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Preface 

The study of crystalline solids enters at some stage and to some extent into the courses 
which almost every student of the physical sciences takes during his university career. 
The stage at which this topic is introduced and the depth in which it is explored varies 
with the student’s primary subject of study and varies from university to university. 
In this book we have attempted to provide an introduction to the study of crystalline 
solids for students who may go on to develop their understanding and knowledge 
of the crystalline state in the fields of mineralogy, inorganic chemistry, metallurgy, or 
some other branch of physical science. Much of the book is suitable for those in their 
first year of study of crystalline solids, the more advanced sections being more 
suitable for the second year of study. Although the book is not in any sense intended 
to be a post-graduate text, it may be of use to those who have moved into this field 
from other disciplines. 

Our treatment of the subject is based on our joint experience of teaching—in 
lectures and in supervisions—almost all the topics covered in the book over the past 
fifteen years. We do not attempt to provide a rigorous development either of 
crystallography or of the thermodynamics of crystalline solids, but prefer to 
concentrate on physical understanding of the subject. We may appear to the informed 
reader to labour some elementary matters; this is deliberate, because it is our 
experience that most students find conceptual difficulties in the early stages of the 
study of crystallography. 

Our examples are drawn mainly from the fields of mineralogy and inorganic 
chemistry because these are the fields we know best. But we make no pretence of 
providing a systematic survey of either. 

Part I (chapters 1-12) is essentially structural in its approach and is intended to 

provide a general introduction to the crystalline state by discussing the fundamentals 
of crystallography, diffraction by crystalline solids, crystal chemistry, and crystal 
physics. Part II (chapters 13-16) is essentially non-structural and is aimed specifically 
at the mineralogist and at those in other branches of physical science, such as the 
materials scientist, whose interests are generally similar. 
We owe debts of gratitude to many. First, not only in sequence of time, to the late 

Sir Gavin de Beer, who persuaded us to write the book and unhappily did not live 
to see its completion. We have of necessity leant heavily on the authors of a number 
of lucid text-books, especially M. J. Buerger, the late E. A. Guggenheim, and F. C. 

Phillips; we have found their books invaluable in the preparation of ours and we 
wish to acknowledge our debt to them. We are particularly indebted to Dr Helen D. 
Megaw, whose approach to crystallography has been a constant source of stimulation. 

The figures are the work of Mr K. O. Rickson, for whose skill in converting our 
rough sketches into intelligible diagrams we are deeply grateful; certainly without 
his knowledgeable and always cheerful help this book would never have come under 
starter’s orders. Miss Vivien Gray typed almost all the text; for her ability to translate 
almost illegible manuscript accurately into typescript at high speed we are immensely 
grateful. Weare particularly grateful also to Dr J. Gittins of the University of Toronto 
for reading the typescript of Part II and to Dr S. G. Fleet, our colleague in the 

ix 



Department of Mineralogy and Petrology, for reading the whole typescript. Last, but 
not least, we wish to thank our publishers, especially for their forebearance and 

generally for their kind helpfulness. 

D. McK 

Cambridge, 3rd April 1973 ' C. H. McK 
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l 
Crystal Lattices 

A crystalline solid is essentially a solid whose atoms are disposed in regular three- 
dimensional array. The atoms in a solid are not static: each atom possesses thermal 
energy and vibrates about its mean position. It is the mean positions of the constituent 
atoms that are regularly arranged in space in a crystalline solid. Such regularity of 
mean atomic positions corresponds to a state of minimum free energy and is the 
fundamental characteristic of the crystalline state. 

In its early development crystallography was confined to the study of single crystals, 
that is solid bodies bounded by natural plane faces within which the mean positions 
of all the constituent atoms are related to a single regular three-dimensional array of 
points. But there are in addition many other solid crystalline substances which can 
never, or only with difficulty, be obtained in single crystal form; such are the common 
metals, brass and steel, which are aggregates of interlocking randomly oriented 
crystals of varying shape and size. Such polycrystalline substances belong just as 
surely to the crystalline state as do the single crystals which exclusively formed the 

subject of the science of crystallography in its early days. Not all solids are crystalline 
however; glasses and other amorphous solids have, like liquids, only severely localized 
volumes of atomic order involving merely hundreds or thousands of atoms. Examples 
of solids with two-dimensional or one-dimensional atomic periodicity are known 
and are regarded as special cases within the crystalline state. 

In this first chapter we develop the principles of geometrical crystallography by 

consideration of perfect single crystals. For a perfect single crystal, the regular 
arrangement of atoms in the crystal can be completely described by definition of a 
fundamental repeat unit coupled with a statement of the translations necessary to 
build the crystal from the repeat unit. For geometrical simplicity we exemplify this 
basic crystallographic concept first by consideration of a two-dimensional case. 

The arrangement of atoms in a layer of graphite (the crystalline form of carbon 

stable at room temperature and atmospheric pressure) is shown in Fig 1.1. The carbon 
atoms, represented as small solid circles in the figure, are in a honeycomb pattern. 

The distance between the centres of adjacent hexagons of the ‘honeycomb’ is 2-46 A 

so that a layer of area about 1 mm? will contain about (4. 10°)? = 1-6.10!* hexagons; 
the array of atoms in a layer of this size is thus effectively infinite. The repeat unit of 
the two-dimensional structure, containing two carbon atoms, is shown in the top 
left-hand corner of the figure enclosed in a parallelogram whose corners lie at the 
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Fig 1.1 The arrangement of carbon atoms in one layer of the graphite structure. Each carbon 
atom is represented by a small solid circle. Two reasonable unit-meshes are outlined and labelled 

with the axial vectors a, b, and the inter-axial angle y. 

centres of four adjacent hexagons. The atomic pattern of the layer can be reconstructed 
by repeating this parallelogram in a regular manner so as to fill the plane of the 
atomic layer completely. The parallelogram, known as the unit-mesh of the layer, is 
completely specified by designating two of its sides as the reference axes x and y, 
stating the interaxial angle, and specifying the lengths of its edges. It is conventional 

to denote the lengths of the edges of the unit-mesh parallel to the x and y axes as a 
and b respectively and to denote the angle between the x and y axes as y. In graphite 
the unit-mesh has a = b = 2:46A, y = 120°. A variety of parallelograms, all of the 
same area, could have been chosen as the unit-mesh of a graphite layer; but it is in 
general conventional and convenient to select a unit-mesh with a and b as short as 
possible and the angle > 90°. It is immaterial where the corners of the unit-mesh 
are placed in relation to the atoms of the graphite layer ; the shape of the conventional 
unit-mesh is controlled by the atomic pattern to be constructed from it, a change of 
origin merely affecting the coordinates of the atoms within the unit-mesh. For the 
purpose of defining the positions of the atoms of the repeat unit within the unit-mesh 
we employ a coordinate system which has the edges of the unit-mesh as axes, the 
unit of length along each axis being taken as the length of the corresponding edge; 
atomic coordinates are thus given as fractions of the lengths of the edges of the 
unit-mesh referred conventionally to an origin at the top left-hand corner of the 
unit-mesh. The origin of each of the unit-meshes in Fig 1.1 is differently disposed 
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with respect to the atomic array, but the reference axes are parallel and the area is the 
same in each case. The unit-mesh on the left of the figure contains an atom A with 
coordinates 4, $ and an atom B with coordinates 4, 2. The periodic nature of the 
atomic arrangement naturally implies that an atom situated at a point with 
coordinates x, y, that is at a vector distance xa+ yb from the origin, will be repeated 
at vector distances (m+x)a+(n+y)b from the origin, where m and n are integers; in 
this case the atom A at 3, 3 is repeated at(m+4)a, (n+4)b and the atom B at (m+4)a, 
(n+4)b. The presence of an atom at the origin of the unit-mesh on the right of the 
figure implies the presence of other atoms of the same element at points with 
coordinates 1, 0; 0, 1; 1, 1; 2, 1; and so on: a statement of any one such pair of 

coordinates is sufficient for reconstruction of the structure. In the unit-mesh on the 
left of the figure the atom B has coordinates 4, ¢ and there will be necessarily an 
equivalent atom with coordinates —1+4, —1+4,ie. —2, —4, corresponding to the 
coordinates of the atom A in this unit-mesh with change of sign. The positions of 
the two carbon atoms in unit-mesh I can thus be neatly specified as +(3, 4). In terms 
of this unit-mesh the structure of a layer of graphite can be completely specified by 

stating the dimensions of the unit-mesh, a = b = 2-46 A, y = 120°, and the coordinates 

of the carbon atoms within it, +(4, 4); the atomic layer can then be reconstructed 
by repetition of the unit-mesh in two non-parallel directions. 
We now pass on to the next stage of complexity and consider in general terms a 

three-dimensional structure. Here the repeat unit can always be enclosed within a 
parallelepiped, known as the unit-cell, and the effectively infinite structure can be 
built up by repetition of the unit-cell in three non-coplanar directions which are 
conventionally taken as the reference axes x, y, and z. The lengths of the unit-cell 
edges parallel to the x, y, and z axes are respectively denoted a, b, and c. It is 
conventional also to take the positive directions of the reference axes so that the axial 
system is right-handed and the interaxial angles «= yAz, B=ZAxX, y=XAYy are 

all three > 90° as exemplified in Fig 1.2.’ As in the two-dimensional example 
considered earlier the coordinates of atomic positions are conventionally stated as 

fractions of the unit-cell edges. 

Fig 1.2 Unit-cell nomenclature. The reference 
axes x, y, Z are right-handed, the length of the 
unit-cell edge parallel to each reference axis is 
respectively a, b, c, and the interaxial angles are 
denoted «, f, y. 

It is difficult to make easily intelligible perspective drawings of three-dimensional 
structures unless they are very simple and the task is virtually impossible for really 

complicated structures. It has consequently become common practice to use structural 
plans where the three-dimensional structure is projected down one of the reference 

Only very occasionally is it convenient to modify this simple convention. 
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(c) (d) 
Fig 1.3 The structure of graphite. (a) and (b) are perspective drawings to show how identical 
two-dimensional layers are stacked to make the three-dimensional structure; in (a) the positions 
of carbon atoms are shown as small solid circles and C, rings are outlined; in (b) the C, rings 
are again outlined and lattice points are shown as large solid circles; in both (a) and (b) the 
unit-cell is outlined. The coordinates of the carbon atoms in the graphite unit-cell, are 0,0, 0; 
0,0,4; 2,4,0; 4,4,4. (c) and (d) are projections down the z-axis on to the xy plane; in (c) the 
carbon atoms with z= 0 are shown as small solid circles and the C, rings of this layer are 
outlined with solid lines while the carbon atoms of the superimposed layer at z= 4 are shown as 
open circles and their linkage into C, rings is indicated by broken lines; in (d) the C, rings of the 
z=0 and z=4 layers are similarly represented and lattice points are shown as large solid circles; 
in the lower right-hand corners of both (c) and (d) the unit-cell is shown in projection. 
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axes on to the plane containing the other two axes, which may or may not be 
perpendicular to the axis of projection. Atomic coordinates in the direction of the axis 
of projection are marked on the plan beside the symbol representing the atomic 
position. In Fig 1.3(a) and (c) a perspective drawing and a plan of the three-dimensional 
graphite structure are shown. The atom labelled A lies in the x, y plane and at distances 
me, where m is a positive or negative integer, above or below the plane. When the 
coordinate parallel to the axis of projection of an atom, such as A, is zero it is 
customary to omit the coordinate from the plan of the structure; an atom with no 
coordinate written beside it is to be taken as lying in the plane of projection. The 
atom labelled B lies at ¢ above the plane of projection and this is indicated by 
writing + next to the symbol for the atom on the plan. At C, and related positions, 

two atoms, C’ and C’”, are superimposed in projection, one with z = 0 and the other 
with z = 5; in such a case it is customary to write both coordinates beside the symbol 
for the atom as 0, 4. 

Lattices 

Some crystal properties of interest and importance are dependent only on the shape 
of the unit-cell, that is to say they depend only on the way in which repeat units are 
related to one another. It is consequently useful to have a simple way of describing 
the periodicity of a crystal structure and for this purpose the concept of the lattice is 
introduced. The way in which the crystal structure is built up by repetition of the 
repeat unit can be completely, and very simply, described by replacing each repeat 
unit by a lattice point placed at an exactly equivalent point in each and every repeat 
unit. All such lattice points have the same environment in the same orientation and 
are indistinguishable from one another. We return to two dimensions to exemplify 
this matter in the first instance and again take as our example a layer of the graphite 
structure (Fig 1.4). Figure 1.4a shows a layer of the graphite structure with carbon 
atoms labelled A, B, C,..., a, b, c,... and a conventional unit-mesh outlined. The 

lattice of this structure can be constructed by placing a lattice point at the carbon 
atom A and at all equivalent points, that is at B, C, D, E, F, G, H, I, etc. The resultant 

two-dimensional lattice is shown in Fig 1.4(b). If a lattice point is placed at A, then it 
is not permissible to place a lattice point at a because, although A and a both 
represent carbon atoms they are not identically situated; both lie at the centroid of a 
triangle formed by their three nearest neighbours, but the triangles about A and a are 
disposed at 60° to each other so that although both atoms have identical 
environments, their environments are not similarly oriented. Either the carbon atoms 
at A, B, C,...or the atoms at a, b, c,..., but not both sets of atoms, may be taken 

as lattice points. 
Figure 1.4(c) represents a layer of the structure of boron nitride, BN, boron atoms 

being represented by solid circles and nitrogen atoms by open circles. The two- 
dimensional lattices of graphite and BN are evidently identical except for the small 
difference in their unit-mesh dimensions: for graphite a = b = 2.46 A, while for BN 

a =b=2-51A. The repeat unit in graphite however consists of two carbon atoms, 
while in boron nitride it consists of one boron and one nitrogen atom. 

In a lattice every repeat unit of the structure is represented by a lattice point. A 
graphite layer, for instance, can be built up by placing the repeat unit of two carbon 

atoms in the same orientation at each lattice point in such a manner that the 
corresponding point of every repeat unit is placed at a lattice point. It is of no 
consequence which point of the repeat unit is sited at the lattice point so long as it is 
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the same point for every repeat unit. The lattice thus has, in two dimensions, the 

same unit-mesh as the structure to which it refers and is completely specified by a 

statement of the repeat lengths a and b parallel to its x and y axes and its interaxial 

angle y. , 

B C ; 
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(a) (b) (c) 

Fig 1.4 The two-dimensional lattice of a graphite layer. (a) shows the arrangement of carbon 
atoms (solid circles) in one layer of the graphite structure (Figs 1.1, 1.3); identically situated 
carbon atoms are labelled A, B, C, D, ...; the carbon atoms labelled a, b, c, d,... have a 

differently oriented environment but are each identically situated; the unit-mesh is outlined and 
it is apparent that the repeat unit consists of two carbon atoms, such as A and a. (b) shows the 
corresponding two-dimensional /attice with the dimensions a = b, y of the unit-mesh indicated. 
(c) shows the structure of a layer of boron nitride, BN, which has the same lattice with y = 120° 
and a =, but a is slightly different from a for graphite, the difference being too small to show on 
the diagram; boron and nitrogen atoms are represented respectively as solid and open circles. 

A three-dimensional lattice can be derived in an exactly analogous manner. For 
instance, the three-dimensional structure of graphite has a repeat unit containing 
four carbon atoms (Fig 1.3(a) and (c)). The lattice of this structure may be simply 

obtained by placing lattice points at the site of the carbon atom C’ (Figs 1.3(a) and 
(c)) and at all equivalent points. Inspection of the figure shows that the atom B cannot 
be related to the atom C’ by a lattice translation; both atoms have identical 
environments in their own layer, but their environments in adjacent layers are 
different. The unit-cell of the graphite lattice has dimensions a= b =2-46A, 
c = 680A, « = B = 90°, y = 120°. The lattice of the graphite structure is shown in 
perspective and in plan in Figs 1.3(b) and (d) respectively. 

Having exemplified a crystal lattice, we are now ready to make a formal definition 
of a lattice as an array of points in space such that each lattice point has exactly the 
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same environment in the same orientation. It follows immediately that any lattice 
point is related to any other by a simple lattice translation. 

A plane passing through three non-colinear lattice points is known as a lattice 
plane. Since all lattice points are equivalent there will be equivalent parallel planes 
passing through all the other points of the lattice. Such a set of planes is known as 
a set of lattice planes; several sets are illustrated in Fig 1.5. A set of lattice planes 
divides each edge of the unit-cell into an integral number of equal parts; this property 
forms the basis of the very useful system of indexing of lattice planes developed by 
W. H. Miller, Professor of Mineralogy in the University of Cambridge from 1832 
to 1880. If the lattice repeats along the x, y, z axes are respectively a, b, c and if the 
first plane out from the origin (at a lattice point) of a set of lattice planes makes 

intercepts a/h, b/k, c/l, where h, k, | are integers, on the x, y, z axes respectively, 
then the Miller indices of this set of lattice planes are (hkl), the three factors h, k, 1 
being conventionally enclosed in round brackets. A set of lattice planes (hkl) thus 
divides a into |h| parts, b into |k| parts, and c into |/| parts. The set of lattice planes 
labelled I in Fig 1.5 has Miller indices (122). . 

The equations to a set of lattice planes can be written in intercept form as 
(hx/a)+(ky/b)+(Iz/c) = n, where n is an integer. If n is zero the lattice plane passes 
through the origin; if n = 1 the plane of the set makes intercepts a/h, b/k, c/l on the 
x, y, Z axes respectively; if n = 2 the intercepts are 2a/h, 2b/k, 2c/l; and if n = —1 
the intercepts are —a/h, —b/k, —c/l. Thus the set of lattice planes (hkl) includes the 
plane with indices (hkl), which makes intercepts —a/h, —b/k, —c/l on the reference 
axes and is commonly spoken of as the ‘bar h, bar k, bar I’ plane. 

Of course some sets of lattice planes will make intercepts that are not all positive 
or all negative: for instance the first plane out from the origin (taken as the front 
lower right-hand corner) of the set labelled II in Fig 1.5 makes intercepts —a/2, —b, 
c/2 on the x, y, z axes respectively so that the indices of this set are (212). If a plane is 
parallel to one of the reference axes, its intercept on that axis is at infinity and the 
corresponding Miller index is zero; thus set III in Fig 1.5 being parallel to the z-axis 
has c/l infinite so that / must be zero and the Miller indices of the set are (210). The 
set of planes labelled IV in Fig 1.5 is parallel to the x and z axes so that h =1=0; 
since the intercept of the first plane out from the origin on the y-axis is b, the indices 
of the set are (010). In terms of Miller indices the unit-cell can be described as the 

parallelepiped bounded by adjacent lattice planes of the sets (100), (010), (001). 
The line of intersection of any two non-parallel lattice planes is the row of 

lattice points common to both planes. The intersections of two sets of lattice planes 
will thus be a set of parallel rows of lattice points; for instance sets III and IV in 

Fig 1.5 intersect in lines parallel to the z-axis. It is convenient to index such rows 
by reference to the parallel row through the origin, which is itself the intersection of 
the lattice planes through the origin belonging to each of the two sets. The 
coordinates of the lattice points in such a row are 0, 0, 0 for the lattice point at the 

origin; Ua, Vb, Wc, where U, V, W are integers with no common factor other than 

unity, for the next lattice point out from the origin; and nUa, nVb, nWc, where n is an 

integer, for the other lattice points of the row. Such a row of lattice points is 
completely specified by the three integers U, V, W, which are conventionally enclosed 

in square brackets as [UVW] in order to distinguish them from Miller indices for 
lattice planes, conventionally enclosed in round brackets as (hkl). The symbol [UVW] 
represents not only the lattice point row passing through the origin and through the 
lattice point with coordinates Ua, Vb, Wc but all parallel lattice point rows, just as 
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+X +x 

Fig 1.5 Lattice planes and zone axes. The array of lattice points exposed on the three visible 
faces of a parallelepiped whose edges are parallel to those of the unit-cell is displayed in (a) with 
solid circles to represent lattice points and thin broken lines parallel to axial directions. Four sets 
of lattice planes are indicated by thick solid lines representing the intersection of lattice planes 
with the visible faces of the parallelpiped; their Miller indices are | (122), Il (212), Ill (210), 
IV (010). In (b) the definition of Miller indices is illustrated: the shaded plane (hk/) makes 
intercepts a/h, b/k, c// on the x, y, z axes, a, b, c being the lattice repeat along each axis and h, k, / 
being integers. In (c) the definition of the zone axis symbol is illustrated: [UVW] is the direction 
parallel to the line through the origin and the point Ua, Vb, We. 
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the Miller indices (hkl) represent the lattice plane which makes intercepts a/h, b/k, c/l 
on the x, y, z axes respectively and all parallel lattice planes. 

It is necessary for us to explore further the geometry and notation of lattice planes 
and rows because a thorough understanding of these matters is essential not only for 
the description of the external shape of single crystals but also, and more importantly, 
for the interpretation of the diffraction of X-radiation by crystals (chapter 6). In both 
these fields it is only the angular disposition of lattice planes and rows with respect 
to the reference axes of the unit-cell that is significant; the actual position in space 

of a given plane or row is of no consequence. For this reason the Miller indices (hkl) 
may be taken to represent a set of parallel lattice planes and the zone axis symbol 
[UVW] to represent a set of parallel lattice point rows (the term ‘zone’ will be 
defined later). The symbol (hkl) thus denotes any plane of the set of lattice 

planes which satisfy the equation (hx/a)+(ky/b)+(lz/c) =n, where n is integral, 
with one qualification which enables a distinction to be made between planes of the 
set which lie on opposite sides of the origin. If it is desired to make this distinction, 
as is often the case, the symbol (hkl) is reserved for those planes of the set which make 
intercepts on the same side of the origin as the plane whose intercepts on the x, y, z 
axes are respectively a/h, b/k, c/l and the symbol (hkl) is used to denote those 
planes of the set which make intercepts on the same side of the origin as the plane 
whose intercepts on the x, y, z axes are respectively —a/h, —b/k, —c/l. The plane 

(hkl) is said to be the opposite of (hkl), the superscript ‘bar’ representing, as is usual 
in crystallography, a minus sign. In a precisely analogous way the zone axis symbol 
[ UVW] represents all directions parallel to the vector from the origin to the lattice 
point with coordinates Ua, Vb, Wc, with the proviso that opposite directions may 
be distinguished as [UV W] and [UVW]; [UV W] is taken to be in the same sense 
as the vector from the origin to Ua, Vb, Wc and [UVW] in the same sense as the 
vector from the origin to the lattice point at —Ua, —Vb, — Wc. In general, of course, 
the indices in the symbols (hkl) or [UVW] need not all be of the same sign. 

The condition for a lattice point row [UVW] to be parallel to a plane (hkl) amounts 
simply to the condition that the point row of the set [UV W] through the origin 
should lie in the plane of the set (hkl) through the origin, that is that the point Ua, 
Vb, Wc should satisfy the equation (hx/a)+(ky/b)+(Iz/c) =0. This is so when 

(hUa/a)+(kVb/b)+(lWe/c) = 0, te. hU+kKV+IW =0 since a, b, c are necessarily 
non-zero. The equation hU+kV+I1W = 0 is known as the zone equation for reasons 
which will be discussed in the next section. 

The external shape of crystals 

The regular nature of the spatial arrangement of the atoms within a crystal, whether 
simple or complicated, leads directly to the consequence that different directions in 
the crystal may not be equivalent. We take a very simple example, the structure of 
caesium chloride illustrated in Fig 1.6. The unit-cell of caesium chloride is a cube and 
thus hasa=b=c,a= 8 = y= 90°; if a caesium atom (solid circle) is situated at 
0, 0, 0, then a chlorine atom (open circle) lies at 4, 3, 3. The direction parallel to the 
x-axis, [100], is evidently equivalent to the direction parallel to the y-axis [010], but 
neither of these in any way corresponds to the direction [110]. There is thus no 
apparent reason why any directional property of the crystal should have equal 
magnitude in the directions [100] and [110]. The reasons why some directional 
properties do and others do not have equal magnitudes in such crystallographically 
distinct directions will be developed in chapter 11; it suffices here to restrict the 
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[0 10] Fig 1.6 The structure of CsCl shown in plan 
a= on (001). The directions [100] and [01 0] are 

equivalent to each other but not to the direction 
[110]. Solid circle = Cs; open circle = Cl. 

, , 

nm|— 

110] 
et Ae 

argument to the growth of crystals. There is no obvious physical reason why atoms 
should attach themselves to the growing crystal as readily in one direction as in a 
crystallographically distinct direction, and indeed one would intuitively expect that 
not to be so; if it were so, crystals would tend to grow towards a spherical shape and 
that is not found experimentally to happen. Crystals tend to grow with plane faces 
which are parallel to lattice planes, especially to lattice planes with a high density of 
lattice points per unit area. A high density of lattice points per unit area of a lattice 
plane implies a large interplanar spacing (Fig 1.7) and consequently large intercepts 
a/h, b/k, c/l on the reference axes; the indices of commonly well-developed faces on 
crystals thus tend to have small values of h, k, and /. Not only are crystal faces parallel 
to lattice planes, butin practice the Miller indices (hkl) of the faces on a natural crystal 
rarely involve an integer greater than six. Moreover it is customary to index crystal 
faces with reference to an origin within the crystal so that the faces (hkl) and (hkl) are 
parallel faces on opposite sides of the crystal. The recognition of the comparative 

Fig 1.7 Projection of the lattice of graphite down the z-axis on to the xy plane to illustrate 
the decrease in the density of lattice points per unit area of lattice planes (AKO) as their indices 
h and k increase. The density of lattice points per unit length in projection decreases from 
(100) to (110) to (230). 
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geometrical simplicity of the angular relations of the faces of a crystal goes back to 
the writings of the Abbé René Just Hatiy (1743-1822). Although Haty’s manner of 
explaining the simplicity of natural crystal forms has not withstood the test of time, 

it is apparent that his ideas were a helpful influence on those who came later with 
more powerful experimental tools to develop the modern science of structural 
crystallography.” 

Two crystal faces intersect in an edge which, since the faces are parallel to 
lattice planes, must be parallel to a lattice point row [UVW]. Commonly a crystal 
displays several faces whose mutual edges of intersection are all parallel; such faces, 

which must all be parallel to a common lattice point row, are said to lie in a zone 
and the common direction of their edges of mutual intersection is known as a zone 
axis. Since the faces in a zone are all parallel to the zone axis their normals from any 
point, must be coplanar, a geometrical consequence that will be developed in 

chapter 2. The concept of zones has obvious significance for the study of the external 
shapes of crystals, that is morphological crystallography, and it is important too in a 
study of the diffraction of X-radiation by crystals (chapters 6-9). A zone is 
geometrically characterized by the symbol of its axis [UV W], which may be used to 
indicate the group of faces whose edges of mutual intersection are parallel to the 
direction [UV W] as well as the direction of the lattice point row [UVW]; this dual 
interpretation of the zone axis symbol [UVW] will be developed in succeeding 
chapters. 

Fig 1.8 An hypothetical crystal with faces 
parallel to those of the chosen unit-cell. Face 
indices are shown for the front faces (100), (010), 
(001). Parallel faces on the back of the crystal, 
whose edges are shown by broken lines, have 
indices (100), (010), (007). 

We consider first a crystal of the utmost simplicity of form, a parallelepiped whose 
six faces are parallel to the faces of the chosen unit-cell of the lattice. The faces 
(Fig 1.8) of such a crystal have indices: 

(100) parallel to the y and z axes and intersecting the positive x-axis; 
(100) parallel to the y and z axes and intersecting the negative x-axis; 

(010) parallel to the x and z axes and intersecting the positive y-axis; 
(010) parallel to the x and z axes and intersecting the negative y-axis; 

(001) parallel to the x and y axes and intersecting the positive z-axis; 
(001) parallel to the x and y axes and intersecting the negative z-axis. 

The faces (100), (010), (100), (010) are all parallel to the z-axis and thus lie in the zone 
which has the z-axis as its zone axis, that is the zone [001 ]. Likewise the faces (010), 
(001), (010), (001) are all parallel to the x-axis so that they belong to the [100] zone, 
while the faces (100), (001), (100), (001), being parallel to the y-axis, lie in the [010] zone. 

? A useful account of the relationship of Haiiy’s work to modern crystallography is to be found in Phillips 
(1971). For a critique of Haiiy’s work in its historical setting the reader is referred to Gillispie (1972). 
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The reference axes x, y, z are in this particular case and in general the [100], [010], 

[001] zone axes. 
In general the condition for the crystal face (hkl) to lie in the zone characterized 

by the zone axis symbol [UV W] is the condition for the plane through the origin of 

the set (hkl) to contain the lattice point with coordinates Ua, Vb, Wc. We have 

already shown that this condition is the zone equation 

Uh+Vk+WI1=0. 

In particular any face in the [001] zone must satisfy the zone equation 

0.h+0.k+1.1=0 

and so must be of the type (hk0). For instance the faces (110), (210), (120), (320) belong 

to the [001] zone. 
The zone axis symbol [UVW] for the zone containing the two generalized faces 

(h,k,1,) and (h,k,1,) is obtained by solving the simultaneous equations 

h,U+k,V+1,W =0 

h,U+k,V+l1,W =0 

for U, V, W. The solution is conveniently expressed in determinant form as 

ef Mersey wae, By 
ky I & l, hy hy ky 

ky In| [la ha} | ha ka 

1... [UVW] = [k,l,—kl,, L,h,—I,h,, h,k,—hyk, |. 

U, V, W are then chosen so as to have no common factor other than unity. A simple 

way of evaluating such two-by-two determinants is by using the cross-multiplication 
format: the indices of the first face are written twice in the upper line, the indices of 
the second face are written directly below them twice in the second line, the first and 
last columns are ignored; the first determinant is evaluated by cross-multiplying the 
second and third columns, the second determinant by cross-multiplying the third and 
fourth columns and the third determinant by cross-multiplying the fourth and fifth 
columns, i.e. 

hy 
h2 
ky x ly hy : ky l, 

ko I, h2 k> l> 

kyla—kaly, Iyha—I2hy, hyk2—hoky 

It is convenient to isolate the first and last columns by drawing strong vertical lines 
to separate them off. By way of example we take (Fig 1.9) the zone containing the 
faces (210) and (011). Cross-multiplication 

Pil 0 2 1/0 
¥ x x 

O}1 1 0 1}1 

1 Z fe 

yields [122] for the zone axis symbol of the zone containing the faces (210) and (011). 
It is occasionally convenient to represent a zone by a statement of the Miller 

indices of two non-parallel faces lying in the zone; this is done by enclosing the face 



The external shape of crystals 15 

(b) 

Fig 1.9 The zone equation and the addition rule. (a) is a perspective drawing of a crystal of the 
mineral anglesite, PbSO,,, to some faces of which Miller indices have been assigned and (b) is a 
plan of the face S parallel to its own plane with the neighbouring faces indexed. It is apparent 
from the plan that the edges of S against (210) and (011) are parallel and that the edges 
against (101) and (010) are also parallel so that S lies at the intersection of the zones [101] 
and [122]; the Miller indices of S are thus (232). 

symbols within square brackets, thus [(h,k,1,), (h2k,1,)]. For example the zone 
[122] can be referred to alternatively as [(210), (011)]. 

Analogously the indices of the face (hkl) and its opposite (hkl) which lie in the 
zones [U,V,W,] and [U,V,W,] are given by the solution of the simultaneous 
equations 

hU,+kV,+I1W, = 0 

Ny beer ep ily gxjopeKaon |i Cie denial 
Vv, Wy W, U;, Ua 
Vv, W, W, U, U, V, 

i.e. (hkl) = (VW. —V,W,, W,U,—W,U,, U,V, —UpVj). 

Here too h, k, | must have no common factor other than unity and the solution of 

the two-by-two determinants is most conveniently achieved by:cross-multiplication 
ignoring the first and last columns: 

U; Vi W, U, VY; W, 
x 

U, W, 
x x 

V, W, U, V2 

V,W,—V,W,, WU, —-W,U,, U,V, —U,V, 

| | | 
n.h n.k n.l 

By way of example (Fig 1.9) we take the intersection of the zones [101] and [122]: 

1/0 1 1 O|1 

(er er 
IE ae 

The faces common to the zones [101] and [122] are (232) and its opposite (232); the 
face labelled S in the figure is thus indexed as (232). 
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The Addition Rule 
Very commonly in morphological crystallography, and occasionally in diffraction 
crystallography, one needs to be able to determine the indices of the faces that lie at 
the intersection of two zones, each of whichis defined by the known indices of two 
faces belonging to it. If two faces (h,k,1,) and (hk 1,) lie in the zone [UVW], 

h,U+k,V+l,w =0 

hence (ph, +qh,)U + (pk, +qk,)V +(pl,+ql,)W =0 

so that the indices (h3k3/3) of any other face lying in the zone [ UV W ] can be expressed 

as (ph, + gh, pk, +. qk>, pl, + ql,), where p and q are positive or negative integers. This 
is known as the addition rule. For instance the zone [(101), (213)] includes the faces 
(314) for which p = q = 1, (112) for which p = —1, q = 1, (011) for which p= —2, 
q = 1, (110) for which p = —3, q = 1, and so on. Thus it is quite a simple matter to 

determine the indices of a plane common to two zones, each defined by the Miller 
indices of two of its faces. For example in Fig 1.9 the face labelled S lies at the 
intersections of the zones [(210), (011)] and [(010), (101)]; S must have indices 
consistent with (2p,;, py+qi, q;) and (q2, P2, q2); therefore 2p, = gq, = q, and 
P2 = Pi +41 = 3q2 So that h:k:] = qo :pyqz = 1:31 so that (hkl) is identified as (232) 
or (232) and the face S specifically as (232). 
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p 
Representation in two dimensions: The 
stereographic projection 

The interrelationships in space between lattice planes and lattice rows, crystal faces 
and zone axes are central to the study of crystal geometry. The point has already 
been made that angular relationships are of much greater importance than actual 
position in space in the limited range of topics discussed in chapter 1 and that is so 
generally. For graphical representation we have so far made use of perspective 
drawings and plans, but it is obvious that both these methods of representation will 
fail to give a clear picture of angular relationships in all but the simplest cases. Angular 
relationships are critical too in the study of crystal symmetry which we shall come to 
in chapter 3. Clearly then some means of representing three-dimensional angular 
relationships in two dimensions is needed. This need is met in crystallography by 
the stereographic projection. 
We shall develop the stereographic projection in the context of crystal shape simply 

because a realistic perspective drawing of a crystal, showing faces and zone axes, can 
easily be made and compared with the angular morphological relations displayed in 
stereographic projection. But it must be emphasized that the stereographic projection 
is just as applicable and indeed more useful for the representation of angular 
relationships within a lattice; but for these a clearly intelligible perspective drawing 

cannot be made except in very simple cases. We shall therefore in this chapter, 
concerned with the technique of stereographic projection, confine ourselves to 
morphological examples; in later chapters we shall apply the stereographic projection 
in other and more significant fields. 

The actual shape of a crystal of a given substance will depend on the conditions 
in which it grew. It is only in the rare circumstances of ideal conditions that a crystal 
will grow as a regular polyhedron or with equivalent faces equally developed: thus 
two crystals of the same substance may have quite different external appearances 
(Fig 2.1(a)). But crystal faces must be parallel to lattice planes, therefore the angle 
between any particular pair of faces will be the same in every crystal of the substance 
that exhibits those two faces. This is the law of constancy of angle discovered by 

Nicolaus Steno in 1669 and stated formally as: In all crystals of the same substance 

the angles between corresponding faces have a constant value. It is adequate therefore, 

if we are only concerned with angular relationships, to represent a crystal face by its 
normal drawn from an origin within the crystal. The normal to a given face may or 
may not intersect the face (Fig 2.1(b)), but this distinction is of no consequence. The 
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whole crystal can thus be represented by a bundle of normals drawn from the origin, 
one to each face; angular relationships between the faces are preserved in the bundle 
of normals and the variation of aspect between different crystals of the same substance 
resulting from uneven development of faces is eradicated. It becomes convenient to 
quote the angle between the corresponding normals when the angle between two 
crystal faces is required; this is of course the supplement of the angle within the 
crystal which in single crystals is commonly a salient angle. Thus in Fig 2.1(b) the 

angle between (111) and (111), usually written as (111):(111), is quoted as 70° 32’; the 

angle between the face normals is 70°32’ and the angle between the crystal faces is 
180° — 70° 32’. 

COLD 
(111) 

‘ (111) 

(177) 

(b) 
Fig 2.1 The law of constancy of angle. (a) shows a regular octahedron and two distorted 
octahedra: in the central drawing one pair of parallel faces is relatively overdeveloped and in the 
right-hand drawing the same pair is underdeveloped. (b) shows sections normal to (111) and (111) 
through a regular octahedron and through an octahedron with one pair of parallel faces 
overdeveloped; in each case the angle marked * is 70°32’. 

The stereographic projection cannot be drawn immediately from the bundle of 
face normals; an intermediate stage of spherical projection is necessary. The spherical 
projection of a crystal is made on a sphere circumscribing the crystal and having its 
centre at the origin from which the face normals are drawn. On the surface of the 
sphere the point of intersection of every face normal is marked. These points of 
intersection are the face poles (usually abbreviated to poles) of the spherical 
projection. Fig 2.2(b) shows the spherical projection of the crystal drawn in 
perspective in Fig 2.2(a). In spherical projection crystal faces are represented by 

' The angle between two planes is measured as the angle between their lines of intersection with a plane 
parallel to their normals. 
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points on the surface of the sphere of projection. It is of course not easy to draw an 
accurate picture of this three-dimensional projection in two dimensions and so the 
stereographic projection is introduced to project the spherical projection on to a plane. 

(a) 
(b) 

Fig 2.2 The spherical projection. (a) is a drawing of a crystal with face normals radiating from 
an origin within the crystal shown as bold lines. (b) shows the intersection of the resultant bundle 
of face normals with a sphere centred at the same origin: the array of intersections (shown as 
solid circles if on the front of the sphere, open circles if behind) is the spherical projection of the 

crystal drawn in (a). 

The essentials of the stereographic projection are: a point of projection on the 
surface of the sphere and a plane of projection perpendicular to the diameter of the 
sphere passing through the point of projection. It is usual to select as the plane of 
projection the plane passing through the centre of the sphere and we shall always so 
place the plane of projection. By analogy with the earth the plane of projection is 
called the equatorial plane (Fig 2.3(a)), the projection point S is called the south pole, 
and the opposite end N of the diameter through S is called the north pole. The 
equatorial plane intersects the sphere in a circle known as the primitive circle. The 

line SP joining the pole P to the projection point S intersects the projection plane in p, 
‘which is the stereographic projection of the pole P. The stereographic projection of 

-any pole lying above the equatorial plane, that is in the northern hemisphere, falls 
inside the primitive circle; the projection of a pole lying on the primitive circle is 
coincident with the pole itself (Fig 2.3(b)); the projection of a pole lying below the 
equatorial plane, that is in the southern hemisphere, falls outside the primitive circle 
(Fig 2.3(c)); and the projection of the south pole, the extreme case, is at infinity. 

Poles lying in the southern hemisphere can more conveniently be projected within 
the primitive circle by taking the north pole as the projection point. Poles so projected 
from the north pole are distinguished on the stereogram from those projected from 
the south pole by representing the former as open circles and the latter as smaller 

solid circles. 
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N 

S 

(b) 
Fig 2.3 The stereographic projection. In each 
diagram the intersection of the sphere of the 
spherical projection with the equatorial plane is 
shown; this circle of intersection is known as 
the primitive circle; O is the centre of the sphere 
and the line SON is perpendicular to the 
equatorial plane; P is a pole in spherical 
projection and p is the corresponding pole in 
stereographic projection. (a) illustrates the 
stereographic projection p of a pole P in the 
northern hemisphere projected from the south 
pole. (b) illustrates the coincident projection p 
of a pole P on the primitive. (c) illustrates the 
projection of a pole P in the southern hemisphere 
projected from the south pole to p, lying outside 
the primitive, or projected from the north pole to 
p’ (represented by an open circle) within the 

(c) primitive. 

Figure 2.4(a) shows a central section through the sphere containing the projection 

point S and a pole P. The normal to the crystal face represented by the pole P is 
the radius OP. If this normal makes an angle p with the north-south diameter of the 
sphere, then NOP = p and NSP = p/2. Therefore the distance of the projection p of 
the pole P from the centre of the primitive circle is r tan p/2, where r is the radius of 
of the sphere and of the primitive circle. If the pole P’ lies in the southern hemisphere 
180° > p > 90° and if the north pole is taken as the projection point, then 

Op’ =rcotp/2. If the crystal has two faces whose normals OP and OP’ are 
coplanar with and equally inclined to the north-south diameter NOS so that 
p = 180° —p’, then if both normals lie on the same side of NOS their poles will 
project within the primitive circle at the same point; such pairs of poles are represented 

by an open circle concentric with a smaller solid circle in Figs 2.4(c) and (d). The 

normals to the pair of parallel faces (hkl) and (hkl) are represented in spherical 

projection by the poles P and P, which lie at opposite ends of a diameter of the 

Fig 2.4 Construction of the stereographic projection p of a pole P. In (a) the pole P lies in the 
upper hemisphere and its projection from S is p; in (b) the pole P’ lies in the lower hemisphere 
and its projection from N is p’. In (c) the projection (p and p’) of the poles P and P’, for which 
pP+p' = 180°, respectively from S and N is shown: the resultant stereographic projection with p 
represented by a solid circle and p’ by a concentric open circle is illustrated in (d). In (e) the 
projection (p and p,) of the pole P and its opposite P, respectively from S and N is shown: 
the resultant stereographic projection with p represented by a solid circle and py by an open circle 
with p,N = Np is illustrated in (f). 
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sphere of projection, the pole P, being described as the opposite of the pole P. 
Inspection of the section of the sphere of projection containing P, S, and Pa (F ig 2.4(e)) 

indicates that if P is projected as p using the south pole as the point of projection 
and if P, is projected as p, from the north pole, then, Op = Op. The pole p and its 
opposite p, thus lie on a diameter pNp, of the primitive (Fig 2.4(f)), equidistant from 
the centre but on opposite sides; one being projected from the south pole is represented 
by a solid circle and the other projected from the north pole by an open circle. 

In principle the faces of a crystal could be plotted stereographically by measuring 
for each face (i) the angle p between its normal and the diameter through the 
projection point, and (ii) the angle @ between a reference plane (defined by the 

north and south poles and the reference point R, i.e. NRS in Fig 2.5) and the plane 
containing the north-south diameter and the pole P of the face. It is however simpler 
and more practical to make use of a property of the stereographic projection, dealt 
with in the next few paragraphs, and of the relationships between crystal faces when 
plotting a stereogram of a crystal. 

? (4) (b) 
Fig 2.5 (a) serves to define the angle p between the normal OP to the plane (Ak/) and the 
diameter NOS, and the angle ¢ between the plane NOP and a reference plane NRS. (b) represents 
the stereographic projection of P as p with coordinates r tan p/2 and dQ. 

The property that is perhaps primarily responsible for making the stereographic 
projection attractive to crystallographers is that planes intersecting the sphere of 
projection project either as circles or as straight lines. Two types of planes are 
distinguished ; a plane passing through the centre of the sphere of projection intersects 
the sphere in a great circle, while a plane that does not pass through the centre 
intersects the sphere in a small circle (Fig 2.6(a)). A great circle is a special case of a 
small circle. A small circle can be considered alternatively as the intersection with 
the sphere of a cone whose apex is at the centre of the sphere, the axis of the cone 
passing through the centre of the small circle and the semiangle of the cone being the 
angular radius of the small circle. The small circle is projected stereographically by 
drawing lines joining every point on the small circle to the projection point. These 
lines lie on the surface of an oblique cone (that is a cone whose base is not 
perpendicular to its axis) with a circular base, the small circle. The projection of the 
small circle (Fig 2.6(b)) is the intersection of this oblique cone with the equatorial 
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NA 

(c) (e) 
Fig 2.6 Stereographic projection of a small circle. In (a) QTR and UTV are examples of great 
circles and the cone AOB intersects the sphere in the small circle AB. In (b) the oblique cone ASB 
has a circular base, the small circle AB, and its apex is at the point of projection S; it intersects 
the equatorial plane OR in the figure ab. (c) is the section of the sphere of projection perpendicular 
to the equatorial plane and containing the diameter AB of the small circle; the stereographic 
projection of AB is ab. The circular section, shown in (d), of the oblique cone ASB is drawn 
parallel to the small circle AB and intersects the equatorial plane in feg. (e) is the same section of 
the sphere as (c) drawn to show the axis OP of the right cone AOB and the projection p of the 
centre of the small circle AB; in general ap ¥ pb. 
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plane. A section of the sphere of projection containing the north-south diameter and 
a diameter AB of the small circle is drawn in Fig 2.6(c): a and b are the projection 
of the points A and B so that if the small circle projects as a circle ab will be a 
diameter of the small circle in projection. We shall show that the projection of a 
small circle is itself circular by drawing a circular section cfdg parallel to the plane 
of the small circle to intersect the equatorial plane in feg (Fig 2.6(d)). It is evident 
from Fig 2.6(c) that ASBN and ASOb are similar, being right-angled with a 
common angle, 

and therefore 

SNB = SbO. 

But SNB = SAB 

and, since AB|\cd, 

SAB = Scd 

Therefore Scd = SbO, 

Z\ace and /Adbe are similar, 

d Conned 
an eee 

be ed’ 

1.e. ce.ed = be.ea. 

Now let the radius of the circle cfdg be r and let the distance of the point e from the 
centre h of the circle be u, then 

ce.ed = (r—u)(r+u) 

Bape ee 

aes 

This conclusion, that the square of a semi-chord is equal to the product of its 
intercepts on the diameter perpendicular to the chord, is a characteristic property 
of a circle. 

But ce.ed = be.ea 

therefore be.ea = ef”, 

and consequently afbg is a circle with centre h and diameter ba. The stereographic 
projection of a small circle is therefore a circle. 

The centre P of a small circle (Fig 2.6(e)) will not in general project at the geometrical 
centre of the projected small circle, for if the centre of the small circle is such that 
NOP = p and if the angular radius of the small circle (that is, the semiangle of the 
right cone whose intersection with the sphere of projection is the small circle) is 6, 
then f 

ap = Op—Oa = tin ian 
ms 2 

and pb = Ob-Op = rtan PF" tant 



Representation in two dimensions: The stereographic projection 25 

In general therefore ap 4 pb, but ap = pb when p = 0. The projection of the centre 
of a small circle coincides with the geometrical centre of the projected small circle 
only when the centre of the small circle lies at the point of projection or its opposite, 
i.e. at Sor N. 

It is obvious from Fig 2.7(a) that a small circle which passes through the south 
pole projects as a straight line because the lines joining every point on the circle to 
the point of projection are then coplanar with the small circle. 

S (a) S (b) 

(d) 

Fig 2.7 (a) shows that a small circle passing through the point of projection S projects as a 
straight line. (b) shows the projection of a great circle as an arc which intersects the primitive at 
the ends of a diameter of the primitive circle. (c) illustrates the special case of a great circle passing 
through the point of projection S; its projection is a diameter of the primitive. (d) is the stereographic 
projection of a great circle with S as the point of projection; it is customary to change the point 
of projection from S to N for that part of the great circle lying outside the primitive. Circles 
projected from S are shown conventionally as solid arcs and those projected from N as broken arcs. 
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Great circles, which are of course special cases of small circles, likewise project as 
circles; but since all great circles are coplanar with the centre of the sphere of 
projection they intersect the primitive circle at the opposite ends of a diameter of it 
(Fig 2.7(b)). If a great circle passes through the south pole (Fig 2.7(c)) it will project 

as a diameter of the primitive because the great circle is then coplanar with its 
projection. When a complete great circle is projected with the south pole as projection 
point, part of it must project outside the primitive circle. By changing the point of 
projection to the north pole this part can be brought within the primitive circle. It is 
customary to show great, or small, circles projected fromthe north pole as dashed 
arcs on the stereogram (Fig 2.7(d)). 

It is appropriate at this point to mention that it is common practice to refer to 
the projections of poles and of great circles simply as poles and great circles. No 
confusion need arise if it is remembered that the stereographic projection is merely 
a device for representing the spherical projection in two dimensions. 

The crystallographer rarely needs an accurately drawn stereogram; when he does 
so the geometrical constructions detailed in Appendix A can be employed. These 
constructions are dealt with at length in the appendix because, although they are 
little used in practice, study of their geometry can greatly help the reader towards a 
thorough understanding of the stereographic projection, which will be extensively 
used in subsequent chapters without additional explanation. 

The stereographic net 

The accuracy to which stereograms can be drawn by using the constructions of 
Appendix A will depend on the care with which the constructions are made in 
relation to the magnitude of the radius selected for the sphere of projection. For 
most purposes a stereogram of sufficient accuracy can be drawn with the aid of the 
stereographic net, sometimes called the Wulff net. A stereographic net is a 
stereographic projection of a set of great circles passing through a diameter of the 
primitive and inclined at 2° intervals to the equatorial plane and a set of small circles 
drawn with the same diameter of the primitive as their stereographic centre and with 
radii at 2° intervals. A stereographic net is illustrated in Fig 2.8. The planes of the 
small circles are normal to the equatorial plane and to the planes of the great circles. 

The intersections of two adjacent small circles with a great circle corresponds to an 
angular distance of 2° measured in the plane of the great circle and the intersections 
of two adjacent great circles on a given small circle corresponds to a rotation of 2° 
about the stereographic centre of the small circle. Printed stereographic nets are 
available commercially, either circular or semicircular and with various radii, the 
most useful radius for general work being about 2:5in or 10cm. Nets are usually 
printed on transparent paper so that they can be placed on a stereographic projection 
and the appropriate poles marked on the stereogram by pricking through with a 
compass point. 

A pole may be plotted with the net by placing the diameter of the net along the 
appropriate diameter of the stereogram and counting the necessary number of 
intersections. The angle between two poles may be measured by rotating the net 
until both poles lie on the same great circle and then counting the number of 
intersections of small circles between them, each intersection corresponding to 2°. A 
rapid and convenient method of drawing the projection of a great circle which 
passes through two poles is to rotate the stereographic net until the two poles lie on 
the same great circle and to prick through the points at which the great circle 
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Fig 2.8 The stereographic net. 

intersects the primitive. The required arc of a circle can then be drawn in using a 
device such as a spring bow compass. This is simply a thin strip of steel bent at each 
end so as to provide two finger holds, which will bend to give a reasonable approxi- 
mation to an arc of a circle. 

With full circle stereographic nets printed on cardboard stereograms can be drawn 
on tracing paper pinned through the centre of the net so that it can rotate freely 
relative to the net. This provides easily the most convenient means of drawing 
stereograms of moderate accuracy. 

Use of the stereographic projection in crystallography 

The stereographic projection is of value in the study of solids because it enables 
angular relationships between planes and directions to be represented. A plane is 
usually represented by its normal, although it is occasionally more convenient to 
represent it by the great circle to which it is parallel (chapter 12). It is necessary at 

this point to introduce the definition of the pole of a great circle as the direction 
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normal to the plane of the great circle. The face pole representing the normal to a 

crystal face is then the pole of the great circle representing the face. (The two distinct 

uses of the term pole do not in practice lead to confusion.) A group of faces lying in 

a zone will all have one direction, the zone axis, in common and the normals to the 

faces will all lie in the plane normal to the zone axis. Their poles will therefore all 
lie on a great circle whose pole is the zone axis of the zone. Zonal relationships are 

therefore used extensively in plotting stereograms. 

Figure 2.9(a) shows a crystal of copper, whose unit cell is a cube (a = b =c = 3°61 A, 
a = B = y = 90°). The external shape of the crystal is a combination of a cube, an 
octahedron, and a rhombic dodecahedron (Fig 2.9(b), (c), (d)). The faces of the cube 

are parallel to the faces of the unit cell and have indices (100), (010), (001), and their 

opposites. The face (100) is parallel to the y and z axes. The normal to the face is 
therefore perpendicular to y and z and, because y and f are right-angles, it is parallel 
to the x axis. Similarly the normal to (010) is parallel to y because « = y = 90° and 
the normal to (001) is likewise parallel to z because « = B = 90°. It is conventional to 
plot stereograms of crystals with +z in the centre of the northern hemisphere, i.e. 
parallel to the north pole, and the face normal (010) at the right-hand end of the 
horizontal diameter of the primitive as drawn. A stereogram showing the faces of a 
cube is drawn in Fig 2.9(e). (001) and (001) plot in the centre of the primitive, (001) 
being represented by a small solid circle and (001) by a larger open circle. In such a 
case, when the projections of (hkl) and (hkl) are coincident it is usual to write the 

indices (hkl) of the face in the northern hemisphere beside the pole, it being obvious 
that the indices of the face in the southern hemisphere are (hkl). It is usual not to 
enclose face indices in brackets when they are written beside poles on the stereogram. 

The faces of the rhombic dodecahedron are all parallel to one of the reference 
axes and make equal intercepts on the other two. Therefore one index must be zero 
and, since a = b = c, the other two indices must be equal and are set equal to unity; 

the faces are thus (110), (101), (011), (110), and so on (Fig 2.9(d)). It is clear from 

Fig 2.9(f) that both the face (110) and its normal are equally inclined to x and y. The 
pole of (110) therefore projects on the primitive (since the face is parallel to z, its 
normal is perpendicular to z) at 45° to x and y. The other faces of the rhombic 
dodecahedron plot in similar positions (Fig 2.9(g)). 

The faces of the octahedron make equal intercepts on the x, y, and z axes and 
therefore have indices such as (111), (111), and so on. It is clear from Fig 2.9(a) that 

the face (111) lies in the zone containing (001) and (110), since the edge of intersection 
of (001) and (111) is visibly parallel to the edge of intersection of (111) and (110). 

Therefore the normal to the face (111) lies in the plane containing the normals to 
(001) and (110). The face (111) also lies in the zones [(100), (011)] and [(010), (101)]; its 
position can be plotted on the stereogram by drawing the great circles representing 
these zones and marking their point of intersection. Only two such great circles are 
needed to plot (111) but in Fig 2.9(h) the three zones mentioned above have been 
drawn to emphasize the zonal relationships between the faces. 

Figure 2.9(h) is a stereogram of the crystal of copper shown in Fig 2.9(a) in which 
the great circles necessary to show the zonal relationships between all the faces are 
drawn. 
We turn now to another example to illustrate the use of the stereographic 

projection: the determination of the angle between (100) and (311) in a crystal of 
barium sulphate, the unit cell of which has dimensions a = 8-85 A, b = 5-44 A, 
c=7:13A,anda = B = y = 90°. The pole of (100) can be plotted directly (Fig 2.10(a)); 
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Fig 2.9 Stereographic projection of a cubic crystal. Copper forms crystals (a) which may be 
combinations of a cube (b), an octahedron (c), and a rhombic dodecahedron (d). A stereogram 
of the faces of a cube is shown in (e). The face (110) and its normal are equally inclined (f) to 
the x and y axes so that this and the other faces of the rhombic dodecahedron give rise to the 
stereographic projection (g). The projection of the octahedron faces is achieved by plotting 
intersecting zones with the aid of a stereographic net. The stereogram of the crystal drawn in (a) with 
all faces plotted but only those in the upper hemisphere indexed is shown as (h). 
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the (100) plane is parallel to y and z and therefore its normal is parallel to x. The 

pole (311) is most easily plotted by making use of zonal relationships. If the axes are 

orthogonal, as they are here, planes which have one of their indices zero lie in the 

plane containing the other two axes. The angles which such planes make with (100), 

(010), and (001) can be calculated by elementary two-dimensional geometry. For 

example the plane (hk0) is parallel to z and its normal therefore lies in the xy plane. 

The plane makes intercepts a/h on the x axis and b/k on the y axis. From Fig 2.10(b) 

it can be seen that since OP is normal to RPQ and x is normal to y, POQ = 90° 

—OOR = ORO. Since the normal to (100) is parallel to. x, 

(100) :(hk0) = POQ = ORQ = tan™! 7 (1) 

Similarly, 

(001):(hOl) = tan™ ! oe (2) 

and 

(001):(Okl) = tan~! a (3) 

(b) 
Fig 2.10 Stereographic projection of a face normal when the unit-cell has orthogonal but 
unequal axes. The pole (311) lies at the intersection of the zones [(100), (011)] and [(001), (310)] 
as shown in (a). In order to plot the stereographic projection of (311) it is necessary to determine 
the angles (100): (310) and (001): (011) by a simple geometrical calculation illustrated in (b). 

By use of the addition rule it can be shown that in the zone containing (100) and (311) 
the plane with indices of the type (Okl) is (011). Therefore from equation (3) 

(001):(011) = tan” * (7-13)/(5-44) = 52:65°. The zone [(100), (011)] can therefore be 
plotted by first plotting (011) and then drawing the great circle containing the two 
poles (100) and (011). The position of (311) can be found by drawing a second zone 
on which (311) must lie. A zone which also contains (001) projects as a diameter of 
the primitive and is therefore easy to construct. By use of the addition rule the face 
of the type (hkO) which lies in the zone [(001), (311)] is found to be (310). From 
equation (1) the angle (100):(310) = tan~ ' [8-85/(3 x 5-44)] = 28-47°. Therefore (310) 
can be plotted and the zone [(001), (310)] drawn on the stereogram. (311) lies at the 
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intersection of the zones [(100), (011)] and [(001), (310)]. The angle (100):(311) can 
now be measured with the stereographic net or a more accurate value may be 
obtained by calculation from the stereogram (chapter 5). 

Measurements occasionally have to be made of the angles between the faces 
actually developed on a crystal. Before the discovery of the diffraction of X-rays by 
crystals this was the principal method of studying crystals but its importance has 
declined over the past fifty years as the techniques for studying the internal structure 
of crystals have become increasingly available. However measurement of the angles 
between faces remains useful for determining the orientation of a crystal of known 
unit-cell dimensions prior to X-ray study. Two simple devices for the measurement 
of interfacial angles are described in Appendix B. 

The gnomonic projection 
The gnomonic projection (Fig 2.11), in which the centre of the projection sphere is 
used as projection point and the tangent plane at the north pole is the plane of 
projection, has certain limited uses in crystallography. Its advantage is that all zones 
project as straight lines because every great circle passes through the projection 

ped Wp eee oe 

S 

Fig 2.11 The gnomonic projection. The point of projection is the centre of the sphere and the 
plane of projection is tangential to the sphere. 

point. Its main disadvantage is that a pole at an angle p from N projects at a distance 

rtan p from N and therefore only a small part of the surface of the projection sphere 

can be plotted within a manageable area. Poles lying on the equatorial plane project 
to infinity. Another disadvantage is that small circles do not project as circles. 
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5 
Crystal symmetry 

We have already explored in chapter 1 the description of the regular arrangement in 

space of the atoms in a crystalline solid in terms of the lattice concept. The lattice is a 
regular array of imaginary points such that each lattice point has the same 
environment in the same orientation. The unit-cell of the lattice is defined in such a 
manner that every unit-cell has a lattice point at its origin’ and the lattice is 
produced by stacking unit-cells in three dimensions. The whole structure is then 
completely described by stating the dimensions of the unit-cell and the nature and 
coordinates of every atom within the unit-cell. Any two atoms separated by a lattice 
translation must therefore be equivalent in every respect: not only must they be of 
the same element, but each must have the same atomic environment in the same 

orientation. Distinct from such lattice repetition is another kind of repetition known 
as symmetry, which is our prime concern in this chapter. 

Axes of symmetry 

When atoms of the same element in the unit-cell have identical atomic environment 
except for the orientation of the environment they are said to be related by symmetry. 
For example the hypothetical two-dimensional structure illustrated in Fig 3.1 contains 
atoms of two elements, one shown as solid circles and the other as open circles. The 
lattice translations are such that all the atoms labelled A are equivalent. The atoms 
of the same element labelled B are likewise all equivalent to one another and have 
the same environment as those labelled A; the only difference is that the environment 
of an atom on a B site has to be rotated through 180° to bring it into the same 
orientation as the environment of an atom on an A site. Moreover if the whole 
structure is rotated through 180° about any point equivalent to O,, then the rotated 

structure will be coincident with the structure as shown. There thus exists a rotation 
axis of symmetry perpendicular to the plane of the structure through O, and similar 
axes through all points related to O, by lattice translation, ic. O,, O3, Og, ete. 
The rotation axes in this example yield coincidence by rotation through 180° or 
2n/n radians where n = 2; such axes are described as twofold or diad axes of symmetry. 

Before going on to define the various kinds of symmetry axis it is convenient to 
distinguish between two types of symmetry, that of a finite body and that of an 

'This statement requires amplification in the case of non-primitive lattices, which will be dealt with in 
chapter 4. 
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infinite body. In the crystallographic field the symmetry displayed by a finite body is 

apparent in the external shapes of crystals and in the physical properties of crystals 
(chapter 11) such as thermal and electrical conductivity and elastic properties. The 
shapes of crystals grown, either naturally or in the laboratory, under ideal conditions 

provide the clearest means of illustrating the symmetries possible in finite bodies; we 
shall therefore use crystal shape in the main to illustrate this chapter. It must always 
be borne in mind, however, that crystals commonly grow under non-ideal conditions 
even in nature so that symmetry related faces are unequally developed. In such cases 
the symmetry of the crystal will not be immediately apparent from its external shape 
(Fig 2.1); in this chapter we shall confine ourselves for purposes of illustration to 
perfectly developed crystals. In chapter 4 we shall be concerned with the symmetry 

of infinite bodies as exhibited by the arrangement of atoms in crystal structures. 
An n-fold rotation axis of symmetry is defined as a line, rotation about which 

produces congruent positions (i.e. positions indistinguishable from the initial position) 
after rotation through 2z/n. The crystal therefore comes into self-coincidence n times 
in a complete rotation through 27. Rotation axes are described with reference to the 
value of n, which must of course be integral: onefold, twofold, threefold, fourfold, 

fivefold, sixfold, etc, rotation axes are known as monads, diads, triads, tetrads, 

pentads, hexads, etc. and are denoted by the symbols 1, 2, 3, 4, 5, 6, etc. 

The monad, which brings the crystal into self-coincidence after rotation through 
2n, is of course trivial. Crystals displaying diads, triads, tetrads, and hexads are 
shown in Fig 3.2, where the graphical symbol for each type of rotation axis is also 
displayed. The presence of an n-fold rotation axis of symmetry implies that a given 
plane or direction is repeated by being rotated through 2z/n radians about the axis, 
the operation being repeated until the initial position is reproduced. The operation 
of a rotation axis of symmetry on a single pole is conveniently displayed stereo- 

graphically and this is done too in Fig 3.2. 
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Fig 3.1 Hypothetical two-dimensional structure with identical atoms on sites A and B. Atoms 
of another element are represented by small open circles. The rotation diads, O,, O., etc, are 
perpendicular to the plane of the diagram and related to one another by lattice translations. The 
unit-mesh is outlined. 
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Fig 3.3. Lattice of the hypothetical two-dimensional structure shown in Fig 3.1. The unit-mesh, 
a general parallelogram is outlined upper left and the disposition of rotation diads on the unit-mesh 
is shown lower right. 

That the only values of n possible for rotation axes of symmetry operative on 

crystalline solids are 2, 3, 4, and 6 (the monad being trivial) is a direct consequence 
of the regularity of atomic arrangement in a crystal. For a crystal to have an n-fold 
rotation axis implies that the atomic arrangement in the substance must likewise 
have n-fold symmetry. Consequently the shape of the unit-cell of the lattice of the 
structure must be consistent with the presence of an n-fold rotation axis of symmetry. 
In short the only rotation axes of symmetry that can operate on a crystal structure 

are those that can operate on a lattice. For example the hypothetical two-dimensional 
structure illustrated in Fig 3.1 has diad symmetry; the lattice of this structure 
likewise has diad symmetry (Fig 3.3) with diads through the lattice points and 
midway between adjacent lattice points. Comparison of Figs 3.1 and 3.3 shows that 
structure and lattice have identical arrangements of diads, which are separated by 
halved lattice translations. The example demonstrates that a diad can operate on a 
lattice and moreover that the operation of a diad imposes no geometrical restrictions 

on the lattice plane perpendicular to itself; the unit-mesh of the lattice plane 
perpendicular to a diad is thus usually a general parallelogram. 

If a crystal structure is to have a fivefold rotation axis of symmetry, then the lattice 
on which the structure is based must also display pentad symmetry. If a pentad 
passes through one lattice point, such as A in Fig 3.4, then there must be a pentad 
through every other lattice point, all lattice points being by definition equivalent; in 
particular there has to be a pentad through the lattice point B which is separated 

Fig 3.2 Rotation axes of symmetry. The left-hand column shows the operation of a diad, a triad, 
a tetrad, a pentad and a hexad on a point; the central column shows crystals displaying each 
type of axis, other than the pentad; and the right-hand column shows stereograms illustrating the 
Operation of the rotation axes on a general pole. 
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Fig 3.4 Generation of lattice points by the operation of a pentad through the lattice point Aon 

the lattice point B and by a pentad through B operating on A. B,A, is not an integral multiple of 

AB and therefore the array does not constitute a lattice. 

from A by the lattice translation t. The operation of the pentad through A produces 

rows of lattice points passing through A identical to the row AB... and inclined at 
angles of 27, +7, $2, and $x to the row AB. In Fig 3.4 only the lattice point equivalent 
to B in each of these rows, B,, B,, B3, and By, is shown. Since there must likewise 
be a pentad through B, there must be rows of lattice points identical to the row BA 
passing through B and inclined to the row BA at angles of $x, $7, $x, and $7; again 
only the lattice points equivalent to A, that is A,, Aj, A;, and Ay, are shown in the 
figure. If the resultant array of points is to form a lattice, it must be a regular array; 
in particular the spacing of points on lines parallel to AB, such as B,A,, must be 
equal to t or some multiple thereof. It is evident from Fig 3.4 that 

B,A, = AB—AB, cos 72° — BA, cos 72° 

and since 

AB, = AB= BA, 

B,A, = AB(1 —2 cos 72°) = 0:38 AB 

Therefore the array of points generated by pentads through adjacent lattice points is 

not regular and consequently not itself a lattice. In shert pentads cannot be repeated 
on a lattice and never occur in crystals. 

The argument that we have used in the special case of the pentad can simply be 
generalized to determine what values of n are permissible for an n-fold rotation axis 

Fig 3.5 The point A’ is one of the points generated by an n-fold rotation axis through B 
operating on the point A; and the point B’ by a similar axis through A operating on B, the angle 
0 being equal to 27/n. 
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operating on a lattice. Consider a lattice with an n-fold rotation axis of symmetry. If 

the lattice point A is placed on an n-fold axis, then n-fold axes in the same orientation 
will pass through every lattice point and in particular through the adjacent lattice 

point B, selected so that the line AB is perpendicular to the axis of symmetry. The 
n-fold axis through A will repeat the lattice point B n—1 times in the plane 
perpendicular to the symmetry axis (Fig 3.5), the (n—1)th repetition being B’ where 
AB’ = AB = tand BAB’ = 2n/n = 0. Likewise the n-fold axis through B will repeat 

the lattice point A n—I1 times in the same plane, the first repetition being A’ where 
A’B = AB = tand ABA’ = 6. If the four points A, B, A’, B’ are to form a lattice, the 
spacing of points in the row containing A’ and B’ must be the same as that in the 
parallel row containing A and B; that is to say B’A’ = mt where m is an integer. Now 

B’A’ = AB— AB’ cos 6—A’B cos 6 

Le. B’A’ = t(1 —2 cos6) 

Therefore the condition for formation of a lattice is 

mt = t(1—2cos0) 

l—m 
Le. 6 =—— 1.e COs 5 

But —1 <cosdé <1, so that the limits of the integer 1—m are —2 <(1—m) <2 

1.e. possible values of 1—m are —2, —1, 0, 1, 2. Possible values of n (Table 3.1) are 

therefore 2, 3, 4, 6, and the trivial monad with n = 0. 

Table 3.1 
Rotation axes of symmetry which can operate on a lattice 

Conventional unit mesh of lattice 

l1—m __cos6é 6 n=2n/d  B’A’ planes perpendicular to the axis 

—2 —1 1 2 3AB a#b;y #90° 
=4 —4 +3n 3 2AB a=b;)= 120° 
0 0 +4n 4 Beas) 903 
1 3 +4n 6 0 G— Devi N20e 
2 1 0 = = 

Note: 
The symbol # implies that equality is not required by symmetry. 

_ Thus the rotation axes of symmetry that can operate on a lattice are restricted to 

diads, triads, tetrads, and hexads; these are the only rotation axes displayed by 
crystals. The operation of three, four, or sixfold rotation axes on a lattice plane 
imposes restrictions on the arrangement of lattice points in the plane. For example 
the presence of a triad, for which 6 = 47, restricts the arrangement of lattice points 
in the plane normal to the axis to the pattern shown in Fig 3.6(a). It is conventional 

to choose a rhombus as the unit-mesh so that a = b and the interaxial angle between 
the x and y axes, y = 120°. The same arrangement of lattice points is necessary in the 
plane perpendicular to hexads operating on the lattice. When a tetrad, with 6 = 42, 
is repeated on a lattice, the arrangement of lattice points in the plane normal to the 
axis must be as shown in Fig 3.6(b); the conventional unit-mesh is here a square with 

Gabe i9 0h 
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Fig 3.6 Two-dimensional lattices with (a) a triad or a hexad, (b) a tetrad perpendicular to the 

plane of the lattice. 

Since the operation of a diad merely relates lattice points of the same row, the 

presence of diad symmetry places no restriction on the arrangement of lattice points 

in the plane perpendicular to itself; the unit-mesh is a general parallelogram with 

a # b, y general. However, although symmetry places no restriction on the values of 

a, b, or y, there may be fortuitous equality of a and b or y may happen to have a 

special value. For example the hypothetical two-dimensional structure shown in 

Fig 3.7 has a square unit-mesh with a = b, y = 90°, but there are no tetrads because 

the atomic arrangement shows only diad symmetry. 

Combination of symmetry axes 
A crystal may have more than one symmetry axis. When this is so the angular 
disposition of the axes relative to one another must be such that their operation is 
mutually consistent. We shall now proceed to establish all the combinations of 
rotation axes of symmetry that can operate on a lattice and can thus be displayed by 

a crystal. 
It is a general principle that when two rotation axes are combined a third rotation 

axis is created. The principle is illustrated in Fig 3.8. The face I in Fig 3.8(a) is related 
to the face II and to four other faces that meet at a by a hexad. The face II is related to 
the face III by the diad which is perpendicular to the hexad and passes through the 
mid-point of the edge bc. The operation of the hexad on this diad will give rise to diads 
through the mid-points of the edges de, fg, hi, jk, and Im (hi and jk are at the back 
of the crystal and not shown in the figure) in the plane perpendicular to the hexad. 
Since the faces I and III are each equivalent to the face II they must be equivalent to 
each other; they are directly related by a diad perpendicular to the hexad and passing 
through the mid-point of the edge mb. This diad is inclined at 30° to the diad through 
the mid-point of the edge bc, both lying in the plane perpendicular to the hexad. In 
general then, the combination of a hexad and a diad perpendicular to it gives rise to 
five equivalent diads 60° apartin the plane perpendicular to the hexad and in addition 
a set of six diads in the same plane are inclined at 30° to those of the first set. Figure 
3.8(b) shows a stereogram of the crystal drawn in Fig 3.8(a) and its rotation axes of 
symmetry. 

The generation of additional rotation axes can be considered generally in terms of 
rotation axes A and B that respectively produce equivalence after rotation through 
6, = 2n/n, and 6, = 27/ng where n, and ng are integers. The operation of two such 
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Fig 3.7. Hypothetical two-dimensional structure with two atomic types shown as solid and open 
circles respectively. The unit-mesh has a = 6, y = 90° but the lattice has only diad symmetry. 
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(a) (b) 

Fig 3.8 The combination of two rotation axes necessitates the presence of a third. (a) Faces | 
and II are related by the hexad; faces I! and III are related by the diad through the edge bc; 
a diad through the edge mb therefore relates faces | and III. (b) A stereogram of the same 
crystal showing the disposition of the two sets (p and q) of six equivalent diads in the plane 
perpendicular to the hexad; the pole III is related to pole | by operation of a diad p and to pole II 
by operation of a diad q. 
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general axes on a pole P is illustrated in Fig 3.9, where for convenience the axis A is 

plotted at the centre of the stereogram. The pole P’ produced by the operation of 

A on P lies on the small circle that passes through P and has A as its stereographic 

centre; P’ also lies on the great circle AP’ which makes an angle 6, with the great 

circle AP. The pole P” produced by the operation of B on P’ lies on the small circle 

that passes through P’ and has its stereographic centre at B; P” also lies on the great 

circle BP” which makes an angle 6, with the great circle BP’. (To avoid irrelevant 

complexity in the figure the other poles generated by the operation of A and B are 

not shown.) If the proposition that we discussed in specific terms in the preceding 

paragraph is generally true a third symmetry axis relates P to P”; but the position of 

this axis cannot be located from the stereogram of Fig 3.9 because the general poles 

P and P” do not uniquely define a small circle. 

aA 
To locate the position of the third, or derivative, rotation axis it is necessary to 

apply Euler’s construction, which is based on the proposition that if three great circles 
intersect in the poles A, B, and C in such a manner (Fig 3.10(a)) that the angle between 

the great circles AB and AC is a, the angle between the great circles BA and BC is f, 
and the angle between the great circles CA and CB is y, then rotation through the 

angle 2x in a clockwise sense about A followed by rotation through the angle 28 in a 
clockwise sense about B is equivalent to rotation through the angle 2y in an 
anticlockwise sense about C. We shall now proceed to demonstrate the validity of 
this proposition in general and go on to establish all the possible combinations of 
rotational axes of symmetry that can operate on crystal lattices. 

Let A and B (Fig 3.10(a)) be the poles of two rotation axes of symmetry, rotating 
respectively through the angles 6, and 6,. The consecutive operation of A and B will 
thus be equivalent to the single operation of a rotation axis of symmetry C whose 
pole lies at the intersection of the great circles through A and B which make angles 
of « = 45, and B = 46, respectively with the great circle AB and lie on the same side 
of that great circle. If the rotation axis of symmetry whose pole is C produces 

equivalence by rotation through the angle 6,, then the great circles AC and BC 
intersect at an angle y = 46. 

That this is so can be verified by operating A and B consecutively on the pole C 

Fig 3.9 Successive operation on a pole 
P of a rotation axis A, rotating through 
65,, to yield the pole P’ and a rotation axis 
B, rotating through og, to yield the pole 
P’’. The position of the rotation axis 
relating P to P’” cannot be located from 
this stereogram. 
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aS, 

(a) (b) 
Fig 3.10 Euler’s construction. The great circles AB, BC, CA are inclined to one another at angles 
a=1306,, B=10g, y=20c. The poles A and B are rotation axes rotating respectively through 2a 
and 28. (a) illustrates the successive clockwise operation of the axes A and B on the pole C. 

(b) illustrates the successive clockwise operation of the axes A and B on the pole A. C is shown 

to be a rotation axis rotating through 2y. 

(Fig 3.10(a)) and on the pole A (Fig 3.10(b)). When A operates on C 1 ina clockwise 
sense the first equivalent pole produced will be C’ such that AC = AC’ and BAC = 

BAC = 565,. Since the side ABis common to both, the spherical triangles? ABC, ABC’ 

are congruent and therefore eC be 563 and ie Ste Consequently 

operation of B in a clockwise sense will take the pole C’ back to C. Consecutive 
clockwise rotation of C through 6, about A and through 6, about B thus leaves C 
unmoved; Cis therefore itself the pole of a rotation axis of symmetry whose operation 
is equivalent to the consecutive operations of A and B. 
Now consider the consecutive operation of A and B on the pole A (Fig 3.10(b))). 

The operation of the rotation axis whose pole is A will leave A unmoved. The first 
equivalent pole produced by the operation of B on the pole A in a clockwise sense 
will be A’ such that BA = BA’ and ABC = AB BC = 46g. Since the side BC i is common 

to both, the spherical triangles ABC, A’BC are congruent so that CA = CA’ and 
BCA = BCA’ = 4c. Therefore A’ is the first equivalent pole produced by anti- 
clockwise operation of the symmetry axis whose pole is C and whose angle of 

rotation is d¢. Consecutive clockwise rotation of A about itself and through 6, 
about B is thus equivalent to anticlockwise rotation of A through 6, about C. In 
general then one can say that if these symmetry axes have their poles at the vertices 

of a spherical triangle, each of whose angles is half the angle of rotation of the 
corresponding axis, then the consecutive clockwise operation of two axes is equivalent 
to the anticlockwise operation of the third axis. 

A spherical triangle is uniquely determined by the three angles at its vertices; 
therefore if «, 6, and y are known, the angles between the three rotation axes can be 
evaluated from relations of the type (Appendix D) 

cos «+ cos B cosy 
cos BC = © 

sin fp siny 

? A short account of spherical trigonometry is given in Appendix D. 
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It has already been shown that the only rotation axes of symmetry that can 

operate on a lattice are diads, triads, tetrads, and hexads. Therefore 6,4, 6g, and 6, are 
restricted to the values 32, $2, 77, and 2x and consequently the only possible values 
of a, B, and y are 4n, 37, 47, and én. If A, B, and,C are taken to be each type of rotation 
axis in turn, the twenty combinations shown in Table 3.2 result. Substitution of the 
magnitude of a, 6, and y for each combination in the expressions for the cosines of 
BC, CA, and AB yields for the majority of combinations cosines outside the range 

+1 to —1, for a few combinations trivial solutions representing coincidence of axes, 

and for six combinations real solutions (rows 1 to 6 of Table 3.2 and Fig 3.11(a)-(f)). 

We do not propose to work laboriously through the derivation of Table 3.2, but 
merely to discuss the set of combinations which have a diad and a tetrad combined 
in turn with a diad, a triad, a\tetrad, and a hexad. If we fix « and f at 90° and 45° 

respectively the expressions for the sides of the general spherical triangle (Appendix D) 
become 

=~, cos90°+cos 45° cos 
cos BC = te tetiee Prt =coty 

sin 45° sin y 

=<,  cos45°+cosycos 90° 1 
cos CA = os : = : 

sin y sin 90 J/2siny 

<  cosy+cos90° cos 45° 
cos AB = ——_—___1__——-_ = ,/2 cos 

sin 90° sin 45° V ? 

Table 3.2 

A B c BC CA AB 

2 2 2 90° 90° 90° 
eZ 2 3 90° 90° 60° 
2 aD 4 Gr 90° 45° 
2 2 6 90° 90° 30° 

2 3 3 IQe 324 54° 44’ 54° 44’ 
2 3 4 54° 44’ 45° Ba 16: 

6 0 0. 0 trivial 

2 4 4 0 0 0 trivial 
2 4 6 a a oe impossible 

2 6 6 - x = impossible 

3 3 5 0 0 0 trivial 
3 3 4 # * ‘ impossible 
3 3 6 * * * impossible 

a 4 4 * * a impossible 
Ss 4 6 * : a impossible 

3 6 6 " : * impossible 

4 4 4 * * * impossible 

4 4 6 ¢ ‘ * impossible 

4 6 6 x 2 impossible 

6 6 6 . x 7 impossible 

* indicates cosine > 1 
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(9) (h) 

Fig 3.11 Combinations of rotation axes. (a) 222, three mutually perpendicular diads, (b) 223, 

a triad perpendicular to two diads inclined at 60° to each other, (c) 224, a tetrad perpendicular 

to two diads inclined at 45° to each other, (d) 226, a hexad perpendicular to two diads inclined 

at 30° to each other, (e, g) 233, a diad inclined at 54°44’ to two triads inclined at 70°32’ to 

each other, (f, h) 234, a diad inclined to a triad at 35°16" and to a tetrad at 45°, the triad and 

tetrad being mutually inclined at 54°44’. 

which on substitution of y = 90°, 60°, 45°, 30° in turn yield values of the interaxial 

angles in the combinations 242 (224), 243 (234), 244, 246 (the symbols shown in 

brackets are those shown in Table 3.2). The first of these combinations, a tetrad 

combined with two sets of diads, has its diads perpendicular to the tetrad and 

inclined at 45° to one another as illustrated in Fig 3.11(c). The combination of a 

diad, a tetrad, and a triad, illustrated stereographically in Fig 3.11(f), has a disposition 

of symmetry axes that is simply related to the geometry of the cube (Fig 3.11(h)): 

three mutually perpendicular tetrads are normal to the cube faces, four triads lie 

along the body diagonals of the cube, and six diads join the mid-points of opposite 
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edges of the cube. The angle @ between a triad and a tetrad and the angle w between 

a triad and an adjacent diad can simply be evaluated by drawing a central section of 

a cube containing a face diagonal (Fig 3.12): if the cube edge is of length a, 

d= tan, (,/2a)/a = 54°44’ and w = 90°—0'= 35°16% The combination of a diad 

with two sets of triads has similar geometry (Fig 3.11(e) and (g)) with its diads 

perpendicular to cube faces and triads along the body diagonals of the cube. The 
combination of a diad with two independent tetrads is trivial in that all symmetry 

axes must be coincident. The combination of a diad, a tetrad, and a hexad is impossible 

because solution of the expressions for the interaxial angles yields cos ' pos 

cos! ,/2, cos” ' ,/5, all of which are greater than unity. 

Fig 3.12 Section of a cube parallel to (110) 
showing coplanar symmetry elements in the 
combination 243. The length of the section is a,/2 
and its height is a. 

In the combination 234 (Fig 3.11(f) and (h)) there are three tetrads, but they are 
not independent, each being related to the others by the other symmetry axes present; 
the only independent axes in this combination are one diad, one triad, and one tetrad. 
In contrast the combination 244 has two independent tetrads, but this combination 
is trivial because all three symmetry axes have to be coincident. In general Euler’s 
proposition is concerned only with combinations of independent rotation axes of 
symmetry. 

Inspection of Table 3.2 indicates that while a hexad can only be combined with 
two sets of diads, a tetrad and a triad can be combined either together with a diad 
or separately with two sets of diads. When a hexad, a tetrad, a triad, or a diad is 

combined with two independent diads, the diads lie in the plane normal to the axis 

of higher symmetry and are inclined to one another at an angle equal to half the 
rotation angle of that axis (Fig 3.11(a)-(d)).7 When a diad and a triad are combined 

with either a triad or a tetrad the resultant disposition of symmetry axes is, as we 
have already indicated, related to the geometry of the cube (Fig 3.11(e)-(h)). These 

are the only six possible combinations of rotation axes of symmetry that can operate 
on crystal lattices. 

Inversion axes of symmetry 

A distinct type of symmetry axis is that which combines rotation about a line through 
2n/n with inversion through a point. Such axes are known as inversion axes of 
symmetry and are designated as inverse n-fold axes, where n = 1, 2, 3, 4, 6. The 
operation of inversion can be considered at two levels. On inversion through the 

*In the particular case of the combination of a triad (the only axis of odd order with which we are here 
concerned) with two diads (Fig 3.11(b)) the diads are not independent. 
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Fig 3.13 Centrosymmetric and non-centrosymmetric structures. (a) Rutile, TiO,, with Ti atoms 
shown as solid circles and oxygens as open circles. (b) Wurtzite, ZnS, with Zn atoms shown as 
solid circles and sulphur atoms as open circles. Both structures are shown projected on the xy plane. 

origin of coordinates every point with coordinates x, y, z becomes a point with 
coordinates x, y, Zz. If in a crystal structure every atom with coordinates x, y, z, is 
duplicated by an atom of the same element with coordinates x, y, z the structure is 

said to possess a centre of symmetry at the origin.* The structure of rutile, TiO,, which 

has a centre of symmetry at its origin is compared with that of wurtzite, which is 
non-centrosymmetric, in Fig 3.13. On the macroscopic scale a centre of symmetry 
causes the crystal faces (hkl) and (hkl) to be equivalent so that in a perfectly developed 
crystal they will be equally developed (Fig 3.15(a)). The operation of a centre of 
symmetry on a general pole is illustrated in Fig 3.14, from which it is apparent that the 
operation ofa centre of symmetry amounts to trivial rotation of the pole through 27/1 
about any line through the centre followed by inversion through the centre. In 
conformity with the notation that we shall use for higher inversion axes of symmetry 
the centre of symmetry can be described as an inverse monad and assigned the symbol 
1. In space group diagrams and occasionally in plans of crystal structures it is 
convenient to represent the positions of centres of symmetry; this is done by a small 
open circle. 

Fig 3.14 Stereogram to illustrate the operation of a 
centre of symmetry. The pole shown as a solid circle (in 
the upper hemisphere) is rotated through 360° and inverted 
through the centre to yield the pole shown as an open 
circle (in the lower hemisphere). 

*It is worth noting that if the point x, y, z is equivalent to the point x, y, 7 then it must also be equivalent 
to the point 1 —x, y, z. Therefore if there is a centre of symmetry at 0, 0, 0 there must also be a centre of 
symmetry midway between x, y, z and 1 —x, j, Z,i.e., at ¢, 0, 0, and likewise at 0, 4,0; 0, 0, 4; and 4, 4, 4; 
etc. Thus the spacing of centres of symmetry along any direction within the structure is half that of the 
lattice spacing in that direction. 
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The perfectly developed crystal of gypsum, CaSO,.2H,O, shown in Fig 3.15(a) 

has a centre of symmetry relating faces such as I and II. In addition the crystal, as 

drawn, displays a mirror image relationship between its left- and right-hand sides, 

that is to say the part of the crystal to the left of the plane abcd is a reflexion in that 

plane of the part of the crystal to the right of the plane. Such a crystal is said to 

possess a plane of symmetry or mirror plane. The mirror plane illustrated is an (010) 

plane and thus relates a face (hkl) to a face (hkl), these faces being mirror images of 

one another. Stereograms showing the operation of mirror planes perpendicular and 

parallel to the plane of the diagram are shown in Fig 3.15(b) and (c). In both cases it 

is apparent that the operation of the mirror plane amounts to rotation through 

2n/2 = 180° about the pole D followed by inversion through the centre of the 

stereogram. In conformity with the notation that we shall use for higher inversion 

axes of symmetry the mirror plane can be described as an inverse diad and designated 

2, the inverse diad D being normal to the mirror plane; it is however common practice 

to describe this symmetry operator as a mirror plane or plane of symmetry and to 
assign to it the symbol m. Mirror planes are conventionally represented on 

stereograms as boldly drawn great circles. 

(a) (b) (c) 
Fig 3.15 The operation of an inverse diad or mirror plane. (a) shows a crystal of gypsum; the 
faces | and II are related by a centre of symmetry; that part of the crystal to the left of the plane 
abcd is a reflexion in that plane of the part to the right. (b) shows stereographically the operation 
of an inverse diad D in the plane of the diagram; the inverse diad rotates the pole, shown in the 
upper hemisphere on the right-hand side of the diagram, on the small circle about D through 
180° to the position shown by the open circle and this is followed by inversion through the 
centre. (c) shows stereographically the operation of an inverse diad D perpendicular to the plane 
of the diagram. In (b) and (c) the corresponding mirror planes are respectively a vertical great 
circle and the primitive. 

The centre of symmetry and the mirror plane are commoner and rather more 

important in crystallography than the higher inversion axes, the inverse triad, tetrad, 
and hexad. Stereograms displaying the operation of each of these higher. inversion 
axes on a general pole are shown in Fig 3.16(a)-(c) and crystals showing these axes 
are illustrated in Fig 3.16(d)-(f). The inverse triad, tetrad, and hexad are con- 
ventionally represented as 3, 4, and 6 respectively. Their conventional graphical 
symbols are shown in Fig 3.16; these are difficult to draw on a small scale, especially 
the 6 symbol, and are often shown as open triangles, squares, and hexagons. The 
operation of the inverse triad is equivalent to the operation of a triad combined with 
a centre of symmetry (i.e. 3 = 3+ 1); the operation of the inverse hexad is equivalent 
to that of a triad combined with a perpendicular mirror plane (i.e. 6 = 3+ m); but the 
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operation of the inverse tetrad is not equivalent to any combination of other rotation 
or inversion axes although it includes a rotation diad. 

(d) (e) | (f) 

Fig 3.16 Inversion axes of symmetry. The stereograms show the operation of a 3, a 4, and a6 
axis on a general pole. The perspective drawings show crystals displaying inverse triad, tetrad, 
and hexad symmetry. 

Since a lattice is a regular array of points in space every lattice point is associated 
with lattice points at vector distances +t and —t from it. That is to say all lattices 
are necessarily centrosymmetric with a centre of symmetry at every lattice point. A 
lattice consistent with fourfold symmetry thus has a centre of symmetry at every 
lattice point as well as a tetrad; the symmetry of such a lattice (Fig 3.17) can be 
described variously as a tetrad or an inverse tetrad combined with a perpendicular 
mirror plane or as a tetrad or an inverse tetrad combined with a centre of symmetry. 

a e+ ; aes 

Fig 3.17 Stereograms to illustrate that the combination of a rotation tetrad with a centre of 
symmetry is equivalent to the combination of an inverse tetrad with a centre of symmetry and to 
the combination of a rotation tetrad with a perpendicular mirror plane. 
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The lattice is thus consistent with the presence not only of a rotation tetrad but also 

of an inverse tetrad. 

In general a lattice consistent with the presence of an n-fold rotation axis is also 

consistent with the presence of an n-fold inversion axis. 

Crystallographic point groups 

Having established the crystallographic symmetry operators as O46 "Te ny 

3, 4, and 6 we now propose to extend our earlier discussion of the combination of 

rotation axes to the combination of rotation and inversion axes and so to establish 

the combinations of symmetry operators that can operate on a lattice. We begin with 

two definitions. The symmetry elements (or operators) of a finite body must pass 

through a point, which is taken as the centre of the body; such a group (or 

combination) of symmetry elements is known as a point group. A point group 

operating on a crystalline solid must be such that every symmetry element of the 

group can operate on a lattice; such a point group is known as a crystallographic 

point group. A crystallographic point group is completely defined as a group of 

symmetry elements that can operate on an infinite three-dimensional lattice so as to 

leave one point unmoved. 

It is convenient to group the crystallographic point groupsinto crystal systems, such 

that the point groups of one system all have some symmetry in common. Thus the 

tetragonal system is the group of all the crystallographic point groups that contain 

one tetrad, which may be either a rotation or an inverse tetrad; in certain of the 

tetragonal point groups the tetrad is combined with diads or mirror planes or both. 

We have already seen that the operation of a tetrad on a lattice requires the lattice 

points on planes normal to the tetrad to be arranged on a square unit-mesh. It is 

convenient then to take the reference axes of the tetragonal system as z parallel to the 

tetrad, x and y parallel to the sides of the square unit-mesh of a lattice plane 

perpendicular to the tetrad; the conventional unit-cell of the tetragonal system thus 

ha: a=b+~canda=fp=y= 90°. 
In general it is convenient to select a unit-cell whose axes are, if possible, parallel 

or normal to symmetry axes for the good reason that this simplifies the description 

of symmetry relationships. The shape of the conventional unit-cell is then charac- 
teristic of the system to which it refers. In Table 3.3 the nomenclature of the crystal 
systems and the restrictions on the shape of the conventional unit-cell for each 

system are set out. 

Table 3.3 
The crystal systems 

Name of system Characteristic symmetry Conventional unit-cell 

Triclinic Onefold symmetry only GAD eC asap Ay 
Monoclinic One diad (|| y) aA AC o—p— 90. p= 90° 
Orthorhombic Three mutually perpendicular a#b#c;a=f=y=90° 

diads (|| x, y and z) 
Trigonal* One triad (|| [111 ]) a=) = chap =i 19052 00s 
Tetragonal One tetrad (| z) 2 =O Coa sp — i 0s 
Hexagonal One hexad (|| z) a=) Hc; we p— 907, y— 120 
Cubic Four triads (|| <111)) a=) =6F0 = p= y= 90° 

The symbol # implies that equality is not required by symmetry. 
*The unit-cell of the hexagonal system is however commonly used for the trigonal system. 
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We turn now to consider what combinations of rotation and inversion axes are 
possible and so to derive all the distinct crystallographic point groups. We have 
already shown that a rotation axis of order 1, 2, 3, 4, or 6 can operate alone on a 
lattice and thus is itself a crystallographic point group. We have further shown that 
there are only six combinations of rotation axes capable of operating on a lattice and 

that each combination has a definite geometrical arrangement (Table 3.2); each of 
the combinations 222, 223, 224, 226, 233, and 234 is thus a distinct crystallographic 
point group.’ We have also shown that the lattice consistent with the operation of an 
n-fold rotation axis is consistent with the operation of an inversion axis of the same 
order; each of the inversion axes, 1, 2 (= m), 3, 4, and 6, operating on its own thus 
constitutes a distinct crystallographic point group. 

Since all lattices are necessarily centrosymmetric, a crystal may itself have a centre 
of symmetry. Further crystallographic point groups can thus be derived simply by 
adding a centre of symmetry to the point groups that we have already identified. 
Before doing this it may be helpful to the reader to be reminded of two points that 
have been made earlier in this chapter. Firstly, the operation of a rotation axis of odd 
order combined with a centre of symmetry is equivalent to an inversion axis of the 
same order (Figs 3.14 and 3.16); thus, trivially, 1+1=1 and, more significantly, 
3+1 = 3. Secondly, the operation of a rotation axis of even order combined with a 
centre of symmetry is equivalent to the operation of an inversion axis of the same 
order combined with a centre of symmetry; we have shown this (Fig 3.17) for the 

tetrad and leave the reader to satisfy himself that it holds also for the diad and the 
hexad. Thus the combination of a centre of symmetry either with one of the rotation 
axes 2, 4, 6 or with one of the inversion axes, 2, 4, 6, yields a new crystallographic 
point group. Each of these point groups can alternatively be described as the 
combination of a 2, 4, or 6 rotation axis with a perpendicular mirror plane (Fig 3.17 
illustrates one case); this alternative description is the basis of the conventional 
nomenclature for these three point groups 2/m, 4/m, 6/m. 

Before discussing the point groups obtained by substitution of inversion for 
rotation axes or by addition of a centre of symmetry in the point groups derived by 
means of Euler’s proposition (Table 3.2) it is convenient to consider the question of 
hand. The operation of a rotation axis, being a simple rotation, is incapable of 
changing the hand of the object on which it operates. In contrast the operation of 
an inversion axis, because it involves inversion through the centre, must convert a 

right-handed object into a left-handed object. For example Fig 3.18(a) is a stereogram 
showing the operation of an inverse tetrad on a group of three poles. If the original 
group of poles is taken to be that in the upper right-hand quadrant a single operation 
of the inverse tetrad gives rise to the group in the lower left-hand quadrant; it is 
apparent from the figure that these two groups of poles cannot be superimposed, 
being mirror images of one another, the one right-handed and the other left-handed. 
Now in general terms an inversion axis A will produce a left-handed group P, from a 
right-handed group Px (Fig 3.18(b)) and a rotation axis B will produce a left-handed 
group P; from the left-handed group P,. Therefore the axis consistent with A and B 
must be an axis C relating Pp to P;, and, since a change of hand is produced, this 
must be an inversion axis. Thus in a combination of three axes either all three are 
rotation axes or one is a rotation axis and two are inversion axes; no other 

combination is possible. 

>We shall postpone discussion of the conventional nomenclature for point groups and for the time 
being use a nomenclature related to that of Table 3.2. 
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(a ) 

Fig 3.18 The significance of hand in the combination of axes. The stereogram (a) illustrates 
the change of hand resulting from the operation of an inverse tetrad. The stereogram (b) illustrates 
the general proposition that the successive operation of an inversion axis A, which produces 
the left-handed group P, from the right-handed group Pr, and a rotation axis B, which produces 
the left-handed group P;_ from the left-handed group P,, can only be consistent with the 
Operation of an inversion axis producing the left-handed group Pj, from the right-handed 
group Pr. 

We now proceed to apply the conclusion of the last paragraph to each of the point 
groups derived by means of Euler’s proposition. From the point group 222 only one 
new crystallographic point group can be derived, 222, which can alternatively be 
described as mm2.° This point group has two perpendicular mirror planes with a 
rotation diad along their line of intersection. From the point group 223 (con- 
ventionally described as 32) we derive 223 (conventionally 3m) and 223 (conventionally 
3m), which are new point groups. From the point group 224 (conventionally 422) we 
derive 224 (conventionally 4mm) and 224 (conventionally 42m), both of which are new. 

Table 3.4 

Derivation of the crystallographic point groups 

Symmetry axes parallel to one direction only: 
Rotation X 1 2 3 4 6 

Inversion X I m 3 4 6 
X+1 (1) 2/m (3) 4/m  6/m 

Symmetry axes in more than one direction: 
xv2 222-223 (32) = 224(422) —-226 (622) -—«233(23) ~—S-234 (432) 
XYZ mm2 — mm3 (3m) mm4 (4mm) = mm6 (6mm) —_m33 (m3) m34 (m3m) XYZ (m2m) 233m) —-m24(42m) ~— m26 (m2) (m3) m34 (43m) 
XYZ _— (2mm) (3m) (42m) (6m2) (m3) (m3m) 
XYZ+1 mmm (3m) 4/mmm 6/mmm (m3) (m3m) 

Note: 
(1) Symbols in brackets standing alone refer to point groups higher up in the table. 
(2) Symbols in brackets following symbols not in brackets are conventional point group 

symbols. 

° To follow this and succeeding paragraphs the reader will find it helpful to refer to Table 3.4 and to look 
forward to Fig 3.20. 
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From the point group 226 (known conventionally as 622) we derive 226 (con- 

ventionally 6mm) and 226 (conventionally 6m2). From the point group 233 
(conventionally known as 23) we derive 233 and 233, which turn out to be identical 
and are conventionally described as m3. From the point group 234 (conventionally 
432) we derive 234 and 234, which are identical and known as m3m, and 234 which 
is conventionally known as 43m. 

To complete our list of crystallographic point groups we have to add a centre of 
symmetry to each of the point groups derived from Euler’s proposition and to each 
of those obtained in the preceding paragraph. This task can be simplified by bearing 
in mind that the combination of a centre of symmetry with a rotation triad is 
equivalent to an inverse triad and that the combination of a centre of symmetry 
with either a rotation or an inversion axis of even order is identical. Thus 222 and 

mm2 on combination with a centre of symmetry both yield the same new point group 
- 2-2 
mm’ conventionally known as mmm. The addition of a centre of symmetry to 

223 (32) and 223 (3m) yields the same point group, which is identical with 223 (3m) and 
already accounted for. The addition of a centre of symmetry to 224 (422), or 224 (4mm), 

or 224 (42m) yields the same new point group aod conventionally known as 

4/mmm. Likewise the addition of a centre of symmetry to 226 (622) or 226 (6mm), or 

226 (6m2) yields the same new point group o = i , conventionally known as 6/mmm. 

Addition of a centre of symmetry to 233 (23) yields the point group oa which 

has already been accounted for and designated m3. Finally addition of a centre of 

symmetry to 234 (432) or 234 (43m) yields the point group E 3 = which has already 
been accounted for and designated m3m. 

We have derived in all thirty-two crystallographic point groups, five consisting of a 
single rotation axis, another five consisting of a single inversion axis, three by 
combination of a centre of symmetry with a rotation axis, six directly derivative 
from Euler’s proposition and a further ten by mixing inversion and rotation axes in 
these geometrical combinations, and three more by combining a centre of symmetry 

with these combinations. 

(700) 
[110] x ‘ a [110] 

{[o10]~— e e e -— [010] 

[170] x | | » [110] 

[100] 

Fig 3.19 Plan of the (001) plane of the tetragonal lattice. 
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Fig 3.20 The thirty-two crystallographic point groups. Each pair of stereograms shows, on the le 
the poles of a general form and, on the right, the symmetry elements of the point group. Planes of 

m symmetry are indicated by bold lines. 
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42m 4/mmm 
Fig 3.21 The tetragonal point groups. The stereograms show the poles of {100}, {001}, {110}, 
{101}, {111}, and {121} in each of the point groups. Where poles are superimposed only the 

pole in the upper hemisphere is indexed. 



Crystallographic point groups 59 

In the conventional nomenclature of point groups, which we have already used 
without explanation, emphasis is placed on the presence of mirror planes of 
symmetry. In point group symbols a mirror plane is associated with the direction of 
its normal whereas, naturally, a rotation or inversion axis is associated with its own 

direction in the crystal. Where all the symmetry elements of the point group are 
associated with a single direction the conventional point group symbol takes one of 
the forms X (an X-fold rotation axis only), X (an X-fold inversion axis only), or 

= (an X-fold rotation axis combined with a perpendicular mirror plane). This last 

type of symbol is often printed for convenience of typesetting as X/m. Where the 
symmetry elements of the point group are associated with more than one direction 

those associated with each direction are stated in the conventional point group symbol 
in a standard order. By way of illustration we take the tetragonal system, where z is 
taken as the direction of the rotation or inversion tetrad and the x and y axes are 

chosen so as to be parallel to the shortest lattice repeats in the plane perpendicular 
to the tetrad; the unit-cell is thus a square prism with a = b # c. The geometry of the 
combinations of symmetry axes with which we are concerned in the tetragonal 
system is that shown for 224 in Table 3.2: a tetrad combined with two independent 
diads inclined at 45° to one another and both perpendicular to the tetrad. Inspection 
of the (001) plane of the tetragonal lattice (Fig 3.19) shows that the only possible diad 

directions’ are <100) and <110). Where mirror planes occur in the point group in 
place of diads they are necessarily perpendicular to <100> or <110), that is parallel 

to {100} or {110}. The conventional symbol for those tetragonal point groups which 
have symmetry elements associated with more than one direction consists of three 
terms: first, a statement of the symmetry elements associated with the [001 | direction; 
second, a statement of the symmetry elements associated with the <100) directions; 
and third, a statement of the symmetry elements associated with the ¢110) directions. 

x x 

. 42m 4m2 

Fig 3.22 The point groups 42m and 4m2 which are related by rotation through 45° about [001]. 

Thus the symbol 422 refers to a point group (Figs 3.20 and 3.21) with a rotation tetrad 

parallel to [001] and diads parallel to ¢100> and ¢110>. The symbol 4mm refers to 
the point group with a rotation tetrad parallel to [001] and mirror planes 
perpendicular to <100) and <110). In the symbol 42m however the ¢100) and <110> 
directions are distinguished: the inverse tetrad is parallel to [001 ], diads are parallel 
to <100) and mirror planes are perpendicular to <110> in this point group. The 

7 <UVWy and {hkl} represent respectively all the zone axes and all the faces derived from [UV W] and 
(hkl) by the operation of the point group. 
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symbol 4m2, which is illustrated in Fig 3.22, refers to the point group 42m in a 
different orientation; as far as point group symmetry is concerned the two are 
indistinguishable, being simply related by rotation through 45° about [001]. Only 
when it is known whether a diad or a mirror planeris associated with the shortest 
lattice repeat in the (001) plane is it realistic to distinguish between them; this takes 
us into the field of space groups, which will be discussed in chapter 4. Finally, the 

422 d ; 
centrosymmetric point group | has a rotation tetrad parallel and a mirror 

plane perpendicular to [001] combined with diads parallel and mirror planes 
perpendicular to both the sets of directions (100) and <110); this point group is 
commonly represented by its short symbol 4/mmm. 

Further discussion of point group nomenclature is postponed until the crystal 
systems have been explored and is then dealt with system by system. The basis of the 

nomenclature is summarized in Table 3.5. 

Table 3.5 
The conventions used for the symbols of the point groups 

System Directions associated with symmetry elements 

First position Second position Third position 

Triclinic Centre only 
Monoclinic [010] 
Orthorhombic [100] [010] [001] 
Trigonal [0001] <1070> <21+0> 
Tetragonal [001] <100> «110» 
Hexagonal [0001 ] <1070> «21705 
Cubic £100) <111) <110) 

Crystal classes 

A crystalline solid that exhibits the symmetry of a particular point group is said to 

belong to the corresponding crystal class, which is denoted by the same symbol as the 
point group. For instance gypsum, CaSO,.2H,O, has point group symmetry 2/m; 
it is said to belong to the crystal class 2/m. A crystal class is defined as the group of 
substances that display the point group symmetry characteristic of the class. The 
term ‘crystal class’ is often incorrectly used as a synonym for ‘point group’; the 
distinction, which may at first sight seem pedantic, is in practice useful. 

A crystal exhibiting the largest possible number of symmetry elements for its 
system may be described as exhibiting the highest point group symmetry possible for 
the system and is said to belong to the holosymmetric class of the system. The point 
group symmetry of each holosymmetric class is that of the corresponding lattice (the 
trigonal system is, as we shall show, an exception). The symmetry of every other point 
group of the system is lower because the repeat unit of the crystal has lower symmetry 
than the lattice. Figure 3.23, in which three two-dimensional patterns based on a 
square lattice are shown, illustrates this point: the lattice has a tetrad perpendicular 
to the plane of the mesh and lines of symmetry every 45°, so does pattern (b), but 
pattern (c) is entirely lacking in lines of symmetry, and pattern (d), for which the 
tetrad descends to a diad, has lines of symmetry only parallel to the sides of the 
unit-mesh. The pattern shown in Fig 3.23(d) has mutually perpendicular lattice repeats 
of equal length but unrelated by the symmetry elements of the pattern; formally the 
lattice on which this pattern is based is rectangular with a only accidentally equal to b. 
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(a) (b) 

3 

(c) (d) 

Fig 3.23 Two-dimensional patterns based on the square lattice (a). Pattern (b) has the full 
symmetry of the lattice; pattern (c) lacks lines of symmetry; and in pattern (d) the tetrad has 
become a diad and there are lines of symmetry parallel to the sides of the unit-mesh only. 

Crystal systems 

We have defined a crystal system as a group of point groups that have some symmetry 
in common and we have made use of the point groups of the tetragonal system to 
explain point group nomenclature. We now proceed to define each of the seven 
crystal systems and to specify and comment on all the point groups of each system. 

Before examining each system in detail it may be helpful to name and make some 

general comments on the seven crystal systems. Three systems can be described as 

orthogonal, that is they can be referred to mutually perpendicular reference axes: 
these are the cubic system, for which the unit-cell is a regular cube, the tetragonal 

system, whose unit-cellis a square prism, and the orthorhombic system, whose unit-cell 
is a rectangular parallelepiped. Two systems can be referred to unit-cells that are 120° 
prisms: these are the hexagonal and trigonal systems. The remaining two systems are 

the least symmetrical, the monoclinic system, which has a unit-cell with a#b #c, 

a = y = 90° # B conventionally, and the triclinic system, which has a unit-cell with 

a#b#¢c,a#4 Bp ¥y in general. 

In the course of exploring each system we shall deal with such nomenclatorial or 
representational specialities as may arise. But there are two general matters of 
nomenclature that are most conveniently dealt with now. The group of faces produced 

by the operation of all the symmetry elements of a point group acting on one face 
(hkl)is known asa form and represented as {hkl}. Similarly all the zone axes produced 
by the operation of all the symmetry elements of a point group on one zone axis 
[UVW] is known as a form of zone axes and represented as (UVW). Thus in 
crystallography we distinguish between indices enclosed in four kinds of brackets: 
( ) known simply as brackets, { } as braces, [ | as square brackets, and < > as carets. 
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Triclinic system 

The characteristic symmetry of the triclinic® system is a onefold axis. The only 
symmetry that a triclinic crystal can display is a centre of symmetry and it may not 

have even that. Since a centre of symmetry'is inherent in any lattice, its presence 
places no restriction on the shape of the triclinic unit-cell, which is thus a general 
parallelepiped with a#b#c, «#fB#y. There are just two point groups in the 
triclinic system: point group 1, in which neither any plane nor any direction is 
symmetrically repeated, and point group I (the holosymmetric point group of the 
system), in which the planes (hkl) and (hkl) are equivalent, as are the directions 
[UVW] and [UVW]. The simplicity engendered by the absence of symmetry 
elements of order higher than one is offset in practice by the absence of right-angles 

in the geometry of the unit-cell. 
Stereograms of triclinic crystals can conveniently be drawn by plotting the z-axis 

at the centre of the stereogram and the pole of (010) at the right-hand extremity of 

the horizontal diameter of the primitive (Fig 3.24). The x-axis then projects on the 
vertical diameter of the primitive at an angle f from the z-axis. The y-axis is located 

Fig 3.24 The triclinic system. 
The stereogram shows the 
relationship of various poles to 
the reference axes in a 
hypothetical crystal of class 1. In 
a crystal of class 1 symmetry 
would require the opposite of 
any pole shown to be shown 
also. 

at the intersection of small circles of radius « and y about the z and x axes respectively. 
The poles of (100) and (001) are respectively the poles of the great circles containing 
the y and z axes and the x and y axes. 

Monoclinic system 

The characteristic symmetry of the monoclinic system is a single axis of twofold 
symmetry, which is conventionally taken as the y-axis of the unit-cell. The axis of 
diad symmetry places no restriction on the shape of the unit-mesh of the lattice in the 
plane perpendicular to itself. It is reasonable therefore to take as the x and z axes 
directions in this plane so that a and c are as short as possible. The positive directions 
of the x and z axes are conventionally chosen so that the angle between them, B, is 
obtuse. The geometry of the monoclinic unit-cell is thus a#b#c, «=y = 90°, 
B > 90° (Fig 3.25(a)). 

5 This system used to be known as the anorthic system. After many years of disuse the old name has 
recently been revived by some authors. Both triclinic and anorthic are currently in common use. 
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The plane (010) is by definition parallel to x and z; therefore, since « = y = 90°, 

the normal to the (010) plane is parallel to the y-axis. The plane (100) is necessarily 
parallel to the y and z axes, but, since B 4 90°, its normal must be inclined to the 

x-axis (Fig 3.25(b)). Likewise the normal to the (001) plane must be inclined to the 
z-axis and perpendicular to the x and y axes. It is apparent from Fig 3.25(b) that 
ARC = AOC = f and that ARC+P00Q = = 180°. Therefore POO = = 180°—f, that is 
to say the angle (100) :(001) = 180°—f. 

Fig 3.25 Monoclinic geometry: (a) shows the disposition of the reference axes and (b) is an 

(010) section through the origin. The angle between the normals to the planes (100) and (001) 
is 180°— B, where f is the interaxial angle x: z. 

The monoclinic system comprises three point groups. The point group 2 has a 
single symmetry element, a rotation diad parallel to the y-axis; the planes (hkl) and 
(hkl) are equivalent, as are the directions [UVW] and [UV W ]. The point group m 
has a mirror plane perpendicular to the y-axis, that is parallel to (010); the planes 
(hkl) and (hkl) are equivalent, as are the directions [UVW] and [UVW]. The point 
group 2/m is the holosymmetric point group of the system; its symmetry elements 
are a rotation diad parallel to the y-axis and a mirror plane parallel to (010), a 
combination that introduces a centre of symmetry. In point group 2/m the four planes 

(hkl), (hkl), (hkl), and (hkl) are equivalent, as are the four directions [UVW], [UV W], 
[UVW], and [UV W ]. Stereograms showing selected forms in each monoclinic point 
group are presented in Fig 3.26. 

It is immediately apparent from Fig 3.26 that certain forms in each point group 
comprise fewer faces than does the general form {hkl}. Thus in point group 2 the 
face-normal (010) is coincident with the diad so that the form {010} comprises only 
the face (010), whereas the general form {hkl} comprises the two faces (hkl) and (hkl). 
The form {010} likewise consists of a single face (010). The general form in point 
group m likewise comprises two faces (hkl) and (hkl); but a face of the type? (h01), 
whose pole lies in the mirror plane, is not repeated by the mirror plane so that the 

form {h0/} consists of a single face. Forms such as {010} and {010} in point group 2 

° Now and subsequently we use the symbol {h0/} to represent any form with k = 0, the indices h and | 
having any integral values including 0. The symbol {h0/} thus includes {100} and {001}; but in point groups 
where these have fewer faces than {h0/} they receive special mention. 
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and {h0l} in point group m are said to be special forms. In point group 2/m the 
general form {hkl} comprises four faces (hkl), (hkl), (hkl), and (hkl); special forms are 
of two kinds, that not affected by the diad, i.e. {010} and those not affected by the 
mirror plane, i.e. {h0/}. In this case both kinds of special form have the same number 
of faces, but we shall see in other systems that different kinds of special form may 

have different numbers of faces. 
We take as our definition of a special form the statement: a special form is any 

form comprising fewer faces than the general form in the same point group. It follows 
that the normal to any face of a special form must either be parallel to an axis of 
symmetry or lie in a mirror plane.?° 

2/m alternative setting 

Fig 3.26 The monoclinic point groups. The stereograms show poles of the forms {100}, {010}, 
{001}, {101}, {101}, {011}, and {111} in each of the point groups. The two lower stereograms 
illustrate alternative settings for 2/m. 

Stereograms of monoclinic crystals are usually plotted, as in Fig 3.26, with the 
z-axis at the centre of the stereogram and the y-axis at the right-hand end of the 
horizontal diameter of the primitive. The pole of the positive direction of the x-axis 
then projects on the vertical diameter of the primitive and, as B is C®tuse, in the 

'° Other definitions of a special form have occasionally been employed by authors whose main concern 
was crystal morphology. The definition adopted here is to be preferred because it is analogous to the 
definition ofa special equivalent position in a space group (chapter 4) and leads directly to the determination 
of multiplicity in powder photographs (chapter 7). 
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southern hemisphere. The pole of (010) is coincident with the pole of the y-axis. 
Since (100) is parallel to y and z its pole lies on the primitive at the lower extremity 

of the vertical diameter. Since (001) is parallel to x and y its pole lies at the intersection 
of the vertical diameter of the primitive with the great circle whose pole is x; the pole 

of (001) thus makes an angle B —90° with z. 
An alternative setting for the monoclinic stereogram is occasionally employed. The 

y-axis is plotted in the centre of the stereogram so that the primitive represents the 
(010) plane, the mirror plane in point groups m and 2/m. The advantage of this setting 
in these two point groups is that the planes (hkl) and (hkl), which are related by the 
mirror plane, project so as to be superimposed. Some simplification is thus achieved; 
in the first mentioned setting symmetry related poles cannot be superimposed. The 
stereogram ofa crystal of point group 2/m plotted in the alternative setting is shown 
in the lower right-hand diagram of Fig 3.26. 

Orthorhombic system 

The characteristic symmetry of the orthorhombic system is the presence of three 
mutually perpendicular axes of twofold symmetry. It is obviously convenient to 
place the x, y, and z axes parallel to symmetry axes so that the unit-cell is obliged to 
be a rectangular parallelepiped. None of the axes is related to either of the other two 
so the unit-cell has, in general, edges unequal in length. The shape of the unit-cell is 
thus given. by a#ib4c¢,a= B=) = 90°. 

The plane (100) is by definition parallel to the y and z axes and, since x, y, and z 
are mutually perpendicular, its pole is coincident with the x-axis. Similarly the 
normals to the planes (010) and (001) are respectively coincident with the y and z axes. 

The orthorhombic system comprises three point groups. Each is represented by a 

mmm 

Fig 3.27 The orthorhombic point groups. The stereograms show poles of the forms {100}, 

{010}, {001}, {011}, {101}, {110}, {111}, and {121} in each of the point groups. Where poles 
are superimposed only the pole in the upper hemisphere is indexed. 
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symbol having three positions, which state in turn the symmetry elements associated 

with the x, y, and z axes. 

The point group 222 has three mutually perpendicular rotation diads and is one of 
the point groups derived directly from Euler’s proposition. The general form {hkl} 
comprises four faces (hk!), (hk1), (hkl), and (hkl); Fig 3.27 shows five such forms {011}, 
{101}, {110}, {111} and {121}. The special forms in this point group are {100}, {010}, 
and {001}, each of which has its two faces perpendicular to a diad. 
The point group mm2 has mirror planes perpendicular to two of the reference 

axes and a rotation diad parallel to the third. Conventionally the rotation diad is 
selected as the z-axis. The general form {hkl} in this point group comprises four 
faces (hkl) and (hkl) related by the (100) mirror plane and (hkl) and (hkl) related to the 
first two by the (010) mirror plane (Fig 3.27). The special forms {0k/} and {h0l} have 
poles lying in the (100) and (010) mirror planes respectively and each consists of two 
faces (OkI) and (OKI) or (AOI) and (h0l). The special forms, {001} and {001} have only 
a single face (001) and (001), the pole of which lies on the rotation diad at the 
intersection of the two mirror planes. Analogous to the special form {001} is the 
special form of zone axes (001): the direction [001] is not related by symmetry to 
the direction [001] so that the positive and negative directions of the z-axis are 
unrelated by symmetry. In this point group therefore the z-axis is a polar axis, unlike 
the x and y axes whose positive and negative directions are related by mirror planes. 
A consequence of z being a polar axis is that poles in the northern and southern 

hemispheres of the stereogram are not symmetry related. 

ae, aie : 
The holosymmetric point group of the orthorhombic syste WEEE derived by 

adding a centre of symmetry to 222 or to mm2?, and has a rotation diad and a mirror 

plane associated with each of the reference axes, x, y, and z; the lattice of an 

orthorhombic crystal necessarily has the symmetry of this point group. This point 
group is commonly represented by its short symbol mmm, which sufficiently specifies 
the point group symmetry. The general form {hkl} in point group mmm comprises the 
eight faces (hkl), (hkl), (hkl), (hkl), (hkl), (hk)), (hkl), (hkl); Fig 3.27 shows two such forms 
{111} and {121}. The special forms whose poles lie on mirror planes are {Okl}, {hOJ}, 
and {hkO}; each comprises four faces. The special forms whose poles lie on diads at 
the intersection of mirror planes are {100}, {010}, and {001}; each comprises two 
faces, e.g. (100) and (100), which are related by the (100) mirror plane. 

Stereograms of orthorhombic crystals are conventionally drawn with the z-axis in 
the centre of the stereogram, the positive direction of the y-axis at the right-hand end 
of the horizontal diameter of the primitive, and the positive direction of the x-axis at 
the lower end of the vertical diameter of the primitive as in Fig 3.27. 

Tetragonal system 
Many of the comments that we would make for other systems at this point have 
already been made for the tetragonal system and illustrated in Figs 3.20 and 3.21. It 
suffices to add here some comments on general and special forms and on the 
conventional setting for stereograms of tetragonal crystals. 

In point group 4 the general form {hkl} consists of four faces (hkl), (khl), (hkl), and 
(khl). The only special forms are {001} and {001}, whose normal is parallel to the 
tetrad; each form consists of the single face. Point group 4 likewise has a general form 
{hkl} consisting of four faces, but here they are (hkl), (khil), (hkl), and (kh); the only 
special form is {001}, which here consists of the two parallel faces (001) and 
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(001). The rotation tetrad is thus a polar axis while the inverse tetrad is non-polar. 
In point group 4/m the general form {hkl} consists of eight faces, the indices of which 

are simply derived from those of the general form in either 4 or 4 by adding a centre 
of symmetry, that is by including faces with indices opposite in sign to those already 

listed to give (hkl), (hkl), (khl), (khl), (hkl), (hkl), (khl), (khl). There are two kinds of 
special form: {hkO} consists of four faces whose poles lie in the mirror plane, (hk0), 
(khO), (hkO), and (KhO), while {001' consists of the two-faces (001) and (001) so that in 
this point group the tetrad is not polar. 

In point group 422 the general form {hkl} consists of eight faces: operation of the 

[100] diad on (hkl) yields (hkl) and operation of the tetrad on these two faces yields 
(khl) and (khl), (hkl) and (hkl), and (kh) and (khl). There are two kinds of special form, 
{100} and {110}, each consisting of four faces whose poles are parallel to diads, and 
a third special form {001} consisting of two opposite faces whose poles are parallel 
to the tetrad, which is thus non-polar. 

The general form of point group 4mm consists again of eight faces, all of which lie 
in the same hemisphere (Fig 3.21). Special forms, the poles of whose faces lie in mirror 
planes, are {hO/} and {hhl}; each comprises four faces. The special forms {001} and 
{001} consist each of a single face, the tetrad being polar. 

Point group 42m likewise has a general form consisting of eight faces (Fig 3.21). 
The special form {100} consists of four faces whose poles are parallel to the <100) 
diads. The special form, which has h = k and / unrestricted, that is {hhl} likewise 
consists of four faces, the poles of its faces lying in mirror planes. The special form 
{001} consists of two faces whose poles are parallel to the inverse tetrad. 

The holosymmetric point group of the tetragonal system 4/mmm has a general 
form with more faces than that for any other point group of the system. Faces are 
superimposed on the northern and southern hemispheres of the stereogram by the 
(001) mirror plane so that the general form has the same faces as the general form in 
any of the point groups 422, 4mm, or 42m duplicated by the (001) mirror plane to 
give sixteen faces (Fig 3.21). Special forms with eight faces are those whose poles lie 
in mirror planes, {hOl}, {hhl}, {hkO}; special forms with four faces are those whose 
poles are parallel to diads, {100} and {110}; and {001} is a special form consisting of 
two opposite faces whose poles are parallel to the tetrad. 

This is a convenient point at which to make a brief digression into morphological 
crystallography. A well-developed crystal can be assigned to the correct system 
usually by inspection and always (with a few exceptions) by precise goniometric 
measurement. Whether it can be assigned unambiguously to a crystal class however 
depends on the sort of faces displayed. Reference to Fig 3.21 shows that the disposition 
of the faces of a general form such as {121} enables the point group to be determined 
with certainty. But if the only faces present are those of the forms {001} and {h0]}, 
unambiguous determination of class will not be possible unless the crystal belongs to 
class 4; the point groups 4 and 4mm will be indistinguishable as will the point groups 
4/m, 422, 42m, and 4/mmm. Now {001} is a special form in all the tetragonal point 
groups but {h0/} is a special form only in the point groups 4mm and 4/mmm. Crystal 
morphologists have found it convenient to extend the definition of a special form to 
include forms whose faces are parallel to symmetry axes (i.e. poles of faces normal to 

axes). It then becomes possible to say that a crystal can only be assigned 
unambiguously to a class if it displays one or more general forms. On the extended 
definition {h0/} is a special form in 422 and 42m so that the disposition of the faces 
of this form enables the three point groups, 4, 4, and 4/min which {h0/} is a general 
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form to be distinguished. Since we are not primarily concerned with crystal 

morphology we shall make no further use of the extended definition of a special form. 

Stereograms of tetragonal crystals are conventionally drawn, as in Figs 3.20 and 

3.21, with the tetrad in the centre of the stereogram, th¢ positive direction of the y-axis 

at the right-hand end of the horizontal diameter of the primitive, and the positive 

direction of the x-axis at the lower end of the vertical diameter of the primitive. 

Cubic system 
The cubic system is characterized by triads equally inclined to orthogonal reference 
axes so that x, y, and z are equivalent. The unit-cell must therefore be a cube; in 

consequence the angle between any pair of planes (hkl) and (h’k’I') is independent of 

the magnitude of the unit-cell dimension a and the same for all cubic crystals, a point 

that we shall explore in detail later in this chapter. 
The point groups of the cubic system (shown in Figs 3.20 and 3.28) are derived 

from the last two effective combinations of rotation axes listed in Table 3.2 and 
illustrated in Fig 3.11(e)-(h); triads are disposed parallel to the body diagonals of a 
cube in both, with diads parallel to cube edges in 233 and parallel to face diagonals 
of the cube in 234, which has tetrads parallel to cube edges. The cubic system, like the 
orthorhombic, lacks the sort of point group that merely has a single rotation or 
inversion axis with or without a centre of symmetry. The conventional symbol for a 
cubic point group consists of three terms: first a statement of the symmetry elements 
associated with the cube edges «100, second a statement of the symmetry elements 
associated with the body diagonals <111>, and third a statement of the symmetry 
elements, if any, associated with face diagonals <110). 

The cubic point group 23 is simply the Euler combination 233. Its symmetrv 
elements are four triads parallel to <111> and three diads parallel to <100>. The 
general form {hkl} comprises twelve faces (Fig 3.28), whose indices are (hkl), (klh), 
(Ihk), (hk), (kth), (lhk), (hkl), (kth), (Ihk), (hkl), (kth), (Ihk). The special form {111} consists 
of four faces whose poles are parallel to triads; it is a tetrahedron. A similarly shaped 
but distinct special form is {* ‘ 1}. The other special form {100} consists of faces whose 
poles are parallel to diads and is a cube. 

The point group’! m3, which may be derived by addition of a centre of symmetry 

to 23, has four inverse triads parallel to ¢<111) with three diads parallel to <100> and 
three mirror planes {100}. The general form (Fig 3.28) consists of twenty-four faces. 
The special form {111} in this point group consists of eight faces and is an octahedron. 
The special form {100} is again, as in all cubic point groups, the cube. The special 
form {hkO} consists of twelve faces. 

The remaining three cubic point groups are derived from the Euler combination 
234, itself the point group 432. This point group has four triads parallel to <111), 
three tetrads parallel to ¢100>, and six diads parallel to <110>. The general form 
(Fig 3.28) consists of twenty-four faces. The special forms {111} and {100} are 
respectively the octahedron and the cube. A new kind of special form arises in this 
point group: {110} which consists of twelve faces and is known as the rhombic 
dodecahedron (dodecahedron = a twelve-faced body; rhombic because in regular 
development each face is a rhombus). The rhombic dodecahedron can also occur in 
23 and m3; in 23 it is the general form with h = k, | =0 and in m3 it is the special 
form {hk0} with h = k. 

"Strictly the symbol for this point group is m3, but m3 is always preferred. The same comment applies 
to the holosymmetric point group m3m. 
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Fig 3.28 The cubic point groups. The stereograms 
100 show the poles of the forms {100}, {110}, {210}, 

{111}, and {213} in each of the point groups, only 
m3m one face of each form being indexed. 

The point group 43m, obtained by allowing the tetrad and the diad in the Euler 
combination 234 to be inverse, has triads parallel to <111), inverse tetrads parallel 
to <100), and six mirror planes parallel to {110}. These {110} mirror planes, which 
are known as diagonal mirror planes, are inclined at 45° to two of the reference axes 
and parallel to the third reference axis; each plane of the form is parallel to two of 
the <111) triads as shown in Fig 3.29 so that each triad is a line of intersection of 
three diagonal mirror planes which are mutually inclined at 60°. The general form 
(Fig 3.28) consists of twenty-four faces. The special forms are {111} and {111}, 
tetrahedra as in 23; {100}, a cube; and {hhl}, which consists of twelve faces. 
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(011) and (071) (101) and (701) (110) and (710) 

Fig 3.29 Perspective drawings of the cubic unit-cell to show {100} and {110} mirror planes 
(represented by bold lines). Each of the three lower drawings shows a pair of {110} mirror planes 
and their relationship to the <111 > triads. Only the point groups 43m and m3m have {110} 
mirror planes. 

The holosymmetric point group of the cubic system, m3m, is derived by combining 
a centre of symmetry with either of the point groups 432 or 43m. The essential 
symmetry elements of this noint group, as specified in its short symbol, are <111) 
triads, {100} and {110} mirror planes; tetrads parallel to <100) and diads parallel to 
<110> may be regarded as consequential symmetry elements, as may the upgrading 
of the triads to inverse triads (Fig 3.20). The general form consists of forty-eight faces 
(Fig 3.28). The special forms {111}, {100}, and {110} are respectively the octahedron, 
the cube, and the rhombic dodecahedron. There are two other special forms whose 
poles lie in mirror planes, {hO/} and {hhl', each consisting of twenty-four faces. 

Stereograms of cubic crystals are conventionally drawn with the z-axis in the 

centre of the stereogram, the positive direction of the y-axis at the right-hand end of 
the horizontal diameter of the primitive, and the positive direction of the x-axis at the 
lower end of the vertical diameter of the primitive. Occasionally it is convenient to 
draw a cubic stereogram with a triad axis perpendicular to the plane of the diagram. 
but this orientation does not provide a particularly clear statement of point group 
symmetry. 

Hexagonal system 

The hexagonal system is characterized by the presence of a rotation or inverse 

hexad, which is taken as the z-axis of the unit-cell. The unit-mesh of the lattice planes 
perpendicular to the hexad can conveniently be chosen as a rhombus with a = b, 
y = 120°; x and y for the unit-cell are taken to be parallel to the sides of this rhombus. 
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Fig 3.30 Miller-Bravais indices. a . 4 : 2 
(a) shows the intersection of a plane = 
(Aki0) with the x, y, and u axes. 
(b) and (c) show respectively the 

traces of planes (1010) and (2110) on e e e 

an (0001) lattice plane. Pe oo ess 

The hexagonal unit-cell can thus be described as having a=b#c, a= f= 90°, 
y = 120°. 

The hexagonal and trigonal systems differ from all other systems in that the 
operation of their principal symmetry axis generates a third axis equivalent to x and 
y, whose positive direction is inclined at 120° to +x and to +y. This extra axis 
(Fig 3.30) is designated u, the lattice repeat along it being d = a=b. To take into 

account the generation of this extra axis a fourth index i is introduced into the symbol 
for a plane so that (hkil) represents a plane making intercepts a/h, b/k, d/i, c/l on the 
x, y, u, and z axes respectively. But three-dimensional geometry cannot be described 

in terms of four independent parameters so h, k, and i must be interrelated. Inspection 
of Fig 3.30(a) indicates that h, k, and i cannot all have the same sign; in the case 
illustrated h and k are positive while i is negative. The area of the triangle OAB is the 
sum of the areas of the triangles OAD and ODB, therefore 

La 0%, : tO dea id ee. 
rE pe 20-— 75 =a 

since i is negative. But a = b = d, 

1 eel 
therefore aa 

and h+k+i=0. 

Thus lattice planes parallel to y and z make equal intercepts on the +x and —u axes 
(Fig 3.30(b)); this set of planes is thus indexed as (1010). The set of planes whose 
normal is parallel to the x-axis (Fig 3.30(c)) makes intercepts —b and —d on the y 
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and u axes respectively, an intercept a/2 on the x-axis, and zero intercept on the 

z-axis; their indices are therefore (2110). Such four-digit indices, which are a 
modification of Miller indices to take the extra symmetry-related axis into 
consideration, are known as Miller—Bravais indices. * 

The reason for introducing Miller—Bravais indices can simply be demonstrated by 
considering the forms {1010} and {1120} in point group 6 (Fig 3.31). The stereogram 
is plotted in the conventional setting for a hexagonal crystal with z in the centre of 
the stereogram, + y at the right-hand end of the horizontal diameter of the primitive, 
and +x, +y, +u in anticlockwise sequence 120° apart: The poles of (2110), (1210), 
(1120) are coincident with the poles of +x, + y, +u respectively and their opposites 
are coincident with the poles of —x, —y, —u. The faces (0110), (1010), (1100) and 
their opposites are all parallel to z and respectively parallel to x, y, and u. The 
symmetry relationship between the faces of each of these forms is immediately obvious 
in Miller—Bravais indices: the indices of the faces of each form contain the same 
quartet of numbers regularly interchanged in position and sign. In contrast Miller 
indices wholly fail to make the symmetry relationship between the faces of a form 
immediately apparent as is evident from Table 3.6. In the sequel we shall invariably 
use Miller—Bravais in preference to Miller indices when discussing the hexagonal 
system. 

Fig 3.31 Stereogram of the forms 
{1010} and {1120} in point group 6 to 
illustrate Miller—Bravais indexing. 

Table 3.6 
Comparison of Miller—Bravais indices and Miller indices of the 
forms {1010} and {1120} 

Miller—Bravais Miller Miller—Bravais Miller 

( 1010) (100) (2110) (210) 
(0110) (010) (1120) (110) 
(1100) (110) (1210) (120) 
(1010) (100) (2110) (210) 
(0110) (010) (1120) (110) 
(1100) (110) (1210) (120) 

When using Miller—Bravais indices the addition rule still holds for tautozonal 
faces: thus (1120) lies in the same zone and between (1010) and (0110). But when 
using cross-multiplication to determine the indices of a zone axis it is necessary to get 
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rid of the superfluous index i. For this purpose the Miller—Bravais index is written 
as (hk.1) and the resultant zone axis symbol as [UV+W]. 

Analogous to Miller—Bravais face indices there is a system of four-digit zone axis 
symbols, known as Weber symbols; but these cannot be converted to Millerian 

three-digit zone axis symbols simply by omitting the superfluous index. The symbol 
[UVW] specifies a line through the origin passing through a point with coordinates 
Ua, Vb, Wc; in three dimensions three indices are necessarily adequate. In contrast 

the four-digit symbol [uvtw] contains an unnecessary index so that unless some 
condition is imposed to link u, v, and t a direction in three-dimensional space will 
not be uniquely represented by a four-axis symbol. For example if no such condition 
were imposed the x-axis could variously be described as [1000], [0110], [2110], [2110] 
as illustrated in Fig 3.32(a). The condition applied in the Weber nomenclature is 
u+v+t=O0, analogous to h+k+i=0 for Miller—Bravais face indices; the positive 
direction of the x-axis is then represented by [2110]. The symbol [UVW] represents 
the vector Ua+ Vb+ Weand the symbol [uvtw | represents the vector ua+ vb+ td+ we. 
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(a) (b) 

1210 y Fig 3.32 Weber symbols. 
(a) and (b) show an (0001) 
net of lattice points: (a) 
illustrates the various ways in 
which the +x direction can 

0110 be indexed in four-digit 
nomenclature and (b) the 
condition a+b+d =O. The 
stereogram (c) illustrates the 
condition for the plane (Aki/) 
to lie in the zone [uvtw], 
hu+kv+it+/lw =0. 



70 Crystal symmetry 

For these two vectors to be identical 

Ua+Vb+ We = va+vb+td+we 

Since the x, y, and u axes are inclined at 120%:to one another and a = b = d, 

a+b+d=0 (Fig 3.32(b)) 

Hence Ua+Vb+ We = (u—t)a+(v—t)b+we 

and U=u-t 

V=v-t 

W=w 

These equations are adequate to convert Weber symbols to Millerian zone axis 
symbols, but to convert in the opposite direction it is necessary to apply the condition 

ut+ov+t=0 

whence U =2u+v 

V =u+2v 

W=w 

so that ae 
3 

oe 2V—U 

3 

U+V 

ae ag 
w= W. 

The condition for the plane (hkl) to lie in the zone [UVW] is hU+kV+1W =0, 
which becomes when the equivalent Weber symbol [wvtw] is used 

h(u—t)+k(v—t)+lw =0 

i.e. hut+tkv—(h+k)t+lw =0. 

And if the Miller-Bravais index i is introduced, where h+k+i=0, this equation 
becomes 

hu+kv+it+lw =0, 

the condition for the plane (hkil) to lie in the zone [uvtw]. For example the zone 
[1213] contains the planes (1010), (0111), (1212) and the zone [0111] contains the 
planes (2110), (1011), (1123). The addition rule yields the indices of the planes at the 
intersection of these two zones as (3121) and its opposite (3121) as shown in Fig 3.32(c). 

To determine the indices of a plane at the intersection of two zones whose axes are 
represented by Weber symbols it is necessary to convert to three-digit zone axis 
symbols before cross-multiplying. Thus [1213] and [0111] become respectively [011] 
and [121]. Cross-multiplication 

0}1 1 0 Lh 
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yields (31.1) i.e. (3121) and its opposite (3121) for the faces common to both zones. 
Similarly the Weber symbol for the zone containing the faces (2111) and (0111) is 
determined by first cross-multiplying with the i index omitted 

2T 1 2 Ti 
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os 2 2 

to give the three-digit symbol [222] which reduces to [111], and then converting 
to the Weber symbol [$441] which reduces to [1123]. 

The reason for introducing the Weber symbol is that it provides a clear expression 
of symmetry relationships between zone axes in the hexagonal system just as 
Miller—Bravais indices do for faces. But, as we have seen, conversion to normal 

three-digit symbols is a prerequisite to calculation. We shall therefore mostly use 
three-digit symbols [UVW] modified in one respect. To avoid ambiguity about 
which two of the three symmetry-related axes x, y, and u are in use, it is convenient 

to indicate the position of the digit referable to the omitted axis by a dagger [UV+W ]. 
For example the symbol [11/0] represents the vector a+b, whereas the symbol 
[+110] represents the vector b+d. Symmetry relationships can satisfactorily be 
displayed, although this is not often done, by varying the omitted axis. For instance 
an inverse hexad makes the zone axes [2170], [1110], [1210] equivalent (Fig 3.33); 
the equivalence becomes apparent in the symbols on rewriting as [1710], [1170], 
[+110]. One final comment has to be made on hexagonal zone axis symbols: it is 
conventional, convenient, and in no way misleading to represent the z-axis as [0001 | 
whatever symbolic notation is being used for other zone axes. 

The point groups of the hexagonal system correspond exactly in nomenclature to 
those of the tetragonal system, which we have already explored. Those having 
symmetry elements associated only with the z-axis are denoted 6, 6, 6/m. Those 
derived from the Euler combination 226 are denoted by symbols having three 
positions: first a statement of whether a rotation or inverse hexad is parallel to z, 
second a statement of whether a diad or a mirror plane is associated with the x, y, 
and u axes, and third a statement of whether a diad or a mirror plane is associated 
with <11+0) directions. The directions referred to in the third position are equally 

e ° e e e Fig 3.33 Symmetry relationships 
xt * using three-digit zone axis symbols 

in the hexagonal system displayed 
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inclined in the (0001) plane to adjacent reference axes, thus [11+0] makes angles of 

30° with +x and —y. 
In point group 6 the general form consists of six faces and the only special forms 

are {0001} and {0001} which each consists of a singlé face; the hexad is thus polar. 
In point group 6 the general form again consists of six faces, but the special form 
{0001} here has two faces; and, because the 6 axis includes a mirror plane (0001), 
{hk.0} is a special form of three faces. Point group 6/m has a general form consisting 
of twelve faces and special forms {hk.0}, consisting of six faces, and {0001} consisting 
of two faces. Stereograms showing selected forms in these three point groups are 

shown in Fig 3.34. 
The Euler combination 226 becomes on rearrangement of its symbol into the 

conventional form the point group 622. This point group has a rotation hexad 
[0001 ] and two sets of rotation diads, one set parallel to x, y, and u, the other parallel 
to <11+0>. The general form (Fig 3.34) consists of twelve faces; the special forms 

{2110} and {1010} each have six faces; and the special form {0001} consists of the 
parallel faces (0001) and (0001). 

Point group 6mm has a rotation hexad [0001 | and two sets of mirror planes {2110} 
and {1010}. The general form once again comprises twelve faces, but here they all lie 
in the same hemisphere (Fig 3.34). The two special forms whose faces have poles 
lying in mirror planes are {2hhhl\ and {hOhl}; each comprises six faces. The special 
forms {0001} and {0001} in this point group each has a single face; the hexad is 
therefore polar. 

Point group 6m2 has an inverse hexad [0001], mirror planes {2110} and diads 
<11+0>. The general form (Fig 3.34) comprises twelve faces, which appear on the 
stereogram in superimposed pairs because the 6 axis includes a mirror plane (0001) 
as is evident also from the stereogram for point group 6. Special forms related to 
mirror planes are thus {hOAl} and {hk.0}, each comprising six faces. There are two 
special forms associated with diads, {1010} and its opposite {1010} each of which has 
three faces. The only other special form, of two faces, is {0001}. In this point group, 
as in 42m, there are two orientations 6m2 and 62m depending on whether the x-axis 
is taken perpendicular to a mirror plane or parallel to a diad. The distinction here 
too can only be made on the basis of which gives x parallel to the shortest lattice 
repeat in the (0001) plane. 

The holosymmetric point group of the hexagonal system has a rotation hexad and 

perpendicular mirror plane associated with [0001 | combined with a diad and a mirror 
plane associated both with the x, y, u axes and with the directions <11+0). The full 

Ondrcdar fd 
symbol Serre commonly abbreviated by omission of the diads and written 

6/mmm. The general form (Fig 3.34) here consists of twenty-four faces. Special forms 
associated with mirror planes are {2hhhl}, {hOhl}, and {hk.0}, each comprising twelve 
faces. Special forms associated with diads, {2110} and {1010}, have the number of 
their faces again halved to six. The special form {0001} comprises two parallel faces. 

It is conventional to draw stereograms of hexagonal crystals, as in Fig 3.34, with 
z in the centre of the stereogram and the positive direction of the y-axis at the 
right-hand end of the horizontal diameter of the primitive. The lower end of the 
vertical diameter of the primitive is then [2140]. 

Fig 3.34 The hexagonal point groups. The stereograms show the poles of the forms {0001}, 
{1070}, {2110}, {1011} {2111}, and {3121}. Only one face of each form is indexed; (0001) 
is not indexed. 
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Trigonal system 

The characteristic symmetry of the trigonal system is the presence of a rotation or 

inverse triad. It is common practice to describe trigonal crystals in terms of the same 

unit-cell as we have used for the hexagonal system. The rotation or inverse triad is 

parallel to the z-axis; the x and y axes are disposed at 120° to one another in the 

plane normal to the z-axis. As in the hexagonal system it is customary to introduce 

an additional axis u such that +u is inclined at 120° to +x and +y in the plane 

normal to the triad. Miller—Bravais indices, Weber symbols, and zone axis symbols 

of the form [UV+W] are used as in the hexagonal system. 
The point groups of the trigonal system (Fig 3.20) follow a sequence different from 

that of the hexagonal and tetragonal systems because we are here concerned with an 
axis of odd order. The combination of a rotation triad with a centre of symmetry is 
equivalent to an inverse triad. The combination of a triad and a mirror plane 
associated with the same direction, that is 3/m or 3/m, has the symmetry of point 
group 6, higher symmetry than is admissible in this system. There are only two point 
groups with symmetry elements associated with, a single direction, 3 and 3 (Fig 3.35). 
In point group 3 the general form comprises three faces and the only special forms 
are {0001} and {0001}, each of which has a single face; the triad is therefore polar. 
In point group 3 the general form comprises six faces and the special form {0001} 
two faces. 

The remaining point groups of the trigonal system are derived from the Euler 

combination 223, which is itself the point group 32. For each of these point groups a 
symbol having two positions specifies the combination of symmetry elements 
completely: the first position states whether [0001 ] is a rotation or inverse triad, the 
second position states whether a diad, a mirror plane or both is associated with the 
x, y, and u axes. Point group 32 has a rotation triad parallel to [0001] and diads 
parallel to x, y, and u. The general form (Fig 3.35) in point group 32 comprises six 
faces. There are special forms {2110} and {2110}, each of three faces, and {0001} of 
two faces. 

Point group 3m has a rotation triad parallel to [0001] and mirror planes {2110} 
perpendicular to the x, y, and u axes. The general form (Fig 3.35) contains six faces. 
There are two kinds of special form: {hOhl} with three faces and {000/}, where 
|= +1, with a single face. The triad is therefore polar. 

The holosymmetric point group of the trigonal system is derived by adding a centre 

of symmetry to either 32 or 3m. Its full symbol is ce which states the presence of 

an inverse triad parallel to the z-axis, diads parallel to x, y, u and mirror planes 

perpendicular to x, y, u. It is usually known by its short symbol 3m. The general 
form (Fig 3.35) consists of twelve faces. There are three kinds of special form: {hOhl* 
of six faces, {2110} also of six faces, and {0001} of two faces. 
We have tacitly assumed that the rotation or inverse diads in the (0001) plane are 

parallel to the shortest lattice repeats in that plane. Structurally, there is no reason 
why that should be so; the lattice has diad symmetry about <11+0) as well as about 
<10+0>. If the relationship of the diad axes to the shortest lattice repeat is known a 
third position is introduced into the point group symbol to indicate the symmetry 
associated with ¢11+0) directions as in the hexagonal point groups. Thus 321 or 3ml 
or 3ml indicates that it is known that the rotation or inverse diads are parallel to 
x, y, and u, while 312 or 31m or 31m indicates that the axes of diad symmetry are 
parallel to <11+0). 
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Fig 3.35 The trigonal point groups. The stereograms show the poles of the forms {0001}, 

{1010}, {2710}, {1011}, {2111}, and {3121}. Only one face of each form is indexed; (0001) 

is not indexed. 
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Torn 

Fig 3.36 The rhombohedral unit-cell: a = 6b =c, 
a =P = ¥ 00° < 1207 

b=c 

B=y 

Our discussion of the trigonal system so far has been in terms of the unit-cell of the 
hexagonal system, but the trigonal system has a unit-cell peculiar to itself. This is the 
unit-cell illustrated in Fig 3.36; it has its x, y, and z axes equally inclined to the triad 

with a=b=c, a= fB=y< 120°. A solid body of such a shape is known as a 
rhombohedron. This is the only conventional unit-cell in crystallography which has 
all its symmetry axes necessarily non-parallel to its reference axes. For this reason 
and because of its inconvenient geometry the rhombohedral unit-cell is little used for 
the description of trigonal crystals; the hexagonal unit-cell is generally preferred. 

For a trigonal crystal indexed on the rhombohedral lattice angular relationships 
between faces are dependent only on the interaxial angle « and independent of the 
unit-cell edge a. Stereograms are usually plotted with the triad [111] in the centre of 
the stereogram and the x-axis on the lower half of the vertical diameter of the 
primitive at the appropriate inclination to the triad (Fig 3.37(a)). The zones [100], 

(a) (b) 
Fig 3.37 Rhombohedral indexing. The stereogram (a) shows the disposition of the reference 
axes about the triad, which is plotted centrally. The stereogram (b) shows how faces may be 
indexed on rhombohedral axes by use of intersecting zones. 
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[010], [001] can then be plotted by drawing the great circles whose poles are 
respectively x, y, and z (Fig 3.37(b)). It is evident from the symmetry of the stereogram 
that the normal to (111) is parallel to the triad [111] and faces (hkl) with 

h+k+I=0 lie on the primitive. The position of any pole can thereafter be found 
by intersection of zones: for instance (110) lies at the intersection of the zones [001] 
and [110]. 

The plotting of trigonal crystals in terms of the hexagonal lattice needs no 
comment; it is exactly the same as for hexagonal crystals. 

Interplanar and interzonal angles 

To conclude this chapter we begin to consider in general terms how the angle 
between a pair of planes (hkl) and (h’k'l') or between a pair of zones [UVW] and 
[U'V'W’] is related to the dimensions of the unit-cell in each of the crystal systems. 
At this stage it is possible only to set down certain basic equations and to indicate 
explicitly how certain simple calculations may be performed; it is only after the 
powerful methods of spherical trigonometry have been introduced in chapter 5 that 
the general problem can be solved in any system. 
We begin with the least symmetrical system, the triclinic system, and progress to 

more symmetrical systems, obtaining more immediately useful results as the symmetry 
increases. Consider the triclinic stereogram shown in Fig 3.38(a) on which the poles 
of the general plane (hkl) and of the planes (100), (010), (001) and the zones containing 
these planes in pairs are plotted. The symbols of the axes of the zones shown in the 
figure are [01k], [l0h], [khO], [100], [010], and [001]. The zone axes [0/k], [010], and 
[001] are all parallel to the plane (100). The disposition of these three zone axes in 
the (100) plane is shown in Fig 3.38(b): the interaxial angle between the y and z axes 
is « (shown on the stereogram as the angle between the great circles whose poles are 

(a) 

Fig 3.38  Triclinic geometry. The stereogram (a) shows the principal zones and the zones which 
serve to define the angles @, ... &,. The disposition of zone axes in the (100) plane is shown in 
the lattice section (b), from which the relationship between ¢,, @, and the axial ratio b/c can be 
demonstrated. 
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these axes) and [0/k] is drawn from the origin through a point with coordinates 
0, —Ib, kc. Let the interzonal angles [001] :[0/k] and [010] :[0/k] be respectively 
go; and ¢2. Then OPC = BOP = ¢;2 so that in the triangle OCP 

’ 

sind; Ib _ b/k ; 

sing, kc c/l’ 

Now, returning to Fig 3.38(a), the angle between the great circle through the poles of 
(100) and (010) and the great circle through the poles of (100) and (hkl) is the angle 
#,; and likewise the angle between the great circle through the poles of (100) and 
(hkl) and the great circle through the poles of (100) and (001) is the angle #,. The 
analogous relationships 

sing; _ a/h 

sing,  b/k 

sings c/l 

= sings a/h 

can be derived by identical arguments. All six angles ¢, to @, are marked on 
Fig 3.38(a). The reader will observe that the form of these three relationships is such 
that they are particularly easy to remember. 

This is as far as relationships between interzonal angles and unit-cell dimensions 
can conveniently be taken in the triclinic system without recourse to spherical 
trigonometry (chapter 5). 

In the monoclinic system some simplification is achieved because the interaxial 
angles « and » are right-angles. Consequently (Fig 3.39) 6, +6, = ¢3+¢4 = 90° so 
that the first and second relationships for the triclinic system become 

b/k 
tan d; 7. 

a/h 
tan d3 =. 

And since the y-axis is normal to (010), the great circle on which the poles of planes 
in the [010] zone lie is perpendicular to the pole of (010). Therefore 

os = (001):(h0) 

6 = (hOI):(100). 

Therefore the third triclinic relationship becomes 

sin(001):(h0l) _ c/l 

sin (h01):(100) — a/h | 

for the monoclinic system. This expression enables the angle between any pair of 
faces (hO/) and (h’O/') in the [010] zone to be evaluated from a knowledge of a and c 
if it is borne in mind that (001):(100) = 180°—. 

Once the angles ¢,, @2 and (001):(h0/) have been calculated from known unit-cell 

Fig 3.39 Monoclinic geometry. The stereogram (a) shows the principal zones and zones 
through the general pole (hk/); the angles , +, = 3+, = 90° and +, = 180°—f. The 
lattice sections (b)—(e) are referred to in detail in the text. 
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dimensions and the appropriate great circles plotted on the stereogram the pole of 

any other face (h’k’l') can be located either by intersecting zones or by calculation 

and the angle (hkl):(h’'k'l') determined by measurement with the stereographic net. 

For more precise evaluation of the angle: (hkl):(’'k'l’) the methods of spherical 

trigonometry detailed in chapter 5 are required. 

Further simplification is achieved in the orthorhombic system (Fig 3.40) where 

a = B = y = 90°. The three general expressions here become 

b h 
tan d, =F tan ¢3 = tangs = < - 

and, since the great circle representing the [100] zone is perpendicular to the pole of 

the (100) face, 6, = (Okl):(010) 

therefore tan (Ok/):(010) = a 

and similarly 

tan (hk0):(100) = ou 
cf ~ b/k 

; c/l 
and tan (hO/]):(001) =—. 

alh 

These expressions enable the angle between any pair of faces in the [100] or [010] 
or [001] zone to be evaluated from known unit-cell dimensions. 

Fig 3.40 Orthorhombic geometry. The 
stereogram (a) shows the principal zones and 
zones through the general pole (hk/). The lattice 

section (b) in the (001) plane illustrates the 
relationship tan (AKO) : (100) = (a/h)/(b/k). 
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b/2=a/, 

(100) 
yx 

Fig 3.41. Tetragonal geometry. The stereogram (a) shows the principal zones and zones through 
the general pole (Ak/). The lattice section (b) in the (001) plane illustrates the relationship 
tan (AKO) : (100) =k/hA for the plane (120). 

In the tetragonal system (Fig 3.41) the further simplification a = b is introduced so 
that the three orthorhombic equations become 

tan (Okl):(010) = = 

tan (hkO):(100) = : 

c/l 

a/h 

It is immediately apparent from the second of these that interplanar angles in the 
[001] zone are independent of the unit-cell dimensions, that is to say the angle 
(hkO):(100) is the same for all tetragonal crystals and in particular (110):(100) = 45°. 
Angles in the [100] and [101] zones are symmetry related so that (Okl):(001) = 
(hOl):(001) when h = k. 

In the cubic system (Fig 3.42) a= b = c so that 

tan (h0/):(001) = 

tan (Okl):(010) = 

tan (hk0):(100) = 

SS Sle Slo 
tan (hO/):(001) = 
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100 

(a) 
Fig 3.42 Cubic geometry. The stereogram (a) shows the principal zones and zones through the 
general pole (hk/), taken as (321). The lattice section (b) in the (001) plane illustrates the 
relationship tan (AKO) : (100) = k/A for the plane (320). 

Interplanar angles in each of the zones [100], [010], [001] are thus independent of 
the magnitude of the unit-cell edge a; that the same is true for any zone [UVW] 
in a cubic crystal should be self-evident, but will be shown explicitly in chapter 5. 

We shall make no mention of the trigonal and hexagonal systems at this point 
except to say that this type of approach is not especially fruitful in these systems. 

In the three systems that have orthogonal axes, certain interplanar angles can be 

calculated quite efficiently and straightforwardly by plane geometry. In the ortho- 
rhombic system the poles of planes in the [001] zone, that is planes with indices (hk0), 
lie in the (001) plane, which of course contains the x and y axes (Fig 3.40(a)). 
Therefore, since the (hkO) plane makes intercepts a/h and b/k on the x and y axes 
and since the normals to (100) and (010) are respectively the x and y axes (Fig 3.40(b)), 

: a/h 
tan (hk0):(100) = b/k 

The expressions for (Ok/):(010) and (h0/):(001) can be obtained by analogous 
arguments. 

The geometrical argument is precisely the same in the tetragonal and cubic systems, 
where it yields the simplified results previously noted. 

In the monoclinic system (Fig 3.39(b)) the perpendicular distance of the (100) plane 
from the origin is acos(f—90°) = asin f. Therefore any plane (hkO) parallel to the 
z-axis will make an intercept a/h.sin B on the normal to (100). Now the planes (100), 
(hk0), (010) lie in the zone [001 ] so their normals are coplanar (Fig 3.39(c)). Moreover 
the normal to (010) is the y-axis, which is perpendicular to the normal to (100). 
Therefore 

tan (100):(hk0) = sin B | - 
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Similarly by consideration of the normals to the faces (001), (Ok), (010), which lie in 
the plane normal to [100] it can be shown (Fig 3.39(d)) that 

tan (001):(Okl) = ;sin B i 

These two expressions are sometimes of greater practical utility than the corres- 
ponding expressions tan @, = (b/k)/(c/I) and tan #3 = (a/h)/(b/k) derived earlier for 
the monoclinic system. 

Angular relationships in the [010] zone in the monoclinic system are less 
conveniently established by plane geometry, but nevertheless useful results can be 
obtained. The x and z axes and the normals to the planes (100), (h0/), (001) lie in the 
(010) plane (Fig 3.39(e)). The (h0/) plane makes intercepts a/h and c/l on the x and z 

axes respectively. If OR is the normal to (h0/) and OQ the normal to (001), 

RQO+QOR = AQO+OAQ = 90° 

and therefore GOR = OAQ = (001):(h01) 

Similarly OPR+ROP = OPC+PCO = 90° 

hence ROP = PCO = (h01):(100) 

In the triangle OAC 

sin OAC c/l 

sinACO a/h 

therefore ee ee cid 
sin (h01):(100)  a/h’ 

If the plane (h0J), also shown in Fig 3.39(e), is similarly considered the analogous 
relationship 

sin(001):(hOl) — ¢/l 

sin(h0l):(100) a/h 

is obtained; of course (001):(A0/) 4 (001):(h0/). These relationships are the same as 
those obtained earlier by consideration of interzonal angles. 
We discuss finally hexagonal crystals and trigonal crystals indexed on the hexagonal 

unit-cell where the simple geometrical approach yields useful results. The normals 
to the faces (2110), (2h, h, h, 1), (0001) are coplanar (Fig 3.43(a)) with the x and z axes. 
The (2h, h, h, 1) plane makes intercepts a/2h and c/l on the x and z axes respectively 
(Fig 3.43(b)). Therefore 

c/l 
tan (2h, h, h, 1):(0001) = 25; 

A face (hOhl) makes intercepts a/h on the +x and —u axes (Fig 3.43(c)). It must 
therefore make an intercept a/h.cos 30° on the normal to (1010). Since the z-axis is 
coplanar with the normals to (hOAl) and (1010), as illustrated in Fig 3.43(d). 

tan (hOhl):(0001) = : | cos 30°. 
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A face (hk.0) makes intercepts a/h and a/k on the +x and +y axes (Fig 3.43(e)) 
and its normal is coplanar with these axes. If OR is the normal to (hk.0) and 0 the 

angle (2110):(hk.0), then 

, 

OR = = cos = 7 cos(120°—0) 

cos 0 cos@ ./3sind 
h = — ence h Ik oe Ik 

(0001) 

(a) 
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h+2k 

nj” 
Thus the angular relationships of faces in the [0001] zone are independent of the 
unit-cell dimensions of the hexagonal or trigonal lattice and are the same for all 
crystals referable to these systems. 

In the next chapter we explore the symmetry of the internal structure of crystals 
and in chapter 5 resume consideration of the evaluation of interplanar and interzonal 
angles. 

and tan (2110):(hk.0) = 

Two-dimensional point groups 

By way of preparation for chapter 4 we now deal briefly with the two-dimensional 
point groups, that is the combinations of symmetry elements that can operate on a 
two-dimensional lattice. The symmetry operators for a two-dimensional lattice are the 
rotation axes 1, 2, 3, 4, and 6 and the line of symmetry (analogous to the plane of 
symmetry in three-dimensions and represented by the same symbol m). Rotation axes 

are necessarily perpendicular to the plane of the two-dimensional lattice and therefore 
cannot be combined with one another. Each type of rotation axis can however be 
combined with a line of symmetry in the plane of the lattice. There are thus ten 
combinations of symmetry elements that can operate on a two-dimensional lattice, 
the ten two-dimensional point groups; these comprise each of the five rotation axes 
on its own and combined with a line of symmetry. The ten two-dimensional point 
groups are listed in Table 3.7. When a rotation axis of even order (2, 4, or 6) is 
combined with a mirror line a set of mirror lines is produced equally inclined in the 
plane of the lattice to those of the primary set; these are noted in the third place of 
the conventional symbol for the point group, i.e. 4mm rather than just 4m. In the final 
column of Table 3.7 the shape of the conventional unit-mesh of the two-dimensional 
lattice is noted, oblique, rectangular, square, or hexagonal; this is a point that will be 

taken up in the next chapter. 

Table 3.7 
The two-dimensional point groups 

Angle between mirror 
Combination of Conventional lines of primary and Conventional unit-mesh of 
symmetry elements symbol secondary sets lattice 

1 1 — ay hb, y+ 90° Oblique 

l+m lm — ax b, y= 90° Rectangular 
2 2 — a#b,y #90° Oblique 
2+m 2mm 90° AON a) Rectangular 

3 3 — a=b,y=120° Hexagonal 
3+m 3m — a=b,y=120° Hexagonal 
4 4 - a= be 0 Square 
4+m 4mm 45° a=b,y=90° Square 
6 6 ~- a=b,y=120° Hexagonal 
6+m 6mm 30° a=b,y=120° Hexagonal 

Note: 
The symbol # implies that equality is not required by symmetry 

Fig 3.43 Hexagonal geometry. The stereogram (a) serves to define the angles 1 and € used in 
the lattice sections (b)—(e); (b) is in the plane of the x and z axes, (c) in the (0001) plane, 
(d) in the plane of the z and [2140] axes, and (e) in the (0001) plane. 
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Twinning 
Some substances commonly crystallize as composite crystals of a sort known as 
twinned crystals or, colloquially, as twins. Well-known examples are copper, diamond, 
fluorite (CaF ,), and calcite (CaCO). A twinned crystal consists of two or more 

individual single crystals joined together in some definite mutual orientation; the 
lattice of one individual is related to that of the other individual or individuals in the 
composite crystal by some simple symmetry operation. 

Twinned crystals may be produced in various ways> As a crystal grows from its 
initial nucleus some accident of growth may cause it to twin, such accidents being 
for a variety of reasons very much more probable in some structures than in others. 
Twinning may alternatively provide a means of relieving the strain induced by some 
applied stress. Twinning may also be produced as the result of polymorphic 
transformations when a structure of higher symmetry is converted to a structure of 
lower symmetry on cooling. These are the three principal types of twins and they 
are known respectively as growth twins, deformation (or glide) twins, and transformation 
(or inversion) twins. The anti-phase domains produced when a disordered alloy orders 
on cooling (chapter 10) are a special sort of transformation twinning. Here we shall 
concern ourselves with the geometry of twinning rather than with its physical origin 
and most of our examples will be growth twins. 

The mutual relationship between the two components of a twinned crystal is 
described by a statement of the symmetry operation necessary to bring the lattice of 
one component-into coincidence with that of the other component. The necessary 
operation is very commonly either a rotation through 180° about a direction known 
as the twin axis or reflexion in a plane known as the twin plane. A twin axis is always 
a zone axis or the normal to a lattice plane and a crystal twinned about such an axis 
is known as a rotation twin; a twin plane is always a lattice plane and a crystal 
twinned on such a plane is known as a reflexion twin. In a rotation twin where the 
twin axis is a zone axis rotation may be through 60°, 90°, 120°, or 180°, the first three 

cases being of very much less common occurrence than the last. 
It is obvious that a twin axis cannot be parallel to a symmetry axis of even order 

in the point group of the crystal, nor can a twin plane be parallel to a mirror plane 
of the point group. Thus a diad, tetrad, or hexad cannot be a twin axis (at least not 
the common sort of twin axis rotating through 180°), but a twin axis may be parallel 
to a triad. In the case of a twin axis parallel to a triad, the twinning operation can. 
variously be described as a 60°, a 180°, or a 240° rotation about the twin axis; it is 
conventional and convenient however always to consider such a twinning operation 
as a rotation of 180°. 

Where the two components of a twinned crystal are joined in a plane, the crystal 
is called a contact twin and the plane of mutual contact, which is a lattice plane, is 
known as the composition plane. In general it is true to say that if the twin axis is a 
zone axis, then the composition plane is parallel to the twin axis, but if the twin axis 
is the normal to a lattice plane then the composition plane is normal to the twin axis; 
in reflexion twins the composition plane is parallel to the twin plane. Figure 3.44 
illustrates contact twinning in a cubic crystal of point group 43m which exhibits the 
two complementary forms {111} and {111}. The combination of these two tetrahedral 
forms in a truly single crystal is shown in Fig 3.44(a). A contact twin in which twinning 
is by rotation about the normal to (111), which is of course parallel to the zone axis 
[111] in the cubic system, is shown in Fig 3.44(b). Another contact twin in which 
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(b) (c) (d) 

Fig 3.44 A crystal of a cubic substance of point group 43m exhibiting the forms {111} and {111} 
is shown in (a). Twinning of a similar crystal by rotation about the normal to (111) is shown in 
(b) and by reflexion in (117) in (c). In (a)—(c) faces of the form {111} are shown clear and of 
the form {111} shaded. A twin of a crystal of the centrosymmetric class m3m which exhibits 
the form {111} and is twinned on (111) is shown in (d). An interpenetrant rotation twin, twin axis 
[11T], of a crystal of class 43m exhibiting only the form {111} is shown in (e): the face (111), 
which lies at the back of the crystal as shown, is normal to the twin axis and is in consequence 
coplanar with (111). Single crystals cannot display re-entrant angles; but twinned crystals, such 
as those shown here, frequently do so. 

twinning is by reflexion in (111) is shown in Fig 3.44(c). Inspection of figures (b) and 

(c) shows that although the two twinned crystals are alike in shape, they differ in the 
disposition of symmetry-related faces; the difference is clearly displayed when the 
twinning operations are represented in stereographic projection. In Fig 3.45(a) the 

pole N is related to the pole N by the twin operation of rotation through 180° about 
the twin axis P. In Fig 3.45(b) the pole N’ is related to the pole N by the twin 
operation of reflexion in the twin plane whose pole is P. Since N and N are related 
by 180° rotation about P, it follows that N, P, and N are coplanar, that is they lie 

on the same great circle, and N:P = P:N. Since N’ is the reflexion of N in the twin 

plane, whose normal is P, it follows that N, P, and N’ lie in a plane normal to the 

twin plane and the angles which N and N’ make with the twin plane are both equal 
to 90°—N:P so that N’:N = 180°—2(N:P). Therefore N’:N = (N’:N)+(N:N) = 
(N’:N)+2(N:P) = 180°, so that N’ is the opposite of N and they are in general only 
equivalent if the crystal is centrosymmetric. The reader will recall that we have 
earlier shown that the operation of a mirror plane followed by the operation of a 
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<7 PD 

(a) (b) 

Fig 3.45 Stereograms to illustrate the twinning of a face whose normal is N by rotation (a) about 
a twin axis P to yield the face N or by reflexion (b) in the plane (shown bold) whose normal is P 
to yield the face N’. Since N’ is the opposite of N twinning by reflexion and by rotation are 
indistinguishable in a centrosymmetric crystal. 

centre of symmetry generates a rotation diad normal to the mirror plane. Thus in a 
centrosymmetric crystal twinning by rotation about a twin axis and twinning by 
reflexion in a plane normal to the twin axis are indistinguishable operations; in these 
circumstances it is sufficient to state that the crystal is ‘twinned on (hkl) and 
unnecessary to specify whether by reflexion in the plane (hkl) or by diad rotation 
about the normal to (hkl). The twin of a cubic substance of class m3m illustrated in 
Fig 3.44(d) may thus be simply described as ‘twinned on (111). 

In contrast to contact twins, where the two components of the twinned crystal are 
joined only on an interface parallel to a lattice plane, in interpenetrant twins the 
interface between the twin components is irregular and the twin components in such 
twinned crystals are often intimately intergrown as illustrated in Fig 3.44(e). 

The angular relationships between the faces of twinned crystals can, just as for 
truly single crystals, conveniently be displayed on a stereogram. One twin component 
is plotted in the standard orientation for its crystal system and the other in the 
orientation determined by the twinning operation (Fig 3.46). In plotting the poles 
of the faces of a twinned centrosymmetric crystal it is usually convenient to regard 
the second component as derived by rotation twinning from the first component 
because rotation about an inclined axis is very much more easily performed than 
reflexion in an inclined plane in the stereographic projection. The faces of each 
component of the twinned crystal are indexed separately in terms of the conventional 
orientation of the crystallographic reference axes within that component, the indices 
of the faces of one component being distinguished by underlining so that (hkl) refers 
to one component and (hkl) to the other. 

So far we have restricted our discussion to twinned crystals containing only two 
components; but multiple twins consisting of three or more components also occur. In 
some multiple twins the twinning operations which relate adjacent components are 
all identical; then the components tend to take the form of lamellae parallel to the 
composition plane so that such twins are known as lamellar or polysynthetic twins 
(Fig 3.47(a)). Polysynthetic twins may be on a macroscopic, microscopic, or sub- 
microscopic scale. 

Another sort of multiple twin is the multiplet, where several components are 
produced by the operation of symmetry-related twin planes or twin axes. For instance 



Twinning 89 

Fig 3.46 The stereogram shows 
the poles of the faces of a crystal 
exhibiting the form {100} in the 
point group ™3m and the poles of 
the faces {100} of its twin on (111). 
The faces of the twin have been 
indexed on the assumption that it is 
a rotation twin about the normal to 
(111); on the alternative assumption 
that the twinning is by reflexion in 
(111) the poles of the form {100} 
would be identically placed but the 
signs of their indices would be 
reversed. The plane (111) is shown 
as a bold great circle. 

Twinon / ‘\ Twin on 

(111) ns \ (111) 
4 \ 

(b) 

(a) 
Fig 3.47 Polysynthetic and multiplet twinning. (a) is a section parallel to (110) through an 
octahedral crystal of point group m3m twinned polysynthetically on (111). (b) is a section 
parallel to (110) through an octahedral crystal of point group m3m twinned on the symmetry 
related planes (111) and (111) so as to become a triplet. In each case the traces of cdmposition 
planes are shown as broken lines. 

if a cubic crystal of point group m3m can twin on (111), it can also twin on other 

planes of the form {111}, such as (111), (111), (111), and may actually do so. In such 
circumstances some twinned crystals will consist of three or more components, each 
pair of components being related by a different twinning operation. Such multiplets 
may be distinguished as triplets when they contain three components, quartets when 
they contain four, and so on. A triplet produced by twinning on (111) and (111) in a 
cubic substance of point group m3m is illustrated in Fig 3.47(b). 

Occasionally the geometry of the twinning operation may be such that the twinned 
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crystal appears to have higher point group symmetry than a single crystal of the 
same substance. Such mimetic twinning is very well displayed by the orthorhombic 
form of CaCQ3, the mineral aragonite. The point group of aragonite is mmm and its 
unit-cell dimensions are a = 4-95 A, b = 7:95 Ayc = 5-73 A. Twinning occurs on {110} 
and, since the interfacial angle (110):(110) = 63°48’ is sufficiently close to 60°, 

multiplets will appear to have a hexad parallel to [001 ]. Contact and interpenetrant 
multiplets are quite common in aragonite; an interpenetrant multiplet is shown in 
Fig 3.48. 

Fig 3.48 Mimetic twinning. Aragonite is 
orthorhombic, point group mmm, and twins 
on {110} to produce interpenetrant triplets of 
pseudo-hexagonal shape. A is the parent 
individual, B (indices underlined) is derived 

- by rotation twinning about the normal to 
(110), and C (indices doubly underlined) is 
derived by rotation twinning about the normal 
to (110). The sinuous broken fines indicate 
possible traces of the composition planes in 
this interpenetrant twin. 

The sort of twinning which we have just described in aragonite is primary in that 
it has occurred in the course of the growth of the crystal. The other common form of 
CaCOs, the mineral calcite, also displays multiple twinning; but the polysynthetic 
twinning quite commonly observed in calcite is secondary in origin, being due to the 
deformation of single crystals after their growth was complete. In both these examples 
and in general, no matter what caused twinning to take place, the twin elements (twin 
axis or plane and composition plane) are determined by the crystal structure of the 
substance. Discussion of mechanisms of twinning, about which much is known, lies 
outside our scope here; the interested reader is referred to the survey by Bloss (1971). 
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4 
Internal structure of crystalline matter 

In chapter 3 the shape of unit-cell appropriate to each crystal system was established 
and the crystallographic point groups were derived. We now proceed to relate these 
concepts in the two-dimensional or plane lattices as a preliminary to the development 

of the types of crystallographic three-dimensional or Bravais lattices. It is convenient 
that many of the significant features of the Bravais lattices are simply exemplified 
in the plane lattices. The reader is reminded of the restrictions imposed by symmetry 
on unit-cell shape, listed in Table 3.3. 

Plane lattices 
We now investigate systematically the operation of the two-dimensional point groups 
(listed in Table 3.7) on a lattice to establish the types of plane lattice. The most 
generalized unit-mesh (a 4 b; y general) has, as has already been said, a diad 
perpendicular to the plane of the mesh through every lattice point and midway 
between adjacent lattice points; whether the hypothetical two-dimensional crystal 
has point group symmetry 1 or 2 depends on the atomic arrangement and not on 
the nature of the lattice. This lattice type is known as oblique and since the unit-mesh 
contains only one lattice point it is said to be a primitive lattice; the so-called 
oblique p-lattice is shown in Fig 4.1(a). 

Next we examine the restrictions placed on lattice geometry by the presence of one 
set of parallel lines of symmetry. It is evident from Fig 4.2 that in a one-dimensional 
lattice, that is a lattice point row, lines of symmetry must either be of type I, passing 
through lattice points (Fig 4.2(a)), or of type IL, passing midway between lattice 
points (Fig 4.2(b)). A two-dimensional lattice plane will be generated either by an 
array of rows all of type I, or all of type II, or an alternation of the two types 

(Fig 4.2(c), (d), and (e)); no other arrangement will preserve the essential lattice 
criterion that every lattice point must have the same environment in the same 
orientation. If all the rows are of the same type, whether I or II, identical lattices are 
generated, the unit-mesh being a rectangle with a ¥ b, y = 90°; this is the rectangular 
p-lattice (Figs 4.1(b) and 4.2(f)). The manner in which we were obliged to arrange the 
point rows has introduced additional symmetry elements so that the rectangular 
p-lattice has mutually perpendicular sets of lines of symmetry, one set perpendicular 
to x and the other perpendicular to y, each set being separated by half the appropriate 
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(a) The oblique p-— lattice 

(b) The rectangular p-— lattice 

(c) The rectangular C—lattice 

(d) The square p—lattice 

Poss BY 
(€) The hexagonal p—lattice 

Fig 4.1 Unit-cells of the five plane lattice types. 
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Fig 4.2 Restrictions on plane lattice geometry imposed by one set of parallel lines of symmetry. 
Lines of symmetry of two types operating on lattice point rows are shown in (a) and (b). The 
remaining diagrams show plane lattices generated by an array of rows all of type | (c), all of 
type II (d), or by alternation of types | and II (e). The plane lattice shown in (e) is rectangular-c 
and that shown in (f) is rectangular-p. 

lattice spacing, a/2 and b/2 respectively; also of course a diad occurs perpendicular 
to the lattice plane at every intersection of lines of symmetry. The point group 
symmetry of this lattice is 2mm; only the atomic arrangement in the hypothetical 
structure determines whether the crystal has point group symmetry 1m or 2mm. 
We now have to return to the lattice produced by alternation (Fig 4.2(e)). The 

smallest unit-mesh is a rhombus with a’ = b’ = ,/{(a/2)? +(b/2)*} and y = 2 tan”! b/a, 
which is not in general a special angle. But it must be noted that the symmetry of 
this lattice is closely related to that of the rectangular p-lattice: it has mutually 
perpendicular sets of lines of symmetry, one set | x and a/2 apart, the other | y 
and b/2 apart, a diad at every intersection of lines of symmetry, and in addition a 
diad at the mid-point of each side of the smallest unit-mesh (Fig 4.1(c)). But the 
relationship between lattice points and symmetry elements is different: whereas in the 
rectangular p-lattice alternate lines of symmetry of either set are devoid of lattice 
points, in this rectangular c-lattice every line of symmetry passes through lattice 
points. The lattice symmetry is again 2mm and hypothetical two-dimensional crystals 

of point group symmetry 1m or 2mm may have this lattice type. It is conventional, 
and convenient, in this lattice type to take as the unit-mesh not the smallest unit-mesh 
but a rectangular unit-mesh with edges perpendicular to each set of lines of symmetry 

and edges equal to the separation of lattice points in these directions. Such a unit-mesh 
has lattice points not only at its corners but also at its centre; it is described as 
non-primitive because the lattice it generates has more than one lattice point per 
unit-mesh. The larger area of a non-primitive unit-mesh is in some respects 

disadvantageous, but for the purposes of indexing lattice planes and specifying 
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symmetry-related coordinates the advantages of a unit-mesh with edges more closely 

related to symmetry elements outweigh the disadvantages: for instance a certain set 
of symmetry-related lines would be indexed as (hk), (hk), (hk), (hk) in terms of the 
conventional non-primitive unit-mesh and, less obvibusly, as (hk), (kh), (hk), (kh) in 
terms of the smallest (primitive) unit-mesh. The nomenclature of this lattice type 
requires a word of explanation: we have designated the axes in the lattice plane as 
x and y, the corresponding edges of the conventional unit-mesh being a and b, so that 
the axis perpendicular to the lattice plane is z and the two-dimensional unit-mesh 
is the (001) face of a three-dimensional lattice of infinite repeat in the z direction; the 

unit-mesh is a rectangle and it is centred by a lattice point; therefore the lattice type 
is described as rectangular-c. 
We now return to the oblique lattice and suppose a tetrad to pass through each 

lattice point. The effect of the tetrad is to make the edges of the unit-mesh equal and 
perpendicular to one another; the unit-mesh is thus a square with a=), y = 90°. 
Introduced symmetry elements are tetrads in the centre of each square unit-mesh, 
lines of symmetry with separation a/2 perpendicular to x and perpendicular to y, 
lines of symmetry diagonal to the square with separation 3a,/2 (Fig 4.1(d)). This is 
known as the square p-lattice. The lattice symmetry is 4mm and it is applicable to 
hypothetical two-dimensional crystals whose atomic arrangement is consistent with 
either of the point groups 4mm or 4. 

If either a hexad or a triad passes through each lattice point of the oblique 
p-lattice, the unit-mesh becomes a 60° rhombus with a= b, y = 120°. Introduced 
symmetry elements are sets of lines of symmetry at 30° to one another such that one 
member of every set passes through each lattice point and a triad at the centroid of 
each of the two equilateral triangles that make up the unit-mesh (Fig 4.1(e)). The 
point group symmetry of the lattice, the hexagonal p-lattice, is 6mm, but atomic 
arrangements of inadequate symmetry may produce degeneration of the symmetry of 
the structure to the point groups 6, 3m, or 3 with retention of this lattice. 

The relationship of the 5 plane lattices to the 10 two-dimensional point groups is 
summarized in Table 4.1. 

Bravais lattices 
There are fourteen three-dimensional or Bravais lattice types differentiated one from 
another by the symmetry of the arrangement of their lattice points, the actual 
dimensions of the lattice being of course unimportant. Before proceeding to the 
development of the Bravais lattices by considering the variety of ways in which plane 
lattices can be stacked so as to be consistent with three-dimensional point group 

Table 4.1 
The 5 plane lattices 

Point group Possible crystal Shape of conventional 
Lattice type of lattice point groups unit-mesh 

Oblique p 2 ee a # b; y general 

Rectangular p 

2mm 1m, 2mm a#b;y=90° 
Rectangular c 

Square p 4mm 4, 4mm a=b;y7=90° 

6, 6mm 
Hexagonal p 6mm a= by -= 120° 

3, 3m 
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symmetry it may be helpful to the reader if we first recapitulate some statements 
made in earlier chapters, in some cases developing their implications for this topic. 

In chapter 3 we developed.seven lattice types, each primitive, each consistent with 
the symmetry requirements of one crystal system, and each having unit-cell edges 
parallel to the crystallographic reference axes of the system. We now have to 
investigate whether other arrangements of lattice points may be consistent with 
crystal symmetry in any system. We shall, for example, show that there are two 
distinct lattice types consistent with tetragonal symmetry (Fig 4.7(b) and (c)). Taking 
orthogonal axes with z parallel to the tetrad, in conformity with the usual convention 

for the tetragonal system, the lattice shown in Fig 4.7(b) has a unit-cell with lattice 
points only at its corners, that is to say it is a P-lattice;’ but the lattice shown in 

Fig 4.7(c) has a unit-cell with lattice points not only at its corners but in addition a 
lattice point at its centre. This latter type is known as the tetragonal I-lattice, I being 
the initial letter of the German word for body-centred, innenzentrierte. Of course the 
tetragonal I-lattice could alternatively be described in terms of a primitive unit-cell, 

but that would not have the characteristic tetragonal shape, a square prism, and 
consequently would not embody the characteristic symmetry of the lattice. The 
practical advantages to be gained by using such non-primitive unit-cells in general far 
outweigh the disadvantages that stem from their larger volume (the tetragonal I-cell 
contains two lattice points and so has twice the volume of the corresponding primitive 
unit-cell). 

The task of discovering how many different arrangements of lattice points are 
possible is simplified by taking into account from the start a fundamental property 
of lattices: that they are centrosymmetric and that every lattice point lies at a centre 
of symmetry. Since a lattice is a regular array of points in space, it follows that if a 
lattice point A lies at a vector distance t from a lattice point B, then a lattice point 
C must lie at a vector distance —t from B; therefore the lattice point B is a centre of 
symmetry of the lattice and so is every other lattice point. Thus our discussion of 
possible lattice types can be limited to lattices consistent with the eleven centro- 
symmetric point groups, 1, 2/m, mmm, 3, 3m, 4/m, 4/mmm, 6/m, 6/mmm, m3, and m3m. 

Our task is further simplified by making use of the observation that a lattice plane 
normal to a threefold, a fourfold, or a sixfold symmetry axis must contain lines of 

symmetry, which become planes of symmetry parallel to the axis in the three- 
dimensional lattice. Thus a lattice consistent with point group symmetry 4/m must 
display the higher symmetry of point group 4/mmm. The point groups 3, 4/m, 6/m, 

and m3 can thus be struck off our list and we are left with the seven point groups 1, 
2/m, mmm, 3m, 4/mmm, 6/mmm, and m3m, which are the holosymmetric point groups 
of the seven crystal systems. It follows that in deriving the Bravais lattices for the 
tetragonal system, for example, all we have to do is to discover the types of lattice 
consistent with the presence of a single tetrad; all such lattices will have point group 
symmetry 4/mmm and be characteristic of the tetragonal system. 
We now consider the variety of ways in which plane lattices can be superimposed, 

or stacked, to produce three-dimensional lattices consistent with the characteristic 
symmetry of each crystal system. We start with the triclinic and proceed in sequence 
of increasing symmetry, leaving the trigonal and the hexagonal systems, which pose 
special problems, to the end. We shall consistently use t to represent the stacking vector 

'We follow here the practice of International Tables for X-ray Crystallography, vol I (1969) in using 
lower case letters for plane lattice types, p and c, and capital letters for Bravais lattice types, P, C, I, F, etc. 
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between adjacent lattice planes and define t as the vector from a lattice point in one 
plane to a lattice point in the immediately superimposed plane. 

Triclinic system io , 

Suppose an oblique p-lattice plane is superimposed on another that is identical in 
such a manner that the diads perpendicular to the two planes do not coincide and 
that this mode of superposition is repeated indefinitely. The result is a primitive 
triclinic lattice; if the dimensions of the unit-mesh of the original lattice plane are 
a # b, y general and the stacking vector has magnitude @ and makes angles « and f 
with the directions of y and x respectively, then the dimensions of the general 
parallelpiped that is the unit-cell of this triclinic P-lattice will be a#b¥#c, 
a # B # y. Since the holosymmetric class of the triclinic system has only a centre of 
symmetry, which is the symmetry element common to all lattice types, there is no 

advantage to be gained by selecting non-primitive unit-cells in this system. 

Monoclinic system 

Again our starting point is the primitive oblique plane lattice, the axes of which we 
shall relabel as x and z, interaxial angle f, in order to produce the monoclinic Bravais 
lattices in conventional orientation. We consider the various ways in which two such 

lattice planes of identical unit mesh can be superimposed so that their diads are 
coincident. It is apparent from Fig 4.4(a) that there are four types of diad normal to 
the plane of any oblique p-lattice; these are labelled I-IV and are such that diads of 
type I pass through lattice points, diads of type II lie midway between lattice points 
that are a distance a apart, diads of type III lie midway between lattice points that 
are a distance c apart, and diads of type IV pass through the centre of each unit-mesh. 
There are four ways in which such plane lattices can be stacked so as to achieve 
coincidence of diads and these are illustrated in Fig 4.4: (i) the stacking vector t has 
no component in the xz plane so that each diad is superimposed on one of its own 
kind, ie. I on I, I on II, If on III, IV on IV, (ii) the stacking vector t has a 
component 3a in the xz plane so that diads are superimposed according to the 
scheme I on II, II on I, I on IV, IV on IIL, (iii) the stacking vector t has a component 
$c in the xz plane so that diads are superimposed I on III, II on IV, III on I, IV on II, 
and (iv) the stacking vector t has a component 3(a+c) in the xz plane so that the 
stacking scheme is I on IV, II on II, III on II, IV on I. 

The stacking sequence (i) with t = b (Fig 4.3(a)) generates a primitive monoclinic 
lattice, the unit-cell of which has lattice points only at its corners and dimensions 
a#b#c,4=y = 90°, B obtuse. As in the oblique plane lattice (Fig 4.4(a)) there are 
four types of diads with coordinates (Fig 4.4(b)) 0, y, 0; 3, y, 0; 0, y,4; 4, y, 4; where 
yisa variable. Mirror planes lie parallel to (010) and are of two types, the members 
of each type being separated from one another by b: one type comprises the (010) 
planes passing through points with coordinates 0, y, 0, where y is integral and the 
planes of this set contain all the lattice points; the other type comprises the (010) 
planes passing through points 0, y, 0, where y = (2n+ 1)/2. The point group symmetry 
of the lattice is 2/m, but the point group symmetry of the crystal referred to it may 
be 2 or m or 2/m. This lattice type is known as the monoclinic P-lattice. 
The stacking sequence (ii) has a stacking vector of the form t = 3a+qb where q is 

a simple fraction (Fig 4.3(b)). The stacking vector from the zeroth layer to the second 
layer will then be 2t = a+2qb; this has an integral coefficient of a and alternate 
layers will then be directly superimposed when viewed down the y-axis. The resultant 
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(a) (b) 

Fig 4.3. Stacking sequences for monoclinic P and C lattices. 

non-primitive monoclinic lattice (Fig 4.4(c)) has-a stacking vector t =4a+4b and 
two lattice points per unit-cell, one with coordinates 0, 0, 0 (i.e. ¢ of a lattice point at 
each of the 8 corners is associated with the chosen unit-cell) and the other with 
coordinates 4, 4, 0 (i.e. a lattice point lies at the centre of each of the two (001) faces 
and 3 of each is associated with the chosen unit-cell). Since the (001) faces of the 

unit-cell are centred, this is known as the monoclinic C-lattice. Diads in this lattice type 
are of only two types: type I, with coordinates 0, y, 0 and 4, y, 0, pass through lattice 
points and type II, with coordinates 0, y, + and 4, y, 4, lie midway between lattice 
points that are c apart. Mirror planes are of one type only, parallel to (010) and 4b 
apart. The point group symmetry of the monoclinic C-lattice is again 2/m. 

Stacking sequence (iii) with t = gb+ 4c likewise generates a lattice with alternate 
layers directly above and below each other when viewed along [010] because 
2t = 2qb+ cand, in this case, the coefficient of c is integral so that g = 5. The resultant 
lattice type (Fig 4.4(d)) has lattice points at the corners (0, 0, 0) and at the centres of 
the (100) faces (0, 4, 4) of a conventionally shaped monoclinic unit-cell. This is the 
monoclinic A-lattice, but it is not a distinct lattice type because the x and z axes, 

which are not restricted to particular directions by symmetry, can be interchanged to 
convert it into a monoclinic C-lattice. 

Stacking sequence (iv) with t = 4a+qb+ 4c generates a monoclinic lattice with 
lattice points at the corners (0, 0, 0) and at the body centre (4, 4, 3) of each unit-cell, 
q being equal to 4. That this is not a distinct lattice type is evident from Fig 4.4(e), 
where it is shown that diagonal axes may be selected to define either an A-cell, with 
(100) faces centred, or a conventional C-cell, with (001) faces centred. 

We have now exhausted all the stacking possibilities of the oblique plane lattice 
and seen that generalized stacking gives rise to loss of diads and the production of a 
triclinic lattice, while stacking with the restriction of coincidence of diads gives rise 
variously to monoclinic P- and C-lattices. 

Orthorhombic system 

Here we are concerned with stacking the two rectangular plane lattice types (Figs 
4.5(a), 4.6(a)) which have symmetry 2mm. The basic criterion that has to be satisfied 
is that lattice planes normal to x, y, and z in the three-dimensional lattice should have 
symmetry 2mm. This can be achieved by superimposing either type of rectangular 
plane lattice so that diads, parallel to z, at the intersection of lines of symmetry are 
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coincident; the lines of symmetry parallel to x and y then generate (010) and (100) 
mirror planes and, because the lattice is necessarily centrosymmetric, [100] and [010] 
diads and (001) mirror planes are introduced; the resultant three-dimensional lattice 

types then have the required symmetry mmm. 
The rectangular p-lattice has four types of diad, labelled I-IV on Fig 4.5(a), and 

four types of line of symmetry, labelled p, q, r, s. As for the oblique p-lattice there are 
four types (i)—(iv) of stacking sequence that maintain coincidence of diads, all of 

which lie at intersections of lines of symmetry. The stacking vector t = c implies 
coincidence of diads of the same type in successive layers and gives rise to a 

three-dimensional lattice, the unit-cell of which is a parallelepiped a#b¥#c, 
a= fB=y=90°. This is a primitive unit-cell (Fig 4.5(b)) and has the shape 

characteristic of the orthorhombic system. The lattice, which is known as the 
orthorhombic P-lattice, has diads of four types parallel to [001] with coordinates 
0, 0, z; 4,0, z; 0,4, z; 4, 4, z respectively. The presence of lines ‘of symmetry parallel 
to [010] in each (001) plane of lattice points generates mirror planes parallel to (100); 
these are of two types, p which pass through lattice points and constitute the faces of 
the unit-cell, and gq, which pass centrally through each unit-cell. In precisely the same 
way mirror planes of two types, r and s, are generated parallel to (010). The lattice 
thus has mirror planes perpendicular to x and perpendicular to y and diads parallel 
to z and, since it is necessarily centrosymmetric, its point group symmetry is that of 
the holosymmetric class of the orthorhombic system, mmm. Detailed discussion of 
the full symmetry of this lattice type is postponed until after the introduction of 

space groups. 
The other three ways of stacking rectangular p-lattices give rise to centred 

orthorhombic lattices in a manner generally corresponding to the monoclinic cases 
discussed in detail earlier. The stacking sequence (ii), with t = 4a+re, where r is a 
fraction, superimposes diads of type I on those of type II and type III on type IV. 
Since lattice points on alternate lattice planes lie directly above or below each other 
along the z-axis the value of r is determined as 3. The resultant three-dimensional 
lattice has lattice points at 0, 0, 0 and 4, 0, 4, that is to say the (010) or B-face of the 
unit-cell (Fig 4.5(c)) is centred; this is the orthorhombic B-lattice. This lattice type has 
two types of diad parallel to z: type I pass through lattice points and type HI? lie 
midway between lattice points a distance b apart. The (100) mirror planes are all of 
type p and pass through lattice points, whereas the (010) mirror planes are again of 
two types, r and s. 

The stacking sequence (iii), with t = 4b+re superimposes diads of type I on those 
of type III and type II on those of type IV. The resultant three-dimensional lattice 
(Fig 4.5(d)) has lattice points at 0, 0, 0 and 0, 4, 4, that is to say the (100) or A-face 
of the unit-cell is centred; this is the orthorhombic A-lattice, which has the same 

symmetry elements as the B-lattice reoriented by interchange of x and y. 
Stacking sequence (iv) with t = 4a+4b+re superimposes diads of type I on those 

of type IV and those of type II on type III. The resultant orthorhombic unit-cell 
(Fig 4.5(e)) has lattice points at 0, 0, 0 and 3, 3, 5; it is a body-centred unit-cell and 
the lattice type is described as the orthorhombic I-lattice. Since in the orthorhombic 
system the reference axes are required to be parallel to the orthogonal diads, the 

Fig 4.4 Unit-cells of the monoclinic Bravais lattices generated by stacking plane oblique 
p-lattices. In (e) the axes xq, Z, refer to the A-cell and the axes xX¢, Zc to the C-cell. 

? We retain here the labels of Fig 4.5(a). 
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I-lattice is not equivalent either to the A- or the B-lattice; it will be recalled that, 
contrariwise, the monoclinic I-lattice was shown to be describable as an A- or a 

C-lattice. The body-centred orthorhombic lattice has two types of [001] diad: type I 
passes through lattice points while type II lies midway between lattice points on the 
x and y axes. All the (100) mirror planes pass through lattice points and are styled 
type p. Likewise all the (010) mirror planes pass through lattice points. 
We now consider the variety of ways in which the rectangular c-lattice can be 

stacked with coincidence of diads. In this plane lattice type lines of symmetry are of 
two types, one perpendicular to x and designated type p, the other perpendicular to 
y and designated type r. This plane lattice type (Fig 4.6(a)) has two types of diad, 

I and II, at the intersection of lines of symmetry and two other types, III and IV, 
that do not lie on lines of symmetry. If diads of type I are superimposed on diads of 
type III, ie. t = 4a+ 4b+re, planes of symmetry parallel to (100) and (010) will not be 
generated and the resultant three-dimensional lattice with r = 4 would merely have 
diads parallel to z, that is to say it would be a monoclinic C-lattice in an 
unconventional orientation (Fig 4.6(b)). The dimensions of this monoclinic lattice 

would be such that two directions, x’ and z’ in the figure, would be of equal magnitude 
although unrelated by symmetry. A similar situation arises if diads of type I are 
superimposed on diads of type IV, i.e. t = fa+tb+re. 

Of the remaining stacking schemes possible for the rectangular c-lattice, one 
superimposes diads type for type, ie. t=c, to yield an orthorhombic C-lattice 
(Fig 4.6(c)). This lattice type is identical with the orthorhombic A- and B-lattices; 

one can be converted to another merely by interchange of axial labels. 
The fourth, and final, way in which rectangular c-lattices can be stacked is by 

- superimposition of diads of type I on diads of type II; there are two possible stacking 
vectors t=4a+re and t=4b+re, which, because the plane lattice is centred, are 

equivalent. Alternate layers are directly above and below one another in the z direction 
so that r = 5. The resulting lattice has every face of its unit-cell centred, lattice points 
being sited at 0,0,0;0,4,4; 4, 0,4; 4, 4, 0 (Fig 4.6(d)). This lattice type is all-face-centred 
and is known as the orthorhombic F-lattice. Here the [001 ] diads are restricted to two 
types (I and III); the (100) and (010) mirror planes are each of one type (p or r 

respectively). 
By regular stacking of rectangular plane lattices we have derived six three- 

dimensional lattice types each of which has orthorhombic symmetry and can therefore 
be described in terms of the conventional orthorhombic unit-cell, a#b#c, 

a = B = y = 90°. The orthorhombic A-, B-, and C-lattices differ only in the labelling 

of their reference axes and together constitute a single Bravais lattice type; 

conventionally axes are chosen so that it is the (001) face that is centred and this lattice 

~ type is known as the orthorhombic C-lattice. The remaining three lattice types P, I, 
and F are clearly distinct. Of course any of the three non-primitive orthorhombic 
lattice types can be described in terms of primitive unit-cells which are dimensionally 
monoclinic or triclinic and do not reflect the lattice symmetry. Except for certain 
specialized computational purposes, there is no advantage to be gained by using a 
primitive unit-cell of lower symmetry and many disadvantages. 

Fig 4.5 Unit-cells of the orthorhombic Bravais lattices generated by stacking plane rectangular 
p-lattices. In this and in the immediately following figures symmetry elements parallel to the 

plane of the figure are not shown. 
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Fig 4.6 Unit-cells of the orthorhombic and monoclinic Bravais lattices generated by stacking 
plane rectangular c-lattices. 

Tetragonal system 

The next plane lattice to which we turn our attention is the square p-lattice (Fig 4.7(a)). 
This plane lattice type has tetrads of two kinds, type I which pass through lattice 
points, and type II, which pass through the centre of the unit-mesh. This is the only 
plane lattice type that has tetrad symmetry and in consequence lattice planes normal 
to the tetrad in three-dimensional tetragonal lattices must be of this type. In deriving 
the tetragonal lattice types it is adequate to consider stacking sequences that involve 
coincidence of tetrads and all other symmetry elements can safely be ignored; the 
resultant lattices will necessarily display the point group symmetry of the holo- 
symmetric class of the tetragonal system, 4/mmm. Since there are two tetrad types 
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(a) The square p-—lattice 

(b) The tetragonal P-lattice 

nNi— 

(C) The tetragonal I-lattice 

Fig 4.7. Unit-cells of the tetragonal Bravais lattices generated by stacking plane square p-lattices. 

in the square p-lattice two stacking sequences are possible: (i) tetrads are 
superimposed type for type, (ii) tetrads of type I are superimposed on tetrads of 
type II. The first of these has a stacking vector t = c and gives rise to a primitive 
unit-cell (Fig 4.7(b)) with dimensions a= b 4 c, «= B = y = 90° and lattice points 
at its corners. In this tetragonal P-lattice the tetrads are, as in the plane lattice, of 
two non-equivalent types. The other stacking sequence has t =4a+4b+re with 
r =4, as in the corresponding orthorhombic case, and gives rise to a body-centred 
lattice with lattice points at 0, 0, 0, and 4, 4, 4. This tetragonal I-lattice (Fig 4.7(c)) 
has equivalent tetrads at 0, 0, z and 3, 4, z. These two lattices, P and I, are the only 
distinct tetragonal lattice types; both have {100} and {110} mirror planes and indeed 
all the symmetry of the holosymmetric class 4/mmm. 

Cubic system 

Once again our starting point is the square p-lattice and our task is to discover all 
the stacking sequences consistent with cubic symmetry, the essential characteristic of 

. 
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which is the presence of four triads parallel to the ¢111) directions in a cubic unit-cell 
with a=b=c,“«=f=y= 90°. Obviously the stacking vectors that generate the 
two tetragonal lattice types, P and I, will generate a cubic P-lattice and a cubic 
I-lattice when the additional restriction a = ¢.is applied (Fig 4.8). In both these cases 
the characteristic cubic triads lie in the mirror planes generated by the diagonal {11} 
lines of symmetry of the square plane lattice. But if the cubic triads lie in the mirror 
planes generated by the {10} lines of symmetry of the plane lattice, then the x and y 
axes of the cubic unit-cell have to be rotated through 45° relative to the x and y axes 
of the square plane lattice; the P-lattice becomes a C-lattice and the I-lattice an 

F-lattice and their unit-cells will be cubes if c = a,/2 (the conventional tetragonal 
orientation of axes is preserved here). The resultant C-lattice has a unit-cell of cubic 
shape, but is not a cubic lattice type because the presence of the [111] triad requires 
that if the (001) face of the unit-cell is centred, then the (100) and (010) faces must 
likewise be centred and that is not so. The F-lattice is however consistent with the 
essential requirements of cubic symmetry and exists as a distinct lattice type, the 
cubic F-lattice. 

All three cubic lattice types, P, I, and F, have holosymmetric cubic symmetry, 
m3m, and crystals of any class of the cubic system are referable to them. 

Hexagonal system 

Our concern now is with the last of the plane lattice types, the hexagonal p-lattice 
(Fig 4.1(e)). The unit mesh of this lattice contains only one hexad axis, which passes 
through the origin in a direction normal to the plane of the lattice. Thus only one 
stacking scheme, that with stacking vector t = c, can generate a three-dimensional 
lattice having hexagonal symmetry. The resultant unit-cell has dimensions a =b # ¢, 
a = B = 90°, y = 120°; the unit-cell is primitive with point group symmetry 6/mmm 
and the lattice type is known as the hexagonal P-lattice. 

Trigonal system 

We saw in the last chapter that the characteristic symmetry of this system is the 
presence of a single direction with threefold symmetry, that direction being 
conventionally taken as the z-axis to yield a unit-cell with a=b4¢c,a= B =90% 
? = 120°. Our starting point is again the hexagonal p-lattice, which is the only plane 
lattice type that can be consistent with trigonal symmetry. The hexagonal p-lattice 
(Fig 4.9(a)) has triads at §, 3 and 3, §, which are not lattice points, and hexads through 
the lattice points at the corners of the unit-mesh. Each hexad represents in essence 
the coincidence of the diad that necessarily passes through any lattice point of a 
plane lattice and a triad which is the basic symmetry element of this lattice type. 
There are thus two kinds of triad in the hexagonal p-lattice: type I passing through 
the lattice point at the origin and type II with coordinates 3, 4 and 4, 2, the two triads 
of type IT being related by the diad through the centre of the unit-mesh and by the 
diad through the origin. 
Two stacking sequences are possible; t = ¢ which superimposes triads type for 

type and t = 3a+3b+re which superimposes triads of type I on the type II triad at 
3, 3. We discuss the second of these first and illustrate the way in which a 
three-dimensional lattice is produced in Fig 4.9(b). Every third lattice plane is directly 
superimposed since 3t = 2a+b-+3re; therefore r = 4+. The point group symmetry of 
the resultant three-dimensional lattice is 3m which is that of the holosymmetric class 
of the trigonal system. This lattice type is known variously as the rhombohedral lattice 
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(a) The relationship between (b) The relationship between the 
the tetragonal P-lattice tetragonal I-lattice(a=b#c) and the 
(a=bc) and the tetragonal tetragonal F-lattice (a'=b'+c); the former 
C-lattice (a'=b'+c); the former becomes the cubic I-lattice when a=b=c 
becomes the cubic P-lattice and the latter becomes the cubic F-lattice 
when a=b=c. when a'=b'=c. 

y 

x 
P 

(c) 

(c) The diagrams on the left show the 
arrangement of lattice points in the 
unit-cells of the cubic P, |, and F lattices; 
those on the right show symmetry 
elements parallel to [001] for the P and | 
lattices in the upper diagram, for the 
F-lattice in the lower diagram. 

Fig 4.8 The cubic Bravais lattices generated by stacking plane square p-lattices in such ways 
as to satisfy the essential requirement for cubic symmetry, the presence of triads parallel to <111). 
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or the trigonal R-lattice; since its unit-cell is the same shape as that employed for the 
hexagonal system but contains (Fig 4.9) three lattice points (at 0, 0, 0; 3, 4,4; 4, 4, 4 
instead of one (at 0, 0, 0) it is known as the triple hexagonal unit-cell of the 
rhombohedral lattice. That the lattice generated by the symmetry related stacking 
sequence t = 4a+4b++rc is not a distinct type is evident from Fig 4.9; the two arrays 
of lattice points can be brought into coincidence by rotation of the reference axes 
x and y through 60° or 180°. These two orientations of the triple-hexagonal unit-cell 
are known as the obverse orientation, with stacking vector t = 4a+4b+4c and lattice 
points at 0, 0, 0; 2, 4, 4; 4, 4, 4, and the reverse orientation, with stacking vector 
= 4a+4b+4e and lattice points at 0, 0, 0; 4, 4, 4; 4, 4, 4. In subsequent comment 

we Shall generally prefer the obverse orientation. 
Although the triple hexagonal unit-cell, in one orientation or the other, is 

commonly employed for the description of the rhombohedral lattice and of structures 
derivative therefrom, this lattice type does have a primitive unit-cell which embodies 
its characteristic symmetry and is in shape a rhombohedron. The reference axes for 

the rhombohedral unit-cell of the trigonal R-lattice are equally inclined to the triad 
axis and are parallel to the directions [21+1], [11+1], and [12+1] of the triple 
hexagonal unit-cell in the obverse orientation (Fig 4.9); the dimensions of the 
rhombohedral unit-cell are a = b = c, « = B = y < 120°. That the triple hexagonal 
unit-cell is usually preferred, in spite of being non-primitive, is because it has the 
same shape as the hexagonal unit-cell and moreover has two of its interaxial angles, 
a and f, right-angles. 
Up to this point in our treatment of the trigonal system we have confined 

ourselves to the rhombohedral lattice type with stacking sequence t = 3a+4b+4e 
or t=4a+4b+¢4e. It is now time to consider the other stacking sequence t = c. 
The three-dimensional lattice so generated retains the hexagonal symmetry of the 
hexagonal p-lattice and is identical with the hexagonal P-lattice, whose point group 
symmetry is 6/mmm; but it has status too as a trigonal lattice type because the 
arrangement of atoms about each lattice point may be consistent with trigonal and 
not with hexagonal symmetry. Such use of the same lattice type by two systems is 
unique and gives rise to ambiguities of practice in different schools of crystallography. 
Some choose to stress the applicability of hexagonal reference axes to the unit-cells, 
whether single or triple, of all hexagonal and trigonal substances by regarding the 
trigonal system as a mere subdivision of the hexagonal system. Others prefer to stress 
the restriction of the rhombohedral lattice type, with point group symmetry 3m, to 
crystals of the classes 3, 3, 32, 3m, 3m and to maintain the trigonal system, with two 
lattice types, trigonal-R and hexagonal-P, distinct from the hexagonal system, which 
has a single lattice type, hexagonal-P. Either approach has its inherent difficulties, 
but we regard the latter as practically the more convenient. 

In conclusion it must be pointed out that when trigonal crystals with the hexagonal 
P-lattice are described in terms of a rhombohedral unit-cell, that unit-cell is non- 
primitive and has lattice points at 0, 0,0; 3,3, 4; 4, 3,3, ie. the cell diagonal parallel 
to the triad is three times the lattice repeat in that direction. In such cases quite 
obviously the use of a primitive hexagonal unit-cell is preferable.? In the case of 
trigonal crystals with a rhombohedral lattice the use of the triple hexagonal unit-cell 

*In chapter 3 (cf. Table 3.3) we took the rhombohedron as the conventional unit-cell for the trigonal 
system; that is correct in the morphological context of chapter 3 and moreover the reasons why the 
rhombohedral unit-cell has fallen into disuse could not be properly explained at that stage. 
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(a) The plane 

hexagonal p-lattice. 

(b) Stacking of hexagonal p-lattices 
with t=4a+4b + rc to yield the 
trigonal R-lattice when r=3. 

2r 2r 

Xre 

Yre Yob 
(c) The triple hexagonal 
unit-cell of the trigonal 
R-lattice with axes labelled 
for the obverse and reverse 
orientations. Key 

(d) The relationship between the rhombohedral and 
triple hexagonal unit-cells for the trigonal R-lattice; 
the right hand diagram shows the rhombohedral 
unit-cell in perspective. 

Fig 4.9 The rhombohedral Bravais lattice. 
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is generally preferable and indeed the rhombohedral unit-cell, which was obviously 

useful in the days of morphological crystallography, is now of little more than 

historical interest. 
We have now derived fourteen three-dimensional lattice types, each distinguished 

from the others by the symmetry of arrangement of lattice points. These fourteen, 

and there are no more, are commonly called the Bravais lattices after Auguste Bravais 
(1811-63) the French physicist who first listed them. Information about the fourteen 
Bravais lattices is summarized in Table 4.2 and Fig 4.10. That every Bravais lattice 
is necessarily centrosymmetric and has the point group symmetry of the holo- 
symmetric class of the system to which it belongs is emphasized in the last column 
of the table. The immediately preceding column shows the number of lattice points in 
the conventional unit-cell of each type. At the end of this chapter we complete the 
description of Bravais lattice symmetry after the introduction of non-translational 
symmetry elements. 

Table 4.2 

The 14 Bravais lattices 

Point group 
Lattice Conventional Number of | symmetry of 

System symbol unit-cell lattice points lattice 

Triclinic P Cepeda py 1 1 

Le P ODAC === 90° =i 1 
M 1 onoclinic ha (B > 90°) 7 2/m 

P 1 

Orthorhombic a B) Cea ECO ph ee : mmm 

F 4 

iB 1 
Tetragonal I A= DiC Ip. 3 4/mmm 

P 1 

Cubic i} a= D'= 6. 0=— p — y= 909 | m3m 

F 4 

E a=b#c,a=f =90°,y = 120° 3 = 
T J R 
eon \ On a@=b=a4e0=8 =y7 =< 120° tf = 

Hexagonal If a=bF4#o0= 8 = 90°, y= 120° 1 6/mmm 

Before leaving the subject of Bravais lattices it may be instructive to consider the 
structural implications of non-primitive lattices in general in terms of two simple 
cubic structures. Suppose the unit-cell has lattice points at 0,0,0; X,, Y;,Z es 
X2, Y,, Z2, etc. and that an atom of a certain element has coordinates x, y, z, then 
atoms of the same element must occur at points with coordinates X,+ x, Y,+y, 
Z,+2z; X,+x, Y,+y, Z,+z; and so on. Our first example is one of the forms of 
metallic iron which is known to have a cubic I-lattice with two atoms of iron per 
unit-cell: if the origin is taken at the site of one iron atom, then the other iron atom 
must lie at 5, 4, 3. Our second example is diamond, which has a cubic F-lattice with 
eight atoms of carbon per unit-cell; since an F-cell contains four lattice points, the 
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Fig 4.10 The unit-cells of the fourteen Bravais lattices. 
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repeat unit in this structure consists of two carbon atoms. It is known that in diamond 
the two carbon atoms of the repeat unit are separated by a vector of magnitude 
“2a in the direction of a body diagonal of the unit-cell. Thus if the origin is taken at 
one carbon atom, the other atom of the repedt unit lies “a out from the origin along 
[111], that is at 4, 4, 4. The coordinates of the remaining six atoms in the unit-cell are 
derived from 0, 0, 0 and 4, 4, } by reference to the coordinates of the four lattice points 
of the F-cell, 0, 0,0; 0, 4,4; 4, 0,4; 4,4, 0; that is to say four carbon atoms lie at the 
lattice points and the remaining four are disposed at 4, 4, ¢ from each lattice point, 

Lerdyhras'4; Hapdstoteds’; & : 
It is evident from the plan of the diamond structure, Fig 4.11, that every carbon 

atom is in fourfold coordination, its nearest neighbours lying at the apices of a 
regular tetrahedron. But there is a distinction between the four carbon atoms related 
by F-translations to that at 0, 0,0 and the four related to the carbon atom at 4, 4,4 in 
the orientation of their coordination tetrahedra: the interatomic vectors radiating 

(b) (c) 

(a) 
Fig 4.11 The crystal structure of diamond. (a) is a plan on (001) of the structure which has a 
cubic F-lattice with carbon atoms at 0,0,0; 4,4,4 etc. (b) and (c) are stereograms of the 
interatomic vectors of nearest neighbours from the carbon atoms at 0, 0, 0 and 4, 4, 4 respectively. 

from 0, 0, 0 and like atoms are disposed parallel to [111], [111], [111], [111] whereas 
those radiating from 4, 4, ¢ and like atoms are disposed parallel to [111], [111], 
[111], [111]. It is important to note that, although the environment of every carbon 
atom in the structure is the same, the orientation of this environment is of two kinds 
depending on whether the atom in question is related by lattice translations to the 
atom of the repeat unit at the origin or to that at 4, 4, 4. 

Symmetry elements involving translation: screw axes and glide planes 
So far we have restricted our discussion of symmetry to those symmetry elements 
that occur in point groups, that is the rotation and inversion axes. Symmetry 
elements of these kinds are such that their continued operation inevitably leads to a 
return to the initial position : for example two operations of a diad or three operations 
of a triad on a crystal face yield a face coincident with the original face. Where the 
angular disposition of crystal faces or of lattice planes is concerned such non- 
translational symmetry elements are sufficient, but when we are concerned with the 
symmetry of arrangement of atoms within a unit-cell an additional sort of symmetry 
element has to be introduced. This is the translational symmetry element which by 
its continued operation on a point cannot yield a point coincident with the original 
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point but, after an appropriate number of operations, yields a point distant from the 

original point by an integral number of lattice translations. The simplest example 
of a translational symmetry element is the screw diad, whose operation is that of a 
diad (rotation through 180°) combined with translation through half the lattice repeat 
in the direction of the diad. Figure 4.12 contrasts the operation of a diad and a screw 
diad, each parallel to [001] through the origin; an atom at x, y, z is repeated by the 
diad at x, j, z and by the screw diad at x, y, 4+. That the translation component is 
on the scale of a lattice repeat implies that the screw nature of the [001] diad is not 
discernible from observation of the macroscopic symmetry of the crystal; indeed a 
crystal that on the macroscopic scale has a diad parallel to [001] may on the lattice 
scale have diads or screw diads or both in that direction. 
We now proceed to develop the variety of types of translational symmetry element, 

their nomenclature and conventional representation. 

z z Fig 4.12 The contrasting effect of the 
operation of a diad (left-hand diagrams) 
and a screw diad (right-hand 
diagrams) parallel to [001] through the 

= CE —> 

O O | O origin. In the upper diagrams the diad 
C, and screw diad (and the points on 

2 which they operate) lie parallel to the 
O plane of the diagram; in the lower 

fe diagrams they are perpendicular to that 
O O 2 O plane. 

O +z Ot+z 

y y 
O+z O+z 

x xX 

Screw axes 
An n-fold rotation axis is such that each operation of it is a rotation through 2z/n, 
where n = 1, 2, 3, 4, 6. For an n-fold screw axis it is necessary to specify the value of 
n and in addition the magnitude of the pitch t, which is restricted by the condition 
that the accumulated pitch after n operations, nt, must be an integral multiple m of 
the lattice repeat t in the direction of the axis, i.e. nt = mt. When m = 0 there is no 
translation and the n-fold rotation axis appears as the special case of the n,, screw 
axis with m = 0. In general possible values of t are given by (m/n)t where n may have 
the values given above and 0 < m <n; the latter condition arises directly from the 
lattice concept which implies the presence of translations t+ zt, 2t+ zt, etc. when the 
translation zt is specified. The symbol n,, can be used to give a complete description 
of a screw axis by adding to what has already been said the convention that the 
rotation through 2z/n is in the anticlockwise sense when the associated translation 

(m/n)t is in the positive direction along the screw axis (i.e. a right-handed screw). 
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All possible crystallographic screw axes are illustrated in Fig 4.13, from which we 
take as our examples for more detailed study the three screw tetrads, 4,, 4,, and 43. 
All the axes are taken to be parallel to z through the origin and symmetry related 
points (represented by open circles) are shown in projection on the xy plane. Beside 
each such equivalent position its z coordinate is written in terms of the code: 
+ =a position at a height +z above the xy plane, 1/p+ =a position at a height 
(1/p)+z above the xy plane, where 1/p and z are, as in structure plans, fractions of 

the lattice repeat c in the direction of the z axis (Fig 4.14). For instance the screw 
tetrads shown in Fig 4.13 have equivalent positions indicated variously as +, 4+, 

+O ++O 

| O+ cmaatance 

2 2 

Or Ot+ O%4 

3 Mee st eee yk ee 

3 3, 33 

Fig 4.13 The operation of, and conventional symbols for, rotation and screw axes parallel to 
[001] shown in plans on (001). 
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4+, %+ to represent heights above the xy plane of z, 4+z, $+z, 3+z respectively. 
The rotation tetrad shown in Fig 4.13 operates on a position with coordinates 

x, y, z to yield equivalent positions with coordinates y, x, z after one operation, 
X, y, z after the second operation, y, x, z after the third operation, and with the 
fourth operation returns to x, y, z. We have taken the rotation in the anticlockwise 
sense, but where there is no translation the sense does not affect the total pattern of 

equivalent positions. The 4, axis (Fig 4.14) rotates anticlockwise through 27/4 = 47 
and simultaneously translates through c/4 so that the position xyz yields equivalent 
positions y, x, 4+z by its first operation, x, y,4+z by its second, y, x, }+z by its third, 
and by its fourth operation x, y, 1+z, which is necessarily equivalent to the initial 
position being one lattice repeat removed from it. The 4, axis likewise rotates 
anticlockwise through 4x and simultaneously translates through 2c/4 = 4c so that 
the xyz position yields in succession equivalent positions at y, x, 4+2; xX, y, 1+z; 

y, X, 14+z and returns to superposition on the original position at x, y, 2+z; this 
- introduces a new situation in that it now becomes necessary to reduce the equivalent 
positions produced by direct operation of the 4, screw axis by subtraction of integral 
lattice repeats parallel to z to bring them within one positive lattice repeat of the 
origin, i.e. X, y, 1 +z becomes x, y, z and y, x, 14+ z becomes y, x, ++z, these positions 
being themselves produced by direct operation of the 4, axis on the unit-cell 
immediately below the origin. The 4, axis rotates anticlockwise through 4x and 
simultaneously translates through 3c/4 to yield from x, y, z successive equivalent 
positions Vet atz; x, y, 1442; y, x, 2442, which reduce to x, y, z; y, x, $+2; 
X, y, $+2;3 y, X, g+zZ as shoWn in Fig 4.13. 

Comparison of the diagrams in Fig 4.13 for the equivalent positions cae 
from x, y, z by 4, and 4, axes reveals that both can be regarded as screws of pitch $c, 
the former right-handed and the latter left-handed. It follows that a 4, and a 4, axis 
produce sets of equivalent positions that are mirror images of one another and 
cannot be superposed; such a pair of screw axes are said to be enantiomorphous. The 
4, screw axis, like the rotation tetrad, is without hand, the same disposition of 

equivalent positions being obtained by an anticlockwise as by a clockwise rotation. 
In general one can say that the screw of smallest pitch that can be used to describe 
the disposition of equivalent positions related by a screw axis n,, is right-handed if 
m < 4n, left-handed if m > 4n, and without hand if m = 0 or m = 5n. 

hie Fig 4.14 Equivalent positions 
generated by a 4, axis. The angle 
of rotation about a 4, axis parallel 
to [001] is represented as the 
horizontal coordinate and the 
translation in fractions of the lattice 
repeat c is plotted vertically. lo 

rml|— 

>|- 
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It has already been stated that only screw axes involving 2, 3, 4, or 6-fold rotation 

elements can apply in crystals and it is appropriate at this point to justify that 
assertion. In general the operation of a screw axis on a group of atoms yields 
equivalent groups in identical environments, but differently orientated. For instance 
if a4, axis is to be repeated on a lattice, a lattice point can be placed on that 4, axis 

and it follows that a 4, axis passes through every lattice point in the same direction. 
Consider two such lattice points P and Q, each of which represents a group of four 
atoms related by the 4, axis through the relevant lattice point (Fig 4.15): the 4, axis 
through P relates the atoms at A, B, C, and D and the%, axis at Q relates the atoms 
at a, B, y, and 6. But the 4, axis through P relates the atom at « to that at T, the atom 
at B to that at U, the atom at y to that at V, and the atom at 6 to that at W; in short a 
third lattice point arises at R related to that at Q by a rotation tetrad through P. This 
result may be generalized: when screw axes are repeated on a lattice, the lattice 
exhibits the symmetry of the rotation axis of the same order. This apparent anomaly 
arises from the fact that lattice points represent groups of atoms in the same 
environment in the same orientation—the basis of the lattice concept—and therefore 
if we are to be strictly rigorous a symmetry axis should be operated not on the lattice 
point itself but on the group of atoms that it represents; for rotation axes and mirror 
planes the distinction is immaterial, but for translational symmetry elements (screw 
axes and glide planes) the translational component is lost and the lattice exhibits 
only the symmetry of the corresponding rotation axis or mirror plane. It follows that 
only screw axes derived from diads, triads, tetrads, or hexads can operate on atomic 

groupings in crystal structures. 

1 1 
niet aoe ‘ayers i.e omer 

B T 
ep @R 

3 3 
—+ O= + 

a 4 O.+ hand ilck 
A WwW 

Fig 4.15 A lattice on which a screw tetrad 4, is repeated 
1 exhibits the symmetry of a rotation tetrad. The solid circles P, Q, R 

O Q i O ae e represent lattice points; the open circles, A, «, T, etc, represent 
¥ 4 atoms. Screw tetrads 4, perpendicular to the plane of the diagram 

eQ B through P and Q relate the atoms A, B, C, D and, B, y, 6 
3 respectively. The 4, axis through P relates the atomic groups 

O 4 + or" aByd and TUVW so that the lattice points Q and R are related by 
5 a a rotation tetrad through P perpendicular to the plane of the 

diagram. 

Glide planes 

A glide plane isa translational symmetry element representing simultaneous reflexion, 
as in a mirror plane, and translation through half a lattice repeat in a direction 
parallel to the plane. As in the case of screw axes, continued operation of a glide 
plane does not produce coincidence, but positions separated by a whole lattice repeat; 
for instance a glide plane parallel to (010) with a translation of 4c yields after two 
operations a position at a distance c in the direction of the z-axis from the original 
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position. The magnitude of the translation associated with a glide plane is restricted, 
by the requirement of consistency with repetition on a lattice, to half a lattice spacing. 
The direction of the translation may be either parallel to a unit-cell edge (an axial 
glide) or parallel to a face-diagonal or body diagonal of the unit-cell (a diagonal glide). 
The translation of a diagonal glide plane is one half of the length of the relevant 
diagonal of the unit-cell except in the special case of the diamond glide where it is one 
quarter of the length of the diagonal.* The nomenclature of symmetry planes, mirror 
and glide, and the types of translation permitted in the latter are set out in Table 4.3. 

Table 4.3 
Symmetry planes 

Symbol Translation 

Mirror m none 

Axial glide a a/2 

b b/2 

c c/2 

Diagonal glide n ary ae Te 

‘Diamond glide d 

*cubic and tetragonal systems only 

The graphical representation of glide planes on structural plans needs some 
explanation because a distinction has to be made between planes lying parallel and 
planes perpendicular to the plane of the diagram. A symmetry plane parallel to the 

plane of the diagram is conventionally represented (Fig 4.16) by the symbol 1 
beyond the top right-hand corner of the outline of the unit-cell and an arrow is 
incorporated in the symbol to indicate the direction of glide; the appropriate fraction 
is written beside the symbol to indicate height above the reference plane when the 
glide plane is not coincident with the reference plane. A symmetry plane perpendicular 
to the plane of the diagram is represented conventionally by a bold line (Fig 4.16) 
which is unbroken for a mirror plane, dashed for a glide plane with translation in the 
plane of the diagram, dotted for a glide plane with translation perpendicular to the 
plane of the diagram and alternate dashes and dots for a diagonal glide. 

Equivalent positions are again represented by open circles, but here we have to 
distinguish between the hand of the atom group occupying each equivalent position 

4Diamond glide planes are restricted to certain orientations in certain Bravais lattices such that a lattice 
| point lies at the mid-point of the diagonal concerned so that the translation remains one half of the lattice 
a in the direction of the diagonal. These conditions are satisfied only in I and F lattices with the 
exception of the orthorhombic I lattice which cannot have planes of symmetry parallel to the body 
‘diagonals of the unit-cell, ¢111>. A full account of the operation of diamond glides may be found in 
-Buerger (1956). 
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Fig 4.16 The representation and operation of mirror and glide planes. The orientation of axes is 
displayed centrally at the top of the figure. The left-hand and right-hand columns respectively 
show the operation of symmetry planes parallel to (100) and to (001), that is perpendicular and 
parallel to the plane of the diagram. 

because the operation of a symmetry plane, unlike a rotation axis, produces a 
reversal of hand. The accepted convention is an open circle for the original position, 
at x, y, z, and an open circle enclosing a comma for positions related to it by an odd 
number of reflexions. Superimposition in projection of positions of different hand is 

represented by adjacent half circles. The heights of equivalent positions are denoted 
according to the convention explained in detail in the section on screw axes. 

That the spacing of mirror and glide planes is necessarily half the lattice repeat in 
the direction perpendicular to the plane is illustrated in Fig 4.17, which shows two 
projections of a unit-cell with an (001) mirror plane passing through x, y, 4. The 
position x, y, z on reflexion becomes x, y, +—z, which is itself related to the position 
x, y, 1+z by a parallel mirror plane x, y, 2. 

Space groups 

We have already seen that there are thirty-two groups of non-translational symmetry 
elements that can be repeated on a lattice, the so-called crystallographic point groups. 
When translational symmetry elements, screw axes and glide planes, are taken into 
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Fig 4.17 The generation of an (001) mirror plane at z = 2 by an (001) mirror plane at z= i. 
The presence of an (001) mirror plane at z = 4 requires an atom at a height z above the xy plane 
to be repeated at a height 4 —z with the same x and y coordinates; the atom at 4—z is related to 
the lattice-repeated atom at 1+z by an (001) mirror plane at z = 3. 

account the number of groups of symmetry elements that can be repeated on a lattice 
increases to two hundred and thirty, the so-called crystallographic space groups. The 
derivation and the complete listing of the 230 space groups are outside the scope of 
this book, and we attempt only an outline of nomenclature and graphical 
representation and, through examples, the use of space groups in the interpretation 
of crystal structures. For the reader who wishes to explore the fundamentals of this 
topic, excellent accounts of space group derivation are to be found in Buerger (1956) 
and Hilton (1963). An exhaustive tabulation of space groups with a most thorough 
explanatory introduction is provided by International Tables for X-ray Crystal- 
lography, vol I (1969). In what follows we adopt the conventions laid down in 
International Tables which are the current usage of most laboratories. 

A space group symbol consists of two parts: first a letter to indicate lattice type 
and that is followed by a statement of the essential symmetry elements present. This 

second part of the space group symbol is of the same form as a point group symbol 
but may include reference to translational symmetry elements; if any translational 

elements referred to in the space group symbol are replaced by the corresponding 
non-translational elements, the point group, and thence the system, to which the 

space group belongs can immediately be read off. For instance the symbol C2/c 
represents a space group of the point group 2/m, which is one of the point groups of 
the monoclinic system; the lattice type is monoclinic C; there is a rotation diad 

parallel to y and a c-glide perpendicular to y. Taking another example, the space 
group Pmcn belongs to point group mmm (orthorhombic), the lattice type is 
orthorhombic P, a mirror plane lies perpendicular to x, a c-glide perpendicular to y, 
and a diagonal glide perpendicular to z. In both examples other symmetry elements 
are present in addition, but those stated in the symbol are adequate for the complete 
description of the symmetry of the space group. 

For the graphical representation of a space group two diagrams are employed: one 
shows the distribution of symmetry elements in the unit-cell as a plan and the other 
shows, on a plan in the same orientation, all the positions generated by the operation 
of the symmetry elements on a position with general coordinates x, y, z. The first 
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plan shows all the symmetry elements, consequent as well as essential, in the unit-cell. 

The second plan, showing the general equivalent positions for the space group, uses 
the mode of representation that we discussed in detail in the section on screw axes 
and glide planes. It is customary not to indicate axial directions when space group 

plans are drawn as projections on (001) with the origin in the top left-hand corner 
and the positive direction of the y-axis pointing to the right; when other orientations 

are employed it is advisable to specify axial directions. It is conventional, and usually 
convenient, to take the origin of a centrosymmetric space group at a centre of 
symmetry because the coordinates of the general equivalent positions can then be 
simply written in pairs as +(x, y, z) etc.: there is no straightforward convention for 
the siting of the origin of non-centrosymmetrical space groups. We have already 
shown that symmetry elements are repeated at half lattice spacings: all symmetry 

elements perpendicular to (001) are of course shown on the conventional space group 

diagrams, but those parallel to (001) are only marked with the height above the 
reference plane of the lowest of the pair, for instance the symbol 14 implies the 
presence of (001) mirror planes at z = ¢as well as at z = §. 

Figure 4.18 shows the conventional diagrams for the space group Pmcn, which will 
be taken to illustrate the points made in the previous paragraph. The (100) mirror 
planes are shown on the right-hand diagram intersecting the x-axis at 4a and ja; the 
(010) c-glide planes are shown intersecting the y-axis at $b and 3b; but the (001) 
diagonal glide planes, which intersect the z-axis at 4c and 3c, are indicated briefly as 4. 
Consequent symmetry elements are three non-intersecting sets of screw diads, one 
parallel to each reference axis, and eight centres of symmetry represented in the 
diagram by small open circles. Since the centres of symmetry, at 0, 0, 0; 4, 0, 0; 

0,4,0; 0,0,4; 0,4,5; 4,0,3; 3,3, 0; 4,2,3; have z = 0,4 the height above the reference 
plane is not indicated. The graphical representation of diads and screw diads when 
parallel to the reference plane requires explanation: diads are shown as full arrows 
and screw diads as one-armed arrows outside the unit-cell outline with the height, if 
not 0 or 4, written alongside. It is worth noting at this point that although the space 
group symbol Pmcn makes explicit reference only to planes of symmetry perpendicular 

to each reference axis the presence of diad axes, in this case all screw diads, parallel 
to each reference axis is clearly implied; the point group to which this space group 
belongs is mmm which has three mutually perpendicular diads as well as three 
mutually perpendicular mirror planes and therefore the space group Pmcn must 
have three mutually perpendicular sets of rotation or screw diads as well as three 
mutually perpendicular sets of symmetry planes. 

The left-hand diagram shows the disposition of the general equivalent positions for 
the space group. The number of general equivalent positions in a space group with a 
P lattice is equal to the number of planes in the general form {hkl} of the corresponding 
point group; in this space group Pmcn the general equivalent positions have eightfold 
multiplicity as does the general form {hkl}, e.g. {123}, in point group mmm. In the 
case of a C or I lattice the multiplicity of the general form of the point group has to 
be doubled and for an F lattice quadrupled, e.g. the general form in point group m3m 
has multiplicity 48 and the general equivalent positions in space group Fd3m have 
multiplicity 192.° The coordinates of the general equivalent positions in space group 
Pmcn are listed in Table 4.4. It is important to notice that the determination of the 

° Correspondingly the number of sets of symmetry elements parallel to a given direction in a space group 
is equal to the number of lattice points in the unit-cell. This point is illustrated in the discussion of C2/c 
which follows. 
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Fig 4.18 The crystal structure of aragonite, CaCO. The two upper diagrams are the conventional 
diagrams for the space group Pmen oriented so that +z is upwards perpendicular to the plane of 
the figure, +y is directed to the right and +x downwards in the plane of the figure. The upper 
left-hand diagram shows the disposition of general equivalent positions and the upper right-hand 
diagram the disposition of symmetry elements in the space group. The lower diagram shows the 
structure of aragonite in plan on (001) in the same orientation: all the calcium and carbon atoms 
and four of the oxygen atoms lie on special equivalent positions on mirror planes with x = +1 
and the remaining eight oxygen atoms lie on one set of general equivalent positions. 

three parameters x, y, and z is sufficient to fix the coordinates of eight atoms of the 
same element occupying one set of general equivalent positions and that the whole 
set of eight atoms is represented by a single lattice point. 
When the coordinates of a position are such that it lies on a non-translational 

symmetry element, two or more equivalent positions coalesce and the multiplicity of 
the set of equivalent positions is reduced. Such a set of special equivalent positions 
arises in Pmcn when x = , all the positions in this set then lie on mirror planes. 
Substitution of x = 4 in the list of coordinates of the general equivalent positions 
yields immediately +(4, y, z), +(4,4—y, +2); this set of special equivalent positions 
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Table 4.4 
Coordinates of equivalent positions in Pmen 

Point 
Multiplicity symmetry ‘ ‘ 

General 8 1 A(x, ¥, 2) RE say, 2) 
+(x, 3-y,4+2)3+6—x, 4-y, $+2) 

Special 4 m +, y,2); £@, 3=y, 92) 
I 0;,0;.0; -4;0,10;5.0,3)45 4.4.3 
1 0, 5,0; 3, 3,9; 0,0, 3; 3, 0,3 

has fourfold multiplicity, some positions lying on one mirror plane and some on the 
other. The only other non-translational symmetry elements in Pmcn are the centres 
of symmetry. Substitution of the coordinates of the centre at the origin yields 0, 0, 0; 

3, 0,0; 0,3,4; 5,3, 7; another set of special equivalent positions, again of multiplicity 
4. The remaining four centres of symmetry likewise constitute a set of special 
equivalent positions, 0, 5,0; 4,4, 0; 0, 0,4; 4, 0,4. It is important to note that these 
two sets, each of four centres of symmetry, are not related to one another by 
symmetry; thus one set may be occupied by atoms of a certain element while the 

other set may either be occupied by atoms of a different element or be empty. The 
special equivalent positions associated with each type of non-translational symmetry 
element in space group Pmcn have now been defined; all the remaining symmetry 
elements are translational in character and so cannot produce coalescence of 
equivalent positions. 
We conclude our study of space group Pmcn with some comments on a structure 

referable to this space group and take as our example the orthorhombic form of 
CaCO3, the mineral aragonite. Measurements of the unit-cell dimensions and density 
of aragonite indicate that the unit-cell contains 4CaCO;. The calcium and carbon 
atoms must therefore each be situated on a set of special equivalent positions. The 
twelve oxygen atoms may be arranged either on three different sets of special positions 
or on one set of general positions and one set of special positions. Structure analysis 
of aragonite has shown that calcium, carbon, and four oxygens lie on mirror planes, 
y and z being determined for each set, and the remaining eight oxygens lie on general 
positions, for which x, y, and z have been determined. The resulting coordinates of all 
twenty atoms in the unit-cell are listed in Table 4.5 and the structure is shown in 
plan on Fig 4.18. 

Table 4.5 
Atomic coordinates in aragonite (CaCO.) 

Ca A(m) +(4, 0-42, 0-75) +(§, 0:08, 0:25) 
Cc 4(m) +(4,0-75, 0-08);  +(4, 0-75, 0-42) 
O(1) 4(m) +(4, 0-08, 0-08); +(4, 0:58, 0-42) 
O(2) 8(1) +(0-48, 0-67, 0-08); +(0-02, 0:67, 0-08); 

+ (0:48, 0-83, 0-42); +(0-02, 0-83, 0-42) 

We take as our second example a non-primitive space group, C2/c, which belongs 
to the point group 2/m and has a monoclinic C lattice. Again the space group is 
centrosymmetrical and the origin is taken at a centre of symmetry (Fig 4.19). The 
(010) c-glide planes intersect the y-axis at the origin and at y=4. The [010] diads 
have x = 0, 3 and z = 4, 7. The centring of the (001) face of the unit-cell introduces 
(010) diagonal glides at y = 4, { and [010] screw diads with x = az and z=1 3. 
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Fig 4.19 The crystal structure of tenorite, CuO. The two upper diagrams are the conventional 
diagrams for the monoclinic space group C2/c. The lower diagram is a plan of the structure of 
CuO on (001). 

there are in all sixteen centres of symmetry. In a non-primitive space group a 
conveniently abbreviated way of listing the coordinates of equivalent positions is to 
state the coordinates of the several lattice points at the head of the list and then to 
give only the coordinates of the equivalent positions associated with one lattice point; 
this abbreviation is adopted in Table 4.6. 

The only non-translational symmetry elements present are [010] diads and centres 
of symmetry. There is only one set of special equivalent positions on diads (with y as 
a variable parameter). The sixteen centres of symmetry are split into four groups, 
each of four symmetry related positions. 

CuO, the mineral tenorite, has space group C2/c with only 4CuO in the unit-cell 

so that copper and oxygen must each occupy one set of special equivalent positions. 
The copper atoms are found to lie on centres of symmetry at 4, 4, 0 etc and the 
oxygen atoms lie on diads at 0, y, ¢ etc, where y = 0-416. 
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Table 4.6 
Coordinates of equivalent positions in C2/c 

(0, 0,0; 4, 4, 0)+ 
Multiplicity Point symmetry , 
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In the tabulation of space groups various nomenclatorial and orientational 
preferences have to be expressed; this point is well illustrated by the two space groups 
we have just considered. It is evident from Fig 4.19 that the space group there 
represented could equally well be symbolized as C2/c, C2,/c, C2,/n, or C2/n without 
reorientation of axes. Since a choice has to be made, C2/c is arbitrarily preferred. In 
the orthorhombic system the same point may arise, but not in Pmcn, and moreover 
we are free to relabel the reference axes provided a right-handed axial system is 
maintained. For instance if the x, y, z axes of Pmcn are relabelled x’, y, z according 
to the scheme x > y’, yz’, zx’, the axes remain right-handed, the (100) mirror 
plane becomes (010), the (010) axial glide becomes (001) with a glide component 4a, 
and the (001) diagonal glide becomes (100) so that the new space group symbol is 
Pnma. Alternative axial transformations lead to four more space group symbols 
Pbnm, Pnam, Pmnb, and Pcmn; from these six orientations of the symmetry elements 
of the space group Pnma is chosen arbitrarily as the standard setting. In compilations 
of data as in tabulation of space groups it is of course necessary to adhere rigidly to 
standard settings, but in discussion, especially comparative discussion, of actual 
structures it is often convenient to use non-standard settings; for instance in our brief 
discussion of the aragonite structure we chose the non-standard Pmcn in order to 
have the carbonate groups parallel to the plane of a plan drawn with the conventional 
axial orientation for space group diagrams. 

A note of the rules used in selecting standard settings of space groups in 
International Tables for X-ray Crystallography and of the conventions used in 
Crystal Data, the principal compilation of information about the unit-cells of real 
substances, is given in Appendix C. 

Symmetry of the Bravais lattices 
Earlier in this chapter it was pointed out that each Bravais lattice was distinguished 
from all others by the symmetry of its arrangement of lattice points. It becomes 
possible at this stage to argue the point more closely. We do so by considering first 
the two monoclinic Bravais lattices, P and C, whose unit-cells and symmetry elements 
are displayed in conventional space group orientation in Fig 4.20. It is to be noted 
that the C-cell has all the symmetry elements of the P-cell and in addition a-glides 
interleave the mirror planes, screw diads alternate with the [010] rotation diads, and 
another eight centres of symmetry appear. It is quite general in centred lattices that 
all the symmetry elements of the corresponding primitive lattice are present and in 
addition appropriate glide planes and screw axes relate the centring lattice points, 
whether C or I or F, to the lattice point at the origin. 

The symmetry elements of the four orthorhombic Bravais lattices are displayed 



Symmetry of the Bravais lattices 123 

set 
ee. 
oe 

C 
Fig 4.20 Unit-cells and symmetry elements of the two monoclinic Bravais lattices. 

as Fig 4.21. The symmetry elements of the orthorhombic P-lattice are present in each 
of the non-primitive lattice types. The P-lattice has diads parallel to x, y, and z, mirror 
planes perpendicular to x, y, and z, and centres of symmetry at and midway between 
lattice points. In the centred lattices there are in addition translational symmetry 
elements and centres of symmetry that relate the lattice point at the origin to the 
centring lattice points. For instance in the I-lattice the lattice point at 5, 4, 3 is related 
to the lattice point at the origin by a screw diad at x, 4, $; this screw diad lies midway 

between the diads at x, 0,0 and x, 4, 5, which are present also in the P-lattice; an n-glide 
interleaves the (100) mirror planes of the P-lattice and likewise relates the two lattice 
points; screw diads and n-glides correspondingly oriented with respect to the y and z 
axes similarly relate the two lattice points; finally, centres of symmetry at 4, 4, 4, etc 
appear and likewise relate the lattice points at the origin and the body-centre. A 
significant distinction between the P and the I lattices is thus that, whereas in the 
former there is only one kind of diad parallel to and one kind of symmetry plane 
normal to each reference axis, there are in the latter two kinds of diad (2 and 2,) 
parallel to and two kinds of symmetry plane (m and n) perpendicular to each reference 
axis; and moreover the number of centres of symmetry in the unit-cell increases from 

8 to 16. 
In the C-lattice an analogous situation exists. The centring of (001) faces gives rise 

to screw diads parallel to x and y, to additional rotation diads parallel to z, to b-glides 
and a-glides interleaving the (100) and (010) mirror planes respectively, and to eight 
additional centres of symmetry at 4, 4, 0, etc. The (001) n-glides that one would expect 

to be introduced are coincident with the mirror planes inherited from the P-lattice. 
The F-lattice, like the P and the I lattices, has of course the same symmetry elements 

associated with each reference axis. Associated with the x-axis, for example, there are 

[100] rotation diads at x, 0, 0 and x, 4, 4, etc, and parallel screw diads at x, 0, { and 
x, +, 0, etc, (100) mirror planes coincident with n-glides through 0, y, z, etc, and b- and 

c-glides through 4, y, z, etc; the additional translational symmetry elements relate the 
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Fig 4.21 Unit-cells and symmetry elements of the four orthorhombic Bravais lattices. 
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face centring lattice points at 0;4,4; $,0,4; 4,4, 0, to the lattice point at the origin and 
to one another. Centres of symmetry increase in number from 8 in the P-lattice to 32 

in the F-lattice, where the additional centres have coordinates 0, +, 4; 4, 0,4; 4, 4, 0; 
etc, midway between adjacent lattice points. 

Each orthorhombic Bravais lattice thus has a characteristic set of symmetry 

elements as it has a characteristic disposition of lattice points. The same holds for the 
Bravais lattices of the remaining systems and, without exploring each in turn in tedious 
detail, we arrive at the general conclusion that a Bravais lattice is characterized not 

only by the disposition of its lattice points in space, but also by the nature and 

disposition of its symmetry elements. 
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5 
Interplanar and interzonal angles: Some 
methods of calculation and transformation 

In this chapter we deal with the mathematical techniques available for the calculation 
of interplanar and interzonal angles, beginning with an introduction to the elegant 
methods of spherical trigonometry and then dealing with the more cumbersome, but 
occasionally convenient, approach of three-dimensional coordinate geometry; the 
Miller formulae, which are of limited but very useful application, follow; and the 
chapter ends with a discussion of the transformation of axes, unit-cell coordinates, 
and face indices. 

Spherical trigonometry 
The calculation of interplanar and interzonal angles can usually be most easily 
programmed for computer calculation in the language of solid geometry, but for 
calculation ‘by hand’, that is with trigonometric tables and logarithms or a calculating 
machine, spherical trigonometry provides a means of attack that is at once elegant, 
rapid, and instructive. 

A spherical triangle is defined as that portion of the surface of a sphere bounded by 
the intersection of the sphere with a three-sided pyramid whose apex is at the centre 
of the sphere. The sides of a spherical triangle are thus arcs of great circles. The angles, 
A, B, and C, of the spherical triangle ABC (Fig 5.1(a)) are the angles between the great 
circles whose planes are the faces of the pyramid OABC. The sides, a, b, and c, of the 
spherical triangle ABC are the angles between pairs of edges of the pyramid OABC 
and are therefore the angles subtended by the arcs, BC, CA, and AB, of the great 
circles at the centre, O, of the sphere. It follows that the sides, a, b, and c, are equal 
to the lengths of the arcs, BC, CA, and AB, when the sphere has unit radius (Fig 5.1(b)). 
Since the angles and sides of a spherical triangle are respectively the angles between 
faces and the angles between edges of a three-sided pyramid, every angle and side of a 
spherical triangle must be of magnitude less than z. 

The general spherical triangle 
In Appendix D we derive the eight fundamental relationships which relate the angles 
and sides of a general spherical triangle. There are three relationships between three 
sides and one angle, 
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Fig 5.1 Spherical triangles. (a) shows the spherical triangle ABC as that portion of the surface 
of the Sphere of centre O bounded by the great circles AB, BC, CA; the angles of the spherical 
triangle are denoted by A, B, C and its sides by a, b, c. (b) illustrates that the ang/e A is the 
angle between the normal to OA in the OAC plane and the normal to OA in the OAB plane, both 
normals being drawn from the same point on OA; and likewise for the ang/es B and C. The sides, 
a, b, c, of the spherical triangle ABC are equal to the lengths of the arcs BC, CA, AB respectively 
when the radius OA = OB = OC is unity. 

cosa = cosb.cosc+sinb.sinc.cosA (1) 

cos b = cosc.cosa+sinc.sina.cosB (2) 

cos c = cosa.cosb+sina.sin b.cosC (3) 

There are three relationships of similar aspect between three angles and one side, 

cos A = —cosB.cosC+sinB.sin C.cosa (4) 

cosB = —cosC.cosA+sin C.sin A.cosb (5) 

cos C = —cosA.cosB+sin A.sin B.cosc (6) 

And there is a set of relationships between angles and opposite sides, 

snA  sinB_ sinC 

sina sinb sinc 

These relationships, which are adequate for the solution of any problem in spherical 
trigonometry, become greatly simplified if either one angle or one side of the spherical 
triangle is a right-angle and the simplified expressions that result are embodied in a 
set of easily remembered rules formulated by John Napier (1550-1617). The right- 
angled and right-sided cases are distinguished, the former being dealt with first. 

Napier’s Rules for right-angled triangles 
Napier’s Rules are stated in terms of the conventional diagram shown in Fig 5.2(a) 
where the angle at a point is divided into five parts by a horizontal radius running 
to the right, two vertical radii running upwards and downwards, and two inclined 
radii running to the left from the point. The horizontal line running to the right 
represents the right-angle and the remaining five elements of the spherical triangle 
are written on the diagram in cyclic order in the following manner: the compartments 
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Fig 5.2 Napier’s rules for right-angled spherical 
triangles. The thick line labelled 90° in (a) represents 
the right angle of the spherical triangle and the other 
sides and angles are written in cyclic sequence on 
this diagram. A spherical triangle with C = 90° is 
shown in (b) and the corresponding Naperian 
diagram is shown as (c). 

to the right of the vertical line represent the sides adjacent to the right-angle and the 
three compartments to the left of the vertical line represent the complements of the 
remaining two angles and the side opposite the right-angle. Figure 5.2(b) shows a 
spherical triangle with C=90° and Fig 5.2(c) is the corresponding Napierian 
diagram. The magnitudes of any three elements of the spherical triangle are then 
related in terms of the conventional diagram by Napier’s Rules: 

the sine of a middle part = the product of the tangents of adjacent parts 

= the product of the cosines of opposite parts? 

Application of Napier’s Rules to the spherical triangle of Fig 5.2(b), for which the 
conventional diagram? is Fig 5.2(c), yields the following ten equations: 

sina = tanb.cotB (8) 

cosB = tana.cotc (9) 

cosc = cotB.cotA (10) 

cosA = cotc.tanb (11) 

sinb = cot A.tana (12) 

sina = sin A.sinc (13) 

cosB = cosb.sinA (14) 

' A mnemonic that may be useful is: 

sIn middle = tAn Adj. = cOs Opp. 

?It is immaterial whether a clockwise sequence of elements on the triangle is represented by a clockwise 
or an anticlockwise sequence on the conventional diagram. 
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cos c = cosa.cosb (15) 

cos A = sinB.cosa (16) 

sin b = sinc.sin B (17) 

We now proceed to derive equations (8)—(17) from the relationships for a general 

spherical triangle by putting C = 90° in equations (1)—(7). This procedure constitutes 
a proof of Napier’s Rules since equations (1)-(7) are symmetrical with respect to 
A, B, and C. For C = 90° equations (1) and (2) remain unchanged and (3)-(7) become 

cos c = cosa.cosb (3) = (15) 
cos A = sinB.cosa (4’) = (16) 
cosB = sinA.cosb (5’) = (14) 

—cosA.cosB+sin A.sin B.cosc = 0 

1.¢. cosc = cotA.cotB (6’) = (10) 

snA sinB_ 1 

sina sinb sinc 

Le. sina = sinA.sinc (7') = (13) 

and sin b = sin B.sinc (7) = (17) 

Equations (10), (13), (14), (15), (16), and (17) are respectively identical to (6’), (7’), 

(3’), (3’), (4), (7”) and it only remains to verify equations (8), (9), (11), and (12). 

Elimination of cos a between equations (1) and (3’) yields 

cos c(1 —cos? b) 
———+_——— = cotc.tanb 
cos b.sin b.sinc 

cos A = 

which is equation (11). And similarly elimination of cos b between (2) and (3’) yields 
equation (9). From equation (7) 

sin a.sin B 
sin As : 

sin b 

which on substitution in (5’) yields 

cosB = sina.cotb.sin B 

i.e. sina = tanb.cotB 

which is equation (8). Similarly elimination of sinB between (7) and (4’) yields 

equation (12), completing the verification of Napier’s Rules for right-angled spherical 
triangles. 

Napier’s Rules provide a simple and straightforward means of calculating 
interplanar and interzonal angles in all systems other than the triclinic where recourse 
has to be made to the relationships for the general spherical triangle. The only problem 
facing the crystallographic user of Napier’s Rules is the discovery of a right-angled 
spherical triangle containing two known angles, other than the right-angle, and the 
angle whose magnitude is required. In searching the stereogram for such a triangle it 
should always be remembered that a right-angled spherical triangle (or Napierian 
triangle) is formed by the intersection of mutually perpendicular zones. This can arise 
in two ways, either when the pole of one great circle representing a zone lies on 
another great circle which also represents a zone (three cases are illustrated in 
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COE 
Fig 5.3 A right-angled spherical triangle arises when the pole of one great circle lies on another 
great circle. In the diagram at the left the pole P lies on the primitive and on two of the other 
great circles shown so that the horizontal diameter, of which P is the pole, intersects all three 
great circles orthogonally. In the middle diagram the primitive, whose pole is P, is perpendicular 
to all great circles passing through P. In the diagram at the right P lies at the intersection of two 
great circles which intersect the great circle whose pole is P orthogonally. 

A 
Fig 5.4 In the cubic system the lattice geometry is 
such that the positions of the poles (321) and (312) 
are related by the mirror plane through the poles 
(100) and (111) so that the great circle through 
(321) and (312) is perpendicular to the great circle 
through (100) and (111). Spherical triangles such 
as (100), (211), (101) and (211), (110), (111) are 
in consequence Naperian. 

Fig 5.3), or when two poles are related by a mirror plane (the great circle through the 
two poles will then be perpendicular to the great circle representing the mirror plane, 
which is necessarily a zone, as illustrated in Fig 5.4). The latter case should always be 
borne in mind when dealing with the cubic system. 

Example (i) To calculate the interfacial angle (100):(311) in BaSO, which is 
orthorhombic with a = 8:85 A, b = 5-44A,c =7:13A 
The first step is to draw a sketch stereogram showing all the zones relevant to 
the angle to be calculated (Fig 5.5(a)). Since the zones [(100), (010)] and 
[(310), (001)] are mutually perpendicular the triangle (100), (311), (310) is 
right-angled at (310) and Napier’s Rules are applicable. This triangle is shown 
in isolation in Fig 5.5(b) and the conventional diagram is shown in Fig 5.5(c). 
Before Napier’s Rules can be applied to determine the required angle, two 
angles must be evaluated from the given unit-cell dimensions. We have earlier 
shown that in general in the orthorhombic system 

a cach (100) :(hkO) = tan bik 

8:85 
H 100):(310) = tan~! ence (100):(310) = tan 3(5-4d) = 28°28". 
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aoe = 

(310):(311) 

oO 

seen 00) +0811) Fig 5.5 Calculation of the interfacial angle 
(100) : (311) in the orthorhombic system, the 
unit-cell dimensions being known. The stereogram 
(a) shows all the zones relevant to the calculation. 
The spherical triangle (100), (311), (310) is shown 
enlarged in (b): tan (100) : (310) = a@/36 and 
tan @ = b/c. The Napier diagram for the right-angled 

(c) spherical triangle (100), (311), (310) is shown in (c). 

(100):(310) 

Since the normal to the plane (100) is parallel to the zone axis [100], 

w = (011):(010) 

Now in general in the orthorhombic system we have seen that 

(010):(Ok/) = tan! Be 
c/l 

Therefore m= tan™ rh’ ene nea ata 
c 7:13 

Application of Napier’s Rule in the tangent form with 90°—w as the middle 
angle to which 90° —(100):(311) and (100):(310) are adjacent (Fig 5.5(c)) yields 

cos w = cot (100):(311). tan (100):(310). 

tan (100):(310) 

COs @ 

__ tan 28°28’ 

eos 37Th 21 

Therefore (100):(311) = 34°18’ 

Alternatively the triangle (301), (311), (100), in which the angle between the 

zones [(100), (001)] and [(010), (301)] is 90°, may be employed, with inter- 
mediate evaluation of the angles 90 —«@ and (100):(301). 

Therefore tan(100):(311) = 
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001 012 
, 

2 4010 [100):(0 21] 
(100) oor 

a 

100 igs 
(a) (b) 

° - 

90 — [100):(021] 

(001): (012) 

90 — (012):(100) 

(100): (001) Fig 5.6 Calculation of the interzonal angle [100]: [021] 
in the monoclinic system, the unit-cell dimensions being 
known. The stereogram (a) shows all the zones relevant to 
the calculation. The significant Naperian triangle (100), 
(001), (012) and its conventional diagram are shown in (b) 

(c) and (c): (100): (001) = 180°—B and tanw = c/2b. 

Example (ii) To calculate the interzonal angle [100]:[021] in gypsum, 
CaSO,.2H,O, which is monoclinic with a = 5-68 A, b = 15-18 A, c = 629A, 
B.2=.113°50' 

The first step is to draw a sketch stereogram (Fig 5.6(a)) to display the 
principal zones and the zone [021]. The indices of planes common to any two 
zones can be found by application of the zone equation: the zone [100] 
contains all planes with indices of the type (Ok/) and in particular (010) and 
(001); the zone [021] contains all planes with indices such that 2k = I, e.g. 
(100), (012); therefore the face common to both zones has h = 0, 2k = | and 

must be (012). The triangle (100), (001), (012) is right-angled at (001) since 

[100] 1 [010] in the monoclinic system. This Napierian triangle and its 
conventional diagram are shown in Fig 5.6(b) and (c). It has already been 
shown that in the monoclinic system 

(100):(001) = 180°—f 

Cc d tanw =— an an W ab 

Application of Napier’s Rule in the cosine form with 90° —[100]:[021] as the 
middle angle to which 90° —@ and (100):(001) are opposite (Fig 5.6(c)) yields 

cos [100]:[021] = sin w.cos(100):(001) 

Therefore cos[100]:[021] = sintan™ ! fe cos (180° — f) 
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6:29 
= sintan ! 3036: 008 86° 10’ 

= sin 11°42’. cos 66°10’ 

Hence [100]:[021] = 85°18’ 

Example (iii) To calculate the angle between the polar edges of the cleavage 
rhombohedron {1014} in calcite, CaCO3, which is trigonal (3m) with a = 4-990 A, 
c=17061A 
The polar edges of a rhombohedron are those edges that meet in the triad as 
shown for this case in the sketch Fig 5.7(a), where the required angle for the 
face (1014) is marked w. The polar edges of the face (1014) are the zone axes 

of the zone [(1014), (0114) ] and [(1014), (1104)] displayed on Fig 5.7(b). That 
the required angle a, being the angle between zone axes, is the supplement of 
the angle between the great circles representing the corresponding zones is 

1010 

trace of great circle 

[(1014), (0114) ] 
=> 

trace of great circle 

Fig 5.7. Calculation of the angle between the polar 
edges of the rhombohedron {1014} in the trigonal 

a system, the unit-cell dimensions being known. The 
(0001) : (0118) rhombohedron is shown in perspective in (a) and in 

stereographic projection in (b). That the angle 
between the great circles [(1074), (0114)] and 

a oe [(1014), (1014)] is 180°—a, where is the angle 
(0118) : (1014) between the polar edges of the rhombohedron, is 

demonstrated in (c). The Naperian triangle (0001), 
90— (2 ) (1014), (0118) and its conventional diagram are 

2 shown in (d) and (e): the angle at (0001) is 60° 
(e) and tan (0001) : (1014) = c/4a cos 30°. 

90 — (0001) : (1014) 
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evident from Fig 5.7(c). Itis apparent from the stereogram that, by symmetry, 
the zone [(0001), (0110)] is perpendicular to [(1014), (1104)] and by application 
of the zone equation the plane common to the two zones is seen to be (0118). 
The triangle (0001), (1014), (0118) thus has a right-angle at (0118), a 60° angle 
at (0001), and an angle 90° —(a/2) at (1014); this Napierian triangle and its 
conventional diagram are shown in Fig 5.7(d) and (e). It has already been 
shown that in the trigonal system 

ee c/l Se ON) AO baa ane 
SATAY Ce oe Therefore tan (0001):(1014) = 4acos 30° 

Application of Napier’s Rules yields 

cos (0001):(1014) = cot 60° tan; 

Therefore tan; = tan 60°.cos(0001):(1014) 

ot ° -1 - = tan 60°.cos tan 4dcos 

17-061 a ° 8 = tan 60°.cos tan 19-96 cos 30° 

= tan 60°. cos 44°38’ 

Therefore NOT S44 

Napier’s Rules for right-sided spherical triangles 

Napier’s Rules as stated for a right-angled spherical triangle can be shown to apply 
here too provided one change is made in the conventional diagram. For a Napierian 
triangle with c = 90°, as shown in Fig 5.8(a), the compartment in the middle of the 
left-hand side is occupied by C—90° (Fig 5.8(b)) whereas in the case where C = 90° 
this compartment is occupied by 90°—c. In consequence expressions involving the 
sine or tangent of this part change sign (sin(C—90°) = —cosC, tan(C—90°) = 
—cot C) relative to the case discussed previously while those involving the cosine of 
this part remain unchanged in sign (cos (C—90°) = cos (90° —C) = sin C). The validity 

Fig 5.8 Napier's Rules for right-sided spherical triangles. A spherical triangle with c = 90° is 
shown in (a); its conventional Napier diagram, shown in (b), has C—90° instead of 90°—C in 
the middle compartment on the left-hand side. 
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of Napier’s Rules for right-sided triangles can simply be demonstrated by substituting 
c = 90° in the equations for a general spherical triangle, equations (1)—(7), and 
comparing the resultant expressions with those read off from Fig 5.8(b), the procedure 

we adopted to validate the right-angled rules. Usually in real crystallographic 
situations it is possible to discover an amenable spherical triangle with one of its 
angles equal to 90° and the conventional diagram for the right-sided case rarely has 
to be employed. 

Analytical geometry 
We restrict our treatment here to orthogonal axes, that is to the orthorhombic, 

tetragonal, and cubic systems. All the necessary relationships for extending this 
treatment to non-orthogonal systems are quoted without proof in Appendix E. For 
orthogonal axes the basic analytical equations (Appendix E) are the equation to a 
line whose direction cosines® are |, m, and n, where 

Pn net (18) 
and the expression for the angle 0 between two lines whose direction cosines are 
respectively ],m,n, and I,m,n, 

cos 0 = 1,1, +-m,m,+n,n, (19) 

Analytical expression for interfacial angles 

The utmost generality that can be achieved with the restriction of orthogonality of 
axes is by considering an orthorhombic case. We take as mutually perpendicular 
reference axes x, y, and z springing from an origin at O (Fig 5.9). Let the plane (hkl) 
intercept the reference axes x, y, and z at A, B, and C so that OA = a/h, OB = b/k, 
and OC = c/I. If the normal from the origin to the plane (hkl) intersects the plane at 
N, then the direction cosines of ON will be cos AON, cos BON, cos CON, It is 
evident from Fig 5.9 that cos AON = ON/(a/h), cos BON = ON/(b/k), cos CON = 
ON/(c/l), so that the direction cosines of the normal ON become ON/(a/h), ON/(b/k), 
ON/(c/l). Therefore by equation (18) 

A Fig 5.9 The direction cosines of the normal ON from the origin 
X O to a plane (Ak/) are ON/(a/h), ON/(b/k), ON/(c//). 

+The use of / to represent one of the direction cosines is common to many well-known texts of analytical 
geometry but the possibility of confusion in crystallography with the third Miller index is obvious. 
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h? * ke f re La 

Ga amie Ne 

The direction cosines of ON can then be rewtitten in terms of h/a, k/b, and I/c only as 

h/a k/b I/c 

Hace wetca\n Wk ak Te alee TGF) [Gobe8) [evb 
The angle between two planes (h,k,1,) and (h,k,1,) then follows from equation (19) 

as 

az b2 C2 

h2 k? [2 h2 k?2 [2 

Merete) 
Equation (20) is cumbersome and generally inconvenient, except when using a 
computer, relative to the spherical trigonometrical approach for the orthorhombic 
system. But in the tetragonal system, where a = b, some degree of simplification is 
achieved, 

hyh, Kk, lila 

cos (h,k,1,):(h2k,1,) = (20) 

{hyhy +k, k,+(a7/c’)1, 1} 

Jn + ki + (a7/c?)Ii) (hy +k + (a7/c7)3) 
which becomes particularly evident in the special case where |, = |, = 0, 

hyhy+k,kz 

© E+ RD V3 +) 
In the cubic system, where a = b = c, the expression becomes very much simpler and 
of considerable general utility, 

cos (hk, 1,):(h2k21,) = (21) 

cos (h,k,0):(h,k,0) 

hyhy+kyk,+1,1, hykyl;)(agkal) = sos Mi Taha) Mak ala) Ge kaa By] eke) (22) 

Example To calculate the interfacial angles (100):(111) and (111):(111) in the 
cubic system 

Substitute the indices of the planes in equation (22), 

1x1+0x1+0~x1 
cos (100):(111) = ———_——__—_.___— sifceons 

. i 
= 

Therefore (100):(111) = 54°44’ 

Ix1l—1ix14+1x1l 

ane cos(111):(111) = 

1 

3 

Therefore (111):(111) = 70°32’ 
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zZ 

Q 

Wc 

o y 
Ua Vb 

Fig 5.10 The zone axis [UVW] passes through the 
origin O and through a point O with coordinates 

Xx Ua, Vb, We. 

Analytical expression for interzonal angles 

The angle between two zones is the supplement of the angle between the corresponding 
zone axes (cf. Example (iii) on p. 133) and we shall confine our attention here to the 
angle between zone axes. Again we start with the orthorhombic system and consider 
a zone axis [ UV W | which passes by definition through the origin and a point Q with 
coordinates Ua, Vb, Wc (Fig 5.10). Therefore 

OQ? = U2a*+V7b7+ W2c? 

and the direction cosines of OQ, Ua/OQ, Vb/OQ, Wc/OQ can be expressed in terms 
of U, V, W, a, b, c only as 

Ua Vb We 

J (U7a? + V7b* + W2c?)’ [(U2a? +. V 7b? + Wc?)’ /(U2a? + V7b? + Wc?) 

Application of equation (19) yields immediately the angle between the zone axes 
[U,V,W,] and [U,V,W,], 

pu U,U,a74+V,V,b? + W, W,c? 
~ 4/(Uja? + V2b? + Wc?) ./(UZa? + V7b? + Wc’) 

As in the case of the corresponding expression for interfacial angles in the ortho- 
rhombic system, equation (20), this expression is cumbersome and of little utility for 
calculation except by computer. In the tetragonal system it becomes adequately 
simplified for convenient use only in the special case where W, = W, = 0, 

cos[U,V,W,]:[U,V,W, (23) 

U,U,+V,V, 
i a ee 24 

cos [U,V,0]:[U, V0] J(Ui+ V2). (U5 + VY) ( ) 

and in the cubic system the general expression 

U,U,4+V,),.4+W,W, 
U,V, W,|:[U2V2W2) = 25 cos [UVM Ml= Taya waits We |) 

is convenient to use. 
Comparison of equations (22) and (25) makes it immediately apparent that in the 

cubic system the normal to the plane (pqr) is parallel to the zone axis [pqr] and 
therefore the normals to planes in the zone [pgr] are coplanar with (pqr). In the 
tetragonal system this is so only for r=O and in other systems only for more 
restrictive conditions. Figure 5.11 shows the poles of the (110) and (111) face normals 
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(010) 

(110) 
[110] 

(100) 

Fig 5.11. The normal to the plane (pqr) is 
parallel to the zone axis [pqr] generally in the 

Q cubic system (a), when r= 0 in the tetragonal 
; Vy ae b d only for (100), (010), (001) and mbic — >= >1 system (b), an y , (010), 

(c) orshorhompi b: 6 their opposites in the orthorhombic system (c). 

together with the [110] and [111] zones and zone axes in cubic, tetragonal, and 
orthorhombic cases to emphasize this important point. 

It is in practice in systems other than the cubic most convenient to calculate 
interzonal angles by applying Napier’s Rules to appropriately chosen spherical 
triangles to evaluate the angle between the corresponding great circles. 

Equations to the normal to a plane 
Whether the reference axes x, y, z are orthogonal or not the plane (hkl) will make 
intercepts equal to a/h, b/k, and c/l on x, y, and z respectively. If the normal to the 
plane (hkl) through the origin O intersects the plane in N, then (F ig 5.9) 

b ON = * COs x:(kl) = 7-008 y:(hkl) = 7 C08 :(hk (26) 

where x:(hkl) is the angle between the x-axis and the normal to (hkl) and so on. 
Equation (26) is of limited application in crystallography but may provide a rapid 
means of evaluating two such angles when the other is known. When the reference 
axes are orthogonal equation (26) can be rewritten as 

: cos (100):(hkl) = : cos (010):(hkl) = ‘ cos (001):(hkl) (27) 

an expression that is occasionally quite useful. 
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Example To calculate the interfacial angles (010):(311) and (001):(311) in 
BaSO, which is orthorhombic with a = 8-85 A, b = 5:-44A,c=7:13A 

The angle (100):(311) was evaluated by Napierian triangle on p. 130 and 

therefrom the angles (010) :(311) and (001) :(311) can quickly be evaluated by 
the equations to the normal. 

cos (010):(hkl) = ; cos (100): (hkl) 

Since (100):(311) = 34°18’ 

cos (010):(311) = ay * cos 34° 18’ 

Therefore (010):(311) = 63° 23’ 

And cos (001):(hkl) = i : cos (100):(hkl) 

Hence cos (001):(311) = ae = cos 34° 18’ 

and so (001):(311) = 70°01’ 

The sine ratio or Miller formulae* 
The Miller formulae relate the angles between four faces in a zone (1.e., four tautozonal 
faces) and are of general application in all systems. 

Let the tautozonal faces P,, P,, P3, and P, (Fig 5.12) have indices (h,k,1,), 
(hk,12), (h3k3l3), and (h4k,l,) respectively and denote the interfacial angles 
64. = P,:P2, 0:3 = P,:P3 and so on. 

( \ 
Ls 

Fig 5.12 The Miller formulae: the four faces P,, P,, P3, P, are tautozonal. 

In the triangle xP,P, application of equation (1) yields 

cosx:P, = cosP,:P,.cosx:P,+sin P,:P,.sinx:P, cosw (28) 

where w is the angle at P,. And correspondingly in triangle xP, P; 

cosx:P; = cos P,:P3.cosx:P,+sin P,:P3.sinx:P,.cosw (29) 

4 Our treatment of this topic follows closely that of F. C. Phillips, Introduction to Crystallography (4th ed. 
1971) which we have found to be most lucid. ‘ 
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Multiplication of (28) by sin P,:P3 and of (29) by sin P,: P, followed by subtraction 

gives 

cosx:P,.sinP,:P,—cosx:P3;.sinP,:P, , 

= cosx:P,(cos P,: P,.sin P,: P3—cosiPy;P3. sim Py: Pa) 

= cosx:P,.sin P,:P; (30) 

And similarly from triangles yP,P, and yP, P; it can be shown that 

cos y:P,.sin P,:P3;—cos y:P;.sin P,:P, = cos y:P, .sin P,: P3 (31) 

Elimination of sin P,: P3 between (30) and (31) yields 

cos x:P,.sinP,:P;—cosx:P3.sinP,:P, cosx:P, 

cos y:P,.sin P,:P;—cosy:P;.sinP,;:P, cosy:P, 

.€. sin P,:P,(cosx:P,.cos y:P; —cosx:P3.cos y:P;) 

= sin P,: P3(cosx:P,.cos y:P,—cosx:P,.cos y:P;) (32) 

Now the equation to the normal for a face P is 

b 
* 608 x:P => cos y:P 

which on substitution in (32) leads to 

j ka ik : loses i 
sin Pi:Pa.$(q2—F>).cosx:P, cosx:P, = sin Pa:Pa$ (G27) cosx:Py.c0sx:P, 

k,— h,k,—h,k 
1.€. TUS, OD. cin BAP cosa Pesce Foe opsik De leg ae (33) 

h3 hy 

Now h,k3 —h3k, is the third digit of the zone axis symbol [UV W] of the zone with 
which we are concerned when evaluated by cross-multiplication from the indices of 
P, and P;. Putting h,k,;—h3k, = W,3 and so on, and 0,, = P,:P, etc for the 
interfacial angles, (33) becomes 

sinO,;, Wy, cosx:P, h, 

sin0,, W,; cosx:P; h, 2 

And from faces P,, P,, P; correspondingly 

sin 0 W,2 cosx:P, h GomeLAD 2 3 (35) 

sin04; Wy; cosx:P3 hy, 

Division of (34) by (35) yields 

sinf;, W,, 

a ee ae 
sin 045 Wa 

sinO4,; Was 

And by similar argument this may be extended to the complete Miller formulae 

sin 6, /sin 0,3 4. U12/U43 = Vi2/V3 “3 Wi2/W,3 

sin O42/sin 043 U42/Ug3 — V42/V43 Wa2/W43 
(36) 
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The Miller formulae, equation (36), fail only when two of the tautozonal faces are 
parallel; if any of the angles 0,5, 0,3, 042, 943, is 180° the division which produces (36) 
becomes indeterminate and if 0,, = 180° equations (34) and (35) become identical. If 
two or one of the digits, U, V, W, is zero two or one of the equations labelled (36) 

become indeterminate, but the remaining equation (or equations) holds. 
Since U, V, and W are of necessity integers, (sin 0, ,/sin 0,3)/(sin 0,,/sin 0,3) must 

be rational. This is a property that can be used, as will be seen in the examples that 
follow, to determine the indices of one of the four tautozonal faces when those of the 

other three and all four interfacial angles are known. 
The Miller formulae can be expressed in a variety of forms, some leading to greater 

ease of computation than others; the form, equation (36), in which they are set down 
here has in our experience the advantage of being the most symmetrical and 

consequently the easiest to memorize. 

The cotangent formula 

This is the most useful of the rearrangements of equations (36) and leads to a special 
case of particular utility. Since U, V, and W are necessarily integers, 

U,2/U43 a 

U42/U43 - 

where p and gq are integers. 

Therefore es ae 
sin 04,/sinO43 q 

Therefore sin @,,.sin(@,4—0,3) = “ain 0,3.sin(0,4—9;>) 

qsin 0,,(sin 0,4 cos 0,3 —cos 0,4 sin 0,3) 

— psin §,3(sin O14 cos 0,.—cos O14 sin 0,2) 

and qsin 0, sin 0,3 sin 0, 4(cot 8,3 —cot 0,4) 

= psin@,,sin 0,3 sin 0,,4(cot 0,,—cot 6,4) 

Hence pcot0,,—qcot 0,3 =(p—q)cotb,4 (37) 

Equation (37) is appropriate for the determination of one interfacial angle when the 
indices of all four tautozonal faces and two interfacial angles are known. 

An important special case of (37) arises when 0,4 = 90°, then 

tan 0, = [tan Oss (38) 

Equation (38) is of considerable utility in the solution of problems involving interfacial 

angles. 
The additional restriction that one face should have two indices zero and another 

face have the remaining index zero, i.e. that the zone is [(100), (Oki) ], leads to further 

simplification. Suppose that P, is (100), Pz (h2k/,), P3 (h3k3/3), and P, (Ok4/,), then 

Dp ag W,2/W,3 e k/k3 a k,/k3 

q Wa2/Was3 —hyk4/—h3k, p/h 
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whence, simultaneously, 

k2/k3 
ha/h3 

tan (100):(h,k 315) = 

, 

tan (100):(h3k313) 

; (39) 
I,/I3 

om tan (100):(h3k31 

For the zone [(010):(h0/)] the corresponding expression is 

_ ha/hy 
ka/k; tan (010):(h ky!) tan (010):(h3k3 * 

(40) 
l,/ls ; a tan (010):(h3k31;) Kalk, ( 3K3!3 

and for the zone [(001):(hk0) ], 

h2/h3 
L,/ls 

_ kalks 
1,/I3 

The symmetry of equations (39)—(41) is apparent: the denominator is the ratio of 
unique indices, the numerator the ratio of either of the other two indices, in each case 

for the faces (here P, and P;) with all indices non-zero. 

tan (001):(h2k 212) = tan (001):(h3k313) 

| (41) 
tan (001):(h3k313) 

Example (i) To evaluate (hkl) given that P, (110), P, (112), P; (hkl), P, (011) 

are tautozonal and that 0,, = 66°17’, 054 = 42°32’, 0,3 = 13°33’ (Fig 5.13) 

sin 0,,/sin@,3 _ sin66°17’/sin79°S0’ 2 

sin O4,/sin@43 sin 42°32’/sin28°59’ 3 

Cross-multiplications: 

Py, P Beers 

LT goat. ST0 Tear thQote untlt 
Lit PRT e M1 ih he er wea 

[2 2 saNag [PP ae 

P,, P, P,, P3 

il 1 0 iv e 1 0 AF 

hts Sah 1 1 eH eee 
ie. en) (i-eone hy 

LigsUt nts fimeilons 
Therelore <= = 

U42/U43  1f(I—k) 3 

; 2(l—k) 2 
1.€. —— = 

l 3 

ie. 3(I—k) =1 
Le. 21 = 3k 
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\ LA : 

100 

Fig 5.13 Determination of the indices of Fig 5.14 Calculation of (100) : (211) 
P3(Ak/) by the Miller formulae, given that P, is for an orthorhombic crystal, given 
(110), P, is (112), P, is (011) and that the (100) : (311), by the Miller formulae. 
angles 0,5, 9,3, and 0,, are known. 

VilVis_ -2/-1_2 
oe ie he a 

ie Th be 
vo baw ee 

1c. 3h=1 

Therefore (hkl) is identified as (123). 

Check: Wi2/Mi3 — 2/(k+h) b 2/3 = 2 

Wa2/Was (—DK(-h) (-1(-1)_ 3 

Example (ii) To calculate (100) :(211) in BaSOx4 (barite ) which is orthorhombic 
and has (100):(311) = 34° 18’ (cf. example (i), p. 130) 

The faces (100), (311), (211), (011) are tautozonal (Fig 5.14) with (100):(011) = 
90°. Application of equation (39) 

k2/ks 
tan (100):(h,k,1,) = h Th 

2 

tan (100):(h3k31;) 

yields for P, (311) and P3 (211) 

1 
tan (100):(311) = 32 tan (100):(211) 

Therefore (100):(211) = tan ' $tan 34° 18’) 

== 45-39" 

Transformation of axes 
In the course of investigation of a crystalline solid it may be necessary, for one reason 

or another, to change the orientation of the reference axes. For instance the crystal 
morphology of a substance of class 422 may have been referred to reference axes x, 
and y, which are shown by subsequent X-ray study to be parallel to the diagonal 

diads of the smallest unit mesh in the (001) plane; a procedure for reindexing the 
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crystal faces in terms of the true unit-cell will then be required. Axial transformations 

are quite commonly needed also in the comparison of related structures of different 

lattice type or crystal system; an example of this type of use appears at the end of 

this chapter. ; 
In order to change from one set of reference axes x, y, z, (the ‘old’ axes) to another 

set x’, y’, z’ (the ‘new’ axes), it is necessary first to express the vectors a’, b’, e’, which 

represent the edges of the ‘new’ unit-cell, in terms of vector sums of the vectors a, b, c, 

representing the edges of the ‘old’ unit-cell, 

1 a’ = p,jat+q,b+r,ec 

b’ am p,a+q.b+rz¢ 

c’ = p3at+q3b+r3¢ 

where p;,91,11, P2--- 13 are integral or simple fractional coefficients. Such coefficients 
completely specify the relationship of the ‘new’ to the ‘old’ unit-cell vectors and can 
conveniently be represented in matrix form: 

Pi 4 "1 

P2 42 12 Or P1911 1/P29212/P3 93's 

P3 93 13 

the latter representation being most commonly used in print for obvious typo- 
graphical reasons. Such a transformation matrix simply states the coefficients in the 
three equations that give a’, b’, c’ in terms of a, b, c. 

In an exactly similar manner the ‘old’ unit-cell vectors can be expressed in terms 
of the ‘new’ unit-cell vectors, the transformation matrix being 

Py Q,; R, 

P, Q2 R2 

P; Q3 R; 

so that a= P,a’+Q,b’+R,c’ and so on. 

Transformation of coordinates 

Let us suppose that the coordinates of an atom in the ‘old’ unit-cell with a, b, c, are 

known and that it is desired to find the coordinates of that atom in the ‘new’ unit-cell 

with a’, b’, e’. If the coordinates of the atom in the ‘old’ unit-cell are x, y, z then the 
vector from the origin to x, y, z, is 

xa+ yb+ ze 

= x(P,a'+Q,b'+R,c’)+ y(P2,a+Q,b'+ Rc’) +2(P3a'+03b'+R3c’) 

= (xP, +yP,+2P3)a' +(xQ,;+yQ,+2Q3)b' +(xR,+yR,+2R;)e’ 

and the vector from the origin to x’, y’, z’ is 

xa’ + yb’ +2'e 

Therefore 

x’ = P,x+P,y+P3z 

Y =Q:x+Q2y+Q3z 

si = R,xX+R ,y+R3z 
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The matrix for the transformation from ‘old’ to ‘new’ coordinates is thus 

Py Pa Ps 

Q; Q2 Q; 
Rene: 

which is related by interchange of rows and columns to the matrix for the reverse 
transformation (i.e. from ‘new’ to ‘old’) for axes 

Per eky 
PzQ2 R2 

P3 Q3 R; 
derived previously. 

Since the zone axis symbol [UVW] is a statement of the coordinates of a point on 
the zone axis, zone axes transform as coordinates. The matrix for the transformation 

from [UVW] in terms of a, b, ¢ to [U'V’W’] in terms of a’, b’, c’ is thus 

2 as 
Q: Q2 Qs 
R, Rz Rs 

Transformation of Miller indices 
Since the Miller symbol (hkl) represents the reciprocal ratio of the intercepts made by 
a plane on the three reference axes a different matrix is required for the transformation 
of face indices. A set of planes (hkl) can be regarded as dividing the vectors a into 
h parts, b into k parts, and c into | parts; the general vector p,a+q,b+r,cis therefore 
divided into p,h+q,k+r,!/ parts. That this is so is apparent from the two-dimensional 
case illustrated in Fig 5.15 where a set of lattice lines divides a into two parts and b 

into three parts (i.e. h = 2, k = 3 and the lines have indices (23)); the line OM = 2a+b 
(i.e. py = 2, q, = 1) is seen to be divided into 2x2+1%x3=7 parts and the line 
ON = —a+bi(Le. p; = —1, q, = 1) into —2+3 = 1 part. Thus if new axes x’, y’ are 
taken respectively parallel to OM and ON the lattice lines, (23) on the old axes, 
become (71) when referred to these new axes. 

It is evident also from Fig 5.15 that whatever path is taken in passing from the 
origin O to a lattice point M the same number of lattice lines will be crossed, if all 
lines that are crossed twice in the course of the path are discounted. This provides 
the basis for the statement of the transformation matrix for the Miller indices (h’k’1') 
referred to the ‘new’ unit-cell (defined by a’, b’, c’) from the indices (hkl) of the same 
set of planes referred to the ‘old’ unit-cell (defined by a, b, c). We have already shown 

that the transformation matrix for axes from a, b, c, to a’, b’, c’, is 

Pit etn 

P2 42 2 

P3 43 13 

whence a’ = p,at+q,b+ry,c. 
The planes (h’k'l’) divide the vector a’ into h’ parts and the same set of planes (hkl), 

referred now to the ‘old’ unit-cell, divide the vectors a, b, and ¢, into h, k, and | parts 

respectively. Since the number of crossings is independent of the path, it follows that 
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' 
y 

Gigi 
a 

Fig 5.15 Transformation of axes. The (thin) lattice lines in this 
two-dimensional example have indices (23) in terms of the axes 

X x, y (unit-vectors a, b) and indices (71) in terms of the axes x’, y’ 
x! (unit vectors OM, ON). OM = 2a+b and ON = —a+b. 

h' = pyh+qyk4+ryl. 

And similarly by consideration of b’ and ¢’, 

k’ = pph+qnk+rz1 

l' = p3h+q3k+rg5l. 

The transformation matrix for Miller indices is thus 

Pi 4 Vy 

P2 92 "2 

P3 43 13 

identical with the matrix for the transformation of unit-cell vectors. 
We shall not attempt to explore the relationship between the matrix 

PAS ey 

Pads ha 

P3 43 13 

for the transformation of unit-cell vectors from a, b, c, to a’, b’, c’ and the matrix for 
the reverse transformation from a’, b’, c’ to a, b, c. This matter is treated thoroughly 
by Buerger (1942, p. 22). 

The matrices applicable to the various types of transformation are shown in 
Table 5.1. We conclude with a word of advice: after setting up a transformation matrix 
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Table 5.1 
Relationships between transformation matrices 

Prqry P,Q;R, 

P2492" 2 P2Q,R> 

P39313 P3Q3R;3 
from old to new axes from new to old axes 

from old to new Miller indices from new to old Miller indices 

P,P»P; PiP2P3 

2,020; 919293 

R,R>R; ryPor3 
from old to new coordinates from new to old coordinates 

from old to new zone axes from new to old zone axes 

and applying it to a given set of Miller indices, set up the matrix for the reverse 
transformation and transform back to check. 

Example Relationships between three forms of BaTiO3 
BaTiO; exists in four structural modifications: below —80°C it is trigonal, 
from —80° to 5°C orthorhombic, from 5° to 120°C tetragonal, and above 

120°C cubic. We first consider the relationship between the cubic and 
orthorhombic forms. The cubic modification has space group Pm3m, unit-cell 
a~ 4A, and one formula unit per unit-cell; its structure is identical with ideal 

perovskite and is illustrated in Fig 5.16(a). The orthorhombic modification has 
space group Bmm2?, unit-cell dimensions, a = 5-656 A, b = 3-986 A, c = 5-675A, 
and two formula units per unit-cell. That there is a simple approximate 
dimensional relationship between the cubic and orthorhombic unit-cells is 
evident from Fig 5.16(b); this relationship is expressed by the axial trans- 
formation matrices: 

(b) 

Fig 5.16 The BaTiO, structures. The plan (a) on (001) shows the cubic form of BaTiO, 
which has the ideal perovskite structure. The plan (b) shows the dimensional relationship between 
the unit-cells of the orthorhombic (a,, 69, C9) and cubic (a, b¢, €,) forms of BaTiO. 
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(I) from cubic to orthorhombic (II) from orthorhombic to cubic 

nea 3 0 4 
a ae 8 ¥ ’ Otay 

Sexi 3 0 3 

The appearance of fractions in matrix II is because it refers to a transformation 

from a non-primitive to a primitive unit-cell. To determine the coordinates of 
the atoms in the orthorhombic B-cell our first step is to operate the appropriate 

matrix for transformation of coordinates on the coordinates of the atoms in 
one cubic unit-cell. Reference to Table 5.1 shows that the matrix for this 
purpose is matrix II above taken in columns, i.e. from cubic to orthorhombic 

coordinates 

$0 4 
0 Ani 

oe 
Our second step is to apply the B-centring translation 3, 0, 3, to obtain the 
coordinates of the other half of the atoms in the orthorhombic unit-cell. Thus 
Ti, which lies at 4, 4, 4 in the cubic unit-cell, has coordinates (+.4+0.4+4.4), 
(0.44+1.4+0.4), (—4.440.4+4.9), ie. 44,0 and. (44+4), 640), (0+3), ie. 
0, 3, 4 in the orthorhombic unit-cell. Table 5.2 lists the coordinates of all the 
atoms in the orthorhombic unit-cell derived in this way. These coordinates 
obviously refer to the cubic structure described on the orthorhombic unit-cell. 

Table 5.2 
Derivation of atomic coordinates in 

orthorhombic BaTiO, from those in 

cubic BaTiO; 

Cubic Orthorhombic 

1 1 
X,Y, Z +X, Y,Z+Z 

Ba 0,0,0 0,0,0 40,4 
. fetes sli dae Ti 2 Dee, 0 0, 2, 2 

O 110 De. a one 
1 23 Zs 7 4,2,4 4,254 

1 1 1 
O, 3, 0, 3 3, 0,0 0, 0, + 
@) 0.4.4 Pepsi eee 

3 Lae 4,2,4 4,72,4 

The actual orthorhombic structure is very similar, but has significant 
differences: the z coordinates of the barium atoms are not precisely 0 and 4, 

nor are those of oxygen precisely 4 and j; the effect of these small displacements 
is to lower the symmetry of the structure from Pm3m (cubic) to Bmm2 
(orthorhombic). 

We now turn to the relationship between the trigonal and cubic forms of 
BaTiO; and, for the sake of diversity, approach the problem differently. The 
triple hexagonal unit-cell of trigonal BaTiO; has axes x, y, and z parallel 
respectively to the [101], [110], and [111] directions of the cubic form. 
Reference to Fig 5.17 shows that the faces of the triple hexagonal unit-cell 
will be parallel to the cubic planes (112), (121), (111), and their opposites. 
Reference to Table 5.1 indicates that these cubic planes can be re-indexed in 
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Fig 5.17 The stereogram shows the angular relationship between the axes of the triple hexagonal 
(Xu, Yu, ZH), orthorhombic (X,, Yo, Zp) and cubic (X,, Ye, Z,) unit-cells of three BaTiO, polymorphs. 
Indices shown refer to the cubic unit-cell. 

terms of the orthorhombic unit-cell by applying the cubic orthorhombic 
axial transformation matrix (I) directly, thus (112) on cubic axes becomes 

((—1.1—0.14+1.2), (—0.1—1.1+0.2), (4+1.1—0.141.2)), ie. (113) on 
orthorhombic axes; (121), becomes (220), and (111), becomes (210),. That 
we obtain indices that are not prime to one another in the case of (220), arises 
simply because the first plane out from the origin that makes intercepts a, —4b, 
c on the cubic axes makes intercepts 4a and 4b on the x and y axes of the larger 
orthorhombic unit-cell (Fig 5.16). Conversely the (110) plane of the ortho- 
rhombic lattice transforms, by direct application of the corresponding axial 
transformation matrix (II), to the ($14) plane of the cubic lattice. We leave it to 
the reader to show that the axes xy, yy, 2, Of the triple hexagonal unit-cell 

correspond to the directions [001], [414], [110] on the orthorhombic lattice 
by application of matrix II taken in columns to the cubic zone axes [101], 
[110], [111]. Once again we get fractional coordinates, for the equivalent of 
y,, because the orthorhombic unit-cell is non-primitive; it would con- 
ventionally be correct to write for the orthorhombic equivalent of y, [121],. 
The reader may care to confirm the transformation of the axes of the triple 
hexagonal unit-cell to orthorhombic zone axes by transforming the indices of 
the faces of the triple hexagonal unit-cell from cubic to orthorhombic axes and 
then indexing the zone axes of pairs of faces. 
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6 
Diffraction of X-rays by crystals 

X-radiation is the name given to that part of the electromagnetic spectrum in the 
wavelength range 0-1 to 500 A, sandwiched between y-radiation at shorter wavelengths 
and ultraviolet radiation on the high wavelength side. We are not concerned 
immediately either with the general theory of electromagnetic radiation, which crops 
upin a different context and another wavelength range in chapter 12 where references 
to the general theory are given, or with details of the generation of X-rays (chapter 7). 

We assume that a source of X-rays, which for crystallographic purposes is usually 
restricted to the wavelength range 0:5—2:5 A, is available and proceed to consider the 
nature of their interaction with matter in general and with crystalline solids in 
particular. 

Interaction of X-rays with matter 

When an X-ray beam passes through a material medium its intensity is reduced by 
the operation ofa variety of effects which may be grouped under two general headings, 
absorption and scattering. 

The absorption of X-ray photons by an atom leads among other effects to the 
ejection of electrons from the inner shells (K, L, or M) of the atom and consequent 

‘falling in’ of electrons from lower energy levels to fill the vacancies so created. Such 

electronic transitions are accompanied by emission of X-rays of definite wavelength 
which is determined by the difference in energy between the initial and final state of 
the electron filling the vacancy in an inner shell. Such fluorescent X-rays may be 
reabsorbed by another atom to produce ejection of electrons from shells of lower 
energy, followed by ‘falling in’ of electrons from shells of even lower energy and 
emission of fluorescent X-rays of lower energy and therefore of longer wavelength. 
Absorption phenomena are utilized in various ways, including X-ray fluorescence 
analysis to which reference is made in chapter 15. 

The scattering of X-rays by an atom may occur in either of two ways, both of which 
again involve interaction between X-radiation and extranuclear electrons. An X-ray 
photon passing close to an electron belonging to one of the constituent atoms of the 
material medium will be deflected by the electromagnetic field of the electron and will 
impart some of its energy to the electron as kinetic energy. The energy of the deflected 
X-ray photon will be correspondingly decreased and its wavelength increased. This 
is incoherent scattering which is not our immediate concern. 
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The second way in which X-rays are scattered by atoms is best considered by 

treating the incident X-ray beam as a plane wave-front. As the plane wave-front 
passes through an extranuclear electron belonging to an atom of the material medium 
it causes the electron to vibrate. The vibrating electron radiates X-rays of the same 
frequency as the incident beam. Such vibrating electrons act as secondary sources of 
X-radiation of fixed wavelength and give rise to interference effects. The interference 
phenomena associated with such coherent scattering are the basis of X-ray 
crystallography and will concern us in this and succeeding chapters. 

That X-rays in the wavelength range 0-5—2:5 A incident on crystalline solids give 

rise to observable diffraction patterns is because the distances between adjacent 
atoms in crystalline solids are on the same scale and because the X-rays are scattered 
coherently from the extranuclear electrons of the constituent atoms of the solid 

substance. Simultaneously incoherent scattering, that is scattering with change of 
wavelength, occurs and that contributes to the background of the diffraction pattern. 

The study of the diffraction patterns produced by X-rays incident on crystalline 
materials, in particular single crystals, has made possible the determination of the 
size and shape of the relevant unit-cell and the coordinates of the atoms within the 
unit-cell. X-ray diffraction studies have proved to be the most powerful tool for the 
study of the internal structure of crystalline solids. The remainder of this chapter will 
be devoted to an elementary treatment of the diffraction of X-rays by single crystals. 

Simplifying assumptions 

The refractive index of most substances is less than unity by a very small amount, of 

the order of 10~ °, so that refraction of incident and scattered X-radiation at air/crystal 
interfaces can be neglected except when extremely precise measurement of unit-cell 
dimensions is required. 

Absorption by the crystal of incident and scattered radiation affects the intensities 

and the directions of the scattered beams. Thermal vibration of the constituent atoms 
of the crystal will also modify the intensity of the scattered X-radiation. Corrections 
for both effects are necessary in structure determination and can quite simply be 
applied. Correction for absorption is necessary when the angular disposition of the 
scattered beams is to be measured very accurately. In the elementary treatment given 

in this chapter, it will be assumed that absorption is negligible and that all the 

constituent atoms of the crystal are at rest. 

A scattered X-ray beam may, in the course of its travel through the crystal, be 
scattered a second time, but only in certain special circumstances is the resultant 
beam of appreciable intensity. 

In general scattered X-ray beams have a phase difference z relative to the incident 
beam that generated them. Only when the wavelength of the X-radiation is close to 
an absorption edge (chapter 11) of one of the constituent elements of the crystalline 
substance is this not so. It will be assumed in this elementary treatment that 
scattering always introduces a phase change z and, since the phase change is the same 
for all scattered beams it can be ignored. The origin of the phase change on scattering 
is discussed later in this chapter. 

Finally, it may be noticed that the effects of coherent scattering of X-rays by a 
crystal are going to be observed at distances from the crystal that are very large 
compared with X-ray wavelengths; that is to say we are dealing with an example of 
Fraunhofer, as distinct from Fresnel, diffraction. 
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Com bination of X-rays 

Consider a narrow pencil of monochromatic X-rays of wavelength A, angular 
frequency w, and amplitude a travelling in the x direction. A disturbance will be 
produced at a point x such that? ; ' 

W = acos(wt+¢) (1) 
where y is the displacement in the plane normal to the direction of propagation at 
time t, and ¢ is the phase of the wave when t = 0. It is evident from Fig 6.1 that a wave 
with phase ¢ is in advance of a wave with ¢ = 0. 7 

Suppose now that such a beam of monochromatic X-rays is divided into two 
beams, one with zero phase (this merely requires a suitable choice of the zero of the 
time scale) and the other with phase ¢. It follows that the second beam must have 
travelled a shorter distance than the first by an amount equal to 1/2n. 
When a number, N, of such waves arrives simultaneously at a given point, the 

resultant wave is given by the principle of superposition as the sum of the individual 
waves. Thus the resultant Wp of the waves 1, Wz,...Wy_1, Wy arriving simultaneously 
at the point is given, if the waves all have the same frequency, w, by 

Wr=Wit Wot... t+Wy-1t Wy 

= Ls 

a, COS (wt + @,,) 

(4, COS ct cos f,, — a, Sin wt sin ,} 

N 

1 

N 

: 
N N 

= cosat )' a, cos ¢, —sinwt Ya, sin p, (2) 
1 1 

But the resultant wave motion is described by 

Wr = Ag COS (cot + pp) 

= dp COS Ct COS dp — Ag SiN Ct SiN Hp (3) 
N 

Therefore agcos¢p = > a, cos d, 
1 
N 

and dp Sin pp = Ya, sin dy. 
i 

But, since cos? dy+sin? dy = 1 

N 2 N 2 

ag (s a, COS oy) + (5 a, sin 6,) (4) 
1 1 

N 

Ya, sin db, 
and tan dy = 4-——. (5) 

> dy COS dy, 
1 

' The equation to a simple harmonic wave-motion can be written in various ways: W = acos(@t+¢) is preferred in X-ray crystallography, y = A sin (wt + «) is one of several forms of the equation in common use in optics. It will be seen later in this chapter that y = acos (wt + ¢) leads to the most convenient form of 
the expression for the structure factor. 
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Fig 6.1 Two sinusoidal wave motions with the same frequency and velocity. Displacement wW in 
the plane normal to the direction of propagation is plotted vertically while distance traversed s 
and time taken ¢ are plotted horizontally. The wave motion represented by the thick line is in 
advance of that represented by the thin line by the phase difference @, which corresponds to a 
time difference of @/@ and a difference in distance traversed of Ap/27. 

Now, since there is no lens capable of refracting X-rays it is impossible to form an 
image of the crystal structure with the X-rays scattered by it and all that can be done 
in practice is to make measurements of the intensities and angular disposition of the 
scattered X-ray beams. Equation (4) provides an expression? for the resultant intensity 
Tp of N waves: 

Die a ae (> Ay, COS $4) (s a, Sin b,) (6) 
1 1 

To calculate the intensity of the resultant X-ray beam we thus need to know the 
amplitude and phase of the X-rays scattered by every electron in the crystal in the 
given direction. 

Our ultimate goal is the calculation of the diffraction pattern produced by the 
interaction of an incident monochromatic X-ray beam with a single crystal and this is 
achieved by summing over all directions the waves scattered by every electron in the 
crystal. The summation is taken in steps, the first step being to consider the interaction 
of the X-ray beam with a single electron. The second step is to consider the scattering 
produced by all the electrons associated with each atomic species present in the 
crystal. The third step is to consider the scattering produced by all the atoms in a 

single unit-cell, having regard to their differing nature and to their spatial distribution 
within the unit-cell. The fourth and final step is to sum the scattering effect of one 
unit-cell over all the unit-cells in the crystal. In the course of this stepwise argument 
it is necessary to assume as a first approximation that each electron in the crystal can 
be assigned to a particular atom. This is not strictly true because valency electrons 
may be involved in bond formation and in consequence be shared between atoms; 
but the majority of electrons in the crystal will be core electrons, each belonging 
unambiguously to a particular atom, so that the assumption is valid as a first 

approximation at least. 
The procedure outlined above is strictly logical but the steps are not progressive 
? This form for the intensity expression is preferred at this stage because it gives emphasis to the way in 

which the amplitude of the scattered beam may be calculated. For the more elegant form of the expression 
in complex number rotation see later in this chapter. 



154 Diffraction of X-rays by crystals 

in order of difficulty. In particular the final step is relatively easy, fundamental to 
crystallography, and immediately productive of useful results even before the earlier 
steps in the total summation have been taken. We shall therefore choose to take the 

final step first and consider the implications for the diffraction pattern of a crystal 
of a regular three-dimensional arrangement of unit-cells. 

Laue Equations 

Since a crystal is a regular three-dimensional arrangement of unit-cells it can be 
regarded as acting as a three-dimensional diffraction grating for X-rays. The effect of 
a grating is to limit the directions in which an observable diffracted beam occurs; in 
the diffraction of X-rays by crystals it will be shown that the directions of the 
diffracted X-ray beams depend on the dimensions of the unit-cell and their intensities 
on the nature and disposition of atoms within the unit-cell. 

It is a familiar property of diffraction by gratings that diffracted intensity maxima 
occur only in directions for which the waves scattered by corresponding points in 

each grating element are in phase; in all other directions the scattered waves interfere 
destructively more or less. In other words the path difference in directions of intensity 

maxima between the waves scattered by corresponding points in different elements of 
the grating is, for all elements, an integral number of wavelengths (Fig 6.2).7 By 
analogy with the corresponding points in the grating elements we can take 
corresponding points, one in each unit-cell of the crystal and so obtain an array of 

Fig 6.2 The path difference between waves 
scattered by corresponding points in each element of 
a diffraction grating is an integral number of 
wavelengths. 

nk 

nd 

lattice points. Therefore if we are interested only in the angular disposition of intensity 
maxima of the X-radiation diffracted by a crystal, it is valid to make the assumption 
that the scattering is produced by the array of lattice points. This is a highly restrictive 
model that can give no information about the relative intensities of the local intensity 
maxima but it is adequate for our immediate purpose. Diffracted beams will occur in 
directions for which X-rays scattered by all lattice points are in phase and, because 
the lattice is a regular three-dimensional array of lattice points, this condition is 
satisfied if the X-rays scattered by pairs of adjacent lattice points lying on three 
non-coplanar rows are in phase. 
We suppose a parallel beam of X-rays of wavelength J to be incident on a row of 

lattice points of spacing t at an angle of incidence i (Fig 6.3) and consider a direction 

*For thorough accounts of optical diffraction gratings see Jenkins and White (1957) and Longhurst 
(1957). 
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of scattering at an angle 6 to the lattice row.* The path difference for X-rays scattered 
by adjacent lattice points is then, referring to Fig 6.3, 

Fig 6.3. A parallel beam of X-rays of 
wavelength A, represented by the wave front PR, 
is incident at an angle of incidence / on a row 
of lattice points, P, Q,..., of separation t. The 
condition for the X-rays scattered by adjacent 
lattice points to be in phase is PS—RO =ndA, 
where n is an integer. 

PS—RQ = PQ(cos 6 —cos i) 

= t(cos 6 —cosi). 

For a diffracted beam to occur the X-rays scattered by adjacent lattice points have 
to be in phase, that is to say their path difference must be an integral number of 

wavelengths. Therefore the condition for diffraction by a lattice point row is 

t(cos 6 —cosi) = nd, 

where n is an integer. Figure 6.4 illustrates the result for four small values of n. 

Fig 6.4 The condition for an intensity maximum in the X-radiation scattered by a lattice row 
of which P and QO are two adjacent lattice points. The condition PS—RQ = nA, i.e.” 

t(cos 6—cos/) =n, is illustrated forn =1, 0, —1, —2. 

4It is usual to measure i and 6 with respect to opposite directions of the lattice row. We shall adopt the 
convention of taking i as the angle between the incident beam and the negative direction of the row and 
6 as the angle between the diffracted beam and the positive direction of the row. 
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Permissible directions of the diffracted beam are of course not confined to the 
plane defined by the incident beam and the lattice point row. The condition for 
diffraction, t(cos 6 —cos i) = nd, is satisfied by any direction making the angle 6 with 

the lattice row. Therefore for a given value of n the difffacted radiation is confined to 
the surface of a cone of semiangle 6; a set of cones coaxial about the lattice row 
represents solutions of the diffraction condition for n = 0, +1, +2, etc (Fig 6.5). 

So far we have considered diffraction by a single point row, but a lattice is a regular 
three-dimensional array of points and as such is completely specified by the distance 
apart of adjacent lattice points in three non-coplanar directions. We label these three 
axes x, y, and z and take the separation of lattice points along each to be a, b, and c 
respectively. For a point row of separation a parallel to the x-axis we have seen that 
the diffraction condition is a(cosé,—cosi,) = hj, where i, and 6, are the angles 
between the x-axis and the incident and diffracted beams mesnectively and h is an 

integer. If such a set of point rows is repeated successively with translation b parallel 
to the y-axis, each point row becomes a grating element and the diffraction condition 

beam 

incident 

+t = 

Fig 6.5 A set of cones, each corresponding to a 
particular value of n in the equation t(cos d—cos/) = nd, 
coaxial about a selected lattice row represents solutions 
of the diffraction equation for the lattice row. The cones 
of diffracted intensity maxima are shown in perspective 
and in stereographic projection. 
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for this grating is b(cos 6, —cosi,) = kA, where k is an integer. The condition for the 
production of an observable diffracted beam by all the lattice points in the xy plane 
is then a(cos6,—cosi,) = hA and b(cos6,—cosi,) = kA simultaneously. If such a set 

of lattice planes is repeated successively with translation c parallel to the z-axis, each 

plane constitutes an element of a third linear diffraction grating for which the 
diffraction condition is c(cos 6,—cosi,) = 1A, where | is an integer. The simultaneous 
operation of all three conditions is necessary for the production of an observable 
diffracted beam by all the lattice points of the three-dimensional lattice. This statement 

implies that if X-rays scattered by any pair of adjacent lattice points in a three- 
dimensional lattice are to be in phase, then the X-rays scattered by adjacent lattice 
points along each of the reference axes must be in phase; this constitutes a necessary 
and sufficient condition for diffraction by a three-dimensional array of lattice points. 

The diffraction condition for a three-dimensional lattice can thus be written as: 

b(cos 6, —cosi,) = ka 

c(cos 6,—cosi,) = lA 

a(cos6,—cosi,) = ha 

(7) 

where the incident beam is inclined at angles i,, i,, i, and the diffracted beam at 
angles 6,, 6,, 6. with the x, y, z axes respectively, 2 is the X-ray wavelength, and 
h, k, | are integers. These three equations (7) are known as the Laue Equations after 
Max von Laue, who in 1912, suggested that a crystal should act as a diffraction 
grating for X-rays. 

Fig 6.6 Solution of the Laue 
equations for a three-dimensional 
orthorhombic lattice for 
h=k=/=0 (trivial), for h=2, 
k =0,/=2 and forh=3, k=1, 

h=0 /= 2. The direction of the 
incident X-ray beam is 
represented in the stereographic 
projection by the pole T. 

k=1 “fx =k=2 

The first Laue Equation, a(cos 6, —cosi,) = h/, restricts the directions of observable 

diffracted beams to the surfaces of a set of cones coaxial about the x-axis and having 
semiangles 5, consistent with the equation. This statement is illustrated in Fig 6.6 
where, for a given direction I of the incident beam, the restriction placed by the first 
Laue Equation on the directions of diffracted beams is represented by a set of small 
circles of radius 6, centred on the x-axis. The second Laue Equation, 
b(cos6,—cosi,) = kA, further constrains the directions of observable diffracted 
beams to a set of small circles of radius 6, centred on the y-axis. The simultaneous 
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operation of these two Laue Equations thus restricts observable diffracted beams 
produced by X-rays incident in a particular direction to the intersections of pairs of 
small circles, the attitude of one small circle being dependent on h and of the other 
on k. Each pair of h, k values leads in general to two 'common directions. The third 
Laue Equation, c(cosé.—cosi,.) = lA, provides an additional restriction; for an 
observable diffracted beam to occur, a small circle of the set of radius 6, centred on 
the z-axis must pass through the intersection of small circles of the x and y sets. An 
observable diffracted beam thus lies in a direction common to three cones, each 

coaxial with one of the reference axes and of semiangle consistent with the appropriate 
Laue Equation; such a direction is completely specified for a given lattice and for 
X-rays of given A by the integers h, k, |. The orientation of the X-ray beam shown in 
Fig 6.6 leads to intersection of three small circles only for h = k = 1=0, for h =2, 
k =0, |= 2, and for h = 3, k =1, |!=2. The first of these solutions of the Laue 
Equations is trivial, representing merely the forward direction of the incident beam. 

It is worth noticing at this point that a three-dimensional grating, such as a crystal, 
differs from a one- or two-dimensional grating in the small number of diffracted 
beams produced by any particular orientation of the incident beam. Other diffracted 
intensity maxima can be observed only by changing the orientation of the incident 
beam relative to the crystallographic reference axes; in practical X-ray crystallo graphy 
this is most conveniently done by rotating the crystal and keeping the attitude of the 
incident beam fixed. 

Bragg Equation 

Although the Laue Equations provide an elegant treatment of the diffraction of 
X-rays by crystals, they are difficult to manipulate and the diffraction condition is 
provided in whatis, for most purposes, a more convenient form by the Bragg Equation. 
We now proceed to derive the Bragg Equation from the Laue Equations; later we 
shall show how the Bragg Equation can be obtained directly in a simpler, but less 
rigorous manner. It will be shown that the essential simplifying feature of the Bragg 
Equation is that a particular diffracted beam appears as a reflexion of the incident 
beam by a particular lattice plane, ‘reflexion’ occurring only at certain angles of 
incidence given by the equation. 
We begin by considering’ a general solution of the Laue Equations illustrated in 

Fig 6.7, where I represents the direction of the incident X-ray beam, D the direction 
of the diffracted X-ray beam for one solution of the Laue Equations, and z the positive 
direction of the z-axis of the lattice. Consistently with our previous usage I and D 
make angles 180° —i, and 6, respectively with the positive direction of the z-axis, which 
is placed in the centre of the stereogram. N is a direction in the plane defined by I and 
D and bisects the angle between I and D. The angle @ is defined such that 
I'D = 180°—20 and I:N = N:D = 90°—0. For the non-Napierian spherical triangle 
INz equation (1) of chapter 5 yields 

cos (180° —i,) = cos z:N.cos (90° — 0) + sin z:N. sin (90° —60).cosa@ 
Le —cosi, = cosz:N.sin@+sinz:N.cos@.cos «a. (8) 

Similarly for the spherical triangle DNz, 

cosd, = cosz:N.cos (90° —6)+sinz:N.sin(90° — 6).cos (180° —@) 

Le. cos 6, = cosz:!N.sin @—sin z:N.cos 6. cos a. (9) 
° We are indebted to Dr Helen D. Megaw for this simple ingenious argument. 
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(a) (b) 
Fig 6.7 Derivation of the Bragg Equation from the Laue Equations. In the stereogram (a) and 
the perspective drawing (b) | represents the direction of the incident X-ray beam, D the diffracted 
beam and the pole z the positive direction of the z-axis; N is coplanar with | and D and bisects 
the angle ID. 

Addition of equations (8) and (9) yields 

cos 6,—cosi, = 2cosz:N.sin 0. (10) 

But for an observable diffracted beam to occur the Laue Equations impose the 
restriction 

c(cosd,—cosi,) = lA, (7) 

which on substitution in equation (10) becomes 

2cosz:N.sin0 -< 

: c : A 
1.€. 7/0082:N San i 

Similarly the other two Laue Equations can be rewritten in terms of the angle 0 
and the angles between the direction N and the x and y axes as 

b ; A 

aka abicae 

a ; A 
and pocosx iN ye 

b 
so that 5 a = "008 x:N = OOS YN = 7-008 2:N. (11) 

Now, the length of the normal ON from the origin O to the plane (hkl) at N is given 

by equation (26) of chapter 5 as 

b ON = ; 008 x: (hkl) = 7-008 y: (hkl) = 7-008 2:(hk). 

where x:(hkl) is the angle between ON and the x-axis and so on. Comparison with 
equation (11) indicates that the direction N shown on Fig 6.7 is the normal to the 
plane (hkl), where h, k, and / are the integral factors in the three Laue Equations, and 
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A — 

2sin0 

The perpendicular distance, ON, of the (hk/) plane from the origin is more conveniently 
described now as the spacing of the (hkl) planes of the lattice and written as d,,,, so that 

J = 2dyyy sin 0. (12) 

Equation (12), which was derived by W. L. Bragg in 1912, is known as the Bragg 
Equation. It simply states that for directions in which an observable diffracted beam 
can occur the incident and diffracted beams are coplanar with the normal from the 
origin to a set of lattice planes (hkl) and equally inclined at 90° —6@ to it and, further, 
that the angle 0 (commonly called the Bragg angle) is related to the wavelength of the 
radiation J and to the spacing d,,, of the lattice planes by equation (12). 

It is apparent from Fig 6.8 that the Bragg Equation provides an alternative way of 
looking at the diffraction of X-rays by a lattice: the diffracted beam can be regarded as 
a reflexion of the incident beam by the set of lattice planes (hkl), reflexion occurring 
only when the angle of inclination of the incident beam to the lattice planes, i.e. the 
Bragg angle 0, the spacing of the planes and the wavelength of the X-rays, satisfy the 
equation 1 = 2d,,, sin 0. 

| D Fig 6.8 The Bragg Equation. The diffracted 

beam D can be regarded as a reflexion of the 
incident beam | by a set of lattice planes (hk/) 
when the angle of incidence @ satisfies the 

[OW /?)\ equation A= 2d;,,sin 0. 

dhki 

In his derivation of the Bragg Equation W. L. Bragg considered first how the 
X-rays scattered by all the lattice points in a plane (hkl) might be in phase and then 
established the condition for the X-rays scattered by the lattice points in all lattice 
planes parallel to (hkl) to be in phase. As the incident-plane wave-front passes over a 
set of points (which need not be lattice points or even regularly spaced) in a lattice 
plane, secondary wavelets build up a reflected wave-front according to the Huygens 
construction familiar in optics (see Fig 12.52). A small part of the energy of the 
incident wave-motion is transferred to the reflected wave-motion, but most of it passes 
on. The condition for optical reflexion, that the angle of incidence is equal to the 
angle of reflexion, ensures that the waves scattered by all points in the lattice plane 
are in phase with one another (Fig 6.9(a)). In general the waves reflected from 
successive lattice planes will not be in phase. A plane wave-front incident on an 
adjacent pair of lattice planes is shown in Fig 6.9(b), where the lattice planes are shown 
as horizontal lines. The waves reflected from the upper plane have an optical path that 
is shorter than that for those reflected from the lower plane by PB + BQ = 2d,,, sin 0. 
For reinforcement the path difference must be a whole number of wavelengths; 
therefore the condition for an observable diffracted beam is 

nd = 2dyy) sin 0. (13) 
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(a) (b) 
Fig 6.9 The Bragg Equation: the optical analogy. (a) illustrates the condition for optical 
reflexion, that the angle of incidence ACB = @ is equal to the angle of reflexion CAD so that the 
waves scattered from all points in the plane AC are in phase with one another. (b) illustrates 
Bragg diffraction from successive lattice planes (hk/), AP and AQ being respectively incident and 
diffracted plane wave fronts; in general the waves reflected from successive lattice planes will not 
be in phase. 

Equation (13) is a form of the Bragg Equation in common use in spectroscopy. In 
crystallographic usage it is rewritten as 

2d 
A= a sin 0 = 2d.) ani SiO 

and the indices are divided through by the common factor n to give the form derived 
directly as equation (12), A = 2d,,, sin 0. In the derivation of equation (12) from the 
Laue Equations the only restriction placed on the values of h, k, and ! was that they 
should be integral; they were not forbidden to have a common factor. However 
when the indices of planes (hkl) have a common factor n, the planes are not strictly 
lattice planes, but a set of planes parallel to the lattice planes (h/n, k/n, I/n) with a 
spacing of one nth of that of the lattice planes. This point is illustrated in Fig 6.10, 
where (210) lattice planes, (420) and (630) planes are shown in relation to an 
orthorhombic lattice. Every (210) lattice plane passes through lattice points and all 
planes are equivalent. However, only alternate planes of the (420) set pass through 
lattice points and in consequence not all planes of the set are equivalent. Likewise 
the planes (630) are not all equivalent, only one in every three passing through lattice 
points. In Fig 6.10 incident and diffracted beams that satisfy the Bragg Equation are 
shown for each set of planes and it is convenient at this point to comment on the 
statement, which has already been implied, that diffracted X-ray beams are commonly 
known as X-ray reflexions, it being understood that ‘reflexion’ implies a solution of 

the Bragg Equation and therefore a specific angle of incidence. The diffracted beams 
shown in Fig 6.10 would be described as the 210, 420, and 630 reflexions, the indices 

for reflexions being distinguished from those for planes by omission of brackets ( ). 
Reflexions are indexed so that the path difference for X-rays scattered by adjacent 

planes is A, a point to which we shall return later. The statement that a particular 
diffracted beam is the hkl reflexion for X-rays of wavelength J for a lattice of given 
dimensions completely specifies the angular relationship between incident and 
diffracted beam: the incident beam is required to lie on a cone of semi-axis 90° — 0 
about the normal to the (hkl) plane and the diffracted beam lies on the same cone so 
as to be coplanar with the normal to the plane and the incident beam. 

The Bragg Equation thus provides a simple and convenient statement of the 
geometry of the diffraction of X-radiation by crystals. It is the fundamental equation 
of X-ray crystallography. Its application in a variety of situations will be explored in 
the later parts of this chapter and in the two following chapters. 
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ry 

(630) 

D 
Fig 6.10 The Bragg Equation, 
A = 2d),; sin 8. The top diagram shows an 
(001) projection of an orthorhombic 
P-lattice with lattice planes (210), and 
incident (1) and diffracted (D) X-ray 
beams. The central and lowermost 
diagrams show planes (420) and (630) 
for the same lattice and the directions of 
incident and diffracted X-ray beams. Since 

F349 = 20456 = 3d,35, sind 
1 

: 0 210° 
2 SING 459 = FZ SING ES. 
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Intensities of X-ray reflexions 

The regular arrangement of atoms in a crystal restricts diffracted intensity maxima to 
certain directions, which can be described either as directions that satisfy the Laue 
Equations or, alternatively, as directions in which reflexions from lattice planes 
satisfy the Bragg Equation. We need concern ourselves therefore only with the 
intensity of radiation scattered in the directions of X-ray reflexions, a much simpler 
problem than the investigation of the intensity of radiation scattered in any general 
direction. 

Since the scattering produced by a crystal is almost entirely due to interaction 
between X-rays and electrons, the density of scattering matter at a point x, y, z in the 
unit-cell can be equated with the electron density® at that point. Strictly, electron 
density must be regarded as varying continuously throughout the unit-cell, but some 
simplifying assumptions can be made: since the electron density associated with an 
atom falls offrapidly with distance from the centre of the atom, it will be assumed that 

the electron cloud associated with any atom does not overlap that belonging to any 
other atom and is moreover spherically symmetric. All the atoms of a given element 
in the same state of ionization are thus taken to have identical distribution of electron 
density and to scatter X-rays similarly. We have deliberately ignored, at this first stage 

of approximation, valency electrons, which are involved in bond formation, because 
they are relatively few in number compared with the core electrons, each of which is 
unambiguously associated with one atomic nucleus; in short we are assuming that the 
core electrons are predominantly responsible for the scattering of X-rays and 
consequently that the radiation scattered by an atom will be independent of its 
environment. Thus the scattering produced by an atom of a given element in a given 
state of ionization will always be the same wherever it lies in the unit-cell and in all 

substances in which the element occurs. 
In the foregoing we have referred qualitatively to the amount of radiation scattered 

by an atom; clearly we need to make this quantitative and a convenient unit is 

provided by the classical electrodynamic treatment of the scattering of X-radiation by 
a single free electric charge. When a wave falls on an electric charge it causes the 

charge to vibrate and to act as a secondary source of waves of the same frequency so 
that the charge can be regarded as scattering a small fraction of the radiation 
incident upon it. If unpolarized radiation of amplitude A and wavelength A is incident 
on a free classical electron of charge e and mass m, it can be shown that the amplitude 
of the scattered radiation at a distance R from the electron, where R > A, is 

A’ e* (14+cos? 20)? 

R mc? 2 : 

where c is the velocity of light and 26 is the angle between the scattered beam and the 
forward direction of the incident beam.’ The factor {(1 + cos? 20)/2}? arises from the 
partial polarization of the scattered beam, which is out of phase with the incident 

beam by the amount z. 
We now have to define the atomic scattering factor, f, of an atom as the ratio of 

the amplitude scattered in a particular direction by that atom to the amplitude 
scattered by a free classical electron in the same direction. The amplitude of the 

°If is the electronic wave function at a point, then the electron density at that point will be |w|?. 

7 This result is proved in standard textbooks of electrodynamics and in James (1967) p. 29. 
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X-radiation scattered by an atom is thus 

A e? ,{1+cos? a 
R mc? 2 ; 

In the idealized, but impossible, case of a ‘point atom’, where all the electrons 

associated with the atomic nucleus are situated at a point, the atomic scattering factor 
of the atom would be equal to its atomic number,’ Z. In reality the electrons 
associated with an atomic nucleus occupy a finite volume, the dimensions of which 

are of the same oder of magnitude as the wavelength of X-rays. Each small element 

of volume AV within the electron cloud of the atom will give rise to scattered 
X-radiation of amplitude proportional to p(r). AV, where p(r) is the average electron 
density over the volume AV situated at a distance r from the centre of the atom. There 

will in general bea path difference between the X-rays scattered by any pair of volume 
elements within the electron cloud and this path difference will vary with scattering 
angle (Fig 6.11); the path difference will be zero for 20 = 0 and will increase smoothly 
with increasing 20. We now suppose the radiation scattered by all volume elements 
of the electron cloud of the atom to be summed for a direction of scattering angle 20: 

’ 
’ 

> D 7 128 

(a) (b) 
Fig 6.11 The dependence on scattering angle 20 of the path difference between the X-rays 
scattered by two volume elements A and B within the electron cloud of the atom. The boundary 
surface of the electron cloud of the atom is represented by the large circle. (a) 20=0; path 
difference 6 = BC—DA=0. (b) 26 small; path difference 6 = DA—BC. (c) 20 large; path 
difference 6 = DA+AC. 

for 20 = 0 there can be no destructive interference and the atomic scattering factor, 
f, for the atom will be equal to its atomic number, Z; for small scattering angles all 
path differences will be small and there can be little destructive interference so that 
f will be only just less than Z; as the scattering angle increases the path difference 
for any pair of volume elements will increase and in general there will be a greater 
likelihood of destructive interference so that f will steadily decrease with increasing 0 
and at high 0, f < Z. The more tightly the electrons are bound to the nucleus, the 
greater will be the concentration of electron density towards the centre of the atom so 
that for given @ less destructive interference will be possible; for cations, especially for 
cations of high formal charge, the value of f will remain close to Z to higher @ values 
than for anions with a similar number of extranuclear electrons. In exploring the 
variation in magnitude of f we must also bear in mind that the phase difference 
consequent on a given path difference is dependent on the wavelength A of the 
incident radiation: at given 0 more pairs of volume elements will be able to produce 
destructive interference if A is small. It is found that in general the atomic scattering 
factors of all elements and ions vary similarly with sin 0/4, f decreasing from its 
value Z at 0 = 0 more slowly for cations with tightly bound electrons than for anions 

* The atomic number is the charge on the nucleus which for a neutral atom is equal to the number of 
extranuclear electrons. It is the number of extranuclear electrons that concerns us here and we define this 
number as Z. For an ion Z is equal to the charge on the nucleus less the formal charge of the ion. 
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Fig 6.12 The dependence of atomic scattering factor f on sin 8/A for a cation Cs* and an anion 
Cl-. The rate of fall-off for cations is generally less rapid than for anions. 

with more diffuse electron clouds. The calculation of the electron density distribution 

within an atom is a problem in quantum mechanics; atomic scattering factors for 
X-radiation calculated by such methods are tabulated in International Tables for 
X-ray Crystallography, vol. II as functions of sin6/A. The dependence of f on 
sin 0/A is shown in Fig 6.12 for two examples, the cation Cs*, in which the electrons 

are rather tightly bound, and the anion Cl”, in which the electrons are relatively 
loosely bound. 
Now although the amplitude of the X-rays scattered by each atom in a unit-cell is 

proportional to its atomic scattering factor, we cannot state the amplitude of the 
X-radiation scattered by the whole unit-cell until we know the phase of the X-rays 
scattered by each atom and that will depend on position in the unit-cell. We take the 
origin of the unit-cell as our reference point for phase and suppose that the X-rays 
scattered by an atom at the origin have phase ¢ = 0. The phase of the X-rays scattered 
by an atom with coordinates x, y, z can then be deduced from the Bragg Equation by 
the following argument. The contributions to the hkl reflexion of X-rays scattered by 
atoms lying on the (hkl) plane through the origin will be in phase with one another 
and with the X-rays scattered by the atom at the origin, for which @ = 0, because the 
path difference, A, between X-rays scattered by any point in such a plane is zero. Since 

the condition for an hkl reflexion is that the X-rays scattered from adjacent (hkl) lattice 

planes should have a path difference, A = 4, which in phase terms amounts to saying 
a phase difference, @ = 27, the X-rays scattered from the first (hkl) plane out from 
the origin will have a path length less by 4 than those scattered from the hkl plane 
through the origin and their phase will consequently be @ = 2x (Fig 6.13). Likewise 
the path length for X-rays scattered from the second plane out will be shorter again 
by A and their phase will be 4z. In general for the nth plane out from the origin, the 
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Fig 6.13 The phase difference @ 
between X-rays of wavelength A 
scattered into the Ak/ reflexion by 
successive (hAk/) lattice planes. The 
lattice planes (Ak/) are perpendicular 
to the plane of the diagram. 

path length of the scattered X-rays will be shorter by nd and their phase will be 2zn. 
But the scattering is done by atoms, not by lattice planes, and it is unlikely except in 
very simple structures that all the atoms in the unit-cell will lie on the lattice planes 
corresponding to every observable reflexion. The phase of the X-rays scattered by an 
atom with general coordinates x, y, z can however easily be found by drawing a plane 
through x, y, z parallel to the (hkl) lattice planes and taking the perpendicular 
distance from the origin to that plane as D,,, (Fig 6.14); then, if the separation of 
(hkl) lattice planes is d,,;, the path difference between the X-rays scattered by the 
atom at x, y, z and an atom at the origin will be (Djy/d,,)).4 and the phase of the 
X-rays scattered by the atom at x, y, z will correspondingly be 22(Djys/djx)- 

At this point it may be instructive to consider in some detail an example of phase 
calculation for a simple structure, caesium chloride (which is cubic with only two 
atoms in its unit-cell, Cs at 0,0,0 and Cl at 4,4, 4 (Fig 6.15)). We consider first the 
100 reflexion. The Cs atom, being at the origin, lies on the (100) lattice plane through 
the origin so that the phase of the X-rays scattered by it is zero. The amplitude of the 
X-rays scattered by the caesium atom will therefore simply be proportional to Tes: 
the atomic scattering factor of caesium; moreover this will be so for all X-ray reflexions 
because the Cs atom lies at the origin. The chlorine atom however does not lie on the 
(100) lattice plane through the origin, but at a perpendicular distance $4109 = 4a 
from that plane so that the X-rays scattered by the Cl atom have a path difference 4. 
and a phase difference x relative to the X-rays scattered by the Cs atom. The 
amplitude of the X-rays scattered by the chlorine atom will of course be proportional 
to fc, the atomic scattering factor of chlorine. The principle of superposition gives 

Fig 6.14 The phase of the X-rays scattered into the Ak/ 
reflexion by an atom at xyz is given by 20 (Digi! Api), 
where Dy ,, is the perpendicular distance from the Origin to 
the plane parallel to (hk/) passing through xyz. The plane 
of the diagram is perpendicular to (Ak/) and does not 
necessarily contain the point xyz. 
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the intensity’ of the X-rays scattered by one unit-cell in general as 

N 2 N 2 
T(hkl) = (5 ff, COS 6,) + (5 J, sin 6,) (6) 

1 1 

and for the 100 reflexion of CsCl as 

1(100) = (fc, cos0+ fo, cos 2)? + (fo, sin 0+ fo, sin 2)? 

a (fes— fer)”: 

It should be noticed that we have taken our summation only up to n = 2, because 
there are only two atoms in the unit-cell, one Cs and one Cl; the other Cs atoms shown 

in Fig 6.15 belong to other unit-cells if the Cs atom at the origin is assigned wholly 
to the reference unit-cell. 
We now turn to the 200 reflexion. The (200) lattice planes have an interplanar 

spacing d99 = 3d199 So that the Cl atom scatters X-rays of phase 2x(4a/4a) = 22 
into the 200 reflexion. The phase of the X-rays scattered by Cs remains zero. The 
expression for the intensity of the 200 reflexion is thus 

(200) = (fc, cos0 + fo, cos 27)? + (fo, sin0 + fo, sin 27)? 

= (fost for)”. 

Fig 6.15 Projection of the 
structure of CsCl on (001) with 
Cs atoms represented as solid 
circles and Cl atoms as open 
circles. The spacings and 
orientation of (100), (200), (300) 
and (210) planes are indicated. 

The Cl atom lies midway between (210) lattice planes with D,,9 = 3d 19 so that the 
phase of the X-rays scattered by the Cl atom at, 4, 3 into the 210 reflexion is 27.3} = 3z. 
The intensity of the 210 reflexion is thus 

(210) = (fo, cos0 + fo, cos 3m)? +( fo, sin 0+ fo, sin 32)” 

= (fos —fer)’. 

We have now expressed the intensities of the three reflexions 100, 200, and 210 of 

CsCl in terms of the atomic scattering factors of caesium and chlorine, f., and fq. 
But it must be borne in mind that atomic scattering factors are dependent on sin 6/A 

for the relevant expression and, by the Bragg Equation, sin 0/A = 4d. In Table 6.1 we 

give the cell edge, a, for CsCl; 3d for a selection of reflexions including 100, 200, and 

210; fc, and fQ, derived from the atomic scattering factor curves of Fig 6.12 for each 
reflexion; and the calculated intensity I(hkl) of each reflexion. 

* For practical purposes I(hkl) is known as the ‘intensity’ of the hkl reflexion as will be explained later 
in this chapter. 
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Table 6.1 
Intensities of some reflexions of CsCl 

a=4123A Cs: 0, 0,0 ‘ Cl: 2,32 

sind 1 . 
f —— = ——_ I(hkl hkl nx 7 2d, tes for (Akl) 

1 
100 a 5 7 O12 50 15 (fee fei)? = (35)? = 1225 

a 

1 a 

200 5 = i024 42 i (foe +fo))? = (53)? = 2809 
a 

3 
300 S = 20:36 36 8 (fos—fe)? = (28)? = 784 

3 2a 

a aie 
210 — re Oo 41 10 (fes—fe? = (31)? = 961 

aS 2a 

5 
420 ae Oe 28 7 (fes+ fey? = (35)? = 1225 

24/5 a 

The amplitude of the X-rays scattered by a free electron is taken as unity. Atomic 
scattering factors for the ions Cs* and Cl” are used rather than those for the neutral 
atoms because the structure is known to be ionic. 

The procedure outlined above for finding the phase of the X-rays scattered by the 
various atoms of a crystal structure is impossibly cumbersome for all but the simplest 
structures and is then only convenient for reflexions with very simple indices. In 
general an analytical approach is more profitable and that will be explored in 
succeeding paragraphs. 
We consider a general hk] reflexion and recall two points made previously: that the 

phase of the X-rays scattered by an atom lying on the (hkl) plane through the origin 
is taken to be zero and that the phase of the X-rays scattered by an atom lying on the 
first (hkl) plane out from the origin is 27. Since the first (hkl) plane out from the origin 
makes an intercept a/h on the x-axis and corresponds to a phase change of 2z, we can, 
by simple proportions, associate a translation ax along the x-axis with a phase change 

Fig 6.16 Atoms with 
coordinates x00, Oy0, xyO 
respectively scatter X-rays of 
phase 27thx, 27tky, 
2m(hx+ky) into the Ak/ 
reflexion. The (Ak/) plane 

X,Y,0 through the origin, with phase 
a difference @ =0, and the first 

ee 2m (hx +ky) (Ak/) plane out from the 
origin, with @ = 27, are 
indicated by bold lines. 

$=2mhx 
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(2nax)/(a/h) = 2nhx; thus an atom with coordinates x, 0, 0 will scatter X-rays of 

phase 2zhx into the hkl reflexion. 

By analogy we can say that an atom with coordinates 0, y, 0 will scatter X-rays of 
phase 2zky into the hkl reflexion. We can extend this idea to an atom with coordinates 
x, y, 0 (Fig 6.16): such an atom is associated with translations ax along the x-axis and 

by along the y-axis so that the phase of the X-rays scattered by it will be 
[22xa/(a/h)]+[2nyb/(b/k)] = 2n(hx+ky). Extension of the argument to three 
dimensions gives the phase of the X-rays scattered by an atom with coordinates 

x, y, Z aS 2n(hx+ky+lIz), the amplitude of the scattered wave motion being 
proportional to the atomic scattering factor, f, of the atom at x, y, z. We can now 
apply the principle of superposition to a unit-cell containing N atoms of elements 
with atomic scattering factors f,, f>,...f, and coordinates x,, y,, 213 Xo, Yo, 22; 

.. Xn», Yn» Zy- The intensity of the hkl reflexion will be given by 

(hkl) = {f; cos 2n(hx,+ky,+1z1)+...+ fy cos 2n(hxy+kyytlzy)}? 

+ (hi sin 2n(hx, +ky, + Iz,)+ i tn sin 2n(hxytkyy+ Iza 

N os 

Therefore I(hkl) = > fy COS 27(hx, +ky,, + za 
i 

+ > f, Sin 2n(hx, +ky, + tat (14) 
1 

where the summation is taken over all the N atoms of the unit-cell. 
From equation (14) the intensity of any X-ray reflexion can be calculated provided 

the coordinates of all atoms in the unit-cell and the relevant atomic scattering factors 
are known. Again taking CsCl as our example, we have two atoms in the unit-cell, 
Cs at 0,0, 0 and Cl at 4, 4, 4. The expression for the intensity of a general reflexion 
becomes 

I(hkl) = { fo, cos 2n(h.O+k.0+1.0)+ fo, cos 2n(h.4+k.4+1.4)}? 
+ { fo, sin22(h.0+k.0+1.0)+ fo sin 2n(h.5+k.34+1.5)}? 

h+k+1)? 
= ‘fo + fo cos 2m e 2 

The intensity of, for instance, the 420 reflexion is then given immediately by 

substitution as 

1(420) = { fot fo, cos 2. 

= {fost fa}. 

This expression is evaluated in Table 6.1. 
It will have been noticed that in the case of CsCl the sine terms in the expression 

for I(hkl) vanish because sin px = 0 for integral values of p. This is a rather special 
case of the general proposition that when the origin of the unit-cell of a centro- 
symmetric structure is taken at a centre of symmetry, the sine terms in the expression 
for I(hkl) vanish. When the origin lies at a centre of symmetry the atoms in the 

ae cell are related in pairs so that if an atom ofa particular element has coordinates 
n> Yao Zn an atom of the same element will lie at X,, y,, Z,. Therefore for every term 
a sin 2n(hx, +ky, +1z,) there will also be a term 

fy Sin 2n(—hx, —ky, —1z,) = —f, sin 2n(kx, +ky, + 1z,) 

ey 
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and y f, Sin 2n(hx, + ky, +1z,) =0 
1 

The intensity expression then becomes, ; 

I(hkl) = MA cos Dah + ky + leh (15) 

In the case of CsCl both atoms lie on centres of symmetry so that there is no explicit 
pairing but the sine terms vanish immediately. ; 

The trigonometric form of the intensity expression, equation (14), is obviously 
cumbersome; a more elegant and convenient formulation can be achieved by use of 

complex number notation. The expression 

W = acos(wt+ ¢) (1) 

for the disturbance produced at a given point by an incident wave-motion is the real 
part of the expression 

w =|alexp {i(wt+¢)} 

= |a| exp (id) exp (iat). 

Since we are concerned in diffraction with radiation of constant frequency, exp (iat) 

is a common factor in all our expressions and need not be considered further. The 
complex amplitude a = |a| exp(id) expresses both the amplitude |a| and the phase 
@ of the disturbance; it is represented in the complex plane (Fig 6.17) by a line of 
length |a| inclined at an angle ¢ to the real axis. Defining x as the real and y as the 
imaginary axis, then 

a=x+liy 

=|a|cos¢+ila|sin d. 

The modulus |a| of a thus represents the amplitude of the wave-motion, 

la] = (x? +”), 
and its intensity is given by aa*, where a* = x —iy is the complex conjugate of a, 

i.e. aa* = (x+iy)(x —iy) = x?+y? =|al?. 

The phase ¢ of the wave-motion is given by 

tang = ee 
x 

Now the principle of superposition gives the resultant disturbance Wp at a point 
as the sum of the N disturbances, W1, /2,... Wy, arriving simultaneously at the point. 
Therefore 

I 

-Mz2-Ma2-Meza 

ap 

|a,| exp (id,) 

N 

|a,|cosd, +i > |a,| sin d,. 
i 



Intensities of X-ray reflexions 171 

Fig 6.17 Representation of a= |a|e® in the 
complex plane by a line of length |a| inclined at 
the angle ¢ to the real axis. 

y —> 

imaginary axis 

real axis xX 

We have already seen that the wave-motion scattered by an atom with coordinates 
Xn> Yn» Z, bas an amplitude proportional to the atomic scattering factor f, of the 
element concerned and phase 2z(hx,+ky,+1z,), so that the wave-motion can be 
expressed as f, exp 27i(hx, +ky, +lz,). The wave-motion scattered by all the atoms 
in one unit-cell into the hkl reflexion can then be represented as 

N 
F(hkl) = ¥. f, exp 2ni(hx, +ky, + Iz») 

1 

N N (16) 
=) f, cos 2n(hx, +ky, +1z,) +i > f, sin 2n(hx, +ky, + Iz,) 

1 EI 

F(hkl) being known as the structure factor. The amplitude of the resultant wave- 
motion is proportional to | F(hkl)|, which is known as the structure amplitude. Since 
the atomic scattering factor of an element is the ratio of the amplitude scattered by 
one atom of that element into the hkl reflexion to the amplitude scattered by a free 
classical electron, the structure amplitude |F(hkl)| is therefore the ratio of the 
amplitude scattered into the hkl reflexion by the contents of one unit-cell to the 
amplitude scattered by a free classical electron in the same direction. Both quantities, 
f, and | F(hkl)|, are thus pure numbers which represent the number of electrons that 
would have to be situated at a point, if that were possible, to produce a scattered 
wave of the same amplitude as that scattered by, in one case, an atom and, in the 

other, the whole contents of a unit-cell. 

The intensity of the X-rays scattered by one unit-cell into the hkl reflexion is then 

I(hkl) = | F(hkl) |? 
N 2 ae 

= » fy COS 20(hx, + ky, + za) + » f, sin 2n(hx, + ky, + ed 
1 1 

2 

The reader will observe that this expression is identical with equation (14) which was 

derived without recourse to complex numbers. 

We have also seen that when the origin of the unit-cell of a centrosymmetric 

structure is taken at a centre of symmetry there will be atoms of the same element at 

Xn» Yas Zn and X,,, Yn» Z,3 the expression for the structure factor then becomes 

$N 
F(hkl) = > f, {exp 2ni(hx, +ky, + Iz,)+ exp 2ni(—hx, —ky, —Iz,)} 

i 
4N 

i.e. F (hkl) =2 > f, cos 2n(hx, + ky, + 1z,) 
i 
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N 

i.e. F (hkl) = 9° f, cos 2n(hx,, + ky, + 1z,) (17) 
1 

The last form is preferred because it eliminates the risk of counting atoms situated at 
centres of symmetry twice. An important consequence of equation (17) is that for 
centrosymmetric structures the structure factor is always real and the phase of the 
X-rays scattered into the hkl reflexion can only take the values 0 or z. 

In general the intensities of X-ray reflexions will be discussed in terms of structure 
factors F(hkl) in preference to intensities I(hkl), except’when numerical values are 

required. 

Systematic absences in non-primitive lattice types 

In our discussion of the intensities of X-ray reflexions we have hitherto tacitly assumed 
that we have been dealing with a primitive unit-cell, that is a unit-cell that contains 
only one repeat unit. We have shown that diffracted intensity maxima occur only in 
directions for which the X-rays scattered by corresponding points in repeat units 
have path differences of integral numbers of wavelengths; such corresponding points 
constitute a lattice and our simple assumption that lattice points may be regarded as 
scatterers is justified. We have shown that the direction of a diffracted intensity 
maximum is a reflexion of the incident X-ray beam in a plane which must be parallel 
to a lattice plane but may belong to a set of planes with an interplanar spacing that 
is a simple sub-multiple of the interplanar spacing of the parallel set of lattice planes, 
reflexion being restricted to angles that satisfy the Bragg Equation, 4 = 2d,,, sin 0. 
The spacing d,,, of the planes involved is independent of the choice of unit-cell, but 
the indices (hkl) of the set of planes does depend on the choice of unit-cell. The 
diffraction pattern produced by a crystal is obviously unaffected by any arbitrary 
choice of unit-cell; it must therefore always be referable to a primitive, if 
unconventional, unit-cell and we can say that all diffracted beams are reflexions from 
planes indexed on a primitive unit-cell. 

Suppose that a C-cell, with axes x,, y,, Z., is related to a primitive unit-cell, with 
aXeS X,, Vp, Zp, by the axial transformation matrix 

oy ae 

OSes 

O720r I 

The transformation matrix from the C-cell to the P-cell is 

4-4 0 
ORL SO 

OiaanO > 1 

The lattice, with both unit-cells outlined, is shown in Fig 6.18. It follows from the 
axial transformation matrix that the indices (h,k,1,) of a set of planes referred to the 
P-cell are related to indices referred to the C-cell by the equations 

hy Ss a(h, Ln k.) 

k, =k, 

Ll 
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Yp Ye 

Xp 

Be 
Fig 6.18 Relationship between a C-cell (x,, ¥,, Z) and an unconventional P-cell (xp, Yp, Z) 
shown in projection on (001). Lattice points are represented by solid circles. 

Since any diffracted beam produced by the crystal structure must be describable as a 
reflexion from a set of planes whose indices referred to the P-cell are integral, all 
X-ray reflexions must be describable as h,, k,, |, reflexions. If h, is to be integral, 
h,—k, must be even; therefore h,+k, must be even. When reflexions are indexed in 
terms of the C-cell, no reflexion can be observed for which h,+k, is odd, i.e. the 
reflexions 100, 010, 120, etc will be systematically absent. A C-lattice is thus said to 

display a systematic absence or extinction for reflexions with h+k = 2n+1, where n 
is an integer. 
We can approach this sort of systematic absence, due to lattice type, in an 

alternative way. Let us assume that each lattice point scatters a wave equivalent to 
the resultant wave scattered by the atoms which it represents and consider the 
arrangement of lattice points in relation to lattice planes. Figure 6.19 shows the (001) 
projection of a C-lattice with the traces of (100), (200), and (120) planes outlined. 

Lattice points at the corners of the C-cell lie on (100) planes, but those at the centre 

of the (001) face of the unit-cell lie midway between (100) planes. The condition for 

occurrence of a 100 reflexion is that X-rays reflected from adjacent (100) lattice planes 
should have a phase difference of 27; but the X-rays scattered by the (001)-face 
centring lattice points will then have a phase of z relative to the X-rays scattered by 
the lattice points at the corners of the unit-cell. Destructive interference will occur 
and, since in an effectively infinite lattice there will be equal numbers of both kinds 
of lattice point, the intensity of the 100 reflexion will be zero. From the traces of the 
(200) set of planes shown on the same lattice projection it is apparent that all lattice 
points lie on (200) planes and in consequence the X-rays scattered by all lattice points 
into the 200 reflexion are in phase. A 200 reflexion will therefore be observed unless, 
fortuitously, the resultant wave scattered in this direction by the atoms associated 
with a lattice point happens to be of zero amplitude. Figure 6.19 also shows the 
traces of the (120) set of planes on the same lattice projection. In this case the 
(001)-face centring lattice points lie midway between the planes of the set and scatter 
X-rays into the 120 reflexion with a phase 273 relative to the X-rays scattered by the 
corner lattice points. Destructive interference takes place and the 120 reflexion has 
zero intensity. But, as in the case of the (200) planes, all lattice points lie on (240) 
planes, for which dj49 = 4d129, and the 240 reflexion will, in general, have finite 
intensity. 
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Fig 6.19 Projection on 
(001) of an orthorhombic 
C-lattice with the traces of 

various sets of lattice planes 
(200) (120) outlined. 

Such arguments can be extended to general hkl reflexions: a reflexion hkl will be of 
non-zero intensity only if all lattice points lie on (hkl) planes. The equation 
(chapter 1) to a set of planes (hkl) is, in intercept form, 

Bi ke td 
—X+Ty+-Z =n, 
2 tnboy € 

where n is an integer (positive, zero, or negative). The condition for a lattice point 
with coordinates x,, y,, Z, to lie on a plane of the (hkl) set is then 

hx, tky,+1z, =n 

If this equation is satisfied by all lattice points, then the hkl reflexion will have 
non-zero intensity; if the equation is not satisfied, a systematic absence will occur. In 
the case of a C-lattice there are lattice points with coordinates 0, 0, 0 and 5, 4, 0. The 
lattice point at the origin necessarily lies on all sets of planes; that at 4,3, 0 lies only 
on planes for which 3h + 5k is equal to an integer, that is on planes for which h+k is 
even. Thus a systematic absence occurs for reflexions which have h+k odd. A 
body-centred lattice has lattice points at 0, 0, 0 and 4, 4, 4; the condition for the 
body-centring lattice points to lie on (hkl) planes is $h+4k+4] =n, where n is an 
integer, i.e. h+k+1 must be even for the hkl reflexion to be of non-zero intensity. An 
I-lattice thus gives rise to a systematic absence when h+k+1is odd. All non-primitive 
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Table 6.2 
Systematic absences displayed by conventional lattice types 

Coordinates of lattie points Systematic absence 

iP 0, 0, 0 None 

A 0, 0,0; 0,4, 4 k+l =2n+1 
B 0, 0,0; 4,0, 4 h+l=2n+1 
C 0, 0,0; 4,4,0 h+k=2n+1 
F 0, 0,0; 0,4,4; 4,0,4; 4,4,0 h, k,l neither all odd nor all even 
I 0, 0,0; 4,4,4 h+k+l=2n+1 
R (hexagonal 

axes) 0, 0,0; 3,4,4; 4, 2,2 —h+k+l=3n+1 
R (rhombohedral 

axes) 0, 0,0 None 

unit-cells exhibit such systematic absences; those arising from conventional non- 
primitive unit-cells are listed in Table 6.2. 

The conditions that have to be fulfilled if a reflexion is to be of non-zero intensity 
when referred to anon-primitive unit-cell can be derived formally from the expression 
for the structure factor. If the lattice is referred to a C-cell, the N atoms in the unit-cell 

fall into two equivalent groups, each containing M = 4N atoms, related to each other 
by a translation 4a+4b. For every atom with coordinates x, y,, z, there is an atom 
of the same element with coordinates 4+ x,, + ),, Z,. The expression for the 
structure factor then becomes: 

N 

F(hkl) = » fy exp 2ni(hx, +ky, + 1z,) 

= = 5 flexp2ni( hn, +ky, +1z,} 
+ exp 2nifh(x,+3)+k(y,+3)4 lz, }] 

P| 
M 

=) frexp 20i{hXn+kynt zp}. { +exp 2ni Z 
T 

h+k 
Now exp 27i = cosn(h+k)+isin z(h+k) 

i (- 1 

since h and k are integers. Therefore 

F (hkl) = Sf exp 2nifhx, tky, +1z,}.{1+(—1)'**} 

Therefore for h+k = 2n, 

F (hkl) = 2 sy exp 2ni{hx, +ky, +1z,} 

and for h+k = 2n+1, 

F(hkl) =0 

Thus there is a systematic absence when h+k is odd and when h+k is even the 

amplitude of the wave scattered by one unit-cell is twice the resultant amplitude of 
the wave scattered by the atoms associated with any lattice point. 

An F-lattice has four lattice points so that an atom at x,,, y,, Z, is accompanied by 
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: 1 
atoms of the same element at x,,$+Yny4+2Zn33+Xn> Vno 2+2n; aNd $4+Xn, Z+Yns Zn- 

If the number of atoms associated with each lattice point is M = 4N, the structure 

factor is 
’ 

’ 
M 

F(hkl) = > f,[exp 2ni{hx, + ky, + 1z,} 
1 

+ exp 2nif{hx, +k(e+y,)+lG+2z,)} 

+ exp 2nifh(4+x,)+ky, +1G+z,)} 
+exp2ni{h(Z+x,)+kG+ yn) + lz,} ] 
M 

=)" f, exp 2ni{hx, + ky, + 1z,} 
1 

x {1+exp mi(k+])+ exp zi(h+l)+ exp zi(h+k)} 
M 

=) f, exp 2ni{hx, +ky, + 1z,}. {1 +(—1*'+(—1"'*'+(-1°**} 
i 

If h, k, and / are all odd or all even, k+/,h+1, and h+k will all be even and 

M 

F(hkl) =4)° f, exp 2ni{hx, +ky,, + lz,} 
z 

But if h, k, and / are not all odd or all even, two of the sums k+ 1], h+], and h+k will 
be odd and the third even so that 

F(hkl) =0 

Thus there is a systematic absence when h, k, and / are neither all odd nor all even; 

but when h, k, and / are all odd or all even the structure factor is four times that for 

the group of atoms associated with one lattice point. 

Evidently then the labour of calculating structure amplitudes for non-primitive 
unit-cells will be appreciably lessened if all atoms that are related by lattice 
translations are first grouped together. By way of example we consider the cubic form 
of ZnS, the mineral blende, which has four formula units in the unit-cell and an 
F-lattice (Fig 6.20). One formula unit is necessarily associated with each lattice point 
and we choose to take as the repeat unit a zinc atom at the origin and a sulphur 
atom at 4, 4, 4. Since we are dealing with an F-lattice reflexions of non-zero 

Fig 6.20 Projection of the structure of 
blende (ZnS) on (001). Solid circles represent 
Zn and open circles S atoms. 
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intensity will occur only when h, k, and | are all odd or all even, when the structure 
factor will be 

M 

F(hkl) =4¥ f, exp 2ni(hx, +ky, + 1z,) 
1 

Here M =?, therefore 

F(hkl) = 4 Vas exp 2ni.0+ f, exp a a 
ner 

Therefore |F(hkl)|? = 16 i( fan COSO + fy cos 27 

+ (ta sin0+ fg sind Et) | 

2 

= 164 (fash cordate) +(x sin?n***!) 

Only three possibilities arise: 

if h+k+l=4n | F(hk])|? = 16(fz,+ fe)" 
if h+k+l=4n+2 = |F(hkl|? = 16(f2,—f)” 
if h+k+l=2n4+1 |F(hk)|? = 16(f2,4+f2) 

In the foregoing pages we have explored the systematic absences due to lattice type 

by examining the structure factors for the various lattice types. The resulting list 
(Table 6.2) of systematic absences provides the means of determining the lattice type 
of a crystalline substance by inspection of its diffraction pattern for systematically 
absent reflexions. Later we shall return to systematic absences to consider those due 
to the presence of translational symmetry elements. 

Symmetry of X-ray diffraction patterns 

Friedel’s Law 
We have seen that the intensities of X-ray reflexions are dependent on the positions 
of the atoms in the unit-cell and this would lead us to expect that the diffraction 
pattern produced by a crystal would exhibit a symmetry related to that of the 
disposition of the atoms in the unit-cell. Such a relationship would provide a means 
of determining the symmetry of the arrangement of atoms in the crystal by 
examination ofits diffraction pattern. There is however a difficulty: there is no known 
means of determining the relative phases of X-ray reflexions. All that can be 
determined about an X-ray reflexion is its intensity and its angular position; the 
information about the symmetry of the atomic arrangement in a crystal that can be 

deduced from the symmetry of its diffraction pattern is in consequence limited. 
We have already shown that the intensity of an X-ray reflexion is the product of 

the relevant structure factor and its complex conjugate, 

N N 
ie. F (hkl) = f, cos 2n(hx, +ky,+1z,)+i >, f, sin 2n(hx, + ky, +1z,) 

i i 
N N 

and F (hkl)* = > f, cos2n(hx, + ky, +1z,)—i >, f, sin 2n(hx, + ky, + 1z,) 
1 1 



178 Diffraction of X-rays by crystals 

But cos(—9#)=cos@ and _ sin(—0@)= —sin@ 

N N 
Therefore F(hkl)* = )° f, cos 2n(—hx,—ky, —Iz,)+i >, f, sin 2n(—hx, —ky, —1z,) 

1 care 

= F(hkl) 

and similarly 

F (hkl) = F(hkl)* 

Therefore (hkl) = F (hkl) F(hkl)* = F(hkl)*F (hkl) 
— 1(FR)). 

The intensities of the hkl and hkl reflexions are thus necessarily equal and in 
consequence an X-ray diffraction pattern always displays a centre of symmetry?? or, 
in other words, the reflexions from either side of a set of (hkl) planes are invariably 
equal in intensity (Fig 6.21); this result is often called Friedel’s Law. 

If the crystal structure does not possess a centre of symmetry, although the 
intensities of the hkl and hkl reflexions must be equal their phases will be unequal. 
Consider the 111 and 111 reflexions of blende illustrated in Fig 6.21(a). The structure 
of this form of ZnS (Fig 6.20) is non-centrosymmetric, having a repeat unit consisting 
of Zn at 0,0,0 and S at 4, 4, g. The wave scattered by zinc into all reflexions thus has 
zero phase and amplitude f7,,, while that scattered by sulphur has phase 2x(h +k +1)/4 
and amplitude f¢. Since the (111) and (111) planes are of the same set, the atomic 
scattering factors of Zn and S will be the same for both. It will be apparent from 
Fig 6.21(b) and (c) that the amplitude and consequently the intensity of the 111 and 
111 reflexions will be equal and that their phases will be equal in magnitude but 
opposite in sign. 

Friedel’s Law holds only so long as the assumption that every atom in the structure 
scatters X-rays with a phase change of z remains valid. The assumption breaks down 
only when the X-ray wavelength is close to the wavelength of an absorption edge of 
one of the constituent atomic species of the crystal. Discussion of such anomalous 
scattering is outside the scope of this book; the reader is referred to James (1967), for 
a detailed treatment. It is important however to bear in mind that, in favourable 
circumstances, anomalous scattering may provide a means of establishing the absence 
of a centre of symmetry in a crystal structure (chapter 11). 

Laue symmetry 

If two or more planes are related by symmetry then the X-ray reflexions to which 
they give rise will have equal Bragg angles (but will in general require different 
orientations of the incident X-ray beam) and equal intensities. Therefore examination 
of the symmetry of the total diffraction pattern produced by a crystal should yield 
information about the point group of the crystal; but because diffraction patterns 
are, by Friedel’s Law, necessarily centrosymmetric a unique determination of the 
point group is not possible. The point group symmetry of the diffraction pattern will 
be the same as that of the crystal if the crystal is centrosymmetric; but, if the crystal 

'° The reader should be aware that this statement refers to the whole diffraction pattern. Since a crystal 
is effectively a three-dimensional grating the whole diffraction pattern cannot be recorded with a single 
orientation of the crystal relative to the incident X-ray beam and consequently the symmetry of the whole 
diffraction pattern may not be evident in a single X-ray photograph. This point will be amplified in 
chapter 8. 
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111 
reflexion 111 

reflexion 

imaginary axis imaginary axis 

Fig 6.21 Friedel’s Law. (a) is a projection of the structure of blende (Zn solid circles, S open 
circles) on the (110) plane; atomic heights above that plane are shown as fractions of the lattice 
repeat (a/,/2) in the [110] direction. (b) and (c) are vector diagrams representing the amplitude 
and phase of the 111 and 111 reflexions. 

is non-centrosymmetric, the point group of the diffraction pattern will be the point 
group obtained by adding a centre of symmetry to the point group of the crystal. For 
instance the symmetry of the diffraction pattern produced by a crystal of class 4 will 
be that of the point group 4/m (Fig 6.22). Conversely, if the diffraction symmetry of a 
crystal is identified as 4/m, then the point group of the crystal may be 4/m or any 
point group that becomes 4/m when a centre of symmetry is added to it; reference to 
Fig 3.17 enables the non-centrosymmetric point groups to be identified as 4 and 4. 
Such a crystal is said to belong to the Laue group 4/m, a statement which implies 
that the point group of the crystal is either 4 or 4 or 4/m. 

There are eleven centrosymmetric crystallographic point groups and it is evident 
from Fig 3.20 that addition of a centre of symmetry to the symmetry elements of any 

of the twenty-one non-centrosymmetric point groups yields one of these eleven. A 
centrosymmetric point group and all those non-centrosymmetric point groups which 
on addition of a centre of symmetry become identical with it constitute a Laue group. 
Each such group of point groups is assigned the symbol of its centrosymmetric point 
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4 [m Fig 6.22 Laue group 4/m. 

group; such a Laue group symbol is a statement of the point group symmetry of the 
diffraction pattern produced by a crystal of any point group in the Laue group. The 
point group symmetry of the diffraction pattern produced by a crystal is known as 
the Laue symmetry of the crystal. Examination of the symmetry of its diffraction 
pattern can only assign a crystal to a particular Laue group and cannot determine 
the point group of the crystal uniquely. The eleven Laue groups are listed in Table 6.3. 

Table 6.3 
The eleven Laue Groups 

System Laue group Constituent point groups of the Laue group 

Triclinic 1 1 1 

Monoclinic 2/m 2 m 2/m 

Orthorhombic mmm 222 mm2 mmm 

3 3 3 
Trigonal | ai 32 amatD tH 

4/m 4 4 4/m 
Heteagenas \ 4/mmm 422 4mm 42m 4/mmm 

6/m 6 6 6/m 
ieeoaal ' 6/mmm 622 6mm 6m2 6/mmm 

: m3 23 m3 

dl \ m3m 432 43m m3m 

Systematic absences due to translational elements 
We have already seen that selection of a non-primitive unit-cell gives rise to 
systematically absent reflexions and that the rules governing such absences apply to 
all reflexions from the crystal. But systematic absences also arise from the presence 
of glide planes or screw axes in the space group of a crystal; such absences are 
restricted to one zone of planes, in the case of a glide plane, or to one set of planes, in 
the case of a screw axis. 

The presence of an a-glide through the origin parallel to (001) causes an atom at 
x, y, z to be duplicated at 3+. x, y, 2. The expression for the structure factor then 
becomes 
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4N 
F(hkl) = ¥° f,{exp 2ni(hx, + ky, + Iz,) + exp 2ni($h+ hx, + ky, —Iz,)} 

1 
4N 

= dh exp 2ni(hx, +ky,) {exp 2zi lz, + exp 2ni($h —Iz,)} 

which becomes when | = 0, 

4N 
F(hkO) = ¥° f, exp 2ni(hx, +ky,){1+exp zih} 

1 

4N 
=) f, exp2ni(hx, +ky,){1+(—1)"% 

pf 

= TOteet == 2: 

Thus an a-glide through the origin parallel to (001) produces a systematic absence in 
the hkO reflexions when h is odd. The restriction that the glide plane should pass 
through the origin is not significant because it is evident that the phase of the X-rays 
scattered into the hkO reflexions must be independent of the z coordinates of the 
atoms in the unit-cell, the phase difference between the X-rays scattered into any hkO 
reflexion by two atoms related by an a-glide parallel to (001) being 

2n($h+hx, +ky,)—2n(hx, +ky,) = 1h; 

wherever the glide plane intersects the z-axis the two atoms will scatter exactly out of 

Table 6.4 

Systematic absences produced by glide planes parallel to (001) 

Type of glide Translation Systematic absences in hkO reflexions 

: he Oeatl a 3 = Zn 

b 

b 
4 ot eRe et 

2 
+b 

d = NS ane with hon and h Son 

phase when h is odd to give a systematic absence and exactly in phase when h is even. 
Such a glide plane in effect halves the lattice spacing parallel to the x-axis where 
reflexions in the [001 ] zone are concerned. 

All glide planes give rise to systematic absences in the reflexions of the zone whose 
axis is normal to the glide plane. The systematic absences produced by all possible 
types of (001) glide plane are listed in Table 6.4. Analogous systematic absences arise 
from glide planes parallel to (100) and (010). A complete list of the conventional 
glide planes and their associated systematic absences is to be found in International 
Tables for X-ray Crystallography, vol. I (1969), p. 54. 

The presence of a screw diad through the origin parallel to the z-axis causes an 
atom at x, y, z to be duplicated at x, y, +z. The expression for the structure factor 

then becomes 



182 Diffraction of X-rays by crystals 

Table 6.5 
Systematic absences produced by screw axes parallel to [001] 

Screw axis Translation | Systematic absences in 00/ reflexions 
- —: 

2 c/2 1=2n+1 
4, and 4, +c/4 144n 
4, c/2 =2n+1 
3, and 3, oho 1A3n 
6, and 6, +c/6 14 6n 
6, and 64 e/5 1A3n 
63 c/2 1=2n+1 

4N 
F(hkl) = > f, {exp 2ni(hx, + ky, + Iz,) + exp 2ni(—hx, —ky, +41 + Iz,)} 

1 

4N 
=) f, exp 2ni lz, {exp 2ni(hx, +ky,) + exp 2ni(—hx, —ky, +31} 

1 

which becomes when h = k = 0, 

4N 
F(00l) = >) f, exp 2zi Iz, {1 + exp zi 1} 

i 
4N 

=) f, exp 2zi Iz,{1+(—1)} 
1 

=Q for l=2n+1 

Thus a screw diad parallel to z produces a systematic absence in the 00/ reflexions 
when | is odd. The restriction that the 2, axis should pass through the origin is not 
significant because the phase of the X-rays scattered into the 00/ reflexions must be 
independent of the x and y coordinates of the atoms in the unit-cell, the phase 
difference between the X-rays scattered into any 00/ reflexion by two atoms related 
by a 2, axis parallel to z being 2x(41+ Iz,)—2zlz, = nl; wherever the screw axis 
intersects the xy plane the two atoms will scatter exactly out of phase when | is odd 
and exactly in phase when | is even. Such a screw diad effectively halves the lattice 
spacing parallel to the z-axis for the 00/ reflexions. 

Screw axes parallel to other axes and with different translations give rise to 
analogous systematic absences. A list of systematic absences produced by all possible 
types of screw axis parallel to [001 ] is given in Table 6.5. 

Diffraction symbols 
We have already seen that observation of the symmetry of the diffraction pattern 
produced by a crystal enables the crystal to be assigned to a particular Laue group. 
Observation of systematic absences in the diffraction pattern enables the lattice type 
to be determined uniquely and the presence of translational symmetry elements to be 
detected. All this information can conveniently be expressed as the diffraction symbol 
of the crystal. Since non-translational symmetry elements do not give rise to systematic 
absences the diffraction symbol will represent a group of space groups; occasionally 
this will be a group of one and then the space group is uniquely determined. 

A diffraction symbol consists of three parts: first, a statement of the Laue group; 
second, a statement of the lattice type; third, three spaces in which the symbols of any 
screw axes or glide-planes that have been detected are written in the same order as 
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Table 6.6 
Diffraction symbols derived from 
mmmP .cn by reorientation of axes 

The original axes are denoted x y z and the 
new axes x’ y’ z’. 

eee rypat 7" Diffraction symbol 

mmm P.cn 

mmm Pn.a 

mmm Pbn. 

mmm P..nb 

mmm Pc.n 

mmm Pna. 

Rees) 

YES! Se Set Nee SS See Oy <= * NI 

the corresponding non-translational symmetry element symbols appear in the 
relevant conventional point group symbol, absence of information about any of these 
three directions being indicated by a full stop. By way of example we take the 
diffraction symbol mmm Pbcn; this means that the crystal belongs to Laue group 

mmm, has a primitive lattice, and has a b-glide parallel to (100), a c-glide parallel to 
(010), and an n-glide parallel to (001). In this case the space group is uniquely 
determined as Pbhcn. Suppose now that another crystal yields a diffraction pattern of 
symmetry mmm with systematic absences in hO/ for 1 = 2n+1, hkO for h+k = 2n+1, 
h00 for h = 2n+1, OKO for k = 2n+1, OO] for 1 = 2n+1. The diffraction symbol of 

this crystal will be mmmP.cn and this implies that its point group must be either 
mmm or 2mm; the systematic absences observed in the h00, OkO, and 00! reflexions are 

merely consequent on the more general conditions that apply to the hO/] and hkO 
reflexions and do not necessarily imply the presence of screw diads parallel to 
x, y, and z. In this case however it can readily be seen by drawing out the space group 

diagrams for P.cn that this pair of glide-planes generates screw diads parallel to x. 
We know therefore that there is no (100) glide-plane and that there must be a [100] 
screw diad; there may or may not be a (100) mirror-plane. The determination of 
space group is not unique; there are two possibilities, P2, cn (which belongs to point 
group 2mm) and Pmcn (which belongs to point group mmm and is illustrated in 

Fig 4.18). 
When the diffraction symbol of a crystal has been obtained it should be compared 

with the list of diffraction symbols of the space groups in International Tables for 

X-ray Crystallography, vol. 1 (1969), pp. 349-352; but a word of caution is necessary. 

The list has been drawn up in terms of certain arbitrary conventions so that our 
observed diffraction symbol may not appear in the list but be represented by the 
corresponding diffraction symbol for a different axial orientation; this difficulty, 
which is most likely to occur in the orthorhombic system, is simply resolved by 
transforming the observed diffraction symbol for all possible axial orientations and 

selecting the setting consistent with the International Tables convention. Alternative 
settings for mmm P.cn are listed in Table 6.6. 

In the case of monoclinic diffraction symbols the first term, the Laue group 
symbol, is written in such a way as to indicate unambiguously the choice of unique 
axis: as 12/m1 if y is the unique axis and as 112/m if z is the unique axis. Also in this 
system three spaces are provided in the last term; but only one can be used, the second 
if y is unique and the third if z is unique. For instance consider a crystal with Laue 
symmetry 2/m, the diad being parallel to y, and systematic absences for hkl when 
h+k =2n+1, for hOl when h = 2n+1, or 1 = 2n+1, for 0kKO when k = 2n+1. Its 
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diffraction symbol is 12/m1C.c.; the significant absences are in hkl for h+k odd and 
in hOl for | odd, the other observed absences being consequent on these. In the 
monoclinic system it is important to bear in mind that symmetry elements are 
associated with one axial direction only; if that is chosen as y, then systematic 
absences in the Okl and hkO reflexions can only be due to systematic absences in the 
general hkl reflexions and systematic absences in h0O and 0O/ reflexions may be 
derivative from systematic absences in either hkl or hO/ reflexions. Returning to our 
example, 12/m1C.c., two space groups are possible, Cc or C2/c. The former belongs 
to point group m. The latter belongs to point group 2/m, has diads and screw diads 
parallel to y, and has an n-glide as well as a c-glide parallel to (010) (Fig 4.19); the 
diad does not give rise to any systematic absences, the systematic absences due to the 

screw diad, OkO for k = 2n+1, are masked by those due to the C-lattice, hkl for 

h+k = 2n+1, and the systematic absences due to the n-glide, hO/ for h+1 = 2n+1, 

are masked by the conditions for reflexion by a C-lattice and a c-glide, which require 
h and | to be even for a reflexion to be observed. 

The reciprocal lattice" 

The interpretation of X-ray diffraction patterns by direct application of the Laue 
Equations or the Bragg Equation can be highly tedious. The reciprocal lattice 
concept provides however a means of interpretation that is at once elegant, powerful 
and—once one has overcome the initial conceptual difficulties—easy to use. 

A reciprocal lattice is constructed by representing each set of (hkl) lattice planes 
by a reciprocal lattice point at a distance from the origin d%,, inversely proportional 
to the interplanar spacing d,,, in the direction of the normal from the origin to the 
planes of the set. We can thus put d&,, = K/d,,,;. K is usually taken as unity in 
theoretical work and equal to the wavelength 4 of the incident X-radiation in the 
practical task of interpretation of diffraction patterns. 

Figure 6.23 shows a section through a crystal in the plane defined by the x-axis 
and the normal OP from the origin O to a set of planes (hkl). If the trace AP of the 
first (hkl) plane out from the origin intersects the x-axis in A, then OA = a/h, 
OP = d,,;, and @, the angle between the normal to the planes and the x-axis, is given 
by cos = djy,/(a/h). The reciprocal lattice point representing the set of (hkl) planes 
is P* lying on OP produced at a distance from the origin OP* = K/diy. Uf a line 
perpendicular to the x-axis is drawn through P* and intersects the x-axis in A*, then 
OA* = OP* cos @ = (K/diyi)- dyxi/(a/h) = hK/a. All reciprocal lattice points with a 
given value of the index h thus lie in a plane normal to the x-axis, the perpendicular 
distance of the plane from the origin being hK/a. It follows that any reciprocal 
lattice point must lie on a plane of the parallel set of planes normal to the x-axis with 
interplanar spacing K/a, each plane of the set being characterized by a particular 
value of h (Fig 6.23(b)). Similarly it can be shown that reciprocal lattice points are 
confined to a set of planes normal to the y-axis with interplanar spacing K/b, and to a 
set of planes normal to the z-axis with interplanar spacing K/c. Reciprocal lattice 
points thus lie at the points of mutual intersection of planes of three parallel sets, 
normal to the x, y, and z axes and with interplanar spacings K/a, K/b, and K/c 
respectively. The array of reciprocal lattice points is thus itself a lattice, the reciprocal 
lattice. 

'! This section, which extends to the end of the chapter, can be omitted at a first reading. Understanding 
of subsequent chapters is not dependent on knowledge of this section, except for certain advanced sections 
that are similarly indicated. 
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(a) 

X 

Fig 6.23 The reciprocal lattice. The (Ak/) planes through the origin O and the first one out from 
the origin AP are shown as bold lines in (a). The reciprocal lattice point P* representing the (Ak/) 
planes lies at a distance K/d,,, from the origin on OP produced. A* lies on OA produced, that is the 
x-axis of the direct lattice, such that OA*P* = 90°; since OA* = hK/a all reciprocal lattice points 
with the same value of A will lie in a plane normal to the x-axis of the direct lattice. Reciprocal 

lattice points thus lie on planes perpendicular to the x-axis, each plane being characterized by a 
particular value of A and the interplanar separation being K/a, as shown in (b). Analogous planes 
with separation K/b, K/c occur perpendicular to the y and z axes respectively. 

A reciprocal lattice point is identified by the indices of the set of (hkl) planes that 

it represents; conventionally the indices of a reciprocal lattice point are, like those 
for X-ray reflexions, written without parentheses, i.e. the reciprocal lattice point hkl 
represents the (hkl) set of planes in reciprocal space. The reference axes of a reciprocal 
lattice are denoted x*, y*, z* and taken respectively in the directions of the normals 
to the (100), (010), and (001) planes. The reciprocal lattice points 100, 200, 300, ... thus 

lie on the x*-axis, the repeat distance along which is designated a*; a* = K/d, 9. 
The angles between the reciprocal axes are denoted «*, 6*, and y*; that they are 
respectively equal to the angles (010):(001), (001):(100), and (100):(010) is evident 

from Fig 6.24. Reciprocal lattice constants are thus dependent on those of the 
corresponding direct lattice, which we have hitherto referred to as the crystal lattice. 

Fig 6.24 Stereogram to show the 
relationship between the direct and 
reciprocal axes, x, y, z and x*, y*, z* in 
the general triclinic case. The reciprocal 
lattice angles «*, B*, y* are respectively 
equal to the angles between the planes 
(010): (001), (001): (100), 
(100) : (010). P is the intersection of the 
orthogonal great circles zz* and x*y* 
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Fig 6.25 Relationship between reciprocal lattice points (solid squares except 000 which is an 
open square) and the direct lattice for the xz plane of a primitive monoclinic lattice. The thin lines 
represent the (100) and (001) planes of the direct lattice. The bold lines on the edges of the 
diagram indicate reciprocal lattice point rows of constant A or constant / in the AO/ reciprocal lattice 
plane. Reciprocal and direct axial directions are indicated. 

The relationship between reciprocal lattice points and direct lattice planes is 
illustrated for the xz plane of a typical primitive monoclinic lattice in Fig 6.25. In the 
next paragraph we develop the interrelationships between reciprocal and direct 
lattice constants for the general triclinic case; in systems of higher symmetry these 
relationships are simplified and those specific to each crystal system are shown in 
Table 6.7. 

The external angles at the apices of the spherical triangle x*y*z* (Fig 6.24) are of 
course the interaxial angles of the direct lattice (Fig 3.38) and its sides are by 
definition the interaxial angles of the reciprocal lattice. Therefore by equation (6) of 
chapter 5, 

cos (180° —y) = —cos(180° —«) cos (180° — f)+ sin (180° — a) sin (180° — f) cos y* 

cos « cos B —cos y 
he cosy* = - : 

sin x sin B 

And from equation (3) of chapter 5, 

cos y* = cosa* cos B* + sin «* sin B* cos (180° —y) 

, cos a* cos B* —cos y* 
i.€. cos y = —————______ 

sin «* sin B* 

Similar expressions can be written down for cos «*, cos B*, cosa, and cos B. 
Now c* = K/doo, = K/ccose, where ¢ (Fig 6.27) is the angle between z and ons 

that is, the angle between z and the normal to (001). If P is defined as the intersection 
of the great circle through z and z* with the primitive, which contains x* and ys, 
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Table 6.7 

Relationships between direct and reciprocal lattice constants 

Triclinic a* = — = : = > 
asinBsiny* asin f* siny 

Pe ee OE Ys 
bsiny sina*  b sin y* sing 

K K 
c* Se EEE 

csing sinB* csina* sinB 

« _ 008 B cosy—cosa cos B* cos y* —cos «* 
cos a* = ——_______ (GOO) eS 

sin B sin y sin B* sin y* 

cos ) COS ~—COS cos y* cosa*—cos p* iy oo 2 Meee ert) ae eA oe a et 
sin y sin sin y* sin «* 

» _ 08% cos B—cos y cos a* cos B* —cos y* 
cos y* = ——_______—_ COS ee 

sin sin B sin a* sin p* 

sa: K 
Monoclinic a* = — Oo 905 

asin B 

K 
p= B* = 180°—B 

b 

K 
c* = ——— ye) 

c sin B 

: K 
Orthorhombic (a # b#c) | a* =— Oe OE 

a 

K 
Tetragonal (a = b 4 c) ba % Bib OOe 

. K ° 

Cubic (a = b = c) C= y* =7 =90 
c 

K fe} 

Hexagonal TS a* = % = 90 
a=b#¢c a sin 60 

y = 120° K 
1 = l b* = —_—_. RY ce = 90° 

hate b sin 60° B B 

K 
ct = — y* = (180° —y) = 60° 

c 

the spherical triangle z*Py* is right-angled at P (Fig 6.24) and application of Napier’s 
Rules to this triangle (Fig 6.26) gives 

cosé = sina* sin B 

K 
puercioresche* 

csin «* sin B 

This expression, which involves one interaxial angle of the reciprocal lattice and 
one of the direct lattice, is simple to use: Analogous expressions for a* and b* may 

be derived in an identical manner and are listed in Table 6.7. A more complicated 
expression, which relates c* to direct lattice constants only can be derived in the 
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90-(180-B) 

Fig 6.26 The spherical triangle z*Py* of Fig 6.24 and its Naperian diagram. 

following way. The volume V of a triclinic unit-cell is given by the product of the area 
of its base ab sin y and its height normal to the xy plane doo, (Fig 6.27). 

Therefore V = absiny.doo1 

= abcsin y cose 

= abc sin a* sin f sin y 

cos B cos y—cos « 
But cos a* : : 

sin B sin y 

i ts s —cos a)? 
Therefore V = abcsin fpsiny J — OS eee 

sin* B sin* y 

= abc,/{(1—cos? B)(1 —cos? y) 
—(cos? B cos” y—2 cos «cos B cos y + cos? «)} 

= abc,/(1—cos” «—cos* B —cos” y +2 cos «cos f cos y) 

K 
Now since Cue and V =abcsinycose, 

CCOSE 

: K absiny 
we can write c*= —F 

Ksiny 

c,/(1 —cos” «—cos? B—cos? y +2 cosa cos B cos y) 
Therefore C= 

Analogous relationships exist between a* and a, b* and b. 
In those systems where the axes of the direct lattice are orthogonal, the 

x b 

Fig 6.27 (a) is a clinographic projection of a triclinic unit-cell showing the inclination € of z* to z. 
(b) is a section of the same unit-cell in the zz* plane to show that do., =€ Cos &. 
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Orthorhombic Hexagonal Monoclinic 

Fig 6.28 The angular relationships between reciprocal and direct axes in the orthorhombic, 
hexagonal and monoclinic systems are shown in the top row (a). Selected reciprocal lattice 
sections for these three systems are shown in (b), with diagrams to illustrate the relationship 
between direct and reciprocal lattice axial lengths in the bottom row. 

orthorhombic, tetragonal, and cubic systems, the reciprocal lattice axes are parallel 

to the direct lattice axes. This is so also for the z-axis in the hexagonal and trigonal 
systems and for the y-axis in the monoclinic system. The angular relationship between 
reciprocal and direct axes in the orthorhombic, hexagonal, and monoclinic systems 

is illustrated in Fig 6.28(a) and selected reciprocal lattice sections for these systems 
are displayed in Fig 6.28(b). 

The reflecting sphere 

Having developed the concept of the reciprocal lattice we now go on to show how it 
provides a simple but powerful means of solving the Laue Equations or the Bragg 
Equation for a given incident X-ray direction. It is appropriate at this point to 

mention that the most elegant treatment of the reciprocal lattice and the reflecting 
sphere is in terms of vector algebra (see, for instance, Lipson and Taylor, 1958); we 
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shall however continue our treatment in mathematically more cumbersome but 
conceptually simpler terms. 

Suppose a beam of X-rays to be incident on a crystal in such a direction as to give 

rise to reflexion from a particular set of (hkl) planes. Then in Fig 6.29 ) the angle between 
the incident beam QO and the normal OP to an (hkl) plane is QOP = 90°—@ and 

the angle between the reflected beam OR and the normal to_the plane is 
POR = 90°—0. If P is chosen so that QP is parallel to OR, then PQO = 26. Now 
the triangle PQO is isosceles so that QO = QP and OP = 2QO.sin 0. If the length of 
QO is chosen as K/A where K is a constant and / is the wavelength of the incident 
X-rays, then OP = 2(K/A) sin @. But since the plane (hk/) is in the reflecting position the 
Bragg Equation A = 2d,,, sin @ must be satisfied; therefore OP = K/d,,,. If O is the 
origin of reciprocal space then P is identified as the reciprocal lattice point hkl. Since 
QO = QP = K//, O and P lie on the surface of a sphere of radius K/A and centre Q 

on the line parallel to the incident beam passing through the origin of reciprocal space. 
Therefore the reciprocal lattice point P corresponding to a plane hkl that gives rise 
to a reflexion for this orientation of the incident beam lies on the sphere of radius 
K/2 and centre Q; this sphere is known as the reflecting sphere. This property of the 
reflecting sphere provides a simple means of interpreting and in particular indexing 
diffraction patterns; its use will be exemplified in chapter 8. 

The geometrical argument of the last paragraph shows that reflexion occurs when 
a reciprocal lattice point lies on the surface of the reflecting sphere and, moreover, 
that the direction of the reflected beam is the radius QP of the sphere through the 
reciprocal lattice point P. If now the reciprocal lattice is regarded as composed of 
points lying on planes perpendicular to the z-axis so that reciprocal lattice points 
hkO, hk1, hk2, etc, lie on successive planes, then these planes intersect the sphere in a 
set of parallel circles; reflected beams therefore lie on a set of cones coaxial about the 
z-axis. Figure 6.30 shows a central section of the reflecting sphere containing the z-axis. 
QO represents the incident beam (cf. Fig 6.29); RO and ST represent the intersection 
of the planes containing reciprocal lattice points hkO and hkl respectively with the 
plane of the diagram; QRS is parallel to z and, since RS represents the distance 
between the zeroth and /th layer of the reciprocal lattice, RS = IK/c. But, 

RS = QS—QR 

= QT cos SOT—QO cos SQO 

Fig 6.29 The Bragg Equation and the reflecting sphere. The left-hand diagram is a section 
containing the incident X-ray beam QO and the normal OP to a lattice plane (Ak/); OR represents 
the diffracted beam and Q is chosen so that QP||OR. The right-hand diagram is the corresponding 
central section of the reflecting sphere with centre Q: O is the origin of reciprocal space and P is 
identified as the reciprocal lattice point Ak/. Bragg reflexion occurs when a reciprocal lattice point 
lies on the surface of the reflecting sphere and the direction of the reflected beam is given by the 
radius through it. 
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Fig 6.30 The Laue Equations and the reflecting sphere. Central section of the reflecting sphere 
containing the z-axis and the incident beam OO; planes of reciprocal lattice points Ak/, hkO, Aki, 
hk27/ are indicated. A reciprocal lattice point T on the /th layer lies on the surface of the reflecting 
sphere, whence c(cos 6,—cos/,) =/A, one of the Laue Equations. 

Now QT and QO are radii of the reflecting sphere, 

Therefore RS = = (cos 6,.—Cosi,) 

Kou K 
Therefore = od 7 (cos 0, —COSi,) 

Cc 

Therefore c(cosdé,—cosi,) = lA. 

This is one of the Laue Equations (7); the other two Laue Equations can be derived 
by analogous arguments. 

Our development of the reciprocal lattice and the reflecting sphere was in terms of 
the Bragg Equation; by deriving the Laue Equations in the manner of the last 
paragraph we have sought to emphasize the essential unity and the interconvertibility 

of these three approaches to the geometry of X-ray diffraction by crystals. 
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7 
X-ray powder diffraction patterns 

In this chapter and the next we discuss the production and interpretation of X-ray 
diffraction patterns, dealing first with those produced by crystalline powders and 
then moving on to single crystal diffraction patterns. One piece of groundwork 
remains to be done by way of preamble, that is the description of the spectrum 
emitted by an X-ray tube. 

Emission spectrum of an X-ray tube 
Our purpose in providing this account of the X-ray emission from an X-ray tube is 
to enable the reader to understand the general principles of the various types of 
X-ray goniometer as well as those features of diffraction patterns that are dependent 
on the wavelength distribution in the incident X-ray beam. Our treatment of this 
topic will be in outline only; for a detailed account the reader is referred to Klug 
and Alexander (1954). 

A modern X-ray tube designed for crystallographic use (Fig 7.1) is in essence a 
permanently evacuated glass envelope into which is sealed a tungsten filament 
separated by about one centimetre from a target composed of a metallic element. 
The tungsten filament is heated by the passage of an electric current and emits 
electrons. A potential difference of the order of 50kV applied between the filament, 
acting as cathode, and the target, as anode, accelerates the electrons emitted by the 
hot filament towards the anode so that a stream of high-energy electrons impinges on 
the anode. Most of the energy of the electron stream, about 98 per cent, is converted 
into heat so it is essential that the anode should be made of a material of high thermal 
conductivity and cooled from behind by a fast flowing stream of water. Anodes are 
usually made of copper; if a less well conducting element is required as target, either 
it is electroplated on to the copper anode or a small disc of it is soldered on. The 
filament is surrounded by a focusing hood which has a slot in its front face parallel 
to the length of the filament. The effect of the hood is to cause the electron stream to 
form a line focus ~1 cm x ~0-01 cm on the target; the dissipation of heat from such 
a line focus is relatively efficient so that the tube can be run at a higher electron 
current and so produce X-radiation of higher intensity. X-rays are emitted from the 
target in all possible directions, but only a narrow beam (in the angular range of 
highest intensity) making an angle from 3° to 6° with the face of the target is utilized 
by being allowed to pass out of the evacuated envelope through a window made of a 
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Fig 7.1. Accrystallographic X-ray tube. The two lower diagrams are mutually perpendicular 
sections of a target, the thick black line representing the area irradiated by electrons, (a) in the 
plane containing the length of the filament and (b) in the plane perpendicular to the length of the 
filament. To the right of each diagram the cross-section of the emitted X-ray beam is shown; 
in (a) it is approximately square, a spot focus, and in (b) it is strongly elongated, a /ine focus. 

substance with a very low absorption coefficient for X-rays; windows are usually made 
of beryllium. X-ray tubes are equipped with four windows, one situated on either side 
of the tube in line with the length of the line focus and two others at right-angles to 
these. Through the former the line focus appears as a nearly equidimensional spot and 

the X-ray beam that passes through the window is suitable for use with pin-hole 
collimators; but through the windows situated normal to the length of the line focus, 
the elongation of the focus is retained so that the X-ray beam transmitted has 
dimensions of about 1cm x 0-01 cm and is suitable for use with a slit system of 
collimation. 

The X-radiation emitted by the target is never monochromatic, but covers a 
considerable spectral range. In the X-ray spectrum it is convenient to distinguish 
between white (or continuous) radiation and characteristic radiation. We deal with the 
generation of white radiation first. 
When an electron strikes the target it loses energy and part of the energy lost is 

converted into X-radiation of wavelength 4 according to the equation J = hc/AE, 
where AE is the amount of energy lost by the electron, h is Planck’s constant, and c is 

the velocity of light in vacuo. If the electron loses all the energy it has acquired by 
dropping through a potential V, then AE = eV, where e is the charge on an electron, 
and the wavelength of the X-rays emitted will be 

He 2598 
Seen ip sea 1 

: eV LS ) 
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where the wavelength is measured in Angstrom units and V is in kilovolts; this will 
will be the shortest wavelength in the spectrum of the X-radiation emitted by the 
target. That an electron will lose all its kinetic energy in a single collision with a 
target atom is improbable; most will lose their kinetic-energy in a series of collisions, 
each involving a loss of energy less than eV and resulting in the emission of 
X-radiation of wavelengths longer than that indicated by equation (1). The intensity 
of the X-radiation emitted by the target will vary continuously with wavelength and is 
of the general form shown in Fig 7.2. The intensity at a given wavelength and the 
variation of intensity with wavelength in such a white rddiation spectrum depend on 

the operating voltage of the tube and on the nature of the target element. The kinetic 
energy of the electrons striking the target will increase with increasing applied 
potential difference between filament and target, so that there will be an overall 
increase in the intensity of the X-radiation emitted and moreover a movement to 
shorter wavelengths of both the maximum in the intensity distribution curve and the 
cut-off (or minimum wavelength). In general it can be said that the efficiency of the 
conversion of electron kinetic energy to X-radiation increases with the atomic 
number of the target element; thus a molybdenum (Z = 42) target produces more 
intense white radiation than a copper (Z = 29) target operated at the same voltage. 

Intensity 

0:3 j ; i : ‘ : 1:0 

Fig 7.2 Emission from an X-ray tube showing the white radiation ‘hump’ and the characteristic 
&,, &, and f lines for a molybdenum target operating at 35 kv; the characteristic lines of tungsten 
are at too high a wavelength to be shown. 
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We turn now to the generation of characteristic radiation. If an electron of 
sufficiently high energy strikes the target it may eject an electron from the K-shell of 
one of the atoms of the target element. Ejection of a K electron will be followed by 
the transfer of an electron from an electronic shell of higher energy to fill the vacant 
energy level; such a transfer will be accompanied by the emission of an X-ray photon 
whose energy is equal to the difference in energy between the two energy levels of the 
target atom. The X-rays emitted as a result of such a process will thus have a fixed 
wavelength characteristic of the target element and will constitute a line spectrum 
commonly described as the characteristic radiation of the target element. When the 
lower of the two energy levels concerned is in the K-shell of the target atom, the 
resulting spectral line is described as a K line. 
K lines are classified in terms of the other energy level concerned. An electronic 

transition from the L-shell to the K-shell is said to give rise to a Ka line, while a 
transition from the M-shell to the K-shell gives rise to a Kf line. Since the L-shell is 
of lower energy than the M-shell, the K« line in the X-ray spectrum of a given element 
has a longer wavelength than the Kf line of the same element. Moreover Ka lines are 

generally of higher intensity than the corresponding Kf lines; in practice therefore 
Ka lines are invariably selected for isolation when monochromatic X-radiation is 
required. All elements give rise to two Ka lines, denoted Ka, and Ka,, which have 
a very small difference in wavelength’ and are resolved in diffraction only at high 
Bragg angle. The Ka, line has the shorter wavelength and is of about twice the 
intensity of the Ka, line; when the two lines are not resolved their wavelengths can 
be weighted to a fair approximation in the ratio 2:1 to give the wavelength of the 
unresolved doublet, usually written as Ka*, as Ayae = FAx,, +342, Of course the 
emission spectrum of an X-ray source includes characteristic spectral lines due to 
electronic transitions to the L-shell, La, Lf lines, etc; such characteristic radiations 

are not commonly utilized crystallographically and need not be further discussed here. 
The wavelengths of some commonly-used characteristic radiations are shown in 

Table 7.1. While the wavelength of characteristic radiation is dependent only on the 
nature of the target, its intensity is dependent on the magnitude of the voltage applied 
across the tube; in particular if the applied voltage is below a certain threshold value, 
none of the electrons incident on the target will have sufficient energy to eject a 
K-electron from a target atom and no K lines will be excited. The threshold voltage 
for excitation of K lines in any element is such as will impart to the electrons incident 
on the target kinetic energy equal to the photon wavelength of the K absorption edge 
of the target element. The operating voltage of an X-ray tube must therefore be 
greater than this threshold value and is chosen to give an optimum ratio of 
characteristic intensity to white radiation intensity. 
When monochromatic radiation is required it is sufficient for most purposes merely 

to remove the Kf line, the ratio of characteristic to white intensity being such that 

’ A Ka line is produced by an electronic transition from a 2p to a vacant 1s orbital. The reader familiar 
with X-ray spectroscopy will be aware that the 2p orbitals of an atom comprise two shells, denoted LIJ 
and LIJIJI, of slightly different energy because the total orbital angular momentum and the spin angular 
momentum of the 2p electrons can be combined in two different ways. Electrons in the LJJ shell have 
slightly lower energy than those in the LJJI shell and so electronic transitions LII > K give rise to the 
longer Ka, wavelength compared with electronic transitions LIJJ + K which give rise to the slightly 
shorter Ka, wavelength of X-radiation. The LIJ shell (J = 3) contains two electrons whereas the LIJIJ 
shell (J = 3) contains four electrons so that the Ka, line is only half as strong as the Ka, line. Formally the 
Ka, line is produced by an electronic transition from a 17S, toa2?P, state whereas the Ka, line is produced 
by a transition from a 17S, to a 27P, state. 
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Table 7.1. Data for some common targets and filters 

Filter: 
Atomic Wavelength 

Element Number Line (A) Vs ’ Wavelength of 
Atomic K absorption 

Element Number edge (A) 

Mo 42 Ka, 0-70926 Li 40 0-6888 
Ka, 0-71354 
KB 0:63225 

Cu 29) Ka, 1-54050 Ni 28 1-4869 
Ka, 1:54434 
KB 1-39217 

Co ai Ka, 1-78890 Fe 26 1-7429 
Ka, 1-79279 
KB 1-62073 

Fe 26 Ka, 193597, Mn 25 1-8954 
Ka, 1-93991 
KB 1-75654 

Gy 24 Ka, 228962 V 23 2:2676 
Ka, 2:29352 
KB 208479 

the latter can be ignored. The K f line can simply be removed from the X-ray emission 
of a target by placing immediately outside the window a thin foil of an element with 
an absorption edge of wavelength just less than that of the required Ka line. When 
the beam emitted from the X-ray tube passes through such a filter the intensity of 
the Ka line is reduced by a small factor and the Kf line is reduced to negligible 
intensity. The appropriate filter for a target of an element of atomic number Z is an 
element of atomic number Z—1 usually, Z—2 in some cases, e.g. for CuKa the 
appropriate filter is nickel (Z —1) whereas for MoKa zirconium (Z —2) is employed. 
The dependence of mass absorption coefficient on wavelength is shown for one 
element in Fig 7.3. The optimum thickness of a filter varies from element to element; 
it should be adequate to place the intensity ratio I(Ka)/I (Kf) between 150 and 350, 
but no thicker. In the case of emission from a copper target, the former value of the 
I(Ka)/I(KB) ratio corresponds of a reduction in I(K«) of 45 per cent and the latter 
of 60 per cent. Although the primary purpose of such a filter is to cut out the Kf line, 
white radiation of wavelength less than the absorption edge of the filter will also be 
drastically reduced in intensity, but white radiation with 4 from just less than Ax, to 
high wavelengths will pass the filter. 
When strictly monochromatic radiation is required the X-ray beam emitted from 

the tube is reflected from a crystal face set at the appropriate Bragg angle for the Kx 
line. Crystals with faces parallel to planes that yield very strong X-ray reflexions are 
employed, but even so the Ka beam is much reduced in intensity. The reduction in 
intensity can be made less severe by bending the crystal plate to give a focusing effect; 
this was the usual way of achieving strictly monochromatic X-radiation until recent 
developments in the synthetic growth of perfect graphite crystals enabled flat crystals 
to be produced which give a much smaller reduction in intensity. Such mono- 
chromators are employed only when strictly monochromatic radiation is essential 
for the purpose in hand. 
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(A) coefficient of nickel on wavelength. 

We conclude with a word of caution about the nature of the emission from 
commercial X-ray tubes. Tungsten slowly evaporates from the hot filament in use 
and eventually deposits as a thin film on the target and the windows. Then the 
radiation emitted by the target will be contaminated especially with the strongest line 
in the tungsten spectrum, La, (A = 1-476 A), which represents an electronic transition 
from the M-shell to fill a vacancy in the L-shell. In old tubes also the intensity of 
emission is reduced by the presence of a strongly absorbent film of tungsten on the 
inner surface of the window. 

Powder photographs 

An essential difference between two and three-dimensional diffraction gratings is that 

the latter yield only a few diffracted beams for any one orientation of the grating 
relative to the incident beam. The number of diffracted beams that can be observed 
when X-radiation is diffracted by a crystalline substance can be increased in a variety 

of ways; several such ways that are applicable to a single crystal diffraction grating 
are discussed in the next chapter; here we remove the restriction that the grating be a 
single crystal and consider diffraction by a crystalline powder. It is assumed—and this 
is a practically valid assumption—that the powder has been so prepared that it 
consists of a very large number of minute crystal fragments in completely random 
orientation so that every possible lattice plane will be present in every possible 
orientation with respect to the incident X-ray beam. The Bragg Equation A = 2d sin 0 
will thus be satisfied for all planes (hkl) provided d > 4A. Since the only restriction 
placed by the Bragg Equation on the orientation of a reflecting plane is that it should 
make an angle 0 with the incident X-ray beam, all planes with a given set of indices 
(hkl) whose normals lie on a cone of semiangle 90°—6 about the direction of the 
incident beam will reflect. Figure 7.4 shows the normal N to a plane (hkl) with 

interplanar spacing d lying on a small circle of radius 90°—@ about the direction X 
of the incident X-ray beam. Since the reflected beam R is required to be coplanar 
with X and N, R lies at the intersection of the great circle XN with a small circle of 
radius 20 about the direction X’ of the emergent direct beam. Planes with indices (hkl) 
will thus give rise to a cone of diffracted beams with semiangle 20. The total diffraction 
pattern produced by a crystalline powder is thus a set of cones, each cone 
corresponding to a solution of the Bragg Equation. 

The diffraction pattern produced by a powder is commonly recorded on a narrow 
strip of photographic film in a cylindrical camera whose axis is coincident with the 
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Fig 7.4 Generation of cones of diffracted X-rays by an X-ray beam incident on a powder specimen. 
The stereogram on the left shows the relationship between the normal N to a set of planes (hAk/), 
the direction X of the incident X-rays, the direction R of the resulting diffracted beam and the 
Bragg angle @. The drawing on the right shows cones of diffracted radiation emanating from a 
powder specimen for four solutions of the Bragg equation 2 = 2d sin 0, the semi-angle of each 
cone being 20. 

powder specimen. Each diffracted cone is recorded on the film strip as a pair of arcs, 
one on either side of the direction of the incident beam (Fig 7.5). The appearance of 
the diffraction pattern on the film strip after development depends on the way the 
film is mounted in the camera. There are three mountings in common use, which 
differ in the position of the free ends of the film relative to the incident beam. The 
Bradley—Jay mounting is such that the incident beam passes through the gap 
between the ends of the film and the undeviated beam leaves the camera through a 
hole punched in the centre of the film (Fig 7.5(a)). The van Arkel mounting simply 
has the positions of entry and exit reversed (Fig 7.5(b)). In the Straumanis mounting, 
both the incident and the undeviated beam pass through holes punched in the film, 
the gap between the ends of the film lying close to the radius of the camera normal 
to the incident beam (Fig 7.5(c)); most modern powder cameras use the Straumanis 
mounting. 

Approximate Bragg angles can simply be determined by measuring the distance s 
between the midpoints of corresponding arcs on the film and assuming a value r 
equal to the radius of the camera for the radius of the film in the camera; then 
6 = s/4r if s is measured across the direction of the undeviated beam as in the 
Bradley-Jay mounting, 42—0 = s/4r if s is measured across the direction of the 
incident beam as in the van Arkel mounting. The Straumanis mounting yields 
concentric arcs about each of the two holes punched in the film so that measurements 
of s across one hole will give 6 = s/4r and across the other 41—0 = s/4r; the hole 
through which the incident beam enters the camera can easily be recognized by the 
splitting of the arcs closest to it into %,«, doublets. Accurate measurement of Bragg 
angles requires film shrinkage during development, fixing, washing, and drying to be 
taken into account as well as the deviation of the mean radius of the film in the camera 
from the radius of the camera due to the finite thickness of the film. In cameras that 
use the Bradley—Jay or the van Arkel mounting this is achieved by constructing the 
camera so that a knife-edge casts a shadow just short of each end of the film, the angle 
between the knife-edges, 4¢,, being determined by calibrating the camera with a 
substance whose unit-cell dimensions are very accurately known; if the measured 
distance between the shadows cast by the knife-edges is s,, then 0 = ¢,5/s, for the 
Bradley-Jay mounting and 3n—0 = ¢,s/s, for the van Arkel mounting. The 
Straumanis mounting is however self-calibrating provided the powder pattern 
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Fig 7.5 Film mountings for X-ray powder photography. The diagrams on the left show the 
arrangement of the film strip in the camera for three mountings that have been much used: the 
specimen is represented as a short thick line and the direction of the incident X-rays is arrowed. 
The diagrams on the right show the appearance of the film laid flat after development for each of 
the three mountings: exemplary low 6, moderate 8, and high 8 powder rings are shown. Observation 
of a, a, splitting serves to identify the high @ lines on the film. 

concerned exhibits sharp high 6 reflexions; then measurement of the positions of the 
midpoints of one pair of corresponding arcs, s, and s‘,, across the exit hole and of 
another pair, s, and s, across the entrance hole yields a distance 

_ 8145,  S2+52 

Lies 

equal to the distance between the centres of the two pairs; since one centre is at 
6 =O and the other at 0 = 42, s* = mr so that 0 = (1/4s*)s if s is measured across the 
exit hole and 6 = 42 —(z/4s*)s if s is measured across the entrance hole. 

The Bradley—Jay mounting is suitable for recording powder patterns for com- 

parative purposes and is capable of giving accurate d-spacings for low-0 lines; the 
van Arkel mounting is especially applicable to the accurate. measurement of high 
angle lines; but both have been largely superseded in modern cameras by the 
Straumanis mounting, which combines the advantages of both with no intrinsic 
disadvantage. 

It has already been said that high angle lines can be recognized immediately on 
inspection of a powder photograph because they display «,«, splitting. That the Ka 

doublet will be resolved at high @ can simply be seen by differentiating the Bragg 
Equation 

s* 

A =2dsin0 

Therefore dij =2dcos6@d0 

Nis tan 0 
d 7 A whence dO 
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As 0 32, tan@— co so that a small difference in 4 will correspond to a relatively 

large difference in 0. For CuKa, and CuKa,, for example, AA = 0-:0038 A (Table 7.1) 
so that for 6 = 80°, AO = 0-86° and for 0 = 85°, AO = 1-72°. In the doublet the Ka, 

line has the shorter wavelength and therefore the lower Bragg angle; its intensity is 
approximately twice that of the K«, line. 

Experimental procedure 

For a full account of the practical details of taking X-ray powder photographs the 
reader is referred to Klug and Alexander (1954) or to Lipson and Steeple (1970). We 
present here an account in outline only. 

The specimen is finely ground to a smooth powder, the constituent grains of which 

should have dimensions less than 45 x 107? mm. By mixing the powder with a small 
amount of gum tragacanth, moistening with water, and rolling between two 
microscope slides the powder specimen can be obtained in the form of a small cylinder 
of diameter 0-3 to 0:5 mm and about | cm in length. Alternatively the powder may be 
loaded into a thin-walled capillary tube made of borosilicate glass (which has a very 
low absorption coefficient for X-rays). The powder specimen so prepared is attached 
to a spindle that can be centred so that the length of the specimen can be brought 
into coincidence with the axis of the cylindrical camera (Fig 7.6). X-rays enter the 
camera through a collimator which is essentially a metal tube, of internal diameter 
~0:5 mm, extending to within a few mm of the centre of the camera; the hole in the 
collimator is widened to about 1 mm diameter at the exit end to form a guard tube 
that serves to trap the radiation scattered from the end of the fine hole. The undeviated 
beamis led out of the camera through a similar tube, of rather larger internal diameter, 
into a beam trap. The beam trap is so constructed that it incorporates a fluorescent 
screen which is useful for alignment of the camera along the beam emitted from the 

a 
Fig 7.6 A type of powder camera of 57:3 mm radius shown about half-size in front and side 
elevation, a, cylindrical camera body. b, detachable lid. c, collimator. d, collimator locking screw. 
e, exit tube, f, exit tube locking screw. g, fluorescent screen. h, lead glass screen. i, fixed pin 
and k, movable pin with locking screw (movement of k away from i forces the film against the 
camera body; k is moved until resistance is felt and then locked). m, specimen. n, specimen holder. 
00, centring plunger to move magnetic chuck (the spindle q is rotated manually and the plunger 
oo is applied until the specimen is centred throughout its rotation). p, film. q, drive spindle from 
detachable motor. 
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X-ray generator; the fluorescent screen is viewed through a lead-glass window. 

Centring of the specimen on the axis of the camera is achieved by removing the 
beam trap, illuminating the collimator with a light source, and adjusting the specimen 
mounting until the specimen is seen to remain stationary on rotation about its axis. 

The camera is in essence a light-tight box which must be loaded with film only in a 
darkroom. The various types of camera use different devices for holding the film strip 
firmly against a cylindrical metal former. Before loading the film is punched with one 
or two holes in the appropriate positions for the collimator and/or the beam trap to 
pass through. During exposure the specimen is rotated slowly about its axis by an 
electric motor; this serves greatly to increase the number of crystal orientations with 
respect to the incident beam that are present in the specimen. If the powder is too 

coarse or the specimen not rotated, complete randomness of orientation will not be 

achieved and the powder lines will appear ‘spotty’. 
Powder cameras of various diameters are available commercially, 57-3, 60, 114-6, 

90, and 190 mm are diameters that have been used extensively. For collimation of the 

same quality a camera of large diameter will produce better resolution of the 
diffraction pattern; but this advantage is counterbalanced by the longer exposure 
required to produce lines of comparable intensity due to absorption and scattering 
of the diffracted X-rays by the air in the camera. Cameras of large radius are provided 
with a facility for evacuation, but this is usually only necessary when long wavelengths 
(e.g. CrKa) are being used or when the specimen is being heated. For general purposes 
a camera of diameter 114-6 mm is very suitable and has the added advantage for 
preliminary work that 1 mm measured on the film corresponds to 1° if film shrinkage 
is neglected: thus if the distance between the mid-points of corresponding arcs is 
measured across the exit hole with a ruler as 640mm, the Bragg angle of this 
reflexion is immediately determined as 16-0° and this can simply be converted to a 
d-spacing by consulting tables giving d— 0 relationships for commonly used radiations 
(e.g., Fang and Bloss, 1966). For accurate work of course this radius has no special 
advantage; measurement and calibration of the film will be required. 

Powder diffractometry 

In X-ray powder photography the whole diffraction pattern is recorded simul- 
taneously on a photographic film; in X-ray powder diffractometry the diffraction 
pattern is scanned by a counter device which plots counter output against Bragg angle 
on a paper trace. The resolution obtainable in diffractometry under optimum working 
conditions is very much better than in photography and Bragg angles can be measured 
to much higher accuracy, but the apparatus is much more complex, very weak 

reflexions are difficult to distinguish from background noise, and a larger powder 
specimen is required. As will be exemplified later in this chapter the diffractometer is 
used mainly for problems that require highly accurate Bragg angles or high resolution, 
while the powder camera is used generally for identification. 

A material is prepared for diffractometry by grinding to a smooth powder and 
sedimenting in a suitable volatile medium on to a microscope cover slip of diameter 
~20 mm. It is usual to compress the sedimented specimen against a polished steel 
plate to ensure that its surface is flat. Randomness of orientation of crystallites in the 
powder specimen is further increased by rotating the specimen slowly during exposure 
about an axis normal to its plane. When crystallites tend to sediment with preferred 
orientation—that is when they are flakes or needles—special techniques of sample 
preparation have to be used. 
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The best operating systems currently in use make use of the parafocusing effect 

illustrated in Fig 7.7. The line focus of the X-ray tube and the entrance slit of the 
counter are constrained to lie on a circle, the focusing circle, so as to be equidistant 
from the specimen, the surface of which is'tangential to the circle. This condition 
ensures that the diffracted X-rays to be measured are reflected from the surface of the 
specimen and so are effectively focused on the entrance slit of the counter. 

Theoretically the condition for the reflected X-rays to be focused is that the specimen 
should be an arc of the focusing circle, but it is practically more simple and found to 
be adequate if the specimen is tangential. The divergerice of incident and diffracted 
beams parallel to the length of the line focus of the X-ray tube—that is, normal to the 

plane of Fig 7.7—is limited by passing each through Soller slits, a set of narrow slits 
formed by a pack of thin metal plates, each parallel to the plane of the diagram. 

The diffraction pattern is scanned by rotating the counter at a steady speed about 
the centre of the surface of the specimen; the radius of this scanning circle varies from 
one make of instrument to another, but is often ~200 mm. In order to maintain the 
geometry of the focusing circle the specimen is geared to rotate about the same axis 
at half the speed of the counter. A scale provides direct measurement of the scattering 
angle 20. Scanning speeds vary from $ to 2 degrees per minute. The counter, which 
may be a Geiger, proportional, or scintillation counter, outputs through electronic 
circuits, that we shall not describe in detail, to a pen recorder which plots counts per 
second, as a measure of intensity, on a continuous paper chart. The chart moves at a 
steady speed so that distances parallel to its length provide a measure of differences 
in 20. Chart speeds vary from 200 to 1600 mm per hour. Scanning and chart speeds 
are independently adjustable to suit the nature of the problem under investigation. On 
the chart one degree of 20 may be represented by as little as 1-67 mm or as much as 
213 mm. For very accurate measurements counter and specimen can alternatively be 
moved in angular steps as small as 0-01° and the diffracted X-radiation counted for a 
much longer time than would be possible in conditions of continuous scanning; the 
resultant counts are then plotted manually against 20 to give a highly accurate peak 
profile. 

The scanning range of diffractometers, except those built for special purposes, is 
limited to 6 < 80° simply because at higher angles the counter would foul the X-ray 
tube; similarly they are limited to @> 4° because at lower angles the intense 
undeviated beam would damage the counter. In practice these restrictions rarely 
matter. 

It is worthy of note that since, as is evident from Fig 7.7, the area of the specimen 
irradiated by the incident beam varies with Bragg angle, it is important that the 
specimen should be homogeneous and large enough in area to catch the whole of the 
incident beam at the lowest Bragg angle to be used. If this second condition is not 
satisfied, peak heights at different Bragg angles will not be comparable. 

It was pointed out at the beginning of this section that in powder photography the 
whole diffraction pattern is being recorded throughout the exposure whereas in 
diffractometry each part of the pattern is recorded at a different time. It becomes 
necessary therefore to stabilize the intensity of the incident X-ray beam; this is 
achieved by stabilizing the high voltage supply and the filament heating current or, 
less commonly, by continuous monitoring of the incident intensity. 

A formal comparison of the advantages and drawbacks of powder photography 
and diffractometry would be misleading; the sort of use for which each technique is 
especially appropriate has already been pointed out in general terms and the reader 
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Fig 7.7 Geometry of a powder diffractometer utilizing the parafocusing effect. The construction 
of Soller slits is shown on a-larger scale in the upper left-hand corner. 

should draw his own conclusions from the examples discussed at the end of this 
chapter. It should be borne in mind that the area of overlap of the two methods is 
extensive. Most of the uses for which the diffractometer is superior stem from its 
better resolving power, as an indication of which we may compare the minimum 
Bragg angle at which the CuKa, — Ka, doublet is resolved under optimum conditions, 
~ 20° by diffractometry compared with ~55° by photography. 

Interpretation of powder photographs 

Measurement of a powder photograph provides a direct determination of the Bragg 
angle of every cone of diffracted radiation intersected by the film, that is of every 
powder line on the photograph. Solution of the Bragg Equation for each powder line 
yields the corresponding interplanar spacings, usually known as d-spacings. If the 

unit-cell dimensions of the substance are known it is then possible to determine the 
indices of the planes contributing to each powder line. If the unit-cell is unknown, it 
is generally possible with more or less certainty to find unit-cell dimensions consistent 
with the powder pattern and thence to index all the lines of the pattern. In either case 
it will be necessary to consider how many symmetry related planes contribute 

diffracted radiation to each powder line; we deal with this topic first. 

Multiplicity Factors 

All lattice planes of equal d-spacing of necessity give rise to reflexions at the same 
Bragg angle. Reflexions from each such plane will be independent of one another; 
consequently the intensity of a powder line is simply the sum of the intensities of all 
reflexions contributing to it. All lattice planes that are related by symmetry will have 

the same d-spacing so that the number of planes contributing to a powder line\hkl 
will be the number of planes in the form {hkl} of the Laue group. Thus the line of 
longest d-spacing in a powder photograph of a primitive cubic substance of Laue 
group m3m is composed of reflexions from all the planes of the form {100}; the six 
planes (100), (010), (001), (100), (010), (001) all contribute equally to the powder line, the 
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Table 7.2 Multiplicity factors for cubic powder lines 

Indices of powder line hoo hhO , Ahh hhl hkO hkl 

Laue group m3m 

Multiplicity factor 6 12 8 24 24 48 

Line intensity 61(hOO) 1210(hhO) 81(hhh) 241 (hhl) 24 I(hkO) 48 (hkl) 

Laue group m3 

Coincident lines 

unrelated by symmetry — a _ — hkO, khO hkl, lkh 

Multiplicity factor 6 12 8 24 12S te 24, 24 

Line intensity 61(h0O) 121(hhO) 81(hhh) 241 (hhl) 12 [I(hk0) 24 [1(hkl) 

+1(khO)] +1 (Ikh)] 

multiplicity of which is then said to be 6. By way of example suppose that the intensities 
of the lines containing the 100 and 111 reflexions in a cubic powder pattern are 
respectively I and 21; since {100} contains 6 planes and {111} contains 8 planes in both 
cubic Laue groups, the ratio of the intensities of the 100 and 111 reflexions is 41:21, 
i.e. 3. The lines on a powder pattern are conventionally indexed if possible with the 
indices of that contributing reflexion which has h > k > 1; thus the powder line to 
which reflexions from all the planes of the form {100} contribute is known as the 100 
line, rather than as 010 or 001 or OOT. 

Multiplicity factors for the cubic Laue group m3m are shown in Table 7.2. The 
geometry of the cubic unit-cell is such that certain values of h?+k2+/? can be 
obtained from quite different values of h, k, and | so that planes unrelated by symmetry 
have the same d-spacing a(h*+k?+/’)~* and in consequence the corresponding 
powder lines coincide. Thus the {300} and {221} planes have the same d-spacing 4a 
so that the 300 and 221 powder lines are coincident. Measurement of the intensity of 
such a line provides information only about the combined intensities of the coincident 
lines 61(300) + 241(221); 1(300) and 1(221) can be separately evaluated only by study 
of the single crystal diffraction pattern. 

In the other cubic Laue group m3 coincidence of powder lines due to reflexion from 
planes unrelated by symmetry can arise in another way. For instance the forms {210} 
and {120} are distinct, but the geometry of the lattice is such that they have identical 
d-spacings a/,/5; the intensity of reflexion from planes of the two forms will be 
different so that the intensity of the composite line will be 121(210)+121(120). This 
sort of coincidence affects all lines of the types hkO and hkl in the powder patterns of 
substances of Laue group m3, but for all other types of reflexions multiplicity factors 
are the same as those for Laue group m3m. Multiplicity factors for Laue group m3 
are shown alongside those for m3m in Table 7.2, where pairs of reflexions that are 
coincident but independent in the lower symmetry group are designated as hkO and 
khO, hkl and Ikh. 

In summary the intensity of a powder line hkl is related to the intensity of the Bragg 
reflexion hkl by the multiplicity factor for the form {hkl} in the appropriate Laue 
group provided no other form has the same interplanar spacing. 
We have taken our examples of multiplicity factors entirely from the cubic system 
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because we shall be mainly concerned with the interpretation of cubic powder 
patterns. What has been said here applies however in general to all other systems. 

Interpretation when the unit-cell is known 

From measurements of the Bragg angles of the lines of a powder pattern the d-spacings 
of the lines can simply be calculated by application of the Bragg Equation. It is 
convenient to arrange such a set of observed d-spacings in sequence of decreasing d. 
The observed d-spacings are then compared with the d-spacings of all planes that can 
give rise to reflexion calculated from the known unit-cell dimensions. In the cubic 
system the comparison invariably yields unambiguous indices for all low @ lines, but 

becomes progressively less certain as 0 increases unless the unit-cell edge is very 
accurately known. The d-spacing of the highest @ line that can be unambiguously 
indexed is then used to recalculate a, from which a revised set of d-spacings is 
calculated; the indexing may then be carried to higher @ and the process of successive 
improvement of a continued. In systems of lower symmetry it is usual to calculate by 

computer from the unit-cell constants a set of d-spacings sorted in sequence of 
decreasing d. Ambiguity in the indexing of observed lines usually arises at a much 
lower Bragg angle than in the cubic system and it is advisable, whenever possible, to 
compare the intensities of observed powder lines with intensity data for reflexions 
obtained from single crystals of the substance, taking multiplicity factors into account. 
By comparison with single crystal intensity data it may be possible to index 
unambiguously a line that would otherwise have to be referred to two or more forms 
unrelated by symmetry but with equal, or nearly equal, d-spacings. 

Interplanar spacings are most conveniently calculated from unit-cell constants 
by use of the fundamental reciprocal lattice relationship dj, = 1/d,,,. In the 
triclinic system, the most general case, d* can simply be shown by three- 
dimensional geometry to be related to the reciprocal lattice constants by 

1 
aa dx2 = h?a*? +k*b*? + [?c*? + 2klb*c* cosa* + 

hkl 

+2Ihc*a* cos B* + 2hka*b* cos y*. 

When the reference axes are orthogonal this reduces to 

as = di? = ha**? +k?b*? +P c*? 
Ci 

and further reduces for the cubic system to 

1 
aoa (be — (h? ee k? a Pya*4 

Gn 

Eras a 
Le. hkl = hae ery, 

Interpretation when the unit-cell is unknown 

In the cubic system unambiguous indexing can usually be achieved, otherwise we are 
on much less certain ground especially in systems of low symmetry; even with 
elaborate computer programmes available for selecting and adjusting unit-cell 
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constants to produce a perfect fit, within the limits of error of measurement, between 

calculated and observed d-spacings there can be no certainty that the interpretation 
is correct unless additional information is available from single crystal studies. An 
instructive example of misinterpretation is provided by Christophe-Michel-Lévy and 
Sandrea (1953), who indexed a powder pattern of 15 lines given by the mineral 
hégbomite on a tetragonal unit-cell with a 8-34, c 7:96 A; McKie (1963) employed 
single crystal data to show that the symmetry was hexagonal and the true unit-cell 

dimensions were a 5-72, c 230A. Indexing of powder photographs in these 

circumstances should only be attempted when crystals of a size suitable for single 
crystal X-ray study cannot be isolated and electron diffraction studies are for one 
reason or another impossible. In general it is true to say that as symmetry decreases 
from cubic to triclinic the number of lines in powder patterns taken with X-radiation 
of the same wavelength increases, the number of adjustable unit-cell parameters 
increases also, as does the number of correspondences available between observed 
and calculated d-spacings. Although there is always a risk of misinterpretation, plenty 
of interpretations have been shown by subsequent single crystal studies to be 
substantially correct. A clear account of the methods of indexing appropriate to each 
system and when the system is unknown is given by Lipson and Steeple (1970). We 
shall here confine ourselves mainly to cubic patterns which can always be indexed 
satisfactorily except when very few lines are present. 

In the three systems with orthogonal axes, cubic, tetragonal, and orthorhombic, 
there is a simple expression for the spacing d,,,, of (hkl) lattice planes. The first plane 
of the (hkl) set out from the origin makes intercepts a/h, b/k, c/l on the reference axes 
and the length of the normal from the origin to this plane is of course the interplanar 
spacing dy, (ON in Fig 5.9). The direction cosines of the normal are Aina /(a/h), 
ina /|(b/k), Anna /(c/l) respectively. Now when the reference axes are orthogonal the sum 
of the squares of the direction cosines of the normal is unity. Therefore 

h2 k?2 [2 -i 

dnki x ae = b2 a C : 

In the cubic system a = b = c and the expression for d,,, reduces to 

d a a 

hkl —_ JW +k +2) 

Substitution in the Bragg Equation yields, for a cubic substance 
j2 

ee? 0 ws h? 2 2 sin a1 ROB) 

which can conveniently for our present purpose be rewritten as 

A2N 

4a?’ 

where N is an integer that can be expressed as the sum of three Squares. 
The equation at the end of the preceding paragraph provides a means of indexing 

the powder pattern of any substance that is known from other information or 
suspected from the simplicity of the pattern to be cubic. From each measured Bragg 
angle sin? @ is calculated. The common factor of the set of sin2@ values is found, 
either by inspection or graphically; the value of N for each measured line is then given 
by the ratio of sin? @ for the line to the common factor. The graphical method is 

sin? 9 = 
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particularly suitable when @ has not been measured particularly accurately and no 
computing facilities are available. On a sheet of rectangular graph paper the measured 
values of sin? @ are plotted along one axis and possible values of N, that is all integers 
that can be the sum of three squares, from 0 to at least 30 are plotted on the other 
axis. Lines are drawn through each sin? @ value parallel to the N axis right across the 
sheet of graph paper. A ruler is laid along the sin? 0 axis and rotated slowly about the 
origin until all its intercepts with sin? @ lines are at integral values of N; a line is drawn 
through the origin at this inclination and the value of N corresponding to each 
measured line is read from the graph (Fig 7.8). 

Once a set of values of N has been obtained each line on the pattern can be indexed 
from N = h? +k? +I’, applying the convention h > k > |. Some values of N can, as has 
been remarked earlier, correspond to more than one set of indices, for example 

N =9 yields 221 and 300, both of which have d = 4a. Certain other values of N 
cannot be expressed as the sum of three squares, e.g. 7, 15, 23, 28; such integers are 
given by m?(8n—1) where m and n are integers (a proof of this expression is given in 
Lipson and Steeple, 1970, Appendix 3). If the cubic substance has a non-primitive 

lattice, systematic absences will appear in the sequence of values of N: powder lines 

0 2 10 AZ 14 16 

Ne 

Fig 7.8 Indexing of a cubic powder pattern when the unit-cell dimension is not known, even 
approximately. Measured values of sin? 6 are plotted on the vertical axis and drawn out as 
horizontal lines. The sequence of integers from zero is plotted on the horizontal axis and each is 
drawn out as a vertical line. A ruler is rotated from the sin2 0 axis about the origin until all its 
intercepts with horizontal lines coincide with their intersections with the vertical set; a line is 
drawn through the origin at this inclination. For simplicity only values of VV up to 16 are shown. 

for which h+k+l]is odd will be absent when the lattice type is I, while lines for which 
h, k, | are neither all even nor all odd will be absent when the lattice type is F. The 
sequence of powder lines that may be observable in cubic substances with P, I, or F 

lattices is given in Table 7.3. Other lines may of course be absent due to the presence 
of translational symmetry elements or may be too weak to be observed due to the 

atomic arrangement associated with each lattice point. At first sight it might seem that, 
since N must always be even for an I lattice, P and I lattices would be indistinguishable, 
an I lattice yielding a spurious set of N values, each one half of the true N value; but 
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Table 7.3 Permissible reflexions for cubic lattice types 

N=h?+k?+9P? 

N P I F N P I F 
1 100 — — 16 400 400 400 

2 110 110 — 17 440, 322 — — 

3 111 — 111 18 330, 411 330, 411 —- 

4 200 200 200 19 331 — 331 

5 210 et ax 20 420 420 420 
6 211 211 a 21 421 At = 
a = — a 39 332 332 pan 
8 220 220 220 ay — . — — 

9 300, 221 == ee 24 422 422 422 
10 310 310 _ 25 500, 430 ats pe 
11 311 As 311 26 510, 431 510, 431 ee 
12 222 Dae 222 Dye Saou a 333,540 

13 320 — — 28 — — = 

14 321 321 — 29 520, 432 — a 

15 — as es 30 521 521 — 

the forbidden N values, 7, 15, 23, etc, serve to make the distinction, i.e. if N appears 

to be equal to any one of these forbidden numbers and the lattice appears to be P, 
then itis an I lattice with all the apparent values of N doubled. However, it is necessary 
to proceed cautiously because of the possibility of the lines with N = 14 and 30 in an 
I lattice being too weak to be observed; unless two or preferably three lines with 
forbidden values of N are actually absent it is not safe to conclude that the lattice is 
primitive and another powder photograph should be taken with X-rays of shorter 
wavelength to examine an extended range of N values. 

Reference to Table 7.3 shows that, if there are no absences other than those due to 
lattice type, the ratio of the sin? @ values for the three lines of lowest 6 are 3:4:8 for a 
cubic F lattice and 1:2:3 for cubic P and I lattices. With experience these ratios 
become easy to recognize on inspection of the pattern; they should always be sought 
in the first instance when indexing either by inspection of the list of sin? @ values or 
by the graphical method. Figure 7.9 shows the powder patterns of three cubic 
substances, one with a P, one with an I, and one with an F lattice. 

Once the cubic powder pattern has been indexed the unit-cell edge a can be 
determined by application of the expression 

= 2 2 2 =a aw +k*+l?). 

Maximum accuracy in the evaluation of a is obtained by using the measured value 
of 0 for the line of highest 0 as is evident from the following argument. Differentiation 
of the Bragg Equation A = 2d sin @ with respect to @ and d yields 

2 sin @.dd+2dcos@.d0 =0 

dd 
Theref — = — erefore 70 dcot 8. 

Therefore for a fixed error in 0, the error in d will be least when cot 0 has its smallest 
value, that is as 0 > 90°. 

Examples of indexing and determination of a from cubic powder photographs are 
provided by Fig 7.8 and Table 7.4. 
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Fig 7.9 Diagrammatic representation of powder photographs, in the Straumanis setting, of three 
hypothetical cubic substances with a = 3-86 A, taken with CuKa radiation (A = 1542 A). The 
substance giving rise to the upper photograph has a primitive lattice so that the only absent lines 
are those for V = (h2+k2+/2) =7, 15, 23. In the middle photograph the substance has an | lattice 
so that there are systematic absences corresponding to odd values of h+k+/. In the lowermost 
photograph the substance has an F lattice so that reflexions are only present when A, k, / are all 
even or all odd. 

Table 7.4 Indexing a cubic powder pattern 

Procedure: (1) Measure film and evaluate @ for each line (column 3). 
(2) calculate sin? @ for each line (column 4). 
(3) either plot sin? @ for each line on graph (Fig 7.8) and draw a straight 

line through intersections of lines of calculated sin? @ and lines of 
constant N; then read off the value of N = h?+k?+/? for each line 
(column 5). 
or determine highest common factor of sin? 0 values by inspection of 
column 4 and thence deduce values of N (column 5). 

(4) index each line from its N value (column 6). 

(5) determine the lattice type. 
(6) use the measured value of @ for the line of greatest N to calculate the 

unit-cell edge a. 

line intensity 0° sin? 0 N hkl 
a w 24:3 0-169 3 111 Lattice type = F 
b m 28:3 0-225 4 200 

a 42-1 0-450 Seihelld020 vrais 
d s S19 0-619 11 311 2 sin 0 

e vw So 0-675 12 DY 1:542 x4 
f m 71-6 0-900 16 400 = ———_——_ 

A 2 sin 71-6° 
CuKa) = 1-542 ei = 325A 
Intensity scale:s > m > w > vw 

Some uses of powder methods 

It is not proposed here to offer an exhaustive list of the uses to which X-ray powder 
diffraction studies have been put, but merely to indicate the scope of the methods by 
mention of a wide ranging variety of fruitful uses. 
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Probably the best known use of powder methods, especially the powder 
photograph, is for identification. Over the past thirty years a very extensive card file 
listing the d-spacings and relative intensities of the lines on the powder patterns of 
many thousands of substances has been built up;'this is known as the Powder 
Diffraction File, formerly the ASTM Index (supplementary data are issued annually). 

Each compound on file has a card on which are given d and I for all lines in the powder 
pattern, chemical composition, unit-cell constants from single crystal data if available, 
density, and optical properties; in many cases powder lines are indexed. Accom- 
panying the file is an index in which all the compounds on file are listed in order of 
the d-spacings of their strongest lines so that a particular substance will appear in 
the index under the d-spacing of each of its six strongest lines.? The technique of 
identification is to measure the d-spacings of all the strong lines on the powder 
photograph of the unknown, if there are more than six to select the six strongest and 
make a visual estimate of their relative intensities, and to look up each strong line in 
order of decreasing intensity in the index until a satisfactory match is found. At this 
stage it is always advisable to obtain a powder photograph of a reliable specimen of 
the substance identified taken on a camera of the same radius and with the same 
radiation as the photograph of the unknown. Most laboratories concerned with 
identification maintain a collection of powder photographs of well authenticated 
substances in their field. To ease the task of reducing a powder pattern to a set of 
d-spacings, there are commercially available rulers that give a direct measurement of 
d, for a camera of given radius and radiation of given A, to sufficient accuracy for use 
with the File. For purposes of identification, powder photography is generally 
preferred to diffractometry because the whole range of @ can be sampled more 
quickly and the pattern converted to a list of d-spacings more easily; nevertheless in 
particular circumstances diffractometry may be selected for identification. There are 
of course some potential snags to be borne in mind when using the File: the unknown 
may not be on file, or it may be a member of a solid solution series only the end 
members of which are on file, or it may be a mixture. In general however the Powder 
Diffraction File is a powerful tool for the identification of unknown substances. 

Identification of the several constituents of a mixture by powder methods is never 
a straightforward task unless the substances that may be present are restricted in 
number and not more than three, or at most four, of them are present in the mixture. 
For reliable identification it is essential to compare the powder pattern of the mixture 
with the superimposed patterns of the suspected constituents. The limit of detection 
of any constituent depends very much on whether its powder pattern contains a very 
strong line that is clearly resolved from the lines of the other constituents; even when 
this criterion is satisfied it is rarely possible to detect a substance present to the extent 
of <5 per cent. For the detection of substances present in small concentrations 
diffractometry and photography are generally balanced: the former gives better 
resolution while the latter exhibits very weak lines with less ambiguity. The limit of 
detection by optical examination (chapter 12) is generally very much lower, but 
identification of the impurity is less satisfactory than by powder methods; if the 
impurity is in the form of grains of manageable size, a sufficient number of grains to 
make a powder specimen can be picked out under the microscope and identification 
achieved by powder photography. 

* This is the indexing system for inorganic compounds including minerals. For organic compounds 
there is a separate card file and a separate index in which a compound is listed under the d-spacing of each 
of its three strongest lines. 
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Powder diffractometry is particularly useful for accurate determination of the 

unit-cell dimensions of solid solutions. A simple example is provided by the Cu-Au 
system whose melts yield on rapid cooling (quenching) cubic solid solutions for which 
a varies linearly with atomic percentage from 3-608 A for pure copper to 4070 A for 

pure gold. Measurement of the d-spacing of an indexed high-0 line by diffractometry 
will thus yield the composition of the quenched alloy. Precision can be greatly 
improved by admixture with a pure substance whose unit-cell dimensions are very 

precisely known and which serves as an internal standard of 0 on the diffractometer 
trace; the standard is chosen to have a peak close to the peak whose d-spacing is to 

be determined and the proportions in the diffractometer sample are adjusted by trial 
and error until the two peaks are of comparable height so that uncertainties in 
scanning and chart speeds have minimal effect. An example of the use of internal 
standards is provided by the determination of composition of olivine in the binary 

solid solution series Mg,SiO,—Fe,SiO, (Yoder and Sahama, 1957). For this purpose 
silicon is selected as internal standard because its 111 peak, at 20 = 28-465° for CuKa 
radiation, is strong, precisely known, and close to the 130 peak in olivine at 20 
ranging from ~323° for Mg,SiO, to ~31° for Fe,SiO,; the greatest length to be 
measured on the diffractometer trace is thus only 4° of 20. The diffractometer is run 
at least six times over the pair of peaks and the average of their separation used to 
calculate d,39 for the olivine specimen. Thence the composition of the solid solution 
can be obtained by substitution in the expression 

Mol per cent Mg, SiO, = 4233-91—1494-59 dj30, 

which is based on measurements of d,3, for olivines of known composition. The 
resultant composition determined by diffractometry is in this case subject to an error 

that may be as high as 4 per cent mainly because most naturally occurring olivines 
are not strictly binary solid solutions but contain small amounts of other components 
such as Mn,SiO, in solid solution. In developing such a method an essential 
preliminary is of course to obtain and index diffractometer traces of compositions 
close to the end numbers because not only will d,,, vary with composition but so will 
I,,:31t is necessary to choose a peak that remains strong throughout the compositional 
range and to choose a standard peak that is not interfered with by peaks of the solid 
solution in any compositional range. 

The techniques described in the preceding two paragraphs are of particular use in 
synthetic studies and in the determination of phase diagrams, topics that will be 
developed in Part II, especially chapter 16. 

The method of diffractometry with an internal standard can be applied to the 
accurate determination of the unit-cell dimensions of a substance of high symmetry 
whose crystal system is known from other evidence or in general when approximate 
unit-cell dimensions only are available, for one reason or another, from single crystal 
X-ray or electron diffraction photographs. 

Powder photography and diffractometry provide a satisfactory means of determin- 

ing coefficients of thermal expansion, which will be anisotropic (chapter 11) for 
crystalline solids other than those belonging to the cubic system. Furnaces capable 

of heating a powder specimen in a camera or on a diffractometer to temperatures 
in excess of 2000 °C are available; in high temperature work it is usually necessary to 
evacuate the camera or diffractometer space and the furnace must be split so that it 
does not interfere with incident or diffracted beams. Low temperature cameras in 
which the specimen is cooled by a stream of coolant, liquid air or rarely liquid helium, 
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are available and can, with special precautions, be operated at temperatures as low 
as 2K. In both high and low temperature cameras and diffractometers the 
temperature of the specimen is recorded by a thermocouple placed as close to the 
specimen as possible without interference with the incident or selected diffracted 
beams; it is usually necessary to make a calibration correction for the temperature 
difference between specimen and thermocouple by replacing the specimen with 

substances that have accurately known melting or transformation temperatures. 

So far we have considered only uses of powder methods that depend primarily on 
measurements of d-spacings, but the relative intensities of powder lines can be 
measured and, after appropriate corrections, utilized in crystal structure determina- 

tion. For this purpose intensity data collected from single crystals are preferable, not 
only are there more data, but the problem of coincident reflexions does not arise; 
nevertheless many structures of substances, such as alloys, for which it is difficult to 
obtain single crystals have been based on powder intensity data. 

Powder methods have also been used in kinetic studies of polymorphic trans- 
formations. If the intensities of adjacent lines, one belonging to the reactant and the 
other to the product phase, are measured in a series of specimens subjected to 

isothermal heating for various lengths of time, a plot of their ratio against time enables 
the time to be evaluated for a certain fraction of the reactant phase to be transformed. 
Similar measurements for other temperatures then yield a determination of the 
activation energy of the process. 
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8 
Single crystal X-ray diffraction patterns 

When a parallel beam of monochromatic X-radiation falls on a stationary single 

crystal very few lattice planes will be oriented so as to satisfy the Bragg Equation and 
in consequence very few reflexions will be observable. There are two ways in which 
the number of reflexions can be increased. One is to allow the crystal to oscillate or 

rotate during its exposure to monochromatic radiation; the other is to allow the 
wavelength of the incident radiation to be variable by using the total emission of the 
X-ray tube while keeping the crystal stationary. The first approach is the more 
productive and is employed in all but one of the experimental methods to be described 
in this chapter; the second approach gives rise to Laue photography which, although 
important, is generally less informative. 

The apparatus necessary for each single crystal technique is described in the 
appropriate section of this chapter. The one experimental feature common to all, the 
mounting of the crystal on arcs, we shall deal with at this point. A small crystal whose 
dimensions should ideally be within the range 0-5 to 0:05 mm is selected under a 

binocular microscope. The crystal is then glued to a thin glass fibre (about 15 mm in 
length and less than 0-5 mm in diameter) so that a simple zone axis is approximately 
parallel to the fibre. The method of locating the zone axis in the crystal depends on 
the nature of the substance under investigation. If the crystal has well developed faces 
it will be possible to locate prominent zone axes by direct morphological inspection 
under the microscope. For instance if the substance is known to be tetragonal and to 
have {100} prism faces commonly well developed, [001] will lie parallel to the faces 
of this form, while [100] and [010], which are equivalent, will be normal to the prism 
faces. If however the crystal has no well developed faces but is transparent and 
optically anisotropic, the polarized light techniques described in chapter 12 may serve 
to locate one or more simple zone axes in the crystal. When both these approaches 
fail, trial and error X-ray methods have to be used. 

For ease of handling the glass fibre, to which the crystal is to be attached, its opposite 
end is pushed into a pea-sized blob of plasticine. When the crystal has been firmly 
glued to the fibre, the plasticine serves to fasten the fibre quite rigidly to the arcs. 
Crystallographic arcs, illustrated in Fig 8.1, consist of a manually adjustable slide a, 
carrying a projection against which the plasticine blob is pressed, surmounting a pair 
of worm operated arcs. The upper arc b provides a movement of 30° in either a 
clockwise or anticlockwise sense along the circumference of a vertical circle parallel 
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Fig 8.1 Crystallographic arcs. The labelling of 
the drawing is described in the text. 

to the flat face of the arc. The lower arc c provides a similar movement in the vertical 
plane perpendicular to the plane of the upper arc b. Below the arcs are parallel worm 
operated slides d, e, to allow the crystal to be moved in a horizontal plane into 

coincidence with the axis of the spindle of the camera; the cap f at the base of the 
set of arcs fits over the camera spindle g and is clamped to it by tightening the 
knurled screw h. 

The purpose of crystallographic arcs is to enable one to align the crystal so that it 
has a zone axis accurately parallel to a chosen direction in the X-ray camera. The 
techniques of crystal setting are described in Appendix F, which also provides details 
of crystal mounting techniques. 

Oscillation photography 

The oscillation camera, shown diagramatically in Fig 8.2, comprises a spindle a 
which is rigidly attached to the circular horizontal scale b, the arm cis clamped to the 
spindle and rests at its other extremity against a cam d driven by a synchronous 
electric motor e geared down to about one revolution per minute. Rotation of the 
cam causes the spindle, to which the arcs f are clamped, to oscillate through a 
definite angle; most cameras are equipped with alternative cams to give a choice of 
5°, 10°, or 15° oscillation. A pin-hole collimator g is mounted so that its axis intersects 
the oscillation axis at right-angles; most cameras are supplied with fine and coarse 
collimators. The spindle can be raised or lowered so as to position the crystal in the 
X-ray beam. A cylindrical brass cassette whose axis is coincident with the oscillation 
axis constrains the photographic film h, which is in a light-tight envelope, to a 
cylindrical shape, the collimator protruding through the gap between the edges of the 
film; a typical film diameter is 60 mm. The undeviated X-ray beam passes through a 
hole in the cassette to be absorbed by a circular lead disc, the back-stop, attached to 
a removable cap (Fig 8.2(b)). By removing the cap it is a simple matter to test, with a 
fluorescent screen, whether the X-ray beam is passing correctly through the camera. 
Since the undeviated beam would produce serious fogging if it fell on the film a hole 
is punched in the film and a small tightly fitting brass collar is pressed through the 
hole in the film into the hole in the cassette to ensure correct alignment. The 
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(a) 
Fig 8.2 The oscillation camera. The essentials of the camera are shown in (a), the labelling of 
which is explained in the text. The detail of the backstop, or beam trap, is shown enlarged and 
exploded in (b): 1, collar; 2, opaque paper; 3, film; 4, wall of cassette; 5, cap; 6, lead disc. 

oscillation camera is equipped with a telescope i whose axis is accurately aligned with 
that of the collimator to facilitate alignment and setting of the crystal. By swinging 
a lens into position in front of its objective the telescope i is simply converted into a 
microscope through which the crystal can be observed in a beam of light directed 
through the collimator; by focusing the microscope on the crystal and rotating the 
crystal, the crystal can be accurately centred on the oscillation axis of the camera 
and its height can be adjusted so that it lies precisely at the intersection of the 
oscillation axis with the incident beam from the collimator. 

For oscillation photography the crystal is set so that a prominent zone axis is 
accurately parallel to the oscillation axis, that is the spindle axis, of the camera. 
Monochromatic X-radiation is incident on the crystal perpendicular to the oscillation 
axis. Suppose that the [001 | axis of the crystal is parallel to the oscillation axis, then 
i, = 90° and the third Laue Equation reduces to 

ccoso, = li. 

Diffracted beams are consequently restricted to a series of cones, each cone being 
associated with a particular value of /, coaxial with the oscillation axis of the camera 
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and with the z-axis of the crystal. The cones corresponding to +/ and —/ are 
symmetrical about the plane normal to the z-axis which corresponds to the solution 
of the third Laue Equation for | = 0, i.e. 6, = 90° (Fig 8.3). 

(a) (b) 
Fig 8.3 Oscillation photograph of a crystal with [001] as oscillation axis. (a) shows the coaxial 
cones generated by solutions of the third Laue Equation for successive values of / from —3 to +3 
and the intersection of these cones with the coaxial cylindrical film. (b) shows the appearance of 
the film laid flat after development; the reflexions lying on any one layer line all have the same / 
index. 

If the crystal is not oscillated, but kept stationary, very few diffraction maxima 
will occur because simultaneous solutions of the first and second Laue Equations, 

a(cos 6,—Ccosi,) = hd 

and b(cos 6, —cos i,) = kA, 

will be extremely rare. The number of diffraction maxima is substantially increased 
by oscillating the crystal about its z-axis so that the angles i, and i, can vary to some 
definite extent while i, remains fixed at 90°. All the resultant diffracted beams lie on 
the surfaces of the set of cones that constitute the solutions to the third Laue 
Equation for different values of |. The set of cones intersects the cylindrical film in a 
set of circles, which appears, when the film is laid flat after development, as a set of 
parallel straight lines. All the reflexions recorded on the film lie on these straight lines, 
which are known as layer lines. Each layer corresponds to a solution of the third 
Laue Equation for a particular value of | and the layer lines are symmetrically 
disposed about that one of their set corresponding to | = 0, the zero layer line. For 
the /th layer line it is evident from Fig 8.4 that 6, can be calculated by measuring the 
height H, of this layer line above the zero layer line since the camera radius r is known, 

H 
coté, =—. . 
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Combination of this equation with the third Laue Equation yields the generally 
useful equation 

a 
~ coscot / H,/r 

which enables the lattice spacing parallel to the oscillation axis to be evaluated. 

[001] 

D 
Fig 8.4 The geometry of layer line generation. The left-hand diagram is a portion of an oscillation 
photograph and the right-hand diagram illustrates the relationship between 6,, H;, and r. 

Since the cotangent of 6, is proportional to H,, better accuracy would appear to be 
obtainable by measurement of the height of the highest observable layer line above 
the zero layer line, or better by measurement of the distance between the +/ and —/ 
layer lines for the greatest practicable value of |. However factors such as the 
divergence of the incident X-ray beam and the progressive reduction in angle 
between the diffracted beam and the surface of the film as / increases make the use of 
upper layer lines of no great advantage in improving the accuracy of 6,. In general, 

measurement of layer line spacings yields unit-cell dimensions of accuracy no better 
than +1 per cent and can only be regarded as a preliminary means of determination 

of unit-cell dimensions; more sophisticated methods will be described later in this 
chapter. 

The three unit-cell edges, a, b, and c, can be measured by mounting the crystal 
with its [100], [010], and [001] axes parallel in turn to the oscillation axis of the 
camera. If some other prominent zone axis can be located and the crystal mounted 
with this axis parallel to the oscillation axis of the camera, then the layer line spacing 
of the resultant oscillation photograph will provide a measurement of the spacing of 
lattice points in this direction by application of the general equation (p. 155) for 

i= 90°, 

tcosd =nd 

h A na 

is ~ cos cot”! H,/r 

Thus for a monoclinic crystal measurement of the layer line spacing on a [110] 
oscillation photograph would serve to evaluate the lattice spacing parallel to the 
[110] zone axis and so to distinguish between a P lattice for which t,149, = ,/(a* +b’) 
and a C lattice for which t,; 19, = 3,/(a” +b’) if the magnitudes of a and b are already 
known. The determination of lattice type by this means is however fraught with 
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danger because it is difficult to locate with certainty any but the most obvious zone 
axes even in a crystal with very well developed faces. In the early years of X-ray 
crystallography it was common practice to determine the 6 angle of monoclinic 
unit-cells by measuring the layer line spacing on [101] oscillation photographs and 
then applying the relationship t7,9;,; = a” +c? +2ac cos f; but later work using more 
sophisticated methods has in many cases shown the selected oscillation axis to have 
been misidentified. 

The indexing of specific reflexions on oscillation photographs is in general best 
achieved by application of the concepts of the reciprocal lattice and the reflecting 
sphere, but nevertheless some useful comments of a general nature can be made 
without recourse to these concepts. In an [001] oscillation photograph the reflexions 
on the /th layer line will be reflexions from planes with that value of |, that is to say 
reflexions from hk1 planes will occur on the first layer line, reflexions from hk2 planes 
on the second layer line, and so on. That reflexions on the nth layer line of an 
oscillation photograph about a general axis [UVW] will correspond to reflexions 
from planes (hkl) that satisfy the condition hU+kV+IW =n can simply be seen by 
transforming the axes to a new set with c’ = Ua+Vb+ We, whence I' =hU+kV +I1W. 

The Bragg angles of reflexions on the zero layer line of an oscillation photograph 

can be determined directly in just the same way as for a powder photograph. For a 
cubic crystal the unit-cell dimension a can be determined from the layer line spacing 
of an oscillation photograph taken about an identifiable axis and the reflexions on the 
zero layer line can then be indexed by direct measurement of the Bragg angle 0 and 
application of the expression 

2asin 0 

Jb? +k? +17)” 

Consider for instance a [100] oscillation photograph which will yield a value for a 
whatever the lattice type; the reflexions on the zero layer line will be Okl reflexions for 
which 4 = (2a sin @)/,/(k? +17). If the oscillation axis is parallel to a zone axis along 
which the spacing of lattice points is such that the unit-cell dimension is not deducible 
unless the lattice type is known, care must be exercised. Consider for instance a 
[111] oscillation photograph: if the lattice is P or F, ti 14) = a/3, but 44114) = 4a,/3 
for an I-lattice. In such a case as this, indexing of the zero layer reflexions on the [111] 
oscillation photograph should not be attempted until a has been determined directly 
from a [100] oscillation photograph. 

Interpretation of oscillation photographs using the reciprocal lattice 
The position of a reflexion on an oscillation photograph is specified by two 
coordinates (Fig 8.5), the height H of the reflexion above the zero layer line and M, 
which is defined as the distance of the reflexion measured along its layer line from 
the intersection of the plane containing the incident X-ray beam and the oscillation 
axis with the plane of the film. Our task now is to relate the measured coordinates 
of a reflexion to the coordinates of the reciprocal lattice point that gives rise to it on 
passing through the reflecting sphere. For this purpose it is convenient to define a 
system of cylindrical coordinates for the reciprocal lattice: { is defined as the 
perpendicular distance of the reciprocal lattice point from the plane which is 
perpendicular to the oscillation axis and contains the incident X-ray beam, and é is 
defined as the perpendicular distance of the reciprocal lattice point from the oscillation 
axis (Fig 8.6(a)). It is convenient, for reasons which will appear in due course, in 
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Fig 8.5 The coordinates H and / of a reflexion on an oscillation photograph. The selected 
reflexion is situated on the film at a perpendicular distance H from the zero layer line and at a 
distance M from the trace (shown as a dash-dot line) of the plane containing the incident beam 
and the oscillation axis. The right-hand diagram illustrates the relationship / = rw of the film 
coordinate /V to the angle w, which is the angle between two planes passing through the oscillation 

axis V, one containing the incident beam and the other the diffracted beam. 

interpreting diffraction patterns to take the proportionality factor K in d* = K/d 
equal to the wavelength 4 of the incident monochromatic radiation; this has the 
effect of making the radius of the reflecting sphere equal to one reciprocal lattice unit. 
One final preliminary statement remains to be made: that is the definition of the angle 
yw as the angle made by the plane containing the incident X-ray beam and the 
oscillation axis with the plane containing the diffracted beam and the oscillation axis 
(Fig 8.6(b)); it is evident from Fig 8.5 that y = M/n. 

¥ 1 
xX 

g 

Ww 
t 

: x 

(a) (b) 
Fig 8.6 Cylindrical coordinates for the reciprocal lattice. (a) illustrates the definition of ¢ as the 

perpendicular distance of the reciprocal lattice point (solid square) from the plane which is 

perpendicular to the oscillation axis V and contains the incident beam X, and € as the perpendicular 

distance of the reciprocal lattice point from the oscillation axis. (b) illustrates the definition of 

as the angle between the plane containing the oscillation axis V and the incident beam XX’ and 

the plane containing the oscillation axis V and the diffracted beam D (cf. Fig 8.5). 
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In the interpretation of oscillation photographs it is convenient to regard the 
three-dimensional reciprocal lattice as a stack of two-dimensional nets, each net 
being equidistant from those next above and below it. The separation of adjacent 
nets is A/t where t is the spacing of lattice points along the oscillation axis; therefore 

for the nth layer line 

_ na 

¢ t 

It is apparent from Fig 8.7 that 

H 
C= cos 6 ='coscot *— : 

Therefore t = 2 
oe 

cos cot ae 
f 

Thus t can be evaluated by measurement of H when r and / are known. 

Measurement of the reflexion coordinates M and H yields a direct determination 
of the reciprocal lattice coordinate . It is evident from Fig 8.7 that the circular 
section of the reflecting sphere in a plane of constant ¢ has radius ,/(1 —¢7) and its 
centre is unit distance from the oscillation axis. For a reciprocal lattice point lying on 
the reflecting sphere (Fig 8.7(c)) 

&? =2—(?—-2,/(1—¢7). cosy. 

We have already seen that € = coscot” ' H/r, which can alternatively be expressed as 

H2 

~ H+? 

and that yy = M/r. Therefore 

2 2 e es r ee r - M 

é -1+(ae) (az) iho a 

which simplifies in the case of the zero layer line (H = 0) to 

72 

M 
€? = 2—2cos — 7 

M 
= 4sin? — sin > 

; . M 
Le. = 2 sin —; é sitet 

but for the zero layer line M = 2r@ so that 

6 =2sing 

and € becomes the distance d* of the reciprocal lattice point from the origin (Fig 8.7(d)). 
Since the calculation of € from measurements of M and H is rather awkward for 

upper layer lines, charts, known as Bernal charts, are commercially available with 
lines of constant ¢ and curves of constant € drawn at 0.05 intervals (Fig 8.8) for the 
common camera radii. By superimposing a Bernal chart on an oscillation photograph 
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\-< 

cylindrical film (a) (b) 

X Vy 0,00 

(c) (d) 

Fig 8.7. Interpretation of oscillation photographs in terms of the reciprocal lattice. (a) shows that 
a reciprocal lattice plane of constant C intersects the reflecting sphere in a circle of radius J — ¢2) 
whose centre is unit distance from the oscillation axis V. (b) is a composite diagram in direct and 
reciprocal space to illustrate the relationship cot 6 =H,,/r for the first layer line on an oscillation 
photograph. (c) illustrates the relationship ¢2 = (1 — C2) +1 -2.(1 — 2) .cos W for a non-zero layer 
reciprocal lattice point lying on the reflecting sphere and (d) illustrates the simpler case of a zero 
layer reciprocal lattice point where € = 2 sin 0. 

so that its line of zero € coincides with the zero layer line and the origin of the chart 
coincides with the centre of the punched hole through which the undeviated X-ray 
beam passed, the coordinates € and € of each reflexion on the film can be read 

directly. It is to facilitate the use of the Bernal chart that the proportionality constant 
K for the reciprocal lattice is commonly taken as equal to A in practical work; the 
radius of the reflecting circle is then independent of the wavelength of the radiation 
used so that the curves of constant € and ¢ shown on the chart for a camera of given 

radius are generally applicable. To avoid confusion about the magnitude of K it is 
usual to refer to reciprocal units when K = 1 as A~!, but when K = A no reciprocal 

unit is specified. As will be apparent from the argument that follows only rarely does 
é need to be known to higher accuracy than is obtainable by use of the Bernal chart. 

As the crystal oscillates the reciprocal lattice net oscillates correspondingly about 
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(b) fx 
Fig 8.9 Interpretation of oscillation photographs in terms of the reciprocal lattice. (a) shows the 
general relationship between € and w for a reciprocal lattice point on the reflecting sphere. In 
(b) the x*y* reciprocal lattice net for a monoclinic crystal is taken to be stationary and the limits 
of oscillation of the reflecting sphere are shown as their circular sections of intersection with the 
net; the areas of the reciprocal lattice net intersected by the reflecting sphere are shown as 
shaded /unes for a 15° oscillation about x*. The arc of € = 1-17 passes through the reciprocal 
lattice points 26. and 26., but the arc of € = 1-48 does not pass through any reciprocal lattice points 
within the lunes; the resulting oscillation photograph may be expected to exhibit reflexions on the 
zero layer line with € = 1-17, but no reflexions with € = 1-48. 

the vertical through its origin. Any reciprocal lattice point which passes through the 
reflecting sphere in the course of the oscillation gives rise to a diffracted beam in the 
direction of the radius of the reflecting sphere through the reciprocal lattice point? 
(Fig 8.9). Now and subsequently we shall treat the oscillation of the reciprocal lattice 
of the crystal relative to the reflecting sphere as a movement of the reflecting sphere 
through a stationary reciprocal lattice; to treat the relative motion in this way leads 
to some simplification of expression. Since the reflecting sphere oscillates about the 
vertical through the origin of the stationary reciprocal lattice, any reciprocal lattice 
point in the volume between the extreme positions of the reflecting sphere will give 

rise to a diffracted beam as the reflecting sphere passes through it. We illustrate this 

in Fig 8.9 for the zero layer of a monoclinic crystal in which the oscillation axis is 
parallel to [001 ]. The limiting positions of the reflecting sphere become for any one 
layer the limiting positions of the reflecting circle in which the sphere intersects the 

1 Since the origin of the reciprocal lattice lies on the oscillation axis, all diffracted beams pass through 
that point on the oscillation axis. But it is geometrically more convenient to suppose that all diffracted 
beams pass through the centre of the reflecting sphere when discussing the geometry of the oscillation 
photograph. It should be apparent to the reader that this geometrical simplification is generally acceptable 
even though it may occasionally make diagrams which combine reciprocal and direct space look 
inconsistent at first sight. 
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appropriate reciprocal lattice net; these are shown in the figure for a 15° (i.e. +73°) 

oscillation with the normal to (100) in the middle of the oscillation range. Only those 
reciprocal lattice points which lie within the lunes between the extreme circles give 

rise to reflexion; the reciprocal lattice poifits in the right-hand lune give rise to 
reflexions on the right-hand side of the film viewed in the direction of the incident 
X-ray beam while those in the left-hand lune give rise to reflexions on the left-hand 
side of the film. 

Measurement of ¢ and € for a reflexion on an oscillation photograph does not 
completely determine the coordinates of the corresponding reciprocal lattice point; 
it merely determines that the reciprocal lattice point lies in a plane of known ¢ on an 
arc of constant € cut off at either end by the limiting positions of the reflecting sphere. 
However ¢ and € are the only two reciprocal lattice coordinates determinable from 

an oscillation photograph and their measurement does enable many of the reflexions 
to be indexed unambiguously” provided the dimensions of the reciprocal lattice are 
known. 

To index reflexions on the zero layer line é is estimated with the aid ofa Bernal chart. 

On a plan of the reciprocal lattice net corresponding to the zero layer the limiting 
positions of the reflecting circle are drawn. An arc of radius € centred on the origin 
of the reciprocal lattice is drawn through the right-hand lune for every reflexion 
observed on the corresponding side of the photograph and likewise for the left-hand 
lune. Many of these arcs will pass clearly through one reciprocal lattice point and 
unambiguous indexing will have been achieved; but some arcs may pass close to more 
than one reciprocal lattice point so that the corresponding reflexions cannot be 
certainly indexed. Ifit is intended to determine the diffraction symbol of the substance 
the indices of reciprocal lattice points lying within the lunes but not giving rise to 
reflexion should be noted. 
We take as our example a monoclinic crystal oscillating about its [001] axis with 

the incident X-ray beam normal to (100) in the middle of the 15° oscillation range. 
The zero layer line will contain only reflexions of the type hk0, the corresponding 
reciprocal lattice section will be the a*b* plane, which has a rectangular mesh, and 
the limiting positions of the reflecting circle will be symmetrically disposed about 
the x*-axis. The procedure for indexing the zero layer line of the photograph is 
(i) draw out the reciprocal lattice net which passes through the origin and is normal 
to the oscillation axis [001], a convenient scale in most cases being 100mm = 1 
reciprocal unit, (ii) on this a*b* net draw an arc of unit radius about the origin of the 
net, (iii) mark on the arc two points 74° on either side of the intersection of the arc with 
the x*-axis, (iv) with these points as centres draw circles of unit radius to represent the 
limiting positions of the reflecting circle for the zero layer line, (v) draw an arc of 
radius € centred on the origin of the reciprocal lattice net for every observed reflexion 
to traverse the right-hand lune for reflexion on the right-hand side of the zero layer 
line (the film being viewed in the direction of the incident beam) and to traverse the 
left-hand lune for those on the left, (vi) passage of a é-arc through one reciprocal 
lattice point provides immediate indexing of the corresponding reflexion, (vii) note 
the indices of reciprocal lattice points lying within the lunes that do not give rise to 
reflexions. 

In general the oscillation axis and the reciprocal axis corresponding to it will not 
be parallel so that in higher layers a reciprocal lattice point does not lie on the 

Z For unambiguous indexing of all the reflexions on a diffraction pattern recourse must be made to the 
moving film methods described later in this chapter. 
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oscillation axis. In the monoclinic example shown in Fig 8.10 the reciprocal axis z* 
is inclined at 90° — 6* to [001] in the plane normal to y*. The nth reciprocal lattice 
layer intersects the oscillation axis at a distance ¢ = nd/c from the origin and contains 
reciprocal lattice points whose /-index is equal to n. The reciprocal lattice point 00n 

is distant ¢ cot B* = nc* cos f* (Fig 8.10(b)) from the oscillation axis along the x*-axis, 
that is along the reciprocal lattice row hOn. To index an upper layer line of an [001] 

oscillation photograph it is thus necessary to mark on the a*b* reciprocal lattice net 
the point of intersection O, of the oscillation axis, which will lie for the nth layer at a 
distance € cot 6* from the origin of the net, the reciprocal lattice point 00n, in the 
—x* direction (i.e. between 00n and hOn). The radius of the reflecting circle for this 

(b) 
Fig 8.10 Indexing of reflexions on the nth layer line of the oscillation photograph ofa monoclinic 

crystal whose oscillation axis is [001]. The stereogram (a) shows the relationship between direct 

and reciprocal lattice axes. The perspective drawing (b) shows the displacement ser cos pe 

C cot B* of the point of intersection O,, of the oscillation axis with the a°b* reciprocal lattice net 

from the reciprocal lattice point OOn; for n positive the displacement is in the direction —x"*, 

(c) shows the a*b* reciprocal lattice net with circles of radius ,/(1— 2) drawn with centres distant 

one reciprocal lattice point from O,,, which is distant ¢ cot B* along —x* from the origin OOn of 

the net. 
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layer is ty (1 —C) and its centre lies at a distance of 1 reciprocal lattice unit from this 
intersection O, in a direction parallel to the incident beam, in this case parallel to x* 
for the middle of the oscillation range (Fig 8.10(c)). The procedure for indexing the 
nth layer of the photograph is (i) on the a*b* reciprocal lattice net draw an arc of unit 
radius about a point O, along —x* at a distance ( cot B* from the reciprocal lattice 
point 00n, (ii) mark the two points 75° on either side of the intersection of the arc 
with x*, (iii) with these points as centres draw the limiting reflecting circles of radius 
J(1 —(¢?), (iv) then proceed as for the zero layer line (v)—(vii). 

If the oscillation axis and the corresponding reciprocal axis are coincident, the 
reciprocal lattice points 00/ will lie on the oscillation axis and therefore the reciprocal 
lattice net for the nth layer will be superimposed without displacement on that for the 
zero layer. Then O, will coincide with the reciprocal lattice point 00n and the centre 
of the reflecting circle for the nth layer will be distant one reciprocal lattice unit from 
the 00n reciprocal lattice point. This simplified situation arises whenever the zone 
axis [ pqr] is normal to the face (pqr). This occurs for [010] oscillation photographs 
of monoclinic crystals, [100], [010], and [001] oscillation photographs of ortho- 
rhombic crystals, [UVO] and [001] oscillation photographs of tetragonal crystals, 
[0001] oscillation photographs of hexagonal and trigonal crystals, and for any 
oscillation axis in a cubic crystal. 

We have already considered in some detail a particular case in which the oscillation 
axis does not coincide with the corresponding reciprocal axis. We now consider a 
more general case by taking as our example the z-axis oscillation photograph of a 
triclinic crystal. We earlier defined in Fig 6.24, the angle ¢ such that z:z* = ¢. The 
intersection of the oscillation axis with the nth reciprocal lattice net at a height ¢ 
above the zero layer will thus lie at a distance {tane from 00n (Fig 8.11(a)). The 
position of the intersection of the oscillation axis with the reciprocal lattice plane can 
be found conveniently by calculating the angle n between the plane containing the 
z and z* axes and the plane containing the z and y* axes (Fig 8.11(b)). By use of 
Napier’s Rules we obtain 

tann = —tana*cos B 

and cosé = sina* sin B 

so that both n and ¢ can simply be calculated from known unit-cell dimensions. The 
a*b* net is then drawn out and the point O, located on it by drawing a line inclined 
at 4 to y* in the angle y* between —x* and —y* and measuring off on this line a 
distance ¢ tane from 00n (Fig 8.11(c)). When the oscillation axis is not a crystallo- 
graphic reference axis, i.e. not [100], [010], or [001], then it is often simpler to choose 
a new set of reference axes with, say z’, parallel to the oscillation axis, to index the 
crystal in terms of the new set of axes, x’, y’, z’, and then to transform back to the 
original reference axes, x, y, z. 

To conclude this section on oscillation photographs we draw the reader’s attention 
to the observation that although it is always possible to determine one unit-cell 
dimension from an oscillation photograph, that parallel to the oscillation axis, 
reflexions can only be indexed when the reciprocal lattice geometry of the crystal is 
known. The determination of reciprocal lattice geometry is most easily achieved by 
the use of Weissenberg and precession photographs; oscillation photographs are 
practically useful only as a preliminary to more thorough investigation by moving 
film methods and for some specialized applications outside the scope of this textbook. 
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b 000 ¢ay (b) 

(c) 

Fig 8.11 Indexing of a non-zero layer on the oscillation photograph of a triclinic crystal. 
(a) is a plane diagram showing the intersection of the nth reciprocal lattice net with z* at OOn and 
with z (the oscillation axis) at O,. The spherical triangle (b) illustrates the calculation of ¢ and y 
from «* and B. The position of O, on the a*b* reciprocal lattice net is shown in (c). 

Rotation photography 

The oscillation camera can simply be adapted to permit the crystal to rotate through 
360° by removing the arm from the spindle to the cam and introducing a belt-drive 
from the camshaft to the spindle. The resultant rate of rotation of the crystal is of the 
order of one revolution per minute. The resultant rotation photograph is of course 

very similar to an oscillation photograph of the same substance taken about the same 
axis but displays many more reflexions. Measurement of layer line spacing enables 
the repeat distance between lattice points along the rotation axis to be determined in 
just the same way as from an oscillation photograph. 

In the course of a complete rotation every lattice plane giving rise to a reflexion hkl 
will pass through an orientation which satisfies the Bragg Equation twice (Fig 8.12). 
The two reflexions produced will be symmetrically disposed about the vertical line 

representing the intersection of the film with the plane containing the incident X-ray 
beam and the rotation axis. Moreover the (hkl) lattice plane will give rise to two 
similarly disposed reflexions of equal intensity and these will be positioned on the 

film so that they are related to the hkl reflexions by a line of symmetry coincident with 
the zero layer line. Rotation photographs thus always have the symmetry of the 

two-dimensional point group 2mm. In a case in which two or more lattice planes have 
the same d-spacing (and therefore identical Bragg angle) and give rise to reflexions on 

the same layer line these reflexions will be superimposed in the rotation photograph: 
for instance, on the [001] rotation photograph of a cubic crystal the 501, 051, 501, 

and 051 reflexions will all be superimposed at a point on the first layer line. 



228 Single crystal X-ray diffraction patterns 

| 
anki | snk! 

| 
| 

| 
tee | vires 

*hki “hkl 
| 

Fig 8.12 Rotation photography. On the stereogram the incident X-ray beam is denoted by X and 
X’ and the rotation axis by V. If in the course of rotation of the crystal a plane (Ak/) comes into 
the correct orientation for reflexion, when its normal is N,, then during complete rotation it will 
also give rise to reflexion when its normal is N.. The resultant reflexions, R, and R, on the 
stereogram, lie at the same height from the zero layer line (the primitive of the stereogram and 
the solid line on the drawing of a rotation photograph on the right) and are symmetrically disposed 
about the plane containing X, X’ and V (shown as a dot-dash line in the right-hand diagram). 
The (Ak/) plane will give rise to two identical reflexions which are related on the rotation photograph 
to the Ak/ reflexions by a line of symmetry coincident with the zero layer line. 

A rotation photograph is more useful than an oscillation photograph for the 
determination of the lattice type of a cubic or tetragonal crystal from an [001] 
photograph by measurement of 6 for all reflexions on the zero layer line (the example 
discussed earlier) because it will display all reflexions of non-zero intensity for 
which 0 is less than some angle little short of 90°. But exposure times for rotation 
photographs are very much longer than for oscillation photographs and, except for 
the sort of problem mentioned immediately above, rotation photographs are little 
used. 

Interpretation of rotation photographs by use of the reciprocal lattice 
As the crystal rotates about an axis, which for argument we take as [001 ], the reflecting 
sphere sweeps through the reciprocal lattice so that in the course of a complete 360° 
rotation it passes through all reciprocal lattice points lying on the zero layer reciprocal 
lattice net within a circle of radius two reciprocal units about the origin of the net. 
For an upper layer the reflecting circle cuts an annular swathe through the relevant 
reciprocal lattice net with internal and external radii 1 + “if (1 —¢*) (Fig 8.13). Thus for 
one setting of the crystal all the reciprocal lattice points within the torus produced by 
the rotation of the reflecting sphere about the rotation axis pass through the reflecting 
sphere. Moreover each such reciprocal lattice point passes through the reflecting 
sphere twice in the course of complete rotation of the crystal and so gives rise to a 
reflexion on the right and on the left-hand side of the incident X-ray beam. Reciprocal 
lattice points with the same value of € in the same reciprocal lattice net will of course 
give rise to superimposed reflexions. 



Moving film methods 729 

Lunes for 
zero layer 

Lunes for 
upper layer 

Fig 8.13 Rotation photography: the limiting torus. As the crystal describes a complete rotation 
the reflecting sphere sweeps through all reciprocal lattice points on the zero layer net within a 
circle of radius 2 reciprocal units and cuts an annular swathe with internal and external radii 
1+ J — (2) through non-zero layer nets. The lunes for the zero layer and one non-zero layer of a 
15° oscillation photograph are shown shaded. 

Only very rarely, and then when the rotation axis is a symmetry axis of high order, 

isit profitable to attempt to index a rotation photograph. All the reciprocal space that 
can be sampled by a rotation photograph can be more informatively sampled by a 
series of 15° oscillation photographs taken at 15° intervals. 

The limiting torus of a rotation photograph encloses all those reciprocal lattice 

points which may give rise to a reflexion in the course of a complete rotation and 
comprises all that volume of reciprocal space which can be studied with one rotation 
photograph or a series of oscillation photographs taken about the same axis. The 

only way in which reciprocal lattice points outside the limiting torus can be 
investigated is by changing the rotation or oscillation axis of the crystal. By use of a 

variety of rotation axes all the reciprocal lattice points within a sphere of radius equal 
to 2 reciprocal units centred on the origin of the reciprocal lattice can be brought into 
the reflecting position; this sphere is known as the limiting sphere. All reciprocal 
lattice points corresponding to lattice spacings greater than 4A lie within the 

limiting sphere and so the smaller the magnitude of A the greater the number of 
reflexions that may be obtained; in other words, since sin < 1 it follows from the 
Bragg Equation that reflexion ean only take place for lattice planes whose spacing 
d>4,. 

Moving film methods 

We have already seen that the coordinates of a reciprocal lattice point are not 
completely determinable from an oscillation photograph because one cannot know 
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at what stage of the oscillation the reflecting sphere passed through the reciprocal 
lattice point, or in other words at what inclination of the incident X-ray beam to its 
mean position the relevant lattice plane was so oriented as to satisfy the Bragg 
Equation. This problem can only be solved and-unambiguous indexing of all reflexions 
achieved by selecting one reciprocal lattice net and by coupling a smooth movement 
of the film to the oscillatory motion of the crystal so that the reflexions produced by 
the reciprocal lattice points of the selected net are disposed over the whole area of the 
film. A separate film and different camera adjustments will be required to record each 
reciprocal lattice net. The two most effective means of achieving this objective are 

Weissenberg photography and precession photography. In the former a simple 
oscillatory translational motion is imparted to the film as the crystal oscillates about 
the camera axis; the mechanics of the camera are relatively simple but the resultant 
photograph is a distorted image of the reciprocal lattice net so that the indices of 
reflexions are not immediately obvious. In the latter the motion imparted to both 
film and crystal is more complicated and the camera more elaborate; but the 

resultant photograph is an undistorted image of the reciprocal lattice net and the 
reflexions are indexable by inspection. Some further comparative comments will be 
made at the end of the section on precession photography. For the explanation of 
both types of moving film photograph? we shall make use, of necessity, of the concepts 
of the reciprocal lattice and the reflecting sphere. 

Weissenberg photography 

The essential feature of the Weissenberg camera is that it selects one layer line of an 
oscillation photograph and distributes the reflexions of the layer line over the whole 
area of the film so that the coordinates of each reciprocal lattice point giving rise to 
a reflexion can be unambiguously determined. The selection is achieved by the use of 

screens and the layer line is spread over the area of the film by moving the film 
backwards and forwards parallel to the oscillation axis of the crystal. 
We now proceed to describe the Weissenberg camera. The arcs carrying the crystal 

are attached to a spindle driven by a synchronous electric motor as in the oscillation 
camera except that the spindle is horizontal (Fig 8.14). A worm drive from the motor 
moves the cylindrical film cassette parallel to its axis, which is coincident with the 
oscillation axis of the crystal, so that for every 1° rotation of the crystal the cassette 
moves 0:5 mm; at either end of the traverse of the cassette the motor is reversed by a 
micro-switch. The cassette has an axial slit about 5mm wide to accommodate the 
collimator. Immediately inside the cassette and mounted independently of it is a 
cylindrical screen opaque to X-rays; the screen, which likewise has a slit through which 
the collimator projects, is in two halves, one attached to each end of the camera. The 
gap between the two halves of the screen can be varied in width (usually 2-4 mm) 
and its mean position set to coincide with the cone of diffracted beams of a selected 
layer line. A back-stop to absorb the undeviated X-ray beam is mounted inside one 
half-screen on an adjustable slide so that it can be set opposite the collimator. The 
radius of the cylindrical film is usually 28-65 mm and that of the screens 23-02 mm. 
The oscillation range, usually set to cover just over 180°, can be varied by adjusting 
the positions of the micro-switches that reverse the movement of the film cassette. 

*The account of the theory of moving film methods and the interpretation of Weissenberg and 
precession photographs provided here is necessarily confined to essentials. Of the many excellent textbooks 
and monographs to which the reader might turn for more detailed information we draw attention 
particularly to Henry, Lipson, and Wooster (1960), Buerger (1942), Buerger (1964), Nuffield (1966), and 
Jeffery (1971). 
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Fig 8.14 The Weissenberg camera. The perspective drawing shows the essential features of a 
Weissenberg camera. The crystal c is mounted on arcs on an oscillating spindle V. The split screens 
(s,, S2) are rigidly attached to the camera body in such a manner that thi? magnitude and position 
of their separation can be adjusted. The collimator, through which the incident X-ray beam, X, 
passes is rigidly mounted on the camera base. The back-stop, or beam trap, 6, is attached to one 
screen. The film cassette (fc) is supported by the carriage p and can be set at a range of positions 
relative to a fiducial mark on the carriage. The carriage describes a linear motion parallel to the 
oscillation axis, its motion being geared to the oscillatory motion of the crystal. The bearings of the 
Carriage are rigidly attached to the camera body. For zero layer photographs the oscillation axis is 
perpendicular to the incident X-ray beam; for non-zero layer photographs the camera body is 
inclined to the incident beam by moving the camera body through the appropriate angle about 
the vertical axis g, which passes through the intersection of the spindle axis V and the incident 
beam X. 

The camera can be rotated through a selected angle about a vertical axis which passes 
through the centre of the crystal; this facility is necessary for recording upper layer 
diffraction patterns. The film cassette consists of two parts, the cylindrical cassette 
itself which holds the film and a carriage which is moved backwards and forwards on 
rails parallel to the oscillation axis of the crystal by a reversible motor. The cassette 

can be locked to the carriage at different distances from a fixed point on the carriage; 
we shall see that this is a useful facility when taking upper layer photographs. 
We consider first the formation of zero-layer photographs. The axis of the 

collimator is perpendicular to the oscillation axis; the crystal is situated at their 
intersection and oriented so that a prominent zone axis is parallel to the oscillation 
axis. The reflexions of the zero layer are generated by reciprocal lattice points situated 
on the net containing the origin and perpendicular to the oscillation axis. The resultant 
diffracted beams therefore lie in the plane containing the incident beam and 
perpendicular to'the oscillation axis (Fig 8.15(a)); if the centre of the gap in the screens 
is set to coincide with this plane, diffracted beams generated by reciprocal lattice points 
not situated on this net will be absorbed by the screens. 

It isimmediately apparent trom inspection of a zero-layer Weissenberg photograph, 
such as that shown in Fig 8.16, that some reflexions lie on prominent straight lines 
running at a slant across the film. Another prominent feature of the photograph is the 
disposition of the reflexions on sets of curves. We now proceed to explain the geometry 
of a zero-layer photograph in general terms and then to discuss a specific example, 
a zero-layer photograph of a monoclinic crystal with [010] as oscillation axis. 

Consider a line OP in reciprocal space lying in the plane normal to the oscillation 

axis and passing through the origin O of reciprocal space. Suppose that initially the 
line OP is tangential to the reflecting circle (Fig 8.17(a)) and that for this orientation 

of the crystal the extreme left-hand side of the film (Fig 8.17(b)) is opposite the gap 
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Fig 8.15 Weissenberg photography. (a) shows how a reciprocal lattice net normal to the 
oscillation axis V at a height ¢ above the zero layer gives rise to a cone of diffracted rays of 
semi-angle 90°—v where v = sin-1 ¢ when the incident X-ray beam XO is perpendicular to the 
oscillation axis. For the zero layer, =O and the cone becomes a plane; for non-zero layers, 
reflexions for a layer of known € will pass through the gap in screens of radius s when the centre of the screen gap is separated by a distance s tan v from the plane normal to the oscillation axis 
and containing the incident beam (normal beam Weissenberg). (b) illustrates the essential 
geometry of the equi-inclination Weissenberg for non-zero layers: the incident beam XO is 
inclined to the oscillation axis V at the angle cos—1 4¢. (c) illustrates the change of scale in 
non-zero layer equi-inclination Weissenbergs. 
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Fig 8.16 Zero layer y-axis Weissenberg photograph of the monoclinic mineral /atiumite taken 
with CuKa radiation. 

in the screen. For this position of the line OP any reciprocal lattice points that lie on 
OP cannot also lie on the reflecting circle and so cannot give rise to diffracted beams. 
The undeviated X-ray beam travelling along XO produced would pass through the 
gap in the screen to reach the film at O’ were it not trapped by the back-stop 
attached to the screens. The origin of coordinates on the film is taken as O' and the 
reference axes X, Y are as shown in Fig 8.17(b). The X-axis is the median line of the 
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film and corresponds to the locus of the point of intersection of the forward direction 
of the incident X-ray beam with the film as the crystal oscillates. The positive direction 
of the Y-axis is chosen so that the upper half of the film records diffracted beams 
produced by the passage of the reciprocal lattice net through the upper semicircle 
of the reflecting circle. As the line OP rotates anticlockwise the film moves from right 
to left so that the screen gap moves across the film from left to right. For a rotation 
of OP through ¢° from its initial position the film moves through a distance f@, 
where f is for most instruments 0-5 mm per degree; at this stage (Fig 8.17(c)) OP 
intersects the reflecting circle in P, and if P, happens to be a reciprocal lattice point 
the reflected beam will make an angle 2¢ with the forward direction of the incident 
beam. The reflexion P’, produced by the reciprocal lattice point P, will thus lie at a 
distance 2rd@ (for ¢ in radians, i.e. xr@/90 for ¢ in degrees) from the median line of 
the film, where r is the camera radius, so that the X, Y coordinates of this reflexion 

will be fd, 2rd. Since both coordinates are proportional to ¢, reflexions from 
reciprocal lattice points lying on OP will themselves lie on a straight line inclined at 

the angle 7 = tan” ‘(zr/90f) to the median line of the film. When the camera radius 
r = 57:3/2 ~ 90/xmm and f = 0-5 mm per degree, n = tan~ 12 = 63°26’. 

As the angle ¢ increases X and Y will increase until when ¢ is a little short of 90° 
Y will correspond to the edge of the film; reflexions with ¢@ close to 90° are not 
recorded on the film but pass through the axial slit in the film cassette. For @ greater 
than 90° reflexions from reciprocal lattice points on the line OP lie on the lower half 
of the film (Fig 8.17(d)), the diffracted beam IP, making the angle 2(1—@) with the 
forward direction of the incident beam. The film coordinates of the reflexion P 

produced by the reciprocal lattice point P, will be X = fo, Y = 2r(¢—7). Reflexions 
due to lattice points on the line OP such that $2 < ¢ < x will thus lie on a line of the 
same slope 7 as the line on the upper half of the film; this line will intersect the 
median line of the film at a point distant 180fmm from O’ corresponding to 
o@ = 180° (Fig 8.17(e)). When @ = 180° PO produced bears the same relationship to 

the reflecting circle as OP for ¢@ = 0° (Fig 8.17(a)); further rotation allows reciprocal 

lattice points on PO produced to come into the reflecting position. 
We turn now to consideration of a line QR parallel to OP in the plane normal to 

the oscillation axis and at a perpendicular distance q from OP. We choose QR such 
that when OP is in its initial position tangential to the reflecting circle, QR does not 
intersect the reflecting circle (Fig 8.18(a)). As the crystal rotates anticlockwise from its 

initial position the line QR first touches the reflecting circle at a point S (Fig 8.18(c)) 

such that cos¢@ = IT = IS—TS = 1 —q, IO and IS being radii of the reflecting circle. 
If there happens to be a reciprocal lattice point at S it will thus give rise to a 
reflexion S’ with film coordinates (Fig 8.18(b)) X =f¢, Y=rd, where d= 

cos” ‘(1—q). 
Further increase in @ will cause QR to intersect the reflecting circle in two points 

Q, and R, (Fig 8.18(d)). The diffracted beams IQ, and IR, produced by reciprocal 

Fig 8.17. The generation of lines of reflexions on a zero-layer Weissenberg photograph. 
Diagrams (a), (c), (d), and (e) show successive stages in the rotation of a line OP in reciprocal 
space normal to the oscillation axis and passing through the origin O. In (a) OP is tangential to 
the reflecting circle; at stage (c) it has rotated through the acute angle ¢; at stage (d) ¢ has 
become obtuse; and in (e) ¢ is shown equal to 180°. Diagrams (c) and (d) illustrate values of 
@ for which reciprocal lattice points, P, and P.,, lie on the reflecting circle and give rise to the 
reflexions P, and P, shown on the drawing (b) of the resulting Weissenberg photograph; the 
coordinates of P; and P:, with respect to the film axes X and Y are indicated. (b) is drawn 
half-size for a camera with r= 28:65 mm and f= 0-5mm per degree. 
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Fig 8.18 The generation of reflexions on a zero-layer Weissenberg photograph by a reciprocal 
lattice line which does not pass through the origin. The diagrams (a), (c), (d), (e), (f), (g) show 
successive stages of the rotation of the non-central line OR in the zero-layer reciprocal lattice 
net from @ =0 in (a) tof =T7 in (e) and @>7z in (f) and (g). Diagram (b) is a drawing of the 
resultant Weissenberg photograph (half size for a camera with r= 28-65 mm, f=0:-5mm 
per degree) with the hypothetical reflexions produced by a continuum of reciprocal lattice points 
on the line QR shown as broken curves. 

lattice points at Q, and R, respectively make equal angles 6 with IS, and are thus 
inclined at angles 6 +6 to the forward direction of the incident X-ray beam. It is 
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evident from the figure that coséd = IS, = IT,+T,S, =cosd+q. The film co- 
ordinates of the reflexions Q{, and R{ produced by reciprocal lattice points at Q, and 
R, will thus be X = f¢, Y=rd@—rcos ‘(cos¢+q) and X = f¢, Y=r+rcos } 
(cos 6+ q) respectively. Reflexions corresponding to intersections of the line QR with 
the reflecting circle thus lie on the broken curve shown in Fig 8.18(b). Points on this 
curve, such as Q{, and Rj, which correspond to simultaneous reflexion have their 
X-coordinates equal and the mean of their ¥-coordinates lies on the line X = f@, 
Y =r@ which passes through O’ and S{; for r =57:3/2mm and f =0-S5mm per 
degree, this line is inclined at tan~ '(zr/180f) = 45° to the median line of the film. 

As ¢ increases from cos ‘(1 —gq) the Y-coordinate of the upper part of the curve 

increases until the top edge of the film is reached at Y just less than rz. Further 
increase in @ will cause the intersections of QR with the reflecting circle to be on 
opposite sides of the incident X-ray beam: a reciprocal lattice point which has crossed 
the incident beam will give rise to a reflexion whose coordinates are X = f@, 
Y =r(f—2n)+rcos ‘(cos¢+q) so that the reflexion lies on the lower half of the 
film. When ¢ = z (Fig 8.18(e)) the two reflexions Q’, and R4 are equidistant from the 

median line of the film. When @¢ increases beyond z a stage will be reached at which 
both intersections of QR lie in the lower semicircle of the reflecting circle and then 
both the reflexions produced will be on the lower half of the film (Fig 8.18(f)). 
Further rotation eventually brings QR into an attitude where it is tangential to the 
reflecting circle at S, (Fig 8.18(g)); the diffracted beam from a reciprocal lattice 
point at S, makes an angle 2x—@ with the forward direction of the incident X-ray 
beam so that the film coordinates of the reflexion S, will be X = f¢, Y = r(@—2z) = 
—rcos ‘(1—q). In practice the range of movement of the film cassette and the 
standard size of X-ray film limit the oscillation range of the Weissenberg camera to 
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about 200° and so it may not be possible experimentally to record the complete 

curves of constant g on one photograph. 
Curves similar to those shown as broken lines on Fig 8.18(b) can be constructed 

for any value of gq < 2 reciprocal units. In particular if two reference axes, x and y, 
in reciprocal space are chosen so that x is normal to OP and y is parallel to OP, 
we can construct a set of curves for reflexions from points on lines parallel to y with 
x =0, +0-1, +0:2,... +1-9 reciprocal units. By drawing a second set of identical 

curves displaced from the first set by ¥ = —90fmm along the median line of the 
film we have a set of curves of constant x with y = 0, +0-1, +0-2,... +1-9 reciprocal 

units. A chart showing both sets of curves, known as a Weissenberg chart, is 

illustrated in Fig 8.19. The prominent straight lines on the chart are separated by 
90f mm and correspond to reflexions from points along the reference axes x and y. 
The chart is usually 135 mm long so that it covers an oscillation range of as much as 
270°. By superimposing the base line of the chart (printed on transparent film) on 
the median line of the film, which is the line Y = 0, the rectangular coordinates of all 

reciprocal lattice points giving rise to reflexion can be read directly from the chart 
and the reciprocal lattice net can be plotted out on squared paper. It is immaterial 
where the chart is positioned relative to the film provided its base line is superimposed 
on the median line of the film; the coordinates of the reciprocal lattice points will of 
course depend on the positioning of the chart but when the coordinates are plotted 
on graph paper the effect of moving the base line of the chart along the median line of 
the film will be seen to correspond merely to a rotation of the zero layer reciprocal 
lattice net. It is always convenient to position the chart so that one prominent linear 
alignment of reflexions coincides with a diagonal line on the chart; then all reflexions 
will lie on one set of curves (the corresponding reciprocal lattice points will then lie 
on lines parallel to one of the reference axes) and, if the reciprocal lattice net is 
rectangular, at the intersections of the two sets. In the previous sentence the term 
‘set of curves’ implies not only those curves actually drawn on the chart but also 
interpolated curves. 

Before going on to consider upper layer Weissenberg photographs we illustrate 
the formation of a zero-layer photograph by showing how the hOi, h00, and 01 
reciprocal lattice points give rise to reflexions in the case of a monoclinic crystal 
oscillated about [010]. Figure 8.20(a) shows the orientation of the a*c* reciprocal 
lattice net when the gap in the screens exposes the point O’ on the film (Fig 8.20(d)). 
In this orientation x* is tangential to the reflecting circle. As the crystal rotates 
anticlockwise the reciprocal lattice point 201 passes through the reflecting circle to 
give rise to a reflexion on the upper half of the photograph. Figures 8.20(b) and (c) 
show the successive orientations of the reciprocal lattice net as the 200 reciprocal 
lattice point passes into and out of the reflecting circle to give rise to reflexions 
respectively on the upper and lower halves of the photograph. Figures 8.20(e) and (f) 
show the successive orientations of the reciprocal lattice net as 301 passes into and 
out of the reflecting circle to give rise to reflexions respectively on the upper and 
lower halves of the film. The reflexions h0/ lie on curves corresponding to q=alce= 
c* sin B* and the h0/ reflexions lie on curves corresponding to gq = —c* sin b*. The 
straight line through O’ and the reflexions h00 are the expression on the film of the 
axis x* of the monoclinic reciprocal lattice. A parallel straight line through 001, O”, 
and 001 on the film corresponds to the z*-axis of the reciprocal lattice, the distance 
O’O" on the film being equal to ff*. On Fig 8.20(d) we have drawn curves of 
constant /; we could just as well have drawn curves of constant h, which would be 
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similar in form, but displaced by the distance O’O” from the set actually shown. To 
plot a reciprocal lattice net from a zero-layer Weissenberg photograph one of the 
straight lines on the Weissenberg chart should be superimposed on one of: the 
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prominent lines of reflexions, h00 or 00], and then the coordinates of each reflexion 
should be read off in rectangular reciprocal coordinates x,, y, (Fig 8.20(g)). 

We now turn to upper-layer Weissenberg photographs, restricting our discussion 
to the most commonly used type, equi-inclination photographs. In an oscillation 
photograph—and a Weissenberg is only a specialized sort of oscillation photograph — 
a reciprocal lattice net normal to the oscillation axis at a height € above the zero 
layer gives rise to a cone of diffracted rays (Fig 8.15(a)) of semiangle 90° —v, where 
sinv = ¢. Therefore if the screen is moved through a distance stanv, where s is the 
radius of the screen, the reflexions from this layer will pass through the gap in the 
screen to be recorded on the film. But the geometry of such a photograph (a normal 
beam Weissenberg) is rather inconvenient and it is better to rotate the incident beam 
relative to the crystal so that the incident beam lies on the surface of the cone of 
diffracted beams generated by the reciprocal lattice net (Fig 8.15(b)). When this is done 
the origin O of the reciprocal lattice lies a perpendicular distance $¢ below the plane 
passing through the centre of the reflecting sphere and normal to the oscillation axis 
so that incident and diffracted beams make equal angles 90° — y, where uw = sin™ + 3¢, 
with the oscillation axis. The selected reciprocal lattice net intersects the reflecting 
sphere in a circle of radius a) (1 —4¢7) passing through the oscillation axis at the point 
P (Fig 8.15(b)). With such an equi-inclination arrangement it is possible to record all 
the reciprocal lattice points within a circle of radius 2,/(1—4¢7) centred on the 
oscillation axis and moreover the geometry of X-ray reflexion is identical with that 
for the zero-layer except that the radius of the reflecting circle is reduced from one to 

(1-467) reciprocal unit. 

Fig 8.20 Generation of the zero-layer A A 
Weissenberg photograph of a monoclinic crystal Yr Xr 
oscillated about [010]. (a) illustrates the 
orientation in which x* is tangential to the 
reflecting circle. (b) and (c) illustrate the 
passage of the 200 reciprocal lattice point into 
and out of the reflecting circle as the crystal 
rotates anticlockwise. (e) and (f) illustrate the 
passage of the 301 reciprocal lattice point into 
and out of the reflecting circle. (d) shows the 
disposition of the reflexions produced on the 
resulting Weissenberg photograph by the 
reciprocal lattice points shown in (a)—(f); the 
rectangular film axes are labelled X and Y as in 
Fig 8.17 and the reference axes of the 
Weissenberg chart are labelled x, and y,. (g) 

shows the reciprocal lattice net plotted from (d) 
by reading off values of x, and y, for each 
observed reflexion. 



242 Single crystal X-ray diffraction patterns 

It is apparent from Fig 8.15(c) that a reciprocal lattice point Q lying in the plane 

through the origin perpendicular to the oscillation axis gives rise to a diffracted beam 

(which will be recorded as a reflexion on the zero-layer photograph) which makes 

an angle # with the forward direction of the iticident X-ray beam where the reciprocal 

lattice point is distant OQ = 2 sin}¢@ from the origin O. A reciprocal lattice point R 

in an upper layer giving rise to a diffracted beam inclined at the angle @ to the 

forward direction of the incident beam will lie at a distance PR = 2,/(1—4¢7).sin3@ 

from the intersection P of the oscillation axis with its reciprocal lattice net. Thus the 

Weissenberg chart constructed for the zero layer can be used to plot the reciprocal 

lattice net for an upper layer provided that all coordinates read from the chart are 

reduced by the factor J(1 —1(). The reciprocal lattice net for an upper layer may 

not necessarily have a reciprocal lattice line passing through its origin and so the 
slanting lines which are so obvious on a zero layer photograph may be missing or, 
as in the case (Fig 8.10(a)) of a monoclinic crystal oscillating about [001], only one 

reciprocal lattice line (that parallel to x* and containing the reciprocal lattice points 

hOn in the nth layer) passes through the oscillation axis so that the nth layer 
equi-inclination Weissenberg photograph will show only hOn reflexions lying on a 

straight diagonal line. 
The essential requirement for an equi-inclination photograph, that the incident 

X-ray beam should lie on the cone of diffracted beams for the layer concerned, is 
achieved experimentally by turning the camera through the angle y about the vertical 
axis through the crystal, where sinu =4C, and keeping the collimator, which is 
rigidly attached to the base of the camera, stationary. If the diffracted beams of the 
selected layer and no others are to pass through the gap in the screens, the centre of 

the gap must lie on the line PI of Fig 8.21. Therefore each screen must be moved in 
the same direction by an amount stan w where s is the screen radius. If the cassette 
is locked on to the carriage in the same position as for the zero-layer photograph 
reflexions produced by the same orientation of the crystal will be displaced r tan yw 
parallel to the median line of the photograph relative to those on the zero layer 
photographs. Such a translation of the reflexions on the film corresponds to a rotation 
of the reciprocal lattice net plotted from coordinates measured with the Weissenberg 
chart, the angle of rotation being {(r/f) tan u}°. This rotation of successive reciprocal 
lattice nets is inconvenient and can simply be eliminated by moving the cassette 
relative to its carriage through rtan yw before exposure starts and locking it in this 
position. 

In order to illustrate one use of Weissenberg photographs we now discuss the 
determination of the unit-cell dimensions and diffraction symbol of a crystal which 
has been shown by optical examination to be biaxial (chapter 12) so that it may be 
assumed to be orthorhombic, monoclinic, or triclinic. Suppose that a single crystal 
fragment of the substance has been mounted on a glass fibre and that a zone axis 
normal to a mirror plane has been located and set parallel to the oscillation axis. A 
15° oscillation photograph will quickly yield a good approximate value for the 
spacing of lattice points normal to the mirror plane. The finding of one mirror plane 
of course immediately rules out the possibility that the substance is triclinic. If it is 
monoclinic, the oscillation axis must by convention be [010]; if it is orthorhombic, 
the oscillation axis may be [100], [010], or [001 ]. We tentatively index the oscillation 
axis as [010], transfer the crystal on its arcs to the Weissenberg camera, and take 
zero, first, and second layer Weissenberg photographs with the presumed [010] as 
oscillation axis. These photographs will enable us to plot out the hOl, hil, and h21 
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film 000 
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Fig 8.21 Upper layer equi-inclination Weissenberg photographs. The left-hand diagram shows 
the experimental arrangement for a zero-layer photograph contrasting with the arrangement for an 
upper-layer photograph shown on the right. For an nth layer photograph the camera axis is 
inclined relative to the fixed collimator through the angle 44 = sin—' (3,,), the screen is translated 
through s tan and the film carriage is translated through r tan “, where s and r are screen and 
camera radii respectively. 

reciprocal lattice nets. If these three nets each exhibit symmetry 2mm with their 
mutually perpendicular lines of symmetry normal to reciprocal lattice point rows 
and if the intensities of the pairs of the reflexions related positionally by the lines of 
symmetry are approximately equal, then the substance is orthorhombic. The geometry 
of the Weissenberg camera is such that lines of symmetry in reciprocal lattice nets do 
not obviously appear as such on the photograph; a line of symmetry in the net 
generates one of the parallel slanting straight lines on the film and symmetry related 

reflexions of equal intensity will lie on either side of the line but will not have 
symmetry related film coordinates. If our crystal turned out to be orthorhombic x* 
and z* would be chosen as the directions normal to the two lines of symmetry on the 
reciprocal net plots. The reciprocal lattice dimensions a* and c* could then be 
evaluated and the dimensions a, b, c, of the unit-cell could be calculated from them 

and from the direct determination of b from the oscillation photograph. The next 
stage in this investigation would be to search the three reciprocal lattice nets for 
systematically absent reflexions. Adequate sampling of general hkl reflexions should 
have been achieved to determine whether the lattice type is A, B, C, P, I, or F. The 

reciprocal lattice net hO] would then be searched first for independent systematic 
absences which would indicate the presence of (010) glide planes translating 4a or 
5c or 4(a+c) and secondly for independent systematic absences in the h00 or 00/ 
reflexions which would indicate the presence of screw diads parallel to the x or z axes. 
Systematic absences in the Ok/ and hKO reflexions, which would imply the presence of 
b or c or n glides parallel to (100) or a or b or n glides parallel to (001), can be 
investigated by looking at the 00/, 011, 02/, and h00, h10, h20 rows in the three nets, 

although it must be borne in mind that the amount of information available may 
not be adequate for a conclusive statement. What we particularly lack is information 



244 Single crystal X-ray diffraction patterns 

about systematic absences in the 0k0 reflexions because the 010 and 020 reflexions are 

certain to lie in the shadow cast by the back-stop. It is therefore necessary to remount 
the crystal so that it can oscillate about either its x or z axis; then a zero-layer 

Weissenberg photograph will supply the missing information. Inspection of the 
resulting Ok! or hkO net will reinforce the conclusion reached earlier about systematic 

absences due to a (100) or (001) glide plane and the 0k0 row will indicate clearly 

whether there is a screw diad parallel to the y-axis. This completes the determination 

of the diffraction symbol. 
If however the hOl, h1l, and h2] Weissenberg photographs do not exhibit any lines 

of symmetry, the crystal is monoclinic and it is most unlikely that the reciprocal 
lattice nets will be rectangular. Since the reciprocal lattice axes x* and z* in the 
monoclinic system are not determined by symmetry considerations, it is necessary 
to make an arbitrary choice of which prominent reciprocal lattice point rows should 
be taken as x* and z* in such a way as to satisfy the convention that £* should be 
acute. Measurement of the reciprocal lattice nets will then yield values of a*, c*, B* 
so that a, c, B can be calculated and we already have the magnitude of b from the 
oscillation photograph. One would then search the three photographs for systematic 
absences in general hkl reflexions to determine the lattice type, and for systematic 
absences in the hO/ reflexions for evidence of an a or c or n glide plane parallel to 
(010). Again it would be necessary to remount the crystal and to take a zero-layer 
photograph about either [100] or [001 ] to investigate systematic absences in the 0kO 

reflexions, which would indicate the presence of a screw diad parallel to [010]. The 
diffraction symbol will then be completely determined. 
We conclude by noting that in both the orthorhombic and the monoclinic case we 

may have chosen the crystallographic reference axes unconventionally. If that is so, 
it may be necessary in the orthorhombic case to transform the axes so that they 
conform to the conventions laid down in the International Tables for X-ray 
Crystallography, or in the monoclinic case to choose alternative x and z axes. The 
reader will have noticed that in both cases it was necessary to remount the crystal; 
had a precession camera been available however, the crystal could have simply been 
transferred on its arcs from one camera to the other so that the supplementary data, 
the hkO or Okl layers, could be obtained without any necessity for remounting the 
crystal. 

Precession photography 

In essence the precession method differs from those previously described in that the 
movement of the crystal is not an axial oscillation but a precession. In consequence 
the camera motion is essentially three-dimensional and not easily described in terms 
of two-dimensional diagrams. The diffraction pattern is recorded on a plane film 
which provides an undistorted photograph of a selected reciprocal lattice plane; the 
provision of an undistorted representation of a reciprocal lattice plane coupled with 
uniform spot shape is the essential purpose of the method. We begin by discussing 
the geometry of zero-layer photographs in terms of the reciprocal lattice and reflecting 
sphere, pass on to consider upper layer photographs, and conclude with an outline 
description of the precession camera. 

A crystal mounted on arcs, whose spindle axis is normal to the incident X-ray 
beam. is set initially so that a prominent zone axis is coincident with the X-ray beam 
and so perpendicular to the spindle axis. This contrasts with the requirement for 
oscillation and Weissenberg photography that a zone axis should be parallel to the 



Precession photography 245 

spindle axis of the arcs and so perpendicular to the incident X-ray beam. In the 
initial setting of a crystal on the precession camera (Fig 8.22(a)) the reciprocal lattice 
layer through the origin and normal to the selected zone axis is thus tangential to the 
reflecting sphere; in consequence no zero-layer reflexions can occur in this orientation 
of the crystal. In order to record the zero-layer reflexions the zone axis is moved 

through the angle fi so that the zero layer of the reciprocal lattice intersects the 
reflecting sphere in a small circle of radius sin ji (Fig 8.22(b)). The zone axis is then 
caused to precess about the direction of the incident X-ray beam so that it describes 
a conical surface whose apex is the centre of the crystal, whose axis is coincident 
with the incident X-ray beam, and whose semiangle is ji (Fig 8.22(c)). The precession 
is achieved by coupling an oscillation of the spindle of the arcs about its own axis 
with an oscillation of the spindle about a second axis, which is normal to both the 

spindle and the incident X-ray beam and passes through their point of intersection 
(Fig 8.22(d)); this movement is such that the line in the crystal coincident with the 

spindle axis lies in the plane of the spindle axis and the incident X-ray beam 
throughout the precession. 
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Fig 8.22 Geometry of zero-layer precession photography. (a) shows the initial setting of the 
crystal in which the zero-layer reciprocal lattice net normal to the selected zone axis OV is 
tangential to the reflecting sphere. In (b) the zone axis OV is inclined at the angle ff to the 
incident X-ray beam so that the zero-layer reciprocal lattice net intersects the reflecting sphere in a 
small circle of radius NP =sin ji; the two orientations in which the plane of the diagram contains 
the normals to the zero layer, IN and IN’, are shown. (c) shows the precession of the selected zone 
axis OV about the incident X-ray beam on the surface of a cone of semi-angle ji. (d) illustrates 
the precession of the selected zone axis by coupled oscillations about two axes, both of which 
are perpendicular to the incident X-ray beam: one oscillation axis is the spindle axis of the arcs 
and the other is perpendicular to the plane of the diagram. 
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Figure 8.22(b) shows two positions in the course of the motion: IN and IN’ are 

directions parallel to the selected zone axis, which has a constant inclination to the 

incident beam direction XIO; OP, and OP’ are the corresponding positions of the 

zero reciprocal lattice layer normal to the selected zone axis. The zero layer thus 

intersects the reflecting sphere at all stages of the motion in a small circle of radius 

sin ji which always passes through the origin O. In the course of a complete precession 

the small circle sweeps through all the reciprocal lattice points of the zero layer lying 

within a circle of radius 2 sin f about the origin of the reciprocal lattice. In Fig 8.23 

the relative motion of the reciprocal lattice plane-and the reflecting sphere is 

illustrated in terms of a stationary reciprocal lattice and a moving reflecting sphere. 

At any given time the reflecting sphere intersects the zero layer in a circle passing 

through the origin of reciprocal space. During the precession this circle of intersection 

effectively rolls about O: three successive positions of the circle of intersection are 

shown, two of which correspond to the positions shown in Fig 8.22. 
The film is caused to precess in a manner identical to that of the crystal so that its 

centre remains stationary at a point distant F from the crystal in the forward direction 
of the incident beam and its plane is parallel to the zero layer at every stage of the 

motion. 

Fig 8.23 The formation of the zero-layer precession photograph about [010] of a monoclinic 
crystal, i.e. the hO/ photograph. The reciprocal lattice net is taken to be stationary and the 

reflecting sphere rolls about O. Three instantaneous positions of the reflecting circle (radius = 
sin ji) are shown; these circles (centres: N, N’, N’’) give rise to the reflexions 600, 600, and 202, 
the relevant reciprocal lattice points being shown as solid squares. The reflecting circle sweeps out 
in the course of its motion a circle of radius 2 sin j{ about O. 

In illustrating the production of precession photographs it is usually convenient 
to superpose diagrams illustrating the geometry in both direct and reciprocal space. 
We assume that the crystal is situated at the centre I of the reflecting sphere and 
choose a scale such that the crystal to film distance, F mm, in direct space measured 
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Fig 8.24 Precession photography: the 
screen. (a) shows a typical screen, a thin 
metal plate with an annular aperture of 
mean radius r,. (b) shows the disposition 
of the screen at a distance s, from the 
crystal and the film at a distance F from 
the crystal when the crystal is in its initial 
setting. (c) shows the disposition of screen 
and film for a precession angle ji such that 
So =/, Cot fi so that the screen allows 
passage only of zero-layer reflexions 

(c) throughout the movement. 

in the direction of the undeviated X-ray beam is equal on the diagram to the radius 
of the reflecting sphere, one unit in reciprocal space. In Fig 8.24(c) then the centre of 
the film is at O and a reciprocal lattice point at P gives rise to a diffracted beam 
parallel to IP which intersects the film at P. The ratio OP/IO = 2 sin jz is the same in 
direct and in reciprocal space; in direct space IO = F mm and in reciprocal space 
IO = 1 reciprocal unit. In direct space therefore OP = Fd*, where d* is equal to the 
distance represented by OP in reciprocal space, the distance of the reciprocal lattice 
point P from the origin O of reciprocal space. As the crystal precesses about IO the 
zero layer generates a cone of diffracted beams of semiangle ji and this cone rolls 
about the line IO which remains on the surface of the cone throughout the motion. 
The film moves so that its plane is always parallel to the zero layer, the crystal to 
film distance is constant and equal to IN = F cos ji, and the point O is fixed in position. 
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Thus the diffracted beams to which the zero layer gives rise strike the film so as to 
produce an undistorted image of the reciprocal lattice plane on a scale of 

F mm = | reciprocal unit. 
If the film is to record only zero-layer teflexions it will be necessary to insert 

between the crystal and the film a screen so designed as to allow free passage of the 
cone of diffracted beams generated by the zero reciprocal lattice layer and to absorb 
those generated by all other reciprocal lattice layers. The form of the screen is a 
thin metal plate with an annular aperture of mean radius r, (Fig 8.24(a)). When j is 
zero the centre of the annular aperture coincides with the forward direction of the 
incident X-ray beam (Fig 8.24(b)). The arm holding the screen is rigidly fixed to the 
spindle axis so that the movement of the screen follows precisely the movement of 

the crystal as the crystal precesses about the incident X-ray beam. If the crystal to 
screen distance is r, cot ji the screen will isolate the zero-layer reflexions throughout 
the complete movement (Fig 8.24(c)). At all stages of the precession the annular 
aperture allows the undeviated X-ray beam to pass; the screen precesses round this 
direction while remaining parallel to the zero-layer reciprocal lattice net. Values of 
So and r, have to be selected so that the screen can move unimpeded within the 
restricted space between the crystal and the film. 

We consider now the formation of an nth layer* precession photograph, the 
reflexions on which are generated by a net of reciprocal lattice points at a 
perpendicular distance ¢,, = nd/t from the parallel zero-layer net, 1/t being the spacing 

of reciprocal lattice planes normal to the selected zone axis along which the spacing 
of lattice points is t in direct space. In Fig 8.25 P,Q, and PO are respectively the 

Fig 8.25 The formation of an nth layer 
precession photograph. 

intersections of parallel nth and zero reciprocal lattice layers with the plane of the 
diagram. Again we imagine the crystal to be situated at the centre I of the reflecting 
sphere and the film to be coincident with the nth reciprocal lattice layer. IP,, and [Q,, 
lie on the surface of the cone of diffracted beams for the nth layer, the semiangle of 
this cone being v, such that cosv, = IN, = IN-N,N = cosfi—C,. Just as for the 

*For the nth layer to be an upper rather than a lower layer photograph the positive direction of [UVWw] 
must be directed back along the incident X-ray beam. 
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zero-layer photograph a screen has to be introduced between the crystal and the 
film to eliminate reflexions from all but the selected nth layer. It is apparent from 
Fig 8.25 that if the annular circular aperture in the screen is of mean radius r,, then 
the screen has to be placed at a perpendicular distance s, from the crystal such that 

S, =1, cotv, =r, cotcos ‘(cos 7—C,,). The magnitudes of r, and s, must be so chosen 

that the movement of the screen is not impeded by any other part of the camera. 
Since we imagine the film to be coincident with the nth reciprocal lattice layer it will 
have to be moved relative to its position for a zero-layer photograph by a distance 
F¢,, so that the perpendicular crystal-to-film distance for an nth layer photograph is 

F cosv, = F(cos i—€,) and the magnification factor remains equal to F. There is now 
no fixed point on the film; its centre O,, precesses about the forward direction of the 
incident X-ray beam in just the same way as does the intersection of the zone axis 
with the nth reciprocal lattice layer. In order to obtain the requisite movement of the 
film the film-cassette is mounted on an arm which can be brought forward in the 
direction normal to the plane of the film so that the cassette is displaced forwards 
relative to the mounting which controls the movement of the film; in terms of Fig 8.25 
the film is positioned for recording the nth layer so that it moves about the stationary 
point O, which corresponds to the centre of the zero-layer film. As the crystal precesses 
the small circle (radius sin v,) in which the nth reciprocal lattice layer intersects the 
reflecting sphere sweeps through the reciprocal lattice plane in a circular area of 
radius O,,P,, = O,N,+N,P, = ON+N,P, = sin i+sinov,. Figure 8.26, which illus- 
trates this point, shows the same instant intersection as Fig 8.25. It will be apparent 
from Fig 8.26 that nth layer photographs necessarily have a central blind spot of radius 

Fig 8.26 The central blind spot in nth layer precession photographs. The figure shows the same 
instant intersection of the reflecting circle with the nth reciprocal lattice net as Fig 8.25. Only 
reciprocal lattice points in the annular area centred on O,, between the limiting circles of radii 
0,0, and O,P,, give rise to reflexion. On the photograph 0,0, =F (sin v,—sin j) and 
O,P, =F (sin ¥,+sin jf). 
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O,,Q, = N,Q,—N,, O, = F(sinv, —sin fi), corresponding to a circular area of the 
reciprocal layer which remains throughout the motion within the reflecting sphere. 

In order to take an nth layer precession photograph it is necessary to know the 
magnitude of ¢. If ¢ is not already known from'prior study with oscillation 
photographs, it can very easily be determined by inserting a film in a light-tight 
envelope in the screen holder and taking a precession photograph at a known 
precession angle jito yield what is known as a cone-axis photograph. Reciprocal lattice 
layers normal to the zone axis will produce diffracted beams lying on coaxial cones; 

the semiangle for the cone produced by the nth layer is v, and for the zero layer 
Vo = f These cones of diffracted beams intersect the film in concentric circles of 
radius r, = s’ tanv, = s’tancos ‘(cos ji—¢,), where s’ is the perpendicular distance 
from the crystal to the screen holder (Fig 8.27). By measurement of the radii of the 

circles so produced ¢ can be evaluated with sufficient accuracy for first, second, etc 

layer photographs to be taken. 

nth zero 
layer} {layer 

Fig 8.27. The formation of a 
cone-axis photograph. (a) and (b) 
show respectively the geometry for 
fi=O and for a non-zero value of i. 
The film is positioned in the screen 
holder at a distance s’ from the 
crystal at |. (b) shows an instant in 
the precession motion which causes 
the zero layer reciprocal lattice net 
to give rise to a cone of diffracted 
beams of semi-angle f and the nth 
layer net to give rise to a cone of 
semi-angle v,. 
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Our description of the precession camera will be confined to an outline of the 
essentials of the instrument. Being fundamentally a three-dimensional rather than an 
axial apparatus it is difficult to describe in terms of two-dimensional diagrams 
(Fig 8.28), but easy enough to understand when seen. The motor drives a spindle a 
coincident with the incident X-ray beam. Rigidly attached to the spindle is a graduated 
arc b whose centre lies at the point of intersection of the forward direction of the 
incident beam with the film. A bearing at the centre of the film holder c maintains a 
rod perpendicular to the plane of the film throughout the motion; the other end of 
the rod engages the arc and is clamped in position at the chosen precession angle jz. 
The film holder and the spindle d, to which the arcs e carrying the crystal f are 
attached, are mounted on gimbals, i.e. free moving mutually perpendicular bearings. 

The motion of film and crystal are linked so that each precesses identically about the 
direction of the incident beam. The screen g is rigidly attached to the spindle d which 

Fig 8.28 Schematic representation of a precession camera. The disposition of the parts of the 
camera are shown in the upper diagram for f= 0 and in the lower diagram for a zero-layer 
photograph at fi = 25°. The labelling of the diagrams is explained in the text. 
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carries the arcs so that throughout its motion its plane is parallel to that of the film 
and its annulus is so placed as to transmit the selected cone of diffracted beams. A 
back-stop h which slips on to the collimator i has its absorbing cup situated 
immediately behind the crystal. Since smooth precession is essential if the intensities 
of the reflexions recorded on the film are to have significance, a counter weight, k, 

whose moment about the motor axis can be varied, is attached to the motor spindle 

to balance the moment of the various moving parts of the camera about this axis. For 
mechanical reasons the maximum attainable precession angle ji is in most instruments 
not greater than 35°. The crystal-to-film distance is commonly fixed at 60 mm so that 
F is a constant equal to 60mm; in some cameras the crystal-to-film distance is 
adjustable and then it can very simply be measured accurately by photographing a 
reciprocal lattice layer of a crystal whose unit-cell dimensions are known precisely. 
The back-plate of the film cassette is drilled with two pinholes which allow light to 
fall on the film and so serve to define the horizontal line through the centre of the film; 
the mid-point of the line joining the two black spots corresponds to the centre of the 
film. 

There is very little to be said about the interpretation of precession photographs. 
The photograph is a direct representation of a reciprocal lattice net on the scale of 
F mm to one reciprocal lattice unit. Zero, first, and second layer [010] photographs 
of a monoclinic crystal (Fig 8.29) will each display an array of spots that can be 
indexed on a unit mesh with axial repeats a* and c* and interaxial angle f* 
(conventionally taken to be acute). Comparison of photographs of different layers 
taken about the same axis is straightforward, since there is no distortion and the 

magnification factor is constant, and may be achieved by direct superimposition of 
the films. Since the blank circle in the centre of upper layer photographs increases in 
radius as ¢, increases, some important reflexions may be missing and that may be 

inconvenient. However a sufficiently large sample of hkl and hOI reflexions should be 
obtainable from zero, first, and second layer [010] photographs to enable the 
systematic absences in these reflexions to be determinable. It will be necessary to 
supplement these photographs with a zero-layer [100] or [001] photograph to provide 
a reasonably accurate measurement of b and information about systematic absences 
in OKO reflexions. Laue symmetry is always determinable by inspection of appropri- 
ately oriented precession photographs: for instance for monoclinic crystals (Laue 
group 2/m) [010] photographs of any layer will display a central diad normal to the 
plane of the film while [100] and [001] photographs will have 2mm symmetry if zero 
layer and only lines of symmetry parallel to z* and x* respectively if upper layer. 

The precession method is nicely balanced in its advantages and disadvantages 
relative to the Weissenberg method. Because it provides, when the crystal is correctly 
set and film and screen are properly adjusted, an undistorted photograph of a 
reciprocal lattice plane it enables interaxial angles in the plane to be very much more 
accurately measured than is possible on Weissenberg photographs. In the accuracy 
with which reciprocal cell edges can be measured there is little to choose between the 
two methods. Reflexions on a precession photograph tend to be uniform in shape so 
that accurate comparison of intensities is easier than on Weissenberg photographs 
where spot shape, especially on upper layer photographs, varies across the film. The 
unravelling of complicated orientational relationships in twins and intergrowths is 
simplified by the lack of distortion in precession photographs. Where exceptionally 
small or unstable crystals have to be used the shorter exposure time in which it is 
possible to obtain a satisfactory photograph by the precession method may be an 
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Fig 8.29 Zero and first layer [010] precession photographs of the monoclinic mineral latiumite 
taken with CuK« radiation, fi = 25°, F = 60 mm (three-quarters actual size). 
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important practical advantage. Where the precession method is inferior to the 
Weissenberg is in the smaller area of reciprocal space that, for reasons of camera 
geometry, can be sampled by a zero layer photograph. Usually the maximum 

precession angle that can conveniently be used is 30° gnd this allows a circle of radius 
2 sin fi = 1 reciprocal unit about the origin of the zero layer net to be recorded; the 
area of nth layer nets that can be recorded is of course smaller. In the Weissenberg 
method however it is theoretically possible to record reflexions from a zero-layer net 
encompassed by a circle of radius two reciprocal units and on upper layer Weissenberg 
photographs, although the area that can be recorded decreases with increasing (,,, 
the area recorded is always substantially greater than on a precession photograph 
for the same value of ¢,,. Moreover it is possible with the Weissenberg camera to record 
layers of very much higher ¢ value than with the precession camera; this is an 
important advantage when collecting intensity data for structural work and, 
moreover, occasionally symmetry elements that appear to be present when only 
reflexions of small Bragg angle are inspected may be seen to be absent when 
reflexions further out from the origin are considered. 

In conclusion we draw attention to a useful facility provided by the precession 

camera: for one mounting of the crystal with a selected reciprocal lattice row parallel 
to the spindle axis of the arcs it is possible to record more than one zero-layer 
reciprocal lattice net and the corresponding upper layer nets. For example if x* is 
parallel to the spindle axis of the arcs, [010] and [001] can be set parallel to the 
incident beam in turn so that the hOl, h11, h21, etc and the hkO, hk1, hk2, etc reciprocal 

lattice nets can be recorded simply by rotating the dial through « between the [010] 
and [001] exposures. It is just as easy to photograph reciprocal lattice nets normal 
to any zone axis [OVW ] by turning the dial through the appropriate angle. This is 
particularly useful when the reciprocal lattice row is parallel to a prominent zone 
axis and the arcs are interchangeable between oscillation, Weissenberg, and precession 
cameras; with a single mounting of the crystal oscillation, Weissenberg, and precession 
photographs can be taken and inter-related. For example suppose that an 
orthorhombic crystal has been mounted so that its [100] axis is parallel to the spindle 
axis of the arcs. This mounting would enable zero and upper layer [100] Weissenberg 
photographs and zero and upper layer [010] and [001 ] precession photographs to be 
taken by transferring the crystal on its arcs from one camera to the other. 

In general the choice between Weissenberg and precession photography depends 
on the nature of the problem in hand and of the material under investigation. The 
principal advantage of the oscillation camera over the moving film cameras is that it 
provides a two-dimensional record of a truncated torus of reciprocal space, truncated 
because the film is of finite length, and this is the only way in which the regions between 
reciprocal lattice layers can conveniently be investigated; this facility is important in 
the study of phenomena, such as anti-phase domains, which give rise to diffracted 
intensity maxima that do not correspond to reciprocal lattice points. 

Laue photography 
For Laue photography the single crystal under investigation is maintained stationary 
in an incident beam containing a wide spectral range of X-ray wavelengths. As in the 
methods previously described for studying single crystal X-ray diffraction patterns 
the crystal is attached to a glass fibre mounted on arcs. Rigidly fixed to the spindle 
carrying the arcs is a circular scale, which permits the crystal to be rotated through a 
known angle between successive exposures; the incident X-ray beam is perpendicular 
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to the spindle axis. In various circumstances it may be convenient to use either a 
cylindrical film coaxial with the spindle axis (Fig 8.30(a)) or a flat film with its plane 
perpendicular to the incident beam. Alternative positions for a flat film are in common 

use: in the back-reflexion position the film is situated between crystal and collimator 
(Fig 8.30(b)) to record only reflexions of high Bragg angle, whereas in the front- 
reflexion position the film is situated on the other side of the crystal (Fig 8.30(c)) and 

records only reflexions of low Bragg angle. The back-reflexion arrangement is 
particularly useful for crystals which absorb X-rays very strongly and for large crystals 
(especially metal crystals). 

There is no specially designed camera for Laue photography: an oscillation or a 
Weissenberg camera can be used without adaptation for recording Laue patterns on 
cylindrical film, while a precession camera can be used directly for taking front- 
reflexion flat film photographs and an oscillation camera can be adapted for either 

front or back-reflexion photographs. The only camera conditions to be satisfied are 
that the crystal should remain stationary during exposure and that either the axis of a 
cylindrical film or the plane of a flat film should be perpendicular to the incident 
X-ray beam. 

a give Aie\ 
Xx 

film film film 

(a) (b) (Cc) 
Fig 8.30 Laue photography. (a), (b), (c) show respectively the cylindrical film, back-reflexion 
flat film, and front-reflexion flat film arrangements. The crystal is shown as a solid circle and the 
beam trap as a section through a cup. 

It was remarked at the beginning of this chapter that for a stationary crystal 
bathed in a parallel beam of monochromatic radiation few solutions of the Bragg 
Equation will occur. We have already explored ways in which the crystal can be 

moved in a regular manner while keeping the incident radiation monochromatic. In 
Laue photography we are concerned with increasing the number of solutions of the 
Bragg Equation for a stationary crystal and we do this by allowing the wavelength 
of the incident radiation to be variable. A broad X-ray spectrum in the incident beam 
is achieved by utilizing the unfiltered output of an X-ray tube; for this purpose the 
higher the atomic number of the target element the better, provided it is a sufficiently 
good thermal conductor to withstand a high current density, i.e. W is preferable to 
Mo, but Cu will do very well. 

The reflexions on a Laue photograph cannot be easily indexed. The angle between 

the forward direction of the incident X-ray beam and the diffracted beam will be 

equal to 26 so that 6 is readily determinable. However a particular value of @ may 
correspond to more than one solution of the Bragg Equation 4 = 2dsin@ when A is 

variable and d is unknown. For instance if the emission spectrum of the X-ray tube 
extends from < J’ to > 3A’, where 1’ is a particular wavelength, the 2h, 2k,2/ and the 

3h, 3k, 31 reflexions will have the same Bragg angle as the hkl reflexion and so all 
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Fig 8.31 Laue photographs of a crystal of the tetragonal mineral vesuvianite (Laue group 4/mmm) 
taken with the incident beam parallel to the tetrad. The lower photograph was taken in a cylindrical 
camera; the upper photograph was taken with the front-reflexion flat film arrangement. 

three reflexions will be superimposed. Indexing can be achieved by correlating the 
angular relationships between the normals to reflecting planes with the known axial 
ratios and interaxial angles. Indexed Laue photographs have some specialized uses, 
such as for the determination of the orientation of large single crystals of cubic metals, 
a topic which lies outside our scope. Except for such specialized applications it is rarely 
necessary to index Laue photographs; the commonest uses of the method do not 
involve indexing and are (i) the determination of the Laue symmetry of a crystal and 
(ii) the setting of a crystal with an identified zone axis in a particular direction relative 
to the camera geometry as a preliminary to oscillation or moving film photography. 

We turn now to consider some of the general characteristics of Laue photographs. 
Simple inspection of a Laue photograph (Fig 8.31) reveals reflexions lying on curves 
such that each curve corresponds to the intersection with the film of a cone, the 

surface of which contains the forward direction of the incident beam. With flat films 
such intersections are conic sections, but with cylindrical films the nature of the 
curve is more complicated. Figure 8.32 illustrates the diffraction geometry for the 
generation of such a curve. Consider the plane represented by the great circle PZ 
whose pole is N. The reflected beam R will be coplanar with the incident X-ray beam 
XX’ and with the normal N to the plane PZ; it will therefore lie on the great circle 
X’PN and will be so placed that RP = PX’ = 0, where 6 is the Bragg angle. Since the 

pole N of the great circle. PZ lies on the great circle X’PR, these great circles intersect 
orthogonally so that ZPX’ = ZPR = 90°. The spherical triangles ZPX’ and ZPR are 
thus congruent (with common side ZP, right-angles at P, X’P = PR) so that 
ZR = ZX’ = y. This result will be true for any plane which contains the direction Z 
and satisfies the Bragg Equation for this orientation of the incident X-ray beam. In 

Fig 8.32 The diffraction geometry for the generation of a curve of reflexions on a Laue 
photograph. The diagram on the left is described in the text; that on the right illustrates the 
relationship of the incident and diffracted beams to the plane P. 
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particular if Z is a zone axis [UVW ] any plane containing the direction Z will lie in 
the zone [UVW] and, if it is in the reflecting position, the direction of the diffracted 
beam arising from it will lie on the small circle whose stereographic centre is Z and 
which contains the forward direction of the incident X-ray beam. Reflexions generated 
by the planes of a zone [UV W] will thus lie on a cone containing the incident direction, 
whose semiangle is the angle between the zone axis and the forward direction of the 
incident beam; on the film the cone will be represented by reflexions lying on a curve 
through the point of zero Bragg angle. If [UVW] is a prominent zone axis in the 
crystal, there will be many reflexions on the curve and reflexions generated by planes 

of low indices will lie at the mutual intersection of several such curves, each related 

to a prominent zone axis. The shape of a zonal curve will depend very much on the 
angle w between the zone axis and the forward direction of the incident beam. For 
Ww = 90° the cone of diffracted beams becomes a plane containing the incident X-ray 
beam; on a flat film this will be manifested as a radial line of reflexions through the 
6 =0° (front-reflexion set-up) or 0 = 90° (back-reflexion set-up) point. On a 

cylindrical film however the coplanar reflexions for which y = 90° will only lie on a 
straight line on the film when the zone axis [UVW] is either coaxial with the film 
cylinder or normal to the plane containing the incident beam and the axis of the 
cylindrical film. That is to say the only straight lines of reflexions on a cylindrical 
Laue photograph will be in the horizontal and vertical directions through the point 
on the film corresponding to 0 = 0°. 

Another obvious feature of Laue photographs (Fig 8.31) that is worthy of comment 

is the absence of reflexions on the film over an area centred on the intersection of the 
forward direction of the incident beam with the film (this is of course not a feature 

of back-reflexion photographs). A reflexion close to the forward direction of the X-ray 
beam must have rather a small Bragg angle 0. Therefore for this reflexion A/2d must 
be small. As we have Iready seen (Fig 7.2) there is a sharp cut-off at the low 
wavelength end of the emission from an X-ray tube dependent on the operating 
voltage of the tube. Moreover the maximum value of d will be limited by the unit-cell 
dimensions of the crystal. For every radial direction about the 6 = 0° point there will 
thus be a minimum value of @ below which reflexion is impossible. The size of the 
blank area on the film about the 0 = 0° point will of course depend on the orientation 
of the crystal with respect to the incident beam; in general terms one can say that for 
an incident beam with a certain cut-off wavelength a substance with a small unit-cell 

will exhibit a larger blank area than a substance with one or more long unit-cell 
dimensions. 
We turn now to the use of Laue photographs for assigning a crystalline substance 

to its Laue symmetry group. In what follows the statement that a crystal possesses a 
certain symmetry will refer to its Laue symmetry rather than to its point group or 
space group symmetry. 
When X-rays are incident parallel to a symmetry axis of the crystal, the resultant 

Laue photograph will display the symmetry of that axis. Such axial symmetry is most 
clearly displayed on a flat film in the front-reflexion setting, but a photograph taken 
on a cylindrical film can be utilized although unambiguous determination of the 
nature of the axis is then rather more troublesome. Suppose, for instance, that the 
incident X-ray beam is coincident with the tetrad in a crystal of Laue group 4/m and 
that the plane (hk!) is so oriented that it will reflect X-radiation of wavelength 4. Then 
the symmetry related planes (khi), (hkl), and (khl) will be similarly inclined to the 
direction of the incident beam and will also reflect X-rays of wavelength A (Fig 8.33). 
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Fig 8.33. Laue photography of a crystal of Laue group 4/m with the incident X-ray beam parallel 
to the tetrad. The stereogram on the left shows the disposition of the normals to four planes related 
by the tetrad and the disposition of the resulting reflexions R,_4. The portion of a flat film Laue 
photograph on the right shows the disposition of the four reflexions on a circle about the exit-hole 
in the centre of the film. 

All four reflexions will be equal in intensity and will be disposed on the film about 
the point of intersection of the incident X-ray beam with the film in a manner 
consistent with tetragonal symmetry about that point. The Laue photograph taken 
as a whole will thus display tetragonal symmetry, every reflexion being equal in 
intensity to three others related to it spatially by successive rotation through 90° about 
the direction of the incident X-ray beam. Likewise when the incident beam is 

coincident with a hexad, triad, or diad axis in the crystal the corresponding symmetry 
will be apparent on a Laue photograph; and when the incident beam is coplanar with 

a mirror plane in the crystal, the resultant Laue photograph will display a line of 
symmetry parallel to the mirror plane and passing through the point of intersection 
of the incident beam with the film. 

Since the Bragg Equation restricts 0 to values between 0° and 90°, the X-ray beam 
must be incident on the same side of the (hkl) plane as the outward direction of the 
normal to the plane for the hkl reflexion to be produced; if the X-ray beam is incident, 

at the correct angle, on the other side of the (hkl) plane it will give rise to the hkl 
reflexion (Fig 8.34). It is thus impossible to record an hkl reflexion and a hkl reflexion 
without moving the crystal relative to the incident X-ray beam so that a Laue 
photograph never exhibits both hkl and hki reflexions. For the tetragonal example 
that we have been considering this means that if reflexions are recorded from the 
planes (hkl), (khi), (hkl), (khl), reflexions will not be recorded from their opposites 
(hkl), (khl), (hkl), (khl). Of course if the crystal is rotated through 180° about an axis 
normal to the tetrad so as to bring the opposite sense of the tetrad into coincidence 

with the forward direction of the incident beam, then all four opposites will reflect 
and reflexions from (hkl), etc will be absent. 

The general conclusion to be drawn from the tetragonal example discussed in the 



260 Single crystal X-ray diffraction patterns 

R Fig 8.34 The diagram illustrates the impossibility of 
Xx hkl recording reflexions from a plane and from its opposite 

on the same Laue photograph. 
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preceding paragraphs is that the symmetry discernible on a Laue photograph is the 
symmetry about a direction in the crystal parallel to the incident X-ray beam; that 
is to say the symmetry of a Laue photograph must be assignable to one of the ten 
plane point groups. 

In Table 8.1 the symmetry of Laue photographs of tetragonal crystals taken with 
the incident X-ray beam in a specified direction is listed for all possible directions for 
both tetragonal Laue groups (4/m and 4/mmm). The two tetragonal Laue groups are 
simply distinguished in practice by a Laue photograph taken with the incident X-ray 
beam parallel to [001 |: the photograph for a 4/m crystal will have plane symmetry 4, 

whereas that for a 4/mmm crystal will have plane symmetry 4mm. If the crystal is 
already known to be tetragonal, its Laue group can be uniquely determined by taking 
just this one photograph. But if the possibility of the crystal being cubic has not been 
ruled out by other evidence, the observation that one Laue photograph has plane 
symmetry 4mm merely indicates that the Laue group of the crystal is either 4/mmm 
or m3m; Laue photographs in other orientations will have to be taken to distinguish 
between these two possibilities. 

There is no standard procedure for determining the Laue symmetry of a crystal. The 
successive photographs necessary in a particular case will depend on the evidence 
provided by those already taken and on any reliable information that may happen to 
be available from prior study of certain physical properties of single crystals of the 
substance; for instance preliminary optical examination (chapter 12) may have given 
a clear indication of crystal system. Quite commonly the Laue symmetry of a crystal 
is determined incidentally by observation of intensity relationships of reflexions in the 
course of the investigation of its reciprocal lattice geometry by one or other of the 
moving-film methods. 

Table 8.1 
Symmetry of Laue photographs of tetragonal crystals 

Direction of Symmetry of 
Laue group incident X-rays Laue photograph 

4/m [001] 4 
<UVO» m 
<UVW) 1 

4/mmm [001 ] 4mm 
<100>, <110) 2mm 
<UVO), (UOW), (UUW) m 
<UVW) 1 

The point groups of each tetragonal Laue group are: 

4/m: 4, 4, 4/m 

4/mmm: 422, 4mm, 42m, 4/mmm 
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A difficulty commonly encountered in the course of determination of Laue 

symmetry by means of Laue photographs is that only when the crystal is very precisely 

set with its symmetry axis parallel to the incident beam will the resultant photograph 
clearly display the symmetry of the axis. An error in setting of as little as 5 minutes 

of arc may substantially affect the appearance of the photograph. Let us suppose that 
two symmetry related planes are inclined at angles 6+60 and 0—60 to the incident 
beam; then the two reflexions produced will be recorded on a flat film in the 
front-reflexion setting, at a perpendicular distance R from the crystal (Fig 8.35), at 
distances R tan2(@+60) and R tan2(6—66) from the centre of the film. Moreover the 
two planes will reflect different wavelengths 1+ 6A and 4 —6A, where 6/ = 2d cos 0.60 
and, as we have seen earlier, intensity varies quite rapidly with wavelength in certain 
parts of the spectral range emitted by an X-ray tube. Thus the two reflexions may be 
markedly different in intensity as well as being noticeably asymmetrically disposed 

on the photograph even though the mis-setting of the crystal is slight. But it is difficult 
to generalize and the experienced crystallographer may be able to discern a suspicion 
of the presence of a symmetry axis at a considerable inclination to the incident beam. 

When inspection of a Laue photograph reveals a suspicion of the presence of a 
symmetry axis, the crystal should be adjusted to bring that direction into closer 
alignment with the incident beam and another Laue photograph should be taken. 

R tan 2(@ +86) 

R tan 2 (@-86) 

Fig 8.35 The figure illustrates the point that only when the incident X-ray beam is precisely 
parallel to a symmetry axis does the resultant Laue photograph clearly display the symmetry axis. 
The two lattice planes, shown as bold lines, are related by a diad axis inclined at the small angle 
08, in the plane of the diagram, to the incident X-ray beam. The resultant reflexions will not be 
symmetrically disposed about the centre of the Laue photograph and will not be equal in intensity. 

We deal generally with the setting of crystals on single crystal cameras in Appendix 
F, but itis appropriate to discuss here certain features of Laue photographs which are 

utilized for that purpose. A prominent zone in the crystal, because it contains a large 
number of lattice planes, will usually correspond to a curve with many closely spaced 
reflexions on the photograph and such curves are an obvious feature of most Laue 
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photographs. The point of intersection of two or more such prominent zonal curves 

may be expected to correspond to the direction of the normal to a lattice plane of 

very simple indices. Symmetry axes are invariably parallel to such directions and it is, 

at least in principle, a simple matter to search for symmetry axes by bringing each such 

prominent zonal intersection in turn into coincidence with the incident beam. 

It is always true to say that the presence of a mirror plane in a Laue group implies 

the presence of an axis of twofold or higher symmetry normal to it. Therefore if a 

mirror plane, which is necessarily perpendicular to a zone axis of simple indices, is 

located and the crystal is set with the mirror plane perpendicular to the spindle axis of 

the arcs on which the crystal is mounted, then a symmetry axis must be parallel to 

the spindle axis. 
There is no generally applicable procedure for locating the crystallographic axes 

of a crystal of known or unknown symmetry. Each problem has to be tackled by the 
crystallographer in the light of what he knows at the start, or learns as he proceeds, 
about the Laue group of the crystal, in relation to the apparatus immediately available 
to him, and always bearing in mind the intensity of labour he is able to devote to the 
problem. The choice of procedure will depend very much on the experience and skill 
of the crystallographer. For a shapeless opaque crystal, the most difficult sort of 
subject, the present authors would usually choose to use Laue photographs taken on 
cylindrical film to locate symmetry directions; but other crystallographers might 
prefer to locate a principal zone by taking a series of precession photographs of small 
precession angle (f = 10°) at appropriate intervals of rotation of the spindle axis. 
Either approach will succeed; one or the other may be more efficient in a particular 

case. 
We turn now to consider the interpretation of Laue photographs in terms of the 

reciprocal lattice and the reflecting sphere:> we have the choice of adopting either of 
two alternative approaches. We can either take the constant K to be equal to unity so 
that the dimensions of the reciprocal lattice will be independent of wavelength, but the 
radius of the reflecting sphere will be variable (Fig 8.36(a)); or we can take the constant 
K equal to A so that the dimensions of the reciprocal lattice vary with wavelength, but 
the radius of the reflecting sphere is constant. If K = 1, all those reciprocal lattice 
points within the volume between the reflecting sphere of minimum radius 
(corresponding to maximum wavelength in the incident radiation capable of 
generating an observable reflexion) and the reflecting sphere of maximum radius 
(corresponding to the minimum wavelength, the cut-off wavelength, in the incident 
radiation) will be in the reflecting position for some wavelengths in the incident beam. 
Overlapping reflexions will occur if the reciprocal lattice points hkl; 2h,2k,21; 
3h, 3k, 31; etc lie within this volume (Fig 8.36(b)). The second of the alternative 

approaches, with K = A, is however more fruitful in general for the interpretation of 
Laue photographs. With K =A, the reflecting sphere has radius equal to one 
reciprocal unit and each lattice plane is represented in reciprocal space by a radial 
streak; the end of the streak nearer the origin corresponds to the minimum wavelength 

emitted by the X-ray tube (the magnitude of A,,;, depends on the nature of the target 
and on the applied voltage as indicated in Fig 7.2) and the end of the streak away from 
the origin fades away at a wavelength that is greater for planes which reflect strongly 
than for those which give rise only to weak reflexion. 

For a particular wavelength the reciprocal lattice points corresponding to lattice 

° The reader who has not followed the introduction to the reciprocal lattice in chapter 6 and who has 
omitted the sections of this chapter concerned with moving film methods should pass on to the next chapter. 
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(Cc) 
Fig 8.36 Reciprocal lattice interpretation of Laue photographs. In (a) and (b) K =1 so that the 
reciprocal lattice dimensions are constant, but the radius of the reflecting sphere varies between 
Ani, and A=1, where /,,;, is the cut-off wavelength of the incident spectrum and A,,,, is arbitrarily 
taken at some wavelength where the intensity falls below a certain level; the ratio A,4,/ Amin iS 
taken as 2. (b) illustrates the parallelism of the reflected beams produced by the 301 and 602 
reciprocal lattice points of a monoclinic crystal. In (c) and (d) K = A so that the reflecting sphere 
is of unit radius and each reciprocal lattice point becomes a streak radiating from the origin O 
as shown in (c); in (c) the ratio A,,3,/ Amin is taken at the lower value of 1-4 for clarity of the 
diagram and again a monoclinic lattice is exemplified. (d) serves to illustrate the point that the 
plane (shaded) in reciprocal space representing the zone [UVW] intersects the reflecting sphere 
in a small circle; the Laue reflexions generated by such a zone lie on the surface of a cone whose 
apex is at the centre of the reflecting sphere and whose base is the small circle. 

planes lying in a zone are coplanar and this plane passes through the origin of 
reciprocal space. When the incident X-ray beam is polychromatic, as it is in Laue 
photography, each such reciprocal lattice point is replaced by 2 radial streak lying in 
the plane (Fig 8.36(c)). Moreover the streaks from the planes (hkl), (2h,2k, 21), 
(3h, 3k, 31), etc will overlap if the range of wavelengths in the incident beam is 
sufficiently large. In general the plane in reciprocal space which represents the zone 
[ UVW | cuts the reflecting sphere in a small circle (Fig 8.36(d)) and the reflexions 
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generated by such a zone lie in directions parallel to the radii of the reflecting sphere 
at the points of intersections of the streaks; all the reflexions generated by the zone 

of lattice planes thus lie on a cone whose semiangle is equal to the angle between the 
incident beam and the zone axis [UVW]. If the zone [UVW ] is a prominent zone, 
there will be a high density of reciprocal lattice streaks and consequently a large 
number of reflexions on the Laue photograph. The curve corresponding to the 
intersection of this cone with the film will thus stand out very clearly on the Laue 
photograph. 

Since the closest approach of a reciprocal lattice streak to the origin is Anin/dhx, 

where d,,, is the spacing of the lattice planes giving rise to the streak and /,,;,, is the 
cut-off wavelength of the X-ray spectrum, it follows that there will be an irregularly 
shaped volume of reciprocal space about the origin totally devoid of reciprocal lattice 
streaks. This volume will extend in every direction to a distance of at least Awin/dmax 
from the origin, where d,,,, is the greatest spacing of lattice planes in the crystal. Thus 
a Laue photograph will always exhibit an area devoid of reflexions close to the 
forward direction of the incident beam and the size of this area will be greater for 
crystals with small unit-cell dimensions. 

The reflecting sphere has cylindrical symmetry about the incident X-ray beam so 
that the Laue photograph must have the symmetry of the crystal about that direction. 
That the symmetry of a Laue photograph may be lower than the symmetry of the 
reciprocal lattice about the direction of the incident beam we show by considering the 
incident beam to be parallel to a tetrad. The symmetry of the array of reciprocal 

lattice points about a tetrad is necessarily 4mm; but the crystal and the (flat film) Laue 
photograph generated by it will not necessarily show symmetry 4mm. If the Laue group 
of the crystal is 4/m, then the intensities of the hkl and hkl reflexions will not 

necessarily be equal so that, when intensity as well as position of reflexions is 
considered, there will be no lines of symmetry on the Laue photograph. Only when 
the Laue group of the crystal is 4/mmm or m3m can the Laue photograph exhibit 
symmetry 4mm. 

If the reflecting sphere passes through a point on the streak of an (hkl) lattice plane, 
it cannot intersect the streak of the (hkl) plane for the same orientation of the crystal. 
In consequence a Laue photograph may lack a centre of symmetry even though the 
diffraction pattern as a whole may be centrosymmetric. The symmetry of a Laue 
photograph is always that of one of the ten two-dimensional crystallographic point 
groups. 

In the treatment of Laue photographs as far as we have taken it in this chapter the 
use of the reciprocal lattice and the reflecting sphere are not essential; but they do 
provide, as we have sought to show in the preceding paragraphs, an elegant way of 
explaining the diffraction pattern produced. 

Determination of accurate unit-cell dimensions 
It is often necessary to be able to determine unit-cell dimensions very much more 
accurately than is possible by measurement of layer line spacings on oscillation 
photographs or by direct measurement of Weissenberg or precession photographs. 
Obvious uses for accurate unit-cell dimensions are in the determination of thermal 
expansion coefficients (chapter 11) and for the conversion of the atomic coordinates 
which are the end result of a structure determination to accurate bond lengths and 
bond angles. Various methods for the accurate determination of unit-cell dimensions 
have been in general use over the past few decades; one obvious approach is to 
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determine a*, b*, and c* by very precise measurement of the Bragg angle for h00, OKO, 

and 00/ reflexions. If the crystal is monoclinic, B* can be measured directly on an [010] 
precession photograph and if it is triclinic the three interaxial angles «*, B*, and y* 
can be measured on the appropriate precession photographs. In these two systems, 
the only systems for which interaxial angles have to be measured, the form of the 
expressions for deriving unit-cell dimensions from reciprocal lattice dimensions 
(Table 6.7) are such that errors in the measurement of interaxial angles in reciprocal 

space may seriously affect the accuracy of both interaxial angles and unit-cell edges in 
direct space. We confine our discussion of the accurate measurement of unit-cell 
dimensions here to one very elegant, accurate, and generally applicable method, which 
makes use of the doublet splitting at high 0 of reflexions on Weissenberg photographs. 

As we have pointed out earlier (chapter 7) the characteristic X-radiation emitted 
from a crystallographic X-ray tube consists of a Kf line, which is filtered out, and the 
two closely spaced lines Ka, and Ka,. The reflexions produced by the Ka, and Ka, 
wavelengths are resolved only at high Bragg angle. On a Weissenberg photograph all 
reflexions at low Bragg angles will appear to be single spots; but as 0 increases the 
difference in Bragg angle for the Ka, and Ka, lines gradually increases until at high 
Bragg angle reflexions from a plane will be resolved into clearly separated pairs of 
reflexions, the inner and stronger of which is produced by the shorter «, wavelength 
in the incident beam and the outer by the longer, and weaker, ~, wavelength. 

The difference 64 in wavelength between the «, and «, lines is accurately known 
for all X-ray sources in common use. Therefore the Bragg angle 6 for the «, reflexion 
can be found by measuring the difference in Bragg angle 60 between pairs of reflexions 
produced by resolution of the ~, and «, lines in the following manner. Suppose the 
wavelength of the «, radiation is J, then for reflexion from a plane of spacing d, 

A = 2dsin 6d for the Ka, wavelength 

and A+6A = 2d sin (0+ 60) for the Ka, wavelength. 

Therefore sin(@+60)—sin@ = : ae a sin 0 

sin 0 cos 60+ cos 0 sin 60—sin 0 = ** sind 

cos 0 sin 68 — sin 0(1 —cos 60) = oe sin 0 

eae moos 00 oA 

Sdet e - sindd Asinod 
: 00 oA 

cost) = sind (tan P+ >) 

60 OAe LN ee pa = vee sake 

1—sin~* 6 = sin 0( ta 5 +a) 

d in?9=<1+ een of ae and so sin* 6 = Splits : 

For a zero-layer Weissenberg photograph, if the separation of the x; and «, reflexions 
from the same lattice plane is 6s, measured perpendicular to the median line of the 
film, then 60 = 6s/2r, where r is the camera radius (Fig 8.37(a)). The magnitude of 
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median line 

(c) 

(b) (d) 
oO” 90" 

Fig 8.37 Accurate determination of unit-cell dimensions by measurement of , a, splitting. The 
measurement of the separation ds of the a, «, doublet is made perpendicular to the median line 
of the Weissenberg photograph, as shown on the left in (a), so that ds = 2r. 00. The stereogram 
(b) illustrates the diffraction geometry for the a, reflexion R, and the «, reflexion R, in an nth 
layer Weissenberg photograph; OO’ is the oscillation axis and II’ is the incident beam direction so 
that Ol = 90°—, OR, = 90°—v,, and OR, = 90°—v.,. (c) illustrates the generation of the a, 
reflexion in an nth layer equi-inclination Weissenberg; the intersection of the nth reciprocal lattice 
net with the plane of the diagram is shown as a bold line. The stereogram (d) serves to illustrate 
the relationship between 8, v,, 1, and w for the a, reflexion R,. 

sin’ @ can thus be calculated from measurements of 5s for the pair of resolved « 1—%2 
reflexions. The form of the relationship between ds and sin? 6 is such that the value of 
sin’ @ is rather insensitive to errors in measurement of ds. 

For an nth layer equi-inclination Weissenberg photograph the relationship between 
the measured value of ds and sin? @ is more complicated. The Bragg angle 0 of the « 1 
reflexion cannot be deduced directly from measurement of 5s. The distance s of a 
reflexion from the median line of the photograph gives the angle w = s/r between the 
plane containing the forward direction of the incident X-rays and the oscillation axis 
and the plane containing the reflected beam and the oscillation axis; thus 
measurement of the separation of the resolved «, —a«, doublet, ds, gives a value of ow 
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for the reflexion (Fig 8.37(b)). The equi-inclination angle yu for the nth layer is such that 
sin « = nd/2t, where t is the periodicity of lattice points along the zone axis parallel 
to the oscillation axis. The angle y at which the camera is set cannot be right for both 
the a, and «a, wavelengths. Reflexions will lie on two cones, one of semiangle 
90° —v, and the other of semiangle 90° —v,, where v, and v, are related to the camera 
angle u. It is apparent from Fig 8.37(c) that for the «, reflexion 

nave 
> = sind, +sin p (1) 

and correspondingly for the «, reflexion of the doublet 

n(A+ 6A) 
; = sinv,+sin p. (2) 

Wecan obtain an expression for 0 by use of the spherical triangle O'T’R , (Fig 8.37(d)): 

cos 20 = cos (90° + v,) cos (90° — w)+ sin (90°+0,)sin(90°—n) cosy (3) 

i.e. 2 sin? 9 = 1+sinp, sin u—cosv, cos cosy (4) 

and correspondingly 

2 sin?(0+60) = 1+sin v, sin u—cosv, cos pcos (Wy + dy). (5) 

From these relations, numbered (1) to (5) above, coupled with the Bragg Equation an 

expression can be obtained for relating 6 to the measured separation 6s of an a, —a, 
doublet, the wavelengths 4 and 1+ 6A of the relevant lines in the incident radiation, 
the camera angle y, and the lattice spacing t. The lattice spacing t will be approximately 
known at the start and so each cycle of refinement in the computation will yield a more 
accurate value of t which is then used to calculate a better value of sin? 0. 
We now illustrate the way in which cell dimensions can be calculated from a set of 

_values of sin? 0 by considering a monoclinic example. The extension of the argument 
to the triclinic case is straightforward, but the expressions involved are of course more 

cumbersome. For a reciprocal lattice point in the monoclinic system d* is given by 

d*? = h?a*? +k*b*? + 1?c** + 2hla*c* cos p* 

which becomes, on putting q = d* and differentiating, 

gdq = (h2a* + hic* cos B*)da* + k2b*db* + (2c* + hla* cos B*)de* 
—hla*c* sin p*.dp* 

i.e. gdq = Ada* + Bdb* +Cdc*—D dp*. 

The coefficients A, B, C, D are calculated from the known approximate unit-cell 

dimensions; g = A/d = 2sin0 is obtained from measurements of «,—a, doublet 
splitting in the way described earlier; and dq is taken to be the difference between this 
‘observed’ value of g and that obtained from the known approximate unit-cell 
dimensions. Every measurement of an «, —«, doublet thus gives rise to one such linear 

equation in the four unknowns da*, db*, dc*, and df*. The set of linear equations 

derived from all the measurements made is soluble by least-squares methods to yield 
the more accurate reciprocal lattice dimensions a*+da*, b*+db*, c*+dc*, and 

B* +dB*; from these more accurate unit-cell dimensions and thence more accurate 
values of sin? @ for upper layer photographs can be calculated. A further cycle of 
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refinement is then performed, and so on until by successive approximation unit-cell 
dimensions accurate to better than 1 in 10° are achieved. 

The powerful technique outlined above, which was developed by Alcock and 
Sheldrick (1967) from a method restricted ,to zero-layer photographs (Main and 
Woolfson, 1963), has the advantages that all the measurements can be quickly and 
easily made with an ordinary travelling microscope (an accuracy of about 3 per cent 

in the measurements is all that is required) and that computer programmes for the 
least-squares calculations are readily available. The method is moreover found to be 
insensitive to even quite substantial errors in camera radius and in the equi- 
inclination angle yw. It is however observed that when data from Weissenberg 
photographs taken about only one oscillation axis are used, those cell dimensions 
which are not directly determinable from the zero-layer photograph are relatively 
less accurate. It is therefore advisable to include data from one or more Weissenberg 
photographs taken about a second axis. Of course one could merely use the three 
zero-layer photographs taken respectively about the x, y, and z axes; but much more 
data become available and higher accuracy is in consequence achieved if equi- 
inclination upper layer photographs about at least one axis are included. 
We shall not discuss here other methods of determination of accurate unit-cell 

dimensions. For an excellent and thorough treatment of this topic the reader is referred 
to Woolfson (1970). 
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9 
Principles of structure determination: the 
diffraction of X-rays, neutrons and electrons 

We turn now to a brief description of the essential problem involved in the 
determination of the structure of a crystal from its diffraction pattern. This provides a 
convenient opportunity to introduce an elementary account of the diffraction of 
electrons and neutrons by crystals in the course of which we shall emphasize the 
differences between the diffraction of X-rays, electrons, and neutrons by crystals and 

point out the advantages and disadvantages of using one or another type of radiation 
to solve a particular problem. X-ray diffraction studies provide the primary means for 
the determination of crystal structures, as they have since the early days of the 
determination of the structures of such simple salts as NaCl and CsCl, soon after the 
discovery of the diffraction of X-rays by crystals. Structures of increasing complexity 
have become soluble as the techniques of X-ray structure determination have 
progressed until it is now possible to solve the crystal structures of the biologically 
very important proteins, the unit-cells of which contain several thousand atoms. 

The techniques of crystal structure determination are outside the scope of this 
textbook. Here we are concerned simply with stating the essential problem and 

indicating, in general terms, the lines on which it may be soluble by X-ray methods 
with or without the assistance of complementary neutron diffraction studies. We aiso 
comment on the uses of electron microscopy to complement X-ray diffraction methods 
in the study of single crystals. 

We take as our starting point the familiar phenomenon of optical diffraction and, 
in particular, consider how a parallel beam of monochromatic light forms an image of 
a one-dimensional grating when a lens is inserted in the path of the light waves 

emergent from the grating. In Fig 9.1 a monochromatic light beam is incident on a 
grating G of transparent lines; the transmitted light waves then pass through a lens 
L so placed that a real image of the grating is formed in the plane I parallel to the 
plane of the grating G. The Abbe theory of image formation assumes that the 
formation of the image I takes place in two stages. As the incident plane wave impinges 
on the grating it is diffracted so as to give rise to sets of parallel beams corresponding 
to the zero, first, second, etc orders of diffraction. The lens L focuses these sets of 

diffracted beams in the plane D; the Fraunhofer diffraction pattern’ of the grating is 
formed in the plane D, which is effectively at an infinite distance from the grating. The 

'In Fraunhofer diffraction both the source and the observed diffraction pattern are effectively infinitely 
distant from the object. In Fresnel diffraction, in contrast, either the source, or the observed diffraction 

pattern, or both are not effectively at infinity. 
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Fig 9.1 Abbe’s theory of image formation. A parallel beam of monochromatic light is incident 
on the grating G. The diffracted rays are focused by the lens L to form a diffraction pattern in the 
plane D and a real image in the plane I. 

waves travel on in such a manner that the diffracted beams produced by a particular 
grating element cross in the plane I so that a real image of the diffraction grating is 
produced in the plane I. The image of a two-dimensional grating is produced in a 
precisely analogous manner. But for a three-dimensional grating the complete 
diffraction pattern can only be recorded by allowing the angle of incidence of the 

light beam on the grating to be varied; it is thus impossible to focus the whole 
diffraction pattern simultaneously to form an image of the structure. With an optical 
lens only an image of a projection of the three-dimensional structure is obtainable. 

The Abbe theory of image formation provides a means of calculating the form of 
the image produced by a grating of known size and shape. The direction, amplitude 
and phase of each diffracted beam can be calculated so as to give a complete 
description of the diffraction pattern formed in the plane D. The diffracted beams 
may then be imagined to be recombined so as to form the real image in the plane I 
and this can be calculated too. For a three-dimensional grating it is possible to 
calculate its complete diffraction pattern and to construct its image even though the 
image cannot be formed by an incident optical beam and a simple lens system. 

Ifa comparable experimental arrangement could be used for X-rays it would then 
be possible, at least in principle, to form a real two-dimensional image of a crystal 
structure. But this cannot be done in practice because the refractive index of most 
solids for X-radiation differs so little from unity, by about 1 in 10°, that it is impossible 
to construct a lens for X-rays. Without a lens there is no means of bending the 
diffracted X-rays to form an image of the crystal structure; but it remains possible to 
observe the diffraction pattern at a distance that is effectively infinite in comparison 
with the size of the grating elements of the crystal structure and from this Fraunhofer 
diffraction pattern it should be possible to calculate the image of the crystal structure. 
But again we are thwarted by a practical difficulty: there is no experimental means of 
measuring the phases of X-rays so that, except in certain special cases, the phases of 
the X-rays diffracted by a crystal structure are unknown. Measurement of an X-ray 
diffraction pattern yields the directions and the intensities of the diffracted beams; and 
from their measured intensities their amplitudes can be calculated. We can thus 
determine the shape and size of the unit-cell and calculate the structure amplitude 
from the measured intensity of every X-ray reflexion; but in the absence of any 



Principles of structure determination: the diffraction of X-rays, neutrons and electrons 271 

practical means of determining phase the description of the diffraction pattern remains 
incomplete. 

The basic problem of X-ray crystal structure analysis is the completion of the 
description of the diffraction pattern by finding some way of evaluating the phase of 
every observed reflexion. In a few special cases symmetry considerations limit the 
number of possible structures to so small a number that it becomes feasible to compare 
the observed structure amplitudes with those calculated for each of the possible 
structures and so to determine which is the correct structure. For example a cubic 
structure of Laue group m3m with an F-lattice and four molecules of AX per unit-cell 

may have either the NaCl-type structure or the blende-type structure. From Table 9.1, 
in which the intensities of a few reflexions calculated for each of these possible 
structures are shown, it is apparent that comparison with the measured intensities of 
reflexions produced by the substance under consideration will rapidly show which of 
the two possible structures the substance actually has. In a simple case such as this a 
powder diffraction pattern would be adequate, care being taken to assign the 
appropriate multiplicity to each powder line and to take into account the several 
physical and geometrical factors which relate the measured intensity of any powder 
line to the intensity I(hkl) of the corresponding diffracted beam produced by one 
unit-cell. 

In most cases however the task of deducing the phases of the diffracted X-ray beams 
is very much more difficult. Various methods may be used to predict a probable 
structure for the substance and the correctness of the predicted structure can be 
tested by calculating structure factors from it. If there is reasonably good agreement 
between the amplitudes of the X-ray reflexions calculated from the proposed structure 
and the measured amplitudes, then the proposed structure may be assumed to be a 
good approximation to the real structure and it may be assumed that the phases of 
the X-ray reflexions from the crystal are the same as those calculated from the 
proposed structure. It is then possible to calculate an image of the structure from the 
measured amplitudes and the calculated phases. The positions of the atoms 
determined from this image should provide a better approximation to the real 
structure than that given by the initially proposed, or trial, structure. The process is 

Table 9.1 
Intensities of reflexions for AX structures of NaCl-type and 
blende-type. 

Both structure types have cubic F-lattices with one formula unit per 
lattice point. The coordinates of the atoms associated with the lattice 
point at the origin are A 0, 0, 0; B 0, 0, 4 for the NaCl structure and 
A0,0,0; B4,4,4 for the blende (ZnS) structure. Intensities are given 

by 
I(hkl) = 16(f,+(—1)'f,)? for NaCl 

and 

h+k+I/P ; h+k+l 
I(hkl) = 16(| th cos 27 S | + fz sin? 2x ) for ZnS 

Reflexion I(hkl) for NaCl I(hkl) for blende 

111 16(f,—fx)”  w 16(fe+ fz) m 
200 16(fxt+ fx)? 16(fa—fx)? w 
220 16(fatfx)? 5 16( fat fx)? s 

311 16(f,— fx)? w 16( f+ fz) m 
222 16(fxt+ fx)” 8 16(fa—fx)” w 

Relative intensities: s = strong, m = medium, w = weak 
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repeated successively until the discrepancy between the structure amplitudes of the 

proposed and real structures is minimized. The details of the methods used in structure 
determination are outside our scope here; the reader interested in pursuing this topic 

is referred to Woolfson (1970). : 
’ 

Diffraction of neutrons by crystals 

The interaction between a neutron beam and an atom gives rise to both coherent 
and incoherent scattering. This elementary treatment? is confined to coherent 

scattering, that is to scattering such that there is a definite phase relationship between 
incident and scattered beams so that beams scattered from different atoms in a 
crystal structure can interfere. Such scattering is analogous to the diffraction of X-rays. 

The wavelength associated with a neutron is given by the de Broglie Equation 
A = h/mv, where his Planck’s constant, mis the mass of the neutron, and vis its velocity. 

The range of velocities in the neutron beam extracted from a reactor is related to the 
temperature of the reactor by 4mv* = 3kT, where v is now the root mean square 
velocity, k is Boltzmann’s constant, and T is in degrees Kelvin. In practice the 
temperature of a reactor is such that the emergent neutrons have root mean square 
velocities corresponding to wavelengths in the range 1:3 to 1-6A, an appropriate 
wavelength range for diffraction by crystals. In crystallography it is necessary to use 
a parallel neutron beam that is, at least approximately, monochromatic; this is 
achieved by collimating the neutron beam emergent from the reactor and allowing 
the collimated beam to be incident on a single crystal monochromator set at such 
an angle as to satisfy the Bragg Equation for reflexion of neutrons of the required 
wavelength from the face of the monochromator. However the neutron beam 
emergent from a reactor is generally much weaker than the X-ray beam emergent 
from an X-ray tube so that for diffraction studies it is necessary to use neutron beams 
of rather large cross-sectional area. Because of this, collimation cannot produce an 
accurately parallel beam and in consequence the monochromator does not produce 
a strictly monochromatic beam, but a beam with a wavelength spread of about 0:05 A. 
Such a wavelength spread limits the resolution of the observable diffraction pattern. 
Since the cross-section of the neutron beam has to be large to provide adequate 
intensity, it is necessary to use larger crystal specimens than is usual in X-ray studies. 
This requirement poses no special problems where powder work is concerned because 
the absorption of neutrons is very much smaller than the absorption of X-rays by 
crystals; but it does preclude single crystal studies on substances which do not readily 
form large single crystals. 

Neutron diffraction is governed by the same physical principles as X-ray diffraction 
but the mechanism of scattering is different. We have earlier (chapter 6) shown that 
for X-ray diffraction, when an unpolarized plane wave of unit amplitude is incident 
on an atom of atomic scattering factor f, the amplitude of the scattered radiation 
at a distance R from the atom is given by 

bes 1+cos? 20\? 

R mc? 2 

and there is a phase difference x between the scattered and incident X-radiation. The 
amplitude of the scattered radiation varies with direction because of the angular 
dependence of the polarization factor ,/(3+4co0s 20) and because the radius of the 

? For a comprehensive account of neutron diffraction the reader is referred to Bacon (1962). 



Diffraction of neutrons by crystals 273 

atom is comparable with the X-ray wavelength. Interference thus occurs between the 
X-radiation scattered from different parts of the atom so that the atomic scattering 
factor f decreases as (sin @)/A increases. When neutrons are scattered by a non- 

magnetic atom however it is the nucleus that is solely responsible for the scattering, 
the electrons being too small to deflect the neutron beam. When a plane wave of unit 
amplitude is incident on the nucleus of an atom in a solid the nucleus is not free to 

recoil and the scattered neutron amplitude at a distance R from the nucleus is simply 
given by b/R, where b is a nuclear property known as scattering length. There is no 
polarization factor involved in neutron scattering and, since the radius of the nucleus 
is very small compared with the neutron wavelength, b is independent of scattering 
angle; b is also very nearly independent of neutron wavelength. The relationship 
however between scattering length for neutrons and atomic species is very much more 
complicated than the relationship between atomic scattering factor for X-rays and 
atomic species. The nuclei of different isotopes of the same element differ in their 
scattering lengths so that the coherent scattering length b for an element has to be 
taken as the average of b x (isotopic abundance) for all the isotopes of the element. 
Moreover if an isotope has non-zero nuclear spin, its scattering length has two possible 
values and this must be taken into account in calculating the coherent scattering length 

b. Values of b cannot at present be calculated satisfactorily and so have to be 
determined experimentally. It is interesting to observe that bis of the same order of 
magnitude as e*f /mc? so that a crystal scatters neutrons and X-rays by about the same 
amount. It is simply because neutron beams of comparable intensity cannot be 
produced that it is necessary to use larger crystals for neutron diffraction than for 
X-ray diffraction studies. 

Unlike atomic scattering factors, which vary regularly with atomic number, 

scattering lengths vary quite irregularly with atomic number. For a few atoms (e.g. 
hydrogen, titanium, Ni°’) the scattering length is negative, the sign of b corresponding 
to the phase change on scattering, x for b positive and zero for b negative. 
We have so far confined our discussion of coherent neutron scattering to that 

produced by interaction with non-magnetic nuclei, but neutrons are also scattered by 
interaction of their magnetic moments with the permanent magnetic moments of 
atoms containing unpaired electrons. Here the scattering is due to neutron-electron 
interaction so that the scattered neutron amplitude, just like scattered X-ray 
amplitude, falls off with increasing (sin 6)/A. It is only for substances in which the 
magnetic moments of the atoms are regularly arranged, that is for ferromagnetic, 
anti-ferromagnetic and ferrimagnetic substances, that such scattering is coherent. In 

paramagnetic substances the magnetic moments of the atoms are randomly orientated 
so that magnetic neutron scattering is incoherent and merely contributes to the 
background scattering. Since the magnetic moment of an atom does not affect its 
scattering of X-rays, it is necessary to use neutron diffraction to study the alignment 
of magnetic moments in ferro-, anti-ferro-, and ferrimagnetic materials.* 

Neutron diffraction is usually used to complement, not to replace, X-ray diffraction 
studies. In the first place neutron sources are not very widely available. Moreover 

the experimental techniques are not as simple and the resolution of the diffraction 
patterns obtained is not as good as with X-rays. Before doing any structural work 
with neutrons therefore, all the information that can readily be obtained with X-rays 
should be collected. We now conclude this brief account of neutron diffraction with 

3 For this purpose polarized neutrons, that is neutrons with their spins all aligned in one direction, are 
normally employed. 
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two examples in which neutron studies have provided solutions to structural problems 

that could not be solved by X-rays alone. 
A consequence of the irregular variation of scattering length with atomic number 

is that certain light elements scatter neutraqns as effectively as some heavy elements, 

whereas for X-rays the atomic scattering factor increases regularly with atomic 
number so that the light elements consistently scatter least. It is thus often impossible 
to locate very light atoms in the unit-cell by X-ray diffraction because their scattering 

effects are swamped by the much stronger scattering produced by any heavy elements 
that may be present; in some cases the irregularity of neutron scattering lengths 
provides a means of locating such light atoms. For example in NaH X-ray studies 
show that the sodium atoms are in face-centred-cubic array but fail to locate the 
positions of the hydrogen atoms because their contribution to the total scattering is 
so slight. The scattering lengths of hydrogen and sodium are however similar in 

magnitude but opposite in sign: —0-38 x 10~1?.cm for H, 0-35 x 107 17cm for Na. 
Examination of the neutron powder diffraction pattern readily enables the hydrogen 
atoms to be located in the unit-cell and the structure of NaH to be determined as 
NaCl-type. This example illustrates one of the more important uses of neutron 
diffraction, the location of hydrogen atoms in crystal structures. Another example, on 
which we shall comment at length in chapter 10, is the location of the positions of the 
deuterium atoms in heavy ice, D,O, at —50°C. 

Another way in which neutron diffraction data may be very useful is in 
distinguishing between the structural sites occupied by atoms of different elements 

- whose atomic numbers are rather close, provided that their neutron scattering 
lengths are not, as may be the case, also similar. It is for example difficult to - 
distinguish between the sites occupied by Mg and Al atoms in complex oxide 
structures by the use of X-ray methods because the number of extranuclear electrons 
in Mg’* and Al°* is the same; but the neutron scattering lengths for Mg 
0-54 x 107 '? cm and for Al 0-35 x 1071? cm are sufficiently different to make a clear 
distinction in neutron diffraction patterns between the sites occupied by these two 
elements. For instance neutron diffraction shows unambiguously that MgAl,O, has 
the normal spinel structure (chapter 10). In a similar way neutron diffraction can be 
applied to the study of ordering in alloys such as CuZn (see chapters 10 and 13), the 
atomic numbers of Cu and Zn being respectively 29 and 30 so that X-ray diffraction 
cannot easily distinguish between Cu and Zn occupied sites. Contrariwise X-ray 
diffraction is better for the study of ordering in Cu—Au alloys since the atomic 
numbers of Cu and Au, respectively 29 and 79 are very far apart while their neutron 
scattering lengths, 0:79 x 10° ** cm and 0:76 x 107 '*.cm respectively, are very close 
together. 

Electron microscopy : 
We provide here only a very brief account of the theory and applications of electron 
microscopy, paying particular attention to applications in the field of mineralogy. 
For acomprehensive treatment of electron microscopy the reader is referred to Hirsch 
et al (1965) and for a good account of mineralogical applications to the chapter by 
McConnell in Zussman (1967). 

In an electron microscope the electrons emitted from a hot filament (the electron 
‘gun’) are accelerated through a high potential difference V, of the order of 105 volts, 
and so acquire kinetic energy eV, where e is the electron charge. The velocities of 
electrons so accelerated are not negligible in comparison with the velocity of light c 
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so that a relativistic correction has to be made. The wavelength of an electron is thus 
given by 

=4 
a Ham er(1 ee s)f 

2Moc 

where my is the rest mass of an electron. Thus when V = 1 x 10° volts, J is 0-037 A. 
Electrons are scattered by electric fields and so an electron beam may be diffracted 

by atoms whose size is comparable to the electron wavelength. Unlike beams of X-rays 
or neutrons, an electron beam can be brought to a focus by electrostatic or 
electromagnetic fields so that in principle electron beams can be used to form 
magnified images of objects in precisely the same way as light rays are commonly 
used; because electron beams have shorter wavelengths the resolution obtainable in 
an electron microscope, as little as 8 A,* is very much better than that obtainable with 

an optical microscope, about 10° A. The resolution of an electron microscope is not 
yet quite good enough to obtain an image of a crystal structure, but the instrument is 
nevertheless very valuable for the study of fine scale phenomena in crystals. It is 
particularly useful in that it can provide not only the image but also the diffraction 

pattern of the same small crystal. Its disadvantage, with respect to X-rays, is that only 
very thin crystals, a few hundred Angstrom units thick in the direction parallel to the 
incident electron beam, can be examined and the orientation of such a crystal can only 
be varied by about +30° relative to the incident electron beam; and, further, the 

crystals must be stable in high vacuum and unaffected by the local heating (usually 

several hundred degrees Celsius) caused by the incident electron beam. Moreover, in 
the electron microscope inelastic scattering of the incident electron beam by the 
specimen may not be negligible; this has the effect of decreasing the resolution of the 
microscope and of producing some complications in electron diffraction patterns. 
We now consider the diffraction patterns obtainable in the electron microscope 

and go on to discuss, in brief, the uses of electron microscopy in mineralogy. 
Since electrons are scattered by potential fields their scattering by an atom involves 

both its nucleus and its electrons. When an electron beam of unit amplitude is incident 
on an atom of atomic number Z the amplitude of the scattered electrons at a distance 

R from the atom is 

DRE UN an a 

f= (=A) Souitrse 
where f is the atomic scattering factor of the atom for X-rays and f, is known as its 
atomic scattering amplitude for electrons. The scattered amplitude thus varies with 
wavelength 4 and with scattering angle 0. It can be shown that for (sin 0)/A greater 
than about 0-4A~! scattering amplitude increases regularly with atomic number, 
while for (sin 0)/A less than about 0-4 A scattering amplitude does not vary in a regular 
manner. For elements of the first three periods of the periodic table there is actually 
a tendency for the scattering amplitude at small angles to decrease with increasing 
atomicnumber (Fig 9.2). On average one can say that at (sin 0)/A = 0, f,is proportional 

to /Z so that light elements are better scatterers relative to heavy elements for 
electrons than for X-rays for which f oc Z. So it would appear that electron diffraction 
might provide a useful means of determining the positions of light atoms in crystal 
structures, but uncertainties about the way in which the measured intensities of 

* Imperfections in the magnetic electron lenses, especially spherical aberration of the objective lens, make 
this practical limit of resolution significantly in excess of the theoretical limit. 
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sin 8/, 

Fig 9.2 The variation of atomic scattering amplitude for electrons f, with (sin@)/A for Na and 
Cl; f, is measured in A. The data plotted refer to electrons at rest; for electrons of velocity v it is 
necessary to make a relativistic correction by multiplying by (1— (v2/c2)) -3. 

electron reflexions are to be related to structure amplitudes limit the use of electron 
diffraction in structure determination. 

Substitution of numerical values in the expressions for the amplitude of the 
electrons and of the X-rays scattered by a given atom leads to the expression 
{08517 (Z— f) 10°}/(sin? 0)f for the ratio of the scattered electron amplitude to the 
scattered X-ray amplitude for the atom (A is measured in A). This ratio is of the order 
of 10* for small values of (sin 0)/A so that one can say that atoms scatter electrons 
very much more strongly than they scatter X-rays. 

If a crystal is correctly oriented in an incident electron beam to produce a strong 
Bragg reflexion, the electron beam may be completely reflected after it has traversed 
as few as 25 lattice planes. In X-ray diffraction however the possibility of complete 
reflexion of the incident beam does not arise until at least 10* lattice planes have 
been traversed. Because atomic scattering amplitudes for electrons are so high the 
assumption made in chapter 6 that diffracted X-rays are not rescattered becomes 
invalid for electron diffraction; a scattered beam of electrons may be rescattered 
during its subsequent path through the crystal and multiple diffraction then occurs. 
It is this possibility of multiple diffraction which makes the relationship between 
observed intensity and structure amplitude uncertain. Very thin crystals may be used 
to reduce the uncertainty, but they are liable to bend and it is necessary to use a very 
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narrow electron beam in order to ensure that diffraction occurs from a flat part of the 
crystal. Thus electron diffraction methods cannot easily be used for structure 
determination. 

Electron diffraction is used extensively in the study of very small crystals so that 
it is worth while here to explore the special characteristics of electron diffraction 
patterns. In doing so we shall need to make use of the concepts of the reciprocal lattice 
and the reflecting sphere which were developed for X-ray diffraction in chapter 6. 
We shall suppose that the crystals under examination are very thin flakes or plates. 
The method of sample preparation is such that the smallest dimension of the crystal 

is usually normal to a lattice plane of simple indices and this direction is parallel to 
the incident electron beam. Since the crystals are very thin, only a few unit-cells 
thick, in the direction of the incident electron beam we are justified in assuming that 
electrons are scattered once only. 

In deriving the conditions for diffraction by a crystal we assumed in chapter 6 that 
the number of unit-cells in the crystal was so very large that observable diffraction 

would only occur when waves scattered by each lattice point were in phase. In 
reciprocal space this condition is realized when the sphere of reflexion intersects a 
reciprocal lattice point. In a very thin crystal plate normal to [001] there are too 
few unit-cells in the z direction to produce complete destructive interference in all 
directions other than that for which there is a path difference of one wavelength for 
radiation scattered from adjacent unit-cells along the z direction. In consequence the 
condition imposed by the third Laue Equation is relaxed. Each reciprocal lattice 
point is drawn out into a spike normal to the plane of the plate, the spike extending a 
distance K/t in the [001] and [001] directions from each reciprocal lattice point 
(t = thickness of plate). 

In electron diffraction not only are we concerned with very thin crystals, but with 
very short wavelengths: the wavelength of the electron beam will be about 0-05 A so 
that, taking the reciprocal lattice constant K equal to unity, the radius of the 
reflecting sphere, K/A, will be about 20 A“! and reciprocal lattice constants will be of 

the order of 0:1-0:2A~ 1. Thus for a single orientation of the crystal the reflecting 
sphere is very likely to intersect several reciprocal lattice spikes and it becomes 
possible to record a diffraction pattern with monochromatic radiation and a 
stationary crystal. This point is illustrated in Fig 9.3, where an electron beam is 
shown incident along [001 | of an orthorhombic crystal plate, the large faces of which 
are parallel to (001). In the resultant diffraction pattern hkO reflexions lie in a circle 
at the centre of the photograph and hk1 reflexions lie in a concentric ring. 

Since the wavelength of electrons is small compared with the spacing of reflecting 
planes in a crystal the Bragg angles of the lowest angle reflexions are of the order of 
1°, very much less than for X-ray diffraction, and this has an interesting consequence. 

In Fig 9.4 the effective perpendicular distance from the specimen S to the film on 
which the electron diffraction pattern is recorded is L. Consider a reflexion at a 
distance R on the film from the intersection of the incident electron beam with the 
film. This reflexion is produced by the intersection of the reciprocal lattice spike 
through P with the reflecting sphere OQ. Since the Bragg angle 0 is very small 

tan 20 = R/L becomes 20 = R/L and, for the same reason, OP = OQ. 

But OP'=q* 

2 2 
and 0Q = sind ==. 
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Fig 9.3 The formation of a diffraction pattern by a monochromatic electron beam incident on a 

stationary crystal. The figure shows the reciprocal lattice rows OKO and 0k1 of a very thin 

orthorhombic crystal whose smallest dimension is parallel to [001]. The electron beam is incident 

parallel to [001]. The reflecting sphere is seen to intersect three reciprocal lattice spikes on either 

side of the origin in the zero layer and the seventh and eighth spikes in the first layer. The 

diffraction pattern obtained is shown on the right: the central circular area containing kO 
reflexions is separated from the concentric ring of Ak1 reflexions by an annular blank area. 

occ ee 
Therefore d* = ere: 

The observed diffraction pattern is thus an undistorted projection of the reciprocal 
lattice which gives rise to it. This property makes the interpretation of electron 
diffraction patterns rather easy once the effective crystal to film distance L has been 
determined; Lis not a simple length but depends on the magnification of the electron 
lens system and may be evaluated from measurements of the diffraction pattern of a 

substance of known unit-cell dimensions. 
Since the attitude of the crystal with respect to the incident electron beam can only 

be adjusted to a limited extent in the electron microscope the techniques of crystal 
orientation which we describe for X-ray diffraction in Appendix F are not available 
for electron diffraction and it becomes necessary to be able to index an electron 
diffraction pattern when the orientation of the crystal is unknown. This is quite 
straightforward provided the reciprocal lattice geometry of the crystal is already 

known. 
Electron diffraction is obviously valuable for the study of fine-grained materials 

whose crystals are too small for study by single crystal X-ray diffraction methods. 
Other applications make use of electron diffraction in conjunction with diffraction 
contrast, a phenomenon that is due to the very strong diffraction of electrons by 
crystals. Suppose that the electron microscope is focused on the lower face of the 
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aan Fig 9.4 The undistorted nature of electron 
incident diffraction patterns. In the figure the Bragg angle 
electron 0 is grossly exaggerated. The diagram is explained 
beam in the text. 

specimen so that an image of this plane is formed. For a normal image the diffracted 
rays from this plane are combined to form the image (Fig 9.1). But if an aperture 
were placed in the lens system of the microscope in the plane D so as to allow only 
the zero-order diffracted beam to pass through it, no detail would be visible in the 
image which would appear as a uniformly illuminated area corresponding to the 
shape of the object. If however the object is oriented so as to produce a strong 
Bragg reflexion, much of the incident electron beam will be reflected and the intensity 
of the image will be correspondingly reduced. When the crystal contains defects of 
such a nature that some parts of it are in a reflecting position and others not, those 
parts of the image which correspond to little or no diffraction will appear bright while 
those which correspond to strong diffraction will appear dark. Such a bright field 
image is useful for the study of defects in the crystal specimen. Alternatively the 
aperture may be inserted in the lens system of the electron microscope so as to allow 
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only the passage of a selected diffracted beam, say that corresponding to the 201 

reflexion. In these circumstances the image of the crystal will appear bright only where 
the corresponding parts of the crystal are correctly oriented to diffract the incident 
electron beam into the 201 reflexion. This experimental arrangement produces what is 
known as a dark field image. The dark field image provides information about which 
parts of the crystal specimen are so oriented as to contribute to the diffracted beam, 

in our example 201. In practice diffraction contrast provides the best mode of 
observation in transmission electron microscopy because, when the electron 
microscope is simply used to obtain a magnified image.of the specimen, the quality 
of the image is impoverished as the result of inelastic scattering. 

In an electron microscope it is a simple matter to adjust the lens system so that 
either the image plane or the diffraction pattern is focused on the screen. Thus it 
becomes possible to obtain an electron micrograph, a diffraction pattern, and dark 

and bright field images of the same small crystal. Moreover it is possible to insert an 
aperture in the lens system so as to record the diffraction pattern produced by a 
selected area (diameter about 1) of the specimen. In this way one can observe the 
diffraction patterns produced by the various parts of a crystal which exhibit diffraction 

contrast in bright and dark field images. This is a particularly useful technique for 
the study of polyphase systems and twins. 

The techniques that we have outlined in the last few pages provide powerful tools 
for the study, especially, of imperfections in small crystals. Defects in the perfectly 
regular arrangement of lattice points due to dislocations, bending of the crystal, or 
strains associated with the onset of a phase transformation can all be studied in this 
way. These techniques are also valuable for the study of exsolution (discussed 
thermodynamically in chapter 14), where there is an intimate coexistence of two 
phases, the lattices of which will be of slightly different dimensions and may be 
slightly differently oriented. They may also be particularly useful for the study of the 

fine scale twinning that results from cooling a crystal through a certain kind of 
polymorphic transformation; in such a specimen it is most likely that when one twin 
component is in the correct orientation for very strong diffraction of the incident 
electron beam the other twin component will diffract very feebly. The examples cited 
illustrate only a few of the many uses of the electron microscope in the study of thin 
crystals. For a comprehensive account of the applications of the instrument the 
reader is referred to the works of Hirsch et al. (1965) and McConnell in Zussman 
(1967). 
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10 
Crystal chemistry 

The diffraction methods explored in the preceding three chapters and especially the 
diffraction of X-radiation by single crystals provide the means by which the 
arrangement of atoms in a crystalline solid is determined. From such knowledge of 
atomic positions interatomic distances, i.e. bond lengths, and bond angles can simply 
be derived and may then provide information about the nature of the cohesive forces 
operative in the structure. Identification of the types of cohesive force operating in a 
particular structure then enable the physical and chemical properties of the solid 

substance to be understood. 
There is, at least in theory, an alternative approach to understanding the physical 

and chemical properties of a crystalline solid substance; that is the calculation of the 
energy of the crystal structure for the composition concerned. But in practice even the 
simplest crystalline solids are too complex for precise quantum mechanical 
calculations to be possible. The concepts of quantum mechanics that have proved so 
fruitful for the understanding of atoms and simple molecules can yield no more than 
a qualitative interpretation of the nature of the cohesive forces operative in crystalline 

solids; but although only qualitative the quantum mechanical approach is 
nevertheless informative. 

At the present stage of development of solid state chemistry the most fruitful way 

of approaching a crystal structure is to combine quantum mechanical concepts, 
necessarily qualitative, with the determined crystal structure and knowledge of 
observed physical and chemical properties; such an approach usually enables the 
factors determining the stability field of the crystalline solid and its reactivity to be 
identified. Identification of the atomic properties that determine the limits of stability 

and the reaction mechanisms of a crystalline solid are of prime concern to the solid 
state chemist and the mineralogist. 

In this chapter we shall do no more than scratch the surface of solid state chemistry. 
We shall confine our discussion to simple structures, considering the range of 

compounds that adopt particular structures, investigating the relationship between 
structure type and type of cohesive force, and attempting to establish why a particular 
compound assumes the structure it does in the crystalline state. We shall assume that 
the reader has the depth of knowledge of the electronic structure of atoms and of 
valence theory that can be obtained by reading any of the many excellent introductory 
textbooks of inorganic or theoretical chemistry. 
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Description of crystal structures 
In strictly formal terms a crystal structure is described completely by a statement of 
the dimensions of the unit-cell and the coordinates amd nature of every atom in the 

unit-cell. For crystallographic purposes it is important to supplement this information 
by astatement of the space group and the types of position, whether special or general, 
occupied by atoms; the space group symbol of course includes information about the 
crystal system, the point group, and the lattice type. But for the crystal chemist it is 

more immediately useful to have some simple statement, whenever possible, about 

the way in which atoms are associated in the structure; such a statement involves the 

concepts of close-packing and coordination polyhedra, which we now develop. 
It is convenient to begin our discussion of the description of crystal structures by 

considering the ways in which identical spherical atoms can be packed together so as 
to occupy the minimum possible volume, because so many actual structures can be 
described in terms of such close-packing of some or all of their constituent atoms. In 
taking this approach we are deliberately ignoring cohesive forces and treating the 
constituent atoms of the structure as inert rigid spheres. In the next few paragraphs 
we shall use the words sphere and atom without distinction. 

There is only one way in which spheres can be arranged on a plane so as to 
minimize the area occupied, and that is illustrated in Fig 10.1(a). In such a close- 

packed plane of spheres each sphere has six spheres in contact with it; the arrangement 
is based on a hexagonal plane lattice with one atom associated with each lattice point. 
A three-dimensional close-packed structure is obtained when close-packed planes are 
stacked in such a manner that the total volume occupied is minimized. This is 
achieved when one close-packed plane is superimposed on another close-packed 
plane so that three spheres in one plane are in contact with the same sphere in the 

other plane (Fig 10.1(b)). It is immediately apparent from the figure that there are 
two ways in which the second plane can be superimposed on the first to satisfy this 
criterion. 

It is convenient now to distinguish between close-packed planes with regard to the 
positions of their atoms in relation to the unit-mesh outlined in Fig 10.1(c), which 

has its x and y axes parallel to close-packed lines of atoms. A plane which has atoms 
with coordinates x = 0, y = 0, is designated a close-packed plane of type A. Planes 
with atoms at 3, 3 or 3, with respect to the unit-mesh are designated respectively B 
and C. In Fig 10.1(b) the lower plane is taken to be an A plane and the upper plane a 
B plane. Such an AB sequence of close-packed planes is equivalent to an AC 
sequence, the two sequences being interconvertible merely by rotation of the reference 
axes, x and y, through 60°. But the distinction between B and C planes becomes 
effective when we consider the superimposition of a third plane. Three-dimensional 
close-packing can be achieved by superimposing on an AB pair either an A plane to 
give an ABA sequence or a C plane to give an ABC sequence; in either case the atoms 
in the third plane lie immediately above ‘holes’ in the plane immediately below it, a 
B plane. In the ABC sequence the atoms of the third plane lie above ‘holes’ common 
to the two lower planes, whereas in the ABA sequence the atoms of the third plane 
lie directly above those of the first plane. 

Close-packed structures in which every sphere, or atom, is equivalent can be 
derived from the two infinite sequences ABABAB... and ABCABC... Many other 
sequences of close-packed planes, such as ABACABAC..., ABABCA..., are possible; 
but ABAB...and ABCABC...are the two simplest and moreover the only two in 
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Fig 10.1 Close-packing of spheres: (a) is the plan of a close-packed plane of spheres and (b) 
shows the superposition of one close-packed plane of spheres (shaded) on another (unshaded). 
The nomenclature of close-packed planes is indicated in (c), from which it is apparent that the 
lower and upper planes shown in (b) are respectively in the A and B orientations. 

which each atom is related to every other by either the lattice translation or a 

symmetry operator. 

The sequence of close-packed planes ABABAB..., which repeats every two layers, 
is known as hexagonal close-packing (Fig 10.2(a)); its space group is P63;/mmc and its 
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Fig 10.2 Hexagonal close-packing: (a) shows an hexagonal close-packed sequence ABAB .. . 
in projection on (0001) with the unit-cell outlined; the stereograms (b) show the disposition of 
nearest neighbours for a sphere in an A plane and a sphere in a B plane; and the sections (c) 
serve to demonstrate that c/a =,/8. 

point group 6/mmm. The close-packed planes are parallel to (0001) of the hexagonal 
unit-cell. Every sphere is in contact with twelve others, six in its own plane and three 
in each of the planes immediately above and below. Stereograms of the directions of 
the vectors joining any sphere to each of its twelve neighbours are shown in 
Fig 10.2(b); the disposition of the nearest neighbours to spheres in A and B planes 
differs only in orientation to the arbitrarily selected reference axes, x and y. In 
hexagonal close-packing the dimensions, a and c, of the hexagonal unit-cell are simply 
related to the radius, r, of the close-packed spheres. The x and y axes lie along close- 
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packed lines so that a = 2r. A section (Fig 10.2(c)) through the origin O parallel to 
(1210) shows the atom centred on P in contact with that centred on O so that 

OP = 2r=a. And by Pythagoras’ Theorem OP? = OQ?+QP?, where OQ = 
gacos30° = a/./3,and QP $e. Therefore a” = 4a7-4c*, ie, cla = x/$=1-63310A 
crystal in which the atoms are arranged precisely in hexagonal close-packed array 
thus has an hexagonal unit-cell, space group P63/mmc, and axial ratio c/a = 1-6331. 

The sequence of close-packed planes ABCABC..., which repeats every three layers 

(Fig 10.3(a)), is at first sight trigonal with a rhombohedral lattice. However this 
sequence gives rise to close-packed planes in other orientations so that there is 
additional symmetry and a special relationship between the dimensions a and c of 
the triple hexagonal unit-cell. This arrangement is based on a cubic F-lattice and has 
space group Fm3m, point group m3m; one atom is associated with each lattice point. 

The close-packed planes shown in Fig 10.3(a) are parallel to the (111) plane of the 
cubic unit-cell (Fig 10.3(b)) and they are repeated by its symmetry elements so that 
there are in all four orientations of close-packed planes, parallel to {111}. This 
sequence is known as cubic close-packing. Each atom is related to every other atom 

by a lattice translation of the cubic F-lattice and, as in hexagonal close-packing, has 

twelve nearest neighbours. But the vectors from an atom to its twelve nearest 
neighbours are differently disposed in cubic (Fig 10.3(c)) and hexagonal (Fig 10.2(b)) 
close-packing: in both there are six neighbours in the same close-packed plane, but 
the three in each of the adjacent planes are not directly superimposed in cubic as they 

are in hexagonal close-packing. It is evident from Fig 10.3(b) that atoms are in 
contact along the face diagonals of the cubic unit-cell, that is along ¢110) directions; 
the close-packed directions in the (111) plane are therefore [110], [011], [101], and 
their opposites. This point is illustrated in the stereogram Fig 10.3(d) showing 
vectors to nearest neighbours; Fig 10.3(d) is drawn in the conventional orientation 
for cubic stereograms with z at the centre whereas Fig 10.3(c) is drawn with [111] at 
the centre for ease of comparison with Fig 10.3(a). Since atoms are in contact along 
<110> directions the cubic unit-cell edge a is related to the atomic radius r by 
a = 2,/2r. The four atoms in the cubic unit-cell occupy a volume 4far* = na?/(3,/2). 
The percentage of the volume a? of the cubic unit-cell occupied by atoms is thus 

1007/(3./2) = 74-05 per cent. In any sequence of close-packed planes, whether cubic, 
hexagonal, random, or any other, the percentage volume of space occupied by the 

close-packed spheres is of course the same. That is to say any close-packed array fills 
space as efficiently as any other: but only the sequences known as hexagonal and 
cubic close-packing have all spheres necessarily equivalent. Cubic and hexagonal 
close-packing and sequences that can be described as mixtures of these two are the 
only close-packed sequences commonly found in actual crystal structures. 

In the description of crystal structures it is often possible to make the simplifying 
assumption (the validity of which we shall explore later in this chapter) that the 

atoms are all spheres in contact with one another. This is the assumption we have 
tacitly made in our discussion of close-packing where we have regarded the words 
atom and sphere as interchangeable. The strongest interactions between atoms in a 
crystalline solid will naturally be those between adjacent atoms so the nature of the 
distribution of atoms around one another will be one of the most significant features 

of the crystal structure. The term coordination is used to describe the number and 
arrangement of the near neighbours of an atom in a crystal structure, the number of 

near neighbours being known as the coordination number, In close-packed structures, 
as we have seen, each atom has twelve near neighbours: each, identical, atom can 
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Fig 10.3 Cubic close-packing. The sequence of close-packed planes ABCABC . . . is shown in 
(a) in projection on a close-packed plane, the planes A, B, C being at heights 0,4,2. The cubic 
F-cell is outlined in (a) and shown with lattice points on its underneath faces omitted in (b). The 
disposition of the vectors from an atom to its nearest neighbours is shown projected on a 
close-packed plane in the stereogram (c), where each vector is indexed on the cubic lattice. 
Close-packed directions and planes are shown in (d), which is oriented, unlike (a), (b) and (c) 
in the conventional orientation for cubic stereograms. 
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thus be said to have a coordination number twelve or to be twelvefold coordinated. 
Its coordination number does not however completely describe the coordination 

of an atom. We have already seen in hexagonal and cubic close-packing that, 
although the coordination number is twelve in both, the arrangement of near 
neighbours is different in these two types of close-packing. For the close-packed 
structures we illustrated the spatial disposition of near neighbours by drawing 
stereograms of interatomic vectors from the central atom to its near neighbours 
(Figs 10.2(b), 10.3(c)); but although this is always a useful mode of representation, we 

can often do better by making use of the concept of the coordination polyhedron. The 
atom whose coordination is under discussion is taken to lie at the centre of a 
polyhedron and its near neighbours at the coigns of the polyhedron; by stating the 
nature of the polyhedron, the coordination number and the spatial disposition of 

interatomic vectors are completely specified. For example in NaCl (Fig 10.4) each 
sodium atom is surrounded by six chlorine atoms, each chlorine atom being situated 
at a distance 4a in a direction (100) from the sodium atom. The group of six chlorine 
atoms thus lie at the coigns of a regular octahedron centred on the sodium atom. To 
describe the coordination of sodium by chlorine in this structure as octahedral at 
once gives the coordination number as six and the disposition of the interatomic 
vectors between sodium and chlorine as mutually perpendicular. In this structure 
chlorine is likewise octahedrally coordinated by sodium. 

Sodium chloride has cubic symmetry and in consequence the coordination 
octahedron is constrained to be a regular octahedron. But in many inorganic and 
mineral structures no such symmetry constraint operates so that coordination 
polyhedra may be distorted from regularity. The concept of the coordination 
polyhedron is only valuable when the shape of the polyhedron approximates to that 
of one of the regular solids. Fortunately this is quite commonly so. An example of 
extreme distortion is provided by the coordination of potassium by oxygen in the 
mineral sanidine KAISi,O,: nine oxygen atoms lie at distances between 2-7 and 
3-1A from the potassium atom and the potassium—oxygen vectors make various 
angles with one another. In a case such as this there is no advantage in visualizing a 
coordination polyhedron; it is better to illustrate the coordination of potassium by 
means of a stereogram showing the directions of the potassium—oxygen vectors, 
each pole being labelled with the length of the vector it represents. 

Fig 10.4 The NaCl structure: on the left is a perspective drawing of the structure, in the centre 
a plan of the structure on (001), and on the right a perspective drawing of the coordination 
octahedron of Cl- about Nat. Nat: solid circles. Cl-: open circles. The disposition of Na+ ions 
about a Cl ion is indicated on the left-hand diagram. 
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We now proceed to investigate the relationship between the size of an atom and 

the size of the atoms coordinating it for each of the three most symmetrical 

coordination polyhedra, the regular cube, octahedron, and tetrahedron. We continue 

to assume that all atoms are rigid, non-intetacting spheres and further assume that 

all the atoms coordinating the central atom are of the same kind. Let the radius of 

the central atom be r, and the radius of a coordinating atom be rx. If the structure is 

to be stable, all the coordinating atoms must be in contact with the central atom so 

that the length of any A—X interatomic vector will be d=r,+rxy. Moreover 

coordinating atoms cannot overlap so that the X—X interatomic vectors cannot be 

less than 2ry, that is to say any edge of the coordination polyhedron must be 

> 2r, in length. The geometry of the coordination polyhedron is determined by the 

relationship between the distance from its centre to a coign, d=r,+rx, and the 
limiting length of any of its edges t = 2ry. We consider first the cube (Fig 10.5(a)), 

where d is half the length of a body diagonal so that 

Therefore ratrx = i 2rx 

and hence “A = 1/3 —-P=0-732. 
Xx 

In the octahedron (Fig 10.5(b)) a central section passing through four coordinating 
atoms is a square so that 

2 
d= v2 t. 

2 

2 
Hence ra tly = “9 oI 

and “A= /2-1 =0-414, 
Up 

In the case of the tetrahedron it is geometrically most simple to consider the four 

coordinating atoms to occupy four of the eight coigns of a regular cube (Fig 10.5(c)); 
the resultant coordination polyhedron is then a regular tetrahedron. If the cube edge 
is a, then d = ~Fa and t = \/2a. 

(b) (c) 

Fig 10.5 Coordination polyhedra, the cube [8], the octahedron [6], and the tetrahedron [4]. 
Interatomic vectors A-X and X—X are respectively d and t. 
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In each case if the radius ratio r,/ry exceeds the limiting value the coordinating 
atoms will not be in contact along an edge of the coordination polyhedron but will 
be held apart because of the excessive size of the central atom. In the limiting case there 
is contact between the central atom and the coordinating atoms as well as between 
adjacent coordinating atoms. If however the radius ratio r,/rx falls short of the 
limiting value for the polyhedron concerned, adjacent coordinating atoms will be in 
contact with one another but not with the central atom; in other words the space 
available for the central atom is too large. 

We return now to close-packed structures to consider in terms of coordination 

polyhedra the interstices between the atoms in close-packed array. Interstices are of 
two types, octahedral and tetrahedral. Consider for example the two close-packed 
planes in orientations A and B shown in Fig 10.6(a). Octahedral interstices with their 
centres mid-way between the two close-packed planes have x and y coordinates 
corresponding to those of atoms in a close-packed plane in orientation C. Tetrahedral 
interstices lie in two sets of positions: one, at a height of three-quarters of the 
separation of the close-packed planes, is in the A orientation and the other, at a height 

(a) (b) 
Fig 10.6 _ Interstices between atoms in close-packed array. (a) shows a close-packed plane of 
type B (shaded circles) superimposed on a close-packed plane of type A (open circles) ; 
coordination polyhedra are outlined for one of the octahedral interstices c at z=4 (where zis a 
fraction of the separation of the A and B planes) and for one of each of the two types of tetrahedral 
interstices, type a at z= 3 (downward pointing tetrahedron) and type b at z= 4 (upward 
pointing tetrahedron). (b) shows the coordination polyhedra in cubic close-packing for the 
octahedral interstice at £,£,4 and for the tetrahedral interstice at 3,4, 4 outlined within the 
cubic unit-cell. 
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of one-quarter of the interplanar separation, is in the B orientation. In the unit-cell 

of the hexagonal close-packed arrangement (Fig 10.2(a)) the octahedral interstices thus 

have coordinates 4, 3, + and 4, 3, 3, while the tetrahedral interstices have coordinates 

0, 0, 3; 0, 0, 3; 3, 4, 4; and 3, 4, Z. In the whole structure there are one octahedral and 

two tetrahedral interstices per atom. 

For cubic close-packing we refer the coordinates of interstices to the cubic unit-cell 

(Fig 10.6(b)). Octahedral interstices are centred on 4, 4, 5 and positions related thereto 

by F-lattice translations, i.e. 0,0,4; 0,3,0; and 4,0,0. Tetrahedral interstices are sited 
at +441 and positions related thereto by F-lattice translations, i.e. +444; i435 
+433. Again the frequency of interstices per atom is one octahedral and two 
tetrahedral. 

In many essentially ionic structures, both inorganic and mineral, the anions are in 
approximately close-packed array and the smaller cations occupy octahedral or 

tetrahedral interstices within the array. Usually the cations are too large to fit into 
interstitial sites without distorting the anion array from strict close-packing, but to 
describe such structures in terms of approximate close-packing of anions with 
cations on interstitial sites is generally worth while. For instance the sodium chloride 
structure may be regarded as a cubic close-packed array of chloride anions with the 
smaller sodium cations occupying all octahedral interstices. 

Cohesive forces in crystals 

Electrons in the complete electronic shells of an atom are relatively little affected by 
the presence of neighbouring atoms so that in any simple study of bond formation 
only the outer, or valency, electrons need be considered. The way in which the valency 
electrons of the bond-forming atoms are disposed provides a means of classifying 
crystalline solids into ionic, covalent, and metallic types, which are, as we shall show, 

also distinguishable by their physical properties. In ionic solids valency electrons are 
localized on individual atoms so that positively and negatively charged ions are 
produced. The cohesive force in ionic solids is then essentially electrostatic. In 
covalent solids some or all of the valency electrons occupy molecular orbitals which 
extend over two atomic nuclei so that the valency electrons are effectively localized 

between a pair of atoms. Such solids are held together by the presence of electrons 
in molecular orbitals which have the effect of binding atoms to one another in pairs. 
In metallic solids the valency electrons of the constituent atoms are not associated 

with particular atoms but are delocalized. At this first approximation level of 
argument the valency electrons can be regarded as able to move freely throughout 
the structure. The cohesive force in metallic crystals arises from the interaction 
between peripatetic valency electrons and positively charged atoms. 

The classification of crystalline solids into three types is of course a sweeping 
generalization. The three types are in reality three extreme types of crystalline solid 
and there are many intermediates known. Nevertheless the three extreme types 
provide models of bonding to which many actual structures can be shown to 
approximate. 

Before exploring in greater detail the cohesive forces operative in crystalline solids 
that can be classified as ionic, covalent, or metallic it is necessary to consider a mode 
of interatomic interaction that is present in all crystalline solids but dominant only 
in molecular crystals; this type of interaction is that produced by the ubiquitous 
van der Waals forces. 
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Van der Waals interaction 
From the classification of crystalline solids outlined above one type has been omitted. 
This is the class of so-called molecular crystals, which are composed of atoms or 
discrete groups of atoms in which valency requirements are fully satisfied within the 
atom or group. Examples of molecular crystals are the noble gases, which can be 
crystallized at low temperatures and have their electrons only in completely filled 
electronic shells, and such substances as iodine and benzene which exist as free 

molecules outside the solid state. The great majority of substances that form molecular 
crystals are organic and not of primary concern to us here; but the relatively weak 
intermolecular forces that determine the configuration of such crystals are operative 
also in all other types of crystalline solid and cannot be ignored. These forces are 
known as van der Waals or London forces. 

Van der Waals forces operate in all states of matter and are perhaps most familiar 

in the gaseous state where they are in part responsible for deviations of real gases 
from the ideal gas equation. In the van der Waals equation of state for a gas 
[P+(a/V7)](V—b) = RT the term a/V? is attributable to van der Waals forces. 
These forces are diverse in origin: in classical terms the principal contribution to 
them, where non-polar atoms or molecules are concerned, arises from the interaction 
of non-permanent dipoles. In, for example, the noble gas neon the K and L shells are 
filled and the electron density distribution is spherically symmetrical so that the atom 
is non-polar. But this statement is not strictly true because electron density 
distribution is a time-averaged property: at any given instant the electrons may not 
be symmetrically distributed about the nucleus so that the atom is at that instant 
dipolar. The dipole moment will vary continuously in magnitude and direction, its 
average over a period of time being zero. The instantaneous dipoles on each neon 
atom will however interact and it can be shown that the resultant interaction energy 
between a pair of atoms separated by a distance d is proportional to d~ °. In addition 
such atoms will also have instantaneous quadrupole moments giving rise to dipole- 
quadrupole and quadrupole-quadrupole interactions whose energies are proportional 
to d~® and d~ !° respectively. None of these instantaneous interactions gives rise to 
any directional effect when averaged over a period of time so the maximum interaction 
energy will be achieved simply when the atoms are packed as closely together as 

possible. 
The atoms do not however approach one another infinitely closely because 

repulsive forces come into play when the electron clouds of adjacent atoms begin to 
overlap. Quantum mechanical arguments suggest that the energy of interaction due 
to such repulsive forces, the overlap energy, is proportional to e “/*, where f is a 
constant. However for the purposes of simple calculations it is adequate and usual to 
take the repulsive forces as proportional tod", where 8 <n < 10; the overlap energy 
is then proportional to d~"*! with limits d~’ and d~°. Figure 10.7 shows the 
variation of van der Waals energy and overlap energy with interatomic distance for 
a pair of atoms. It is apparent from the figure that the overlap energy increases very 
sharply when the interatomic distance falls below its equilibrium value. This of course 
means that a pair of atoms at their equilibrium separation will be strongly resistant 
to compression; they can be regarded effectively as rigid spheres so that in structures 
composed of like non-polar atoms, such as crystalline neon, the atoms can be 

considered as rigid spheres of radius equal to half the observed interatomic distance. 
Such atomic radii have no physical significance outside the crystalline state, where 
they represent half the equilibrium separation of atoms; the atom itself has no 
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Fig 10.7. The potential energy, V (solid 
curve), of a pair of atoms plotted as a 
function of their separation, x. The potential 

» energy, due to long-range attractive forces 
(V,) and to short-range repulsive forces (V,) 
is plotted as broken curves. The equilibrium 
separation x, occurs when the resultant 
potential energy is a minimum (V4). 

definable boundary, its electron density falling off gradually to zero only at infinity. 
It is only when atoms are juxtaposed in equilibrium in a crystal structure that it is 
reasonable to assign them radii, the magnitudes of the radii being such that their sum 
is equal to the observed interatomic separation in the structure. To the crystal- 
lographer radius is thus an important atomic property. 

Since van der Waals forces are non-directional, structures composed of atoms 
whose interactions are limited to van der Waals and overlap interactions will have 
their atoms packed together as closely as possible, that is to say in crystallographic 
terms, they will be close-packed structures. This is so for all the noble gas elements 
whose crystal structures have been determined. And in molecular crystals generally 
only van der Waals and overlap forces are operative so that the molecules will be 
packed together as closely as possible having regard to molecular shape. For instance 
in iodine the diatomic molecules all have their lengths parallel to a plane and are 
arranged in a characteristic herring-bone pattern (Fig 10.8); each molecule in a 
particular plane is in contact with four molecules in its own plane, four molecules in 
the adjacent plane above and four in the adjacent plane below so that the molecules 
are packed together as tightly as possible. The contrast between the intra-molecular 
I-I separation of 2:68A and the closest distance of approach of iodine atoms in 
neighbouring molecules, 3:54 A, provides some indication of the relative magnitudes 
of covalent and van der Waals forces. 

The three ideal types of bonding 

We return now to consideration of the cohesive forces that are mainly responsible for 
the structures of inorganic and mineral crystals. We consider three idealized models 
in turn: the metallic, covalent, and ionic bonds. We shall in the ensuing paragraphs 
discuss the structures to which each model would be expected to give rise and later 
on examine a variety of simple crystal structures in order to explore the validity of 
the classification of bonds into these three types. 

The simplest description of the model metallic bond is provided by the statement 
that in a metallic bonded crystal structure the valency electrons have complete 
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Fig 10.8 The crystal structure of iodine. The left-hand diagram is a plan on (100) of the 
unit-cell of |,. The right-hand diagram shows the I, molecules at x =4 (shaded) superimposed on 
the sheet of |, molecules at x =O (unshaded). The unit-cell is an orthorhombic B-cell, an 
unconventional orientation. 

mobility within the structure. This model has been developed to explain why metals 
crystallize in certain structures and to account for some of their physical properties, 
such as the characteristic mechanical behaviour of metals. 

In this simple model metal atoms have inert gas configurations and are positively 
charged ions so that the cohesive forces will arise from interaction between the metal 
cations and the free roving electrons. Attractive forces arising in this way must be 
non-directional and give rise to maximum interaction energy when the metal occupies 
the minimum possible volume. This minimum is determined by equilibrium between 

the attractive forces and repulsive forces due to interaction between like charges and 

to overlap of the electron clouds of adjacent atoms. At equilibrium the metal structure 
can thus be regarded as a close-packed array of spherical atoms, the atomic radius 
being half the distance of closest approach of atoms in the structure. 

The simple model of the metallic bond thus leads to the conclusion that metals 
should have close-packed structures. To establish whether a particular metallic 
element crystallizes in the hexagonal or cubic close-packed structure or with some 
more elaborate sequence of close-packed planes requires a more sophisticated model 

thatis able to take account of interactions of at least second nearest neighbour atoms. 
Intuitively one might suppose that many metals will have the simple cubic or 
hexagonal close-packed structures and, as we shall see later in this chapter, this is 
found to be so. 

In the ideal model of the covalent bond valency electrons occupy molecular orbitals 
so as to be effectively localized between atoms. In many structures the molecular 
orbitals extend over only two atomic nuclei and may be formed by linear combination 
of one atomic orbital of each of the two atoms. The strength of the resultant covalent 
bond will depend on the extent of overlap of the two atomic orbitals, so that it is 
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Fig 10.9 sp? hybrid atomic orbitals. (a) boundary surface of an sp? hybrid atomic orbital; the 
surface is cylindrically symmetrical about the line aa’. (b) perspective drawing to show the 
tetrahedral disposition of sp? orbitals. 

rather common for covalent bonds to be formed from hybridized atomic orbitals. 
The number of covalent bonds that an atom can form depends on its electronic 

configuration and the direction of the bonds is determined by which atomic orbitals 
are combined to form molecular orbitals. The covalent bonds that an atom can form 
are thus limited in number and restricted in direction. By way of example we take 
carbon, which has four valency electrons and can therefore form four covalent bonds. 
Maximum overlap of atomic orbitals is achieved when the four valency electrons are 
in sp? hybrid orbitals, which have their directions of maximum electron density 
disposed towards the corners of a regular tetrahedron centred on the carbon nucleus 
(Fig 10.9). When molecular orbitals are formed from these sp* atomic orbitals the 

carbon atom will be tetrahedrally coordinated; this is the situation in the covalent 
bonded crystalline form of carbon, the mineral diamond. In diamond the carbon atoms 
are disposed on a cubic F-lattice with two atoms associated with each lattice point 
(Fig 10.10). The coordination tetrahedron about each atom is oriented so that its 

no|— 

z 
2 

Fig 10.10 The crystal structure of diamond. On the left is a clinographic drawing of one 
unit-cell with interatomic vectors drawn in. On the right is a plan of one unit-cell on (001) 
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faces are parallel to {111} planes. The point group is m3m. A crystal of diamond is 
effectively a macro-molecule; all the bonds in the crystal are covalent bonds which 
are very strong and consequently diamond crystals are extremely hard. The 
requirement that the bonds from each carbon atom should be tetrahedrally disposed, 
because otherwise molecular orbital formation would not be energetically effective, 
leads to a very open structure, that is to a very low density; if the atoms are taken to 
be spherical with radii equal to half the equilibrium distance (1-544 A) between nearest 
neighbours, then the proportion of the volume of the unit-cell occupied by carbon 
atoms can simply be calculated as 34 per cent, whereas the corresponding proportion 
for close-packed structures is 74 per cent. 

A radius can be assigned unambiguously to covalently bonded atoms in crystals of 

the elements, such as carbon in diamond. But if such radii are summed to give an 

estimate of the length of the covalent bond between two different elements there may 
be considerable discrepancy between the calculated and observed bond lengths 
because covalent radii vary with the atomic orbitals used for bond formation and are 
moreover only precise for bonding between atoms of approximately equal electro- 
negativity (Table 10.9). For example silicon crystallizes with the diamond structure, the 

equilibrium distance between silicon atoms being 2:352A and the radius of the 
silicon atom 1:176A. Silicon carbide, SiC, crystallizes in a variety of structures one 
of which has a structure simply related to that of diamond by substitution of Si for 
one of the C atoms of the repeat unit (this is identical with the structure of the 
mineral blende, ZnS, shown in Fig 10.19) so that every atom is tetrahedrally 
coordinated to four atoms of the other element. The sum of the covalent radii of C 
and Si determined from observed bond lengths in crystals of these elements is 1-948 A; 
the observed C—Si bond length in the compound is 1-888 A. The discrepancy arises 
because the C—Si bond is not purely covalent. In general one can say that the length 
of a bond between unlike elements is very closely equal to the sum of the covalent 
radii determined in the two elements only when the electronegativities of the two 
elements are of similar magnitude; when there is a substantial difference in 

electronegativity, as between C and Si, the bond will not be purely covalent and will 
not be equal in length to the sum of the covalent radii determined from crystals of the 
elements concerned. 

In covalent bonds between like atoms the electrons involved in bond formation 
will be equally shared between the two atoms and the bond will have no polarity; 
such a bond is an ideal covalent bond. But when the two atoms are of different 
elements the atomic orbitals of each that are involved in bond formation will not play 
equal parts in molecular orbital formation and consequently the valency electrons in 
the bond will spend more time near one atom than the other. Such a bond will have 
at least a slight polarity; that is to say it will have some ionic character. 

Purely covalent bonding is relatively rare in inorganic and mineral structures, 
although many such structures contain bonds that involve some proportion of 
covalent bonding. Covalent radii are consequently of little significance in the field with 
which we are concerned. 

A selection of the hybrid orbitals that give rise to commonly observed coordination 
polyhedra are set out in Table 10.1. In reading this table it should be remembered 
that while either ionic or covalent bonding can give rise to tetrahedral or octahedral 
coordination, only covalent bonding can produce square planar or trigonal prismatic 

coordination. 
In the model ionic bond each constituent atom in the structure has a noble gas 
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Table 10.1 
Hybrid orbitals giving rise to commonly observed 

coordination polyhedra 

Coordination Hybrid Coordination 7 
number orbital polyhedron 

2 sp linear 

3 sp? triangular 

4 sp° tetrahedral 
dsp” square planar 

6 d?sp? octahedral 
d*sp trigonal prism 

configuration so that every cation and anion has a spherically symmetrical 
distribution of electron density. Positively and negatively charged ions attract each 
other with a force that is inversely proportional to the square of the distance between 
them; their interaction energy is therefore proportional to the distance d between their 
centres. As the two oppositely charged ions approach, their electron clouds 
increasingly overlap and repulsive forces become significant. The repulsive forces 
operative in ionic crystals are of the same nature as in molecular crystals; the energy 
of repulsive interaction is represented accurately as e “/* and approximately as d~" 
where 7 <n < 9. Equilibrium is attained when the essentially electrostatic attractive 
forces are balanced by the repulsive overlap forces. Figure 10.7 illustrates the variation 
of energy with interionic separation. Since overlap energy increases rapidly as the 
interionic distance falls below its equilibrium value ions in ionic crystals behave rather 
like hard rubber balls. 

The electrostatic energy of an ionic crystal depends on the arrangement of all the 
ions in the crystal so that any arrangement in which every ion is coordinated with 
as many as possible ions of opposite charge will be favoured. Overlap energy however 
merely depends on the closeness of approach of neighbouring ions. The equilibrium 
distance between the ions of two given elements may thus be expected to vary with 
the geometry of the several structures in which they occur. However the steepness of 
the increase in repulsive energy at short interionic distances may be expected to make 
the variation in length of a given ionic bond in different structures relatively small. 

In any group of isostructural compounds equilibrium cation—anion distances vary 
regularly from compound to compound. This point is exemplified in Table 10.2 
which shows equilibrium interionic distances in those alkali halides that crystallize 
with the NaCl structure. One can, for instance, see that interionic distances in the 
fluorides are systematically about 0-50 A shorter than in the corresponding chlorides 
and similarly the potassium salts have interionic distances shorter by about 0:14A 
compared with corresponding rubidium salts. On the basis of such comparisons it is 
evidently reasonable to assign radii to ions in ionic crystals. Such ionic radii will not 
be precise because the difference in observed interionic distance in corresponding 
series of salts of any two selected ions is only approximately constant; nevertheless 
a set of ionic radii would be a useful guide for the prediction of interionic distances. 
Such ionic radii have no physical significance outside the crystalline state; in general 
an atom or ion cannot be assigned a definite size, but it is useful and, up to a point, 
valid to regard ions in crystal structures as rigid spheres of determinable radius. 

X-ray diffraction techniques provide a means of determining crystal structures 
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Table 10.2 

Observed interionic distances in alkali halides with the NaCl structure 

Li* Nat Parkes Rb* Sgn 

F- 201 2:31 2:67 2:82 3:00 
Ce 2°57 2:81 3-14 3-29 
Br 2:75 2:98 3-29 3-43 
is 3-00 3-23 3-53 3-66 

Differences: 

Ths Nat K* Rb* 

(R—Cl)—(R—F) 0:56 0-50 0:47 0:47 
(R—Br)—(R—Cl) 0:18 0-17 0-15 0-14 
(R—I)—(R—Br) 0:25 0:25 0:24 0:23 

(Na—X)—(Li—X) (K—X)—(Na—X) (Rb—X)—(K—X) (Cs—X)—(Rb—xX) 

re 0:30 0:36 0:15 0-18 
Gie 0:24 0:33 0-15 
Br 0:23 0:31 0-14 
IT 0-23 0:30 0-13 

from which equilibrium distances between adjacent ions in the structure can simply 
be evaluated. There remains the problem of how to establish a set of ionic radii 
from such information about sums of radii taken in pairs. In the first effective attempt 
to solve the problem, Landé assumed that Lil was precisely at the limit of stability 
of octahedral coordination, with the lithium cations fitting exactly into octahedral 
interstices in an ideally close-packed array of iodide anions (c.f. the NaCl structure, 
Fig 10.4). The iodide anions will then bein contact along face diagonals of the unit-cell 

so that r;- = 4a,/2. Lithium and iodine ions are in contact along the unit-cell edges 
so that rj- +r,j+ = 7a, whence r,;+ = Za(2—,/2). Once the radius of one ion has been 
evaluated in this way the radii of other ions can be simply determined from measured 

interionic distances in crystals of appropriate compounds. More reliable determina- 
tions of ionic radii have subsequently been achieved by assuming that the size of an 
ion in an ionically bonded structure is directly related to some property of the free 
ion such as its polarizability. One of the most valuable sets of ionic radii evaluated 
by such means is that due to Goldschmidt (1926), whose cation radii were improved 

by Ahrens (1952). Table 10.3 is based on these two publications. Other sets of radii do 
not differ greatly and all give useful estimates of interionic distances. Comparison of 
observed interionic distances with those calculated from Ahrens—Goldschmidt radii 

Table 10.3 
lonic radii for octahedral coordination according to Ahrens (1952) for cations 
and Goldschmidt (1926) for anions. Radii are in Angstrom units. 

Ag* 1:26 Cu* 0:96 Mn?* 0-66 Sate 0-71 
Al’* 0-51 Cu?* 0:72 Mo®* = 0-62 St 1:12 
Au* 37, Fe** 0-74 Na* 0:97 pe 0-68 
Ba** 1:34 po" 0-64 Nb°* 069 a 1-47 
Be** 0-35 Ge*t 0:53 Ni** 0-69 wet 0:62 
Cex 0-99 Hg?* 1:10 ps 0-35 Zar" 0:74 
a a 0:97 Kt 1:33 Phar 1:20 Za 0:79 
Cot" 0-72 1G 0:68 Rb* 1-47 
ay 0-63 Mg** 0-66 Sie} 0-42 
ee 1-67 Mn?* 0:80 Sa-* 0:93 

Br- 1:96 Pa 133 OF a. 1:40 
Cie 1-81 i 2:20 ae 1-74 
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Table 10.4 
Comparison of observed interionic distances (A) for alkali 
halides with the NaCl structure with Ahrens-Goldschmidt 
radius sums 

ba Nat Ke Rb*t Os" , 

p- Jobs 201 231 2-67 2:82 3-01 
=r 201 2:30 2-66 2:80 3-00 

c- 406s 2:57 281 314 3:29 a 
Dr 2-49 2:78 314 3:28 3-48 

Br obs 2:75 2-98 3-29 3-43 me 
PP Asy 2-64 2-93 3:29 3-43 3-63 

1- Jobs 302 3-23 3-53 3-66 = 
=r 2:88 3-17 3-53 3-67 3-87 

show (Table 10.4) that, while the relevant radius sum rarely agrees precisely with the 
measured interionic distance, the agreement is usually sufficiently close to justify the 
concept of spherical ions of definite radius in the alkali halides and this is so generally 
in ionic crystal structures. The sources of the discrepancy are various: the 
equilibrium distance between any two oppositely charged ions will not be determined 
exclusively by their mutual interaction but must depend more or less on interactions 
with other constituent ions in the structure and it has to be borne in mind that 
van der Waals forces will generally make some contribution, perhaps only a small 
contribution, to the attractive forces operating. 

Recently ionic radii of the alkali metal and halide ions have been evaluated from 

measurement of interionic distances, thermal expansion coefficients, and isothermal 

compressibilities of single crystals of the alkali halides making use of the theoretical 

Born model of ionic solids.’ The resultant ionic radii (Table 10.5) differ significantly 
from the generally accepted values, cation radii being about 0:20 A larger and anion 
radii correspondingly smaller. These radii yield interatomic distances in excellent 
agreement with those determined directly by X-ray structure analysis for alkali halides 
with the NaCl structure. 

Another way of determining ionic radii is to make a very thorough X-ray 
diffraction study of a simple salt so that the electron density distribution over the 
would be expected to be very nearly zero and the ions to be demonstrably spherical. 
Table 10.5 

Comparison of Fumi—Tosi radii with Ahrens radii for alkali metal ions and 
Goldschmidt radii for halide ions in octahedral coordination. All radii are 
in 

1S Na* eu Rb* Gsa 

Ahrens 0-68 0:97 1-33 1-47 1-67 
Fumi-Tosi 0-90 1:21 Loi 1-65 1:80 

Ts Gls Bro ie 

Goldschmidt 1-33 1-81 1:96 2:20 
Fumi-Tosi 1-19 1-65 1:80 201 

unit-cell can be calculated very accurately. The point at which the electron density is 
at a minimum on the line joining two neighbouring ions can then be taken as the 
point of contact of the two ions and determines the radius of each in the substance 
under investigation. In a purely ionic compound the minimum of electron density 

'For further information about this approach see M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids, 
25 (1964), 45. 
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Na Cl 

Li F 

Fig 10.11 Electron density contours in xyO sections of LiF and NaCl. Cations at 0, 0, 0; 4,4, 0, 
and anions at 3, 0, 0; 0,4, 0 only are shown. Contours are drawn at the same intervals in each 
section. In both salts electron density falls off from the centre of the ion more rapidly for the cation 
than for the anion. Such electron density maps yield ionic radii in agreement with those of Fumi 
and Tosi. 

Few such studies have actually been made because it is experimentally difficult to 
achieve the requisite accuracy; but among the few are studies of NaCl and of LiF 
(Fig 10.11). The study of LiF is particularly interesting because it indicates that the 
cohesive forces operating are not purely ionic in character: neither type of ion is 
exactly spherical and the minimum electron density on the Li—F join is not even 

approximately zero. The conclusion that the Li—F bond has some covalent character 
is inescapable. 

In crystal chemistry it is a convenience to be able to use ionic radii to interpret 

simple and complex structures in terms of packing considerations, but it must always 
be borne in mind that this is a grossly simplified approach. In the crystalline state 
ionic radii have precise significance only in the structural context in which they were 
determined. Ahrens—Goldschmidt radii and radii derived from the Born model are 
variously appropriate for the study of particular properties, each set being internally 
consistent at least to the extent that it gives approximate agreement with measured 
interionic distances. In the rest of this chapter we shall use Ahrens’ set of ionic radii— 
which are more appropriate for simple packing considerations—except where we 
specify that other radii are being employed for a specific purpose. 

All sets of ionic radii have been determined for octahedral coordination and have 
to be modified for other coordination polyhedra. The equilibrium separation of a 
given cation—anion pair will depend on cation—anion and anion—anion interactions 
in the structure and so on the coordination number of the cation. For example CsCl 
can crystallize under different physical conditions with the CsCl-type structure (Fig 
10.17), in which the coordination number of Cs* is 8 and its coordination polyhedron 
a cube, and with the NaCl structure in which the coordination number of Cs* is 6 

and its coordination polyhedron an octahedron; the Cs—Cl bond length in the former 
is 3-57 A and in the latter 3-47 A. 

In general one can say that the radii of ions are 3 per cent larger in cubic 
coordination compared with octahedral coordination and 5-7 per cent smaller in 
tetrahedral compared with octahedral coordination. Tables of ionic radii in most 
works refer to octahedral coordination and it is necessary for the user to make the 

appropriate adjustments for other coordinations. 
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As we have already shown ions in ionic structures can be regarded as fairly rigid 
spheres so that at equilibrium adjacent ions are in contact and their separation is 
approximately equal to the sum of their ionic radii. The stable structure, that is the 
structure of lowest energy, will be such that the electrostatic energy of interaction is 
as large as possible; this situation will be achieved when ions of one sign are 
surrounded by as many as possible of the opposite sign. Since cations are generally 
smaller than anions the most stable structure for a purely ionic substance will be that 
which has its cations in contact with as many anions as possible. The coordination 
number of the cations is limited by the necessity to satisfy the criterion that cations 

and neighbouring anions should be in touch and the anions should not overlap; in 
geometrical terms this amounts to requiring that the separation of the cation and 
neighbouring anions should be equal to the sum of their radii and that the separation 
between neighbouring anions should be greater than or equal to twice the anion 
radius. In the structures of simple AX compounds these requirements are satisfied by 
cubic, octahedral, or tetrahedral coordination of cations by neighbouring anions. 
Ideally, as we showed earlier in our discussion of coordination polyhedra, a cation 
should adopt cubic (8-fold) coordination when r,/rx > ,/3—1, octahedral (6-fold) 
coordination when ,/3—1 > r,/ry > ./2—1, and tetrahedral (4-fold) coordination 
when ./2—1 > ra/rx > ,/3-1. 

All the alkali—halides except CsCl, CsBr, and CsI crystallize with the NaCl structure 
at room temperature and it is to be expected that their radius ratios satisfy the 
criterion \/3—1 > r,/rx > ./2—1. Inspection of the relevant radius ratios listed in 
Table 10.6 shows that the criterion is not satisfied by this simple series of isostructural 
salts. The radius ratios of LiCl, LiBr, and Lil indicate tetrahedral coordination while 

those of KF, RbF, RbCl, RbBr, and CsF indicate cubic coordination. That the radius 

ratio criterion is not rigorously applicable is not surprising: equilibrium interionic 
separations do not depend solely on nearest neighbour cation—anion interaction, but 
also on interactions between ions of like charge. Such interactions between ions of 
like charge will become especially significant as the radius ratio approaches its lower 
limit for the postulated coordination; in these circumstances anions will be very nearly 
in contact so that anion—anion interactions may be expected to exercise a decisive 
effect. Anion—anion repulsion will tend to separate adjacent anions to a distance 
greater than the sum of their formal radii and so increase cation—anion separation; 
the resultant effect is in favour of a higher coordination number. This explains, at 

Table 10.6 

Radius ratios for the alkali halides 

The ratios shown are based on Ahrens cation radii and Goldschmidt anion radii for octahedral 
coordination. 

i Na* Koo Rb*t Coe 

FE f O-S11 0-729 ' 1-000 1:106 1-255 } 
Cyan 0:376 | 0-536 gag 0-812 £0923 
Berens | 0:347 0-495 0-680 $ 0-750 } 0-852 
i 0:309 } 0-441 0605 0-668} ¢ 0-760 
The alkali halides that fall between the solid lines have radius ratios J2nd Sry 3h 
and should have the NaCl structure; those between the dashed lines crystallize in that structure 
at room temperature. 
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least qualitatively, why LiCl, LiBr, and Lil are found to have the 6-fold coordinated 

NaCl structure at room temperature and why the interionic distances in these salts 
are consistently greater than the sum of the relevant ionic radii for octahedral 
coordination. Indeed in general simple binary salts with radius ratios marginally 

below ,/2—1 adopt the NaCl structure. 
To explain why the NaCl structure is adopted by alkali halides with radius ratios 

slightly in excess of wf 3—1 it is necessary to bear in mind that in the real crystal the 

cohesive forces are unlikely to be purely electrostatic. If there is any appreciable 
covalent content in the bonds simple geometrical arguments will not be applicable. 
In this context it is relevant to note that the lattice energies of the NaCl (octahedral 
coordination) and CsCl (cubic coordination) structures are closely similar so that it is 

reasonable to expect subsidiary interactions to play a critical role in determining 
which structure is adopted in alkali halides with radius ratios close to \/3—1. Slight 
covalent character and van der Waals forces may well tip the balance, but one cannot 
be sure in the present state of knowledge precisely why KF, RbF, RbCl, RbBr, and CsF 
adopt the 6-fold coordinated NaCl structure. When the radius ratio is substantially 
greater than ay 3 —1, as is the case in CsCl, CsBr, and CsI, the 8-fold coordinated CsCl 

structure is adopted in conformity with radius ratio predictions. 

Crystal structures of the elements 

We now proceed to describe the crystal structures of a selection of those chemical 
elements that form crystalline solids under atmospheric conditions and to relate the 
structures found to the bond models, van der Waals, metallic, and covalent. It will 

become apparent as we proceed that, while some elements have crystal structures 
typical of one of the bond models, others have structures that cannot be so simply 

classified. 
Most metals adopt one of three simple structures: cubic close-packed, hexagonal 

close-packed, or body-centred cubic. The first and second of these we have already 
discussed in general terms; the third has a cubic I-lattice with one atom associated 
with each lattice point (Fig 10.12). Every atom thus has an identical environment 
with cubic coordination, the eight atoms of the coordination polyhedron being 
situated at distances 3(a,/3) in (111) directions from the selected atom. If each atom 

1 1 41 
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Op O5 O} ° 
Fig 10.12 The body-centred cubic metal structure. On the left is a plan of the structure on 
(001) with the unit-cell outlined. The stereogram on the right shows the disposition of interatomic 
vectors from an atom to atoms a distant 4 (a,/3) and to atoms b distant a. 
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is taken to be a sphere of radius 4(a,/ 3), that is half the distance of closest approach, 

then it can simply be shown that 68 per cent of the volume of the unit-cell is occupied 
by metal atoms. That this percentage falls so little short of the corresponding figure 
for close-packed structures, which we have shown to be 74 per cent, suggests that the 

body-centred cubic metal structure is very nearly close-packed; yet the coordination 
number is only eight compared with twelve in the close-packed structures. However 
in addition to its eight nearest neighbours every atom has six neighbours that are 
only slightly further removed: these atoms are disposed in (100 directions about the 
selected atom and distant from it one unit-cell edge a. The distance to the six 
second-nearest neighbours is thus only 15 per cent greater than that to the eight 
nearest neighbours so that one can say that every atom is close to fourteen others in 
body-centred cubic metals; in close-packed metals of course every atom is equally 
close to twelve others. 

The crystal structures adopted by a selection of metals at room temperature and 
pressure are shown in Table 10.7. Itis immediately apparent that some generalizations 
can be made. Metals of Group Ia crystallize in the body-centred cubic structure while 
those of Group Ib are cubic close-packed. The Group II metals beryllium and 
magnesium have the hexagonal close-packed structure with c/a close to the ideal 
value of 1-63; but the Group IIb metals, although they have the same arrangement 
of atoms, have axial ratios significantly different from 1-63. For the metallic elements 
in the remainder of the periodic table relationships are less obvious and moreover 
several are polymorphic. For example iron has the body-centred cubic structure from 
its melting point down to 1401 °C and again below 906°C, while between 1401 °C 
and 906 °C it is cubic close-packed. Cobalt is cubic close-packed above 500°C and at 
lower temperatures is hexagonal close-packed with stacking faults at irregular 
intervals which give rise to sequences such as ABABCACAC... In contrast nickel is 
cubic close-packed at all temperatures up to its melting point. 

The energy of transformation between two polymorphs of a metallic element is 
usually quite small, for example 0-22 kcal mole~' between body-centred cubic and 
cubic close-packed iron at 906°C. The range of stability of a given structure is thus 
widely variable from one metal to another even when the electronic structures of their 
atoms are similar. When a metal crystallizes under different conditions in the cubic 
and hexagonal close-packed structures interatomic distances are in close agreement 
between the two forms; but the interatomic distance in the body-centred cubic form 
of an element is about 3 per cent less than in a form of the same element with a 
close-packed structure. But, as we have already seen, packing is less efficient in the 
former so that the effective volume per atom is approximately the same as in 

Table 10.7 
The crystal structures of some metals 

Cubic close-packed: 

Ca, Sr; Ni, Pt; Cu, Ag, Au; Al 

Hexagonal close-packed: 

Be, Mg; ani: Co; Lag 
c/a 1:57 1:62 1:59 1-63 1:86 1:89 

Body-centred cubic: 

Li, Na, K, Rb; Ba; Vis Cr Fe 
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close-packed metal structures. The metallic radius of an atom is taken as half the 

distance of closest approach in a close-packed form of the metal; if there is no stable 
close-packed form, then it is necessary either to take 1-03 times the radius derived 
from the body-centred cubic form, if there is one, or to derive the required metallic 
radius from interatomic distances in an alloy involving the element in question. 

In cubic close-packing all the twelve nearest neighbours of an atom are constrained 
by symmetry to be equidistant from it. But in hexagonal close-packing symmetry does 

not relate interatomic distances between nearest neighbours when each atom is in the 
same close-packed sheet to interatomic distances between nearest neighbours when 
the relevant atoms are in different sheets. Of the metals listed in Table 10.7 as having 
the hexagonal close-packed structure type all except zinc and cadmium have c/a within 
4 per cent of the ideal value of 1-63 and their structures can therefore be regarded as 
close approximations to hexagonal close-packing. In zinc however the separation of 
nearest neighbour atoms in the same close-packed plane is 2:66 A while the separation 
of nearest neighbours in adjacent close-packed planes is 2:91 A. Binding within 
close-packed sheets is therefore stronger than between the sheets. Consistent with this 
conclusion are certain directional physical properties of single crystals of zinc. For 
instance zinc is observed to have a ‘good {0001} cleavage’, which implies that the 
structure fractures relatively easily along (0001) planes as one would expect if 
inter-sheet bonding were weaker than bonding within the sheets. Also the coefficient 
of thermal expansion normal to (0001) is greater than in directions parallel to (0001); 
for expansion from 20°C to 100°C 0-486 per cent and 0-115 per cent respectively. A 

similar situation obtains in cadmium. By way of conclusion all one can say is that 

these two elements do not have purely metallic structures; it is probable that bonding 
within close-packed sheets here has some covalent character. 

The non-metallic elements might be expected from what we have already said about 
simple bond models to be covalently bonded, but this is not a valid generalization 

because only tetravalent atoms can form infinite three-dimensional structures linked 
by pure covalent bonds. The resultant structural type is that of diamond, in which 
every atom is tetrahedrally coordinated. The Group IV elements, carbon, silicon, 

germanium, and tin (below 13 °C) crystallize with the diamond structure (Fig 10.10). 
Diamond, although it is familiar both as a gemstone and as an abrasive, is not the 

thermodynamically stable form of carbon at room temperature and pressure; the 
stable structure for the element carbon under these conditions is graphite. In the 
graphite structure the carbon atoms form sp” hybrid orbitals which overlap to form 
o molecular orbitals and are arranged in an infinite planar hexagonal ring structure 
(Fig 10.13). Each atom has a p orbital that is not involved in the formation of the sp? 
hybrid orbital; these atomic orbitals combine as z molecular orbitals extending over 
the whole planar sheet. The electrons in the z-orbitals are partially delocalized to the 
extent of being free to move in directions parallel to the sheet with which they are 

associated. There can thus be no covalent bonding between adjacent sheets in the 
graphite structure; the sheets are linked together to form three-dimensional crystals 
only by van der Waals forces. In the simplest of the several structures adopted by 
graphite there is a two-layer repeat with alternate atoms directly superimposed on 

atoms in adjacent sheets (Fig 10.13). The contrast between bond strength within 
(covalent bonding) and between (van der Waals bonding) sheets in the graphite 
structure is indicated by the separation of nearest neighbour carbon atoms: 1:4 A for 
pairs of atoms in the same sheet compared with 3:35 A for pairs in which one atom 
lies in the sheet immediately above or below the sheet to which the other atom of 
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Fig 10.13 The crystal structure of graphite. (a) shows the arrangement of atoms in a single sheet 
of carbon atoms with the unit mesh dotted. (b) shows the unit-cell of the simplest structure 
adopted by graphite in plan on (0001). (c) shows the disposition of z-orbitals about a C, hexagon 
in graphite. 

the pair belongs. Weak electrical conductivity parallel to (0001) and the strongly 
insulating nature of graphite perpendicular to (0001) are consequent on the existence 
of z-orbitals parallel to (0001). 

Elements capable only of forming fewer than four covalent bonds do not crystallize 
in purely covalent bonded structures. Their structures are mostly molecular, the 
molecules being groups of atoms covalently bonded into infinite chains or sheets. 

Bonding between the chains or sheets is either attributable to van der Waals forces 
or to bonds that have some covalent and some metallic character. The Group V 
elements, arsenic, antimony, and bismuth are of this sort; all three have similar crystal 

structures in which each atom is closely bonded to three others so as to form an 
infinite puckered sheet (Fig 10.14). The sheets are stacked to form a three-dimensional 
structure in such a manner that every atom has three close neighbours in adjacent 
sheets (Fig 10.14(b)). In arsenic the closest approach of atoms where both belong to 
the same puckered sheet is 2-51 A and where each belongs to a different sheet is 3-15 A. 
The bonding within each sheet is evidently very much stronger than that between 
adjacent sheets. Arsenic is electrically an insulator, but it has a metallic lustre. It 
would therefore seem probable that while bonding within each sheet may be purely 
covalent, that between the sheets is partially metallic but has some covalent character. 

The structures of antimony and bismuth are similar; but as the atomic number 
increases in this Group the difference between the two bond lengths becomes less 

marked (Table 10.8) and the crystals become generally less covalent and more metallic 
in character. 

Thermal expansion data, also set out in Table 10.8, are consistent with this 

conclusion: the greatest difference between the coefficients of linear expansion parallel 
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Fig 10.14 The crystal structure of arsenic. (a) is the 
projection of one puckered sheet of As atoms on (0001) 
with the contents of one unit-cell shown below; the 
puckered sheets are stacked with translation vector 
2a+14b-+4C¢. (b) is the projection down [21}0] on to the 
(1010) plane with coordinates out of the projection plane 
and interatomic vectors shown only for one atom and its 
near neighbours. Coordinates refer to the C-cell with x, 
parallel to [210] and y,, z, parallel respectively to [0170] 
and [0001] of the hexagonal unit-cell. (c) is a stereogram 
showing the disposition of vectors from an As atom at 
z=3+-v to its near neighbours, solid circles representing 
vectors to atoms 3:14A away and in the next sheet, open 
circles representing vectors to atoms 2:51 A away and in 

(c) the same sheet as the central As atom. 

to x and to zis observed in arsenic and the coefficient measured parallel to z in arsenic 
is nearly three times the corresponding coefficients for antimony and bismuth. 
Moreover in arsenic the coefficient of thermal expansion parallel to the x-axis is 
effectively zero whereas for both antimony and bismuth it is appreciable in magnitude; 

Table 10.8 
Interatomic distances and coefficients of thermal 
expansion for the Group Vb elements 

As Sb Bi 

mx 2-51 2-91 3-10 
Xx—x’ 3-15 3-36 3-47 
<—x)- (X—X) 0:64 0:45 0:37 

w,,.10° ~0 8 12 
a,.10° 47 16 16 

X—X is the shortest interatomic distance within the puckered 
sheets. X—X’ is the shortest interatomic distance between 
adjacent puckered sheets. Distances are measured in Ang- 
strom units. «, and «, denote coefficients of linear thermal 
expansion parallel to the x and z axes respectively; the units 
of both are deg +; the temperature range to which they 
refer is 20—400°C. 
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its ratio to the coefficient measured parallel to z is approximately 5 in antimony and 

about 3 in bismuth. These data clearly demonstrate that the binding within each 
puckered sheet is very much stronger than the binding between adjacent sheets in 
arsenic, the difference becoming progressively less im antimony and in bismuth. That 
the coefficient parallel to x is zero in arsenic may be due to increases in As—As 
distances within a puckered sheet with rising temperature being balanced by changes 

in interbond angles to leave a fortuitously unchanged. 
A peculiarity of bismuth is that it exhibits contraction on melting. This implies 

that the atoms are more nearly close-packed in the liquid than in the solid state so 
that the interaction between atoms in liquid bismuth is more markedly metallic, while 
in the solid the bonds have more covalent character and are correspondingly more 

definitely directed, giving rise to a more open structure. Contrariwise antimony 
exhibits a small volume increase on melting, while arsenic shows a volume increase 

of ~ 10 per cent. 
In the previous two paragraphs we have illustrated the dependence of physical 

properties on the varying nature of the bonding in three isostructural substances, the 
elements As, Sb, and Bi. The study of physical properties in the light of structural 
knowledge can in appropriate circumstances provide a powerful tool for the 
elucidation of the nature, and especially the variation in nature of bonding in 
crystalline solids. We shall discuss the physical properties, especially the directional 
physical properties, of crystalline solids further in chapter 11. 

The Group VI elements, sulphur, selenium, and tellurium are capable of forming 
only two covalent bonds per atom. Sulphur and selenium both form molecular 
structures with puckered rings linked together by van der Waals forces; in sulphur 

the rings may be six or eight membered and in selenium they are eight membered. 
More interesting crystallographically are the stable structures of selenium and 
tellurium; in each of these structures there is a helical chain of atoms disposed about 
a screw triad (Fig 10.15) with bond angles between atoms of the same helix of 105° in 
Se and 102° in Te, angles consistent with the hypothesis that bonding within each helix 
is essentially covalent. In the stable structures of both elements the helices are packed 
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Fig 10.15 The crystal structure of hexagonal selenium. 
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so that each helix has six near neighbours suggesting that bonding between helices is 
due to non-directional forces. The closest separation of pairs of selenium atoms where 
one of the pair belongs to one spiral and the other to an adjacent spiral is 3-49 A, 

rather less than the interatomic separation between the puckered rings of the unstable 
modification 3-53 A. This discrepancy taken together with the metallic lustre and 
semiconducting properties of the modification of selenium stable at room temperature 
and pressure suggests that the bonding between spirals has some metallic character. 
Bond lengths and physical properties indicate that inter-spiral bonding in tellurium is 
more metallic. As in Group V metallic character increases with atomic number. 

The atoms of the Group VII elements are capable of forming only a single covalent 
bond. The only element of the Group that is crystalline at room temperature and 
pressure is iodine, which has a molecular structure in which I, molecules are linked 
by van der Waals forces. The non-directional nature of van der Waals forces is 

clearly demonstrated by the manner in which the I, molecules are packed together 
in the orthorhombic structure as tightly as is consistent with their shape (Fig 10.8). 
In the orthorhombic B-cell of iodine the linear I, molecules are all parallel to (100) 

and aligned in the herring-bone pattern that is typical of the packing of linear 
molecules in molecular crystals. The same sort of packing is typical too of planar 
molecules, such as benzene (Fig 10.16) where the plane of every molecule in the 
structure is parallel to the z-axis of the orthorhombic unit-cell and the planes of the 
molecules are symmetrically inclined to the x-axis; the whole structure represents a 
close-packing of molecules having regard to their shape. 

Fig 10.16 The crystal structure of benzene. In both diagrams coordinates refer to the centres of 
molecules. In the right-hand diagram it should be noted that the molecules are not parallel to the 
plane of projection (100); those centred on x = 4 are inclined in the opposite sense to those 
centred on x = 0. 

In iodine the interatomic distance within each molecule in the crystal is 2-68 A, 
closely similar to the I-I distance in gaseous iodine, 2-66 A. The van der Waals 
intermolecular bonding in the crystal leads to a closést distance of approach between 
iodine atoms of different molecules of 3-54 A, a clear demonstration of the relative 

weakness of van der Waals forces. 
We have not attempted to discuss the structures of all the elements that exist as 

stable crystalline solids under atmospheric conditions, but those we have discussed 
provide a survey of typical elementary structures. The reader in search of more 
comprehensive information is referred to the useful compilation of Wyckoff (1963). 
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AX and AX, structures 
We turn now to description of the structures commonly formed when one element is 

bonded to another either in equal proportions, the AX structures, or in the ratio 1:2, 
the AX, structures. There is, as one would’ expect, great diversity in the structures 
adopted by AX and AX, compounds in the crystalline state, and many of the structures 

are known in only one or two compounds. Each of the types that we discuss in the 

following pages is important to the extent that it is adopted by a substantial number 
of compounds. We shall concentrate immediately on the description of each structure 
and defer discussion of A—X bond type to the next section. 

CsCl type 
The lattice is primitive cubic and there is one formula unit in the repeat unit. The two 
atoms are disposed in the unit-cell in such a manner that if, in CsCl itself, the chlorine 
atom is situated at the origin then the caesium atom lies at the centre of the unit-cell, 
at 4,4,4 (Fig 10.17). Both atoms are in 8-fold coordination and their coordination 
polyhedra are cubes. The structure can conveniently be described with reference to the 

coordination cubes about the caesium atoms: every cube shares each of its six faces 
with another coordination cube. 

Fig 10.17 The crystal structure of CsCl displayed in clinographic projection and in plan on (001). 
Both ionic species are in 8-fold cubic coordination. 

The compounds that adopt the CsCl structure type are, broadly speaking, of two 
kinds. First, there are the halides of the larger univalent cations such as the chlorides, 

bromides, and iodides of caesium and thallium. Second, there are intermetallic phases 
such as AINi, CuZn, CrAl. 

NaCl type 

We have already dealt in passing with this structure type (see Fig 10.4). The 
structure is based on the cubic F-lattice and has one formula unit in the repeat unit. 
Every atom is thus related to atoms of its own kind by lattice translation. If, in NaCl 
itself, a sodium atom is situated at the origin, then a chlorine atom will lie at the centre 
of an edge of the unit-cell, e.g. at 0,0,3. Both atomic species are in octahedral 
coordination, the octahedra being constrained by symmetry to be regular. The 
structure can simply be described with reference to the coordination octahedra about 
the sodium atoms: every octahedron shares each of its twelve edges with another 
coordination octahedron. 
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If the chlorine atoms in the type structure are to be regarded as rigid spheres, then 
they are in cubic close-packed array and the array has a sodium atom in each of its 

octahedral interstices. In most of the compounds that adopt the NaCl structure it is 
however likely that the atoms of the larger species are held apart by the smaller atoms 
and are not strictly close-packed. It may nevertheless be useful for comparative 
purposes to regard the NaCl structure type as an approximately cubic close-packed 
array of atoms of the larger sort with all its octahedral interstices occupied by those 
of the smaller species. 

The variety of compounds that adopt the NaCl structure type is remarkable. They 
fall into four classes: (i) the majority of all alkali halides and some related compounds 

such as K CN; (ii) most of the oxides, sulphides, selenides, and tellurides of the alkaline 
earths, such as MgO, CaS, BaSe; (iii) the nitrides, phosphides and hydrides of various 

metals, such as ZrN, TiC, NaH; (iv) compounds of the Group Vb elements, 

phosphorus, arsenic, and antimony, with various trivalent metals, especially the 

lanthanide elements, such as CeP, GdAs, SnSb. 

NiAs type 

In this structure the lattice type is hexagonal and the unit-cell contains two formula 
units. Each atomic species occupies a set of special equivalent positions in space group 
P63/mmc. A plan showing four unit-cells of the structure in projection down the z-axis 
is Shown in Fig 10.18(a). The arrangement of arsenic atoms is reminiscent of hexagonal 
close-packing; but the axial ratio c/a = 1-39 is significantly less than the value, 1-63, for 

oNi O As 

a=3-60R c=5:01R (a) 

Fig 10.18 The NiAs structure. (a) is a plan of the 
structure on (0001) with four unit-cells outlined. The 
stereogram (b) shows the disposition of vectors from a 
nickel atom at z= + to its near neighbours, of which six © © 
are arsenic atoms distant 2:43 A and two are nickel atoms 
distant 2:52 A; if the poles of the six Ni-As vectors lay on 
the small circle shown the coordination would be regular 
octahedral. The stereogram (c) shows the disposition of 
vectors from the arsenic atom at the origin to its near 
neighbours which are all nickel atoms. The plan and the (c) 
stereograms are all oriented similarly. 
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ideal hexagonal close-packing. If the arsenic atoms were in ideal hexagonal close- 
packing, then the nickel atoms would lie in the octahedral interstices of the 
close-packed array. The coordination polyhedron of arsenic about nickel is in reality 

a distorted octahedron, the distortion being a compression of the octahedron normal 
to the pair of opposite faces lying parallel to (0001). Each octahedron shares this pair 

of opposite faces with those of adjacent coordination octahedra so that the Ni—Ni 
separation parallel to the z-axis is rather short; at 2°52 A it is only marginally longer 

than the distance between Ni and its six nearest As neighbours, 2:43 A. These two 
neighbouring nickel atoms cannot be omitted from the complete statement of the 
coordination of nickel in the structure; thus the coordination of nickel is 6-fold by 
arsenic and 2-fold by nickel. Itis convenient to represent such a distorted coordination 
polyhedron by a stereogram showing the directions of the vectors from the selected 
atom to its near neighbours. To those familiar with the stereographic projection such 
a stereogram provides a clearer impression of the departure from regular octahedron 
geometry than could quickly be obtained from a list of angles between interatomic 
vectors. Figures 10.18(b) and (c) are stereograms showing respectively the disposition 
of near neighbours about nickel and about arsenic. It is apparent from the latter that 
each arsenic atom is surrounded by six nickel atoms situated at the corners of a 
trigonal prism. 

We have seen that if the arsenic atoms were in ideal hexagonal close-packing, 
the nickel atoms would occupy all the octahedral interstices of the close-packed 
array. In NiAs itself there is a marked deviation from ideal close-packing and this is 
so for most other compounds that adopt this structure, as indicated by the range of 
axial ratio c/a from 1:2 to 1-7. But in a few compounds, with axial ratios near 1-63 the 
departure of the larger atomic species from ideal hexagonal close-packing must be 
slight; for such cases there exists a formal relationship between the NaCl and NiAs 
structure types analogous to that between cubic and hexagonal close-packing. 

The NiAs structure type is adopted by many compounds of transition metals with 
elements of sub-groups IVb, Vb, and VIb such as PtSn, MnBi, VS, NiTe. 

Zinc blende (ZnS) type 

ZnS crystallizes with different structures under different physical conditions. The 
stable structure at atmospheric temperature and pressure is that of the mineral zinc 
blende (or blende) which gives its name to this structure type. The blende structure 
can be regarded as derivative from that of diamond (Fig 10.10) by substitution 
alternately of zinc and sulphur for carbon atoms (Fig 10.19). Like diamond, blende 

has a cubic F-lattice with two atoms in, each repeat unit. Here however atoms of 
different elements are situated at the origin and at 4, 4, ¢ so that the point group 
symmetry is reduced from m3m in diamond to 43m in blende, which is consequently 
non-centrosymmetrical. The coordination polyhedra about both zinc and sulphur are 
regular tetrahedra. The structure can simply be described as a three-dimensional 
framework of ZnS, tetrahedra linked to one another by their corners. If the sulphur 
atoms were rigid spheres and in contact with one another, they would form a cubic 
close-packed array with zinc atoms occupying alternate tetrahedral interstices. In 
reality the sulphur atoms are not close-packed but are held apart by zinc atoms. 

The blende structure is geometrically related to the wurtzite structure (the next to 
be described) in the same way as cubic is to hexagonal close-packing. These two 
structures are adopted by much the same range of compounds; indeed several 
compounds, such as ZnS itself, crystallize with either structure. The blende structure 
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Fig 10.19 The crystal structure of blende, ZnS. On the left is one unit-cell in clinographic 
projection with bonds from the zinc atom at 4, 4,4 indicated. On the right is a plan of the 
structure on (001). 

is adopted by the cuprous halides; by the sulphides, selenides, and tellurides of 
Group IIIb; and by compounds of Group IIIb with Group Vb elements such as 
AlSb, GaP. 

Wurtzite (ZnS) type 

Wurtzite is the polymorph of ZnS stable at atmospheric pressure above 1020 °C. It 
exists metastably at room temperature, persisting for long periods of time, but 
transforming to blende when ground in a mortar or otherwise subjected to shearing 
stresses. The lattice type is primitive hexagonal and the unit-cell contains two formula 
units (Fig 10.20). As in blende each atomic species is tetrahedrally coordinated to 
the other. Every coordination tetrahedron has one of its faces parallel to (0001) and 
is linked at each corner to three other tetrahedra. The distinction between the blende 
and wurtzite structures lies in the disposition of second nearest neighbours, that is in 
the arrangement of atoms of the same element. In blende the sulphur (or zinc) atoms 
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Fig 10.20 The crystal structure of wurtzite, ZnS. The left-hand diagram is a clinographic 
projection of one unit-cell with bonds from the zinc atom at 4,4, indicated. The right-hand 
diagram is a plan of the structure on (0001) with one unit-cell outlined. 
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have the geometrical arrangement of cubic close-packing, in wurtzite of hexagonal 
close-packing. In discussing the NiAs structure earlier we remarked that compounds 
with that structure typically have axial ratios c/a markedly divergent from the ideal 
1-63 of hexagonal close-packing; in contrast compounds crystallizing in the wurtzite 
structure typically have axial ratios close to 1:63. Both the ZnS structures can thus be 
described in terms of close-packing of the larger sort of atom, sulphur in ZnS itself, 
with the smaller sort of atom occupying one half of the tetrahedral interstices. 
We have now completed our descriptions of the five most common AX structure 

types. In these structures both atoms necessarily have the same coordination number, 

8:8 in CsCl, 6:6 in NaCl and NiAs, 4:4 in blende and wurtzite. In the AX, structures, 

which we shall describe next, the coordination number of the A atom must be double 
that of the X atom; we shall be concerned with structures having 8:4, and 6:3 

coordination. 

Fig 10.21 The crystal structure of fluorite, 
CaF. shown in plan on (001). 

or 

e Ca 

Fluorite (CaF) type 

This structure type has a cubic F-lattice with one formula unit in the repeat unit. A 
plan of the structure on (001) is shown in Fig 10.21. Each calcium atom is 8-fold 
coordinated by fluorine, the coordination polyhedron being a cube. Each fluorine 
atom is coordinated to four calcium atoms arranged at the corners of a regular 
tetrahedron. The structure can simply be described in terms of the coordination cubes 
of fluorine about calcium: each cube is identically oriented and shares each of its edges 
with another cube. In this structure the geometry of the arrangement of calcium atoms 
is that of cubic close-packing, with the fluorine atoms occupying all the tetrahedral 
interstices of the close-packed array. But the close-packing analogy is, except 
geometrically, unrealistic for the type compound because fluorine atoms are rather 
larger than calcium atoms. 

The fluorite structure type is adopted by many fluorides of the divalent elements, 
especially those with relatively large radii; by oxides of the larger quadrivalent cations 
such as ThO,; and by some intermetallic compounds such as Mg,Sn. The 
corresponding A,X structure is adopted by several oxides and sulphides of 
monovalent elements such as Li,O, K,S; in this anti-fluorite structure type the 
positions of the A and X atoms are interchanged relative to CaF}. 

Rutile (Ti0.,) type 

Rutile is the stable form of TiO, at high temperatures; it exists metastably for 
indefinite periods of time at room temperature. Rutile has a tetragonal P-lattice, its 
space group being P4,/mnm and its point group 4/mmm. There are two formula units 
in the unit-cell, all the atoms of the same element being related by the symmetry 
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elements of the space group. A plan of the structure is shown in Fig 10.22(a). Each 
titanium atom is in 6-fold coordination, the coordination polyhedron being a slightly 
distorted octahedron. Each oxygen atom is coordinated to three titanium atoms 
disposed at the corners of a plane triangle parallel to (110) or (110). The coordination 

polyhedron about each titanium atom shares two of its edges with adjacent 
polyhedra, one about the titanium atom immediately above and the other about the 

titanium atom immediately below it in the [001] direction. There are thus infinite 
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Fig 10.22 The crystal structure of rutile, TIO,. (a) shows, on the left, a plan of the structure on 
(001) and, on the right, a stereogram of the disposition of Ti—O vectors from the titanium atom 

at ,4,4; the stereogram is oriented so that its primitive is the plane (1 10) in order to display the 

distorted octahedral coordination. (b) is a section of the rutile structure through the origin and 
parallel to (110); the broken circles represent oxygen atoms (4 —u),/2a above and below the 
plane of the section; bold lines representing vectors from titanium atoms to their near oxygen 
neighbours are shown broken when they lie out of the plane of the section; thin lines indicate the 
intersection of unit-cell faces with the plane of the section. Diagram (b) displays the structure 
as a set of [001] chains of edge-sharing octahedra, alternate chains having their octahedra 
rotated through 90° about [001 ]. 
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chains of TiO, distorted octahedra running parallel to the z-axis. Each oxygen atom 
in the structure is involved in edge sharing between adjacent octahedra of one chain 
and forms the apex of one octahedron of an adjacent chain (Fig 10.22(b)). The 

distortion of the TiO, octahedra is quite symmetrical: the distance from the titanium 
atom to each of the four oxygens (C, D, E, F in Fig 10.22(b)) that are involved in 
edge sharing in its own chain is 1-92 A, slightly less than the distance, 2-01 A, to the 
two oxygens, A and B, which are involved in edge-sharing in adjacent chains. If the 

octahedron were regular all O—Ti—O angles would be right-angles; in rutile the 
angles ATC, BTC... are 90°, but the angles CTD and ETF are only 81°. Significant 
effects of the distortion are to bring oxygens on shared edges rather close together, 
and, more importantly, to make Ti—Ti separations parallel to z rather longer than 

would be so if the TiO, octahedra were regular. 
The axial ratios c/a of compounds that adopt the rutile structure are all rather 

similar and consequently the extent of distortion of the coordination octahedron 
about the metallic atom is similar in all known examples. 

The rutile structure type is adopted by many difluorides and dioxides; when the 
cation to anion radius ratio is < ,/3—1 the rutile structure is adopted and when it is 
>./3—1 the fluorite structure is preferred with few exceptions. Intermetallic 
compounds do not appear ever to adopt the rutile structure. 

Cdl, type 

Cadmium iodide (Fig 10.23) is trigonal, point group 3m, space group P3m. Cadmium 
is octahedrally coordinated to iodine and each octahedron shares six of its twelve 
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Fig 10.23 The Cdl, and CdCl, structure types. (a) is a plan of Cdl, on (0001), solid circles 
representing cadmium atoms and open circles halogen atoms. (b) shows the sequence of (0001) 
planes of Cd and | atoms in Cdl, and (c) shows the corresponding sequence in CdCl., the 
relative orientation of planes being indicated in close-packing nomenclature A, B, C. 
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edges with other octahedra so as to form infinite sheets of octahedra parallel to (0001). 
All such sheets are identical and are related by the c lattice repeat. If the (0001) planes 

of iodine atoms were precisely ¢c above and below the planes of cadmium atoms and 
if the axial ratio c/a were precisely 1-63, then the iodine atoms in this structure would 
be geometrically in hexagonal close-packed array and the cadmium atoms would be 
situated in octahedral interstices between alternate iodine planes. But in the real 
structure iodine atoms are not exactly in hexagonal close-packed array; each iodine 
atom is coordinated to three cadmium atoms in the same (0001) plane and the 

separation between cadmium and iodine planes is less than c/4. Each iodine atom has 
twelve iodine neighbours, nine of which are coordinated to one or more of the same 
three cadmium atoms as itself, while its other three iodine neighbours lie in the 

adjacent (0001) iodine plane and are coordinated to cadmium atoms in the next 
cadmium plane. Interaction between iodine atoms in adjacent (0001) planes is the 
only cohesive force linking adjacent sheets of cadmium—iodine octahedra. This 

structure is thus significantly different from the AX and AX, structures previously 

described in that it is not a three-dimensional framework of bonds between unlike 
atoms: in this structure there must be effective forces between adjacent iodine planes. 

The Cdl, structure type is adopted by the iodides, bromides, and hydroxides of 
several metals, mostly transition elements, as well as by the sulphides, selenides, and 

tellurides of certain quadrivalent elements such as Sn, Ti, Zr. 

CdCl, type 

This structure type is closely related to CdI,. Here too there are sheets of cadmium 
atoms in octahedral coordination, but equivalent CdCl, layers are stacked on a 
rhombohedral lattice. The CdCl, structure has the point group 3m and space group 
R3m. If the layer shown in plan in Fig 10.23(a) is taken to be that associated with the 
lattice point at the origin of the triple hexagonal unit-cell so that cadmium atoms 
have coordinates 0,0,0; 3,4,4; and 4, 4,4 (that is the sequence of cadmium layers is, 
in close-packing notation, ABCA ...), the sequence of chlorine atoms in the complex 
layer repeated by the rhombohedral lattice is CBACBACB.... The sequence of (0001) 
chlorine sheets is thus geometrically that of cubic close packing (with reference axes 
at 60° to those used elsewhere in this text). The relationship between the stacking 
sequences in Cdl, and CdCl, are shown diagramatically in Fig 10.23(b), (c); the 
c-repeat of the hexagonal unit-cell in CdI, corresponds to two iodine planes whereas 
that of the triple hexagonal unit-cell in CdCl, corresponds to six chlorine planes. 

The CdCl, structure type is rather less common than the Cdl, type but is found in 
a variety of chemically similar compounds. No significant distinction can be made 
between compounds that adopt one rather than the other of these two structures. 

Bonding in AX and AX, structures 

In concluding the description of each simple structure type in the iast section we listed 

the sorts of compounds which crystallize with the structure concerned. Inspection of 
these brief lists in the light of the most elementary chemical knowledge indicates that 
a particular structure type is not usually characteristic of one particular bond model. 

Before investigating further the nature of the relationship between structure type 
and bond type it is necessary to develop the bond models that we set up earlier to 
allow for the existence of bonds intermediate in character between the simple types, 
ionic, covalent, and metallic. Consider for instance the blende structure in which 
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both the A and the X atoms are in tetrahedral coordination. Tetrahedral coordination 

would be expected for an ionic structure with a radius ratio between wf —1=0-414 

and ,/3—1=0-225. Alternatively tetrahedral coordination is characteristic of 

covalent bonding achieved by the formation’ of moleeular orbitals from sp> hybrid 

atomic orbitals. In the case of ZnS itself the radius ratio for fully ionized atoms 

r(Zn2*)/r(S?~) = 0-4, consistent with the tetrahedral coordination of the blende 

structure. However tetrahedral sp* hybrid orbitals can be formed from the 4s and 4p 

atomic orbitals of Zn and the 3s and 3p atomic orbitals of S. Thus both the purely 

ionic and purely covalent models can account for the-observation of tetrahedral 

coordination in blende. To determine the real nature of the bond between Zn and S 

in blende is not an easy task: detailed quantum mechanical calculations can be made 

in theory but may prove to be too difficult in practice even for such a simple structure; 

alternatively an exceptionally accurate diffraction study should enable the distribution 

of electrons within the unit-cell, and particularly the number associated with each 

atom, to be determined. In ZnS covalent bonding requires that Zn should contribute 

its two 4s electrons and that S should contribute its two 3s and four 3p electrons to 

form molecular orbitals so that if these eight electrons spend equal amounts of time in 
the vicinity of each atom there will always be four electrons associated with the Zn 

atom and four with the S atom. The resulting average configuration Zn?~ S?* is 
improbable on general chemical grounds, because zinc and sulphur are known to be 
respectively cationic and anionic whenever they display ionic character. Moreover 

quantum mechanical calculations have indicated that there is an excess negative 
charge of about 4 on sulphur. The Zn—S bond in blende is therefore likely to be 
about 60 per cent ionic in character. 
We have from the start assumed the simple bond models, ionic, covalent, and 

metallic, to be ideals or extremes. We now point to reasons why a more sophisticated 
approach to bonding in the crystalline state is necessary for full understanding and 
outline such an approach in terms of the model bonds. For a more thorough treatment 
the reader is referred to textbooks on valency theory such as Murrell, Kettle, and 
Tedder (1971). 

In the ionic bond model each ion was assumed to be spherical. But as two ions 
approach they interact so as to polarize each other (Fig 10.24); that is to say the 
electron cloud about each ion is distorted from the spherical symmetry of the free ion 
by the presence of the other ion. The polarizing power of an ion depends on its charge 
and size. Polarizing power increases in general with increasing positive charge and 

decreasing size, that is to say with the magnitude and concentration of the net charge 
on the ion. The effect of the polarizing power of one ion on another ion is measured 
by the polarizability of the second ion. Polarizability increases with increasing 
negative charge and increasing size; the larger and more highly charged an anion is, 
the more weakly will its outer electrons be bound to its nucleus and the more easily 
will it be distorted from the spherical symmetry of the free ion. Strong polarization 

Cation Cation Anion 

Separated Adjacent 

Fig 10.24 The polarization of the electron cloud of a large anion (e.g. F-) by the approach of a 
small cation (e.g. Li*). 
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is therefore to be expected in structures composed of cations of high polarizing power 
and anions of high polarizability; that is small, highly charged cations in combination 
with large highly charged anions. The effect of polarization is illustrated diagram- 

matically for LiF in Fig 10.24. In polarization the outer electrons of an anion, being 

less strongly bound to the nucleus, will be more affected than the electrons of its inner 

shells so that the valency electrons of the anion are concentrated to some extent in 

the space between the cation and the anion; polarization is therefore equivalent to the 

introduction of some covalent character to the essentially ionic bond. Polarization will 
tend to decrease the equilibrium distance between cations and anions in the structure 
and it will of necessity be more pronounced in structures with low coordination 
numbers such as tetrahedrally coordinated structures. 

In covalent bonds the electrons involved in bond formation will spend equal 
amounts of time in the vicinity of each atom of the bond. But when the two bonding 
atoms are of different elements, it is improbable that the bonding electrons will be 
equally shared. If on average the bonding electrons spend more time in the vicinity 
of one atom, that atom will have an excess negative charge and the other atom an 
excess positive charge. The bond will thus have partial ionic character. 

Our comments on ionic and covalent bonds indicate that each may have some of the 
character of the other. It would not be unrealistic to suppose that a smooth gradation 
of bond character from pure ionic to pure covalent could be established in an 
appropriate selection of compounds. What primarily concerns us here is the nature 
of the change in structure that may occur in the course of this gradual change in 
bond type. 

For a substance AX the normalized wave functions for its covalent and ionic 
structures, A—X and A*—X°™ respectively, can be formally represented as w,,,, and 
Wionice Putting 2 equal to the ratio W;,,ic/Weoy, the relative weightings to be assigned 
to the two wave functions in the electron distribution will be W2ynic!WZoy = A721. The 
percentage ionic character of the bond is now defined as 100A7/(1 +7). This ratio is not 

generally susceptible to direct calculation and it is necessary to seek some means of 
estimating it. Of the several means that have been employed, we shall confine ourselves 
to the one that makes use of the concept of electronegativity.* Pauling (1960) rather 
loosely defined the electronegativity of an atom in a molecule as its power to attract 
electrons to itself. If two atoms have equal electronegativities, they will attract 
electrons to the same extent and a purely covalent bond will result. But if one atom 
has a higher electronegativity than the other, it will attract the electrons involved in 

bond formation more than the other and the bond will be, at least partially, ionic. In 
general the greater the electronegativity difference between the two atoms, the greater 
the ionic character of the bond between them. 

Various ways of determining electronegativities with precision have been proposed, 
some experimental and others theoretical. We shall deal here only with the method of 
Allred and Rochow (1958). It is assumed that the electronegativity of an atom is 
proportional to the force exerted by the nucleus of the atom on the electrons in the 
bond and that this force is equal to Z*e/r?, where Z* is the effective nuclear charge 
(i.e. the total nuclear charge less the amount by which the other electrons of the atom 
screen the bonding electrons from the nuclear charge), r is the mean distance of the 
bonding electrons from the nucleus, and e is the electronic charge. The covalent radius 

of the atom is taken to be equal to r. This approach places electronegativities on the 

2For a detailed treatment of this topic the reader is referred to Coulson (1963), Cotton and Wilkinson 
(1966), or Phillips and Williams (1965-6). 
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same arbitrary scale (which conveniently uses the scale 0—4) as that used by Pauling 
who estimated electronegativities less precisely from ionic resonance energies. On this 

scale the electronegativity x of an atom is given by 
5 , Z* 

x = 0°359 +0:744 

Once the electronegativities of two elements involved in bond formation have been 
established, the percentage ionic character of the bond may be estimated from their 
difference. Several curves have been proposed to relate electronegativity difference to 
percentage ionic character. We shall not here explore their quantitative differences, 
but merely state that it is generally agreed that when the electronegativity difference 
between two atoms A and X, |x,—xx|, is about 1-7 the A—X bond has about 50 

per cent ionic character. 
Qualitatively electronegativity is a useful concept for collating the properties of 

ionic compounds in the absence of any direct determination of the percentage ionic 
character of their bonds. But the interpretation of electronegativity differences in 
terms of current theories of bonding is obscure so that it is not generally possible to 
use the concept quantitatively. As well as varying from element to element the 
electronegativity of different valence states of the same element will be different 
because the screening effect of the bonding electrons and the atomic radius will be 
different. Table 10.9 lists the electronegativities of some elements calculated in each 
case for the covalent radius appropriate to the common electronic configuration. 

In the simple covalent bond model which was our starting point we assumed that 
the electrons involved in bond formation were localized between two atomic nuclei, 

the bonding electrons occupying molecular orbitals formed by the overlap of atomic 
orbitals of the two atoms. In a crystalline solid however molecular orbitals may be 
more extensive in that they may extend over more than two atomic nuclei or even 
throughout the crystal structure. 

If neighbouring atoms are sufficiently close together in a crystal structure, the 
outermost of their occupied atomic orbitals will overlap to form molecular orbitals. 

Thus when two atoms of lithium are in close proximity the 2s atomic orbitals of each 
will overlap to form two molecular orbitals, one of lower and the other of higher 
energy than an isolated 2s atomic orbital. In a crystal of lithium containing N atoms 
2N molecular orbitals will be formed. None of these molecular orbitals will be 
associated with any particular pair of Li atoms, but every Li atom will contribute 
by overlap of its 2s atomic orbital to every molecular orbital. The energies of the 

Table 10.9 
Electronegativities of some elements according to Allred 
and Rochow (1958) 

Ag 1-42 Co 17/0 Mg 1:23 Sb 1:82 
Al 1:47 Cr 1:56 Mn _ 1-60 Se 2:48 
As 2:20 Cs 0:86 Mo 1:30 Si 1-74 
Au 1-42 Cu S175 N 3:07 Sn 1-72 

Ba 0-97 F 4-10 Na 1-01 Sr 0:99 
Be* 1:47 Fe 1:64 Nb 1:23 Te 201 
Bi 1:67 Ge 202 Ni 1:75 Ti 1:32 
Br 2/4 H 2:20 O 3-50 at 1:44 
Cc 2:50 Hg 1-44 P 2:06 W 1:40 
Ca 1:04 I 2:21 Po Wi-55 Zn ~—s-:1°66 
Cd 1:46 K 0:91 Rb 0:89 Zr 1:22 
el 2:83 re 0:97 S 2:44 
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resultant molecular orbitals will be symmetrically disposed above and below the 
energy of the 2s atomic orbital of an isolated Li atom. The molecular orbitals can thus 
accommodate 4N electrons in a band of closely spaced energy levels. As N increases 
the energy levels of the band become closer together and the energy difference 
between the highest and lowest energy levels, the band width, increases. When N is 
very large, as it will be in a real crystal, the energy levels of the band are very closely 
spaced, almost a continuum. Moreover band width becomes sufficiently large in a 
crystal for the possibility of overlap between bands due to different atomic orbitals 
to arise. Consider for instance the case of an atom of an element that has two electrons 
in 2s atomic orbitals and its 2p orbitals unoccupied; in a crystal of the element the 
energy of the top of the band due to the combination of 2s atomic orbitals may be 

greater than the bottom of the band due to the combination of 2p atomic orbitals, 
which can be used to form molecular orbitals even though they are not occupied in 
isolated atoms of the element. In general if the energies of the atomic orbitals are well 
separated and the atoms are sufficiently far apart in the crystal, there will be no overlap 
of energy bands (Figs 10.25(a) and (b)). The valence electrons will then occupy the 

lowest available energy levels in the lowest band, which they may or may not fill. If 
however the energies of the atomic orbitals are closer together, energy bands will 
overlap; then the valence electrons will again occupy the lowest available energy 
levels (Fig 10.25(c)) but these will be distributed among two or more bands. 
When the energy bands in a solid are fully occupied, the substance is an insulator 

and is, in terms of the simple bond model, a covalent substance. In such circumstances 
the simple model of molecular orbitals associated with a pair of atoms is equivalent 
to the delocalized molecular orbital model; in crystal chemistry the former generally 
provides the more useful approach. In contrast the delocalized molecular orbital 
model applied to metals is mostly more productive than the simple metallic bond 
model of electrons moving freely within the solid. If electrons are free to move in a 
metal crystal, then there must be ionization of the metal atoms so that the electrons 
move in a periodic field. In consequence certain energies are forbidden and the 

electrons occupy permitted energy bands analogous to those derived by delocalized 
molecular orbital theory. If one or more energy bands are only partially occupied by 
electrons the substance has metallic properties. Conduction of electricity takes place 
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(a) (b) (c) 
Fig 10.25 Electron distribution in a covalent compound (a) and in metals (b) and (c). The 
shaded regions are occupied by electrons. In (a) two energy bands are fully occupied and the 
next higher band is empty. In (b) one energy band is filled, the next partially occupied and the 
highest empty. In (c) the lowest energy band is again fully occupied while the next two above 
overlap and are both partially occupied. 
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by excitation of electrons to higher, unoccupied, energy levels of the band leading to 
a net flow of electrons. Absorption of light excites some electrons into the higher, 
unoccupied, energy levels of the band; radiation emitted as the electrons fall back to 
lower energy levels gives rise to the charactéristic lustre of metals. Neither of these 
properties is displayed by compounds which have only fully occupied bands and have 
their highest occupied band substantially separated in energy from their lowest 

unoccupied band.? 
Metallic properties such as electrical conductivity and magnetic susceptibility can 

be explained in some detail in terms of the width and relative positions of their energy 
bands and the extent of electron occupation of their several bands. For metals with 
cubic or hexagonal close-packed or body-centred cubic structures the band structure 
has been satisfactorily investigated theoretically; but distorted versions of these 
structures and more complex structures have not been amenable to theoretical study. 
We have here introduced this very brief account of band theory primarily to 
demonstrate that in such a relatively sophisticated treatment there is orly a distinction 
of degree between metallic and covalent bonds with every possible variation between 
these extremes. For our limited crystallo-chemical purpose it is sufficient to think in 
terms of two extreme structures, one metallic and the other covalent: in metallic bonds 

the valence electrons are delocalized and in covalent bonds the valence electrons are 
associated with pairs of atoms. Structurally metallic bonding gives rise to close-packed 
and nearly close-packed (e.g. body-centred cubic) structures, whereas covalent 
bonding gives rise to structures with directed bonds. 

It is appropriate at this point to introduce what is commonly known as the 
8—N rule, which states that ‘a b-subgroup element in the Nth group of the Periodic 
Table tends to crystallize in a structure with 8—N nearest neighbours’. Thus the 
carbon (N = 4) atoms in diamond have four nearest neighbours; the Group Vb 
elements As, Sb, Bi crystallize in structures where each atom has three nearest 

neighbours; the Group VIb elements S, Se, Te have structures in which each atom 

has two nearest neighbours; and in iodine (N = 7), which forms molecular crystals, 
each atom has only one near neighbour. In all these structures of elements with 
N > 4 the number of near neighbours is to be correlated with the number of covalent 
bonds the atom can form. But the 8—N rule also holds for the Group IIb metals, 
Zn and Cd, which crystallize in structures where each atom has six near neighbours 
but in these metallic structures there is no correlation with the number of covalent 
bonds the atoms can form. In summary it can be said that although the 8—N rule is 
not generally applicable and is obscure in its significance, it is an attempt at 
generalization, albeit to a limited extent, about the structures adopted by the elements. 
We have so far explored only the relationship of the metallic bond to the covalent 

bond; but the metallic bond has a similar relationship to the ionic bond as the extremes 
ofa continuous variation of bond type. In terms of the band theory an ionic compound 
is characterized by having the valency electrons of its various constituent atomic 
species in atomic orbitals of very different energy so that the formation of delocalized 
molecular orbitals leads to bands of energy levels such that each band is related to 
an atomic orbital of one of the constituent ions. The overlap of the atomic orbitals 
of like atoms in an ionic structure will be small so that band widths will be relatively 
narrow and bands will rarely overlap in energy. As the structure changes from that 

*In making this statement and throughout this chapter we neglect the special case of the class of 
compounds known as semiconductors. The reader who desires to explore such compounds is referred to 
textbooks of crystal physics, such as Kittel (1971). 



Bonding in AX and AX» structures 321 

appropriate to the ionic configuration A*X~ towards that of the metallic (alloy) 
configuration AX the bands broaden and become less closely related to the atomic 
orbitals of the isolated atoms A and X; the bond simultaneously decreases in ionic 
and increases in metallic character. 

In conclusion it can be said that the three simple bond models are extremes and 
that bonds of intermediate character, ionic-covalent, covalent-metallic, metallic-ionic, 

are to be expected to occur quite commonly. 

We turn now specifically to discuss bonding in the simple AX and AX, structures 
of the previous section. In doing so we shall ignore the intermetallic compounds that 
crystallize in several of the typical simple structures; the crystal chemistry of alloy 
systems is a highly specialized field outside our scope and the reader is referred for a 
brief account to Phillips and Williams (1965) or for a thorough treatment to 
Hume-Rothery, Smallman, and Haworth (1969). Here we shall be concerned 

essentially with the compounds of the transition metals and the metals of Groups I 
and II with the Vb, VIb, and VIIb elements, which provide examples of all the points 
that need to be made. 

Of the AX structures the CsCl type is the least common. It is adopted by ionic 
compounds where the radius ratio is greater than ,/3—1 = 0-732, the minimum 
ratio permissible for structures with cubic coordination. However some alkali halides 
with radius ratios appropriate to the CsCl-type actually crystallize with the NaCl-type 
structure as do some other alkali halides with radius ratios less than the minimum 
limit for octahedral coordination. The NaCl-type structure is found to occur in a great 
many predominantly ionic compounds in which the cation has an inert gas 
configuration. Thus alkali and alkaline-earth salts adopt this structure regularly, 
while transition metal salts, other than oxides, prefer other structures. In other 

compounds which adopt the NaCl-type structure however bonding must be 
predominantly covalent; and in some of these it is necessary to postulate partial 
metallic character, for example the mineral galena, PbS, which has characteristically 

metallic lustre. 
The blende and wurtzite structures are closely related and ZnS is not unusual in 

crystallizing in both structures, each stable under different physical conditions. Most 
of the compounds that crystallize in one or both of these structures are dominantly 
covalent in character, such as the chalconides of the less electronegative elements. 
Very few oxides or halides crystallize in either of these structures. 

It is difficult to generalize about the nature of the bonding in compounds that 
crystallize in the NiAs-type structure. In the type compound the coordination 
polyhedron of nickel about arsenicis a trigonal prism and therefore the Ni—As bonds 
cannot be dominantly ionic in character. The close approach of nickel nuclei in 
directions parallel to [0001 ] is also inconsistent with ionization of the nickel atoms. 
It is generally true that the axial ratio c/a in this structure type decreases with 
increasing metallic character of the bonding, so that one would expect metallic 
bonding, Ni—Ni bonding in this case, in directions parallel to [0001]. One might 
expect bonding between nickel and arsenic on general grounds to be dominantly 
covalent, but the properties of NiAs are intermediate between those of metallic alloys 
and ionic compounds. Most substances that adopt this structure tend to have variable 
composition, that is to be non-stoichiometric; they are to be regarded not as 
compounds in the strict sense, but rather as thermodynamic phases. 
Of the AX, structures the fluorite and rutile types are adopted by dominantly 

ionic structures, especially by fluorides and oxides. Most of the compounds that 
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crystallize in these structures have radius ratios within the limits for cubic and 

octahedral coordination respectively. In the case of the rutile structure there are 

some compounds that adopt it which have radius ratios just less than ue 2-—1=0-414; 

the reason for crystallization in the rutile structure in these cases is thought to be 

analogous to that for the adoption of the NaCl structure by the lithium halides. 

The oxides and chalconides of the alkali metals crystallize in the anti-fluorite 

structure with the alkali metal ions in tetrahedral coordination and the anions in 

cubic coordination. This is the highest regular coordination possible because 
octahedral coordination of the cations in an A,X compound would imply 12-fold 
coordination of the anions, that is close packing of the anions and a close-packed 
structure only has one octahedral interstice per close-packed atom. The radius ratio 
criterion consequently does not apply for this structure type: tetrahedral coordination 
is observed for cations in compounds with the anti-fluorite structure at radius ratios 

ranging from 0:31 in Li,Te to 1-1 in Rb,O. 
Following the sequence of our descriptive section we come now to the cadmium 

iodide structure type, which must involve two distinct bond types: in Cdl, itself there 
will be I—I bonding between the iodine atoms of adjacent (0001) sheets as well as 
Cd—I bonding. Compounds having this structure are characterized by easy cleavage 
parallel to (0001), an observation which suggests that the only cohesive forces 
operating between adjacent iodine sheets are van der Waals forces. Bonding between 
cadmium and iodine is unlikely to be dominantly ionic Cd?*1I; because this would 
lead to rather strong electrostatic repulsive forces between necessarily similarly 
charged iodine ions in adjacent sheets which are attracted only by the weak van der 
Waals forces. Covalent bonding between cadmium and iodine is possible by utilizing 
the sp°d? octahedral hybrid orbitals of Cd and the 5p orbitals of iodine to give the 
formal configuration Cd*~ I3*. Various pieces of experimental evidence suggest that 
the Cd—I bonds are intermediate between covalent and ionic, perhaps so balanced 
that the iodine atoms are effectively electrostatically neutral so that there is no 
significant electrostatic force between adjacent iodine layers. 

It is apparent from the data presented in Table 10.10 that in AX, compounds, 
where X is a halogen, decreasing electronegativity and increasing polarizability of the 
halogen are to be correlated with change in structure from the fluorite or rutile types 

through the cadmium chloride type to the cadmium iodide type. The cadmium 

Table 10.10 
The structures of some AX, compounds 
where X is a halogen 

The electronegativities are denoted by x(A) 
and x(X). Structure types: F = fluorite, R = 
rutile, Cc = cadmium chloride, Ci = cadmium 
iodide. 

F Cl Br I 
x(X) = 4-10 2:83 2:74 2:21 
x(A) 

Migenel 25 R Ce Ci Ci 
Ti 1:32 R Ci Ci Ci 
Cd 1-46 F Cc Cc Gi 
Mn _ 1-60 R Cc Ci Ce 
Fe 1:64 R Cc Ci Ci 
Com 70 R Ge Ci Ci 
Nie 75 R Ge Ge Cc 
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chloride structure is evidently adopted by compounds that are rather more ionic in 
character than those crystallizing with the cadmium iodide structure. This conclusion 
is consistent with the greater separation of cadmium atoms in adjacent layers in the 
CdCl, structure where the shortest Cd—Cd vector is 3a+4b+4e compared with ¢ in 
the Cdl, structure (e for Cdl, ~ $e for CdCl,). In this set of halides there would 
appear to be no correlation between structure type and either the electronegativity or 

the polarizing power of the metallic atoms concerned. 
In the preceding pages we have discussed a few of the structures in which 

compounds whose formulae can be written as AX or AX, crystallize. Many other 
such compounds have structures simply related to those we have discussed, while 
others have totally different structures. We have seen that it is usually difficult and 
often impossible to determine the nature of the binding forces from knowledge of the 
structure alone. Structure analysis provides information essentially about bond 
lengths and inter-bond angles. To obtain information about bond strengths 
supplementary studies of such physical properties as thermal expansion and 
compressibility and the determination of melting or sublimation temperatures are 
required. In general one can say that small coefficients of thermal expansion, low 
compressibilities and high melting points or sublimation temperatures are indicative 
of the presence of strong binding forces in the crystal structure. Properties such as 
high electrical conductivity and metallic lustre are especially indicative of the 
presence of some degree of metallic bonding in the structure. In short a thorough 
physical as well as crystallographic study of a compound is necessary before the 
binding forces operative in it can be classified. Classification in terms of the simple 
ionic, covalent, and metallic bond models, even allowing for the existence of 

intermediates between these three extreme types, is not ultimately adequate but it has 
the merit of simplicity and is appropriate in its degree of sophistication to the sort of 

data available for most crystalline compounds. 

In conclusion we return briefly to close-packing. Of the AX and AX, structures 
that we have discussed only caesium chloride, fluorite (but not anti-fluorite) and 

rutile have anions arranged in a manner that bears no geometrical resemblance to 
close-packing (Table 10.11). In all the other structures the anions have close-packed 
arrangements without being actually close-packed and the cations are situated in one 
or other type of interstice in the anion array. A peculiarity of the fluorite structure is 

that the cations have the cubic close-packed arrangement with the anions occupying 

Table 10.11 
Apparent close-packing in some AX and AX, structures 

Where both atomic species are in close-packed array, the species that usually has the 
smaller radius is shown in parenthesis. 

Structure Close-packed Type of Interstices occupied: 
type atom close-packing Coord. no. Number 

AX CsCl — =e ae — 
NaCl X(A) cubic [6] all 
NiAs xX hexagonal [6] all 
blende X(A) cubic [4] half 
wurtzite X(A) hexagonal [4] half 

AX, fluorite A cubic [4] all 
rutile — — = _— 
Cdl, Xx hexagonal [6] half 
CdCl, xX cubic [6] half 
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sites corresponding to the tetrahedral interstices in cubic close packing; but the 

resemblance to cubic close-packing can be no more than formal because fluorine 

anions are significantly larger than calcium cations. There is however a remarkable 

similarity between the unit-cell edges of fluorite 546A and elementary calcium 

5-58 A; in both structures the arrangement of calcium atoms is that of cubic close 

packing and in metallic calcium the atoms are actually close-packed. The significance, 

if any, of this relationship remains obscure. 

Complex ionic compounds 

For many of the more complicated inorganic oxides and silicates the ionic bond 
model is found to provide an adequate basis for understanding the structure even 
when some, or all, of the bonds have as much as 50 per cent covalent character. In 
compounds that contain complex ions such as (CO3)?~ or (SiO,)*~ even the C—O 
or Si—O bonds, in reality dominantly covalent, can safely be treated as ionic bonds 
if no more than a general understanding of the structure is required. This over- 
simplification fails however to explain some observed structural features, especially 
inter-bond angles. In such structures the anions together with any large cations, such 
as Na*, Ca?*, K*, that may be present constitute a framework which is often 
geometrically related to close-packing; all the smaller cations occupy tetrahedral or 
octahedral interstices in the framework. Very small cations such as Si**, Fe**, etc 
tend to occupy tetrahedral interstices, intermediate sized cations such as Mg**, Ti**, 
Fe?*, etc tend to occupy octahedral interstices, and Al? * is quite commonly situated 
on both octahedral and tetrahedral sites. 
Many structural features of complex ionic compounds can be accounted for in 

terms of the simple electrostatic considerations epitomized in Pauling’s Rules. The 
four Rules? are: 

(1) The nature of the coordinated polyhedra: A coordinated polyhedron of anions is 

formed about each cation, the cation—anion distance being determined by the radius 

sum and the ligancy of the cation by the radius ratio. 

(2) The electrostatic valency rule: In a stable ionic structure the valence of each 
anion, with changed sign, is exactly or nearly equal to the sum of the strengths of the 
electrostatic bonds to it from the adjacent cations. 

(3,4) The sharing of polyhedron corners, edges, and faces: 

(3) The presence of shared edges and especially of shared faces in a coordinated 
structure decreases its stability; this effect is large for cations with large valence and 

small ligancy. 

(4) In a crystal containing different cations those with large valence and small 
coordination number tend not to share polyhedron elements with each other. 

Discussion of the first rule must begin by defining the term ligancy as equivalent 
in crystallographic terms to coordination number. This rule is simply a concise 
statement of the principles that we have already applied to the interpretation of 
simple ionic crystals and extends the application of those principles to more complex 
structures. The dependence of the cation—anion distance on the radius sum implies 

that for this limited objective ions can be regarded as rigid spheres. The cation is 
usually smaller than the anions to which it is bonded so that the nature of its 

*We quote the Rules without change of wording from Pauling (1960). 
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coordination polyhedron is determined by the maximum number of anions that can 
be in contact with the cation without overlapping one another. 

The second rule expresses the principle of local charge balance, that is to say in a 
stable ionic structure the charge on an ion is neutralized by the presence of 

neighbouring ions. Electrostatic bond strength is simply defined as the valency of a 
cation divided by its coordination number and represents the amount of positive 
charge contributed by the cation to each bond. Thus an ion of valency z in n-fold 
coordination has bonds radiating from it, each of bond strength z/n. The rule requires 
that the sum of the electrostatic strengths of the bonds to an anion of valency —y 
should be given by y ~ )(z;/n;) where the anion is bonded to i cations. For instance 
in rutile Ti** is in octahedral coordination so that the electrostatic strength of each 

Ti—O bond is ¢ = #. Each oxygen atom is bonded to three titanium atoms so that 
the sum of the electrostatic strengths of the bonds to each oxygen atom is 3(3) = 2 
and is equal to the charge on the oxygen anion with reversed sign. The electrostatic 
valency rule is not obeyed rigorously in all complex structures, but in silicates at least 
it is rare for the sum of the electrostatic bond strengths to an oxygen atom to lie 

outside the range 2 +2. 
The third and fourth rules embody the obvious principle that electrostatic energy 

is minimized when cations are as far apart as can be consistent with the existence of a 
crystal structure, that is to say when polyhedra share corners. Figure 10.26 illustrates 
this point: the separation of the cations at the centres of a pair of octahedra sharing a 
common corner has a maximum value of 2d,, but if the octahedra have a common 
edge the maximum separation of the cations falls to \/2d,x if the octahedra remain 
regular. In reality coordination octahedra usually distort in such a manner that 
cation—anion distances are little affected, but the length of the shared edge tends to 
decrease so that interbond angles depart from the ideal value of 90°, and cation—cation 
distances tend to be increased. For instance in rutile (Fig 10.26(c)) the shared 

e cation A 

O anion X 

(b) 
Fig 10.26 Distortion of coordination octahedra due to edge sharing. Bold lines represent bonds 
from cations A to anions X and light lines outline coordination octahedra. In (a) only a corner is 
shared by the adjacent pair of octahedra so that the shortest approach of cations is 2d. In (b) 
an edge is shared and adjacent cations are only ,/2d,y apart. The distortion of coordination 
octahedra in rutile (TiO.,), shown in (c), is such as to increase the separation of adjacent cations 
to more than weds the O—O distances in the plane of the diagram are 2:53 A on the shared 
edge and 2:96 A on the other edge. 

(c) 
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octahedral edges, of which there are two, have a length of 2°53 A; while the lengths 
of the unshared edges are 2:78 A and 2:96 A, eight of the former and two of the latter 

(Fig 10.22). 
It is obviously disadvantageous for cations of relatively large charge and small 

radius and consequently of small coordination number to share polyhedron elements; 
if they do so it is likely to be a corner rather than an edge and most unlikely to be a 

face. For instance in all the SiO, structures in which silicon is tetrahedrally 
coordinated to oxygen the tetrahedra share corners with other SiO, tetrahedra and 
in none of the known structures are edges or faces shared. 
We now proceed to discuss two examples of complex ionic structures, the minerals 

forsterite Mg,SiO, and common spinel MgAI,O, in the light of Pauling’s Rules. 
Forsterite is orthorhombic with point group mmm, and space group Pbnm. This 

space group is a non-standard setting of Pama, which was explored in some detail in 
another non-standard setting Pmcn in chapter 4; coordinates of general and special 
equivalent positions for Pmcn are listed in Table 4.4. Figure 10.27 shows a plan of 
the forsterite structure on (100) based on the recent refinement of Birle et al. (1968). 

Magnesium atoms are octahedrally coordinated by oxygen and lie on two sets of 
special equivalent positions: one half of the magnesium atoms lie on mirror planes 
in positions with coordinates x, y, 4, etc, where x = 0-99, y = 0-28, and the other half 

lie on centres of symmetry at 0,0,0 etc. Silicon atoms are tetrahedrally coordinated 
by oxygen and occupy one set of special equivalent positions on mirror planes; they 
are situated at x, y, 4, etc, where x = 0-43, y = 0-09. Oxygen atoms lie on one set of 
general equivalent positions, x, y, z etc, where x = 0:28, y = 0-16, z = 0-03, and two 

sets of positions on mirror planes, x, y, 4, etc, where x = 0-77, y = 0-09, and x = 0-22, 

y = 0-45. Each oxygen atom is bonded to one silicon and three magnesium atoms. 
The electrostatic strength of a Si—O bond is ¢=1 and of a Mg—O bond is 

& =}. The sum of the electrostatic strengths of the bonds to any oxygen atom is 
therefore 1+3.3 = 2, which exactly balances the charge of —2 on the fully ionized 
oxygen atom. The electrostatic valency rule is thus satisfied in this structure. The 
coordination polyhedra about the small highly charged Si** cation have the low 
coordination number 4 and do not share any elements with one another, that is to 

say they are isolated SiO, tetrahedra. Each tetrahedron does however share its three 
edges which are parallel to (100) with MgO, octahedra. The octahedra about Mg 
atoms situated at centres of symmetry each share two opposite edges with SiO, 

tetrahedra while those about Mg atoms on mirror plane sites each share only one 
edge with a SiO, tetrahedron. Since Si—O bonds are relatively strong and since 
O—Si—O bond angles tend not to depart much from the ideal angle for a regular 
tetrahedron because of the high covalent content of the bond, it might be thought 
that SiO, tetrahedra would tend to be very nearly regular tetrahedra in silicate 
structures. However recent very precise studies of forsterite and other silicates have 
shown that even SiO, tetrahedra become markedly distorted when involved in edge 
sharing; it is interesting to note that despite the covalent content of the Si—O bond 
the nature of the distortions observed is interpretable in terms of Pauling’s Rules 
(cf. Fig 10.26). The magnesium sites on centres of symmetry, being linked to two SiO, 
tetrahedra, are consequently more stringently constrained than the other type of Mg 
site. Therefore the isostructural compound CaMgSiO, has the relatively large Ca?* 
ions situated on mirror planes, Mg’* continuing in occupation of the centre of 
symmetry sites. 

In the forsterite structure the arrangement of oxygen atoms is approximately that 
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(a) 
Fig 10.27 The crystal structure of forsterite, Mg,SiO,,. 
(a) is a plan of the real structure on (100). (b) isa 
corresponding plan of the idealized structure with 
oxygens in hexagonal close-packed array and cations 
in octahedral and tetragonal interstices. (c) represents 
one unit-cell of an hexagonal close-packed array of 
anions with all interstitial sites occupied, octahedral 
interstices being shown as (&) and tetrahedral interstices 62:5,87°5 (c) 62:5,87°5 
as @. 

of hexagonal close-packing, with close-packed sheets parallel to (100) and close- 
packed rows of atoms parallel to [001 ]. The axial ratio a/c = 3-18, rather smaller than 
the corresponding ratio for close-packing of rigid spheres 2 x 1:63 = 3:26. The 
separation of oxygen atoms along the z-axis is c/2 = 2:99 A, which is rather larger 
than the diameter of an O?~ ion 2:80 A. Moreover what we have regarded as (100) 

sheets of oxygen atoms are not strictly planar, but regularly puckered with atoms 

about 0:20 A above and below the mean position of the plane. 
We shall return to the forsterite structure later in this chapter to consider its 

response to the substitution of other cations for Mg** and Si**. 
The other structure that we use to exemplify Pauling’s Rules is that of the mineral 

spinel, MgAl,O,. The unit-cell of spinel is cubic, its point group being m3m and its 
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space group Fd3m. The unit-cell contains eight formula units, ic. 8MgAl,O,. Since 

the number of atoms in the unit-cell is large and the space group symmetry rather 

complicated, neither a plan of the whole structure nor an examination of the structure 

in terms of the occupation of sets of symmetry related positions would be particularly 
helpful as a basis for discussion of the crystal chemistry of spinel. One important 
feature of the spinel structure is that all eight magnesium atoms lie on one set of 
symmetry related positions and likewise for the sixteen aluminium atoms and for the 

thirty-two oxygen atoms. The arrangement of each kind of atom in the unit-cell is 
shown in separate projections on (001) in Fig 10.28. 

The simplest way of analysing the spinel structure is in terms of the approximately 
cubic close-packed array of oxygen atoms. It is clear from Fig 10.28 that the oxygen 

4 

a 

w ¢ Coordination of Al at 335 
888 

Fig 10.28 The crystal structure of spinel, MgAI,0,. Each diagram is a plan on (001) with one 
unit-cell shown divided into quarters. The two upper diagrams show the Mg and AI cation sites. 
The lower diagram on the right shows the positions of oxygen anions in the ideal structure. In the 
oxygen diagram dashed lines represent contours on {111} planes, the heights of the contour 
lines being shown in units of 4a on adjacent sides of the unit-cell outline and the indices of the 
relevant plane at the corner between these two sides (e.g. the (11 1) close-packed oxygen plane 
has contour heights —3, 4, 3 indicated along the right-hand side of the figure, & at the top 
right-hand corner, and Z, 2,4 along the top of the diagram). The lower left-hand diagrams show 
the coordination of oxygen about Mg and Al cations respectively. 
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array, assuming perfect cubic close-packing, has a unit-cell edge equal to half that of 
the spinel unit-cell. There are therefore 8 close-packed ‘oxygen sub-cells’ in the spinel 
unit-cell and consequently 32 octahedral interstices and 64 tetrahedral interstices in 
the unit-cell. One half of the octahedral sites are occupied by aluminium ions and 
one eighth of the tetrahedral sites are occupied by magnesium ions. The occupied 

sites are regularly disposed in such a manner that tetrahedra share corners only with 
octahedra and the octahedra share edges with one another. The manner in which the 
occupied cation sites are disposed is most clearly to be seen by considering the 
sequence of cations normal to one set of {111} close-packed oxygen planes. There are 

two types of cation arrangement between adjacent close-packed oxygen sheets; the 
two arrangements, which we define as types I and II, alternate through the whole 
structure (Fig 10.29(c)). Consider a type I cation layer between oxygen sheets in the 
A and B orientations of close-packing and a type II cation layer between B and C 
oxygen sheets. In the type I cation layer aluminium atoms occupy three of the four 
octahedral sites which, as is apparent from Fig 10.29(a), are in the C orientation in 
close-packing terminology. In the type II cation layer only one of the four octahedral 
sites is occupied by Al and two of the eight tetrahedral sites are occupied by Mg. 

Ar A A 

(a) Typel 

Fig 10.29 The crystal structure of spinel, MgAI,0,, shown in plan on (111). (a) shows a type | 
layer containing Al cations in three quarters of the octahedral interstices between A and B 
close-packed oxygen planes. (b) shows a type II layer containing Al cations in one quarter of the 
octahedral interstices and Mg cations in two eighths of the tetrahedral interstices between B and C 
close-packed oxygen planes. (c) shows the stacking sequence of (111) anion and cation layers 
along [111]. 
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The aluminium atom necessarily occupies an A site; one magnesium atom is on a 
B site and the other on a C site (Fig 10.29(b)). There is only one C site that can be 
occupied by Mg if its tetrahedron is not to share a face with the Al octahedron in the 
type I cation layer immediately below. And there is only one B site that can be 
occupied by Mg if its tetrahedron is not to share any elements with other MgO, 
tetrahedra in this type II layer. The Al then enters the only octahedral site in which 
sharing with Mg tetrahedra of the same layer is restricted to sharing of corners. The 
sequence of type I and type II cation layers is repeated in such a manner that Mg 
tetrahedra face one another across the vacant octahedral site of the intervening type 

I layer. 
If Fig 10.29(b) is imagined to be superimposed on Fig 10.29(a) it becomes apparent 

that every oxygen atom is coordinated to one magnesium atom and three aluminium 
atoms. The sum of the electrostatic strengths of the bonds to any oxygen atom is then 
%+3.% = 2 which exactly balances the charge on a fully ionized oxygen atom. The 
spinel structure thus satisfies exactly the electrostatic valency rule. 

This sequence of oxygen and cation sheets is repeated so that the oxygen atoms 

are in cubic close-packing. The next type I cation layer then falls between C and A 
oxygen sheets with its vacant octahedral site directly above the occupied tetrahedral 
B-site in the type II layer beneath it. The whole sequence can be represented in 
close-packing notation as: 

Oxygen A Bb CPAP BC cA 
Ay Seen’ B A GC 
AL(I) A € B 
Mg(II) BOWS «CA 

The spinel structure is unusual in that its Mg ions are in tetrahedral coordination. 
In silicates and in many other structures Mg is in octahedral coordination, which is 
consistent with the radius ratio r(Mg**)/r(O?~) = 0-66/1-40 = 0-47, while Al for 
which r(Al?*)/r(O?~) = 0:51/1-40 = 0:36 is commonly found in both octahedral and 
tetrahedral coordination. 

In our discussion of the spinel structure so far we have assumed ideal cubic 

close-packing of oxygens, but this is not strictly true. Ideally the oxygen atom at 
x, x, x has x = 3; but in reality for MgAl, O4, x = 0-387. The effect of this quite small 
departure from ideal cubic close-packing is to enlarge the tetrahedral sites while 
retaining their ideal symmetry. 
We shall return to the spinel structure for some further comments later in this 

chapter. 
Non-spherical ions 

The simple ionic bond model that we have employed up to this point makes the 
assumption that all ions are spherically symmetrical. This can only be strictly true for 
ions that have an inert gas configuration; ions with partially filled d or f orbitals are 
not in general spherically symmetrical. In our discussion of departures from spherical 
symmetry, which follows, we shall restrict our examples to elements of the first 
transition series and we shall adopt the purely electrostatic approach known as crystal 
field theory. 

Only when the 3d orbitals of a free ion are occupied by either five or ten electrons 
is the electron density distribution in the ion spherically symmetrical. When electron 
density distribution is non-spherical the equilibrium distance between the ion and an 
ion to which it is bonded will vary with the direction of the bond because the short 
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range repulsive forces are determined by the overlap of the electron clouds of the 
two ions and the 3d orbitals are the outermost orbitals in the case of ions of the first 
transition metal series. 

A transition metal ion in octahedral coordination has its 3d orbitals in the 
orientation corresponding to minimum energy when the electron density maxima of 
the d_. and d,.2_ ,2 orbitals (Fig 10.30) are directed towards the six coordinating ions. 
The remaining three 3d orbitals, d,.,,, d,,, d,, then have their directions of maximum 
electron density disposed symmetrically between groups of four coplanar co- 
ordinating ions. In such a coordination environment the d,. and d,.2_ , orbitals retain 
their equivalence but become energetically distinct from the other three orbitals 
dy, dy,, d,,. An electron in a d,2 or a d,2_ 2 orbital will have a higher energy than an 
electron in a d,,, d,,, or d,,, orbital because the electrons in the former set of orbitals 
are closer to the coordinating anions. The effect of the coordinating anions is 
represented in the energy level diagram of Fig 10.31(a). The total energy of the 

electrons associated with the cation is raised when the cation is surrounded by six 
anions; the five 3d orbitals, degenerate in the free cation, become split into two levels 

with energy difference A, such that there is a triply degenerate energy level at 2A, 
below the mean energy, comprising the d,,, d,,, d,, orbitals, and a doubly degenerate 
energy level at 3A, above the mean energy, comprising the d,. and d,2_,2 orbitals. 

The orbitals of these two energy levels are commonly denoted, in notation borrowed 
from group theory, as t,, and e, respectively. The difference between the energy levels 
ty, and e, is Ay which is known as the crystal field splitting. The magnitude of A> 
depends on the nature of the coordinating anions; it may be sufficient to play a 
significant part in determining at least some of the physical and chemical properties 
of the cation in this environment. 

Fig 10.30 Boundary surfaces for 3d electrons. 
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(a) (b) 
Fig 10.31 Energy level diagrams to illustrate crystal field splitting of the 3d orbitals of ions in 
(a) octahedral and (b) tetrahedral coordination. 

Before going on to consider the effect of crystal field splitting on the crystal 
chemistry of first transition metal series cations in octahedral coordination we shall 
explore similarly the case of such ions in tetrahedral coordination. Here the most 
stable configuration is that which has the four tetrahedral bond directions disposed 
symmetrically with respect to the axes to which the geometry of the 3d orbitals is 
referred. The geometry of the problem is most easily described in terms of directions 
in point group 43m. The vectors between the cation and its four coordinating anions 
are in <111) directions; the d,. and d,._,2 orbitals have their maxima of electron 
density parallel to ¢100); and the d,,, d,., d_, orbitals have their maxima of electron 
density parallel to ¢110>. Since [100]:[111] = 54°44’ and [110]:[111] = 35°16’ the 
coordinating anions interact more strongly with electrons in the d,,, d,., d.,. orbitals, 
designated here ft, orbitals,° than with those in the d.2 and d,2-y2 orbitals, the e 

orbitals. This is the inverse of the effect when the cation is in octahedral coordination 
and moreover in tetrahedral coordination the anions approach along directions that 
do not coincide with electron density maxima. In consequence the interaction is 
weaker here, the crystal field splitting being A, = $A, (Fig 10.31(b)) for the same 
cation and anions at the same distance apart. The e energy level is 2A, below the 
mean energy of the 3d orbitals, while the t, energy level is 2A, above the mean. 
When the cation is in octahedral coordination and has four, five, six, or seven 3d 

electrons, two electronic configurations are possible. We illustrate this point by 
consideration of the case in which there are four 3d electrons. Suppose that the 3d 
orbitals are filled progressively. Then Hund’s Rule indicates that the first three 
electrons will occupy singly the three t,, orbitals so as to have their spins parallel. If 

° The difference in designation of groups of orbitals in octahedral and tetrahedral environments follows 
from the symmetry requirements of group theory notation, which we shall not go into. 
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the 3d orbitals were not subjected to crystal field splitting, the fourth electron would 
enter one of the e, orbitals. But in the crystal this would mean that the fourth electron 
has excess energy A relative to each of the first three electrons. If however the fourth 
electron were to enter one of the t,, orbitals its spin would have to be anti-parallel to 
that of the electron already in this orbital and the energy of the ion would be increased 
by an amount P due to pairing of electron spins and to the presence of a second 
electron which must increase the electrostatic repulsive energy of the orbital. If A > P, 
the fourth electron will enter a t,, orbital; but if A < P it will enter an e, orbital. The 
former situation is described as the low spin configuration or, since it is associated with 
a high value of A, as a high crystal field splitting. The latter situation, corresponding 
to a low value of A is known as the high spin configuration or as a low crystal field 
splitting. High and low spin configurations occur in the first transition metal series 
when there are four, five, six, or seven 3d electrons (Table 10.12), but with other 

numbers of d electrons only one configuration is possible. 

For an ion in tetrahedral coordination the possibility of either the high or low spin 

configuration arises when it has three, four, five, or six 3d electrons. But here the crystal 

field splitting A is much smaller than for ions in octahedral coordination; indeed no 

‘example has yet been reported of a case where A is large enough to force spin pairing 
in the e orbitals in preference to occupation of the t, orbitals. Thus in all known 
examples the electrons are in the high spin configuration, every 3d orbital being singly 
occupied before spin pairing begins. 
When the electron density distribution in an ion is not spherically symmetrical there 

can be no justification for regarding the ion as even approximately a rigid sphere of 
fixed radius. The equilibrium distance of the ion from another to which it is 
coordinated is determined by the overlap of the electron clouds of the two ions. In 
ions of the first transition metal series the 3d orbitals extend further from the nucleus 
than do the fully occupied inner orbitals so that the 3d electrons play a critical part 
in determining equilibrium distances. Take for example an ion in octahedral 
coordination with four 3d electrons in the high spin configuration. If the fourth 

electron is in the d,. orbital, then the electron density will be greater along the z-axis 
than along the x or y axes (the axial notation referring to the interatomic vectors 

between the transition metal ion and its coordinating ion which will not of course in 
general be parallel to the crystallographic reference axes). The equilibrium distance 
apart of the ions along the z-axis will consequently be greater than along the x and 
y axes so that the coordination polyhedron will be distorted from regular octahedral 
shape by elongation along one axis. On the other hand if the fourth electron enters 

Table 10.12 
High spin and low spin configurations of ions in octahedral 
coordination 

High spin Low spin 
Number of configuration configuration 
3d electrons iN eP Me P 

tog eg log e, 

4 et 
5 ola 
6 bad oe 
7 
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the d,»_,2 orbital, the electron density will be least along the z-axis so that the 

coordination octahedron will be distorted from regularity by having one axis shorter 

than the other two, equal, axes. It is however found that the situation we considered 

first, with z > x = y, is generally energetically mare favourable. Distortion of a 
coordination polyhedron from regularity produced in this sort of way is known as the 

Jahn-Teller effect.° 
Jahn-Teller distortion occurs in octahedral coordination whenever the e, orbitals 

are unequally occupied. This occurs when there are four 3d electrons in high spin 
configuration as in Cr?*, Mn?*, when there are seven 3d electrons in low spin 

configuration as in Co?*, and when there are nine 3d electrons as in Cu** (see Table 

10.13). Thus CrCl, has an orthorhombic structure related to the rutile structure (Fig 
10.32) in which all the chromium ions are equivalent and in similarly distorted 
octahedral coordination to chlorine; of the six Cl~ ions surrounding any Cr?* ion 
two are distant 2-92 A and four are distant 2:37 A from the cation. In CrCl, therefore 
the e, electron must be in the d,, orbital. 

A similar effect is to be expected when the t,, orbitals are unequally occupied; but 
these orbitals do not have their electron density maxima directed along interatomic 
vectors so that the effect will be very much smaller. There is little or no experimental 
evidence for distortion of coordination octahedra due to unequal occupation of f,, 
orbitals. 

Table 10.13 
The Jahn-Teller effect for octahedrally and tetrahedrally coordinated ions 

Number of ‘2g “ 
Coordination Distortion 3d electrons Configuration da dedi, d3-y2 dz 

Octahedral C—O 4 high spin eae slur wan T 

7 low spin PMG ay aa 3 
9 erie bina 1 t 

C=a=0 4 high spin fe Sy i ii 

7 low spin Tish OF 1 
9 tbontcate t th 

252 dz2 as Wa,pa0dss 
Tetrahedral e<a=b 4 high spin t tT th, Ft 

9 t tl fee tt Pi 
C= a=F 3 high spin T tT T 

8 tl N thn dteat 

In tetrahedral coordination unequal occupation of t, orbitals leads to distortion 
of inter-bond angles. Here neither the t, nor the e orbitals have their electron density 
concentrated along the directions in which the four coordinating ions approach the 
transition metal ion. However the t, orbitals, that is d,,, d,., d,,, have their electron 
density maxima closer to the interatomic vectors than do the e orbitals so that, when 
they are unequally occupied, the coordinating ions will be repelled by those orbitals 
that contain additional electrons. Inter-bond angles will then deviate from the 109°28’ 
appropriate to regular tetrahedral coordination. If there is only one electron in a t, 
orbital and it is in the d,., orbital, then the coordinating ions will be repelled towards 

°For a more extended discussion of the Jahn-Teller effect in molecules and in ionic crystals the reader 
is referred to Cotton and Wilkinson (1966) or Phillips and Williams (1965). 



5-97 A 

Non-spherical ions 335 

Fig 10.32 The crystal structure 
of CrCl,. The structure is 
orthorhombic but related to that 
of rutile (TiO,, tetragonal, cf. 
Fig 10.22 (a)). The coordination 
octahedron about each Cr2+ 
cation displays Jahn-Teller 
distortion indicative of the 
presence of one electron in the 
3d,. orbital. Bonds from the 
Cr2*+ ion at$,4,4 are shown in 
the figure. 

the z-axis so that the two inter-bond angles measured across z and —z will be 
decreased (Fig 10.33(a)) and the z-axis of the tetrahedron will be increased in length. 
When however there are two electrons in t, orbitals, one in d,, and one in d,,, the 
coordinating ions will be repelled towards the xy plane so that the same two 
inter-bond angles will now be increased (Fig 10.33(b)) and the length of the z-axis 
will be decreased. Jahn—Teller distortion will thus be expected to occur in tetrahedral 
coordination, high spin configurations only being considered, when there are three, 
four, eight, or nine 3d electrons (Table 10.13) as in Ni?*, Cu?*. As for octahedral 

coordination, the effect is sufficiently strong to be observable only when the orbitals 
of higher energy, the t, orbitals, are unequally occupied; it has not been reported for 
cases of unequal occupation of e orbitals, which occur when an ion has one or six 3d 
electrons. 

By way of example we take NiCr,O, which adopts a modification of the spinel 
structure with symmetry reduced from cubic to tetragonal. The Cr?* ion is in regular 
octahedral coordination to oxygen. The coordination polyhedron about the Ni?* ion 
is distorted from regular tetrahedral shape, being elongated 14 per cent along that one 

(a) (b) 
Fig 10.33 Stereograms showing inter-atomic vectors to illustrate Jahn—Teller distortion of 
coordination tetrahedra. In (a) the d,, orbital is occupied by one electron and the other ft, orbitals 
are unoccupied: the coordination tetrahedron is distorted from cubic symmetry (indicated by the 
plotted <110> zones) to tetragonal symmetry with c/a > 1. In (b) the d,,, orbital is unoccupied 
and there is one electron in each of the other ¢, orbitals, a, and d,,: again the coordination 
tetrahedron is distorted to tetragonal symmetry, but now with c/a <1. 
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of its 4 axes which is parallel to the tetrad of the structure. The Ni** ion has eight 
3d electrons, which must here be in the high spin configuration for tetrahedral 
coordination so that one of its t, orbitals, the d,., orbital, is filled and the other two 

contain one electron each. ' ; 
In discussing the crystallographic consequences of crystal field splitting we have so 

far restricted ourselves to geometrical distortion of coordination polyhedra, but there 
may also be direct energetic consequences. For a transition metal ion in octahedral 
coordination the energy difference A, between the two energy levels into which its 3d 
orbitals are split is of the order of 50kcalmole~', sufficiently large to make a 
significant contribution to the total energy of the structure. The stability of a structure 
will therefore be affected by the configuration of the electrons in the 3d orbitals of 
constituent transition metal ions. The increase in the stabilization energy of an ion 
due to its 3d orbitals being split when the ion is in octahedral or tetrahedral 
coordination is known as crystal field stabilization energy (CFSE) or ligand field 

stabilization energy (LFSE). It can be shown that an approximate estimate of the CFSE 
of an ion in octahedral coordination is given by (2n,—3n.)SAo where n,, n, are the 

number of electrons in the t,, e, orbitals respectively. The corresponding expression 
for an ion in tetrahedral coordination is (3n, — 2n,)sA;, where A, ~ $Ao. It is apparent 

from Table 10.14, which shows the CFSE calculated from these expressions for various 

numbers of 3d electrons, that tetrahedral coordination is not generally stabilized 
relative to octahedral coordination. Table 10.15 lists the CFSE’s of some common 
ions; the data in this table, based on determinations of Ay and A, by spectroscopic 
studies of oxides, indicate that some ions have a strong preference for octahedral 
coordination. 

Some of the structural consequences of CFSE are well illustrated by those AB,O, 
compounds which contain transition metal ions and crystallize in the spinel structure. 
Consider first the common mineral magnetite, Fe,;O,. If the formula were rewritten 
as AB,O,, that is as Fe**Fe}*O,, one might expect by analogy with MgAl,O,, 
which we discussed earlier, that the ferrous ions would be in tetrahedral coordination 
and the ferric ions in octahedral coordination. However Fe** has six 3d electrons 

Table 10.14 
Crystal field stabilization energies of transition metal ions in high spin 
configuration for octahedral and tetrahedral coordination. A, ~ 4A,. 

Octahedral Tetrahedral 
Number of 
3d electrons Configuration CFSE Configuration CFSE 

tog eg e ts 

1 1 zi 1 2A, 

6 on ‘3 aree ag ~ 027A, 

2 2 y 2 SA, 
z 5 43 ~ 0:53A, 

3 3 a ai 4A, 
8 eee) wi. 4 4 ~ 0:36A 

= 0 

4 oa ey 2002 2A, 
9 Sr aees Ae 4 5 ~ 018A, 

5 Ss 2 
0 2 0 10 Gowns Autig 
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Table 10.15 
Spectroscopically determined crystal field stabilization energies 
for some transition metal ions in high spin configurations 

Energies are in kcal mole™ '. 

CFSE 
Number of 

3d electrons Octahedral Tetrahedral 

Ti 1 20:9 14-0 
Fe?t 6 11-9 79 
Cor= si 22:2 14-8 
Ni?* 8 29:2 8-6 
Mn?* 4 32-4 9-6 
Cu’ if 9 21-6 6:4 
Fe?* 5 0 0. 
Mn+ 5 0 0 

so that its CFSE would be expected to be greater for octahedral than for tetrahedral 
coordination (Table 10.14) and this is borne out by the experimental data of Table 
10.15. In short Fe** displays a preference for octahedral coordination. The CFSE of 
Fe** however is zero for both octahedral and tetrahedral coordination so that it 
exhibits no site preference. In magnetite therefore CFSE determines that the ferrous 
ions occupy randomly half the octahedral sites in the spinel structure and the ferric 
ions occupy the remainder of the octahedral sites and all the tetrahedral sites. This 
structure, which is not restricted to the composition Fe;O,, is known as the inverse 
spinel structure and formulated as B“™ | AB]'*!0, to distinguish it from the normal 
spinel structure A“B&10,. 

Crystal field stabilization energy is only one of the factors that determine whether 
an AB,O, compound adopts the normal or the inverse spinel structure and, taken 
in isolation, it does not always predict correctly. For instance CoAl,O, would be 
expected to be inverse because the spherical Al?* atom has zero CFSE and 
consequently no site preference, while Co** would be expected on the basis of the 
data of Table 10.15 to have a clear preference for octahedral coordination. However 
the structure of CoAI,O, is found to be normal, Co!A1%10,. Detailed examination 
of the factors, other than CFSE, that determine whether the inverse or normal spinel 

structure is adopted by a particular compound is outside our scope.’ Certainly the 
CFSE of non-spherical ions is always a significant and often the controlling factor. 
A more general and often important factor is the electrostatic energy of the structure 
which will be dependent on the precise positions of the oxygen atoms and so may be 
significantly different for the normal and inverse structures of the same compound. 
It seems likely that this factor is principally responsible for CoAl,O, having the 
normal spinel structure. One factor that at first sight might be thought to be significant 
is the relative size of the A and B cations, especially when neither is a transition metal 
ion; there appears however in the spinels to be no relationship between relative cation 
size and the adoption of one or other form of the structure. 

Ideal and defect structures 
So far we have assumed every crystalline solid to be a regular three-dimensional 
arrangement of atoms, an arrangement that has an identifiable unit-cell which, by 

repetition on a lattice, gives rise to the structure of the whole crystal. In such a crystal 

7 The interested reader is referred to Greenwood (1968). 
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of an ideal structure every crystallographically equivalent site, whether equivalent by 
lattice translation or by operation of the symmetry elements of its space group, is 
occupied by a chemically identical atom. Thus in common spinel MgAl,O, (Fig 
10.28) every magnesium atom occupies a site identical in every respect to the sites 
occupied by all other magnesium atoms; and likewise for aluminium and for oxygen. 

In this structure all the atoms of one chemical element occupy a set of equivalent 
positions and those of each other element occupy a distinct set of equivalent positions; 
in short the structure of common spinel is an ideal structure. However an inverse 
spinel, such as Fe[ NiFe]O,, has a random distribution of nickel and ferric ions on 
its octahedral sites with specific occupation of its tetrahedral sites by ferric ions and 
its anion sites by oxygen. That the point group of crystals of this substance is the 
same as that of crystals of common spinel, m3m, indicates that point group symmetry 
is only the symmetry of the average structure of the substance concerned. The contents 
of a unit-cell of Fe[ NiFe]O, cannot be described precisely: for each octahedral site 
there is a probability of 4 of occupation by Ni?* and an equal probability of 
occupation by Fe°*. In such a defect structure each octahedral site can conveniently 
be said to be occupied by a ‘half-atom’ of nickel and a ‘half-atom’ of iron, a statement 
that has only statistical significance. In such a structure electrical neutrality is 
maintained over the whole structure, but not necessarily for each unit-cell. Likewise 
the electrostatic valency principle holds for the average structure, but not necessarily 

for every oxygen atom in the structure. For instance in the spinel structure every 
oxygen anion is bonded to one cation in a tetrahedral site and to three cations in 
octahedral sites; in Fe(NiFe)O, the tetrahedrally coordinated Fe** cation gives rise 
to bond strengths of 7, the octahedrally coordinated Fe** to 4 and the octahedrally 
coordinated Ni** to 4 so that the sum of the bond strengths reaching an O?~ anion 
may be 2+ 4 or 2+75, always slightly greater or less than the ideal value 2. However 
the electrostatic valency rule is statistically obeyed by the average structure: 
SNi** +3Fe** represents a total charge of 24+ on each octahedral site so that the 
sum of the bond strengths reaching each oxygen atom from its three neighbouring 
octahedral sites is 3 x 7 = 14 which, added to 3 from the neighbouring tetrahedral 
site, yields a total bond strength of 2 exactly balancing the charge of —2 on the 
oxygen anion. 

Confining our argument still to the spinel structure, there are spinels which exhibit 
randomness of occupation of both tetrahedral and octahedral sites. For instance 
MgGa,0, has its Mg** and Ga** cations distributed statistically according to the 
scheme expressed by the structural formula LM0.33Gao.67 |" [Mgo.67Gay.33 ]'0, 
so that the Mg/Ga ratio is identical on tetrahedral and octahedral sites. In MgFe,0, 
however the two types of site are occupied in different proportions; thus 
[Mgo.1Feo.9 | [Mgo.oFe,., |, represents the equilibrium distribution of the two 
cations between the two types of site at a certain temperature; this sort of distribution 
is usually temperature-dependent. 
Ee the case of the inverse spinel magnetite Fe;O,, which can be represented as 

Fe**[Fe**Fe** ]Oz”, the ferrous and ferric ions that formally occupy the octahedral 
sites cannot be distinguished by Méssbauer spectroscopy (chapter 15) because the 
transfer of the valency electron by the process Fe*+ +e~ 2 Fe?* is very rapid. All the 
iron atoms on octahedral sites are continuously changing their oxidation state so that 
averaged over a finite time the occupation of every octahedral site is identical. The oc- 
currence of facile electron transfer between iron atoms on octahedral sites incidentally 
accounts for the high electrical conductivity and for the optical opacity of magnetite. 
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In general itis not experimentally easy to determine site occupations in compounds 

with spinel structures, some of the more sophisticated diffraction techniques being 
usually necessary. Nevertheless a very considerable body of structural research has 
been done on the spinels, the objective of most of which has been the interpretation 
of their strongly structure-dependent magnetic and electrical properties. 
Each of the defect structures that we have considered so far, NiFe,O,, MgGa,O,, 

MgFe,0,, Fe;O, has had a chemical composition that could be expressed by a 
simple formula even though some or all of its cations may be distributed randomly 
over one or more sets of equivalent sites in its structure. But much the same sort 

of defect structure can occur in compounds that do not have such simple stoichiometric 
compositions. For instance it is known experimentally that Fe?* can substitute for 
Mg’* in MgAl,O, to give a continuous range of solid solution® between the 
extremes or end-members MgAl,O, and FeAl,O,; in short all compositions 
[Mg,.Fe,_,]Al,O,, where 0 < x < 1, have the spinel structure. In this solid solution 
series Mg?* and Fe?* are randomly distributed on the tetrahedral sites of the spinel 
structure. Solid solution is also possible between a normal spinel at one end of the 
series and an inverse spinel at the other extreme composition; for example ZnFe3 *O, 
isnormal, Fe* *[Fe** Fe** ]O, is inverse and compositions intermediate between the 
two can be represented as [Zn,_,Fe?* ]'[Fe2* Fe3* , ]'°!0,. In general in discussing 
solid solutions it is of prime importance to know which sites in the structure are 
available for occupation by the atoms of each element concerned. 

Atoms of various elements are able to substitute for one another to a greater or 
smaller extent in solid solutions provided they form bonds of similar type and are of 
similar size. In general a continuous range of solid solution between two end- 

members occurs only when the ions that substitute for each other differ in radius 
by not more than 15 per cent of the radius of the smaller ion; moreover it is essential 
that the end-members should be structurally similar. Whether solid-solution is 

continuous over the whole range or restricted to within a few per cent of each 
end-member then depends on the ability of the structure to tolerate the presence of 
ions of different radii on structurally equivalent sites. Thus in the olivine structure 
there is continuous solid solution between forsterite Mg,SiO, and fayalite Fe,SiO,, 
where the radii of the large cations are r(Mg”*) = 0-66 and r(Fe?*) = 0:74 A. However 
monticellite CaMgSiO,, although isostructural, has its calcium atoms completely 
filling one set of equivalent (mirror plane) sites and there is no appreciable solid 
solution between monticellite and forsterite. The reason for this is that r(Ca?*) at 
0-99 A is substantially more than 15 per cent larger than r(Mg?*) at 0-66 A and the 
structure cannot tolerate the excessive local distortion produced by random 
occupation of 6-fold coordinated mirror plane sites by cations so diverse in size; only 
when the mirror plane sites are fully occupied by the large cation is the structure stable. 
At intermediate compositions [Ca,Mg,-,.]SiO,, where 0 < x < 1, it is energetically 
more favourable for forsterite and monticellite to coexist as separate phases than to 
form a solid solution. 

In some structures continuous solid solution between a particular pair of 
end-member compositions occurs only at high temperatures where the increased 

amplitude of thermal vibrations makes it possible for the structure to tolerate the 
local strains generated by random occupation of equivalent sites by ions of diverse 
size. Such solid solutions respond to decrease in temperature under equilibrium 

8 We treat solid solutions here in simple structural terms and postpone a fuller discussion in terms of 
thermodynamic stability to chapter 13. 
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conditions either by ordering of cations of different kinds on to distinct sets of 
equivalent sites, or by exsolution. It is however usually possible to quench the 
high-temperature equilibrium state by very rapid cooling and so preserve the solid 
solution for more convenient structural study at room temperature. Experimentally 
in silicates and many other complex ionic structures it is very easy to quench 

high-temperature equilibrium states (see chapter 16) and correspondingly difficult to 
achieve equilibrium site occupations at lower temperatures; this is mainly because 
the rate of diffusion of ions through structures falls off very rapidly with decreasing 
temperature so as to be negligible well above room temperature. 

Itis appropriate at this point to draw attention to the analogous behaviour of many 
complex ionic, especially mineral, structures on the one hand and alloy systems on 
the other. Solid solution, exsolution, and order—disorder phenomena are well known 

and in many respects similar in both; but the experimental study of simple alloy 
systems is generally easier because equilibrium is very much more rapidly attainable. 
In much of what follows we could equally well take our examples from alloys as 

from complex ionic structures; but, as we are primarily concerned with minerals, we 

shall take most of our examples from the latter field and have recourse to alloy studies 
only for the provision of certain particularly simple illustrations of principle. 

It is very common for crystals of naturally occurring minerals to have random 
occupation of equivalent structural sites by a variety of cations; that is to say minerals 
are very commonly solid solutions and it is most unusual to find a naturally occurring 
end-member. It is convenient to describe mineral compositions in terms of the 
appropriate percentages of end-member compositions in the solid solution; the actual 
composition is imagined to be produced by isomorphous replacement of one or more 

ions of its dominant end-member by various other ions in appropriate amounts. Some 
common replacements of cations bonded to oxygen are shown in Table 10.16. It is 
apparent from the table that ions of different valency may replace one another; but 
when that occurs there must be a compensating replacement to maintain overall 
electrical neutrality. Thus if Al? * replaces Si+* there must elsewhere in the structure 
be replacement of cations of valency m (e.g. Na*) by cations of valency m+1 (e.g. 
Ca**) to exactly the same extent; the total replacement can be expressed as 
Na*Si** > Ca**Al?*. In isomorphous replacement most cations show a clear 
preference for sites with the coordination number appropriate to their radius; but 
Al?* is unusual in being able to replace either on tetrahedral or on octahedral sites. 
By way of a very simple example of the representation of the composition of a solid 
solution in terms of percentages of real or hypothetical end-members we take the 
natural olivine Mgy.g23Nio.o0sFeb.160Mn}.003Ca0.004Si0.90604, Which may be 
represented as 91-4 per cent Mg,SiO, (forsterite), 0:25 per cent Ni,SiO,, 8-0 per cent 
Fe,SiO, (fayalite), 0-15 per cent Mn,SiO, (tephroite), 0:2 per cent Ca,SiO,. If only 
the principal constituents are of interest the olivine can be represented com- 
positionally as Fog,Fag where Fo = the forsterite end-member and Fa = the fayalite 
end-member. 

It is the case of isomorphous replacement that makes the chemical compositions of 
so many silicate minerals appear at first sight to be highly complex. But when the 
crystal structure is known it becomes possible to assign the cations to sites of 
appropriate coordination number making use of the general rule that vacancies are, 
for energetic reasons, more likely to occur on sites of highest coordination number. 
Where there is more than one set of equivalent sites of the same coordination number, 
as in the case for octahedral sites in the olivine structure, the occupation of the two 
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Table 10.16 
Cations which commonly replace one another when bonded 
to oxygen 

Coordination Cations 

Tetrahedral Sigg Ale = 
Octahedral Al*, Fe>", Mg?", Ti", Ni2*, Fe?, Mn2* 
>6 INa@, Carte Re? 

or more sets cannot be distinguished on the basis of composition alone. Collation 
ofall the reliable analyses that have been made of any mineral species usually indicates 
that the structure is stable over quite a wide range of composition, the observed range 
being restricted in certain directions, not by structural instability, but by low 
concentration of the rarer cations in the medium in which crystallization took place; 
itis rare however for the observed range of naturally occurring compositions to extend 
quite to pure end-member compositions of the solid solution, although the pure 
end-members can often be prepared synthetically. 

In the defect structures that we have discussed so far crystallographically equivalent 
sites are occupied randomly by two or more ionic species. There is however another 
sort of defect structure in which there is only partial occupation of one or more sets 
of crystallographically equivalent sites, or, in other words, a random distribution of 
atoms of one species and vacancies on one or more sets of equivalent sites. Before going 
on to consider such defect structures it is necessary to devote some attention to the 
general question of vacancy defects in crystal structures. 

It is thermodynamically impossible for any crystal at temperatures above absolute 
zero to have a perfectly regular three-dimensional array of atoms. In real crystals, 
as distinct from the ideal crystals that we have considered up to this point, there must 

be defects at all attainable temperatures and such essential defects are of two kinds. 
The Schottky defect is such that the proportion of vacancies on each set of equivalent 
sites is the same, the proportion increasing with temperature from zero at zero K. 
Schottky vacancies occur by migration of atoms to the surface of the crystal. The 
Frenkel defect is such that a vacancy is created by the migration of an atom from its 
proper structural site to an ‘interstitial’ position, that is to a site not occupied in the 

ideal structure. Here too the number of defects per unit volume increases with 
temperature from zero at zero K; but, in contrast, Frenkel defects do not necessarily 

involve all sets of equivalent sites. Sometimes only one atomic species is involved 
and, since the displaced atom is retained in the structure, no charge imbalance is 
produced. Frenkel defects are more likely to involve the smaller atoms of the structure, 
inionic structures the smaller cations, because room must be available interstitially to 

accommodate the displaced atom. Thus in a structure with a close-packed anion 
framework and cations on tetrahedral sites interstitial to the close-packed array it is 
obviously energetically more probable that a cation rather than an anion will migrate 
to an unoccupied tetrahedral or octahedral interstitial site to create a Frenkel defect. 
Real crystals at room temperature usually contain both types of defect, but one type 
is usually predominant. These two types of inevitable defect play an important part 
in determining the magnitude of certain physical properties of single crystals, such as 
electrical conductivity and ionic diffusion. 

We turn now from the ubiquitous Schottky and Frenkel defects to consider a group 
of compounds, known as the berthollides, some of which exhibit in addition vacancy 

defects of quite a different kind. The berthollides, alternatively known as non- 
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stoichiometric inorganic compounds, are a chemically diverse group characterized at 

their simplest by formulae of the type AX, where x is non-integral and variable over 

quite a wide range without change of structural type.’ One of the simplest examples of 

such a compound is ferrous oxide, which is known to be variable in composition in 

the range FeO to Feo.g40, the precisely stoichiometric composition being 

thermodynamically unstable except perhaps at very low temperatures. Electrical 

neutrality is preserved in compositions other than FeO by oxidation of the 

appropriate amount of ferrous iron to the ferric state so that the formula of a 

non-stoichiometric ferrous oxide Fe,O should strictly-be written as F e3 ty. Fes1,0, 

Physical measurements show that in Fe,O, where x < l,a proportion of the iron sites 

in the structure are vacant. It used to be supposed that throughout the range to 

Feo-g40 the vacant iron sites were randomly distributed, that the approximately cubic 

close-packed oxygen arrangement remained unperturbed even when the proportion 

of unoccupied octahedral cation sites approached 16 per cent; more recent work has 

shown that, though this may be so for small departures from stoichiometry, larger 

departures are accommodated by adjustment of the whole structure. 

The structural study of non-stoichiometric compounds is currently highly active 

and we can do no more here than take some outstanding examples to illustrate the 

sorts of ways in which various simple structures adapt to departures from the ideal 

composition. The field is wide, complex, and inadequately explored; but one can 

generalize to the extent of saying that most non-stoichiometric compounds have one 

set of equivalent sites not fully occupied. There are exceptions and one of the simplest 
is titanium monoxide, ideally TiO but in reality compositions in the range Tip.gO to 
TiO,.7; in this compound, which has the NaCl structure, both cation and anion sites 

may have vacancies. At the extreme composition Tig.gO the anion sites are fully 

occupied and the cation sites are only partially occupied. At the other extreme TiO9.7 
the anion sites are partially and the cation sites fully occupied. At intermediate 

compositions both cation and anion sites are only partially occupied; indeed at the 
composition TiO only 85 per cent of each type of site is occupied. 
We return now to ferrous oxide. When Fe,O is crystallized at high temperature 

and rapidly cooled (quenched), it develops small volumes or micro-domains of the 
inverse spinel Fe,O, in which two thirds of the iron atoms are in the ferric state. 
The micro-domains are too small to be regarded as a second phase and moreover 
they are in continual movement within the host structure, changing in shape and size 
as they move. In both the ideal FeO structure and the Fe;O, structure the oxygen 
atoms are in approximately cubic close-packing and in both structures Fe?* lies on 
octahedral sites. In FeO all the octahedral interstices of the cubic close-packed anion 
array are occupied by Fe**; in Fe,O, half the octahedral interstices are necessarily 
vacant, one quarter are occupied by Fe?* and another quarter by Fe**, the remaining 
Fe** anions lying on tetrahedral sites. The proportion of the volume of the crystal 
of Fe,O that must be assigned to the Fe,;O, micro-domains increases as x decreases 
such that the structure can be represented as (4x —3)FeO.(1 —x)Fe3Oy,. In this first 
example of a berthollide not only are some of the octahedral cation sites of ideal FeO 
vacant, but some of the ideally unoccupied tetrahedral sites are occupied by Fe**. 

Titanium monoxide responds quite differently to departures from the ideal 
composition TiO. In TiO, vacancies are ordered in such a manner as to give rise to 

"In general terms we may define as daltonides compounds to which Dalton’s laws of constant and 
multiple proportions apply and as berthollides compounds to which these laws do not apply. 
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a superlattice.’° A superlattice can be defined in general terms as a structure in which 
the atoms are in positions that deviate only slightly from those of the simple parent 
structure, at least one set of equivalent sites of the parent structure being split into 
two or more sets of equivalent sites in the superlattice. We shall give point to this 

definition by considering the simple alloy system Cu—Au. 
The pure elements copper and gold both crystallize with the cubic close-packed 

structure. At high temperatures there is continuous solid solution between copper 
and gold, solid solutions of all compositions having the cubic close-packed structure 
with random occupation of all structural sites by Cu and Au in the appropriate 
proportions. At room temperature however the equilibrium structures of com- 
positions close to CuAu and to Cu; Au are ordered, Cu and Au atoms being disposed 
in an ordered manner on the sites of the cubic close-packed parent structure (Fig 
10.34). In the ordered phase CuAu copper and gold atoms segregate into alternate 
(001) planes; the symmetry of the structure drops from cubic to tetragonal; the four 
equivalent sites of the cubic close-packed unit-cell become two sets of two equivalent 
sites, one occupied by Cu (at z = 4, say) and the other by Au (at z =0); and, if 
reference axes are maintained in the same orientation, the axial ratio c/a drops from 
unity for the cubic close-packed high-temperature phase to 0-932 for the tetragonal 
phase stable at lower temperatures. In the ordered phase Cu3Au cubic symmetry is 
retained; the unit-cell still contains four atoms disposed in precisely the same manner 
as in the high-temperature cubic close-packed phase; but one site is occupied 
exclusively by Au and the other three by Cu so that the lattice type becomes primitive. 

Nim 
O Cu 

Cu Au @ Au 

© random Cu, Au, 
9 5 2 

@ random Cu Auy 
4 4 

Fig 10.34 The copper-gold alloys. The four structural plans on (100) show in sequence from 
left to right the ordered (O) structure of CuAu, the disordered (D) structure of CuAu, the ordered 
(O) structure of Cu,Au, and the disordered (D) structure of Cu,Au. The ordered structure of CuAu 
is tetragonal; the other structures are cubic. 

These two ordered phases in the Cu—Au system are in their different ways examples 
of superlattice structures; in CuAu the symmetry is lower than and derivative from 
that of the parent structure, while Cu,Au undergoes a change of lattice type from F 
to P on ordering with falling temperature. 
We return now to the berthollide compounds: the several superlattice structures 

reported for TiO, are complex and, although intrinsically of great interest, 

10 Tn strictly crystallographic terms superlattice is a misnomer; superstructure would be the more apt term. 
However the description of this sort of structural modification as a superlattice is firmly embedded in the 
literature and it would be simply pedantic to insist on using the nomenclatorially proper term super- 
structure here. 
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Fig 10.35 The Fe,S, superlattice. The structure of Fe,S, is related to the simple structure of 
NiAs with Fe occupying some of the Ni sites and S occupying all the As sites. (a) shows the 
structure of NiAs in plan on (0001) with the hexagonal unit-cell (x,, y,4) and an unconventional 
orthorhombic C-cell (xc, Yc, 2 = Zy) Outlined. (b) shows the NiAs structure in plan on (010) of 
its orthorhombic C-cell. (c) and (d) refer to Fe,S,; their scale is contracted relative to (a) and (b). 
(c) shows an (001) plane of Fe atoms with vacant sites p. (d) shows the positions of Fe atoms 
in plan on (010) of the orthorhombic C-cell of NiAs; the monoclinic C-cell (Xg. Ys, Z3) Of Fe,S, 
is outlined. 

inappropriate to an introduction to the subject!’ so we turn for illustration to the 
geometrically simpler superlattices of FeS,. Several superlattices have been reported 
for FeS,; all are based on the nickel arsenide structure (Fig 10.35(a), (b)). For example 
in Fe, Sg all the sulphur sites are occupied, but one in four of the iron sites is vacant in 
alternate (001) planes of iron atoms (Fig 10.35(c), (d)). The vacancies are regularly 
arranged on a plane hexagonal mesh of side 2a,,, where dy, is the vector corresponding 
to the unit-cell edge of the parent NiAs structure; and in successive defect planes the 
vacancies occur in the positions p, q, r, s, p,...as shown in Fig 10.35(c). All atoms 
are displaced from the corresponding positions in the parent NiAs type unit-cell so 

'! The reader who desires to explore the TiO, structures is advised to read the chapter by A. D. Wadsley 
in Mandelcorn (1964) and references cited therein. 
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that a unit-cell of the superlattice is monoclinic-C related to the parent unit-cell by 
the matrix 420/020/212. On heating above 360°C the Fe,S, superlattice is destroyed 
and the disposition of vacancies becomes random on a nickel arsenide type structure. 
In Fe,Sg therefore there is an order—disorder transformation generally analogous 
with the transformations we have mentioned previously in the alloy structures CuAu 

and Cu;Au, and in the alloy CuZn which will be discussed shortly. 
Notall berthollides form superlattices: some crystallize in what are known as shear 

structures. One of the simplest examples of a shear structure, which will serve to define 
the type, is (Mo, W)O, where 2:875 < x < 3. The crystal structure of WO; is a 

distortion of the simple cubic ReO; structure. In ReO ; rhenium atoms are sited at 
the corners and oxygens at the mid-points of the edges of the cubic unit-cell (Fig 
10.36(a)), each Re atom being coordinated octahedrally by oxygen. These octahedra 
are linked by their corners so that each oxygen is shared by two Re atoms; each 
octahedron is thus an ReO; unit. It is thus convenient to illustrate the structure by 
showing only ReO; octahedra: in Fig 10.36(b) Re atoms are represented by solid 
circles and the coordination octahedra of oxygens are indicated in projection. The 
structure of WO, is similar to that of ReO;, but distorted so that its symmetry is 
monoclinic. Based on this structure are the structures of a series of oxygen deficient 
phases of molybdenum-tungsten oxides whose compositions lie in the range BO). .75 

to BO 3.929, where B = Mo, W. Within this compositional range phases of definite 

composition occur, which can be represented as B,,O;3,,_ ,; where n = 8, 9, 10, 11, 12, 
14. In the structures of these phases the oxygen deficiency is taken up by the formation 
of planes of discontinuity in the distorted ReO 3 structure where groups of four 
octahedra share edges. The four oxygen. atoms involved in edge sharing in any such 
group, marked a, b, c, d in Fig 10.36(c), are linked only to cations within the group; 
the other 14 oxygen atoms shown in the figure (6 in the plane of the diagram, 4 above 
and 4 below) are bonded to one cation of the group and to one other cation. Each 
such group can thus be regarded as containing four cations and 4 + +4 oxygens so that 
it has the composition B,O,, and is deficient relative to the stoichiometric 
composition 4BO, by one oxygen atom. By regular disposition of such B,O,, groups 
through the distorted ReO structure the structures of the phases B,O3,-, are 
produced. Figure 10.36(d) illustrates the structure of one such phase, Mo QO... This 
structure can be regarded as being built of strings of nine octahedra, all of which 
share corners with adjacent octahedra except for the first and last pairs of octahedra 
of the string which share edges with the extreme pairs of octahedra of an adjacent 
string as Mo,4O,, groups. 

Such B,,O3,,- ; phases are strictly stoichiometric, continuously variable composition 
in the range 8 <n < 14 being obtained by the crystallization of compositionally 
adjacent phases in appropriate proportions. Structurally distinct BO, phases also 
occur and some have cations in 4-fold or 7-fold coordination. The common feature. . 

of all BO, phases is that electrical neutrality is maintained by the metal ion adjusting 
its valence state; thus an oxide Mo,O3,,_ , can be represented as Mo3 *Mo®&*,0;,_ . 
It has not however so far proved possible to distinguish the sites occupied by the 
cations of higher and lower valence state. The electrical and magnetic properties of 
such phases indicate that the extra electron formally associated with Mo°* is 
delocalized and so has the characteristics of a valency electron in a metallic structure. 

Shear structures are also found in the titanium oxides Ti,O,,,-;, where 4 <n < 10. 
In such oxides the rutile structure is regularly interrupted by face-sharing octahedra. 
The principle of formation of these shear structures is essentially the same as for those 



346 Crystal chemistry 

IN 4] 
el & 

Fig 10.36 The shear structure Mo,O.,,. The structure of molybdenum and tungsten oxides are 
related to the simple cubic structure ReO., shown in plan on (001) in (a). In the same orientation 
and on the same scale the arrangement of corner-sharing octahedra in ReO, is shown in (b). The 
formation of a group of four octahedra sharing edges to accommodate oxygen deficiency in an 
Mo,0,, group is illustrated on a smaller scale in (c); the oxygen atoms a, b, c, d are linked only 
to cations within the group. The plan (d) illustrates the disposition of such Mo,0,, groups 
(shaded) in the structure of Mo,O.,: the structure is composed of strings of nine octahedra 
which share corners, except for the first and last pairs of octahedra which share edges with those 
of adjacent strings. In (b), (c), and (d) solid circles represent cations and oxygen atoms are 
situated at intersections. 
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of the molybdenum-tungsten oxides, but their geometry is very much more difficult 

and we shall not attempt here to explore the Ti, O,,,_ , structures. 
A considerable body of evidence has accumulated in recent years to suggest that 

structures with any appreciable proportion of randomly vacant sites tend to be 
thermodynamically unstable. Greater stability seems usually to be achieved when the 
defects are ordered either by the formation of micro-domains of another phase, as in 
Fe,.O, or by superlattice formation, as in FeS,, or alternatively when the vacancies 

are eliminated by formation of shear structures, as in (Mo, W),O3,-,. A substantial 
field remains to be explored and there are many difficulties not only in the diffraction 
analysis of such complex structures, but also in the preparation and chemical 
characterization of the phases concerned. Much of the impetus which has advanced 
such studies so rapidly in recent years springs from commercial interest in the electrical 
and magnetic properties of non-stoichiometric compounds. 

In conclusion we deal briefly with a rather different sort of defect structure; these 

are structures in which some of the atoms do not lie on definite structural sites. The 
extreme situation in which certain atoms are totally mobile is most unusual; very 
much more common is the presence in the structure of groups of atoms that are free 
to rotate about one or more axes. 

The classic example of free ionic mobility is the polymorph of AgI stable between 

146°C and the melting point at 555°C. In this structure iodine atoms are situated at 
the corners and body centre of the cubic unit-cell; the silver atoms are not fixed in 
position. Apparently Ag* ions can migrate freely through the fixed structure of large, 

easily deformed I~ anions. The easy movement of Ag* ions imparts to this structure 
an anomalously high electrical conductivity. 

Free rotation of a group of atoms within a structure is simply exemplified by the 
alkali cyanides such as KCN. At room temperature the structure of KCN is simply 
related to the NaCl type: the K* ion lies on the cation sites of the type structure 
and the CN ion is free to rotate about the anion sites, neither carbon nor nitrogen 
atoms having fixed positions in the structure. In free rotation the statically linear CN7 
ion becomes spherically symmetrical with an effective radius of 1:92 A so the effective 
radius ratio r¢+/rfen- = 1:33/1-92 = 0-693 and is within the limits appropriate to the 
NaCl structure type for strictly ionic bonding. The energy required for free rotation 

of the CN™ ion is supplied by the thermal energy of the crystal, which at — 106°C 
becomes inadequate to maintain the CN” ion in free rotation; at this temperature 
the structure transforms to a closely related orthorhombic structure which has its 

cyanide ions aligned parallel to the [110] direction of the high-temperature structure. 
Although quite a number of examples are known of the KCN type of defect structure 

and of structures in which planar ions such as CO}~ and NO, are free to rotate 
about the axis normal to their planes, this sort of defect structure is necessarily more 
restricted in its occurrence and of less general interest than the defect structures 

discussed earlier. 

Order-disorder transformations 
In this chapter we have mainly been concerned with the description and explanation 
of static structures. We have occasionally mentioned the different structures or 

polymorphs of certain substances stable in different ranges of temperature and 
pressure. We are now concerned with the way in which certain structures respond to 
changes in temperature, that is with a certain type of phase change. Order—disorder 
transformations are a particularly interesting type of phase change because the 
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structure changes gradually with changing temperature, rather than abruptly as in 

melting or in some other types of solid to solid transformation; moreover the change 

from an ordered to a disordered structure is related generally to changes from ideal 

to defect structures as we have already indicated in the cases of CuAu and Cu; Au. 
We shall here confine our discussion of this extensively studied phenomenon to a 
simple alloy example, the order—disorder transformation in f-brass, CuZn. 

Above 460°C the structure of CuZn is the body-centred cubic metal structure (Fig 

10.12) with Cu and Zn atoms randomly distributed over all structural sites. When 

CuZn is annealed below 460°C a superlattice is formed which has the CsCl type of 
structure in which each atom is surrounded by eight nearest neighbours of the other 
kind. In simple structural terms the atomic radii of Cu (1:24 A) and Zn (1:33 A) are 

such that at high temperatures no distinction is necessary between atoms of the two 
elements. But at lower temperatures the strain associated with random distribution 
of atoms of the two elements on the two sites, 0,0,0 and 4,4,4, of the cubic I-cell 
causes the structure to become unstable relative to the ordered structure in which 
one kind of atom is concentrated on the 0,0,0 site and the other on the 4,4, site; 
the cubic lattice type changes from I to P without any very great change in unit-cell 

dimensions. 
The order—disorder transformation in f-brass is usually discussed in terms of the 

Bragg—Williams model of order—disorder in AB alloys. We shall deal in some detail 
with the Bragg—Williams treatment after entropy has been introduced in chapter 13. 
Here we shall confine ourselves to definition of an order parameter and to 
consideration of some of the results obtainable from this simple model of 
order—disorder. 
We suppose that the crystal contains N atoms of element A and an equal number 

N atoms of element B. We further suppose that the ordered structure of the alloy has 
two types of site, « and f, and that in the ordered structure all N atoms of A lie on 
a-sites and all N atoms of B lie on f-sites. In the case of B-brass this amounts to 
supposing that the copper atoms all lie on unit-cell corner sites, 0,0,0 etc, and that 
all the zinc atoms lie on body centre sites, 4,4,4 etc. In a partially ordered structure 
the N a-sites will be occupied by anumber R < N of A atoms and by N—R B atoms, 

the f-sites being occupied by N—R A atoms and R B atoms. The degree of order s 
of such a structure is defined as the difference between the proportion of atoms 
correctly and incorrectly placed relative to the fully ordered structure, that is 

« -2R_2N=R) 

Bea, 2N 

\PR 

N 

In the fully ordered structure R=N so that s=1; and in the completely 
disordered structure A atoms are equally distributed between «- and f-sites so that 
R = N/2 and s = 0. We have supposed that in the fully ordered structure all the A 
atoms lie on a-sites; an identical ordered structure would be produced by ordering 
A atoms on to f-sites and for this structure R = 0 and s = —1; the two structures are 
simply brought into coincidence by translation of the origin of coordinates from 
0,0,0 to 4,4, 3. It is necessary to consider only the tendency of A atoms to lie on one 
type of site, which we take to be a; that is to say we are concerned only with 
N/2<R<Nand0<s <li. 
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In a structure with degree of order s the proportion of A atoms occupying «-sites, 
the sites occupied by A atoms in the fully ordered structure, is R/N = 4(1+:); and the 
proportion of A atoms on f-sites, that is wrongly situated relative to the chosen 
ordered structure, is (N—R)/N = 4(1—s). The ratio of rightly to wrongly placed A 
atoms is thus R/(N—R) = (1+s)/(1—s). We shall make some use of this ratio in 
succeeding paragraphs. 

Central to the study of order—disorder transformations is an understanding of how 

the degree of order varies with temperature. The Bragg—Williams model provides a 
most important theoretical account of the temperature dependence of s, to which the 
behaviour of a number of alloy systems approximates. We shall show in chapter 13 
that the ratio of rightly to wrongly situated A atoms R/(N —R) varies with absolute 

temperature T according to the equation 

1+s zws 

: teers 

where k is Boltzmann’s constant and z is the coordination number of the «- or f-sites. 

The energy term w needs more explanation. The statement that the bond energies of 
A—A, B—B, and A—B bonds are respectively wa,, Wgp, and waz means that the 
energy of an assemblage of A and B atoms is decreased by the amount w,, when one 

A—A bond is formed, by wgz3 when one B—B bond is formed, and by wa, when one 
A—B bond is formed. Now the energy term in the equilibrium expression with which 
we are concerned, w, is defined as w = Wag —3(Waq t+ Wpp) and illustrated in Fig 10.37. 
In the fully ordered structure (s = 1) all the bonds between nearest neighbours are 
A—B bonds; whereas in the completely disordered structure, as will be shown in 

chapter 13, one half of the bonds between nearest neighbours are A—B bonds, one 
quarter A—A, and one quarter B—B. The amount by which the energy of the fully 
ordered structure is lower than that of the completely disordered structure is thus 
4{wap—2(Waa + Wpp)} = 2w per bond. Ina structure with z-fold coordination of atoms 
on a-sites by atoms on f-sites (and vice versa) and N atoms of each kind there will 
be Nz bonds so that the energy of the fully ordered structure will be lower than that 
of the completely disordered structure by AE = 4Nzw. 
We shall show in chapter 13 that the stable solution of the equilibrium equation 

Order — disorder 9 
Exsolution 

Fig 10.37 Energy diagrams for order-disorder and exsolution. If the decrease in the energy of 
an assemblage of A and B atoms is Way, Weg, Wag When one A—A, one B—B, one A—B bond 
is formed, then w = Wag—3 (Waa+Wep) IS positive in an order-disorder system and negative for 
exsolution into distinct A and B phases. 
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for w>0 is s=0, corresponding to complete disorder in the crystal, for all 
temperatures greater than the critical temperature T, = zW/2k and 0 < s <1 for all 
temperatures below the critical temperature, s ranging from unity at zero K to zero 
at T, and having an equilibrium value appropriate to each intermediate temperature. 
It will be shown that as the temperature of a fully ordered crystal at zero K is increased 
the degree of order decreases at an increasing rate which becomes catastrophic as the 
critical temperature is approached (Fig 10.38). Moreover the energy required (Fig 
13.9), to produce the same amount of change in the degree of order, 6s, gets less as 
the temperature rises from zero K towards T, and is in the limit negligible. In short 
the process of disordering can be regarded as self-catalytic or, in Sir Lawrence Bragg’s 
most expressive words ‘demoralization sets in and there is a complete collapse of the 
ordered state’. Such processes, which become increasingly rapid as they approach 
completion, are known as cooperative processes. This particular cooperative process 
yields a steadily increasing rate of decrease of s from unity at zero K to zero at the 

critical temperature T,. Above T, the magnitude of s is uniformly zero. 
The stable solution of the equilibrium equation for w < 0 corresponds to exsolution 

of the alloy AB into a mixture of two phases, the pure metals A and B. The 
phenomenon of exsolution, with which we are not specifically concerned here, is 
discussed in chapter 14. 

1:0 Fig 10.38 The temperature dependence of the 
order parameter s in the Bragg—Williams model 
for AB alloys. 7, is the critical temperature for 
disordering. 

n—_> 0:5 

0 0:5 1:0 
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The magnitude of the critical temperature, given by T, = zw/2k, is proportional to 
the energy difference AE = 4Nzw between the fully ordered and the completely 
disordered structures. The greater the magnitude of AE for the alloy concerned the 
higher is the critical temperature ofits order—disorder transformation. If T, is less than 
room temperature the alloy will be completely disordered at room temperature. If 
T, is greater than room temperature the alloy will show a certain degree of order s if it 
is in its equilibrium state at room temperature; but by rapid cooling from a 
temperature greater than T, it is usually possible to preserve the high-temperature 
disordered state as a metastable state at room temperature. Such quenching of a 
high-temperature equilibrium state is made possible by the low rates of diffusion of 
atoms in the structure at temperatures near room temperature; the rate of change 
of the metastable disordered state to the stable ordered state will be very slow indeed 
at such temperatures. 
The Bragg—Williams model provides the simplest possible account of an 

order—disorder transformation; all real examples are more complex and various 
other theoretical models have been proposed to take some of the complexities into 
account. We concern ourselves now with one particular feature of real order—disorder 
transformations which is not built into the Bragg—Williams model. In the 



Order-disorder transformations 351 

Bragg—Williams model degree of ordering is determined by the occupancy of two 
types of structural site that occur regularly throughout the structure. This sort of order, 
known as long range order, can be produced only if A—B bonds are stronger than the 
mean bond strength of A—A and B—B bonds so that an A atom will have a tendency 
to surround itself with B atoms. In the Bragg—Williams model this tendency becomes 
zero at a certain critical temperature above which an A atom does not discriminate 
between A and B neighbours. In reality the tendency persists above the critical 
temperature so that there are still small volumes of the ordered structure with A atoms 
preferentially surrounded by B atoms even though there is no regular ordering 
throughout the whole structure, that is to say there is no long range order but some 
degree of short range order. The degree of short range order o can simply be defined 
in terms of the probability p,, of a particular bond being an A—B bond as 
Pap = 2(1 +<) by analogy with the definition of degree of long range order s in terms 

of the probability R/N of an a-site being occupied by an A atom, R/N = 4(1+s). The 
one-dimensional structure illustrated in Fig 10.39 provides an example of a situation 
in which the long range order parameter s = 0 and a high degree of short-range order 
is present. The hypothetical structure shown can be divided into four domains in each 
of which there is perfect order; the whole structure has equal numbers of each kind 
of atom on each type of site and so has zero long range order. 
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Fig 10.39 Short- and long-range order in a one-dimensional structure. (a) illustrates a state of 
complete long-range and short-range order; a and f sites alternate in the structure, each a-site is 
occupied by an A atom (open circle) and each f-site by a B atom (solid circle). In (b) a-sites 
are equally occupied by A and B atoms and f-sites likewise so that the long-range order 
parameter s is zero; but the occupation of a and fB sites is not random and the structure is 
divided into domains in which A atoms lie on a-sites with B atoms on f-sites in one domain 
and vice versa in the adjacent domain. 

The persistence of short range order above the critical temperature for long range 
ordering is illustrated in Fig 10.40 where a is plotted against T/T,. It is apparent that, 
although a falls quite sharply in the neighbourhood of the critical temperature, it does 
not reach zero until a temperature well in excess of T, has been attained. Domains of 
short range order persist in the structure above the critical temperature. For example 
in B-brass at high temperatures equal numbers of Cu and Zn atoms will lie on each 

1:0 Fig 10.40 The temperature dependence 
of the short-range order parameter o. 
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Fig 10.41 An anti-phase domain boundary (solid line) in /-brass. On one side of the boundary 
a-sites and B-sites are respectively occupied by Cu and by Zn atoms; across the boundary site 

occupation is reversed. 

type of structural site, 0,0,0 and 4,4, 5, indiscriminately. As the crystal is slowly cooled 
to maintain equilibrium domains of short range order will develop, with Cu atoms 

preferentially on one type of site, 0,0,0 or 3,4,4, and Zn atoms preferentially on the 
other, 4,4,5 or 0,0,0; the domains will grow in size as cooling proceeds. When the 
critical temperature is reached the domains will be of such a size as to be in contact 
with one another. If atoms of the same kind lie on the same type of site (e.g. Cu at 
0,0,0) in adjacent domains, the domains will coalesce. But if Cu lies on 0,0,0 sites in 

one domain and on 4, 3,3 sites (relative to the same origin) in the other domain, the 
domains will be exactly out of step with their «- and f-sites interchanged (Fig 10.41); 
adjacent domains related in this way are known as antiphase domains. Increase in the 
degree of long range order of an antiphase domain structure can only be achieved by 
the growth of one domain at the expense of its neighbours, which is a very slow process, 
much slower than ordering of a randomly disordered structure. Indeed in certain 
alloys, such as Cu;Au where the gold atom can occupy one of four distinct types of 
site, antiphase domain structures are very stable. 

We have discussed order—disorder transformations exclusively in terms of metal 
solid solutions, that is alloys. But they are well known too in other fields of solid 
solution as well as in defect structures with vacancies, such as Fe;S,. Order—disorder 
transformations also play an important role in the explanation of certain physical 
properties of crystalline solids, such as ferromagnetism and ferroelectricity. 

Hydrogen and hydrogen-bonding in crystalline solids 
No discussion of crystal chemistry could be complete without some mention of the 
important role played by hydrogen atoms in the bonding of certain sorts of crystal 
structure, in particular the formation of a kind of weak bond, known as the hydrogen 
bond, which serves as a link between pairs of atoms of highly electronegative elements 
such as fluorine, oxygen, or nitrogen. Hydrogen bonds occur in a wide range of 
structures and are especially important in biological systems. 

The unique ability of hydrogen to form this sort of bond is due to its being the only 
element whose atoms are wholly lacking in core electrons. In electrostatic terms it is 
possible for a hydrogen atom either to lose its single valency electron to form the 
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cation H* or, by capturing an electron, to fill its 1s orbital and so form the anion H-. 
The hydrogen anion, having a complete outer shell, is effectively spherical and its 
radius, 1:54 A, is intermediate between those of the anions F~ and Cl~. The H~ anion 

thus behaves structurally in much the same way as halide anions; for instance the 
alkali hydrides all have structures of NaCl type. The H* cation in contrast has no 
electrons; it is a positively charged nucleus and consequently able to penetrate the 
electron clouds of neighbouring anions such as O?~. The equilibrium distance 
between the hydrogen nucleus H* and the nucleus of the host anion will be determined 
by the balance between the electrostatic attractive forces between the H* nucleus 

and the electrons of the host anion on the one hand and the repulsive forces between 
the H* nucleus and the nucleus of the host anion on the other. However 
hydrogen—oxygen bonds are not dominantly ionic in character; it is more realistic to 
give emphasis to the formation of a covalent bond by overlap of the 1s atomic orbital 
of hydrogen with an sp? hybrid orbital of the oxygen atom. 

The formation of a hydrogen bond between a pair of highly electronegative atoms 
is due to interaction between the hydrogen atom, which is covalently bonded to one 
of the atoms, and a lone pair of electrons of the other atom. The interaction must be 
essentially electrostatic because hydrogen is capable of forming only one covalent 
bond. Such interaction, necessarily always rather weak, is only significant when the 
hydrogen atom is able to approach very close to the second atom: this can only 
happen when the covalent bond between hydrogen and the first atom is strongly polar 
and when the second atom has rather few core electrons, so that overlap forces are 
minimal. Thus hydrogen bonding occurs only with strongly electronegative elements, 
mainly those of the first period such as N, O, and F. A pair of atoms linked by a 
hydrogen bond approach each other more closely than they would do in the absence 
of the intervening hydrogen atom. For instance in inorganic compounds the 
separation of oxygen atoms not linked to the same cation is usually not less than 
about 3-3 A, while the separation of a hydrogen-bonded pair of oxygen atoms is only 
2:5-2:8 A. 

The direct location of hydrogen atoms in a crystal structure is, at least, difficult by 
X-ray diffraction methods because the atomic scattering factor of hydrogen is 
exceedingly small. In structures composed entirely of atoms of low atomic number, 
such as carbon, nitrogen, oxygen, precise intensity measurements may make possible 
the location of hydrogen atoms from X-ray diffraction data, but in general it is 
necessary to infer the positions of hydrogen atoms from the recognition of short 
interatomic distances which may be taken to imply the occurrence of hydrogen bonds. 

In very few inorganic compounds have the positions of hydrogen atoms been 
determined directly, by neutron or X-ray diffraction or by spectroscopic methods. 

The consequences of hydrogen bond formation are most clearly explained by 
reference to specific examples. We select examples which involve the ammonium ion, 
NHj, the hydroxyl ion, OH , and crystalline H,O, ice. In each case the covalent 
bonds between hydrogen and nitrogen or oxygen involve sp® hybrid orbitals. In NH? 
the hydrogens are disposed at the apices of a regular tetrahedron, but in many of the 
structures in which it occurs the NHj ion can apparently be treated, at least to a 
first approximation, as a spherical ion of radius 1-48 A with a central positive charge. 
Thus the halides NH,Cl and NH,Br have NaCl-type structures while NH,]I has the 

CsCl-type structure; here NHj7 resembles Rb* which is of similar radius. However 
the fluorides of NH and Rb” are significantly different: RbF has a NaCl-type 
structure, while NH,F has a wurtzite-type structure and moreover in NH,F the N—F 
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separation is substantially less, at 2-66 A, than the radius sum, 'nut tlr- = 

1-48 + 1:36 = 2-84 A, calculated from the effective radius of NH in its other halide 

structures. Itisinferred that there is hydrogen-bonding between nitrogen and fluorine 

in NH,F, the tetrahedral disposition of F~ about NHf, and vice versa, being strongly 
favoured by the interaction of hydrogen atoms, covalently bonded to nitrogen, with 

lone pairs of electrons in tetrahedral sp* orbitals of fluorine atoms. Of the halogens 
only fluorine is sufficiently electronegative to form hydrogen bonds with nitrogen in 

its simple ammonium salts. 
In minerals hydrogen bonding usually occurs as a link between two oxygen atoms, 

the oxygen—oxygen distance in O—H—O being about 2:7 A. The hydrogen atom is 
asymmetrically situated between the two oxygen atoms at about 1 A from the nearer of 
the two. We take as our first example ice H,O, which has a structure related to that 
of wurtzite with all Zn and S sites occupied by oxygen. Each oxygen atom is 

surrounded by four hydrogen atoms situated on oxygen—oxygen joins, each hydrogen 
atom being distant 1-01 A from one of its oxygen neighbours and 1-75 A from the 
other. The water molecule is polar with two centres of positive charge corresponding 
to the two hydrogen atoms covalently bonded to the oxygen atom and two centres 
of negative charge corresponding to the other two sp® hybrid orbitals of the oxygen 
atom which are occupied by lone pairs of electrons; the disposition of the centres of 
positive and negative charge is tetrahedral. Hydrogen bonding arises in ice by the 
interaction of a hydrogen atom of one water molecule with a lone pair of an adjacent 
molecule. Each oxygen atom is thus tetrahedrally coordinated to its four nearest 
oxygen neighbours with one hydrogen atom situated on each O—O join. Each oxygen 
atom might be expected to have two of its four associated hydrogen atoms close to 
itself and the other two rather further away. However neutron diffraction studies of the 

deuterium analogue of ice, D,O, indicate that each oxygen atom is associated with 
four ‘half-atoms’ of deuterium at a distance of 1-01 A and four ‘half-atoms’ of deuterium 
at a distance of 1-75 A from the oxygen nucleus, the ‘half-atoms’ being so disposed that 
there is one deuterium atom between each pair of oxygen atoms. The diffracted 

neutrons effectively record a time average of the equal occupation of two alternative 
sites by each deuterium atom (Fig 10.42). All the available evidence points to the 
occurrence of precisely the same situation in ice, H,O. The diffraction evidence is 
supported by thermochemical studies of the residual entropy of ice (and D,O) which 

are consistent with the existence of eight possible hydrogen sites, four close and four 
distant, associated with each oxygen atom being occupied at any instant in such a 
manner that two hydrogen atoms lie close to that oxygen atom and two are closer to 

ss upon 

Fig 10.42 Two of the six possible configurations of hydrogen atoms about an oxygen atom in 
ice with retention of the H,O molecule. Large open circles represent oxygen atoms: small circles 
represent hydrogen sites, solid when occupied, open when vacant. 
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its nearest neighbour oxygens. The H,O molecule is thus retained in the structure, but 
the hydrogen atoms associated with each oxygen atom are constantly changing so 
that over a finite period of time each possible hydrogen site is effectively occupied by 
a ‘half-atom’. 

The hydroxyl ion, OH, is likewise polar and would be expected to have a 
tetrahedral charge distribution with its single centre of positive charge corresponding 
to the attached hydrogen atom and its three centres of negative charge each 
corresponding to an sp hybrid orbital of the oxygen atom occupied by a lone pair 
of electrons. In some structures the hydroxyl ion appears at first sight to behave as a 

spherical anion of radius 1:53 A. For instance both Cal, and Ca(OH), (the mineral 
portlandite) crystallize with the Cdl, structure type suggesting that the OH” ion, just 
like the truly spherical I” ion, imposes no directional constraints. However, precise 
X-ray diffraction studies have shown that in portlandite the hydrogen atoms lie 
between adjacent layers of CaO, octahedra; each is immediately above or below the 
oxygen atom with which it is associated and disposed so as to lie as far as possible 
from the nearest calcium atoms. The separation of oxygen and hydrogen nuclei is 
0:79 A.? The negative end of the polar hydroxyl ion thus points towards the adjacent 
calcium cations. 

In other structures, in contrast, the hydroxyl ion may be associated with hydrogen 
bond formation. Then the hydrogen atom of the hydroxyl ion is involved in the ‘short 

contact’ of a hydrogen bond and the three centres of negative charge on the OH” ion 
are either directed towards cations or involved in the ‘long contacts’ of hydrogen 
bonds. In Zn(OH), for instance each Zn?* cation is tetrahedrally coordinated by 
OH and each hydroxyl ion is linked to two cations and hydrogen bonded to two 
other hydroxyl ions, one hydrogen bond presumably being a ‘short contact’ and the 
other a ‘long contact’. In Zn(OH), the four nearest neighbours of each oxygen atom, 

Zn, Zn, H (close), H (distant), are approximately tetrahedrally disposed. 
We take as our final example of a structure with hydrogen bonds the mineral 

diaspore, A\O(OH), which is shown in Fig 10.43. Diaspore is orthorhombic, space 
group Pbnm, and all its atoms lie on (001) mirror planes. All the aluminium atoms 
are octahedrally coordinated and equivalent to one another. Each coordination 
octahedron has four shared edges; the two shared edges parallel to (001) give rise to 
chains of octahedra parallel to [001] and the other two serve to link adjacent chains 
in pairs. Oxygen atoms are of two kinds, which we denote O, and O,,;; all are bonded 
to three aluminium atoms. The three aluminium atoms to which each O, atom is 
bonded are approximately coplanar and distant from the oxygen atom 1:85 A, 1:85 A, 
and 1-86A (Fig 10.43). The other kind of oxygen atom Oy, is bonded to three 
aluminium atoms at a distance of 1-98 A and to one hydrogen atom 1-01 A away. Thus 
the O, atom is the oxygen of the hydroxyl ion in AlO(OH); the approximately 
tetrahedral disposition of its four near neighbours, three aluminium atoms and one 
hydrogen atom, is consistent with the disposition of charges on an hydroxyl ion. The 
hydroxyl ion forms a hydrogen bond with an O, atom which does not belong to any 
of the three coordination octahedra in which the OH ion is involved. The 
oxygen—oxygen separation in the O,—H ... O, hydrogen bond is 2-65 A, but neutron 
diffraction studies indicate that the bond is not linear, the O,—H vector being inclined 
at 12° to the O,—O, vector. Oxygen—oxygen distances on shared edges, 2-46 A or 
2:54A, are short, shorter even than the separation of hydrogen bonded oxygens, 

12 Neutron diffraction studies however yield the value 0-94 A. Such discrepancies are not unusual and are 
attributable to the different modes of scattering of X-rays and neutrons (chapter 9). 
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OAl C).6f °° O or SH 
Fig 10.43 The pies structure of disapore, AlO.QH. All atoms lie on mirror planes at z= 
(open circles) and z= 2 (shaded). The space group is Pbnm and the unit-cell dimensions ate 
a 4-401, b 9-421, c 2:845A. 

because repulsion between adjacent cations brings the anions on the edge shared 
between their polyhedra closer together. The discrepancy between Al—O, and 

Al—O,, separations in this structure may be correlated with the difference in 

electrostatic interaction of O77 and OH™ anions with an Al** cation. 
The application of Pauling’s electrostatic valency principle to the essentially ionic 

structure of diaspore is instructive. Since Ar is octahedrally coordinated each 
Al—O bond should have a strength of ? = 5. The sum of the electrostatic ee 
of the bonds from aluminium to both O, and O, atoms should thus be 3 x $ = 13. If 
the electrostatic valency principle were to hold precisely the hydrogen atom would 
have to be shared equally between an O, and an O,, atom, contributing a bond strength 
of 4 to each. But the hydrogen atom is more closely associated with the O, atom so 
that it should contribute bond strengths of >4 to O, and <4 to O,. Moreover 
Al—O,, bonds are longer than Al—O, bonds so that the sum of the strengths of the 
three bonds from Al** to O, would be expected to be < 14 and the corresponding 
sum at O, to be > 14. If the inequalities, > 4+ < 14 and <4+> 14, sum to 2 for each 
sort of oxygen atom, then the electrostatic valency principle holds precisely for this 
structure, but it can never be demonstrated that this is so. Direct application of 
Pauling’s Rules does however, in this case, demonstrate the essential correctness of 
the structure determination. 

In conclusion and by way of summary, it can be said that hydrogen-bonding 
influences significantly the type of structure adopted by a compound. The hydrogen 
bond is at once a directed bond and essentially ionic. Ionic compounds in which 
hydrogen-bonding occurs thus tend to adopt relatively open structures compared with 

the close-packed or approximately close-packed anion frameworks favoured by so 
many other ionic compounds. It remains to be said that, although in the examples 
of hydrogen bonding we have cited above the hydrogen atom is closer to one of the 
atoms involved in hydrogen-bonding than to the other, examples do exist for which all 
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the available evidence indicates that the hydrogen atom is equidistant from the two 
atoms to which itis linked. For instance the F—H—F bond appears to be symmetrical 
in crystals of KHF,. 
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Crystal physics 

In the last chapter we were concerned with the structures of a variety of crystalline 
solids. We turn now to consideration of the effect of regular atomic structural 
arrangement on physical properties. Because a crystal has a regular atomic structural 
arrangement its physical properties will not, in general, be identical in every direction; 

such crystals are said to be anisotropic. The physical properties of gases, liquids, 
glasses, polycrystalline solids and certain single crystals (which we shall specify in due 
course) are independent of direction; such substances are described as isotropic. In 
other words when a particular physical property of a substance in a given state can be 
described in terms of a single coefficient the substance in that state is said to be 
isotropic for that property and it may be isotropic for all properties; but when 
complete description of the physical property of the substance in the given state 
requires the statement of several coefficients the substance in that state is said to be 
anisotropic for that property. 

For the full mathematical treatment of the physical properties of single crystals the 
reader is referred to Nye (1960) and to Wooster (1949). Here we shall keep 

mathematics to a minimum and concentrate on the physics of the anisotropy of 
physical properties. We shall discuss in detail only two physical properties, diffusion 
and thermal expansion; in the course of the discussion we shall develop points of 
general physical significance applicable to properties other than the one under 
discussion and we shall develop some generally useful techniques for the analysis of 
anisotropic physical properties. The two properties selected for detailed study are not 
without interest: diffusion is important for the understanding of solid state reaction 
processes and studies of thermal expansion can provide significant information about 
the relative strengths of interatomic binding forces. 

Diffusion 

Diffusion is, like electrical and thermal conductivity, a transport property; the 
existence of a concentration gradient causes a flow of matter. It is found experimentally 
that in polycrystalline solids the flux J of an atomic species across unit area of a plane 
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normal to the concentration gradient 0c/0dr of that species is directly proportional to 
the concentration gradient, 

Oc 
Le. J= ae 

The coefficient D is known as the diffusion coefficient and is found experimentally to 
be commonly independent of the concentration gradient. This simple relationship of 
widespread validity is often called Fick’s first law. The solution of the differential 
equation for particular experimental conditions is outside the scope of this text; the 
interested reader is referred to Shewmon (1963) for a thorough account of the solutions 
of Fick’s first law. We note that for polycrystalline solids the ‘resultant’ vector J is 
found experimentally to be parallel to the ‘applied’ vector 0c/ér and that in identical 
experimental conditions the ratio J/(dc/dr) is independent of the directions of the two 
vectors: the diffusion coefficient D is thus not direction-dependent in polycrystalline 
solids. 

oC oc 
or (a) or (b) 

Fig 11.1 The relationship of the resultant flux J to the applied concentration gradient 0c/Or for 
diffusion in (a) a polycrystalline solid, (b) an anisotropic single crystal. 

In single crystals however diffusion presents a more complex problem because the 
resultant flux J is not in general parallel to the applied concentration gradient 0c/dr 
(Fig 11.1) and moreover the angle between the two vectors varies with direction. It is 
the formal relationship between such applied and resultant vectors that is the essence 
of crystal physics. The mathematics of crystal physics is simple but rather cumbersome 
unless the so-called ‘dummy suffix notation’ is employed. We shall not here introduce 
this elegant notation, but use more familiar mathematics, sacrificing elegance to ease 
and speed of understanding. We begin by showing in general that in a single crystal 
there are at least three mutually perpendicular directions in which the applied and 
resultant vectors are parallel to each other; we consider the proposition first in two 
dimensions and then its extension to three dimensions. 

Second rank tensors 

In order to describe an anisotropic physical property it is necessary to choose a set 
of reference axes and it is convenient that they should be orthogonal axes. The 
reference axes for the description of the physical property do not need in the first 
instance to bear any special relationship to the crystallographic reference axes of the 
crystalline substance concerned, although at a later stage it will be necessary to 
establish the relationship between the two axial systems. 

Suppose that in general an applied vector p gives rise to the resultant vector q. In 
diffusion p is the concentration gradient 0c/dr and q is the flux J. The components of 
p along the reference axes, x, y, z are denoted px, py, p. respectively and similarly the 

components of q are qx, dy, qz. If p lies along the x-axis (Fig 11.2), then its components 
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Z Fig 11.2 The components of the resultant 
vector q when the applied vector p lies along 
the x-axis. 

are Pp, = P, Py = p, = 9. The resultant vector q however will have in general three 
non-zero components, each of which is linearly proportional to p = p,. The magnitude 
of each of the three constants of proportionality 

Dee NAD ea De, 
Dx Px Px 

will of course be dependent on the choice of reference axes. 
If the vector p is applied in a general direction, the components q,, q,, q, of the 

resultant vector will each be linearly dependent on each of the three components p,, 
Py, pz Of the applied vector. This can conveniently be expressed by use of coefficients 
of the form D,, to relate the magnitude of the component gq, of the resultant vector 

to the magnitude of the component p, of the applied vector; thus D,,. relates g, to p, 
and so on, so that the total relationship may be stated as 

qx = DEP, EDLs PP Er: 

dy oF Oe Dzgke leg pte) oe 

qz = DAVE EDA, YD aPe 

The array of nine coefficients, D,.., D,.,, etc (or in general D,;) is known as a second 
rank tensor. Such a second rank (or second order) tensor expresses the linear 
relationship of the three components of the resultant vector q to the three components 
of the applied vector p. For the majority of physical properties, including diffusion, 
which can be represented by second rank tensors, thermodynamic arguments lead to 
the conclusion that D,, = D,,;; when this is so the tensor is said to be symmetrical. 
If a second rank tensor is symmetrical it follows that the constant of proportionality 
has the same magnitude for p applied along the x-axis and q measured along the 
y-axis as for p applied along the y-axis and q measured along the x-axis, that is 

D zl) 

i.e. (”) = () 

x/ D> Px Py P= py 

The physical basis for such a relationship is not immediately obvious; we shall not 
attempt any explanation here, but simply assert that diffusion is a symmetrical second 
rank tensor property. 
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Principal axes 
In general then the description of a physical property in a crystalline solid requires 
the specifications of an axial system and of the six coefficients D,.., Dy, Dz,, Dry = Dy, 
D,, = Dy, Dx = D,, which relate the resultant vector components q,, gy, q, to the 
applied vector components p,,, p,, p,. We now proceed to show that the number of 
independent coefficients can be further reduced to three because there is always a set 
of three orthogonal directions along which the resultant vector is parallel to the 
applied vector. If these three directions coincide with the chosen reference axes, then 

D,'= D,, =DA=.0 and 

qx = D,,.Px 

dy = DyyPy 

q. = D,,D:. 

Reference axes that have this property are known as principal axes. 
Because a physical property, such as diffusion, is a property of the crystalline 

substance under discussion, the arbitrary choice of reference axes cannot affect the 
magnitude of the property in any direction, but only the way of describing it. Thus 
the coefficients of the second rank tensor necessary for complete quantitative 
description of the property will vary in magnitude with the choice of reference axes, 
but for a given applied vector p the same resultant vector q must always be obtained. 
The second rank tensor for any set of reference axes must therefore be related to that 
for any other axial system and in particular to that for the principal axes. We now 
explore the nature of this relationship in two-dimensions. 

Suppose that the vector q has components q, and q, along the reference axes x and 
y respectively so that in Fig 11.3 q is represented by OQ, q, by OX and q, by OY. 
Then the component of q in a direction which has direction cosines / and m with 
respect to the reference axes will be 

OQ’ = OR+RQ’ 
= OR+XS 
= OX cos KOX+ XQ cos OXS 
= OX cos KOX + OY cos YOR 

= dx! + qym. 

Fig 11.3. The component of a vector q in a direction whose direction cosines with respect to the 
reference axes x, y are /, m is g,/+qym. 
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Fig 11.4 The orthogonal axes X, Y have direction 
y cosines (cos 9, sin 8), (—sin 0, cos 8) with respect 

Y to the orthogonal axes x, y and the direction cosines 
of x, y referred to X, Y are (cos 8, —sin 8), 

X (sin 8, cos 6). 

Na 
O 

Thus the components of the vector q along any set of reference axes can be calculated 
from its components along any other set of axes provided the direction cosines of the 
second axial system with respect to the first axial system are known. For instance 
the axes X, Y in Fig 11.4 have direction cosines cos 0, sin @ and —sin 6, cos @ with 
respect to the axes x, y. 

Therefore qx = q, cos@+q, sin 0 

and dy = —4, Sin 0+4q, cos 0. 

But we have already seen that 

dx = DyxPx + DzyPy 

and dy = Dy, P+ DyyDy. 

Hence qx = (D,,, cos 0+ D,, sin 0)p, + (D,,, cos 0+ D,, sin 8) D 

and dy = (—D,,, sin 0+ D,,. cos 0)p, +( —D,, sin 0+ D,, cos 6)p,. 

Now the direction cosines of the x and y axes with respect to the X and Y axes are 
cos 0, —sin 0 and sin 0, cos @ respectively so that 

Px = Px COS O—py sin 8 

and Py = Px Sin 0+ py cos 0. 

Therefore qy = (D,, cos” 0+D,, cos 0 sin 0+ D,., cos @ sin 0+ D,y sin? @)py 
+(—D,, cos @ sin —D,, sin? 0+ D,, cos? 6+ D,, cos @ sin 6)py 

and dy = (—D,, cos 0 sin 0+ D,,, cos” 6—D,, sin? 0+ D,,, cos @ sin 0)py 
+(D,, sin? 6—Dy, cos 8 sin 0—D,, cos 6 sin 0+ D,, cos? 0)py. 

Since the tensor is symmetrical, D,,. = D,, and these expressions simplify to 

dx = (D,, cos” 0+ D,, sin 20+ D,, sin? 0)py 

+(—D,, sin 20+ D,, cos 20+4D,, sin 20)py 

dy = (—2D,,. sin 20+ D,, cos 20+4D,, sin 20)py 

+(D,, sin? 6—D,, sin 20+ D,, cos? @)py. 

But the tensor for the X, Y axial system is 

dx = Dyxpxt+Dyypy 

dy = Dyxypx+Dyypy 



Diffusion 363 

Hence Dyx = Dx CoS” 0+ Dyy sin 20+ Dyy sin? 0 

Dxy = 3(Dyy—D,,) sin 20 + D, cos 20 

Dyy = D,x sin? 0—D,, sin 20 + D,, cos? 0. 

Now if X and Y are to be principal axes, Dyy = 0 and the principal axes must be 
inclined to the reference axes x, y in such a manner that 

tan 20 = — 
xx yy 

Thus if the three coefficients D,.., D,.,, D,, referred to reference axes x, y are known, 
the directions of the principal axes X, Y can be found and the coefficients Dyy, Dyy 
along them can be determined. 

Likewise in three dimensions if the tensor describing a physical property has been 
determined for one set of axes, the orientation of the principal axes can be found and 
the three coefficients necessary to describe the property on these axes can be evaluated. 
These three coefficients are usually denoted by the simplified symbols Dy, Dy, Dz 
so that for the principal axes we have 

dx = Dxpx 

dy = Dypy 

dz = Dzpz. 

Clearly then the use of principal axes greatly simplifies the description of a physical 
property. We shall in what follows take principal axes as our reference axes. 

Magnitude of a physical property in any direction in a crystal 

In the direction of a principal axis the applied vector gives rise to a resultant vector 
parallel to itself. Thus a concentration gradient dc/0X along the X-axis gives rise to a 
flux J of the diffusing atomic species along the X-axis and the diffusion coefficient 
along the X-axis is simply Dy = J/(éc/0X). But when the applied vector is in some 
general direction the resultant vector is not necessarily parallel toit. In such a situation 
it is often convenient to measure the component q, (Fig 11.5) of the resultant vector 
q in the direction of the applied vector p. The ratio q,/p, which we denote D, is then 
the magnitude of the physical property in the direction of p. In a single crystal D, 
will usually vary with direction; and its magnitude in the direction whose direction 

Fig 11.5 The component of the 
resultant vector q in the direction of the 
applied vector p is qj. 
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cosines relative to the principal axes are /, m, n can be related to the principal diffusion 
coefficients D,, Dy, D, by the following simple argument. 

’ 
¢ 

q\ = Iqy+mqy+nqz, 

but dx = Dxpy = Dylp 

dy = Dypy = Dymp 

dz = Dzpz = Dznp 

Hence Dy = 4)/p = ?Dy+m?Dy+n7Dz. 

The Representation Quadric 

It is convenient to rewrite the equation 

Dj = PDy+m*Dy+n’?Dz 

as 

DeXAt De D2 Dye 
where 1 = X/r, m= Y/r,n = Z/r, so that the new equation can be compared directly 
with the equation to a quadric (the three-dimensional extension of the familiar 
two-dimensional conic) 

Thus the quadric whose semi-axes are a= Dy*, b = Dy*, c= Dz? has radius 
r=D, ? in the direction from the origin through the point with coordinates X, Y, Z, 

that is in the direction whose direction cosines are |, m, n. Such a quadric is known 

as the representation quadric and provides a very simple means of displaying the 
variation of D, with direction in an anisotropic crystal. It is a general property of 
quadrics that at a point where the radius has direction cosines |, m, n the normal to 
the quadric surface has direction cosines proportional to |/a?, m/b’, n/c”. Therefore 
at a point where the radius has direction cosines I, m,n the normal to the representation 
quadric has direction cosines proportional to Dy, mDy, nD,. We have seen that if 
the applied vector p has direction cosines I, m, n, the resultant vector q has components 
ID xp, mD yp, nD zp. Therefore the radius and the normal to the representation quadric 
at any point represent respectively the directions of the applied and resultant vectors 
and the magnitude of the coefficient D, is given by the reciprocal of the square of the 
radius at the point. Very commonly the coefficients Dy, Dy, D; are all positive; then 
the representation quadric is an ellipsoid. Figure 11.6 illustrates the points made 
above for an ellipsoidal representation quadric. 

Occasionally however one or two of the coefficients Dy, Dy, Dz may be negative. 
The representation quadric then has one or two imaginary semi-axes and is an 
hyperboloid. In such circumstances it is convenient to replace the imaginary 
parts of the quadric Dxl?+Dym*+Dzn? = Dy by the real part of the quadric 
Dxl’ +Dym? + Dzn* = —Dj|, a point that we shall develop subsequently. In what 
follows immediately we shall confine ourselves to cases in which all three principal 
coefficients are positive so that the representation quadric is an ellipsoid. 
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Fig 11.6 The representation quadric for self-diffusion in magnesium. The figure shows a section 
through the quadric in the plane of the two principal axes Y and Z and is drawn to scale. In 

magnesium (hexagonal) Z is parallel to [0001] and at the experimental temperature 
Dy = Dy =1:5x 10-8 em2s-1, D7 =1-0x 10-8 cm2s—1, 

Symmetry control of physical properties’ 

A quadric X?/a? + Y?/b* + Z*/c* = 1 has the symmetry of the point group mmm with 
the diads of the point group parallel to the principal axes of the quadric. The 
directional variation ofa physical property represented by a symmetrical second rank 

tensor thus has symmetry mmm and, in particular, is centrosymmetric. Moreover since 
the physical properties of a single crystal are consequences of its structure one would 

expect the symmetry of the directional variation of any physical property to be 
consistent with the symmetry of the structure. The relationship between the directional 
variation of a physical property and the point group symmetry of the crystal structure 
involved is expressed by Neumann’s Principle, which states that the symmetry of a 
physical property must include the symmetry of the point group of the crystal. In the 
case of second rank tensor properties the symmetry inherent in the property combines 

Tn this section we use the convention that X, Y, Z are the principal axes of the representation quadric 
and x, y, z are the crystallographic reference axes. If one or more of the principal axes of the quadric is 
parallel to one or more of the crystallographic reference axes it is conventional to put X ||x, Y || y, Z|\z. 
This simple convention does not apply in crystal optics, as we shall see in chapter 12. 
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with the point group symmetry of the crystal concerned to give the property in that 
crystal the symmetry of the holosymmetric point group of the crystal system to which 
the crystal belongs. It is therefore necessary only to consider the constraints imposed 

on the physical property by each of the sevén crystal systems. 
For crystals of the triclinic and monoclinic systems the symmetry inherent in a 

symmetrical second order tensor is higher than that of the crystal. In the triclinic 
system no restriction is placed on the shape or orientation of the representation 
quadric; the description of a physical property requires specification of the magnitudes 
of Dy, Dy, D, and of the geometrical relationship of the principal axes of the 
representation quadric to the crystallographic reference axes. In the monoclinic 
system (Fig 11.7(a)) one of the principal axes of the representation quadric is required 
by Neumann’s Principle to be parallel to the crystallographic diad, conventionally 
[010], and the other two principal axes lie in the (010) plane. The description of a 
physical property of a monoclinic crystal requires specification of the angle between 
the z crystallographic axis and one of the principle axes, X or Z, in the (010) plane, 
and the magnitudes of D,, Dy, and Dz. 

The symmetry of the representation quadricis that of the centrosymmetrical point 
group of the orthorhombic system, mmm. For crystals of the orthorhombic system 
therefore the principal axes of the representation quadric are constrained to be parallel 
to the crystallographic reference axes (Fig 11.7(b)). In the orthorhombic system it is 

thus necessary to specify only the magnitudes of D,, Dy, Dz. 
For crystals of the trigonal system one of the principal axes of the representation 

quadric must be parallel to the triad and the other two lie in the (0001) plane through 
the origin. The equation to the principal section of the representation quadric parallel 
to (0001) is, since Z is parallel to the triad, X?/a” + Y?/b* = 1. This is the equation to 
an ellipse whose semi-axes are a and b; all other radii of the ellipse have radii 
intermediate between a and b, but because the ellipse has triad symmetry the radii a 
and b must each be repeated every 120° so that the ellipse degenerates into a circle 
with a = b. Therefore in the trigonal system Z is parallel to the triad and Dy = Dy 
so that the representation quadric is an ellipsoid of revolution about the triad axis. 
For the complete description of a physical property of a trigonal crystal it is necessary 
to specify only two coefficients Dy = Dy and Dy. 

Likewise in the tetragonal and hexagonal systems the representation quadric is an 

si 

x X 
(a) monoclinic (b) orthorhombic 

Fig 11.7 Stereograms illustrating Neumann's Principle. In the monoclinic system one of the 
principal axes, Y, of the representation quadric is constrained to be parallel to the diad, the other 
two may lie anywhere in the (010) plane. In the orthorhombic system the principal axes are 
parallel to the crystallographic axes. 

yey 
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ellipsoid of revolution about the axis of high symmetry. Again only two coefficients 
need to be specified D, and Dy = Dy. 
When the representation quadric is an ellipsoid of revolution the resultant vector 

q necessarily lies in the plane containing the applied vector p and the axis of high 
symmetry, the triad, tetrad, or hexad. All cases thus become two-dimensional and in 

particular the expression for D, in a direction making an angle 0 with the axis of high 
symmetry reduces to 

D, = Dz cos” 0+ Dx sin? 0, 

where Z is parallel to the axis of high symmetry z. The central section of the 
representation quadric perpendicular to the axis of high symmetry is, as we have 
shown, circular so that for all directions perpendicular to the axis of high symmetry 
the normal to the quadric coincides with its radius; therefore q||p for all directions 
perpendicular to the axis of high symmetry and for such directions D, = Dy. 

Application of the argument used previously for the trigonal system to all four 
triads of the cubic system leads to the conclusion that the representation quadric for 
any cubic crystal is a sphere. The resultant vector q is parallel to the applied vector p 
for all directions in a cubic crystal. A second rank tensor property of a cubic single 
crystal thus requires only the specification of one coefficient D, which represents the 
ratio q/p for all directions, that is to say a cubic crystal is isotropic for second rank 
tensor properties just like a polycrystalline solid. 

The constraints exerted by the symmetry of the crystal structure on the orientation 
and geometry of the representation quadric for a second rank tensor property are 
summarized in Table 11.1. 

Diffusion coefficients 
We return now to diffusion as an example of a second rank tensor property and give 
brief consideration to experimentally determined diffusion coefficients in single 
crystals. Surprisingly few determinations of high accuracy are available. Measured 
diffusion coefficients display marked anisotropy in general and strong temperature 
dependence. For instance the coefficients of self-diffusion of Mg through magnesium 
single crystals (hexagonal) are D; = 1-0 exp(—32,200/RT) and Dy = Dy=1°'5 
exp (—32,500/RT) where Z is parallel to the hexad and T is in kelvins. Thus at 300K 
Dy=Dy=4-0 x 10774 cm2s74 cand: Dz; = 45x 1077+ cm? 874) while at 700K 
Dy = Dy = 1°85 x 10719 cm’s~! and Dz = 1:0 x 10° !°cm?s~!. The anisotropy of 
the diffusion coefficients at both the selected temperatures is quite marked, but more 

Table 11.1 
The relationship of the magnitude and orientation of the principal axes of the 
representation quadric for second rank tensor properties to the symmetry of 

the crystal 

Crystal Relationship between —__ Orientation of principal axes with 
system principal coefficients respect to crystallographic axes 

Triclinic Daa =D, No special relation 
Monoclinic Dy # Dy # Dz Y\ly 
Orthorhombic Doe Dy F Dr X||x, Yily, Z||z 
Trigonal Die eee yf : . 
Tetragonal Dewi Dat De Ellipsoid Ree about z, 

Hexagonal Dy = Dy # Dz 
Cubic Dy'—= Dy — Dy, Sphere 
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remarkable is the very large temperature coefficient of D, which is very nearly 

independent of direction. In this example the relationship between the anisotropy of 

the principal diffusion coefficients and the crystal structure of Mg is not immediately 

apparent. ; , 

Butin Pbl,, which hasa structure similar to that of Cdl, (Fig 10.23) the relationship 

between structure and anisotropy of diffusion coefficient for the self-diffusion of Pb 

is more clearly apparent. At 316°C D, = 2°52 x 10° °cm?day * and Dy = Dy= 

5-02 x 10> ° cm? day” ‘. In the structure of this substance cation sites are much closer 

together in directions perpendicular to [0001] than in the direction [0001] and 

moreover it would be energetically difficult for a Pb ion to jump across from one 

PbI, layer to another. 

In the mineral olivine there is marked anisotropy of diffusion coefficients for Ni. 

In an olivine of composition (Mgo.93Feo.07)2SiO4 experiments at high temperature 

yield D, = 25D,, D,, ~ D, so that it would appear that the diffusion of cations is 

relatively facile in the [001] direction. Inspection of the plan of the olivine structure 

(Fig 10.27) shows that in the [001] direction there are chains of edge-sharing 

octahedra; we did not draw attention to these chains in chapter 10 because they were 

not relevant to our argument there, but the diffusion evidence taken together with 

recent structural studies on compositional derivatives of the olivine structure show 
the importance of this hitherto neglected structural feature. 

In conclusion it is appropriate to say that the paucity of high quality data at present 
makes it impossible to provide adequate exemplification of the essential structural 
basis of diffusion anisotropy. Nevertheless diffusion must be one of the easiest of the 
anisotropic properties of single crystals to interpret in structural terms. It is for this 
reason and in spite of the shortage of good data that we have taken diffusion as one 
of our two exemplary physical properties. 

Thermal expansion 

We have earlier had occasion to comment on the nature of the interaction between 
an isolated pair of atoms and in particular on the form of the dependence of their 
interaction energy on interatomic distance (Fig 10.7). The minimum of the potential 
energy curve corresponds to the equilibrium distance between a pair of atoms at rest. 

This is an unattainable situation; at all temperatures the atoms oscillate relative to 
each other so that what one means by the equilibrium distance apart of a pair of atoms 
at any temperature is the separation of their mean positions. As temperature increases 
from absolute zero the potential energy of the atom pair increases and the separation 
of their mean positions (Fig 11.8) increases from x, along the broken line shown in 
the figure. If the potential energy trough were symmetrical, the broken line would be 
vertical and the ‘coefficient of thermal expansion’ of the atom pair would be zero: 

generalizing, it is because the broken line bends outwards that the coefficients of 
thermal expansion of crystalline solids are non-zero. 

'n a crystalline solid the effect of increasing temperature on atomic positions is 
more complex. The relative increase in the separation of a pair of adjacent atoms of 
the elements A and B may be markedly different from that of a pair of adjacent atoms 
of the elements A and Cin a crystal of the elements A, B, and C. Even in a crystal of a 

chemical element there may be more than one bond type, as in graphite, and one 
would expect in such a case a marked difference in the rate of increase of the lengths 
of the different types of bonds. Moreover differential rates of increase of the separation 
of different pairs of atoms may cause coordination polyhedra of anions about cations 
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Fig 11.8 The variation of potential energy 
(V) with interatomic separation (x) for an 
isolated pair of atoms. The broken line 
represents the relation between the mean 
position of the atom pair and their potential 
energy; as temperature increases so will the 
potential energy of the atom pair and so will 
their mean separation. 

‘to tilt relative to one another. In short the positions of all atoms in the structure will 
change with temperature, but the magnitude of such changes of position will be quite 
small. The overall effect can be described in terms of small changes in the dimensions 
of the unit-cell coupled with small changes in the coordinates of the atoms within 
each unit-cell. 

Since all unit-cells are equivalent they must change in response to rising temperature 

in precisely the same way, the dimensions of the lattice change correspondingly by 
amounts usually of the order of 10~°A per °C. Since the lattice changes only in its 
dimensions, lattice planes persist as such, as do lattice directions, but with some small 
change in angular relationships. 

The dimensions of any polycrystalline body change in response to changing 
temperature; the change is homogeneous, that is to say if a line of length / expands 
by an amount 0/ for a given temperature rise then 6//l is independent of the magnitude 

of I. Thus a length / in any orientation in the polycrystalline body at T°C becomes 
1+ dlat(T + 1)°C. Theincrement 6]is commonly expressed as la, where a is the change 
in length per unit length per degree and is known as the coefficient of linear expansion; 
for homogeneous expansion « is a constant independent of direction so that any length 
1 at T°C becomes /(1+a) at (T +1)°C. If « is independent of temperature in the 
temperature range under consideration, then the increase in a length / at T°C when 
the temperature is raised by t°C is Jat. But for most polycrystalline substances « is 

temperature dependent so that the increase in length between the temperatures t, and 
t, is given by |,, 7? 0, dt. 
When a polycrystalline body of volume V is heated through 1°C its volume 

increases by an amount 6V = a,V, where a, is its coefficient of volume expansion. If 
the body is a cube of side /, then V = IP? and 

V+6V =(1+ 6) 

i.e. V(i+qa,) = P(i+a)? 

i.e. a, =(1+a)?-1 

= 30 

if powers higher than the first of the small coefficient « are neglected. If «, is 
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(a) (b) 
Fig 11.9 Two-dimensional thermal expansion in (a) an isotropic material, (b) an anisotropic 
material. A vector of length p expands by an amount g when the crystal is heated through 7 °C; 
in (a) the vectors p and q are parallel and in (b) they are non-parallel in general. The resultant 
vector r= p+q; r=p+gq in (a) but not in (b). 

independent of temperature in the temperature range under consideration, then the 
increase in volume, V at T°C, when the temperature is raised by t°C is Va,t = 3Vat. 
In chapter 13 we shall be concerned only with coefficients of volume (or bulk) 
expansion of polycrystalline solids and in that context it is convenient to drop the 
subscript v (cf. Table 13.3). 

When the temperature of a single crystal is raised the dimensions of the crystal 
increase. The expansion is, as for polycrystalline bodies, homogeneous but it is not 
necessarily of the same magnitude in all directions. In an isotropic crystal a vector of 
length p expands by a length q when the crystal is heated through 1°C to become the 
vector r = p+q, the vectors, p, q, r being parallel to one another (Fig 11.9(a)) so that 
r=p+q. If the coefficient of linear expansion « is defined? here, as for the 
polycrystalline case, as the change in length per unit length when the temperature of 
the crystal is raised through 1 °C, then q = «p and r = (1+.«)p. But many crystals are 
anisotropic for the property of thermal expansion; the vector q is not in general 
parallel to the vector p (Fig 11.9(b)), but is related to it by the coefficients a,, of a 
symmetrical second rank tensor. The description of the thermal expansion of an 
anisotropic crystal is most easily obtained by the measurement of the three coefficients 
of linear expansion parallel to the principal axes ay, wy, “7. The change q in any other 
direction p when the temperature of the crystal is raised by 1 °C is given by 

dx = %yPx 

dy = “yPy 

dz = %zPz, 

where py, qx, etc are the components of p and q on the principal axes. 
The thermal expansion of a crystal must of course be consistent with the crystal’s 

symmetry. The same relationships between principal axes and symmetry directions as 
we worked out for diffusion and listed in Table 11.1 apply in thermal expansion. It 

? This definition of coefficient of linear thermal expansion agrees with that of Wooster (1949) and differs 
from that used by Nye (1960). 
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is perhaps necessary to make the obvious proviso that the temperature interval under 
consideration should not embrace a polymorphic transformation; at a polymorphic 
transformation the magnitudes and orientation of the principal axes of the 
representation quadric for thermal expansion are often profoundly altered. 
We have defined coefficients of linear thermal expansion in terms of a temperature 

increment of 1 °C. However the coefficients are usually so small that in practice it is 
necessary to use much larger temperature increments, as much as 100°C, in order to 
obtain measurements of acceptable accuracy. It is then necessary to assume constancy 
of « over the experimental temperature range. But it is always necessary to bear in 
mind that coefficients of thermal expansion are temperature dependent and vary 
particularly rapidly at temperatures close to phase transformations, including the 
melting point. Experimentally it is necessary to choose experimental temperature 
intervals with this sort of consideration in mind. 

The formal description of thermal expansion is very much like that of any other 
symmetrical second rank tensor property. Although similar in form the diffusion 
tensor and the thermal expansion tensor are physically rather different. Both relate 
one vector to another: the diffusion tensor relates a resultant flux to an applied 
concentration gradient, but the thermal expansion tensor relates the orientation and 
distance from the origin of a point in the crystal after a temperature rise to the 
orientation and distance from the origin of the corresponding point before the 
temperature rise. In general terms the diffusion tensor relates vectors that represent 
distinct properties or processes while the thermal expansion tensor relates vectors of 
the same sort before and after an event. 
We now proceed to explore the physical significance of the coefficients «,, in the 

thermal expansion tensor by considering in the first instance a two-dimensional case; 

extension to three dimensions is mathematically straightforward, but more 
cumbersome and less easy to visualize physically. In terms of any axial system x, y 
the extension q of a vector p consequent on a change in the temperature of the crystal 
is given by 

qx = Os, Dx 1 Oy Dy 

Since the thermal expansion tensor is symmetrical w,,, = «,,. A line initially parallel 
to the x-axis and of the length p, (Fig 11.10) expands by an amount q, = «,.,.p, and 
dy = %y,P,- Thus «,,, represents the extension per unit length of the initial line parallel 
to the x-axis and, since the magnitudes of all the coefficients a, are very small, «,, 
represents the angle of rotation of the line from its initial orientation parallel to the 
x-axis towards the y-axis. Likewise a line of length p, initially parallel to the y-axis 
expands by an amount qx = axypy and qy = ayypy so that a,, represents its extension 
per unit length parallel to the y-axis and «,, represents its angle of rotation from the 
y-axis towards the x-axis. The rectangle with sides p, and p, thus distorts to a parallelo- 
gram and, since a,) =a), the resultant parallelogram is symmetrically disposed 

between the x and y axes, the angles between adjacent sides being 90°+2 tan! a, ~ 

90° + 2a, since all three coefficients «x, %xy, %yy are small. The line of length p which 
was initially the diagonal of the rectangle becomes a diagonal of the parallelogram. 
In general any line which is not parallel to a principal axis of the representation 
quadric rotates relative to a fixed axial system and changes its length as the 
temperature of the crystal changes. Only along the principal axes is the effect of 

temperature change restricted to change in length and not associated with rotation. 
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x 
Fig 11.10 Two-dimensional thermal expansion. The vector p expands by q to become r. Its 
component p, expands by «,,, parallel to the x axis and by &,,p, parallel to the y axis; and its 
component py expands by a,,py||y and by a,,p,||x. The resultant parallelogram has angles 
between adjacent sides equal to 90°+2a,,, since %,, &y, and a, are very small. The diagram 
is greatly exaggerated. 

It must however always be remembered that thermal expansion coefficients are 
usually no larger than about 10° ° deg™ ' so that the greatest change in orientation of 

any line in a crystal amounts to no more than a few seconds of arc per degree Celsius. 
In practice therefore the distinction between the expansion of a line and its increase 
in length in its initial direction is negligible. 

The insignificance of rotational effects is important when X-ray diffraction 
techniques are used to determine thermal expansion coefficients. Differentiation of 
the Bragg Equation 

A=2d sin 0 

yields 
dd 
- = —cot 6.dé. 

In the context of thermal expansion we can put 

Ad = ad.At 

where « is the change in spacing per unit length of the set of lattice planes giving rise 
to the measured reflexion and At is the temperature difference between successive 
measurements so that 

AQ 
a = —cotd—. 

At 

In order to obtain sufficiently large values of A@ to be accurately measurable it is 
usually necessary to make use of reflexions of high Bragg angle and it may be necessary 
for At to be as much as 100°C. It has of course to be assumed that « is effectively 
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Fig 11.11 The (010) section of the representation quadric for thermal expansion of afwillite 
(Ca,(SiO0,OH),.2H,0; monoclinic; a= 16-21, b= 5-63, c=13-12A, B = 134°48'). The Z axis of 
the ellipsoid is effectively coincident with [001] in this monoclinic substance. This section of the 
thermal expansion quadric «.X2+a 7Z? = 1 has been determined by measurement of the variation 
of the d-spacings of AO/ reflexions with temperature: the directions of the normals to some of the 
planes used are shown on the diagrams, the thick part of each line representing the experimental 
error in a2. Analysis of all the experimental results has yielded a, = 27-8 x 10-®, a, =7:1x 10-6 
per deg. C. 

constant even over such a large temperature range. The value of « obtained in this 
way may yield one of the principal coefficients of thermal expansion directly. For 

instance the determination of « from the change in the (0001) d-spacing of a trigonal 
crystal gives «, directly. But for a monoclinic crystal measurements of the change in 
d-spacing of several hO/ reflexions will usually have to be made in order to establish 
the orientation of the two principal axes in the (010) plane and the magnitude of the 

corresponding principal coefficients (Fig 11.11); in such a case the rotation of the 
normal to the (h0/) planes is ignored and « is taken to refer to the initial direction of 
the normal, an approximation which usually introduces a quite insignificant degree 
of error. 

Coefficients of volume expansion for single crystals 

Suppose that a cube of side / is cut out of a single crystal so that its edges are parallel 
to the principal axes of the representation quadric for thermal expansion. If the cube 
is heated through 1 °C it will deform to a parallelepiped with edges of length /(1 +«,), 
I(1+«ay), (1+ ,). The increase in volume will be 

5V =P -+a,y)(1 +oy)(1 +0,)—P 
= V(ay + Oy +07) 

if second and higher powers of the thermal expansion coefficients are deemed to be 
negligible. The coefficient of volume expansion a, = 6V/V is thus equal to the sum of 
the three principal coefficients of linear expansion, 

a, — Ay + Ay + Xz. 
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A polycrystalline body composed of an aggregate of crystals of the same substance 

would have the same volume coefficient of thermal expansion «,. 

Representation surfaces for thermal expansion : ' 

The directional dependence of linear coefficients of thermal expansion can be 

displayed by means of the representation quadric, but two other modes of display are 

occasionally used. In one the manner in which a sphere deforms is shown and the 

other consists simply of a figure whose radius in any direction represents the 

magnitude of « in that direction. These two modes: of display are illustrated in 

Fig 11.12 for calcite, the trigonal form of CaCO ; because of the trigonal symmetry 

of the crystal w is cylindrically symmetrical about the z-axis so that a two-dimensional 

section containing the z-axis is all that is required in each case. It is however more 

conventional to plot the representation quadric «yX?+ayY7+a,Z7* =1, the radius 
vector of which in any direction represents « *. When a, %y, %z are all positive the 

quadric is an ellipsoid (Fig 11.11). When one or two of the principal coefficients are 
negative the quadric is an hyperboloid of one or two sheets; this is exemplified by 

calcite (Fig 11.12) which has ay, ay negative, xz positive so that its representation 
quadric is an hyperboloid of two sheets, the radius vector being imaginary in all 
directions for which a, is negative. In order to display the variation of «), with direction 
in such a case the real parts of two hyperboloids are drawn: ayX?+ayY*+azZ7 = 1 
is drawn out for directions in which a is positive and ayX*+ayY*+a,Z* = —1 for 
directions in which a is negative, the positive and negative parts of the composite 

figure being clearly labelled. 
When the representation quadricis an hyperboloid there will be a cone of directions 

asymptotic to the hyperboloid; all such directions have a) + = oo and are thus 
directions of zero thermal expansion. In the case of calcite for example the semi-angle 
0 of the cone, which is the angle between the surface of the cone and the [0001 | axis, 
can simply be calculated from the expression 

a = Pay+may+n7az 

by setting «, = 0 and noting that xy = ay to give 

0 = (1—n?)ay+n7a,z 

i.e. 0 = ay sin? 6+«, cos? 0 

—o 
and so tan = [—22, 

ay 

Although we have devoted particular attention in considering representation surfaces 
for thermal expansion to the case of a substance with two principal coefficients 
negative because it exemplifies some points of interest, it must be emphasized that 
for the majority of crystals all three principal coefficients are positive and the 
representation quadric is an ellipsoid. 

Relationship of thermal expansion coefficients to crystal structure 

The relationship of linear thermal expansion coefficients to the differential strength 
of bonds in zinc and in arsenic, antimony and bismuth was commented on in chapter 
10. In general it would seem reasonable to expect that directions in which bonds are 
relatively strong should have relatively small coefficients of linear expansion and that 
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(a) (b) 

(Cc) 

Fig 11.12 Thermal expansion of calcite, which has a, =a), = —5:3x 10~® (°C) ~" and 
&7 = 23-6 x 10-6 (°C)~'. (a) shows the deformation of a sphere drawn in a calcite crystal, the 
diagram is exaggerated about 200 times for a 100°C temperature increase. (b) is a plot of a, with 
the positive and negative loops of the figure marked. (c) is the representation quadric; the 
hyperboloid ayX2+ayY2+a7Z? =1 (labelled +) cuts the Z axis (the triad) and the hyperboloid 
AyX2+ay¥2+a7Z2 = —1 (labelled —) cuts the Y axis. In (b) and (c) the directions of zero 
expansion are shown as dash-dot lines. All three diagrams are sections in the Z—Y plane; the 
figures shown are cylindrically symmetrical about the Z axis. 

weak bond directions should have larger expansion coefficients. Moreover one might 

expect linear expansion coefficients to vary with temperature in much the same way 
as interatomic distances vary with temperature, that is to say to show the steadily 
increasing increase with temperature of the median line of the potential energy curve 
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high quartz low— quartz 

Fig 11.13 The crystal structures of the high-temperature and low-temperature forms of quartz 
SiO... Si atoms are shown as solid circles with their z coordinates adjacent; oxygen atoms are 
shown as open circles without coordinates; and the projection of each SiO, tetrahedron is shaded. 
The tilting relative to the z axis of SiO, tetrahedra when SiO, passes through the high-quartz > 
low-quartz transformation at 573°C is apparent. The lower diagrams are stereograms showing the 
orientation of Si—O bonds in the tetrahedron whose Si atom lies at 0, u, 2 (where u=% in 
high-quartz) ; the symmetry elements of the space group which pass through the silicon atom of 
this tetrahedron are shown on the stereograms. 

shown, for the simplest possible case, in Fig 11.8. However such a simple interpretation 
neglects the possibility of changes in the relative orientation of structural ‘building 
blocks’ such as coordination polyhedra. By way of example we may consider the 

temperature variation of the principal coefficients of linear thermal expansion of 
quartz (SiO,) immediately below its polymorphic transformation at 573°C. The 
structures of the low- and high-temperature forms of quartz are shown in plan in 
Fig 11.13. In high-quartz (point group 622) the SiO, tetrahedra are centred on three 
mutually perpendicular diads so that their position is rigidly fixed by the space group 
and all four Si—O bonds in any tetrahedron are required by symmetry to be equal in 
length although the bond angles O—Si—O need not all be equal. In low-quartz (point 
group 32) however only one diad (|| x, y, or u) passes through the centre of each SiO, 
tetrahedron, two pairs of distinct Si—O bond lengths are permitted in each tetra- 
hedron and each tetrahedron may be tilted about its diad axis. Careful structural 
studies have shown that below the transformation temperature the angle of tilt of each 
SiO, tetrahedron with respect to the [0001] axis increases from 0° at 573°C to 8-5° at 
570°C, 11:3° at 450°C, and 15-6° at room temperature. The essential reasonableness 
of this conclusion can very easily be shown by calculating the angle of tilt of the 
tetrahedra from the measured unit-cell dimensions at various temperatures. Figure 
11.14 shows the results of such calculations based on the assumptions that the 
tetrahedra remain regular below 573°C with the same Si—O bond length as in high- 
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tC 
Fig 11.14 Thermal expansion of quartz. The lower diagram shows the percentage expansion of 
unit length at 20°C parallel and perpendicular to the triad of low-quartz, which becomes the hexad 
of high-quartz. The upper diagram shows the angle of tilt, @, of SiO, tetrahedra at various 
temperatures; @ has the same magnitude for all tetrahedra in the unit-cell and is defined for any 
tetrahedron as the angle between the diad of the tetrahedron parallel to [001] in high-quartz and 
the corresponding direction in low-quartz. The broken and dash-dot curves represent respectively the 
values of @ calculated from thermal expansion data ||a and ||c in the approximate manner described 
in the text. 
Sources: thermal expansion data of Kozen and Takane quoted by Skinner in Clark (1966) and 
tilt angles of Young quoted by Megaw (1971). 

I 
0 200 

quartz right down to 20°C. The agreement between the angles of tilt derived from 

structure determinations and those calculated on this simple hypothesis is good 

enough to provide convincing evidence of the general correctness of the proposition 
that tilting of SiO, tetrahedra in a regularly progressive manner is the principal factor 

determining the temperature dependence of the thermal expansion of low-quartz. That 
the agreement is not perfect is scarcely surprising: it is known that as temperature 

falls from 573 °C towards room temperature the SiO, tetrahedra of low-quartz distort 
from regularity of shape and the Si—O bond lengths decrease in magnitude. The 
accurate structure refinement of low-quartz by Smith and Alexander (1963) has shown 
that at room temperature the two Si—O bond lengths of each tetrahedron are 
1-597+0-003 A and 1-617+0-003 A. 

Tensor properties: some generalities 

Crystal physics is often regarded as a backwater of crystallography. The occasions 
when a detailed knowledge of the relationship between a resultant and an applied 
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vector in an anisotropic crystal is of more than intrinsic interest are few indeed. 
Usually all that the chemist, mineralogist, or physicist needs to know is that a 
particular physical property varies with direction and that its variation is symmetry 
controlled. For instance knowledge of the thermal expansion coefficients parallel and 
perpendicular to the atomic layers in arsenic is sufficient to demonstrate the 
correlation between thermal expansion coefficients and the differing nature of the 
intra- and inter-layer bonds. The ‘forewarning’ of a phase transformation provided by 
the rapid increase of thermal expansion coefficients with temperature as the 
transformation temperature is approached can be adequately studied by measurement 
of the three principal linear coefficients or indeed even by measurement of the volume 
coefficient. We have earlier remarked on the almost exclusive use of volume 
coefficients of thermal expansion in thermodynamics. In short the full three- 
dimensional treatment of the physical properties of anisotropic crystals, which is the 
objective of classical crystal physics, has little or no interaction with other branches 
of crystallography. In this respect diffusion is an exceptional property: full 
three-dimensional study of the direction dependence of diffusion coefficients can be 
useful in the interpretation of certain solid-state processes such as exsolution. 
Moreover diffusion coefficients for polycrystalline materials may not correlate very 
well with comparable data for single crystals because in the polycrystalline specimen 
diffusion along grain boundaries tends to be substantially faster than through the 
structure; the metallurgist and the metamorphic petrologist will generally be more 
interested in diffusion coefficients for polycrystalline materials while the mineralogist 
will find single crystal data more useful. 

Both the physical properties that we have considered in detail can be represented 
by second rank tensors, but there are many familiar anisotropic properties which 
cannot be so represented. For instance cleavage and rate of crystal growth are not 
tensor properties at all, while refractive index, although not itself a tensor property, 
is related to dielectric susceptibility which is a second rank tensor property. In the next 
chapter we shall develop this relationship and go on to give a fairly full account of 
the optical properties of anisotropic crystals; for the mineralogist optical properties 
are by far the most interesting and instructive of the physical properties of crystals. 

The formal definition of tensors lies outside our scope, but it is appropriate at this 
point to make some simple general statements about tensors. Tensors of the zeroth, 

first, second, third, and fourth ranks may be involved in the formal description of 
physical properties. A zeroth rank tensor, or scalar, has magnitude but no direction; 
properties such as density and heat capacity are scalars. A first rank tensor, or vector, 
has both magnitude and direction; pyro-electricity is an example of a vector 
crystal property. A second rank tensor is a property that relates two vectors; 
diffusion, thermal expansion, thermal conductivity, electrical conductivity, dielectric 
susceptibility and magnetic susceptibility are familiar examples. Stress imposed on a 
crystal and the resultant strain are likewise second rank tensors, mechanical strain 
being analogous to thermal expansion which can be regarded as the strain induced in 
the crystal by a temperature change. A third rank tensor relates a vector and a second 
rank tensor; the best known third rank tensor property of crystals is piezoelectricity. 
A fourth rank tensor relates two second rank tensors, the most important being that 
which relates strain to stress. For polycrystalline solids the induced strain ¢ is related 
to the applied tensile stress ¢ by Hooke’s Law, ¢ = so, where s is a constant known 
as the elastic modulus. But for an anisotropic crystal the relationship between ¢ and 
a is more elaborate, requiring a fourth rank tensor, a 9 x 9 matrix, with as many as 
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36 independent constants, for its complete description. 
Not only does crystal physics yield results that, as we have already said, are in 

detail of little interest in other fields of solid-state study, but the subject has, in its 
higher development, an abstruse mathematical formalism which sets it apart from 
other fields of solid-state study; moreover experimentation in this field presents 

exceptional difficulties. The sort of experiments described by Wooster and Breton 
(1970) require well developed and, usually, quite large single crystals; this requirement 
cannot be met for very many substances so that we remain ignorant of most of the 
physical properties in full three-dimensional detail of all but a few crystalline 
substances. The only anisotropic physical properties that are readily susceptible to 
detailed study over almost the whole range of the crystalline state are optical 
properties, which constitute the subject of the next chapter. 

Point group determination 

Although, as we have indicated in the preceding section of this chapter, the full 
three-dimensional study of the physical properties of single crystals is generally of no 
more than limited interest, there is one essential crystallographic task for which 
observations of anisotropic physical properties may be very useful. This task is the 
determination of the space group or the point group of a crystalline substance and 
in particular the establishment of whether the structure is centrosymmetric or 
non-centrosymmetric. We therefore conclude this chapter with an account of methods 
of point group determination. There is no generally applicable procedure; how one 
proceeds in any particular case will depend on what information is already available 
and on one’s objective, which may be a complete structure determination or the 
preliminary description of a newly discovered substance. 

If the substance is transparent and its crystals are not too small, optical examination 
(to be described in chapter 12) will quickly show whether it is isotropic and therefore 
to be assigned to the cubic system; or uniaxial and therefore belonging to the trigonal, 
tetragonal or hexagonal systems; or biaxial and therefore triclinic, monoclinic or 
orthorhombic. Observations of the orientation of optical properties with respect to the 
morphology of the crystals may enable one tentatively (but no more than that) to 
assign the substance to a particular crystal system, other than the cubic system where 
the assignment is unambiguous. The next step is, usually, to make a single crystal 
X-ray diffraction study of the substance in order to determine its Laue symmetry and 
then, by observation of systematic absences or moving film photographs, to determine 
its diffraction symbol. 

In general the restriction imposed by Friedel’s Law prevents this sort of study going 

beyond the determination of the diffraction symbol. It is not usually possible to 
determine whether the substance is centrosymmetric or non-centrosymmetric. Some 
diffraction symbols do however lead to a unique determination of space group and 
thus of point group. For instance a substance with the diffraction symbol mmmPbcn 
must be assigned to the point group mmm and to the space group Pbcn. But a substance 
whose diffraction symbol is determined as mmmP..cn may have point group mmm or 

2mm and space group Pmcn or P2,cn. In this second example the two possible space 
groups could be distinguished by determining whether or not the structure is 
centrosymmetric. If, in these circumstances, intensity data have been collected for a 
full structure analysis, then the-most convenient way of determining whether the 
substance is centrosymmetricis by application of the N(z) test, which we now describe 
in outline. Reflexions of similar Bragg angle are grouped together (for instance, the 
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range of sin 0 from 0:3 to 0-5 might constitute one group, 0-4 to 0°6 the next, and so 

on). The assumption is then made that each atom in the structure scatters the same 

amplitude of X-radiation into every reflexion of a particular group. If the assumption 

is valid, it can be shown that the probability that the intensity of a given reflexion 

lies between I and I + 6] isindependent of the actual atomic positions but is dependent 

on the symmetry of the structure. We now define N(z) as the percentage number of 

reflexions in a particular group with intensities less than or equal to zl, where z is a 

fraction and J is the mean intensity of the group. The relationship between N(z) and 

z has been calculated for centrosymmetric and non-centrosymmetric structures. 

Curves of N(z) plotted against z are shown in Fig 11.15 for the two cases; it is 

noticeable that the two curves follow markedly different courses especially for z 

between zero and 0-4. The N(z) test consists of plotting N(z) averaged over all the 

selected groups of reflexions against z for the measured intensities of the unknown 

structure and comparing the resultant plot with the standard centro- and non- 

centrosymmetric curves; good agreement with either standard curve yields a clear 

determination of whether or not the structure is centrosymmetric. 

In the course of a structure analysis it may be possible to detect at an early stage 

the presence or absence of other symmetry elements such as diads and mirror planes 

which, being non-translational, do not give rise to systematic absences; if this can be 
done space groups with the same diffraction symbol, such as P2/m, Pm, and P2, can 

be distinguished. The methods used however for making such distinctions lie outside 

our scope here. 
We turn now to a property of X-ray diffraction which may be applied to point 

group determination in favourable circumstances; this is the property known as 
anomalous scattering. The X-radiation scattered by an atom is normally z out of phase 
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Fig 11.15 The M/(z) test. The theoretical curves for the centrosymmetric case ;/V(z) = erf,/(4z) 
and for the non-centrosymmetric case ,V(z) = 1—exp (—z) are shown plotted against z. 
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relative to the incident beam. But if the incident X-rays are of a wavelength just short 
of the absorption edge of one of the constituent atomic species of the structure 
concerned, then the X-rays scattered by atoms of that element do not have a phase 
difference z and are said to be anomalously scattered; the phase of such diffracted 
X-rays is advanced so that their effective path difference is less than that for X-rays 
scattered normally. Such anomalous scattering leads to a breakdown of Friedel’s Law, 

as may be seen by considering the 111 and 111 reflexions of blende (ZnS). It was shown 
in chapter 6 that although the blende structure is non-centrosymmetric, its 111 and 

111 reflexions are of equal intensity (Fig 6.21). But when the incident X-radiation is 
AuL«a, which is scattered anomalously by Zn atoms, the diffraction pattern is modified 
in such a manner as though the Zn atoms were displaced from their actual positions 
so as to decrease the path travelled by the X-rays scattered by them. Thus for the 111 

reflexion the zinc atoms behave as though they were displaced from their actual 
positions by a small distance in the AB direction and for the 111 reflexion as though 
they were displaced by an equal distance in the opposite direction BA (Fig 11.16(a)). 
The phase amplitude diagrams (Fig 11.16(b), (c)) indicate that the 111 reflexion is 
stronger than the 111 reflexion. Such a breakdown of Friedel’s Law may enable the 

[110] 
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Fig 11.16 Anomalous scattering of AuL«, radiation by Zn atoms in blende (ZnS). (a) shows a 
projection of the blende structure on (110) (cf. Fig 6.21); solid circles Zn, open circles S; the trace 
of the plane labelled (111) refers to the second plane out from the origin. (b) and (c) are 
respectively phase amplitude diagrams for the 111 and 111 reflexions; in each case the f,, vector 
makes an angle of 103° with the real axis. 
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point group of a substance to be determined. For instance the Laue group of blende 

is m3m, which embraces the crystal classes 432, 43m, and m3m; the only one of the three 

classes in which (111) and (111) are not symmetry related is 43m. The observation of 

unequal 111 and I11 intensities with X-radiation of suitable wavelength thus 

determines the point group of blende as 43m. Since such intensity differences are likely 

to be very small, it would be unwise to rely on the observation of the intensities of 

only one pair of reflexions for point group determination. The observation of several 
such inequalities is necessary for unambiguous point group determination; for 

instance in Laue group m3m the observation of systematic inequality in pairs of hkl 
and hik reflexions leads unambiguously to the determination of the point group of the 
substance as 43m. The success of this approach depends in the first place on the 

availability of X-radiation of the appropriate wavelength and secondly on the 
observation of intensity differences which can clearly be attributed to the breakdown 
of Friedel’s Law and cannot be due to some other cause such as the differential 
absorption of X-rays by a crystal of irregular shape. 

The quantitative, or even qualitative, study of the anisotropy of certain physical 
properties may be utilized for point group determination. Although it is usually more 
convenient to make use of X-ray methods for point group determination (such as the 
N(z) test or anomalous scattering, because the raw data are likely to be available 
anyway), we give now a brief account of the ways in which studies of physical 
properties may be used for this purpose primarily to illustrate the symmetry control 
of anisotropic physical properties. 

The first such property we consider is piezoelectricity. A crystal is said to be 
piezoelectric if it develops a dipole when subjected to an applied stress or, conversely, 
if it changes its shape when placed in an electric field. At equilibrium the applied 
stress will be centrosymmetric so that if the crystal is to develop charges of opposite 
sign at opposite ends of a line through its centre, it cannot have a centre of symmetry. 
Detailed analysis of the symmetry relations of the piezoelectric effect have shown that 
substanees of all non-centrosymmetric crystal classes other than 432 may display 
piezoelectricity. Thus if a substance is shown to be piezoelectric, it must have a 
non-centrosymmetric point group. But the converse is not true because the magnitude 
of the piezoelectric effect may be below the limit of detection; failure to observe 
piezoelectricity in the crystal under examination does not necessarily imply that it 
belongs to one of the twelve point groups (the eleven centrosymmetric point groups 
and 432) which cannot display piezoelectricity. 

The physical properties known as pyroelectricity (the development of an electric 
dipole when an unstressed crystal is uniformly heated or cooled) and ferroelectricity 
(the presence of a spontaneous electric dipole in a crystal) as well as piezoelectricity 
developed under hydrostatic pressure* are only observed when the symmetry of the 
crystal allows a resultant vector to occur. For instance in point group 2 the vector 
Ua+Vb+ Weis related by the diad to the vector —Ua+Vb—We; the resultant of 
this pair of symmetry related vectors is 2Vb. Thus the symmetry of point group 2 
allows a resultant vector along y and therefore y is said to be a unique direction in 
crystals of class 2. Clearly then a unique direction is simply a direction which is not 
repeated by the symmetry of the point group. Inspection of the chart of the 32 point 
groups (Fig 3.20) shows immediately that the rotation axes in the point groups 2, 

3 Piezoelectricity may be developed by hydrostatic, compressive, or torsional stress systems. We are 
concerned here only with piezoelectricity developed under hydrostatic stress, which imposes the most 
stringent symmetry constraints of the three types of stress system. 
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2mm, 3, 3m, 4, 4mm, 6, and 6mm are unique directions, that all directions in point 

group | are unique, and that all directions parallel to the mirror plane in point group 
mare unique. Therefore if a crystal is found to be piezoelectric under hydrostatic stress 
or ferroelectric it must belong to one of these ten crystal classes which contain one or 
more unique directions and are known as the polar classes.* If piezoelectricity under 
hydrostatic stress or ferroelectricity is not observed in a crystal it is unsafe to conclude 
that the substance cannot belong to one of the ten polar classes; failure to observe 
either property may merely be due to its being too weak to be detected. 

If a change in the temperature of a crystal causes an electric dipole to develop, 
the crystal is pyroelectric and in consequence must belong to one of the ten polar 
classes. But in practice it is difficult to be sure that the observed dipole moment is due 
to the pyroelectric effect rather than to a piezoelectric effect induced by the strains set 

up due to temperature gradients in the crystal during heating or cooling. For instance 
quartz, which belongs to class 32 and may therefore exhibit piezoelectricity under 
non-hydrostatic stress, commonly exhibits such ‘false’ pyroelectricity. In general it is 
wise to interpret the observation of pyroelectricity as indicating that the crystal 
belongs to one of the twenty crystal classes in which piezoelectricity may be 
observable, but does not necessarily belong to one of the ten polar classes in which 

true pyroelectricity may be observable. 
Another physical property which is dependent on point group symmetry is optical 

activity.° A crystal is optically active if it rotates the plane of polarization of a beam 
of plane polarized light passing in certain directions through the crystal. For example 
crystals of quartz, class 32, are observed to rotate the plane of polarization in a 
clockwise sense in some crystals and anticlockwise in others. It can be shown that 
optical activity is restricted to crystals of those classes which contain no inversion axis 

of symmetry (including the mirror plane). These eleven enantiomorphous classes are 
listed in Table 11.2. In addition it can be shown that crystals of the classes m, mm, 4, 

and 42m may theoretically exhibit optical activity. However most crystals that are 
theoretically capable of exhibiting optical activity do not do so to any marked extent 

and moreover the observation of the property is difficult except for light travelling 

parallel to the principal axes of uniaxial crystals. Optical activity is thus not a property 
which can be utilized generally for point group determination. 

The experimental methods of determination of the properties we have been 

Table 11.2 
Various groupings of non-centrosymmetric point groups 

Crystal Piezoelectric Polar Enantiomorphous Optically 
System classes classes classes active classes 

Triclinic 1 1 1 1 
Monoclinic 2,m 2,m 2 2,m 

Orthorhombic 222, mm2 mm2 222 222, mm2 
Trigonal 3, 3m, 32 3, 3m 3, 32 3, 32 
Tetragonal 4, 4, 422, 4mm, 42m 4, 4mm 4, 422 4, 4, 422, 42m 
Hexagonal 6, 6, 622, 6mm, 6m2 6, 6mm 6, 622 6, 622 
Cubic 23, 43m — 23, 432 23, 432 

* The nomenclature is potentially confusing. Polar directions are directions whose opposite ends are not 
related by symmetry. Any non-centrosymmetric crystal has polar directions, but one polar direction may 
be related to other polar directions by symmetry. Thus while all unique directions are necessarily polar, 
polar directions are not necessarily unique. 

>This property is discussed in chapter 12. 
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concerned with in preceding paragraphs are thoroughly discussed by Wooster and 

Breton (1970). 

We conclude this brief survey of point group determination with some comments 

on the relevance of observations of crystal morphology. Before the advent of X-ray 

diffraction, morphological studies provided the principal means of point group 

determination, but such studies have for long been only of pedagogical and historical 

interest. Morphological studies are of course applicable only to substances which form 

well developed crystals. A well developed crystal of the substance under consideration 

is measured goniometrically and its faces are plotted on a stereogram. The stereogram 

is examined and the classes with which it is consistent are recorded. Other crystals of 

different habit, if available, are measured and the new faces added to the stereogram 

until as many faces as can be observed in crystals of the substance have been 

measured and plotted. In nineteen of the thirty-two crystal classes the general form 
is characteristic of the class; but in the remaining thirteen classes the general form is 
a special form® in one or more other classes so that, in these classes, the observation 

of one general form is insufficient to determine the point group symmetry. For example 
in the trigonal system the general form of class 32 is unique to that class; but the 
general form of class 3, a rhombohedron, is a special form in classes 32 and 3m so that 

before a substance could be confidently assigned to class 3 crystals exhibiting other 
forms would have to be examined. Another commonly encountered difficulty is that 

the special forms of some point groups have higher symmetry than the point group: 
for instance the cube and the rhombic dodecahedron, which have symmetry m3m, 

are special forms in all the cubic point groups. Another potential source of error is 
that in non-holosymmetric point groups two forms of the same type may be developed 

so as to look as though they are a single form of higher symmetry. For example in 

classes 23 and 43mif the tetrahedra {111} and {111} are both present, they may present 
the appearance of an octahedron {111} which is a special form in all the other cubic 

classes. Another potential source of error arises from the possibility that crystals may 

be twinned in such a manner that the twinning is not readily discernible by 

morphological examination; such crystals will appear to be of higher symmetry than 
their true point group symmetry. With so many chances of going inadvertently wrong 
it is fair to say that it is quite remarkable that the early crystallographers succeeded 

in assigning so many substances to their correct point group. 
The valuable, but all too often indecisive, information about the probable point 

group of a substance derived from morphological observations can in some cases be 
supplemented—and may then become decisive—by the study of etch figures. Etch 
figures are produced on the natural faces of a crystal by the brief application of an 
appropriate solvent. In the early stages of the interaction between the solvent and the 
crystal small pits appear randomly disposed on the crystal faces. Under correct 
experimental conditions—and it may require some experimental trial and error to 

°In this morphological context we define a special form as a form which bears some specialized 
relationship to the symmetry elements of the crystal class. The relationship may be that the normals to 
the faces of the form are parallel or perpendicular to a symmetry element (either an axis or a plane) or 
equally inclined to two symmetry axes. Special forms, defined in this way, are readily distinguishable by 
their appearance from the general form of the same crystal class. For example in class 4 the general form 
{hkl} is a tetragonal sphenoid (that is a sort of tetrahedron elongated or shortened in the direction through 
the mid-points of one pair of opposite edges) while the special forms {hkO} are tetragonal prisms. Likewise 
in class 23 the general form {hkl} looks quite different from the special form {110} although both have 
twelve faces; the former is a tetrahedral pentagonal dodecahedron and the latter is the familiar rhombic 
dodecahedron. In terms of the different definition of special form used in chapter 3 {hkO} in class 4 and 
{110} in class 23 would be general forms. 
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achieve this—the etch pits have demonstrably plane faces indicative of symmetry 
control of rate of solution. The shape and orientation of the etch pits on a particular 

crystal face corresponds to the projection of the point group symmetry of the crystal 
structure on the plane of the face concerned and so must conform to one of the ten 

two-dimensional point groups. Caution must however be exercised in the 
interpretation of etch figures (that is, the shape and orientation of etch pits) because 
the rate of solution in directions that are not symmetry related may be fortuitously 
similar so that etch figures of apparently higher symmetry than is consistent with the 

point group symmetry of the crystal may be observed. It is therefore safe only to derive 
from the study of etch figures a statement of the maximum possible point group 
symmetry of the crystal. A thorough account of the utilization of etch figure studies 

in point group determination is given in Buerger (1956). 



386 

Nets 
Crystal optics 

The interaction of light with crystalline matter has for long been a subject of fruitful 
study and itis appropriate that a substantial chapter in this book should be devoted 
to this topic. The microscopic study of crystal morphology is as old as microscopy 
itself, but it was not until the incorporation of polarizing devices into the, by then 
highly developed, compound microscope in the mid-nineteenth century that the study 
of crystal optics really began. By 1863 Zirkel had shown the polarizing microscope 
to be an invaluable tool for the characterization of minerals and for the elucidation 
of their mutual relations in rocks. It maintained its position as the principal instrument 
of the mineralogist and of the petrologist for many decades; and it proved particularly 
useful in certain branches of organic chemistry. Although now superseded in many 
of its functions by other physical instruments, it remains the most useful 
reconnaissance instrument for the study of transparent substances. A by no means 
insignificant feature of polarized light microscopy is the large amount of information 
that can be obtained in a short time; some of this information will be unambiguous, 
some will do no more than serve to suggest the need for further crystallographic or 
chemical investigation. 

The study of opaque crystals in reflected polarized light has developed rapidly in 
recent years and may soon be expected to reach a level of sophistication that will make 
polarized light microscopy a powerful reconnaissance technique for all crystalline 
matter, whether opaque or transparent. 

The nature of light 
Light is electromagnetic radiation in the wavelength range 3800 A (extreme violet) to 
7800 A (deep red). The theory of electromagnetic radiation was formulated by James 
Clerk Maxwell in 1864. The rigorous mathematical treatment of its application to 
light radiation is to be found in modern terminology in many standard textbooks of 
optics.’ It suffices here merely to state certain of the conclusions that can be drawn 
from the theory. The first of these is that light is a transverse wave motion. Light 
passing through a vacuum or a material medium can be regarded as a periodic 
variation of the light vector in the plane perpendicular to the direction of propagation 

’ Preston (1928), Jenkins and White (1957), Ditchburn (1963), Longhurst (1957), Born and Wolf (1964), 
Lipson and Lipson (1969). 
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cla 

(b) 

Fig 12.1 The transverse wave nature of light. In the stereogram (a) a direction g and the great 
circle of which it is the pole are shown; when gq is the direction of propagation of light the light 
vector vibrates in directions parallel to the plane of the great circle. (b) shows the simple harmonic 
variation of the light vector y =A sin wt for a monochromatic wave. 

of the wave motion (Fig 12.1). A ray of monochromatic light, that is light of a fixed 

and infinitesimally thin wavelength band, is accurately represented by simple 
harmonic variation of the light vector, y = A sin wt, where y is the light vector, A the 
amplitude, w the frequency, and t represents time. 

The electromagnetic theory indicates that light has dual electric and magnetic 
properties represented by the complementary electric and magnetic vectors E and H. 
It is the electric vector that produces the photochemical reaction in a photographic 
emulsion and affects the retina of the eye; the electric vector E is therefore described 

loosely as the light vector, designated y. 
The light emitted by an atom in a source such as a sodium lamp cannot however 

strictly be represented by a sine wave stretching from — oo to + 00 because that would 
imply that the atom was radiating continuously and that cannot be so. Such a source 
contains very many atoms, each of which emits a succession of wave trains of finite 
length as electrons fall from excited states to the ground state; a large number, 
of the order of 10°, of wave trains are emitted per second. The phase relationship 
between different wave trains is essentially random so that the beam of light emitted 
from the whole source consists of a large number of wave trains of finite length and 
random phase, each with its light vector vibrating in some direction in the plane 
normal to the direction of propagation. Such a beam is said to be unpolarized and 
incoherent; unpolarized because all directions of vibration are possible, and 
incoherent because the phase relationships between waves with different vibration 
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directions are changing all the time. Such a beam of light will show no interference 

effects unless each wave train is divided and each portion superposed after traversing 

slightly different optical paths; observable interference effects are obtained only when 

the two portions of the light wave are such’that the,two components of each wave 

train bear a constant phase relationship to each other. Any beam of light can be 

resolved into two components vibrating in mutually perpendicular directions. The 

two components do not have a constant phase relationship to each other and are 

therefore incoherent. If the two components are separated, made to traverse optically 

different paths, and then recombined, no interference effects will be observable. 

Unpolarized light can only provide information about the average optical 

properties of an anisotropic medium in the plane perpendicular to the direction of 

propagation of the light. If however a beam of plane polarized light, that is a beam 

in which the light vector is fixed in direction, is split into two components, then each 

component will have the same phase. If the two components are then made to traverse 

different optical paths, the phase relationship between the two components will be 

constant for every wave train. Interference between the two components is then 

possible. Plane polarized light thus enables the anisotropic nature of the optical 

properties of crystals to be investigated. Since a constant phase difference is necessary 

for observable interference, such light waves can be represented as infinite sine waves.? 

The interaction of light with matter: refractive index 

Electromagnetic radiation travels in vacuo with constant velocity 

c = 299-773 + 0-010 x 108 cms! 

irrespective of frequency. In material media electromagnetic radiation travels with a 

slower velocity v = c/n, where the frequency dependent constant n is the refractive 
index. Refractive index may be regarded as a measure of the retardation of light by 
the medium. For gases n is only just greater than unity, for liquids and solids n lies 

in the range 1:3 to 2:1. 

A beam of plane polarized light has its electric vector vibrating in a particular 
direction in the medium it is traversing and it will travel with a velocity given by 
the ratio of the velocity of light in vacuo to the refractive index of the medium for 

vibrations in that direction. 
Gases, liquids, and glasses have no directional structure and therefore their 

refractive indices for any particular frequency of electromagnetic radiation will be 
independent of vibration direction. Such media are said to be optically isotropic. For 
crystalline substances on the other hand refractive index will in general vary with 
vibration direction for any given frequency: such media are said to be optically 
anisotropic. 

The indicatrix 

Electromagnetic wave theory leads to the conclusion that the dielectric properties of 
an isotropic medium for frequencies in the optical range are given by 

D ene Ko KE, 

where D is the electric flux density produced by the electric field strength, or ‘light 
vector’ E, K is the dielectric constant of the medium, and kg is the permittivity of a 

? A more rigorous discussion can be found in any of the textbooks listed in footnote 1. 
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vacuum. It follows from Maxwell’s equations that the velocity v of propagation of light 
waves through the medium can be expressed as 

c 

JK’ 
where c is the velocity of light in vacuo. We have already detined the refractive index 

n of an isotropic medium as n = c/v, so that we now have 

n= x] K. 

For the propagation of light through an anisotropic medium the component D, of 
the electric flux density D is related to the component E, of the electric field strength 
E by the equation 

dD, — Ko Ky). 

CS 

The dielectricity ofan anisotropic crystal is thus, like diffusion and thermal expansion 
which we discussed in chapter 11, a symmetrical second rank tensor property. The 
dielectric properties of a crystal are characterized by the magnitudes and directions 
of the three principal dielectric constants Ky, Ky, Kz. The representation quadric for 
the tensor is the ellipsoid 

which has semi-axes of magnitude Ky *, Ky *, Kz? in the directions of the principal 
axes X, Y, Z respectively. 

It can be shown by application of Maxwell’s equations to the dielectric constant 
tensor that in general two waves, each plane polarized, may be propagated through 

an anisotropic crystal with a given wave normal.’ The velocity v of each of the two 
waves will in general be different so that there will be two values of refractive index 
=c/v for every wave normal. The refractive indices of the two waves can 

conveniently be displayed as functions of the direction of their common wave normal 
by drawing the ellipsoid 

ee fe 
=a ee hee i 

Pid Myaallz, 

where X, Y, Z are the principal axes of the dielectric constant tensor. The semi-axes 

of the ellipsoid, ny, ny, nz are respectively equal to ./Ky, ,/Ky, ,/Kz. This ellipsoid 
is known as the indicatrix, occasionally as the Fletcher indicatrix. We can rewrite the 

equation to the indicatrix as 

ByX?+ByY?2+B,Z7 = 1, 

where By = 1/nz = Kx‘ and similarly By = Ky‘, Bz = Kz '. By, By, Bz are the three 
principal relative dielectric impermeabilities of the medium and the indicatrix is the 
representation quadric for this property. 

We consider now the propagation of light in any general direction OP in terms of 

the indicatrix (Fig 12.2). The two wave motions with the common wave normal OP 
will then have vibrations parallel to the plane perpendicular to OP through the centre 
O of the indicatrix. This plane will intersect the indicatrix in an ellipse with semi-axes 
OA and OB. It can be shown from Maxwell’s equations (Appendix H of Nye, 1960) 

3For a proof of this important result the reader is referred to Appendix H of Nye (1960). 
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Fig 12.2 The indicatrix is shown in perspective as a 
drawing of its principal planes. The two wave motions 
which have the general direction OP as their common 
wave normal have their vibration directions respectively 
parallel to OA and,OB, which are the semi-minor and 
semi-major axes of the shaded elliptical central section 
of the indicatrix normal to OP. 

that the refractive indices of the two wave motions are given by OA and OB and 
further that the vibration direction of the wave motion with refractive index OA is 
parallel to OA and likewise the vibration direction of the wave motion with refractive 
index OB is parallel to OB. In the special case where the wave normal is parallel to 
X the two possible waves have refractive indices ny and n;; similarly when the wave 
normal is parallel to Y the refractive indices are nz and ny, and when it is parallel to 
Z,ny and ny. For this reason it is appropriate to describe the semi-axes of the indicatrix 
Ny, Ny, Nz as the principal refractive indices. It should be stressed that refractive index 
is not a tensor property although, as we have seen, the indicatrix is the representation 
quadric for another dielectric property. 

In order to be consistent with our practice in chapter 11 we have used a rather 
cumbersome nomenclature. We now rewrite the equation to the indicatrix as 

2 2 2 
x y z 
ae, ala i Le 

where «, 8, y are the principal refractive indices and x, y, z are the principal axes of 
the indicatrix. We add the condition « < B < y (the reader will recall that we did not 
apply such a condition when considering representation quadrics in chapter 11), in 
consequence of which we can describe y as the semi-major axis, « as the semi-minor 
axis, and f as the third mean line of the indicatrix (Fig 12.3). In crystal optics it is 
common, loosely, to use the same symbols, «, B, y, to represent the directions of the 
principal semi-axes (strictly x, y, z) as to represent their magnitudes, the principal 
refractive indices. 

In general a central plane section of the indicatrix will be an ellipse whose semi-axes 
are restricted only by the condition that they must both be > « and < y. But there 
will always be two central sections that are circular as can readily be seen (Fig 12.3) 
if it is borne in mind that there must be a radius of length f in the wy plane which is 
perpendicular to the semi-axis B; and further two such radii will be symmetrically 
disposed about the semi-major (or semi-minor) axis. The normal to each such circular 
section is known as an optic axis. Both optic axes will lie in the ay plane which is 
thence known as the optic axial plane (abbreviation: OAP). The angle between the 
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(a) (b) 

Fig 12.3 (a) is a three-dimensional drawing of the indicatrix to explain the axial nomenclature. 
(b) is the central section of the indicatrix in the xy plane, the optic axial plane, with the optic 
axes A,, A, shown as bold lines; perpendicular to each optic axis is a dashed line representing the 
trace of a circular section, of radius B, on this section of the indicatrix. The indicatrix shown is 
optically positive so that y is the acute bisectrix (Bx,) and a is the obtuse bisectrix (Bx,) ; 
2V,< 90°. 

optic axes is known as the optic axial angle, denoted by 2V. Either a or y may in 
different substances be the acute bisectrix (denoted Bx,) of the optic axial angle, the 
other being the obtuse bisectrix (denoted Bx,). The optic axial angle measured over the 
y direction is designated 2V, and correspondingly when measured over the semi-minor 

axis of the indicatrix as 2V,. If 2V, is acute the substance is said to be optically positive; 
if on the other hand 2V, is acute the substance is optically negative. In optically positive 

crystals the acute bisectrix is y, while in optically negative crystals Bx, = a. 
In developing the indicatrix we made use of, but did not prove, the following 

consequence of Maxwell’s equations: light travelling in any general direction through 
an anisotropic substance has vibration directions parallel to the major and minor axes 

of the elliptical central section of the indicatrix perpendicular to the direction of 
propagation of the light wave motion and the refractive indices of the two waves are 

given by the lengths of the two semi-axes of the ellipse.* It is this property which 

makes the indicatrix so powerful a tool in the field of polarized light microscopy. 

Biot—Fresnel construction 
This extremely useful stereographic construction is based on a property of the 
indicatrix: that in an anisotropic medium light vibrates in the directions of the major 
and minor axes of the elliptical central section of the indicatrix perpendicular to the 
direction of propagation of the light. The construction consists of three steps and is 
illustrated in Fig 12.4(a). 

*Except that when the direction of propagation is an optic axis the vibrations are not constrained to 
lie in two particular perpendicular planes; light travelling in such a direction has a single refractive index 
of magnitude f. 
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(c) 
Fig 12.4 The Biot—Fresnel construction. The stereogram (a) shows the three steps in the 
construction for a direction of propagation q and optic axes A,, A; V and V’ are the internal and 
external bisectors of p,p,. The stereogram (b) illustrates the proof of the construction: r, and r, 
are respectively the intersections of the great circle of pole q with the great circles representing 
the circular sections of the indicatrix, whose poles are A, and A,. The plan (c) of the elliptical 
central section of the indicatrix perpendicular to the direction of propagation q illustrates the point 
that the intersection of the circular sections with this plane have radius B and are equally inclined 
to the principal axes of the ellipse. 

(1) Construct the great circle whose pole is q, the direction of propagation of light. 
Vibrations will lie in two mutually perpendicular directions in this plane. 

(2) Plot on the stereogram the directions A, and A, of the optic axes and construct 
the great circles through qA, and qA). Let these great circles intersect the great circle 
whose pole is q in p, and p, respectively. 
(3) Construct the internal and external bisectors of p,p, and label them V and V’ 
respectively. The required vibration directions are then V and V’. 

A simple proof of this construction is due to Wooster (1949). Suppose the circular 
section of the indicatrix whose normal is A, intersects the plane whose normal is q 
in the direction represented by the pole r, on the stereogram shown in Fig 12.4(b); 
and suppose that the other circular section, normal Aj, intersects the same plane in 
the direction represented by the pole r,. Then the elliptical central section of the 
indicatrix normal to the direction of propagation q will have radii equal to f in the 
directions represented by r, and r,. But equal radii of an ellipse must by symmetry 
be equally inclined to the principal axes of the ellipse, which are the vibration 
directions. Therefore r,V = Vr,. Now r, lies on the great circle whose pole is q and 
on the great circle (not shown on the figure) whose pole is A,. Therefore r, is the pole 
of the great circle qA,p, and consequently pr, = 90°. Similarly T2Pp, = 90°. Therefore 
Pi V = pity — Vr, =12p2—1r2V = Vp). The vibration directions are therefore given 
by the internal and external bisectors, V and V’, of the angle p,p). 
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Shape and orientation of the indicatrix in the seven crystal systems 

For a medium wholly devoid of symmetry the indicatrix 1s a triaxial ellipsoid, whose 
semi-axes are conventionally denoted «, f, and y such that y>f>a. Such a 

figure has holosymmetric orthorhombic symmetry mmm, one mirror plane being 
perpendicular to and one diad parallel to each semi-axis. If the medium has symmetry, 
asit usually does in the crystalline state, the shape of the indicatrix must be consistent 

with the point group symmetry of the medium. If the medium has symmetry lower 
than or equal to that of the indicatrix, that is if it belongs to the triclinic, monoclinic, 
or orthorhombic systems, the shape of the indicatrix will not be affected; its 

orthorhombic symmetry is then purely a property of electromagnetic radiation. If 
however the medium has higher symmetry, that is if it belongs to the trigonal, 
tetragonal, hexagonal, or cubic systems, the shape of the indicatrix will be modified. 
As we have seen in chapter 11 it is a general principle that the symmetry and 
orientation of a representation quadric is controlled by the point group symmetry 
of the crystal medium to which it refers: the indicatrix is peculiar in that it is the 
representation quadric of the rather uninteresting tensor property relative dielectric 
impermeability and the representation surface of the practically important non-tensor 
property refractive index, and further it is subject by convention to the restraint 
a < B < y which is not normally applied to representation quadrics. We shall pursue 
this point by discussing the symmetry controls on the shape and orientation of the 
indicatrix in each of the crystal systems; the reader should compare this with 

Table 11.1. 
In the triclinic system the indicatrix may be oriented with respect to the 

crystallographic reference axes in any manner. That the indicatrix has more symmetry 
than the triclinic crystal is a property of light, not of the crystal. However it is oriented 
the indicatrix always conforms to the maximum symmetry of the triclinic system, the 
presence of a centre of symmetry. 

The monoclinic system is characterized by a diad parallel to [010] or a mirror plane 
(010) or both. One of the principal axes of the indicatrix must therefore be parallel to 
the crystallographic y axis or, in other words, a, f, or y is parallel to [010]. It is 
convenient on practical grounds to distinguish between monoclinic substances in 
which the OAP is (010) (i.e. 6 || [010]) and those in which the OAP is 1 (010) (ve. 
a or y || [010]). The two cases are illustrated in Fig 12.5. 

(010) B (010)a 

(100) (a) (100) (b) 

Fig 12.5 The two types of orientation of the indicatrix in the monoclinic system illustrated 
stereographically: (a) shows the case in which (010) is the optic axial plane and f || [010], 
(b) shows the case in which the optic axial plane is perpendicular to (010) and @ or y (in the 
example shown a) is parallel to [010]. 
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In the orthorhombic system the symmetry axes, rotation or inversion diads, 
correspond to the symmetry axes of the indicatrix. The principal axes of the indicatrix, 
a, B, and y, are therefore parallel to the crystallographic axes, x, y, and z, but not 

necessarily in that order. , 
In the trigonal system symmetry control of the shape of the indicatrix takes effect. 

Let the (0001) central section of the indicatrix have semi-axes n, and nj. The equation 
to this elliptical section in polar coordinates will then be 

C0840. Mecsiti By 
», 

ny n3 
where r is the radius at an angle @ to n,, or in a more convenient form 
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In order to satisfy the trigonal symmetry of the medium, the ellipse must have equal 
radii every 120° and since the indicatrix is centrosymmetrical this implies that r = yw 
for 0 = o, 6+ 60°, and ¢—60° for all values of ¢. 

be LNG fa aN od 
Hence (4-3) sin? @ = (2-5) sin? (@ + 60°) = (4-3) sin? (p — 60°) 

It is easily seen that these equations are only satisfied when 1/n3—1/n? = 0, that is 
when n, = nz. The (0001) central section of the indicatrix is therefore a circular section 
and so likewise are all non-central (0001) sections of the indicatrix ; the indicatrix has 

degenerated from a triaxial ellipsoid to an ellipsoid of revolution about the 
crystallographic triad. In other words the two optic axes A, and A, have coalesced 
into a single optic axis A (Fig 12.6) parallel to the triad and two of the semi-axes 

= 

(a) (b) 
Fig 12.6 The uniaxial indicatrix as the limiting case of the biaxial indicatrix: (a) shows the 
circular sections (shaded) and the optic axes A,, A,, as bold lines in the biaxial indicatrix:; (b) 
shows the single circular section (shaded) and the single optic axis A of the uniaxial indicatrix. 
In the uniaxial indicatrix the principal semi-axis in the direction of the optic axis is e and the 
radius of the circular section is o. 
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have become equal either as y = Bor asa = PB. Thereis here a change of nomenclature: 
the principal refractive index corresponding to vibrations parallel to the single optic 
axis, the triad, is described as the extraordinary refractive index and denoted e (or ¢) 
while the refractive index corresponding to vibrations in the single central circular 
section (0001) is described as the ordinary refractive index and denoted o (or w). The 
concepts of the acute and obtuse bisectrices and the optic axial plane disappear and 
are replaced by a single optic axis parallel to the axis of high symmetry. 

In the tetragonal system the indicatrix is likewise an ellipsoid of revolution about 
the axis of high symmetry, the tetrad. It is easily verified that an (001) central section 

of a triaxial ellipsoid constrained by symmetry to have mutually perpendicular equal 
radii must be circular and of course one of the principal axes of the indicatrix must 
by symmetry be parallel to the tetrad. As in the trigonal system the indicatrix has a 
single optic axis parallel to the crystallographic axis of high symmetry, the tetrad, and 

a single circular section parallel to (001). 
In the hexagonal system the same argument holds as was. used for the trigonal 

system. 
The indicatrix in the cubic system is yet further degenerate. The four (111) triads 

give rise to four circular sections and in consequence every section of the indicatrix is 
circular: the indicatrix has degenerated into a sphere. In a cubic crystal refractive 
index, usually designated y, is independent of vibration direction. 

The symmetry control of the geometry of the indicatrix leads to a threefold 
classification of substances on the basis of their optical properties. Crystalline 
materials belonging to the triclinic, monoclinic, and orthorhombic systems are 
described as optically biaxial:in these systems the indicatrix is geometrically a triaxial 
ellipsoid with two optic axes and two circular sections. Crystalline materials belonging 
to the trigonal, tetragonal, and hexagonal systems are described as optically uniaxial: 
in these systems the indicatrix is an ellipsoid of revolution with a single optic axis, the 
axis of revolution of radius e, and a single central circular section of radius 0. Cubic 
crystalline materials are optically isotropic: the indicatrix is a sphere of radius yu. 

The optic sign of biaxial crystals has already been defined: for positive crystals 
2V, < 90° and for negative crystals 2V, < 90°. This convention is simply extended to 
uniaxial crystals: if the optic axes coalesce as y, 2V, > 0 and y becomes e (Fig 12.7). 
Therefore for positive uniaxial crystals e > o. If contrariwise the optic axes coalesce 
as a, 2V,—0, a becomes e and for a negative uniaxial crystal e<o. Thus the 
extraordinary refractive index is relatively slow in a positive uniaxial substance; this 

constitutes the basis of the useful mnemonic POF = positive ordinary fast. 
The Biot—Fresnel construction for locating the vibration directions for light 

travelling in a particular direction through a biaxial substance has already been 
described. The extension to uniaxial substances is a simplification: construct 
the great circle whose pole is the direction of propagation q (Fig 12.8) and the great 

circle through q and the optic axis A. The extraordinary vibration direction e’ lies at 
the intersection of the two great circles, while the ordinary vibration direction o lies 
90° away and therefore on the great circle whose pole is A. One of the refractive indices 

of a general section of a uniaxial crystal is thus always equal to o and the other, 
designated e’, lies between the limiting principal refractive indices 0 and e in 

magnitude. 

The polarizing microscope 

It is appropriate at this stage to digress from the development of the properties of 
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A 

e<o 

POSITIVE NEGATIVE 

e>o (a) (b) 

Fig 12.7. The sign convention for uniaxial crystals: (a) shows the indicatrix for a positive crystal 
with e > 0 and (b) for a negative crystal with e <o. 

Oo Fig 12.8 The Biot—Fresnel construction for uniaxial 
crystals. The stereogram shows a wave normal direction q 
and the optic axis A at the north pole. The vibration 
directions are e’ at 90° from q in the plane gA and o 
at 90° from q in the plane (here the primitive) whose 
pole is A. 

the indicatrix into a brief description of the principal instrument of crystal optics, the 
polarizing microscope, so that the practical significance of the theoretical work yet to 
be done can be made immediately clear. The polarizing microscope is in essence a 
compound microscope fitted with two polarizing devices, one above and one below 
the specimen stage, with a slot in the barrel to take accessory test plates, and with a 
variety of subsidiary lenses and diaphragms to provide the extreme versatility of 
illumination of the specimen that is requisite for adequate examination of transparent 
crystalline materials. There are on the market a great many different models of 
polarizing microscopes that differ substantially in the details of their construction, 
some having one particularly advantageous or convenient feature and others another. 
It would be unnecessarily restricting to describe one particular model and so this 
description will be confined to the essential features of the instrument. 

The usual source of illumination is a tungsten filament lamp which may be provided 
with a focusing system and may be operated through a variable transformer so that 
its intensity can be varied. If a very high intensity of illumination is required, as is 
occasionally the case, a quartz-iodine lamp may be used alternatively. In most of the 
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Fig 12.9 The polarizing microscope. The diagram on the left shows the construction of the 
microscope. The diagram on the right shows the stage orientation as it appears to the observer: 
the polarizer transmits vibrations from side to side, i.e. East-West, the analyser transmits vibrations 
from front to back of the stage, i.e. North—South, and the slot for test-plates is inclined at 45° 

to these directions in the NE—SW direction. 

light source 

better class of modern microscopes the lamp is built in to the base of the stand 
(Fig 12.9). 

Light enters the optical system of the microscope through the sub-stage assembly, 

the first unit of which is the polarizer, a circular disc of polaroid film about 3 cm in 
diameter mounted so that it can be rotated about the axis of the microscope. The 
polarizer is normally retained in a fixed position in use so that it transmits only light 
vibrating parallel to one of the cross-wires in the ocular; this fixed position is located 
by a click-stop. In the sequel it will be assumed that the vibration direction of light 
transmitted by the polarizer is from left to right of the field of view (or east—west if 
directions in the field of view are referred to the points of the compass w¥e). The 
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polarizer mounting is usually hinged so that it can be swung out of the optical system 

if observation in unpolarized light should be required as is rarely the case. A diffusing 
screen, to increase the angular range of the illumination, is commonly provided 
immediately below the polarizer and a filter holder immediately above it. The next 
element of the substage assembly is an iris diaphragm and above that is a strongly 

converging lens known as the condenser ; in many older models the condenser can be 

swung out of the optical system by pivoting about a horizontal axis. In many models 
the whole of the sub-stage assembly can be racked up or down to produce the desired 
conditions of illumination. 

The stage is a circular disc with a central aperture. It is equipped with threaded 
holes for the attachment of subsidiary stages (q.v.) and detachable clips for holding 
slides. The stage is free to rotate about the axis of the microscope; it is graduated 
around its circumference so that its position can be read off on a vernier to about 
0-1° and it can be clamped in any position. 

The first element of the barrel assembly is the objective lens. Most microscopes are 
provided with at least three objectives, low-, intermediate-, and high-power (common 
magnifications are x 6:5, x 14, x 45) so mounted that they can be interchanged 
rapidly and conveniently either by use of a rotating nose-piece or better by a simple 
clutch mechanism. Immediately above the objective mounting is a horizontal slot 
whose length is inclined at 45° to the polarizer vibration direction, if the polarizer 
transmits E—W vibrations the slot is normally oriented NE—SW;; the purpose of the 
slot is to accommodate the accessory test plates whose use is described later. 

Next comes the analyser, a disc of polaroid with its transmission direction N—S, 
that is perpendicular to that of the polarizer in the locked position (the polars are 
then said to be crossed). The analyser is mounted so that it can be removed from the 
optical system either by pushing on a slide or by rotation on a pivot. In all but the 
most expensive models the transmission direction of the analyser is not adjustable. 
Above the analyser lies the Bertrand lens and its associated iris diaphragm: the 
function of this subsidiary lens will be described in a subsequent paragraph. At the top 
of the barrel assembly is the ocular, a compound lens of magnification x 10 or x 15, 
fitted with mutually perpendicular cross-wires so positioned that they can be seen in 
focus superimposed on the object. The ocular is removable and its orientation is 
determined by a projection that fits into either of two slots so placed that the 
cross-wires will be either parallel to or at 45° to the vibration directions of the polars. 
The whole barrel assembly can be racked up or down to achieve focusing; commonly 
a coarse-adjustment and a calibrated fine-adjustment of the racking mechanism are 
provided. On some models the barrel is immovable and it is the stage and sub-stage 
assemblies that are together racked up or down to focus. 

It is important that the axis of each optical element of the microscope should be 
coincident with the axis of rotation of the stage. This condition should be achieved 
by the makers for all except the interchangeable or movable elements, that is to say 
except for the objectives and on some models the condenser, and the Bertrand lens. 
The alignment of the objective is particularly important. If the objective is not 
aligned an object will not remain at the centre of the field on rotation of the stage. 
Models that have their objectives mounted on a revolving nose-piece are fitted with 
centring screws in the SE and SW positions on the upper part of the nose-piece, while 
those with an objective clutch have similarly disposed centring screws on each 
objective; in the former only the high-power objective need be centred. The procedure 
for centring is the same in each case (Fig 12.10). Select some detail of the object (a 
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Fig 12.10 Centring the objective of a 
microscope. A recognizable point on a slide 
placed on the stage is moved to the intersection 
of the cross-wires and the centre of its circle of 
rotation is brought into coincidence with the 
cross-wires by adjustment of the centring screws; 
repetition of this procedure enables the 
high-power objective to be precisely centred. 

screws 

speck of dust, the corner of a crystal, or some such point) and move it on to the 
intersection of the cross-wires. Rotate the stage and estimate the position of the centre 
of rotation of the point object. Bring the centre of rotation on to the intersection of 
the cross-wires by adjusting the centring screws which traverse in NW—SE and 
NE—SW directions. Repeat the procedure until the point object remains at the 
intersection of the cross-wires throughout a complete rotation of the stage. Several 
cycles of adjustment and testing are usually necessary. The centring of the objectives 
should be checked from time to time. 

Microscopic examination of crystalline materials in parallel plane 

polarized light 

Before considering what observations can be made with the polarizing microscope in 
parallel plane polarized light with the analyser withdrawn from the optical system, it 
is necessary to say a few words about the form in which the material can conveniently 
be examined. Small crystals (< 1mm across) can be placed on a microscope slide, 
immersed in a liquid in which they are insoluble, the whole being covered with a glass 
‘cover slip’ (a thin glass circle of about 1 cm diameter). Immersion in a liquid reduces 
light scattering from the crystal faces. A crystalline aggregate may be examined in 

either of two ways. It may be crushed with a pestle and mortar or in a mechanical 

grinder, the fine dust being removed by decantation in a liquid in which all the phases 
are insoluble and the large grains being removed by sieving through a sieve of suitable 
mesh (60 or 90 mesh, that is with holes of about 0:04 or 0:03 cm); the resulting powder 
can be mounted in a liquid on a glass slide under a cover slip. Alternatively a 
permanent thin-section of a coherent aggregate may be prepared; this is a technique 

that requires great skill if the resulting section is to retain all the textural features of 
the material. A slice about 0-5 cm thick and 2 cm square is cut from the specimen with 
a diamond impregnated saw; it is ground on a diamond- or carborundum- 
impregnated rotary lap until one surface is flat and polished; that surface is then 
cemented to a glass slide with Canada balsam or a plastic cement. The other surface 
of the slice is then ground on a rotary lap and by hand on successively finer grades of 
carborundum paste until a parallel sided section about 3 x 10~* cm thick results; a 
cover slip is then cemented with Canada balsam or plastic cement on to the uncovered 
surface; the result is a thin section of standard thickness that should not deteriorate 

in many years. 
Having got the crystalline material into a suitable form, what significant properties 

can be observed with the polarizing microscope? The answer to that question is the 
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subject of the remainder of this chapter, but we are concerned immediately with those 
properties that can be observed with the analyser out. It is convenient to list all those 
properties and to discuss some of them in detail at this stage. 
(1) Relief: This is the striking qualitative mahifestation of refractive index difference. 
If a solid grain is immersed in a liquid, or in another solid, of very different refractive 
index, whether higher or lower, its margin will be sharply defined; it is then said to 
be in high relief. If the difference in refractive index between the grain and the 
immersion medium is slight, then the margin of the grain will be only vaguely defined; 
it is then said to be in low relief. If an isotropic grain is immersed in a medium of 
the same refractive index it will, unless it is differently coloured, be invisible. The 

observation of relief merely provides a qualitative statement of refractive index 
difference, but the difference can simply be given a sign by application of the Becke 
line test. 

Consider a grain of an isotropic substance immersed in a liquid of higher refractive 
index. As the barrel assembly is racked up from the position of sharp focus a bright 
line, the Becke line, concentric with the margin of the grain will be seen to move 
outwards from the dark crystal/liquid boundary into the liquid. If the grain is of higher 
refractive index than the liquid the Becke line will move inwards from the grain 
margin as the barrel assembly is racked up. In general as the barrel assembly is racked 
upwards through the position of sharp focus the Becke line will move from the medium 
of lower refractive index through the grain boundary into the medium of higher 
refractive index. 

The Becke line is usually attributed to either refraction at the tapering edge of the 
grain or to total reflexion at the grain/liquid boundary or to both. The refraction 
hypothesis implies that a grain of higher refractive index than the immersion medium 
acts as a converging lens (Fig 12.11(a)) while a grain of lower index than the immersion 
medium acts as a diverging lens (Fig 12.11(b)). Total reflexion at the grain/liquid 
boundary will likewise deflect near parallel incident light towards the medium of 
higher refractive index (Figs 12.11(c), (d)). Both refraction and total reflexion are 
probably operative in practice in the production of the Becke line, one or other 
becoming dominant as the nature of the crystal/liquid boundary changes. 

The sensitivity of the Becke line test is improved by stopping down the sub-stage 
iris diaphragm until the Becke line becomes distinct and by using an objective of 
intermediate- or high-power. 

The meaningful extension of the Becke line test to anisotropic substances must be 
left to a subsequent paragraph. The Becke line test then becomes the basis of the most 
generally applicable method for the determination of the refractive indices of 
anisotropic solids. 
(2) Habit. The shapes of any euhedral crystals that can be seen may be informative. 
By racking the barrel assembly up and down it is usually possible to obtain a 
three-dimensional view of the crystal grain. Measurement of the plane angles of faces 
lying parallel to the stage can be made by use of the angular graduations on the 
periphery of the stage and the vernier. In some cases, especially in the cubic system, 
it is possible to describe habit in some detail; in others such general descriptions as 
prismatic or tabular may be all that can be achieved. Preparations of grains obtained 
by crushing will of course usually yield no information about habit. Thin sections of 
crystal aggregates may, for example, display both long- and cross-sections of prisms 
or tablets. 
(3) Cleavage. Crystals of many substances tend to fracture smoothly along structurally 
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Fig 12.11 The Becke line test for a crystal immersed in a liquid. 

controlled planes of simple indices. This special kind of fracture is known as cleavage. 
Cleavage is not usually observable microscopically in preparations of small crystals, 
but in preparations of crushed material, grains will usually tend to lie on cleavage 
planes if the substance possesses a good cleavage. In thin sections of crystalline 
aggregates cleavage traces show up as fine black, sometimes broken, lines which 
represent the intersection of the cleavage plane with the plane of the section. In a 
section of a crystalline substance for which the orientation of the cleavage is known, 
the cleavage trace on a section of identifiable orientation becomes an important 
reference direction; if the cleavage is (hkl) and the plane of the section (pqr), the 
cleavage trace will be the direction [(hkl), (pqr)]. Cleavages are made apparent in 
thin-sections by mechanical strains in grinding and strains induced by heating and 
cooling during the preparation of the section. Cleavage traces are only visible when 
the cleavage plane is nearly normal to the plane of the section; usually the angle 
between the two planes must be greater than 70°. 

(4) Colour. Although the colour of a crystalline solid in transmitted light may be 
distinctive, it is very commonly due to quite small amounts of substituent cations or 
chromophore groups. The colour of anisotropic substances in plane polarized light 
will be dealt with further in a subsequent paragraph. 

This is as far as the examination of crystalline materials can be taken without 

inserting the analyser into the optical system. The additional information obtainable 
by examination with the analyser inserted, that is examination between crossed polars, 

is discussed in the immediately following paragraphs. 

Interference effects between crossed polars in parallel plane 

polarized light 

Consider a thin parallel-sided crystal plate lying on the microscope stage between 
crossed polars, that is with the analyser in the optical system and the analyser vibration 
direction perpendicular to the polarizer vibration direction. Suppose the illumination 
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to be monochromatic of wavelength J. The plane polarized light transmitted by the 
polarizer and incident normally on the lower face of the crystal plate can be 
represented by the simple harmonic equation y = A sin wt where y is the light vector, 
Ais amplitude, w is frequency, and t is time measured with respect to some arbitrary 
zero. Let the vibration directions in the crystal plate correspond to refractive indices 
i, and uw, and make angles @ and 90°—8 respectively with the polarizer vibration 
direction. The amplitudes of the two wave motions within the crystal plate will be 
Acos@ and Asin @ respectively (Fig 12.12). Since the crystal plate has different 
refractive indices for the two wave motions, the time taken to pass through the crystal 
plate will not be the same for each. Suppose that the zero of time is taken at entry to 
the crystal plate and that the wave motion corresponding to refractive index p, takes 
time t to pass through the plate while that corresponding to refractive index p, takes 
time t+(a/w) to pass through the plate. Then immediately on emergence the two 
wave motions can be represented as 

y, = Acos@ sinat 

and 

y2 = Asin 6 sin(wt+ a) 

(a) 

Fig 12.12 Interference effects between crossed 
polars in parallel plane polarized light. (a) shows 
the amplitude A of the light vector y = A sin wt 
emergent from the polarizer. (b) shows the 
amplitudes of the two wave motions in the 
crystal plate, y, = (A cos @) sinwt and 
Y= (Asin @) sin (wt+a). (c) shows the 
resolution of y, and y, in the plane of the analyser. 
The vibration directions transmitted by the 
polarizer and the analyser are indicated in the 
centre of the figure. 
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The two wave motions will remain with constant phase difference « until they 
reach the front surface of the analyser. There they will interfere on resolution into 
the vibration plane of the analyser, which is perpendicular to that of the polarizer. 
The resultant light vector y is given (Fig 12.12) by 

y = y, cos0—y, sind 

= Asin @ cos 0{sin (wt+«)—sin wt} 

= Asin 20 sin4a cos(wt +4a). 

The magnitude of the phase difference « can be evaluated quite simply. The 
velocities of the two wave motions will be respectively c/u, and c/u, where c is the 
velocity of light in vacuo. If the thickness of the crystal plate is d, then 

d ow 
page and t+—=——, 

c wo 

therefore a= eu (La — Ly). 
Cc 

Now the wavelength of the monochromatic source is J in air and it is permissible to 
approximate the velocity of light in air to c (since the refractive index of air at 
atmospheric pressure is only 1-0003), so that c = (Aw/2z) and the expression for the 
phase difference becomes 

2nd 
a= ae (U2 — Hy) 

and for the resultant light vector transmitted through the analyser, 

y = Asin 26 sin ‘" (U> a) cos jor as e (U2 -o} é 

The intensity of light transmitted through the analyser is given by the square of the 
amplitude of the light vector y. The proportion of the incident intensity A? transmitted 
is therefore sin? 20 sin? {(md/A)(u.—j,)}. As the stage carrying the crystal plate is 
rotated the intensity of light passing the analyser will vary as sin? 20 and in particular 
will be zero for 0 = 3nz (Fig 12.13). The field of view will appear dark whenever 0 is a 
multiple of 90°. There will be four such extinction positions, each corresponding to an 
orientation of the crystal plate in which its vibration directions are parallel and 
perpendicular to the polarizer vibration direction. 

Extinction is a most important phenomenon. It makes possible the identification 

Sin? 20 

° ° 
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8 

Fig 12.13 Plot of sin226 against @ to illustrate the existence of extinction positions. 

° 
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of the vibration directions of light travelling through a crystal parallel to the axis of 

the microscope. It is consequently a property central to the determination of refractive 

index in anisotropic materials. If the crystal plate is immersed in liquid of known 

refractive index and rotated into that extinction position for which the vibration 

direction 1, is parallel to the polarizer vibration direction, and if the analyser is then 

put out of the system and the Becke line test applied to the crystal/liquid interface, 

then it can be determined whether y, is greater or less than the refractive index of the 

liquid. Rotation to the extinction position 90° away enables the same information to 

be obtained for p15. 

The other factor in the expression for the amplitude of the light vector passing 

through the analyser, sin (1d/A)(u3—/44), is just as important. This factor will be zero 

when (7d/A)(4. — u,) = nn, where n is an integer; that is to say no light passes through 

the analyser when the condition d(u3—j,) = nd is satisfied at some general value of 

6 # 4nn. 
The significance of this condition can be most clearly seen by considering a gently 

tapering wedge cut from a crystal of quartz (SiO), trigonal) in such a manner that the 
length of the wedge is parallel to the triad (Fig. 12.14). The length of the wedge is 
therefore parallel to the optic axis and the vibration directions in the wedge will be 
parallel and perpendicular to [0001], corresponding to refractive indices e and o. 
Suppose the wedge has an angle ¢ and x is measured along the base from the 
vanishingly thin end; then d = x tan ¢.° The condition for zero intensity becomes 

x tan d.(e—o) =nh 

na 
Le. x= cot ¢. 

E30 

(1210) 
—=— x— >| eae 

(b) 

A 
(0001) 

Oe 

(2110) 

(a) 
Fig 12.14 The quartz wedge. The stereogram (a) shows the vibration directions, e and o, for 
light propagated in a direction q parallel to the (0001) plane. The geometry of a thin wedge cut 
parallel to [0001] is illustrated in (b). 

Since A, p, and e—o are constant, equally spaced black lines will appear on the wedge, 
the first being at a distance 4 cot @/(e—o) from the thin end; the band spacing will 
likewise be A cot ¢/(e—o). If a steeper wedge is cut, ¢ will be greater and the bands 
consequently will be closer together. If a longer monochromatic wavelength is used, 
the bands will be more widely separated. 
Now let us suppose that the wedge is, hypothetically, illuminated by light of two 

wavelengths 2, ~ 6750 A (red) and A, ~ 4500 A (blue). And further suppose that the 

° Refraction at the upper surface of the wedge may be neglected as @ is very small. 
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Fig 12.15 Diagrammatic representation of the 
appearance of a quartz wedge (thin end on the (a) 
left) between crossed polars in (a) red light, 
(b) blue light, and (c) a combination of red and 
blue light. R = red, B = blue, W = white. The (b) 
shaded areas represent low transmitted intensity 
adjacent to each black band. 

wedge angle ¢ = tan ‘0-01. The birefringence e—o = 0-009 (for quartz e = 1-553 and 
o = 1-544). For the red wavelength the separation of dark bands 1 cot d/(e—o0) = 
0-75 cm and for the blue wavelength 0:50 cm. The appearance of the wedge in red 
light alone, in blue light alone, and in red + blue light is illustrated diagrammatically 
in Fig 12.15: where both wavelengths are cut out a dark band will appear, where 
blue light is cut out a red band will appear, where red light is cut out a blue band 
will appear, and where both wavelengths are present in more or less equal intensity 
the wedge will appear whitish. 

If the wedge is illuminated in truly white light, that is to say in a continuous 
spectrum ranging from deep blue ~ 3800 A to extreme red ~ 7800 A, black lines will 
not be produced, but instead a sequence of colour bands which represent the residue 
after wavelengths satisfying the condition d(e—o)=nd have been removed by 
interference as the thickness d gradually increases along the wedge. These colours are 
known as interference colours and the sequence in which they appear on a wedge 
between crossed polars is similar to that in Newton’s rings and is known as Newton’s 
scale of colours (Table 12.1).° The human eye is most sensitive to wavelengths in the 
yellow-green region and therefore the bands on the wedge that stand out most 
strongly are those from which yellow-green wavelengths have been removed by 
interference; these are known as the sensitive tint bands and appear as a distinctive 
reddish-violet colour. The wavelength eliminated at the first sensitive tint band is 

approximately 5600 A. The sequence of sensitive tint bands corresponds exactly to 
the sequence of equally spaced black bands that would be seen in monochromatic light 
of wavelength 5600 A. The sequence of colours apparent on the wedge is divided into 
orders by the sensitive tint (ST) bands. The first order, running from the vanishingly 
thin end of the wedge to the first order sensitive tint band is distinct from the others; 
its sequence of colours—grey, white, yellow, orange, red, sensitive tint—is not repeated 

in higher orders. In the second order the normal sequence—ST, blue, green, yellow, 
orange, red, ST —appears and is repeated in subsequent orders. The low order colours 
are relatively strongly coloured, while the high order colours are progressively less 
bold, until in the sixth order a pale whitish colour known as high white appears and 
persists throughout higher orders which are consequently indistinguishable. 

Where the wedge is relatively thin, that is where low order colours appear between 
crossed polars, the condition for destructive interference d(e—o) = nd is satisfied by 
a single wavelength in the visible spectrum. When d(e—o0) = 7600 A, the condition is 
satisfied for a dark red wavelength 7600A with n=1 and for the deepest blue 

© Tn some textbooks of crystal optics Newton’s scale of colours is shown as a colour-plate. Such plates 
always fail to give a true representation of the colours, because interference colours are necessarily viewed 
in transmitted light whereas the plate is printed for viewing in reflected light. We would advise the 
beginner in the use of the polarizing microscope to remind himself from time to time of the colours in 
Newton’s scale by observing with the naked eye a quartz wedge placed between crossed sheets of polaroid. 
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Table 12.1 
Newton’s scale of colours 

The sequence of colours is related to the 
product of the thickness t and birefringence 
Au of a colourless crystal between crossed 
polars. The prominent sensitive tint bands 
divide the scale into orders. 

t.Au Interference colour Order 

(A) 
0 black 

grey 
white 
pale yellow 1st order 
yellow 
orange 
red 

5600 sensitive tint 

blue 
green 
yellow 2nd order 
orange 
red 

11,200 sensitive tint 

blue 
green 
yellow 3rd order 
orange 
red 

16,800 sensitive tint 

23,000 high white 

wavelength 3800 A for n = 2. And so as the thickness increases the condition for 
destructive interference is satisfied by an increasing number of wavelengths within 
the visible spectrum; wavelengths in different parts of the spectrum are eliminated 
and what passes the analyser gradually approximates, in so far as the human eye is 

concerned, to white light of reduced intensity (Fig 12.16). The point may be 
emphasized by considering a particular case in which d(e—o) is large and equal to 
5-6 x 10~* cm: the following seven wavelengths will be eliminated 4000 A (violet) for 
n = 14, 4308 A (violet) for n = 13, 4667 A (indigo) for n = 12, 5091 A (blue-green) for 
n = 11, 5600A (yellow-green) for n = 10, 6222 A (orange-red) for n = 9, and 7000A 
(red) for n = 8. Since these wavelengths are distributed across the range of the visible 

spectrum the wedge will appear whitish at this point. 
A crystal plate of uniform thickness between crossed polars will display the 

interference colour appropriate to the value of d(.—j,). If d(u;—j,) = 5600A the 
interference colour observed will be the characteristic strong red-violet of first order 
sensitive tint. As the crystal plate is rotated by rotation of the stage extinction will be 
observed every 90° when either the y, or fl vibration direction is parallel to the 
polarizer vibration direction; in between extinction positions the intensity of the first 
order sensitive tint will vary as sin? 20 reaching maximum intensity for @ = 45°. 

The beginner may find it difficult to recognize from memory a particular colour in 
Newton’s scale, but natural crystals often have tapering edges on which it may be 
possible to trace the sequence of colours through the first and second orders and so 
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Fig 12.16 Wavelengths cut out by interference in a quartz wedge in white light between 
crossed polars. The range of wavelengths present in the light source is taken as 4000-8000 A. 
Each vertical line shows the range of values of nA for wavelengths eliminated for a particular value 
of n. A horizontal line on the diagram thus gives the wavelengths eliminated by a plate of thickness 
d and birefringence |e—o|. The vertical line on the extreme right gives the number of wavelengths 
eliminated for the corresponding value of d (e—o). 

enable an unambiguous identification to be made of the interference colour exhibited 
by the uniformly thick body of the crystal. It is often useful to refresh the memory by 
inspection of a quartz wedge between crossed polars from time to time. 

Accessory test plates and their use 

(1) The quartz wedge. It is a simple matter for an experienced section maker to cut a 
wedge from a large quartz crystal so that its length is parallel, within a degree or so, 
to the triad. Since quartz is uniaxial positive, the vibration direction corresponding 
to the maximum refractive index e and consequently to the lowest velocity c/e will be 

parallel to the length- of the wedge; such a wedge is described as length slow. 
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Consider a crystal plate mounted on the microscope stage and rotated through 

45° from an extinction position so that the vibration direction corresponding to 

refractive index j1, lies along the NE—SW line. If the quartz wedge is then inserted 

in the slot above the objective its length will likewise tie NE—SW and the vibration 

directions of light travelling through the plate and the wedge are parallel. The 

condition for a wavelength 4 to be eliminated by interference is now 

dy(Uy — Hz) +d, (e—0) = nA, 

where d, and d,, are respectively the thickness of the crystal plate and the wedge at 

the centre of the field of view, 1, and ji, are the refractive indices of the crystal plate 

in the plane parallel to the stage, e and o are the principal refractive indices of quartz. 

If the crystal plate alone, before the wedge is inserted into the slot, exhibits a uniform 

first order sensitive tint, then |d,(u;—2)| = 5600 A. If the wedge is gradually 

inserted, thin end first, just so far that its first order sensitive tint band is on the 

cross-wires, then for that point on the wedge d,,(e—o) = 5600 Ap Iii, > Jie 

condition for destructive interference will be satisfied for n = 2 x 5600 A and the field 

of view on the cross-wires will show second order sensitive tint; in this case the slow 

(e) vibration direction in the wedge is superimposed on the slow (,) vibration 

direction in the specimen and the resultant interference colour displays addition—first 

order ST from the wedge + first order ST from the specimen produces a resultant 

second order ST when slow is superimposed on slow (Fig 12.17). If contrariwise 

[ly < fz, the condition for destructive interference will be satisfied for nA = 0 and the 

field of view on the cross-wires will appear black; in this case the slow (e) vibration 
direction in the wedge is superimposed on the fast (u,) vibration direction in the 

specimen and the resultant colour displays compensation: first order ST from the 
wedge—first order ST from the specimen produces resultant blackness when slow 

is superimposed on fast. 
We have supposed that the specimen crystal displays first order sensitive tint, but 

of course in general that will not be so. If the quartz wedge is gradually superimposed 
with its slow vibration direction parallel to the fast vibration direction in the specimen, 
increasing subtraction and eventually blackness will be observed when the correct 
thickness of the wedge for exact compensation is in the centre of the field of view. If 
the specimen crystal is rotated on the stage through 90° to the other 45° position, 
addition will be observed as the wedge is gradually inserted. The distinction between 
subtraction and addition can often be made more certain in the case of a small 
specimen crystal by using the high-power objective. If the specimen crystal shows an 
interference colour of high order it may be difficult to distinguish between addition 
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Fig 12.17. Addition and subtraction on superimposition of a quartz wedge in the 45° position 
NE—SW. 
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and subtraction as the wedge is inserted, although the latter is usually more easily 
recognized because it leads to the strong distinctive colours of the first and second 
orders; in such cases a thin part of the crystal may be found near its edge under 
high-power and the lower colours there displayed may be used to give an 
unambiguous determination. If a crystal is of variable thickness, attention should be 
concentrated on that part of it which displays first order sensitive tint; the distinction 
between second order sensitive tint and exact compensation yields the most 
unmistakable criterion of the relative slowness of the two vibration directions. 

The property of extinction enables the vibration directions for light incident 
normally on a crystal plate to be identified. Use of the quartz wedge enables each 
vibration direction to be identified as slow or fast relative to the other. If, instead of 

a cut crystal plate, a uniaxial crystal from whose shape the direction of the optic axis 
can be determined, e.g. an elongated tetragonal prism, is the specimen on the stage, 
the optic sign of the substance can be established; with the optic axis lying NE—SW, 
that is parallel to the slow direction of the wedge, addition will indicate e > 0 and the 
substance must be optically positive, while compensation will indicate a negative sign 
(Fig 12.18). 

Fig 12.18 Superimposition of a quartz wedge parallel to 
the tetrad of a tetragonal crystal to determine optic sign. 

If a crystal plate of known thickness is rotated into the 45° position that gives rise 
to compensation and the wedge is inserted until blackness is observed on the 
cross-wires, then |; —,| can be evaluated by noting the interference colour of the 

wedge on the cross-wires when the crystal plate is withdrawn from the optical system. 

(2) The sensitive tint plate. This is the most generally useful testing instrument in white 

light;in monochromatic light it has no application since a change of one order cannot 
then be distinguished. It is constructed by sandwiching between glass a parallel-sided 
cleavage flake of gypsum, or more commonly mica, of such thickness that it displays 
first order sensitive tint. The cleavage flake is oriented so that its slow vibration 
direction lies parallel to the length of the mounted plate, that is to say the plate is length 
slow. 

Suppose the specimen on the stage is rotated through 45° from extinction and 
displays first order sensitive tint. Insertion of the sensitive tint plate into the slot above 
the objective will then produce either addition, that is second order sensitive tint, or 
exact compensation. Addition will indicate that the relatively slow vibration direction 
in the specimen lies NE—SW on the stage. If the specimen displays a low white or 
grey interference colour, the insertion of the sensitive tint plate will produce either 
second order blue by addition or first order yellow by subtraction. The observation 
of a blue interference colour when the specimen is in one extinction position and a 
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Fig 12.19 Superimposition of a sensitive tint plate 
to determine slow and fast vibration directions. The 
figures represent the field of view in the microscope: 
in (a) the stage has been rotated through 45° from 
an extinction position for the crystal, in (b) and (c) 
the slow direction in the wedge is superimposed on 
the 1, and 12, vibration directions respectively. If 
addition is observed in (b), then subtraction will be 
observed in (c) and ul, > Llp. 

yellow when it is in the other leads to a completely unambiguous identification of its 
slow and fast vibration directions (Fig 12.19). Indeed it is always advisable to observe 

the specimen, with the sensitive tint plate inserted, in both 45° positions: this merely 
involves rotation of the stage from one 45° position to the other and requires the 
relatively easy distinction to be made between interference colours that differ by 
exactly two orders. The advantage of the sensitive tint plate over the quartz wedge for 
this purpose is that it retards the whole beam of light reaching the eye by the same 
amount. 

(3) The quarter-wave plate. This is constructed in precisely the same way as the sensitive 
tint plate, but the cleavage flake of mica is thinner and produces a retardation of 
only about 1600 A (approximately 4/4 for Na,). Its use is identical with that of the 
sensitive tint plate. It is only occasionally useful when dealing with specimens that 

exhibit first order interference colours. 

Interference in strongly convergent light: the uniaxial interference 

figure 

The preceding paragraphs have been concerned with the use of the polarizing 
microscope in its orthoscopic arrangement, in which the specimen is between crossed 
polars and illuminated by a parallel beam of plane polarized light. The microscope 
can alternatively be set up in the conoscopic arrangement so that the highly distinctive 
and informative interference effects when the anisotropic specimen is illuminated, 
between crossed polars, by a strongly convergent beam of plane polarized light can 
be observed. 
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The microscope is set up for conoscopic use by (i) inserting the analyser, (ii) inserting 
the sub-stage condenser, (iii) racking the sub-stage assembly up or down until the 
convergent beam is focused within the specimen crystal lying on the stage, (iv) opening 
the sub-stage iris diaphragm wide, (v) inserting the high-power objective and focusing 
it on the specimen crystal, (vi) either inserting the Bertrand lens or replacing the ocular 
by a pin-hole. 

The function of the condenser is to provide a wide-angle cone of light focused on 
the specimen crystal on the stage. The divergent cone of rays emitted from the crystal 

is collected by the objective and in general the higher the power of the objective the 
wider the angle of the cone that can be collected. The rays passing through the 
objective form a small real image near the curved focal surface immediately above the 

objective; each point in this so-called directions image is a focal point of light that has 
passed in a definite direction through the crystal. On viewing the directions image 
through the analyser certain directionally dependent optical properties are revealed 
and a characteristic interference figure is displayed. The directions image is however 
too far away from the focal plane of the ocular to be visible without modification of 
the optical system of the eyepiece. The simplest modification is merely to remove the 
ocular so that the directions image can be viewed direct through the analyser. 
Alternatively the Bertrand lens, situated between the analyser and the ocular (Fig 
12.9), may be inserted to produce a magnified directions image in the focal plane of the 
ocular. When dealing with small crystals, and in general to sharpen the focus of the 
interference figure, it is important to stop down the light near the top of the barrel 
assembly: if the Bertrand lens is used this can be done by stopping down the iris 
diaphragm immediately above it, while if observation is made directly a pin-hole can 
be inserted in place of the ocular. It is essential, especially when dealing with small 
crystals, to have the objective accurately centred. 

Let us suppose that the specimen on the stage is a plate of uniform thickness t cut 
perpendicular to the optic axis of a uniaxial substance and that the incident light is 
monochromatic of wavelength 2. A beam of light incident on the specimen in a 
direction inclined to the optic axis, will be split into an ordinary and an extraordinary 
wave within the crystal. Since these have different refractive indices they will be 
refracted differently at the crystal surface and therefore will travel along slightly 
different paths within the crystal, becoming parallel again when they emerge from 
the crystal (Fig 12.20(a)). The difference between the angles which these two waves 
make with the optic axis is negligible. Thus the two wave motions can be considered 
to have a direction of propagation of light (p) within the crystal plate at an angle ¢ 
to the optic axis.’ The effective thickness of the plate for this inclined direction of 
propagation will be tsec@. The vibration directions of the extraordinary (e’) and 
ordinary (0) wave motions for this direction of propagation can be determined by the 
Biot—Fresnel construction (Fig 12.20(b)). The magnitude of the directionally 
dependent refractive index e’ can be evaluated from the geometry of the indicatrix in 

terms of e and o, which are constants for the substance. The equation to the section 

of the indicatrix in the plane defined by the optic axis and the direction of propagation 
(Fig 12.20(c)) is 

2 2 

e2 egal 
a a 

7 Ditchburn (1963, p. 512) gives a full explanation. 
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(b) 

| 

2 (a) i) 
Fig 12.20 The formation of a uniaxial interference figure. (a) shows a light ray p passing 
through a crystal plate of thickness t¢ at an angle ¢ to the optic axis A. (b) is the Biot—Fresnel 
construction to determine the vibration directions o and e’. (c) is the section of the indicatrix to 
illustrate the calculation of e’. 

The coordinates of the intersection of the e’ vibration direction with the indicatrix 
are x = e’cos¢, y=e' sing. 

2 “2 
Therefore (ee ) Sy 

ae €0 
9 ie J{(e? —07) cos? +07" * 

Now the condition for destructive interference between crossed polars is d (e’—o) =n, 
where d is the actual distance traversed through the crystal plate. In this case 
d= tsec@ and the condition becomes, on substitution of the expression for e’ and 
rearrangement, 

and so 

to e 

cos (ca —o7) cos*p+o7} — ' a 

The only variable in this expression is @. Destructive interference will thus occur in 
monochromatic light when ¢ has certain values and a sequence of black rings will 
result, each ring corresponding to a particular value of n. The first ring out from the 
centre of the field of view will have n = 1, the next n = 2, and so on (Fig 12.22). 

There are certain directions of propagation which must be considered separately. 
The parallel beam of plane polarized light emergent from the polarizer is made 
strongly convergent by passage through the condenser; the vibration direction of a 
particular wave will be changed since vibrations must be transverse but in the case 
of a direction of propagation q in the crystal lying in the plane defined by the optic 
axis and the polarizer vibration direction the o vibrations will have zero amplitude, 
because the o vibration direction is perpendicular to the polarizer vibration direction, 
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Fig 12.21 Biot—Fresnel constructions to illustrate the formation of the axial cross in uniaxial 
interference figures. The directions of propagation q and r lie respectively in the polarizer and 
analyser vibration planes. Their divergence from the optic axis A is grossly exaggerated for clarity. 

while the e’ vibrations will have finite amplitude (Fig 12.21); it is a general principle 
that periodic vibrations can be resolved into components in mutually perpendicular 
directions only so long as neither direction is perpendicular to the original vibration 
direction. The e’ vibration direction lies in the plane perpendicular to the analyser 
vibration direction and therefore light propagated in directions such as q fails to pass 
the analyser; a black band running centrally along an E—W line appears in the field 
of view. Likewise directions of propagation such as r lying in the plane defined by 
the optic axis and the analyser vibration direction (Fig 12.21) will give rise to a central 
N—S black band. A direction of propagation such as r will have e’ vibrations of zero 
amplitude, because the polarizer vibration direction is perpendicular to e’; and the 
o-vibrations, although of finite amplitude, are perpendicular to the analyser vibration 

direction. 
What is seen in the field of view is a centred uniaxial interference figure consisting 

of a black cross, the arms of which run N—S and E—W, and a set of concentric 

black rings (Fig 12.22). 
Reference to the condition for destructive interference t(e’—o) secd@ = nd shows 

that if the specimen crystal plate is replaced by one of greater thickness, (e’ — 0) sec p 
must decrease for a given value of n, therefore @ must decrease and the rings will 
move inwards towards the centre of the field of view so that more rings will be visible. 
If the wavelength / is increased, (e’ —o) sec @ must increase and the rings will appear 
more widely spaced. 

Precisely the same arguments apply to the formation of uniaxial interference figures 

Fig 12.22 The appearance of a uniaxial interference 
figure in monochromatic light. 
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(a) 

Fig 12.23 Vibration directions in the uniaxial interference figure. The Biot—Fresnel construction 

(a) illustrates the vibration directions o and e’ for a general direction of propagation p. (b) shows 

the vibration directions in the uniaxial figure for a selection of directions of propagation. 

in strongly convergent white light as were used for the production of interference 

colours by a quartz wedge in parallel plane polarized white light. Complete destructive 
interference occurs for certain wavelengths at certain angles of propagation through 
the crystal and a sequence of coloured rings is produced. The sequence of colours is 
that of Newton’s scale (Table 12.1), the sensitive tint rings being the most prominent. 

The axial cross remains black because its formation is independent of wavelength. 
The interference figure provides one of the simplest and most generally applicable 

means of determining optic sign in uniaxial substances. Consider a general direction 
of propagation p (Fig 12.23(a)). Light propagated in the direction p has vibration 
directions e’ and o as shown in the figure. The direction e’ lies in the plane defined 
by p and the optic axis (at the centre of the stereogram) and is therefore radial with 
respect to the field of view. The ordinary vibration direction o is tangential at the point 
represented by pin the directions image. Figure 12.23(b) displays the radial e’ vibration 
directions and the tangential o vibrations for selected directions of propagation. If the 
specimen crystal is positive the slow (e’) vibration direction will always be radial while 
the fast (0) vibration direction will be tangential. When a length-slow sensitive tint 
plate is inserted in the 45° slot above the objective addition will be observed in the 
NE and SW quadrants (e’+slow in ST plate) and subtraction in the NW and SE 
quadrants (o+slow in ST plate). In white light sensitive tint rings of nth order will 
then become (n+ 1)th order in the top right and bottom left quadrants and (n—1)th 
order in the top left and bottom nght quadrants (Fig 12.24); a particularly noticeable 
feature is that in the angle of the cross the top right and bottom left quadrants show 
second order blue while the top left and bottom right quadrants show first order 
yellow. 

If a length-slow quartz wedge is pushed into the 45° slot above the objective the 
first order sensitive tint ring in the NE and SW quadrants will move inwards and its 
place will be taken by the second order and then by the third order sensitive tint ring 
and so on if the specimen crystal is positive, while in the NW and SE quadrants the 
rings will appear to move outwards. 

If the optic axis is not quite parallel to the microscope axis an off-centre or partial 
figure (Fig 12.25) will be produced. As the specimen is rotated, by rotation of the 
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positive positive 
Fig 12.24 The use of accessory plates to determine the sign of a uniaxial figure. 

Fig 12.25 An off-centre uniaxial figure. As the stage is 
rotated the optic axis describes a circle in the field of view 
centred on the cross-wires. 

stage, the brushes or isogyres that constitute the axial cross will sweep across the field 
of view in such a manner that they always remain parallel to the polarizer and analyser 
vibration directions respectively, that is their attitude will always be N—S and E—W. 
The optic sign of the specimen crystal which produces such a figure can be determined 
by the use of accessory test plates with no greater difficulty than if the figure were 
precisely centred. 

But if the axial cross, that is the direction of the optic axis, lies outside the field of 
view the determination of sign is more difficult. The angular radius of the field of view 
of most polarizing microscopes with the high-power objective inserted is about 55°. 
If the optic axis lies on the margin of the field of view of the directions image, the light 
propagated along the optic axis in the crystal must make an angle of 55° with the 
microscope axis after refraction at the crystal/air interface at the upper surface of the 
parallel sided crystal plate. Therefore the angle @ between the optic axis and the 
normal to the crystal plate will be given by sin 55° = o sin ¢ since light travelling along 
the optic axis has refractive index o. If @ > sin™ ' (sin 55°/o), the brushes will still sweep 

across the field of view in such a manner as to be visible as either N—S or E—W dark 
lines and the quadrant observed at any point during the rotation of the stage can be 
identified by comparison of the movement of the brushes with the sequence of 
observations illustrated in Fig 12.26. The optic axis rotates on the surface of a cone 
whose axis is the microscope axis. 
We have so far restricted our discussion of uniaxial interference figures to positive 
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Fig 12.26 An off-centre uniaxial figure in which the axial cross lies outside the field of view. 
The stereogram (a) shows the precession of the optic axis about the microscope axis with the 
clockwise succession of positions I-IV shown. In each of the four partial figures the direction of 
movement of each isogyre for clockwise rotation of the stage is indicated by an arrow. The sign 
at the centre of each partial figure indicates for a positive crystal whether addition or subtraction 

occurs when a test plate is inserted. 

crystals. The description of those for negative crystals is the same with fast and slow, 

addition and subtraction interchanged. 

Interference effects in strongly convergent light: biaxial interference 

figures 

The most practically useful figure is that produced when the acute bisectrix of the 
specimen crystal on the stage is parallel to the microscope axis. If the specimen is 
optically positive the y vibration direction will then be parallel to the microscope axis. 
The orientation of the indicatrix and the appearance of the interference figure are 

shown in Fig 12.27 for the optic axial plane lying (a) in the so-called 90° position, i.e. 
E—W, and (b) in the 45° position, i.e. NE—SW. 

The acute bisectrix figure is characterized by three features: (1) the eyes which 

correspond to propagation along the optic axes in the crystal, (11) distorted rings about 
the eyes, black in monochromatic light and following Newton’s scale in white light, 
which represent directions of equal retardation, and (i11) the isogyres which are black 
arcs corresponding to directions of propagation in the crystal which produce vibration 
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B A 

(a) (b) 
Fig 12.27 The biaxial interference figure. The two upper diagrams show the orientation of the 
indicatrix corresponding to the interference figures shown in the two lower diagrams. In (a), 
representing the 90° position, the optic axial plane is parallel to the plane defined by the 
microscope axis and the polarizer vibration direction, while in (b), representing the 45° position, 
the optic axial plane is parallel to the plane defined by the microscope axis and the bisector of the 
polarizer and analyser vibration directions. 

directions parallel and perpendicular to the polarizer vibration direction in the 
directions image. 

Propagation of light along an optic axis implies vibration directions in a circular 
section of the indicatrix. Interference effects will be nil and the eyes will appear black. 
Directions of propagation for which the retardation is the same lie on conical surfaces 
surrounding each optic axis. The cones become increasingly distorted as the angle 
between the direction of propagation and the optic axis increases until they merge to 
surround both optic axes symmetrically about the optic axial plane (Fig 12.28). The 
reader is referred for a full treatment of such isochromatic surfaces in terms of indicatrix 
geometry to Ditchburn (1963, p. 514). That the isogyres will be symmetrical about the 
optic axial plane in the 90° and 45° positions is self-evident. Their angular disposition 
with respect to the optic axes and the vibration directions of the polars is determinable 
stereographically by the Biot—Fresnel construction. 

The vibration directions associated with any point on the directions image of the 
interference figure can simply be determined by a construction based on the Biot— 
Fresnel rule. The construction consists simply of bisecting the angle between the lines 
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Fig 12.28 The disposition of isochromatic surfaces, or surfaces of equal retardation, about the 

optic axes of a biaxial crystal between crossed polars in strongly convergent light. In the figure 

the 4 surface is the first to envelop both optic axes in a single surface. 

joining the point on the directions image to the image of each optic axis; the internal 

and external bisectors will represent the projection of the vibration directions in the 

image plane (Fig 12.29). 
It is easy to see from this modification of the Biot—Fresnel construction that in the 

90° position (OAP lying E—W) the isogyres will constitute an E—W, N—S cross. 
Application of the construction will show that in the 45° position the isogyres are 
hyperbolas passing through the eyes and asymptotic to the polarizer and analyser 
vibration directions (Fig 12.31). On rotating the specimen crystal on the stage from 
the 90° to the 45° position the crossed isogyres separate to a maximum separation in 
the 45° position and on further rotation come together again until they cross when 
the OAP is N—S. In the crossed position the orientation of the OAP can readily be 
identified from the disposition of the rings of constant retardation about the eyes and 

Fig 12.29 Vibration directions at a point in the directions 
image of a biaxial figure. The vibration directions, V and V’, 
are the internal and external bisectors of the lines joining the 
point q to the optic axes A, and A,. 
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Fig 12.30 The acute bisectrix figures (a), (b), (c) show the change in aspect of the figure with 
increasing thickness for the same substance. If the substance is optically positive the interference 
colour at the centre of the figure is given by d(B—a) =nA. The diagram (d) illustrates the 
relationship of the angle V, between the acute bisectrix and an optic axis, and the angle E, between 
the acute bisectrix and the air path of a ray which has travelled along the optic axis in the crystal: 

sinE=f£ sinV. 

moreover the brush perpendicular to the OAP is invariably more fuzzy than that 
representing the trace of the OAP on the directions image. 

For a given substance the appearance of the acute bisectrix figure will depend, as 
in the uniaxial case, on the thickness of the specimen crystal on the stage (Fig 12.30). 
Light travelling along the microscope axis, that is parallel to the y vibration direction 
if the crystal is positive, will have vibration directions corresponding to refractive 
indices « and f. The condition for destructive interference in the centre of the field of 
view will therefore be d(B —«) = nd. The magnitude of B—« can simply be determined 
by identification of the interference colour in white light at the centre of the field of 
view of an acute bisectrix figure in the 45° position when the thickness of the crystal 
is known. 

The appearance of the acute bisectrix figure is also much dependent on 2E, the 
angular separation in air of directions of propagation along the optic axes in the 
crystal. Light propagated along an optic axis in the crystal is inclined at an angle V 
to the acute bisectrix and therefore to the normal to the surface of a parallel-sided 

crystal plate. Since each optic axis is perpendicular to a circular section of the 
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indicatrix of radius f, refraction occurs at the crystal/air interface so that, by Snell’s 

Law, sin E = B sin V (Fig 12.30(d)). Since the angular width of the field of view is about 

110° the isogyres appear at the margins of the field of view in the 45° position if 

E ~ 55°; for B = 1-600, this corresponds to 'a value of 2V ~ 60°. Separation of the 

isogyres is in practice first distinguishable for 2E ~ 15°. 

Application of the modified Biot—Fresnel construction to selected points on the 

acute bisectrix figure leads to the pattern of vibration directions shown in Fig 12.31 

for the 45° position. Correct labelling of vibration directions as fast or slow is an 

essential prerequisite to consideration of sign determination. Consider first directions 

of propagation in the optic axial plane of a positive crystal. For light travelling along 

the acute bisectrix refractive indices will be «, in the OAP, and f, perpendicular to the 

OAP. Light will travel along either optic axis with a single velocity corresponding to 

refractive index B. Directions of propagation between the acute bisectrix and either 

optic axis will correspond to refractive index f perpendicular to the OAP and a 

refractive index j1, such that « < p, < B in the OAP (Fig 12.32(a)). Directions of 

propagation making angles greater than V with the acute bisectrix will have refractive 

index f perpendicular to the OAP and 1, such that B < pf < yin the OAP. The trace 

of the OAP will therefore be fast between the eyes and slow outside the eyes. Directions 

of propagation in the plane containing the acute bisectrix and the normal to the OAP, 
that is the plane whose trace runs NW—SE in the directions image, will correspond 
to refractive indices « parallel to the OAP and 1; such that B < p; < y in the plane 

perpendicular to the OAP (Fig 12.32(b)). Directions of propagation that give rise to 
the isogyres correspond, as has already been shown, to E—W and N—S vibration 

directions. Identification of the slow vibration direction at these selected points in the 
directions image is adequate; the vibration directions at every point in the directions 

image can now be labelled slow or fast by maintaining consistency with these controls 

(Fig 12.32(c)). 
If now a length-slow sensitive tint plate is inserted in the NE—SW slot (i.e. slow 

Fig 12.31 An acute bisectrix figure in the 45° position showing vibration directions. 
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Fig 12.32 Fast and slow vibration directions in the acute bisectrix 
figure of a positive crystal. The indicatrix sections (a) and (b) show 
respectively directions of propagation in the optic axial plane and in 
the plane containing the acute bisectrix and the normal to the optic 
axial plane. In (a) two directions of propagation, qg and r, are 
considered; for both one vibration direction is parallel to the B-axis 
of the indicatrix and corresponds to a refractive index of magnitude 
B; the other vibration direction for q has a refractive index fz, such 
that «<u, <f and for ra refractive index “, such that B <u, <y. 
For any direction of propagation s in the section (b) one refractive 
index is « and the other is 4, such that B < 3 < y. Consideration 
of the indicatrix sections (a) and (b) leads to the determination of 
the slow (solid line) and fast (dotted line) directions over the whole 
interference figure of a positive biaxial crystal as shown in (c). 

in plate || trace of OAP) addition will occur along the trace of the optic axial plane 
outside the eyes for a positive crystal and subtraction along the trace between the 
eyes. Generalizing, addition will be observed outside the isogyres and subtraction 
between the isogyres. In particular in white light the first order sensitive tint ring will 
become second order sensitive tint in the field outside the isogyres while it will be 
reduced to zero order in the central part of the field between the isogyres (Fig 12.33). 
The change in order, by two orders, of a sensitive tint ring at the isogyre is very easily 
recognizable and provides a foolproof means of sign determination. If d($ —«) is small 
for the specimen crystal the sign may be determined conveniently and with certainty 
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Fig 12.33 Superimposition of a sensitive tint plate on biaxial figures in the 45° position. (a) and 
(b) are for a positive crystal, (c) and (d) for a negative crystal. 

by observation of the resultant interference colour on either side of an eye: for a 
positive crystal the field immediately out from the eye will be coloured blue, while 

just inside the eye the field will appear yellow (Fig 12.33(a)). The behaviour of an 
optically negative crystal is also shown in the same figure (c. d). 

If a length-slow quartz wedge is slowly introduced into the NE—SW slot, with 
the OAP in the NE—SW 45° position, sign determination may be effected by 
observation of the progressive changes produced in the acute bisectrix figure. If the 
crystal is positive there will be addition in the areas outside the isogyres and this 
will be displayed dynamically by the inward movement of sensitive tint rings towards 
the eyes, an nth order ring being successively replaced by an (n+1)th, an (n+ 2)th 
and so on. In the central area between the isogyres there will be subtraction and the 
rings will move out, away from the trace of the OAP towards the edge of the field of 
view as nth order rings are replaced by (n—1)th, (n—2)th, and so on (Fig 12.34). In 
short the sensitive tint rings appear to flow from the areas outside the isogyres, 
through the eyes, and then out towards the NW and SE extremities of the field of 
view. The behaviour of the black rings in a positive acute bisectrix figure in 
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Fig 12.34 Superimposition of a quartz wedge moved from NE to SW on biaxial figures in the 
45° position. The arrows show the direction of movement of the interference rings as the wedge 
is moved inwards. The two small diagrams on the left summarize the effect of superimposing a 
quartz wedge or a sensitive tint plate on crystals oriented with their optic axial planes NE—SW, 
the standard orientation. 

monochromatic light will of course be identical. The behaviour of an optically negative 
crystal, for which the direction of movement of the rings is reversed, is shown also in 

Fig 12.34. 
So far we have dealt exclusively with the acute bisectrix figure, that is with the 

interference figure produced conoscopically when the acute bisectrix of the specimen 
crystal lies parallel to the microscope axis. We have now to consider the interference 
figures produced by other orientations of the indicatrix. 

Obtuse bisectrix figures are generally similar to acute bisectrix figures. In the 90° 
position the eyes are of course outside the field of view as is the case in acute bisectrix 
figures where 2V is large. On rotating the stage towards the 45° position the isogyres 
move out much more rapidly towards the edge of the field and this is characteristic. 
In the 45° position the isogyres will lie outside the field of view, but it is still possible 
to determine the optic sign of the substance by the use of accessory plates; a positive 
crystal will behave in the manner shown for a negative acute bisectrix figure in Figs 
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(a) (b) 

Fig 12.35 Biaxial flash figures and optic axis figures. The figure (a) is a flash figure produced 
when 8 is parallel to the microscope axis. (b) illustrates the relationship between 2V and the 
curvature of the single observable isogyre in an optic axis figure. 

12.33 and 12.34. If 2V measured across the acute bisectrix is very small, the obtuse 
bisectrix figure approaches in character the optic normal figure. 
When the optic axial plane is normal to the microscope axis an interference figure 

is produced that is very like that produced by a uniaxial crystal whose optic axis is 
normal to the microscope axis. On rotation of the stage dark isogyres move rapidly 
into the centre of the field, momentarily darken the whole field, and pass out again 
in the direction of the optic axes. Sensitive tint bands are hyperbolic and lie in four 
quadrants in the 45° position (Fig 12.35(a)), the two quadrants in which the acute 
bisectrix lies displaying lower interference colours at given angular radius than the 
other two (this effect becomes unnoticeable as 2V approaches 90°). Such a figure is 
known as a flash figure. 
When one of the optic axes lies parallel to the microscope axis a single isogyre 

with rings of equal retardation concentric about the eye is produced. If the isogyre 
has marked curvature, optic sign can be determined in the normal way (Fig 12.35(b)), 
but if 2V is near 90° the isogyre will appear almost straight and sign will be 
indeterminable from the optic axis figure. 

Crystals lying so that some general radius of the indicatrix lies parallel to the 
microscope axis may be such that a reliable sign determination can be made, but 
such orientations can never provide as much information as a centred acute bisectrix 
figure. If the acute bisectrix lies within about 40° of the microscope axis an amenable 
off-centre figure of one of the sorts shown in Fig 12.36 will be observed, but in general 
an off-centre figure yields no reliable information. An off-centre biaxial figure can be 
distinguished from an off-centre unaxial figure because in the latter the isogyres are 
bound to move across the field of view in such a manner that they always lie either 
N—S or E—W whereas in the former they can lie in any attitude. 

A centred acute bisectrix figure yields information about the partial birefringence 
B—«a if the specimen crystal is optically positive provided the thickness of the specimen 
crystal is known. If the colour displayed at the centre of the field of view, that is the 

Fig 12.36 Biaxial off-centre figures. Successive stages are shown in the rotation of the 
figure produced by a crystal which has (a) Bx, inclined to the microscope axis and Bx, parallel 
to the plane of the microscope stage, (b) Bx, inclined to the microscope axis and f parallel to 
the plane of the stage, and (c) Bx,, Bx,, and f in no special orientation. 
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emergence of the acute bisectrix, is nth order sensitive tint in white light (where n may 
be a non-integral estimate), then d(B —«) = nd where 2 =~ 5600 A for a positive crystal 

(but d(y—) = nd for a negative crystal). 
One further piece of information can be derived from the acute bisectrix figure: an 

estimate of the optic axial angle 2V. Knowledge of the angular radius of the field of 
view of the microscope bing ted may be obtained by calibration with substances of 
known constant 2V; it then becomes possible to estimate very approximately the 
magnitude of 2V for the specimen crystal. The precise determination of the magnitude 

of the optic axial angle requires the use of one or other of the special stages to be 
described later. 

The magnitude of the optic axial angle is determined by the relative magnitude of 
the principal refractive indices, «, 6, and y. Consider the xy section of the indicatrix 
and its intersection with a circular section of radius f (Fig 12.37). The equation to the 
xy elliptical section is 

x? 

ge y 

Let the coordinates of the intersection of the circular section with the cy elliptical 
section be x and z, then 
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andso tan? V, = Li oe. 

This expression can simply be made approximate without great loss of accuracy. 
Rearranging, 

tan? Vi = 

2 y7(B? — a?) 
tan’ V, = 5 y?—B?) 

_PB+aN(6—2) 
a*(y + B)(y— B) 

pee touts 

So that if2V has been measured and f —« determined from the interference colour at 
the centre of the field of view, y—B is determined; complete evaluation of the three 
principal refractive indices now reduces to the determination of one of them. The 
approximate expression tan’ V, = (8 —«)/(y—), although it seems at first sight to be 
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te 
Fig 12.37 Diagram to illustrate the proof of the relationship 

tan?V ~ (B—a)/(y—B). 

a crude approximation, is usually adequate since V cannot readily be measured to 
better than +2°. 

It follows from the approximate expression tan’ V, ~ (6 —«)/(y—) that if 

B-a<y—B, then 2V,<90° and the crystal is positive; while if 

B-a>y—f, then 2V,=180°—2V, < 90° and the crystal is negative. 

Pleochroism 
The transmission coefficient of light through most transparent substances varies with 
wavelength. When the transmission coefficient is very low over a certain wavelength 
band or bands the substance appears coloured in transmitted light. In isotropic (Le. 
non-crystalline or cubic) substances such selective absorption of light is, in common 
with other optical properties, independent of vibration direction. Isotropic crystals 
viewed in white parallel plane polarized light with the analyser out will show no 
change of colour on rotation of the stage. In anisotropic crystals however the 
wavelength range, as well as the magnitude, of selective absorption is dependent on 
vibration direction: this property is known as pleochroism. Uniaxial and biaxial 
crystals viewed in white parallel plane polarized light with the analyser out will, if 
they are pleochroic, change colour on rotation of the stage. 

‘Pleochroism in uniaxial substances can simply be summarized by a statement of 
the wavelength range or ranges strongly absorbed by light vibrating in the e and o 
vibration directions. Since absorption spectra have not been investigated for many 
minerals it is usual merely to state as the pleochroic scheme the colours displayed in 
transmitted light vibrating parallel and perpendicular to the optic axis. For instance 
the pleochroic scheme of a typical dravitic tourmaline (trigonal) is o = dark brown, 
e = yellow. An (0001) section of such a tourmaline would display in plane polarized 
light a dark brown colour invariant on rotation of the stage while a section parallel 
to [0001] would appear yellow when the optic axis was parallel to the polarizer 
vibration direction and would darken on rotation of the stage until maximum 
absorption corresponding to a dark brown colour was apparent with the optic axis 
perpendicular to the polarizer vibration direction. A general section would display 
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the characteristic dark brown colour for its o-vibration direction and some colour 
between the extremes, yellow and dark brown, for its e’-vibration direction. 

In biaxial substances the three principal absorption axes are usually parallel to the 
axes of the indicatrix; in the orthorhombic systerh this is a symmetry imposed 
condition; in the monoclinic system one of the principal absorption axes must be 
parallel to [010] but the other two need not coincide with the indicatrix axes, and in 
the triclinic system none of the absorption axes is required to coincide with an 
indicatrix axis. A section cut normal to an optic axis will not usually change sensibly 
in colour on rotation. All other sections, principal or general, will usually change 
colour on rotation. The pleochroic scheme of a biaxial substance is stated in terms 
of the colours displayed in light vibrating parallel to the «, 8, and y vibration directions 
as, for example, for piemontite (monoclinic) « = yellow, B = violet, y = blood red. 
General sections will display variation between intermediate colours of the pleochroic 
scheme. 

Since the proportion of light of any wavelength absorbed is proportional to its path 
length in the crystal, colours will appear stronger and pleochroism more marked the 
thicker the crystal specimen under examination. 

Dispersion 

In isotropic substances refractive index varies slightly with wavelength according to 
the empirical Cauchy Equation p = 4+BA~?+C)~*+...; usually the first two terms 
suffice for an adequate description of normal dispersion (Fig 12.38(a)). If white light 
is incident on a glass prism and the emergent light allowed to fall on a white screen, a 
spectrum will be seen because the refractive index of the glass, and consequently the 
angle of refraction, varies with wavelength. If a substance displays strong selective 
absorption, that is if it is coloured, the dispersion curve will be anomalous over the 
corresponding wavelength range (Fig 12.38(b)). 

In a uniaxial substance both the principal refractive indices will be wavelength 
dependent. The orientation of the indicatrix, being symmetry controlled, will of course 
be independent of wavelength, but its shape will in general vary with wavelength. In 
the majority of substances dispersion of both o and e is small and dispersion of the 
birefringence |e—o| is consequently negligible (Fig 12.38(c)). In some substances 
however the dispersion of birefringence is anomalous. For example in the tetragonal 
mineral apophyllite at certain compositions 0 —e decreases smoothly with increasing 
A (Fig 12.38(d)) and in consequence normal interference colours (Newton’s scale) will 
not be displayed between crossed polars. The sequence of anomalous interference 
colours observable in a wedge of substance between crossed polars in parallel light 
or in an optic axis figure in strongly convergent light will depend on the precise 
nature of the dependence of |e—o| on 4. The condition for destructive interference 
by an (001) section of the tetragonal mineral meta-torbernite where e—o = 0 for 
4 = 5120 A, is illustrated in Fig 12.39. It must be stressed that anomalous dispersion 
will not only change the sequence of interference colours but will characteristically 
give rise to colours different from those of Newton’s scale. 

An extreme case of anomalous dispersion in a uniaxial substance arises when the 
curves for dispersion of e and o cross (Fig 12.38(e)). This is the case in the tetragonal 
mineral meta-torbernite which is negative for short wavelengths, isotropic at 5120A 
(green), and positive at longer wavelengths. The interference colour displayed by an 
anisotropic section of meta-torbernite in white light between crossed polars will 
always be lacking in the green wavelength for which it is isotropic as well as in shorter 
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wavelengths such that d(o—e’) = nd or longer wavelengths such that d(e’—o0) = nd; 
the interference colours produced by thin sections and small crystals will be 
characteristically anomalous. 

In the orthorhombic system the orientation of the indicatrix remains symmetry 

controlled; only the shape of the indicatrix can be wavelength dependent. Dispersion 
in those orthorhombic substances that exhibit it is most clearly displayed in the acute 
bisectrix figure. Normal dispersion involves no crossing of the curves of the three 
principal refractive indices, «, 8, and y, plotted against 2; such wavelength dependence 
is known as dispersion of the optic axes because it is most clearly displayed as a 
variation of 2V with 4. Two cases may be distinguished, with 2V,.4 < 2V,,. or 
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Fig 12.39 Graphs of A= |e—o|d/n. In the top diagram |e—o| is independent of A. In the 
middle diagram |e—o| varies with A (the mineral apophyllite). In the bottom diagram, which 
refers to the mineral meta-torbernite (Fig 12.38(e)), an extreme case of dispersion is illustrated. 
The figure shown against each curve is the value of n. 

2Vieq > 2Vi1ue- In the former the black isogyres will have red outer fringes and blue 
inner fringes in the 45° position; the central portion of each isogyre representing the 
overlap of areas of extinction for various wavelengths (Fig 12.40). If on the other hand 
2Vieq > 2Vetue» the isogyre for blue light, which will appear red, will lie inside the 
isogyre for red light, which will look blue. 

In the extreme case, where two of the curves of the principal refractive indices 
plotted against wavelength cross, spectacular dispersion effects are produced; this is 
known as crossed axial plane dispersion. The best known example is the orthorhombic 
polymorph of TiO;, brookite. The curves of refractive index against J for each of the 
three principal vibration directions in brookite are shown in Fig 12.41(a). As A 
increases from the blue end of the visible spectrum the optic axial angle in the (100) 
plane decreases from about 30° to zero at A = 5550 A (yellow-green) and then increases 
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Fig 12.40 Dispersion of the optic axes in the orthorhombic mineral barite, BaSO,. The diagram 
on the left shows the variation of a, B, y and of 2V with A; that on the right shows the 
appearance of the acute bisectrix figure in which the outer edges of the isogyres are coloured red 
and their inner edges are blue because 2V,.g < 2Vpjy~. The isogyres for red and blue light are 
shown respectively with vertical and horizontal hachures; in white light the former appears blue 
and the latter red. The positions of the optic axes for red and blue light are marked respectively 
Ar and Ag. 

in the (001) plane (Fig 12.41(b)), the direction of the acute bisectrix remaining constant 
as [010] and the optic sign remaining positive. The positions of the isogyres in the 
acute bisectrix figure at three different wavelengths are shown in Fig 12.41 for an (010) 
plate with its z-axis lying NE—SW. If the light incident on the polarizer is passed 

through a monochromator of a type which permits rapid and smooth variation of the 
transmitted wavelength band, the movement of the isogyres in towards the centre of 
the field and outwards again at right-angles can be clearly demonstrated. The acute 
bisectrix figure of brookite in white light displays anomalous interference colours and 
is, not surprisingly, devoid of isogyres. 

In the monoclinic system the orientation of the indicatrix is controlled by symmetry 
only to the extent that one of its diads must be parallel to [010]. Dispersion of the 
optic axes is still possible and in addition certain kinds of dispersion which are not 
permitted in systems of higher symmetry. In what follows it will be assumed that the 
monoclinic crystal is optically positive, so that y is the acute bisectrix. It will be further 
assumed that we are dealing in each case with only one kind of dispersion. 

If the acute bisectrix is parallel to the diad axis of symmetry, the only way in which 
the orientation of the indicatrix can vary with wavelength is shown in the stereogram 
Fig 12.42(a). As A changes the optic axial plane rotates a few degrees about the 

monoclinic diad, that is about the acute bisectrix. The effect of this angular variation 
of OAP on the Bx, figure in the 90° position is also shown in Fig 12.42(a). The 90° 
position provides a clearer distinction between the various types of dispersion peculiar 
to the monoclinic system than the more generally meaningful 45° position. This type 
of dispersion is known as crossed dispersion; the nomenclature is obvious from Fig 
12.42(a). In crossed dispersion the isogyre through the eyes is fringed with red in the 
top left and bottom right quadrants, with blue in the bottom left and top right 
quadrants or vice versa. An example is borax, Na,B,0,.10H,O. 
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Fig 12.41 Crossed axial plane dispersion in the orthorhombic mineral brookite, TiO. The graph 
(a) shows the variation of the three principal refractive indices, corresponding to vibration directions 
parallel to the orthorhombic diads, with wavelength and (b) shows the relation between optic axial 
angle and wavelength. Brookite becomes optically isotropic at A = 5550 A. Drawings of the 
acute bisectrix figures, (c), (d), (e), are for a short wavelength, for A= 5550A and fora long 
wavelength. The stereogram (f) illustrates the movement of the optic axes relative to the 
crystallographic axes as A increases. In diagrams (c)—(f) the optic axial angles at low and high 
A are exaggerated for clarity. 
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Fig 12.42 Dispersion in the monoclinic system. In each case illustrated the crystal is optically 
positive. (a) illustrates crossed dispersion, where Bx, || [010]. (b) illustrates horizontal dispersion, 
where Bx, || [010]. (c) illustrates inclined dispersion, where || [010]. In the examples shown 

(2V) blue = (2V);eq in each case. The isogyres for red and blue light are shown respectively with 
vertical and horizontal hachures; in white light the former appears blue and the latter red. 
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If the obtuse bisectrix is parallel to the monoclinic diad, the optic axial plane will 
again rotate about [010] as A varies (Fig 12.42(b)). If the microscope axis is parallel 
to the acute bisectrix for some intermediate, say yellow, wavelength, then the extreme 

red and blue optic axial planes will be inclined to the microscope axis and the figure 
in the 90° position will appear as shown in Fig 12.42(b). This type is known as 
horizontal dispersion. The isogyre through the eyes is fringed with red in both upper 
quadrants and with blue in both lower quadrants or vice versa. The minerals sanidine 
and adularia, both K AlSi,O,, display horizontal dispersion. 

If the third mean line, the £ vibration direction, is parallel to the monoclinic diad 
the optic axial plane is confined to (010) for all wavelengths, but here again the acute 

bisectrix can only be parallel to the microscope axis for one wavelength (Fig 12.42(c)). 

Since the orientation of the OAP is symmetry controlled and invariant, the 90° figure 
yields no indication of dispersion, but in the 45° position the outside of one isogyre 
and the inside of the other are fringed with red and vice versa with blue. This type is 
known as inclined dispersion and is easily distinguished from dispersion of 2V, where 
the outside of both isogyres is fringed with the same extreme colour, red or blue. 
Certain specimens of adularia, KAISi,Og, display inclined dispersion. 

In practice monoclinic substances may exhibit dispersion of 2V in addition to the 
characteristically monoclinic types of dispersion. It is a matter of some practical 
importance that, although most monoclinic substances do not display dispersion 
markedly, if in a particular case the evidence for a type of dispersion that cannot be 
displayed in a substance of higher than monoclinic symmetry is clear, then monoclinic 
or triclinic symmetry may confidently be presumed. One example of interest is the 
mineral staurolite, the structure of which was determined by X-ray diffraction on the 
basis of an orthorhombic unit-cell as early as 1929; but in 1956 optical study disclosed 
clear evidence of horizontal dispersion and simultaneously an X-ray diffraction 
investigation of twinned crystals revealed the presence of doubled reflexions that 
required the hypothesis of monoclinic symmetry with B ~ 90° for their interpretation. 

In the triclinic system there are no symmetry controls of any kind on the indicatrix. 
Dispersion of highly complex nature is possible but is unlikely to be a rewarding 
subject of study. 

Dispersion, if it is clearly displayed, may provide a means of distinguishing, in the 
biaxial category, between orthorhombic substances and those of lower symmetry. In 
practice this can rarely be done with confidence. 
The first clue to the presence of anomalous dispersion is provided during 

preliminary examination between crossed polars in parallel white light by the 
observation of anomalous interference colours (especially browns and ‘Berlin’ blues) 
and of inability to extinguish completely. 

Optical classification of transparent crystalline solids 
Whether the material is in the form of single crystals mounted in oil, or grains 
produced by crushing and then mounted in oil, or a thin section, it should first be 
examined in parallel white light between crossed polars. If all the crystal grains appear 
isotropic on rotation of the stage, then the substance is either optically isotropic or, for 
one reason or another, all the grains are oriented so as to have an optic axis parallel 
to the microscope axis. If such grains yield no interference figure then the substance is 
optically isotropic, that is it is either non-crystalline or cubic. 

Ifsome crystals or grains appear isotropic while others exhibit interference colours, 
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the interference figures produced by isotropic grains should be examined. This will 
yield a clear distinction between uniaxial and biaxial optic axis figures. If the substance 
is uniaxial, the sign of the figure may be determined by the use of one or other accessory 
test plates. If the substance turns out to be biaxial, a search of other grains should be 
made until one that yields a centred or nearly centred acute bisectrix figure is found. 
The sign can then be determined by use of one or other accessory test-plate. 

Transparent crystalline solids can thus quite rapidly be assigned to the five 
categories: isotropic, uniaxial positive, uniaxial negative, biaxial positive, biaxial 
negative. 

If the crystals or grains display any recognizable shape some comment on the crystal 
morphology and on the orientation of the indicatrix with respect to habit can be made 
at this stage. For instance it may be possible to describe the morphology of a uniaxial 

substance as tabular or prismatic and by noting the shape of isotropic sections to 
distinguish tetragonal from trigonal and hexagonal substances. If the substance is 
biaxial and prismatic it may be possible to demonstrate that one of the principal 
vibration directions is parallel to the prism axis; if that is so the substance is more 
likely to be orthorhombic or monoclinic than triclinic. 

If the substance is biaxial, inspection of the acute bisectrix figure will yield a 

semi-quantitative estimate of the magnitude of the optic axial angle. If the isogyres 
remain in the field of view in the 45° position, then 2E < 110° and their separation 
will provide a semi-quantitative estimate of 2E. If the isogyres disappear from the 
field before the 45° position is reached the angle relative to the 90° position at which 
they go out of the field is some guide to the magnitude of 2E. If it is thought that 
2V ~ 90°, confirmation may be obtainable from the straightness of the single isogyre 
in the optic axis figure. In making such semi-quantitative estimates recourse should 
be had to oriented sections of substances of known 2V. 

If the approximate thickness of the crystal grains is known, observation of the 
closeness of the rings in a centred uniaxial figure enables the birefringence |e—o| to 
be recognized as small, moderate, or large. If a uniaxial crystal can be recognized from 
its habit as lying with its optic axis parallel to the microscope stage and if its thickness 
is known approximately, then a more precise estimate of |e —o| can be made from its 

interference colour between crossed polars. 
If the approximate thickness of a crystal or grain of a biaxial substance lying with 

its acute bisectrix parallel to the microscope axis is known, then the partial 
birefringence, / —« if positive or y — f if negative, is determinable from the interference 
colour at the centre of the acute bisectrix figure. 

Apart from such occasionally useful properties as dispersion or pleochroism we 
cannot take the optical characterization of a transparent crystalline solid further 

without actual measurement of one or more refractive indices, the subject of the next 
section. 

Measurement of refractive index 
For measurement of refractive index the material must be available either as small 
crystals or as grains produced by crushing. A portion of the specimen should be 
mounted in oil of some intermediate refractive index, say 1-600, unless there is 

evidence that the refractive indices are either very high or very low. 
For isotropic solids there is only one refractive index to be measured and that is 

independent of vibration direction. For anisotropic solids only the principal refractive 
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indices, o and e if uniaxial, «, f, and y» if biaxial, are in general worthy of precise 

measurement. The first task is therefore to identify the principal vibration directions. 
If we are dealing with a mount of small crystals, most of the crystals will have the 

same crystallographic direction parallel to the mictoscope axis. If the substance is 
uniaxial with tabular habit all the crystals will lie on the basal plane, which will yield 
a centred optic axis figure, and only o will be easily measurable; if it is prismatic e and 
o will both be measurable and the optic axis should be recognizable from the habit; 
if the dominant form is {hkl}, o will always be measurable and it may be possible, in 
particular cases, to measure e’ in an identifiable direction. If the substance is biaxial, 
a preparation of small crystals is less likely to provide orientations favourable for the 
determination of all three principal refractive indices than a preparation of crushed 
grains. A crystal that lies with its acute bisectrix parallel to the microscope axis will 
be suitable for the measurement of f and either « or y (depending on whether it is 
positive or negative); if two refractive indices are known the third can be estimated by 
measurement of 2V. Obtuse bisectrix and optic normal figures are not always reliably 
identifiable. 

In a preparation of grains produced by crushing, the situation will be substantially 
the same as for a preparation of small crystals if the substance has a single perfect 
cleavage. Otherwise a search should be made for grains that lie in recognizable 
orientations; few may be found, but they will be invaluable. 

The selected grain or grains should be worked towards the edge of the pool of oil 
with a fine needle mounted in a holder. Suitable steel needle holders are commercially 
available from biological equipment suppliers. But rather better, because it is lighter, is 
an artist’s fine paint brush from which the camel hairs have been removed by a solvent; 

the needle can then be pushed down into the soft wood and glued into place with a 
strong adhesive. The selected grains should be pushed out beyond the edge of the pool 

of oil so that they lie together in an easily recognizable salient of oil. Place a drop of 
amyl acetate with a dropper close to the salient of oil. The oil will be repelled and the 
grains can be worked into the amyl acetate further from the residue of the pool of oil. 
When the amyl acetate surrounding the selected grains has dried, after five minutes 
or less, they can be transferred to another slide by being picked up on the point of the 
needle and immersed in a drop of oil of approximately known refractive index. 

If the selected grain lies with a circular section of its indicatrix parallel to the 
microscope stage, that is if it appears isotropic, then it is immaterial in what direction 
the light passing through the grain is vibrating. If however it is anisotropic, it is 
important to isolate a single vibration direction for refractive index measurement. If 
we are dealing with a uniaxial crystal lying on a prism face, the crystal should be 
rotated into an extinction position between crossed polars, the analyser should be put 
out, and the Becke line test applied to yield information about the relative magnitude 
of either e or o with respect to the approximately known refractive index of the 
immersion medium. The grain should then be rotated to the other extinction position, 
with polars crossed; the analyser should be put out and the Becke line test applied 
again to give information about the other principal refractive index. If we are dealing 
with a biaxial crystal lying with its acute bisectrix parallel to the microscope axis, 
the two principal vibration directions should be identified by observation of the 
interference figure, and the Becke line test applied when each in turn lies parallel to 
the polarizer vibration direction. There is obviously no point in determining refractive 
indices for grains not in extinction positions. 

The next step is to place a drop of amyl acetate close to the drop of refractive index 
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oil, work the crystals into the amyl acetate, remove the residual oil with the edge of a 
piece of filter paper, wait until the amyl acetate has evaporated completely, and then 
immerse the crystals in a drop of oil of different refractive index. One proceeds in this 
manner until the Becke line test enables one of the principal refractive indices to be 
sandwiched between two oils of approximately known refractive index. Sets of 
standard oils are usually made up in refractive index intervals of 0-005. 

When the refractive index of the crystalline solid is close to that of the immersion 
medium differential dispersion is usually evident. Refractive index changes more 
rapidly with wavelength for liquids than for crystalline solids in general, and when 
the refractive indices are close a blue and a red Becke line can usually be observed to 
move in opposite directions on racking the microscope barrel assembly up. This is the 

stage at which the accuracy of the comparison of refractive indices can only be 

improved by changing to a monochromatic light source, that is to a sodium lamp. A 
closer match can be achieved by mixing adjacent oils in the standard set in various 
proportions. When the match between one principal refractive index of the crystal 
and the refractive index of the immersion medium, as revealed by the total absence 
of relief, is as good as can be achieved, the oil should be transferred to a refractometer 

and its refractive index measured. Since the null point is often difficult to recognize, 
oils which are just higher and just lower in refractive index than the selected crystal 
vibration direction should also be measured on the refractometer. In this way 

refractive indices are easily measurable to 0-005 or better; there is, except in special 

cases, little point in attempting greater accuracy than +0-001. 
All that remains is to measure the refractive index of the immersion medium and 

this is a simple task. For approximate work the Leitz—Jelley Refractometer is 
convenient, cheap, and requires only a small drop of liquid; it has the advantage of 
being usable in the high refractive index range up to 1:90. The instrument consists in 
essence of a slit B in a vertical steel plate and a slit C in another vertical steel plate 
at the same height as, and at a fixed horizontal distance from the first; a glass prism, 
precisely ground to a definite angle and cemented to a glass slide, is clipped to the 
second vertical plate behind the slit C (Fig 12.43). Light from the source A passing 
normally through the slide/liquid interface will be refracted upwards or downwards 

Fig 12.43 The Leitz—Jelley refractometer. The 
instrument is shown schematically on.the left. (a) and 
(b) show ray directions for a liquid of higher and lower x 
refractive index respectively relative to the glass of the 
refractometer prism. 

(a) p>p prism 

image of slit B 

calibrated scale 
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at the liquid/prism interface and the image of the slit B will be seen superimposed on 

a calibrated scale fixed on the first vertical plate. If a monochromatic light source is 

employed, usually a sodium lamp, the image of the slit B on the scale will provide a 

measure of the refractive index of the liquid in the angle of the prism. If white light is 

used the image of the slit B will be drawn out into a spectrum, but insertion of a filter 

that is strongly absorbing for Nap in front of the slit B produces a black band in the 

image corresponding to the refractive index of the liquid for A(Nap). The scale should 

be calibrated from time to time against pure liquids of known refractive index. 
More commonly used and more accurate is the Abbe Refractometer in its various 

modifications. Light is reflected from a mirror on to the lower prism Q (Fig 12.44), 
the upper surface of which is roughly ground so as to act as a diffuse source of light 
entering the liquid film. Both prisms P and Q are of high refractive index glass. Light 
will then impinge on the interface between the liquid film and the upper prism P at 
all angles ofincidence. Since the liquid must be of lower refractive index than the glass 
of the prism P for the instrument to be effective, light incident on the interface at 
grazing incidence will represent the limit of illumination of the exit face of the prism 
P, which is observed through the telescope T mounted on an arm attached to a 
calibrated scale. The telescope T is rotated until the intersection of its cross-wires 
coincides with the light/dark boundary in the image of the exit face of prism P. The 
light source must be monochromatic and is usually a sodium lamp. The use of the 
Abbe refractometer is limited by-the condition that the refractive index of the prism 
P must be greater than that of the liquid. The Abbe moreover requires a larger volume 
of liquid to produce a satisfactory film than the Leitz—Jelley. 

Itis appropriate at this stage to say something about immersion liquids suitable for 
refractive index determination. Criteria for the selection of liquids are that they should 
be miscible in pairs, relatively involatile, low in dispersion and colourless, but this 
last has to be sacrificed at high refractive index. Liquids that can conveniently be 
used for making up a standard set are medicinal paraffin (the proprietary Nujol is 

Cross wires 

light source 
* 

mirror 

Fig 12.44 The Abbe refractometer. The figure shows schematically the operation of the 
refractometer. The hinged prism Q is shown in the measuring position and hinged back (broken 
outline) to admit the liquid. The upper right-hand diagram illustrates the way in which measurements 
are made by bringing the boundary between light and dark fields into coincidence with the 
cross-wires and then reading the angular scale. 
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commonly used) 1-470, «-monobromnapthalene 1:659, and methylene iodide 1-740. 

Mixtures of Nujol and «-monobromnapthalene and of «-monobromnapthalene and 
methylene iodide can simply be prepared at refractive index intervals of 0-005 by 
running appropriate volumes of the pure liquids from burettes into small green glass 
dropper bottles, mixing thoroughly, checking the refractive index of the mixture on the 
Leitz—Jelley refractometer, and adjusting the refractive index to the desired value by 
running in a few more drops of either the lower or higher refractive index component. 

Mixtures containing methylene iodide should be kept in bottles made of dark brown 
glass or painted black and stored away from direct sunlight to minimize the 
photochemical release of iodine. Such a set is suitable for general use in the 
mineralogical laboratory. 

Immersion liquids below the refractive index of Nujol can conveniently be prepared 
from glycerine (1:47) and water (1-333) mixtures. These should not be kept for more 
than a few weeks because glycerine takes up water from the atmosphere quite rapidly. 

Immersion liquids of refractive index greater than 1-74 (methylene iodide) present 
something of a problem. All the liquids available are either strongly coloured or 
hydrolyse rapidly in a moist atmosphere or both. Solutions of sulphur in methylene 
iodide can be used to extend the range up to 1:78 and they are succeeded by mixtures 
of methylene iodide and phenyl-diiodoarsine (1:84). Solutions of sulphur and 
phosphorus in methylene iodide extend to refractive indices as high as 2-06. Various 
other solutions and low melting point salts have been used as high refractive index 
immersion media. 

It is occasionally possible, when euhedral crystals of a uniaxial or orthorhombic 

substance are concerned, to measure the principal refractive indices without 
intervention of a liquid by making use of the minimum deviation property of prisms. 

The minimum deviation experiment is fully described for isotropic substances in 
elementary textbooks of optics; we shall concern ourselves here only with its extension 
to anisotropic prisms. If a prismatic crystal of quartz (trigonal) with well-developed 
faces {1010} is set up on a horizontal circle goniometer with its triad axis parallel to 
the axis of rotation of the stage, two minimum deviation rays will be produced by a 
parallel beam of monochromatic light incident on the (1100) face and leaving through 
the (0110) face (Fig 12.45). In this case the vibration direction of one ray will be parallel 
to the optic axis and that of the other will be parallel to (0001) so that by accurate 

A Fig 12.45 Determination of refractive 
cA\ indices by measurement of minimum deviation 
a angles. Insertion of the polaroid analyser 

/ \ enables e and o to be identified. 
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measurement of the angles of minimum deviation the refractive indices e and o can 

be determined. Insertion of a piece of polaroid of known transmission direction in the 

path of the emergent ray enables its vibration direction to be related to the 

morphology of the crystal so that e and o can be idéntified. The angle of minimum 

deviation D is related to refractive index by the easily derived expression 

sin3(A + D) 

~  sin(SA) 

where A is the prism angle (in this case 60°). It is immediately obvious that the size 
of prism angle which can yield a minimum deviation position is limited by the 
condition p sin (+A) < 1; for refractive indices about 1-5, the largest permissible value 
of A is about 84°. The method can be extended to determine a, f, and y for 
orthorhombic crystals displaying forms such as {hkO} and {Okl}; a pair of faces of the 
form {hk0} would yield either the refractive indices w, and w, with the minimum 

deviation ray travelling in the crystal parallel to y or yw, and yu, with the ray parallel 

LOX: 

Extinction angles 

The angular relationship between the extinction positions and any identifiable 
crystallographic direction in the field of view may yield useful information about 
either the indices of the plane on which the crystal grain is lying, or, if the attitude of 
the crystal grain is known, about the orientation or sign of the indicatrix. Furthermore 
the measurement of extinction angles on sections of partially known orientation may 
yield diagnostic information of value to the mineralogist. 

Basal sections of uniaxial crystals, that is sections lying on a plane perpendicular 

to the axis of high symmetry, are of course isotropic and no question of extinction 
position arises. Prismatic crystals or sections, that is sections lying on (hkO), of uniaxial 
minerals will extinguish when their length, which is parallel to the optic axis, lies 
parallel or perpendicular to the polarizer vibration direction; such sections are said 
to have straight extinction with respect to their prism axis. A crystal grain or section 
of a uniaxial crystal lying on some general plane (hk!) will in general have its vibration 
directions inclined to the direction of intersection of the (hkl) plane with the boundary 

planes of the crystal (if euhedral) or with cleavage planes: the angle between the slow 
(or fast) extinction position and the crystallographic direction (crystal edge or cleavage 
trace)is known as the extinction angle. Sections having non-zero extinction angles are 
said to display inclined extinction. The extinction angle of a given section is simply 
determined by rotating the stage until the cleavage trace or crystal edge lies parallel 
to the E—W cross-wire and reading off the angular position of the stage on the vernier 
as 0, ; then rotating the stage to the nearest extinction position and reading the vernier 
again as 0,; then rotating the stage anticlockwise through 45° to bring the measured 
extinction position parallel to the accessory plate slot so that the relevant vibration 
direction can be labelled fast or slow. If it turns out to be fast, then fast cleavage 
trace = 6,—0, and slow « cleavage trace = 90°—0,+6,. If the orientation of the 
section is known to be such that the trace of an indexed cleavage lies parallel to 
[UVW] and the slow vibration direction is e’ then we can write e’ ~ [U VWl|= 
90°—6, +65. 

By way of example we can conveniently consider a grain produced by crushing an 
hypothetical tetragonal mineral (a = 5-00 A, c = 8-00 A) with perfect {111} cleavage. 
Such a grain will lie naturally on a cleavage face and let us arbitrarily label that face 
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Fig 12.46 Extinction angle in a (111) cleavage flake of a tetragonal mineral. The stereogram 
shows the location of the cleavage traces c,, c,, C, at the intersection of the great circles 
(111), (111) and (111) with the great circle (111). The vibration directions e’ and o are located 
by the Biot—Fresnel construction. The drawing on the right shows the appearance of the cleavage 
flake with e’ bisecting the acute angle between the c, [101] and c, [011] cleavage traces. 

(111). The extraordinary and ordinary vibration directions will then be the zone axes 
e'[ 112] and o0[110] (Fig 12.46). The remaining cleavage planes (111), (111), and (111) 
will intersect the plane on which the cleavage fragment lies in the zone axes C,[ 101 ], 
C,[011], and C3[110]. 

ic 
Now (hie 1) = 04 Dol) =edan, tsintan, a ibe 

and (111) A (FI1) = 2 tan~12¢ = 1398 

It will be recalled that the empirical criterion for cleavage planes to be evident as 
cleavage traces is that they must be within 20° of being parallel to the microscope 

axis; in this example the microscope axis is | (111) so that for a cleavage plane (hkl) 
to be visible 70° < (111) A (hkl) < 110°. Therefore only the (111) and (111) cleavage 
traces, C, and C, in the figure, will be visible. The cleavage fragment will display 
symmetrical extinction with equal extinction angles of 22° between the e’ vibration 
direction and the traces of the (111) and (111) cleavages. If the crystal is optically 

positive, then the extinction angle for the (111) section is described as symmetrical, 

slow A {111} cleavage traces = 22°. 
In a thin-section of an aggregate of our exemplary tetragonal mineral most grains 

will have some general direction parallel to the microscope axis. Extinction in a few 
grains will be symmetrical or straight with respect to the cleavage traces and there 
will be no traces of bounding planes, only irregular edges, to most grains; in general 
inclined extinction will be observed and extinction angles will have no practical 
significance. 

Passing now to biaxial crystals and considering first the orthorhombic system, let 
us take as the first example a substance with the properties « || y, y || x, B || z, 2V, = 60°, 
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Fig 12.47 Extinction in an orthorhombic mineral with perfect {100} and {001} cleavages. The 
upper stereogram shows the orientation of the indicatrix. The lower left-hand stereogram shows 
the vibration directions, V and V’, for a general direction of propagation g. The observation of 
Straight extinction in (100) and (010) cleavage flakes is illustrated; a stepped cleavage flake also 
displays straight extinction. The lower right-hand stereogram shows the orientation of sections 
which display two, one, or no cleavage traces; the field of the poles of sections displaying (010) 
cleavage is shown by vertical hachures and of sections displaying (100) cleavage traces by 
horizontal hachures. 

cleavage perfect parallel to {100} and {010}, crystals prismatic about [001]. A 
preparation of grains produced by crushing may be expected to contain a majority 
of grains with straight extinction and some with inclined extinction (Fig 12.47). The 
crystal grains will show a strong tendency to cleave along the perfect cleavage planes 
and to lie on those planes. Those grains lying on (100) will have straight extinction 
relative to the (010) cleavage trace which will be parallel to the length of the grain, the 
crystallographic z-axis; therefore for such grains slow A z = 0°. Those grains lying on 
(010) will likewise have straight extinction, but here relative to the (100) cleavage trace 
which will lie parallel to the z-axis; therefore for such grains fast \ z = 0°. Some grains 
will have failed to cleave cleanly and will lie on irregular surfaces composed of (100) 
and (010) steps; such grains will display straight extinction relative to their probably 
indistinct cleavage traces and may be length-slow or length-fast depending on the 
relative development of the (100) and (010) steps. Some grains will lie in completely 
general orientations. 
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Fig 12.48 Extinction in an orthorhombic mineral with perfect {hkO} cleavage. The stereogram 
shows the orientation of sections displaying two, one, or no cleavage traces; the field of the poles 
of sections exhibiting (AkQ) cleavage is indicated by vertical hachures and that of sections 
exhibiting (AKO) cleavage by horizontal hachures. The sketch illustrates symmetrical extinction in 
an (001) section. 

A thin-section of a crystal aggregate of such a substance may be expected to contain 
a majority of grains in general orientations. A stereogram displaying the Biot—Fresnel 
construction for such a general direction is shown in Fig 12.47. Vibration directions 
will be V (slow) and V’ (fast). Only the (010) cleavage will be apparent as a cleavage 

trace on the section shown. The extinction angle will be 0 = slow (010) cleavage 
trace. Itis apparent from the figure that many general sections will display no cleavage 
traces. 

An orthorhombic substance with prismatic cleavage {hk0} will show two cleavage 
traces on sections within about 20° of (001) and extinction will be approximately 
symmetrical with respect to them (Fig 12.48). If the form of the cleavage and the 
unit-cell dimensions are known, observation of whether the vibration direction in the 

acute angle between the cleavage traces is slow or fast relative to that bisecting the 
obtuse angle coupled with identification, from the interference figure on a two cleavage 
section, of the [001] direction as Bx,, Bx,, or B enables the orientation of the 
indicatrix to be completely determined. For example, consider an orthorhombic 
substance with {110} cleavage such that (110) ~ (110) =60° and suppose that 
sections displaying the cleavage traces have the slow vibration direction parallel to 
the bisector of the acute angle between the cleavage traces, that is parallel to [010]. 
Therefore, either y or f is || [010]. Observation of the interference figure produced by 
sections showing two cleavage traces (some searching of the thin-section may be 
necessary before a more or less centred figure is found) will then define the orientation 
of the indicatrix completely (Fig 12.49). 

In the monoclinic system symmetry controls on the indicatrix are reduced and 
consequently straight extinction relative to cleavage traces or crystal edges will be 
restricted to sections in a limited range of special orientations. Let us consider a 

monoclinic substance with well developed prismatic cleavage {hk0} in various selected 
orientations of the indicatrix. Suppose that 2V, = 60°, that the optic axial plane is 
(010) and that y lies in the obtuse f angle (i.e., in the angle between the positive 
directions of the x and z axes). Cleavage traces will be visible as indicated on Fig 
12.50(a). Sections whose normals are within about 20° of [001] may display 
symmetrical extinction with respect to two cleavage traces. It is practically useful to 
consider the variation of extinction angle @ with orientation of sections in the [001] 
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Fig 12.49 Determination of the orientation of the indicatrix of an orthorhombic crystal with 

perfect {110} cleavage by observation of the interference figure produced by a two cleavage 

section. The angle between the face normals (110) and (110) is taken to be acute. If the trace of 

the optic axial plane is found to bisect the acute angle between the cleavage traces, then 

B\\ [100]; if it bisects the obtuse angle, || [010]; and if a flash figure is observed || [001]. It only 

remains to determine whether the bisector of the acute angle between the cleavages, the y 

direction, is fast or slow. 
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zone, that is for sections between (100) and (010), only some of which will display a 

single direction of cleavage trace. The variation of ¢ with orientation of the section 

is shown in Fig 12.50(b) for two values of y ~ c. The calculated extinction angle 

varies from 0° for the (100) section to its maximum value, equal to y A c, for the (010) 

section. The important point is the slowness with which @ falls off from its maximum 

value as @ decreases from 90°. So that the maximum extinction angle relative to the 
cleavage trace observable on examination of a large number (say, 20) of random 
sections showing a single cleavage trace will be close to ® = y A c unless the cleavage 

(hkO) is close to (010). 
In the other type of orientation of the indicatrix in the monoclinic system, with 

the optic axial plane parallel to [010], the extinction angle relative to traces of a 
prismatic cleavage {hk0} in (hk) sections varies rather differently with orientation 
(Figs 12.50(c), (d)). Here the fall off from the calculated maximum extinction angle, 
equal to y A cin the example, is more rapid as the plane of the section moves from 
(010) towards (100) and the maximum extinction angle observable on sections 

showing one cleavage trace may not provide even an approximate measure of y A c. 

Here again of course sections nearly perpendicular to [001 ] will display two cleavage 
traces with symmetrical extinction. 

It is appropriate at this stage to make the point that prismatic orthorhombic crystals 
will display straight extinction relative to the zone axis of the prism in mounts of 

euhedral crystals and small or zero extinction angles relative to the length of grains in 
thin-section. Orthorhombic substances with prismatic cleavage will tend to display 
zero or small extinction angles relative to the cleavage in sections showing a single 
direction of cleavage trace. On the other hand prismatic monoclinic crystals will in 
general display inclined extinction relative to the prism axis (unless the prism axis is 
[010] asis rarely the case) and the maximum extinction angle observable will represent 
the angle between one of the principal vibration directions and the prism axis. In 
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Fig 12.50 Extinction angles in a monoclinic crystal with perfect {hkO} cleavage. The stereograms 
(a) and (c) show the ranges of orientation of the poles of sections displaying two (cross-hatching), 

chures), or no (blank) cleavages when (AkO): (100) = 60°. The stereograms also 
show the optical orientation for y ~ z= 55°, 2V, =60° when the optic axial plane is parallel to 
(010) in (a) and perpendicular to (010) in (c). The graphs show the variation of extinction angle 
@ =slow a z with 8 = (100): (A’k'0) for (A’k'0) sections; (b) illustrates the case where the optic 
axial plane is parallel to (010) as in (a); and (d) illustrates the case where the optic axial plane is 
perpendicular to (010) as in (c). On each of the graphs two curves are shown, one for y A z= 55° 
as in the accompanying stereogram and one for y A z= 20°. In the examples illustrated in (a) and 
(c), where (AKO) : (100) = 60°, cleavage will only be apparent in (h’k'0) sections with 10° < 8 < 50°. 
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thin section monoclinic substances with prismatic cleavages will display inclined 

extinction relative to the cleavage in sections showing a single cleavage trace and the 

maximum extinction angle may be large. Optical study cannot show conclusively that 

a particular substance is monoclinic, only that it has less than orthorhombic 

symmetry. 

In triclinic substances one would expect never to find straight extinction relative to 

any morphological feature or cleavage, but many triclinic substances have structures 

that depart only slightly from monoclinic symmetry and may consequently exhibit 

symmetrical or straight extinction in appropriate sections within the limits of 

accuracy of optical measurements. The task of demonstrating that a substance is 

triclinic devolves on single crystal X-ray diffraction studies; no useful general guide 

can be given for finding evidence of triclinicity during preliminary optical 

examination. Relatively few substances are triclinic, but some of them are, in one 

way or another, rather important. 

Representation surfaces other than the indicatrix 

We have up to this point considered optical anisotropy in crystals exclusively in 
terms of the indicatrix because polarized light microscopy is primarily concerned with 
vibration directions. But in other contexts the directions in which light rays travel 
through the anisotropic medium are of interest and so for the sake of completeness 
a brief discussion of two other representation surfaces,® the ray velocity surfaces and 

the wave velocity surfaces, is presented here. 

The ray velocity surface is defined as a surface such that the tangent plane at any 
point is at a perpendicular distance from the origin proportional to the velocity of 
propagation of a wave front parallel to the tangent plane. The radius of the ray velocity 
surface at any point is the ray direction and the normal from the origin to the tangent 
plane at that point is the wave normal (Fig 12.51(a)). In a uniaxial substance the 

ordinary ray travels with constant velocity proportional to o ' and therefore 
generates an ordinary ray velocity surface that is spherical with radius 0~'; the 
extraordinary ray velocity surface is an ellipsoid of revolution with semi-axes o ! 
parallel to the optic axis and e~' in the plane perpendicular to the optic axis (Fig 
12.51(b), (c)). The ray velocity surface is thus a double surface. The extraordinary ray 
velocity surface has the equation 

x2 y? x2? 1 
oe ee | ie eee 
ge GC SAGs a \e" e707’ 

and is thus geometrically similar to the indicatrix 

2 2 xy —S+5=1. 02 e2 

The wave velocity surface is defined as a surface such that the radius at any point 
is proportional to the velocity of a wave front whose normal is radial at that point. 
In Fig 12.51(a) W is a point on the wave velocity surface and R lies on the ray velocity 
surface. The wave velocity surface is likewise a double surface. The ray and wave 
velocity surfaces may be seen to be distinct for the simple geometrical reason that the 
tangent and radius to an ellipse at any point are not in general perpendicular. 

The distinction between ray and wave normal directions is made clear by 

° These are not representation quadrics in the sense of chapter 11. In spite of the possibility of confusion 
the term ‘representation surface’ is useful. 
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Fig 12.51 Ray velocity surfaces. (a) shows a radius OR of the ray velocity surface and the 
normal OW from the origin O to the tangent plane at R; the ray velocity surface is constructed so 
that OW is proportional to the rate of advance of a wave whose wave normal is OW. (b) and (c) 
show sections of the ray velocity surfaces for positive and negative uniaxial crystals. 

considering a plane wave front incident normally on the interface between an isotropic 
and an anisotropic (uniaxial) medium such that the optic axis of the latter is inclined 
to the interface. Application of Huyghens’ Principle (Fig 12.52(a)) leads to the 
following conclusions: (i) the ordinary and extraordinary rays diverge, (ii) the ordinary 
ray passes through the interface undeviated, in accordance with Snell’s Law, for the 
case of normal incidence, (iii) the extraordinary ray is deviated in the case of normal 
incidence, (iv) the extraordinary ray is not generally perpendicular to its wave front. 
The passage of the extraordinary wave motion through the anisotropic medium can 
therefore be described in terms of the rate of advance of the wave front either in the 
ray direction (ray velocity) or in the wave normal direction (wave velocity). The 
former gives rise to the ellipsoidal ray velocity surface; the latter to the ‘ovoidal’ wave 
velocity surface. 

The relationship between the three representation surfaces can be seen by 
considering a central section of a uniaxial indicatrix, an ellipse with semi-axes o and e 
(Fig 12.52(b)). If OV represents an extraordinary vibration direction for light 
propagated in the plane of the section, the corresponding wave front will lie in the 
plane defined by OV and the normal to the section, so that the wave normal ONN’ 
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(b) 
Fig 12.52 Wave velocity surfaces. (a) illustrates the application of Huyghens’ principle to a 
uniaxial crystal. The e’ vibration direction lies in the plane of the diagram parallel to the E wave 
front; the o vibration direction is perpendicular to the plane of the diagram. (b) illustrates the 
relationship of the ray velocity surface for the E-ray (the locus of points such as R), the wave 
velocity surface (the locus of points such as N) and the indicatrix in a grossly exaggerated 
uniaxial case. 

lies in the plane of the section at right-angles to OV. The corresponding ray direction 

ORR’ will be such that the tangent to the indicatrix at R’, which is parallel to the 
tangent to the ray velocity surface at R, is perpendicular to ONN’. It follows that in 
general the extraordinary ray direction is a line joining the origin to the intersection 
of the appropriate tangent plane to the indicatrix with the plane containing the 
vibration direction and the wave normal. The ordinary ray direction will lie parallel 
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to the wave normal direction ONN’. Since birefringence is quite a small fraction of 
the mean refractive index for most crystalline solids, the divergence of ray and 
wave normal will not be great under the conditions of polarized light microscopy. 
The indicatrices that appear in the figures of this chapter are all grossly exaggerated 
for emphasis. The term ‘direction of propagation’ which has been used throughout 
refers strictly to the wave normal direction. 

It is not worth while here to explore the velocity surfaces for biaxial crystals. 

Polarizing devices 

The classical polarizing device is the Nicol prism, the understanding of which provides 
an instructive exercise in the application of the ray velocity surface. In practice, the 
Nicol prism has been almost entirely superseded by Polaroid film, which depends on 
extreme anisotropy of absorption for its polarizing quality. These two devices will be 
described in turn. 

The Nicol prism is constructed from a large cleavage rhombohedron of clear, 
flawless calcite (the variety Iceland Spar) about three times as long as it is broad. The 
triad axis of symmetry (the optic axis) is symmetrically disposed with respect to the 
three faces whose angles are all obtuse at the same corner of the cleavage 
rhombohedron. The two parallel end faces of the rhombohedron are then ground 
so that the plane angle of one pair of side faces is reduced from its natural value of 
70°53’ to 68° (Fig 12.53(a)); this brings the end faces perpendicular to the diagonal 
plane along which the prism is cut. All three cut surfaces are polished and the two 
halves are cemented together with a thin film of Canada Balsam. 
When unpolarized light, parallel or nearly parallel, to the length of the Nicol prism, 

is incident on one of the end faces, refraction occurs at the air/calcite interface and 

Fig 12.53 The Nicol prism. (a) shows the way in which a cleavage rhombohedron of calcite 
is cut and its end surfaces ground. (b) shows the paths of the O and E rays through the Nicol prism; 
the vibration directions for the O and E rays are respectively perpendicular and parallel to the 
plane of the diagram. 
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both ordinary and extraordinary rays travel through the leading half of the Nicol 

prism at angles differently inclined to the incident ray direction. The refractive indices 

of calcite are e = 1-486, o = 1:658 and that of Canada Balsam is 1-530. The o-ray is 

therefore deviated more than the e-ray at the air/calcite interface. When it reaches the 

Balsam film the angular relations are such that the e-ray passes through undeviated, 

but displaced by a minute amount since the film is thin; the e-ray travels through the 

following half of the prism, is refracted at the calcite/air interface, and emerges parallel 

to the incident ray direction (Fig 12.53(b)). The refractive index for the o-ray in calcite 

is greater than that of Canada Balsam and the o-ray impinges on the calcite/balsam 

interface at a greater angle of incidence than the e-ray. The angle of incidence of the 

o-ray exceeds the critical angle for refraction (sin~ ' 1-530/1-658 = 67°20’); the o-ray 
is therefore totally reflected at the calcite/balsam interface and passes out through the 
side of the prism to be absorbed in non-reflecting mounting material. The only light 

transmitted by the Nicol prism is the e-ray which vibrates in the plane containing the 

incident ray and the optic axis, that is, for practical purposes, in the plane defined by 
the microscope axis and the bisector of the obtuse angle of the upper end face of the 
Nicol prism which is visible through the central aperture of the stage. 

The disadvantages of the Nicol prism are its expense, its bulk, and that the 
maximum possible divergence of the emergent beam is only 24°. 

All these disadvantages are lacking in Polaroid film, which is plastic sheet stretched 
between rollers almost to breaking point and dyed with an organic dye; the film is 
mounted between optically worked glass flats. The details of the process are patented 
but the principles are well known. Cellulose and certain plastics (e.g. Scotch tape or 
Sellotape) become strongly birefringent on extreme stretching. The dye, which forms 
a thin film on the surfaces of the plastic, is strongly pleochroic and is absorbed so that 
its molecules are oriented with respect to the stretching direction in the plastic. 
Substances such as quinine trisulphate ditriiodide (herapathite, the active principle of 
the earliest types of polaroid) are so strongly pleochroic that in one of the principal 
vibration directions there is nearly total absorption except at the long wavelength 

end of the visible range. Other types of polaroid film have been produced by strain 
orienting a strongly pleochroic iodine polyvinyl alcohol complex. 

Interference effects between parallel polars 
We have hitherto restricted ourselves to consideration of interference effects between 
crossed polars, the normal situation in polarized light microscopy and the most 
informative, but the polarizer can be rotated in most microscopes and it is a matter 
of slight practical and some theoretical interest to consider the interference effects 
produced by an anisotropic crystal plate between polars at some general angle ¢. 

Let us suppose that the vibration directions in the specimen crystal plate on the 
microscope stage correspond to light vectors y, and y, (refractive indices y, and [> 
respectively), that y,; makes an angle 6 with the polarizer vibration direction, and that 
the analyser vibration direction makes an angle ¢ with the polarizer vibration 
direction (Fig 12.54). If the plane polarized wave-motion incident on the crystal plate 
is represented by y = A sin wt, then immediately on emergence from the crystal plate 
the two wave-motions will be 

y, = Acos@ sin at, 

y2 = Asin @ sin(wt+q). 
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rz 

(a) (b) 
Fig 12.54 Interference between polars inclined at a general angle @. The vibration directions 
in the crystal are y, and y, such that y, makes an angle @ with the polarizer vibration direction. 
The analyser vibration direction makes an angle @ with the polarizer vibration direction. 

The light wave motion transmitted by the analyser will have resultant light vector 

y, = Asin 6 sin (fp —8) sin (wt+a)—A cos 6 cos (¢ — 8) sin at. 

The general equation becomes more tractable in the special case of 0 = 45°, then 

A A ; 
sin (@ —45°) sin (wt+ a) i cos (@ —45°) sin wt 

vO Ta J 
= (sin d —cos ¢) sin (wt +a) -5 (sin @+cos ¢) sin wt 

A, ’ s A ; ; 
= sin ¢ [sin (wt +a) —sin wt] — z 008 ¢ [sin (wt+a)+sin ot] 

‘ i Oo ae o 
= Asin @ sin = cos (or+3)-<4 cos cos; sin (+3). 

The two terms in this expression represent respectively the cases of crossed (@ = 90°) 
and parallel (¢ = 0°) polars. For crossed polars, as we found earlier 

y, = A sin 5 cos (+5), 

and for parallel polars, 

ines OL 
y, = A cos; sin Jor} 

The condition for total destructive interference between parallel polars at 
6 = 45° is then costa =0, ie. « =(2n+1)z. But we have already shown that 

a = (2nd/A)(uU2—,) so that the condition for destructive interference here becomes 
d(p> —) = 4(2n+1)A. A quartz wedge in the 45° position between parallel polars in 
monochromatic light will therefore display black bands at distances from its thin end 
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P Fig 12.55 The sequence of dark 

eee bands in a quartz wedge in the 45° 
position between crossed and parallel 
polars: for dark bands between crossed 

' polars d. Au =n and between parallel 
polars d. Au =4(2n+1) A. 

crossed 
polars ® 

proportional to odd half multiples of 4 in contrast to the crossed polars case where 
the black bands are at distances proportional to A (Fig 12.55). In white light the quartz 
wedge between parallel polars will display a sequence of colours similar to that of 
Newton’s scale. In general, the colours displayed at a particular point on the wedge 
in crossed and parallel polars are complementary, since the condition for destructive 
interference of a particular wavelength in the one case, sina = 0, is the condition 
for maximum transmission of that wavelength in the other, cos 5a = 1. In particular 
the sensitive tint bands characteristic of the crossed case become greenish-yellow 
bands in the parallel case. Rotation of the polarizer from the crossed to the parallel 
position serves to distinguish between high and low whites: with the polars parallel 
large values of d(j.—j,) will still give high whites whereas d(u,—p,) ~ 3000A will 
produce an interference colour similar to first order sensitive tint (A ~ 6000 A cut out 

for n = 0). 

Returning briefly in conclusion to the general equation and substituting @ = 0 we 

have then 

y, = —Acos¢ sin at. 

No interference effects will be observed when the vibration directions in the specimen 
crystal plate are maintained parallel and perpendicular to the analyser vibration 
direction irrespective of the angle between the polarizer and analyser vibration 
directions, but the intensity of light transmitted by the analyser will vary as cos? ¢. 
Extinction will of course be observed when the polars are crossed. 

Special stages 

The most restrictive condition of polarized light microscopy, inability to tilt the 
specimen crystal in three dimensions with respect to the plane of the stage, can be 
overcome by the use of either of two types of special stage. These are the universal stage, 

which is specifically designed for work with thin sections of polycrystalline materials, 

and the spindle stage, which is appropriate for single crystal grains. 
In essence the universal stage is a device for orienting a crystal plate or 

polycrystalline specimen in three dimensions by rotation about a number of mutually 

perpendicular axes. The standard stage has four axes and the microscope stage adds 
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a further vertical axis of rotation. The specimen, cemented between a shortened 
microscope slide and a cover glass, is sandwiched between glass hemispheres with oil 
films at the glass/glass interfaces. The inner stage axis A, rotates the specimen in its 
own plane and coincides with the microscope axis when all the other axes are set at 
zero; A, is used initially to set the selected crystal to extinction. The axis A, rotates 

about a horizontal N—S axis and is used to bring one of the mirror planes of the 
indicatrix vertical and parallel to the N—S cross-wire. The axis A; is vertical, parallel 
to the microscope axis, and is used to bring the second vertical symmetry plane of the 
indicatrix parallel to the N—S cross-wire. The axis A, is horizontal and lies E—W; 

it is equipped with a graduated drum with a vernier scale and is used to search each 

vertical symmetry plane in turn for the emergence of optic axes. When the microscope 
stage with the universal stage attached is rotated about the axis of the former (A,) so 

as to bring the crystal into the 45° position a direct determination of 2V can be 
achieved. A general view of the 5-axis universal stage is given in Fig 12.56. 

It is not our purpose to describe the techniques associated with the use of the 

universal stage. Such are adequately dealt with by Emmons (1943) and Muir (1973). 
The universal stage was an instrument of central importance in mineralogy and 

petrology when the only means of estimating the composition of a particular crystal 
belonging to a solid solution series was by relation of its optical properties to those 
determinable for analysed samples of uniform composition. The advent of the electron 
probe (see chapter 15) however about 1960 provided a more certainly reliable and 
comprehensive means of determining the composition of a single crystal grain. The 
universal stage remains important for the precise measurement of 2V(to+2°), for 
determining the orientation of the indicatrix with respect to morphological features, 
for the study of twinning and for the study of preferred orientation in polycrystalline 

aggregates. 

The descriptions of a great variety of spindle stages are in the literature. The 
instrument consists essentially of a spindle, the angular rotation of which is 
measurable, on which is mounted a single crystal, the mounting to which the crystal 

Fig 12.56 The universal stage. 
The figure shows 
diagrammatically the relationship 
of the five axes A,—A, of the 
stage. The microscope stage 
provides an additional axis of 
rotation A,. When all axes are set 
at zero A, and A, are parallel to 
the microscope axis A,; A, and 
A, are oriented E—W parallel to 
the microscope stage; and A, is 
oriented N—S. The axis A,, which 
is omitted in some models, allows 
A, to be inclined to the 
microscope axis. Movement 
about any axis changes the 
directions of all axes with lower 
subscripts in the sequence 5, 4, 
SanU ade 
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Fig 12.57 The spindle stage. The 
figure shows in plan and in elevation 
the essentials of the instrument 
described by Roy (1965). The 
crystal a is cemented to a fine glass 
fibre b attached to the ball-joint c 
and slides d. The slides are screwed 
on to the steel rod or spindle e 
which is free to rotate inside a 
closely fitting fixed brass tube. 
Rotation of the spindle is achieved 
by turning the knob g; the amount 
of rotation can be read from the 
graduated drum f and its associated 
vernier. The spindle stage is clamped 
to the microscope stage /. The oil 
cell / has a cavity k containing a pool 
of oil of a convenient refractive 
index; / rests on, but is not fixed to, 
the microscope stage. 

is cemented being angularly adjustable and capable of being centred with respect to 
the microscope axis; the crystal is in all types immersed in a cell filled with oil of 

refractive index close to $(7 +). One of the best modern spindle stages is that devised 

by Roy (1965) and illustrated in Fig 12.57. 
The spindle stage provides a method of direct estimation of 2V and of determination 

of the orientation of the indicatrix with respect to morphological features. Fibres can 
be cemented to the crystal parallel to the a, 6, or y vibration directions; transfer of 
the crystal to an oscillation camera then enables the relation between the principal 
vibration directions and the crystallographic axes to be determined unambiguously. 
The spindle stage is invaluable for the study of dispersion of 2V and of the variation 
of absorption with 4. 

Optical activity 

It was observed by Arago in 1811 that when plane polarized light travels through a 
parallel-sided plate of quartz in the direction of the optic axis the plane of polarization 
is rotated. He noticed that some (0001) plates of quartz produced rotation to the right, 
others to the left; that the amount of rotation was proportional to the thickness of 
the quartz plate and approximately proportional to 4~ 7. In white light then extinction 
will not be observed in a fairly thick (0001) section of quartz since the plane of 

polarization will be rotated through a different angle for different wavelengths. As the 
analyser (or polarizer) is rotated a few degrees from the crossed position in the 
appropriate direction the field will acquire an interference colour representing 
extinction for a particular wavelength. 

In order to explain such optical activity displayed by uniaxial crystals for light 
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travelling parallel to the optic axis it is necessary to make use of the concept of 
circularly polarized light. Any linear simple harmonic motion such as 

y=Asinat 

can be resolved into two circular motions: 

x Tey ee cate ie. x?7+y7 = Ay 1, a5. 9 V1 5 Se eteC oma ala Vf 2 

x ahs Bn faut 24 y2 = a gue 2 V2 5 jl, 10 X27 yz = 2 

These are circular motions of equal amplitude but moving in opposite senses. In 
optically inactive substances they will travel through the crystal parallel to the optic 
axis with equal velocity and can at any stage of their passage through the crystal or 

after emergence from the crystal be recombined as a single linear simple harmonic 
motion. 
We shall suppose that in optically active crystals the two circular disturbances of 

opposite sense travel with different velocities. A phase difference « will then be set up 
as the two circular motions travel through the crystal plate: 

A. 
x5 = 7 008 wt, V1 = 7 sinat 

A A. 
= — 7 608 (wt + a), yo = 7 sin (wt +4). 

The resultant will be 

A 
X =X,+X,= 5 {cos wt —cos (wt + a)} 

fi 

= Asin sin (ox +3) 

Baie ; 
Y=y,+y2.= 5 {sin wt + sin (wt + a)} 

= Acos-=si es = Acos;sin| wt +> J. 

These are mutually perpendicular vibrations of the same phase which can be combined 
(Fig 12.58(a)) into a single linear simple harmonic motion at an angle p to the incident 
simple harmonic motion such that 

tan p = Asin 70 _ ay 

A cosa 2 

F _ 4 
1.€. Pa 

The phase difference a can be evaluated in terms of the refractive indices associated 
with the two circular motions as 

2nd 
oO = (os —[y) 
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(a) 
(b) (c) 

Fig 12.58 Optical activity. (a) shows the combination of the mutually perpendicular vibrations 
of the same phase produced in an optically active crystal from circular disturbances of opposite 
sense travelling with different velocities; the angle of rotation of the plane of polarization relative 
to the incident beam is p. (b) and (c) are ray velocity surfaces for an optically inactive and for an 
optically active uniaxial crystal respectively. 

where dis the thickness of the (0001) plate, 2 is the wavelength of monochromatic light 
in vacuo, and [;, 2 are the refractive indices for light travelling parallel to [0001]. 
The angle of rotation is thus p = (md/A) (1 — pW). 

Optical activity can be displayed on a representation surface. The indicatrix is not 
particularly well suited for the representation of optical activity; the ray velocity 
surfaces are more appropriate (Fig 12.58). It will be immediately obvious from the 
figure that the surfaces are parallel but do not touch in the radial direction of the optic 
axis. We shall not pursue the study of optical activity by consideration of light 
travelling in directions inclined to the optic axis. 

The most striking manifestation of optical activity commonly encountered is in 
interference figures of thick (0001) sections of quartz. The centre of the axial cross is 
missing, the centre of the field being filled by a circular area of uniform interference 
colour. 

Optical activity is rarely encountered in polarized light microscopy and is 
insignificant in the study of transparent solids. Very few substances display marked 
optical activity because the effect, even when permitted by the symmetry of the 
structure, is generally too small to be observed. Quartz is the only common strongly 
active substance, the rotation per mm for Nap light being 21°43’ corresponding to a 
refractive index difference of less than 0:0001. Wooster (1949) has discussed the 
application of observations of optical activity to the determination of crystal class, but 
the method is not widely applicable. 

Reflected light microscopy 
Solids in general transmit, absorb, and reflect incident light radiation. We have so far 
been principally concerned in this chapter with the class of crystalline solids for which 
transmission is dominant, that is with transparent crystalline solids; and we have paid 
some attention to absorption. A general theory of the interaction of light radiation 
with crystalline solids has to take the reflexion as well as the transmission and 
absorptive properties of the crystal into account. We shall not attempt here to provide 
a comprehensive study of the reflexion of light at a crystal surface, but merely to 
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indicate the general principles of the theory and practice of reflected light microscopy; 
for a thorough treatment the reader is referred to Galopin and Henry (1972). 

Reflected light microscopy is concerned with what are commonly called opaque 
solids; but it must be borne in mind that opacity is a function of thickness and that 
many substances which appear opaque in macroscopic specimens become capable of 
transmitting an appreciable percentage of the intensity of an incident light beam when 
in the form of a thin film (e.g. gold) or a thin cleavage flake (e.g. MoS,). We are 
concerned now with that class of crystalline solids for which the proportion of the 
intensity of an incident light beam which is transmitted is very small, if not negligible. 
Such opaque crystals are most usefully prepared for microscopic study in the form of 
polished sections, thick sections of a mineral or a polyphase rock polished mechanically 
with an abrasive powder to a high degree of flatness over small areas. The basic 
instrument for the study of polished sections is the reflected light microscope in which 
the light source is reflected by a prism or a half-silvered plate so that it passes through 
the objective to fall normally on the polished surface of the specimen on the 
microscope stage. A polarizer is inserted in the optical train between the light source 
and the specimen so that the incident light beam is polarized in a known direction. 
The microscope is equipped with an analyser between its objective and ocular. It is 
useful to have as accessory equipment an instrument for making indentation hardness 
tests and a photoelectric cell to fit over the ocular for measuring changes in reflected 
light intensity as the specimen is rotated on the microscope stage relative to the 
intensity reflected by a calibrated standard. 

For an isotropic specimen the reflectivity R, usually expressed as a percentage, for 
plane polarized monochromatic light is given by 

_(n-1P +h? 
elt Lo ak? 

where n is its refractive index and k its absorption coefficient; the plane polarized 
incident beam is reflected without change in its plane of polarization. For a uniaxial 
specimen whose reflecting surface is parallel to the optic axis a plane polarized 
monochromatic incident light beam is reflected as two mutually perpendicular plane 
polarized beams with a phase difference; each has a different reflectivity related to a 
principal refractive index (n, or n,) and a principal absorption coefficient (k, or k,), 

so that 

a (ny — 1)? +k} 

A (ny +1 4+ 

and 

(n,—1)?+k? 

Ra ~ (ny +1)? +k2 

Since |k,—k,| > |n,—n,| for absorbing crystals, the magnitude of the bireflexion 

|R,—R,| is greater for opaque than for transparent crystals; for transparent crystals 
k, ~k, ~ 0.Onecan attach a sign to reflectivity: the convention for a uniaxial crystal 
to be positive being R,>R, by analogy with the convention for optic sign in 
transmitted light, where for positive crystals e > o. In consequence of such anisotropy 
of reflexion the intensity of the reflected beam will vary systematically as the stage 
carrying the reflecting specimen is rotated and, if the intensity difference is sufficiently 
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marked to be observable by eye or to be recorded by a photoelectric cell mounted on 
the ocular, the anisotropy of reflectivity may be used as a diagnostic property. 

The diagnostic optical study of opaque crystals is confined to four observations: 
(i) measurement of reflectivity and its ‘anisotropy, (ii) observation of colour, 
(iii) measurement of hardness, (iv) observation of morphological characteristics such 
as shape, cleavage, and twinning. Reflectivity, anisotropy of reflectivity and hardness 
data have been collected and tabulated for a large number of opaque minerals and 
form the basis of a diagnostic procedure (Galopin and Henry, 1972). Accurate 
determination of hardness requires the use of an indentation test, but the relative 
hardness of two adjacent minerals in a polished specimen can simply be determined 
by the optical Kalb test which is explained in Fig 12.59. 

Fig 12.59 The Kalb test. The differing hardness of two 
adjacent grains results in the departure of the polished 
surface from perfect flatness, the softer grain being recessed. 
Reflection of light incident normal to the polished surface 
gives rise to a bright line at the intergranular boundary. When 
the microscope stage is lowered away from the objective, the 

{52 focus of the microscope moves from a position f, towards a 
position f, relative to the specimen and in consequence the 

f; — bright line appears to move /nto the softer grain. 

soft hard 

This brief account of reflected light microscopy has been concerned principally with 
determinative methods and has largely ignored the quantitative study of anisotropy 
of reflectance as a fundamental technique for the study of the crystalline state. In its 
present state of development reflected light microscopy can provide little in the way 
of fundamental information about crystalline solids; it is still essentially a diagnostic 
technique. In the limit one is always left with some uncertainty about the extent to 
which the polishing process may have affected the surface layers, which are the 
reflecting layers, of the specimen. The development of the electron microprobe 
(chapter 15) has provided a very powerful technique for the chemical characterization 
of opaque phases, which has superseded in part the diagnostic role of reflected light 
microscopy; but reflected light microscopy remains the only technique available for 
the study of the interrelations of opaque mineral phases in an ore-body, whether one 
mineral has crystallized by reaction between two others or whether one mineral has 
passed through a polymorphic transformation below its crystallization temperature; 
and the technique is valuable too for the study of the interrelations of Opaque and 
transparent minerals. 
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is 
Mineral equilibrium: the thermodynamic 
basis 

Classical thermodynamics is an exact mathematical discipline derivative from three 
fundamentally independent assumptions known as the zeroth, first, and second laws 
of thermodynamics. These are peculiar among physical laws in that none of them is 
susceptible to direct experimental proof; all are empirical assumptions based on 
observation and generalization of experience. Their justification is the fact that all 
conclusions from the laws of thermodynamics are without exception in agreement 
with experimental observations. It is however possible to derive the laws of 
thermodynamics from the atomic theory and the quantum theory, together with a 
single very general statistical assumption; this approach leads to the more modern 
science of statistical thermodynamics, which is at once closely dependent on quantum 
mechanics and on the structural concepts of crystallography. 

This chapter will in the main be concerned with the fundamentals of classical 
thermodynamics and their application to condensed phases (that is, to solids and 
liquids). Only towards the end of the chapter will statistical concepts be introduced 
and the crystalline nature of solids by implication be recognized. We shall not there 
present a rigorous exposition of statistical thermodynamics, but merely make use of 
certain results. 

The zeroth law: temperature 

Before stating the zeroth law it is necessary to define a thermodynamic system as an 
arbitrarily isolated part of the universe. A system may be homogeneous or 
heterogeneous; in the latter case it will be composed of a number of homogeneous 
parts called phases each of which is described by specifying its content and a sufficient 

number of other properties. 
The zeroth law may be stated thus: if two systems are in thermal equilibrium they 

are said to be at the same temperature. The zeroth law thus provides a definition of 
the important property temperature. In practical mineralogical terms the zeroth law 
indicates that if two mineral phases « and f are in thermal equilibrium, there will be 

no heat flow from one to the other and T% = T’; if on the other hand T* # T* heat 
will flow from one phase to the other until their temperatures become equal. This 
is an important principle: it appears trivial only because it is part of our 
‘commonsense’. 
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The first law: conservation of energy 

Before stating the first law it is necessary to define thermodynamic state. The state of 

a homogeneous system is described by specifying its content and every one of its 

independent properties. For a heterogeneous system it is necessary to specify the 

content and independent properties of each phase. 
The first law, familiar as the law of conservation of energy, may be stated thus: 

when a system passes from an initial state 1 to a final state 2 the change in energy of 

the system U(2)—U (1) is independent of the form in which energy is supplied to the system, 
whether it be as heat, electrical energy, mechanical work, or some other form, and 
independent of the path by which the system passes from state 1 to state 2. Thus if a 
system expands by an amount dV against a pressure P, the work done on the system 
dw = PdV;andif simultaneously an amount of heat dq is absorbed by the system, the 
change in energy U of the system will be given by 

dU =dq+dw 

= dq—PdV 

i.e. dq =dU+Pdv. 

Integrating between the initial state 1 and the final state 2, 

2 Zz Z 

| ia = | w+| Pav 
1 1 i 

which may be rewritten as 

Z 

qx v@)-va+ | Pdv. 
1 

For a change at constant volume (dV = 0) we can therefore write 

(q)y = U(2)—U(1). 

Now itis not experimentally particularly convenient to follow changes in condensed 

phases, that isin solids and liquids, at constant volume. It is experimentally far simpler 
and generally of greater significance to study changes in condensed phases at constant 
pressure. It is helpful for this purpose to define a thermodynamic function called 
enthalpy and denoted by the symbol H such that 

H=U+PV 

then dH =dU+PdV+VdP 

and by the first law 

dU =dq—PdV 

so that 

dH = dq+VdP 

Le; dq = dH —V dP. 

Integrating between an initial state 1 and a final state 2 

2 2 2 
[,40= | in| V dP 

1 1 1 

> 
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which may be rewritten as 

2 

q= H10)—H10)- | VdP 
1 

For a change at constant pressure (dP = 0), therefore, 

(q)p = H(2)—H(1). 
The amounts of heat absorbed by a system in changes at constant volume and at 

constant pressure are thus respectively equal to the differences in energy and in 
enthalpy between the initial and final states. The role of enthalpy in changes at 
constant pressure is generally analogous to that of energy in changes at constant 
volume. Since our prime concern here is the solid state our attention will be 
concentrated on changes at constant pressure; we shall make much use of enthalpy 
and correspondingly little of energy. 

Heats of reaction: Hess’ Law 
Consider a chemical reaction represented by 

va, Ai a Va,A2 ap PISS vp, By ote Dp, Ba ack 

where A,, A,,... and B,, B,,... are the reactants and products respectively and b,,, 
Da,>+++ Ug,» Up,»--- are the numbers of molecules of each necessary to balance the 
equation. This formulation can be abbreviated as 

YivgA > Y vp B. 

The heat absorbed by such a system (q)p in the course of unit increase in the extent 

of reaction at constant pressure is known as the heat of reaction at constant pressure 
or usually just as the heat of reaction. Since (q)p = H(2)—H(1), it is conventional to 
denote the heat of reaction as AH. 

For the general reaction )v,A > YvpB the heat of reaction AH is given by 

AH — > vpHp—YvaHa 

where H, ..., Hy... are enthalpies per mole of the reactants and products respectively. 
In a more specific example 

C (graphite) + O(g) > CO,(g) 

we can write for the heat of reaction AH 

AH = H(CO,(g))— H(C (graphite)) — H(O,(g)) 

and for the reaction 

CO(g)+20.(g) > CO,(g) 

the heat of reaction AH’ is given by 

AH’ = H(CO,(g))— H(CO(g))—2H (O2(g)). 

Since H isa function of the state of a system, AH for successive processes at the same 
temperature is an additive function. This property of AH, known as Hess’ Law, can be 
used to evaluate the heat of a reaction that cannot easily be performed quantitatively 
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from other more tractable reactions. For both the reactions mentioned above AH is 
readily measurable. Subtraction of the two equations yields 

C(graphite) + 30.(g) > CO(g) , 

for which the heat of reaction AH” is given by 

AH" = H(CO(g))—H(C (graphite)) —3H (O.(g)) 
= AH—AH'’. 

It is important always to observe the convention that AH is the excess of the 
enthalpy of the final state over the enthalpy of the initial state. Regrettably some 

authors have used the opposite convention. 
The heats of other processes are defined analogously. Thus the heat of melting of 

forsterite, 

5 

Mg, SiO, (fo) > Mg, SiO, (1) 

AH = H(l)— H(fo) 

and the heat of transformation for a polymorphic transformation such as 

SiO, (tridymite) > SiO, (cristobalite) 

AH = H(crist.) — H(trid.). 

Heats of formation 
The definition of enthalpy omits, of necessity, any statement of the zero of enthalpy 
for a pure substance. Only enthalpy differences can be measured experimentally by 
calorimetric measurement of heats of reaction and specific heats. It is convenient 
however to define an arbitrary zero of the enthalpy scale for each pure substance in 
such a manner as to achieve mutual consistency for all substances. The provision of 
such an arbitrary reference state then enables heats of reaction to be related as a simple 

sum and difference to the enthalpies of the pure substances that are the reactants 
and products in the reaction. Various schemes have been proposed, that most 
commonly used being based on the assumption that every chemical element in its stable 
state at 298K and 1 atmosphere has zero enthalpy. Thus solid copper, liquid mercury, 
and gaseous oxygen at 298 K and 1 atmosphere are all taken arbitrarily to have zero 
enthalpy, or in symbolic notation H}9 (Cu, s) = 0, H39g(Hg, l) = 0, H$g(Op, g) =0, 
where the superscript ° indicates unit pressure, the subscript temperature in kelvins, 
and the last term in parenthesis the physical state of the element. The physical 
conditions 298 K, 1 atm define the standard state on this scheme. 

The heat of reaction for 

Si(s) + O2(g) > SiO, (qz) 
is susceptible to direct calorimetric measurement and it has been found that 
AH}39g = —205-4kcal. And since 

AH 393 = H39g(qz)—H39g(Si, s)— H39g(Op, g) 

= H98(qz)—0—0 

the standard heat of formation of quartz at 298K and 1 atmosphere, H}398(qz) = 
—205-4kcal mole~'. Standard heats of formation are denoted by some authors as 
AH, e.g. He(qz) = —205-4kcal mole™!. 
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The heat of transformation for 

C(graphite) > C(diamond) 

has been determined as AH} 9g = 0-453 kcal. Since graphite is the stable polymorph 
of carbon in the standard state H59.(graphite) = 0 and the standard heat of formation 
of diamond H}3,,(diamond) = AH}3og + H598(graphite) = 0-453 kcal mole~?. 

The standard heats of formation of silicates can be evaluated by application of 

Hess’ Law to the calorimetrically determined heats of successive reactions. For 
example, 

SiO,(qz) +2MgO(s) > Mg, SiO, (fo) AH$o3 = —15-1 kcal mole™! 

Si(s) + O3(g) + SiO,(qz) AH$o3 = —205-4 kcal mole™! 

Mg(s)+40,(g) ~ MgO(s) AH3$03 = —143-8 kcal mole™! 

Hence 2Mg(s)+ Si(s) + 20,(g) > Mg, SiO, (fo) 

AH}jog = —15:1—205-4+2(—143-8) = —508-1 kcal 

Therefore the standard heat of formation of forsterite H35,(fo) = —508-1kcalmole}. 
A comprehensive tabulation of standard heats of formation is given by Rossini et al 

(1961) and there is a more recent compilation of data for minerals by Robie in Clark 
(1966). A selection of data is listed in Table 13.1. 

Standard heats of formation are generally useful for evaluating AH for reactions 
that have not been, or cannot be, performed as well as for attributing particularly 
large or small heats of reaction to a particular phase. 

An alternative standard state for enthalpy is current in the field of silicate 
thermochemistry. Since silicate compositions can be represented in terms of their 
constituent oxides some authors have found it convenient to assume that the oxide 
of every element stable at 298 K and 1 atmosphere has zero enthalpy in that standard 
state. This convention is used for silicates in Table 13.1. 

Temperature dependence of enthalpy 

The relation C, = (6H/0T)p defines the molar specific heat (or molar heat capacity) at 
constant pressure. C, is determinable by calorimetry and is temperature dependent. 
For most condensed phases at temperatures greater than about 50K C, obeys the 
empirical equation 

(C,)} = a+2bT —cT~? 

in which a, b, and c have to be determined experimentally. Integrating 

T 
Hy — Hog =| (C,)r dT 

298 
= [aT +bT?+cT *]} 55 
=aT+bT*+cT '-B 

where B = 298a+2987b+c/298. This expression enables heats of reaction at any 
temperature to be derived from standard heats of formation provided the requisite 
specific heat data are available. The evaluation of heats of reaction at any general 
pressure P requires the application of the second law and is postponed to a later 
paragraph. 



Table 13.1 
Thermodynamic Properties of Minerals 

o 
Syos-15 Fx98-15 a 
deg™‘ mole™ *) 

Vro8. 15 

(cal mole™ ') Oxides and Hydroxides (cm? mole™ *) 

SiO, low-quartz 22:690+0:005 —217,650+400 9-88 +0:02 
SiO, low-tridymite 2653+0:20" —216,900+900 10°50 +0-10 
SiO, low-cristobalite 25:74+002  —216,930+800 10:38 + 0-02 
SiO, coesite 20:64 + 0-05 ai 9:30 +0°50 
TiO, rutile 18-80 +0-02 —225,760 + 100 12:04+0-04 
TOs anatase 20:49 + 0:03 aa 11-93 +007 
Al,O; corundum 25574001  —400,400+300 12:18 +0-03 
AlO(OH) boehmite 19-54+0-:02  .—235,500+3500 11:58 +0-05 
AlO(OH) diaspore 17:76 +0-03 = 8-43 +0-04 
Al(OH), gibbsite 31:96 +0-04 — 306,380 + 300 16°75+0-10 
Heo,,0 wiistite 12:04 +0-04 — 63,800 + 400 13-74+0-10 
Fe,0, hematite 30:28 + 0-02 — 196,750 +1100 20:89 +005 
Fe,0, magnetite 44-53 + 0-02 — 267,400 + 500 36:03 +0-10 
MnO manganosite 13-22+0-01 —92,050+110 14-27+0-10 

Mn,0O, bixbyite 31:38 +0-03 — 229,200 + 2000 26-40 + 0-50 
Mn,30, hausmannite 46:96 +0-08 —331,400 +400 35-5+1-0 
MgO periclase 11-25+0-01 — 143,800 + 100 6:44+0-04 
Mg(OH), brucite 24-64+0-03 —221,200 + 500 15-09 +0-05 
CaO lime 16:76 +0-01 — 151,790 +300 9-5+0-2 
Ca(OH), portlandite 33:06+0-04 —235,610+ 450 19-93 +0-10 
H,O water (liq.) 18-069 +0-003 —68,317+10 16-715 +0-03 

Spinels, Titanates, etc. 

MgAl,0, spinel 39:72 +003 — 19-26+0:10 
FeAl,O, hercynite 40-82 +0-06 = 25-4+0-2 
MgFe,0, magnesioferrite! 44-25 -341,171+700 29:6+0°6 
Fe,TiO, ulvéspinel! 45-75 — 40-36 +0-60 
FeTiO, ilmenite 31-:71+0-05 —295,560 + 600 253-073 
MgTiO, geikielite 30:86 +0-03 — 375,900 + 400 17-82 +0-10 
CaTiO; perovskite 33-72 + 0-08 — 396,900 + 600 22-4+0-1 

Silicates 

Al,SiO, andalusite 51:54+0-01 = 22:28 +0-10 
Al,SiO,; kyanite 44:11+0-02 — 20-02 + 0-08 
AL, SiO, sillimanite 49-91 +0-02 aa 22:97 +0:10 
Fe,siO, fayalite 46:39 +0-08 —8282 +400* 34-70 +0-40 
Mn,SiO, tephroite 48-62+0-10 — 11,770 +600* 39-00 + 1-00 
Mg,SiO, forsterite 43-67+0-08 —15,120+250* 22:75 + 0-20 
CaMgSiO, monticellite 51:37 +0-15 — 27,560 + 600* = 
B-Ca,SiO, larnite 51-60+0-40 —30,190+250*  30-50+0-20 
y-Ca,SiO, calcium olivine 58-63 +0:35 — 32,743 + 600* 28-80 +0-20 
MnSiO, rhodonite 35:32 +0:30 —5920+170* 24-50 +0-50 
MgSiO, clino-enstatite 31:47+0-07 — 8690 + 150* 16:22 +0-10 
CaMgSi,O, diopside 66:10 +0:10 —36,500+1500*  34-20+0-20 
NaAlSi,O, jadeite 60:98 + 0:40 —36,500+1000*  31:90+0:30 
CaSiO, wollastonite 39-94+0-08 =21,250 700* 19-60 + 0-20 
CaSiO, pseudo-wollastonite 40-08 + 0-08 — 20-90 +0:20 
Ca)Mg;SigO,,(OH), __ tremolite 272954090  —120,840+2500* 131-19+0-30 
NaAlISi,O, albite 100-21 +0-19 —35,900+1500*  50:20+0-40 
KAISi,0, orthoclase 108-97 —51,030+1000*  52:47+0-60 
CaAl,Si,0g anorthite 100-73 +0-15 —21,810+700* 48-45 +0:30 
KAISi,0, leucite 88:39 +0-05 —46,200+1500*  44:05+0-40 
NaAlSiO, nepheline 54:17+0-15 —30,900+1000*  29-72+0-30 
KAISiO, kaliophilite 59:90 +008 — 31-85 +0-30 
NaAlSi,0,.H,O analcite 97-50 +0-10 — 32,750 +700* 56:03 +0-60 CaAl,Si,0;(OH),.H,O lawsonite 101-33 +0-15 — 37,190 +600* 56-79 +0:50 Ca, Al,SigO24.7H,O leonhardite 814-92 —73,740+1500* 220-40+1-60 Ca, MgSi,O, akermanite 92:82 +0-15 — 43,830 +700* = 
Mg3Si,O,.(OH), talc 134-30 +0-80 —44,890 + 500* 62:34 +0-15 Al, Si,0;(OH), kaolinite 98-29 —7140 +500* 48-53 +0-30 CaTiSiO,; sphene 55-70 +0:30 — 26,850 +250* 30°88 +0:20 
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Carbonates 

FeCO, siderite 29-38 +0:02 — 178,200 +1200 23:9 +0°6 
MnCoO, rhodocrosite 31:08 +0-01 — 212,392 +800 23:90 +0-50 
MgCO, magnesite 28:02 +001 — 266,052 +400 15:7+0-2 

CaCO, calcite 36:94 +0-02 — 288,086 +250 22:2 +0-2 
CaCO, aragonite 34-:16+0-02 — 288,134 +250 21:2 +073 
CaMg(CO;), dolomite 64:35 +0:04 — 557,567 +800 37:09 + 0:07 

Gases} 

H,O 24,466:1+1-0 —57,798 +10 45:106+0-01 
Co, 24,466:1+1-0 — 94,054 +30 51:07 +0-02 

Source: abbreviated from the critical summary of Robie in Clark (1966). 
*Heats of formation of silicates are referred to formation from their constituent oxides at 298:15K and 1 
atmosphere. 

+The molar volume quoted is that of an ideal gas since for a gas the standard state is the ideal gas at 
298-15K and 1 atmosphere. 
N, I normal and inverse spinels respectively. 

Experimental determination of heats of reaction: the solution 

calorimeter 

In principle the heat of a reaction is determined by causing the reactants and products 
separately to undergo simple rapid reactions to produce identical states under such 
conditions that the heat input or output can be measured precisely. A straightforward 

example is the polymorphic transformation 

C(graphite) > C(diamond) 

for which AH = H,— He. If a known amount of diamond is sparked in pure oxygen 
at atmospheric pressure in a pressure vessel contained in a calorimeter then, after 
the appropriate corrections have been made, the heat of combustion of diamond, 

C(diamond)+ O, > CO,(g, 1 atm) 

AH = Hco,— Ho, —Hp, 

can be evaluated. By a similar experiment the heat of combustion of graphite, 
AH" = Hoo, — Ho, — He, can be evaluated. The heat of transformation is simply 
found by subtraction since the products are identical in the two heat of combustion 
determinations; AH = AH”—AH’. A comprehensive account of combustion 
calorimetry is to be found in Skinner (1962). 

Another way in which the reactants and products of a wide range of reactions can 
be converted to identical states is by solution in some appropriate solvent. Solution 

calorimeters employing water, a variety of organic solvents, hydrochloric acid, and 

hydrofluoric acid have been in use for very many years; the last named of these is 
particularly appropriate to the study of silicate reactions, because most silicates are 
rapidly soluble in warm aqueous HF, and will be taken as our example. 

The HF solution calorimeter designed by Torgeson and Sahama (1948) is shown 

in Fig 13.1. The calorimeter itself is a platinum cylinder a with two chimneys, one for 
the platinum stirrer b and the other c for introduction of the samples, and a cylindrical 
well d for a platinum resistance thermometer and the calibrating heating coils. The 
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Fig 13.1 The HF solution calorimeter. For 
description see text. 

calorimeter is filled with an aqueous solution containing 20-1 per cent HF and is 
surrounded by a gold-plated copper heat shield e, the whole being enclosed in a 
heavy gold-plated brass container f, which is immersed in an oil bath whose 
temperature is thermostatically controlled at 73-7°C. Samples at room temperature 
contained in gelatin capsules weighted with platinum weights to ensure immediate 
sinking are dropped into the chimney c, the hydrofluoric acid in the calorimeter being 
at 73-7 °C. Samples of each reactant and product in the chosen reaction are in carefully 
weighed out stoichiometric proportions and should weigh +5g. For each 
determination the calorimeter is filled with 856-0 g 20-1 per cent (weight per cent) HF. 
Equilibration times of up to 30 minutes are found to be convenient. The temperature 
rise at accurately determined times after the introduction of the sample is measured 
with the Pt resistance thermometer and converted to the heat evolved in solution by 
\calibration against known energy input from the calibrating heating coils in a 
separate experiment. Corrections have to be made for the heat of solution of gelatin 
and for the thermal capacities of the gelatin capsules and the Pt weights between room 
temperature and 73-7 °C. 

An example of the method of calculation is taken from Torgeson and Sahama (1948). 
It is desired to determine the heat of formation of clinoenstatite (MgSiO;). Heat of 
solution measurements were performed in the HF calorimeter on Mg(OH),, SiO,, 
and MgSiO, : 

(1) Mg(OH),(s, 25°) + 2HF(aq, 73:7°) > MgF (ppt, 73-79) +2H,O(aq, 73-72) AH; 
(2) SiO,(s, 25°) + 6HF(aq, 73:7’) > H3 SiF6(aq, 73-7°) + 2H ,O(aq, 737°) AH, 
(3) MgSiO,(s, 25°) + 8HF (aq, 73-7°) > MgF (ppt, 73:7°) + H, SiF¢(aq, 73-7°) + 

3H,O(aq, 737°) AH; 
To obviate the necessity for a heat of mixing correction the Mg(OH), sample was 
dissolved in the calorimeter fluid in which the SiO, sample had already been dissolved. 
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Two more pieces of data are required: the heat of hydration of MgO and the specific 
heat of H,O between 25°C and 73-7°C. The former was obtained from earlier heat 

of solution experiments in (N/1) HCI and the latter by direct calorimetry: 

(4) MgO(s, 25°)+ H, O(1, 25°) > Mg(OH),(s, 25°) AH, 

(5) H,Od, 25°) = H,O(1, 75°) AH; 

The heat of formation of clinoenstatite from its constituent oxides AH is then given by 

AH = AH,+AH,—AH,+AH,—AHs. 

This expression for AH involves, as is usual, differences between large numbers and 
therefore, although heats of solution may be known very accurately, the resulting heat 
of formation all too often must be associated with quite a large percentage uncertainty. 
In this case AH, = —29,090+20, AH, = —33,000+20, AH; = —63,060+140, 
AH, = —8850+25, AH; = 810+Scal, whence AH = —8690+150 cal mole~!. 

The second law: direction of change 

There is a great diversity of apparently irreconcilable ways in which the second law 
may be formulated. The statement that will be made here is one of the most 
mathematical and the most immediately useful. By way of preliminary it is necessary 

to distinguish between natural, unnatural, and reversible processes. Natural processes 
are such as occur in nature; they proceed in a direction towards equilibrium. An 
unnatural process would proceed in a direction away from equilibrium and does not 

occur in nature. The limiting case between natural and unnatural processes is a 
reversible process which involves passage in either direction through a continuous 
sequence of equilibrium states; such processes do not actually occur in nature, but if 
we make a small change in the conditions we can produce a natural process that 
differs as little as we choose from a reversible process. 

The second law comprises three statements: 
(i) The entropy S of a system is the sum of the entropies of its parts. 

(ii) The increase in entropy dS for a system undergoing a reversible change in which 
an amount of heat dq is absorbed by the system at a temperature T on the absolute 
scale of temperature is given by 

dq dS = —. 
T 

(iii) The increase in entropy dS for a system undergoing a natural change in which 

an ‘amount of heat dq is absorbed by the system at a temperature T on the absolute 
scale of temperature is given by 

ase 4. 
cli 

The first statement indicates that entropy is, like volume and enthalpy, an extensive 
property.’ The entropy S of a system comprising one mole each of the phases « and B 
is given by 

S = S*4+S? 

’ In contrast the magnitude of an intensive property is independent of the quantity of the phase. Examples 
of intensive properties are temperature, pressure, density. 
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where S* and S* are respectively the molar entropies of phase « and phase f. If the 

system comprises a moles of phase « and b moles of phase f, then 

S = aS*+bS* ; 

In the second and third statements the concept of absolute temperature T is related 
to entropy change. The intimate relationship between S and T implied by their 
simultaneous definition in this statement of the second law is central to the science 

of thermodynamics. 
For the development of classical thermodynamics it is not necessary to provide any 

physical interpretation of the fundamental property entropy. That is one of the prime 
functions of statistical thermodynamics, in which entropy appears as a measure of 
‘degree of disorder’ and can be given complete quantitative expression in crystalline 

structures. 

Free energy and free enthalpy 

Before developing the Second Law it is convenient to introduce two additional 
thermodynamic functions, F and G defined by 

F=U0-TS 

G=H—TS. 

F will here be called free energy; it is alternatively known as Helmholtz free energy 
or as the Helmholtz function. G will here be called free enthalpy; it is alternatively 
known as Gibbs free energy or as the Gibbs function. Care has to be exercised in reading 
the literature: not only are a variety of names used for these functions, but some 
authors denote as F the function that we have represented by G. 

Criteria for equilibrium 
We take as our starting point the definition of free enthalpy 

G=H-—-TS, 

substitute the defining equation for enthalpy 

H =U+P VJ, 

and differentiate to give 

dG = dU+PdV + VdP—T dS —Sd T. 

Now by the first law 

dU+PdV = dq 

and by the second law 

dq=TdS 

for a reversible process, that is for passage through a continuous sequence of 
equilibrium states. Therefore at equilibrium, 

dU+PdV = TdS 

and so dG = VdadP—S<adT. 

Therefore for a change in a system at equilibrium at constant pressure (dP = 0) 
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and constant temperature (dT = 0), dG = 0. Moreover for a natural process the 
second law indicates that 

dq < TdS. 

Hence dU+PdV < TdS 

and so at constant P and T, 

dG = dU+PdV —TdsS <0 

i.e., in natural processes equilibrium is approached by decreasing G. Therefore at 
equilibrium at constant pressure and temperature, free enthalpy is at a minimum. 

In a precisely similar manner it can readily be shown that at equilibrium at constant 
volume and temperature free energy F is at a minimum. 

Dependence of thermodynamic functions on parameters of state 

By way of preliminary we introduce four definitions: 

(i) specific heat at constant volume C, = (=) : 
Vv 

(ii) specific heat at constant pressure C, = (2) : 
P 

1 (OV 
(iii) coefficient of isobaric thermal expansion « = —| —], 

VOL) 3 

: : es Liefov 
(iv) coefficient of isothermal compressibility y = ——|—}. 

VXGPF 

Definitions (i) and (ii) can easily be seen to be consistent with those familiar in 
elementary physics. In general dq = cdT, where cis defined as specific heat under the 
appropriate conditions. We have already seen that dg, = dU and that dq, = dH, so 
that C,dT = dU at constant volume and C,dT = dH at constant pressure. 
We have already shown that for a reversible change 

dG = VaP—SdT. 

It follows that 

0G ee a (=), 
0G 

d —])=V. a (FF), 

For smooth functions, such as we are concerned with here, the order of successive 

partial differentiation is immaterial,” that is to say there is a cross-differentiation 
identity, which may be written in general terms 

slay) }, “Wa 
? This point is dealt with more fully in Guggenheim (1959), chapter 3. 
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Theref ee ~ ar(se) erefore @P\aT)o(,~ \OTNOP |r 

and hence — ap}, \aT}p 

os 
so that (3). = —Vza. 

Returning to the definition of H, 

H=U+PV 

differentiating 

dH = dU+PdV+VaP. 

and substituting 

dU+PdV = TdS 

for a reversible change, we have ' 

dH = TdS+VaP. 

os os 
cma ee ayy But dS (sr), e7+() 

os os 
= see V a dP therefore dH = T ( a +), dT+ +T ( a >), 

os 
= =. V(1—Ta)dP. (3) dT+V(1—Ta) 

Comparison with 

eS\ _C, i.e aT), T 

oH 
—] =V(1— : and (3), Vil = Tx) 

By exactly analogous arguments the remaining six partial differential coefficients 

au) (aU) (aF\ (ar) (as) 44 (as 
OL jy “\OV Je NOL Jp enol oy ee vi OV Jy 

can be derived. All twelve partial differential coefficients are listed in Table 13.2. 
Inspection of the table reveals certain points of theoretical and practical significance 
that are worth noticing. 

Entropy appears as the negative temperature coefficient of free enthalpy, the 
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Table 13.2 
Derivatives of the thermodynamic functions 

thermodynamic function that is minimized at equilibrium in isothermal isobaric 
conditions such as obtain in most experimental investigations of systems of condensed 
phases. The temperature coefficient of entropy is C,/T and this relationship provides 
a means of measuring isobaric entropy changes. Integration of the expression for 
(OS/OT)p leads to 

T2 

S7,—Sr, = | C,d In T. 
Iq 

If C, is measured for a pure phase over small temperature ranges at fairly closely 
separated temperatures and plotted against log T, the entropy difference between two 
widely separated temperatures T, and T, can simply be evaluated from the area 
beneath the curve of C,, against log T. Alternatively use may be made of the empirical 
expression 

C Sa opT Sct < 

fitted to the experimental data, whence 

1 

Tit 

T2 

. an T+2bT+= ma 
2 TY 

Th G 1 1 

Thus the entropy S; of a substance can be evaluated from specific heat 

measurements over the range zero K to TK except for the undetermined constant 
So. The evaluation of Sp is the subject of the third law of thermodynamics which 

we shall not attempt to expound here but merely state that it leads to the conclusion 
that for all substances S$) >0 and for very many crystalline solids Sy =0. S,; is 
therefore always positive and consequently the isobaric temperature coefficient of free 
enthalpy (CG/0T)» = —S is invariably negative. 

The isothermal pressure coefficient of free enthalpy is V, which represents molar 
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volume if molar free enthalpy is being considered as is usually the case. Molar volumes 
of crystalline solids can be accurately determined by measurement of unit-cell 
dimensions. The isobaric temperature coefficient of molar volume (0V/0T)p = Va 
can be measured most conveniently by use of a high-temperature X-ray powder 
camera. Evaluation of « simultaneously provides a measure of the isothermal pressure 
coefficient of entropy, (0S/0P)7 = — Va. The isothermal pressure coefficient of molar 

volume (0V/éP)7 = —Vyz can be evaluated directly from compression experiments, 

although not usually conveniently at very high temperatures. 
Tables 13.1 and 13.3 list Vyyg, a, and x for a selection of crystalline solids. It is 

immediately obvious that neither thermal expansion nor compressibility makes any 
very significant contribution to the variation of G with T and P. 

Clapeyron’s relation 

The simplest case of phase equilibrium with which we are concerned is that between 
two phases of fixed and identical composition, which in practical terms may be a 
solid and the liquid to which it melts or a pair of polymorphs. Under isobaric 
conditions G will decrease with rising temperature for each phase, the two curves 
intersecting at the transformation temperature T,. Since G is minimized at equilibrium 
the lower curve refers to the stable phase on either side of the transformation 
temperature, thus in Fig 13.2 phase « is stable at T < T, and phase f is stable at 
Teeth 

If pressure is allowed to vary the curves «—a and B—f will each be drawn out into 
a surface and the curve of intersection of the two surfaces in PT space (Fig 13.3) will 
represent equilibrium between phase « and phase f. The relationship of the slope of 
the equilibrium curve to the thermodynamic functions of the two phases is given by 
Clapeyron’s Relation. 

Table 13.3 
Coefficients of isobaric thermal expansion (a) and isothermal compressibility (7) 
for some minerals 

More detailed information on these coefficients is available in the articles by 
Skinner and Birch in Clark (1966) on which this table is based. 

10° 10°x 

(deg *) (bar~*) 

400°C 800°C 

SiO, quartz 69 —3 271 
SiO, coesite 11 14 — 
Al,SiO, andalusite 29 43 — 
Al,SiO, kyanite 28 30 — 
Al, SiO, sillimanite 18 26 a 
Fe,SiO, fayalite 30 31 0-91 
Mg,SiO, forsterite 38 44 0-80 
CaMgSiO, monticellite 36 39 — 
MgSiO, clino-enstatite 29 33 1-01 
CaMgSi,0, diopside 28 a2 
NaAlSi,0, jadeite 29 38 0:75 
CaSiO, pseudo-wollastonite 32 36 — 
NaAlSi,O, albite 27 53 2:02 
CaAl,Si,0, anorthite 12 20 a 
KAISi;0, microline 17 23 1-92 
Na3KAI,Si,0 16 nepheline 53 fi 2:05 
Ca,MgSi,O, akermanite 30 33 _ 
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Fig 13.2 Plot of free enthalpy at 
atmospheric pressure, G7, against 
absolute temperature for two phases, 
a and f. At temperatures below the 
transformation temperature 7, the phase 
a is stable and at higher temperatures 
the phase f is stable. 

- 210 
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G; 
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Fig 13.3 Diagrammatic intersection 
of free enthalpy surfaces for the phases 

Se a and B in GPT space. The two phases 
are in equilibrium at the pressures and 
temperatures given by the curve in 

~ which their free enthalpy surfaces 
EAR intersect. 

a 

\/, 

— 

Let us formulate the reaction as 

ap 

and define the difference in value of a property J between the two phases as 
AJ = J’ —J*. Now we have already seen that for a single phase 

dG = —SdT+VdP 

and consequently 

dAG = —ASdT+AV dP. 
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But at equilibrium 

dAG = 0 

therefore —ASdT+AV dP =0. ' 

, dP AS 
ie. aa 

Moreover at equilibrium AG =0 and, since by definition AG = AH —TAS, 

AS = AH/T. Substitution in the expression already derived for dP/dT yields 

dP AH 

ql TAY, 

The two equations 

dh AS, _ AH 

dT AV TAV 

are alternative forms of Clapeyron’s Relation. In use it must always be borne in mind 

that the values of AV and AS or AH refer to the actual temperature and pressure 

coordinates of points on the equilibrium curve and should strictly be written as 

AV, AS®., and AHP. In practice it is usual to use Clapeyron’s Relation with various 
simplifying assumptions appropriate to the problem under consideration; such 
assumptions will be discussed as they arise. 

It is usual to require dP/dT in bar deg '. If AS is given in cal deg” ', or AH in cal, 
and AV in cm?, then the conversion factor 1 cal = 41-8 bar cm? must be employed, so 

that Clapeyron’s Relation becomes 

dP 418AS  41-8AH 

AT SO ren Ne 
1 bar deg *. 

Polymorphic transformations 

A polymorphic transformation, that is the equilibrium change of a phase of fixed 
composition to another of identical composition, is thermodynamically one of the 
simplest types of phase equilibrium. Here we shall merely deal with the thermo- 
dynamic, as distinct from the structural, classification of polymorphic transformations 
and consider in detail a single example, graphite = diamond, to illustrate the 
application of thermodynamics to polymorphic transformations. 

Thermodynamically transformations are characterized by their order, the order of 

a transformation being the order of the first derivative of free enthalpy that displays 
a discontinuity. Thus first order transformations have G continuous across the 
transformation, whereas the first derivatives of G, S = —(0G/0T)p and V = (0G/0P),, 
exhibit discontinuities at the transformation as do higher derivatives. Since there is a 
discontinuity in S while G is continuous, there is a discontinuity in H, which is known 
as the latent heat of the transformation; AG = AH —T,AS, but AG = 0, therefore 

AH = T.AS, where T, is the transformation temperature (Fig 13.4). Included among 
first order transformations are changes of state, such as melting and vaporization, 
and certain polymorphic transformations, e.g. graphite diamond, aragonite= 
calcite, high quartz = high tridymite. 

Second order transformations have G and its first derivatives, S and V, continuous 
across the transformation; but the second derivatives of G, 
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o°G és 07G G 
aT. TT” ap? ay T and ap aT: 

exhibit discontinuity at the transformation. Second order transformations have zero 
latent heat of transformation since AG and AS are both zero. Examples of the second 
order are the superconducting transformation in tin (Fig 13.4) and certain other 
metals at low temperature and, at least ideally, order—disorder transformations. 

Third order transformations have C, continuous, but 6C,/0T discontinuous; they 

are exemplified by the Curie point of a variety of ferromagnetic substances. As the 

order increases, the discontinuity in properties becomes decreasingly significant and 
it is no longer appropriate to think in terms of a phase change. Transformations of 
order greater than three have not been recognized with certainty. 

It is well known that the interconversion of graphite and diamond is experimentally 
difficult. The graphitization of diamond can only be achieved, in the absence of a 

— = 

Fig 13.4 Variation with temperature of G, its first derivatives S and V, and its second derivative 
C, for a first order transformation at 7, (solid line) and a second order transformation at 7; 
(broken line). 



478 Mineral equilibrium: the thermodynamic basis 

catalyst, at very high pressures and temperatures, e.g. 33 kb and 1200°C, 61 kb and 

1700°C. The formation of diamond from graphite and other forms of carbon takes 

place only at high pressures and temperatures in the presence of a catalyst. But the 
course of the equilibrium curve in PT space cart be estimated without actual 

realization of interconversion. 
The unit-cell dimensions of graphite and of diamond can be determined under 

atmospheric conditions by measurement of single crystal or powder diffraction 
patterns: the data for graphite (hexagonal) are a = 2:4612 A, c = 6-7079 A, and for 
diamond (cubic) a = 3:5668 A. The unit-cell of graphite contains 4 carbon atoms and 
that of diamond 8 carbon atoms. Therefore 

AVy9g = (a3, —4a2,c, sin 60°) N = —1-91 cm? mole™* 

where N is Avogadro’s number, the subscripts D and G refer to diamond and graphite 
respectively, and AV refers to one mole of carbon involved in the transformation 
graphite > diamond. 

The heat of reaction AH$9g, which cannot be measured directly, can be evaluated 
from measurements of the heats of combustion of graphite and diamond in oxygen 
at high temperature and specific heat data. Consider the cycle shown in Fig 13.5. Heat 
of combustion determinations in a bomb calorimeter at TK yield 

Cpy+O0,— CO, (gas, 1 atm); AH, 

Cpy+O,-— CO, (gas, 1 atm); AH, 

therefore (AH,); = —AH,+AH;3. 

Specific heat measurements on diamond and graphite yield 

AA = {, (C,)p aT 
298 

and AH, ne |, (Cie aT. 

298 

Therefore (AH,)393 = (AH,);—AH,+AH; 

Therefore for the transformation in the standard state ( Fawn the subscript 1) 
AH}o¢ can be evaluated as 450 cal mole™!. 

eer 
en AH, 

Oy» ° Oo 

. 2 .. graphite diamond 

AH = AL Fig 13.5 Thermochemical cycle for 
5 4 determination of the heat of reaction of 

e graphite +diamond, (AH, )+ at the high Graphite q-.- = = Levee. diamond temperature 7 K and (AH,)°5¢ at 298 K. 



Polymorphic transformations 479 

Specific heat measurements from low temperatures up to 278°K enable the 
entropies of diamond and graphite to be evaluated as (S,)37g = 0°58, (Sg)573 = 

1:36 cal deg™ ' mole™ '. Therefore AS3,, = —0-78 cal deg” ! mole™ 1. 
If, as a first approximation, it is assumed that AV and AS are independent of 

temperature and pressure the Clapeyron Relation can be integrated. It is convenient 
to start with 

dAG = —ASdT +AV dP, 

which, on putting AS = AS5,, and AV = AVzog, becomes 

dAG = —AS}$og dT + AV yo dP 

Integration between the standard state and some point PT on the equilibrium curve 
yields 

AG — AG bog = —AS}3og (T —298) + AV 59g (P — 1). 

But AG = 0 at equilibrium and we are concerned with equilibrium at high pressures 
so that P—1 ~ P, and therefore 

—AG og = —AS bog (T —298) + AV 208 P. 

It follows from the definition of free enthalpy that 

AGbo8 — AH 508 —298AS35 98. 

Therefore —AHbo8 — —AS}3o8 T+AVyogP 

PAG. . Ase Le. P= 2 eel 
AV 398 AV 398 

For the graphite > diamond transformation, using the data given above, the first 
approximation to the equilibrium curve is 

Pee as 
eT Rett BEER 

453-2 0:78 
1.€. P = 41-843 Gree ) ars 

he P = 10-075-+0-01734T kb. 

Since T is of necessity always positive an immediate conclusion from this equation 
is that the equilibrium curve lies at high pressure at all temperatures. 

The accuracy of the calculated equilibrium curve can be improved by taking into 

account the temperature dependence of AC,, which is possible in this case because 
high temperature specific heats have been determined for both diamond and graphite. 
We have already seen that 

dAH @AS\ _ AC, 
(oe )=a¢, ang () =“ 

Ai 
° ‘i AC, 

AC, dT and AS; = AS3og+ 7 dT. 

8 298 
hence AH+ = Alfine+ | 

29 
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By definition AG; = AH; — TAS; 

FAC 
AG aT — TAS 08 — r| 7 

298 

Tt 

sa Aline + | 
298 

And since (=) =i 
OP ahs. 

P 

AG? = ac | AV dP. 
1 

If we assume at this level of approximation that AV is independent of temperature 
and pressure, we can put AV = AV for all P, T; and if we further assume that P is 
large, P—1 ~ P: the expression for AG‘. then becomes 

AG*. = AG + PAV 353. 

At equilibrium 

AGE =0 

and therefore AG}. + PAV35, = 0 

; be T AC 

1.€. Aion | AC, Ops TAS} 93 — r| —" dT +PAVyo3 — 0 

298 298 e 

AH og BAS 1 ip AC ¥ i.e. Pee eT ee Lar = pe ce dP 
AV 358 AVyo8 AV 98 298 ih 298 ‘ 

High- -temperature specific heat data for diamond and graphite are given in 
Table 13.4 in terms of the empirical equation C, = a+2bT—cT~?. Therefore 
AC, = Aa+2Ab T—AcT~?, 

AC 
= = aie? 2Ab—AcT °: and 

Integration yields 

\.. AC,dT = [AaT+AbT?+AcT~']},, 

= Aa(T —298)+ Ab(T ? —2987) + Ac(T~ ! —298-'), 

AC 
and {, —dT= | aatn T+2Ab Tor z 

208 I 2 298 

= Aa(in T—In 298)+2Ab(T —298)+5° (7-2 298-2) 

bi i 

Hence r| spear | AC,dT 
298 298 

= Apt int ie +n 298)Aa+ so6ab-+298-2 | Ti 

A +Ab Te T~ 1+ {298Aa+2982Ab-+298- 'Ac} 
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Table 13.4 
Thermochemical data for the transformation graphite diamond 

Diamond 

Hox = 453-2 cal mole! S5o3 = 0585 +0-005 cal deg * mole ! 
p = 2:274+3-06 x 10° > T —1-54 x 10°T~? cal deg” * mole™ + 

a= 35668 A Z=8 Vsog = 3-4161cm? mole! 
a=4~x 10° °deg! 210 bared 

Graphite 
son 10 S$og = 1:36+0-02 cal deg” + mole~} 

C, = 403+ 1:14 x 107° T —2:04 x 10°T ~? cal deg” ' mole~? 
a= 24612 A, c = 6:7079 A, Zi Veog = 5:2984 cm? mole! 
w= 25x 10 °dege? x = 30 x 10°’ bar"! 

Graphite — Diamond 
NFlgge = 453-2 cal AS$93 = —0-78 cal deg 1 

AC, = —1:76+1:92 x 10~3T+0-50 x 10°T~? cal deg! 

AG; = 4-05T log T—10:71T —0:96 x 10°>3T? —0-25 x 10°T~ 1 + 1060 cal 
AV3o93 = —1:8823 cm? 

First approximation Second approximation Third approximation* 
T°K  P(kb) Gy(cal) P(kb) —y1 —y, x 10° P(kb) 
298 15-24 «*) 685 15-23 1:8823 7-6060 16-30 
500. ~=—-:18-75 880 19-56 1:9063 7:6459 21-10 
ROOM 22-21 1123 24-96 1:9301  7:6853 21-32. 
900 25-68 1383 30:74 19538  7-7248 34-26 

LOOM 529-15 1643 36:52 1:9776 17-7643 41-54 
1300» 32-62 1891 4204 2:0013 = 7:8037 48-84 

* assuming the equation to be rewritten as —-AG} = y,P —y,P” where 

V1 = AV yo + (Vp%p — Ve%@)T —298) 

22 = Vox — VeXe) + 2V DX — Ve%e%e)(T — 298) 

and therefore 

AG?. = —AaTIn r+fa +In 298)Aa+596Ab-+298-? — ASing| i 

= T~ 1+ {AH3og —298Aa—2987Ab—298- 1Act, 

Values of AG}. at various temperatures and of P = —AG{/AV3og at this level of 
approximation are tabulated in Table 13.4. 

The next level of approximation takes into account the dependence of AV on 
temperature and pressure. It follows from the definition of the coefficient of isothermal 
compressibility y = —V~ 1(@V/0P), that 

=Ab T? + 

1 

Ve (le yP) tor P > 1: 

P 

Vi = H-| Vz dP 

From the definition of isobaric thermal (volume) expansion, « = V~'(0V/0T)p, 

T 

Vp = View| &VzogdT 
298 

= V0 [1 + a(T— 298) | 

and hence Vi = Vyog[1+a(T —298)| (1 — xP). 
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Therefore for the transformation 

AVr = (Vro8)pL1 + %p(T —298)] (1—YpP) 

—(Vyogkg 1 +%6(T —298)] (1 — XP). 

P 

Now AGE = ac | AV? dP 
1 

= AG; + (Vyos)p[1 + p(T —298)] (p22 

kh 
—(Vzo8)¢L1 + G(T —298) | (? Rie P*) : 

Applying the equilibrium condition 

AG? =0 

we have the equation to the equilibrium curve in PT space, 

AG7+ {AV x98 + [(Vo08)% —(V208)6% ] (T —298)} P 
P?2 

—{(Vzog)p[1 + 4p(T — 298) ]%¥p — (Volo [1+ %6(T — 298) | lat ae = (0. 

Solutions to this quadratic equation are tabulated in Table 13.4. 
The third approximation, curve c in Fig 13.6, can be improved by taking into 

account the temperature and pressure coefficients of « and x at high temperature and 
pressure. The resulting improvement would be expected to be slight and will not be 
explored here. 

80 

DIAMOND 

60 

(kb) Fig 13.6 The polymorphic 
40 y equilibrium graphite 2 diamond. The 

. solid curve a represents the first 
approximation with 
AS/AV = (AS) 3 99/(AV) Sag: 
The dot-dash curve 6 represents a 
second approximation which takes 

into account the temperature 
dependence of AC,, and the broken 
curve ¢ represents a third 

approximation which takes into 
account also the temperature and 
pressure dependence of AV. The 

0 shaded curve d summarizes 
I experimental data on the synthesis l IF 

0 1000 2000 3000 — of diamond from graphite. 

GRAPHITE 

20 
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The equilibrium curves for graphite > diamond at each level of approximation are 

plotted on Fig 13.6. It is noticeable that each improvement in the calculation takes 
the equilibrium curve to successively higher pressures at any given high temperature. 
These differences are much greater than they will be for the great majority of 

polymorphic transformations because this is a transformation of bond type, the most 
extreme kind of change possible. In diamond there is strong covalent sp? bonding 
between carbon atoms, whereas in graphite there is comparably strong covalent 
sp~ bonding within the layers and very much weaker van der Waals bonding between 
the structural layers. The effect of this extreme difference in structure on specific heat 
is not intuitively obvious, but it is generally true to say that the stronger the bonding 
the smaller the specific heat and consequently the lower the entropy at any 
temperature. That strongly bonded structures will have markedly low coefficients of 
thermal expansion and of compressibility is self-evident. 

The calculation of a substantially correct PT curve for the graphite—diamond 
transformation could not lead to an immediate solution of the problem of the synthesis 
of diamond. Apparatus capable of providing PT conditions within the stability field 
of diamond had been available for some years before the successful synthesis of 
diamond was performed (Bundy et al, 1961). The remaining stumbling block turned 
out to be kinetic rather than thermodynamic. In this context thermodynamics is 
concerned only with the relative stability of polymorphs and can provide no 
information about whether the transformation can be achieved practically by 

subjecting the reactant to PT conditions within the stability field of the product 
polymorph. Highly ordered covalent structures, that is structures of extremely low 
entropy as is the case in diamond, do not in general crystallize easily. The difficulty 
is not in growth but in the formation of stable nuclei of the highly ordered structure: 
once such stable nuclei are formed growth proceeds at effective rates at high 
temperatures, the temperature coefficient of crystal growth being exponentially 
related to temperature. Clearly then the transformation will be facilitated by the 
introduction of ready-made nuclei of the diamond structure. Finely powdered 
diamond is not effective, probably because the surface structure of the grains becomes 
distorted in the crushing process, but the introduction of certain Group VIII metals 
that form carbides with structures similar to that of diamond is effective. Metals such 
as Fe, Ni, Rh, Pd, and Pt form carbides of the type R,.C (with x > 4) which are cubic 
with the same atomic coordinates as in diamond and unit-cell edges close to that of 
diamond. The nucleation and growth of crystals of diamond in the presence of such 
metal catalysts only takes place if the temperature and pressure exceed those of the 

eutectic point for the appropriate metal-carbon system and lie within the diamond 
stability field, that is to say diamond will crystallize in the laboratory only in a molten 
metallic medium. Synthetic diamonds invariably contain heavy traces of the 
nucleating metal, but natural diamonds are characteristically almost wholly devoid 
of metallic impurities; there must be some alternative means of facilitating the 
nucleation of diamond available in the earth, but as yet undiscovered. Natural 
diamonds are known to have formed in high temperature environments and it is clear 
from Fig 13.6 that high temperature implies high pressure for diamond to be stable. 

Phases of variable composition 

So far we have dealt only with phases of fixed and invariable composition. The 
arguments of classical thermodynamics are extendable to phases of variable 
composition without the necessity for ad hoc assumptions; and functions descriptive 
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of the compositional variation, such as activity coefficients, can be determined 

experimentally. However the introduction of certain concepts from statistical 

thermodynamics makes the description of compositional variation in many cases 

easier to understand in physical terms. We begin witha purely classical approach and 

introduce statistical concepts to give physical meaning to the definition of the ideal 

solution. 

Partial molar quantities 

Let J represent any thermodynamic function and ny, nz... Nj, Nj,--- the number of 

moles of the chemical species 1, 2,... i, j,... present in the system. The partial molar 

quantity J; is then defined as 

oa oJ 

te On; T,P,nj 

In general the variation of J as a function of temperature, pressure, and composition 

of the system is expressible as 

oJ od oJ 
dJ = (— we d oe 

(; os “at () hia (2) Pynj Hs 

i oJ oJ a 
i.e. dj= (),.. dT+ (3). at es dn; 

In the case of volume, for example, this becomes 

dV =aVdT—yV dP +). V,dn,. 

It should be noticed that for a system containing only a single chemical species 

J =n,J; and J; is the magnitude of J per mole. 

Chemical potential 

Chemical potential was defined by Gibbs as 1; such that 

7 oU 

Seg On; S,V,nj 

We shall now show that chemical potential is identical with partial molar free enthalpy 

e-(f On; T,P,nj 

It follows from the definitions of G and H that 

G=U+PV-TS 

hence dG = dU+PdV + VdP — TdS — SdT. 

But dG = —SdT+VdP+)  G,dn; 

therefore dU = —PdV+TdS+Y G,dn;. 

0U 0U 
But dU =|—— dV +| —— ; dn; 
i (5 7) s & an ee a att 



Chemical potential 485 

Comparison of these two expressions for dU yields the identity 

= 0G 
. — G: — __ 

. ; Gata 

and we can therefore write the practically useful equation 

dG = —SdT+VdP+Y yi; dn;. 

This expression can be integrated at constant temperature and pressure by the 
device of allowing each n,; to change by an amount proportional to itself. Suppose that 
the quantity of the phase is increased in the proportion (1+dé):1 at constant relative 
composition. Since G is extensive, 

dG = Gdé 

and since relative composition is maintained constant, 

dn; =n,d& for alli. 

But for dT = 0, dP = 0, we have 

dG = ¥' p,dn; 

therefore Gdé =) yn,dé. 

Division by dé # 0 yields the integrated expression 

G = > LN;. 

It follows that for phases composed of a single chemical species G = yi,n,, that is 
chemical potential corresponds to molar free enthalpy. 

That chemical potential is an intensive property can simply be shown by considering 
two portions of the same phase of masses m, and m, = Am,, containing n,; and An; 
moles of species i respectively. If the free enthalpies of the two portions are denoted 
G, and G,, G, = AG, since free enthalpy is extensive, and the chemical potential of i 
in the two portions, pu} and py? will be given by 

0G 0AG Bit | ms d w= : 
a ae a reals i ns 

therefore yp} = p?. 

‘The condition for equilibrium, dT = 0, dP =0, dG =0 will be modified if the 

composition of phases in equilibrium is allowed to vary. Let us consider a system 
composed of several phases, denoted a, B,... ; then for the phase « 

dG? = —S*dT+V*dP+) yi dn? 

and similarly for every other phase. For the whole system 

dG= ) dG". 

At constant temperature and pressure, 

dG) py dns. 
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Now suppose that the only change in the system at constant T and P is the transfer 

of a quantity dn; of chemical species i from phase « to phase f, 

i.e. dnz+dn?=0 and dn%=dn} =---=O,for allj #1 

hence dG* = p2(—dn,), dG’ = pf(+dn,), and dG’ = dG? =--- = 0. 

Therefore for the whole system 

dG = (ui —pi)dn;. 

But at equilibrium at constant temperature and pressure 

dG =0 

therefore pf = ph 

that is, the chemical potential of each chemical species i has the same value for that 

component throughout the system at equilibrium. 
Now for a natural process we have shown that 

dT =0, dP =0, dG <0 

and so (u? — u2)dn; < 0. 

Since we have specified that dn; is positive, 

ue < ut 

and therefore species i passes from the phase in which its chemical potential is higher 
into that in which it is lower to produce uniform yp; throughout the system at 

equilibrium. 
That changes in the chemical potentials of different chemical species are not 

independent at equilibrium is shown by the following argument. For a single phase 
system we have shown that 

G — yi] HM; nj. 

Differentiating, 

dG = p,dn,+ Yn, dy; 

but dG = —SdT+VdP+Y py, dn; 

therefore SdT—VdP+) n,du; = 0. 

This relationship, known as the Gibbs—Duhem Relation, indicates that the intensive 

quantities T, P, ; are not independently variable. At equilibrium at constant 

temperature and pressure it follows that 

ee. dP’ = 0; yin, du, = 0, 

so that in a phase composed of two chemical species labelled 1 and 2, 

n; duty +n du, = 9, 

i.e. as the chemical potential of one species increases that of the other decreases. 
So far we have discussed chemical potential only at constant temperature and 
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pressure. The temperature dependence of ; follows from the cross-differentiation 
identity 

a 0G Pee 0 (0G 

OT \ On; P,T,nj peo tttc on; \OT P,ni,nj_\P,T,nj 

Le: ou =— we 
OT P,ni,nj on; Pein; 

OL: 
therefore (H) = —§; 

where §; is the partial molar entropy of species i. 
A more useful partial differential is 

awilT)) 1 (ami\ 
OF Hye) jo Na orp? 
—TS— us oe ae 

A; 
ce 

The pressure dependence of chemical potential follows from 

i fe 2 eae 
oP On; P,T,nj Puan On; oP T,ni,nj_\P,T,nj 

Le CH = ey = 
ss oP Peat) On; ant 

The dependence of chemical potential on composition cannot usefully be explored 
in general terms. Simplifying assumptions based on statistical thermodynamics must 
be made if expressions that are directly applicable to experimental data are to be 
developed. We deal under the next heading with one such simplification especially 
appropriate to condensed phases of variable composition. 

s 

Ideal solutions 
In classical thermodynamics an ideal solution is defined as a solution in which every 
component obeys the equation 

BM, = wXt+RT Inn, 

where the mol fraction of component i is defined as x; = n,/Y‘n,;, n; being the molar 
quantity of component i in the solution and the summation being taken over all 
components, and y* is a constant at constant temperature and pressure. It is usual 
to distinguish perfect solutions (analogous to perfect gas mixtures) as solutions in 
which every component obeys the ideal solution equation over the whole composition 
range, 0 < x; < 1 for all i; u* is then the molar free enthalpy G; of pure component 
i at the given temperature and pressure, 

Le. lim p= pe 

All other solutions tend towards ideality at extreme dilution: the ideal solution 

equation for the solvent, usually indicated by the subscript 0, is obeyed only as x) > 1 
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so that w* = Gy as before, but the solute components only obey the ideal solution 

equation as x; > 0 so that u* cannot be identified with G;. We shall here be concerned 

in the main with ideal solutions that are perfect and we shall describe such simply as 

ideal solutions. Where we are concerned with solutions that become ideal only when 

very dilute we shall draw attention to the restriction. 

We can alternatively, and profitably, define an ideal solution in terms of a simple 
statistical model. Suppose that two substances AX and BX have crystal structures that 
differ only in dimensions, that is to say the atomic coordinates of the X atoms are 
identical in both unit-cells and the coordinates of the A atoms in AX are the same as 
those of the B atoms in BX. Let us further suppose that AX and BX form a solid 
solution and consider an amount of this solid solution containing N, atoms of A, 
N, atoms of B, and N,+N, atoms of X. The first coordination shell about a site 
occupied by an A or a B atom will be occupied by X atoms invariably, but the second 
coordination shell will be occupied by A and B atoms. The occupational probabilities 
of a site 1 and of a site 2 in the second coordination shell of 1 will then be 

2 

probability of A on 1 and A on 2 = (ta) 
Nat+Nep/ 

probability of A on 1 and B on 2 = pete 
(Na +Np) 

probability of B on 1 and A on 2 = es. 
(Na +Np) 

es 

probability of B on 1 and B on 2 = el ee : 

Since we can make no distinction between an A—B and a B—A pair the occupational 
probabilities of such a pair of sites by pairs of atoms will be: 

2 2 pO gecesi os IA plese vinnie tad gacipengaee allan 
(Na +Ns) (Na +N) (Ny+Np)” 

If we suppose that the coordination number of site 1 with respect to its second 
coordination shell is z, there will be a total of 3z(N,+N,) pairs of sites such as 1 
and 2 in the whole sample of solid solution and the total number of adjacent pairs 
of A, B atoms will b 

2 
ASA dz Ns 

Nat+Np 

2 
B—B 47 Np 

Nat+Np 

A=B» 72a. 
Nat+Np 

There will in general be an interaction energy between the A,B atoms occupying 
such adjacent sites. If AX and BX are to form a solid solution of any kind, A and B 
must be chemically similar to the extent of both being cationic (or both anionic) so 
that the interaction forces will always be repulsive. Let w,, be the increase in potential 
energy when a pair of A atoms are brought from infinity to adjacent sites in the solid 



Ideal solutions 489 

solution and define wg, and wa, similarly. Therefore that part of the potential energy 
of the sample of solid solution due to the interaction energy of A and B atoms on 
adjacent sites will be given by 

zwa, Nz Zep NG _NANg 
; + ZWap 

2 Nts 2 Nx+Ny NatNy’ 

whereas for an amount of pure AX containing N, atoms of A and an amount of pure 
BX containing N, atoms of B the contribution of such nearest neighbour interaction 
to the potential energy will be 

ZWAA 

2 

ZWpp 

2 
"Nat ‘Np. 

Therefore the increase in potential energy when N, molecules of AX and N, molecules 
of BX enter into solid solution is 

mia ( Na -n,) +2 (Aa Np -Ng) +200 NE 

A 2 \Nut+Ng, yy) Nat+Np, +N, 

ZNANg Waa t Wep 
— Wi 

Nat+Nep D 

We have considered an amount of solid solution containing N,+N, atoms of X 
and if we define one mole of solid solution as the amount containing N (= Avogadro’s 
number) atoms of X, the molar excess energy of mixing is given by 

pie NzNANg, rf _ Waat Wee 

mel (Nat Ng)? il? 2 

ie. AU,, = Nz x(1—x) Coen) 

In order to discuss quantitatively the entropy of a solution we have to have recourse 

to one of the most important results of statistical thermodynamics, a result that we 

simply assume here without proof:7 

S=kinQ 

where k is Boltzmann’s constant equal to R/N and Q is the number of ways in which 
the atoms can arrange themselves. This equation gives quantitative expression to the 
qualitative statement that entropy is a measure of degree of disorder. 

- In the solid solution A,B, _,.X there are N,+ Ny, sites that may be occupied by a 
number N, of A atoms and a number N, of B atoms. The number of possible 
arrangements of the A and B atoms on the N,+ Ns, sites is then Q given by 

(Na+Np)! 
N,!Ne! | 

(Nat+Ny3)! 
N,INg! | 

GO= 

Therefore S=kln 

3 Textbooks of statistical thermodynamics to which the reader is referred for the arguments leading to 
the equation are Fowler and Guggenheim (1956), Rushbrooke (1960), and chapter 11 of Denbigh (1971). 
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Since N, and Ng, are very large (of the order of Avogadro’s number, ~ 107*) the 
approximation Inn! = nInn, known as Stirling’s theorem, is applicable. 

Therefore S = k{(N,+Ng)In(N4+Np)—Naln Ny —Ngln Nz} 

Na N. 
=— Ngl S Kang NA “Nat 7 nye} 

= —k(N,+N,) {xInx+(1—x)In(1—x)} 

= —R{xInx+(1—x)In(1—x)} per mole of solid solution. 

The entropy evaluated here is not the whole molar entropy of the solid solution at 
temperature T, but the configurational entropy due to the disorder of the arrangement 
of different atoms on like structural sites. The configurational entropy is the molar 
entropy that a crystal of the solid solution would have if its arrangement of atoms at 
temperature T were frozen unchanged at absolute zero. There will in addition be a 
contribution |§C,.dInT to the total entropy due to thermal vibrational randomness 
of all the atoms in the structure. Since there is no randomness in the arrangement of 
atoms in pure AX and pure BX the configurational entropy for each of these end 
members of the solid solution will be zero. If it is assumed—and this is a 
reasonable assumption—that {9(C,)ssdInT for the solid solution is equal to 
x|§(Cp)axd In T+(1—x)[4(C,)sxdIn T, then the excess molar entropy of mixing 
for the solution is given by 

AS,, = —R[xInx+(1—x)In(i—x)]. 

SinceO<x<1, AS, >0. 

We are now ready to define an ideal solution in terms of the statistical model as a 
solution for which way = 3(Wa,+Wpp) and for which the excess molar volume of 
mixing AV,, = 0. The restriction waz = 3(Waq + Wgp) implies that in an ideal solution 
there is no energetic discrimination between like and unlike pairs of atoms occupying 
adjacent structurally equivalent positions. It follows from the first of these conditions 
that for an ideal solution AU,, = 0 and, since AV,, = 0, AH,,, is likewise zero. The free 
enthalpy of mixing AG,, = AH,,—TAS,, will therefore be given for an ideal solution 

by 

AG,, = RT{xInx+(1—x)In(1—x)}. 

The graph of AG,, as a function of x is shown in Fig 13.7. 
In terms of the classical thermodynamic definition of an ideal solution, 

Hy = uF+RT In x; 

for all i, we have for the solution A,B, _,X, 

Max = HAx+RTInx 

and Upx = Hix + RT In (1 —x) 

so that for the solution the molar free enthalpy is given by 

G = xix t+ (1—x)ugx + RT {x Inx+(1—x)In(1—x)}. 

But the free enthalpy of a mechanical mixture of x moles of AX and 1—x moles of 
BX is xukx + (1 —x)ugy SO that the excess free enthalpy of mixing is 

AG,, = RT{x In x +(1—x)In(1—x)}. 
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0 

AG,, 
RT 

—0:5 

Fig 13.7 Plot of AG,,/RT=x\Inx+ 
(1 —x) In (1—x) against x for an ideal solution 
A,B, _,X. 

0 0:5 1 

BX ee AX 

The statistical model is therefore consistent with the classical definition of ideal 
solution. 

In discussing the statistical model we have specifically considered a solid solution 
A,.B,_,X, but the definition of an ideal solution, although especially appropriate to 
solid solutions, is equally applicable to liquid solutions. 

In the next chapter we shall deal with several examples of ideal or quasi-ideal solid 
solution. We shall therefore not discuss any specific examples at this point. 

Non-ideal solutions: strictly regular solutions 
In general non-ideal solutions can be described by equations of the form 

Hi = wE+RTIna,, 

where the activity of component i, a;, is related to the mol-fraction of i by a; = ;x;, 

the activity coefficient y; being a function of x;. Such solutions tend to ideality as 
y; 2 1 and in general y; > 1 for solutes as x; > 0. 

There are kinds of non-ideal solutions that fit simple statistical models and of these 
the most important are strictly regular solutions,‘ for which wag —4(Waa + Wpp) = W XO 
and AV,, = 0. Therefore for a regular solution 

N,N 
es A Vien eto fA By AH,, = AU,, +AV,, x WAN 

and AG,, = AH,,— TAS,, 

NAN 3 Ne 
a ki Wiel Nz! RE eS N.in,t (Nain MA N,+N, 1 2 N,4+Ny wte 

If the number of moles of A and B atoms present are respectively ny and ng, such that 
Na = Nng and Ng = Nnzg, N being Avogadro’s number, then 

AG, = zwN—*2_+RT(n,ln ‘hin 
a eas Ny +Npg 

* When w # 0 there must be preferential interaction between A-B pairs relative to A-A and B-B paits 
and therefore there cannot be complete randomness of arrangement. However the departure from 
randomness will be slight if zw is small relative to kT. We follow Guggenheim (1952) in denoting such 
solutions as strictly regular solutions and refer the reader to Fowler and Guggenheim (1956) for discussion 
of the more general case. 
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2) 

and oOe = ew ( Ms +RTIn MA 
Onn, /P.t.mp na+Nnp Na +Np 

therefore pax —pky = zw N(1—x)?+RTInx ' 

i.e. Max = Hex +RTInx+zw N(1—x)? 

and similarly 

Upx — Pay + RT In (1 —x)+zw Nx’. 

We shall discuss specific examples of solid solutions that approximate to strict 

regularity in the next chapter. 

Order-—disorder 
We make this digression at this point because the elementary thermodynamic 
treatment of order—disorder (OD) systems is a simple extension of our discussion of 
ideal solutions. We have already discussed order—disorder in the alloy f-brass in its 
crystallographic aspects in chapter 10 and there made use of some of the results that 

will now be derived. We begin by considering the alloy f-brass at the composition 
CuZn, pass on to consideration of the alloy AuCu;, and in passing make some 
comments on the limitations of the elementary treatment of the thermodynamics of 
OD-systems. 

Consider one mole of the alloy AB containing N atoms of element A and N atoms 
of element B. Suppose that the structure contains equal numbers, N, of two kinds of 
site, designated a and f, and that in the fully ordered structure all the A atoms lie on 
a-sites and all the B atoms on f-sites. In the completely disordered structure each 
type of site will be randomly occupied by $N atoms of A and 4N atoms of B. Let the 
number of A atoms lying on «a-sites in a certain state of disorder be N,,, then in 
corresponding nomenclature the occupation of N sites of each kind by N atoms of 
each kind will be 

o-sites f-sites 
A atoms Naw Nag=N-Na, 

We define a degree of order s equal to the difference in the proportion of atoms 
correctly and incorrectly placed relative to the fully ordered structure, 

a NawtNog NaptNow 
a 2N 2N 

Age OV esas = ee eas 

_2Naw_, 
N 

therefore: Nine >t +5). 

This definition of degree of order leads to values of s equal to zero and unity for the 
completely disordered and the fully ordered structures respectively: 
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Naa Nag Negy Ngp 

O<s<i 4N(1+s) 4N(1—s) 4N(1—s) 4N(1+5) 
gs 0 4N 4N 4N iN completely disordered 
a=) N 0 0 N fully ordered 

In discussing ideal solutions we were concerned with the arrangement of two kinds 
of atom on one type of structural site; here we are concerned with the arrangement 
of two kinds of atom on two types of structural site. Just as for ideal solutions the 
number of ways of arranging A and B atoms on «a-sites, irrespective of their 
arrangement on f-sites, is given by 

N! 

GNU+3}1GNO—3)}! 
and the number of possible arrangements of A and B atoms on f-sites is given by an 
identical expression. The number of possible arrangements of A and B atoms on a- 
and f-sites is thus 

Q N! 3 

~— LGN +9} GN —5)}! 
The excess molar configurational entropy of the system relative to one mole of the 
fully ordered structure is therefore 

N! 2 
‘ar ko] ay ENC —s)} | 

which simplifies on application of Stirling’s theorem, N being large (N = Avogadro’s 
number), to 

S, = R{2In2—(1+s)In(1+s)—(1—s)In(1—s)}. 

The excess molar configurational entropy of the completely disordered structure 
(s = 0) over the fully ordered structure (s = 1) is thus 

(S.)mex = 2R 1n2. 

We turn now to consider the configurational energy of the system and again our 
argument follows the same pattern as for ideal solutions. Suppose that atoms on 

a-sites are bonded only to atoms on f-sites and that the coordination number for 
both types of site is z. The A atoms on a-sites will give rise to zN,, bonds of which 
the proportion N4,/N will be A—A bonds and the remainder A—B bonds. Likewise 
the B atoms on «-sites will give rise to zNg, bonds of which the proportion Ng,/N 
will be B—B bonds and the remainder B—A (indistinguishable from A—B) bonds. 
The number of each kind of bond per mole will thus be: 

N 1—s? 
Naa Sa ee 

tgp =2ZNge = ZN 4 

Nap = Z(Naat+ Noga) —Naa — "pp 

is 1+s? 
= zN—zN = = 7 N. — 
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Suppose that the energy U* of the assemblage of N atoms of A and N atoms of B is 
reduced by the amounts waa, Wgs, Was by the formation of each A—A, B—B, A—B 

bond respectively; the quantities wa, etc are bond energies and are positive. The 
energy of one mole of the AB crystal is then ‘ 

U = U*—{ng, Waa +NppWppt Mapas} 

zN 
= U* yale {2(Waat Wap) (1 —s*)+ Waz(1 + s*)} 

The molar energy of the fully ordered state (s = 1) is consequently U*—zNwa, so 
that the excess molar configurational energy of the system relative to the fully ordered 
state is 

c 

N 
U,= a {2(Waa + Wap)(1 —s7)+ Wap(1+57)}+zNWap 

zN 
a {3(Waa + Wpp) — Wap} (1 — 87) 

_ZzNw 

ie ED 

where w = Wagp—3(WaatWpp). The excess molar configurational energy of the 
completely disordered structure (s = 0) relative to the fully ordered structure (s = 1) 
is thus 4zNw. The energy difference between the completely disordered and fully 
ordered states is thus proportional to w, which depends on the pair of elements 
concerned, and to z, which is of course structure dependent. 

Since we are concerned here with a solid system, configurational energy and 
configurational enthalpy will be effectively equal U, ~ H,. Therefore we can write for 
the excess molar configurational free enthalpy of the system relative to the fully ordered 
structure 

(1—s?), 

G, = H,—-TS, ~ U.—TS, 

i.e. eee a -s)-RT(2In2-(1 +s)In(1+s)—(1—s)In(1—3)}. 

At equilibrium 0G,/ds will be zero, 

i.e. Sahin —zNws+RT{In(1+s)—In(1—s)} =0 

Le. potas eer 
l1—s kT 

This equation can conveniently be solved for selected values of zw/kT by a graphical 
method. The reader familiar with hyperbolic functions will notice that 

1 
in oe tae 

1—s 

and will be aware that tables of tanh~* are available. Rewriting the equilibrium 
condition as 

Zws 
tanh~!s5 =——_ = anh” 's=7 7 = 

3 
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s=tanh (x) 

=1 0 1 2 3 
x ——P 

Fig 13.8 Graphical solution of In [(1 +s)/(1 —s)] = zws/kT. The figure shows the curve of 
Ss =tanh (x) and a set of lines s = (2k7/zw) x for various values of 7. For w positive each line 
makes two intersections with the curve if 7 < 7, and only one solution, s = 0, for higher temperatures. 
For w negative there is a single intersection, at s = 0, and the alloy is unstable. 

we plot a graph (Fig 13.8) of tanh” ' s against x and a set of straight lines through the 
origin to represent 

2kT 
eet 

zw 
S 

for various slopes 2kT/zw. The intersection of the curve s = tanh(x) with any of the 
straight lines s = (2kT/zw)x represents a solution of the equilibrium equation for a 
particular value of 2kT/zw as illustrated in Fig 10.38. 
When the slope of s = (2kT/zw)x is negative there is a single solution at s = 0. 

Since k, T, and z are necessarily positive the negative slope must imply that w is 
negative, that is Wag < 4(Wa,+Wgp), Which means that the strength of an A—B bond 
is less than the mean strength of A—A and B—B bonds. When w is negative then the 
alloy AB is unstable, the stable state consisting of a mixture of crystals of the pure 
element A and the pure element B. Such exsolution is not of immediate concern to us 
here, but will be discussed in another context in chapter 14. 
When the slope of s = (2kT/zw)x is positive, w must be positive and the alloy AB, 

whether ordered or disordered, is stable. For all positive slopes of the line there is 
evidently a solution of the equilibrium equation at s =0 and, when the slope has 
decreased below a certain limiting magnitude, a second solution at 0<s <1. The 

stability of the solution at s = 0 can simply be investigated by consideration of the 
sign of the second differential G, with respect to s. We have already shown that 

i = —zNws+RT{In(1+s)—In(1—s)} 
s 

0G, 2RT 
therefore cn CLIN Woe 

0°G 
hence ( ) = —zNw+2RT, 

ds s=0 
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0’G, zw zw 
and so (SS ) > for T>> and oy Lae T<7- 

Therefore when the slope of s = (2kT/zw)x is greater than unity the solution s =A) 

corresponds to a minimum of G, and to a stable state of complete disorder in the 

alloy. By differentiating the equation 

tanh *(s) = x 

with respect to x we obtain 

so that 

ds od =F 
(=) 0 

and for s > 0 

ds 
ie <i 

The line s = (2kT/zw)x is therefore tangential to the curve tanh” ' (s) = x at the origin 
when its slope is unity and this situation corresponds to the change in sign of 

6?G,/ds” for the root s = 0. Since the slope of tanh™ ' (s) = x decreases smoothly from 
unity as sand x increase from zero this same limit 2kT/zw = 1 represents the boundary 
between the case where the equilibrium equation has a single (stable) solution at 
s = 0 and the case where it has two roots, s = 0 (unstable) and 0 < s < 1. That this 

second root represents a minimum of G, can be seen by writing down the condition 
for 07G,/ds” to be positive for 0 <s <1, 

OR 
sneha >0 

zw 
1.€. T >—(1-s?): 1.€ > a | ee 

There is thus a stable solution of the equilibrium equation for all temperatures between 
zero K and T < zw/2k for some value of the degree of order s such that 0 < s< 1. 
For each temperature in this range there will be an equilibrium value for the degree 
of order s and, as we have already seen, for temperatures greater than zw/2k, s will 
be uniformly zero. 

The temperature at which, for given values of z and w, the sign of 67G,/és* changes 
for s =0 is known as the critical temperature T, = zw/2k for the order—disorder 
transformation. 

In order to explore the temperature dependence of degree of ordering, it is 
convenient to rewrite the equilibrium equation 

tanh-1(s)=— = an (s) aT 
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Fig 13.9 Plot of U,/RT, = 1-—s? against s for the Bragg—Williams model of an AB alloy. For 
a given change Os in the degree of order s, the magnitude of the configurational energy change 
OU, decreases sharply as s>0, a characteristic of a cooperative process. 

in terms of the critical temperature T, in the form 

ed S 

T. tanh 1(s) 

and to plot s against T/T, as in Fig 10.38. It is immediately apparent that s changes 
slowly at first from unity at absolute zero and then increasingly rapidly as the 

temperature rises, becoming catastrophic as the critical temperature is approached. 
This increase in the rate of change of s with temperature is accompanied by a 
progressive decrease in the amount of energy required to produce the same amount 
of change in the degree of order (Fig 13.9). The expression for configurational energy 

zNw 
U, =—— 

2 

can be rewritten in terms of critical temperature as 

U, = RT,(1—s’) 

and differentiated with respect to s to give 

Our 

Os 

In the limit as s > 0, that is as T > T,, @U,/0s — 0; this is the essential property of a 
cooperative process, dU, for a given change os decreases sharply as s > 0. 

Characteristic of order—disorder transformations is the form of the variation of 

(1—s’) 

= —2RT,s. 



498 Mineral equilibrium: the thermodynamic basis 
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Fig 13.10 Variation of atomic heat capacity with temperature for CuZn. The broken curve 
represents experimental measurements on the alloy CuZn. The dot-dash curve represents the mean 
of experimental data for the pure metals Cu and Zn. The solid curve represents the excess atomic 
heat capacity calculated on the Bragg—Williams model over the mean atomic heat capacities of 
Cu and Zn. 

specific heat with temperature. The configurational contribution to specific heat is 
given by 

>= a ~ OU, = ~orTs 2. 
Tee er OT 

Configurational specific heat rises from zero at zero K to a peak as T. is approached 
and at 7, drops to zero (Fig 13.10). The characteristic shape of the specific heat curve 
in the neighbourhood of the critical temperature, resembling the Greek letter A, 
provides the commonly used name ‘lambda point transformation’ for this sort of 
order—disorder transformation; the critical temperature is sometimes referred to as 
the ‘lambda point’. 

This elementary thermodynamic treatment of order—disorder in an AB alloy, 
known as the Bragg—Williams treatment or the ‘zeroth approximation’, provides a 
useful preliminary interpretation of experimental data for the alloy CuZn. We have 
already, in chapter 10, indicated some of the inadequacies of this elementary approach. 
The more sophisticated treatment, known as the quasi-chemical method or the ‘first 
approximation’ is very much more powerful and provides a closer correspondence 
with experimental evidence. Moreover disordering in the alloy AuCu, (Fig 10.34) 
which has a normal phase transition rather than a lambda point transformation, 
cannot be interpreted in Bragg—Williams terms but is amenable to the quasi-chemical 
approach. The thermodynamics of the quasi-chemical method is however outside the 
scope of this book; the interested reader is referred to the excellent account in 
Guggenheim (1952). 
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We turn now to consider disordering in the alloy AuCu, using an approximate 
treatment analogous to the Bragg—Williams treatment for CuZn. The cubic unit-cell 
of the alloy AuCu, (Fig 10.34) has two types of site; one, which we designate «, lies 
at the corners ” ge ee 0,0,0, and the other, designated f, is at the centre of 
each face, 0, 4,4; 4, 0,4; 4, 5, 0. When the alloy is fully ordered the gold atom lies on 

the single «-site and the three copper atoms lie on the f-sites; the lattice type is cubic-P. 
In the completely disordered alloy the a and f structural sites are all occupied 

statistically by Auy.,5Cupo.75; the lattice type is cubic-F. 
Consider one mole of the alloy AB, consisting of N atoms of A and 3N atoms of 

B distributed, according to the degree of order in the structure, over N «-sites and 
3N f-sites. Using the same nomenclature as before, site occupation will be: 

o-sites B-sites 

B atoms Nez = N—Naz Ngg =2N+ Naa 

In the fully ordered structure N,, = N and in the completely disordered structure 

Na, = 4N. The degree of order, s, may be defined as a linear function of N,, such that 
s = 1 for the fully ordered and s = 0 for the completely disordered structure, that is 

Na, = 4N(1 +3s). Degree of order as so defined is not equal to the difference between 
the proportions of correctly and incorrectly placed atoms as was the case for the AB 
alloy; it is more convenient to define s so that its limits are zero and unity. Site 

occupation expressed in terms of s is then 

a-sites f-sites 

A atoms 4N(1+3s) 3N(1—s) 
B atoms 3N(1—s) 3N(3+5) 

The number of ways of arranging A and B atoms on the N «-sites is simply 

N! 

fEN(1 +35} 1GN(U—s)}! 
and on the 3N f-sites 

(3N)! 

4N(1—s)} ENG}! 
The configurational entropy of the system is thus 

Oe N! F (3N)! 1 
cm 6) aR an N(i—s)}!] | NG —s)} 1{2NGB45)}! 

which simplifies on application of Stirling’s theorem to 

S, = R {41n4—3(1 —s)In 3 —4(1 +35) In (1 +3s)—3(1 —s) In(1—s) 
—i(3+s)In(3+s)}. 

The excess molar configurational entropy of the completely disordered state (s = 0) 

over the fully ordered state (s = 1) is therefore 

(S.\max = R{41n4—31n 3}. max 
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The calculation of configurational energy is slightly more complicated than for the 

AB alloy. In AuCu; each «-site has 12 nearest neighbours which are all B-sites while 

each f-site has 4 nearest neighbour «-sites and 8 nearest neighbour B-sites (Fig 10.34). 

With this structure in mind we take the coordination of an atom on an a-site as z and 

the coordination of an atom on a f-site as 3z by atoms on «-sites plus 27 by atoms 

on other f-sites; there is no advantage in using the numerical value of z yet. From the 

N atoms on a-sites there will be zN bonds to nearest neighbour atoms on f-sites, of 

which 

zN ett will be A—A bonds, 

zN Nop will be B—B bonds 
aN 

Nop Nap y. a and ZNaq 3N +ZNp, 3N will be A—B bonds. 

In order to evaluate the number of bonds between atoms on f-sites it is necessary to 

subdivide the equivalent f-sites into B,, 82, B; with N atoms on each sub-type of site. 

(In AuCu; the f,, 8, B3 sites may be taken to be at the centres of the faces 
perpendicular to the x, y, z axes respectively.) From the N atoms on f,-sites there 

will be 4zN bonds to atoms on £, sites, comprising 

5 Nasi Nats = alias A—A bonds, 

en “oes = a B—B meee 

and 5 Nap. nats 7 Nap, “abs 

a “ag A—B bonds. 

There will in addition be an equal contribution to the number of bonds of each kind 
from pairs of atoms on f, and f; sites and on f, and f; sites so that the total number 
of bonds of each kind between atoms on f-sites will be zNx,/9N A—A bonds, 
ZN§,/9N B—B bonds and 2zN,,Np,/9N A—B bonds. The total number of bonds of 
each kind per mole will therefore be 

ZNaaNap , 2NAp [ZN 
= piss 2 

MAA 3N oN ee 

_ ZNgaN pp ZNap _ 2N 5 

Rae Os Peo e pee! 

2(NaaNppt+NpaN ap) 4, 22NagNag 

3N ON 
Naz= 

N 
= +5) 

Again suppose that the energy U* of the assemblage of N atoms of A and 3N atoms 
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of B is reduced by the amounts wa, Wgg, Wap ON the formation of each A—A, B—B, 
A—B bond. The energy of one mole of AB; will then be 

_ 7px 
U = U* —(ngaWaa tgp WpptNapWap) 

which will have the value of U*—zN(wg,+Wag) for the fully ordered state (s = 1). 
The excess molar configurational energy of the structure at degree of order s relative 
to the fully ordered state is then 

N N N 
a iat —57)Way—-O-S?)Wyp——Z-B+S7)Wagt ZN gg +ZNWap 

_ ZNw aed 
where, as for the AB alloys, w = wag—3(Waa +Wpp)- The configurational energy of 

the completely disordered state (s = 0) is thus 4zNw. 
We are now in a position to express the excess molar configurational free enthalpy 

of the system in terms of its degree of order as 

G, = H,—TS, ~ U,—TS, 

N 2 = ~s?)—RT {41n4 —3(1 —s)In3 —4(1 +35) In (1 +33) 

—3(1—s)In(1—s)—3(3 +s) n(3+5)}. 

We obtain the equilibrium condition by differentiating G, with respect to s, 

0G, 

Os 
= —3zNws—3RT {In3—In(1+3s)+2In(1—s)—In(3+s)}, 

and setting 0G,/0s = 0, whence 

(hit 35)(Bcts)o0 2zws 

eben edrakakT 

This equation has a root at s = 0 for all values of 2zw/3kT. It also has non-zero roots 
at values of 2zw/3kT in excess of a certain magnitude corresponding to a critical 
temperature. In order to evaluate these non-zero roots and to determine the critical 
temperature it is necessary to proceed in a rather different way from the way in which 
the corresponding problem was solved for the AB alloy. It is clear from Fig 13.11 that 
G(s)—G,(0) has a single minimum at s = 0 at high temperatures. As temperature 
decreases this simple solution is succeeded by one in which G,(s)—G,(0) has two 
minima, one at s = 0 and the other at s* where 0 < s* < 1, separated by maximum. 
Initially G(s*) > G,(0) so that the root s=0 still represents the stable state. As 

temperature decreases (Fig 13.11) a situation arises where G,(s*) = G,(0); we take 
this as the condition for the critical temperature, T,, of the order—disorder 
transformation. At temperatures just below T,, s =0 corresponds to a metastable 
minimum, G,(0) > G,(s*), and at even lower temperatures s = 0 is a maximum of the 

curve of G,(s)— G,(0) with respect to s. In short at all temperatures below T, the stable 
minimum lies at s*, where 0 < s* < 1, approaching s* = 1 as T approaches zero K. 
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Fig 13.11 The difference in free enthalpy between an alloy of degree of order s and a completely 
disordered alloy (s = 0) plotted against degree of order for the zeroth (Bragg—Williams) 
approximation for AB and AB, alloys. The function plotted is T = [G,(s)—G,(0)]/AT; Tis halved 
for the AB alloy which contains 2/V atoms per mole and divided by four for the AB, alloy which 
contains 4NV atoms per mole. The figure placed against each curve is the value of 7,/7. The scale of 
the AB, diagram is greatly expanded relative to that for AB to display the detail of the curve for 
(ta Ns 

c 

The limiting degree of order s* at a temperature immediately below the critical 
temperature and the critical temperature T, are obtainable by putting 

G,(s*) = G,(0) 

ie. 4zNw(1—s**)—RT{41n4—3(1 —s*)ln3 —H(1 + 3s*)In(1 + 3s*) —3(1 —s*)In(1 —s*) 

—3(3 +s*)In(3 + s*)} = 4zNw— RT{41n4—31n3} 

DZ. ante dena 
3ET {3(1 + 3s*)In(1 + 3s*) + 4(1 —s*)In(1—s*) 

+ 2(3 +s*)In(3 +s*)—2(3+s*)In3} 

and by use of the equilibrium condition 0G,(s*)/ds = 0 

2zw (1+3s*)(3+5*) * =| iG. 3kT > = in 3(1—s*P 
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This pair of simultaneous equations can be solved by successive approximation to 

give s* = 0-463 and T, = 0-137 zw/k. 
We are now in a position to compare the essential difference in the nature of the 

variation of degree of order for AB and AB; alloys. In AB alloys s varies smoothly 
from unity at zero K to zero at the critical temperature and remains zero at all T > 7). 
In AB; alloys there is likewise a critical temperature but s varies smoothly from unity 
at zero K to s* = 0-463 at the critical temperature, where it drops abruptly to zero, 
its value at all higher temperatures. In AB3 alloys there are discontinuities at the 
critical temperature in configurational entropy, 

S,(0)—S,(s*) = R {F(1 —s*)In3 + 4(1 + 3s*)In(1 +3s*)+3(1 —s*)In (1 —s*) 

+3(3+s*)In(3 +s*)—31n3} 

= 0-78 cal deg” ' mole™ ! 

and in configurational energy, 

U,(0)— U,(s*) = 4zNws*? = 0-:0536 zNw. 

The effect of applying the more sophisticated quasi-chemical method to disordering 
of an AB; alloy is to exaggerate the discontinuity at the critical temperature so that 
s* = 0-956. Experimental data indicate a value of s* for AuCu; between 0°8 and 0-7. 
Although neither the zeroth approximation nor the more powerful first approxi- 
mation yields a value of s* in close agreement with experiment, both predict a small 
decrease in s between zero K and the critical temperature followed by a sudden 
decrease in s from s* to zero at the critical temperature; that there is semi-quantitative 

agreement between theory and experiment does indicate that the, admittedly 
approximate, theoretical analysis is valid as far as it goes. For a critical examination 
of the discrepancy between theory and experiment the interested reader is referred to 
Guggenheim (1952). 

The third law: residual entropy 

The third law of thermodynamics, which like the other three laws is a generalization 
of experience and cannot be directly verified by experiment, may be stated in the 
following form: For any isothermal process involving only phases in internal equilibrium, 

or, alternatively, if any phase is in frozen metastable equilibrium, provided the process 
does not disturb this frozen equilibrium, 

lim AS = 0 
T>0 

This statement is carefully worded so as not to imply that the entropies of substances 
tend to zero as the absolute zero of temperature is approached. 
We confine this brief account of the third law to one sort of isothermal process, 

chemical reaction. For many chemical reactions it is found that the calorimetrically 
determined entropy of reaction is in good agreement with the entropy difference 
between product and reactant phases calculated from specific heat measurements on 
each phase extending down to very low temperatures; for example the calorimetrically 
determined entropy of the reaction Zn+40, = ZnO at 298-15K is —24:24+0-05 cal 
deg! mole~', while the entropy difference S(ZnO)—4S(O,)—S(Zn) at the same 
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temperature calculated from low-temperature, specific heat measurements is 

— 24-07 +0:25 caldeg~! mole~!. But for some kinds of reaction there is always a 

systematic discrepancy; for example the directly determined and calculated entropies 

of reaction for Mg(OH), = MgO+H,O at 298-16°C are respectively 36:67 +0-10 

and 35-85+0-08caldeg-!mole~!, a discrepancy of 0:82caldeg™*mole™*. Dis- 

crepancies of very similar magnitude are found for all reactions involving H,O and 

are attributable to the persistence of the randomness of the hydrogen atoms in the ice 

structure extending down to the lowest attainable temperatures. Such randomness 

contributes to the entropy ofice an amount known as the residual entropy, which must 

be added to the calorimetrically determined entropy to give the value of S; to be used 

in the description of processes involving H,O at TK. We proceed now to calculate 

the residual entropy of ice. 
The structure of ice was discussed in chapter 10 and illustrated in Fig 10.42. 

In the structure two possible sites are available for occupation by each hydrogen atom 

and there are 2N hydrogen atoms per mole of H,O. Therefore the number of possible 

configurations per mole is 27%. Consider the configurations about a single oxygen 

atom,» that isin H,O,: there are 2+ = 16 possible arrangements, of which only 6 have 

two hydrogen atoms close to the selected oxygen atom. Thus 1 — 3 of the possible 

arrangements retain the H,O molecule about one oxygen atom, i.e. 3.2”” per mole. 
Further, 2 of these retain the H,O configuration about two oxygen atoms, i.e. (g)”.27%, 
and so on. So that in one mole, which contains N oxygen atoms, the number of 
configurations in which every oxygen atom has two hydrogen atoms close to it is 
(2)".22" = (3). Therefore the residual molar entropy of ice is Sy = kIn(3)" = RIn3 = 
0:806 caldeg~ ! mole '. This figure is in satisfactory agreement with the observed 
discrepancies between the directly determined and calculated entropies of reactions 

involving ice, 0:82 caldeg™ ‘ mole ', and heavy ice, 0:77 caldeg™ * mole *. 
In considering the entropy of any reaction which involves a phase capable of 

retaining configurational disorder down to low temperatures configurational entropy 
has to be taken into account. 

Equilibrium in polycomponent systems: the Gibbs Phase rule 

Before proceeding to the Gibbs Phase Rule it is important that certain terms, which 
we have already used, should be unambiguously defined. A phase is defined as any 
homogeneous part of a system. Those essentially inhomogeneous parts of the system 
that form the boundaries between pairs of homogeneous phases are usually of small 
extent and can safely be neglected here. The number of phases in the system will be 
denoted by ¥Y. A component is simply a chemical species, but by the number of 
components in the system, denoted by @, we imply the minimum number of substances 
necessary to specify completely the composition of every phase in the system. Thus in 
the system Mg,SiO,—Fe,SiO,, the only phases that can be present are a solid 
solution Mg>,.Fe (SiO, and a liquid solution Mg,,Fe.,,— SiO, so that although 
there are four chemical elements present, only the amounts of the compounds 
Mg, SiO, and Fe,SiO, need be specified; therefore @ = 2. The number of degrees of 
freedom of asystem, denoted by ¥, is defined as the number of variables of the system 
that may be freely chosen and must be so chosen if the system is to be in a determinate 
state. 

>It is necessary to consider the oxygen atom itself, the four associated hydrogen atoms, and one quarter 
of each of the four nearest oxygen neighbours. 
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We have already shown that, at equilibrium, temperature, pressure, and the 
chemical potential of each component must be uniform throughout the system. 
Therefore for a system of F phases, «, B,..., and @ components, 1, 2,...i... we have 

the following restrictive equations: 

T*=T8=T’=... (P—1) equations 

P*= Pra py]... (P—1) equations 

Maw =M=... 
(P—1)@ equations 

We= wp =p) =... 

There are thus (@+2)(#—1) such restrictions. And in addition there is a 

Gibbs—Duhem Relation applicable to each phase 

S*dT —V“dP +) ntdyt =0 
fae Bh 8 

SMéraveaP<Sataif ol ef eauagons 

Therefore the total number of restrictions is (@+2)(P—1)+ F. 

The number of variables sufficient and necessary to specify the state of each phase 

is @ +2, that is @ compositional variables, pressure, and temperature. Therefore the 
total number of variables for the system is A(@ + 2). 

The number of degrees of freedom ¥ of the system is the excess of the number of 
variables over the number of restrictions. Therefore 

F = P(E +2)—[(€+2)(P-1)+F] 

=€4+2-P7 

1G P+F =E4+2. 

This equation is known as the Gibbs Phase Rule. 
In the next chapter we shall exemplify the Phase Rule in the context of experimental 

studies of mineral systems. Many of these examples will refer to experiments 
performed at constant (atmospheric) pressure. For a system at constant pressure the 
number of degrees of freedom is reduced by one so that in such conditions 
P+F =EH+1. 

In the case of metamorphism of rocks within the earth it would appear that mineral 
assemblages remain stable under rather variable conditions of temperature and 
pressure. V. M. Goldschmidt therefore suggested that for such systems ¥ > 2 
always; if F >2, it follows that A<@. The statement A<@ is known as 

Goldschmidt’s Mineralogical Phase Rule; we shall make little use of this modified 
phase rule in subsequent chapters. 
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14 
Phase equilibrium: the interpretation of 
phase diagrams 

It is not our purpose here to give an exhaustive phenomenological treatment of phase 
diagrams. We shall take a selection of illustrative types as the basis for discussion of 
paths of crystallization and interpretation in terms of the thermodynamics of perfect 
or strictly regular solutions; the departure of real solutions, liquid or solid, from such 
simple models is outside our present scope. The reader whose interest is restricted to 
the qualitative interpretation of phase diagrams can omit the more mathematical 
sections of this chapter without loss of continuity of reading. 

A phase diagram is no more than the graphical representation in two dimensions 
of the application of the Phase Rule, 2+ F¥ = @+2, to a particular system. Since 
only two dimensions are available some selection of variables must be made, except 
in the case of a one-component system (for which ¥ < 2), and it is the nature of the 

selection that gives rise to the various kinds of diagrams in common use, each 
appropriate to a particular sort of problem. 

Intensive diagrams are planar and have any two of the intensive variables 
P, T, 14,...u; as rectangular coordinates, each of the other intensive variables being 
assigned a conveniently selected constant value. The most commonly used intensive 
diagram is the PT diagram, which we have already made use of to illustrate the 
polymorphism of carbon (Fig 13.6), where it provides a complete description of phase 
relations in the system: @ = 1 and therefore A+ ¥ = 3, so that an area on the 

diagram, being divariant (¥ = 2), represents the stability field of a single phase and a 
line or curve, being univariant (¥ = 1), represents the stable coexistence of two 
phases. Such diagrams are applicable also to systems of more than one component; 
in general for a system with @ components, an invariant point (P and T fixed, ¥ = 0) 
represents the stable coexistence of @ +2 phases, a univariant line (P = f(T), F = 1) 
represents the stable coexistence of @ +1 phases, and a divariant area or field (P, T 
independently variable within the field, A = 2) represents the stable coexistence of @ 
phases. Figure 14.1 shows a PT diagram for a ternary (i.e. three-component) system 
for which it is necessary to specify the constancy of the chemical potentials of the two 
components that enter into the fluid phase of variable composition. 

We shall make little use of intensive diagrams that have 1, and , plotted as their 
axes at constant P, T, and y; (i ¥ 1, 2). For an account of such diagrams the reader is 
referred to Kern and Weisbrod (1967, pp. 248-257) and for a more detailed account 
to Garrels and Christ (1965). 
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Fig 14.1 Temperature-pressure diagram for 
the three-component system MgO—H,O—CO, 
for particular values of the chemical potentials 

Pp Hy,9 and cg, in the fluid phase. 

Extensive or compositional diagrams are plotted at selected constant values of each 
intensive parameter with molar percentages of components, n,,n>,...n;,... Such that 
yn; = 100, as variables. A system with @ components thus requires @ — 1 dimensions 
for its representation. A binary system is represented by a linear diagram such as 
Fig 14.2 which shows the extent of solid solution in the system NaAISi,0,—K AlSi,;0, 
at given P and T. A ternary system is conventionally represented by an equilateral 
triangular diagram with each component plotted at a vertex of the triangle; the system 

Na-fels K~-fels Fig 14.2 Linear phase diagram for the 
binary system NaAISi,0,—KAISi,O, at a 

NaAl Si30. K AISi3Og particular temperature and pressure. The 
0 “) K AISi.0 100 extent of solid solution is indicated by the 

oO 378 io limits of the hachured areas. 

of coordinates is explained on Fig 14.3 and the use of such diagrams is illustrated by 
Fig 14.4 which shows the extent of solid solution in the system NaA1Si,;0,—K AISi,0 ,— 

CaAl,Si,Og at given P and T. For a quaternary system a perspective drawing of a 
regular tetrahedron may be used for quantitative representation or alternatively a 
selection of compositional restrictions may be imposed so that the system can be 
displayed by means of a number of plane sections. 

The most commonly used type of diagram by far is the composite diagram in which 
certain intensive and extensive parameters are plotted as variables, all other 

Fig 14.3 Coordinate system employed for 3 
triangular phase diagrams of ternary systems. 

n The three components, 1, 2, and 3, are 
2 represented by the corners of the equilateral 

ny triangle. Compositions represented by points 
on the base 1—2 of the triangle are devoid of 
component 3; the corner 3 represents pure 
component 3; a point such as X within the 
triangle represents a composition containing a 
percentage of component 3 proportional to the 
height of X above the 1—2 base; and likewise 
for the other two components. The lengths 
N,, >, Nz shown on the diagram represent 

Ng \n3 the percentages of components 1, 2, 3 in the 
composition represented by X if each side of 
the equilateral triangle is taken to be 100 in 
the same units. 

a) lO | 



508 Phase equilibrium: the interpretation of phase diagrams 

j Fig 14.4 Triangular phase diagram 

vs pipe Us aie ternary system NaAISi,0,— 

KAISi,0,—CaAl,Si,0, showing the 

extent of solid solution at 700 °C. The 

shaded areas represent solid solutions. 

Compositions in the clear area 
correspond to two solid phases in 
equilibrium, each solid phase having 

a composition on the limiting line of a 
solid solution area; the phase diagram 
is incomplete without tie-/ines joining 
the compositions of such pairs of 
phases in equilibrium. One such tie line 

is shown as a dash-dot line. 

Na AISi, Og ; K AISizOg 

parameters being kept constant. Melting, exsolution, and reaction in binary systems 

are commonly displayed on rectangular coordinates with the single compositional 

parameter plotted horizontally and T plotted vertically; a series of such diagrams at 

selected constant pressures gives a complete description of the system. For ternary 

systems triangular compositional diagrams with temperature plotted as isothermal 

contours at constant given pressure (Fig 14.22(a)) are commonly used to display 

melting or exsolution; a series of such diagrams at selected constant pressures gives a 

complete description of the system. 

At this degree of complexity diagrammatic representation begins to become 

inadequate: quaternary systems can be represented quantitatively only if some 

compositional restriction is imposed and the resulting system may not be strictly 

ternary (that is the composition of one or more phases may not lie in the ternary 

system), and quinary systems will require two compositional restrictions. Of course 

as @ increases the difficulties of experimentation increase correspondingly and very 
few systems with @ > 4 have been the subject of comprehensive study. It is usual to 

make a preliminary study of univariant equilibrium in such a polycomponent system 

and such may be represented on simple PT diagrams; the next stage of experimental 

complication would be the study of divariant equilibrium and so on. 
The Schairer diagram overcomes the problem of representing polycomponent 

systems in two dimensions but in doing so sacrifices quantitative representation. The 
diagram consists of a network of straight lines each representing a univariant 
equilibrium (7 = @ + 1). The lines intersect in invariant points (P = @), the tempera- 
ture and pressure of each invariant point being specified on the diagram. For a detailed 
account of the application of Schairer diagrams to the understanding of poly- 
component systems the reader is referred to Roedder (1959); a brief account is given 
at the end of this chapter. 

Comprehensive collections of phase diagrams of mineralogically interesting systems 

are provided by Levin, Robbins, and McMurdie (1964) and by Muan and Osborn 
(1965) where excellent accounts of the interpretation of phase diagrams are to be 
found also. 

One-component systems 

We have already discussed a simple one-component system, carbon, and displayed 
the single univariant solid-solid equilibrium involved on a PT diagram (Fig 13.6). It 
is convenient here to consider a rather more complicated system. 
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a vapour 

7 ——> 

Fig 14.5 Phase diagram for the one-component system sulphur. Solid lines represent equilibria 
between stable phases; broken lines represent metastable equilibria in the stability field of 
monoclinic sulphur, i.e. mr is the metastable extension of rc, pm of ap, mg of qb, which correspond 
respectively to S,,=liquid, S,,=vapour, liquid=vapour (S,, = orthorhombic sulphur; 
Smei = Monoclinic sulphur). 

A phase diagram for sulphur with P and T plotted on rectangular axes is shown 
in Fig 14.5.’ Four phases are involved: an orthorhombic solid, a monoclinic solid, a 
liquid, and a vapour. Each line on the diagram represents the equilibrium coexistence 

of 2 phases (i.e. YP = 2, @ = 1, therefore ¥ = 1). Within each area bounded by such 
univariant lines a single phase exists stably (1e. 7 = 1, @ = 1, therefore F = 2). At 
each of the invariant points (alternatively known as triple points) p, g, and r three 
phases coexist stably (i.e. YP = 3, @ = 1, therefore ¥ =0) at a definite pressure and 

temperature. The line apis the sublimation curve of orthorhombic sulphur, S,,,=S,,,, 
and expresses the familiar fact that the vapour pressure of a given solid at a given 

temperature has a fixed value. Similarly the line pq is the sublimation curve of 
monoclinic sulphur and qb the vapour pressure curve of liquid sulphur. The line pr 
represents the polymorphic transformation S,,,,—S,, and the lines qr and rc the 
melting curves of monoclinic and orthorhombic sulphur respectively. The positive 

slopes, dP/dT = AS/AV, of all the univariant curves indicate that for each phase 
transformation AS and AV have the same sign: for the sublimation curves this is not 

’ Coordinates are not given on the pressure and temperature axes because this phase diagram cannot 
conveniently be drawn quantitatively: the three invariant points p, q, m lie rather close together on the 
P-axis at low pressures while the invariant point r lies at very much higher pressure. The phase diagram of 
Fig 14.5 is simply schematic. Experimental data are: p 5-0 x 10° ° bar, 102°C; q 2:4 x 107° bar, 114°C; 
m 1:7 x 107 *bar, 110:2°C; r 2:5 x 10° bar, 151°C; dP/dT for pr is 3°C per kb. Recent work indicates that 
the temperature of the triple point r, at which S,,,, S,,,, and liquid are in equilibrium, is as low as 107°C so 
that the univariant lines mr and qr have negative slopes; this amendment to the phase diagram of sulphur 
has not been made in Fig 14.5, which follows the traditional form. For recent data the reader is referred to 
Bell, England, and Kullerud (1966). 
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(a) (b) 

7 ——~ 7 —_—~ . ——> 

Fig 14.6 Intersection of three univariant curves (shown as straight lines) at an invariant point. 

The situations illustrated in (a) and (c) are impossible. The metastable extension of a univariant 

curve must lie in the field of the third phase. 

surprising since S,,—Ssoria ANd V,.p—Veoria Must both be strongly positive and likewise 
for the vapour pressure curve of the liquid S,,,—S\,, > 0 and V,4,-Viiq > 0. For the 
melting curves in this case S\,,—S.o1ig aNd Viig—Veorig are both positive, but that is not 
so in every case. For a polymorphic transformation AS/AV is variable in sign from 
substance to substance. 

The manner in which univariant curves intersect at an invariant point can simply 
be demonstrated in the case of a one-component system. The three ways in which 
three univariant curves, A=B, B—C, and C= A, can intersect are shown in 

Fig 14.6. In Fig 14.6(a) any point on the metastable extension of the curve B= C lies 
in the field of C; but on the curve B= C, whether in the stable or metastable part, 

Gz = Ge while in the field of C, Go < Gg and Gc < Gx: this type of intersection is 
therefore impossible. In Fig 14.6(b) the metastable extension of B= C lies in the field 
of A so that at any point on the metastable extension Gg = Gc, Ga, < Gg, and 
Gx, < Gc: these are reconcilable statements. In Fig 14.6(c) the metastable extension of 
B=C lies in the field of B: the consequences of this arrangement, Gz = Gc and 
Gy < Gc. are irreconcilable. Therefore the metastable extension of a univariant curve 
must lie in the field of the phase not involved in the equilibrium represented by the 
curve. 

Two-component systems 
Since mineralogy is concerned primarily with condensed phases we shall restrict our 
discussion of systems with two (or more) components at this stage to phase changes 
that do not involve a vapour phase. Attention will be focused on melting and its 
converse, crystallization, on polymorphism, and on solid solution and its converse, 
exsolution. 

(1) Melting and crystallization in a simple eutectic system 

The simplest type of binary system displays neither polymorphism, nor solid solution; 
the only condensed phases are a liquid approximating to an ideal solution and the 
solid crystalline components. The temperature-composition diagram at atmospheric 

pressure for such a system is shown in Fig 14.7 where the weight percentage of one 
component is plotted along the compositional axis. 
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Fig 14.7 Two component (or 
binary) systems: the simple eutectic 
system at constant pressure. (a) 
shows the phase diagram with 
temperature plotted vertically and 
composition horizontally; single and 
two-phase areas are labelled with 
the phases present at equilibrium at 
all temperatures and compositions 
within the area; the eutectic has 
coordinates w_, 7; and represents 
the three-phase equilibrium 
A+B+L. (b) illustrates the use of 
the /ever rule to obtain the 
proportions of solid phase A and 
liquid at equilibrium at temperature 
Tg and bulk composition wa: 
m,.QR =Mp,p. PO. 

A ; We B 
0 ———— weight /, of B ——»100 (a) 
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1 
| 
| 

| 
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ue = 

oe Wo WL We B 
0 weight /, of B———® 100 (b) 

Since in this diagram we have imposed the condition of constant pressure the phase 
rule is modified to A+ ¥' = @ +1. Three phases are involved: liquid, pure solid A, 
and pure solid B. All three phases will be in equilibrium at a point, the eutectic, of 
fixed temperature T;, and fixed composition w,. That a single phase is stable within 
an area of such an isobaric diagram is consistent with the modified phase rule, for 
P=1and @ =2, FY’ =2; such an area is that labelled L on Fig 14.7. A mechanical 

mixture of the two pure solid phases is stable throughout the area below T;, the 
relative proportions of the two phases being determined by the bulk composition of 
the system. In the two-phase areas labelled L+A and L+B a liquid of variable 
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composition, determined by the temperature of the system, is in equilibrium with 

pure solid A and pure solid B respectively. Strictly such two-phase areas as A+B, 

L+A, and L+B should be distinguished on the diagram from single phase areas 

such as L by arbitrarily separated isothermal tie-lines joining the compositions of 

phases in equilibrium at selected temperatures. It is customary to omit tie lines in 

cases such as this where they would provide no additional information; we shall see 

subsequently that in ternary systems with solid solution, tie-lines are a necessary part 

of the phase diagram. 
In such two-phase areas as A+ B, L+A, and L+B the relative proportions of each 

phase are given by the lever rule. Suppose the state of the system is denoted by 
Q(To, Wa) and consider an isothermal line PQR drawn through Q (Fig 14.7(b)) to 
intersect the pure A axis at P and the boundary of the liquid field at R (weight per cent 
of B = w,). Suppose that the system consists of m, g of solid A and m, g of liquid 
of composition w,, then m, g of liquid contains 749m, w,, g of component B and 
(m,+m,) g of system contains 745(m,+m,)Wo g of B, so that on equating the 

weights of B in the system and in the only phase containing component B we have 

Mm Wy = (Ma+m,)We 

therefore m,(w,—Wo) = M,Wa 

ne: m,-OR=m,. PQ: 

The proportions by weight of the two phases present are thus inversely proportional 
to the distances between their respective compositions and the composition of the 
total system along an isothermal line on the diagram; so that if the actual weights of 
the two phases were placed at the points on the diagram representing their com- 
position and temperature, the centre of gravity of the mechanical arrangement would 
lie at the point representing the total composition of the system at the same tempera- 
ture. It must be stressed that the lever rule applies only to diagrams in which 
composition is represented by weight percentage. 

The course of the curve representing the composition of the liquid in equilibrium 

with pure solid A between its melting point T, and the eutectic temperature T;,, and 
the analogous curve for component B, has to be determined experimentally. However 

if the liquid, the only phase of variable composition, is a perfect solution the course 
of the curve can simply be related to thermochemical properties of the pure 
component; this implies that the departures of real liquid mixtures from ideality can 
be studied comparatively. Consider a binary mixture, whose composition is given by 
the mol fraction x of component A, in equilibrium with pure solid A at temperature 
TK. The chemical potential of component A in the liquid is given by 

pha p+ RT Inx 

and therefore at equilibrium 

uy = py +RTInx 
s+ Lt 

LE. in, = AEA 
RE 

Ol —H* + A 
Therefore ( =), = ae 

(AH )r 
RAS 
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where (AH), = Hk’ — H® is the heat of melting of pure component A at ter perature 
T. Integration between the melting point of pure A and the conditions under 
investigation yields 

” (AH) lnx P= SS aT: past = | Gee 
de 

But (AH,)7 = (AHs)z, + | AC, dT 
Tg 

= (AH)r, aid ACAI — T,) 

ifitis assumed that AC,, the difference in specific heat between liquid and solid A, is 
constant over the interval T, to T. 

SiN ale AC Tae AC 
Therefore tina = | (' at, Sah Pyar ‘ RT? RT 

SHAH Vi ONO, THTACE on HE 
= A In T 
| RT beret 

—(AH SAGE D(A 1 AC ae 
therefore Inx = ( at *( 7 =) e In Th 

A better approximation can be achieved by using the empirical expression for AC, as 
a function of T provided acequate high temperature specific heat data are available 
for both liquid and solid A, the former being extrapolated below the melting point 
T,. On the other hand it is often adequate to make the crude assumption AC, = 9 
so that to a first approximation 

efi “i 
ed 

Such first approximation equations will be used generally in subsequent paragraphs 
since our purpose is merely to indicate lines of argument from the perfect solution 
model rather than to provide expressions for computation. 

By analogy the equation to the curve of liquid compositions in equilibrium with 
pure solid B is 

a= Ht (LL) 
where (AHj)7,, is the heat of melting and T, the melting point of pure B. The two 
curves intersect at the eutectic point (T;, x,) so that 

RahechiRrowi 
(AHz)7,/1 1 

and In (1 —x,) = oye splay 3 

We now turn to a brief consideration of courses of crystallization and fusion. 
Consider a liquid whose temperature and composition is given by the point X on 
Fig 14.8. On cooling the liquid persists until the temperature has fallen to T, when 
pure solid A begins to separate. On further cooling under equilibrium conditions the 
amount of the crystalline solid A increases and the diminishing amount of liquid 
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Fig 14.8 Crystallization and 
melting in a simple eutectic system. 
The broken lines through X, Y, and 
Z are lines of constant composition 
while those through 7x, 7y, and 77 
are isotherms. 
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present has a composition given by the intersection of the appropriate isotherm with 
the curve T; E, the proportions of solid and liquid being obtainable at any temperature 
by application of the lever rule. When cooling has proceeded as far as the eutectic 
temperature the system goes solid as the result of crystallization of an intergrowth 
of A and B in the proportions given by the eutectic point E. The temperature of the 
system remains constant at TJ, until crystallization is complete. Further cooling 
produces no further change in the system. Although the solid product can be seen 
microscopically to consist of crystal grains of pure A and grains of the characteristic 
eutectic intergrowth of crystalline A and crystalline B, thermodynamically it is to be 
regarded as a mechanical mixture of the solid phases A and B. 

Exactly analogously the liquid Y can be cooled as a liquid as far as T,, where 

solid B begins to crystallize out. The liquid composition follows the path Y’ > E on 
further cooling under equilibrium conditions, more solid Y crystallizing out in the 
process. At the eutectic temperature T; the system goes solid by crystallization of an 
intergrowth of solid A and B. Further cooling produces no further phase change. 

On heating a mixture of solid A and solid B in the proportions corresponding to 
the point Z in Fig 14.8 a trace of liquid will first appear at the eutectic temperature 
T;,. The temperature of the system will remain constant at T;, until all the grains of B 
and sufficient of the grains of A have melted to yield a liquid of eutectic composition 
wy. The temperature is then free to rise as more of the solid phase A melts to produce 
a liquid of composition corresponding to the intersection of the appropriate isotherm 
with the curve 7, E until at the temperature T; the last trace of solid disappears, the 
resultant liquid having the same composition as the total system. 

The two curves running from the melting points of the pure components T, and 
T; down to the eutectic E are known jointly as the liquidus; the liquidus curves 
constitute the lower temperature boundary of the liquid field. The isotherm through 
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the eutectic point is known as the solidus and represents the upper temperature limit 
of the solid phases in the absence of liquid. 

Realistic departures from equilibrium in such a system have no dramatic effect on 
the course of crystallization or fusion. Some small degree of undercooling or super- 
heating may be possible and will give rise to a liquid of composition differing 
slightly from that indicated by the equilibrium curve. But for liquids such as X and Y 
there will still be a crystallization interval approximately equal to T,—T,, and Ty—Tr, 
which may amount to several hundred degrees in metallic, oxide, or silicate systems. 
And on heating such compositions will still have the large fusion interval that 
distinguishes them from the fixed temperature melting behaviour of pure components. 

(2) Eutectic system with a polymorphous component 

The effect of polymorphism in one of the components is merely to produce a break 
in the liquidus of that component (Fig 14.9) at the transformation temperature T;. 
The manner in which the liquidus for the high temperature phase B intersects that for 
the low temperature phase B’ is shown correctly on the figure. That the alternative 
mode of intersection, shown inset, is incorrect can readily be seen by considering a 
point on the stable part of the liquidus of the high temperature phase B, where 

is = Bs +RT lox 

and for the metastable low temperature phase B’ 

Ly = Wy + RT Inx’ 

but since B is the stable solid 

a < Hp’ 
Theretore x >-x 

so that above the transformation temperature the metastable liquidus of B’ lies at 
higher mol fraction of B than the stable liquidus of B. 

Fig 14.9 A eutectic system in 
which the component B is 
polymorphous in the crystalline 

state. Temperature is plotted 
vertically and mol fraction (x) of B 
horizontally. The intersection of 
liquidus curves at the temperature of 
the polymorphic transformation is 
shown correctly on the phase 
diagram; a thermodynamically 
impossible intersection is shown 

inset. 
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On cooling a composition such as Y solid B will first appear in infinitesimal quantity 

at the temperature T,. On further cooling more of phase B will crystallize until the 

temperature T, is reached where the temperature will remain constant under 

equilibrium conditions until the whole of thé high form B has been converted to the 

low form B’. B’ will then crystallize as the liquid composition moves along the 

liquidus of B’ towards the eutectic E, where the system will go solid by crystallization 

of the eutectic intergrowth of A and B’. The special effect of any departure from 

equilibrium will merely be to permit the persistence of some of the high temperature 

phase B; subsequent crystallization will be unaffected by this. 

(3) Eutectic system with a congruently melting intermediate compound 

A binary compound of the components A and B, denoted AB, is said to melt 

congruently if it melts at a definite temperature Tag to a liquid of its own composition. 

The interpolation of such a compound in a binary system has the effect of splitting 

the system A-B into the simple eutectic systems A~AB and AB-B (Fig 14.10). If the 

compound AB has a composition such that its formation from the pure components 

A and B can be written 

its stability as a solid phase requires 

Lxp—Xapla —(1—Xap)ep < 0 

at all temperatures below Tyg. If the liquid phase is a perfect solution the equation 

@ 
x on x 

A Ey A Ey B 
1 Xo a 

Fig 14.10 A eutectic system with a congruently melting intermediate compound. The 
interposition of the binary compound AB splits the system A—B into two simple binary eutectic 
systems A—AB and AB—B. 
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to the liquidus of AB will be given by 

Lixs = UXp 
= Xapla + (1 — Xap) Up 
= Xaplly +(1—Xap) uh + RT {xqg ln x + (1 —xqp) In (1 —x)}. 

Rearranging and differentiating, 

0 AH 

XaB op = Rp 
where AHxg = Hiy— HS = = XxpHh"+(1 — Xx) Hh" — HR 

Inx+(1— — Xap) an : pnd— 

is the heat of fusion of the compound AB. Integration assuming AC <n = 9 yields 

Xap [tio (1 — xen) [In (1 —x) F_ AHxg =|, 
Re kris. 

x 1 —x Nil il 1 

therefore xxgln ae + (1 —xqg) In ion. a € Si =) 

Differentiating with respect to x yields 

Xap 1—Xap_ AHag oF 

x La eae Hae WO 

Therefore 0T/dx = 0 when x = xqg and that this is a maximum is clear from the sign 
of the second differential 

cia 0 Rove XAB 1—Xxp 

dx? x |AHag 1—x 

R oT XKB l=Xan 2 XAB 1 —xzR 

- ft for( °F) 1—x ss x Ga xy 

Gu REG xed 1 
heref Soe ae |e Therefore (fa fen AHay (—+_) 

<0 “since “0 < xa_ < 1. 

The liquidus of the intermediate compound thus passes through a maximum at the 
composition of the compound. 

Since for practical purposes a binary system with a congruently melting inter- 
mediate compound can be split into two simple eutectic systems there is no need for 
further consideration of courses of crystallization. But it is worth pointing out that 
very small departures of the composition of the system from the composition of the 
compound AB will lead to very different temperatures of first appearance of liquid on 
fusion depending on whether the system lies on the A or the B side of AB, and 
conversely on cooling. Thus on cooling the compositions X and Y in Fig 14.10 will 
retain a liquid phase down to T,, and Tj, respectively; in practice | T;, — T;,| may be 
several hundred degrees. 

(4) Eutectic system with an incongruently melting intermediate compound: the reaction point 

A binary compound AB is said to melt incongruently if at a certain temperature it 
dissociates into a liquid and a solid phase of different composition. The existence of 
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Fig 14.11 A eutectic system with an incongruently melting intermediate compound. The 
nomenclature corresponds to that of earlier figures. The reaction point R has compositional and 

temperature coordinates xp and 7p. 

such a compound in a binary system has a profound effect on the paths of 
crystallization of a wide range of liquid compositions in the system. That the phase 
diagram for such a system is generally of the type illustrated in Fig 14.11 follows 
immediately from the definition of incongruent melting. The diagram expresses 
graphically the experimental observation that the compound AB decomposes at the 
temperature T, into pure solid A and a liquid of composition xg. The point R 
(coordinates xp, Tg) is known as the reaction point. Mixtures of the component A and 
the compound AB remains solid on heating until the temperature reaches T, where 
the reaction AB(s) > A(s)+ R(l) takes place; as the temperature rises above Tp the 
composition of the liquid phase moves along the liquidus curve RT, and the 
proportion of liquid increases until no solid A remains. A mixture of the component 
B and the compound AB will on the other hand develop a liquid phase on heating 
to the eutectic temperature 7;,:AB and B are in a eutectic relationship in just the 
same way as the intermediate compound and the components in the congruent case 
considered previously and it is only in its relationship to the other component, A, 

that the intermediate compound in this case differs. If the bulk composition of the 
AB+B mixture lies between the composition of AB and the reaction point R the 
whole of phase B melts as does an adequate amount of the phase AB to produce the 
eutectic liquid E when the temperature has risen to T,; on further heating more of 
the phase AB melts, the liquid composition moving along the liquidus curve ER; at 
the temperature T, the reaction AB(s)— A(s)+R(l) takes place and the phase AB 

disappears from the system; continued heating enables the temperature to rise as 
more of the phase A melts, the liquid composition moving along the liquidus curve 
RT,, until the system is completely liquid. If the bulk composition lies between R 
and E the first liquid again appears at T; but the remaining solid phase AB disappears 
at some temperature less than Tp. If the bulk composition lies between E and the 
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pure component B the first liquid yet again appears when the temperature has risen 
to T,; the temperature of the system remains constant at 7; until all of phase AB and 
an adequate amount of phase B have melted to give the eutectic liquid E; further 
heating produces a rise in temperature as an increasing amount of the solid phase B 
melts, the composition of the liquid moving along the liquidus curve ET, until all the 
solid phase has melted at some temperature less than T,. 

The differing end products of crystallization under equilibrium and non- 
equilibrium conditions in systems with incongruently melting compounds is of 
considerable importance both in petrology and in metallurgy. We shall consider the 
crystallization of two liquids X and Y (Fig 14.11) under equilibrium and non- 
equilibrium conditions. On cooling the liquid X, solid phase A will first appear at 
Tx; solid phase A will crystallize and the liquid will move along the A-liquidus to R 
on further cooling; the temperature will remain constant at T, until the reaction 
A(s)+R(l) > AB(s) has gone to completion and, since xx > xq, the liquid will be 
wholly exhausted and the system will go solid as A+ AB at Tp. On cooling the liquid 
Y solid phase A will first appear at Ty; solid phase A will crystallize and the liquid 
will move along the A-liquidus to R on further cooling; the temperature will remain 
constant at TJ, until the reaction A(s)+ R(l)— AB(s) has gone to completion and, 

since xy < Xxg, some liquid will remain in equilibrium with solid AB; as the 
temperature falls below T, more AB will crystallize and the liquid composition will 
move along the AB-liquidus towards E; the temperature will remain constant at T; 
until the system has gone solid by crystallization of the eutectic intergrowth of AB 
and B. The reaction A(s)+R(l) > AB(s) requires the solution of one solid phase (A) 

and the deposition of another (AB); this is obviously a process during which it is 
practically difficult to maintain equilibrium. The new phase AB tends to crystallize 
on the surface of the dissolving phase A and so to inhibit further reaction. If further 
reaction becomes impossible after only a small amount of phase A has reacted at the 
reaction point, the remaining protected crystal grains of phase A cease to belong 
effectively to the system. Thus under non-equilibrium conditions the liquids X and Y 
will crystallize phase A at temperatures above Tp, the reaction will then be quickly 
inhibited and the effective bulk composition of the system will in each case move to 
R; further cooling will take place as phase AB crystallizes and the liquid composition 
moves along the AB liquidus towards E; the system remains at constant temperature 

T; until the crystallization of the eutectic intergrowth is complete. The great contrast 
in the phase assemblages obtained for these two liquids under equilibrium conditions 
and under conditions where the operation of the reaction point is wholly inhibited 
becomes very clear if the system is considered quantitatively using rather extreme 

compositions: 

Compositions in weight per cent of component B: 

intermediate compound AB 30% 
reaction point R 50% 
eutectic point E 60% 
liquid X 20% 

liquid Y 40% 

Final products of crystallization: 

(i) at equilibrium (ii) at extreme disequilibrium 

X 33% A+67% AB 60% A-3) 4.282% AB®) +114 B® 

Y 86% AB +14% B 20% Ai) 4.57%, AB +23% BO 
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Notes: 
(1) Early crystallized grains of A enveloped in AB. Such grains are known in 

petrography as armoured relics. 
(2) Microscopic appearance: 67% AB+33% eutectic intergrowth. 
(3) Microscopic appearance: 60% A+13% AB+27% eutectic intergrowth. 
(4) Microscopic appearance: 20% A+27% AB+53% eutectic intergrowth. 

If the assumption is made that the liquid phase is a perfect solution it becomes 
possible, as in the systems we have considered previously, to interpret the phase 
diagram for this type of system in terms of measurable thermochemical properties of 
the substances A, AB, and B. The equation to the A-liquidus can be derived, as in 

previous cases, from the equilibrium condition pw = pk as 

‘ee DAL Ailend: 
Re Teer 

and similarly for the B-liquidus 

AH 

Inga) = (7) B 
Now there is no point in this case in deriving an equation to the AB-liquidus in the 
usual way in terms of the heat of melting of the intermediate compound because the 
melting of AB cannot be realized experimentally; instead we require an equation in 

terms of the heat of reaction either for AB(s) > A(s)+R(l) or for A(s) + B(s) > AB(s). 
The equilibrium condition for the AB-liquidus is 

Lap = UXp 
= Xqgla +(1—Xap) Mp + RT {xqq ln x + (1 —xaqg) In (1 —x)} 

Rearrangement and differentiation with respect to temperature yields 

0 0 1 * * * 
Xap inxt(l — RW) ae tt (1 —x) = RT? {xapHb +(1 — Xx) H} — HS 

which becomes on integration and substitution of AH’ = xggHik"+(1—xay) Hk — HR 
for the sake of convenience 

eT ea 
XapLin x JZ, +(1 —xqp) [In (1 —x) ]% = 7 | 

TR 

x 1-—x AH' (1 1 
Therefore In — + (1 —x-z_) | ee ie a OE XB oe Xxp) ieee R € x) 

In order to relate AH’ to the heat AH of the reaction that takes place at the reaction 
point it is first necessary to write the stoichiometric equation for the reaction, which 
will be 

ete Xap 1—xa5 AB(s) > “88. As) +— RO) 
R TER 

i 
~AB (x, HE*+(1—xp) Hk} — HS, 

R 

hence AH, =e AR + 
x 1— 1—x 
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1—xzy whence AH’ = xggH1"+(1—xap)HE* + AH, — 58 "8 HS*— 
1 —XR 1—xXp 

x {xpHa" +(1—Xp) Hp} 

= “AE *2 (Hi — HS) + AH 
lo Xp 

XAB_ XR = |—-—— JA (-9=) aan 
Or alternatively AH’ may be related to the heat of combination AH, of the pure 
components A and B to form the intermediate compound AB, 

XapA(s)+(1 —xqp)B(s) > AB(s) 

AH. = H3y—XxpHS—(1—xqp) HS" at Th. 

Then AH' = xxgHk* +(1 —Xqp) HE — AH — XxpHS —(1 — Xap) HS" 

= x,gAH, +(1 —xXa_)AHQ— AH. 

Using either expression, AHp or AHg could be obtained from experimentally 
determined T, x points on the AB liquidus by plotting xa, In x +(1 —xqg) In (1 —x) 
against T~' to yield (if the liquid is a perfect solution and if the assumption 
0AH/0T = 0, i.e. AC, = 0 is valid for each enthalpy difference involved) a straight 
line of slope —AH’/R, AH,, and AH, being obtained from the A liquidus and the 
B liquidus respectively. 

(5) System displaying complete miscibility in the solid state: zoning or coreing 

This is the type of such mineralogically well-known systems as olivine and the 
plagioclase feldspars. The isobaric phase diagram consists of a smoothly curved 
convex liquidus and a smooth concave solidus separated by a lenticular two-phase 
area (Fig 14.12). The liquidus and solidus intersect at the margins of the diagram: the 

Fig 14.12 A binary system with 
complete miscibility in the solid state. 

X 
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pure components A and B each melt at a fixed temperature, T, and T;, respectively. 
That intermediate compositions crystallize and melt over a temperature interval is 
expressed graphically by the separation of liquidus and solidus for 0 < x < 1. In the 
previous section we discussed what may be described as a case of discontinuous 
reaction at a definite reaction temperature; here we are concerned with continuous 
reaction over a temperature interval that may be as much as 100°C. That there will 
be a significant difference in the end products of crystallization under equilibrium 
and extreme disequilibrium conditions is to be expected. 
We consider first the crystallization of a liquid X (Fig 14.12) under equilibrium 

conditions. On cooling the system remains liquid until a temperature T, is reached 
where an infinitesimal amount of solid, whose composition is given by the intersection 

of the T, isotherm with the solidus, appears. The diagram states that on further 
cooling the already crystallized solid reacts with liquid to produce an increased 

amount of solid relatively enriched in the lower melting-point component B and a 
diminished amount of liquid likewise enriched in component B (Fig 14.13) so that 
when the temperature has fallen by a finite amount from the temperature T;, of first 
appearance of solid to the temperature T, 

wt % of solid _ DE 

wt % of liquid CD’ 

This process of reaction at infinitesimally separated temperatures continues until the 
temperature T,, is reached where the amount of liquid remaining is infinitesimally 
small; the final liquid is strongly enriched, as the first solid was strongly impoverished, 
in the lower melting-point component B. Under equilibrium conditions then uniform 
crystalline grains of composition X are produced at T,,, all earlier crystallized grains 
having reacted with the liquid as the temperature has fallen from T, to T,,. 

That equilibrium is difficult to maintain in such a system is intuitively obvious. 
Time must be allowed for reaction to be completed before the temperature of the 
system can fall infinitesimally and this condition applies over the whole range from 
T, to T,,. If equilibrium is not maintained reaction will be incomplete, or perhaps 
even vestigial, at each infinitesimally separated stage. The effective bulk composition 
of the system will move steadily towards the lower melting-point component B and 
under conditions of complete disequilibrium the final liquid will have the composition 
of pure component B. The crystallization interval will thus be enlarged from T, —T, 
to T, — T, and the crystalline grains produced will vary radially in composition from 
w; (the intersection of the T, isotherm with the solidus) at their centres to pure B 
marginally. Such smooth variation, known as zoning (or coreing in alloys), is frequently 

Fig 14.13 An expanded portion of the 
phase diagram shown in Fig 14.12 with 
composition represented in weight per cent 
instead of in mol fraction. Liquidus and 
solidus are shown as solid lines; isotherms 
and lines of constant composition are shown 
as broken lines to illustrate successive stages 

; iN in the crystallization of a liquid of composition 
weight /(w) of 5——— we io 
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observed in such commonly encountered solid solutions as the olivines, plagioclase 
feldspars, pyroxenes, etc of rocks that have crystallized from natural melts as well as in 
the products of laboratory crystallization as diverse as Cu-Ni alloys, CIC, H;-BrC,H, 

‘mixed crystals’, and Na,CO,—Na,SO, ‘mixed crystals’. 
The simplest model for such a system is to assume that both liquid and solid 

phases are perfect solutions. Then, if x8 and x! are respectively the mol fraction of 
component A in the solid and liquid phase respectively (Fig 14.12), the equilibrium 
condition at some temperature T in the melting or crystallization interval is u8 = yk 
and simultaneously 3 = yh, 

i.e. pS + RT Inx8 = wh +RTInxt 
L x gee 

whence = In-- = —y" +8 
x 

therefore by differentiation with respect to T and integration between limits 

if it is assumed that AC, = Cj; —C>; = 0. And by analogy 

1—xt AH, (7 1 
In -——. = ———-| — -— ]. 

1— xs R 

Thus if the course of the liquidus and solidus curves has been determined 
experimentally the heats of melting AH, and AH, can be determined from the slope 
of plots of In (x"/x8) and In(1—x")/(1 —x°) respectively against T~ !. Contrariwise if 
AH, and AH, are known the liquidus and solidus curves can be constructed by 
simultaneous solution of the two equations at conveniently chosen temperature 
intervals between T, and T,. 

(6) System displaying complete miscibility in the solid state with a minimum in the liquidus 
Such a system is familiar in the silicate field in the alkali feldspars, where it is 
complicated by the incongruent melting of K-feldspar. We take, for the sake of 
simplicity, a hypothetical system with components A and B (Fig 14.14). The phase 
diagram states the experimental observation that if the liquidus displays a minimum 
so does the solidus and the minima are coincident. All compositions other than the 
pure components and the minimum melting composition exhibit a melting (and 
crystallization) interval. As in the immediately preceding example the maintenance 
of equilibrium is practically difficult and consequently zoning is commonly observed 
in such systems, but the limits are different: here the final liquid composition in 
disequilibrium crystallization and the marginal composition of a crystal grain will, in 
the limit, be the composition of the minimum and not that of the lower melting-point 
component. On heating a solid solution belonging to such a system a liquid phase 
will first appear at some temperature > T,,;, and it is evident from Fig 14.14 that for 
a wide range of compositions this will be a temperature below that of the melting 
point of either component. The existence of such minimum-melting systems among 
the common rock-forming minerals plays a critical role in the interpretation of the 
generation of silicate liquids from rocks deeply buried in the earth. 

The perfect solution model, which we have consistently used hitherto, cannot give 

rise to a liquidus with a minimum. The next simplest model for real solutions, the 

strictly regular solution, which we have already considered in chapter 13, does 



524 Phase equilibrium: the interpretation of phase diagrams 

Fig 14.14 Abinary system with 
complete miscibility in the solid 

Ta state and a minimum in the 
liquidus. The solidus necessarily 

? has a minimum coincident with 
that of the liquidus; the 
coordinates of the azeotropic 
point are labelled xin, Tmin- 

L Tp 

T 

Tmin 

A Xmin B 

1—=<________ x ——_ 0 

however provide an adequate model for the interpretation of the phase diagram of 
Fig 14.14. If we assume that the solid solution is a strictly regular solution, then at 
any temperature T 

p& = w+ RT In x5 + 08(1 —x5)? 

and LS = pS + RT In(1 —x5)+ o8(x5)? 

where x* is the mol fraction of component A in the solid solution and oS = Nzw’*. If 
we further assume that the liquid is a strictly regular solution then at any temperature 
T 

pe = ph + RT Inx’+a%(1—x!)? 

and pe = p+ RT In (1 —x")+a4(x!)? 

where x" is the mol fraction of component A in the liquid and «! = Nz!w!. 
The condition for the liquid and solid solutions to be in equilibrium is 

Ha= Ha, and — pike ps. 
The first of these equations on substitution of the expressions for chemical potential 
in the two phases yields 

x igh (1 xh) e Set xe ee ae 
lice lee 

x RT RI 

which becomes on differentiation with respect to temperature 

é _ xh, ar(L xt)? —o8(1— x8)? NTA 

oT Wen RT Ree 

where AH, = Hk’ —H¥ is the heat of melting of pure A. 
Integrating between pure component A and x, T, 

L L7] SINS Sree ee ee iT find 2 x4)? —aS(1 —x5) Se 
x RT Ds ce i Fs a Ds 
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xt ak(1 xt)? —0%(1 ay Gy 1 ) 
1.€. In 

ee RT R 

and likewise 

L—xb ah (xt)? —aS(x5)? AH, (7 1 ) 
In ae a 
eet RT RACE ai 

These two equations represent simultaneously the liquidus and solidus curves on the 
assumption of AC, = 0. Differentiation of both equations with respect to T yields 
simultaneous equations from which 0x5/0T and 0x'/0T are separable and can be 
inverted to give: 

oes T (x8 — x") {RT—2a'x!(1 —x")} 

Oxt ~ XP — x2) [ot oS —2x8x2 + (xh)?} —05s8(1 —x§)+ AH, x5 + AH, (1 —2)] 

OT T (x8 —x!){RT—208xS(1 —x°)} 

AxS ~ x8(1 — x5) [ok xt (1 — x4) — 08 {xb —2x5xt + (x5)?} + AH, x’ + AH, (1 —x4)] 

It is evident that 0T/0x' = 0T/0x’ = 0 for xt = x°, that is the liquidus and solidus 
curves touch at their.common maximum or minimum. Whether the common point 
is a maximum or a minimum can be found from the sign of the second differential 
coefficient which may be obtained, by differentiating again, substituting 

ae 
DK OK One 

and putting 

OTB brs 

€xE  axS 

and x5 = x", as 

or 2RT (a8 — a) {RT—2a'x(1 —x)} 

atx)" = {RT —208x(1 —x)} {(a — a8) x(1 —x) + AH, x +AHg(1 —x)} 

and a similar expression applies for 6?T/0(x‘)*. Since a’ and a are small relative to 
RT and AH, and AHy are positive for melting, 0*T/0x” in each case has the sign of 
aS — ot = N(zSwS—z'w!). On general structural grounds a liquid is to be expected to 
be less Seca mtalng about the occupation of neighbouring Sie oo) that in general 
wS > wl and zS ~ z’. Therefore for liquid-solid equilibrium oS—a’ > 0 and con- 
sequently ot ol’) and 67T/0(x$)* will be positive so that both liquidus and solidus 
are at minima at their point of contact, which is known as the azeotropic point (x,,, T;,). 

The temperature and composition of the azeotropic point can be evaluated simply 
by inserting the condition x* = x’ = x,, in the simultaneous equations to the solidus 

and liquidus. Thus 

(x2 = — Hala Tod 
(oc — aS) Ty 

BULtp = ls) 
(a! —o°) T 

Heinen mileccohy Si (Te) 
ee aN BSatin Tae 

and x7 = — 
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since at the melting point AG, = AH, — T, AS, = 0. Experimental determination of 

the azeotropic point thus makes possible the evaluation of AH,/AHg, if only the 

melting points of the pure components are known, and of at—oS, if one heat of 

melting has been separately determined. , 

(7) Exsolution in solid solutions 
Hitherto we have dealt only with solid solutions in which the components are miscible 
in all proportions. Such complete miscibility is of common occurrence as is partial 
miscibility with which we are concerned here. It will be shown that the extent of 
miscibility in general increases with increased temperature. The petrologist, who is 
concerned with the extremely slow cooling of solid phases possible only under natural 
conditions, thus commonly comes across partial miscibility in the context of a phase 
that has crystallized at high temperature and had to adjust to equilibrium or near- 
equilibrium conditions at lower temperatures by exsolution of a second phase. 

We have already shown that for a perfect binary solution the molar free enthalpy 
of mixing? is given by 

AGm = RT{xInx+(1—x)In(1—x)}. 

Since T is necessarily positive and x is a positive fraction AG,, is negative for all 
values of T and x. The solution is therefore stable relative to a mixture of the pure 
components over the whole compositional range. Moreover AG,, varies smoothly 
from zero at x = 0, through a minimum at x = 4 (since (@AG,,/6x),; = RT In(x/1—x) 
and (67AG,,/0x?)- = RT/x(1—x)) to zero again at x = 1; there are no points of 
inflexion in the curve (i.e. there are no solutions of RT/x(1—x)=0 for T>0, 
0 < x < 1)and therefore the solution is also stable relative to any mixture of solutions 
of particular composition over the whole compositional range. Perfect solutions can 
thus never exhibit partial miscibility. 

For a strictly regular solution however the molar free enthalpy of mixing is a less 
simple function of mol fraction. We have already shown that 

AG,, = RT {x Inx+(1—x) In (1—x)}+ax(1 —x) 

per mole, where « = zwN. 

Therefore (er) ox KT ji aa + a (1 -2) 

The condition for AG,, to be at a maximum or minimum is then 

_ 2 
l1—x kT 

This expression has one solution x = + which is independent of the magnitude of 
zw/kT. 

0?AG 1 2zw 
ees we FT| eee a, 
( ax" iT (wis a 

?In discussion of exsolution equilibria we are concerned with minimization of free enthalpy of mixing 
AG,, and not of the total free enthalpy of the system AG since the solution only differs from a mechanical 
mixture configurationally in the two models we consider. Whether (G4 )° and (Gx)? are equal or not is 
as irrelevant to the argument as it is inaccessible to experiment. 

In Qx= 1). 
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so that the condition for a point of inflexion (known in this context as a spinode) is 

: 63 
ie. x -i43 (1-22). 

There will therefore be no points of inflexion if (2kT/zw) > 1 and two points of 
inflexion symmetrically disposed about x =% if (2kT/zw) <1. This change of 
behaviour defines a critical temperature T, = zw/2k characteristic of the system. 
Rewriting the expression for the second differential in terms of T, and substituting 
2 aay 

07A 
Gn =4RT\{1 i 

Ox, ibe ae 7 

1 makes it clear that for T > T, there is a minimum at x =4% and for T< T, a 
maximum at x = 4. The change in the form of AG,, as a function of x above and 
below T, is illustrated in Fig 14.15. 
Thus in a strictly regular solution at temperatures greater than T,, AG,, as a 

function of x passes through a minimum at x = 3 and has no real points of inflexion; 
partial miscibility is therefore impossible. However at temperatures below T, there 
is a maximum at x =4 and symmetrically disposed points of inflexion at x = 

4+4,/{1—(T/T,)}. Therefore there must be symmetrical minima at x = 7+06, where 
$,/{1-(T/T,)} < 6 < 3. Values of x corresponding to the minima of AG,, are given 
by rewriting the condition (dAG,,/0x); = 0 in terms of T, as 

2(2x —1) iT 

Infxfi—x} Te 

| 
oS ah —— 

— 0:2 

Fig 14.15 The variation of molar free 
enthalpy of mixing, plotted as AG,,/A7, = 0:3. 
with mol fraction for a strictly regular 
solution at various temperatures. Against 

each curve is indicated the value of 0 a ‘4 6 8 1:0 

T,/T = zw/2kT. xX ——> 
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Fig 14.16 The solvus. The plot of 7/7, 
1-0 against mol fraction for a strictly regular 

solution represents the limiting curve of 
solid solution; within the solvus two 
phases are in equilibrium. 

| 0-8 

i 
Tc 

0-6 

0-4 

From the plot of T/T, as a function of x shown in Fig 14.16 the compositions of 
the minima at any temperature below T, can be read off provided the magnitude of 

T, is known. 
It is evident from Fig 14.15 that a mixture of the two solutions of minimum AG,, 

will have a lower free enthalpy than a solution in the compositional range 
4_§ <x <4+6 at any temperature T < T,. Therefore in this temperature region 
solid solution will extend from pure A (x = 1) only as far as x =4+6 and from 
pure B (x = 0) only tox = 4—6; between x = 4—6 and x = 4+ 6 there is a miscibility 
gap. It is clear from Fig 14.16 that the miscibility gap widens fairly rapidly as T falls 

from T,; at T =4T, solution extends out from pure A only to x = 0.98 and from 
pure B to x = 0-02. The limiting curve to the two phase region of the miscibility gap 
is known as the solvus. 

For complete quantitative agreement with experimental data a more sophisticated 
thermodynamic model is necessary, but the strictly regular solution model provides 
at least an adequate qualitative interpretation of exsolution. In predicting that the 
solvus is symmetrical with respect to the two components and closed only at its upper 
temperature limit this model appears to be at variance with experiment in some cases 
of solid solution and rather more often in the liquid state (e.g. nicotine—water, where 
the solvus is a closed loop), but in many cases a solvus is found of the same general 
form as that shown in Fig 14.16, where the two branches move out from close to the 
pure components with rising temperature to meet, with zero slope, at a critical 
temperature and a critical composition near the centre of the compositional range. 
The model predicts that all strictly regular solutions will have a miscibility gap at 
some temperature above absolute zero: that such is not found to be so may well be 
attributable to the very slow rates that are known to obtain for diffusion in the solid 

state at low temperatures. Unless T, lies in a temperature range where the rate of 
diffusion is large, unmixing into two solid solutions of equilibrium composition and 
subsequent adjustment of these equilibrium compositions to those appropriate to 
still lower temperatures will not be practically attainable; a single solid solution phase 
will persist metastably. Since crystallization under natural conditions in the earth is 
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Fig 14.17. A binary system in 
which both solid and liquid phases 
are strictly regular solutions. The 
liquidus, solidus, and solvus are 
shown as solid lines; the broken 

lines of constant temperature or 
composition serve to illustrate the 
crystallization and subsequent 
exsolution of the liquid X. The 
azeotropic and critical temperatures 
are shown by the broken isothermal 
lines 7,, and 7,; the composition of 
the azeotropic point is labelled w,,. 

A Wx B 
0 weight], of B ——> 100 

characteristically extremely slow, petrology is much concerned with the phenomenon 
of exsolution. 

We conclude this section with a brief account of the crystallization and subsequent 
exsolution of a liquid in a binary system where both liquid and solid phases are 
strictly regular solutions. We consider first the crystallization under equilibrium 
conditions of the liquid X in Fig 14.17. Crystallization will begin when the system 
has cooled to T, with the appearance of an infinitesimal amount of solid of 
composition w,. On further cooling the amount of the solid phase will increase 
steadily and its composition will move along the solvus becoming richer in component 
B until the last liquid (composition w,) disappears at the temperature T,. The resulting 
single solid phase persists until the system has cooled to T; where an infinitesimal 
amount of solid solution of composition w3 is in equilibrium with solid solution of 
composition w,.. When the temperature has fallen to T, the compositions of the two 
solid solutions will have moved along the solvus to wa and w4, while their proportions, 
given by the lever rule, will have become 

wt of A-rich solution w,—w, 

wt of B-rich solution w,—w4 

On further cooling the compositions of the two solid solutions will become more 
extreme, their proportions approaching (100 —w,,)/w,. in the limit, until eventually the 
rate of exsolution becomes too slow for further change to occur. 

In thermodynamic terms the two exsolved phases are simply two phases and 
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therefore, by the phase rule, their compositions are determined by the temperature of 

the system under isobaric conditions. But in practice they are two intimately related 

phases occurring within what was a single crystal grain above the temperature of the 

solvus. When the temperature of the single crystal grain has passed below the solvus, 

the structure becomes thermodynamically unstable and differential diffusion begins 

to produce regions of the crystal of composition corresponding to the intersection of 

the appropriate isotherm with the two branches of the solvus. Since in a strictly 

regular solution, such as we have taken as our model for the process, the two 

components are required to have closely related structures, the two kinds of region 

of uniform composition that develop when the diffusion processes have gone to 
completion will be in some definite structural orientation with respect to one 
another, like elements of the two nearly similar structures being at least sub-parallel: 

the single crystal grain becomes an oriented intergrowth. Moreover the interfaces 
between the two phases must be surfaces of good fit of the two slightly different 
structures. Exsolution is observed usually to give rise to lamellar intergrowths. While 

the phase interfaces between the A-rich and B-rich lamellae must satisfy the structural 

criterion of good fit on the atomic scale, the critical factor in determining the 
interfacial orientation is more likely to be the anisotropy of rate of diffusion of ions 
through the host structure rather than the quality of the structural fit between the 
host and exsolved lamellae. 

(8) Systems in which the solvus intersects the solidus 

We first consider a system that exhibits a eutectic. The phase diagram for such a 
system will be of the general form illustrated in Fig 14.18. The liquidus curves, as in 
the simple eutectic system considered earlier, fall smoothly from the melting points of 
the two components, T, and T,, to the eutectic point E, where liquid of composition 

Fig 14.18 A binary eutectic 
system with partial miscibility in the 
solid state. The metastable extension 
of the solvus above the solidus (i.e. 
T, > Tg) is shown by the broken 
curve. 
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X, 1S in equilibrium at T,; not with the pure components but with solid solutions of 
combustion x, and x,. Below the eutectic temperature the two branches of the 
solvus, defining the limits of the miscibility gap, fall off from a and b towards the 
pure components. The metastable part of the solvus above T, is shown by a broken 
line in the figure. The areas T,—a—A and T,—b—B represent the T—x stability 
fields of the solid solutions. 

A liquid such as X begins to crystallize solid solution S, at the temperature of 
intersection of its isocompositional line x, with the liquidus T,—E. On further 
cooling under equilibrium conditions liquid and solid move along the liquidus and 
solidus until they reach respectively E and a at the temperature T;,. The temperature 
of the system remains constant at TJ, until all the liquid has disappeared and only 
crystalline S, of composition x, and S, of composition x, are present. Further 
cooling results in adjustment along the solvus of the compositions of the solid 
solutions by exsolution of S, from S, on the branch through a and of S, from S, on 
the branch through b. 

The liquid Y behaves differently by crystallizing the solid solution S, above Tz, the 

composition of liquid and solid solution moving along the liquidus and solidus 
respectively until at TF, the liquid is exhausted. The resulting single solid phase S, 
cools without change of composition (xy) until the solvus is reached at T,y, where 
S, begins to exsolve. Further cooling produces changes only in the proportions and 

compositions of the host S, and the exsolved S, lamellae. 
That there is a miscibility gap in the solid solution implies non-ideality and we 

shall assume for simplicity a strictly regular solid solution. The liquid may or may 
not be ideal: we shall assume a strictly regular solution, which reduces to a perfect 
solution when a! = 0. In these terms this case differs from that of the previous section 
in being associated with a larger positive value of #. The simultaneous equations to 
the S, liquidus and solidus are then 

Inve Mh xi)? (LX)? AH ey) aed 

oa x RT R 
te L (mpl \eussd BS aoe AH 1 1 

and A ses (xg) (<9) B win 

1—x} RT eerie Aly 

where x} and x‘ are the mol fractions of components A on the liquidus and solidus 
respectively at TK. And likewise for the S, liquidus and solidus 

In Can i or (15)? ok (1 = x5)2 0) AR Od 

x RT aS MPO Oe 

oe in 1—x} 4 a(x)? — or (003)? o ht idood 

1—x§ RT BokTsls 
At the eutectic the two branches of the liquidus intersect at T = T;,, xt = xb = xg. 
Substitution and elimination of AH, yields 

S sil gH Fehrs gil ig In x? —In x3 = —— (xf —x3)(2—x7-x 1 2 RT: 1 3)( 1 3) 

and elimination of AH, yields 
S OL 

In (1 —x$)—In (1 —x$) = mae (x$ —x$)(x$+x)). 
E 
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Therefore In x$—In x$—In (1 —x$)+ In (1 —x9) 
s 

= RR Oi DOI -aD + d+} 

= etd 
Now the condition that x? lies on the solvus is, as we have shown earlier, 

2(2x$ -1) In = = a 

but Tes a = a 

so that on substitution and rearrangement we can write 

Ss. 

Inx§ —In(1—x8) = ea eh 

and similarly 

S 

In x§ —In(1—x§) = eo 

aS 2 
therefore In x$—In x$—In (1 —x$)+1n (1 —x$) = er = (x} —x3), 
Therefore each branch of the solidus intersects the corresponding branch of the 
solvus at the eutectic temperature as shown in Fig 14.18. 

The other type of system that we have to discuss under this head has a reaction 
point (known in this context as a peritectic) and is of the general form illustrated in 
Fig 14.19. We begin by considering the crystallization of four liquids. A liquid whose 
composition lies to the left of a crystallizes initially a solid solution S,, the 
composition of liquid and solid moving along the S, liquidus and solidus respectively 
until the liquid is exhausted at some temperature above T,; on further cooling to 
some temperature below T, exsolution of S, from S, begins. A liquid of composition 
between a and b crystallizes solid solution S, initially, the compositions of liquid and 
solid phases adjusting to temperature until at the peritectic temperature Tp, S; has the 
composition a and the liquid has the peritectic composition P; the temperature of 
the system remains constant at T, until the reaction S,(a)+L(P) — S,(b) has gone to 
completion with complete exhaustion of the liquid; the resulting phase assemblage, 
solid solution S; of composition a and solid solution S$, of composition b in 
proportions given by the lever rule, adjusts to further lowering of temperature by 
exsolution of lamellae of S, from S, and lamellae of S, from S, in accordance with 
the course of the solvus shown. A liquid of composition between b and P likewise 
reaches Tp where the peritectic reaction exhausts the early crystallized solid solution 
S, of composition a; just below T, the system consists of a liquid phase lying on the 
S2 liquidus in equilibrium with a solid solution lying on the S, solidus; the liquid is 
shortly thereafter exhausted and the system then consists of a single solid solution 
phase S,, which on further cooling starts to exsolve S,. A liquid of composition to 
the right of P crystallizes S, and becomes exhausted at some temperature above qd; 
where its isocompositional line intersects the S, solidus; if equilibrium can be 
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Fig 14.19 A binary system with a 
reaction point and partial miscibility 
in the solid state. In such a system 

the reaction point is known as a 
peritectic point. 

B 
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maintained at a sufficiently low temperature exsolution of S, may be recorded. 
The phase diagram shown in Fig 14.18 obviously differs from that of Fig 14.19 in 

the relationship of the solvus to the liquidus and solidus: in the former the critical 
temperature of the solvus lies above the liquidus, but in the latter between the liquidus 
and the solidus. We have seen that the eutectic diagram can be interpreted 
approximately in terms of strictly regular liquid and solid solutions with aS > a, or 

in more general terms the departure of the solid solution from ideality is markedly 
greater than that of the liquid. We merely state, without quantitative explanation, 
that the peritectic diagram can be interpreted in terms of a liquid that is only slightly 
non-ideal and a solid solution that is markedly non-ideal; the slight departure of the 
liquidus from the smooth curve of Fig 14.12 is obvious. 

Disequilibrium crystallization of a liquid in the eutectic system cannot enable the 
liquid to persist at temperatures below 7. Zoning of the solid solution crystallized 
above T; and failure to exsolve below T; are the only possible significant consequences 

of disequilibrium. In the peritectic diagram however zoning above Tp will be followed 
by failure of the reaction L+S,; —S, to go to completion at Tp (as in the case of the 

reaction point) with the consequence that all liquids will cease crystallization only 
when the temperature has fallen to Tg; zoning of S2 and failure to exsolve will also 

be features of disequilibrium crystallization in such a system. 

(9) Liquid immiscibility 

A liquid solution may exhibit a miscibility gap in just the same way as we have found 
in solid solutions. The strictly regular solution model is adequate to account for the 
existence of liquid immiscibility but, in the silicate and oxide field especially, it fails 
to explain the common asymmetry of the solvus; recourse must be had to more 
general, and less simple, models for real solutions. Liquid immiscibility is not 
nowadays considered to have frequently exerted any significant influence on the 
crystallization of minerals from melts in nature, but its common occurrence in 
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Fig 14.20 Liquid immiscibility in a binary eutectic system. Within the curve which stretches 
from the monotectic point M to the point N two liquid phases are in equilibrium. 

silica-rich liquids at atmospheric pressure is a source of inconvenience to the 
experimentalist. Evidence of liquid immiscibility is well known in the study of 
meteorites and in the field of metallurgy in general. 

Figure 14.20 illustrates the simplest kind of system that displays liquid immiscibility, 

a liquid solvus on the A-rich side of the diagram and a simple eutectic between A and 
B. Liquid immiscibility only affects the crystallization of liquids with x > x,y. A 
liquid X whose composition lies between pure A and the point M, where two liquids 
and a solid are in equilibrium (the monotectic point), crystallizes A as the temperature 
and composition of the liquid move along the liquidus towards M; the temperature 
of the system remains constant at Ty until the reaction M(l) > N(I)+A(s) has gone 

to completion with considerable diminution (given by the lever rule) in the amount of 
liquid present; as the temperature of the system falls from Tj, the composition of the 
liquid moves along the liquidus from N to E; the small amount of liquid, of 
composition E, remaining at T, then crystallizes as a eutectic intergrowth. A liquid 
Y whose composition lies between M and N begins to exsolve into two liquid phases 
at the temperature at which its isocompositional line intersects the liquid solvus; 
further cooling produces greater disparity in the compositions of the two liquid 
phases until Ty is reached where L, has the composition M and L, the composition 
N; temperature remains constant at Ty, until the reaction M(l) > A(s)+N(I) has gone 
to completion; crystallization of A from liquids along N—E and eutectic crystalliza- 
tion follow. It should be noted that liquids with 1 > x > x, begin to crystallize A at 
temperatures above Ty, while for liquids with x4 > x > xj the first crystalline phase 
A appears at Ty; of course for liquids with xx > x > x, the first solid appears at 
di sedges 
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(10) Thermochemical consequences of ionization in liquid and solid solutions 

The quantitative thermodynamic interpretation of binary systems that has been 
developed in this chapter has been based on the implicit assumption that the pure 
components persist as definite unionized molecular entities in solution, whether 
liquid or solid. This is manifestly inappropriate in the field of ionic inorganic salts 

where it is known from structural crystallographic studies that in a solid solution of 
AX and BY the cations A and B are distributed over similar structural sites and the 
anions X and Y likewise. Physical, especially spectrographic, studies of the corre- 
sponding liquids indicate that ionization can usually be treated as complete there 
too. In solid solutions of complex oxy-salts, such as silicates, the pattern of ionization 
is usually determinable on a prima facie basis from the known structures of the 
components, but in the liquid phase the question of the magnitude of the anionic 
groupings has all too frequently not been resolved by spectrographic study: that 
pyroxene melts contain long (SiO,)?"" chains and feldspar melts extensive 
(AlSi,O,)" rafts, where n is in each case very large, has not been demonstrated but 
is to be expected on general grounds. We shall not deal with specific examples here 
but merely discuss the principles of the quite straightforward correction for ionization 
in terms of simple systems following the treatment of Bradley (1962, 1964) rather than 
that of Temkin (1945). 
We consider first the simple eutectic system with no solid solution and suppose 

that component 1 is the simple salt R?!* X}!-. Then 

wy = ayers +b Hy 

where ,, and u,_ are the chemical potentials of the cations R and the anions X in 
the liquid phase. Assuming that the liquid is a perfect solution 

py = awe +b wy* +RT nx} xq 
=f Rink xt 

Hence at equilibrium 
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where 7; is the melting point of pure component 1, i.e., pure R?!+ X$1-. Thus at T; 
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This is an equation of the same form as in the unionized case considered previously 
where 0, =X: 
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The evaluation of Q, may be illustrated by a perfect liquid solution between KCl 
(mol fraction x,;) and Na,SO, (mol fraction x). The total number of ions per mole 

of liquid phase will be 2x, +3x. 
’ 

» 

x; 2X5 X2 
Theref =x, =~, = ——_——.,, and x,_ =} 

ee 2X4 +3 a 2X1 +3x2 2X4 +3X2 

and a,c bes hy iag=i2erande byt 

H = 4x? = 1—x, . 

ok a 9 PES am 1+4x,)’ 

since X4)+x = 1; 

1—-x, \° 
and ee f 

22 (; =) 

If the two components have a common ion, as will often be the case, ionization 
has no effect on the equations to the two branches of the liquidus. Consider a perfect 
liquid solution of NaCl (mol fraction x,) and NaF (mol fraction x,). The total number 
of ions per mole of liquid phase will be 2(x,+x,) = 2. 

Xt Xo X4 X2 
Hence c= ae =4, xy=—, and x,4=—. 

2 2, 

Since ay = b, = az => b, => it 

EX Eo Eye 
to 2 ae) Q1=45 

) and Oa = 25 dhe XG 

as would be so if NaCl and NaF were unionized in the melt. 
If the anions of the components, whose stoichiometric compositions are represented 

by RB:* X#1~ and SP2* Y22~, are polymeric, (X)n"*~ and (Y)#2"2- where n, and n, are 
very large, a liquid phase which is a perfect solution of x, moles of RX and x, moles 

of SY will contain {a; +(b,/n,)}x; + {az +(b2/nz)}x5 ~ a,x +a,X ions per mole. 

aX a2X2 Hence X44. =————_ = > X2+ ° 

a,X,+a,x 4 Xn ais Ape 2 hecvuts Dew 

At equilibrium 

b 
waY = agp + pt + RT In x} xy 

1 

= wy*+RT In x93, xd 

= wyt*+RTInx4, 

since for n, very large b,/n, > 0. 

AH 1% 
Therefore [In x3, ]f. = eS 1+J7, ee 

a 
Now at Le, Gi = Se 

: ** ay +(bi/n)) 
4 > 
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hence Inx}, = — oat (7 a =] 

so that here 
mages fae Ym tie fina off ai 

Q1 = x1 (eta) 

and similarly 

0, =%33.= 1x, ‘ 

A Ks 1+ {(a;—a)/az}x1) 

By way of further exemplification we shall consider ionization in one other type of 
system only, the case of equilibrium between perfect liquid and solid solutions 
(Fig 14.12). Since the components in such a system very commonly have a common 
ion and similar structures we shall assume that the components can be represented 

as RO” X2° and S®* X2-. We can write for the chemical potential of component 1 in 

the liquid (;,) and solid (1s) phases, 

My = MEL t+ RT Inx4, 4x9, - 

Mis = His t+ RT In x45 4 X35- 

Therefore at equilibrium 

infect = a8) Xis+Xts— al RST tr; 

Now a solution, whether solid or liquid, containing x, moles of R>° X23 and x, 
moles of S®* X?" gives rise to (a+b)(x,+ x ) = a+b ions per mole and therefore 

lice 
a+b. 

X14 =—— X11, Xe = —— XX, and xX =xX2-= 
a) ad DM a sd * atb ~*’ , 

AB et ON 5 a 
Th I b apes erefore | n Set R = 

Xi. ATE ef TA 1 
d ln S| SS and so aln ite R (7 =) 

aie. Q,= (=) and similarly 07 = (=) 
1s : 

in contrast to the unionized case where 

Xin X2L 
OT and = 

X15 X25 

The correction for ionization is equally relevant to the non-ideal equations 
necessary for the description of other types of binary system. 

(11) P7X diagrams for binary systems 
We have so far restricted our treatment of binary systems to isobaric conditions. For 

their complete representation in PTX space binary systems require either a three- 
dimensional diagram or a series of TX diagrams for different pressures, the latter 
providing a more easily decipherable record of quantitative experimental data. 
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Since for most compositions the molar volume of the liquid is greater than that of 

the solid phase (H,O is an exception with V 73 (ice) = 19-6, V373 (water) = 

18-0 cm? mole~!) AV for melting is usually positive. Therefore dP/dT = AS/AV is 

usually positive since the entropy of a liquid is in general greater than that of the 

corresponding solid. Liquidus curves thus tend to lie at higher temperatures at higher 

pressures and may in addition exhibit changes of form such as a change from 

incongruent to congruent melting in an intermediate compound. The solvus in 

contrast is usually associated with a negligible AV and exsolution is consequently 

not pressure-sensitive. 

In experimental mineralogy (see chapter 16) it is often convenient to apply pressure 

through the medium of a chemically reactive fluid phase. The effect on a melting 

system of increasing the pressure of water vapour will be different from that of a 

wholly inert gas because in general water is more soluble in silicate liquids than in 

solid silicates (i.e. pG (anhydrous silicate) +qG(H,O) > rG (silicate with dissolved 

H,O)+sG (H,O vapour with dissolved silicate), where p, q, r, s are stoichiometric 

coefficients) and consequently all temperatures on the liquidus will in general be 

depressed at high py,9; such depression may give rise at sufficiently high py, to the 

significant change in behaviour of a system that results from the intersection of 

solidus and solvus. 

Three-component systems 
We shall discuss three-component, or ternary, systems in rather less detail than we 
have provided for binary systems. We shall confine ourselves to a selection of types 
of ternary systems illustrative of significant points of interpretation, types of invariant 

point and so on. Figs 14.22-29 show several hypothetical types of ternary isobaric 
melting diagrams; in each case the liquidus is represented by means of isothermal 
contours and the nature of the solid phase in equilibrium with liquid in each field of 

the liquidus surface is indicated. 
When three phases are in equilibrium in a ternary system their relative proportions 

are given by application of the centre of gravity principle, which is a logical extension 
of the lever rule. Suppose the composition P to be composed of the three phases 
a, b, and c, all of which are in the ternary system A—B-—C as shown in Fig 14.21. If the 
weight of the system is mp and the weight of each phase present is respectively 
m,,™m,, and m, then the amount of component A in phase a is m,x,/100, in phase b 
m,xX,/100, in phase c m,x,/100, and in the whole system mpxp,/100. Therefore 
MpXp = M,X,+m,xX,+m,x, and similarly for component B mpyp = my, +m, Vy, +M_.Jq- 
These two equations are identical with those necessary to express the statement that 

P is the centre of gravity of a system of masses m,, m,, and m, geometrically disposed 
at the apices of the plane triangle abc. It follows that if the line aP is produced to 
meet the side bc at u, then the weight percentage of phase a is 100Pu/au, of phase b 
100Pv/bv, and of phase c 100Pw/cw. 

(1) Ternary system without compounds or solid solution 

The phase diagram for such a system is shown in Fig 14.22, where the hypothetical 
components are labelled A, B, and C. Each bounding binary system is a simple 
eutectic system, the binary eutectics being labelled E,, E,, and E3. Since no 
temperature axis is available the fact that the liquidus falls from each pure component 
towards a binary eutectic is indicated by an arrow directed towards falling 
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Fig 14.21 The centre of gravity principle. 
The bulk composition of the system is 
represented by the point P and the 
compositions of three phases by the points 
a, b, c. The triangular diagram is plotted in 
weight percentage. The weight percentage of 
the phase a is given by 100 Pu/au and likewise 
for the other phases. 

temperature. If the mol fractions of the components A, B, and C in the liquid phase 
are denoted by x,, Xg, and xX, respectively, the equation to the field of A on the 
liquidus, i.e. that part of the liquidus surface where solid A is in equilibrium with 
liquid, will be 

pa = pk* + RTInx, 

Differentiating at constant pressure, 

Ax, — AHaX, 

1 ee BA 2 

dx 4 
——>0 therefore aT > 

if AH, > 0 asis generally so for heats of melting. Therefore the A liquidus falls away 
to lower temperatures as the composition of the liquid moves away from the A corner 
by increase of x, and x, with concomitant decrease of x,. The B and C liquidus 
surfaces behave likewise. Temperature contours on the three fields of the liquidus 
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Cc Fig 14.22 The simplest type of 

ternary system. (a) is the phase 
diagram for the system with 
composition plotted on an 

» equilateral triangle as explained in 
Fig 14.3 and temperatures on the 
liquidus represented by isothermal 
contours (thin lines) ; the boundaries 
between the fie/ds of the phases A, 
B, and C on the liquidus are shown 
as bold curves; the invariant points, 
E,, E,, and E,, which are binary 
eutectics, and E,, the ternary 
eutectic, are indicated. (b) illustrates 
the course of crystallization of the 
liquid X; successive liquid 
compositions are indicated by the 
dotted line along AX produced and 
then coincident with the boundary 
between the A and B fields down to 
E,; one of the succession of 
three-phase triangles is represented 
by the dash-dot lines LA, LB, and 
the AB base. In (b) the field 
boundaries carry arrows to indicate 
the direction of falling temperature 
and such arrows are shown on all 
subsequent ternary phase diagrams. 

(b) 

surface are shown by broken lines on the figure for a hypothetical case. The field 

boundary between the A and B fields is given by the simultaneous solution of 

A 
and In Xz = ee tae 3 

PAW lem & 

dx,  AH,x dxz AH gx h NS oa AYA BES B*B 

Oe cdr it RTD olan oe CORRS 
but XatXgtxXc=1 

and therefore 

eee 
CT 2) eee 

1 
= pz AHaxat AHpXp) 

<2 ()) 
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Therefore the field boundary falls in temperature as it moves away from E, towards 
compositions with x, >0. And likewise the other two field boundaries fall in 
temperature from E, and E, respectively. Arrows on the figure point towards lower 
temperatures. 

That the field boundaries are non-linear can simply be seen by solving the 
equations to the A and the B liquidus surfaces to give the equation to the A/B 
boundary by elimination of T as 

race ee cd ye "| 

Re eek eT, =) 

Therefore rap ot Hn Xe 
dog, MPA xx 

but for a straight line on a triangular diagram dx,/dx, = constant. 
The Phase Rule, 7+ .F% = @+2, requires that the three solid phases should be in 

equilibrium with the liquid phase (7 = 4) under isobaric conditions at a fixed 
temperature in a ternary system (@ = 3), i.e. F¥ = 3+2-—4 = 1, but Pis fixed so that 
YF’ =(. The mutual intersections of the field boundaries are therefore coincident, 

their point of common intersection being designated a ternary eutectic point (E, in 
Fig 14.22) and being characterized as the point of lowest temperature on the liquidus 
surface; in particular, and we shall see that this is distinctive, all three field boundaries 

approach the ternary eutectic by decrease in temperature. At the ternary eutectic, 

Xa = (Xa)e, Xp = (Xp)e. Xc = (Xc)g, and T = Tz, where 

In (xa)e (2-2) Ray lpia! 5 

AH,/1 1 
In (Xp) = (7-2) 

Atle | lit 
In (Xc)z = ~Be(E-2) 

and XJe+ Oplet oe = 1. 

A typical liquid, such as X in Fig 14.22(b), begins to crystallize, in this case solid A, 
when its temperature falls to the liquidus temperature appropriate to its composition. 
As A crystallizes the liquid composition moves along the extension of the line AX 
away from A, the proportions of solid A and residual liquid being given by the lever 
rule. When the liquid composition reaches the A/B field boundary, the solid phase B 
begins to crystallize. As the liquid composition moves down the thermal valley that 
is the field boundary, A and B crystallize simultaneously, the proportions of the three 
phases in equilibrium being given by application of the centre of gravity principle to 
the three phase triangle |, A, B when the composition of the liquid has reached 1. 
Simultaneous crystallization of A and B continues until the temperature has fallen to 
that of the ternary eutectic T,, where all three solid phases crystallize together and the 
temperature cannot fall below T;, until all the liquid has completely disappeared. In 
such a system the lower limit of the crystallization interval (or melting interval if 
temperature is rising) for all compositions other than the pure components is the 
temperature of the ternary eutectic. Disequilibrium conditions produce no significant 
variation in the sequence of events during crystallization in this type of system. 
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(2) Ternary system with a congruently melting binary compound and no solid solution : 

van Alkemade’s Theorem 

The phase diagram for a hypothetical system is shown in Fig 14.23. The bounding 

binary systems A—C and B-C are simple eutectic systems with eutectics at E, and E,. 

The system A-B is a binary eutectic system with a congruently melting intermediate 

compound (binary type (3)) and has two eutectics E; and E, with a maximum of 

the liquidus curve at the composition of the compound AB. That a field boundary 

runs from each eutectic point with falling temperature into the ternary system follows 

from the argument developed in discussion of Fig 14.22. What remains to be 

determined is the nature of the temperature variation along the AB/C field boundary, 

which is unrelated to any binary eutectic, and thence the nature of the invariant 

points at which A+ AB+C+1 and B+ AB+C+1 are in equilibrium under isobaric 

conditions. 
If the composition of the compound AB is given by x, = Xag, Xp = 1— Xap, 

Xc = 0, its congruent melting point by Tyg, and its heat of melting by AHxg, the 

equation to the AB liquidus surface 

LAB = LAB 
= Xqpllx + (1 — Xap) HB 

= Hp + RT {xqg In x, + (1 —xqp) In Xp} 

‘which integrates to 

x x AH 1 1 
Xan lt + (1x) ee : Se oe (1 —xxp) ie R “i 

Differentiation with respect to x, yields 

AB 1 —Xxp xp ays AHxg dT 

Xe Xp eerdneee RT den 

al 7 aRI (Sues 

dx, AHxy\ x, ty Oe ee 
Therefore 

C Fig 14.23 A ternary system with a congruently 
melting binary compound AB. The broken line 
joining the composition of the compound AB to 
the opposite corner C is known as a van Alkemade 
/ine; it intersects the boundary between the 
liquidus fields of AB and C in a saddle point 
indicated by a cross. Directions of falling 
temperature on field boundaries are indicated by 
arrows. The system has ternary eutectics E. and E,. 
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Imposing the restriction x, = constant, that is considering plane sections of the 

phase diagram parallel to the T axis and the A-B join, 

=| 
—} =-l since x,+xp+Xc=1 (= = ATXBT Xe 

2, =. 

therefore ig = oats *AB _ [55 
OX, PT Nok A < 

and hence for 

That this condition represents a maximum is evident from the sign of the second 
differential when (0T/0x,),.. = 0: 

07T RT2 XAB 1—xXxp 

Galowes us ee 

There is thus a ridge running across the AB liquidus surface along the line 
X,/Xp = Xqp/(1—Xag), that is along the join AB-—C. This is a general result which 
applies equally to the case, which will be considered subsequently, where the 
AB liquidus along the AB-C join is metastable. It may be expressed in words as 
van Alkemade’s Theorem: the boundary between the liquidus fields of any two 
phases passes through a temperature maximum where it intersects the line joining 
the compositions of the two phases on a triangular diagram even though the 
boundary at this point may be metastable. 

In the system displayed on Fig 14.23 therefore the boundary between the AB and 
the C fields passes through a temperature maximum where it intersects the AB—C 
join and the intersection is taken to lie on the stable part of the field boundary. Such 
maxima are known topographically as saddle-points. The invariant points E; and E, 
are therefore both eutectics. Each ternary eutectic lies, as it must, within the triangle 

defined by the compositions of the three solid phases that are in equilibrium at the 
eutectic point (i.e. E; in triangle A-AB-C and E, in triangle AB—-B—C;; consequently 
the system A-B-C is divisible into two ternary sub-systems A-AB—C and AB-B-C, 
the course of crystallization of any liquid being describable throughout in terms of 
compositions wholly within one sub-system. Each compatibility triangle such as 
A-AB-C or AB-B-C thus has a ternary invariant point associated with it. 

Since no new principles are introduced we shall not describe the course of 
crystallization of any liquid in this system, but merely state that compositions in the 
triangle A-AB-C contain a liquid phase at T > Ty,, the composition of the last 
liquid to crystallize being given by E;, while compositions in the triangle AB—B—C 
go to E, at Th,. 

(3) Systems with a ternary reaction point 

If the system shown in Fig 14.23 is modified so that the stable part of the A/AB field 
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C Fig 14.24 A ternary system with a 

congruently melting binary 
compound AB and a ternary reaction 
point. In this system the boundary, 
between the liquidus fields of AB 
and A crosses the van Alkemade line 
which joins the compositions AB 
and C. The system has a ternary 
reaction point R and a ternary 
eutectic E,. The crystallization of the 
liquids p and q is discussed in the 

text. 

~~ 

A Es AB. £4 B 

boundary intersects the AB—C joins some significant consequences result. Such a 
system is shown in Fig 14.24. The bounding binary systems of course remain simple 
eutectic systems. The field boundary curves from E,, E,, E3, and E, fall in temperature 
as they move into the ternary system in conformity with van Alkemade’s rule. The 
maximum on the AB/C field boundary lies to the left of the stable portion and 
therefore temperature falls smoothly from the point labelled R to E;. The isobaric 
invariant point R at which the solid phases A, AB, and C are in equilibrium with 
liquid lies outside the corresponding compatibility triangle A-AB—C; R is known as 
a reaction point and is characterized by having two field boundaries falling towards 
it and one falling away from it on the liquidus surface. Compositions within the 
compatibility triangle A-AB—C terminate their crystallization at the reaction point; 
those in the compatibility triangle AB—B-—C at the ternary eutectic E;. 

To exemplify the operation of the reaction point we consider the crystallization of 
the two liquids p and q shown on Fig 14.24. Liquid p lies above the field of A in the 
compatibility triangle A-AB-C. The sequence of events in its crystallization is: 
(i) A| as liquid moves along A-p produced, (ii) A|+AB| as liquid moves along the 
A/AB field boundary, (iii) at R the four phases A(s)+AB(s)+C(s)+R(l) are in 
equilibrium and temperature cannot fall below Tp until one phase has vanished; 
that the vanishing phase must be liquid follows from the argument that the 

composition p can be expressed in terms of A(s)+AB(s)+C(s), but not in terms of 
AB(s) + C(s)+ R(1) because R and p lie in different compatibility triangles. The liquid 
q lies above the field of A in the other compatibility triangle AB—B—C. The sequence 
of events in its crystallization is: (i) A| as liquid moves along A-q produced, 
(ii) AJ +C] as liquid moves along the A/C field boundary, (iii) at R the four phases 
A(s)+C(s)+ AB(s)+ R(1) are in equilibrium and now it is the solid phase A that must 
disappear by resorption because both q and R lie in the compatibility triangle that 
excludes component A, (iv) when A has been completely resorbed temperature falls 
below T, and AB| +C| as the liquid moves along the AB/C field boundary, (v) at E; 
the system goes solid as AB(s)+C(s)+ B(s). 
We have considered crystallization under equilibrium conditions. If equilibrium 

were not maintained the course of crystallization of liquid p would not be substantially 
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CG Fig 14.25 A ternary system with 
an incongruently melting binary 
compound AB. 

A NB Ry E3 B 

altered since resorption of a solid phase is not required at the reaction point; and in 
the case of liquid q failure of A to resorb at the reaction point would affect the nature 
and proportions of solid phases in the product but the final liquid would, as under 
equilibrium conditions, have the composition of the ternary eutectic Es. 

A ternary reaction point arises also if the binary compound AB has incongruent 
melting relations as illustrated in Fig 14.25. This is no more than an extension of the 
previous case, the AB field here lying wholly on the B side of the AB—C join. Since 
no new principle is involved we shall not consider the course of crystallization of any 
particular liquid compositions, but merely state that here too compositions in the 
compatibility triangle A-AB-C cease crystallization at the reaction point R, while 
those in the triangle AB—-B-C go to the ternary eutectic E,. 

(4) Systems with a ternary distribution point 

If the field of the binary compound AB on the liquidus surface lies wholly within the 
ternary system and does not reach the A-B join, as illustrated in Fig 14.26, a third 
type of isobaric invariant point arises. The bounding binary systems are simple 
eutectic systems and the field boundaries fall in temperature, as usual, as they move 
into the ternary system. Van Alkemade’s rule indicates that in both the examples 

illustrated the temperature of the A/AB field boundary and of the B/AB field 
boundary falls as the composition of the liquid moves away from the A-B join. The 
point labelled D therefore is characterized by a single field boundary falling towards 
it and two falling away; such an isobaric invariant point is known as a distribution 
point and completes the range of possible types of ternary isobaric invariant point: 

+ E, {= R, {= D. 

At the distribution point four phases are in equilibrium: A(s)+ B(s)+ AB(s)+D(I). 
Temperature can only fall from Tj), if one phase vanishes. There are two possibilities: 
solid phase A or solid phase B may be resorbed. If phase A is resorbed, three phases 
remain in equilibrium B(s)+AB(s)+D(I) and this is only possible if the overall 
composition lies in the triangle AB-B-D. If phase B is resorbed, the three phases 
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Fig 14.26 Ternary systems with a binary compound AB which has no liquidus field in the 
binary system A—B. Each system has three invariant points: that shown in (a) has a ternary 
distribution point D and two ternary eutectics E, and E, while that shown in (b) has a ternary 
distribution point D, a ternary reaction point R and one ternary eutectic E,. In (a) and (b) the 
stippled area covers the range of compositions which, under equilibrium conditions, cannot follow 
the full length of the A-AB field boundary; (c) shows the course of crystallization of such a 
liquid p, successive liquid compositions being represented by dots. 

remaining are A(s) + AB(s)+ D(1) and this is only possible for overall compositions in 

the triangle A-AB-D. Thus for compositions in the compatibility triangle A-AB—C 
ethe liquid moves from the distribution point along the A/AB field boundary and for 
compositions in AB-B—C along the AB/B field boundary. In both the systems 
illustrated the isobaric invariant point B(s) + AB(s)+ C(s)+E,(1) is a ternary eutectic; 
but in (a) there is a saddle-point on the AB/C field boundary which gives rise to a 
second ternary eutectic E; in place of the reaction point R shown in (b). 

One feature of these two phase diagrams to which attention can conveniently be 
drawn here is that for compositions in the stippled area the liquid cannot proceed 
from D all the way along the A/AB field boundary to E, or R and thence to E, because 
such a composition will lie outside the three-phase triangle A-AB-liquid on the A/AB 
boundary before E, or R is reached. When the AB-liquid join passes through the 
point representing the composition of the system only two phases can be present, 
AB(s) and liquid, that is to say A(s) has been gradually resorbed as the liquid has 
moved along the A/AB field boundary from D (i.e. the field boundary is in a reaction 
relationship to solid phase A). If only two phases are present, the Phase Rule no 
longer requires the liquid composition to be constrained to an isobaric univariant 
line. The liquid therefore moves across the AB field along the extension of the line 
joining AB to the overall composition of the system until the AB/C boundary is 
reached, when simultaneous crystallization of AB and C begins as the liquid moves 
to the ternary eutectic E,. The course of crystallization of such a liquid is illustrated 
in the enlarged portion of the phase diagram Fig 14.26(c). 
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Fig 14.27 A ternary system with a binary solid 
solution. Complete miscibility between the 
components A and B in the solid state is 
represented by cross-hatching of the A—B join. 
Isotherms on the liquidus surface are represented 
by broken curves. 

(5) Systems with a ternary compound 

Since no new principle arises we shall not deal here with such systems. 

(6) Ternary system with a binary solid solution 

We shall deal first with the case in which one of the bounding binary systems is of the 
type illustrated in Fig 14.12, that is solid and liquid phases are both perfect solutions, 
and the other two bounding binary systems are simple eutectic systems. We shall 
suppose that the ternary liquid is a perfect solution and that solid solution does not 
extend into the ternary system. The phase diagram for such a system is of the type 
shown in Fig 14.27. The C liquidus surface slopes down from the corner representing 
the component C towards the two binary eutectics E, and E,. The liquidus surface 
that represents equilibrium between liquid and solid solution AB slopes from the 
A-B join towards the binary eutectics E, and E,. The AB/C field boundary and the 
liquidus for the binary system are shown arbitrarily with temperature falling from 
right to left on the diagram. A liquid such as X, whose composition lies in the 
C-field of the liquidus, follows a normal course, C crystallizing as the liquid 
composition moves with falling temperature along C—X projected to the C/AB field 
boundary; the liquid then moves a certain distance along the field boundary towards 
E,. The diagram as it stands provides no information about the composition of the 
binary solid solution in equilibrium with any ternary liquid. For this reason also the 
diagram cannot account for the course of crystallization of a liquid whose composition 
lies in the AB field except to give the temperature of beginning of crystallization. We 
now turn to considering ways of displaying this additional information on the phase 
diagram. 
We shall show in chapter 16 how tie lines joining the compositions of liquid and 

solid solutions in equilibrium can be determined experimentally. Tie lines such as ab 
can then be plotted (Fig 14.28(a)) on the triangular diagram: b represents the 
composition of the AB solid solution in equilibrium with the liquid of composition a 
and since a lies on the AB liquidus surface the temperature corresponding to the 
isothermal tie line is T,. Now clearly it would not be feasible to plot tie lines for more 
than a small selection of points such as a on the AB liquidus; the resulting network 
of tie lines would soon become too complex to be decipherable. Direct plotting of tie 
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lines is useful if a limited range of liquid compositions only, such as those on the 
AB/C field boundary, is important. If such a set of tie lines is determined and plotted 
at selected intervals a phase diagram such as Fig 14.28(b) results and from this diagram 
the description of the course of crystallization of the liquid X can be completed. The 
liquid reaches the field boundary at the point labelled L, where it is in equilibrium 
with solid C and solid solution AB of composition S,, the compositions of the three 
phases in equilibrium at this temperature being represented by the three-phase- 
triangle L,S,C. As the system cools successive equilibria are represented by a 
succession of such three-phase triangles, shown exaggerated on Fig 14.28(c), the 
temperature being given by interpolation between the liquidus isotherms shown. The 
three-phase triangles pivot about the point representing the phase of fixed com- 
position C until X lies on the side joining C to the composition of the solid solution, 
here S,. The composition of the final liquid is given by L, and the temperature of 
completion of crystallization by the isotherm on the liquidus surface through Lg, it 
being assumed throughout that equilibrium is maintained so that there is complete 
adjustment of the composition of the solid solution by reaction with the liquid as 
temperature falls. Just as in the binary case discussed previously equilibrium cannot 
easily be maintained in practice and zoning is commonly observed. 

The same set of tie lines is adequate for a partial description of the course of 
crystallization of a liquid such as Y (Fig 14.28(b)) whose composition lies on the AB 
field of the liquidus. The temperature of beginning of crystallization can be read from 
the diagram by interpolation between the isotherms drawn on the AB-—liquidus 
surface but the composition of the first solid remains indeterminate. When the liquid 
reaches the field boundary one degree of freedom is lost by the appearance of a third 
phase C and the equilibrium is represented by a three-phase triangle such as L,S,C 
in Fig 14.28(c). The composition of the solid solution as C begins to crystallize is thus 

represented by the tie line (interpolated if necessary) from the field boundary that 
passes through Y. Successive three-phase triangles describe successive equilibria until 
a temperature is reached where the join between C and the solid solution passes 
through Y; at this temperature crystallization ceases, the final liquid having a 

composition and temperature given by interpolation between L; and L4. 
If the earlier stages of crystallization of a liquid whose composition lies in the AB 

field are of interest it becomes necessary to determine experimentally tie lines for 
liquids on the AB liquidus away from the field boundary and to represent on the 
phase diagram the resulting large number of tie lines as fractionation curves defined 

Fig 14.28 Crystallization of liquids in the system shown in Fig 14.27. In (a) an isothermal tie-/ine 
ab joins a liquid of composition a to an A—B solid solution of composition b in equilibrium at 
temperature 7,; the 7, isotherm on the AB and C liquidus surfaces is shown as a broken line. In 
(b) isotherms on the liquidus surfaces together with a few tie-lines between liquid compositions 
on the C/AB field boundary and the solid solution line A-B are shown; the three-phase triangle 

L,S,C for the beginning of crystallization of the AB solid solution from the liquid X is outlined. 
In (c), which is distorted for clarity, a succession of three-phase triangles, CL,S,,, illustrating 
successive stages in the simultaneous crystallization of C and the solid solution AB are outlined; 
CL, and CS, joins are shown as dot-dash lines and the L,S,, tie-lines as thin solid lines; the 
compositional path of the liquid phase from X is indicated by dotted lines. In (d) the dot-dash 
curve a—a’—a’'—a’”’ is a fractionation curve, its tangents ab, a’b’, ab”, a’’’b’’’, shown as solid lines, 
are tie lines between liquid and solid solution, and the broken curves are isotherms on the AB 
liquidus surface. The crystallization of the liquid Y of diagram (b) is illustrated in (e) where 
fractionation curves are shown as dot-dash curves and the solid lines represent successive tie-lines 
pivoting through the bulk composition Y of the system to join successive liquid and solid solution 

compositions L,S,,, etc. 
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by the statement: the tangent to a fractionation curve represents the tie line for a 

liquid composition represented by the point of contact of the tangent (Fig 14.28(d)). 

Interpolation between adjacent fractionation curves provides a complete account of 

the equilibrium compositions of all liquid and solid,solutions. Thus a liquid such as 

Y in Fig 14.28(b) begins to crystallize at T, an AB solid solution whose composition 

is given by the intersection of the A-B join with the tangent at Y to the fractionation 

curve passing through Y. Since we are concerned with two-phase (liquid + solid 

solution) equilibrium until the liquid reaches the AB/C field boundary, successive 

equilibria will be represented by the pencil of tie lines passing through Y, each tie 

line being terminated by its intersection S, with the A—B join and by the point L, at 

which it is tangential to the fractionation curve through L, (Fig 14.28(e)). 

Fractionation curves, as their name implies, enable the course of disequilibrium 

crystallization to be read immediately from the diagram. If the infinitesimal amount 

of solid solution first crystallized is wholly inactive, the effective composition of the 

system will move an infinitesimal distance along the tie line from Y, that is along the 

fractionation curve and so under conditions of complete disequilibrium the com- 

Fig 14.29 The ternary system MgO—FeO-Si0O,. In the phase diagram (a) isotherms on the 
liquidus are shown as thin solid lines where they have been precisely determined and as thin 
broken lines where their position is conjectural; liquidus field boundaries are shown as solid lines, 

except for that between the olivine and magnesio-wistite fields which is shown broken because 

its course has not been precisely determined; to avoid complication of the diagram the binary solid 
solutions MgSiO,-FeSiO, (pyroxene), Mg,Si0,—Fe,SiO, (olivine), and MgO—FeO 
(magnesio-wiistite) are not indicated by the conventional cross-hatched lines. Diagrams (b), (c), 
and (d) are isothermal sections of the system at 1550, 1450, and 1350 °C respectively; in each 
tie-lines between the three phases of variable composition (liquid, RSiO, solid solutions and 

R,SiO, solid solutions) are shown as thin solid lines. 

SiO» 
° ° 1695 A. 1713 

2800° 1370° 
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position of the liquid will follow the fractionation curve through Y to the AB/C field 

boundary and the crystals of AB will be zoned. 
An alternative method of diagrammatic representation of equilibria in a ternary 

system with solid solution is by means of a series of isothermal sections showing the 
intersection of the liquidus surface and the course of isothermal tie lines. This method 
is particularly useful when not enough tie lines have been determined experimentally 
to justify the drawing of fractionation curves on the liquidus field of the solid solution. 
Figure 14.29(a) shows field boundaries and isothermal contours on the liquidus 
surface, but no tie lines, for the system MgO—FeO—SiO,. Figure 14.29(b), (c), (d) are 

isothermal sections of the same system showing the range of liquid compositions 
and tie lines between the three phases of variable composition, liquid, solid solution 
R,SiO,, and solid solution RSiO, at three selected temperatures; isothermal sections 

at many more temperatures are necessary for a full description of the system (see 

Bowen and Schairer, 1935). 
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The assumption of perfect ternary liquid solution leads to 

py = pX* + RT In xk 

iy = 1 + RT In xt 

piers pet Rn ck 

(xk +xh+xk = 1) 

and of perfect binary solid solution to 

Ww = w*+RT Inxs, 

Ly = wt +RT In xh 

(<3 x, = J). 

The equation to the C liquidus surface is therefore 

cee 
nxX¢= R\T TF 

where AH¢ is the heat of melting and T, the melting point of pure component C; and 
the equations to the AB liquidus surface are 

x Pa The 
L L L 

and In a = In faxes R (7 Ty 

where AH,, AH, and T,, Tg are respectively the heats of melting and the melting 
points of pure A and pure B. A tie line passes through points with x, and x, 
coordinates xk, x& and x8, 0 and therefore has the equation 

XE XAXG 
A Xc = 

XK—XA XK—XA 
The slope dx,/dx, of the fractionation curve passing through xk, xk at that point is 
therefore x&/(xk —x) and the equation to the fractionation curve in differential form is 

L L dxc XG 
Eye SE, s° 

Elimination of T from the simultaneous equations to the AB liquidus surface yields 
an intractable expression for xx as a function of xk and xk and the equation to the 
fractionation curve cannot be written in integrated form. 
Two other types of phase diagram for ternary systems with a binary solid solution 

(between component C and a binary compound AB) are shown in Fig 14.30: (a) is 
separable into two sub-systems of the same type as the system just considered and 
(b) has a solid-solution/A field boundary with a reaction relationship over part of its 
course. We shall not explore the hypothetical case in which the binary solid solution 
is a strictly regular solution. 

(7) Ternary system with a ternary solid solution 
The liquidus and the solidus will here be smooth surfaces unless a ternary solvus 
intervenes. The system may be represented on a triangular diagram with distinctively 
marked temperature contours on liquidus, solidus, and solvus. For the phase diagram 
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(b) 
Fig 14.30 Two types of ternary system with a binary solid solution between one component 
and a binary compound AB. In (a) the binary compound is congruently melting and so is the whole 
solid solution range AB—C. In (b) the binary compound is incongruently melting and the solid 
solution changes from incongruent to congruent melting between its extreme compositions AB 
and C. 

to be fully informative fractionation curves on the liquidus and on the solvus must 
be shown. Such diagrams can only be determined with immense experimental 
labour and none has yet been published for a mineralogical system. 

(8) Exsolution from a ternary solid solution 

As in the binary case exsolution implies that the solid solution is not perfect. 
Exsolution may however be observable in only one or two of the bounding binary 
systems because the critical temperature for exsolution is below the temperature at 
which the rate of exsolution is adequate to achieve any result even in conditions of 
such extremely slow cooling as are presented geologically. No more will be said here 

because no new principle is involved. 

(9) Ternary system with two binary solid solutions 

In a system such as that shown in Fig 14.29 two binary solid solutions have fields on 
the liquidus and if, as is so here, the fields are adjacent then three phases of variable 
composition are in equilibrium along the field boundary. The special point of interest 
about such a system is the disposition in TX? space of the divariant surface over 
which the two solid solutions are in equilibrium with one another; this surface 

extends to lower temperatures in the subsolidus space from the univariant field 
boundary in which it intersects the liquidus. 
-Consider a solid solution S1 whose components 1 and 2 have a common anion 

and similar structures so that they can be represented as RD’ X2 and S?’ X?_ . If the 
chemical potential of component 1 in the solid solution S1 is denoted by j1,;,, then 

Misi = bys1+ +b y51- 

and Misi+ = Misi4 tRT In X4514 

And likewise 

Hogi = Aflag1 4 +b bys1 - 

Hosi4 = H3s14 + RT In X51 + 

If the other solid solution S2 has structurally similar components with the same 
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cations as S1 but a different common anion, its components 1 and 2 can be written 
as Rb’ ye and S>” Y¢ respectively. Then 

His2 = CHis2+ +b My52- 

Hos2 = C M252 + +b Hos2- 

and Miso+ = Hisa+ + RT In X45+ 

Mog2+ = H3s2+ + RT In X50 4 

At equilibrium between the two solid solutions, the chemical potentials of their 
common chemical species, that is the cations R°’ and S°’, will be equal 

L€. Hisi+ = His2+ 

and Has1+ = Mas2+ 

* * 
Xisi+ — Mis2+ — Hisi+ 

Hence dy 22S AS cee EE 
X1s2+ RT 

* * 
= Xasit _ M2s2+ — H2sit+ 

X 252+ RT 
and 

Subtraction of these two equations yields an integrable expression: 

Xisi+ %292+ 1 * S¢Rue eee ee * * * in = pp Wasi + — Hiss + + L352 + —Uis2 +). 
X251+ Xis2+ 

1 b 
Now H3s1+—Hisi+ = qi2st — H¥s1) — 7 (Hass - —His1-) 

but the anions 1S1— and 2S1— are both X? and therefore y#s;_ = w¥5,_ = wx 
> 

1 * a * * 
whence H3s1+ —Hisi+ = 5 (asi — His1) 

and similarly 

1 
H3s2+ —His2+ = e (352 — Misa). 

iG x lesa Sh 1 
Therefore n( =" te a fe il Ms.) ~ a-ha) 

X251+ X1is2+ 

Now, for the reaction between components 

1 1 i 1 
—R,X,+-S, Y, =—-S,X,+- a a Ske c.> a a ptoRY, 

(IS1}°" (282) (2S1) (182) 

the free enthalpy of reaction at T K and P bars is given by 

i) 
AG‘ = a H2s1 — Uys1) (H3s2 — Lis2). 

Cc 

x x AG? 
Hence In (ues Pa a 

X2si+ X1is2+ RT 
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B a a 

ut Xisi+ = anh “81? X14 7 ab 28h 

Cc Cc 
NS c+b 1S? and X 7594 = C+ b ©282? 

and putting X41 as X1is1 and X2 = X1is2 SO that 1—x; — X1s82 and 1 —X9 oes X2952> 

in (2 Aha \ -f AGy 

ees gta chide RT. 

Now AGF is not in general independent of temperature and pressure, but we are 
concerned here with a rather special kind of reaction. R,X, and S,X, have similar 
structures and may be expected to differ little in entropy, S#;, and S%.,, at any 
temperature; and likewise for R, Y, and S, Y, with entropies Sf,, and S3,.. Therefore 
AS = (1/a)(S¥s, —S¥s1) —(1/c)(S¥e2 —S#,2) is small and may be taken to be effectively 
independent of pressure and temperature, ic. ASE ~ AS5g. Moreover AV = 
(1/a)(V3§, — V8) —(1/c)(V&2 — Vi52) represents the difference in the change of molar 
volume when the same cationic substitution, S for R, occurs in different structures so 

that AV is small and may be taken to be effectively independent of pressure and 
temperature, ic. AV? ~ AVy53. Now 

oAG 0AG 
dAG = Gal aT + +(e) dP 

= —ASdT+AV aP, 

which in this case becomes 

dAG a —AS5 9g AT + AV 208 dP. 

Therefore AG. = AG5o8— ASzoa\T — 298) + AVz09gP 

if P > 1 bar. 

Hence In Mts 34 1—-x, ta AG og + 298AS5 98 +AVzogP _ AS308 

1—x, Xz iy RT R 

= AH 508 tAVy0gP  AS3og 

RT RI 

Thus at constant temperature and pressure the factor x,(1—x,)/(1—x,)x2 is a 
constant K*. If AH39g, AVzog, and AS$og are known (see chapter 13) the variation of 
K®. with pressure and temperature can be evaluated. 

Quaternary systems 

We shall restrict our discussion of quarternary systems to an examination of two 
complementary methods of representing a particular system, CaSiO,;—Ca,SiO,— 
Ca,Al,SiO,—FeO. For convenience of labelling the diagrams the abbreviations in 
common use in cement chemistry are used: C= CaO, F = FeO, A= AI,0;, S=SiO,. 
In abbreviated form the components are then CS—C,S—C,AS-—F. There is one binary 
compound in the system, C3S,, and two binary solid solutions, melilite (abbreviated 
mel) with components Ca,Al,SiO, and Ca,FeSi,O,, i.e. C,AS and C,FS, (on the 

CS-F join), and olivine’ (abbreviated ol) with components Ca,SiO, and CaFeSiO,, 

3 Used here in the structural sense (see chapter 10). 
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CyAS C2,AS 

C,$4 

Fig 14.31 The quarternary system CaSiO,—Ca,SiO,—Ca,Al,SiO,—FeO. In (a) the four 
components are situated at the apices of a regular tetrahedron; the phase relations are displayed 
by removing the Ca,Si0,—Ca,Al,SiO,-FeO(C,S—C,AS—F) face of the tetrahedron and displaying 
phase relations in that ternary system in the separate diagram shown, reduced, on the right. The 
shaded area represents the liquidus field of C,S.,. In (b) the same system is displayed as a Schairer 
diagram, which is a formal grid of univariant lines intersecting in invariant points. Throughout this 
figure ‘cement nomenclature’ is employed: C = CaO, F = FeO, A= AIO. S = SiO,,. 

1 oO oO 

MEL,OL,CyS,C3So°¢> ee 
1200 he ee 

5 F © 14290° 1250 1180 

MEL,OL,F,Co$ 
1195° (b) 

41295° 
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i.e. C,S and CFS (on the CS-—F join). The component Ca,SiO, is polymorphic: we 
are concerned here with only two of its several polymorphs, «-Ca,SiO, (indicated 
as CS) and y-Ca,SiO, which is the end-member of the olivine solid solution series. 

Figure 14.31(a) shows the four components at the apices of a regular tetrahedron 
with its front face removed and displayed separately. For a quaternary system under 
isobaric conditions ¥’ = 5— Vand therefore two-phase equilibrium is represented by 
a volume in TX? space; thus all liquid compositions in the volume between the CS 
apex and the surface abcdef begin their course of crystallization by crystallizing CS 
and every point in this volume is associated with a definite liquidus temperature. 
Such a surface as abcdef represents three-phase equilibrium between liquid and two 
solid phases and is shown on the diagram only by its intersection with the faces of the 
tetrahedron. Two such surfaces intersect in univariant lines of four-phase equilibrium 
which are indicated only by their points of intersection with the faces of the 
tetrahedron, points such as b, d, f. Such univariant lines intersect within the 

tetrahedron in invariant points (not shown) at which five phases are in equilibrium. 
The compositional ranges of the two solid solution series are indicated +++++ and 
the composition of the compound C;S, by +. The three-dimensional liquidus fields 
are not labelled but it is obvious that C3S,, the iron-rich end of the melilite series, 
and all but the iron-rich end of the olivine series melt incongruently. 

Phase relations within the tetrahedron are made clearer by the Schairer diagram 
shown in Fig 14.31(b) where univariant curves of four-phase equilibrium between 
liquid and three indicated solid phases are shown conventionally as straight lines on 
a rectangular grid. The extremities of each line are points on the faces of the 
tetrahedron, whose temperatures are stated. The univariant lines intersect at invariant 
points of stated temperature but unrecorded composition within the tetrahedron. 
Directions of falling temperature along the univariant lines are indicated by arrows 
from which it can be seen immediately that 1+mel+ol+C,S+C;S, and 
1+mel+ol+C,S+F are in equilibrium at quaternary reaction points while 
1+mel+ol+C3S,+CS are in equilibrium at a quaternary eutectic at 1175 °C, the 
lowest temperature on the liquidus. 

Two such diagrams, the one emphasizing composition and the other emphasizing 
temperature, read in conjunction can yield an overall view of melting relations in a 
quaternary system, but it is evident that much less detail of temperature-composition 
relationships can be displayed diagrammatically than for systems of fewer com- 
ponents. Some attempt at displaying additional experimental data may be made by 
plotting liquidus isotherms on ternary sections such as C,S—CFS-—C,AS, 
C,S,—C,FS,—C,AS, etc. In general such sections will not be ternary systems since 
liquids within such a compositional plane will be in equilibrium with solid phases 
whose compositions may lie outside the plane. If a univariant curve of four-phase 
equilibrium represents equilibrium between a liquid (of necessity in the plane of the 
section) and three solid phases all of which have compositions in the plane of the 
section, then the intersection of the univariant curve with the plane of the section is a 
ternary invariant point; but if the composition of one or more of the phases lies 
outside the plane, the intersection is known as a piercing point. 
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15 
Compositional analysis 

The mineralogist, and the inorganic chemist, frequently needs to be able to determine 
the composition of a substance in which he is interested. Much of what we have said 
in earlier chapters implies the ability to determine the chemical composition of a 
substance, whether a stoichiometric compound of fixed composition or a solid 
solution. In chapters 7 and 12 we have indicated ways in which certain physical 
methods may be used to determine, more or less approximately, the compositions of 
specimens of rather simple solid solutions; all such physical methods depend 
ultimately on more comprehensive and precise methods of compositional analysis. 
In this chapter we provide a brief account of the principles and field of application 
of the principal methods of compositional analysis. For experimental details the 
reader is referred to analytical manuals and recent review articles; references are 
given for each method discussed. 

Separation techniques 

Most methods of mineral analysis require that the mineral whose composition is to 
be determined must first be separated from the other minerals that coexist with it in 
the host rock. Very occasionally a rock is truly monomineralic; separation is then a 
negligible problem as is often so for the products of inorganic synthesis. More often 
rocks and ore bodies contain, on the hand-specimen scale, three or more principal 
phases and perhaps as many accessory minerals. 

The first stage of separation is to crush the rock to reduce it to single mineral grains. 
The rock specimen is first broken into walnut-sized fragments either by hammering 
or better by use of a hydraulic rock-splitter. The fragments are then ground until the 
whole sample passes a 90-mesh sieve (i.e. <10~* cm? minimum cross-section) by a 
manually operated percussion mortar, a roll mill, or a swing mill. Since very small 
particles interfere with separation procedures it is customary to subject the resulting 
powder to ultrasonic scrubbing in an aqueous medium, decanting the suspended fines 
and repeating the process until virtually nothing further goes into suspension. 

The two properties on which the most generally useful separation techniques 
depend are magnetic susceptibility and specific gravity; these are complementary and 
are usually applied in this order. The prepared rock powder is passed through an 
isodynamic magnetic separator (such as the type designed and marketed by S. G. 
Frantz). This instrument consists in essence of a d.c. electromagnet with long pole 
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Fig 15.1 The isodynamic magnetic separator; the upper diagram is a side elevation and the 
lower diagram a plan. Key: a is the funnel through which the crushed sample is introduced; 
6 is a vibrator rigidly attached to the chute c; the solid fence d directs the streams of more and less 
strongly magnetic grains into the conduits ee’ which lead to separate collecting vessels ff’; gg’ are 
the upper and lower poles of the variable electromagnet between which the chute c runs; 
h and h’ are axes about which the chute may be inclined and tilted. 

pieces between which the mineral grains are passed on a vibrating chute (Fig 15.1). 
The electromagnet and chute assembly are mounted so that the angle of tilt about 
axes parallel and perpendicular to the length of the chute can be varied. The grains 
of greater susceptibility (unless they are diamagnetic) will be pulled gradually towards 
the higher side of the chute in the course of their passage through the magnetic field 
while the grains of lower susceptibility will travel along the lower side of the chute; 
the two streams of grains are directed into separate collecting vessels. The current 
through the electromagnet is varied to achieve a significant separation in a particular 
case. Before putting the prepared rock powder through the Frantz separator it is 
necessary to remove strongly magnetic grains with a powerful permanent magnet; if 
this is not done they will stick to the upper pole piece and inhibit the flow of grains 
along the chute. One important feature of the Frantz separator is the speed with 
which a large amount of material can be reduced to a relatively small fraction in 
which the mineral to be analysed is concentrated. Further concentration may be 
achieved by recirculating the selected fraction through the separator and more 
complete extraction by recirculating the rejected fraction. 

Magnetic separation rarely produces better than a 90 per cent concentrate and 
recourse must be had to other methods to obtain a pure preparation from the magnetic 

concentrate. The most generally useful of these is density separation in a heavy liquid 
such as methylene iodide (CH,I,) diluted with carbon tetrachloride (giving densities 
up to 3-32 gcm °) or Clerici Solution (aqueous thallous formate malonate) diluted 
with water (giving densities up to 4-28 g cm™? at room temperature and 4-65 gcm =? 
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Fig 15.2 The necked centrifuge tube is shown on the 

left; the plunger on the right is inserted into the neck so 

that the float may be poured off and the upper part of the 

tube cleaned out while the sink remains trapped in the bulb. 

Ina subsequent operation the sink is poured into a 
separate filter and the bulb washed out. 

at 50°C). A portion of the concentrate from magnetic separation is introduced into a 
necked centrifuge tube (Fig 15.2) and the appropriate heavy liquid is added, having 
been previously diluted to a density just greater than that of the required mineral. 
The tube is then centrifuged at about 4000 rev/min for a few minutes. If a clear 
separation into ‘float’ and ‘sink’ has been achieved, the stalked stopper is inserted 
gently and pressed home to seal off the bulb containing the high density fraction; the 
float, containing the required mineral, is poured off and filtered; the sides of the 
centrifuge tube are washed with diluent (hot water in the case of Clerici), the stalked 
stopper is removed, and the contents of the bulb are separately filtered. The float is 
reintroduced into the centrifuge tube and a liquid of density slightly less than that of 
the required mineral is added. After centrifuging the required mineral should be in the 
‘sink’. After filtering and washing the preparation of the required mineral is examined 
under the polarizing microscope and, if impurities are detected, it is successively 
recentrifuged in liquids closer to its own density. If the required mineral occurs in 
very small grains it may be necessary at this stage to break down composite grains 
by further grinding; centrifugal separation of the resulting fine powder may be 
facilitated by introduction of an ultrasonic probe into the tube before centrifuging in 
order to separate clusters of mineral grains. 

A variety of other techniques have been applied successfully to particular separation 
problems and some are in general use in some laboratories. These include the 
superpanner, the shaking table, the electrostatic separator, and the flotation cell 
(especially for the separation of sulphides). 

Thorough general accounts of mineral separation techniques with extensive 
bibliographies are provided by Muller (1967) and Wager and Brown (1960). 

Analysis by classical chemical methods, colorimetry, flame 

photometry and related techniques 

In classical chemical analysis each element is separated by means of its characteristic 
chemical reactions from all others present in a solution of the mineral sample and then 
determined either gravimetrically or volumetrically. The methods of classical analysis 
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of silicates are described in detail by Groves (1951) and Kolthoff and Sandell (1950); 
we restrict ourselves here to a description in the very broadest terms of the procedure 
for analysis on a modified ‘classical’ scheme of a mineral containing only the major 
elements of the crust, a silicate such as an amphibole. It is emphasized that the scheme 
outlined here would be substantially modified and elaborated by a skilled analyst 
seeking to produce determinations of high accuracy, but it serves to indicate the nature 
of the technique. 

A weighed amount of the mineral is fused with Na,CO;, the fusion product is 

evaporated twice with HCl, and the insoluble residue is ignited, weighted, evaporated 
with HF (to volatilize SiF,), and weighed again; SiO, is given by the loss in weight. 
The combined filtrates are precipitated twice with NH,OH and the insoluble residue, 
the so-called R,O3 precipitate, is ignited, weighed, and fused with K ,S,O-; the fusion 
product is dissolved in dilute H,SO, and made up to a definite volume, say 250 ml, 
from which aliquots are treated separately, (i) for Mn a 50 ml portion is acidified and 
heated with KIO,, made up to a fixed volume, and the intensity of the colour due to 
the permanganate ion is determined colorimetrically, (ii) for Ti another 50 ml portion 
is treated with hydrogen peroxide in acid solution, made up to a known volume, and 
the intensity of the yellow colour due to pertitanic acid determined colorimetrically, 
(ii1) the remaining 150 ml is used to determine total Fe by passing through a silver 
reductor to reduce Fe** to Fe?* and titrating the resulting ferrous solution against 
a standard solution of the oxidizing agent ceric sulphate. The combined filtrates from 
ammonia precipitation are precipitated twice with ammonium oxalate and the 
insoluble residue of CaC,0O,4 is heated at 500°C and weighed as CaCQO3. 

The combined filtrates from oxalate precipitation are precipitated twice with 
(NH,),HPO, and the insoluble residue is ignited and weighed as Mg,P,O,. 
Phosphorus is determined on a separate portion of the specimen which is taken into 
solution in HF and HCIO,, evaporated, dissolved in aqueous HClO, treated with 
ammonium molybdate and ammonium vanadate, and made up to a known volume; 
the intensity of the resulting yellow molybdivanadophosphoric acid complex is 
determined colorimetrically. Aluminium is determined by subtraction of the weights 
of total iron as Fe,O03, total Mn as Mn30,, TiO, and P,O, (appropriately scaled to 
the weight of sample used for main fusion) from the weight of the R,O; precipitate. 

The hydrogen content of the specimen is determined on a separate portion by 
measurement of the weight of water evolved on very strong heating either alone or 
in the presence of an oxidizing flux. 

The remaining two major elements of rock-forming minerals, the alkalis Na and K, 
are determined by flame photometry. In essence flame photometry is an elaboration 
of the familiar flame test; alternatively it may be regarded as a simplified sort of atomic 
emission spectrometry (q.v.). Electrons, excited by the thermal energy of the flame, in 
falling back to the ground state emit light of wavelength characteristic of the element 
concerned. A photocell measures the intensity of the monochromatic light emitted. 
Relatively few elements are excited at the temperature of the flame in contrast to the 
almost complete coverage of the periodic table, except for elements of very low atomic 
number, provided by the higher temperatures of the carbon arc (or spark discharge) 
used in atomic emission spectroscopy proper. For the routine determination of Na 
and K a relatively cool flame, such as that provided by a coal-gas/air mixture, is 
desirable because few other elements will be excited. The sample in solution is sucked 
into the flame at a constant rate by the inflowing air and coal-gas at constant pressure. 
The light emitted by the flame is intensified by mirrors and passed through a filter 
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Fig 15.3. Diagrammatic representation of 
a simple type of flame photometer. Key: 
1 —beaker containing the solution to be 
analysed; 2—air flow control valve; 3—air 
pressure gauge; 4—atomizer; 5—gas flow 
control valve; 6—gas pressure stabilizer; 
7—mixing chamber; 8—baffle plates; 9J— 
broad flat flame; 10—chimney; 11— 
concave reflector; 12—lens; 13—glass 
heat absorber; 14—optical filter; 15— 
photocell; 16—calibrated potentiometer 
and galvanometer. 

which transmits a band containing the wavelength to be measured in the simpler type 
of instrument and through a prism or diffraction grating in more elaborate 
instruments. The intensity of the light transmitted by the filter or deviated through 
a particular angle by the prism or grating is measured by a barrier-layer photocell. 
Figure 15.3 shows the essential components of a simple type of flame photometer. 
The instrument is calibrated with respect to solutions of accurately known 
composition. For determination of Na and K the sample is evaporated with 
H,SO,—-HF, taken up in warm water, treated with ammoniacal ammonium carbonate 
to precipitate Fe, Al, Ti, Mg, Ca, etc, made up to a known (large) volume, and filtered 

before being injected into the flame. 
Colorimetric analysis, which is used for Mn, Ti, and P in the modified ‘classical’ 

scheme outlined above, can be applied directly to the determination of many other 
major and trace elements; indeed a complete scheme for the determination of the 

common crustal elements largely by colorimetric methods has been provided by 
Shapiro and Brannock (1956). The most comprehensive accounts of colorimetric 
analysis are those of Sandell (1950) and Boltz (1958). We restrict ourselves here to a 
brief account of the essentials of the method. 
When monochromatic light passes through a thickness | of a coloured solution, 

in which the concentration of the coloured substance is c, the intensity I of the 
incident beam is reduced to I where 

logi0 a = —kcl, 
Io 

k being a constant known as the extinction coefficient (the Lambert-Beer Law). Light 
from a tungsten-filament projection lamp is passed through a monochromator, which 
may be a coloured filter or better a prism or diffraction grating, and then through the 
specimen solution contained in a parallel-sided glass cell. The light transmitted falls 
on a photocell, the amplified response from which is compensated by a potentiometer 
graduated directly in units of log; 9 I/Io. It is always necessary to run a reagent blank 
in an identical glass cell. Calibration against standard solutions has to be repeated 
fairly frequently because of fluctuations in the colour temperature of the lamp and 
ageing of the photocell. In the Spekker type of spectrophotometer the output of one 
photocell receiving light that has passed through the coloured solution is balanced in 
a bridge circuit against the output of another photocell receiving light from the same . 
source diminished in intensity by an iris diaphragm; a calibrated cam-shaped shutter 
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placed immediately before the specimen cell and adjusted to give compensation 
gives a direct measurement of log I/I). This type of instrument requires less frequent 
calibration against standard solutions. 

Colorimetric, like gravimetric and volumetric analysis usually requires prior 
separation to remove interfering elements, but for many elements the presence of a 
considerable variety of other elements in the solution can be tolerated and in a few 
cases specific colour-forming reactions are available. Satisfactory procedures have 
been established for most elements in colorimetric as in gravimetric/volumetric 
analysis. A critical account of these analytical methods is provided by Vincent (1960). 

We defer discussion of detection limits and accuracy to the end of this chapter. 

Optical emission spectrometry 

The basis of the technique is that chemical compounds are vaporized and decomposed 
into their constituent atoms at the high temperature of a carbon arc. In the arc a 
small proportion (usually < 1 per cent) of the atoms of every element present are in 
excited electronic states. Transitions from excited states to the ground state are 
accompanied by emission of radiation, which is usually in the visible or ultraviolet 
wavelength range. The wavelength of the radiation emitted is characteristic of the 
element involved and its intensity is dependent on the concentration of the element 
in the arc. The spectrometer is simply a device for dispersing the total emission from 
the arc and recording the intensity of each spectral line. 

A sample of 10-50 mg in weight, usually mixed with carbon and an internal 
standard, the whole being finely ground, is introduced into a small cup drilled into 
one of the carbon poles between which the arc is to be struck; this pole is usually the 
anode. The cathode, another carbon rod, is situated a few mm above the anode and 

a d.c. arc (3—20 amp, 100—250 volt) is struck between them. Light passes from the arc 
through a slit and falls on a dispersing device, which may be either a prism or a 
diffraction grating (Fig 15.4). In most of the more sophisticated instruments the light 

Reflecting surface 

(a) Slit Reflecting Collimating and 
prism camera lens 

Camera 

Slit 

ea ee ee et 

Grating inclined to Concave 
(b) spectrograph axis mirror 

Fig 15.4 The atomic emission spectrograph: (a) shows a prism instrument and (b) a grating 
instrument. 
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beam is then reflected back to pass again through the dispersing device before it falls 

on the recorder, which is most commonly a photographic plate, but may be a slit and 

phototube assembly. 

For a quantitative analysis a step-sector is rotated in front of the slit of the 

spectrograph so that each spectral line shows a sequence of steps of graded density, 

each step corresponding to twice the exposure time and therefore twice the intensity 

of the preceding inner step. The density of the photographic record of spectral lines 

is measured with a photodensitometer, an instrument containing a light source and a 

photocell in circuit with a galvanometer. The differential tesponse of the galvanometer 

to light passing through a spectral line on the plate relative to that for a clear area 

of the plate (for which the galvanometer deflection is kept constant) is a measure of 

the intensity of the spectral line, but the relationship is non-linear and it is necessary 

to calibrate the instrument by making use of the known relative intensity of adjacent 

steps on spectral lines determined by the geometry of the step-sector. In this way 

calibration curves for successive steps are set up to relate galvanometer deflection to 

spectral intensity. 

Standardization is achieved by measuring the intensities of a selected line in the 

spectrum of the chosen element (for instance the Cr line at 4254 A)in aseries of samples 

of known composition and by measuring the intensities of a particular line in the 

spectrum of the internal standard (for instance the Pd line at 4473 A) and then plotting, 

in this case (log intensity of Cr 4254)/(log intensity of Pd 4473) against log Cr content, 

to establish a working curve. The concentration of Cr in a set of unknowns can thence 

be determined from the working curve once log I¢,4754/log Ipg4a73 has been 

determined for each sample. 
In the use of atomic emission spectrometry as an analytical tool one of the 

difficulties is interference between elements with neighbouring spectral lines and 
another is the formation of compounds, with their own characteristic emission spectra, 

in the arc if the arc-temperature is ill-chosen. Both these difficulties can be overcome 
to some extent by using standards of similar composition to the sample material. 
Another difficulty is that if the arc is struck between carbon poles in air, cyanogen 
(C,N,) is formed in the arc and gives rise to a strong band spectrum which obscures 
the most sensitive lines of several crustally abundant elements; this can be overcome 
by striking the arcin a nitrogen-free atmosphere (controlled atmosphere arc excitation). 

The reproducibility of analyses by atomic emission spectrometry is in general 
better than 10 per cent and often very much better than that. The most striking 
advantage of the method however is the speed and ease with which the concentrations 

of all but the lightest elements, whether major or trace elements, can be determined 
at a level of accuracy that is adequate for many purposes. 

The standard experimental manual of spectrochemical analysis is Ahrens (1950). 
Useful critical accounts of the method are provided by Taylor and Ahrens (1960) and 
Nicholls (1967). 

Atomic absorption spectrometry 

This analytical technique makes use of the great proportion of atoms (usually 
> 99 per cent of each species) that remain in their ground-state in an arc or flame. 
It is therefore inherently more sensitive than atomic emission spectrometry especially 
for elements of high excitation potential, such as zinc, and even for elements of very 
low excitation potential, such as caesium. Atoms in their ground state are able to 
absorb light energy only at particular wavelengths (resonance lines) corresponding to 
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Fig 15.5 Diagrammatic representation of an atomic absorption spectrometer. Key: 1—beaker 
containing the solution to be analysed; 2—-gas and air pressure controls and gauges; 3—-gas 
burner; 4—A.C. voltage controller; 5—electronic chopper; 6—hollow cathode lamp with 
end-window of fused quartz; 7, 8—fused quartz lenses; 9—slit; 10 monochromator; 
11—radiation detector tuned to chopper. 

the energies of transitions from the ground state to excited states. Since the spectral 
width of such resonance lines is very small (~ 10~3A) it is necessary to use 
a monochromatic light source of appropriate wavelength for the analytical 
determination of each element. A practically convenient source is a high intensity 
hollow-cathode lamp, which has a tungsten rod anode and a hollow cylindrical 
cathode of the element under investigation enclosed in a glass envelope with a fused 
silica end-window and a neon or argon atmosphere at low pressure. 

Monochromatic radiation from the hollow-cathode lamp (Fig 15.5) is passed 
through an oxy-acetylene or oxy-hydrogen flame (temperature ~ 3000°C) into which 
a solution of the sample is aspirated (as in flame-photometry). The incident light beam 
is focused on the centre of the flame and the emergent beam is focused on a slit, whence 
it passes through a monochromator adjusted to filter off background radiation and 
then impinges on a photomultiplier device which provides a measurement of intensity. 
To eliminate the contribution of the flame continuum to the emergent beam over the 
range of the selected resonance line the a.c. light source is modulated by mechanical 
or electronic chopping and a differential reading of the photomultiplier output is taken 
as a measure of intensity of absorption. 

For quantitative analysis a known weight of the mineral, or other, sample is 
dissolved to form a known volume of solution. A convenient and widely applicable 
method for minerals is fusion with LiF and boric acid, followed by digestion in 
sulphuric acid, but for the more volatile elements sample preparation has to be more 
elaborate. Calibration may be made either against pure solutions of the selected 
element or by a spiking technique (that is, observations of the effect of additions of 
known amounts of the element to be determined on the photomultiplier output). The 
concentration in the flame of the element to be determined may be enhanced by 
liquid-liquid extraction techniques. 

The method works best at low concentrations because the absorption— 
concentration curve flattens off at high concentration. It is restricted to elements 

with resonance lines at wavelengths > 2000A, because at shorter wavelengths 
absorption in the air-path is excessive. Some 40 elements however have resonance 
lines in the range 2000 to 10,000 A. The accuracy of the method is affected by the 
formation of compounds in the flame at ~ 3000 °C; this is a practical obstacle to the 
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determination of Si, Al, Mo, Ti, V, and W, which form highly refractory oxides in the 

oxidizing flame. 
Fully documented accounts of the application of this analytical technique in 

mineralogy are provided by McLaughlin (1967) and May and Cuttitta (1967). 

X-ray fluorescence spectrometry 

Irradiation of matter by primary X-rays leads to emission of fluorescent X-radiation. 
This effect, which is a nuisance in diffraction studies when incident characteristic 

radiation of a wavelength that excites strong fluorescence in the specimen crystal is 
used, is the basis of the highly accurate, fast, and widely applicable analytical technique 
known as X-ray fluorescence spectrometry. On irradiation by X-rays of sufficiently 
high energy most elements emit K and L spectra together with some weaker M lines. 
The method is applicable to all elements with atomic number greater than 10 (Ne), 
K spectra being utilized for the lower elements and L spectra for elements with 
Z > 63 (Eu); for the lightest elements to which the technique is applicable, Na(11) 
to Ca (20), it is necessary to evacuate the whole path of the fluorescent radiation. 

The source of primary X-rays is a sealed-off tube with its target close to its filament 
and operated at a higher voltage than for diffraction work. The target is constructed 
of an element of high atomic number and high thermal conductivity. As the atomic 
number of the target is increased the proportion of energy in the continuous X-ray 
spectrum is increased relative to that in the superimposed characteristic spectrum 
and it is the continuum that is used to induce fluorescence in the sample (these are of 
course the opposite of the requirements for an X-ray source to be used for diffraction 
studies). Targets of Cr (24), Mo(42), or Au(79) are in most common use. The target 
element cannot of course be determined in the fluorescent emission from the sample. 

The primary X-ray beam impinges on the sample to be analysed. The preparation 
of the sample is a matter of some importance if reproducible and accurate analyses 
are to be made. The sample, which is a cylindrical disc about 30mm in diameter, 
may be either a pressed powder (with its back and edge coated with boric acid) or a 
solution in lithium borate glass prepared under standard conditions by fusion at 
980 °C. 

The fluorescent X-radiation emitted by the sample (Fig 15.6) passes through a 
collimator (the primary collimator) to fall on a crystal monochromator or analysing 
crystal. This is either a cleavage flake or a portion of a tabular crystal, for which the 
d-spacing of lattice planes parallel to the large face is known. Convenient analysing 

Fig 15.6 Diagrammatic 
representation of an X-ray 
fluorescence spectrometer. 

Key: a—counter and 
recorder; b—pulse height 
selector; c—amplifier; d— 
detector; e—secondary 
collimator; f—primary 
collimator; g—sample; 
h—high intensity X-ray 
source; i—analysing crystal. 
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crystals are LiF (200), LiF (220), Ge(111), pentaerythritol (002), (NH,)H,PO, (110), 
and potassium acid phthalate (001). The analysing crystal will only diffract when the 
wavelength and angle of incidence of the fluorescent radiation from the sample are 
such as to satisfy the Bragg Equation, 4 = 2d sin 0. The X-radiation diffracted by the 
analysing crystal passes through a collimator (the secondary collimator), mounted so 
that its axis is inclined at the same angle, 0, as the axis of the primary collimator to 

the plane of the analysing crystal but on the other side of the normal to that plane. 
A detector is aligned with the secondary collimator (Fig 15.6). The analysing crystal 
and the secondary collimator-detector assembly are mounted on a goniometer so 
that they can be rotated in such a manner that they always make angles 0 and 20 
respectively with the axis of the primary collimator. A practically important 
refinement is the use of an analysing crystal bent so that its diffracting planes are 
cylindrical surfaces (this implies the use of an adequately flexible substance) of 
appropriate radius to permit the slightly divergent beam emitted from the primary 
collimator to be focused on the detector, so conserving intensity. 

The function of the detector, which may be either a scintillation counter or a 

gas—flow—proportional counter, is to convert the energy of individual X-ray quanta 
into electrical energy. The electrical output of the detector is amplified before being 
passed through a pulse height selector, which rejects harmonics of the Bragg Equation 
as well as spurious pulses due to cosmic radiation, and then into a counter which 
counts and prints out the number of pulses in a fixed time. 
By using a motor to rotate the goniometer, in which the secondary collimator and 

the detector are geared to travel at twice the angular rate of the analysing crystal, 
and coupling the output of the counter to a pen recorder, intensity of fluorescent 
emission from the sample is plotted against Bragg angle, which can be converted to 
wavelength since the appropriate d-spacing for the analysing crystal is known. Such 
a spectrogram provides a semi-quantitative analysis of the sample material by 
comparison with the known wavelengths and relative intensities of the K, L, and 
(for the heavier elements) M emission lines of all the elements. 

Before the counter output for identified spectral lines can be converted to 
elementary concentrations corrections have to be made for absorption and for the 
presence of interfering elements; and the counting error has to be evaluated 
statistically. Such minutiae, practically important though they are, lie outside our 
scope and the reader is referred to Norrish and Chappell (1967) and to May and 
Cuttitta (1967) for fully-referenced critical accounts of this analytical method. 

Electron probe microanalysis 

This is the most versatile of all the methods currently available for the determination 

of the elementary composition of solids. It is especially appropriate in the fields of 
mineralogy and metallurgy in that prior separation of pure phases is not required, 
the sample being submitted in the form of a polished section of any thickness greater 
than about 60 ym. Under optimum conditions a volume as small as 1 um? (1 um? 
area and 1 ym thick) can be analysed; exsolution phenomena and zoning (coring) in 
minerals (and metals) become susceptible to quantitative compositional study by this 

technique, which is applicable to all elements of atomic number > 9 (fluorine). 
In the simplest terms this analytical technique can be described by saying that a 

small area of the specimen is made the target of a specialized kind of X-ray tube, the 
emission from which is analysed by a single crystal spectrometer (as in X-ray 
fluorescence analysis) and fed into a counting device, the output from which, after 
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the appropriate corrections have been made, can be interpreted as an elementary 
concentration by reference to an analysis similarly performed on a standard of known 
composition. 

An electron beam from a source about'S0 ym aeross is passed through a sequence 
of magnetic lenses (a condenser and an objective lens) which focus it to an area which 
may be as small as 1 wm? on the surface of the specimen. The material to be analysed 

may be a substantial fragment with a polished surface, as used for reflected light 
studies, or a thin section (about twice the standard thickness used for transmitted light 
studies, i.e. about 60 wm, is convenient for polishing); but in either case the essential 

requirement is that the surface of the specimen should be flat, free of scratches and 
highly polished. The polished surface of the specimen is coated by vacuum 
evaporation with a conducting film (usually carbon ~ 200 A thick) which maintains 
the specimen at near earth potential during bombardment by electrons. The specimen 
and all relevant standards are clamped in a mechanical stage equipped with 
micrometer drives (calibrated to 1 ym) along mutually perpendicular axes in the plane 
of the polished surface. The stage assembly has associated with it a light—optical 
system (Fig 15.7) which enables the specimen to be viewed in transmitted light between 
crossed polars or in reflected light so that by operation of the micrometers a particular 
area of a phase in a polyphase specimen can be selected for analysis. 

The X-radiation emitted by the irradiated area of the specimen passes to a crystal 
spectrometer, similar to that described in the section on X-ray fluorescence analysis 
(but here always of the curved crystal type), and thence to a proportional counter 
with a bank of ancillary electronics. The whole path of the electron beam and of the 
X-radiation selected for analysis is in vacuo. 

A very useful feature of the electron probe microanalyser is the provision of a 
scanning system. Magnetic deflection coils or electrostatic deflection plates introduced 
into the electron—optical system are programmed to cause the electron beam to 
traverse an area of the specimen of 500 um x 500 um in a raster pattern (ie. backwards 
and forwards along parallel lines which are successively displaced as in the building 
up of the image on a television screen) once every 2—3 seconds. The spot on a 
cathode-ray tube is scanned synchronously over a larger area, ~ 10 x 10 cm, and an 
image of the selected area of the specimen is formed in which brightness is approxi- 
mately proportional to concentration of the selected element. By using a long- 
persistence phosphor in the screen the image can be inspected visually or it can be 
photographed with an exposure of several minutes to provide a permanent record of 
the distribution of the selected element in the specimen. Alternatively the scanning 
system can be made to cause the electron beam to make a linear traverse across the 
specimen and the ratemeter can be coupled to the vertical deflection control of the 
cathode-ray tube to give on the screen a concentration profile of the selected element 
along the chosen line. This technique is particularly applicable to the study of zoning 
and frozen diffusion equilibria in minerals and metals. 

The output of the electronic backing of the proportional counter simply yields a 
measurement of intensity (as counts per unit time) for a particular wavelength band. 
By measuring the intensity of the continuum adjacent to the selected spectral peak 
and subtracting this background intensity from that measured for the peak a reduced 
intensity is arrived at. The ratio of the reduced intensities measured for the selected 
element in specimen and standard is, to a first approximation only, equal to the ratio 
of the atomic concentrations of that element in specimen and sample. If a standard is 
used whose composition is close to that of the sample the approximation becomes 
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(b) (c) 

Fig 15.7 Schematic diagram of the components of an electron probe microanalyser. 
Flectron-optical system: eg electron gun; cl condenser lens; ol objective lens; s specimen; scm 
specimen current meter. X-ray spectrometer: cm crystal monochromator; pc proportional counter. 
Electronics: ht counter HT supply; am pre-amplifier and amplifier; po pulse oscilloscope; pha pulse 

height analyser; sc scaler; ot output typewriter; rm ratemeter; cr chart recorder. Scanning system: 
dp deflection plates; sc scanning circuitry; Xi X-ray image display; ed electron detector; am 
amplifier; ei electron image display. The /ight microscope system is indicated in very general terms 
in (a) and two of several modes of operation are shown schematically in the lower diagrams: 
| lamp; hsm half-silvered mirror; m mirror with central aperture to permit passage of electron beam; 
ho high-power objective; lo low-power objective; m’, m” mirrors; e eyepiece. The arrangement for 
observation of the specimen in reflected light at high magnification is shown in (b) and in 
transmitted light at low magnification in (c). 
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good and the ratio of reduced intensities can be used directly, but this empirical 

approach is dependent on absence of zoning in the standard and complete reliability 
of the analysis of the standard made by other methods; these criteria are not easily 
satisfied where complex silicates, for instance, age concerned. Alternatively pure 
elements or simple stable compounds may be used as standards and an elaborate 
iterative correction procedure applied to take account of differential absorption, 
excitation of secondary fluorescence, and efficiency of X-ray production in specimen 
and standard. 

It has long been known that the K, lines of the light elements and the L lines of 
the heavy elements exhibit a chemical shift, that is to say the wavelength of a particular 
X-ray spectral line is dependent on the valence state and coordination of the emitting 
element. The effect is of course small, about 0-0022 A for Si K, between elementary 
silicon and a silicate, but for electron probe microanalysis it does mean that the 
spectrometer must in general be reset between measurements on the specimen and 
the standard, and it can be made use of to provide information about the valence 
state and coordination of an element of variable valency in a known structure. 
Two limitations of electron probe microanalysis must be mentioned. One is the 

uncertainty of the corrections for secondary fluorescence and absorption in the 
neighbourhood of a grain boundary where the emitted X-rays may have part of their 
initial path in the target grain and part in the adjacent grain of a different substance: 
if accurate analyses are required only the central parts of inclusion-free grains should 
be used. The other limitation is decomposition which may be due variously to the effect 
of high vacuum, the heating effect consequent on electron bombardment (usually 
+ 300°C), and the direct effect of electron bombardment: hydrates, but not 
hydroxy-compounds, commonly lose water, Na and K evaporate from some, but not 
all, silicates (e.g. feldspars and micas) and carbonates, and many carbonates lose CO,. 
These effects can be minimized by enlarging the diameter of the electron beam and 
the analysis of even a substance such as Na,Ca(CO;), then becomes possible, 
although high accuracy is unattainable. But in spite of these limitations the technique 
of electron probe microanalysis remains the most important tool currently available 
for the compositional study of polyphase solid systems; it is ideally suited to the study 
of metals and of wide application in mineralogy, obviating in both fields the necessity 
for the tedious and uncertain task of phase separation. 

A thorough account of electron probe microanalysis and its application to 
mineralogy is provided by Long (1967). 

Radioactivation analysis 
This is a technique of important but limited application based on the radioactivity 
acquired by certain elements as a consequence of neutron bombardment. Its main 
use in mineralogy is as a very sensitive method of trace element analysis. 

The first step in radioactivation analysis is to irradiate weighed amounts of 
specimen and standard separately in the reactor in a slow neutron flux. Under such 
conditions certain isotopes undergo a nuclear reaction, the simplest and analytically 
most important being of the (n, y) type. After irradiation specimen and standard are 
separately taken wholly into solution in an appropriate solvent and quite large 
weighed amounts of the natural inactive form of the derivative element are introduced 
into each solution to act as a carrier. The necessary chemical separations are then 
performed to isolate some compound of the element from both specimen and 
standard solution; the use of the carrier makes it unnecessary for these precipitations 



Mossbauer spectrometry 571 

to be complete. Each precipitate is weighed and then the intensity of its y (or B) activity 
is measured. The content of the element X in the sample is then given by 

counts per unit weight of sample precipitate 
content of X in standard x =. ; ———. 

counts per unit weight of standard precipitate 

The y-ray spectrograph can in many cases be used to simplify the analytical 
procedure by obviating the need for chemical separation of the element under 
investigation. This instrument is used in conjunction with published tables of 
wavelength for y-ray spectra which enable a strong line attributable to the element 
under investigation to be identified and counted in specimen and sample; the 
identification can, and should, be confirmed by counting over a sufficient time to 

establish a value for the half-life of the nuclide concerned. 
By way of example it may be mentioned that radioactivation analysis has been 

used to determine traces of Sr in sea-water by counting the y-emission for the 
short-lived isotope ®7Sr (ty = 2-9 hours) and, a week later, the 6-emission for the longer 
lived isotope *°Sr (t, = 54 days). 

A critical and fully referenced account of the method is given by Mapper (1960). 

Mossbauer spectrometry 
The valence state and structural environment of iron in its solid compounds is 
amenable to study by a type of nuclear resonance spectroscopy dependent on the 
Mossbauer effect. The isotope *’Fe, which makes up 2.14 per cent of natural iron, 
has a very sharp resonance absorption peak for y-radiation of the appropriate 

wavelength. However the absorption spectrum is dependent in detail on the 
environment of the Fe nuclei in the solid specimen. Decay of the unstable isotope 
°7Co dispersed by diffusion in an iron matrix provides a suitable source of y-radiation; 
only if the environment of the iron nuclei in source and specimen are identical will 
resonance absorption occur, otherwise radiation will be transmitted and can be 
measured. By imparting a velocity to the source relative to the specimen the 
wavelength of the y-radiation is changed by the Doppler effect and by employing a 
sequence of positive and negative relative velocities intensity of y-radiation 
transmitted by the specimen can be plotted against wavelength. That this is possible 
depends on the extremely narrow spectral width of the resonance absorption’ peaks 
and on the availability of a device for moving the source at speeds between 1 and 
10°-3cms~? accurate to < 10°3cms7?. 

The Mossbauer spectrum of most iron minerals is complex but it is susceptible to 
analysis by standard curve-fitting procedures. The absorption maxima that emerge 
enable distinctions to be made on the basis of their wavelengths between Fe** and 
Fe** and between various structural environments for each oxidation state, thus 

Fe?* in regular tetrahedral, distorted tetrahedral, regular octahedral, and distorted 

octahedral coordination to oxygen can be distinguished and likewise for Fe?*. 
Mossbauer spectrometry is a valuable ancillary analytical technique for providing 

information about the oxidation state of iron in solids, providing simultaneously 
useful structural information. Although about thirty isotopes exhibit the effect its 

practical application is largely confined to °’Fe. Useful reviews of Méssbauer 
spectrometry are given by Greenwood (1967) and Wheatley (1970). 

Indirect methods of analysis 

In special circumstances the chemical composition of a mineral may be determinable 
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without actual chemical or physical determination of the concentration of any of its 
constituent elements. In the case of a binary solid solution series, such as the common 
olivines whose compositions can be represented to a first approximation in terms of 
the end-members Mg, SiO, and Fe, SiO, only, the composition of a particular olivine 
can be estimated by measurement of 2V on the Universal-stage, or better by 
measurement of the Bragg angle of a sensitive peak on the X-ray powder 
diffractometer record. In the garnet (cubic) solid solution series, which has five 
commonly significant end-members, composition may be estimated, but only very 
approximately, by measurement of refractive index, density and unit-cell edge 
coupled with the quite simple chemical determination of Mn. 

Such indirect methods for the determination of composition have considerable 
currency in mineralogy, but it must always be borne in mind that they are dependent 
in the first place on correct identification of the mineral and on the assumption that 
it has what may be called a ‘normal’ composition. If one is dealing with a well-known 
and frequently analysed type of mineral from a well-known environment such 
methods are safe enough, but for an uncommon mineral or alittle studied environment 
they are inadequate. 

Estimated accuracy of analytical methods 

For long chemical methods have been regarded as the standard against which the 
various physical methods of analysis are compared, but in recent years some physical 
methods have been developed to a level where they are superior in accuracy. Chemical 
analyses made by skilled and experienced analysts are reproducible within close 
limits, but cooperative studies of analyses of the same complex material performed 
by different analysts using a variety of chemical procedures have revealed notable 
discrepancies. The changes in accepted analytical procedure that have resulted have 
eliminated some systematic errors and some of the spread, but the level of accuracy, 
as distinct from reproducibility, remains barely satisfactory for some elements. Since 
chemical methods are relatively time consuming, analyses are not usually done in 
duplicate by different procedures and no estimate can be made of the accuracy of a 
particular analysis. In contrast most of the physical methods are susceptible to 
statistical evaluation of counting errors and are moreover much faster so that repeat 
analyses are the rule rather than the exception. 

In general it can be said that for chemical methods of analysis the standard deviation 
expressed as a percentage of the weight percentage of the element found is < 2 per 
cent for elements present in concentrations in excess of 5 per cent and increases 
sharply at lower concentrations. A study by Fairbairn and Schairer (1952) of twelve 
analyses by different analysts of a very carefully prepared homogeneous glass of 
known composition revealed that the mean for SiO, (at the 70 per cent level) was 
0-4 per cent low, while the mean for Al,O, (at the 15 per cent level) was high by an 
exactly compensating amount; for the remaining elements determined, Ca, Mg, Na, 
and K, the discrepancy between the analytical mean and the true value was within or 
close to the standard deviation of the twelve analyses. 

For emission spectrographic determination of major constituents Ingamells and 
Suhr (1963) found variation within +5 per cent of the amount present and accuracy 
such that the mean is within 5 per cent of the accepted value for most elements. For 
trace elements, where emission spectrometry has in the past been pre-eminent, 
accuracy falls with decreasing content of the element concerned to an order of 
magnitude for most elements at levels of concentration of a few ppm. Atomic 
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absorption spectrometry is in general capable of significantly greater accuracy and 
lower limits of detection. 

X-ray fluorescence spectrometry has an accuracy of ~ 1 per cent of the amount of 
the element for elements whose concentration is greater than ~ 2 per cent by weight 
(Norrish and Hutton, 1969); accuracy falls off gradually with decreasing concentration 
and is comparable with, or slightly better than that of emission spectrometry at the 
trace element level. The comparative simplicity of X-ray spectra however makes the 
identification and estimation of small amounts of such elements as the rare earths 
easier and more certain by this method. 

Electron probe microanalysis has comparable accuracy, about 1 per cent of the 

amount present if > 2 per cent, falling off gradually at lower concentrations. The 
method is applicable over the whole concentration range down to very low limits of 
detection for elements of high atomic number (Sweatman and Long, 1968). The 
method is of course capable of detecting very small differences in concentration along 
a scanning line, differences an order of magnitude smaller than the accuracy of the 
absolute determination. 
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16 
Mineral equilibrium and synthesis: 
experimental methods 

In this chapter we deal in general terms with the techniques of mineral synthesis, with 
experimental criteria for the attainment of equilibrium, with the characterization of 
the products of synthetic experiments, and in conclusion with the determination of 
phase diagrams for simple systems. 

Reactants 
Natural crystalline minerals are not often suitable as starting materials for phase 
equilibrium studies because, even when very finely powdered, they tend to react rather 
slowly with one another so that in the time available for laboratory experiments 
equilibrium cannot be achieved close to the equilibrium temperature and in 
consequence a falsely high equilibrium temperature may be determined. A second 

disadvantage of using natural minerals as reactants is that many of the more 
interesting minerals are solid solutions and so their use immediately increases the 
number of components in the experimental system to more than the minimum number 

necessary to define the problem under investigation in its simplest form. These two 
considerations generally rule out the use of natural minerals as reactants except as 
the final stage of a synthetic study, a stage which is often omitted. It is usual to make 

use of reactants which are simple in composition and in a highly reactive state; 
homogeneous glasses or gels of precisely known composition are particularly useful. 

Glasses are prepared by successive fusion, quenching, and grinding of precisely 
weighed-out mixtures of synthetic oxides of high purity (Schairer, 1959). At least four 
fusions are usually necessary before homogeneity of a silicate glass is achieved. It is 
quite simple to test the resulting glass for homogeneity by placing crushed fragments 
in a liquid whose refractive index is near that of the glass and applying the Becke 
line test under the most favourable conditions for detecting small differences in 
refractive index. Al,O; is particularly slow to dissolve in silicate melts so that 
aluminous glasses may have to be re-fused as many as six times before homogeneity 
is achieved. 

Gels are prepared by mixing in appropriate volumes standardized metal nitrate 
solutions with either silica sol or tetraethyl orthosilicate. The resultant solution is 
made alkaline with aqueous ammonia and left until it forms a thick gel, which will 
take a time ranging from a few hours to several days in different cases. The gel is 
slowly dried at S0—75°C for 1-2 days and then at progressively higher temperatures 
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Fig 16.1 A vertical tube furnace for high-temperature studies at atmospheric pressure. The 
diagram on the left shows the furnace. A is the ceramic tube, around which is wound spirally the 
platinum resistance wire B; the furnace is packed tightly with magnesia C which acts as a thermal 
insulator; D represents the connection of B to a low-voltage, high-amperage electricity supply; for 
quenching, the plug F is removed to allow the charge to fall into a pool of mercury in the beaker E. 
The diagram on the right shows, on a larger scale, the apparatus suspended in the vertical tube A. 
The ceramic bucket L holds a number of charges sealed in noble-metal capsules; the thermocouple 
leads H are carried down through ceramic or silica glass tubes to form a couple close to the 
charges; the leads GG’, also in ceramic or silica glass tubes, carry the current used to melt the 
wire K and so allow the bucket L to fall into E at the end of the run; the four tubes carrying 
GG’HH are cemented together and to the disc | which rests on the top of the tube A, | being 
positioned so that L is at the ‘hot spot’ of the furnace. 

until the water is totally expelled and the nitrate decomposed at 900°C. In some cases 

it is convenient to crystallize the gel by heating to an even higher temperature. A 
detailed account of the preparation of silicate gels is given by Luth and Ingamells 
(1965); various laboratories use variants of this procedure, but all produce in the end 

essentially similar gels. 
For decomposition studies, such as dehydration or decarbonation, the natural 

mineral hydroxide or carbonate may be a satisfactory starting material if it can be 

cleanly separated from the other minerals with which it occurs. 

Apparatus for high temperature studies at atmospheric pressure 

Many silicate and oxide systems can conveniently be studied in a platinum-wound 
vertical tube-furnace of the type described by Shairer (1959). The platinum (or for 

temperatures below about 1000°C nichrome) spiral heating element (Fig 16.1) is 

wound on a ceramic cylinder and surrounded by tightly packed magnesia, which 
serves as a thermal insulator. Temperature is measured by a Pt—Pto )Rhjo 
thermocouple hanging in the central tube adjacent to the specimen. Thermocouple 
and specimen are carefully positioned so as to be in the ‘hot spot’ of the furnace, 

that is in the central portion of the length of the tube where the axial temperature 
gradient is small. The thermocouple controls the energy supply to the heating circuit 
through an electronic controller, operating mercury relays, which maintains the 
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furnace temperature to within +0:5°C of the required temperature. A second 
thermocouple (not shown on Fig 16.1) is situated close to the specimen and its output 
is printed out by a recording potentiometer on a slowly moving roll of chart paper 

to give a continuous temperature-time record. The controller is adjusted so that the 
recording thermocouple is at the required temperature. The furnace is equipped with 
a manually operated shutter at the lower end of its central tube; at the end of a run 
the shutter is opened and the palladium wire on which a ceramic beaker, containing 
the specimen enclosed in a platinum tube, is suspended is melted by a separate electric 
circuit so that the specimen falls through the open shutter into a pool of cold mercury 
or water to quench very rapidly the phase equilibrium produced at high temperature 
within the furnace. It is usual to place several charges of different composition, each 
in its own platinum tube, in the ceramic beaker and so to study simultaneously several 
(perhaps as many as twelve) compositions in the system at the same temperature. 

Apparatus for studies at high temperature and high pressure 

The high-temperature pressure vessel in most common useis the Tuttle cold seal bomb, 
named after O. F. Tuttle who pioneered the study of equilibria at high temperatures 
and high pressures before 1950 and designed this type of pressure vessel; it is described 
as a cold seal bomb because the pressure seal lies outside the furnace and remains at 
a much lower temperature than the portion of the bomb which contains the charge 
under study. Such a bomb is constructed from a rod of ‘stellite’ or ‘Nimonic’ alloy or 
‘René metal’, about 1 inch in diameter, by drilling an axial hole of } inch to + inch 
diameter to within finch of the far end of the rod; the open end is finished in a 
conical opening and tapped with a screw thread to take the conical connexion to the 
pressure line so that the pressure line is sealed on by a cone-in-cone joint; the closed 
end is drilled to a depth of about 5 inch to accommodate a thermocouple. The charge, 
in a sealed platinum, gold, or silver capsule (cut from an extruded tube to a length of 
about ¢ inch and welded at both ends), is dropped to the bottom of the axial hole and 
the remaining space in the axial hole is filled by a spacing rod of the same alloy as 
the bomb is made from. The function of the spacing rod is to decrease the volume of 
gas in the bomb and so reduce the explosion hazard as well as to hold the specimen 
capsule in place at the far end of the axial hole. The bomb is inserted in a vertical or 
horizontal tube furnace so that the specimen is centrally placed in the ‘hot spot’ of the 
furnace. Pressure is applied to the charge by collapse of its enclosing capsule which 
is enveloped in the ‘pressure medium’, usually water vapour pumped into the bomb 
through capillary pressure tubing from a reservoir maintained at the required pressure 
by a manually operated jack or a pneumatic pump. A Bourdon pressure gauge is 
incorporated into the pressure line. The experimental arrangement is shown in Fig 
16.2. Quenching of the charge at the end of the run is usually achieved by removing 
the furnace from the pressure vessel, or vice versa, and directing a high pressure blast 
of cold air on the bomb while maintaining pressure by opening the valve between the 
pressure line and the pressure reservoir. In special cases it may be desirable to drop 
pressure while maintaining high temperature or to drop pressure and temperature 
together ; special techniques have been developed for such cases. After quenching, the 
capsule is removed from the bomb and cut open; the charge is then examined optically 
and by X-ray powder diffractometry or occasionally by single crystal X-ray methods. 
The limiting conditions of operation of the cold seal bomb are about 1000°C at 2kb 
or 700°C at 5 kb, the limiting criterion being the hot-strength of the alloy from which 
the bomb is made. By constructing the bomb of larger diameter alloy rod, about 
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SLLLL. Fig 16.2 The Tuttle cold seal bomb. The 
pressure = —— os PUUNP bomb A is drilled with an axial hole which 
gauge REN contains the charge sealed into the 

noble-metal capsule B and with an axial hole 
C to accommodate the recording 
thermocouple; D is the cone-in-cone pressure 
seal which lies outside the furnace F; the spiral 
furnace-winding E is packed with magnesia 
powder which acts as a thermal insulator in 

the furnace F; pressure is applied through a 
gas or vapour raised to the required high 
pressure by a jack or pump and recorded by 
a Bourdon gauge inserted in the cold pressure 

A line. 

2 inch, and improving the cold seal and using argon as the pressure medium the cold 
seal bomb can be taken up to much higher pressures, e.g. 10kb at 700°C (Luth and 
Tuttle, 1963). 

An important modification of the Tuttle cold seal bomb is the internally heated 
cold seal bomb in which a small furnace is placed within a pressure vessel whose outer 
surface is cooled by circulating water. The charge is situated in the axial aperture of 
the furnace. Such devices are now in common use for work up to 10kb at 1200°C. 

For higher pressures recourse must be had to some type of uniaxial device, such as 

the simple squeezer as modified to operate at high temperatures by Griggs and 

Kennedy (1956) and illustrated in Fig 16.3. Pressure is applied through pistons made 
of materials of very high compressive strength. Such materials are in general brittle 
and to avoid brittle fracture of the pistons they are conically shaped so that they are 
always supported by a confining pressure, the conical surface being lubricated by thin 
copper foil. In such a device equilibrium appears to be attained more rapidly than in 
a hydrostatic pressure vessel such as the cold seal bomb. Attainment of equilibrium is 
facilitated by oscillation of one of the pistons during the run (Dachille and Roy, 1960). 
The difficulty with this type of apparatus is that pressure cannot be measured directly 
and it is difficult to estimate the relative magnitudes of the hydrostatic and shearing 

stresses. The pressure applied to the charge is calculated from the pressure applied 
to the pistons, a correction being made for friction; the pressure gradients set up in 
the charge between the pistons lead to considerable uncertainty. Temperature, applied 
by an external split furnace, can be estimated quite accurately. Quenching is achieved 
by opening the split furnace and playing an air blast on the inter-piston block at the 
level of the charge. The charge is removed from the squeezer as a hard lenticular disc, 
which is then crushed for optical and X-ray diffractometric examination. The PT range 
of the simple squeezer extends to 80 kb at 500°C or 20 kb at 1000°C. 

The versatility of the simple squeezer has been improved by incorporation of an 
internal graphite furnace (Boyd and England, 1960), which enables the PT range for 
equilibrium studies to be extended to 120 kb at 500°C or 60 kb at 2000 °C. 
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Fig 16.3 The simple squeezer. On the left a schematic diagram of the apparatus and on the right 
an exploded view of the piston assembly. Key: a the fixed plate and b the ram of a hydraulic press; 
c the water cooling chamber; da" steel pushers, e piston and holder assembly, f split cylindrical 
furnace, g thermocouple passing through upper pusher and holder, A stellite holders, / pistons 
constructed either of stellite (45° cone as shown) or of cemented carbide (20° cone), k steel ring, 
m sample, p copper foil to act as lubricant at high pressure, q Pt, >Rhg, foil to prevent reaction 
with piston faces and to facilitate sample removal. 

The next stage of complication is the two-stage pressure vessel (Boyd, 1962) in 
which pressure is applied to the charge through a piston whose outer shank is 
supported by the confining pressure of a sleeve of KBr; KBr undergoes a 10 per cent 
reduction of volume on transformation at 19 kb. 

The final stage of complication so far attained (Fig 16.4) is the tetrahedral anvil 
press (Hall, 1958) in which a pyrophyllite tetrahedron, enclosing a charge of up to 
2 ml in volume and a graphite furnace, is compressed on each of its triangular faces 
by four anvils (i.e. pistons tapered to fit together closely). One piston is compressed 
by a hydraulic ram while the other three are forced into a steel cone so designed that 
pressure is evenly distributed on the faces of the tetrahedron. The pistons are 
lubricated by pyrophyllite gaskets, through one of which a thermocouple is introduced 
to measure the temperature of the charge. For work at ultra-high’ pressures the 
number of anvils can be increased, for instance to six in an octahedral configuration 
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Fig 16.4 The tetrahedral anvil press. (a) shows the pyrophyllite tetrahedron p in which a hole 
passes from one vertex to the centre of the opposite face; the hole is lined with a graphite sleeve 
g which acts as the furnace and the sample s is placed within the graphite sleeve; the metal strip 
(Ta or Ni) m serves to make electrical contact between the graphite sleeve and the three lower 
anvils. (b) shows the tetrahedral disposition of the four anvils a,—a, about the pyrophyllite 
tetrahedron; the three lower anvils a,—a, are confined by a steel cone and a force is applied by 
a hydraulic ram to the upper anvil a,, the force applied by the ram being shown by a solid bold 
arrow and the wedge reaction of the confining cone on the other three anvils by open arrows. 
The three lower anvils form one terminal of the graphite furnace and the upper anvil a, the other 
terminal. The pyrophyllite tetrahedron flows at high pressure to form a pressure seal between the 
faces of the four anvils. A thermocouple passes between adjacent anvils into the specimen cylinder. 

or twenty-four in an icositetrahedral configuration. A useful survey of high pressure 
apparatus is provided by Bradley (1969). 

Experimental methods 

The purpose of any synthetic experiment is to bring a charge of known composition 
to equilibrium under a particular set of physical conditions (P, T, etc) in such a manner 
that the composition of the charge remains unchanged and the physical conditions 
remain constant and uniform throughout the volume of the charge. The experiment 

may last for only a few minutes or for as long as several months. At the conclusion 
of the experiment it is necessary to freeze the phase equilibrium by rapid quenching 
or by sudden release of pressure. The charge may be maintained at constant 
composition by sealing it, by welding, into a capsule which is impervious to the 
external atmosphere. Constancy of temperature is maintained by using the output of 
a thermocouple to control the supply of electric current to the furnace; the controller 
is adjusted early in the course of a run so that a second thermocouple inserted in a 
hole drilled in the bomb reads the required temperature. In the cold seal bomb and 
its modifications, where pressure is applied through a gaseous medium, maintenance 
of constant temperature implies maintenance of constant pressure; in such 
circumstances pressure is essentially uniform and hydrostatic throughout the body of 
the charge and is susceptible to measurement by a gas-pressure gauge in the external 
pressure line. In the squeezer and anvil types of apparatus however pressure is apt to 
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be non-uniform over the body of the charge, non-hydrostatic, variable during the run, 

and not susceptible to precise measurement; such disadvantages are to some extent 
offset by the comparative ease with which the experimental PT range can be extended 
by use of such devices. Although the squeezer is a mast useful device for reconnaissance 
experiments, it is not suitable for the accurate determination of the position of 
equilibrium lines in P—T—X" space. 

In general the rate of attainment of equilibrium increases with increasing pressure. 
At atmospheric pressure the rate of attainment of equilibrium in silicate systems is 
relatively slow, but the nature of the apparatus required is fortunately such that 
constant temperature can relatively easily be maintained quite accurately for many 
weeks or even months. Likewise at the relatively low high-pressures for which the 
cold seal bomb is appropriate constant temperature, and by implication constant 
pressure, can be maintained to at least +5°C (+1° with a good controller and voltage 
stabilization) for periods of several weeks or months. In the high-pressure conditions 
for which the squeezer is appropriate rates of reaction are in general quite fast so 
that maintenance of constant pressure and temperature for long periods is 
unnecessary; experimental runs with the squeezer and its modifications usually have 
a duration of a few hours at the most. 
We have already described the quenching of the charge at the end of a run in an 

atmospheric pressure apparatus and a cold seal bomb. Quenching is achieved in 
squeezer and anvil devices by swinging open the split furnace and playing an air-blast 
on the pistons or, if the charge will not react with water, by plunging the piston 
assembly and charge into a large bath of cold water. 

After quenching, a portion of the charge is mounted in an oil of suitable refractive 
index for examination with the polarizing microscope. The phases present can often 
be identified by refractive index, other optical properties, and habit. Another portion 
of the charge is subjected routinely to X-ray diffractometry. It is usually considered 
advisable to use these two techniques in conjunction: while diffractometry will in 
general provide a rapid and reliable means of identification of the crystalline phases 
present in quantity, optical examination is necessary for recognition of the presence 
of glass (indicative of a liquid phase in the equilibrium assemblage) as well as for the 
identification of phases present in only small amounts. Moreover optical examination 
may, if a characteristic habit or twinning is involved, provide a distinction between 
phases whose diffraction patterns are difficult to distinguish with certainty in the 
diffractometer record of the polyphase quenched charge. 

For a complete description of the equilibrium phase assemblage in the quenched 
charge it is of course necessary to know the composition of any glass or solid solution 
that may be present. The only composition-dependent property of a glass that can 
conveniently be determined is the refractive index. In a binary system measurement 
of refractive index is adequate to determine the composition of the glass provided 
that the refractive indices of an adequate number of glasses (produced by complete 
melting and quenching of known compositions) in the system have been determined. 
For glasses in ternary and higher systems composition can only be determined for a 
glass in a polyphase assemblage by taking its refractive index in conjunction with the 
determined compositions of all the solid phases and the bulk composition of the 
charge; even so it is not always possible to estimate the composition of the glass. 
This point will be taken up in the next section. 

The composition of a binary solid solution can most conveniently be determined 
by measurement on the diffractometer trace of the d-spacing of a reflexion which is 
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particularly sensitive to compositional change. The chosen reflexion must be clear of 
any reflexion due to any other phase that may be present. For accurate measurement 
of the d-spacing of the chosen reflexion it is usually necessary to introduce an internal 

standard into the diffractometer mount and for this purpose a separate portion of 
the quenched charge may be reserved. For ternary solid solutions the measurement 
of two or more peaks on the diffractometer record may enable the two compositional 
parameters to be determined, but often the accuracy of the resulting determinations 
is inadequate. Measurement of refractive indices may be used to supplement the 
d-spacings derived from the diffractometer record; but all too often no improvement 
in the accuracy of the determination of composition can be achieved. If the 
composition of a solid solution, or glass, cannot be determined satisfactorily by such 
methods, recourse may be had to the electron probe microanalyser; but there is a 

snag in that the crystal grains produced in routine synthetic experiments are near the 
minimum size that can be analysed accurately with the electron probe. 

Criteria for equilibrium 

When a homogeneous glass is subjected to a temperature and pressure at which a 

solid phase A is stable, it may first crystallize a metastable phase B. The crystallization 
of a metastable phase in such circumstances is governed by the empirical Ostwald’s 
step rule: a liquid or solution will tend preferentially to crystallize a phase or phases 
of higher entropy than the stable assemblage if that is possible. The reaction by which 
the stable assemblage is produced will then not be glass > stable assemblage, but 

metastable assemblage > stable assemblage and the latter, involving solid and 
possibly very stable structures, may well be a markedly slow process. If the run is too 

short in duration, only the metastable assemblage will be recorded in the quenched 
charge. A rather longer run may be expected to produce an excessive number of phases 

(P > €+2-—F) belonging to both the stable and metastable assemblages. Runs of 
longer duration may yield the stable assemblage if they are long enough; in some 
systems under dry conditions at atmospheric pressure runs of many weeks may be 
needed to achieve equilibrium. As long as any change with time is detectable in the 
proportions or nature of the phases in the quenched charge it is certain that 
equilibrium has not yet been attained. In some systems certain particularly unreactive 
phases become recognizable as metastable phases and, provided they occur only in 
small quantity, it may nevertheless be possible to work out a phase diagram of 
diminished accuracy for the system. 

If the starting material is a gel it will crystallize on its path to the selected pressure 
and temperature of the run and the phases that crystallize will in general be determined 
by ease of nucleation rather than by considerations of thermodynamic stability. Such 
metastable phases can have only a transient existence but they may nevertheless 

persist for times of the same order of magnitude as the duration of short synthetic runs. 
Recognition of metastable phases as such is not easy: they will disappear with time, 
but the time required for their disappearance may be longer than that of a normal 
experimental run. Careful examination of the phase assemblage produced at 
successively increasing temperature at the chosen pressure and composition will 
usually reveal which phases are metastable. Confirmation may be obtained by 
comparing the phase assemblage produced by raising pressure to the chosen value at 
atmospheric temperature and then increasing temperature to the chosen value with 
the assemblage produced by increasing temperature to the chosen value at 

atmospheric pressure and then raising the pressure to the chosen value. 
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Fig 16.5 P—T diagram for the jadeite + quartz 2 albite equilibrium. The dotted lines indicate the 
course for an albite charge to demonstrate the reaction Ab—>Jd +z. The dash-dot lines indicate 
the course for a jadeite+ quartz charge to demonstrate the reverse reaction Jd+Qz—Ab. The 

equilibrium line, shown as a bold solid line at high P7 (and extended to lower P7 as a broken line 
where it has not been proved experimentally), has been determined by a series of such experiments. 

Ideally a univariant PT curve or a divariant PTX surface, and so on, should be 
based on reversibility of the relevant reaction. But this is often not a practically 
realizable criterion in silicate systems where crystallization of a glass or gel to the 
stable assemblage is very much more rapid than the conversion of one assemblage of 
crystalline solid phases to another. It follows that the path along which the system 
passes to the chosen pressure and temperature may be critical where reaction between 
crystalline solid phases is slow. The equilibrium A=B is thus usually studied by 
observations on the reactions C > A and C > B;it is essential to demonstrate in each 
case that the change of reaction behaviour of C corresponds to the equilibrium 
Ags B: 

Sometimes it is possible to use natural crystalline minerals as starting materials 
and then it is possible to define a PT curve or surface with greater reliability. Birch 
and LeComte (1960) studied the equilibrium albite=jadeite + quartz (N aAlSi;0,= 
NaAlSi,O, + SiO.) by taking an albite charge through the albite field and across the 
field boundary; that is to say they raised the temperature of the charge to a selected 
value and then increased the pressure to put it into the jadeite + quartz field (Fig 16.5). 
They also raised the pressure of charges composed of intimately mixed equimolecular 
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Fig 16.6 (a) P—T plot for the system Al,O,—H,O according to Ervin and Osborn (1951). At low 
temperatures gibbsite Al(OH), is stable and at high temperatures corundum AIO, is stable. At 
intermediate temperatures the two polymorphs of AlO.OH, boehmite or disapore, crystallize in 

synthetic experiments. (b) P—7 plot for the system Al,0,—H.O according to Kennedy (1959). 
Gibbsite, diaspore, and corundum are the only stable solid phases. The shaded area represents 
that part of the diaspore stability field in which boehmite crystallizes more readily, as a metastable 
phase, than the stable phase diaspore. 
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amounts of jadeite and quartz to the selected value at room temperature and then 

raised the temperature to put the charge into the albite field. They recorded only runs 
in which either albite > jadeite + quartz or jadeite + quartz > albite. Relying only on 
change in a crystalline assemblage they produced)a highly reliable determination of 

the course of the univariant equilibrium curve. 

It is appropriate at this point to mention an erroneous phase diagram due to Ervin 
and Osborn (1951) for the polymorphic transformation in AlO(OH), boehmite= 
diaspore. Boehmite, diaspore, and corundum (Al, O,) crystallize from alumina gel in 
the PT fields shown in Fig 16.6(a) when the pressure is‘applied through a water vapour 
medium. The boehmite/diaspore field boundary obviously cannot represent the 
univariant curve of boehmite = diaspore equilibrium: its slope dP/dT changes from 
near infinity to zero in less than 50°C and it is simply inconceivable that AS/AV could 
change correspondingly over such a small temperature interval, if at all. Thermo- 
chemical measurements show that boehmite has a rather large standard entropy and 
that AS39g/AVzo3 = 88 bar deg” *. Since boehmite has a higher entropy than diaspore, 
it has according to Ostwald’s step rule an inherent tendency to crystallize metastably 
in the diaspore field. It is therefore reasonable to suppose that when diaspore 
crystallizes it does so only in the diaspore field. If this criterion is applied to the most 
extreme PT point at which diaspore was observed by Ervin and Osborn to crystallize, 
the stable field boundary for diaspore = boehmite is a line pq of slope + 88 bar deg 
drawn through or to the right of that point. In either case the boehmite field is entirely 
metastable and lies within the stable field of corundum. Figure 16.6(b) shows the 
phase diagram as determined in the light of these arguments by Kennedy (1959). This 
example illustrates the dangers of failing to test for reversibility when determining a 
phase diagram. 

Determination of a melting diagram at atmospheric pressure 
In this concluding section we discuss some special and instructive arguments 
that have been applied to the determination of melting diagrams at atmospheric 
pressure in systems involving solid solution. We take as our example the system 
diopside—albite—anorthite (Bowen, 1915) which is illustrated in Fig 16.7. At high 
temperature albite (NaAISi,Og) and anorthite (CaAl,Si,O,) form a continuous 
binary solid solution series (the plagioclase feldspars); there is no ternary solid 
solution between diopside (CaMgSi,O,) and plagioclase. 

Isotherms on the liquidus surface can be constructed by heating charges of known 
composition at various temperatures and recording for each composition the highest 
temperature at which the quenched charge is not wholly composed of glass. If the 
nature of the crystalline phase is determined optically, whether diopside or plagioclase, 
a diagram showing isotherms on the diopside and plagioclase liquidus surfaces can 
be drawn and the field boundary outlined in terms of composition and temperature. 

Three-phase-triangles are then determinable in three ways, which are illustrated 
on Fig 16.7: 
(1) the composition method. A charge is quenched from a known temperature T, and, 
if a three-phase assemblage, glass + plagioclase+ diopside, should be produced, then 
the composition of the glass will be given by the known temperature from which the 
charge was quenched and that of the plagioclase may be determined by X-ray 
diffractometry. As indicated in Fig 16.7 the tie line between liquid A and solid solution 
of composition B can be drawn provided the compositional and thermal course of 
the field boundary on the liquidus is known. 
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Fig 16.7 (a) shows the phase diagram for the system diopside (CaMgSi,0,)—albite (NaAISi,0,)— 
anorthite (CaAl,Si,0,) with isotherms on the liquidus indicated. The tie-lines A-B, H—G—I, 

E—C-—F, and (diopside)—C—D are referred to in the text. (b) shows the temperature-composition 
curve for the diopside-plagioclase field boundary with the temperatures of the liquids, A, H, E 
indicated; the compositional axis runs from near albite along the field boundary to the 
anorthite-diopside join. 

(2) temperature of beginning of melting. Charges composed of a mixture C of known 
proportions of synthetic diopside and synthetic plagioclase of known composition D 
are heated to various temperatures and the lowest temperature T; at which glass is 
observed in the quenched charge is recorded. Again if the temperature dependence of 
the field boundary is known the tie line EF between a liquid on the field boundary 
and the binary solid solution can be drawn. 

(3) temperature of beginning of crystallization. Mixtures of known composition G in 
the plagioclase field are quenched from successively lower temperatures and the 
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ALBITE ANORTHITE 
Fig 16.8 The phase diagram for the system diopside-albite-anorthite with isotherms on the 
liquidus shown as thin solid lines and isofracts of glasses shown as broken lines. The tie-line 
L—K—M is referred to in the text. 

temperature Tj, at which diopside first appears is recorded. If the temperature 
dependence of the field boundary is known, a tie line can be drawn between a liquid 

composition H on the field boundary through G to the inferred composition I of the 
plagioclase solid solution. 

Each of these three methods of three-phase-triangle determination requires the 
prior determination of the liquidus surfaces of the diopside and plagioclase fields and 
in particular as precise a determination as possible of temperature coordinates along 
the field boundary. 

Determination of tie lines between liquid compositions within the plagioclase field 
and plagioclase solid solutions depends on determinations of isotherms on the 
plagioclase liquidus surface and isofracts (lines of equal refractive index) of 
homogeneous glasses in the same compositional range. If a mixture K (Fig 16.8) of 
known proportions of plagioclase of known composition and diopside yields a glass 
L of determined refractive index in equilibrium with plagioclase (of undetermined 
composition) at a known temperature, a tie line between liquid L and solid solution 
M can be drawn from the intersection of isofracts and isotherms on the plagioclase 
liquidus surface. Alternatively the composition M of the plagioclase may be 
determined by diffractometry instead. From a great many of such observations 
fractionation curves can be drawn. 
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Appendix A: Constructions in the Stereographic Projection 

|: To project a pole P at p° from N along a given diameter QOR (Fig A.1) 

The pole P lies in the plane PNS, which intersects the plahe of projection in the diameter QOR 
of the primitive circle. Imagine the sphere of projection to be rotated through 90° about QOR 
(Fig A.1(a)): S will move to S’, N to N’, and P to P’. S’ lies on the primitive circle 90° away from 
Q and R. 

S 

Fig A.1_ To project a pole P at p° from N along a given diameter QOR. In the spherical projection 
(a) P is located in the plane NRSQ; on rotation through 90° about QOR this plane becomes N’RS’O 
and P moves to P’. The plane diagram (b) shows the location of p at the intersection of S’P’ 
with QOR. Rotation back to the original orientation does not move p; p is the stereographic 
projection of P. 

The projection of P is then made (Fig A.1(b)) in the following manner: 
1. Draw the diameter N’OS’ perpendicular to QOR, 
2. Draw OP’ such that NOP’ = p’, 
3. Join S’P’ to intersect QOR in p. 

Imagine now that the sphere of projection is rotated back through 90° about the diameter QOR 
so that S’ moves to S, N’ to N, and P’ to P; p remains unchanged in position and is therefore the 
projection of the pole P. 

Of course we could more simply have placed p at a distance r tan4p from O along OR, but 
we have described this construction to emphasize its principle, which is made use of in subsequent 
more complicated constructions. There too the reader will find apparently unnecessary 
elaborations, which are introduced primarily to establish principles. 

Il: To find the projection of the opposite P,, of the pole P (Fig A.2) 
The opposite of a pole P is the pole situated at the opposite extremity of the diameter of the 
sphere of projection through P. P, thus represents the direction at 180° to the direction represented 
by P. If P represents the normal to a face (hkl), then P, represents the normal to the face (hkl). 

It is evident from the section of the sphere of projection containing Po, S, and P drawn in 
Fig A.2(a) that if P is projected using the south pole and P, using the north pole as projection 
point, then Op = Op). It is therefore a simple matter to plot p} by drawing the diameter through 
p and marking on it a point at an equal distance from O on the other side of O from p. 

If the south pole is used as the projection point for both P and P, then Py projects outside 
the primitive circle and its position can be found by making use of the fact that PP, is a diameter 
and so the angle PSP, = 90°. If the primitive circle is imagined to be the section of the sphere of 
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(b) 
Fig A.2_ To find the projection of the opposite P, of the pole P. (a) is the section of the sphere of 
projection containing POP, and perpendicular to the plane of projection; p and p, are respectively 
the stereographic projections of P and P, from the south pole; pj is the stereographic projection of 
P, from the north pole. (b); shows the sphere of projection rotated about the diameter through p 
to bring the south pole to S’; the intersection of Op with the perpendicular to S’p through S’ 
locates po. . 

projection containing P, S, and N, the projection of the opposite of the pole P can be constructed 
in the following manner (Fig A.2(b)): 

1. Draw OS’ perpendicular to Op, 
2. Draw S’py perpendicular to pS’, 
3. Po lies at the intersection of S’p,) with pO produced. 

Ill: To construct a great circle through two poles (Fig A.3) 

We shall first discuss the general case and then pass on to a special case. 

a To construct a great circle through two general poles 

A great circle is defined by specifying two non-opposite poles, P and Q (Fig A.3(a)), which lie on 
the great circle; the great circle also passes by definition through the centre of the sphere of 
projection. However, to draw a circle—and in general the projection of a great circle is an arc of 
a circle—it is necessary to locate three points lying on the circle. Now since the plane of a great 
circle passes through the centre, the opposite of any pole lying on the great circle also lies on 
the great circle. The construction is made in the following manner (Fig A.3(b)): 

1. Construct the opposite py of the pole p by construction II, 
2. Construct the perpendicular bisectors gt and gty of qp and qpo, 
3. The geometrical centre of the projected great circle is then g. 

b To construct a great circle through two poles, one of which lies on the primitive 

If the pole P through which the great circle is to pass lies on the primitive, its opposite Po lies on 
~ the primitive at the opposite end of the diameter of the primitive through P. The geometrical 

centre of the projected great circle therefore lies on the perpendicular bisector of this diameter 
POP), that is on the diameter perpendicular to the diameter POP. The great circle is constructed 
in the following manner (Fig A.3(c)): 

1. Draw the diameter through P, 

2. Draw the diameter ROR, perpendicular to POP», 
3. Construct the perpendicular bisector gt of Pq, 
4. The geometrical centre of the required great circle lies at the intersection g of gt and ROR». 

Some part of the great circle will project outside the primitive unless the point of projection is 
changed from the south to the north pole for this part. That part of the great circle which lies 
within the primitive when projected from the north pole will contain the opposite of every pole 
on the other part of the great circle which lies within the primitive circle when projected from the 
south pole; the opposite of every pole lying on the arc PmP, lies on the arc Ppm,P, POP, being 



590 Appendices 

(c) (d) 

Fig A.3 To construct a great circle through two poles. (a) shows the sphere of projection with 
the plane containing P, Q, and their opposites P,, Q, outlined. (b) illustrates the construction for 
the general case where p and q lie within the primitive; p, is the opposite of p; gt and gt, are 
the perpendicular bisectors of pq and qp, respectively; g is the geometrical centre of the required 
great circle. (c) illustrates the construction for the special case where one pole, P, lies on the 
primitive; ROR, is the diameter of the primitive perpendicular to OP; gt is the perpendicular bisector 
of qP. (d) illustrates the construction of that part of the great circle which has to be projected from 
the north pole in order to be brought within the primitive; the geometrical centre of this part of the 
great circle lies on the diameter ROR, of the primitive perpendicular to OP at gy such that 
Og = Ogy. A great circle projected from the north pole is shown conventionally by a broken arc. 

the diameter of the primitive in which the great circle intersects the equatorial plane in Fig A.3(d). 
In particular if m lies on the diameter perpendicular to POP, then mg also lies on that diameter 
on the opposite side of O so that Om = Omp. It is apparent from the figure that the geometrical 
centres g and gy of the great circle projected from the south and north poles respectively lie on the 
diameter ROR, on either side of O so that Og = Ogy. 
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Fig A.4 To construct a small circle of radius 0° about a given pole. (a) illustrates the special case 
where the given pole is the north pole; the required small circle has its geometrical centre at O and 
passes through p where OS’p = 48. (b) illustrates the general case where the stereographic centre 
of the small circle is c; rotation through 90° about Oc brings the south pole to S’; S’c produced 
meets the primitive in C; COP, = COP, = 0°; p, and p, are the stereographic projections from S’ 
of P, and P,; the geometrical centre of the small circle lies on OC at g such that p,g = gp,. When 
the stereographic centre of the small circle lies on the primitive (c) a simple construction, shown 
in (d), becomes available: COP = @ and g lies at the intersection of the normal to OP through P 
with OC produced. 

IV: To construct a small circle of radius 9° about a pole (Fig A.4) 

a When the pole is the north pole 
In this case the plane of the small circle is parallel to the equatorial plane and both the 

stereographic and geometrical centre of the projected small circle will coincide at N. All that is 
required to determine the radius of the projected circle is a pole plotted at 6° from N. The 
construction is performed in the following manner (Fig A.4(a)): 

1. Plot the projection p of a pole P at 0° from N along any diameter by construction I, 
2. Draw a circle with centre O and radius Op. 

b When the stereographic centre lies within the primitive circle 

In this case the geometrical centre g and the projection c of the stereographic centre of the small 
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circle will not coincide (as we showed in chapter 2), but will both lie on a diameter of the primitive 
circle. The projected small circle is therefore defined by two points lying at 0° on either side of the 
stereographic centre of the small circle and on the diameter of the primitive circle through the 
stereographic centre. To construct such a small ¢gircle it is necessary to imagine that the sphere of 
projection is rotated about the diameter Oc (Fig A.4(b)) through 90° so that the projection point 
moves into the plane of the diagram. The construction can then be performed as follows: 

1. Draw the diameter N’OS’ perpendicular to the diameter Oc. 
2. Draw S'c to meet the primitive circle at C; OC is then the direction of the stereographic 

centre of the small circle. 
3. Construct the radii of the primitive circle OP, and OP, on either side of OC such that 

COP, = COP, = 8. 
4. Draw S’P, and S'P, to intersect Oc in p, and p, respectively. (Notice that in the diagram 

P, lies in the southern hemisphere and so its projection, p2, lies outside the primitive circle.) 
. Bisect p, p2 to give the geometrical centre g of the projected small circle. 

6. Imagine the sphere of projection to be rotated back to its original attitude. This will leave 
the geometrical centre of the projected small circle unchanged in position at g and p, and 
P2 also unaffected. Draw the circle with centre g and radius gp,. 

nN 

c When the stereographic centre lies on the primitive circle 

In this case construction IVb is applicable, but a simpler construction is available. This depends 
on the property of the stereographic projection that the angle between two arcs, each of which 
is the projection of a plane, is equal to the angle between the two planes (chapter 2). This property 
will not be proved here; the reader is referred to Terpstra and Codd (1961, p. 12) for a proof. A 
small circle whose stereographic centre is on the primitive circle is the intersection of a plane 
perpendicular to the equatorial plane with the sphere of projection (Fig A.4(c)). Therefore at their 
points of intersection the projection of the small circle and the primitive circle will be mutually 
perpendicular. Therefore the tangents to the primitive circle at the points of intersection are 
radii of the projected small circle. The geometrical centre and the stereographic centre of the 
projected small circle must lie on the same diameter of the primitive circle. 

The construction can be made as follows (Fig A.4(d)): 
1. Draw the diameter through the stereographic centre C of the small circle. 
2. Draw OP such that COP = 0. P lies on the primitive circle. 
3. Draw the perpendicular to OP through P to meet OC produced in g. 
4. Draw a circle with centre g and radius gP. 

V: To construct a small circle passing through the pole p when the 

stereographic centre C of the small circle lies on the primitive circle 
(Fig A.5) 

Since the plane of the small circle is perpendicular to the equatorial plane the small circle will be 
symmetrical across the equatorial plane. It follows that if the small circle is projected using both 
north and south poles so that its projection lies wholly within the primitive circle, then that part 
projected from the north pole will be coincident with that projected from the south pole. The 
pole whose projection is coincident with p when the north pole is used as the projection point 
will, like p, lie on the small circle; to draw the projection of the small circle this pole has to be 
re-projected using the south pole as the projection point. 

Since the geometrical centre of the projected small circle lies on OC the construction can be 
effected by imagining the sphere of projection to be rotated through 90° about its diameter Op 
and proceeding as follows (Fig A.5): 

1. Draw the diameter through Op. 
2. Draw the diameter N’OS’ perpendicular to Op. 
3. Draw S’p to meet the primitive circle in P. 
4. Draw N’P to meet Op produced in p, and imagine the sphere to be rotated back to its 

original attitude. 
5. Draw the perpendicular bisector of pp; to meet OC produced in g. 
6. Draw the circle with centre g and radius gp. 
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Fig A.5 To-construct a small circle passing through the pole p when its stereographic centre C 
lies on the primitive circle. The sphere of projection is imagined to be rotated about Op to bring 
the north and south poles to N’ and S’. S’p meets the primitive in P and N’P meets Op produced 
in p,. The perpendicular bisector of pp, meets OC produced in g, which is the geometrical centre 
of the required small circle. 

VI: To find the pole of a great circle (Fig A.6) 

By definition the pole of a great circle lies 90° from every point on the great circle and so 
represents the normal to the plane of the great circle. In Fig A.6(a) a great circle meets the primitive 
circle at the opposite ends of the diameter AC. Any direction perpendicular to the directions 
represented by the poles A and C must lie in a plane perpendicular to the line AC. This plane, 
which is perpendicular to the equatorial plane, will pass through the south pole and will therefore 
project as the diameter bOp of the primitive circle perpendicular to the diameter AOC. The pole 
of the great circle must also be perpendicular to the pole B, which lies at the intersection of the 
great circles ABC and BP. 

The projection of the pole of a great circle can therefore be found by drawing the diameter of 
the primitive circle which is perpendicular to the diameter through the points of intersection of 
the great circle with the primitive circle and then measuring a distance equivalent to 90° along 

Z 

A 

(a) 

Fig A.6 To find the pole of a great circle. (a) shows the great circle ABC outlined on the sphere 
of projection; OP is the pole of this great circle. The stereographic projection (b) shows the great 
circle AC which intersects the diameter of the primitive perpendicular to AC in b; rotation of the 
sphere of projection through 90° about bO brings the south pole to A so that b is the stereographic 
projection of B; P lies on the primitive and BOP = 90°; AP intersects bO produced in p, which is 
the pole of the great circle. This figure serves also to illustrate the construction of a great circle 
whose pole is p. 
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the diameter from b, its point of intersection with the great circle. The construction is performed 

by imagining the sphere of projection to be rotated through 90° about its diameter bOp so as to 

bring the point of projection into the plane of the diagram and coincident with the point A; and 

proceeding as follows (Fig A.6(b)): “ 

1. Draw the diameter through the points of intersectidn, A and C, of the great circle with the 

primitive circle. 
. Draw the diameter perpendicular to AOC, to intersect the great circle in b. 
. Draw Ab to meet the primitive in B. 
Join OB. 2 

. Draw OP such that BOP = 90°. 
. Draw AP. 
. The intersection p of bO produced with AP is the required pole of the great circle. Rotation 
of the sphere of projection back to its original attitude does not affect the position of p. 

Vil: To draw a great circle given the position of its pole (Fig A.6) 

This construction follows directly from VI. The three projected poles lying on the projected great 
circle that can be found most easily are one at each of the two points of intersection of the great 
circle with the primitive circle (these are at the ends of the diameter perpendicular to the diameter 
through the projection of the pole) and one on the diameter through the projection of the pole P. 
If the sphere of projection is imagined to be rotated through 90° about Op the construction can 
be performed as follows: 

. Draw the diameter Op. 
. Draw the diameter AC perpendicular to Op. 
Draw the line Ap to meet the trace of the sphere of projection in P. 

. Draw OB such that BOP = 90°. 

. Draw AB. 

. The point of intersection b of AB with pO produced is the projection of a pole lying on the 
great circle. 

7. Imagine the sphere of projection to be rotated back to its original attitude and draw the 
great circle through A, b, and C by construction IIIb. 

DnNPWNeE 

Vill: To measure the angle between two poles (Fig A.7) 

The angle between the directions represented by the poles P; and P2 is P,OP, (Fig A.7(a)). On the 
stereogram this angle is represented by the arc p;p2 of the great circle through p; and po; this 

Pee 

(a) (b) 
Fig A.7_ To measure the angle between two poles. (a) shows the poles P, and P, on the sphere 
of projection; the great circle P, P, intersects the plane of projection in the diameter AOC of the 
primitive; rotation about AOC brings P, and P, on to the primitive at p, and p;; p,Op; = P/OP,. 
(b) illustrates the construction: p, and p, are the stereographic projections of the given poles Ry 
and P,, and the great circle on which they lie intersects the primitive in AOC: a small circle with 
stereographic centre A is drawn through p, to intersect the primitive in p, and another small circle 
Mie same stereographic centre through p, intersects the primitive in p,; the required angle 
is p, Ops. 



Appendix A: Stereographic constructions 95 

(a) (b) 

Fig A.8_ To find the angle between two great circles, ApB and CpD as shown in (a). The great 
circle whose pole is p intersects the two great circles in h and g respectively. Measurement of the 
angle between h and g by the method illustrated in Fig A.7 gives the required angle. (b) illustrates 
an alternative construction: the poles p, and p, of the great circles ApB and CpD are located by 
the method illustrated in Fig A.6 (b); the angle between p, and p,, found by the method illustrated 
in Fig A.7, is then the supplement of the required angle. 

arc cannot be measured to give the angle directly. One method of measuring the angle is to rotate 
the poles on the sphere of projection about the diameter AC, keeping the equatorial plane and 
the projection points fixed, until the great circle containing p, and p, becomes the primitive 
circle; the poles P, and P, will then coincide with their projections and direct measurement of 
the angle P, OP, becomes possible. During rotation the path of each pole will be a circle centred 
on the diameter that is the axis of rotation. Or in other words each pole will describe an arc of 
a small circle whose plane is perpendicular to the axis of rotation and whose stereographic centre 
is the axis of rotation. Thus to measure the angle between the projected poles p, and p, the steps 
in the construction are (Fig A.7(b)): 

1. Construct the great circle Ap,p2C by construction IIIa. 

2. Draw small circles, each with stereographic centre A to pass through p; and p> respectively 
by construction V. 

3. Measure the angle p,;Op> between the points of intersection of the two small circles with 
the primitive. This is equal to the required angle Py OP2. 

IX: To find the angle between two great circles (Fig A.8) 
The angle between two great circles can be measured by drawing the tangents to the projections 
of the great circles at their point of mutual intersection (chapter 2), but this is neither an accurate 
nor a convenient way of measuring the angle. An alternative and better method is to draw in the 
great circle which is perpendicular to both great circles. The angle between the planes of the great 
circles is then given by the angle between their lines of intersection with this plane. 

The steps in the construction needed to measure the angle between the two great circles ApB 
and CpD (Fig A.8(a)) are: 

1. Construct the great circle EghF whose pole p is the intersection of the two great circles by 
construction VIL. 

2. Measure the angle between g and h, which are the intersections of the great circle EghF 
with the great circles AphB and CpgD respectively by construction VIII. 

Yet another method is to find the poles of the two great circles and then to measure the angle 
between them. The angle between two planes is equal to the supplement of the angle between 
their normals or poles. The steps of the construction are (Fig A.8(b)): 

1. Find the poles p,; and p2 of the two great circles, ApB and CpD, by construction VI. 
2. Measure the angle between p; and p2 by construction VIII. 
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Appendix B: Two simple devices for measuring interfacial angles 

The two devices we describe here are intended as aids in the teaching of the elements of 

morphological crystallography and symmetry, enabling the student to obtain very quickly the 

angular data necessary for the plotting of a stereogram, In careful hands the measured angles 

are quite accurate enough for plotting on a stereogram of 24inch radius. For greater accuracy of 

angular measurement it is necessary to use more refined optical goniometers, with a 

correspondingly greater expenditure of time; such instruments are well described by Terpstra and 

Codd (1961). The two-circle optical goniometer still has occasional uses in research. 

The contact goniometer was invented by Carangeot in 1780. It is illustrated in Fig B.1 and fully 

described in the caption of that figure. It is a very simple instrument suitable for measuring large 

crystals and the wooden crystal models used in elementary teaching. Its accuracy (about +2°) is 

limited by the ability of the operator to hold the crystal edge perpendicular to the plane of the 

goniometer while keeping the crystal firmly against the edge of the protractor and the adjustable 

arm. 
The simple optical goniometer shown in Fig B.2 was designed by Dr. J. V. P. Long of the 

Department of Mineralogy and Petrology, Cambridge. It is quite accurate enough (about +1°) 

for elementary teaching and for this purpose has two advantages over more elaborate instruments: 

its simplicity enables the student to set the crystal and obtain angular measurements very quickly, 

and its construction is such that it can be made very cheaply. The instrument, which is fully 

described in the caption to Fig B.2, is so designed that an image of the lamp filament is visible 

through the viewing tube when a reflecting surface lies normal to the axis of the viewing tube. 

Thus if a crystal is set with a zone axis parallel to the horizontal axis of the instrument, successive 

faces in the zone will be brought into the reflecting position as the shaft is rotated. By noting the 

angular readings on the dial r at which reflexions coincide with the cross-wires interfacial angles 

in this zone may be measured. 

The procedure for setting a crystal on the simple optical goniometer may be described with 

reference to Fig B.2(c). (1) Set the instrument so that the axis A of the universal joint t is vertical. 

(2) Mount the crystal with plasticine so that face 1 in the selected zone is approximately horizontal 

and so that an edge between two adjacent faces in this zone is parallel to the axis of the 

horizontal shaft p. (3) Locate the image of the filament on the cross-wires by turning the horizontal 

shaft and adjusting the tilt of the crystal with the axis B of the universal joint. (4) Turn the 

horizontal shaft so as to bring the next face 2 into the reflecting position and locate the image of 

the filament on the cross-wires by adjusting the axis A of the universal joint. (5) Slide the magnet 

v on the steel block q so that the crystal remains in the centre of the field of view throughout 

360° rotation of the horizontal shaft. When the crystal is set, measurements of interfacial angles 

Figure B.1_ The contact 
goniometer is constructed from a 
perspex protractor to which a 
perspex arm is attached so as to 
pivot about the centre of the 
protractor. The crystal is placed 
between the edge of the protractor 
on the 0° side and the arm so that 
the crystal edge is perpendicular to 
the plane of the protractor and the 
angle between face normals is read 
off. The goniometer is calibrated in 
degrees or half degrees (only 10° 
divisions are shown on the figure for 
simplicity). The interfacial angle of 
the crystal shown in exploded 
relationship to the goniometer is 
thus measured as 523°. 
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in the selected zone can be made. The crystal may then be remounted for measurement of another 
zone. The crystal should have dimensions in the range 5-10 mm and bright faces for convenient 
use of this instrument; suitable examples are octahedra of magnetite and cleavage rhombohedra 
of calcite. 

Fig B.2. The simple optical goniometer. (a) and (b) are respectively front and side elevations 
and (c) shows the detail of the crystal adjustment and optical paths. The transformer, contained in 

an alloy box a, is fed from the mains at 6 and its output passes through the flex c to the torch 
bulb a, which is set in the cylindrical tube e mounted adjustably on the rod f; the transformer box 
sits on rubber feet g. The incident light beam is reflected by the half-silvered cover-slip 4, mounted 
in the square-section tube /, to impinge on the crystal k. When a face of the crystal is set horizontal 
the light beam is reflected up the viewing tube /, passing undeviated through the half-silvered 
plate to be observed at m. The viewing tube / is rigidly attached by the arm o to the pillar of 
square-section tube n. A horizontal shaft p, carrying at one of its ends the steel cylinder g and at 

the other the graduated dial r (a 360° protractor) and attached knob s, rotates on bearings set in 
the pillar n. The orientation of the crystal kK can be adjusted by manual manipulation of the universal 
joint t which is cemented with epoxy resin to the steel disc u and to the magnet v. The crystal is 
centred by manual adjustment of the position of the magnet v on the steel cylinder g. The crystal is 
attached to the steel disc u by the plasticine w. The viewing tube carries cross-wires x, x’. 
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Appendix C: Rules for selecting standard settings of space groups in International 

Tables for X-ray Crystallography and in Crystal Data 

International Tables for X-ray Crystallography, vol. 1 (1969) gives two conventional diagrams 
(symmetry elements and general equivalent positions) and a listing of coordinates of general and 
special equivalent positions for the standard setting of each of the 230 space groups, except for 
those of the cubic system where coordinates only are given. Crystal Data (1963) provides a listing, 
exhaustive at the time of its publication, of the unit-cell dimensions of crystalline substances, 
system by system in terms of the a/b ratio for the triclinic, monoclinic, and orthorhombic systems, 
the c/a ratio for the trigonal, tetragonal, and hexagonal systems, and the magnitude of the cell 
edge a for the cubic system. In Crystal Data the alternative name anorthic is used in preference 
to triclinic; the trigonal system is treated as a subdivision of the hexagonal system, both being 
referred to hexagonal axes (a = b £4 c,a = B = 90°, y = 120°). These modifications lead to a simple 
means of indexing the data for each substance by the initial letter of its crystal system (A, M, O, 
T, H, C) followed by the axial ratio or, in the case of a cubic substance, by the unit-cell edge. 

Thus M-1:020 represents monoclinic, a/b = 1020; T-0-690 represents tetragonal, c/a = 0-690; 
and C-8-29 represents cubic, a = 8:29 A. 

Generally accepted conventions for the choice of reference axes lead to unique settings in the 
tetragonal, hexagonal, and cubic systems as well as in the trigonal system whether of hexagonal 
or riombohedral lattice type. International Tables and Crystal Data therefore make the same 
choice of unit-cell in these systems.’ An ambiguity arises in space groups of these systems where 
two sets of symmetry elements are interleaved and when this happens there is no unique space 
group symbol even where the lattice is primitive; for example the space group /4c2 could just as 
well be described as [4b2 or as [4a2,. In such cases the choice of standard space group symbol 
is arbitrary and need concern us no further here. 

In the remaining three systems, triclinic (anorthic), monoclinic, and orthorhombic, the 

orientation of the x, y, and z axes is not completely determined by symmetry: in the orthorhombic 
system the reference axes are taken parallel to the orthogonal diads of the lattice, in the 
monoclinic system the y-axis is conventionally taken parallel to the diad of the lattice,” and in the 
triclinic system there can be no symmetry control at all. The conventions which International 
Tables and Crystal Data use for their choice of reference axes in these systems differ in principle 
and sometimes in practice. In Crystal Data reference axes which are not fixed by symmetry are 
selected so as to correspond to the shortest possible lattice translations and labelled as a 
right-handed axial system with c < a< b, « obtuse, and f obtuse. Restrictions on the choice of 
setting imposed by symmetry considerations (i.e. that y is parallel to the diad in the monoclinic 
system) take precedence over these dimensional conditions. The conventions used in International 
Tables for determining the choice of setting and the standard space group symbol cannot be 
usefully generalized and are now discussed system by system. 

Orthorhombic System. The primary convention adopted by International Tables is that for 
space groups in the point groups 222 and mm2 which have one axis distinct from the others; 
then that axis is designated the z-axis. Thus P222, and P2,2,2 and Pmm?2 are the standard symbols 
for these three space groups. A secondary convention applies to all space groups of the system 
which have one-face centred lattices: that the C-lattice is preferred to either the A- or the B-lattice. 
In the four space groups of point group mm2 where this convention conflicts with the primary 
convention, the A-lattice is preferred to the B-lattice. A third convention is required for space 
groups which have non-primitive lattices and two sets of symmetry elements interleaved: the 
standard symbol is chosen so as to show that symmetry element which appears first in the 
following sequence, m, a, b, c, n, d, 2,2,. Thus the symbol Cmcem is preferred to Cbnn. Apart from 
the application of these three conventions International Tables are not consistent in their choice 
of standard setting, the arbitrary standard settings of the old International Tables (1935) being 
preferred to the formulation of elaborate new rules. 

The dimensional convention c < a < bis rigidly adopted by Crystal Data for the orthorhombic 
system. In consequence A-, B-, and C-lattices are all permissible and the distinct axis in space 

"For rhombohedral space groups in the trigonal system International Tables give space group symbols, 
conventional diagrams, and coordinates of general and special equivalent positions referred to hexagonal 
axes and in addition coordinates of general and special equivalent positions referred to rhombohedral axes. 

? International Tables provide a description of each monoclinic space group also in the alternative 
setting with the z-axis parallel to the diad of the lattice. 
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groups of the point groups 222 and mm may be x, or y, or z. For all three point groups of the 
system the space group symbols produced by application of this convention may be in 
non-standard form. 

Monoclinic System. The convention that the non-primitive lattice is a C-lattice is consistently 
adopted in International Tables. Since space groups with a C-lattice have two sets of symmetry 
elements interleaved the same convention is adopted as for the analogous situation in the 
orthorhombic system. A further convention is applied to space groups with a primitive lattice and 
a glide plane: the glide plane is taken to be a c-glide. 

The convention c < a and f obtuse is rigidly adopted by Crystal Data. In consequence the 
non-primitive lattice type may be C, A, or I and so some space group symbols will be 
non-standard. 

Triclinic (Anorthic) System. No conventions are required for the choice of reference axes for the 
two space groups P1 and P1 in International Tables. However in Crystal Data, where a/b is 
tabulated for triclinic substances, conventions are required to determine which lattice repeats are 
to be labelled a and b. The conventions adopted are that the three shortest non-coplanar lattice 
repeats are taken as the directions of the reference axes so as to form a right-handed axial system 
with c < a< b,« obtuse, f obtuse. For a discussion of conventions for choosing a unit-cell in the 
triclinic system the reader is referred to Kelsey and McKie (1964). 

Appendix D: Spherical trigonometry: the equations for a general triangle 

Let a sphere, centre O, intersect three of its radii in A, B, and C, the angles between the radii being 
BOC = a,COA =b, AOB = c(Fig D.1). The sphere intersects the planes BOC, COA, AOB in the 
great circle arcs BC, CA, AB which form the sides of the spherical triangle ABC. 

Select a point D on OB produced such that AD | OA and a point E on OC produced such 
that AE | OA. From the plane triangle ODE, 

DE? = OF?+ OD?—20E. OD cos DOE 

and from the plane triangle ADE, 

DE? = AE? + AD?—2AE. AD cos DAE. 

Thus OE? +OD?—20E. OD cos DOE = AE? + AD?—2AE. AD cos DAE. 

But AD 1 OA and AE 1 OA, therefore 

OD?— AD? = OA? = OEF?—AF?’, 

whence OA? = OE.OD.cos DOE—AE. AD. cos DAE 

pore. a eee 
es ics OE OD OE OD 

Le. cos DOE = cos AOE _cos AOD +sin AOE. sin AOD. cos DAE. 

Thus cosa = cosb.cosc+sinb.sinc.cos A. 

Fig D.1_ A,B, C are points on the surface 
of a sphere of centre O, and define the 

spherical triangle ABC. The plane ADE is 
perpendicular to OA. The inter-radial 
angles a, b, c correspond to the angular 
lengths of the sides BC, CA, AB of the 
spherical triangle. 
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Fig D.2  Stereographic projection 
showing the bounding great circles of the 
spherical triangle ABC. The great circles 
whose poles are A, B, C are respectively 
B’C’, C’A’, A’B’; their intersections define 
the polar triangle A’B’C’ of the triangle 
ABC. ABC is itself the polar triangle of 
A‘B'C’. The two great circles through A 
intersect the great circle whose pole is A 
in E and F. The two great circles through 
A’ intersect the great circle whose pole is 
A’ in Gand H. 

By exactly similar argument we can derive the expressions 

cos b = cosc.cosa+sinc.sina.cosB 

and cosc = cosa.cosb+sin a. sin b.cos C. 

In order to derive the remaining equations for the general spherical triangle it is necessary to 
construct the polar triangle A’B'C’ of the triangle ABC, which is defined as the triangle formed by 
the intersection of the great circles whose poles are A, B, and C (Fig D.2). Since A is the pole of 
the great circle B’C’ and C the pole of the great circle A’B’, 

A:B’ = C:B’ = 4n. 

Therefore B’ is the pole of the great circle AC. The triangle ABC is therefore the polar triangle of 
its own polar triangle A’B’C’. 

Let the great circles AB and AC intersect the great circle B’C’ in E and F respectively. Then 
E:F = A and 

CE = F:B =4n, 

whence a =B’C’ =B’F+F:C =B':F+E:C_E:F 

Thus a’ =n—A. 

Similarly if the great circles A’B’ and A’C’ intersect the great circle BC in G and H respectively. 

G:C=B:H =42 

and A’ = G:H = G:C+C:H = G:C+B:H-B:C. 

Thus A’ =1—a. 

By analogous arguments it can be shown that 

b’=x-B and c=n-C, 

B’=x—b and C=n-c. 

Now for the general spherical triangle A’B’C’,, 

cosa’ = cosb’.cosc’+sin b’.sinc’.cos A’. 

Therefore cos (m—A) = cos (n—B). cos (n— C)+sin (x—B). sin (t—C). cos (x—a) 
he: cos A = —cosB.cosC+sinB.sinC.cosa 

and similarly 

cos B = —cosC.cosA+sin C.sin A.cosb 
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Fig D.3 A, B, C are points on the surface of a 
sphere of centre O. PQ is perpendicular to the plane BOC 
and OR is perpendicular to OB. The angle PRO is thus 
equal to the angle at the corner B of the spherical 
triangle ABC. 

and cos C = —cosA.cosB+sin A.sin B.cosc. 

To prove the remaining equations for the general triangle it is convenient to use a different 
construction. Fig D.3 shows three radii from the centre of the sphere O intersecting the surface 
of the sphere in A, B, and C. As before the angles BOC, COA, AOB are a, b, c respectively. From 
a point P on OA a perpendicular is drawn to the plane BOC to meet the plane in Q and QR is 
drawn perpendicular to OB to intersect OB in R. Since OOP, ORQ, and POR are right angles 

OP? = OQ?+ PQ?, 

OQ? = OR?+RQ?, 

R? = RQ?+PQ?’. 

Thus OP? = OR? + PR’. 

Therefore ORP = 4n. 

Now PRQ=B 

therefore PQ = PR sinB 

= OP sinc.sinB. 

In a precisely similar manner it can be shown that 

PQ = OP sin b. sin C. 

Thus sin B - sin C 

sinb sinc’ 

By an analogous argument it can be shown that 

snA sinB 

sina sinb 

Appendix E: Three-dimensional analytical geometry 

|: Derivation of the expression /2+m2+n2=1, where /, m,n, are the 

direction cosines of a line referred to orthogonal axes 

The direction cosines of a line are defined as the cosines of the angles that the line makes with the 
positive direction of each of the three reference axes, x, y, and z. 
We consider a line defined by its direction cosines |, m,n and draw a line OP parallel to it and 

passing through the origin O (Fig E.1). From the point P a perpendicular is dropped to each axis 
to intersect the x-axis in A, the y-axis in B, and the z-axis in C. The direction cosines of OP are 

then by definition, 
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z Fig E.1_ The reference axes x, y, z are mutually 

perpendicular. From the point P the lines PA, PB, 
PC are drawn perpendicular to the x, y, z axes 
respectively, which they meet in A, B, C. The 

‘direction gosines of OP are then /=cos POA, 
m=cos POB, n=cos POC. 

OB OC 
oc eosin: m= cos POB = —, n = cos POC = — 

OP’ OP" 

But for orthogonal axes by Pythagoras’ Theorem (Fig E.1), 

OA? + OB? + OC? = OP?. 

Theref Dh aE OGY on eS — = ——— en = 

co NOB OPI ON OF 
and so ?+m?+n? = 1. 

ll: Derivation of the expression for the angle between two lines given 
their direction cosines referred to orthogonal axes 
We consider two lines OP, and OP, defined by their direction cosines l,myn, and 1,m,n, 
respectively, P, and P, being each at a distance r from the origin O (Fig E.2). The coordinates 
of P, are then x, =rl,, y, =rm,, z,; =rn, and of P, are x2 =rl,, yy =rm, 2, =rnp. If the 
origin is moved from O to P,, the coordinates of P, referred to P, as origin will be x, = x,—x,, 
V2 =Ya—-Y1, 22 =22—2,. Therefore 

(PyP2)? = (x2—x4)? +(2-y1)? + (22 ar 

= 7{(l,—1,)? +(m,.—m,)? +(n, —n,)°} 
= 17{2—2(I,1l,+mym,+nn,)}. 

Now cos 0 = 1—2 sin? 40 

P,P)" 
ie, cos 9 = 1-2 (*:72) : 

27, 

Thus cos 0 = 1,1,+-m,m,+n4np. 

Zz 

Fig E.2_ The reference axes x, y, z are mutually 
perpendicular. P, and P, are placed at the same 
distance r from the origin O so as to define two lines 
OP, and OP,, which make an angle @ with one 
another. 
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Appendix F: Crystal setting 

Any account of X-ray diffraction by single crystals, such as that provided in chapter 8, would be 
incomplete without some description of the techniques used for mounting and setting a crystal 
in a particular orientation. No attempt is made here to give a comprehensive survey of all the 
techniques available for mounting and setting single crystals; we restrict ourselves to those 
techniques which we ordinarily use and which we find both easy to teach to others and suitable 
for setting a crystal very quickly in a chosen orientation with respect of the camera geometry. In 
this appendix we assume an understanding of the reciprocal lattice and the reflecting sphere, 
without which it would be pointless to engage in practical single crystal X-ray diffraction studies. 

The first task is always to select a single crystal and to identify in it some prominent zone axis. 
For this purpose optical goniometry, in the case of well shaped (euhedral) crystals, may be useful 
and polarized light microscopy, in the case of transparent crystals whether euhedral or not, is 
particularly useful. By the use of either of these techniques it is usually possible, for instance, to 
identify the principal axis of a uniaxial crystal; we shall assume initially that it is desired to mount 
and set such a crystal about such an axis. Transparent crystals of lower symmetry and opaque 
shapeless crystals of any system present a more difficult problem, the solution of which is achieved 
by the use of just the same methods but takes more time. 

Crystal mounting 

We start with a crystal lying in a pool of refractive index oil on a microscope slide on the stage 
of a binocular microscope. The magnification should be in the range x 10 to x 40. The crystal is 
eased to the edge of the pool of oil and beyond with the aid of a fine needle point mounted in a 
wooden handle (a fine artists’ brush from which the camel hairs have been removed makes a very 
convenient handle). A drop of amyl acetate—or some other volatile solvent in which the crystal 
is insoluble—is placed close to the crystal and the crystal is pushed with the needle point through 
the pool of amyl acetate and out towards the edge of the slide. The crystal is moved with the 
needle point until the selected zone axis is approximately perpendicular to the edge of the 
microscope slide.’ When the last trace of amyl acetate has evaporated and the crystal is quite 
dry, a small drop of a slow setting adhesive (Durofix thinned with amyl acetate is eminently 
suitable) is placed on the slide close to the crystal. A glass fibre, about 15mm long, < 0-:05mm 
diameter, and with one of its ends pushed into a pea-sized blob of plasticine, is then dipped in 
the drop of adhesive and quickly brought into contact with the crystal so that the glass fibre is 
approximately parallel to the selected zone axis of the crystal. If this rather delicate operation 
has been correctly performed the crystal will be stuck firmly on the tip of the glass fibre within 
rather less than one minute of making contact (if the operation is performed too slowly, the crystal 
will merely be held by surface tension to the surface skin of the adhesive droplet and will fall off if 
tapped against the slide; it is then necessary to start again). The crystal and its fibre are then 
mounted on a set of crystallographic arcs (Fig 8.1) by pressing the blob of plasticine against the 
column at the top of the arc assembly. 

Crystal setting with a zone axis parallel to the spindle axis of the arcs 

For both oscillation and Weissenberg photography it is necessary to align a zone axis in the 
crystal parallel to the camera axis. Initially we shall consider situations in which the selected zone 
axis diverges by no more than a few degrees of arc from the camera axis; later on we shall discuss 
gross mis-setting. 

The crystal is first centred at the intersection of the camera axis with the incident X-ray beam. 
The spindle carrying the arcs is then rotated manually until the plane of one arc is approximately 
parallel to the incident X-ray beam, the plane of the other arc being then perpendicular to the 
incident X-ray beam; the spindle is locked in this position and a Laue photograph is taken. If the 
selected zone axis has been set precisely parallel to the camera axis, the reciprocal lattice net 
corresponding to the normals to planes lying in this zone will be horizontal and so the reflexions 

1 Instead of a hand-held needle point a ‘micro-manipulator’ may be used. Micro-manipulators, which are 
available commercially, are in essence three-dimensional pantographs; they are useful for dealing with 
exceptionally small crystals but are an unnecessary luxury for persons with steady hands dealing with 
crystals of the sort of size usually used for X-ray diffraction. 
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corresponding to the intersection of this equatorial net with the reflecting sphere will lie in a 
horizontal plane; thus when the cylindrical Laue photograph is laid flat after development this 
prominent ‘zone’ of reflexions will be seen to lie on a straight (horizontal) line perpendicular to 
the (vertical) camera axis (Fig F.1(a)). If, however, the selected zone axis is inclined to the camera 
axis, the reciprocal lattice nets normal to it will not be horizontal. The reflections in the equatorial 
layer will then lie on the surface of a shallow cone, whose axis is the zone axis and whose apex 
is at the centre of the reflecting sphere. The incident X-ray beam will lie on the surface of this 
cone. The cone will thus intersect the cylindrical film in a curve which passes through the point of 
intersection of the forward direction of the incident beam with the film. The shape of such a curve 
is, in general, complex and it is convenient to discuss it with respect to two simple situations: 
where the zone axis is in the plane perpendicular to the incident X-ray beam containing the 
camera axis (Fig F.1(b)) and where the zone axis is in the plane containing the incident X-ray beam 
and the camera axis (Fig F.1(c)). 

In Figs F.1 (a)—(d) the film is shown in each case with the observer imagined to be looking towards 
the X-ray tube and the edge of the film which was uppermost in the camera uppermost in the 
figure. When removing the film from the cassette for development it is necessary to indicate its 
orientation in the camera; this can conveniently be done by holding the cassette as it was in the 
camera with the exit-hole towards oneself and scratching a distinctive mark (such as X or a ) on 
the top right-hand corner of the film. Some means of indicating the intersection of the film with 
the plane perpendicular to the camera axis containing the incident X-ray beam (the ‘horizontal’ 
plane) is required and this is achieved by slipping a brass ‘mushroom’ (Fig F.1(e)) over the 
collimator when setting photographs are being taken; the ‘mushroom’ casts an arcuate shadow on 
each side of the film, each shadow being symmetrical about the equatorial line (Figs F.1(a)—(d)). 

If the arc whose plane is perpendicular to the incident X-ray beam (i.e., its axis is parallel to 
the incident beam) is observed looking towards the X-ray tube, then the mis-setting illustrated in 
Fig F.1(b) will require for its correction an anticlockwise adjustment of that arc only. The 
mis-setting illustrated in Fig F.1(c) is such that the equatorial net of the reciprocal lattice (which 
of course passes through the origin O) slopes upwards towards the X-ray tube; in this case the 
equatorial reflexions lie on a curve which is symmetrical about the vertical through the exit-hole 
of the film. Correction of this mis-setting is achieved by adjustment of the arc whose plane is 
parallel to that of the incident X-ray beam and the camera axis (i.e., its axis 1s perpendicular to 
the incident beam) in a clockwise sense when the observer moves to the right through 90° from 
his previous position. 
We now consider the general case where adjustments on both arcs are required (Fig F.1(d)). 

We shall show how the amount of adjustment on each arc can be deduced from measurements 
on the film in this general case and in the special cases considered qualitatively in the preceding 
paragraph. The problem is complicated by the dependence of the inclination of the upper arc 
(Fig 8.1) to the camera axis on the inclination of the lower arc to the camera axis; only when the 
scale reading of the lower arc is zero is the axis of the upper arc perpendicular to the camera axis. 

Fig F.1 Setting a crystal on an oscillation camera so that a selected zone axis Z is parallel to the 
spindle axis of the camera. (b)—(d) show diagrammatically the appearance of the film for various 

mis-settings; each film carries a tick in the top right-hand corner to indicate its orientation in the 
camera during exposure; the shadows cast by the ‘mushroom’, illustrated in (e), are indicated by 
arcs at the sides of each film, and serve to define the equatorial line; no reflexions are shown on 

the diagrams, only a continuous curve representing the zero layer reflexions. In (a) the crystal is 
perfectly set. (b) shows the curves of the zero layer when the zone axis Z is inclined at an angle 
p = 10° (or 20°) to the spindle axis O in the plane normal to the incident X-ray beam; the stereogram 
on the right shows the great circle corresponding to the zero layer reciprocal lattice net. (c) shows 
the curves of the zero layer when the zone axis Z is inclined at an angle = 10° (and 20°) to the 
spindle axis in the plane of the incident beam and the spindle axis; the stereogram on the right 
shows the zero-layer reciprocal lattice net projected as a small circle of radius 90°—wW passing 
through the opposite of X. (d) shows a general case of mis-setting and the orientation of the 
corresponding zero-layer reciprocal lattice net. In (b)—(d) the displacement of the zero-layer curve 
at points corresponding to 0 = + 45° are indicated as A, on the left and A, on the right-hand 
side of the film: in (b) A, = —A, and p= 2A,, in (c) A, = A, and w= 2A,, and in (d) p=A,—A, 
and y= A, +A, where A, A, are measured in mm (positive above the equatorial line) and p, W 
are in degrees for a camera of radius 28:65 mm. 
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Fig F.2 In the stereogram (a) the forward direction of the incident beam is XX’, the spindle axis 
of the camera is O, the selected zone axis is Z, and the initial attitude of the axis of the upper arc 
is A,. Movement of the crystal through the angle w on the upper arc causes Z to move on the 
small circle (shown bold) through Z, whose stereographic centre is A,, until it reaches Z’ on the 
great circle normal to XX’. After bringing the zone axis to Z’ it is moved into coincidence with O 
by a movement p on the lower arc, which will move the axis of the upper arc from A, to A,. 
(b) exaggerates the distinction between the small circle ZZ’ and the great circle XZ”, which 
intersects the great circle normal to XX’ in Z’’. In calculating the corrections to be made to the 
arcs it is assumed that Z’ and Z” are coincident. 

In Fig F.2(a), the zone axis is represented by the pole Z, the camera or oscillation axis by the pole 
O at the centre of the stereogram, and the incident X-ray beam by the poles XX’; the lower arc is 
taken to be set with its axis parallel to the incident beam and the axis of the upper arc is represented 
by the pole A,. To bring the zone axis into coincidence with the camera axis it is necessary to 
move the crystal through the angle w in a clockwise sense about the axis of the upper arc, where 
w is the angle between the great circles A, Z and A, O. The effect of this adjustment is to transfer 
the pole of the zone axis to Z’, which lies in the plane normal to the axis XX’ of the lower arc; 
Z’ thus lies at the intersection of the small circle through Z whose stereographic centre is A, with 
the great circle whose pole is X. The crystal is then rotated through the angle p in an anticlockwise 
sense about the axis of the lower arc to transfer the zone axis from Z’ to O; this adjustment of 
the lower arc moves the axis of the upper arc from A, to A, through the angle p in the plane 
normal to X. The great circle XZ is normal to the plane A,O which it intersects in Z” (Fig F.2(b)). 
We shall assume for simplicity that Z’ and Z” are coincident, which is tantamount to assuming 
that the zone axis Z is normal to the axis A, of the upper arc; if this were precisely so, then 
ZZ" = w and OZ" = p. This simplifying assumption leads to underestimation of the adjustments, 
p and w, of the arcs but greatly simplifies the calculation of the magnitudes, necessarily 
approximate, of p and w from measurements of the setting photograph. 
We now consider the general case of a reflexion R produced by a lattice plane in the zone whose 

axis is Z (Fig F.3(a)). Since the direction R of the reflected beam and the forward direction AOL 
the incident X-ray beam lie on the surface of a cone whose axis is the zone axis Z, ZX’ = ZR = y, 
where 7 is the semi-angle of the cone, and RX’ = 20, where 0 is the Bragg angle of the reflexion. 
Therefore for the general spherical triangle RX’Z, 

cos ZR = cos RX’. cos ZX’+sin RX’. sin ZX’. cos RX’Z 

i.e. cos 7 = cos 20. cos y+sin 20. sin y.cos¢ 

where RX és 
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(b) 

90-[90-(e-p)] 

(a) 

Fig F.3. The stereogram (a) illustrates the general case of a reflexion R produced by a lattice 
plane in the zone whose zone axis is Z; the spindle axis of the camera is O; and the forward 

direction of the incident beam is XX’. The angular distance of the intersection of the great circle 
X’Z with the great circle normal to XX’ from Z is W and from O is p. The Naperian diagram for the 
right-angled spherical triangle TX’R (RTX’ = 90°) is shown in (c). The definition of the coordinates 
of the reflexion R on the film are shown in (b): A=rtano and t=@r, where r is the camera radius. 
Angular relations in (a) are grossly exaggerated for clarity. 

whence 2sin?@ cosy =2sin@ cos@.sinn.cose 

so that cosé = coty.tan 0. 

Adoption of the convention that y is positive when 7 < 90° (i.e. the correction of magnitude j is 
made in the clockwise sense when the observer moves to the right through 90° from the position 
facing the X-ray tube) leads to the equation 7 = 90° —y, so that 

cose = tany.tan 0. 

The reflected beam R intersects the cylindrical film at a point with coordinates t, A (Fig F.3(b)), 
where t is the horizontal distance of the reflexion from the centre of the exit hole of the main 
beam and A is the vertical distance of the reflexion above the equatorial line. Now the coordinate 
t = gr, where r is the camera radius and ¢ = X'OR = XT (Fig F.3(a)); and A =r tan 6, where 
6 = TR. From the Naperian triangle TX’R (Fig F.3(c)) 

sind = sin 20.cos (e—p) 

and sin (e— p) = tan @. cot 20 

be tan @ = tan 26.sin (e—p). 

Since we already have the relationship cose = tany.tan 6, we can calculate 6 and ¢ for any 
scattering angle 20 if y and p are known for the zone and so the shape of the zero layer curve of 
a mis-set crystal can be calculated. But the converse procedure of calculating p and w from the 
observed shape of the zero layer curve, which is the problem with which we are concerned here, 

is laborious; it may be simplified by considering merely the coordinates of the zero layer curve 
for 0 = +45°. When 20 = 90°, cose = tan w and 

sind, = cos(e—p) 

= cosé.cosp+siné.sin p 

= tany.cosp+sin(cos! tanw).sin p. 
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Then if p and w are small, tani > W, cosp > 1, sinp — p, sin(cos™ 1 tanw)— 1, and, since 6 is 

necessarily also small, sind, > 6, so that 

6,=Wtp 

When 20 = —90°, sin 20 = —1 so that ; t 

sind, = —cosé.cos p—sineg.sin p 

and cose = —tanw. 

Then if p and w are small, 

62 =W-p. 

Thus 2W =6,+6, 

and 2p = 61-02. 

Moreover, if 5 is small the film coordinate A (Fig F.3(b)) becomes A = ré and, when r = 28-65mm, 

A measured in mm is equal to 26 where 6 is measured in degrees, so that 

w=A,+A2 

and p=A,;—Az, 

where A, and Aj are the heights of the zero layer in millimetres above the equatorial line at 
6 = 45° and —45° respectively; y and p are then given in degrees. Ihese relationships remain 
good approximations for cylindrical cameras of 30mm radius, always assuming that p and y 
are small angles. 

It is, in practice, often convenient to be able to derive the corrections to be made to the two 
arcs directly from the observed shape of the zero layer curve. The displacement of the curve from 
the equatorial line at 20 = 180° is dependent only on the arc whose plane is parallel to the incident 
X-ray beam. Thus if the zero layer curve lies above the equatorial line at the edges of the film 
(the exit-hole or the shadow of the back-stop being in the centre of the film), then the zone axis 
is tilted away from the collimator (as illustrated in Fig F.1(c)). The curve close to the intersection 
of the forward direction of the incident beam with the film (i.e. the exit-hole or the shadow of 
the back-stop) is approximately a straight line; the arc whose plane is normal to the incident 
beam has to be rotated to achieve the required correction in the sense which will cause this line 
to become parallel to the equatorial line. Thus in the cases illustrated in Fig F.1(b) an anticlockwise 
rotation of p° is required to correct the mis-setting of the crystal. 

The zero layer curve intersects the equatorial line in general in two points, at 0 = 0 and ata 
point whose @ value depends on the relative magnitudes of the mis-settings on the two arcs. If 
|| = |p| the second point of intersection is at 20 = +90° or at 20 = —90°. If the second point of 
intersection lies at |20| > 90°, the greater error is in the arc whose plane is perpendicular to the 
incident beam (as illustrated in Fig F.1(d)); but if the second intersection is at |20| < 90° the 
greater error is in the arc whose plane is parallel to the incident beam. It is thus only necessary 
to measure the displacements, A, and A, of the zero layer curve from the equatorial line at 
20 = 90° and at 20 = —90°; to take their sum and difference A, +A, and A, —A,; and so to 
deduce the necessary corrections, p and y, for the mis-setting of the crystal. 

The equations derived earlier, yy = A, +A, and p = A, —A,, apply only for small mis-settings 
and are only good approximations when the angle between the axis of the upper arc and the 
camera axis approaches 90°. They do however always lead to corrections in the right sense so 
that by use of these simple equations successive correction will achieve the desired result of 
bringing the zone-axis into coincidence with the camera axis. Moreover the range of possible 
angles between the axis of the upper arc and the camera axis, 90°+30°, has little effect on the 
accuracy of the applied corrections, provided the corrections are small. In practice the initial 
correction of a grossly mis-set crystal can only be very approximate, but thereafter the simple 
equations become quite accurate so that the crystal can be accurately set in a small number of 
operations. 

For precision setting of a crystal, as is necessary before moving film photographs are taken, 
the precise positioning of the equatorial line on the film is essential. This can readily be achieved 
when the crystal is very nearly set by use of the double Laue photograph. A Laue photograph is 
taken with the arcs as nearly as possible parallel and perpendicular to the incident beam, then 
the crystal is rotated anti-clockwise about the camera axis through 179° and a second Laue 
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Fig F.4 The double Laue method. The figure 
X shows the reflecting circle for two positions of the 

crystal. The directions labelled 1 and 2 represent 
reciprocal lattice rows in the zero layer net for the 
initial orientation of the crystal; those labelled 1’ and 
2’ are the corresponding directions after the crystal 
has been rotated about the spindle axis (normal to 
the plane of the figure) in the anticlockwise sense 
through 179° (the angles between 1 and 1’, 2 and 2’ 
are grossly exaggerated for clarity). The directions of 
the reflected beams are given by the corresponding 
radii of the reflecting circle. 

x’ 

photograph of about one half of the exposure time of the first is taken on the same film. The 
reflexions of the first exposure will lie outside the weaker reflexions of the second exposure on the 
right-hand side of the film and relatively inside on the left-hand side (Fig F.4). The displacement 
of the reflexions coupled with their intensity difference enables the zero layer curves corresponding 
to the two exposures of the film to be readily recognized. Had the rotation between the first and 
second exposures of the film been precisely 180° the two curves would have been mirrored in 
the equatorial line; but making the rotation just less than 180° serves to separate the reflexions 
and so make the interpretation of the double Laue photograph easier. The relative displacement 
is however, small, so that the equatorial line can be precisely located and, in particular, 
measurement of the separation of the two curves at 20 = +90° yields precise values of 2A, and 
2A,, which are both necessarily small, so that the final corrections y and p can be made accurately. 
Successive use of double Laue photographs until the two curves become linear and coincident 
with the equatorial line enables the selected zone axis to be set precisely parallel to the camera 
axis. We emphasize the point that the double Laue technique is only profitably applicable when 
the rough setting methods described earlier have brought the selected zone axis almost into 
coincidence with the camera axis. Rough setting is usually adequate for the taking of oscillation 
photographs; precision setting by the double Laue method is a necessary preliminary to the 
taking of Weissenberg photographs. 

In the initial stages of the setting of a grossly mis-set crystal it is often advantageous to use 
oscillation rather than Laue photographs even though fewer reflexions are recorded. Layer lines 
are discernible on an oscillation photograph of even a grossly mis-set crystal; and from even the 
very rough estimate that can be made of the layer line spacing in such a case it is usually 
possible to see whether these layer lines refer to the zone axis one is trying to set parallel to the 
camera axis. Against this advantage must be balanced the information—or rather at this stage of 
setting, the suggestions—about the symmetry of the crystal that can be gleaned from a Laue 
photograph. In practice it is usually a question of deciding whether it will be easier to set the 
crystal by recognition of a characteristic, usually large, layer line spacing on an oscillation 
photograph, or by recognition of some characteristic symmetry, usually a mirror plane, on a Laue 
photograph. In making the decision one bears in mind what one already knows from morphology 
and optics about the probable orientation of the crystal. If one approach is not rapidly fruitful, 
one tries the other. 
When the selected zone axis has been set parallel to the camera axis, it may then be necessary 

to locate a particular symmetry direction within the zero layer. This is most simply done by 
inspecting a setting Laue photograph for symmetry, adjusting the orientation of the arcs by 
rotation of the camera spindle until the selected symmetry axis is parallel to the incident beam, 
and taking another Laue photograph to confirm. If the selected symmetry axis lies at a distance 
s millimetres from the centre of the exit-hole on the zero layer line of the setting Laue, it will be 
necessary to adjust the camera spindle in the appropriate sense through s(90/zr) degrees, where 
ris the camera radius in millimetres, i.e., 0-955s for a camera of 30 mm radius and s for a camera 
of 28:65 mm radius. The Laue photograph taken after the adjustment has been made will display 
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the Laue symmetry of the crystal along this direction. At this stage a further fine adjustment may 
be necessary. 

For Weissenberg photography the crystal is set on an oscillation camera so that the selected 
zone axis is parallel—within about 1°—to the camera axis. The arcs are then transferred to the 
Weissenberg camera. Transference of arcs from one cantera spindle to another may affect the 
alignment of the crystal by as much as 1° and anyway very precise setting is needed before a 
Weissenberg photograph is taken so the final stage of setting the crystal is performed on the 
Weissenberg camera. For this purpose double Laue photographs are used, the screens of the 
Weissenberg camera being moved back to a separation of at least 20mm so that the two 
zero layer curves of the double Laue photograph are clearly displayed. It is usually necessary to 
take at least two double Laue photographs before coincidence of the two zero layer lines is 
achieved. It is then necessary to return the screens to their normal positions, with a separation 
of 2-4 mm, before taking a +20° oscillation photograph to check that the screens are allowing 
free passage of the diffracted beams of the zero layer line and that the back-stop is correctly 
placed to trap the undeviated X-ray beam. This oscillation photograph should show the 
zero layer reflexions symmetrically placed between the shadows cast by the screens and there 
should be no excessive blackening of the film, which would indicate incorrect positioning of the 
back-stop. Before taking upper layer Weissenberg photographs it is likewise necessary to check 
with a +20° oscillation photograph that the screens have been correctly positioned so that the 
reflexions of the upper layer line are symmetrically disposed between the shadows cast by the 
screens and that the back-stop has been correctly positioned. 

For precession photography it is necessary to set a zone axis parallel to the incident beam so 
that the spindle axis has to be parallel to some direction in the corresponding zone. It is 
moreover convenient to have a reciprocal lattice row of the selected zone set parallel to the 
spindle axis. Where the selected reciprocal lattice row is parallel to a zone axis (e.g. the reciprocal 
lattice row h00 is parallel to [100] in an orthorhombic crystal) it is often convenient to set the 
crystal with that zone axis parallel to the spindle axis on an oscillation camera. The arcs are then 
transferred to a precession camera so that the selected reciprocal lattice row is approximately 
parallel to the spindle axis of the precession camera. In the course of setting the crystal on the 
oscillation camera it may become clear which direction in the zero layer will have to be set 
parallel to the incident beam on the precession camera; this will usually be so when the direction 
is a symmetry axis. 

If the crystal is not accurately aligned with a reciprocal lattice row parallel to the spindle axis 
and a zone axis parallel to the incident X-ray beam, it can be brought into alignment by taking 

e | \ \ / i 
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Fig F.5  Precession setting. The diagrams show schematically the appearance of 10° precession 
photographs taken with unfiltered radiation and without a screen. In (a) the crystal is precisely 
aligned with a reciprocal lattice row parallel to the spindle axis and a zone axis parallel to the 
incident beam; the distant ends of the white radiation streaks lie on a circle. In (b) the crystal is 
mis-set so that the distant ends of the white radiation streaks lie on a non-circular figure; the long 
and short axes of this figure measured on the film perpendicular to the line parallel to the spindle 
axis are F(OQ,) and F(OQ.,); the quantity required for correcting the mis-setting is 
FA= Bdiess hemmed To avoid confusion in these diagrams non-zero layer streaks have been 
omitted. 
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a precession photograph with fi = 10°, white radiation, and no screen. If the crystal is precisely 
aligned the zero layer reflexions will lie within a circle of radius 2F sin ji, which will be clearly 
defined by the disposition of the associated white radiation streaks (Fig F.5(a)). If the crystal is 
slightly mis-set, the circle is distorted into a loop (Fig F.5(b)), the asymmetry of which can be 
utilized to correct the mis-setting. Consider the section (Fig F.6(a)) through the reflecting sphere 
containing the incident beam XIO and the direction IN,, which is inclined at ff to IO. Then OP, 
represents the line of intersection of the zero layer reciprocal lattice net with the plane of the 
figure when the crystal is perfectly set; OP represents the line of intersection of the zero layer 
reciprocal lattice net with the plane of the figure for the mis-set crystal. Let IN; be the normal 
from I to OP; and ¢ the magnitude of the angle N,IN{. Then since OIN, = NEP = and. 

90 - (jit 2e) 

90+ (fi-2e) 

te 
roU 

sa 
1mm 

° 

FA=5-1=4mm Te 

5mm 
(e) 

Fig F.6 Precession setting. (a) is a section through the reflecting sphere containing the incident 
beam XIO and the normal IN, to the reciprocal lattice row OP, for the perfectly set crystal; when 
the crystal is mis-set (exaggerated on the figure), P, becomes P, and N, becomes N‘ ; Q, is the 
intersection of IP; produced with OP, produced. The plane triangle IP,Q, shown in (b) is an 
enlargement of the same triangle in (a). (c) and (d) are the corresponding diagrams when P.,, lies 
below XIO. (e) illustrates a convenient means of evaluating FA by measurement of the white 
radiation streaks beyond a pair of centrosymmetrically related Kx reflexions lying in an appropriate 
direction; the centre of the film is indicated by the open circle. 
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OIN; = NiIP, = ate, PrP, = 2e and IP;N; = 90°—j2. Let Qy be the intersection of IP} 
produced with OP, produced. Then in the triangle IP,Q, (Fig F.6(b)) I1Q;P; = 90° —fi—2e and 
by the sine rule 

P,Q, iM sin 26 ve ’ 

IP, cos (ji+2e)" 

Similarly it can be shown that when the normal to the tangent plane at O for 7 = 0 lies below 
XIO (Fig F.6(c), (d)), then 

P,Q, sin 2¢ 

IP,  cos(ji—2e)’ 
The difference FA in the distances of the opposite edges of the limiting loop of the zero layer 

reflexions from the point of intersection of the undeviated beam with the film can be measured 
on the film. This difference is given by 

FA = F(OQ, —O0Q,) 
= F(OP,+P,Q;—OP, + PQ) 

= F(P,Q,+P2Q;), 

since OP, = OP, =2sin p. 

Andisince IP7=IP> = 1: 

FA = F sin 2e (saris texan) 
cos(i+2e) cos(ji—2e) 

: cos (fi — 2) + cos (fi + 2) 
= F sin 2¢ {| ——_—_—___ 

cos (i+ 2). cos (ji — 2) 

2F sin 2¢.cos fi. cos 2¢ 

cos? ji. cos? 2e — sin? ji. sin? 2¢ 

F sin 4¢.cos fi 

cos? 2¢—sin? ji 

From this expression ¢ can be calculated from a measured value of FA, F and ji being known. 
Table F.1 gives a tabulation of FA and ¢ for F = 60mm, ji = 10°. As the variation of e with fi for 
a particular value of FA is quite small, it is convenient in practice to use a precession angle ji of 
10°. A graph of FA against ¢ provides a quick means of determining ¢ from a measured value 
of FA. 

Measurements of FA can be utilized to correct the settings of the arcs by adopting the following 
procedure. We make the assumption that a reciprocal lattice row is known to be nearly parallel 
to the spindle axis. The spindle axis is then rotated until the plane of the lower arc is parallel to 
the incident beam and a 10° precession photograph is taken with white radiation. This precession 
photograph should show at least this reciprocal lattice row. The magnitude of FA measured 
along this row will give the angular correction ¢ to be made to the lower arc.” If the tilt on the 
lower arc is fairly small, the plane of the upper arc will be approximately perpendicular to the 
incident beam so measurement of the angle which the reciprocal lattice row makes with the 
horizontal on the same precession photograph will give the correction to be applied to the upper 
arc directly. This correction can be obtained more accurately by rotating the spindle axis through 
90°, taking another 10° precession photograph, measuring FA and so determining the correction, 
é, to be applied to the upper arc. As for setting on an oscillation camera it is usually necessary 
to take several 10° precession photographs in each of these orientations and so by making 
successive corrections bring the selected reciprocal lattice row into precise alignment with the 
spindle axis of the camera; in particular when the reading on the lower arc departs far from zero, 
the calculated correction ¢ to the upper arc is not accurate and so the upper arc can only be 
corrected by successive approximation. 

? It is often convenient to evaluate FA by selecting two centrosymmetrically related Ka reflexions and 
then measuring the difference in the lengths of the white radiation streaks extending outwards from these 
Ka spots (Fig F.6(e)). 
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When a reciprocal lattice row has been set accurately parallel to the spindle axis, any desired 
reciprocal lattice net containing this row can be recorded by setting the spindle dial at the 
appropriate angle. Errors in this setting may be determined by measuring FA in the ‘vertical’ 
direction of the film to determine the angle ¢ through which the setting of the dial must be rotated 
in order to bring a prominent reciprocal lattice net parallel to the plane of the film. 

If the orientation of the crystal with respect to the reciprocal lattice is unknown, then a series 
of 10° precession photographs has to be taken with white radiation at 5° intervals of the dial 
setting until a major reciprocal lattice net is located. The same procedure may be used to locate 
reciprocal lattice directions in a crystal fragment of unknown orientation. The crystal is mounted 
on arcs, both arcs being set at zero, and 10° precession photographs are taken at 5° intervals of 
dial reading until a reciprocal lattice net with a high density of points is located. The crystal is 
then remounted so that this net is parallel to the plane of one of the arcs and the normal setting 
procedure is begun. 

Table F.1. Angular setting error in precession photographs. The table gives values of « 
corresponding to measured values of FA for ji = 10° and F = 60mm. An extended table is given 
in International Tables, vol 2 (1959), p. 200. 

F F 
(mm) (mm) 

0 0 10 2°20 
1 0°14’ 11 D234) 
2 0°28’ iD Daal 
3 nas 13 B Ole 
4 0°56" 14 Bills: 

5 1°10’ 15 8529! 
6 1a 16 3°43’ 
7 1°38’ a BO) 
8 154 18 AR GY 
9 2°06’ 19 4°24’ 



614 Appendices 

Appendix G: Units and constants 

In this book we have not attempted to make use of SI units systematically for two reasons. Firstly, 
the Angstrom is in crystallography, and especially in crystal chemistry, a more useful unit than 
the nanometre (1 nm = 10 A). Secondly, almost all the literature of thermochemistry is written 
in terms of the calorie rather than the joule (1 J = 0-239 cal). For these reasons of convenience 
and readability of the literature we have preferred a system of mixed units in the text. In this 
appendix we relate these units to SI units and give the values of some useful constants. 

Summary of SI units 
length metre m (nanometre = 10°? m) 
mass kilogramme ~ kg 
time second S 
electric current ampere A 
thermodynamic temperature kelvin K 
energy joule J=kgm’*s-? 
force newton N=kgms *=Jm"* 
electric charge coulomb C=As 
electric potential difference volt Vekgm’?s Ate FAME 
customary temperature, t degree Celsius "Ca CC=TK— 23s 
pressure newton per square metre Nm?” 

Conversion factors 
length: Angstrom unit 1A =10-*cm = 107 ‘nm 

micron ip=10°*cm=1pm 
density: grammes per cc 1gcem~* = 107kgm“* 
pressure: atmosphere 1 atm = 1-:0133 bar = 101:33kNm ? 

bar 1 bar = 10°Nm~? 
energy: erg lerg=10°7J 

calorie 1 cal = 4-184J = 41-84 bar cm? 
electron volt LeV = 1-6021.107 '!° J = 23-061 kcal mole™ ! 

freeenergy: 1kcaldeg~! mole~! = 4-184.10°7JK~! mol! 
entropy: entropy unit 

Constants 
m = 3-14159 

1° = 001745 radian 
e = 2:71828 
In 10 = 2:30259 
Planck’s constant 
Avogadro’s number 
Boltzmann’s constant 
gas constant 

electron rest mass 
unit of atomic mass 
charge on the proton 
velocity of light in vacuo 

leu. = 1 caldeg”'mole~! = 4-184 JK~1mol7! 

n 1 =0-31831 
1 radian = 57:296° 

log; oe = 0-43429 
h = 6°6256.10~ *’ ergs = 6-6256.10- 34 Js 
N = 6:02252.10?° mole™! 
k = 13805. 107 !© ergdeg-! = 1-3805.10-23 JK >? 
R=KN = 1:9872 caldeg” ' mole™! = 8:314JK~! mol! 
m=0-911.10°?’g 
lam.u. = 1:66042.10~ 74g 
e = 4-8030.107- 1° e.s.u. = 1:602.107-19C 
c = 2:9979.10'°cms~ ! = 2-9979.108ms~! 
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Index 

Abbe refractometer, 438 
Abbe theory of image formation, 269-72 
Absolute scale of temperature, 469 
Absorption coefficient, optical, 457 
— edge, X-rays, 196 
— of X-rays, 150 

Accessory plates, 407-10 
Acentric classes, 179, 379-85 
Activity, 491 
— coefficient, 491 
Acute bisectrix, 391 
——figure, 416-23 
—-—-— determination of birefringence, 424 
—-—-— sign determination, 422-3 

Addition rule, 16, 30 
Adularia, 434 
Albite = jadeite + quartz, 582 
Alkali halides, 300-1 
— hydrides, 353 
Aluminium oxyhydroxides, 355-6, 583-4 
Ammonium halides, 353 
Analytical geometry, 135-9, 601-2 
Angle between crystal faces, 18 
— between face normals, 18 
— between poles, 26 
— interfacial, measurement, 596-7 
Anion rotation, 347 
Anisotropy, of physical properties, 358 
— optical, 388 
Anomalous interference colours, 428 
— scattering of X-rays, 380-2 
Anorthic system, see Triclinic system 
Antimony, 304-6 

Anti-fluorite structure, 322 
Antiphase domains, 352 
Aragonite, 90, 120 

Arcs, crystallographic, 213-4 
Armoured relic, 520 
Arsenic, 304-6 
ASTM index, 210 

Atomic absorption spectrometry, 564—7, 573 
— coordinates, 4, 7 

— emission spectrometry, 563-4, 572 

— scattering factor for X-rays, 163-5 

AX structures, 308-12 
AX, structures, 312-5 
Axes, inversion, 44 
— optic, 390 

— polar, 383 

— principal, 361 
— reference, 5 

— rotation, 32 
— screw, 111-4 
— symmetry, combination of, 49 
—transformation of, 143-9 

— twin, 86 

Axial ratio, calculation, 77-85 

—— for identification, 598 

Azeotropic point, 525 

Band structure, 318-21 
Barite, 28, 130, 139, 143 
Barium sulphate, see Barite 
— titanate, 147-9 

Becke line test, 400, 437 

Benzene, 307 

Bernal chart, 220-4 
Berthollides, 341-7 
Bertrand Lens, 398, 411 

B-brass, order-disorder, 274, 348-52, 492-8 
Biaxial crystals, 395 
—— extinction angles, 441-6 
—-— interference figures, 416-27 
Binary eutectic, 511 
— systems, 507-8 
—— ionization, 535-7 
—-— pressure dependence, 537 
—— with congruent melting compound, 516-21 
—— with liquid immiscibility, 533-4 
—— with minimum on liquidus, 523-6, 529 
—— with partial solid solution, 530-2 
—— with polymorphism, 515-6 
—— with solid solution, 521-3 
Biot—Fresnel construction, 391-2, 395 

Birefringence, 405 
Bisectrix, acute, 391 
— obtuse, 391 
Bismuth, 304-6 



Blende, 176, 271, 381 
— structure, 310-2, 321 

Body-centred cubic structure, 301-3 
Boehmite, 583-4 
Bomb, internally heated cold seal, 577 
— Tuttle cold seal, 576 
Bond strength, 323 
Bonding, covalent, 293-6 

— hydrogen, 352-7 
— ionic, 296-301 
—in AX structures, 321 
—in AX, structures, 321-3 
— metallic, 292-3 
— metallic-covalent, 318-20 
— metallic-ionic, 320-1 
— percentage ionic character, 317 
— types, 292-301 
— van der Waals, 290-2 
Boron nitride, 7 
Bradley—Jay mounting, 198 
Bragg angle, 160 
— Equation, 158-62 
—w— relation to Laue Equations, 158-60 
Bragg—Williams model, 348-51, 498 

Bravais, A., 108 : 
Bravais lattices, 91, 95-110, 1224 

—— table, 108 
Brookite, 430 

Cadmium chloride structure, 315, 322-3 

Cadmium iodide structure, 314-5, 322-3 
——— diffusion, 368 

Caesium chloride, 11, 166, 299 
—— structure, 308, 321 

Calcite, 86, 90, 133 
Calcium, 324 
— carbonate, see Aragonite, Calcite 
— fluoride, see Fluorite 

— hydroxide, 355 
Carbon, see Diamond, Graphite 

Cell, see Unit-cell 
Centre of gravity, principle, 538 
Centre of symmetry, 46, 51 
—— test for, 379-80 
Centrifuge, for separation, 560 
Characteristic X-rays, 193-7 

Charge balance, 325 
Chemical analysis, 560-3, 572 

—— accuracy, 572-3 
—— indirect methods, 571-2 
— potential, 484-7 
Circle, great, pole of, 27 
— primitive, 19 
Circular section of the indicatrix, 390 

Circularly polarized light, 455 
Clapeyron’s Relation, 474 
Classical chemical analysis, 560-3, 572 

Classical thermodynamics, 461 
Cleavage, 400, 440-6 
Clerici solution, 599 
Close-packing, 282-5 
—in AX and AX, structures, 323-4 
— in spinel, 328-30 
— interstices, 289-90 

— sequences, 282 
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Cobalt aluminate, 337 
Coherent scattering of X-rays, 151 
Colorimetry, 562-3 
Colour, 401 
Compass, spring bow, 27 
Compatibility triangle, 543 
Complex ionic structures, 324-30 
——-— Pauling’s Rules, 324-6 
Composition plane, 86 
Compressibility, 471 
— data, 474 
Cone-axis photograph, 250 
Configurational energy, 493, 501, 503 
— entropy, 490, 493, 499, 503 
— free enthalpy, 494, 501 
— specific heat, 498 
Congruent melting, 516 
Conoscopic optics, 410-27 
Constancy of angle, law of, 17 
Constants, 614 
Contact goniometer, 596 
— twin, 86 
Conversion factors, 614 

Cooperative process, 350 
Coordinates, atomic, 5, 7 
Coordination, 285 
— number, 285 
—— 8—N rule, 320 
— octahedral, 287 
— polyhedron, 287, 324 
—— radius ratio criteria, 288-9 
— tetrahedral, 288 
Copper, 28, 86 
Copper-gold system, 274, 343 
—— AuCus, 499-503 
—w— antiphase domains, 352 
Copper-zinc system, 274, 348-52, 492-8 
Coreing, 522-3 

Cotangent formula, 141-3 

Covalent bonding, 293-6, 317-24 

— radii, 295 
— solids, 290 
Critical temperature, exsolution, 527-9 

—-— order-disorder, 350, 496-503 
Cross-differentiation identity, 471 
Cross-multiplication, 14 
Crossed axial plane dispersion, 430 
— dispersion, 431 

Crushing, 558 
Crystal class, 56 
— field splitting, 331-7 
—-— stabilization energy, 336-7 
—— theory, 330-7 
— growth, 12 
— monochromator, 196 
— morphology, 63, 384 
— mounting, 213, 603 

— setting, 603-13 
—-— double Laue photograph, 608-9 
—w— Laue photographs, 609-10 
—-— for precession photography, 610-3 
— single, 3 
— structure determination, 269 
— system, 48 
Crystallographic arcs, 213-4 
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Cube, 28 

Cubic close-packing, 285 
— system, 48, 57 

—w— angular relations, 81-2 
—— lattices, 104 

—— indicatrix, 395 
—-— physical properties, 367 
—-— point groups, 64-6 
—— standard data, 598 

Curie point, 477 

Daltonide, 342 

Defect, Frenkel, 341 

— Schottky, 341 
— structures, 338-47 

Deformation twins, 86 
Degrees of freedom, 504 
Determination of accurate unit-cell dimensions, 

264-8 
Diad axis, inversion, 46 
—— rotation, 37 
Diamond, 86, 294—5, 303, 477-83 
— synthesis, 483 
Diaspore, 355-6, 583-4 

Dielectric constant, 388 
Diffraction of electrons, 274-80 
— of neutrons, 272-4 
— of X-rays, 150-91, 270-2 
— optical, 269-70 
— symbol, 182, 242-4 

Diffractometry, X-ray, 201-3 
Diffusion, 358-68 
— coefficient, 359 
—~— experimental data, 367-8 
—-— temperature dependence, 367-8 
Direction cosines, 135-8, 601-2 
— polar, 383 
— symbol, 11, 14 
— unique, 382 
Directional properties, 11 
Directions image, 411 
Dispersion, anomalous, 428-34 
— crossed, 431 
— crossed axial plane, 430 
— inclined, 434 
— horizontal, 434 
— normal, 428 
— of optic axes, 429, 434 
Distribution point, 545 
Domain, antiphase, 352 
Domain structure, 351-2 
Double refraction, 405 
Doublet, Ka, 195 

Electrical conductivity, 323 
Electromagnetic radiation, 150, 386-91 
Electron scattering amplitude, 275-6 
— diffraction, 274-80 
—— comparison with X-ray diffraction, 275-6 
—— contrast, 278 

—— uses, 276-80 

— microscopy, 274-80 
—— bright field, 279 
—— dark field, 279-80 
— probe microanalysis, 567—70, 573 

Electronegativity, 295, 317-8, 322 

— table, 318 
Electrostatic bond strength, 324-30, 356 

— valency, 324-5 
Elements, crystal structures, 301-7 

Enantiomorphism, 113, 383 
Energy band, 319-20 
—distance relationship, 291—2, 368 

— level, 195, 319-20, 330-7 
Enthalpy, 462 
— zero defined, 464—5 
Entropy, 466, 469 
— configurational, 490 

— measurement, 473 

— residual, 504 
Equations to a normal, 138-9 
Equi-inclination Weissenberg, 241-2 
Equilibrium, thermodynamic conditions, 470, 

485 
Equivalent position, 112, 118 
— positions, general, 118 

—— special, 120 
Etch figures, 384 
Euler’s construction, 40 

— proposition, 40 
Eutectic, binary, 511 

—— system, 511-5, 530-2 
— ternary, 541, 545 

—— system, 538-41 

Ewald sphere, see Reflecting sphere 
Exsolution, 495, 526-32 

— from a ternary solid solution, 553 
Extensive properties, 469 
Extinction angles, 440-6 
— between crossed polars, 403 
— inclined, 440 

— straight, 440 

— symmetrical, 441 
Extraordinary ray, 446-9 
— refractive index, 395 

— wave, 446-9 

Fayalite, 339 

Ferroelectricity, 382 
Ferromagnetism, 477 
Ferrous oxide, 342 
— sulphide, 344-5, 352 

Fick’s first law, 359 
Filters for X-rays, 196 

First law of thermodynamics, 462-3 
Flash figure, 424 
Flame photometry, 561-2 
Fletcher’s indicatrix, 389-91 
Fluorescent X-rays, 150 

Fluorite, 86 
— structure, 312, 321-4 

Focus of X-ray tube, 192 
Focusing circle, 202 
Form, 57 
— general, 59 

— special, 60, 384 
Forsterite, 339, 464—5 

— structure, 326-7 

Fractionation curves, 549-53, 586 
Frantz separator, 559 



Fraunhofer diffraction, 151, 269 
Free energy, Gibbs, 470 

—— Helmholtz, 470 

— enthalpy, 470 

Frenkel defect, 341 

Fresnel diffraction, 151, 269 

Friedel’s Law, 178, 379 
—— breakdown of, 380-2 
Furnace, vertical tube, 575-6 

General equivalent positions, 118 
— form, 59 
Geometry, analytical, 601-2 

Gibbs—Duhem Relation, 486, 505 
Gibbs free energy, 470 
— Phase Rule, 504—5 
Glass, 3 
Glide planes, 114-6 
—-— systematic absences, 180-1 
— twins, 86 
Gnomonic projection, 31 
Goldschmidt’s Mineralogical Phase Rule, 505 
Goniometer, contact, 596 

— optical, 596-7 
Graphite, 3, 7, 303-4, 463, 477-83 
Great circle, 22 
—-— angle between two, 595 
—— construction, 589-90, 594 
——-— given the pole, 594 
—-— location of pole, 593 
—-— measurement of arc on, 594-5 

—— pole of, 27 
—— projection of, 26 
Growth twins, 86 
Gypsum, 132 

Habit, 400 
Haiiy, R. J., 13 

Hand, 49 
Heat of formation, 466-9 

—w— combustion, 478 
—— mixing, 468, 490-1 
—— reaction, 463, 467 
—— solution, 467-9 
—— transformation, 464, 467, 478 

Helmholtz free energy, 470 
Hess’ Law, 463 

Hexad axis, inversion, 46 

==rotation, 37 
Hexagonal close-packing, 283-4 
— plane lattice, 95, 104 
— system, 48, 57, 66-7, 366, 395 
—— angular relations, 83-5 
—— lattice, 104 
—— point groups, 71-3 
—— standard data, 598 
High spin configuration, 333-7 
Holosymmetric class, 56 
Horizontal dispersion, 434 
Huyghens’ Principle, 447-8 
Hybrid orbitals, 294-6 
Hydrogen bonding, 352-7 
— location of, 274, 353 
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Ice, 274, 354-5 

— residual entropy, 504 
Iceland spar, 449 
Ideal solution, 484, 487-92 

— structure, 337 
Inclined dispersion, 434 
— extinction, 440 
Incoherent scattering of X-rays, 150 
Incongruent melting, 517 
Indicatrix, 389-91, 446-9 
— circular section, 390 
— symmetry control, 393-5 
Indices, Miller, 9, 68 
— Miller—Bravais, 68 

— zone, 11 
Intensity of X-ray reflection, 167-72 
— statistics, 379-80 
Intensive properties, 469 
Interfacial angles, 77 
—-— analytical expression, 135-6 
—-— measurement, 596-7 

—— Miller formulae, 139-43 

Interference between crossed polars, 401-7 
—— parallel polars, 450-2 
— colours, 405 
—— anomalous, 429 
— figure, biaxial, 416-27 
——— acute bisectrix, 416-23 
——-— flash figure, 424 
——— obtuse bisectrix, 423-4 
——— off-centred, 424 

——-— sign determination, 422 
—— uniaxial, 411-6 
——— off-centred, 414-6 

Interpenetrant twin, 88 
Interplanar spacing, 160, 205 
Interstices in close-packed structures, 289-90 
Interzonal angles, analytical expression, 137-8 
Inversion axes of symmetry, 44 

— twins, 86 
Iodine, 292, 307 
Ionic bonding, 296-301, 316-24 
— radii, 297-9 
—— table, 297 
—— variation with coordination number, 299 

— solids, 290 
Ionization in liquid and solid solutions, 535—7 
Isochromatic surfaces, 417 

Isogyre, 415-6 
Isometric system, see Cubic system 
Isomorphous replacement, 340 
Isotropy, optical, 388 
— of physical properties, 358 

Jahn—Teller effect, 334 

Kalb test, 458 

Lamellar twinning, 88 
Latiumite, 233, 252-3 
Lattice, 7, 32 
— Bravais, 91, 95-110 
— definition, 8 
— energy, 301 
— non-primitive, 94, 108 
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— planes, 9, 12 

— point, 7 
— primitive, 91, 95 
— rhombohedral, 106 
—— triple hexagonal unit-cell, 106 

— row, 9 

—— symbol, 9 
— two-dimensional, 91-5 
Laue Equations, 154-8, 215-7 

—w— relation to Bragg Equation, 158-60 
——\-—-— reciprocal lattice, 189-91 
— group, 179 
— photographs, 254-64 
—— camera arrangements, 255 

—w— central blank area, 258 
—— double, 608-9 
—w— for crystal setting, 261—2, 609-10 
—-—-— Laue group determination, 258-61 
—w— general characteristics, 257-8 
—-— indexing of reflections, 255-7 

— symmetry, 179, 258-61 
Law of constancy of angle, 17 
Layer lines, 216-7 
Leitz—Jelley refractometer, 437 
Lever rule, 512 
Ligand field stabilization energy, 336-7 
Light, polarized, 388 
— spectral range, 386 
— vector, 387 
— velocity, 388 
Limiting sphere, 229 
— torus, 229 
Line of symmetry, 85 
Liquid immiscibility, 533-4 
Liquidus, 514 
— field, 539 
Lithium fluoride, 299 
London forces, see van der Waals forces 
Long range order, 351 
Low spin configuration, 333-5 
Lustre, 320, 323 

Magnetic susceptibility, 558-60 
Magnetite, 336, 338 
Matrices, transformation, 143-9 
Metallic bonding, 292-3 
— properties, 320 
— radius, 303 
— solids, 290 
— structures, 301-3 

Meta-torbernite, 428 
Methylene iodide, 599 
Microscope, polarizing, 396-9 
Miller, W. H., 9 
Miller formulae, 139-43 
—— cotangent form, 141-3 

— indices, 9, 68 
—w— calculation of, 15 

Miller—Bravais indices, 68 

Mimetic twinning, 89 
Mineral separation, 558-60 

— synthesis, dry, 575-6 
—— equilibrium criteria, 5814 
—w— experimental methods, 579-81 
—— hydrothermal, 576-9 

—— reactants, 574-5 

Mineralogical Phase Rule, 505 
Minimum deviation, 439-40 
Mirror plane, 46 
Mixing, energy of, 489 
— entropy of, 490 
— free enthalpy of, 490 
Mol fraction, 487 

Molar volume, 466 
Molecular crystals, 290-1 
Molybdenum oxides, 345—7 
Monochromator, X-ray, 196—7 

Monoclinic system, 48, 57, 366 
—-— angular relations, 78, 82 

—w— dispersion, 4314 
—w— extinction angles, 443-4 
—— indicatrix, 393 
—— lattices, 98 
—w— point groups, 58-61 
—— standard data, 599 

Monotectic point, 534 
Morphological crystallography, 13, 384 
Mossbauer effect, 571 
Multiplet, 88 
Multiplicity factors, 204 

Napier’s Rules, 127-35 
Neumann’s principle, 365 
Neutron diffraction, 272-4 
— scattering length, 273 
Newton’s scale of colours, 405-6 

Nickel arsenide structure, 309-10, 321 

— chromate, 335-6 

— ferrate, 338 

Nicol prism, 449 
Non-primitive lattices, 94 
—- systematic absences, 172 
Non-stoichiometry, 341-7 
Normal beam Weissenberg, 241 
Normal to a plane, equations, 138-9 

Obtuse bisectrix, 391 
—— figure, 4234 
Octahedral coordination, 287 
Octahedron, 28 

Olivine, solid solution in, 211, 339-40 

— structure, 326 

—— diffusion in, 368 
Opposite of a pole, 588 
Optic axial angle, 391, 426 
—-—- determination by spindle stage, 454 

eel universal stage, 453 
—w— plane, 390 
— axis, 390 
— sign, 395, 414, 422-7 
—— for reflectivity, 457 

Optical activity, 383, 454-6 
— diffraction, 269-70 

— goniometer, 596-7 

— properties, determination of, 434-5 
Order, degree, of, 348, 492 
— long range, 351 
— of tensor, 378 
— short range, 351-2 

Order-disorder transformations, 347-52, 492-503 



—— f-brass, 348-52, 492-8 
—— Bragg—Williams model, 348-51, 492-8 

—— critical temperature, 350, 496-503 
—— CuAu and Cu, Au, 343, 499-503 
—— Fe,S,, 345 
Ordinary ray, 446-9 
— refractive index, 395 
— wave, 446-9 

Orthorhombic system, 48, 57 

—— angular relations, 80 
—-— dispersion, 429-31 

—— extinction angles, 441-6 
—— indicatrix, 394 

—— lattices, 100-2, 122 

—-— point groups, 61-2 
—— standard data, 598-9 
Orthoscopic optics, 410 
Oscillation camera, 214—5 
— photographs, 215-27 
—— crystal setting, 603-10 
—-— measurement of unit-cell constants, 217-8 
—— indexing of reflexions, 218, 224-6 
Ostwald’s step rule, 584 
Overlap energy, 291 

Parallel polars, 450-2 
Partial molar quantity, 484 
Pauling’s Rules, 324-6 

Perfect solution, 487-92 
Peritectic, 532 
Perovskite structure, 147 
Phase, 504 

— change for X-ray scattering, 151, 381 
— diagram, 506 

—— composite diagram, 507-8 
—— extensive diagram, 507 
—-— intensive diagram, 506 
—w— Schairer diagram, 508 

— equilibrium, 474 
— Rule, 504-5 
— transformations, 476 
Piezoelectricity, 382 
Piercing point, 557 
Pin-hole, 411 
Plan, structural, 5 
Plane, equatorial, 19 

— lattices, 91-5 
— of symmetry, 46 

— point groups, 85 
Pleochroism, 427-8 
Point groups, 48, 50 
—-— conventions, 55 

—— determination of, 379-85 
——  holosymmetric, 56 
—w— short symbol, 56 
—-— symbol, 56 
—— table, 52-3 
—— two-dimensional, 85 
Polar classes, 383 

— direction, 383 
Polarizability, 316 
Polarizing microscope, 396-9 
—— centring of objective, 398 
— power, 316 
Polaroid film, 450 

Index 625 

Pole of face, 18 
— of great circle, 27 
— opposite of, 22, 588 
— projection of, 588 
Poles, angle between two, 594-5 
Polycrystalline materials, 3 
—— X-ray diffraction pattern of, 192-212 
Polymorphic transformation, 467, 476 
—— heat of, 464 
—— in carbon, 303, 477-83 
—-— in iron, 302 

—-— in quartz, 376-7 
Polymorphism, 347-52, 515 
Polysynthetic twinning, 88 
Portlandite, 355 

Potassium cyanide, 347 
— hydrogen fluoride, 357 
Potential energy—distance relations, 291—2, 368 

Powder cameras, 197-201 

— Diffraction File, 210 
— diffractometry, 201-3 
— patterns, 192-212 

—— identification, 210-12 

—— indexing, cubic system, 205-9 
—-—-— orthorhombic system, 206 
—-—— tetragonal system, 206 
—-— internal standards, 211 ~ 
—— kinetic studies, 212 
—— measurement of d-spacings, 203-9 

—-— mixtures, 210 
—— multiplicity, 203-4 
—-— relative intensities, 212 
—-— solid solutions, 211 
—— uses, 209-12 
Precession camera, 251 
— photographs, 244-54 
—-— comparison with Weissenberg, 252-4 
—— cone-axis, 250 

—— crystal setting, 610-3 
—w— non-zero layers, 248-50 

—— zero-layer, 244-8 
‘Press, tetrahedral anvil, 578 
— two stage, 578 

Primitive circle, 19 
— unit-cell, 91, 95 
Principal axes, 361 
— refractive indices, 390 
Principle of superposition, 166 
Prism, Nicol, 449 

Projection, gnomonic, 31 
— spherical, 18 

— stereographic, 17-31, 588-95 
Pyroelectricity, 382 

Quarter wave plate, 410 
Quartz, thermal expansion, 376-7 

— wedge, 404-9 
Quasi-chemical theory, 498, 503 
Quaternary system, 507, 555-7 

—— piercing point, 557 
—— Schairer diagram, 557 

—— CaSi0,-Ca,SiO,—-Ca, Al,Si,0,—FeO, 
555-7 

Radioactivation analysis, 570-1 



626 Index 

Radius ratio, 288-9 
—— alkali halides, 300-1 

Ray direction, 446 
— velocity surface, 446-9 
—-—- for optically active substances, 456 
Reaction, heat of, 463, 467 

— point, 519 
—— ternary, 544-5 
Reciprocal lattice, 184 
—— axes, 185 
Reflected light microscopy, 457-8 
Reflecting circle, 223 
—- radius for upper layers, 225-6 
— sphere, 190 
Reflectivity, 457 

Refractive index, 388 

—-— determination by minimum deviation, 

439-40 
—-— measurement of, 435-40 

—— of liquids, 438-9 
—— principal, 390 
—— X-ray, 151, 270 

Refractometer, Abbe, 438 
— Leitz-Jelley, 437 
Regular solution, 523-8, 491-2 
Relief, optical, 400 

Repeat unit, 3 
Representation quadric, 364, 389 
—— for thermal expansion, 374-5 
Residual entropy, 504 
Reversible process, 469 
Rhenium trioxide structure, 345 

Rhombic dodecahedron, 28 
Rhombohedral unit-cell, 76-7 
Rotation axis of symmetry, 32 
— photographs, 227-9 
—— limiting torus, 229 
—— symmetry of, 227 
Rule, 8 — N, 320 
Rutile structure, 312-4, 321-2, 325-6 

Saddle point, 543 

Sanidine, 434 

Scalar, 378 
Scanning circle, 202 

Scattering of electrons, 275-6 

— of neutrons, 272-3 

— of X-rays, 151, 163, 272-3 
Schairer diagram, 508, 557 

Schottky defect, 341 
Screw axis, 1114 
—-— systematic absences, 181-2 
Second law of thermodynamics, 469-70 
Selenium, 306 

Sensitive tint, 405 
—— plate, 409-10 
Separation techniques, 558-60 
Shear structures, 345-7 

Short range order, 351-2 

Silicon, 295 
— carbide, 295 
Silver iodide, 347 

Sine ratio, rational, 139-43 

Site preference in spinels, 337 
Small circle, 22 

—w— construction, 591-2 
—— projection, 25 
Sodium chloride structure, 271, 287, 296-9, 

308-9, 321 
Solid solution, 211, 339, 491 

Solidus, 515 
Soller slits, 202 
Solution calorimetry, 467-9 
— ideal, 487-92 
— perfect, 487-92 
— solid, 339, 491 
— strictly regular, 491-2 
Solvus, 528 
Space groups, 117-22, 598-9 
—— standard setting, 122 
Special equivalent positions, 120 
— form, 60, 384 

Specific gravity, 558-60 
— heat, 465, 471 

Spectra, X-ray, 193-7 

Spectrometry, atomic absorption, 564-7, 573 

—— emission, 563-4, 572 

— Mossbauer, 571 

— X-ray fluorescence, 566—7, 573 
Sphere, reflecting, 190 

Spherical projection, 18 
— triangle, definition, 126 

—-— Napier’s Rules for right-angled triangles, 
127-34 

—-— Napier’s Rules for right-sided triangles, 
134-5 

— trigonometry, 126-35, 599-601 

Spindle stage, 452-4 
Spinel structure, 327-30 
—w— inverse, 337-8 

—— normal, 337 

Spinode, 527 

Squeezer, 577 

Stage, spindle, 452-4 
— universal, 452-3 

Staurolite, 434 
Standard state, 464 

Statistical thermodynamics, 461 

Steno, N., 17 

Stereographic net, 26 
— projection, 17 
—— constructions, 588-95 

Stirling’s theorem, 490 

Straight extinction, 440 

Straumanis mounting, 198 
Structure amplitude, 171 

— defect, 338-47 

— factor, 171 

Structures, complex ionic, 324 

Sulphur, 306, 509 
Superlattice, 343 
Superstructure, 343 
Symmetry, 32 
— axes, combination of, 41 
—w— inversion, 44 

—— rotation, 32 

— centre of, 46 
— elements, translational, 110 
— Laue, 179, 258-61 
— plane of, 46 



— point group, 48-66, 71-4 
— space group, 116-22 
Synthesis of minerals, dry, 575-6 
——— equilibrium criteria, 5814 
—-—-— experimental methods, 579-81 
—-—- hydrothermal, 576-9 

——— reactants, 574-5 

System, binary, 507-8 
— crystal, 48 
— one component, 508-10 
— quaternary, 507 
— ternary, 507-8 
Systematic absences, glide planes, 180-1 
—— lattice type, 173-7 
—— screw axes, 181-2 

Temperature, 461 

— critical, 350, 496-503, 527-9 
Tenorite, 121 
Tensor, second rank, 360, 378 

— third rank, 378 
— fourth rank, 378 

Ternary system, 507-8 
—— compatibility triangle, 543 
—— diopside—albite—anorthite, 584-6 
—— dry determination, 584-6 
—— fractionation curves, 549-53, 586 
—— MgO-FeO-Si0O,, 550-2 
—— saddle point, 543 
—— three phase triangles, 541, 584-6 
—-— two phase equilibrium, 546 
—w— with a binary solid solution, 547-55 
——w—a congruently melting binary compound, 

542-5 
——-—a ternary compound, 547 
——— a ternary eutectic, 538-41 
——— a ternary solid solution, 552-3 

—-—-— an incongruently melting binary 
compound, 545-6 

——-— two binary solid solutions, 553-5 
Tetrad axis, inversion, 47 
—— rotation, 37 
Tetragonal system, 48, 57, 366 
—— angular relations, 81 
—-— dispersion, 428 
—— extinction angles, 440 
—— indicatrix, 395 
—_— fattices, 103 
—-— point groups, 55-57, 62-4 
—-— standard data, 598 
Tetrahedral anvil press, 578 
— coordination, 288 
Thermal expansion, 323, 368-77, 471 
—— coefficients, determination by X-ray 

methods, 372-3 
—— data, 474 

—-— measurement, 474 

—w— relation to bond strength, 374-6 
—— structural control, 303-6 
Thermodynamic functions, derivatives, 471-3 
Thermodynamics, classical, 461 

— First Law, 462-3 
— Second Law, 469-70 
— statistical, 461 
— Third Law, 503-4 

Index 627 

— Zeroth Law, 461 
Thin sections, preparation of, 399 

Three phase triangles, 541, 584-6 
Tie lines, 512, 547-9 
Titanium monoxide, 342-4 

— dioxide, see Rutile, Brookite 

— oxides, Ti,0, to Ti, 9049, 345 
Transformation, first order, 476 

— matrix, 144 
— matrices, interrelationships, 147 
— of axes, 143-9 

—-— bond type, 483 
—— coordinates, 144-5 
—— Miller indices, 145-6 
—-— space group symbols, 122 
—— zone axis symbols, 145 
— second order, 476 
— third order, 476 

— twins, 86 

Triad axis, inversion, 46-7 
—— rotation, 37 
Triclinic system, 48, 57, 366 

—— angular relations, 77-8 
—— dispersion, 434 
—— extinction angles, 446 
—-— indicatrix, 393 
—— lattice, 96 
—~— point groups, 58 
—— standard data, 599 
Trigonal system, 48, 57 
—w— angular relations, 83-5 
—— indicatrix, 394 
—— lattices, 104-8 
—-— physical properties, 366 
—-— point groups, 74-5 
—w— standard data, 598 
Tungsten oxides, 345-7 

Tuttle cold seal bomb, 576 
Twin axis, 86 
— contact, 86 

— interpenetrant, 88 

— inversion, 86 
— lamellar, 88 
— mimetic, 89 
— multiple, 88 
— polysynthetic, 88 
— reflexion, 86 
— rotation, 86 

Two-dimensional lattices, 91—5S 
— point groups, 85 

Uniaxial crystals, 395 
—— extinction angles, 440 

—-— interference figures, 411-6 
Unique direction, 382 
Unit-cell, 5, 32 
— conventional, 48 
— determination of accurate dimensions, 264-8 
— non-primitive, 94 
— primitive, 91, 95 
— rhombohedral, 76, 106 
Unit-mesh, 4 
Units, 614 
Univariant curves, intersection of, 510 

Universal stage, 452-3 



628 Index 

Unmixing, see Exsolution 

4 
van Alkemade’s Theorem, 543 

van Arkel mounting, 198 
Van der Waals forces, 290-2 

Vector, 378 
Vesuvianite, 256 
Volume, compressibility coefficients, table, 474 

— molar, table, 466—7 
— thermal expansion coefficients, table, 474 

Wave normal, 446 
— velocity surface, 446-9 
Wavelength, X-rays, 196 
Weber symbols, 69-71 
Weissenberg camera, 230 
— chart, 238-9 

— photographs, 230-44 
—w— accurate unit-cell dimensions, 265-8 
—w— comparison with precession, 252-4 

—— crystal setting, 603-10 
—— equi-inclination, 241-2 
— — for diffraction symbol, 242-4 

—— non-zero layers, 241-4 
—— normal beam, 241 

—— zero layer, 231-41 

White X-radiation, 193-4 
Wulff net, 26 
Wurtzite structure, 311-2, 321 

X-ray fluorescence spectrometry, 566-7, 573 
— tube, 192-7 
X-rays, absorption of, 150 
— anomalous scattering of, 178 

— atomic scattering factor, 163-5 
— characteristic, 193-7 
— coherent scattering of, 1514 
— diffraction of, 150-191, 270-2 

— fluorescent, 150 
— incoherent scattering, 150 
— monochromatic, 196-7 

— reflexion of, 161 
— refractive index for, 151, 270 
— spectral range, 150 
— white, 193 

Zeroth law of thermodynamics, 461 
Zinc, 303 
— blende, see Blende 
— hydroxide, 355 
— sulphide, see Blende, Wurtzite 

Zone, 13 

— axes, form of, 57 
— axis, 13 
—— symbol, 11 

——— calculation of, 14 
——-— transformation of, 145 
—— Weber symbols, 69-71 
— equation, 11, 14 

Zones, intersection of, 15 

Zoning, 522-3 
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