by Qo. 
The entire space lattice with all lattice points can be obtained duplicating an 
infinite number of times the primitive cell. The position of each cell replica 
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Figure 2 Two different arrangements of lattice points with respect to atoms of the crystal 

structure, for structures from Fig. 1. In both cases, the atomic arrangement in the crystal 

structure looks the same from any point of the lattice. The lattice basis vector a defines its 

primitive cell. 

is given by a vector na . The crystal structure is obtained when we attach to 

each lattice point a group of atoms, which are within the volume of the 

primitive cell. This group is called the basis. In the case of the crystal 

structure from Fig. 2a the basis consists of one atom, while in the case of 

Figs. 2b and 2c of two atoms. 

It is obvious that there is more than one way to propose a lattice for a 

certain crystal structure. For example, the lattice shown in Fig. 3 could be 

another option for the structure from Fig. la. The basis vector of this lattice 

is two times longer than that defining the lattice proposed in Fig. 2a. We can 

see in Fig. 3 that the atomic basis of the structure has now two atoms 

instead of one we had in the previous case. In general we use the lattice in 

a 

a _, 

Figure 3 A lattice for the crystal structure from Fig. la. In this case, the basis is composed of 

two atoms. Two different arrangements of lattice points with respect to atoms of the structure 

are shown. 
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which the atomic basis of the crystal structure is the smallest one, but 

sometimes it is convenient to use a different lattice, as we will see farther 

on. 

3. Two-Dimensional Crystal Structures 

We will now look at the two-dimensional case, beginning with the 

example shown in the Fig. 4. In this figure vectors a, and a, are primitive 

translation vectors. If the infinite crystal structure is translated to a vector 

R , that is a linear combination of vectors 4,, 4,, given by the formula 

R=n,4,+7,a, , where n,,n,€Z, CED) 

then the same structure as the original one is obtained. The vectors a,, 4, 

can be used to define a lattice. The lattice points may overlap with the 

centers of atoms like in the Fig. 4. By translating the replicas of the cell I, 

defined by vectors a,, a, in Fig. 4, through all the vectors R, we can 

reproduce the entire space lattice. 

The cell I in Fig. 4 is not the only one that can reproduce all the space 

lattice. There is an infinite number of such cells. For example, the cell II, 

defined by vectors 4; and 4) in Fig. 4, can also reproduce the entire lattice. 

The volumes of cells I and II are 

OQ, = 4@.a,sin 4.4.4.) —a,hoand, (2 —a.a, sin. (asa, Ge (ee) 

3a, + 24, 

Figure 4 A two-dimensional crystal structure. The lattice points overlap with atom centers. I 
and II are examples of two unit cells that can reproduce the lattice. 
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respectively, where a,=a, and a,sin<(a,,4,)=a)sin<(a,,a,)=h. So, 

the two volumes are identical. 

We will demonstrate now that the cells I and II from Fig. 4 are 

primitive, since they only contain one lattice point. Those cells and also the 

cell 1 in Fig. 5 have 4 atoms at the vertices whose centers represent points of 

the lattice. Both, the atoms and the lattice points, are shared with 

neighboring cells. This is shown in Fig. 5, where a highlighted atom (lattice 

point) is shared by cells 1 to 4. Each cell has a fraction of an atom (lattice 

point) and the sum of the fractions is 1, giving one atom (lattice point) per 

cell. The points from the vertices of any cell that is a parallelogram 

contribute exactly with one lattice point to the cell. All primitive cells have 

the same volume. This volume corresponds to one point of a lattice. The 

most commonly used primitive cell is the one which is defined by the 

shortest or one of the shortest primitive translation vectors of the lattice 

(e.g. a,, a, from Fig. 4). These vectors are called basis vectors. Note that 

the choice of basis vectors is not unique, since even the shortest vectors can 

be chosen in several different ways. The parallelogram I in Fig. 4 is an 

example of a conventional primitive cell and vectors a,, a, are the 

conventional basis vectors. 

o ft # a de 

ys a ra if) Fa 
é . : fo 

Figure 5 The highlighted atom (lattice point) belongs to four cells which are marked from 1 

to 4, therefore only a fraction of this atom (lattice point) belongs to the highlighted cell 1. 

For the two-dimensional lattice that we are discussing in this section, we 

can choose a non primitive unit cell. An example of such a cell is shown in 

Fig. 6. The cell in this figure possesses two lattice points inside, so the total 

number of points belonging to it is three. 

Let us now place an additional atom in the middle of each parallelogram 

of type I from Fig. 4. The resulting structure is shown in Fig. 7. The 

additional atoms are of the same type as the atoms of the original structure. 
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aoe 

Figure 6 A unit cell that can reproduce the whole lattice. This cell is not primitive since 

contains 3 lattice points. The lattice points overlap with the centers of atoms. 

In Fig. 7 we can observe that the resulting crystal structure is of the same 

type as the original one, since in both cases the lattices can be chosen in such 

a way that the atomic basis of each structure possesses only one atom. The 

vectors a, and a, in Fig. 7 are the primitive translation vectors of such a 

lattice. Of course we could keep vectors a, and a, defined in Fig. 4 as the 

primitive translation vectors of the lattice for the structure from Fig. 7, but 

then the atomic basis would contain two atoms instead of one. 

If we place atoms in the middle of the parallelograms of Fig. 4 that are 

of a different type than the atoms of the host structure then the resulting 

crystal structure will look as shown in Fig. 8. In this case, the smallest 

atomic basis contains two atoms (one of each type) and the cell of type I 

from Fig. 4 represents the conventional primitive cell of the lattice. 

Finally, we will consider the case in which we place an additional 

atom of the same type as the host atoms in the cell of type I from Fig. 4, 

fm 
gs 

i 
a 

Figure 7 A two-dimensional crystal structure obtained from the structure from Fig. 4 by 
placing additional atoms in the centers of each unit cell of type I. The vectors a, and a, 
define a unit cell of the resulting structure which contains one atom. 
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Figure 8 A two-dimensional crystal structure made up of two types of atoms. The unit cell, 

defined by vectors a,, a,, has 2 atoms. 

however, this time not in the middle of the parallelogram, but in a position 

with less symmetry as it is shown in Fig. 9. In this case, the smallest atomic 

basis also contains two atoms but this time they are of the same type. We 

can observe in Fig. 9 that this crystal structure can be considered a 

superposition of two identical crystal substructures which are structures 

from Fig. 4. 

Next, we will consider two more examples of two-dimensional crystal 

structures, namely, the honeycomb and the two-dimensional hexagonal 

structures. Figure 10 shows the honeycomb structure with a conventional 

primitive cell that contains two atoms. This is the smallest atomic basis for 

the honeycomb structure. In Fig. 10, we considered two choices for the 

initial point of the basis vectors a, and a,. In each case, the location of the 

lattice points with respect to the atoms is different. In one case, the lattice 

re a Q i@ Xe 

J A f J, 

d . 4 y - ny A 

a 7 o , x fy 

A by t x fap e fit we 
os. f v4 J ta 

2 

Figure 9 A two-dimensional crystal structure. The primitive cell of the lattice, defined by 

vectors a, and a,, has 2 atoms. 
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points overlap with the centers of atoms and in the other case, they overlap 

with the centers of the hexagons. Later we will show that the choice of the 

initial point of the basis vectors is relevant in the description of a crystal 

structure. 

In Fig. 11 we show a lattice for the honeycomb structure from Fig. 10. 

This lattice is a two-dimensional hexagonal lattice. The vectors a, and a, 

defined in Fig. 10 are the basis vectors of this lattice and they define a 

conventional primitive cell which has the shape of a rhomb. 

The unit cell 
has 2 atoms. 

Figure 10 The honeycomb structure. In the figure are shown two positions of the unit cell 

with respect to the atoms of the structure. 

The points of the infinite lattice shown in Fig. 11 are sixfold rotation 

points and the geometric centers of the equilateral triangles (building blocks 

of the hexagons) are threefold rotation points. If the lattice points for 

the structure that is shown in Fig. 10 overlap with the centers of the 

honeycombs then the sixfold rotation points of the lattice overlap with the 

sixfold rotation points of the honeycomb structure. However, if we place 

the lattice points in the centers of atoms, then the sixfold rotation points 

of the lattice overlap with the threefold rotation points of the honeycomb 

structure and half of the threefold rotation points of the lattice overlap with 

the sixfold rotation points of the honeycomb structure. 
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= 

ay 

Figure 11 A hexagonal lattice for the honeycomb structure. The basis vectors 4, and a, have 

been defined in Fig. 10. The points of the infinite lattice are sixfold rotation points and the 

geometric centers of the equilateral triangles overlap with the threefold rotation points of the 

lattice. In the figure, we also show the graphical symbols for the threefold and sixfold rotation 

points. 

If we now place an additional atom (of the same type) in the center of 

each hexagon from Fig. 10, then the honeycomb structure transforms into a 

hexagonal (also known as triangular) structure. The smallest basis of the 

new structure has one atom, since the primitive translation vectors can be 

chosen in the way shown in Fig. 12. 

The examples of two-dimensional lattices considered here show that the 

lattice has not only translation symmetry but also point symmetry. A point 

transformation is a geometric transformation that leaves at least one point 

invariant (rotations, reflections, etc.). The rotation points overlap with 

lattice nodes and also other high symmetry points of the lattice. The lattices 

proposed for structures shown in Figs. 4, 7, 8, and 9 have twofold rotation 

points. If the basis of the two-dimensional crystal structure has only one 

atom, then the structure has the n-fold rotation points of the same order of 

rotations as its lattice. The n-fold rotation points of the lattice and the 

structure overlap when the lattice points overlap with the centers of atoms. 

This can occur also in the case when the basis has more than one atom, but 

only in the case when the basis atoms are placed in points of high symmetry 

(see Fig. 8). In general the point symmetry of a crystal structure is 

lower than the symmetry of its lattice (see e.g. Fig. 9). The fact that the 

honeycomb structure with two-atom basis has sixfold rotation points (like its 
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‘Here we have: 
one atom per 

[unit cell 

Figure 12 A two-dimensional hexagonal (also known as triangular) structure. The primitive 

unit cell is defined by vectors a, and a,. 

lattice) results from the very particular location of the basis atoms in the 

space lattice. 

Let us now show that the presence of translation symmetry implies that 

there are only one-, two-, three-, four-, and sixfold rotation points in a two- 

dimensional crystal structure or lattice. We will explain this using Fig. 13. In 

this figure, we make rotations of the basis vector a, and the opposite to it, 

—a,, by the same angle 2z/n (ne Z) but in opposite directions and the 

f 

/ 
é 

f 

ne e e * 
— 

i 
pow 

Figure 13 A construction made using basis vector a, and the opposite to it, —a, , to show 
that that there are only one-, two-, three-, four-, and sixfold rotation points in a two- 

dimensional crystal structure or lattice. 
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difference of the rotated vectors is shown in the figure. The translation 

symmetry requires that the difference, (a; —a,), be a multiple of vector 4, , 

what imposes certain condition on the integer number n. We have 

a, —a, =ma, 
, where me Z. (1.3) 

2a, cos(2z/n) = ma, 

From the above we obtain 

cos(2z/n) = 5m (1.4) 

and the possible values of integer m and cos(2z/n) are 

m=0,+1,+2 and cos(2a/n) =0,— 21, (1.5) 

respectively. Therefore, from (1.5) we obtained that the only rotations that 

can be performed are those by the angles 

2m 2x 2m 2m In ae 

(c) (d) 

Figure 14 Graphical symbols for the rotation points that overlap with the geometric centers 

of the following plane figures: (a) parallelogram, (b) rectangle, (c) square, and (d) regular 

hexagon. 
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From the above we can finally conclude that in the lattice, there are only 

allowed one-, two-, three-, four-, and sixfold rotation points. 

CONVENTIONAL CELLS OF TWO-DIMENSIONAL LATTICES 

(a) 
ay 

(hb) 

@, # ay, A(ay, a,) = 90° a, + ay, (3), 2,) = 90° 

ai = aj, a3], 35) + 60° 

(d) (e) 

@) = @;, Aa, a,) = 90° @) = a@;, 2(a), a,) = 120° 

Figure 15 Conventional cells that have the same point symmetry as the corresponding 
infinite lattices and the conventional primitive cells if different, for the five lattices existing 
in two dimensions: (a) oblique, (b) rectangular, (ec) centered rectangular, (d) square, and 
(e) hexagonal. 
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We will now identify the possible two-dimensional lattices taking into 

account the limitations for the rotation points described above. We can see, 

on the example of the considered here lattices, that it is possible to identify 

finite volumes of the space lattice which have the same point symmetry as 

the infinite lattice. Let us consider the smallest such volumes. In the case of 

the lattices for crystal structures from Figs. 4, 7, 8, and 9 the volumes are the 

primitive cells defined by vectors a, and a,, while in the case of the 

hexagonal lattice the smallest such volume is the hexagon (see Fig. 11). 

Each of these volumes represents a conventional cell of the lattice, which 

has the same point symmetry as the infinite lattice. 

Let us first consider the rotations about the points that overlap the 

geometric centers of some plane figures. In Figs. 14a and 14b we show the 

graphical symbol for the twofold rotation points that are in the centers of a 

parallelogram and a rectangle, respectively. We can also see in Figs. 14c 

and 14d that the geometric centers of a square and of a regular hexagon 

represent fourfold and sixfold rotation points, respectively, that are labeled 

with the corresponding graphical symbols in those figures. 

There are five different two-dimensional types of lattices, which are 

classified in four crystal systems: oblique, rectangular, square, and 

hexagonal. Due to the limitations for the rotation points described above 

the parallelogram, rectangle, square, and hexagon represent the only 

conventional cells that have the same point symmetry as the corresponding 

infinite lattices. Each of the geometric figures shown in Fig. 14 represents 

one (or two) of the crystal systems. Furthermore, Fig. 15 shows the 

conventional cells that have the point symmetry of the infinite lattice and the 

conventional primitive cells if different, for the five lattice types that exist in 

two dimensions: oblique, rectangular, centered rectangular, square, and 

hexagonal (see Figs. 15a-15e). 

4. Problems 

Exercise | Figure 16 shows a hexagonal lattice. 

a.) What lattice will be obtained if we place an additional point in the 

geometric center of each equilateral triangle in Fig. 16? Draw an 

example of primitive translation vectors for the new lattice. 
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Figure 16 A hexagonal lattice. 

b.) What crystal structure will be obtained if we attach to each lattice 

point a basis that has two identical atoms in the positions given by 

vectors F =0 and & =2(a, +4, )/3 2? Draw this structure. 

If, instead of using identical atoms, we use in b.) a basis consisting 

of one boron and one nitrogen atom, then the resulting structure will 

be an isolated atomic sheet of the @ phase of boron nitride (a-BN). 

What is the order of the highest order rotation point in the two- 

dimensional boron nitride structure? Draw this structure and show 

the highest order rotation points. 

QO ~ 

Exercise 2 In Fig. 17a, we show a conventional cell that has the point 

symmetry of an infinite two-dimensional crystal structure composed of 

two types of atoms. Draw the smallest unit cell that can reproduce this 

structure. How many atoms of each type are in this cell? Repeat all the 

above for the conventional cell shown in Fig. 17b. 
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Figure 17 Conventional cells that have the same point symmetry as the two-dimensional 
infinite structures composed of two types of atoms. 
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Exercise} Figure 18 shows a unit cell for a two-dimensional lattice. 

a.) What type of lattice is this? 

b.) Draw a conventional primitive cell for this lattice. 

c.) Draw the conventional unit cell which has the point symmetry of 

the infinite lattice. 

Exercise 4 Show graphically that the honeycomb structure shown in 

Fig. 10 is nothing more than the superposition of two hexagonal 

substructures shifted one with respect to the other by a vector 

(a,+a,)/3. 

Exercise Using the hexagonal lattice from Fig. 16 draw the vector 

(a; a7) defined in Fig. 13 for all rotations (by angles 2z/n ) allowed 
in a hexagonal lattice. Find the value of the integer m which satisfies 

Eq. (1.4) in each case. 

Figure 18 Unit cell for a two-dimensional lattice. 
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Il. THREE-DIMENSIONAL CRYSTAL 
LATTICE 

1. Introduction 

In the case of a three-dimensional lattice, a primitive unit cell has the 

shape of a parallelepiped defined by three non collinear and not all in the 
same plane primitive translation vectors 4,, 4,, a,. The most general 

example of a unit cell is shown in Fig. 19. 

The translation symmetry of an infinite two- or three-dimensional 

lattice imposes certain restrictions on its point symmetry elements, what 

was shown in the previous chapter for the case of a two-dimensional lattice. 

jf ra foe: ‘Cell volume is given | 

es, eles by the formula: 

a =f | y= (x ,) +a. 
f of = 
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Figure 19 A unit cell of a three-dimensional lattice. 

The allowed orders of symmetry axes in a three-dimensional lattice are the 

same as the orders of symmetry points in two dimensions, it means |, 2, 3, 4, 

and 6. As a consequence, in two and three dimensions only certain lattice 

types are possible. In order to find them in three dimensions, we will 

proceed in a similar way as it was done for the two-dimensional case. First, 

we will consider certain finite three-dimensional figures whose symmetry 

axes are of the orders that are allowed in an infinite lattice. 

2. Examples of Symmetry Axes of Three-Dimensional Figures 

An object which has one or more symmetry axes of orders 1, 2, 3, 4, 

or 6 may have the shape of such a solid figure as parallelepiped, regular 

17 
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Figure 20 Some rotation axes of three solid figures: (a) rectangular prism, (b) square prism, 

and (c) cube. 

tetrahedron or octahedron, or hexagonal prism. When the point symmetry of 

an infinite lattice is such that the highest order of the n-fold symmetry axis is 

only one, a parallelepiped of the lowest possible symmetry (see Fig. 19) 

represents a solid figure that has the same point symmetry as the lattice. In 

Fig. 20 we show other parallelepipeds whose shapes allow for the presence 

of two- and (or) fourfold symmetry axes. We can see in this figure the 

rotation axes that cross the geometric centers of the parallelepiped faces. In 

each case, they are the rotation axes of the highest order. We will show later 

that in the case of a cube (Fig. 20c) two- and threefold axes are also present. 

The parallelepipeds shown in Fig. 20 represent conventional unit cells 

that have the same point symmetry as an important number of infinite 

lattices. The symmetry center of a parallelepiped overlaps with its geometric 

center. This is a common property of all point symmetry elements. 

Obviously, the orders of rotation axes and the number of axes of the same 

order depend on the shape of the parallelepiped. For example, a cube 
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tb) 

Figure 21 A regular tetrahedron (a) and a regular octahedron (b) inscribed in a cube. 

(shown in Fig. 20c) has three fourfold axes. Each of them is defined by the 

geometric centers of two square faces, parallel one to each other. The cube 

has a total of 13 rotation axes. Namely, besides the three fourfold axes 

shown in Fig. 20c it still has two- and threefold axes. The case of the cube 

will be considered in more details later. 

As we can see in Fig. 21 a regular tetrahedron and a regular octahedron 

can be inscribed in a cube. A tetrahedron has three mutually perpendicular 

twofold rotation axes instead of the fourfold axes of the cube (see Fig. 21a). 

Each of them is defined by the centers of its two edges. A tetrahedron does 

not represent a unit cell of any lattice, but it is relevant in the description of 

(a) 

This superposition of hwo | 
equilateral triangles has 
a threefold rotation point 

> This superposition of two 
care |g ek squares has a fourfold 

‘rotation point 

Figure 22 Symmetry points of a superposition of plane figures: (a) two equilateral triangles 

and (b) two squares. 
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important crystal structures (especially in the description of their symmetry). 

A regular octahedron, contrary to the tetrahedron, has the same three 

mutually perpendicular fourfold rotation axes that the cube has (see 

Fig. 21b) with the difference that in the case of an octahedron a fourfold 

axis is defined by two vertices and in the case of the cube by the geometric 

centers of two faces (the number of octahedron vertices agrees with the 

number of cube faces and vice versa). 

The solid figure which has a sixfold rotation axis takes on the shape of a 

regular hexagonal prism that represents the unit cell of the same point 

symmetry as that of an infinite hexagonal lattice in three dimensions. This 

will be considered in more details later. 

Before continuing with the three-dimensional case, we will look shortly 

at the symmetry points of a superposition of plane figures. The superposition 

of two equilateral triangles with a common geometric center has a threefold 

rotation point. This is shown in Fig. 22a. A similar superposition of two 

squares has a fourfold rotation point (see Fig. 22b). Both examples will be 

helpful in farther consideration of the rotation axes in some three- 

dimensional lattices. 

3. Symmetry Axes of a Cube 

Let us now continue with the consideration of the possible rotation axes 

in a cube. First we will look at the twofold rotation axes. Each of them is 

defined by the centers of two edges as it is shown in Fig. 23. So, the cube 

has a total of 6 twofold axes. 

number of edges 
There are 6 = 5 

twofold axes in a cube. 

Figure 23 Six twofold rotation axes of a cube. 
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Figure 24 Each diagonal of a cube represents one of its threefold rotation axis. 

It is easy to show that the body diagonals of the cube represent its 

threefold axes. We can see in Fig. 24 that the displayed body diagonal 

connects two opposite cube vertices. The remaining 6 vertices form two 

groups, with 3 vertices each, that represent the vertices of two equilateral 

triangles. Each of the triangles is lying in a plane orthogonal to the diagonal 

and its geometric center overlaps with the point where the diagonal 

intersects the plane of the triangle. It is obvious that after rotating the cube 

by an angle 27/3 (or its multiples), the new positions of the cube vertices 

(those out of the axis) overlap with some “old” positions of the vertices. 

Therefore, this transformation leaves the cube invariant. Besides the axis 

shown in Fig. 24, there are 3 more threefold axes in the cube, that is, as 

6 hrofold axes 

4 threefold axes 

+3 fourfold axes 

13 symmetry axes 

Figure 25 The 13 rotation axes of a cube. 
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many as the number of body diagonals. In conclusion, a cube has a total of 

13 rotation axes. All of them are shown in Fig. 25. 

4. Symmetry Axes of a Set of Points 

Now, we will concentrate our attention on a system consisting of a set of 

8 points (or atoms) located at the vertices of a cube. The symmetry axes of 

this set of points are the same as the symmetry axes of the cube. If we add 

one additional point in the middle of the cube, then the symmetry of the 

resulting system will remain the same, since this point will be a common 

point of all the axes and also other symmetry elements. Also, if we add 

Figure 26 The system of 14 points placed at the vertices and in the geometric centers of the 
faces of a cube have the same threefold rotation axes as the cube. 

4—_———— Point of the cube veriex 

4 Point in the middle of a cube face 

Figure 27 Axial view of one of the triangles from Fig. 26. 
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points in the middle of the faces of the cube, then the symmetry of this new 

14-point system (shown in Fig. 26) will still remain the same as in the 

system consisting of only 8 points. For example, it is easy to see, comparing 

Figs. 24 and 26, that the threefold axes are present in this 14-point system. 

The six new points will form two groups of three points each, which are 

located in the middle of the triangle edges, as appears in Fig. 26. The axial 

view of one of the triangles from Fig. 26 is shown in Fig. 27. 

Let us now consider the fourfold rotation axes in the case of the 

14-point system in consideration. We can observe in Fig. 28 that, of the 

total of six points in the middle of the faces of the cube, two are on the axis 

and the remaining four represent vertices of a square lying in a plane 

orthogonal to the axis. If we project the 14 points on a plane orthogonal to 

the axis, then we will obtain a superposition of two squares shown on the 

Figure 28 Fourfold rotation axis of a system consisting of 14 points located at the vertices 

and centers of the faces of a cube. 

(a) tb) 

Figure 29 Three systems consisting of: (a) 8 points at the vertices of a cube, (b) 9 points at 

the vertices and the geometric center of a cube, and (c) 14 points at the vertices and face 

centers of a cube. Each set of points has the same 13 rotation axes as a cube. 
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right of Fig. 28. Thus we can say that the 14-point system has the same 

three fourfold rotation axes as the cube. Besides that, the system of points 

has six twofold axes. Finally, we can conclude that in the three cases 

described above, and shown in Fig. 29, we have the same 13 symmetry axes 

as were identified before in the cube. 

5. Crystal Systems 

In this section, we will learn about the crystal systems in three 

dimensions. To a given crystal system belong all the lattices that have the 

same point symmetry. However, the distribution of lattice points in space 

may be different in each of the lattices. In three dimensions, there are only 7 

lattice point symmetries, called holohedries, and each of them defines one 

crystal system. Every lattice belonging to a given crystal system has in 

general its own conventional unit cell that possesses the same point 

symmetry as an infinite lattice but, since the symmetry of each cell is the 

same, we can propose one of them as a conventional cell for the crystal 

system. In Fig. 30 we show conventional cells for the 7 crystal systems 

existing in three dimensions, pointing out in each case the highest order 

symmetry axis. If there is more than one such axis it is also shown in the 

figure. 

The conventional cells shown in Fig. 30 are defined by the basis vectors 

a,, a,, a, parallel to the main symmetry axes, if there are any in the lattices 

belonging to the crystal system. In the triclinic system, there are no 

symmetry axes at all or, more precisely, there are only onefold axes. Thus, 

no basis vector is fixed by symmetry (see Fig. 30a) and a,, 4,, a, are just 

three non collinear and not all in the same plane primitive translation vectors 

of a triclinic lattice. There are no special restrictions on the triclinic 

conventional cell parameters (lattice constants a,, a,, a, and anges 

<(a,,a,), «(4,,4,), <(@,,a,)) since the onefold axes are present in a 
parallelepiped of any shape. The parallelepiped shown in Fig. 30a is the 
conventional cell for the triclinic system. 

In the case of the monoclinic system only one symmetry axis is of the 
order higher than one. This is shown in Fig. 30b, where in the conventional 
cell for the monoclinic system is highlighted one twofold axis with the basis 
vector a, parallel to it. The restriction <(a,,a,)=<(4,,a,)=90° 
guarantees the presence of this unique symmetry axis. 
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CONVENTIONAL CELLS OF CRYSTAL SYSTEMS 

(a) 

a, + a, 7+ a, 

Aa, ay) # aC), a) + aa), a) 

(b) (c) 

wo 
yr ay 

a, + a,7# a, ay a,+a,¢ a, 

A(R), a,) # 4(@y, 2) = (a, a) = 90° (al, By) = aay, F,) = a(G,, Z) = 90° 

(d) (e) 

Pa 
a, = a,# abuse 0, = a,=0,=a ay 

a(@, i) = 4G, %) = 20H, 3) = 00° CB, ¥,) = (8, 3) = ay, 3) = 90° 

(g) 

a, = a, # @,, Ala, a)) = 120° 

4(ap, a) = ACA, a) = aC, a,) + 90° 4(By, a) = (a), a,) = 90° 

Figure 30 Conventional cells, of the most general shape, for the 7 crystal systems in three 

dimensions: (a) triclinic, (b) monoclinic, (c) orthorhombic, (d) tetragonal, (e) cubic, 

(f) trigonal, and (g) hexagonal. 

In the lattices belonging to the orthorhombic, tetragonal, and cubic 

systems three mutually perpendicular symmetry axes coexist and the basis 
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vectors 4,, 4,, 4, are parallel to them. Figs. 30c and 30e show the 

conventional cells and the three twofold and fourfold rotation axes for 

the orthorhombic and cubic systems, respectively, while Fig. 30d shows 

the conventional cell and a fourfold rotation axis present in lattices of the 

tetragonal system. The remaining symmetry axes (not shown in Fig. 30d) are 

twofold. The restrictions for the conventional cell parameters are 

summarized in Table 1. These constrains guarantee the presence of three 

mutually perpendicular symmetry axes of the orders specified in 

Figs. 30c-30e. 

The lattices with only one threefold or sixfold symmetry axis belong 

to the trigonal or hexagonal systems, respectively. A solid figure that 

possesses a sixfold symmetry axis has the shape of a hexagonal prism shown 

in Fig. 30g. In Fig. 30g is also shown a parallelepiped whose volume 

represents 1/3 of the volume of the hexagonal prism. This parallelepiped 

is a conventional cell for the hexagonal system. Its basis vector a, is 

parallel to the sixfold symmetry axis and the basis vectors a, and a, are 

lying in a plane orthogonal to this symmetry axis. The restrictions pointed 

out in Table 1 guarantee the presence of a sixfold symmetry axis in the 

lattices belonging to the hexagonal system. In Fig. 31 we show that the 

conventional cell for the trigonal system and the hexagonal prism are 

related. This will be explained in more details later. The restrictions on 

the rhombohedral cell parameters given in Table 1 guarantee the presence 

Table 1 Restrictions on conventional cell parameters for each crystal system. The following 

abbreviations are used: <(8,,4,)=@,,, <(4,,4,)=@,, X(4,,4,)=@,,. 

Restrictions on conventional cell parameters 

a, a), 4,,and @,, @;, A, 
Crystal system 

Triclinic 

Monoclinic 

Orthorhombic 

Tetragonal 

Cubic 

Trigonal 

Hexagonal 
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of a threefold symmetry axis. Of course in the case when 

<(a,,a, ) = <(a,,4,) = <(a,,4,)= 90° 

we are in the presence of a cube and this threefold symmetry axis coincides 

with one of the four threefold axes of the cube. 

To summarize, we can say that the order and the number of the highest 

order symmetry axes characterize a crystal system. All the highest order 

symmetry axes for each of the 7 crystal systems are shown in Fig. 30. 

6. Conventional Cell for the Trigonal System 

The conventional cell for the trigonal system takes on the shape of a 

rhombohedron. This rhombohedron can be constructed in a hexagonal 

prism, what is shown in Fig. 31. We can see in that figure that two vertices 

of the rhombohedron are located in the centers of the hexagonal prism bases 

and the other 6 form two groups with 3 vertices each. The plane defined by 

the three vertices of one group is parallel to the prism bases, what means that 

these vertices are at the same distance from a base. The distance between the 

three vertices which are closer to the top base and this base is the same as 

the distance between the vertices from the other group and the bottom base, 

and represents 1/3 of the prism height c (see Fig. 31). 

The positions of the vertices belonging to each of the two groups can be 

determined easily as their projections on the plane of the nearer prism base 

Figure 31 Rhombohedron constructed inside a hexagonal prism. 



28 Basic Elements of Crystallography 

(bottom or top) coincide with the geometric centers of three equilateral 

triangles, what is shown in Fig. 31. We can also see in this figure that these 

triangles are not next to each other and the three triangles of the bottom base 

do not coincide with those of the top base. 

7. The 14 Bravais Lattices 

7.1. Introduction 

In this section, we will describe all the three-dimensional lattices or 

more strictly speaking lattice types. If we place lattice points at the vertices 

of each parallelepiped that represents the conventional cell of one of the 

seven crystal systems, then we obtain 7 different lattices. All the points 

placed at the vertices of a cell contribute with 1 point to this cell. This is 

explained in Fig. 32 on the example of a cubic cell. A point placed in a 

vertex of a cube belongs to 8 cubes (4 of which are shown in Fig. 32), so 1/8 

of it belongs to each cube. Since there are 8 points at the vertices of the 

cube, they contribute with | point to it and the cell is primitive. 

A French scientist, Bravais (second half of the XIX century), 

demonstrated that if we place an additional point in the geometric center 

or additional points on the faces of the parallelepipeds representing 

conventional cells of the seven crystal systems (in such a way that the 

set of points has the same symmetry as the parallelepiped), then we will 

obtain 7 new lattices or strictly speaking lattice types. Therefore, we have a 

total of 14 lattice types in three dimensions. It will be shown later that 11 of 

them belong to the monoclinic, orthorhombic, tetragonal, or cubic crystal 

systems. Each of the remaining crystal systems (triclinic, trigonal, and 

hexagonal) has only one lattice type. In the case of each of the 7 new 

lattices, the parallelepiped, which represents the unit cell that has the same 

82 point = | point 

Figure 32 A 1/8 of the point placed in each vertex of a cubic cell belongs to this cell. 
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symmetry as the infinite lattice, has more than one lattice point. Therefore, 
this unit cell represents a non primitive cell of the lattice while a primitive 

cell of such a lattice does not have its point symmetry. 

Next, we will build the 7 new lattices mention above which are called 

the centered Bravais lattices. 

7.2. The Triclinic System 

In the case of the triclinic system, there is only one lattice type. The 

arguments are very simple. Since in the case of the triclinic system there are 

no restrictions on its conventional cell parameters, a primitive cell of any 

triclinic lattice represents a conventional cell of the triclinic system. By 

placing additional points out of the vertices of the conventional cell, we 

transform a primitive cell of one triclinic lattice onto a non primitive cell of 

another triclinic lattice, but of course both lattices are of the same type since 

a primitive cell of this new lattice represents another conventional cell for 

the triclinic system. 

7.3. The Monoclinic System 

In Fig. 33a, we have placed lattice points at the vertices of the 

conventional cell for the monoclinic system shown in Fig. 30b. This cell 

can be centered in several different ways as shown in Figs. 33b-33d and 

in Fig. 34. In all cases, the set of lattice points has the same point symmetry 

as the conventional cell of the monoclinic system. Note that in Figs. 33 and 

34 we have changed the notation for the cell parameters, and now we are 

using a, b, c instead of a,, a,, a,. The cells from Figs. 33 and 34 have their 

unique symmetry axes parallel to the c edges. Consequently, we speak of the 

setting with unique axis c (for short c-axis setting). In the case of the C-face 

centered cell, shown in Fig. 33b, the centering lattice points are in the cell 

bases (orthogonal to the c-edge). Figs. 33c and 33d show the same cell, but 

this time body and all-face centered, respectively. There are still two more 

options for placing the additional lattice points within the conventional cell 

of the monoclinic system. This is shown in Figs. 34a and 34b for the A-face 

centered and B-face centered cells, respectively. The symbols for the 

centering types of the cells shown in Figs. 33 and 34 are listed in Table 2. 

Let us now investigate to which monoclinic lattice types belong the 

centered cells shown in Fig. 33. In Fig. 35, we demonstrate that in the lattice 

shown in Fig. 33b we can find a primitive cell of the same type as the cell 

from Fig. 33a, so this is, in fact, a primitive monoclinic lattice. It can be also 
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(a) (h) 

im 
im 

a 

(c) (d) 

Figure 33 (a) Conventional primitive cell for the simple monoclinic lattice. In the figure, 

we have also drawn the cell from (a) centered in three different ways: (b) C-face centered, 

(c) body centered, and (d) all-face centered. The c-axis setting is assumed. 

(a) 

= bh 
Figure 34 The cell from Fig. 33a centered in two different ways: (a) A-face centered and 

(b) B-face centered. The c-axis setting is assumed. 

h) 

demonstrated (see Fig. 36) that in the lattice from Fig. 33d, there is a body 
centered cell of the same type as the cell from Fig. 33c, so this is a body 
centered monoclinic lattice. From all the above, we can conclude that 
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Table 2 Symbols for the centering types of the cells shown in Figs. 33 and 34. 

Number of lattice points 

per cell 

C-face centered 

Body centered 

All-face centered 

Figure 35 A primitive unit cell of the same type as the cell shown in Fig. 33a, located inside 

the monoclinic lattice from Fig. 33b. The c-axis setting is assumed. 

Figure 36 A body centered unit cell of the same type as the cell shown in Fig. 33c, placed 

inside the monoclinic lattice from Fig. 33d. The c-axis setting is assumed. 

in Fig. 33 we have four cells belonging to only two types of monoclinic 

lattices, for which the arrangements of the lattice points are shown in 

Figs. 33a and 33c. 

Next, we will check the cases shown in Fig. 34. In each lattice type 

plotted in this figure, we can find a body centered monoclinic cell. This is 

demonstrated in Fig. 37 for the lattice from Fig. 34b. Thus, in the 
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Figure 37 A body centered unit cell of the same type as the cell shown in Fig. 33c, located 

inside the monoclinic lattice from Fig. 34b. The c-axis setting is assumed. 

monoclinic lattice shown in this figure, there are two different conventional 

monoclinic cells (body centered and B-face centered) that contain the same 

number of lattice points, so we may consider this lattice as a B-face centered 

or a body centered. Similarly, the monoclinic lattice from Fig. 34a may be 

considered as an A-face centered or a body centered. Therefore, if we 

assume the c-axis setting, then the A-face centered, B-face centered, and the 

body centered monoclinic lattices are mutually equivalent. In conclusion, 

there are only two types of monoclinic lattices, the primitive one and one of 

the following three lattices: A-face centered, B-face centered, or body 

centered. The B-face centered lattice is selected to represent the centering 

type of the monoclinic lattice (if the c-axis setting is assumed). The symbols 

of the two monoclinic lattice types are then mP and mB. However, in the 

literature we can find more often the case when the b-axis setting is 

assumed, and then the mA, mC, and mi lattices are equivalent. In this case, 

the mC lattice is selected to identify the centering type of the monoclinic 

lattice. 

In the case of the mB (c-axis setting) or mC (b-axis setting) lattices the 

smallest cell that has the point symmetry of the infinite lattice contains 2 

lattice points, while the primitive cells of these lattices do not have their 

point symmetry. 

7.4. The Orthorhombic System 

In the same way, as it was done in Sec. II.7.3 for the monoclinic system, 

we can place the lattice points within the conventional cell for the 

orthorhombic system. The resulting set of points will have the same point 
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(e) 

Two cell hases for cases (b) and (d). 

Figure 38 (a) Conventional primitive unit cell of the simple orthorhombic lattice. In the 

figure, we have also drawn the cell from (a) centered in three different ways: (b) C-face 

centered, (c) body centered, and (d) all-face centered. Figure (e) shows two bases for two 

adjacent cells from (b) and (d). The base of a primitive (or body centered) cell of the lattice 

shown in (b) (or (d)) is highlighted in (e). 

symmetry as the cell. Since the three edges in the conventional cell for this 

system are mutually orthogonal, only the cases described in Fig. 38 will be 

considered. The rest of the cases, with A- and B-face centered cells, do not 

lead to any new lattice types. Contrary to the monoclinic system, this time, 

neither the case from Fig. 38b nor the case from Fig. 38d match the cases 

described in Figs. 38a and 38c, respectively, since neither a primitive nor a 

body centered unit cells with edges mutually orthogonal are present in the 

lattices shown in Figs. 38b and 38d, respectively. Therefore, we can 

conclude that in the case of the orthorhombic system, there are four types of 

lattices: primitive (oP), C-face centered (oC), body centered (o/), and all- 

face centered (oF). 
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7.5. The Tetragonal System 

The conventional unit cell of the tetragonal system, instead of having 

a rectangle at the base (as it was the case of the orthorhombic system), has a 

square. For this system, we have to analyze the same types of centering of 

its conventional cell, as those shown in Figs. 38b-38d for the orthorhombic 

system. Thus, the C-face centered, body centered, and all-face centered 

tetragonal cells will be considered. Here, as before, the c edge is orthogonal 

to the cell base. The presence of a fourfold axis parallel to the c edge 

excludes the possibility of having A- and B-face centered cells in tetragonal 

lattices. It is easy to demonstrate that now the lattice represented by the C- 

face centered tetragonal unit cell is effectively a primitive lattice and the 

lattice represented by the all-face centered tetragonal unit cell is just a body 

centered lattice. This is shown in Fig. 39, where we have displayed two 

bases of a C-face centered or all-face centered tetragonal unit cells. One of 

those bases is labeled as I, whereas the square marked as II is the base of a 

primitive or body centered tetragonal cell. 

To conclude, we can say that in the case of the tetragonal system, there 

are two types of lattices: tP and tl. 

The base I corresponds to C-face centered 
and all-face centered tetragonal unit cells, 
while the base II corresponds to primitive 
and body centered cells. 

Figure 39 Two bases (labeled as I) of two adjacent C-face centered and all-face centered 
tetragonal unit cells. The base labeled as II corresponds in one case to a primitive tetragonal 
unit cell and in the other case to the body centered tetragonal cell. 

7.6. The Cubic System 

We now move to the case of a cubic system. The search for the possible 
lattices belonging to this system will be held using again Fig. 38. This time, 
the only relevant cases are those described in Figs. 38a, 38c, and 38d, since, 
due to the point symmetry, those are the only cases that can be a priori 
expected in the lattices of the cubic system (remember that in the present 
consideration all the cells shown Fig. 38 are cubes). In the cubic lattice with 
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Abody centered cellinthe 
-all-face centered cubic lattice | 
does not have all the edges of 
‘the same longitude. | 

Figure 40 Two bases (labeled as I) of two adjacent all-face centered cubic unit cells. The 
base labeled as II corresponds to a noncubic body centered unit cell. 

the same arrangement of lattice points as shown in Fig. 38d, it is excluded 

the presence of a cubic body centered unit cell, what is explained in Fig. 40. 

Lastly, we can conclude that in the case of the cubic system, there are 

3 types of lattices: cP, cl, and cF. The primitive cubic lattice is also called 

simple cubic (sc) and the body and all-face centered cubic lattices are 

commonly abbreviated as bcc (body centered cubic) and fcc (face centered 

cubic), respectively. 

7.7. The Trigonal and Hexagonal Systems 

There is only one type of lattices, namely, AR and AP in the trigonal and 

hexagonal systems, respectively. Later we will explain the origin of the 

symbol AR used for the trigonal lattice. 

Finally, we may say that there are all together 14 types of lattices in 

three dimensions, called the Bravais lattices. The 14 Bravais lattices are 

shown in Fig. 41. 

7.8. Symbols for Bravais Lattices 

In Table 3 are summarized the symbols for the 14 Bravais lattices. We 

can observe in this table, that the lattices are classified in 6 crystal families, 

that are symbolized by lower case letters a, m, 0, t, h, and c (see column two 

of Table 3). The second classification is according to the discussed by us 7 

crystal systems. We can see in the table that in three dimensions the 

classifications according to crystal families and crystal systems are the same 

except for the hexagonal family, which collects two crystal systems: trigonal 

and hexagonal. The two parts of the Bravais lattice symbol are: first, the 

symbol of the crystal family and second, a capital letter (P, S, J, F, R) 

designating the Bravais lattice centering. As a reminder, the symbol P is 

given to the primitive lattices. The symbol S denotes a one-face centered 

lattice (mS and oS are the standard, setting independent, symbols for the 
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Table 3 Symbols for the 14 Bravais lattices. 

Crystal Family | Symbol Crystal System Bravais Lattice Symbol 

(anorthic) 

mP 

i ee mS (mA, mB, mC) 
oP 

; oS (0A, oB, oC) 
Orthorhombic O Orthorhombic ol 

OF 

tP 
Tetragonal t Tetragonal a 

Trigonal (rhombohedral) 
Hexagonal h i 

cP 

G eli 

CF 

one-face centered monoclinic and orthorhombic Bravais lattices, 

respectively). For the last case also the symbols A, B, or C are used, 

describing lattices centered at the corresponding A, B, or C faces. The 
symbols F and J are designated for all-face centered and body centered 
Bravais lattices, respectively. Finally, the symbol R is used for a trigonal 
lattice. 

7.9. Conclusions 

To conclude we can say that the carried out identification of the 14 
Bravais lattices was nothing more than the classification of all the three- 
dimensional lattices in 14 groups. The lattices belonging to a given group 
have the same point symmetry. Besides that, they have the same number 
and location of the lattice points within the smallest unit cell, which has the 
point symmetry of the lattice. We could see that half of the Bravais lattices 
appear as centered ones. This means, the smallest unit cells, that have the 
same point symmetry as the infinite lattices, contain more than one lattice 
point. However, it is important to point out that for each of the 14 Bravais 
lattices it is possible to choose a unit cell that contains only one lattice point, 
it means, a primitive unit cell. The basis vectors, a,, a), a,, that define 
such a cell are primitive translation vectors of the Bravais lattice. Finally, a 
Bravais lattice represents a set of points whose positions are given by 
vectors R defined as 
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Figure 41 The 14 Bravais lattices. The conventional cells of the crystal systems are that from 

Fig. 30. 
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Re ae tial. (II.1) 

where n,,n,,n,€Z. 

8. Coordination Number 

Since all the lattice points in a Bravais lattice have equivalent positions 

in space, they have identical surroundings. Therefore, each point has the 

same number of NNs (points that are the closest to it) and this number, 

called the coordination number, is a characteristic of a given Bravais lattice. 

In the literature, we find more often an alternative definition in which the 

coordination number is the number of the NNs of an atom in a crystal (or 

molecule). Our definition, however, is more general, since we may think of 

substituting the lattice points with different objects like single atoms, or 

groups of atoms, or even molecules, and the definition still remains valid, 

since all these objects will have identical surroundings. 

On occasions the information about the next nearest neighbors (NNNs) 

and even the third nearest neighbors (TNNs) of a lattice point is also 

important. Figure 42 shows the NNs, NNNs, and TNNs of a lattice point in 

the sc lattice. In this figure, the NNs of a lattice point placed in the center of 

a large cube (built of 8 smaller cubes) are placed at the vertices of a regular 

octahedron. Since the octahedron has 6 vertices, the coordination number 

for the sc lattice is 6. The NNNs are in the middle of the 12 edges of the 

large cube, so there are 12 NNNs of a lattice point in the sc lattice. The 

TNNs of the lattice point in consideration are at the vertices of the large 

@ Nearest neighbor (NN) 

© Next nearest neighbor (NNN) 

® Third nearest neighbor (TNN) 

The sc lattice has the 
coordination number 6. 

Figure 42 The NNs, NNNs, and TNNs of a lattice point in a sc lattice. The 6 NNs of a lattice 
point placed in the center of the large cube are at the vertices of the regular octahedron. The 
12 NNNs are in the middle of the large cube edges and the 8 TNNs are in its vertices. 
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cube, so the number of them is 8. The NN distance in the sc lattice is equal 

to lattice parameter a, the NNN distance is 2a , and the TNN distance 

is V3a. 

9. Body Centered Cubic Lattice 

Figure 43 shows three examples of a set of three primitive translation 

vectors that define the primitive unit cell of the bcc lattice. In these three 

cases at least one of the vectors involves two “types” of lattice points, 

namely, those from cube vertices and those from cube centers. This, of 

course, is essential in the case of a primitive cell, since with this cell it is 

possible to reproduce the entire lattice. The primitive cell defined by vectors 

a,, a,, a, in Fig. 43c is shown in Fig. 44. In this figure, it is drawn a 

rhombohedron which represents the most symmetric primitive unit cell of 

the bcc lattice. We can also see in this figure that one diagonal of the 

rhombohedron is lying along one of the diagonals of the cube. Those 

diagonals represent a threefold axis of each cell. This is the unique threefold 

Figure 43 Three sets of three primitive translation vectors of the bcc lattice. 
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Figure 44 A primitive rhombohedral unit cell of the bcc lattice. 

axis of the rhombohedron, while the cube has still three more such axes. The 

angles between the basis vectors a,, 4,, a, shown in Figs. 43c and 44 are 

the same: 

(adn |= (45,45 = (aya | 10 8 

Next, we will calculate the volume Q, of the primitive unit cell and 

compare it with the volume of the cube. The volume of this cell is given by 

toeeye 19 

and the volumes ratio is 

= =2. (11.3) 
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A primitive unit cell of the bcc lattice has one lattice point while the cubic 

cell has two points. The ratio, given by Eq. (II.3), between the cell volumes 

is equal to the ratio between the numbers of points belonging to them. 

Therefore, the same volume Q, corresponds to each lattice point. 

Let us now demonstrate that the two points that are within the bcc cubic 

unit cell have equivalent positions in the bcc lattice. This is shown and 

explained in Fig. 45. In Fig. 46 we show the NNs of a point of the bcc 

lattice. This lattice has a coordination number 8. 

We will now consider the lattice points within the cubic cell of the bcc 

lattice. It is convenient sometimes to associate the point, being a sum of 

The points that are in the centers of 
the gray colored cubes coincide with 
the vertices of cubes that have dashed 

edges, and vice versa: the points that 

are in the centers of the "dashed" 

cubes overlap with the vertices of the 

gray colored ones. 

“rag 

‘Sid cenomeooee 

Figure 45 Demonstration of the equivalence of the two lattice points within the cubic unit cell 

of the bcc lattice. 

The bec lattice has the 

coordination number 8. 

Figure 46 The lattice points from the vertices of the cubic unit cell of the bcc lattice represent 

the NNs of the lattice point that is in the center of the cell. 
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Figure 47 (a) A cubic cell of the bcc lattice. Each of the lattice points located at the vertices 

contributes with 1/8 to the unit cell so the cell contains 2 lattice points. (b) Positions of the 

2 points within the cubic cell. The point, which is a sum of eight fractions, is placed in the 

vertex of the cube that coincides with the origin of the cell. The coordinates are expressed in 

units of a. 

eight fractions (see Fig. 47a), with only one of the vertices of the cube. 

Figure 47b shows such a point in the cube vertex that coincides with 

the initial point of the basis vectors 4, b, ¢. Its position is (0,0,0). The 

position of the second lattice point within the cubic cell, given with respect 

to the 4, b, @ axes, is (1/2,1/2,1/2), where the coordinates are expressed 
in units of a. The vector t=1/24+1/2b+1/2é represents one of the 

shortest translation vectors of the bcc lattice and it coincides with the vector 

a, from Fig. 43a. In Figs. 43b and 43c there are shown other examples of 

the shortest translation vectors in the bcc lattice. At least one of such vectors 

has to appear in each set of basis vectors that define a primitive unit cell of 

this lattice (see Fig. 43), since both, the lattice point located in the center of 

the cubic cell and the point from its vertices, are then represented by the 

lattice point from vertices of the primitive unit cell. 

10. Face Centered Cubic Lattice 

First, let us consider the lattice points within the cubic unit cell of 

the fcc lattice. The two lattice points placed in the A-faces (orthogonal to 

the basis vector a in Fig. 48a) contribute to the cubic cell with half of the 
point each. We will represent these two fractions with one lattice point 
placed in the A-face that contains the origin of the basis vectors 4, b, ¢ 
(see Fig. 48b), that is, at the shortest distance from the origin. The position 
of this point is (0,1/2,1/2), where the coordinates are expressed in units 
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tb) 

Figure 48 (a) All-face centered cubic unit cell of the fcc lattice. (b) Positions of the four 

lattice points within the cubic cell. The coordinates are expressed in units of a, which is the 

length of the cube edge. 

of a, which is the length of the basis vectors. In the similar way, we can 

place the points in the B- and C-faces (see Fig. 48b). Finally, the positions of 

the four lattice points belonging to the cubic cell of the fcc lattice are: 

(05050) 9031/2 1/2) 5 /270,1/2) and (1/271/250)2 

Figure 49 shows the most symmetric primitive unit cell of the fcc lattice. 

It is defined by the basis vectors a,, 4,, a,. Each of them represents one of 

the shortest translation vectors of the fcc lattice. In the definition of the 

vectors a,, 4,, a, are involved all the four lattice points belonging to the 

cubic unit cell and this guarantees that the primitive cell can reproduce the 

entire lattice. The primitive unit cell shown in Fig. 49 takes on the shape of a 

rhombohedron that is inscribed in the cubic cell. The threefold axis of the 

rhombohedron coincides with one of the threefold axis of the cube. The 

lattice points that define this axis are at the vertices of the two cells, while 

the rest of the rhombohedron vertices coincide with the centers of the cube 

faces. 

et 
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Figure 49 A primitive rhombohedral unit cell of the fcc lattice. 
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For the cell form Fig. 49 it is easy to show that 

<(a,,4,) =<(4,,a,) = Xx(4,,4,) = 60°. (11.4) 

Indeed, since a, =a, =a, = (V2 / 2)a we have that 

aera, OG) C08 (4, fy) =a 008 £(4, 4) (II.5) 

and using the vector coordinates we have also that 

; (11.6) A, °A, =4),4,, + ),G,, + a,,a,- ake , 

then comparing the two expressions for the scalar product a, -a,, we obtain 

oat Sa i a, 1 
—a’ cos<(a,,a,)=—a => cos<(a,,a,)=—. IL-7 ji (a,,a,) i (a,,a,) 5 (II.7) 

Repeating the same procedure as done in Eqs. (II.5-7), for all the vector 

pairs, we finally get Eq. (11.4). So the basis vectors a,, a,, a, of a primitive 

rhombohedral unit cell of the fcc lattice are at angles of 60° to each other. 

Let us now calculate the volume, Q,, of the primitive unit cell of the fcc 

lattice and compare it with the volume of the cubic cell. We have that 

‘ash sa 1 1 
Orta (a pcas oy, = dee On me (4a9 +42] 

; ee) 
oo, aU 

[ Lak + tats tar?) [1 a5 +402) ae ee ae (11.8) —— = — -| — - =— —a=—a. ; 
4 4 4 2. : p. 8 8 4 

The primitive unit cell has one lattice point while the cubic cell contains four 

lattice points, so the ratio between the volumes of these cells 

Vise a 
—oube = _ = 4 11.9 

— (0! 
4 

is equal to the ratio between the numbers of lattice points in them. 
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In the figure we have two types 
of cubes: gray colored and 
uncolored. The “black” lattice | 
‘points, ©, that are at the 
vertices of the uncolored cubes’ 

are in the centers of the bases — 
of the gray colored cubes, and © 
‘vice versa. The “light gray” 
lattice points, ©, are in the 

_ceniers of the faces of both 
types of cubes. 

Figure 50 Demonstration of the equivalence of all lattice points in the cubic cell of the fcc 

lattice. 

Next, we will demonstrate that different lattice points within the cubic 

unit cell of the fcc lattice have equivalent positions in this lattice. This is 

shown in Fig. 50. In the explanation we are using two sets of cubes. The 

second set of cubes (represented by a gray colored cube in Fig. 50) is 

obtained by translating the first one in the direction of a diagonal from 

its bases by half of the diagonal length. The correspondence of the lattice 

points in the two sets of cubes is explained in Fig. 50. Upon making a 

similar translation, but now in a plane which coincides with the side faces 

of one of the two sets of cubes, the result will be that the points that are in 

the middle of the faces of the two types of cubes (from the two sets) will 

occupy the positions of the points at the vertices. In this manner, we can 

demonstrate the equivalence between the positions of lattice points at the 

vertices and faces of the cube. 

It is easy to see that the 
three types of points: ©, 

®, and ©, from three 

mutually perpendicular 
planes, are equally distant 

from the point, @, that is 

in the center, so the 

coordination number 

of the fcc lattice is 12. 

Figure 51 Nearest neighbors of a point in the fcc lattice. 



46 Basic Elements of Crystallography 

Since all the lattice points in the fcc cubic lattice have equivalent 

positions, the neighborhood of each lattice point is the same and therefore, 

each point has the same number of NNs. We will consider the neighborhood 

of a lattice point from the face of a cube. This is shown in Fig. 51. As 

explained in this figure the coordination number of the fcc lattice is 12. 

11. Rhombohedral Unit Cell in a Cubic Lattice 

We have already learned in Secs. II.9 and IJ.10 that a rhombohedron 

represents a primitive unit cell of both the bcc and the fcc lattices. A cube, 

which is a primitive cell of the sc lattice, is also a particular case of a 

rhombohedron. However, a rhombohedron represents, at first, the 

conventional unit cell of the trigonal system, and now we know that when 

the basis vectors a,, a,, a, of a primitive rhombohedral unit cell are at 

angles of 60°, or 90°, or 109°28’ to each other, then this cell is a primitive 

cell of a lattice belonging to the cubic system, it means, possesses a higher 

point symmetry than the symmetry of a trigonal lattice. Moreover, the 

presence of a rhombohedral unit cell with its threefold symmetry axis in a 

cubic lattice is not surprising, since this lattice possesses threefold symmetry 

axes. As next we will show a centered rhombohedral unit cell in the sc 

lattice. 

11.1. Rhombohedral Unit Cell of the sc Lattice 

Besides of the primitive rhombohedral unit cells there are, of course, 

centered rhombohedral unit cells in lattices belonging to the cubic system. 

Figure 52 A body centered rhombohedral unit cell of the sc lattice. 
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Table 4 The characteristics of the two unit cells, shown in Fig. 52, of the sc lattice. 

SIMPLE CUBIC LATTICE 

Number of lattice 
Unit cell 

i 
Rhombohedral J a,= V2. 2a,, a, =60° 

Figure 52 shows such a unit cell of the sc lattice. This cell contains two 

lattice points. 

Table 4 resumes information about the two types of unit cells shown in 

Fig. 52, that is, the cubic one defined by basis vectors a, b, c and the 

rhombohedral cell defined by vectors 4,, 4,, 4,. The volume of the body 

centered rhombohedral cell is two times the volume of the primitive cubic 

cell (see the numbers of lattice points within each cell). 

The positions of the two lattice points within the rhombohedral unit cell 

from Fig. 52 are shown in Fig. 53. One of them is placed in the origin of the 

cell and the position of the other is given by the vector (1/2)(a, +4, +4;), 
where 4,, 4,, 4, are the axes of the rhombohedral unit cell defined in 

Fig. 52. The coordinates of the centering point are expressed in units of a, 

(a, =|A,|=|a,|=[4,]). 

a,+ 43) 

‘Position of the 
centering point is 

given by the vector 

Gt a, + a). 

Figure 53 Positions of the two lattice points in the centered rhombohedral unit cell (defined 

in Fig. 52) of the sc lattice, given with respect to the a,, a,, a, axes. The coordinates are 

expressed in units of a,(a, =|4,| =|a,|=|a,|). a, 
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11.2. Simple Cubic Crystal Structure 

Let us now consider a sc monoatomic crystal structure. The sc lattice is 

an obvious option to describe this structure: 

sc lattice + l-atom basis = sc crystal structure . 

However, this is not the only Bravais lattice that we can propose to describe 

the sc crystal structure. The presence of a rhombohedral / unit cell, defined 

by the axes at angles of 60° to each other, in a monoatomic sc crystal 

structure suggests that the sc structure may be considered as a fcc lattice 

with an atomic basis composed of two atoms. This was already suggested in 

Fig. 52 by the distribution of lattice points within the large cubic cell. This 

cell may be considered as a cubic unit cell of the fcc lattice with 4 additional 

lattice points in it. It means, the number of lattice points belonging to the 

cubic F unit cell of the sc lattice is two times the number of lattice points in 

a cubic F unit cell of the fcc lattice. The same is true for the atoms in the 

monoatomic sc structure. 

Let us now consider the sc crystal structure as the fcc lattice with 
two-atom basis: 

fcc lattice + 2-atom basis = sc crystal structure . 

The centers of these atoms may overlap the two lattice points of the unit cell 

from Fig. 53 but, of course, the primitive rhombohedral unit cell of the fcc 

lattice contains only one lattice point, like it is shown in Fig. 54a. When the 

basis contains two atoms, the lattice points are frequently placed (with 

respect to the atoms of the crystal structure) in such a way that a lattice point 

is equidistant to the two basis atoms, what is shown in Fig. 54b. Then the 

origin of the unit cell changes from O to O’ and the cell contains 1 atom 
attached to its lattice point and another one that is attached to the lattice 
point belonging to a different unit cell. 

We have shown here that the sc structure may be seen as a fcc lattice 
with 2-atom basis. However, it is of course more natural to choose the sc 
lattice when describing the monoatomic sc structure. In both cases, the 

lattices have the same point symmetry as the structure, but the lattice 
constant in fcc is two times the lattice constant in sc. As a consequence, in 
the sc lattice the volume of the F-centered cubic unit cell is 8 times larger 
than that of the cubic P cell. It should be noted that what we have learned in 
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Figure 54 The fcc lattice used to describe the monoatomic sc structure. The figure shows a 

primitive rhombohedral unit cell of the fcc lattice with two-atom basis. Two locations of the 

basis atoms with respect to a lattice point are shown, where: (a) the lattice point coincides 

with the center of one of the basis atoms and (b) the lattice point is equidistant from the two 

basis atoms. 

this section looks quite obvious and simple, but is very useful when it comes 

to analyze experimental and also theoretical results. 

11.3. Interpretation of Data for As, Sb, Bi, and Hg 

We will use now the considerations made in the previous section to 

show that the structures for arsenic, antimony, and bismuth are close to the 

sc structures. In order to do this, we have to realize, first, that a 

rhombohedron may be obtained by stretching a cube along one of its 

diagonals and this type of distortion applied to any cubic lattice changes it to 

a trigonal Bravais lattice. If such distortion would be present in the cells 

shown in Fig. 52, along their diagonals parallel to the vector (a, +a,+4;), 

then the cube, defined by vectors a, b , ¢, would become a rhombohedron 

with angles between the new a, b, ¢ vectors slightly smaller than 90° , and 

the rhombohedron defined by vectors a,, a,, a, would be a different 

rhombohedron with angles between its axes slightly smaller than 60°. The 

two cells (rhombohedral P and rhombohedral /) represent unit cells of a 

trigonal lattice that was obtained distorting the sc lattice. 
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Table 5 Experimental lattice parameters for arsenic, antimony, bismuth, and mercury. All 

this elements crystallize in trigonal crystal structures. The axes a,, a,, and a, define a 
rhombohedral P unit cell that in the case of As, Sb, and Bi contains two atoms. The atoms 

are placed with respect to a lattice point like it is shown in Fig. 54b. In the case of Hg the 

basis is composed of one atom. 

Lattice parameters Number of atoms Coordinates of the basis 

Element in a rhombohedral atoms given in terms of 

P unit cell vector (a, +a, +4,) 

a, = 54°10 

a, = 4.75 
0, = 57°14" 

a, =2.99 
HLAES: a, = 70°45’ 

a,=4.51 
we a 257°O. 

The values for As, Sb, and Bi listed in Table 5 can be interpreted as 

follows. The three elements crystallize in trigonal crystal structures that are 

close to the sc structures. For each case Table 5 reports experimental data for 

a primitive rhombohedral unit cell of a trigonal lattice with an atomic basis 

composed of 2 atoms. The atoms are equidistant from a lattice point, like it 

was shown in Fig. 54b. The angles between the axes a,, 4,, 4, are close to 

60° and the positions of the basis atoms, x(a, +4, +4,), with respect to a 

lattice point (see Fig. 54b) are close to (+1/4)(a,+4,+4,), which is the 
case of the sc crystal structure. Therefore, the crystal structures of the three 

elements are close to the sc structures. 

Table 5 is reporting also the data for the crystal structure of mercury. 

This element crystallizes in the trigonal structure. The rhombohedral P unit 
cell contains | atom. If we consider this cell as a stretched cubic one then it 
is clear that the Hg crystal structure is far from the sc structure since the 

angle a, = 70°45’ is very different from 90° of a cubic P unit cell. 

12. Trigonal Lattice 

We know already that the conventional cell for the trigonal system 
(a rhombohedron) can be constructed inside a hexagonal prism (see EV eq oles 
In such a construction, the sixfold symmetry axis of the hexagonal prism 
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The obverse setting of a triple 
hexagonal cell in relation to © 
-aprimitive rhombohedral 
cell; an =4, = B, By, =h, ia a 

(G,=a, th, +e. / 

Figure 55 Primitive rhombohedral and a R centered hexagonal unit cells. A primitive trigonal 

lattice may be considered as a R centered hexagonal lattice. The centering points, within the 

hexagonal cell, reduce the sixfold symmetry axis of the hexagonal prism to a threefold 

symmetry axis. 

becomes a threefold symmetry axis of the rhombohedron. We will see now 

that a trigonal lattice is just a centered hexagonal one. The presence of 

additional lattice points in a trigonal lattice, with respect to the hexagonal 

lattice, reduces the sixfold hexagonal prism axis to a threefold one, what is 

shown in Fig. 55. We can see in this figure that the trigonal lattice points 

that are inside the hexagonal prism define two equilateral triangles in planes 

orthogonal to the sixfold hexagonal prism symmetry axis. The axis is 

crossing these planes at the geometric centers of the triangles. Just such 

distribution of the trigonal lattice points, which are inside the hexagonal 

prism, reduces the sixfold axis of a hexagonal lattice to the threefold axis of 

a trigonal lattice. The basis vectors 4,, b,, ¢, in Fig. 55 define a 

rhombohedrally centered hexagonal unit cell for a trigonal lattice. This cell 

is called a triple hexagonal unit cell and contains three lattice points. A triple 

hexagonal cell for a trigonal lattice is also called a triple hexagonal cell R 

and the symbol of a trigonal lattice is just AR. 

In Fig. 56a, we show the projections of the centering points of the 

triple hexagonal cell R from Fig. 55 on the cell base. Whereas, Fig. 56b 

shows the projections on the prism base of 6 trigonal lattice points that are 

inside the hexagonal prism from Fig. 55. In this figure O represents the 

origin of the triple hexagonal unit cell, defined by basis vectors 4, , b poe: 

The coordinate of each point in the ¢, axis is shown next to the lattice point 
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Figure 56 (a) Projections of the centering points of the triple hexagonal cell R from Fig. 55 

on the base of the cell. The coordinates of these points are given in terms of the hexagonal 

axes a,, b,, C,. (b) Projections of the 6 points that are inside the hexagonal prism on its 

base. The coordinates of these points are given in terms of the ¢, axis. The hexagonal prism 

base translated by a translation vector (4, a b,) is also shown. 

projection and is expressed in units of c. In Fig. 56b, there is also shown the 

base of the hexagonal prism in consideration translated by a translation 

vector (a, baie For this case, the origin of the triple hexagonal unit cell 

changes from O to O’. We can see in Fig. 56b that by translating a trigonal 

lattice to a translation vector (a, +b,) of the R centered hexagonal lattice, 

we obtain the same trigonal lattice. 

The reverse setting of a triple 
hexagonal cell in relation to 
a primitive rhombohedral 

cell; 3, =¢,—b,, by =a, — Cr, 

th=a,+b,+¢,. 

Figure 57 The reverse setting of a triple hexagonal cell in relation to the primitive 
rhombohedral cell. 
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The setting of the triple hexagonal unit cell in relation to the primitive 

rhombohedral unit cell is not unique. In Fig. 55 is shown the obverse setting 

of the triple hexagonal unit cell with respect to the primitive rhombohedral 

cell and in Fig. 56a, as we know, is displayed the projection of this cell onto 

the plane orthogonal to the ¢, axis. If we propose the basis vectors 4, , b, ' 

¢, for the hexagonal cell in the way done in Fig. 57, then we obtain the 

reverse setting of a triple hexagonal unit cell in relation to the primitive 

rhombohedral cell. The positions of the centering points in a hexagonal cell 

depend on the setting in consideration. 

Figure 58 shows two triple hexagonal cells R. The cell from Fig. 58a is 

in obverse setting in relation to the primitive rhombohedral cell, while the 

cell from Fig. 58b is in reverse setting with respect to the rhombohedral cell. 

Both figures show the positions of the three lattice points within the 

hexagonal unit cell R. We can observe that the coordinates of the centering 

points expressed in terms of the axes 4, and b, are in each case different 

(of course, the vectors a, and b, are also different). 

We have learned here that it is possible to describe a trigonal lattice in 

terms of the hexagonal axes. More strictly speaking, a trigonal lattice is just 

a R centered hexagonal lattice. Moreover, it is more convenient to see this 

lattice as a R centered hexagonal one since the hexagonal axes are easier to 

visualize. The relations between the basis vectors that define a rhombohedral 

cell and the ones that define a triple hexagonal cell R are 

Figure 58 Positions of the three points within the triple hexagonal R unit cell (a) in obverse 

setting and (b) in reverse setting in relation to the primitive rhombohedral unit cell. The 

coordinates are expressed in units of a and c. 
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CUBIC i, RHOMBOHEDRAL P, AND TRIPLE HEXAGONAL & UNIT CELLS 

FOR THE BCC LATTICE 

The vectors: 

represent the axes of the triple hexagonal unit cell in the 

obverse setting in relation to the primitive rhombohedral 

unit cell defined by axes 4,,b,, ¢,. 

Figure 59 Three types of unit cells of the bcc lattice. Each of the three triple hexagonal R 

cells shown in the figure is defined by basis vectors 4, , b, , and ¢,or their linear 

combinations. Inside the hexagonal prism there is a rhombohedral P unit cell defined by basis 

vectors a,, b,, and ¢, . Besides that, there is a cubic / cell of the bcc lattice defined by 
vectors a,, b,, and ¢, . All three unit cells have the same origin O. 
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in the case of the obverse setting and 
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in the case of the reverse setting. 

13. Triple Hexagonal Cell R in a Cubic Lattice 

The centered cubic lattices (bcc and fcc) possess primitive rhombohedral 

cells so it is natural to introduce for them the triple hexagonal cells. 

Therefore, the bcc and fcc lattices may be described in terms of cubic, 

rhombohedral, and hexagonal axes by using cubic (body centered or all-face 

centered), primitive rhombohedral, and triple hexagonal R unit cells, 

respectively. In Fig. 59 we show the three types of cells of the bcc lattice by 

Table 6 Basic information about three types of unit cells of the bcc lattice. 

BODY CENTERED CUBIC LATTICE 

Number of lattice points 

per cell 

2 

Cell parameters Unit cell type 

a. 

a, Hee 
Rhombohedral P 

a, =109°28" 

a, = 2a, 

Triple hexagonal R 
P ; C, = (V3 / 2)a, 

Table 7 Basic information about three types of unit cells of the fcc lattice. 

FACE CENTERED CUBIC LATTICE 

Number of lattice points 

er cell 
Unit cell type Cell parameters 

Cubic F 

Rhombohedral P 

Triple hexagonal R 

[ee 
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putting them all together and with a common origin. Some information 

about those cells is listed in Table 6 and in Table 7 is listed the same 

information, but for the three types of unit cells of the fcc lattice. 

14. Wigner-Seitz Cell 

All primitive unit cells, for the case of centered Bravais lattices that we 

have considered until now, do not have the point symmetry of the lattice. 

However, each Bravais lattice has a primitive unit cell that has the point 

symmetry of the lattice. This cell is called the Wigner-Seitz cell. 

14.1. Construction of the Wigner-Seitz Cell 

The Wigner-Seitz cell like every primitive unit cell contains only one 

lattice point, but this point has a very particular location in the cell. It is 

placed in the geometric center of the cell and the region of space that is 

closer to that point than to any other lattice point defines the Wigner-Seitz 

cell. In order to obtain the Wigner-Seitz cell we have to identify, first, the 

NNs of a lattice point. The NNNs may also be involved in the construction 

of that cell and even the TNNs. This cell can be obtained in the following 

manner: 

a.) First, any point of the lattice is chosen (the one that is going to be in the 

middle of the Wigner-Seitz cell). 

b.) Second, we connect this lattice point with all the NNs by means of 

segments and draw median planes of the segments. In this manner a 

three-dimensional body, limited by these planes, is obtained. 

c.) Last, we repeat the same work as in point b.), but with the NNNs. If the 

new planes reduce the volume of the region defined by the first planes, 

this new volume will be the Wigner-Seitz cell, if, of course, more distant 

neighbors (TNNs, fourth NNs, and so on) do not manage to limit this 

volume even more. 

14.2. The Wigner-Seitz Cell of the bcc Lattice 

Figure 60 shows the Wigner-Seitz cell of the bcc lattice. This cell has 

the shape of a tetradecahedron (a polyhedron with 14 faces). Eight of its 
faces are defined by 8 NNs and the rest of them by 6 NNNs. This 
tetradecahedron may be seen as a truncated regular octahedron. That is, 
the faces of the octahedron, which are defined by 8 NNs, are truncated by 
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® Lattice point in the center 
of the Wigner-Seitz cell 

® NNs of the central lattice point 
© NNNs of the central lattice point 

Figure 60 The Wigner-Seitz cell of the bcc lattice. 

(b) 

Figure 61 (a) A cross section of two cubic F cells of the fcc lattice. (b) Demonstration that in 

the construction of the Wigner-Seitz cell participate only the NNs of the lattice point 

belonging to the cell. 

the 6 faces defined by the NNNs. This truncated octahedron has 6 square 

faces at a distance of a/2 from the middle of the Wigner-Seitz cell and 

8 hexagonal faces at a distance of (V3 / 4)a from the center. It is easy to 

identify, looking at the number, shape, and orientation of the faces of the 
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truncated octahedron, the 4 threefold axes and 3 fourfold axes that has the 

cubic unit cell of the bcc lattice (see Fig. 60). 

14.3. The Wigner-Seitz Cell of the fcc Lattice 

Figure 61a shows a cross section of two cubic F unit cells of the fcc 

lattice, in which there are 7 lattice points: the central one, 4 of its NNs, and 

2 NNNs. The smallest square in Fig. 61b represents a cross section of the 

Wigner-Seitz cell. We demonstrate in this figure that in the construction of 

the Wigner-Seitz cell participate only the nearest neighboring lattice points. 

Since the number of the NNs in the fcc lattice is 12, its Wigner-Seitz cell has 

the shape of a dodecahedron. This is a rhombic dodecahedron, and it is 

shown in Fig. 62a. Figure 62b displays one of the 12 identical faces of this 

dodecahedron. 

Figure 62 (a) The Wigner-Seitz cell of the fcc lattice. (b) A face of the dodecahedron shown 
in (a). 

15. Problems 

Exercise | 

a.) Draw all the rotation axes of the regular tetrahedron shown in 
Fig. 63a. In order to do that locate the positions of two points that 
define each axis. If it is necessary find these points graphically. 

b.) Do the same for the regular octahedron shown in Fig. 63b. 
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Figure 63 (a) A regular tetrahedron and (b) a regular octahedron. 

Exercise 2 Figure 64 shows a truncated regular octahedron inscribed in 

a cube of edge length a, while the octahedron is inscribed in a cube of 

edge length (3/2)a. The faces of the two cubes are parallel to each 

other. We can see in this figure how the octahedron is truncated by the 

faces of the smaller cube with a tetradecahedron as a result. This 

tetradecahedron has 8 faces in shape of a regular hexagon (can you 

explain, why?) and 6 faces in shape of a square. 

rol oo 
i) 

Figure 64 A tetradecahedron inscribed in a cube of edge length a. This tetradecahedron may 

be seen as a regular octahedron truncated by 6 faces of the smaller cube. The regular 

octahedron is inscribed in a cube of edge length (3/2)a and has the same geometric center as 

the cube of edge length a. 
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a.) Draw all the rotation axes of the tetradecahedron (or truncated 

octahedron). 

b.) Explain why the tetradecahedron from Fig. 64 does not have sixfold 

rotation axes. 

Exercise: 3 Show that the set of points from Fig. 65 has threefold and 

fourfold rotation axes. Follow the considerations of Sec. II.4 for the case 

of the set of 14 points. 

Hint: In Fig. 65 it is shown a regular hexagon defined by 6 of 27 lattice 

points, which is the set of points in consideration. 

Exercise 4 Let us consider a threefold rotation axis of the set of 27 

points from Fig. 65; 24 of them define 5 plane figures in planes 

orthogonal to the threefold axis. Find the edges of the plane figures and 

draw the superposition of their projections along this axis. Draw also the 

graphical symbol of the rotation point for this superposition. 

Figure 65 A set of 27 points located at the vertices of the 8 small cubes. 

Exercise 5 Figure 66 shows a rhombohedron constructed inside a 
hexagonal prism of side a and height c. Two vertices of the 
thombohedron are located in the geometric centers of the hexagonal 
bases and the other 6 form two groups of 3 vertices each. The positions 
of the vertices belonging to each group are described in Sec. II.6. Show 
that for c/a= =/6 i, 6/2 the rhombohedron takes on the shape of a cube. 
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Figure 66 A rhombohedron constructed inside a hexagonal prism. 

Exercise 6 In Fig. 67a it is shown a rhombohedron constructed inside a 

hexagonal prism of side a and height c. The rhombohedron is defined by 

the basis vectors a,, a,, 4;. 

a.) Show that the vector given by the sum (a, +4, +4,) is lying along 

the longest diagonal of the rhombohedron and its longitude is c. 

Find the sum of the vectors graphically. 

(a) 

[aa] = fa, = [a,| iss 

(h) (c) 

Hw |a—4 

eo | 
i] 

he + | in 
he | 

>] 
he 1 = 5c 

Figure 67 (a) A rhombohedron constructed inside a hexagonal prism of side a and height c. 

(b) The highlighted face of the rhombohedron from (a). (c) The right triangle highlighted 

in (a). 
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b.) Calculate the volume of the rhombohedron and compare it with the 

volume of the hexagonal prism. 

Hint: Show that the volume of the prism is 9 times the volume of 

the rhombohedron. 

Exerciser] Figure 67b shows the face of the rhombohedron that is 

highlighted in Fig. 67a. This face is defined by vectors a, and a,. 

Figure 67c, in turn, displays the right triangle highlighted in Fig. 67a. 

This triangle is defined by the vector a, and its projection onto the 

bottom base of the hexagonal prism. 

a.) Using the plane figures from Figs. 67b and 67c, show that 

the relation between the parameters a,, @, that describe the 

rhombohedron and the parameters a, c that describe the hexagonal 

prism (in which this rhombohedron is inscribed) is the following 

a, = 5 N30" +0 =5V3+(c/a): 

ee 3 Rag, 
sin + = ———__— 

+ 2 3+(c/a) 

b.) Show that the c/a ratio is expressed only by the parameter a, of 

the rhombohedron 

G g 
aa se 34 
a \ Asin’ (a@,/2) 

Exercise 8 Figure 68 shows all the NNs, some of the NNNs and also 
some of the TNNs of a lattice point located in the center of the displayed 
fcc lattice with a lattice constant a. 

a.) Show that the NNs, NNNs, TNNs, and also fourth and fifth nearest 

neighbors of a lattice point in the fcc lattice are at distances 

v2, v4 ve, V8 V10 
, ; : , and ——a, 

2 2 2 ae e 

from this point, respectively. 

b.) Situate all the NNNs and the TNNs of the lattice point in 
consideration that fit in the empty cubes shown in Fig. 68. 
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Figure 68 All the NNs, some of the NNNs, and also some of the TNNs of a lattice point 

located in the center of the displayed fcc lattice. 

c.) Is it possible to estimate the number of the NNNs and the TNNs of 

a lattice point in the fcc lattice using the information obtained in 

point b.)? 

Exercise 9 Show that the A-face centered, C-face centered, and body 

centered monoclinic lattices are equivalent in the case of the b-axis 

setting. 

Hint: In order to do this, find a body centered cell (with a shape of the 

conventional cell for the monoclinic system) for each of the lattices 

shown in Fig. 69. 

(a) 

Figure 69 Two monoclinic lattices: (a) C-face centered and (b) A-face centered. The b-axis 

setting is assumed. 
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Exercise 10 Calculate the angles between the axes that define the 

primitive rhombohedral unit cell of the bcc lattice. 

Hint: Follow the steps shown in Sec. II.10 when calculating the angles 

between the axes that define the primitive rhombohedral unit cell of the 

tcc lattice. 

Exercise sl In the sc lattice from Fig. 70 draw the rhombohedral unit 

cell defined by axes with 109°28" angles between them. 

a.) What type of rhombohedral unit cell did you obtain? 

b.) How many lattice points do belong to this cell? 

c.) Calculate the volume of the rhombohedral unit cell and compare it 

with the volume of the primitive cubic cell. 

Figure 70 A simple cubic lattice. 

Exercise 12 We know from Table 5 that mercury at 5 K crystallizes in a 
trigonal structure. Draw the hexagonal prism composed of three triple 
hexagonal R unit cells for the Hg crystal structure. Find first the 
parameters a and c for the hexagonal R cell using the data from 
Table 5 and then find the c/a ratio to draw the hexagonal prism of the 
Hg crystal structure in real proportions. 

Hint: See Exercise 7. 

Exercises Starting from Fig. 49 draw the hexagonal prism composed 
of the three triple hexagonal R unit cells for the fcc lattice. The resulting 
picture will contain the cubic F, rhombohedral P, and triple hexagonal R 
unit cells for the fcc lattice, all of them with a common origin. 
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Figure 71 A regular dodecahedron. 

Exercise 14 

a.) Draw the fourfold axes of the regular dodecahedron shown in 

Fig. 71 (the Wigner-Seitz cell of the fcc lattice). How many such 

axes does it have? 

b.) Draw a threefold axis of the dodecahedron. How many such axes 

does it have? 
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Ill. CRYSTAL STRUCTURES OF 
ELEMENTS 

1. Introduction 

In this chapter, we will consider the crystal structure of most metallic 

elements, nonmetals from column IV of the periodic table, and noble gases. 

More than 30 elements crystallize in two monoatomic crystal structures, fcc 

and bcc, at room temperature and normal pressure. There are also a large 

number of elements that crystallize in a structure that can be described by a 

hexagonal Bravais lattice but with two-atom basis. This is the so called 

hexagonal close-packed (hcp) crystal structure. To describe this structure, 

identical spheres are arranged in a regular array to minimize the interstitial 

volume. This close-packing of spheres may lead, however, to many different 

arrangements. One of them turns out to be nothing more than the fcc 

structure. Under normal conditions, more than 40% of the elements 

crystallize in the hcp, fcc and other close-packed crystal structures. All of 

them will be considered in this chapter. 

In some sense, the idea of close-packing of spheres, to obtain crystal 

structures, coincides with the idea to consider atoms (or ions) as 

impenetrable hard spheres of a certain radius r. This model, even being so 

simple, is quite useful in the description of crystal structures. For example, it 

allows for the prediction of interatomic distances of new structures to a first 

approximation. The atomic radius is deduced from observed atomic 

separations in a set of crystals. However, the results may vary from set to set 

since the atomic separation depends on the type of chemical bonding. The 

principal bonds in crystals are: metallic, ionic, and covalent. The radius of 

an atom in the crystal of an element is given by half the observed minimal 

atomic separation. 

The atomic radius depends on the kind of bond in the crystal because the 

nature of bonding is strongly connected to the spatial distribution of 

electrons. The degree of impenetrability of atoms (or ions) depends on their 

electronic configuration. The highest impenetrability is achieved in the case 

of atoms (or ions) with closed electron shells. This is, for example, the case 

of noble gases, positive ions of alkali metals (Li’, Na", K*, Rb’, or Cs") or 

negative ions of the halogens (F, Cl, Br, or I). The high degree of 

impenetrability of such an atom (or ion) is a consequence of the Pauli 

67 
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exclusion principle and a large energy gap existing between the lowest 

unoccupied atomic orbital and the highest occupied one. 

The idea to consider an atom (or ion) as a hard sphere will be used 

frequently in this chapter. 

2. Pearson Notation and Prototype Structure 

The Pearson notation, together with the prototype structure, allows 

shorthand characterization of crystal structures. It consists of the symbol of 

the Bravais lattice corresponding to the structure in consideration followed 

by the number of atoms per conventional unit cell. Table 8 lists Pearson 

symbols for the 14 Bravais lattices. The assignation of the Pearson symbol 

to a crystal structure is not unique, it means, in general one Pearson symbol 

corresponds to more than one crystal structure. To achieve a unique 

identification of a crystal structure, to each structure type is assigned a 

representative (prototype) element or compound, in a proper phase, having 

that structure. The Pearson symbol together with the prototype structure 

identifies the crystal structure of a given element or compound. The 

Table 8 Pearson symbols corresponding to 14 Bravais lattices. In these symbols n expresses 

the number of atoms per conventional unit cell. The last column gives examples of Pearson 

symbols which together with the prototype structures correspond to crystal structures of 

elements. 

Crystal system Bravais lattice Pearson symbol Example of crystal 

symbol structure 

Triclinic (anorthic) aP Aan 

a Je mPn mP4-yBi 
M 1 m 

y 

peewee mS (mA, mB, mC) mSn mS4-fBi 

oP oPn oP8-aNp 

Orthorombic BOAO) oSn oS4-aU 
ol oln 

oF oFn oF8-yPu 

Tetragonal us iPn tP4-BNp 
tl tn t[2-In 

Trigonal 

(rhombohedral) 
hR\-aHg 

Hexagonal 

cP1-aPo 

cl2-W 

cF4-Cu 

*In the Pearson symbol hRn, the number of atoms, n, refers to the primitive rhombohedral 

unit cell. 
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examples listed in the last column of Table 8 correspond to crystal 

structures of elements. 

3. The Filling Factor 

The filling factor of a crystal structure is defined as the fraction of the 

total crystal volume filled with atoms considered hard spheres. Sometimes 

instead of filling factor the expressions “atomic packing factor’ or “packing 

fraction” are used. 

The filling factor gives us an idea how close “the atoms are packed” in 

the crystal structure. The closest packing of atoms is achieved when the 

number of NNs is the highest possible. In conclusion, the filling factor 

together with the coordination number give us an idea about the degree of 

filling the crystal volume with atoms, and, at the same time, tells us how 

close the atoms in a crystal are packed. 

In order to calculate the filling factor, we have to know first the radii 

for atoms considered hard spheres. In the case of elements the radius is half 

the distance between NNs. To do the calculations, we can limit ourselves to 

the conventional unit cell of the crystal structure. The filling factor is 

defined as 

volume occupied by atoms 
talline (aeior (hard spheres) within the unit cell 
i = 

: cell volume 

Below we will consider different crystal structures in which crystallize 

the elements. We will begin with the simple cubic structure. 

4. Simple Cubic Structure 

Pearson symbol: cP1, prototype: a-Po. Let us assume that the vertices 

of the cubic unit cell of the sc structure coincide with the centers of atoms. 

Figure 72 shows the plane of one of the faces of the cube with the cross 

sections of the atoms that, being considered hard spheres, are represented by 

circles on this plane. Each atom from a cube face has two of its NNs on this 

face. The NNs are at a distance equal to the lattice constant a. The atomic 
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Figure 72 The plane that contains a face of a cubic unit cell of the sc structure with the cross 

sections of atoms considered hard spheres. 

radius is equal to half of a, so the volume of the only one atom belonging to 

the cube is given by 

NT 3 
=— IEE ae (IH.1) 

(filling factor) = 2 =o 0.52. (111.2) 

The result for the filling factor shows that in the case of the sc structure 

about half of the crystal volume is filled with atoms and the other half 

corresponds to the interstices. Of course this is reflected also by the 

coordination number; the number of the NNs of an atom in the case of the sc 

structure is only 6. The next nearest neighbors (NNN) are already 12, but at 

the distance about 40% higher than the NNs. In conclusion, the interstitial 

volume in the sc crystal structure is quite large. 

Under normal conditions, only one element, polonium in the a-phase, 

crystallizes in the sc structure. However, there are three elements, As, Sb, 
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and Bi (discussed already in the previous chapter) that crystallize in the 

trigonal structure, which is a slightly distorted sc structure. 

5. Body Centered Cubic Structure 

Pearson symbol: c/2, prototype: W. Now, we will see the case of the 

bcc structure. In this case, the atoms of the vertices of the cube are NNs of 

the atom that is in the center of the cube (see Fig. 73a), and those atoms are 

in contact with it. The point of contact between two atoms is found in a 

plane defined by two body diagonals of the cube, as it is shown in Fig. 73. 

We can see in Fig. 73b that the atoms are in contact with each other 

only along the body diagonals of the cube, while, the atoms that are at the 

(a) 

(hb) 

Figure 73 (a) Unit cell of the bcc structure. (b) A plane defined by two body diagonals of the 

cube shown in (a). In this plane, there are the points of contact between the central atom and 

its NNs. 
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vertices are at a distance greater than 2r (r — radius of the atom). There are 

two atoms in the cubic cell of the bcc structure, so the filling factor is 

B 
filling jac) =< <1 eg = 0.68. (III.3) 

Please note that the filling factor for the bcc structure is higher than that 

one for the sc structure. This is consistent with the fact that the number of 

NNs in bcc is also higher than in sc (8 and 6, respectively). Moreover, the 

distance of the 6 NNNs of an atom in the bcc structure differs from the 

distance of its NNs by less than 15%. Therefore, an atom in this structure 

has effectively 14 atoms close to it. 

Table 9 reports lattice constants a for all elements that crystallize in the 

bcc structure at room temperature and normal pressure. All of them are 

metals. In this table, we can also find lattice constants for a number of 

metals that crystallize in the bcc structure at high temperatures and normal 

Table 9 Lattice constants of elements that crystallize in the bcc structure at normal 

pressure. The data is provided at room temperature, unless otherwise specified. 

4.100 (1163 K) 
B-Ca 4.380 (773 K) 4.130 (1094 K) 

d-Ce 4.120 (1030 K) 3.638 (773 K) 

a-Cr 2.8847 5.148 

p-Dy 4.030 (1654 K) 3.752 (1623 K) 
a-Eu 4.5827 4.850 (887 K) 
a-Fe 2.8665 Ta 3.3031 
6-Fe 2.9346 (1712 K) B-Tb 4.070 (1562 K) 
p-Gd 4.060 (1538 K) p-Th 4.110 (1723 K) 
K “| 5.321 F p-Ti 3.3065 (1173 K) 

y-La 4.260 (1160 K) p-TI 3.882 (506 K) 
p-Li E 3.5093 y-U 
é-Mn 3.081 (1413 K) Vv 3.024 

3.147 Ww 3.1651 | 
| p-Na 4.29] B-Y 4.100 (1751 K) 

3.3007 y-Yb 4.440 (1036 K) 
[4.130 (1156 kK) 3.609 (1135 K) 

y-Np | 3.520 (873 K) il 
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pressure. Under normal conditions, these metals (with exception of Fe) 

crystallize in structures different from bcc and they will be considered later. 

One of them, manganese (a-Mn), crystallizes in a very complex structure 

due to its magnetic (antiferromagnetic) properties. This structure may be 

considered as bcc with 56 additional atoms, it means, in total 58 atoms per 

unit cell (Pearson symbol c/58). On the other hand, this supercell may be 

viewed as build of 3X3xX3=27 cubic bcc unit cells containing 

2X3xX3x3=54 atoms with still 4 additional atoms added. A number of 

these atoms are slightly shifted from the ideal positions in the small bcc unit 

cells. The NN interatomic distances in a-Mn, with lattice constant 

a =8.9125 A (at 298 K), are in the range of 2.244-2.911 A. 

6. Face Centered Cubic Structure 

Pearson symbol: cF4, prototype: Cu. We will now turn to the case of 

the fcc structure. The cubic unit cell of this structure is shown in Fig. 74a. 

The atom placed in the center of a face of the cube has 4 of its NNs at the 

vertices of this face. Figure 74b shows the plane of the front face of the cube 

with the cross sections of 5 atoms considered hard spheres. The points of 

contact between the atoms are found on the face diagonals. 

(a) (bh) 

ps 

ee 

7 ie 

Figure 74 (a) Unit cell of the fcc structure. (b) Plane of the front face of the cube from (a) 

with the cross sections of 5 atoms considered hard spheres. The points of contact between the 

NNs are found in this plane. 

In the case of the fcc structure, there are four atoms in the cubic cell, 

therefore the filling factor is 
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cd Pea 
4 3 a os a ap 

(filling factor) ,, =z —— =~ 20.14. (II1.4) 
3 

a 

This filling factor is the largest one among the filling factors for the cubic 

structures and at the same time the larges one among the filling factors for 

all structures for the elements. In this case 3/4 of the crystal volume is filled 

with atoms considered hard spheres and only 1/4 is empty. The number of 

the NNs, equal to 12, is also the largest possible. 

Table 10 Lattice constants of elements that crystallize in the fee structure at normal 

pressure. The data is given at room temperature, unless otherwise specified. 

| Blement | aA) | Element 
ae Ee ee 5.303 (598 K) Ac 

Mn 
a-Al 
Ar 

Au 2 

e 

i 

a-Ca 5.5884 

a-Ce 4.850 (77 K) 

y-Ce 5.1610 6-Pu 
a-Co 3.569 (793 K) Rh 

cu ES 

re 

4.0784 a-Pb 
3.8901 

Lier aca N 

3.630 (1373 K) 
3.8391 

5.796 (96 K) 
pb 

Table 10 lists lattice constants a of all metals that crystallize at room 

temperature and normal pressure in the fcc structure. Besides that, in this 

table are also given the lattice constants of four noble gases (argon, krypton, 

neon, and xenon) and a number of metals that crystallize in the fcc structure 

at temperatures different from room temperature. A similar number of 

metallic elements crystallize in the fec and bce structures under normal 

conditions, what can be seen comparing Tables 9 and 10. 

The fce structure represents one of the close-packed structures. We will 

discuss them below. 
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7. Close-Packed Structures 

The name “close-packed” refers to the way of packing the atoms in 

order to obtain the highest possible filling factor. To consider close-packed 

structures it is worthwhile to analyze first the manner of placing spheres of 

the same radius, in order for the interstitial volume to be as small as 

possible. For this purpose, the spheres are arranged in layers that are placed 

one on the top of the other in the way we will explain below. Each sphere 

within a layer is in contact with six others and a layer represents a two- 

dimensional close-packed hexagonal structure. The cross section of a layer 

is shown in Fig. 75. We will differentiate the holes existing between spheres 

of a layer as of type (a) or type (b) (see Fig. 75). 

Each sphere of this layer is 
in contact with six spheres. 

Hole (a) Hole (b) 

Figure 75 A close-packed layer of spheres that is a two-dimensional close-packed hexagonal 

structure. 

Figure 76 shows the plane defined by centers of spheres of the first layer 

and the projection of centers of spheres of the second layer. The centers of 

the second layer spheres are above the centers of the holes of type (a) 

specified in Fig. 75. The spheres of the second layer just rest in the holes of 

type (a). 

The centers of the holes of type (a) coincide with the geometric centers 

of the equilateral triangles shown in Fig. 76 (of course the same occurs in 
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Center of the first layer sphere 

‘the first layer, as well as — 
those of the second layer, | 

define two-dimensional 

hexagonal lattices. 
The lattice of the second 

layer is translated with 

respect to the lattice of 

Projection of the center the first layer by the 

of the second layer sphere vector t. 

Figure 76 The centers of spheres of the first layer and the projection of the centers of spheres 

of the second layer in a close-packed arrangement of equal spheres. 

the case of holes of type (b), see Fig. 77a). Therefore, each sphere of the 

second layer is in contact with three spheres of the layer below it. 

The third layer can be placed in two ways as depicted in Fig. 77. In 

the case shown in Fig. 77a the centers of spheres of the third layer are 

above the centers of the holes of type (b) of the first layer, specified in 

Fig. 75, whereas in the case shown in Fig. 77b the spheres of the third layer 

lie directly above the spheres of the first layer. 

We will show now that the close-packed arrangement displayed in 

Fig. 77a corresponds to the fcc structure. A part of Fig. 77a, with the cubic 

cell of the fcc structure, is drawn in Fig. 78. We can see in this figure that the 

fcc structure is of type ABCABC..., where A, B, and C denote three two- 

dimensional close-packed layers shifted horizontally one with respect to the 

other. The layer planes are orthogonal to a body diagonal of the cubic unit 

cell of this structure. The second layer, B, is shifted with respect to the first 

one, A, by vector t , defined in Fig. 76. In this way, the spheres of the B 

layer are placed in holes of type (a), shown in Fig. 75, of layer A. The 

spheres of C layer are placed over the holes in the A layer not occupied by 

the spheres from B layer, it means, of type (b) in Fig. 75. The C layer is 

shifted with respect to the A layer by vector 2t , and with respect to the B 

layer by vector t , so each sphere of the C layer is in contact with 3 spheres 
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@) Projection of the 

sphere 

Projection of 

the center of 

the second 

layer sphere 

Center of the first 
layer sphere 

(b) 

Projection of 

the center of 

the second 

layer sphere P 
¢ Center of the first 

layer sphere and 

i” projection of the 

center of the third 

layer sphere 

Figure 77 (a) and (b) show two close-packed arrangements of equal spheres. The case 

described in (a) differs from that one in (b) in the positions of spheres of the third layer with 

respect to the spheres of the first and second layers. 

of the B layer. The spheres of the fourth layer lie directly above the spheres 

of the first one. 

To conclude, we can say that in the case shown in Fig. 77a we have 

a cubic close-packed (ccp) structure that was already introduced as the 

fcc one. This is an ABCABC... type structure. Now it is easy to visualize 

the 12 NNs of an atom in the fcc structure; 6 of them belong to the layer in 

which is placed the atom in consideration, while half of the other 6 belong to 

the layer below and the other half to the layer above. 

In the case shown in Fig. 77b we have a hexagonal close-packed (hcp) 

structure of an ABAB... type. Figure 79 shows a part of Fig. 77b together 

with the hexagonal prism. We can see in Fig. 79 that the hcp structure 

represents a hexagonal Bravais lattice with two-atom basis. Each atom in 
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Second layer 
ae 

Sad 

First layer 
wan 

sae 

a 

We can easily see thata threefold Spheres of the fourth 

axis passes through the center of layer are directly above 
the sphere ©. | those of the first. 

Figure 78 The fcc structure viewed as a close-packed structure (cubic close-packed). Three 

consecutive layers of this structure are marked as A, B, and C. 

this structure has 12 NNs (as it is also the case for the fcc structure); 6 of 

them belong to the layer in which 1s placed the atom in consideration and the 

other 6 belong to the adjacent layers. The difference between ccp and hcp 

structures consists in the location of the NN atoms that belong to the 

adjacent layers. In the case of the ccp structure three of them occupy (a) 

holes and the other three (b) holes (specified in Fig. 75), present in the layer 

to which belongs the atom in consideration. In the case of the hcp structure 

these 6 NNs occupy holes of type (a): 3 from the top and 3 from the bottom 

side of the layer. Twelve is the maximum number of spheres that can be 

arranged to touch a given sphere. The hcp structure will be discussed in 

details later. 

There is an infinite number of possible ways of close-packing equal 

spheres, since any sequence of A, B, C layers, with no two successive layers 

alike, represents a possible close-packing arrangement of equal spheres. 

Therefore, a close-packed structure can be obtained only if two consecutive 

layers are of a different type. In this case, each sphere touches 12 other 

spheres and this characteristic of all close-packed structures could be seen 
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‘The spheres of the third layer are_ 
directly above those of the first. | 

Figure 79 The ABAB... stacking of atomic layers in the hep structure. 

already in the case of fcc and hcp structures. Please note, that the only close- 

packed structure that represents a Bravais lattice with one-atom basis is the 

fcc structure. 

Below we will give an example of a close-packed structure, different 

from the fcc and hep structures, which has a layer sequence 

ABACABAC.... This structure is called a double hexagonal close-packed 

(dhcp) structure. 

8. Double Hexagonal Close-Packed Structure 

Pearson symbol: hP4; prototype: a-La. Two consecutive layers in the 

dhcp structure are of a different type, so it represents indeed one of the 

close-packed structures with the coordination number 12. Under normal 

conditions, in the dhcp structure crystallize 5 rare earth (RE) metals: 

lanthanum (a-La), cerium (f-Ce), praseodymium (a-Pr), neodymium (a-Nd), 

Table 11 Lattice constants of lanthanides that crystallize in the dhcp structure under normal 

conditions. The data for d6-Sm correspond to room temperature and 4.0 GPa. 

Element a (A) c (A) c/a 

ala | 3.7740 2171 2x 161 
B-Ce 3.681 11.857 2x 1.61 

3.6721 els 11.8326 DX Aeoll 

3.6582 11.7966 Dro 

a-Pm 11.65 2 x 1.60 

d-Sm (4.0 GPa) 3.618 11.66 2x 1.61 
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Table 12 Lattice constants of actinides that crystallize in the dhcp structure under normal 

conditions. 

promethium (a-Pm), all of them lanthanides, and the following actinides: 

americium (a-Am), curium (a-Cm), berkelium (a-Bk), and californium 

(a-Cf). Cerium exhibits at room temperature and normal pressure two 

phases: beta and gamma (Ce has the fcc structure, see Table 10). The 

phase transition from f-Ce to ¥Ce occurs close to the room temperature and 

B-Ce exists below this temperature. In Table 11 we have listed the 

experimental lattice parameters a and c for La, Ce, Pr, Nd, and Pm, obtained 

under normal conditions, and for 6-Sm obtained at room temperature and 

pressure 4.0 GPa, while Table 12 gives the experimental lattice parameters a 
and c for actinides obtained under normal conditions. The parameters a and 
c are defined in Fig. 80. 

The hexagonal prism that represents a conventional unit cell of the 
dhcp structure, which has the same point symmetry as an infinite structure, 

Figure 80 Double hexagonal close-packed structure. The ABACABAC... sequence of layers 
is shown. 
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is shown in Fig. 80. In this figure, we also show the sequence, 

ABACABAC..., of the two-dimensional hcp layers. 

In the next section, we will consider the structure of samarium at room 

temperature and pressure (a-Sm). 

9. Samarium Type Close-Packed Structure 

Pearson symbol: hR3, prototype: a-Sm. Samarium in the alpha phase 

crystallizes in a complex close-packed structure with a layer sequence 

ABABCBCACA.... It means, represents the repetition of a unit consisting 

of 9 two-dimensional hcp layers, as can be seen in Fig. 8lc. The smallest 

unit cell of this structure is rhombohedral (inscribed in the hexagonal prism 

from Fig. 81c), so the a-Sm structure is trigonal. Its rhombohedral unit cell 

contains 3 atoms, while the triple hexagonal cell contains 9 atoms. The cell 

parameters of the two unit cells, triple hexagonal and rhombohedral, are 

a, =3.629A,, c, =26.207A and a, =8.996A, a =23.22°, respectively (at 
room temperature and normal pressure). About half of the RE metals 

crystallize at high pressure in the Sm-type structure. They are: yttrium (Y), 

gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium 

(Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). In the case of three of 

them (Y, Tb, and Dy) the following pressure-induced sequence of phase 

transitions is observed at room temperature: 

hcp — Sm-type > dhcp —- fcc. 

For yttrium, e.g., the experimentally determined transformations are: from 

hcp to Sm-type at 10-15 GPa, from Sm-type to dhcp at 25-28 GPa, and from 

dhcp to fcc at 46 GPa. A similar sequence, of pressure-induced phase 

transitions (at room temperature), is observed for Ho, Er, and Tm: 

hcp — Sm-type — dhcp. 

It is interesting to mention that the two sequences involve close-packed 

structures that are, to some degree, mutually related. The dhcp and Sm-type 

structures can be viewed as a certain mixture of the hcp and ccp (fcc) 

structures. 

Figures 81 and 82 show hexagonal prisms for the four close-packed 

structures considered by us. The hexagonal prisms for the hcp, dhcp, and 
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Figure 81 Hexagonal prisms for three of the four close-packed structures considered by 

us: hcp, dhcp, and Sm-type. In each case, the sequence of the two-dimensional hcp layers 

is shown. The hexagonal prism for the fourth close-packed structure (ccp) is displayed in 

Fig. 82. 

Sm-type structures are drawn in Figs. 8la-81c, respectively, while in Fig. 82 

is shown the hexagonal prism for the fcc structure. In each case, the 

sequence of the two-dimensional hcp layers is shown. The hexagonal prism 

displayed in Fig. 82 can reproduce the fcc structure, but has less symmetry 

(point symmetry) than an infinite fcc structure. 
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‘Hexagonal prism for 
‘the fcc structure. 

Figure 82 Hexagonal prism for the ccp (fcc) structure (the cell parameters ratio is 

Of Gz Jo, see Fig. 78). The sequence of layers A, B, and C is shown. 

10. Hexagonal Close-Packed Structure 

Pearson symbol: hP2, prototype: Mg. Now, we will analyze the 

hexagonal close-packed structure in more details. The hexagonal prism 

represents a conventional unit cell that has the same point symmetry as an 

infinite hcp structure. In this case, the highest order rotation axis is threefold. 

The hexagonal unit cell defined by vectors 4, b, ¢ in Fig. 83 can 

reproduce the whole hcp structure, as in the case of the simple hexagonal 

structure, but here it contains two atoms. The positions of the two atoms 

within the hexagonal unit cell are given in Fig. 84. 

The conventional unit cell of 

the Acp structure represents a 

third of the hexagonal prism 

and has two atoms. 

Figure 83 The conventional unit cell of the hcp structure defined by the basis vectors a , b, 

Cr 
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Figure 84 Positions of the two atoms within the hexagonal unit cell of the hcp structure. The 

coordinates are expressed in units of a and c. 

We will now calculate the c/a ratio in an ideal case when the atoms 

considered hard spheres touch their NNs. Figure 85 shows the unit cell for 

this case. The three atoms marked as 1, 2, 3 (from the bottom base) and the 

three marked as 5, 6, 7 (from the top base) are the NNs of the atom marked 

as 4, and they are in contact with it. Likewise, atoms marked as 1, 2, 3 are in 

contact among themselves. As the distance between the centers of spheres | 

and 2 is a, so 1s the distance between the centers of spheres 1, 2, or 3 and the 

center of sphere 4. 

To obtain the c/a ratio, we first derive the expression for the vectors f, 

and fr, that are the components of the position vector fF of the center of the 

atom marked as 4 in Fig. 85. In Fig. 86 we show the plane of the rhombic 

ay = ak 

a-1ar+ Bag 

ay = cz 

Tf =1,+T, is the position vector 

of the atom located on the inside 

of the cell 

Figure 85 The 6 of 12 NNs of the atom marked 4 (the ones marked 1-3, and 5-7) located 
at the vertices of the hexagonal unit cell. The vector fF gives the position of the atom marked 
as 4. 
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Projection of the center of the 

atom that is inside the cell 

Figure 86 The base of the hexagonal unit cell shown in Fig. 85. 

This vector can be 

and a, (see Fig. 86). 

base of the hexagonal unit cell which contains 

expressed as a linear combination of basis vectors 

Vectors 4, and 7, can be then written as 

i 

a, 

1 a, ak 

=74s 
2 percpiiecsiborg. tet! ape Mage (ILS) 

Peale) A a lees 
Sa Oa via Ag CZ 

and can be expressed in terms of orthogonal versors as 

or Le 
ne 

(III.6) 

oS erie + a 1 6 y 

Finally, from (III.6) we obtain that vector r is 

eee re 
f=f +f =—ax+—ay+—cZ. (11.7) 

paired eben a2 

Since the module of vector f is a (the distance between the centers of atoms 

1 and 4), then 

2 D 

il-,|4 qe gate (11.8) 
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and the c/a ratio is 

ie iy = 1,633. (III.9) 
a 3 

Therefore, in the ideal hcp structure the c/a ratio is about 1.63. 

Table 13 lists lattice parameters a and c for all elements that crystallize 

in the hcp structure at room temperature and normal pressure. As in the case 

of bec and fcc structures all of them are metals. The table reports also lattice 

parameters of other metals and also helium, obtained at conditions different 

from normal conditions. We can observe in the table that with exception of 

two metals, cadmium and zinc, for the rest of them the ratio c/a is quite 

close to the ideal value 1.63. The structures of cadmium and zinc are 

somewhat distorted from the ideal hcp structure. The NNs of an atom are not 

12 but 6 (the ones from the same layer), while the other 6 atoms, which are 

placed in adjacent layers, are 10% farther away. However, the point 

symmetry of the hcp structure does not depend on the c/a ratio. 

It is interesting to note that under normal conditions more than 25% of 

the elements crystallize in the hcp and dhcp structures. This information is 

given in Table 14. 

Table 13 Lattice parameters of metals that crystallize in the hcp structure. The data is given 

at room temperature and normal pressure, unless otherwise specified. Values for helium 

He and *He) are also included. 

a(A) | ¢(A) 

2.734 

Element 

a-Sc 3.3088 | 5.2680 | 1.59 

B-Sm (723 K) | 3.663 | 5.845 | 1.60 

a-Gd 8168360 nos SLOmmlns9 a-Tb 3.6055 | 5.6966 | 1.58 
3 
“He | 9 (3.48 K, 0.163 GPa) 3.501 SPA || Moss eG PTSysy || AREY | AO) 

4He 
a-Ti 2.9503 | 4.6836 

(3.95 K, 0.129 GPa) 

a-Hf 

a-Ho SS 75) || Sass fee) 

a-Li (78 K) 3.6482 | 5.7318 

a-Lu SEE) || opet ey, 

2.644 | 4.9494 

a-Zr 3.2317 | 5.1476 a-Na (5 K) 
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Let us now proceed to calculate the filling factor for the ideal hcp 

structure. The hexagonal unit cell volume is given by 

x yo =z 

Q, =(4,x4,)-4,=|a 0  O-(cz) 

oat 3, 0 
ie 2) 

3: alien 
= [ort (cere Vie. where c= fa (II. 10) 

then 

4 (ay 

peakoje Ba 
( filling factor)... = —_—*_ = — 7 =0.74. (IT.11) 

De 6 

Note that we obtained the same result as in the case of the fcc (ccp) 

structure. This is the value of the filling factor for any close-packed 

structure. All of them characterize the maximum number, 12, of the NNs of 

an atom. 

Under normal conditions, more than 40% of elements crystallize in three 

close-packed structures: fcc, hcp, and dhcp, what is shown in the periodic 

table of elements (see Table 14). 

11. Interstices in Close-Packed Structures 

We will now examine the interstices — empty spaces between atoms 

(hard spheres) — in close-packed structures. They are of two types: 

tetrahedral and octahedral. A tetrahedral interstice could be found already 

in Fig. 85. In this figure, the centers of spheres marked as 1, 2, 3, and 4 

represent vertices of a tetrahedron. The edges of this tetrahedron are of the 

same longitude, 2r (where r is the sphere radius), so this is a regular 

tetrahedron. The empty space between the four spheres defining a 

tetrahedron is what we call a tetrahedral interstice. Spheres marked in 

Fig. 85 as 4, 5, 6, and 7 define another regular tetrahedron. The two 

tetrahedrons have different spatial orientation. The top view of the two types 
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Projection of the 
center of the B 

--4---- Center of the 

Q i layer sphere 

Figure 87 Centers of spheres of the A layer and projection of the centers of spheres of the 

B layer. (a) Three vertices and one vertex projection for one tetrahedron and one vertex 

and three vertex projections for the tetrahedron with the second spatial orientation are shown. 

(b) Top view of octahedron bases lying on A and B layers. 

of tetrahedrons is shown in Fig. 87a, in which we have the plane of a 

hexagonal layer A and the projection of the centers of spheres of layer B on 

layer A. Three vertices of one of the tetrahedrons shown in this figure are 

found in layer A and the fourth in layer B. The opposite occurs for the 

tetrahedron with a second orientation in which three vertices are in layer B 

and the fourth in layer A. 

A regular octahedron is visualized in Fig. 87b; three of its six vertices 

are placed in the A layer and the other three in the B layer. The empty space 

between the 6 spheres that define a regular octahedron represents the second 

type of interstices that are present between two different types of layers in a 

close-packed structure, the so called octahedral interstices. The octahedron 

edge length is 27 like in the case of the tetrahedron edges. 

Let us show now interstices that are present in conventional unit cells 

for the two most common close-packed structures. Figure 88 shows three of 

the tetrahedral interstices present in a hexagonal prism which is a 

conventional unit cell of the Acp structure. Whereas, in Fig. 89 we show two 

of the tetrahedral and one octahedral interstices present in a cube that 

represents a conventional unit cell of fcc (ccp). There are crystal structures 

in which such interstices may be occupied by additional atoms. In general 
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Figure 88 Three tetrahedral interstices inside a hexagonal prism which is a conventional unit 

cell that has the same point symmetry as the hcp structure. The sequence of layers A and B 

is shown. 

Figure 89 Two tetrahedral (a) and one octahedral (b) interstices in a cubic unit cell of the fec 

(ccp) structure. The sequence of layers A, B, and C, orthogonal to a body diagonal of the 

cube, is shown. 

these atoms are of another type than the atoms of the close-packed structure. 

This gives rise to a large number of compounds that can be described in 

terms of a close-packing of equal spheres. We will discuss this in details for 

binary compounds. 

Summarizing, we have learned the following about close-packed 

structures: 

a.) Three-dimensional close-packed structures are built of two-dimensional 

hep layers of equal spheres (see Fig. 75). Each sphere of such a layer is 

in contact with 6 other spheres, which is the maximum possible number 

of NNs in two dimensions. 
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b.) The consecutive layers in a three-dimensional close-packed structure 

are shifted horizontally one with respect to the other, so we distinguish 

three types of layers: A, B, and C, defined in Fig. 78. 

c.) As two consecutive layers are of a different type, the spheres of each 

layer rest in the holes of the layer below. Therefore, each sphere, apart 

from the 6 NNs in its own layer, has 3 NNs in each of the adjacent 

layers. 

d.) There are tetrahedral and octahedral interstices between two 

consecutive layers of a close-packed structure. 

We already know that metallic elements have the tendency to crystallize 

in close-packed structures. Moreover, noble gases also crystallize in those 

structures. The type of bonding between atoms of these elements gives 

preference for the coordination number 12, what is indeed achieved in a 

close-packed structure. Whereas, other types of bond (covalent or ionic) 

require 4, 6, or 8 NNs of an atom. The presence of tetrahedral and 

octahedral interstices in close-packed structures offers the possibility to 

form bonds with 4 or 6 NNs when an atom is placed inside a tetrahedral or 

octahedral interstice, respectively. 

In general the atom (or ion) that is located inside the interstice pushes 

apart the atoms at the vertices of the tetrahedron or octahedron. As a 

consequence the hcp layers (A, B, C) do not represent any longer close- 

packed layers but only two-dimensional hexagonal structures. In these 

layers, the atoms do not touch each other and in addition the atoms from 

adjacent layers are not in contact with them. We will see this on the 

example of 4 elements that crystallize in the diamond structure. The atoms 

in this structure have 4 NNs. 

The diamond structure represents a sequence of layers of 

AABBCCAABBCC... type, where each layer is a two-dimensional 

hexagonal (but not close-packed) structure. This sequence can be seen as a 

superposition of two equal sequences of ABCABC... type. It means that we 

are in presence of a superposition of two fcc structures. One of them is 

translated with respect to the other in such a way that the atoms of each of 

them occupy half of the tetrahedral interstices of the other. Thus, each atom 

has 4 NNs as is required in the case of pure covalent bonding. The diamond 

structure will be considered below in more details. 

The A, B, C layers (two-dimensional hexagonal structures that are in 

general not close-packed) are present also in the case of various important 
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binary compounds. This will be shown in the next chapter on examples of 

compounds that crystallize in the zinc blende, wurtzite, NiAs, or NaCl 

structures. In general, in a binary compound, the atoms (ions) of a given 

type form a structure which is at the same time its substructure. Each of 

these substructures, in the case of structures mention above, represents a 

sequence of layers of ABAB... or ABCABC... type (or only of AA... type 

like in the case of cations in NiAs). In general, each layer (A, B, or C) 

represents a two-dimensional hexagonal structure, which is rarely a true 

close-packed layer. 

When a three-dimensional structure is not really close-packed, it means, 

when an atom considered hard sphere is not in contact with 12 atoms closest 

to it, but it is still built of A, B, C (or A and B) layers in the way that two 

consecutive layers are of a different type, it is also called close-packed. 

In zinc blende and wurtzite structures each substructure is of 

ABCABC... and ABAB... type, respectively, and the atoms of a given type 

occupy half of the tetrahedral interstices present in the other substructure. In 

NiAs the substructure of anions is of ABAB... type and the cations occupy 

its octahedral interstices, whereas NaCl is composed of substructures with a 

layer stacking ABCABC.... The ions from one substructure in NaCl occupy 

the octahedral interstices present in the other substructure. All these 

structures will be described in details in the next chapter. 

12. Diamond Structure 

Pearson symbol: cF8, prototype: C. Four elements, from column IV 

of the periodic table, crystallize in the diamond structure, namely: carbon, 

silicon, germanium and gray tin (which is one of the two allotropes of tin at 

normal pressure and temperature). The atoms of each of these elements 

have four electrons in the outermost shell (the so called valence shell). By 

completing this shell with four additional electrons those atoms can achieve 

a state of the highest stability. This stability is reached in the crystal of each 

of these elements in which an atom is surrounded by four neighboring 

atoms that in turn form covalent chemical bonds (represented schematically 

in Fig. 90) with it. In the diamond structure, each atom shares four electrons 

with its 4 NNs and each of these neighbors shares an electron with the atom 

under consideration. Therefore, all atoms can complete the 4 electrons that 
were lacking to achieve the highest stability. 
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14... 
Si 

3? 

50 
Sn 

Figure 90 Two-dimensional schematic representation of covalent chemical bonds in the 

diamond structure. 

(a) 

2 The cental atom in the 
The cental atom © in the ase 

5 4 cube forms bonds with its 
tetrahedron is located in : A 

4 NN located in the vertices 
the center of the cube. 

of the cube. 

Figure 91 (a) A tetrahedron defined by the NNs of an atom in the diamond structure. (b) The 

tetrahedron from (a) inscribed in a cube. (c) Three-dimensional schematic representation of 

covalent bonds between an atom and its 4 NNs. 

The neighborhood of an atom in the diamond structure is shown in 

Fig. 91. The four NNs of each atom of an element that crystallize in this 

structure are placed at the vertices of a regular tetrahedron that has the atom 

under consideration in the center, like it is shown in Fig. 9la. The regular 
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In the center of the small cube’ 
‘that represents aneighthof — 
the cubic unit cell there is an © 
atom marked with ©. The unit | 
cell is composed of eight small 
cubes, four of which have an 

atom in the center. 

Figure 92 Two small cubes from Fig. 91b placed in two of the four possible positions inside 

a cubic unit cell of the diamond structure. 

tetrahedron is easier to draw if we place it inside a cube, what was done in 

Fig. 91b. In addition, Fig. 91c shows a three-dimensional schematic 

representation of covalent bonds between an atom in the diamond structure 

and its 4 NNs. 

We should observe that the cubic volume that we have drawn in 

Fig. 91b does not, of course, represent a unit cell of the diamond structure, 

since it does not have atoms in all its vertices. However, we can easily 

locate it within the cubic unit cell of this structure. Figure 92 shows two of 

the 4 possible positions of the small cube inside the diamond cubic unit 

cell. We may also observe in Fig. 92 that this unit cell is just the cubic unit 

cell of the fec structure with 4 additional atoms placed inside (on the body 

diagonals). The distance between each additional atom and its nearest 

cube vertex is 1/4 of the cube body diagonal, and those additional atoms 

occupy tetrahedral interstices present in the fcc cubic unit cell. We can see 

in Fig. 92 that in this cell, there is a total of 8 tetrahedral interstices and in 

the case of the diamond structure half of them are filled with atoms. 

The tetrahedral interstices present in the fcc structure have been already 

considered by us in the previous section. In that opportunity, the fcc 

structure was seen as a sequence of two-dimensional hcp layers of 

ABCABC... type. In Fig. 89a, we have shown two examples of tetrahedral 

interstices present in the cubic cell of the fcc structure. 
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4 

The 4 hody diagonals of the 
cube Qwhich represents the 

cubic unit cell of the diamond 
structure) define two vertical — 
planes as shown in the figure. _ 
On the plane A there are two © 
atoms. These atoms are located - 

on the diagonals, at adistance — 
equal to 1/4 of their longitudes’ 
from vertices 1, 2 of the bottom 
base of the cube. Likewise, two 

atoms are located on plane 5, 
‘but now equally distant from 

‘vertices 3, 4 of the upper base. 

Figure 93 Relative positions of atoms belonging to the diamond structure. The 4 atoms that 

are inside the cubic unit cell are distributed in two vertical planes defined by the body 

diagonals of the cube. 

To help visualize the positions of the 4 atoms that are inside of the cubic 

unit cell of the diamond structure, we have drawn in Fig. 93 two mutually 

orthogonal vertical planes A and B. Each plane is defined by two body 

diagonals of the cube and the 4 atoms are placed on these diagonals in the 

way explained in this figure. 

It is obvious that the neighborhood of each atom in the diamond 

structure is the same. This can be verified by drawing two cubic unit cells, I 

and II, in the diamond structure in such a way that cube II is shifted with 

respect to cube I along one of its body diagonals, to a segment equal in 

length to 1/4 of the diagonal length. We obtain then that the atoms that are 

in the interior of cube I coincide with the vertices or centers of the faces of 

cube II, thus such atoms of cube II have the same neighborhood as the 

atoms on the diagonals of cube I. This is illustrated in 2D in Fig. 94, where 

we have plotted a plane with 12 atoms from certain region of the crystal. 

This plane includes a cross section of cube I with two atoms from the 

diagonals. One of these atoms is placed at a vertex of cube II and the other 

one at its face center. We can see in Fig. 94a that the atoms that are located 

on the body diagonals of the cubes have the same spatial distribution as the 

atoms from vertices and faces of cube I. It is also easy to observe in 

Fig. 94b the equivalence between the relative distributions of atoms of each 



96 Basic Elements of Crystallography 

Figure 94 (a) Comparison of the distribution of atoms from vertices and faces of the cubic 

unit cells with those from their body diagonals in the diamond structure. (b) Cross sections of 

atoms (considered hard spheres) from (a) are shown. In this figure, the equivalency between 

the relative distributions of atoms of each type (those from vertices and faces of the cube and 

those from its diagonals) is visualized. 

type (from the body diagonals and from the vertices and faces). Finally, we 

can say that it is the atomic arrangement in the diamond structure which 
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Figure 95 Left part of Fig. 94b with the cross sections of the A, B, and C layer planes added. 

(a, + a,+ a) 

This is : rhombohedral unit cell and it has 2 atoms. 

Figure 96 Cubic and rhombohedral unit cells for the diamond structure (left). In the figure, it 

is also shown the positions of the two atoms belonging to the rhombohedral unit cell (right). 

allows each atom to be in the middle of a regular tetrahedron with 4 NNs 

(located at the vertices of the tetrahedron) that are covalently bonded to it. 

To conclude, we can say that the diamond structure is just a 

superposition of two fcc substructures that are shifted one with respect to 

the other in the way described above. Each substructure may be seen as a 

sequence of layers of ABCABC... type and the two substructures are 

shifted one with respect to the other, to a segment shorter than the distance 
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between two consecutive layers in the substructures, in the direction 

orthogonal to the layer planes. Thus, the diamond structure represents 

indeed a sequence of layers of AABBCCAABBCC... type, what is easy to 

see in Fig. 95, where we have added the cross sections of the A, B, and C 

layer planes to Fig. 94b. 

The smallest unit cell of the diamond structure is of the same shape as 

the primitive rhombohedral unit cell of the fcc structure, but in this case the 

cell contains 2 atoms as shown in Fig. 96. Therefore, the diamond structure 

can be seen as a fcc Bravais lattice with two-atom basis. 

Finally, let us show the positions of atoms belonging to the diamond 

cubic unit cell. Figure 97a shows the coordinates of 8 atoms within the unit 

cell and Fig. 97b shows the projection of these atoms on the cell base. The 

coordinates of the 8 atoms, in Fig. 97a, are given in terms of the cubic axes 

a, b, ¢, and the fractions near the atom projections in Fig. 97b represent 

the coordinates of these atoms in the ¢€ axis. 

(b) 

Figure 97 (a) Positions of the eight atoms within the cubic unit cell of the diamond structure. 
The coordinates are expressed in units of a. (b) Projection of atoms on the cell base. The 
fraction nearby the projection of an atom represents its coordinate in the € axis. 

13. Atomic Radius 

We have shown all along this chapter, on the examples of the most 
important crystal structures for elements, how to determine the atomic 
radius. As we remember, the atom is considered a hard, impenetrable sphere 
and its radius is given by half of the distance between NNs, which is 
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determined by the experimentally obtained lattice constant (or constants). 
The radius of such a sphere depends strongly on the type of bonding 

between atoms in a crystal. Until now we have considered metals, noble 
gases, and the elements from column IV of the periodic table. In each of 
those cases the bonding is different and the type of bonding determines the 

coordination number. We could observe that the metallic bonding prefers 

the coordination number 12. Some metals crystallize also in bcc structure 

with coordination number 8. The elements from column IV characterize 

pure covalent bonding, in case of which each atom requires 4 NNs. The 

predominantly ionic and partially ionic and partially covalent bonds appear 

in case of compounds and will be discussed on the examples of binary 

compounds in Chapter 4. 

In Table 15 we list experimental lattice constants, NN interatomic 

distances, and covalent radii (all parameters obtained under normal 

conditions) of elements that crystallize in the diamond structure. The 

covalent radius for each element is calculated as half of the distance 

between NNs, d, determined by the experimental lattice constant a 

according to the expression 

d =—V3a. (11.12) 

In similar way, we have calculated the metallic radii for all metals that 

crystallize in structures with coordination number 12. Since the system of 

metallic radii is set up for the coordination number 12, for those metals that 

crystallize in the bcc structure, and therefore, have coordination number 8, 

we have made a correction (commonly used by chemists) consisting in 

increasing their radii by 3%. 

Table 15 Lattice constants of elements that crystallize in the diamond structure under 

normal conditions. In addition, the NN distances, d, and the covalent radii, 7... , are given. 
cov ? 

Element r,,, (A) 

0.772 
1.176 

225 
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The NN interatomic distances and metallic radii of all metals considered 

in this chapter are listed in Tables 16 and 17, respectively. We can observe 

in Table 16 that in the case of metals that crystallize in the hcp, dhcp, 

and Sm-type structures we are giving two values for the interatomic 

distances. The upper value corresponds to the distance of an atom to its 

6 NNs located in the same layer to which the atom belongs, and the lower 

value corresponds to the distance to its 6 NNs from the adjacent layers. As 

we can see in Table 16 the two values are substantially different (by about 

10%) only in the case of cadmium and zinc. The metallic radii reported in 

Table 17, for metals that crystallize in the hexagonal close-packed 

structures, were calculated using the average value for the NN distance. 

14. Problems 

Exercise: | Calculate the filling factor for the diamond structure. 

a.) Draw across section of the cubic unit cell for the diamond structure 

which contains the points of contact between the atoms considered 

hard spheres. 

b.) Express the covalent atomic radius of the atom as a function of the 

lattice constant a and calculate the filling factor for the diamond 

structure. 

c.) Make a comparison between the filling factor for the diamond 

structure and the filling factors for the fcc (or ideal hcp) bec and sc 

structures. What is the coordination number in each case? 

Exercise 2 Inside the hexagonal prism for the dhcp structure: 

a.) Draw the hexagonal unit cell and the basis vectors 2, b, ¢ which 

define it. 

b.) Find the positions of the atoms within the hexagonal unit cell. 

Express the coordinates of atoms in units of lattice constants a and 

os 

Hint: A similar work was done for the hcp structure in Fig. 84. 

Exercise 3 Gadolinium at room temperature and 44 GPa crystallizes in 

the triple hexagonal close-packed (thcp) structure which is a six-layered 

structure with a layer sequence ABCBACABCBAC.... 

a.) Draw the hexagonal prism for this structure showing the layer 

sequence. 
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b.) Draw the hexagonal unit cell of the thcp structure with the basis 

vectors 4, b, € that define it. 
c.) In the similar way as it was done in Fig. 84 for the hcp structure, 

show the positions of the atoms within the hexagonal unit cell of the 

thep structure. Express the coordinates of atoms in units of the 

lattice constants a and c. 

d.) The experimental cell parameters of gadolinium at room 

temperature and 44 GPa are a=2.910A and c=14.31A. Show 

that the crystal structure of Gd is nearly a perfect close-packed 

structure (each atom has its 12 NNs almost at the same distance to 

it). 

Hint: For that purpose show that the distance of an atom to its 6 

NNs located in adjacent layers differs from the distance to the 6 

NNs located within the same layer by less than 0.3%. 

Exercise 4 Samarium under normal conditions (a-Sm) crystallizes in 

the trigonal structure. This structure may be seen as a 

trigonal lattice + 3-atom basis 

or asa 

hexagonal lattice + 9-atom basis . 

Figure 98 shows the hexagonal prism for a-Sm. 

a.) Draw the rhombohedral unit cell of the a-Sm structure inside the 

hexagonal prism shown in Fig. 98. 

b.) Draw a triple hexagonal unit cell of the a-Sm structure. What is the 

relation between the volume of this cell and the volume of the 

rhombohedral unit cell? 

c.) How close is the a-Sm structure to an ideal close-packed structure? 

Express your answer in percentage. 

Hint: Use the experimental data given in Fig. 98 to calculate the 

c/a, vatio, where c is the distance between every second layer in a- 

Sm. 

Exercise 5 Show the positions of the atoms within a triple hexagonal 

unit cell of the a-Sm structure. Express the coordinates of those atoms 

in units of lattice constants a, and c,. 

Hint: See Exercise 4. 
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Pearson symbol: #3 

Hexagonal prism for the structwe 

of samarium in the ¢-face. At room 

tempetature and normal pressure 
the cell parameters for this 
structure are: 

a, = 3.629 A, cy = 26.207 A 

‘Criple hexagonal cell), or 

a, = 8.996 A, a = 23.22" 

(thombohedral cell). 

Figure 98 Hexagonal prism for the a-Sm structure. 

Exercise 6 In the case of ytterbium the transition from the alpha to beta 

phase occurs in a broad temperature range near the room temperature. 

Tables 10 and 13 report the experimental lattice constants obtained for 

both phases at room temperature and normal pressure. Show that the 

average NN interatomic distance in a-Yb differs from the NN 

interatomic distance in f-Yb only by about 0.3%. 
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Exercise 7 For cerium the transition from the beta to gamma 

phase occurs in a broad temperature range near the room temperature. 

Tables 10 and 11 report the experimental lattice constants obtained 

for both phases under normal conditions. Show that the average NN 

interatomic distance in f-Ce differs from the NN interatomic distance in 

y-Ce only by about 0.4%. 

Exercise 8 Compare the NN interatomic distances of a-Fe at normal 

conditions and 6-Fe at 1712 K and normal pressure, both having 

bcc structure. The appropriate lattice constants should be taken from 

Table 9. Note that the volume of a solid usually increases with 

temperature and this is reflected by the positive value of the so called 

coefficient of thermal expansion. 

Exercise 9 On the examples of metals for which we reported the 

experimental data for different phases, show that the NN interatomic 

distance derived from the experimental lattice constant of the bcc 

structure is smaller than the NN interatomic distance obtained from the 

data reported for close-packed structures, although the data for the bcc 

structure were obtained at higher temperatures. Compare the NN 

interatomic distances for the following cases: 

a.) -Ca (773 K) and a-Ca (room temperature), 

b.) d-Ce (1030 K) and y-Ce (room temperature), 

c.) d-Fe (1712 K) and y-Fe (1373 K), 

d.) £-Li (room temperature) and a-Li (78 K), 

e.) B-Na (room temperature) and a-Na (5 K). 

The appropriate lattice constants are listed in Tables 9, 10, and 13. 
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IV. CRYSTAL STRUCTURES OF 

IMPORTANT BINARY COMPOUNDS 

1. Introduction 

In this chapter, we will consider important structures for binary 

compounds. As we could learn already on the examples of elements, the 

type of crystal structure depends significantly on the type of bonding 

between the NNs; at least the preference for the coordination number is 

determined by the type of bonds. Until now, we have discussed the 

structures of elements, mainly with metallic and covalent bonding. In the 

case of compounds, however, an important role plays the ionic bonding. In 

most cases the bonding is partially ionic and partially covalent. It means that 

the atoms are partially ionized and the atomic radii depend mainly on the 

degree of their ionization and also, however less, on the coordination 

number. The two types of ions in a binary compound have in general 

different radii and its crystal structure depends strongly on the cation to 

anion radius ratio. 

2. The Ionic Radius Ratio and the Coordination Number 

In this section, we will show the relation between the cation to anion 

radius ratio, r,/r., and the number of NNs of a cation in a binary 

compound. The cations are in general smaller than the anions, so the r,/r 

ratio is, in most cases, smaller than 1. The cation tries to surround itself 

with as many anions as possible and as closely as possible. The packing 

arrangement in most cases is such that the cations, considered hard 

spheres, are in contact with the anions, while the anions surround each 

cation without touching one another. Depending on the r,/r_ ratio this 

can be achieved in different arrangements of ions, corresponding to 

different coordination numbers. Here, we will find the limiting radius ratio 

for the case of coordination number 4, on the example of the zinc blende 

structure. 

In the zinc blende structure (also known as the sphalerite structure) 

crystallize binary compounds in which the contribution of covalent bonding 

to the interatomic bonds is important. Among them there is zinc sulphide in 

107 
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the beta phase, f-ZnS, which gives the name to this structure. ZnS is an 

example of a binary compound in which the ionic bonding contributes in 

more degree than the covalent one (62%), but each ion has four NNs, what is 

a characteristic of covalent bonding. Both, Zn and S, have their NNs at the 

vertices of a regular tetrahedron with Zn or S in its center. This is shown in 

Fig, 99. 

@s 

Figure 99 Zinc blende structure. (a) Regular tetrahedron defined by Zn cations with the S 

anion in its center. (b) Nearest neighbors of the Zn cation at the vertices of a regular 

tetrahedron. 

It is easy to realize that the zinc blende structure has the same atomic 

arrangement as the diamond structure, but now the two fcc substructures are 

made of different ions. The cations occupy half of the tetrahedral interstices 

in the fcc anion substructure and vice versa. In Fig. 100 we show the cubic 

unit cell for the zinc blende structure. In this figure, we have also shown the 

diagonal cross section of the cube in which we can find the centers of the 

‘Zine blende 

structure. 

Figure 100 Unit cell for the zinc blende structure. A plane defined by two body diagonals of 
the cube is shown. 
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‘Silicon carbide in. 
the beta phase. 

Figure 101 Cross section from Fig. 100 of the cubic unit cell for silicon carbide in the beta 

phase. Larger circles correspond to the cross sections of Si atoms and the smaller ones to the 

cross sections of C atoms. 

NNs and the points of contact between them. As an example, the cross 

section for silicon carbide in the beta phase, f-SiC, is shown in Fig. 101. 

Silicon carbide is a [V-IV compound so it has a large covalent component in 

its bonds (82%). Therefore, in Fig. 101, we have drawn the circles, that 

represent the cross sections of Si and C atoms, with radii having the same 

ratio as for the covalent radii of the Si and C elements. The points of contact 

between neighboring atoms are found on the diagonals of the cube. We can 

observe in Fig. 101 that the Si atoms surround C atoms without touching one 

another. This is the typical situation in any zinc blende structure. The 

limiting case is achieved when the anions touch one another. This is shown 

in Fig. 102. 

We see in Fig. 102 that the sum of the ionic radii is 1/4 of the body 

diagonal longitude (3a , where a is the cube edge) 

r tr, = Ba. (IV.1) 

On the other hand, r_ is 1/4 of the length of the cube face diagonal 

r =a, (IV.2) 
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so 

ie = V3a-r = 3 -V2)a 

' (V-3) 
r=—V2a 
4 

and the radius ratio for the limiting case depicted in Fig. 102 is 

roe? I 4G 
+ =—— =—6-120.225. (IV.4) 
ies 4b} 2 

It is obvious that only in cases when 

==> 0.225 (IV.5) 
ie 

the cations are in contact with anions, otherwise a cation would occupy the 

central region of the tetrahedral interstice present in the anion substructure, 

without touching the anions. This situation rather does not occur as the 

structure would not be stable. 

The limiting case in which the 
anions touch one another and 
are in contact with the cations. 

Figure 102 A plane defined by two body diagonals of the cubic unit cell for the zinc blende 
structure shown in Fig. 100. In the figure, we show the limiting case in which the anions, 
represented by larger circles, touch one another and are in contact with the cations (smaller 
circles). 
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In Table 18 we list the limiting radius ratios for different cation 

coordination numbers. This ratio for the coordination number 4 has been 

calculated above and the limiting radius ratios for the coordination numbers 

6 and 8 will be calculated later. In Table 18 we also show the range for the 

radius ratio that would be expected for each coordination number and the 

possible crystal structures in which the cations have this coordination 

number. The ranges for the radius ratios are determined based on the fact 

that when r,/r reaches the limiting value for the higher coordination 

number, the structures, in which the cation has this coordination number, 

become more stable. In practice only about 50% of cases can be classified 

according to the radius ratio ranges given in Table 18. This will be shown on 

the examples of alkali halides that crystallize in the NaCl structure. 

Table 18 Expected radius ratio ranges for different cation coordination numbers. The 

crystal structures from the last column of the table will be fully described in this chapter. 

Limiting values 

for r,/r_ 
Cation coordination 

number 

Expected radius 

ratio range 

Possible crystal 

structures 

zinc blende, wurtzite, 
0.225 —0.414 : . 

anti-fluorite 

sodium chloride, 

nickel arsenide 
0.414 —0.732 

O52 01099 

We are assuming in Table 18 that the r,/r ratio is less than 1, what 

means that the cation is smaller than the anion, as it is the case in most 

compounds. In these cases, the cations, which occupy the interstices present 

in the anion substructure, are expected to touch the anions, what can be 

achieved in a structure for which the r,/r_ ratio is larger than the limiting 

radius ratio for this structure. However, in occasions the situation is the 

opposite, the cations are larger than the anions, and then the r /r, ratio has 

to be considered in the way as r,/r was in Table 18. This will be shown 

later, on the examples of some alkali halides. 

We have already mentioned before that the ionic radii depend both on 

the degree of ionization of the atom and on the coordination number. The 

dependence on the coordination number is exemplified in Table 19. The 

comparison between the ionic radii and the metallic radius is also done in 

this table. We can observe the large difference between the values for the 

metallic and the ionic radii. We can also observe that, in the case of common 

cesium chloride, 

fluorite 
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Table 19 Ionic radii for Na*, K*, and Ca‘, for different coordination numbers. For 
comparison we have also listed the metallic radii for Na, K, and Ca taken from Table 17. 

coordination numbers for binary compounds (IV, VI, and VIID, exists a 

quite large difference between the values for r, in the cases of coordination te 

numbers IV and VI respect to the case of coordination number VIII. 

3. Zinc Blende Structure 

Pearson symbol: cF8, prototype: ZnS. In Fig. 103 we show two types 
of conventional unit cells for the zinc blende structure. The top part of this 
figure (Fig. 103a) shows two cubic cells that can be proposed for this 
structure: one with S ions and the other one with Zn ions at the vertices. The 
cubic unit cell has 8 ions (4 of each kind). In addition, in Fig. 103b we show 
a rhombohedral unit cell with two ions (one of each kind) belonging to it. 

In the zinc blende structure crystallize compounds in which the covalent 
contribution to the bonds prevails over the ionic contribution or at least is 
significant. Among them there are III-V compounds, for which we have 
listed the experimental lattice parameters in Table 20. In this structure 
crystallize also compounds that contain a transition metal (TM) and an 
element from columns VI or VII of the periodic table. The lattice parameters 
for those compounds are given in Tables 21 and 22 for elements from 
columns VI and VII, respectively. Four II-VI compounds also crystallize in 
the zinc blende structure, although most of them, as we will see later, 
crystallize in the NaCl structure. They are: BeS, BeSe, BeTe, and BePo, and 
the lattice parameters for these compounds are listed in Table 21. 

It was already mentioned in Sec. IV.2 that silicon carbide in the beta 
phase (£-SiC) also crystallizes in the zinc blende structure. The lattice 
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) +3,+3) 

The rhombohedral unit cell 
has one 2n cation and one § 

anion. 

Figure 103 (a) Two cubic unit cells for the zinc blende structure of ZnS: one with Zn cations 

and the other one with S anions at the vertices. (b) A rhombohedral unit cell for the zinc 

blende structure with the two ions belonging to it. 

Table 20 Lattice constants (in Angstroms) obtained under normal conditions for HI-V 

compounds that crystallize in the zinc blende structure. 

N P As Sb 
B | BN (3.6159) BP (4.5383) BAs (4.777) 
Al AIP (5.4625) AIAs (5.656) AISb (6.1355) 
Ga | GaN(4.511) | GaP (5.4504) GaAs (5.65317) | GaSb (6.0961) 
In InP (5.847) InAs (6.05836) InSb (6.4794) 

constant for this compound at normal conditions is 4.35845 A. In Fig. 101, 

we had a plane defined by two body diagonals of the cubic unit cell for 

B-SiC, with the cross sections of the Si and C atoms drawn with the radii that 

have the same ratio as the ratio of the covalent radii for Si and C elements. It 

is interesting to mention that although silicon carbide has 18% of ionic 

contribution to its bonds, the sum of Si and C covalent radii (taken from 

Table 15), which is 
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ry +e = 1.176 A+0.772 A=1.948 A, 

is to within 3% equal to the sum of the Si and C radii obtained using 

Eq. (IV.1). This means that the amount (18%) of the ionic character of the 

bonds is almost not reflected in the sum of the Si and C radii. 

In the diamond and zinc blende structures only half of the tetrahedral 

interstices present in the cubic unit cell are occupied with atoms or ions. We 

will show below an example of a structure that has the same conventional 

cubic unit cell but with all 8 tetrahedral interstices occupied with ions. This 

is the case of the calcium fluoride structure. 

Table 21 Lattice constants (in Angstroms) obtained under normal conditions for 

compounds of Be-VI and TM-VI type that crystallize in the zinc blende structure. 

i a ad a Oe 
/Be| | BeS. (4.8624) | BeSe (5.1477) | BeTe (5.6225) | BePo (5.838) 

B-Mn$ (5.601) | -MnSe (5.902) | a-MnTe (6.338) | 
ZnO (4.63) | B-ZnS (5.4109) | ZnSe (5.6676) | f-ZnTe (6.1037) | ZnPo (6.309) 

Cd B-CAS (5.8304)| CdSe (6.077) | CdTe (6.4809) | CaPo (6.665) 
Hg B-HgS (5.8537) | a-HgSe (6.0854) | a-HeTe (6.453) | 

Table 22 Lattice constants (in Angstroms) obtained under normal conditions for 

compounds of TM-VII type that crystallize in the zinc blende structure. 

ee ee eer eS 
CuF (4.255) | y-CuC (5.4202) | »-CuBr (5.6955) | y-Cul (6.05844) 

Ast ee a ee oe ee 

4. Calcium Fluoride Structure 

4.1. Fluorite Structure 

Pearson symbol: cF'12, prototype: CaF. The calcium fluoride (CaF>) 

structure, more commonly known as the fluorite structure, has its positive 

ions forming the fcc substructure and usually larger negative ions occupying 

tetrahedral interstices in this substructure. This is shown in Fig. 104a for 
CaF. Each F anion is placed in the center of a tetrahedral interstice and has 
4 NNs (see also Fig. 105a). In Fig. 104b, we show the cubic unit cell for the 
CaF, structure with the anions in its vertices. We can see in this figure that 
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@ cat #] ® 
Or 

Figure 104 Cubic unit cells for the CaF, structure. In the cube vertices are placed Ca?* 

cations in (a) and F anions in (b). 

(a) 

Figure 105 (a) Regular tetrahedron defined by the NNs of the F anion in CaF). (b) Cube 

defined by the NNs of the Ca”* cation in CaF). 

the anions define 8 small cubes with cations in their centers, therefore each 

Ca” cation, contrary to the anion, has 8 NNs, what is shown in Fig. 105b. 

In addition to CaF, other IIl-VII compounds crystallize in the fluorite 

structure. They are listed at the top of Table 23. Among other examples of 

compounds that crystallize in this structure, we can mention hydrides, 

silicides, oxides, and fluorides of some TMs (mainly RE metals and 

actinides) and also lead difluoride in the beta phase (6-PbF2) and polonium 

dioxide in the alpha phase (a-PoO,). The experimental lattice constants, 

obtained under normal conditions for the compounds specified above, are 

listed in Table 23. This table allows to identify quickly which metals form 

compounds within a given group of hydrides, silicides, oxides, fluorides, or 

chlorides (see columns of the table) and also allows to see how many 

compounds with the fluorite structure can be formed by a given metal (see 

rows of the table). 
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Table 23 Lattice parameters (in Angstroms) obtained under normal conditions for I-VI 

compounds and hydrides, silicides, oxides, and fluorides of some TMs, all of them 

crystallizing in the fluorite structure. In addition, the data for £-PbF, and a-PoO, are 

included. 

me ane ep ain wots ORO RMI aor 
Gatey 46295)" cl we idstoniral | 

Bea Ba | aii ohe) BaF, (6.1964) 

Coane Se al ACO ee 
ies rk RE 

Cero one NE a 
Ni ae pe enn ___f __}_____ 

Bye esyEL A207) see Se Pal err, ee 

EE eee rr NbH, (4.566) ee ee 
(ss SS ee es eee 
PobiGii2.e — 210-4 eee 
in| a er, ee ee cee eee ee 

CeH, (5.581) CeO, (5.413) 
PrH, (5.516) | PrO, (5.392) 

Sm | SmH; (5.3773) 
Eu EuF, (5.796) 
Gd | GdH, (5.303) 
Tb | TbH, (5.246) TbO) (5.213) 

Meet le ie) 
Ho | HoH, (5.165) Bs Se 
EE | ECety (51279) sta 
Tm | TmH, (5.0915) ear eee | 

LuH, (5.0330) inte a 
Th ThO, (5.5997) 

Pa PaO) (5.505) 
U UO, (5.470) | 
Np NpO> (5.4341) 
Pu | PuO, (5.39819) 
Aan AmO) (5.3746) 
Cm CmO), (5.368) 

Pb B-PbF, (5.9463) 
Po a-PoO> (5.637) ~ 

When the ionic positions are reversed, and the anions and cations 
occupy the Ca™ and F positions, respectively, we obtain the anti-fluorite 

structure, which will be considered below. 
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4.2. Anti-Fluorite Structure 

Pearson symbol: cF12, prototype: Li,O. In the anti-fluorite structure, 

the anions are in a fcc arrangement and the cations occupy all the tetrahedral 

interstices present in the anion substructure. This is shown in Fig. 106a. The 

cations have a coordination number 4. Figure 106b shows the cubic unit cell 

for the anti-fluorite structure with the cations at the vertices. We can observe 

in that figure that the 8 NNs of an anion are placed at the vertices of a small 

cube that represents one eight of the cubic unit cell. The NNs of a cation and 

an anion are shown in Figs. 107a and 107b, respectively. 

In the anti-fluorite structure crystallize some alkali metals with elements 

from column VI of the periodic table, forming metal oxides, sulfides, 

selenides, and tellurides. They all are listed in Table 24. In Table 25 we list 

some II-III and II-[V compounds, and also phosphides of TMs. that 

crystallize in the anti-fluorite structure. 

(a) @ Lit | 

Figure 106 Cubic unit cells of Li,O which crystallizes in the anti-fluorite structure. In the 

cube vertices are placed O* anions in (a) and Li‘ cations in (b). 

Figure 107 (a) Regular tetrahedron defined by the NNs of the Li* cation in Li,O. (b) Cube 

defined by the NNs of the O* anion in Li,O. 
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Table 24 Lattice constants (in Angstroms) obtained under normal conditions for I-VI 

compounds that crystallize in the anti-fluorite structure. 

Rasa, 50d miles alt Tus Nocinla Seren sti ql one eesiiun ol 

K,0 (6. Pk | K06a6 | KS ca06) | KSec.8I) | KsTe 152) 
Gaskets a DM 
Table 25 Lattice constants obtained under normal conditions for some II-III and II-IV 

compounds, and also phosphides, all of them crystallizing in the anti-fluorite structure. 

5. Wurtzite Structure 

Pearson symbol: hP4, prototype: ZnS. Zinc sulphide and most of the 

binary compounds that crystallize in the zinc blende structure crystallize also 

in a hexagonal structure, the so called wurtzite structure. ZnS in the wurtzite 

structure is in the alpha phase (a-ZnS). The wurtzite structure is composed 
of two-dimensional hexagonal layers A and B and is of the AABBAABB... 
type, where one layer (A or B) corresponds to one kind of ions and another 

one to the other kind of ions, so in the case of a-ZnS we have: 

AznAsBznBsAznAsBzBs... , 

whereas in the case of £-ZnS (ZnS in the zinc blende structure) we have: 

AgnAsB7nBsCznCsAznAsBznBsCznCs... . 

In Fig. 108 we show two hexagonal prisms for a-ZnS: one with Zn cations at 
the vertices (see Fig. 108a) and the other one with S anions at the vertices 
(see Fig. 108b). In this figure it is also easy to distinguish the two 
substructures of the wurtzite structure: that formed by cations and that 
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¢h) 

Figure 108 Hexagonal prism for ZnS in the wurtzite structure, with Zn cations at the vertices 

(a) and with S anions at the vertices (b). 

(a) (bh) 

Figure 109 Two conventional unit cells for ZnS in the wurtzite structure: in (a) with Zn 

cations at the vertices and in (b) with S anions at the vertices. 

formed by anions. Each substructure is a hcp structure. However, the ions in 

it do not touch each other, since the NNs of an ion in the wurtzite structure 

are of another type. Each ion from one substructure occupies a tetrahedral 

interstice from the other substructure. 

The smallest volume that can reproduce the wurtzite structure is the 

hexagonal unit cell. Figure 109 shows two hexagonal cells for the wurtzite 

structure of ZnS, one with Zn cations at the vertices (see Fig. 109a) and the 

other one with S anions at the vertices (see Fig. 109b). The hexagonal unit 

cell for the wurtzite structure contains two ions of each type. We have 
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= 

b b 

Figure 110 (a) and (b) show the positions of ions belonging to the unit cells from Figs. 109a 

and 109b, respectively. The coordinates are expressed in units of a and c. 

(a) 

Figure 111 (a) A tetrahedron defined by the NNs of the S anion in @ZnS. (b) A tetrahedron 

defined by the NNs of the Zn cation in @-ZnS. We can envision the tetrahedrons from (a) and 

(b) in both cells from Fig. 109. 

shown in Fig. 110 the coordinates, given with respect to the a, b, ¢ axes, 

of the four atoms belonging to each unit cell from Fig. 109. 

Similarly to the zinc blende structure, each ion in the wurtzite structure 

has a tetrahedral arrangement of the four NNs, although the ionic 

contribution to their bonds is, in general, larger than the covalent one. This is 

shown in Figs. 1l1la and 111b for a-ZnS, where four NNs surround the S 

and Zn ions, respectively. These central ions and their NNs can be found 

inside the hexagonal cells from Fig. 109. 

We will consider now an ideal case, when the tetrahedrons from 

Fig. 111 are regular. The parameters of the hexagonal unit cell, a and c, 

fulfill then the relation c/ a=,/8/3 =1.633, as in the case of an ideal hcp 

structure. The wurtzite structure of ZnS and many other binary compounds 

is very close to the ideal case. This can be seen in Table 26 where we list, in 

the last column of that table, the c/a ratios for compounds that crystallize in 

the wurtzite structure. In Fig. 112a, we show a regular tetrahedron defined 

by Zn cations, which is inside a hexagonal unit cell. The cations from the 
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Figure 112 (a) A regular tetrahedron, defined by Zn cations, located inside a hexagonal unit 

cell for the wurtzite structure of ZnS. (b) A vertical cross section of the tetrahedron shown in 

(a). See text for detailed explanation. 

tetrahedron vertices are the NNs of the S anion located in the center of the 

tetrahedron. We can also see in Fig. 112a that the distance, u, between NNs 

defines also the distance between layers Ag and Az,, so the S hcp 

substructure is shifted with respect to the Zn substructure by u along the 

c axes. 

Let us now express u as a function of the lattice parameters. In 

Fig. 112a, we show a vertical cross section of the regular tetrahedron that 

includes one of its edges a and two heights h of the tetrahedron faces, which 

are equilateral triangles. The three segments (a, h, h) define a triangle shown 

in Fig. 112b. Inside this triangle we highlighted a right triangle of sides 

h,—u, h—x, and u. There is also a larger triangle that is similar to the 

highlighted one and have sides x, h, and h,. The lengths of x is h/3. From 

the similitude of the last two triangles we have 

=n 
sie llhidt a ont (IV.6) 

u | Sele d tala 

then 

1 
h,-u= =u, (IV.7) 

3 

finally 

ae, = yas (IV.8) 
4 h,=c/2 8 
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Figure 113 Hexagonal layers As, Azp, Bs, and Bz, in the wurtzite structure of ZnS. The 

distances between the consecutive layers are shown. 

So, in an ideal wurtzite structure each atom has 4 NNs at a distance 

(3/8)c. As it was mentioned before, the same distance can be found 
between layers Ag and Az, and, of course, also layers Bs and Bz,. This is 

shown in Fig. 113 for the wurtzite structure of ZnS. In this figure, we show 

also that the distance between layers Az, and Bs or Bznand As is (1/8)c. 

Each anion from layers Ag or Bs has 4 NNs located in adjacent Az, and 

Bz, layers at a distance (3/8)c (see Fig. 113), since the c/a ratio is for ZnS 

close to the case of an ideal wurtzite structure. The NNNs of an anion are 12 

anions at a distance a: six from the layer to which belongs the anion in 

consideration and the other six from two adjacent layers in the substructure 

of anions. Since the anions do not touch each other, this substructure is not, 

of course, close-packed. The same analysis is valid for the substructure of 

Zn cations. 

The experimental lattice parameters obtained under normal conditions 

for binary compounds that crystallize in the wurtzite structure are given in 

Table 26. We can observe that the c/a ratio, which is given in the last 

column of the table, is for each case close to that for the ideal case and as a 

consequence, there is a similarity between the hexagonal and cubic 

structures of these compounds, although the symmetry of both structures is 

different. 

Let us now summarize important similarities and differences between 

the zinc blende and the ideal wurtzite structures: 

a.) Looking at the NNs, we cannot tell whether it is zinc blende or wurtzite 
structure. 
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b.) In both cases, the NN and the NNN distances are very close in value. 

These values for the NNs of some compounds are listed in Table 27. 

c.) The number (12) of NNNs is the same in both cases. 

d.) There is a difference in the location of 3 NNNs. This will be explained 

in details below. 

In both structures, zinc blende and wurtzite, each ion has 6 NNNs in the 

layer, let us say A, to which belongs. The other 6 of 12 NNNs belong to two 

adjacent layers in the substructure of the ion in consideration. In the case of 

the wurtzite structure, the adjacent layers are of B type, while in the case of 

the zinc blende structure one of them is of B type and the other one is of C 

type. Therefore, the 3 NNNs of an atom from layer A, that make the 

Table 26 Lattice parameters, obtained under normal conditions, of binary compounds that 

crystallize in the wurtzite structure. 

c/a 

2.893 1.59 
2.6967 1.62 

[psig 3.987 

Mae 4.48 

a-ZnS 3.8227 6.2607 
ZnSe 4.003 6.540 
y-ZnTe 431 7.09 13 65 
a-CdS eee esos 
CdSe 1.63 

7.524 ; 1.64 

4.21 1.65 

4.98089 1.60 

5.1850 1.63 

2D 

Selon 

3.1878 
3.53774 5.7037 1.61 
3.079 5.053 1.64 

Table 27 Comparison between NN distances for zinc blende and wurtzite structures of 

some binary compounds. The values were obtained from the lattice parameters listed in 

Tables 20, 21, and 26. 

NN distance (A) | 
ecb ound Zinc blende Wurtzite 

MnSe DES) DS) 

MnTe 2.744 

ZnSe 2.454 

CdSe 2.631 

GaN [E955 
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difference between the two structures, are located in the C layer in the zinc 

blende structure and in the B layer in the wurtzite structure (in both cases in 

the substructure of the ion in consideration). 

6. Nickel Arsenide Related Structures 

6.1. NiAs Structure 

Pearson symbol: hP4, prototype: NiAs. Similarly to the zinc blende 

and wurtzite structures, the nickel arsenide (NiAs) structure is related to a 

close-packed arrangement of ions. It is composed of anion and cation layers 

placed alternately one on the top of the other, in the way illustrated in 

Fig. 114. Each layer represents a two-dimensional hexagonal structure and a 

hexagonal prism is a conventional unit cell that has the same point symmetry 

as an infinite NiAs structure, but a sixfold symmetry axis of the prism is 

reduced here (as in the case of the wurtzite structure) to a threefold 

symmetry axis. In Fig. 114a, we show the hexagonal prism for the NiAs 

compound. In addition, we show in Fig. 114b the NiAs structure in the ideal 

case when c/a= 3/3 . Such case has been already discussed before for the 

hcp and wurtzite structures. We can see in Fig. 114 that the c/a ratio for the 

(a) (h) 

anion @ cation 

es 

ta 

Ideal NidAs structure 

(ie Ce aa | oe ee, 
kote I ape iB = 1.033 

Figure 114 (a) Hexagonal prisms for the prototypical NiAs. (b) The NiAs structure for the 
ideal case when cla = /f)/3) 
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(a) c(h) 

anion @cation 

Figure 115 Octahedrons defined by anions that are the NNs of a cation (a) in the NiAs 

compound and (b) in the ideal NiAs structure. In this figure we also show the two nearest 

cations to the cation placed in the center of each octahedron. 

prototypical NiAs differs 15% from the value that corresponds to the ideal 

case, while in compounds that crystallize in the wurtzite structure it nearly 

approaches the ideal ratio. 

We can observe in Fig. 114 that 6 NNs of a cation located in the center 

of the hexagonal prism define an octahedron. This octahedron is shown in 

Fig. 115a for the NiAs compound. In the case of the ideal NiAs structure the 

octahedron is a regular polyhedron and is shown in Fig. 115b. In Fig. 115 

we can also see two additional ions that are the closest cations to the cation 

placed in the center of each octahedron. In the case of the ideal NiAs 

structure, those cations are at a distance 15% longer than the distance to the 

NNs from the cation in consideration. However, in the case of the NiAs 

compound the distance from a cation to its nearest cations is only 3% longer 

than the distance to the NNs. It means that each cation in the NiAs 

compound has effectively 8 NNs (6 anions and 2 cations) all of them 

forming bonds with this cation (see Fig. 15a). It is also important to 

mention that the length of the Ni-Ni bond in the NiAs compound is, to 

within 1%, equal to the metallic bond length in the crystal of nickel. 

Therefore, we can expect that the Ni-Ni bonds, which we are describing here 

for the NiAs compound, are closer to the metallic bonds than to the ionic 

ones, since the Ni-Ni ionic bond would be longer than the Ni-Ni metallic 

bond. 

In Fig. 116a, we show two hexagonal prisms for the NiAs structure: 

one with anions and another one with cations at the vertices of the prism. 

We observe in this figure that each cation from a cation layer lies directly 

over a cation from any layer below. Therefore, the cations form a simple 
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a 

Figure 116 (a) Two hexagonal prisms for the NiAs structure: one with anions at the vertices 

and another one with cations at the vertices. (b) Projection of the centers of ions belonging to 

each hexagonal prism on the hexagonal base. We can observe that the triangles defined by the 

ions from the B, layer have in each case from (a) different orientations with respect to the 

hexagonal prism base. 

hexagonal substructure since each of their layers is of the same type. In 

Fig. 116 all cation layers are of A type and are labeled A,. In the case of 

anions, there are two types of layers (labeled A, and B, in Fig. 116) like in 

the case of the hcp structure, therefore the anions form a hcp substructure. 

Let us now make a comparison between the neighborhood of a cation 

and an anion in the NiAs structure. We already know that there are 

tetrahedral and octahedral interstices between consecutive hexagonal layers 

of different types (see Fig. 87). This is the case of the hcp structure. In the 

case of the wurtzite structure half of the tetrahedral interstices, present in 

one hcp substructure, are occupied by ions belonging to the other 
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(a) 

Figure 117 Octahedron defined by the NNs of a cation (a) and the trigonal prism defined by 

the NNs of an anion (b) in the NiAs structure. 

substructure and the octahedral interstices are vacant. Also in the case of the 

zinc blende structure half of the tetrahedral interstices present in the fcc 

substructure of ions of one type are occupied by ions of the other type and 

the octahedral interstices remain vacant. Contrary to those cases, in the NiAs 

structure the cations occupy all octahedral interstices present in the hcp 

substructure of anions and the tetrahedral interstices are vacant. Turning 

now to the neighborhood of an anion in the NiAs structure, we can say that 

all cation layers are of the same type and between them, there are neither 

octahedral nor tetrahedral interstices. Each anion occupies the center of a 

trigonal prism, what can be seen in Fig. 114. 

In Fig. 117 we have drawn the neighborhood of the two types of ions in 

the NiAs structure. Fig. 117a shows an octahedron with anions in its 

vertices. These anions are the NNs of a cation that is in the center of the 

octahedron. Similarly, Fig. 117b shows the NNs of an anion that is located 

in the center of a trigonal prism with cations at the vertices. In both cases the 

number of NNs is the same but the distribution of cations with respect to the 

anion is different from the distribution of anions with respect to the cation. 

We will now calculate the value for the ideal c/a ratio. This was 

already done in Sec. III.10 for the hcp structure. In that opportunity, the 

calculations were based on the geometric characteristics of a regular 

tetrahedron defined by the NNs of an atom in the ideal hcp structure; the 

presence of such a tetrahedron inside the hexagonal unit cell of the hcp 

structure determines the c/a ratio in the ideal case. This time, in turn, we 

will calculate c/a using a regular octahedron defined by the NNs of a cation 

in the ideal NiAs structure. 

As we already know, a regular octahedron may be inscribed in a cube. 

Figure 118 shows such a situation. The longitude of the cube body diagonal 

is equal to (3/2)c , what can be verified in the following way: 
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a.) The anion layers cross the body diagonal of the cube in the points that 

divide the diagonal in three segments of the same longitude. 

b.) The distance between two consecutive anion layers is equal to c/2, so, 

taking into account point a.) we can conclude that the longitude of the 

body diagonal of the cube is equal to 3(c/2) =(3/2)c. 

From the considerations made in Fig. 118, we can conclude that, indeed, the 

octahedron defined by the NNs of a cation is a regular polyhedron when 

cla= 3/3 
The smallest unit cell that can reproduce the NiAs structure may be of 

type (a) or (b) from Fig. 119. In both cases, the unit cell contains two anions 

[REGULAR OCTAHEDRON INSCRIBED IN A CUBE! 

(c) 

Ze= 3a, 
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Figure 118 (a) Hexagonal prism for an ideal NiAs structure with the cations at the vertices. 
The regular octahedron defined by 6 anions located inside this prism is also shown. In 
addition, this octahedron is inscribed in a cube. (b) The cube defined in (a). The longitude of 
a body diagonal of the cube is expressed as a function of the lattice constant c. (c) One of the 
triangles shown in (b). In this figure we show the relation between the lattice constant a and 
the cube edge a,. 
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(a) 

Figure 119 Two conventional unit cells for the NiAs structure: (a) with anions at the vertices 

and (b) with cations at the vertices. 

Figure 120 (a) and (b) show the positions of ions belonging to the unit cells from Figs. 119a 

and 119b, respectively. The coordinates are expressed in units of a and c. 

and two cations. Figure 120 shows the coordinates, given with respect to the 

ae b , ¢ axes, of the four ions belonging to each unit cell from Fig. 119. 

Some binary compounds crystallize in the so called anti-NiAs structure 

that is the same as the NiAs structure, but with cations replaced by anions, 

and vice versa. Figure 121 shows the anti-NiAs structure on the example of 

the VP compound. We can see in this figure that now the vanadium cations 

form the hcp substructure, while the phosphorus anions are arranged in a 

simple hexagonal substructure. 

In the NiAs structure crystallize compounds that contain TMs and 

elements from columns III, IV, V, or VI of the periodic table. The following 

compounds may be included: 
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Column III: 

B: PtB* 

Tl: NiTl 

Column IV: 

C: y'-MoC** 

Sn: FeSn, NiSn, CuSn, RhSn, PdSn, IrSn, PtSn, AuSn 

Pb: NiPb, IrPb, PtPb* 

Column V: 

N: 0'-NbN,* e-NbN** 

PaliPse a kyo p-2te. ies 

As: a-TiAs,** £-TiAs,* MnAs, NiAs, a-ZrAs,** HfAs** 

Sb: TiSb, VSb, CrSb, MnSb, FeSb, CoSb, NiSb, CuSb, PdSb, IrSb, PtSb 

Bi: MnBi,* NiBi,* RhBi,* PtBi* 

Column VI: 

S: TiS, VS, CrS, B-FeS, CoS, a-NiS, NbS 

Se: TiSe, VSe, CrSe, FeSe, CoSe, 6-NiSe, RhSe, AuSe 

Te: Scliesivle. vy TexCr Tes a-Mntle, Fele: Cole; Niles Zier Rite; Pdle, 

inte 

Po: MgPo, ScPo,* TiPo, NiPo, ZrPo, HfPo. 

In the above classification, the compounds marked with one star crystallize 

in the anti-NiAs structure, whereas those marked with two stars in the TiAs 

structure, which will be discussed in the next section. 

Figure 121 Anti-NiAs structure shown on the example of the VP compound. 
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Experimental lattice parameters for compounds that crystallize in the 

NiAs, anti-NiAs, or TiAs structures of TM-III, TM-IV, TM-V, and TM-VI 

types are listed in Tables 28-31, respectively. We can observe in Tables 28 

and 29 that, with exception of y'-MoC, all compounds crystallize with the 

c/a ratio much smaller than the ideal one (,/8/3 = 1.633). In the Table 30 

more than half of the compounds contain metals from the group of iron. We 

can also observe in that table that the antimonides and bismuthides of TMs 

crystallize with the c/a ratio much smaller than the perfect one. In all such 

cases, the ions that occupy the octahedral interstices in the hcp substructure 

have indeed 8 NNs, like in the case of the Ni cation in NiAs. 

We can observe in Table 31 that the iron group metals are present in 

more than 2/30f compounds listed there. The c/a ratios are in this table, 

for about half of the compounds, quite close to the ideal value, and the CrS, 

VSe, CrSe, FeSe, ScTe, a-MnTe, and MgPo compounds have the c/ a ratio 

remarkably approaching that value. 

Summarizing the data given in Tables 28-31, we can say that in the case 

of nickel arsenide related structures the values for c/a are in the wide range 

between 1.21 and 1.96. As a consequence the ions in these structures may 

have different number of NNs and NNNs. Let us see this on the example of 

a cation in the NiAs structure. For the lower-bound value of c/a each cation 

has 8 NNs (6 anions and 2 cations) and 6 cations as NNNs, while for the 

upper-bound value of the c/a ratio a cation in the NiAs structure has 6 

anions as NNs and 8 NNNs (all of them cations). 

Table 28 Lattice parameters, obtained under normal conditions, of PtB and NiTI that 

crystallize in the anti-NiAs and NiAs structures, respectively. 

Compound a (A) c (A) ! c/a ~ 

PtB* 3.358 4.058 Pal 

| NiTl 4.426 5.535 | 1.25 | 
*anti-NiAs structure 

Table 29 Lattice parameters obtained under normal conditions for compounds of TM-IV 

type that crystallize in the NiAs, anti-NiAs, or TiAs structures. 

Compound a (A) c (A) c/a Compound | a (A) 

y'-MoC** DEEP. || MOI | Dre IrSn | 3.988 

y-FeSn 4.216 | 5.244 i et PtSn 4.104 

NiSn 4.048 | 5.123 2a) AuSn 

| _CuSn 4.198 | 5.096 iL il NiPb 

RhSn AL BY) || 2895) 1.28 IrPb 

PdSn ASI Smt LOO 1.29 PtPb* 4.258 | 5.467 

*anti-NiAs structure 

**TiAs structure 
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Table 30 Lattice parameters obtained under normal conditions for compounds of TM-V 

type that crystallize in the NiAs, anti-NiAs, or TiAs structures. 

Compound a (A) c (A) c/a Compound a (A) c (A) 

5 ’-NbN* 2968 plmsi549a) eal S7 CrSb 4.115 | 5.493 
e-NbN** | 2.9513 | 11.248 1.40 
TiP** 3513 | 1175 
VP* Shs "0022 1.34 

B-7rP** 3.684 | 12.554 | 21.70 NiSb 3.9325 | 5.1351 
HEP** 3.65 12.38 | 2x1.70 CuSb 3.874 |) 5193 0] 1:34 

a-TiAs** 12.064 | 2x1.66 PdSb Ai SalI ad 
B-TiAs* 3.645 6.109 

MnAs SDH 5.702 

HfAs** 3.765 

TiSb 4.1033 

VSb ATH] 

*anti-NiAs structure 

**T7 As structure 

Table 31 Lattice parameters obtained under normal conditions for compounds of TM-VI 

type that crystallize in the NiAs or anti-NiAs structures. The values for MgPo are also 

included in the table. 

| Compound a (A) c (A) | c/a Compound oS c(A) | = 
TiS 3.299 | 6380 | 1.93 VTe oN 6.126 : = 

3.33 On CrTe 3.978 | 6.228 
i Crs Tt 3.419 ae 1.62 | _a-MnTe 4.147 | 6.711 . s 

BFeS B14136 | 58759) | Lol 2 FeTe 3.800 | 5.651 He 
CoS ei wl tae Lie CoTe SRN leased eel agi 
a-NiS =| 3.4395 | 5.3514 | 1.56 NiTe 3.965 | 5.358 ! 2 
NbS 3.32 i 6.46 | 1.95 ZrTe 3.953 | 6.647 
TiSe 3 57 e 6205 174 | RhTe 3.987 | 5.661 i rz 

| VSe 3.66 595 =a eas PdTe 4.152) W5.672 
CrSe 3.71 6.03 | 1.63 IrTe 3.939 | 5.386 : = 
FeSe 3.62 5 Oe N64 MePo © 64345) | “Fore | aes 
CoSe ie 3.62 5.286 | 1.46 ScPo* 4.206 6.92 | 1.65 | 

|__BNiSe 3.6613 i 5.3562 Ez 46 TiPo 3.992 | 6.569 : 65 | 
RhSe 3.642 (M486 isl NiPo SOs mesos 44 | 
AuSe =i 4.12 530m ialot ZrPo 4.031 | 6.907 ie) 

[__ScTe 4.020: | 6.748. | 1.64 HfPo | 4.058 | 6.717 : a 
TiTe 3.834 | 6.390 | 1.67 | 

*anti-NiAs structure 

In the next section, we will describe the TiAs structure which is related 
to the NiAs structure. 
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6.2. TiAs Structure 

Pearson symbol: hP8, Prototype: TiAs. In the TiAs structure, the 

anions are arranged in the dhcp substructure shown in Fig. 80 (Sec. III.8) 

and the cations. occupy all octahedral interstices present in it. We can 

observe in Fig. 122 that the arrangement of ions in the down half of the 

hexagonal prism for the TiAs structure (see Fig. 122b) looks the same as the 

arrangement of ions in the hexagonal prism for the NiAs structure (see Fig. 

122a). The sequence of the two-dimensional hcp layers in the TiAs structure 

is the following: 

A,A.B,A-A,B,-C,B-A,A-BaA-AaB-C,Be..., 

where it is easy to separate the layer sequence A,B,A,C,A,B,A,C,... 

corresponding to the anion substructure from the layer sequence 

A.A,.B,.B.A,A-B,B,... for the cation substructure. In the last sequence, we 

can observe the presence of consecutive cation layers of both the same and 

different type, what marks the difference from the NiAs structure whose 

aw 

Figure 122 Hexagonal prisms: (a) for the NiAs structure and (b) for the TiAs structure. The 

lattice parameters, a and c, are shown in both cases. 
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cation substructure has all the layers of the same type. As a consequence, 

between consecutive layers of the TiAs cation substructure are present not 

only trigonal prism interstices, but also octahedral and tetrahedral interstices. 

Half of the trigonal prism interstices and all octahedral interstices are 

occupied by anions. 

7. Sodium Chloride Structure 

Pearson symbol: cF8, prototype: NaCl. We will now talk about the 

structure of sodium chloride. In those compounds that crystallize in this 

structure the ionic bonding prevails over the covalent one. Most of the 

binary compounds that have a high degree of ionicity in their bonds 

crystallize in this structure and among them the alkali halides which have 

over 90% of ionic contribution in their bonds. 

In alkali halides the positive ion is one of the alkali metals (Li’, Na’, 

K", Rb’, or Cs’) and the negative ion is one of the halogens (F, Cl, Br, or 

I). Except for CsCl, CsBr, and CsI, all of them crystallize in the NaCl 

structure under normal conditions. 

In the NaCl structure, each ion has six NNs and both, the anion and the 

cation, have their NNs at the vertices of a regular octahedron with the anion 

or cation in its center, what is shown, using as example the NaCl compound, 

in Fig. 123. The coordination number 6, which is higher than for the case of 

the zinc blende and wurtzite structures, allows to maximize the ionic 

bonding. 

(a) 

@ Nat 

Ocr 

Figure 123 The structure of NaCl. (a) Regular octahedron defined by Na* cations with the 
Cl’ anion in its center. (b) Nearest neighbors of a Na‘ cation at the vertices of a regular 
octahedron. 
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The sodium chloride structure represents a sequence of two-dimensional 

hexagonal layers of 

AnaCcBnaAciCnaBoAnaCcaBnaAcCnaBer BIC 

type. This sequence can be seen as a superposition of two subsequences of 

ABCABC... type, one for cations and another one for anions. The cation 

layers are displaced with respect to the anion layers in the way that each ion 

has 6 NNs. 

Concluding, we can say that the NaCl structure is a superposition of 

two fcc substructures, each one for a given type of ions. Two cubic unit cells 

can reproduce this structure: one with anions at the vertices and the other 

one with cations at the vertices. These two cells are shown in Fig. 124a. 

In Fig. 124b, we show a rhombohedral unit cell with two ions (an anion 

(hb) (a, + 2,+ 4,) 

The rhombohedral unit 
cell has one Na* cation 

and one Cl” anion. 
43) 

Figure 124 (a) Two cubic unit cells for the structure of sodium chloride: one with Na* 

cations at the vertices and the other one with CI anions at the vertices. (b) A rhombohedral 

unit cell with two ions (one anion and one cation), which is the smallest unit cell that 

reproduces the NaCl structure. 
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and a cation) belonging to it, which is the smallest unit cell that reproduces 

the NaCl structure. The rhombohedron shown in Fig. 124b is the same as the 

primitive unit cell for the fcc lattice. Therefore, the sodium chloride structure 

can be considered a fcc Bravais lattice with two-atom basis consisting of one 

cation and one anion. 

We can observe in Fig. 124a that the substructure of anions (cations) 1s 

displaced with respect to the substructure of cations (anions) along the cube 

edge by half of its lengths. Thus, an anion (cation) occupies an octahedral 

interstice in the cation (anion) substructure. Figure 125 illustrates the 

stacking of A, B, C layers for both types of ions in the cubic unit cell of 

NaCl. In this figure, the AyaCcByaAciCnaBciAna-.. sequence of layers is 

shown. The layers are orthogonal to a body diagonal of the cube. In Fig. 126 

we show the coordinates, given with respect to the 4, b, Coaxcsor 

the eight ions belonging to the cubic unit cell shown on the left side of 

Fig. 124a. 

In the next few tables we will list about 300 binary compounds that 

crystallize in the NaCl structure. This represents a significant percentage of 

the total number of compounds having that structure. We begin in Table 32 

by report experimental lattice parameters for I-VII compounds and the silver 

halides. We can observe in this table that, with exception of CsCl, CsBr, 

and Csl, all other I-VII compounds have the NaCl structure. In Table 33 are 

given the lattice constants of I-VI, IV-VI, and V-VI compounds that 

crystallize in the NaCl structure. We can see in this table that nearly all 

compounds that contain one of the alkaline earth metals (magnesium, 
calcium, strontium, and barium) crystallize in this structure. In Tables 34 
and 35 we report the lattice parameters for compounds of TM-VI, and TM-V 

Figure 125 The sequence of two-dimensional hexagonal layers Ana, Bua, Cua, Ac, Boy, and 
Cc in the structure of NaCl. 
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Figure 126 Positions of ions belonging to the cubic unit cell of the NaCl structure. The 

coordinates are expressed in units of a. 

Table 32 Lattice parameters (in Angstroms), obtained under normal conditions, of alkali 

metal halides and silver halides that crystallize in the NaCl structure. In the table, it is also 

indicated which of the considered compounds crystallize in the CsCl or zinc blende structures. 

LiBr (5.5013) 

NaBr (5.9732) 

KBr (6.6005) 

RbBr (6.889) 

Nal (6.4728) 
KI (7.0656) 
RbI (7.342) 

NaF (4.632) 

KF (5.34758) 

RbF (5.6516) 

CsF (6.014) 

NaCl (5.6401) 

KCl (6.2952) 

RbCl (6.5810) 

CsCl 

AgCl (5.5463) AgBr (5.7721) zinc blende 

Table 33 Lattice parameters (in Angstroms), obtained under normal conditions, of II-VI and 

also some IV-VI and V-VI compounds that crystallize in the NaCl structure. In the table, it is 

also indicated which of the considered compounds crystallize in the wurtzite or NiAs 

structures. 

TS ea ee 
g | MgO (4.2113) | MgS (5.20182) | MgSe (5.451) 

Ca | CaO (4.8105) | CaS (5.6948) | CaSe (5.916) | CaTe (6.356) | CaPo (6.514) 
SrO (5.1615) | SrS (6.0198) | SrSe (6.2432) | SrTe (6.660) | SrPo (6.796) 
BaO (5.539) BaS (6.3875) BaSe (6.593) | BaTe (7.0012) | BaPo (7.119) 

Piece to enh ones SnSe (5.99) | SnTe (6.320) 
PbS (5.9362) | PbSe (6.1243) | PbTe (6.4591) | PbPo (6.590) 

| BiSe (5.99) | BiTe (6.47) 

type, respectively. We can observe in Table 34 that nearly all chalcogenides 

of the RE metals and of the light actinides (thorium, uranium, neptunium, 

plutonium, and americium) crystallize in the NaCl structure. In this structure 

also crystallize oxides of the TMs, which are mainly from the iron group, 
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Table 34 Lattice parameters (in Angstroms) obtained under normal conditions for 

compounds of the TM-VI type that crystallize in the NaCl structure. In the table, it is also 

indicated which of the considered compounds crystallize in the NiAs or zinc blende 

structures. 

[= os OF ees Se Te Po 
| Se | aS EESeS Garon WEscse C298) NiAs | __NiAs 

NiAs NiAs NiAs NiAs 
NiAs NiAs NiAs 

NiAs NiAs 
Mn | MnO (4.446) ae Fees NiAs 

NiAs NiAs NiAs 
NiAs NiAs 

NiO (4.1771) NiAs NiAs NiAs NiAs 
YS (5.493) | YSe (5.711) | YTe (6.098) 

(Zea 026 5 (5.1522) ee 
NbO (4.212) ar ee ee ee 

| Rh 
| Pa 

zinc blende zinc blende zinc blende 

Hf NiAs | 

Ir 

Pt | PtO(5.15) 
Au HAC ae a 
Hg zinc blende zinc blende zinc blende HgPo (6.250) 

La LaS (5.854) | LaSe (6.066) | LaTe (6.429) 
Ce CeS (5.779) | CeSe (5.9920)| _CeTe (6.36) 
Pr PrS (5.731) | PrSe (5.944) | PrTe (6.315) 
Nd NdS (5.689) _| NdSe (5.907) | NdTe (6.282) 

SmO (4.9883) | SmS (5.9718) | SmSe (6.202) | SmTe (6.594) | SmPo (6.724) 
EuO (5.142) | BuS (5.9708) | EuSe (6.197) EuPo (6.720) 

GdS (5.565) 

HoS (5.465) 

TbS (5.5221) | TbSe (5.7438) 

DyS (5.489) 

EuTe (6.594) 

GdTe (6.139) 

TbTe (6.1150) 

DySe (5.690) | DyTe (6.079) 

HoSe (5.680) | HoTe (6.049) 

GdSe (5.76) 

TbPo (6.254) 
DyPo (6.214) 
HoPo (6.200) 

ErS (5.422) | ErSe (5.656) | ErTe (6.063) 
TmS (5.412) | TmSe (5.688) |_ TmTe (6.346) | TmPo (6.256) 

Yb | YbO (4.86) | _YbS (5.687) _| YbSe (5.9321)| _YbTe (6.361) | YbPo (6.542) 
LuS (5.355) | LuSe (5.572) | LuTe (5.953) | LuPo (6.159) 

Th ThS (5.6851) | ThSe (5.880) 
Pa | PaO (4.961) | | = 
U UO (4.92) US (5.486) | USe (5.751) | UTe (6.155) 
Np | NpO (5.01) | NpS (5.527) |NpSe (5.8054)| NpTe (6.2039) 
Pu | PuO (4.958) | PuS (5.5412) | PuSe (5.7934) | PuTe (6.1774) i 
Am | AmO (5.045) | AmS (5.592) AmTe gs 
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Table 35 Lattice parameters (in Angstroms) obtained under normal conditions for the 

compounds of the TM-V type that crystallize in the NaCl structure. The data for some tin 

pnictides are also included. In addition, we indicate in the table which of the considered 

compounds crystallize in the NiAs or TiAs structures. 

eee [ONE Nee Pea eK tee “| 

Ti TiAs NiAs and TiAs 
FINA ee ee 

CN(G143) eee ae 

ea eel 
er 

YN (4.877) | YP (5.661) 
a-ZrP (5.263) | B-ZrAs (5.4335) 

BONG) and TiAs and TiAs 

YAs (5.786) 

O-NbN 

(4.394), 

NiAs, and TiAs 

Sb Bi 

NE IIAS a aly Ritimi A 
jake IAT OSA SA. 2) 
Pe RNase Se 

PEAS SO I 
| Sa aide mening 

YSb (6.165) YBi (6.256) 

NiAs 

NiAs 

Hf | HIN (452) 

NiAs 

LaSb (6.490) 

CeSb (6.420) 

LaBi (6.578) 

CeBi (6.5055) 

PrN (5.155) 
NdN (5.132) 

PrSb (6.375) | PrBi (6.4631) 

SmSb (6.271) | SmBi (6.3582) 

EuN (5.017) 

GdN (4.9987) 
TbN (4.9344) 

GdSb (6.217) 

TbSb (6.178) 

GdBi (6.3108) 

TbBi (6.2759) 

DyN (4.9044) | DyP (5.653) DyAs (5.794) DySb (6.154) | DyBi (6.2491) 

| Ho | HoN (4.8753) | HoP (5.626) | HoAs (5.769) HoSb (6.131) | HoBi (6.228) 

ErN (4.842) | ErP (5.606) | ErAs (5.7427) 
| Tm | TmN (4.8021) | TmP (5.573) | TmAs (5.711) 

ErSb (6.106) 

TmSb (6.087) 

ErBi (6.2023) 

TmBi (6.1878) 

YDN (4.7852) | YbP (5.555) | YbAs (5.698) 
Lu | LuN (4.7599) | LuP (5.533) LuAs (5.680) 

Th | ThN (5.1666) | ThP (5.8324) | ThAs (5.978) 

PaAs (5.7560) 

UAs (5.7767) -|3[3 UN (4.890) UP (5.5883) 

Np | NpN (4.897) | NpP (5.6148) | NpAs (5.8366) 
Pu | PuN (4.9049) | PuP (5.6613) | PuAs (5.8565) 
Am | AmN (5.005) | AmP (5.7114) | AmAs (5.876) 

SnP (5.5359) SnAs (5.716) 

YbSb (6.079) 
| LuSb (6.0555) 
| ThSb (6.318) 
| 

USb (6.203) 

eer. | SnSb (6.130) 

LuBi (6.156) 
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and oxides of the actinides mentioned above. In Table 34 we can also 

observe that the chalcogenides of TMs that are not RE metals often 

crystallize in the NiAs structure. Among compounds of the TM-VI type, 

there is also a small group of compounds that crystallize in the zinc blende 

structure, like CdPo and cadmium and mercury chalcogenides. 

Similarly as in Table 34 are organized the experimental data in Table 35 

for TM nitrides, phosphides, arsenides, antimonides, and bismuthides. As 

was the case in Table 34, in this table the compounds of the RE metals and 

that of the actinides crystallize in the NaCl structure, while those that 

contain other TMs prefer to crystallize in structures different from NaCl 

(NiAs or TiAs). Besides the values given in Tables 32-35, below we also list 

the lattice constants for alkali and some TM hydrides and also for TM 

borides and carbides: 

Hydrides: LiH (4.0856 A), NaH (4.880 A), KH (5.704 A), RbH (6.037 A), 
CsH (6.376 A), NiH (3.740 A), and PdH (4.02 A) 

Borides: ZrB (4.65 A), HfB (4.62 A), and PuB (4.905 A) 

Carbides: ScC (4.51 A), TiC (4.3186 A), VC (4.182 A), CrC (4.03 A), 
ZrC (4.6828 A), NbC (4.4691 A), CeC (5.135 A), HC (4.63765 A), 
TaC (4.4540 A),  ThC (5.346 A), | PaC (5.0608 A), — UC (4.9606 A), 
NpC (5.005 A), and PuC (4.731 A). 

Via=4r 

d=rt+r, 

Figure 127 The plane of a face of the NaCl cubic unit cell with the cross sections of 9 ions 
considered hard spheres. The large ion, located in the center of the face, makes contact with 
its NNs (small spheres) and also with the NNNs (large spheres). The NN distance, d, is equal 
to the sum of the ionic radii, r+ ie: 
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[a= 2¢.+90] 

Figure 128 The same plane as in Fig. 127, but now the large ion, located in the center of the 

cube face, makes contact only with the NNs (small spheres). The NN distance, d, is equal to 

rtr,. 

Figure 129 The same plane as in Figs. 127 and 128, but now the smaller ion is too small to 

make contact with larger ions and as a consequence the ion located in the center of the cube 

face makes contact only with its NNNs (large spheres). The NN distance, d = J2r., is 

defined only by the radius of the larger ion. 

Let us now proceed to calculate the limiting radius ratio for the NaCl 

structure. We can see in Fig. 124a that 4 NNs of the Cl ion, placed in the 

center of a cubic unit cell face, are located in the centers of the face edges. 

Figures 127, 128, and 129 show the plane of one of the faces of the cube 

with cross sections of ions that, being considered hard spheres, are 

represented by circles on this plane. We can easily distinguish the following 

three cases: 
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a.) Each anion makes contact with its NNs (cations) and with the nearest 

anions as is shown in Fig. 127. 

b.) Each anion makes contact only with its NNs (cations), see Fig. 128. 

c.) Each anion makes contact only with the nearest anions as is illustrated in 

Fig. 129. 

We will now proceed to calculate the r, /r_ ratio for the case described 

in Fig. 127. We can see in this figure, that 

2r_+2r,=a, (IV.9) 

as 

V2a=4r., (IV.10) 

then 

dn. + 2r, =e =2V2r (IV.11) 

and finally 

“=V2-120414, (IV.12) 

When +, / r =0.414, each anion touches both its NNs (cations) and the 

NNNs (anions). This is the limiting radius ratio for the NaCl structure which 

was already reported in Table 18. When the radius ratio is higher than the 

limiting one, 

* 50.414, (IV.13) 3 

each large ion makes contact only with the NNs (small ions) but not with the 

NNNs (see Fig. 128) and the structure is stable. In the opposite case, when 

the radius ratio is smaller than the limiting one, each large ion is in contact 

only with the NNNs (see Fig. 129). However, in principle, this situation 

would lead to a less stable structure and in this case a lower coordination 

number is expected. 

We can see in Table 36, in which are given the data for alkali halides, 

that the listed there radius ratios are smaller than the limiting one, 
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4 <0.414, (IV.14) r 

only for LiBr and Lil. In the rest of the alkali halides that have the NaCl 

structure, each ion touches its NNs that are of opposite sign. We can also 

observe in this table that in the case of KF, RbF, and CsF compounds the 

cation radius is larger than the anion radius and, as a consequence, the 

condition 

Te 
> 0.414 ([V.15) 

a 

has to be considered instead of the condition given by Eq. (IV.13). 

In Table 36 we list values for r,/ror r/r, and r+r, or V2r., 

depending on the case in consideration. Those values were calculated using 

ionic radii given in the table. Table 36 contains also values for the distances, 

d=a/2, between the NNs, obtained using experimental lattice constants 

taken from Table 32. In those cases when the NNs touch each other, d 

should fulfill the equality 

r+r.=d, (IV.16) 

what indeed happens to within 2% (see Table 36). This validates the concept 

of ionic radii, since the same radii can be used to calculate the interatomic 

distances for several compounds and those distances are very close to the 

experimental values obtained from the lattice constants. 

In cases when the large ion makes contact only with its NNNs 

(r,/r_ <0.414), the distance to the NNs fulfills the following equality 

VJ2r =d. (IV.17) 

This happens with very good accuracy for LiBr, and Lil (see Table 36). 

Finally, we can observe in Table 36 that about half of the compounds 

considered there have their ionic radius ratios r,/r (or r_/r,) in the range 

from 0.414 to 0.732, which is the expected range for the NaCl structure (see 

Table 18). The LiBr and Lil compounds represent the exceptions, for which 

the zinc blende structure (or wurtzite) is predicted according to the ranges 

for ionic radius ratios listed in Table 18. The other exceptions, NaF, KF, 
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Table 36 Several values for alkali halides: a.) cation and anion radii (below the ion symbols), 

b.) ionic radius ratios Cay POR i r, ), ¢.) sums of the ionic radii (7 +r, ) in cases when 

r, / Tae AIA R OR J2r. in cases when 1, / r_ <0.414, and d.) experimental values for the NN 

distances, d= a/ 2, where the lattice constants, a, are given in Table 32. 

Lit Kt Rb* 
(0.76 A) (1.38 A) (1.52 A) 

r,/r_=0.57 | r,/r_=0.77 | r/r,=0.96 | r./r,=0.88 | r_/r, =0.80 

jas TRG =2.09 A r= DESO) Ter, STL RO 85 Pile, 23.00 
d=2.01 d =2.32 d =2.67 d =2.83 d =3.01 

be r,/r_=0.42 | r,/r_ =0.56 r,/r_ = 0.84 

a] Cee) et 283 | eres 19 | er = 3.33 

ue Oa =256 d =2.82 d =3.15 d =3.29 
ee _ | 4/r=039 | 7 /r =0.52 | r,/r=0.70 | r,/r=0.78 ee 
Rar iy V2r. =) 7] r+r, =2.98 r+r,=3.34 | r+r, =3.48 chloride 

‘ee TS d =2.99 d =3.30 d =1.44 structures 

r,/r_=0.35 | r,/r=0.46 | r,/r =0.63 | r,/r. =0.69 
corte N23 | ray =322 | 747 3.58 | 7p er 2372 

| a=301 ie 4 d= 398 |g 

RbF, CsF, KCl, RbCl, and RbBr, have the radius ratios within the range 

corresponding to the CsCl structure. 

In this section, we have learned that, among many other compounds, in 
the NaCl structure crystallize compounds of doubly ionized elements from 
columns II and VI of the periodic table, except for the beryllium compounds 
and MgTe. Geometric considerations, similar to that made for alkali halides, 
show that also in the case of II-VI compounds having the NaCl structure 
their ions may be considered, in good approximation, as hard impenetrable 
spheres of definite radii. 

8. Cesium Chloride Structure 

Pearson symbol: cJ2, prototype: CsCl. In the NaCl structure 
(discussed in the previous section), the smaller in general cations are located 
in octahedral interstices (defined by 6 anions) present in the anionic fcc 
substructure. With the increase of the r,/r_ ratio, a cubic interstice defined 
by 8 anions becomes a better option for the cations. This is the case of the 
cesium chloride (CsCl) structure, for which the limiting radius ratio is 0.732. 
The CsCl structure is a superposition of two simple cubic substructures. 
Both the cations and the anions occupy the cubic interstices present in each 
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ec 

@ cs* 

Each Cs* ion is 
surrounded hy 3 Cl” 
ions and vice versa. 

Figure 130 Conventional unit cell for cesium chloride. 

substructure. In Fig. 130 we show the smallest unit cell for CsCl. The cell is 

a cube with one type of ions at the vertices and an opposite ion in the center. 

One of the two principal groups of compounds that, under normal 

conditions, crystallize in the CsCl structure is formed by three cesium 

halides: CsBr, CsCl, and CsI, and also three thallium halides: TIBr, TCI, 

and TlI. We can see in Table 36 that CsBr, CsCl, and CsI are the halides of 

the largest univalent ions (remember that these ions have somewhat different 

radii in the case of the coordination number 8). The other numerous group of 

V3a=2G.+1,) 
d=rtry 

Figure 131 A plane defined by two body diagonals of the cube shown in Fig. 130. In this 

plane, there are the points of contact between the cation and its four NNs. 
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Table 37 Lattice parameters, obtained under normal conditions, of cesium and thallium 

halides that crystallize in the CsCl structure. 

a(A) Compound 
4.286 3.970 
4.123 TIC! 3.834 
4.567 4.205 

Table 38 Lattice parameters (in Angstroms) obtained under normal conditions for 

intermetallic compounds of the RE-Mg or RE-III type that crystallize in the CsCl structure. 

The elements in the compound symbols are listed alphabetically. 

iT a ee ee ae 
MeSc (3.597) | AlSc(3.450) | sd c c 

InY (3.806) 
| ka | Lag 3.965) | | Inka (3.985) | LaT1 3.922) | 
a Cs CoM (6'899) < | AICe G86) 4] 5 © ag | Co G893) 9] 

MgPr (3.888) 
MgNd (3.867) | AINd@G.73) |  =—————s|sNdTIG.848) | 
MgSm (3.848) 

aie A SeatliSeeEv TG 995) 
AlSm (3.739) InSm (3.815) SmTI (3.813) 

GdMg (3.824) | AlGd (3.7208) GdIn (3.830) GdTI (3.7797) 

HoMg (3.770) Holn (3.774) HoTI1 (3.735) 

d 
b Meh (3.784)0 NANT hast Vl |e WP es SO 76m) 

saat 
r ErMg 3.758) | ————S—S—sdsSsBrn (3.745) | ETI (3.715) 

: 
. 

AlDy (3.6826) 
aes . 

Y 

T MeTm (3.744) InTm (3.737) | TITm (3.711) 

ee yb ae 9 ea InYb (3.8138) | TIYb 3.826) 
LuMg (3.727) LE 

compounds that crystallize in the CsCl structure is formed by intermetallic 

compounds. 

Let us now calculate the limiting radius ratio for the CsCl structure. As 

in the case of the bec structure, the ions that are at the vertices of the cube 
are the NNs of the ion that is in the center of the cube. Figure 131 shows a 
plane defined by two body diagonals of the cube with the cross section of 
a cation placed in the center and the cross sections of four anions placed at 
the vertices of the cube. We can see in the figure that the points of contact 
between the cation and the anions are on the body diagonals of the cube. 

We can see in Fig. 131 that 

2r_ +2r, = V3a, (IV.18) 
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as a=2r_then 

2r_+2r, =2V3r. (IV.19) 

and finally 

4 = 3 -1=0.732. (IV.20) 
is 

Table 39 Lattice parameters (in Angstroms) obtained under normal conditions for 

intermetallic compounds of the RE-TM type that crystallize in the CsCl structure. The 

elements in the compound symbols are listed alphabetically. 

Cd 

CdSc 

S18 

CdY 

SAS 

CdLa 

3.904 

CdCe 

BE855) 

CdPr 

3.829 

CdNd 

3.819 

CdSm 

IMS, 

CdEu 

S295 

CdGd 

3.748 

CdTb 

33123 

CdDy 

SAK 3.555 3.676 

CdHo AuHo HgHo 

3.701 3.541 3.660 

CdEr AuEr ErHg 

3.685 3.5346 3.645 

T CuTm za | RhTm AgTm CdTm AuTm HgTm 
m 

3.414 3.516 3.358 3.562 3.663 3.516 3.632 

es YbZn RhYb AgYb CdYb AuYb HgYb 

mp 3.629 3.347 3.6787 3.8086 3.5634 B1ES 

LuZn LuRh CdLu AuLu HgLu 

3.491 3.334 3.640 3.4955 3.607 
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Table 40 Lattice parameters obtained under normal conditions for intermetallic 

compounds that crystallize in the CsCl structure. The elements are listed alphabetically in 

those compounds where at least one of the elements is a TM. 

Compound 
Se ey! : B-AgCd CaTl 3.851 3.383 
3.171 4.003 3.093 
3.168 CoFe ot 3.246 
3.124 CoGa 2.880 

CoHf 
2.864 
2.908 CoTi 
2.983 CoZr MgRh 

MgT! 
3.2620 BMnRh 

AuCs 4.262 FeRh 2.983 3.171 
3.266 2.976 3.01 

2.910 3.07 

PtSc* 3.268 

3.0063 
GaRu 

3.930 a ee 
*Intermetallic binary compounds where one of the elements is a RE metal 

Equation (IV.20) gives the value for the limiting radius ratio for the CsCl 

structure. This value was already included in Table 18. In that limiting case 

each anion touches both its NNs (cations) and the NNNs (anions). 

In Tables 37-40 we list the data for about 200 compounds that 

crystallize in the CsCl structure. Table 37 gives the lattice parameters for 
cesium and thallium halides, while Tables 38-40 report the data for 
intermetallic compounds. In those intermetallic compounds that are listed in 
Tables 38 and 39 one of the metallic elements is a RE metal. We can 
observe in these tables that the number of such compounds is significant. In 
the case of the intermetallic compounds in which at least one of the elements 
is a TM, we adopted the convention according to which the elements in 
compound symbols are listed alphabetically. 
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9. Problems 

Exercise 1 How many cations and anions do belong to the cubic unit 

cell of the zinc blende structure? Draw this cell and the ions belonging 

to it. Find the position of each ion expressing its coordinates in units of 

the lattice constant a. 

Exercise 2 Repeat Exercise 1, but now for the fluorite structure. 

Exercise 3 Table 27 lists the distances of an ion to the NNs in MnSe, 

MnTe, ZnSe, CdSe, and GaN, for two crystal structures: zinc blende and 

wurtzite. These distances have been obtained using experimental lattice 

constants. Make a similar table with the distances, dynn, of an ion to the 

NNNs. Express, in percentage, the difference between dyyn obtained for 

the zinc blende and wurtzite structures. In your calculations use the 

experimental lattice constants listed in Tables 20, 21, and 26. 

Exercise 4 

a.) Draw a hexagonal prism for 6-ZnS, which crystallizes in the zinc 

blende structure. This prism should be able to reproduce the /-ZnS 

structure. Show on the figure two-dimensional hcp layers Azp, Bzp, 

Cz, and As, Bs, Cs, and the distances between the consecutive 

layers. 

Hint: Similar work was done in Fig. 113 for the wurtzite structure 

of ZnS. See also Figs. 82, 94, and 95. 

b.) How many ions of each type do belong to the hexagonal prism you 

have drawn in a.) and how many ions do belong to the hexagonal 

prism for the wurtzite structure? 

Exercise 5 Let us consider 8 and 12 closest cations to a given cation in 

the NiAs and anti-NiAs structures, respectively. In the case of the NiAs 

structure the 8 cations can be divided, according to the distance to the 

cation in consideration, into two groups of 2 and 6 ions which are closer 

and more distant to the cation, respectively. Using similar criterion, the 

12 cations considered in the anti-NiAs structure can be divided into two 

groups of 6 ions each. In each case the distances depend on the lattice 

constant ratio c/a. 

a.) For the following compounds: VSb (c/a =128 95 VSec/a =1.63'), 

VS (c/a =1.75), and TiS (c/a =1.93), that crystallize in the NiAs 

structure, calculate the two closest cation-cation distances, d{,, and 
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d'\, (or di.,, and di, ). For each compound, compare the obtained 

distances expressing the difference in percentage. How does this 

difference change with the increase of the c/a ratio? How many 

NNNs has a cation in each compound? Use the lattice constants a 

and c from Table 30 for VSb and from Table 31 for TiS, VS, and 

V Se: 

Hint: When calculating the number of NNNs assume that whenever 

di, and dv, (or di, and d{i,,) differ by less than 10%, then the 
ions at both distances are NNNs. On the other hand, if the shortest 

distance differs from the distance of a cation to its nearest anions by 

less than 10%, then the cations at such a distance join the group of 

NNs of the cation in consideration. 

Do a similar work as in a.) for the anti-NiAs structure on the 

example of the following compounds: PtB (c/a=1.21), ScPo 

(c/a=1.65), 6-NbN (c/a=1.87), and VP (c/a=1.96). How 
many NNNs has each Pt ion in the PtB compound (and also V ion in 

the VP compound)? To which two-dimensional hcp layer do those 

ions belong? Answer similar questions for the ScPo and 6 -NbN 

compounds. Use lattice constants a and c from Table 28 for PtB, 

from Table 30 for 6 -NbN and VP, and from Table 31 for ScPo. 

Hint: To determine the number of the NNNs of a given cation use 

the criterions suggested in the Hint of a.). 

Exercise 6 In the case when the lattice constant ratio c/a is much 

smaller than 1.633, each cation in the NiAs structure has indeed 8 NNs: 

6 anions and 2 cations. 

a.) Show that the above is true, to within 3% of the NN interatomic 

b. SS 

distance, for the following compounds: CuSb (c/a=1.34), PdSb 

(c/a=1.37), IrSb (c/a=1.39), and IrTe (c/a =1.37 ). Use lattice 

constants a and c from Table 30 for CuSb, PdSb, and IrSb and from 

Table 31 for IrTe. 

Compare the cation-cation distances doo,, py, and d,,,, 
calculated in a.), with the distances dé", déire" | and aciemen 
respectively, between Cu, Pd, and Ir NNs in the crystals of these 
elements. Confirm that in each case d,, differ from dé" by less 
than 2%. Use the NN interatomic distances for elements, listed in 
Table 16. 

° 
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Exercise 7 Tables 30 and 35 report the experimental data obtained 

under normal conditions for ZrP in the beta (TiAs structure) and alpha 

(NaCI structure) phases, respectively. 

a.) Calculate and compare the distances d}*' and d,\ between the 
NNs in the two structures. 

b.) Calculate the distance, d}*' , between the NNNs in a-ZrP. Calculate 
also the distances dj between a given Zr ion and the 10 closest 

Zr ions to it in B-ZrP. Compare the obtained distances with d}*", 
expressing the differences in percentage. When making comparisons 

take into account the number of ions at each distance. 

Exercise 8 Tables 30 and 35 report the experimental data obtained 

under normal conditions for 6'-NbN (anti-NiAs structure) and e-NbN 

(TiAs structure), and 6-NbN (NaCl structure), respectively. 

a.) Calculate and compare the NN distances: dvi, dy, and du, 
for the three structures. 

b.) Calculate the distance between the NNNs in 6-NbN. Calculate also 

the two and three closest distances between the Nb ions in the anti- 

NiAs and TiAs structures, respectively. 

Hint: Draw the hexagonal prism with the Nb cations in its vertices 

to visualize better the location of the NNNs of a cation in the anti- 

NiAs structure. 

c.) Compare the two distances obtained in b.) for the case of the 

anti-NiAs structure with the distance between the nearest Nb ions in 

0-NbN. When making comparisons take into account the number of 

ions at each distance. 

d.) Do the same as in c.) for NbN in the TiAs structure. Note that for 

this structure you have to consider the three closest distances 

between the Nb ions. 

Exercise 9 Find the filling factors for the following compounds 

that crystallize in the NaCl structure: LiCl (r,/r =0.42), NaCl 

(r, /r_ =0.56), RbCl (7,/r_ =0.84), and KF (r_/r, =0.96). The cation 

radii, r,, and the anion radii, r_, are listed in Table 36 and the lattice 

parameters a for I-VII compounds are listed in Table 32. 

a.) What is the relation between the values for the filling factor and the 

r,/r. (or r_/r, ) ratio? 

b.) What would be the value of the filling factor in the case when 

r,/r_=1? Answer without doing any calculations. 



152 Basic Elements of Crystallography 

Exercise 10 Prepare a similar table to Table 36 for II-VI compounds that 

crystallize in the NaCl structure. The radii of the double ionized 

elements from column II of the periodic table are: 0.72 A for Mg”, 

1.00 A for Ca?*, 1.18 A for Sr**, and 1.35 A for Ba”*, and the radii for 

the double ionized elements from column VI are: 1.40 A for O*, 1.84 A 

for S?, 1.98 A for Se”, and 2.21 A for Te”. Show that the interatomic 

distance, d, expressed by the sum of ionic radii, r +r,, if r,/r >0.414, 

or by V2r. , if r,/r_<0.414, agree to within 2% with the value 

obtained from the experimental lattice constant (d =a/2). The lattice 

parameters a for II-VI compounds are listed in Table 33. 



V. RECIPROCAL LATTICE 

1. Introduction 

Crystal structures considered in previous chapters correspond to ideal 

crystalline materials, it means, refer to the cases when the atoms are in their 

equilibrium positions, what obviously represents the first approximation in 

the description of such materials. We know already that an infinite crystal 

structure possesses a translation symmetry which together with the point 

symmetry characterizes the lattice of a given structure. In this chapter, we 

will introduce the concept of the so called reciprocal lattice which has the 

same point symmetry as the crystal lattice (direct lattice) and plays an 

important role in the description of the physical properties of crystalline 

materials. 

2. The Concept of the Reciprocal Lattice 

The concept of the reciprocal lattice will be introduced starting from the 

fact that in an ideal infinite crystalline material the electrostatic potential 

produced by all the charges present in it is periodic with the periodicity of 

the crystal lattice. Let us denote the lattice translation vector as a,. This 

vector can be expressed as a linear combination of three non collinear 

primitive translation vectors a,, 4,, a, or as a linear combination of the 

WEIsOrs ay, 12,4009 

a, =n,a, +n,a, +n,a, =n,a,a, +n,a,a, +n,a,4,, (V.1) 

where n,,n,,n,€ Z. A position vector r of any point in the crystal may be 

expressed in the a,, a,, 4, basis 

f=C agro, +¢,4;> (V.2) 

where the real numbers €,, ¢,, ¢, are coordinates of the vector in this 

basis. 

In the approximation in which we are considering the crystalline 

material the fr and (f+4,) points, shown in Fig. 132, are physically 

equivalent and as a consequence the electrostatic potential, V (7), produced 

[53 
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$) 
T= 88; +24, +f,8, 47 aa eth Ae ty rs 

ay / =i 0) ay +O) a, +0022, 

Figure 132 A two-dimensional crystal lattice. The points r and (r+4,) have equivalent 

positions in the infinite lattice. 

by all the charges present in the crystal has the same value in both 

points 

V(f)=V (4 as )e (V.3) 

That means the potential is periodic. Any periodic function can be expanded 

into its Fourier series. We will do that for V(f) with respect to each of the 
components of the argument r in axes €, ¢€,, &,, along of which the 

periodicity occurs. We have then 

V(?)=V(6.6,.6)= » Ds 2h Yu 9 i WE) 
Gr ay a. 

(V.4) 

where J,, J,, 1, are integer numbers and V(&,é,,€,) is periodic with 
respect to each of its arguments ¢,, ¢,, ¢, with periods a,, a,, a,, 
respectively. It is easy to show that the potential expressed in this way is 
indeed periodic. Since 

ta. =(c, +na,) a, +(€ +i, ) A, +(¢, +My, | Ass (V.5) 
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) 

IY, V, Ld exp|2 
| =—0o lL, =—00 |, =—00 

al" AG + na i) b(s pe) AMG en) 

a, a, a, 

=>» 2 Yin eP[2A( (In, +1,n, +4n,)]-exp| 271 e pe 
} =—-00 1, =—001,= 

a, 

=—coh=—coh=—00 Ce eae =o. 

(V.6) 

where we took into account that 

In, +1,n, +1,n, = (integer number) > exp| 2zi(I,n, Ad oth The )] =1. 

(V.7) 

Now, we will make a transformation to an orthogonal coordinate 

system. The coordinates of the position vector r in the orthogonal system 

shown in Fig. 133 can be expressed as a function of its coordinates given in 

the € and €, axes 

Xy i 

Xx, =8, +2, cose 

x 2=$)sng 

o aa *) sy 

Figure 133 The relation between the components of the vector r in the orthogonal and non 

orthogonal coordinate systems. 
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x, =6, +6, cosp (V8) 

x, =¢, Sing 

The above represents a system of linear equations for ¢, and ¢,. By solving 

for ¢, first and €, after, we find 

1 
oo = Xy 

i =X, —x, cot sin @ = ( 1 2 Q (V.9) 

=86 (ate es Aaa ecco 
sin @ 

The formulas for €, and ¢, can be rewritten more generally as follows 

Ch Cd ey where a,,=1 and a, =-cot@ (v.10) 

5s —(ebet e woe, where a,,=0 and a,,=cscg 

In a three-dimensional case, if the origins of the non orthogonal and 

orthogonal coordinate systems coincide, we have 

3 

c= AX, + AyyX, FAX, = Dy apa 
kal 

3 

G2 = Ay X, + Ay X, + Ay3X3 = Diam ? (V.11) 
k=1 

3 

G3 = Gah +O, %, + Oy,% = ee 
k=l 

where the a, coefficients are determined by the angles between axes & and 
Xe 

We will now substitute ¢,, ¢,, ¢, given by Eqs. (V.11) into Eq. (V.4), 
then 

Viz)= > py = Vii, XP [27iA], Vet?) 

where 



Reciprocal Lattice Ly 

Dy hae ao Sire a ae Ais 
Q, k= it a, k=1 a, Fal 

la La La La la La || sin ROR 3%31 = x, + 1 ae 2 De 3639 at 

a, a, a, a, a, d, 

La La La 
Sg} DDS 3933) 

Wire hme ee (V.13) 
a, a, a, 

and abbreviating 

b = 24H 4 by +A) 1 
a, a, a, 

= 2a fee Lay, Ff = (v.14) 

Cee tae GL: 

jas an{ Hae 4 ly; cn [33 
5 

a, a, a, 

we obtain 

=> Ss Se exp| i( (b,x, + b,x, a ie (15) 
|, =—00 |, =—00 |, =—00 

From this point on, the summation over J/,, /,, 1, will be replaced by the 

summation over discreet parameters b,, b,, b,, determined by the 

ip (1253) according to Eqs. (V.14). Moreover, it will be helpful to 

consider b, (i=1,2,3) as coordinates of a certain vector b in the orthogonal 

coordinate system. In this manner 

b,x, + b,x, + b,x, = b-f (V.16) 

and then 

Va gas bbyb3 exp| i(D.x, TON
, TDA )] = > exp(ib-F] : 

s 
b bby 

CEI?) 
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The components of vector b are given by Eqs. (V.14), however, it is 

convenient to determine the formula for this vector again, starting from the 

condition of periodicity of the crystal potential, which guides us to the 

following conclusion: 

(V.18) 

This means that in order for the potential to be periodic with periods a; , the 

following equality has to be achieved 

exp| ib-a, |=1. (V.19) 

It is easy to see that Eq. (V.19) implies the periodicity of the function 

exp(ib?) since 

exp| ib ‘(7+4, )] =exp(i -#)-exp(ib ‘a. ) = exp(ib 7) 

uy (V.20) 

exp| ib ‘(F+4, )| = exp(ib r) 

and vice versa, (V.20) implies Eq. (V.19). In conclusion, the potential V (T) 

can be expressed as a function of plane waves exp(ib r) which are periodic 

with the periodicity of the lattice. Next, we will use Eq. (V.19) to find the 

expression for the vector b that characterizes such plane waves. We have 

exp| ib a, | == b-4, = (integer number) -27, for all vectors n 

(V.21) 

and using Eq. (V.1) we obtain 
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b-a, =b- (na, +n,4, + n3A;) 

=n,(b-a,)+n,(b-a,)+n,(b-4,), 

= (integer number) - 277 (V.22) 

for all possible n,,n,,n,¢€ Z. The condition given by Eq. (V.22) is satisfied 

only if 

b-4, =27-g, 

b-4, =27-¢,, where ¢.sey,8,€ 2. (V.23) 

b-a,=27-¢, 

The above represents three scalar equations for three components of vector 

b. To solve these equations, instead of using the orthogonal coordinate 

system, we are going to express vector b as a linear combination of three 

non collinear vectors defined in the following manner: 

alxa; . (V.24) 

We have then 

b=a(a,xa,)+ B(a, x4,)+7(a,x4,), (V.25) 

where the scalars a, f, and y are coefficients of the linear combination. The 

task of solving Eqs. (V.23) consists now in finding the expression for the a, 

B, y coefficients. To this end we substitute Eq. (V.25) into Eqs. (V.23) and 

obtain 

b-a, = B(a, x4,)-4, =27- g, SOR Slee) 

b a= 7(a,x4,) a= 2128 = 29 = 270g, (V.26) 

7 CS ee OQ, =27 - g, 

since 

= (anal) pag= Qe (V.27) 
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From (V.26) we finally obtain the following expressions for the coefficients 

a, By 

a= 2m B= 2a we 2a, (V.28) 
0 

then vector b has the following formula 

if (a, xa,) (aya; ) (a, xa,) 
b= ¢,20-1  —* +-_ 2, 249-—*_<$ + g, 2a—_——_ 
On pOe ee ae ee 8) 

= gb, oe gob, + gb, 

where 

b, = CEE) b, = pana tanay b, ee (V.30) 

Q, : D5 25 

We obtained that vector b is a linear combination of vectors b, : Des b, : 

defined by Eqs. (V.30), with integer coefficients g,, g,, g,. We have then 

a set of discreet vectors b and this makes them similar to vectors 4,, 

defined by Eq. (V.1), that go from one point to any other of the crystal 

lattice (direct lattice). In analogy to a, we define vectors b, as 

Db, "2,0; D5 gD ees eae oe (V3) 
a 
5 

It is convenient to call lattice a set of points generated by all possible vectors 

be This lattice is called the reciprocal lattice and vectors Be b,. b, are its 

primitive translation vectors. From Eqs. (V.30) we can see that they are 

defined by vectors a,, 4,, a, that are three non collinear primitive 

translation vectors of the direct lattice. The primitive translation vectors of 

the reciprocal lattice define the unit cell of this lattice, which is shown in 

Fig. 134. 

In conclusion, we can say that the plane waves exp(ib, oT) in 

which the periodic crystal potential was expanded, are characterized 

by the translation vectors b, of the reciprocal lattice. The relation between 

the reciprocal and direct lattices is such that the translation vectors of the 

reciprocal lattice define the plane waves that have the periodicity of the 

direct lattice. So we have that 
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The volume of this cell 

is given by: 

Figure 134 The unit cell of a reciprocal lattice defined by the primitive translation vectors 

b,,b,,and By 

exp(ib, -(F +4,)) =exp(ib, -f), (V.32) 

what, at the same time, guarantees the periodicity of the crystal potential 

V(r). 

It can be easily proved that 

= QO; | for 714k 
a,-b, =2206, = (V¥33) 

27 10tai= Kk 

and we will use this property of vectors 4, and b, to calculate the volume of 

the unit cell of the reciprocal lattice. Since b, = 27 (a, xa,)/Q, , we have 

D7 | V = (b, xb,):b, = 5-(b, Xb): @ Xa) 
0 

roo guskany sine ha Rela a Ooh (V.34) 
=, [(bsi)(be as) -(B,-,)(6.-a) |= a 

where we have used the identity 

(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C), (V.35) 

which is true for any three vectors and in the last step, we have used 

the relations given by Eq. (V.33). We can see from (V.34) that the 

volume of the unit cell of the reciprocal lattice is equal to the inverse of 

the volume of the unit cell of the direct lattice multiplied by factor (22) : 
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3. Examples of Reciprocal Lattices 

We will now give some examples of reciprocal lattices. As a first 

example, we will consider the triclinic lattice. 

3.1. Reciprocal of the Triclinic Lattice 

We can see in Fig. 135 that the reciprocal of a triclinic lattice is also 

triclinic. As we remember from Chapter II, there are no restrictions on the 

lengths of the unit cell edges or on their interaxial angles in a triclinic lattice. 

Given that the reciprocal of a triclinic lattice is also triclinic, the same is true 

for the reciprocal lattice. 

Figure 135 Primitive unit cell of the reciprocal of the triclinic lattice. In the figure, we show 
also the primitive unit cell for the direct lattice. 

Each of the b, vectors (which define a primitive unit cell of the 
reciprocal lattice, see Fig. 135) is orthogonal to the plane defined by two of 
the three vectors a,, a,, 4,, which are the generators of the direct lattice. It 
should be noted that the dimensions of the cells in Fig. 135 are not 
comparable since the unit of a, is meter and that of b, is inverse meter. 

We will consider now two mote lattices, which belong to the cubic 
crystal system. 

3.2. Reciprocal of the Simple Cubic Lattice 

The primitive unit cell of the reciprocal of the sc lattice has a cubic 
shape, so this reciprocal lattice is also simple cubic. This is shown in 
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Figure 136 Cubic unit cells of the sc lattice and its reciprocal lattice. 

Fig. 136. The volume of the unit cell of the reciprocal lattice is given by 

the expression 

V =b,-b, -b, =~ = , (V.36) 

where Q, is the volume of the primitive unit cell for the direct lattice. 
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Figure 137 Cubic unit cell of the fcc lattice and the primitive translation vectors a,, 4,, a; 
that define a rhombohedral unit cell for this lattice. 
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3.3. Reciprocal of the Face Centered Cubic Lattice 

Let us first remind some basics about the fcc lattice. The primitive 

translation vectors that define a rhombohedral unit cell for the fcc lattice are 

shown in Fig. 137. The volume of the rhombohedral unit cell is also given in 

this figure. The three non collinear primitive translation vectors for the 

reciprocal of the fcc lattice are calculated below. We have 

ee 
OM whe Pe Pie BA 

be te OS xe ye 
oF acl a a a 

0 7a 35a 

Koma ys aul 7, 
- EEOC ER Ris PE CREP. DER 
b, =247—_— =- ; sa ya\=—XK+—y-—z . (V.37) 

OF ON a a a 
37a 0 7a 

p Km cy ee7 
Ga XG, (27 \\, HE DES as 

b, =22 =e 2D (0) Q\=—- — yt 

Q, 4@ |, a a a 
7a 7a 0 

b, =b, =b, = (7) soa (V.38) 

and also 

«(b,,b,) =<(b,,b,) = «(b,,,). (V.39) 

This means that the primitive unit cell of the reciprocal lattice has also a 
rhombohedral shape. If we now compare the expressions for vectors be be 
b, given by Eqs. (V.37) with the expressions for the vectors a, othe a, 
given in Chapter II for the bcc lattice (see the equations in Fig. 44) then we 
find that bcc is the reciprocal lattice of the fcc lattice with lattice constant 
47/a (see Fig. 138). It is also true that fcc is the reciprocal lattice of the bcc 
lattice. 
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Figure 138 Primitive rhombohedral unit cell for the bcc reciprocal lattice. The cell is defined 

by primitive translation vectors b, , b, , b, with coordinates given in the figure. 

In Fig. 138 we have placed the rhombohedral unit cell and the cubic unit 

cell for the reciprocal of the fcc lattice. Note that vectors b , go from a vertex 

of the cube shown in the figure towards three centers of the cubes adjacent 

to this cube (the ones that share a common vertex with this cube). 

4. Problems 

Exercise | Eq. (V.22) is reduced to the following form in the case of a 

two-dimensional lattice 

b-a. =n, (b a, 72; (b a,| = (integer number) - 277, (V.40) 

for all possible n,,n,¢ Z. The above represents the condition for 

translation vectors b of the reciprocal of a two-dimensional crystal 

lattice generated by primitive vectors a, and a,. The condition given by 

Eq. (V.40) is satisfied only if 

b-4, =22-2, 
, , where g,,g, €2Z. (V.41) 
b-a, =27-g, 
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i Ge 

Figure 139 Vectors 4,, 4, and b,, b, that generate the two-dimensional direct and 
reciprocal lattices, respectively. 

From Eqs. (V.41) we deduce that there are vectors b that are orthogonal 

to a, or a,. Two such vectors are shown in Fig. 139. Let us denote 

those two vectors, that are primitive translation vectors, as b, and be 

a.) Show that the translation vector b of the reciprocal lattice has the 

following expression 

b= g,b, + g,b,, (V.42) 

where g,, g, are defined by Eqs. (V.41), and b, and b, are 

orthogonal to a, and 4, , respectively. 

Hint: Express the translation vector b as a linear combination of 

versors b, and b, with coefficients a and 6 

b=ab, + fb,, (V.43) 

then find those coefficients and the expressions for the primitive 
translation vectors b, and be 

b.) For each of the five lattices existing in two dimensions draw the 
primitive unit cell for its reciprocal lattice (defined by the vectors b, 
and b, specified in a.)) together with the conventional primitive unit 
cell for the direct lattice shown in Fig. 15. 

Exercise 2 Show that the primitive translation vectors a,, a,and b, 
b, for a two-dimensional crystal lattice and its reciprocal, respectively, 
satisfy Eq. (V.33). 

Hint: Solve first point a.) in Exercise | in order to have the expressions 
for b, and be. 
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Exercise 3 

a.) Show that the reciprocal of the bcc Bravais lattice (with lattice 

constant a) is the fcc lattice (with lattice constant 47/a ). 

b.) Using the primitive translation vectors for the fcc reciprocal lattice, 

obtained in a.), draw the primitive unit cell inside the cubic unit cell 

for this lattice. 

Exercise 4 Prove that the reciprocal of a reciprocal lattice is its direct 

lattice. 

Hint: Substitute the expressions for b,, b,, b, given by Eqs. (V.30) 

into the expressions for the primitive translation vectors of the reciprocal 

of a reciprocal lattice given by 

oq Oa Xs) 57 (bs Xb1) 5p 6b Xba) 

Vn be vane th vee 

where V is the volume of the primitive unit cell of the reciprocal lattice. 

To simplify the result, make use of the vector identity 

Ax(BxC)=B(A-C)-C(A-B) 

and Eq. (V.34). 
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VI. DIRECT AND RECIPROCAL LATTICES 

1. Introduction 

A three-dimensional Bravais lattice may be seen as a set of two- 

dimensional lattices, whose planes are parallel to each other and equally 

spaced. Each of these planes represents a lattice plane of the three- 

dimensional Bravais lattice. The way of seeing a three-dimensional lattice as 

a set of two-dimensional lattices is not unique. A set of parallel, equally 

spaced lattice planes is known as a family of lattice planes. The orientation 

of the planes belonging to each family is given by the so called Miller 

indices. We will show in this chapter that the Miller indices represent the 

components of a translation vector of the reciprocal lattice which is 

orthogonal to the family of the lattice planes labeled with these indices. In 

the next section, we will learn how to obtain the Miller indices. 

2. Miller Indices 

We will show, first, examples of lattice planes in a given Bravais lattice. 

A lattice plane is defined by at least three non collinear lattice points. In 

Fig. 140 we can see four lattice planes with different orientations in the sc 

lattice. 

Let us now introduce the Miller indices. They specify the orientation of 

a Bravais lattice plane (or the family of planes) in a very useful manner, 

what we will see later. The Miller indices, h, k, 1, can be obtained as follows: 

a.) From the family of lattice planes that are parallel to each other, we select 

a plane that crosses the lattice axes (defined by the primitive translation 

vectors a,, 4,, a,) in the lattice points. The position vectors of these 

points, given in the non orthogonal reference system with axes along 4, , 

ayy a, 0(see Figs l4)) tale = Sa... 1,4 =25,2554 & —15,8,, where 

$1555.53 Ds 

b.) Next, we take the inverse values of the numbers s,, s,, s, and reduce 

them to the smallest integers with the same ratio, namely, 

Bane. 2 pei tT (V1.1) 

S, 5S, S83 

169 
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The integer numbers with no common factors, h, k, 1, obtained in this 

way are known as the Miller indices, which placed in parenthesis, (hk/), 

denote a family of lattice planes parallel to each other. 

As a first example, we will use Eq. (VI.1) for the case shown in 

Fig. 141. For this case 

odes aaah ma Ee rarer a tr (V1.2) 

that is to say, the Miller indices of the plane represented in Fig. 141 are 4, 

3, 6 and the plane is specified by (436). Let us next describe the cases shown 

in Figs. 140a-140d. In these figures, we can find four lattice planes in the sc 

lattice. The plane shaded in Fig. 140a includes a cube face. It intersects 

only the x axis in the point 7 =14, (the other intercepts are at the “infinity”), 

Figure 140 Four lattice planes with different orientations in the sc lattice. 
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ay Fy = $a a 

Figure 141 Three-dimensional crystal lattice generated by the primitive translation vectors 

a,, 4,, 4,. The lattice plane shown in the figure intersects the axes ¢,, ¢,, &, in the lattice 

points. 

thus Eq. (VI.1) turns to the following form for this case: 

2100. (y= (00). (V1.3) 
— | Re 8 |r 

In the similar way, we obtain the Miller indices for the rest of the planes 

shown in Fig. 140, namely, 

Boial:1:0 = (hkl) =(110), 

ie 
ppt = (hkl)=(111), and (V1.4) 

ge - = 
==:—=1:1:1 => (hkl) =(111 ee (hkl) =(111) 

for Figs. 140b-140d, respectively. The shaded plane in Fig. 140d intersects 

the z axis in the point 5 =-la, (see also Fig. 142). Due to the convention, 
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Figure 142 A complementary figure to Fig. 140d. In this figure is indicated the lattice point 

where the ( iT 1) plane crosses the z axis defined by the translation vector 4a, . 

z 

(hkl) =(hKT) 

ay 

(hk1)=(I11) ey (hkl) = (111) 
- é 

= i a Ms 
ay | : 

These two planes are parallel 
x to each other. 

Figure 143 The (111) and (111) planes in the sc lattice. 

the negative Miller indices are written with a bar, it means, instead of -1 
we have | . From the definition of the Miller indices, it is easy to see that 

(hk 1) =(hkL). (VL5) 
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The equality (VI.S) is illustrated in Fig. 143 for the case of the (111) and 
(111) planes in the sc lattice that are parallel to each other. 

As we have learned, the Miller indices are used to identify a single 

lattice plane and also a family of planes parallel to each other. For a set of 

lattice planes (or a set of families of parallel lattice planes) that are 

equivalent by symmetry of the lattice, there is also a notation. Let us 

illustrate this on the example of the planes which include the three faces of 

the cubic unit cell for the sc lattice shown in Fig. 144. “Curly” brackets, 

{100} , designate the (100) plane together with the (010) and (001) planes 

that are equivalent by lattice symmetry to it. In general, the notation {hk/} 
refers to the (hkl) planes and all other families of lattice planes that are 
equivalent to them by symmetry of the lattice. 

Now, we will introduce a convention to specify a direction in a direct 

lattice. Such direction can be identified by the three components of vector 

a. , which is the shortest one in this direction (see Fig. 145). In order to 

determine the components of this vector, we can take a vector R defined by 

two lattice points in the direction in consideration and make the reductions 

to the three smallest integers. For example, in Fig. 145 we have proposed 

R =34, +04, +3a,; next, we take the integer numbers that multiply the 

primitive translation vectors a,, a,, a, and then reduce them to the smallest 

integers having the same ratio: 3:0:3=1:0:1. In this manner, we can 

obtain the components of the vector a, =la,+0a,+1a;, which is the 

shortest one in the lattice direction in consideration. The notation [101], with 

square brackets instead of round brackets, is used to specify the lattice 

{(100), (010), (001)} = {100} 
my 

(a01) 

ex (100) 

Figure 144 Three lattice planes in the sc lattice that are equivalent by symmetry of the lattice. 
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Fe) 

A lattice ap 
direction . F = 4a, +04, +3a, 

eh ° ay =13, +04, +a, 

Figure 145 A lattice direction. The vector a, is the shortest one in this direction. 

direction shown in Fig. 145. In general, the notation [/,/,/,] denotes a crystal 

lattice direction with the shortest translation vector a, =/,a, +/,a, +1,a, . 

All directions that are equivalent to [//,/,] by lattice symmetry are 

denoted with the symbol Was Figure 146 shows an example of three 

equivalent directions, [100], [010], and [001], in the sc lattice. The set of 

these directions, together with [100], [010], and [001], is denoted by 

(100). 

Figure 146 Three directions equivalent by lattice symmetry in the sc lattice. 
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3. Application of Miller Indices 

We are going to describe now some of the properties of Bravais lattices 

with the aid of Miller indices. 

| 
| 

iil | obit pil ntl 

ll 

a a he | Ot es 

The two planes in the figure 
are parallel to each other. 

T} R= ay T) a 

Figure 147 Two (133) lattice planes in a lattice generated by the primitive translation vectors 

a,, 4,, 43. 

Property 1 

First, we will look for the positions of three points that define a lattice 

plane which is the closest to the plane that passes through the origin of the 

non orthogonal reference system, defined by the primitive translation vectors 

a,, 4,, a, (see Fig. 147). The vectors 7, 5, 1, shown in Fig. 147 give the 

positions of three lattice points. The lattice plane that intersects the ¢,, ¢,, 

¢, axes in these points has the following Miller indices: 

eka] s— = 19335. (VI.6) 
= |e |e 

L 
S) 

The other (133) lattice plane shown in Fig. 147 is the closest plane to the 

one that passes through the origin. This plane crosses the lattice axes in the 

points given by vectors 
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a 
T, =14, =" 

Oo jamien 2 Ei ween (V1.7) 
EBS 
Ula 
EL =—24, =— 

Sh. eae | 

Therefore, the plane intersects the &, €,, €, axes at the points a,/h, a,/k, 
a,/l, respectively. This general statement can be deduced from the 

geometric considerations related to the intercepts with the axes of 

equidistant and parallel to each other (hk/) planes. 

Property 2 

Next, we will show that the reciprocal lattice vector 

biy =hb, +kb, +b, is perpendicular to the (hkl) direct lattice plane. 
To demonstrate that, from all the planes of the (Akl) family, we will take 

the one that crosses the lattice axes (defined by the primitive translation 

vectors 4,, 4,, 4,) in the points given by a,/h, 4,/k, 4,/1. The non 
collinear vectors (a,/k—a,/h) and (a,/k—a,/l) are on a (Akl) plane 

o3 

Figure 148 Two (623) lattice planes in a lattice generated by the primitive translation 
VECtOIS 4), (ane das 
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that is the closest to the origin, what is illustrated for the case of the (623) 

plane in Fig. 148. It will suffice to show that b,, L(a,/k-—4,/h) and 
Diy L(a,/k—a,/1) to be able to say that b,,, is orthogonal to the family of 
(hkl) planes. We will calculate the following scalar products for this 

purpose 

ol = 
ae aN a 

| 

=! SS, 
| 
at 

oa en + om N + oa Ww 
a a |.§ 

| 

x | SSS 
I} NO i bo q II >) 

In this manner, we have demonstrated that the vector b,,, is indeed 

orthogonal to the family of (hk/) lattice planes. Concluding, we can say that 

the Miller indices, h, k, /, are the coordinates of the shortest reciprocal lattice 

vector b,,, =/b, +kb, +/b,, which is orthogonal to the (hk/) planes in the 
direct lattice. Of course, any vector that is a multiple of the b,,, vector, 

nb,,,, is also orthogonal to the (Akl) plane. Certainly, if g,, g,, 8), 
specified in Fig. 149, fulfill the relation g,:g,: 9, =h:k:1, that is to say 

oe tee, (VL.9) 

then b, =nb,,) and the b, vector is orthogonal to the (hkl) plane. To 

conclude, we can say that the direction defined by the vector b,,, in the 

reciprocal lattice corresponds to the (hkl) planes in the direct lattice. The 

vector b,,, can be used to define a versor that is orthogonal to (hkI) planes 

hg = 7th 3,37 

des 2 aoSte 2. Es oe = 

mL (&8 be = sh +82 + hs 
k i bagi = kth, +kh, +th, 

as 
k ok 

(a 

Figure 149 The direction given by the vector b,,, in the reciprocal lattice is orthogonal to the 

family of (Akl) direct lattice planes. 
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et fy = (VI.10) 
Akl 

The versor given by Eq. (VI.10) specifies the orientation of a lattice plane 

denoted (hkl). 

Property 3 

At last, we will calculate the distance between two consecutive (hk/) 
planes, d,,,, using the vector fi,,,. To obtain the d,,, parameter it is 

sufficient to project, for example, 4,/h in the direction orthogonal to the 

(hkl) planes (as it is done in Fig. 150), that is to say 

= =-—_., (VI.11) 
h Dix Dax 

This means that two consecutive planes of the family of (Ak/) planes are at 
a distance which is equal to the inverse of the modulus of the b,,, vector 

multiplied by 27. 

As an example, let us now apply the formula that we obtained for d,,, 

for the sc lattice. We will start with the family of the (100) lattice planes. 
The information about the vectors that generate the direct, a,, 4,, a,, and 

o 

The (#k2) plane that is 

the closest to the plane 
that passes through the 

origin 

1 
rs al The (42) plane that 

Pay ee Cr through the 

Figure 150 Two consecutive (hk/) planes. The direction orthogonal to these planes, defined 
by versor fi, , is shown. The distance, d,,, , between these planes is also indicated. 
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Figure 151 The (100) planes which include two cube faces that are parallel to each other in 

the sc lattice. The cubic unit cell defined by primitive translation vectors b,, b,, b; of the 
reciprocal lattice is also shown. The translation vector bj.) =b, is orthogonal to the (100) 
planes. 

the reciprocal, b, ‘ be b, , lattices is given in Fig. 151. We can see 

in this figure that b,||4,, b,||d,, and b,||4,. So the vector 

bigp =1b, +0b, +0b, =b, is indeed orthogonal to the (100) plane. The 
distance between two consecutive (100) planes, which include two cube 

faces that are parallel to each other, is d,, =22/b,,) =a, it means, it is equal 

to the cube edge lengths as it should be. 

As a second example, we will consider the family of planes that are 

orthogonal to a body diagonal of the cube that represents the cubic unit cell 

of the sc lattice. Two of these planes, denoted ( 11 1) , are shown in Fig. 152. 

The figure shows also the cubic unit cell of the reciprocal lattice, generated 

by the primitive translation vectors b, F b,, b, , which were obtained using 

the primitive translation vectors a,, a,, 4,. We can see in Fig. 152 that the 

vector be is parallel to the body diagonals of both cubes. So this vector is 

indeed orthogonal to the (111) direct lattice planes. The two (111) planes 
shown in Fig. 152 divide the body diagonal of the direct lattice unit cell in 

three segments of equal longitude. Thus the distance between these planes is 

equal to 1/3 of the longitude of the diagonal of the cube: 

= epee (VI.12) diy; 3 3 
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2 
byi= tea == 3 

bin 

Figure 152 The cubic unit cells of the sc direct lattice and the reciprocal to it. The vector by 

of the reciprocal lattice is orthogonal to the (111) planes in the direct lattice. 

The distance between the (111) planes calculated using Eq. (VI.11) is 

dn __2e NB (V1.13) d =—_—= = 

- Diy eae 3 

a 

This result agrees with d,,, given by Eq. (VI.12), which we obtained from 

geometric considerations. 

4. Problems 

Exercises) In the sc lattice from Fig. 153 

a.) draw five (111) lattice planes, 
b.) draw all (221) lattice planes that contain at least two points from 

the (010) front large cube face. Place additional points on the z axis 
if necessary. 
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Does the (221) lattice plane that is the closest to the origin belong to the 
set of planes specified in b.)? 

Exercise 2 For each case from Exercise 1 calculate the distance 

between two consecutive planes. 

Exercise 3 

a.) 

b.) 

Without doing any calculations show that the consecutive lattice 

planes, orthogonal to body diagonals of the cubic unit cells of the sc 

and fcc lattices with the same lattice constant a, are at the same 

distance. Find this distance. 

Hint: Draw such lattice planes inside the cubic unit cells of the sc 

and fcc lattices (both having the same edge a). 

Check your result, obtained for the case of the fcc lattice in a.), 

calculating the distance in consideration using Eq. (VI.11). 

Hint: Use the primitive translation vectors that define the 

rhombohedral unit cell of the fcc lattice. 

Find the distance between the consecutive planes, orthogonal to a 

body diagonal of the cubic unit cell of the bcc lattice with the same 

lattice constant a as has the fcc lattice in b.), and compare it with 

d,,, calculated there. 

Figure 153 A simple cubic lattice, of lattice constant a, generated by the translation vectors 

aye Asha 
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Hint: Choose appropriate primitive translation vectors for the bec 

lattice. 

Exercise 4 Figure 154 shows a two-dimensional lattice generated by 

the primitive translation vectors 4,, 4, and four consecutive (41) 
planes in this lattice (Note, that in a two-dimensional lattice the planes 

are one-dimensional and are characterized by two Miller indices.). The 

Miller indices, 4 and 1, were calculated using the integer numbers s, 

and s, specified in Fig. 154: 

Eh dl 2 nary tee er ay at (VI.14) 
he ie lh 

It is also true that 

iret 
BR ert se (VI.15) 

thus the inverse of the Miller indices are at same ratio as s, and s,. Due 

to Eq. (VI.7) the (41) lattice plane, that is the closest to the plane that 
passes through the origin, intersects the axes € and €, in the points 

(I/h)-a, and (1/k)-a,, respectively. It means, the intercepts of this 
lattice plane with the axes ¢, and ¢, are 1/h and 1/k, respectively. Fig. 
154 shows also three (41) planes whose intercepts with the & axis 
represent the multiples of the smallest intercept, 1/h, and are not larger 
than the integer s,, that is 

Qe val! and ae 
h h h 

In similar way are obtained the intercepts of these planes with the Se 
axis, which are 

The plane with integer intercepts s, and s, is the one that we usually 
use to determine the Miller indices. 

a.) Show at least one more lattice point in each of the (41) lattice 
planes from Fig. 154 that have only one lattice point in the figure. 
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Figure 154 Two-dimensional crystal lattice generated by the primitive translation vectors 4, , 

a, . In the figure four consecutive (41) lattice planes are shown. 

b.) Find and draw (keeping proportions) the primitive translation 

vectors b, and b, of the reciprocal lattice and show graphically that 

the vector b,, is orthogonal to the (41) planes. 

Hint: To find the primitive translation vectors b, and b, follow the 

indications given in Exercise | from Chapter V. 
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antimony 49-50 
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atomic basis 3-4, 6-7, 48, 50 

AuSe_ 130, 132 

axes 17-18, 20-4, 40, 42-3, 

46-53, 58, 64-5, 98, 

120-1, 129, 136, 154-6, 

169-72, 175-6, 180, 

182 

fourfold 19,58, 65 

lattice 169, 175-6 

onefold 24 

sixfold 26, 50-1, 124 

threefold 18-19, 21, 23, 27, 39, 

43, 46, 51, 58, 60, 65 

twofold 20, 24 

axis, sixfold hexagonal prism 51 
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B 

BCa 72, 105 

Ce 79-80, 105 

B-face 29, 31-2, 34 

BLi 72, 105 

BNa 72, 105 

BPbF, 115-16 

BSiC 109, 112-13 

BYb 74, 104 

BZnS 114, 118, 149 

Bawl 16,126 

BAs. 113; 137 

basis atoms 9-10, 48-50 

basis vectors 2-3, 5, 7-10, 24, 

26, 36, 40, 42-4, 46-7, 51, 

53-4, 83, 85, 102-3 

conventional 5 

bcc (body centered cubic) 35, 

39, 41-2, 46, 54-5, 67, 71-3, 

86, 88, 101-2, 164-5, 181 

BePo 112; 114 

BeS 112,114 

BeSe 112, 114 

Bele 112, 1%4 

Bi 49-50, 71, 130, 137 

bismuth 49-50 

bismuthides 131, 140 

BN™-?15; 123 

bonds 67,91, 107, 109, 112-14, 

120, 125, 134 

chemical 92-3 

covalent 91, 93-4, 99, 107-8 

ionic 107-8, 134 

metallic 99, 125 

borides 140 
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Bravais lattice symbol 35 

Bravais lattices 28, 35-8, 48, 56, 

68, 77, 79, 98 

bcc 167 

centered 29, 36, 56 

hexagonal 67 

orthorhombic 36 

trigonal 49 

BS 122, 149 

BZn 122, 149 

C 

C-face 29, 31, 33-4, 43, 63 

cadmium 86, 102, 140 

CaF, 114-16 

calcium fluoride 114 

californium 80 

carbides 140 

cations 92, 107-8, 110-11, 

115-20, 125-9, 131, 133-6, 

142, 144-6, 148-51 

ccp (cubic close-packed) 77-8, 

81-3, 87, 89-90 

Cd es6. 116 

CdPo 114, 140 

Cdser"l 4123149 

Ce 80, 147 

cell 2, 4-6, 28-36, 39-44, 46-58, 

64-5, 73, 80, 84, 90, 94, 98, 

103, 119-21, 162-3, 165-6 

centered 29-30, 33-4, 63 

centered monoclinic 31, 36 

conventional 12-14, 24-9, 

32-4, 37, 50, 63 

primitive rhombohedral 53, 55 

cell parameters 29, 81 

conventional 24, 26, 29 

experimental 103 

cell parameters ratio 83 

Index 

cell volumes 4, 41, 69 

hexagonal unit 87 

centering points 47, 51-2 

centering type 29, 31 

cerium 79-80, 105 

cesium chloride 111, 144-5 

chalcogenides 137, 140 

Cl 134-6, 141, 144 

compounds 90, 92, 99, 107, 

LideiS 117, 120; 122-3, 

125, 129-32, 134, 136-40, 

143-6, 148-51 

binary, 90/97. 9921072) 

118, 120, 122-3, 129, 134, 

136, 148 

I-VI 118 

I-VII 136, 151 

Il-U and HW-IV 117-18 

U-VI 112, 1447152 

II-VI 115-16 

intermetallic 146-8 

IV-VI 136-7 

V-VI_ 136-7 

coordination number 38, 41, 

46, 69-70, 79, 91, 99, 102, 

LO7 S49 1F125 117 1845 

142, 145 

CoSb:  f308132 

CoSemis0F is? 

CrS_ 130-2 

Crsbais0sla2 

CrSe 130-2 

Crile 1305152 

crystal families 35-6 

crystal lattice 153, 160, 166, 

171, 183 

crystal structure 1-7, 9, 13-15, 

50, 67-70, 88-9, 103, 107, 

LOS SLUT Sia Oe ie 

12731358145 



close-packed 67 

Hg 50, 64 

monoatomic 48, 67 

one-dimensional 1 

sc 48, 50, 69-70, 72, 102 

three-dimensional 92 

two-dimensional 4, 6-7, 9-10, 

14 

crystal systems 13, 24-8, 35, 37, 

162 

cubic 25-6, 34-5, 46 

hexagonal 26, 35 

monoclinic 24, 29, 32-3, 63 

orthorhombic 32-4 

tetragonal 26, 34 

triclinic 24, 29 

trigonal 26-7, 46, 50 

crystalline materials 153 

Cs 67, 134, 144, 149 

CsBr 134, 136, 145-6 

CsCl 134, 136-7, 144-6 

CsI 134, 136, 145-6 

Cu 73-4, 150 

CuSb_ 130, 132, 150 

D 

dhcp (double hexagonal close- 

packed) 79-82, 86-8, 100-2, 

133 

dodecahedron 58, 65 

regular 65 

Dy 81 

E 

ENbN 132, 151 

Er 81, 138-9, 146-7 

Eu 116, 146 

Index 189 

experimental data 50, 103, 105, 

140, 143-4, 151 

F 

fcc (face centered cubic) 42-3, 

45-6, 48-9, 63-5, 67, 73-4, 

77-9, 81-3, 87-90, 97-8, 

LOI TOSS ital 2 740353 

181 

Fe" 73, 139 

FeS™ 1307132 

FeSb 1305132 

FeSe 130-2 

Fefer 1307152 

filling factor 69-70, 72-4, 87, 

102-9151 

fluorides 115-16 

G 

gadolinium 81, 102-3 

GaN _ 123, 149 

Gd 81, 103 

graphical symbols 9, 13, 60 

H 

halides 136, 145 

alkali 111, 134, 142-4 

silver 137 

thallium 145-6, 148 

halogens 67, 134 

hard spheres 68-70, 73-4, 84, 87, 

92, 96, 102, 140-1 

hcp (hexagonal close-packed) 

67, 77-9, 81-4, 86-91, 

100-2, 120-1, 124, 126-7, 

129-133 
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helium 86 

hexagon 9, 11, 13, 59-60 

regular 13, 20, 59-60 

hexagonal prism 18, 26-7, 

50-2, 54, 60-2, 64, 77, 

80-3, 89-90, 102-4, 118-19, 

124-6, 128, 133, 149, 

151 

hexagonal structure 118, 124 

two-dimensional 75, 91-2 

HfAs 130, 132 

HiP 1305132 

HiPo™ 130/132 

Hg 49-50, 116 

Ho 81, 86, 116, 138-9 

hydrides 115-16, 140 

I 

interatomic distances 67, 

73, 100, 102, 104, 143, 

152 

interstices 70, 87, 89-91, 94, 

LPS 117, MORI 34136 

cubic 144 

octahedral 89, 91-2, 126-7, 

131, 133-4, 144 

tetrahedral 87, 89-92, 94, 108, 

110, 114, 126-7, 134 

trigonal prism 134 

Ir 74, 138-9 

rsbwi30s 1324150 

IrSn 130 

Tee R30 81320150 

K 

KCl 137, 144 

KESIS i lase151 

Index 

L 

La 79-80, 147 

lanthanides 79-80 

lattice 1-10, 12-15, 17-20, 24-6, 

28-36, 38-9, 41-3, 45-9, 

51-4, 56, 63-5, 160, 162-7, 

170-6, 179, 181-2 

bec 39-42, 54-8, 64, 164, 182 

centered 32, 34 

centered hexagonal 51, 53 

cubic 34, 46-7, 55, 64, 181 

direct 153, 160-3, 166-7, 177, 

180 

fee 43-5, 48, 55-8, 62-4, 136, 

163-4, 167, 181 

fcc Bravais 136 

hexagonal 8, 13-15, 51-2, 

103 

infinite 8-9, 12-13, 15, 17-18, 

24, 29, 32, 36, 154 

monoclinic 29-32, 63 

orthorhombic 33 

primitive 34-5 

primitive cubic 35 

primitive monoclinic 29 

sc 46-9, 163, 169-73, 178-80 

tetragonal 34 

three-dimensional 17, 36, 

169 

triclinic 24, 29, 162 

trigonal 35-6, 46, 49-53, 103 

two-dimensional 13, 15, 169, 

182-3 

two-dimensional crystal 154 

lattice constants 48, 72, 74, 80, 

99, 102-3, 105, 113-14, 118, 

128, 136, 143-4, 149-50, 

164, 167, 181 



experimental 99, 104-5, 115, 

143, 149, 152 

lattice direction 173-4 

lattice nodes 9 

lattice parameters 39, 86, 112, 

£16;:1247123; 131-3,:137-9; 

146-8, 151-2 

experimental 50, 80, 112, 122, 

1519136 

lattice planes 169-71, 173, 175- 

8, 180-3 

family of 169, 173 

lattice point symmetries 24 

lattice points 2-9, 24, 28-9, 31-2, 

36, 38-9, 41-51, 53, 55-8, 

62-4, 169, 173, 175, 182 

centering 29 

lattice translation vector 153 

lattice types 13, 28-9, 31 

layer planes 76, 98 

layers 75-8, 82, 86, 89-92, 97-8, 

100, 102-3, 118, 121-6, 

133-6 

adjacent 78, 86,91, 100, 

102-3, 122-3 

anion 128, 135 

cation 124-7 

close-packed 76, 91-2 

consecutive 78-9, 91-2, 98, 

122, 134, 149 

hexagonal 89, 118, 122, 126, 

135-6 

sequence of 79-81, 83, 90-2, 

97, 102, 133, 136 

two-dimensional hcp 81, 94, 

149-50 

Li 67, 117-18, 134, 137, 144 

Li,O 117-18 

LiBr 137, 143 

LiCle v3 7ub.b 

Index 191 

Lil 137, 143 

limiting radius ratio 107, 111, 

141-2, 144, 146, 148 

Lu 81, 116, 138-9, 146-7 

M 

mercury 50, 64 

mercury chalcogenides 140 

metal halides 137 

metal oxides 117 

metallic elements 67, 74, 91, 

101, 148 

metals 1, 72-4, 79, 86, 88, 

999-100-4102, 10541155131, 

137, 140, 148 

alkali 67, 117, 134 

alkaline earth 136 

iron group 131 

MgPo_ 130, 132 

Miller indices 169-73, 175, 177, 

182 

MnAs_ 130, 132 

MnBi_ 130, 132 

MnSb_ 130, 132 

MnTe 123, 149 

monoclinic cells 32 

N 

Na 67, 112, 134-5, 144 

NaCl 92, 134, 136-7, 140-1, 

11 

Nb 72, 116, 138-40, 151 

NbN 130, 132, 139, 150-1 

NbS*1304152 

Nima 41 6s 125,413 10139 

NiAs 92, 124-5, 127-8, 130-2, 

137-40, 149, 151 
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NiBi 130, 132 

nickel arsenide 111, 124, 131 

NiPo.» 130/132 

NiSb 130, 132 

Nilew1305132 

NN interatomic distances 39, 

99-102, 105, 123, 140-1, 

150-1 

NNN interatomic distances 39, 

173 

NNs (nearest neighbors) 38, 

56-8, 69-74, 84, 90-4, 

97-100, 102-5, 107-9, 

117, 119-23, 125, 127-8, 

131, 134-5, 140-6, 

148-51 

NNNs (next nearest neighbors) 

38, 56-8, 62-3, 70, 72, 

122-3, 131, 140-3, 148-51 

noble gases 67, 74, 88, 91, 

99 

normal conditions 67, 70, 73-4, 

80, 86-8, 99-101, 103, 105, 

113-16, 118, 122-3, 131-2, 

134, 137-9, 146-8, 151 

normal pressure 67, 72, 74, 80-1, 

86, 92, 104-5 

O 

octahedron 18, 20, 38, 56, 58-60, 

89, 91, 125, 127-8, 134 

regular 19-20, 38, 58-9, 89, 

127-8, 134 

truncated regular 56,59 

oxides 115-16, 140 

P 

packing fraction 69 

Index 

parallelogram 5-7, 11, 13 

Pb 116, 130; 137 

Pd 74, 138, 150 

PdSb. 130, 132,150 

Pd¥e-1130,. 232 

Pearson symbol 68-9, 71, 73, 79, 

81, 83, 92, 112, 114, 117-18, 

124, 133-4, 144 

periodic table 67, 87, 92, 99, 

112, 117, 129, 144, 152 

periodicity 153-4, 158, 160-1 

phase transitions 80-1 

phosphides 117-18, 140 

Po 116, 130, 137 

polonium 70, 115 

polyhedron 56, 128 

regular 125 

Pr 116, 138-9, 146 

prototype 68-9, 71, 73, 79, 81, 

83, 92, 112, 114, 117-18, 

124, 133-4, 144 

prototype structure 68 

PETA MIGSISU 

PtB 130-1, 150 

PtBissi302132 

PtSb 3130,132 

Pu 116, 138-9 

R 

Ragsi2a1i6 

radii 67, 69-70, 72, 75, 98-9, 

101, 107, 109, 113-14, 141, 

143, 145).151-2 

anion 143-4, 151 

atomic 67,98, 102, 107 

cation 143 

covalent 99, 102, 109, 113 



ionic 109, 111-12, 140, 143-4, 

152 

metallic 99, 102, 111-12 

radius ratios 110-11, 142, 144 

RBeG7 Ah S134 1371144 

RbBr 137, 144 

RbCl 137, 144, 151 

RbF 137, 143-4 

RE (rare earth) 79, 137, 140, 

146-8 

reciprocal lattice 153, 155, 157, 

159-675 169, 1715)173,.175, 

177, 179-81, 183 

reciprocal lattice vector 176 

Rh 74, 138-9 

RhBi 130, 132 

rhombohedron 27, 39-40, 43, 46, 

49-51, 60-2, 136 

RhSe_ 130, 132 

RhTen130) 132 

room temperature 67, 72,74, 

79-81, 86, 102-5 

rotation axes 18-23, 58, 60 

fourfold 20, 23-4, 26, 60 

threefold 21-2, 60 

twofold 20 

rotation points 9, 11, 13, 20, 

60 

fourfold 20 

highest order 14 

n-fold 9 

sixfold 8-10, 12-13 

threefold 8-9 

twofold 13 

S 

samarium 81, 103 

Sb 49-50, 70, 113, 130, 139 

Index 193 

sc (simple cubic) 35, 38-9, 46, 

48-9, 64, 70, 72, 162, 170, 

173-4, 179-81 

ScPo $130132,-150 

ScTe 13022 

Se 114, 118, 130, 137-8 

setting 29, 35, 52-3, 63 

b-axis 32, 63 

c-axis 30, 32 

obverse 53,55 

reverse 4545) 

Si 109, 113-14, 116 

silicides 115-16 

silicon carbide 109, 112-13 

Sm_ 80, 82, 116, 138-9, 146-7 

Sn 130,1372139 

sodium chloride 111, 134-5 

structure 1-10, 14-15, 48-50, 64, 

67-84, 86-7, 89-99, 102-5, 

107-53 

anti-fluorite 111, 116-18 

anti-NiAs 130-2, 149-51 

bec 71-2, 74, 99, 105, 146 

close-packed 74, 81-2, 87, 89, 

91, 102-3, 105 

CsCl 144-8 

cubic 74 

dense-packed 88, 101 

dhcp 79 

diamond 91-9, 102, 108 

fcc 67, 73-4, 76-7, 79-80, 82, 

86, 91, 94 

fluorite 114-17, 149 

hcp 79, 83, 86-7, 102-3, 119 

honeycomb 7-9, 15 

NaCl 92, 111-12, 134-40, 

142-4, 151-2 

NiAs 124-7, 129-33, 140, 

149-50 
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sc 69-71 

Sm-type 81, 88, 100-2 

sodium chloride 134-6 

sphalerite 107 

thcp 103 

TiAs 131-3, 139, 151 

two-dimensional boron nitride 

14 

wurtzite 92, 111, 118-20, 

122-6, 134, 137, 143, 149 

zinc blende 107-9, 112-14, 

118-4205123311279. 137-8, 

143, 149 

substructure 7, 92, 97-8, 108, 

114, 117-19, 121-4, 126-7, 

129, 135-6, 145 

anione92 4108 obi 7. 

1330136 

cation 133-4, 136 

cubic 144 

fee 114, 144 

hcp 131 

hexagonal 15, 126, 129 

symmetry 2,9, 11, 14, 17, 20, 

22-4, 27-9, 33, 46, 122, 173 

lattice 174 

point 9, 12-15, 17-18, 24, 29, 

32, 34, 36, 48, 56, 80, 82-3, 

86, 90, 124, 153 

translation 9-10, 17, 153 

symmetry axes 17-18, 20, 22, 

24,726, 515124 

symmetry axis, highest order 27, 

81 

symmetry center 18 

symmetry points 9, 17, 19-20 

T 

Tb 81, 86 

Index 

tetradecahedron 56, 59-60 

tetrahedron 18-20, 87, 89, 91, 

93-4, 97, 108, 120-1, 127 

regular 19, 58-9, 87, 93, 97, 

108, 115, 117, 120-1 

thcp (triple hexagonal close- 

packed) 103 

Ti 138-9 

TiAs 130, 133-4, 139-40, 151 

tin 92 

tin pnictides 139 

WaP a 1301132 

TiPow30, 132 

TiSb 1309182 

Liséaleoe 132 

TiTemiIs0s 132 

Tm 81, 86, 116, 139, 146-7 

TMs (transition metals) 81, 112, 

114-17, 129, 131-2, 136-8, 

140, 148 

TNNs (third nearest neighbors) 

38-9, 56, 62-3 

translation vectors 4, 17, 24, 52, 

153, 160, 164-6, 169, 172, 

179, 181 

primitive 1-2, 5-6, 9, 13, 

36, 39, 160-1, 163-7, 169, 

R73 9175-62179, 

181-3 

shortest 5, 42-3, 174 

trigonal prism 127, 134 

two-atom basis 9, 48-9, 67, 77, 

98, 136 

U 

unit cell 6-8, 14-15, 31-3, 36, 

47-50, 53-6, 64, 73, 81, 

94-6, 98, 108, 120, 127-9, 

135-6, 160-2 



centered 35 

centered cubic 43 

centered hexagonal 51 

centered rhombohedral 46-7 

centered tetragonal 34 

conventional 15, 18, 24, 34, 

46, 68-9, 83, 89, 112, 119, 

124, 129, 145 

conventional primitive 5-6, 8, 

12-13, 15, 30, 166 

cubic 28, 41-5, 48, 69-70, 

72-3, 76, 90, 94-5, 98, 

109-10, 112-15, 117, 135-7, 

163, 173, 179-81 

diamond cubic 94 

direct lattice 179 

F-centered cubic 48 

fcc cubic 94 

hexagonal 51, 53, 83-5, 102-3, 

119-20 

NaCl cubic 136, 140 

Primitives 2-345, /.113, 17. 29; 

32, 36, 39-44, 46, 56, 136, 

162-4, 166-7 

primitive cubic 47, 64 

primitive rhombohedral 40, 

43-4, 46, 48-50, 53, 55, 64, 

68 

primitive tetragonal 34 

rhombohedral 26, 46-7, 52-3, 

64, $1, 97, 103, 112-13, 135, 

163-5, 181 

triple hexagonal 51-3, 55, 81, 

103 

UO. 116, 138 

Index 195 

Vv 

WP 2129-307 1325150 

VSb_ 130, 132, 149-50 

VSe 130-2, 149-50 

Viler 130132 

Ww 

Wigner-Seitz cell 56-8, 65 

wurtzite structure of ZnS 121-2, 

149 

Y 

Y 81, 86, 116, 139, 146-7 

Yb 72, 74, 81, 86, 104, 138-9, 

146-7 

ytterbium 81, 104 

yttrium 81 

Z 

ZANC a SO.1O2- 11 3.124 

zinc blende 92, 110-11, 122-4, 

134, 137-8, 140, 149 

zinc sulphide 107, 118 

Zn 86, 108, 112-13, 118-22 

ZnS 108, 112-13, 118-22, 149 

ZnSe 114, 123, 149 

Zr 116, 138-9, 151 

ZIP® 130 RIS22 ot 

ZtP0" 1303132 
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"An excellent primer on crystallography — a discipline necessary for everyone concerned with 

the solid state, overarching the fields of materials science, metallurgy, condensed matter 

physics, micro- and nano-technology. Abundant and clear drawings allow the authors to 

introduce the concepts of crystal structures and lattices in a very easy way, starting from one 

dimensional cases and proceeding to all 14 Bravais lattices. The book expounds on the close 

. packed monoatomic structures as well as several important binary compounds. The ideas of the 

reciprocal lattice are explained in a straightforward manner. The strengths of this book are the 

excellent images and a large number of tabulated lattice parameters. This textbook is definitely 

a good starting point for learning crystallography or teaching introductory courses. | would 

certainly recommend this to my students, while professionals may also enjoy reading it.” 

ae Re ELeer 
Rice University, USA 

“Crystals are viewed as objects of nature which can be described by a set of few vectors. The 

consequent restriction to elementary topics and elementary methods goes, however, hand in 

hand with an intuitive, explicit and very detailed presentation of the subject and experienced 
teachers like Professor Szwacka knows that the most important means in mastering 
crystallography is visualization. In the text, more than 150 well-designed figures served. this 
purpose. The detailed description of the crystals of elements and a number of binary 
compounds will certainly be appreciated by undergraduates and graduates in physics as well as 
in other science disciplines. This fine book provides the appropriate basic knowledge of 

crystallography both for those who are satisfied with introductory level and those who like to 

go for more. The authors deserve acknowledgement for their didactic skills.” 
Janos Hajdu 

Cologne University, Germany 

BASIC ELEMENTS OF CRYSTALLOGRAPHY 

This book is a clear and comprehensive introduction to the field of crystallography. It includes 

an extensive discussion of the 14 Bravais lattices and its reciprocals, basic concepts of point 

group symmetry, the crystal structure of elements and binary compounds, and much more. The 

purpose of this book is to illustrate rather than just describe the structure of materials. Readers 

who are unfamiliar with the topic, but still interested to learn how the atoms are arranged in 

crystal structures, will find this book useful. The chapters are accompanied by exercises 

designed to encourage students to explore the crystal structures they are learning about. The 

entire notation in this book is consistent with the International Tables for Crystallography. 

Nevill GONZALEZ SZWACKI was educated at Warsaw University, with a master’s degree in . 

theoretical physics. He received his PhD in computational physics from Polish Academy of 

Sciences in 2003. Since 2004 he is a Robert A. Welch Postdoctoral Fellow first at Rice University 

and Texas Tech University and presently at Texas Southern University. Dr. Gonzalez Szwacki is a 

theoretical physicist, whose research centers around computational modeling of the properties of 
boron and silicon based nanostructures. One of his achievements was to identify a new family of 
inorganic fullerenes. The cages are made up entirely of boron atoms and one of them, B80, is 

known in scientific news as the “boron buckyball” because of its structural similarities to C60. 

Teresa SZWACKA received her master’s degree in theoretical physics from Warsaw University and 
in the same institution she obtained her PhD and habilitation in the field of condensed matter 
theory. She has been a professor of physics since 1969 at the University of Los Andes (ULA) in 

Venezuela. Professor Szwacka was one of the founders of the Department of Physics at ULA. 
She was also for many years associated with the Faculty of Physics at Warsaw University. Her. 

main research activity concerns the theoretical studies of the optical and transport properties in 
bulk and low-dimensional semiconductor systems. Professor Szwacka has more than 30 years. of f 
Spots in teaching physics courses at is undergraduate and Graduate levels. ; 
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