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PREFACE 

The present work grew out of a series of lectures given in 1968 and 1969 
by the author at the Universities of Nijmegen and Leuven. The intention of 

these lectures was to give a working knowledge of group theoretical methods 

used in solid state physics. There are many books on physical applications of 

group theory, but very few of them are devoted to the symmetry of the solid 

state. Therefore, when mimeographed notes appeared, the author was pressed 

from several sides to publish them as a book. In the present book the aim is to 

establish a bridge between the formal language of mathematical group theory 

and the more down-to-the-earth way of speaking about symmetries by solid 

state physicists. This means that on one side the fundamental mathematics is 

discussed in a rather rigorous way, but that often full proofs will be omitted. 

On the other hand rather general problems in solid state physics are discussed, 

but without going into all the details of the various specific problems. The 

emphasis is on the properties of the symmetry groups of crystal physics and 

on the specialization of the general group theoretical methods to formulations 

as used in solid state physics. Reference will often be made to the standard 

mathematical literature for proofs of propositions, and to current papers for 

more specific problems. It is hoped that, afterwards, the reader will be able to 

read the current literature by himself. 

Although most of the material is not new, many results scattered through- 

out the literature are brought together. For the form of the presentation, 

I owe very much to many people. In the first place I am indebted to Prof. A. 

Janner who introduced me into the field and with whom, during many years, 

I had very stimulating discussions. | thank Prof. J. Burckhardt for his advice 

concerning the publication of this book and for his critical remarks to a pre- 

liminary version of the manuscript. I also wish to thank Dr. J. Beltman for 

many Critical remarks and for composing many of the exercises. I am greatly 

indebted to Dr. M. Boon for reading the manuscript and for his many very 

useful suggestions. Finally I thank all those students who by their questions 

and remarks contributed considerably to the final form of this book. 
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INTRODUCTION 

More and more it is being realized that group theory is of fundamental 
importance for physics. This has not always been the case. More than one 
eminent physicist considered group theory as an unnecessary burden for the 
physicists. Indeed, many of the simpler results can also be obtained without 

a knowledge of group theory; but, especially after the development of quan- 

tum mechanics, many consequences were derived from symmetry which were 

by no means trivial. One has even seen that many of the fundamental notions 

of physics can be formulated in group theoretical terms. Nowadays, group 

theory has become an indispensable part of the physicist’s luggage. It has 

been applied in atomic, molecular, nuclear and elementary physics, and, 

perhaps with the most succes, in solid state physics. The solid state shows a 

great variety of very rich symmetries. At the same time, everything can be 

formulated in the frame of quantum mechanics, where no problems of inter- 

pretation occur as in elementary particle physics. 

Everybody has an intuitive notion of symmetry. A figure has symmetry, if 

there are transformations which leave the distance of the points of the figure 

the same (solid motions) and which move the figure into itself. When one con- 

siders a crystal as a regular pattern of point particles, all solid motions which 

transform this pattern into itself are symmetry transformations. The set of all 

symmetry transformations of the pattern can be given a structure, which is 

known as a group structure. The group of all symmetries is the space group 

of the crystal. The study of symmetries of crystals is nearly as old as mathe- 

matical group theory. In the 19-th century the major properties and the deri- 

vation of all space groups were given by Schoenflies, Fedorov and others. 

The study of space groups belonged for a long time to mathematics and 

crystallography. 

However, the space group symmetry has also important consequences for 

physics. Consider an electron in such a crystal. One can assume that a space 

group transformation of the electron coordinates will not change the physics 

of the problem. Now the electron is described by a wave function and trans- 

formation of the electron coordinates means transformation of this wave 

function. One has to determine which operator gives the transformation of 
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the wave function for a given space group transformation. The relation be- 

tween the space group and the corresponding operators is an example of a re- 

presentation. This indicates why the representation theory is so important. 

Some very elementary properties of representations have far reaching conse- 

quences for physical problems. They lead to classification of eigenstates, to 

selection rules, to simplification of perturbation calculations and so on. The 

classification of energy eigenstates of a particle in a centrally symmetric po- 

tential by their eigenvalues of angular momentum and of its z-component is 

an example of a consequence of the rotation symmetry. For a particle in a 

one-dimensional symmetric potential V(x) = V(—x) the eigenfunctions can be 

chosen to be even or odd. The fact that the matrix element of x between two 

odd functions vanishes is a trivial example of a selection rule. 

The fact that we considered solid motions as symmetry transformations is 

related to the fact that the laws of physics are generally assumed to be un- 

changed by solid motions and by inhomogeneous Lorentz transformations. 

On the other hand, postulating the transformations leaving the laws un- 

changed restricts the possible forms of these laws (equations of motion). 

Therefore, there is a close relationship between the mechanics considered 

(relativistic or nonrelativistic, with and without spin) and the symmetry 

transformations allowed (Galilean transformations, Lorentz transformations). 

Here we shall only consider nonrelativistic mechanics and allow only solid 

motions and time reversal. Moreover, as solid state problems are many-body 

problems and the particles (e.g. electrons) are indistinguishable, we will also 

consider transformations which interchange particles. This permutation 

symmetry will add another aspect to our symmetry considerations. 

In the present book we want to derive the fundamental consequences of 

the symmetry of the solid state. To do so we first have to master a basic 

knowledge of group theory. This is done in Ch. 1. In Ch. 2 we give a more 

precise definition of symmetry and we see which consequences one can 

derive in general from symmetries in quantum mechanical problems. In the 

two following chapters we study the consequences of point group and space 

group symmetries. To obtain these we study the properties and the represen- 

tations of these groups. In Ch. 5 the group of possible transformations is ex- 

tended to include time reversal. Moreover, in that chapter we discuss the 

difference between problems of particles with spin and those without. 

Finally in Ch. 6 we will become more specific and give some examples of con- 

crete problems in solid state physics which can be attacked using group 
theoretical methods. Applications are found in the theory of electron bands, 
of lattice vibrations, in the problems of an electron in a crystal in an electro- 
magnetic field or in a crystal with magnetic moments. Although these exam- 
ples are very important ones, it represents only a choice. 



CHAPTER I 

MATHEMATICAL INTRODUCTION 

In this first chapter we will introduce some elementary mathematical 

notions we need for our symmetry considerations in the physics of the solid 

state. We give here a brief treatment of elementary group theory, a short 

review of linear algebra, and the most important properties of group repre- 

sentations. This last topic will turn out to be of paramount importance for 

our physical conclusions. For a deeper understanding we refer to other books 

on group theory, like Hall [1959], Hamermesh [1962], Boerner [1967], and 

Jansen and Boon [1967]. 

1.1. Elementary group theory 

1.1.1. Fundamental notions 

The most fundamental concept in group theory is the concept of group. 

A group is a set G with a composition law, called product, which satisfies the 

following postulates. 

1) For each pair of elements a,b of G the composition law determines an 

element c = ab of the set G, called the product of a and b. 

2) This product is associative, which means (ab)c = a(bc). 

3) To G belongs an element e, called the right unit element, such that for 

any element a of G (a€G) one has ae = a. 

4) For each a €G there exists an element a! €G, called the right inverse 

of a, such that Nae =e: 

Some simple examples of groups are the following. 

1) The set of real numbers # 0 forms a group, if we take for the composi- 

tion law the usual product. The right unit element is the number one, and 

the right inverse of a number is its usual inverse. 

2) The set of real numbers can be given another structure of group, if we 

choose for the composition law the addition of elements. In this case the 
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right unit element is the number zero, and the right inverse of a number is its 

negative. 

3) Consider the set of all rotations which transform a plane rectangle in 

three-dimensional space into itself (fig. 1.1). It has four elements: the identity, 

and three 180° rotations a, b, and c. If we define the product of two elements 

ab as the rotation obtained by executing a after b, this set forms a group. 

Fig. 1.1. Symmetries of a plane rectangle. 

With respect to the four group postulates we have to make the following 

remarks. From the second postulate (the associativity) it follows that from 

an arbitrary product the parentheses may be omitted. The last two postulates 

are equivalent with the following two (see Hall [1959], p. 4). 

3') G contains an element e, such that for any a € G one has ae = ea = a. 

4’) For each a €G there exists an element a~!, such that aa~! = a7!a=e. 

Of course for a given group the postulates 3 and 4 are easier to verify. How- 

ever, once 3’) and 4’) are established one can speak about the unit element, 
and the inverse of an element, omitting the adjective “right’’, because it can 

easily be shown that the elements e and a~! are unique. 

A group is Abelian, if its product is commutative, which means that for 

any pair of elements a, b of G one has ab = ba. A group is finite, if the 

number of its elements is finite. This number is the order of the group. 

A group which is not finite is infinite. For a finite group the product may be 

given explicitly by its multiplication or Cayley table. In this table to each 

element correspond a row and a column. At the intersection of the row cor- 

responding to the element a, and the column corresponding to the element b 

the product ab is written. It is easily proved that each element of G occurs 

exactly once in each row and each column. This statement is sometimes 

referred to as the rearrangement theorem. For the group of example 3 the 
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Cayley table looks like 

ae) | 
e a b c | 

ah = 

e e a b c | 

a a e c b | 

<a 
Cc c b a e 

ae! | 

Consider in a group G an element a, and its powers a* = aa, a> = aaa, etc. 

If for a certain integer m one has a@’” = e, the element is of finite order. The 

smallest positive integer m such that a” = e is called the order of the element 

a. If no such integer exists the element is of infinite order. It can happen that 

the powers of an element a form already the whole group. In this case the 

group is called cyclic, and the element a is called a generator of the group. 

For a finite cyclic group of order N the elements are a, a2, ...,aV =e. In 

general, a set of elements of a group G is called a set of generators, if any 

element of the group can be written as a product of powers of the generators 

and their inverses. In general this set is not unique. In our example 3 one can 

choose the elements a and bd as generators. The two other elements c and e 

are products of these two. One can as well choose a and c, or b and. 

When we know that a group is generated by an element a, and that N is the 

smallest natural number such that a = e, it is clear that it is a cyclic group of 

order N. The expression a = e is called a relation in the group. As in this 

case the group is completely determined by this relation it is called a defining 

relation. On the other hand we can consider all the elements of a group as a 

set of generators. Then all products ab = c are relations in the group. In gener- 

al, given any set of generators of a group, one can consider relations between 

these generators. If these relations determine the group completely one calls 

these relations defining relations for the group. For the set of generators a, b 

in our example 3 one can choose as defining relations a2 = e, b2 = e, ab = ba. 

A subset H of G which forms a group under the product rule of G is a 

subgroup of G. Trivial subgroups of G are G itself, and the unit element e, 

which forms a group of order one. A proper subgroup of G is a subgroup 

which differs from G and has order greater than one. To verify that H is a 

subgroup of G it is sufficient to check that 1) for each pair a,b in H the 

product is also in H, and 2) that for any h € H also hed. 

When G and H are groups one can give a group structure to the set con- 

sisting of all pairs (g,h) of elements g © G, and h €H, when one introduces 
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as multiplication law 

(g1,41) (2,2) = (g182,4,h2) for any SSO SG and h,,hy EA. 

The group obtained in this way is called the direct product G X H of the 

groups G and H. Suppose that a group G contains two subgroups, H; and H, 

satisfying the following conditions: 

1) any element of H, commutes with any element of Hy : hyhz =hyh,, 

2) the only element belonging both to H, and to H; is the unit element, 

3) any element of G can be written as the product of an elementh, © A, 

with an element hy € Hy. 

From condition 2) it follows that the decomposition of an element of G is 

unique. To see this, assume that g can be written in two ways as a product 

g=hyhy =hhy with hy,h € Hy, and hy,hy © Hy. Then the element 
(ni) ‘hy = hyhz! belongs both to H, and to Hy. From condition 2) it 

follows that this is the unit element and consequently one hash, =h}, and 

hy =h4, which shows that the decomposition is indeed unique. If we denote 

the element g = h,hy by the pair (h,,h) the product in G coincides with the 

product in the direct product H, X H>. Therefore, one can identify G with 

the direct product H, X Hy. In fact the identification can be better described 

as an isomorphism as we will see in $1.5. 

1.1.2. Equivalence relations 

In the following we will frequently have to identify certain objects. In 

order to do this in a proper way it is convenient to introduce the notion of 

equivalence relation. An equivalence relation between elements of a set S$ 

(element s is equivalent to element ¢ is denoted by s ~ f) is a relation which is 

1) reflexive, ie.s~s for any sES, 

2) symmetric, i.e. if s ~~ t, then alsot~ s, 

3) transitive,i.ifs~t,andt~u, then alsos~u. 

An example is given by the equality relation (=). It is easily verified, that this 

relation satisfies the three conditions. 

An equivalence relation can be used to give a decomposition of the set S. 
To obtain this one takes together in one equivalence class all elements which 
are equivalent to each other. If we denote the equivalence class to which s 
belongs by [s], it is defined as the subset of S consisting of all elements which 
are equivalent to s. We can write this definition as 

[s]={tES|t~s}. 
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From this definition it follows that [s] = [r] if and only if s ~ ¢. Furthermore, 

[s] and [f] have no elements in common unless s ~ ft. From each equivalence 

class one can choose one representative element. If 51, 99, ..., are these repre- 

sentatives, the set S can be written as the union of the subsets [s,], [59], .... 

It is easily seen that this partitioning S = [s,] + [s2] + ... does not depend on 
the choice of the representatives. 

1.1.3. Equivalence relations in groups 

In a group G one can define several kinds of equivalence relations. First we 

introduce a relation for which the equivalence classes are called the left cosets 

of a given subgroup H. The equivalence relation is defined by: a ~ b if and 

only if there is an element h €A such that a = bh. Hence a left coset of H is a 

set [g] = gH = {gh| all h © H} for a fixed g €G. One coset is the subgroup H 

itself. When g, = e, 27, 83, ... are coset representatives the group G can be 

decomposed into 

G=HAtg,H + 2,H+... 7 

Each coset has as many elements as the order n of H (n is also called the 

order of the coset). If G is a finite group of order NV, the number of different 

left cosets is s=N/n, called the index of H inG. 

In a similar way one defines a right coset of H in G as an equivalence class 

for the relation: a ~ b if and only if there is an element h €H such that 

a=hb. A right coset of H to which the element g belongs is a class [g] = Hg = 

{hg| all h © H} and G can be decomposed into 

G=H+Hg,+Hg3+..., 

where in general the right coset representatives £4,295 ... are different from 

the left coset representatives g,, g>, ... . Also the left and right cosets of H are 

in general not the same. However, the number of left cosets is equal to the 

number of right cosets, and equal to the index of H in G. 

A third equivalence relation we want to introduce in a group is the con- 

jugation by an element: a ~ b (one says a and b are conjugate) if and only if 

there is an element g €G such that a = ghg!. Again it is easily verified that 

this is indeed an equivalence relation. The equivalence classes are called the 

conjugacy classes (or simply the classes). The class to which an element a 

belongs is defined by 

[a] = {gag-!|allgEG}. 
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This is the subset of G consisting of all elements which can be written as gag! 

for some g © G. Notice that for different elements g, and g in G the ele- 

ments g,ag;! and gag5! are not necessarily different. Contrary to the 

cosets the classes have in general not the same number of elements. The unit 

element is always a class by itself, but only in Abelian groups each class con- 

tains only a single element. 

1.1.4. Invariant subgroups 

For a subgroup H of G the set gHg—! = {ghg—!| all h ©H} for fixedg €G 

forms a subgroup, called a conjugate subgroup. On the other hand two sub- 

groups H, and H are conjugate if there is an element g ©G such that 

16 dake A subgroup which is only conjugate to itself, i.e. for which 

gHg—! = H for any g €G, is an invariant subgroup of G. In the literature one 

uses also the terms normal subgroup, and normal divisor. The formula 

gHg~! =H means that for any g€G, andh EH one has ghg! EH. 

The right and left cosets of an invariant subgroup are identical, since 

gH = Hg. The set of cosets of an invariant subgroup can be given the structure 

of a group by the following definition of product of two cosets. When g)H is 

the coset to which g, belongs, and gyH the one to which g> belongs, the product 

of the two cosets is the coset to which g,g> belongs: (g,H)(g5H) = (g)29)H. 

The coset to which g,g> belongs is well determined. Moreover, this definition 

of product does not depend on the choice of the coset representatives g, and 

7 as one can see as follows. Suppose g}, is another element of g,H. Then 

there is an element h, © H such that £1 = g,h,. Similarly one has an element 

hy €H with £9 = gyhy another element of gH. The product of the two 

cosets gH = gH and g>H = gH is given by (g H)(g>H) = (g\8)) H = 

(gh Syhy)H = (g 18985 Ny Shy)H = 8) 89H = (g\H)(gyH) because 
ga lhe € H and consequently g7'hygohoH = H. It is now easy to verify the 

group postulates 

1) the product is well defined, 

2) the product is associative: [(g,H)(gH)](g3H) = (¢18783)H, 
3) the coset H is the unit element: (gH)H = (gH), 

4) for the coset gH the coset g~! is its inverse. 
In this way the cosets form a group, called the quotient or factor group. It is 
denoted by G/H. The order of the factor group is the number of different 
cosets of H in G, and therefore equal to the index of the invariant subgroup 
HinG. 
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1.1.5. Mappings 

A mapping ¢ of a set S to a set Tis a rule which assigns to each element 
s ©S a unique element ¢ = $(s) of T. The subset of T consisting of all ele- 
ments ¢ which can be written as ¢(s) for some s €S is the image of ¢, denoted 

by Jm,. When Jm, = T the mapping is called onto, otherwise, if T contains 

elements which are not in Img, it is called into. 

When G and H are groups, they have a structure which can be used to put 

additional restrictions on mappings from G to H. If ¢ : G > H is such that it 

conserves the multiplication law, i.e. if 6(a@)¢(b) = ¢(ab) for any pair a, b in G, 

it is called a homomorphism. Notice that the unit element of G is mapped 

onto the unit element of H, because ¢(e)$(a) = 6(a)¢(e) = (a) for any aEG. 

In general several elements of G are mapped onto the unit element of H. These 

elements of G form the kernel of the homomorphism ¢, denoted by Kerg. 

This Ker, is an invariant subgroup of G, as one sees as follows. In the first 

place it is a subgroup, because 1) for a,b © G such that $(a) = ¢(b) =e€H 

one has $(a)¢(b) = 6(ab) = e, and consequently ab € Ker,, and 2) for an ele- 

ment a € Ker, also aq} & Ker, because o(a—*) = 6(a)~! = e. Moreover, it is 

invariant because for a € Ker,, and b € G one has o(bab—!) = 6(b)o(b-|)=e 

and therefore bab-! € Ker,, which proves that Ker, is really an invariant 

subgroup. Also the image /m, forms a subgroup (of H), but in general it is 

not an invariant subgroup. 

An example of ahomomorphism ¢: G > H is the mapping which assigns 

the unit element of H to each element of G. In this case Img =e CH, and 

Ker, = G. A second example is given by the mapping of a group G with an 

invariant subgroup H to the factor group G/H when we define the mapping 

¢@:G->G/H by : to each element of G one assigns the coset to which it 

belongs. The unit element of G/H is H. Therefore, in this case /my = G/H, 

and Ker, = H. This homomorphism is called the canonical epimorphism of G 

onto the factor group G/H. 
A homomorphism ¢ of G onto H with Ker, =e €G is an isomorphism. 

Here one has a one-to-one correspondence between the elements of G and 

those of H. If ¢ is an isomorphism, there exists an isomorphism y : H > G 

such that ¥(¢(g)) = g for any g €G, and ¢(W(h)) = h for any h € H. This 

isomorphism is denoted by o—!. The groups G and H are called isomorphic 

groups. 

Furthermore, we will use the following terminology. A homomorphism 

of G onto H is an epimorphism. An isomorphism onto a subgroup of H is a 

monomorphism. A homomorphism of G into itself is an endomorphism. An 

isomorphism of G onto itself is an automorphism. 
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Table 1.1 

Various kinds of homomorphisms 

Homomorphism y : G > H Img Ker, 

Epimorphism H 

Monomorphism ecG 

Isomorphism H ecG 

An example of an automorphism is given by conjugation with a fixed ele- 

ment g ©G: one has (a) = gag! for any a €G. It is easily verified that this 

defines indeed an automorphism. Such an automorphism, obtained by con- 

jugation with an element, is called an inner automorphism. 

Two automorphisms ¢ and wy of G applied successively result again in an 

automorphism. Defining the product of ¢ and w by (dW) (g) = ¢(W(g)) for 
any g ©G, the set of all automorphisms of G forms a group. The unit element 

is the identity automorphism which maps each element of G onto itself. The 

group of automorphisms of G is denoted by Aut(G). 

1.1.6. Other algebraic structures 

Although the concept of group plays the most fundamental role in our 

considerations here, there are some other structures which are also important. 

We will give definitions of the notions of ring, field, vector space, and algebra. 

A ring with unit element is an Abelian group for which a second composi- 

tion law is defined such that the following relations are verified. We denote 

the first composition law under which the set is an Abelian group by a+ sign, 

and the second composition by the usual product notation. The elements of 

the ring are denoted by Greek letters. The unit element for the additive group 

is denoted by 0, that of the multiplication by e. 

1) The second law is associative: (aG) y = a(By). 

2) There exists an element € such that ae = ea = a for any ring element a. 

3) a(Bt+y) = aB + ay and (atB)y = ay + By. 
In the following we omit the addition “‘with unit element”, because we only 

consider here rings of this type. An example of a ring is the set of integers, 

which forms an Abelian group under addition (with unit element 0), and for 

which also multiplication is defined (with unit element 1). 

A field F is a ring which has in addition to the relations 1), ..., 3) the fol- 

lowing properties 

4) Commutativity under the second law: af = Ba. 
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S) For any element a # 0 there exists an inverse a~!. 
Examples of fields are the sets of real numbers (F = R), of rational numbers 
(F = Q), and of complex numbers (F = C). In this book we will mean by field 
always one of these three fields. However, if we do not want to specify the 
field we denote it by F. 

A linear vector space over a field F is an Abelian group V for which a 

scalar left multiplication by elements of the field F is defined such that 

i) x +y and ax are well defined elements of V for any x,y & V, and any 

CRS me 

ii) (w+y)+2z=x+(y+tz) and (af)x = a(Bx), 

iii) There is an element O € V such thatx + O= O+«x forany x EV, 

iv) For any x € V there is an element —x € V such that x + (—x) = O, 

v) xty=ytx, 
vi) a(x t+y)=ax tay, 
vii) (a+ B)x =ax + Bx, 

viii) ex =x. 

We have here once more included the properties of Abelian groups in order to 

state the definition of a linear vector space more clearly. The elements of V 

are called vectors, and the elements of the field F scalars. 

An associative algebra over a field F is a linear vector space V over this 

field F where V is at the same time a ring. This means that, apart from the 

sum of two vectors, also their product is defined, and the multiplication law 

satisfies the relations 

ix) xy is well defined and (xy)z = x(y2) for any x,y,2 EV, 
X) x(y+2) =xy+xz and (xt+y)z =xz+yz for any x,y,z V, 
xi) a(xy) = (ax) y = x(ay) for any x,y € V, 

which appear as additional to the 8 relations for a linear vector space. An 

example of an associative algebra is the set of real n X n matrices. Clearly sum 

and product of two matrices are well defined, as is the product of a real num- 

ber with a matrix. Moreover the set satisfies all conditions i) to xi). The field 

F is here the field of real numbers. Instead of “algebra over the field R” one 

usually calls it a real algebra. 

1.1.7. Group algebra 

For a set S an S-valued function on a group G is a mapping 4: G > S. This 

means that to each element g € G is assigned an element 4(g) €S. It is a gen- 

eralization of the notion of function with real or complex numbers as argu- 

ment. In particular we will consider cases where S is the set of integers Z, of 

real numbers R, or of complex numbers C. A special kind of function on a 
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group, which will play an important role, is a class function, defined as a 

function 4 such that ¢ (a) = 4(b) whenever a and b belong to the same class: 

§(@) = 6 (gag !) for any g EG. 
Addition of two functions and multiplication of a function by an element 

of § can be defined in a natural way if S is a ring or a field, by 

(6; + 62)(g) = 61 (8) + 628) 

(a6)(g) = aA(g) (@ES) . 

We consider a special type of these functions defined as follows. For any 

element a ©G one defines a function a(g) by 

1 if g=a 

a(g) = 
0 otherwise . 

Now we restrict ourselves to finite groups. Then an arbitrary function can 

be written as 

§(g)= 2 g(aatg) 
a&G 

or 

b= 2 h@a. 
a&G 

One can define multiplication of two functions 4, and 45 by 

(61* 62) = ZL 6,(@62(a7!8) . 
acG 

The product denoted by * is called the convolution product. When we con- 

sider functions with values in a field F, the functions on a finite group form 

an algebra over F with this convolution product and the addition and scalar 
multiplication defined above. The algebra is called the group algebra. For 
any pair of elements a,b © G the convolution product a * b is given by 

(a*b)(g)= EZ a(h)b(h—!g) = (abjg). 
heG 

Moreover, one has for the convolution product of two arbitrary functions 
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ae 6, (a)a] * vee 6 2(b)b] Bint 3 6 (a) 62(d) ax b . 

This means that the elements of the group algebra can formally be considered 
as linear combinations of group elements with coefficients from F. 

When F is the ring of integers, the functions n: G > Z can be written as 

n= n(g)g. 
cc 

It is easily verified that these functions form a ring, the integral group ring ZG 

of G. Asn(g) is an integer, the elements of the group ring are formal sums 

over group elements with integral coefficients. To emphasize this fact we 

denote the product in ZG by fg instead of 4 * g. To this integral group ring 

ZG belong the elements C; = 22EC; 4 where C; (i= 1, ..., 7) is a class of the 

group G. Such an element @; of ZG is called a class sum. It is a function 

which has the value one on all the elements of the class C;, and zero elsewhere. 

Any integral class function ¢ can be written as a sum of class functions 

The coefficient a; € Z is the value which c takes on the class C;. 

PROPOSITION 1.1: A class sum @; has the property g* €; *g—! = @; for 
any g&G. 

Proof. Ifa €C;,, also gag le C;. Moreover gag! = gbg—! if and only if a= b. 

Hence 

wea ‘sag 
acC; UEC. 

which is the stated property. From this proposition it follows that for any 

class function ¢ one has g* cxg} = ¢. On the other hand one has 

PROPOSITION 1.2: If an element 4 of the group algebra of G over F has the 

property g4g ! = 4 for any g €G, then 4 isa class function. 

Proof: Consider elements b,c € C;. There is an element g © G such that 

b = gcg—!. Because 

=fK= Ger * -l= > die »2, “lp b 26a b= G*h*G wg h Oa eee g) 

one has 

4(b) = 6(g~!bg) =6(c). 
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, he 

Hence b is a class function and can be written as b= Dey a; © ;. 

Consider now the product of two class sums. It has the property 

Ce, * (gig (geet) =2@; Cg! . 

Therefore C;C, is an integral class function. This means that there are integers 

Cijk called class multiplication constants such that 

r 

Ce = - Cakok (RF kU ea 

1.1.8. Example 

In this section we will demonstrate the various concepts we introduced for 

groups in the preceding sections on the example of the group of permutations 

of three elements. A permutation which replaces element 1 by 7, (= 1, 2, or 3), 

element 2 by 77, and element 3 by 73, where 7,,/7,73 is a permutation of 
1, 2,3, is denoted by (F A os The six permutations of three elements are 

=a fl BS ee Ale o43 maf Pe ma HA) S} afl 28 SPAWAR 
C2 (G43 d=Gaq), Baa] 5) Os Gs 3), C3165 t= Ge 

The product of two permutations is defined as the permutation obtained by 

successive application. Here we write to the right the permutation to be per- 
: = (LBV NED) = (LZ : formed first. As an example ac = (53 Gi 3) = Ge because by permutation 

c element | goes to element 2, and this element goes by a to 3. The element 3 

goes by c to 3, and by a to 1, whereas element 2 goes by ¢ to 1, and by a to 2, 

and is in this way left unchanged by the product ac. The Cayley table is given 

G@ @ bb @ @G Ff 

G@le@ @ bob © @ Ff 

Clg Ww @ @ fF € 

| Ok @ Gh FF @ wl 

Cle Ff @G @ D fF 

oll @l @ i GB Bp 

Gif @ @ bb @ & 
aoe ae 

The order of the group is six. It is a non-Abelian group. Because e = a3, 
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b= a’, d= ac, f= ad =a*c the elements a and c form a set of generators of 
the group. Relations between the generators a andc are a3 = c2 = e, and 

acac = e. From these relations it follows that ca = a2c. Therefore all elements 

can be written in the form ac" with m= 0, 1, or 2, andn= 0, or 1. As these 

are exactly the elements of the group the given three relations are really de- 

fining relations. All other relations, in particular those in the Cayley table 

may be deduced from these relations. The order of element e is 1, of the ele- 

ments a and a? is 3, that of the elements c,ac, and a2c is 2. Subgroups are G 

itself, H, = {e,a,a7}, H, = {e,c}, H3 = {e,ac},H,= {e,a2c}, and {e}. The 

subgroup H, is an invariant subgroup of index two. The subgroups H), H3, 

and H4 have index three, but are not invariant. Cosets of H, are 

y= {e,a,a~}, and Cli {c,ac,a*c}. Left cosets of Hy are H = {e,c}, 

aH, = {a,ac}, and a*H> = {a*,a2c}. Right cosets of H, are H, = {e,c}, 

Hya= {4, ac} and Ha = {q*,ac }. The conjugation classes are C= ter, 

G= {a,a7}, Cy {c,ac,ac}. H>, H3, and Hy are conjugate subgroups. The 

Cayley table for the factor group G/H, which is a group of order 2 is given by 

The canonical epimorphism ¢ : G > G/H, is given by $(e) = $(a) = ¢(a2) = Hy, 

and $(c) = ¢(ac) = ¢(a2c) = cH,. The group G is isomorphic to the group of 

rotations which leave a plane equilateral triangle invariant. This group consists 

of the rotations through 0°, 120°, and 240° around an axis orthogonal to the 

triangle (these are denoted by £, A, and B), and the three 180° rotations 

around an axis through the midpoint of the triangle and one of its vertices 

(these are denoted by C, D, and F: fig. 1.2). The isomorphism is given by the 

Fig. 1.2. Bases for representations of S3. 
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mapping W such that y(e) = FE, ¥(a) = A, and so on. Automorphisms of G: 

e a Cee eG Lo Wet 

bo | e a a c ac sare 
o, | e a a ac ae 
o2 | e a a aor te ac 
o3 | e Eh c ae ae 
da | e Ga ac c a*c 
bs | e€ con ene Ce WGC 

The group of automorphisms Aut(G) is given by its Cayley table. 

0 1 2 3 4 5 

go | %0 Pi 2 3 4 os 

P1 pi $2 g0 4 5 3 

2 2 0 Pi $5 3 4 

3 3 5 4 o 2 P1 

4 4 3 5 1 0 2 

$5 $5 4 $3 $2 P1 go 

Hence it follows that G and Aut(G) are isomorphic groups. The isomorphism 

may be given by x: x(e) = $9, x(a) = 1, x(a*) = $9, x(c) = $3, x(ac) = b4, 
x(a2c) = 65. Note that this isomorphism is not unique. If ¢ is an automor- 

phism, also x’ = x@ is an isomorphism. An element of the group ring is given 

by six integers: n(e), n(a), n(a*), n(c), n(ac), and n(a2c). Examples are the 

three class sums 

C, =e 

C,=ata? 

C,=ctactarc. 

The class multiplication constants are found from 
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C1,E, =e Cre; = C5 C30, =e; 

€,C,=€, €,0,=2e,+e, €3C,=2€C, 

C7,ez= es @,€,= 2:65 es. -3C;+3C,. 

This means 

Siar ©2129 — ©313 — {29 €o99 — C133 = 1 

C794 = €393 = C933 = 2 

C331 = €332 — 3 

whereas the other class multiplication constants vanish. 

1.2. Linear algebra 

1.2.1. Finite-dimensional vector spaces 

In section 1.6 of this chapter we defined a linear vector space over a field 

F. Here we take the field F to be the real or complex number field and we 

refer to the vector space V as a real or complex vector space. A set of vectors 

X 1, ..-,X; is said to be linearly independent if from So OX; = 0 it follows 

that a), ..., @ are all zero. A set of linearly independent vectors €), ...,@,, isa 

basis of V, if each element of V can be written as 

x= 2) be, (1.1) 

where the real or complex numbers &}, ..., &,, are uniquely determined because 

the basis elements are linearly independent. The numbers &, ..., &, are the 

components of the vector x with respect to the basis ey, ..., @,,. The number 

of elements of the basis is the dimension of V. It does not depend on the 

choice of the basis. We assume in the following that V is finite dimensional if 

we do not state otherwise. If £), ..., £,, are the components of x, and 7, ..., My, 

are the components of a vector y, the components of ax (with a € F) are 

ak), ...,a&,, and the components of x + y are (E, +74), -.., (Ca): 

When another basis is chosen, this new basis @), ..., @,, is related to the old 

one by a matrix S (which is nonsingular, meaning that its inverse exists) such 

that 
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n 

@j= 2 Sye;- (1.2) 

With respect to the new basis a vector ¥ has components ae cae gE, such that 

n 

ges Si8; . (1.3) 
j=l 

We recall the definition of the product of ap X q matrix A by aq X m matrix 

B. It is ap Xm matrix with (AB);,;= Dest AipBy; (i= 1, ..,p andj= 1, -.., m). 

If we write €1, ...,@, as a row vector e (ie.a 1 Xn matrix) and &,,..., &, asa 

column vector (n X 1 matrix) the eqs. (1.1)—(1.3) can be written as 

x=ef e=eS £=SE. 

1.2.2. Linear transformations 

If V, and V> are linear vector spaces, and if A is a mapping from V, to V4 

such that A(ax + By) = aA(x) + BA(y) for any x,y © V, anda,6 € F, then 
A is a linear mapping. When we choose bases €}"’, ...,@,° in V;, and 

e? Aire e@) in V, this linear mapping can be described by am Xn matrix A 

given by Ae) = Dn Aer” (i= 1, ..., 1). A linear mapping of the n-dimen- 

sional vector space V into itself is a linear transformation, which can be de- 

scribed by an Xn matrix. For the components of a vector one has the follow- 

ing relation. If x’=Ax,x = Die] £,e;, and x’ = Diy E; e; one has 

In short-hand notation one has e’ = eA, and £’= AE. 
The product of two linear transformations A and B is defined by their 

successive application: (4B)(x) = A(B(x)). It is easily verified that with this 

product rule the nonsingular linear transformations (those for which the 

mapping is onto) form a group. After a choice of basis the transformations 
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A andB abe, s" to matrices, and their product corresponds to a matrix 
given by ABe; = 315; j(Ae; :) = Liye 1 Ay; Bie, Hence 

n 

(AB); = eee 
— 

which is the usual product rule for the matrices. The identity mapping x > x 
is for any basis represented by the unit matrix. Both unit mapping and matrix 
are denoted by 11 

.When another basis is chosen for V, the linear transformation A is de- 

scribed according to eq. (1.2) by another matrix Ai such that e’ = eA and 

£'= 4 £. One has 

A=S—14S (1.4) 

because e’ = e’S = e AS and on the other hand e’ = eA = eSA. Two matrices 
A and A for which the relation (1.4) holds are called equivalent or similar. 

Under such a similarity transformation the characteristic polynomial 

det(A — X11) is invariant. Because 

n 

det(A—-AN)= = (-1)" Jon , 
j=0 

in particular the determinant det A =(—1)"0o, and the trace trA =0,_ = 

Lie Aj; are invariant. This means that det A = det A, and trA = trA. 
To a given matrix A are related its transpose a and its Hermitian conjugate 

Al . These are defined by Ai = Aj; and Al, = any where * outs complex 

conjugation. A matrix can be symmetric Ge A), Hermitian (Al =A), unitary 

(AAT = = A'A= 1), orthogonal (AA = AA = 11), diagonal (all elements Aj; with 

i#j are zero). 

On a complex vector space V a Hermitian function or Hermitian form is a 

mapping f(x, y) which assigns to each pair x,y © V a complex number such 

that 

1) f@,y)=fly.x)", (any x,y EV) 
2) f(x, ay + BZ) = af(x,y) + BS(X,2), (any x,y,2€V anda,pEC). 

With respect to a basis of V one can describe f by a matrix defined by 

fp = fe; €;). Then one ee for arbitrary x = e& and y = = en the relation 

f(%,y)= Di j- if UL ae tT fn. Because fj = f(e;, eh =f(e; ,€;) = fj; the 

matrix fj; is Hermitian. With respect to another basis e = eS ‘the same Her- 

mitian es can be given by a matrix hij such that 
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n 

fig = 2, Sie Sy Si or f=S'fS. (1.5) 

An example is obtained by putting f=1. Then f(x, y) = tT - a Ein; 

which is the expression for a scalar product in a complex vector space. It is an 

example of a positive definite Hermitian form. A Hermitian form is positive 

definite if and only if f(x, x) > 0 for any x € V, and if f(x, x) = 0 is equiv- 

alent with x = 0. Notice that f(x,x) is real because f(x,x)” = f(x,x). Without 

proof we state that for any positive definite Hermitian form there is a basis, 

with respect to which its matrix is the identity matrix 1 . 

On a real vector space we define analogously a symmetric bilinear form as 

a mapping which assigns to each pair of elements x, y € V a real number 

f(x, 4) such that 

1) f(x,y) =fly,*) for any x,y EV, 

2) f(x, ,ay t+ Bz)=af(x,y)+Bf(x,z)  foranyx,y,zEV anda,BER. 

Its matrix hij is defined by hij =yte- é;) for a given basis. It is a symmetric 

matrix. With respect to another basis e = eS one obtains a matrix f with 

f= SES. (1.6) 

Also in this case one can prove that for any positive definite symmetric bi- 

linear form there is a basis such that its matrix is the identity matrix. 

A Hermitian or symmetric bilinear form f is invariant under a linear trans- 

formation A if f(x,y) = f(Ax, Ay) for any x,y € V. This means that 

Si = f(Ae;,Ae;) or 

f=A'fA (in the real case f= AfA) . (ia) 

If there is a basis for which Jj; becomes the identity matrix eq. (1.7) says that 

with respect to this basis A'A = 1(A A = 1 fora real vector space). In other 
words, with respect to a basis for which a Hermitian form is described by the 

identity matrix, a linear transformation which leaves this Hermitian form in- 

variant is described by a unitary matrix. 

1.2.3. Subspaces 

If V is a linear vector space over a field F a subset W of V is a subspace if 
for eachx,y © Wanda€F alsox + y € W, and ax € W. When é,,..., e 

form a basis for W any element of W is of the form D1 Ee): One has 
m= dimension of W<n= dimension of V. 

m 
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A subspace W of V is invariant under a linear transformation A of V if 
ste C W. By choosing a basis of V consisting of €}, ..., @,75 ---5 é,, Such that 
€1, .-,@m iS a basis of W, the matrix A is of the form 

AWM 4) 

A= (1.8) 
0 A(3) 

ae A() is am X m matrix. Notice that the subspace with basis 

tp os é,, is not necessarily an invariant subspace. This will be the case only 

a )= 01 in eq. (1.8). When V has an invariant subspace W with W # V and 

W # 0, it is called reducible with respect to A. Otherwise V is irreducible. 

Let V and W be linear vector spaces. The direct sum of V and W consists 

of all pairs (x,y) with x € V and y € W. It has the structure of a linear 

vector space if one defines (%1, V1) + (%7,V2)=(%1+%7,Y, ty), and 

a(x, y) = (ax, ay). This vector space is denoted by V ® W. If V is n-dimen- 

sional, and W is m-dimensional the space V © W is (n + m)-dimensional. For 

bases @;, ...,€, Of V, and @,44, ...,en+m Of W a basis for V ® W is given by 

Cer O)s2. 2 (,.. 0), (O58 244). (0, €n+m)- For linear transformations A on V, 

and B on W the direct sum is the linear transformation 

(A ®B)(x, y) = (Ax, By). 

On the basis of V © W mentioned above the linear transformation A ® B has 

the form 

Aan 

A®B= (9) 
0 B 

One has det (A @B) = det (A) det (B), and tr(A ®B) = tr(A) + tr(B). It is evi- 

dent from eq. (1.9) that V ® W is reducible with respect to A ® B. 

For given vector spaces V and W we can construct another vector space in 

the following way. Consider all pairs (x,y) with x € V, and y © W. We 

denote this pair by x @ y. They generate a linear vector space by the postulates 

1) (ax) ey =a(x ey), 

2) (%, +X2)@ VHX, OytxX,e@ey, 
3) xa (ay)=a(xeay), 

4) X@ (Vit V2)=XOY, +N Yo. 
The vector space V @ W defined in this way is the tensor product of V and W. 
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, ; _ =e m 
It is a vector space of dimension nm. Because X ® y = Lj=42Xj=] E10je;® e; 

the elements e; ® e;form a basis of V@ W. The tensor product of the linear 

transformations A on V, and B on W isa linear transformation A ® B on 

V ® W defined by 

(Ae B)(xe y)=(Ax)@(By). (1.10) 

With respect to the basis €; @ e; the matrix of A @ B is given by 

(A @ B)(€;® €;) = Deny d= Agi By ey @ &) 

or 

(A® By i = Aj By 5 (i,k=1, sos Ue and 1,j=1, GOs m) d 

We note that det (A @ B) = det(A) det (B), and tr(A @ B) =(trA)(trB). 

Furthermore one has the property 

(A ® B)(C ®@D) = (AC) @ (BD) 

because (A @ B)(C® D)(x@ y) = (A ® B)(Cx® Dy) = (ACx) ® (BDy) = 

(AC@BD)(x ay). 

1.2.4. Sets of linear transformations 

Consider a set of linear transformations on an n-dimensional vector space 

V. The number of elements is called the order of the set. Its dimension is n. 

By choosing a basis €,, ...,@,, in V a set of linear transformations corresponds 
toa set ofn Xn matrices A= {A}, ..., Ay }. For another basis é;, ..., €, (cf. 

eq. (1.2)) one obtains another set of matrices A= {Aj, ..., Ay}, where _ 

A; =S~!A;,S (i= 1, ..., N) for some nonsingular matrix S. The sets A and A 
are called equivalent. Notice that the matrix S is the same for all elements of 

the set. 

It is convenient to define sets of linear transformations formed from the 

sets A= {Aj,...,Ay} on Vand B= {B,, ..., By} on W. For N=M one 

defines the direct sum of A and “B by A © B= {A, @Bj,..., Ay @By }. It 
is a set of transformations on V ® W, has order N and dimension n +m. Also 

for N=M the inner Kronecker product is the set A @B = {A,@Bj,... 

..., Ay ® By }. It is a set of linear transformations on V @ W. It has order N 
and dimension nm. Notice that this definition of direct sum and inner 

Kronecker product assumes a fixed ordering of the elements of the two sets. 
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The outer Kronecker product is also defined for N#M by & X B = 
{A,®B), ...,A,® By, ..., Ay ® By}. It has order NM and dimension nm. 

If V has a subspace W which is invariant under all elements of a set 4 of 
linear transformations, W is called #-invariant. When W#V and W#0, all 

matrices can simultaneously be brought into the form of eq. (1.8) by a 

suitable choice of basis. Such a set is called reducible. In particular, a set which 

is equivalent to the direct sum of two sets is called fully reducible. A set which 

is not reducible is irreducible. 

1.2.5. Schur’s lemma 

PROPOSITION 1.3 (Schur). Let # and ‘8 be two irreducible sets of matrices, 

of dimensions n and m respectively. Let S be an m X n matrix such that 

SA = BS. Then either S = 0, or S is nonsingular and and ‘B are equivalent. 

Proof. Let # correspond to a set of linear transformations on an n-dimensio- 

nal vector space V, ‘8 to one on an m-dimensional vector space W, and S to a 

linear mapping S : V > W. Then consider Img C W. Take x € V. Then 

Sx € Img. Moreover, BSx = SA x € Img. Therefore, Img is a subspace 

invariant under “8. As ® is irreducible one has either Jm, = 0, or Img = W. 

In the first case S = 0. Next we look at V. Here Kerg is an invariant subspace, 

because for x € Ker, one has Sx = 0, and SA x = BSx = O. Hence 

Ax C Kerg. As A is irreducible one concludes that either Kers = 0, or 

Ker, = V. In the latter case /mg = 0 and S = 0. For the case Kerg = O one has 

Img = W and therefore S is a one-to-one-mapping from V to W. Hence either 

S = OorS isa non-singular n X n matrix and in the latter case A=S-!BS 

is equivalent to®B. 

Consequences of Schur’s lemma. 

1) If. S links two nonequivalent irreducible sets, i.e. SA = BS, one has S = 0. 

2) If S links two irreducible sets of the same dimension and det S = 0, then 

S=0. 
3) If ann X n matrix commutes with all the elements of an irreducible set of 

matrices, then S is a multiple of the unit matrix 1 . To prove this one con- 

Fig. 1.3. Schur’s lemma. 
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siders the two cases: S is singular or not. If S has determinant equal to zero, 

from 2) it follows that S = 0. If S is nonsingular, there is an eigenvalue \ # 0 

of S. In this case the matrix S — A commutes with all the elements of the 

set and det(S— Al ) = 0. Hence S = Al . Contrary to the first two conse- 

quences, the third is only valid for complex matrices, because in general the 

eigenvalue ) is complex. 

1.3. Representations of finite groups 

1.3.1. Matrix representations 

In section 2.2 we saw that the nonsingular transformations of a linear 

vector space V over a field F form a group. This group is denoted by GL(V). 

After a choice of basis in V this group corresponds to a group of matrices, 

denoted by GL(n, F), where n is the dimension of the vector space. We will 

now consider subgroups of GL(n, F) which are homomorphic to a given group 

G. A representation of a group G in a vector space V is a homomorphism T 

from G into the group GL(V). A matrix representation of G is a homomor- 

phism D from G into GL(n, F). Of course, choosing a basis in V a representa- 

tion in V is associated to a matrix representation. On the other hand, for a 

matrix representation, the matrices correspond to linear transformations in an 

arbitrary n-dimensional vector space, if we choose a basis in this vector space. 

Therefore, there is a close connection between the two kinds of representa- 

tions. However, sometimes it is convenient to distinguish between them. The 

dimension of a representation is the dimension of the vector space. Two 

representations D and D’ are called equivalent if there exists a nonsingular 

matrix S such that D(g) = S~!D'(g)S. Here we will only consider representa- 

tions in complex vector spaces of finite dimension. Moreover, we will restrict 

ourselves to finite groups, although many of the properties and definitions 

treated here can be used as well for arbitrary groups. 

An example of a representation of a group G is given by the homomor- 

phism which assigns the number | to each element of G. This representation 

of dimension | is called the trivial representation. The kernel of the homo- 

morphism, also called the kernel of the representation, is the complete group 

G. If the kernel of the representation is only the unit element, the representa- 

tion is called faithful. In this case different elements of G are mapped on 

different matrices. An example is given by the following representation 
which plays a role in the next sections. Consider the complex functions on 
the finite group G. These form a linear vector space, even an algebra as we 
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saw in section 1.7. We now define for each a € G a linear transformation L, 
on this space by (7, 4)(g) = 4(a~ !g). This is a homomorphism because 

(T,(T, 6))() = (1,6) (b~ !g) = §(a~ 1 b-!g) = (T;,,6)(g). To obtain correspond- 
ing matrices we notice that a basis in the vector space is given by Biss, On 

where g1, ..., 8 are the elements of G, and where gis the function which 

takes the value 1 on the element g and the value 0 everywhere else. A matrix 

for T, is obtained from Tg; =ag; = gj, because T,, g;(g) =g,(a~!g) =ag,(g). 

The index / is uniquely determined from 8; = 4g;. The matrix corresponding to 

T,, is D(a);; = 5;;. Here 5,; is the Kronecker 5-symbol. The matrix D(a) has 

exactly one | in each row and each column and 0 on the remaining places. 

The representation obtained in this way is called the regular representation. 

It is a faithful representation. We remark that the regular representation can 

also be defined in a less sophisticated manner. To do this we choose again a 

fixed ordering g), ..., gy for the elements of G. Then one defines a NV X NV 

matrix D(a) by 

N 

ag; = gah D(a)ji8; - 

Since the group is mapped onto itself in a one-to-one way by left multiplica- 

tion, this is a meaningful definition. One has still to show that we really ob- 

tain a representation in this way. This is seen from (g;8))8% = 2mD(8i8)mx8m 

= 8; 2 D(8))1.81 = 21D (E)i- 2m PBimi&m = Xm (PE) PE) }mk8m- In 
section 3.4 we will treat other examples of representations. There we will 

illustrate also the notions and properties to be discussed in this section. 

As we will see, in physics we are especially interested in representations 

consisting of unitary matrices, called unitary representations. 

PROPOSITION 1.4. Any representation of a finite group is equivalent to a 

unitary representation. 

Proof. On the representation space V one considers a positive definite 

Hermitian form f(x, y), e.g. the function f(x, y) = ET n (chis2 2). if T, is 

the linear transformation representing the element g € G, one defines a func- 

tion F(x, y) on V by 

F(x,y) Set KT, T,y) : 

It is easily verified that F(x, y) is also a positive definite Hermitian form. 

Moreover, it is invariant under G, because for any h € G one has 

= y = 2 f perk ee be = F(x, F(T, x,T,Y) eerie Tet) Ped gh® > Teny)=F,Y) 
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as summation over gh for fixed h is the same as summation over g. In section 

2.1 we mentioned the fact that for every positive definite Hermitian form 

there is a basis such that the corresponding matrix is the unit matrix. With 

respect to this basis the transformations 7, are unitary matrices, because of 

eq. (1.7). 

Given two representations D(G) and D'(G), the direct sum of the two 

sets is again a representation denoted by (D® D')(G). It is called the sum 

representation. Its matrices can be written as 

D(g) 0 
(D®D')(g) = (any g€G). (1.11) 

OueeD (2) 

If the dimensions of D and D’ are d and d’, respectively, the dimension of the 

sum representation isd + d’. It is evident that this procedure can be general- 

ized to the sum of several representations. Moreover, one can take D = D’, or 

in general several terms in the sum equal. One writes 

S 

a m,D,(G) = (m,D,®m7D> ®...®m,D,)(G) . 
a= 

Here mD(G) = D(G) ® D(G) ® ... ® D(G) (m terms). A representation is 

reducible if it is reducible as a set of transformations. It is fully reducible if it 

is fully reducible as a set of transformations. A representation which is not 

reducible is irreducible. One has 

PROPOSITION 1.5. A reducible representation of a finite group is fully re- 

ducible. 

Proof. A representation of a finite group is equivalent to a unitary represen- 

tation. Therefore, on the representation space V there exists an invariant, 

positive definite Hermitian function F. As the representation is reducible, 

there is an invariant subspace W. Now the subset of all elements x of V for 

which F(x, y) = 0 for any yy © W is again a subspace W’. Moreover, it is also 

an invariant subspace, because for any g © G and any x € W’ one has 

F(T, X,Y) = F(x, T; 'y) = 0 for any y € W. Finally W® W’ = V. This proves 
the statement. 

From this proposition it follows that a representation of a finite group is 

equivalent to(~) a sum of irreducible representations. 

i? 

DG)~ E mDalG) 
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where D,(G), ..., D,(G) are irreducible representations, the irreducible com- 
ponents of D(G). The integer m, is called the multiplicity of the component 
D,(G). We will show later on that this decomposition of D(G) is unique. 
This means the following. If D(G) ~ pet m,D(G) and D(G) ~ 

pp mgD;(G), there is a one-to-one correspondence between (D,(G), ... 

..., D,(G)) and (Dj (G), ..., Di(G)) such that r= s,m, = mi,, and DG) 
Di AG). As a consequence of Schur’s lemma every irreducible representation 

of an Abelian group is one-dimensional. Hence every representation of a 

finite, Abelian group has an equivalent representation, consisting of diagonal 

matrices. Note however, that this consequence of Schur’s lemma is only valid 

because we consider complex representations. In the case of real representa- 

tions this is no longer true. When D and D’ are representations of dimensions 

d and d' respectively, the inner Kronecker product D(G) @ D'(G) gives 

another representation of G because 

[(D @D')(g)] [(D 2D')(g')] = [D(g) & D'(g)| [D&’) @ D(g’)] 

= D(gg') @ D'(gg') = (D®D’)(gg') . 

This representation is called the product representation. In general it is 

reducible, even when D and D’ are irreducible representations. 
For two representations D(G) and D'(H) of two groups G and H, the 

outer Kronecker product is also a representation, in this case of the direct 

product G X H : (DXD')(g,h) = D(g) @ D'(h). It is a representation, because 

[(DX D')(g,h)] (DX D')(g',h')] = [D(g) @ D'(h)] [D(g’) @ D'(h’)] 

= D(gg’) @ D'(hh’) = (DX D')(gg' hh’) . (1.12) 

1.3.2. Orthogonality relations 

Suppose that D,(G) and D,(G) are two irreducible representations of the 

group G, with dimensions d, and d, respectively. We take an arbitrary 

d, X dy matrix R, and define 

Seer ei) RD, (aye 
geEG 

This matrix S satisfies SD>(g) = D,(g)S for any g € G, because 
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SDy(g)= E Di (A)RDz"(h)Dys) 

=D,(g) © Dy (g)Dy(A)RDz\(h) Dg) 
heEG 

=D,(g) © Dy(g7'h)RDz'(g~'h) = Dy (g)S. 
heEG 

Because of the irreducibility of D,(G) and D,(G) it follows from Schur’s 

lemma that either D,(G) ~ D2(G) or D,(G) F D4(G), in which case one 

has 

O=S,=2 © Die), RgDoe )y- Uae! 1(8):¢ RP 26 Nj 

Since R is arbitrary we find in this case 

2 Dy(8)ixDa(g "i; =O. 
geG 

One finds this relation by taking for R the matrix with 1 in the kl-place, and 

0 everywhere else. 

When D,(G) ~ D>(G) we consider only the case that D,;(G) = D,(G), ie. 

the case that the matrices corresponding to an element g € G are the same. 

Then S commutes with all elements of D,;(G) = D2(G). Hence S = Xf g, 

where d is the dimension both of D, and of D). The trace of S is given by 

trS= ZY tr(D,(g)RD,(g—!))=NtrR 
geEG 

when JN is the order of G. It follows that Ad = N tr R, and consequently 

S eet Ro; = 2) 2) D R,,D,(g7! ae Gane i1@ixRpi Die ~)y; - 

We conclude that in this case 

SED GD bess eal Be UB)KO UE Nj = OKI - (1.13) 

Now we have proved the orthogonality relations for irreducible represen ta- 
tions 
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EZ Dale)ixDy(e- yj = y 8,548! zeG ASK BAS I; qd kl ap (1.14) 

with the symbol 64, defined by 

0 if D(G)+D,(6) 
Syg=\1 if D,(G)= D,(G) 

undefined if D,(G) ~ D,(G), but D,(G) # D,(G) : 

For unitary representations the eq. (1.14) can also be written in the form 

SPEC IREEN fae een weg DaBix B(8)jt =F 8 i75x15 op (1.15) 

because then D(g_ iy = (D(g)'); é (D(g)j; = DG); 

1.3.3. Characters 

A very important concept will be the notion of character of a representa- 

tion. The character of an element g © G in a representation D(G) is defined by 

x(g) = trD(g) . 

The character of the representation is the complex function on G which assigns 

x(g) to g © G. Some important properties are the following. 

The character is a class function. It is a function on the group, because to 

each element of the group is assigned a complex number. Moreover, the 

characters of conjugate elements are the same since x(gag~!) = 

tr (D(g)D(a)D(g)~!) = tr D(a) = x(a). From the invariance of the trace under 

similarity transformations follows also that equivalent representations have 

the same character: if D(g) = SD'(g)S~! one has tr D(g) = tr D'(g). We shall 
even show that the characters completely characterize classes of equivalent 

representations. We note that the character of the unit element, i.e. 

tr D(e) = tr 11 4, is equal to the dimension of the representation. 

For the characters one can derive orthogonality relations from those for 

the representations. One has from eq. (1.14) putting =k, /=7, and summing 

over k andj, that 

Ss “lVeN6 -. me Xo(8) xX p(B”) ap 
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For unitary representations D(g~!) = D(g)', and therefore x(g~1) = x*(g). 

As every representation of a finite group is equivalent to a unitary one, and 

the characters of equivalent representations are the same, one has for all 

irreducible representations, and not only for unitary ones 

ZL Xq(B)xg(g) = N 50g - (1.16) 
gEG 

Notice that here we have used the Kronecker 6, and not the special symbol 6’ 

like in eq. (1.14). 
When the group G has r conjugacy classes C), ..., C,, we can construct an 

r-dimensional vector 6(D) for each representation D(G) by 

ny 2 ny, 2 

0(D) = WN NCA) crs W KCC he (1.17) 

where n; is the number of elements in class C; and x(C;) the value of the 
character on the class C;. For two nonequivalent irreducible representations 

these vectors are orthogonal, as one sees from 

r 

i x 1 * 9(Dg) 0(Dg)t = E yp Xai) XpG) = N gag Kalb) X98) = Ba: 

Because there are at most r mutually orthogonal vectors in a r-dimensional 

space, the number of nonequivalent irreducible representations of G is at 

most equal tor. Later on we will show that it is exactly equal tor. 

If D,(G) and D>(G) are representations of dimension d, and dy respecti- 

vely, the character of the direct sum D(G) = (D, ®D )(G) is given by x(g) = 

tr(D, ®D)(g) = trD,(g) + tr Do(g) = x1 (g) + X2(g). For a representation 

D=2Z,m,D,, one has the character x(g) = 2ym,X,(g). The multiplicity my 
of an irreducible representation D,(G) in the reduction of a representation 

D(G) is found using the orthogonality relations. One finds 

1 1 : d 
wee X(2) Xq(g) = mee Mm X (8) Xo(8) = pai es ett) 

From this follows 

PROPOSITION 1.6. The characters of two representations D,(G) and D2(G) 

are equal if and only if the representations are equivalent. 

Proof. We have already seen that the characters of equivalent representations 

are equal. For irreducible representations it follows from eq. (1.16) that non- 
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equivalent irreducible representations have different characters. Finally, the 
multiplicities and the irreducible components for reducible representations 
are uniquely determined by eq. (1.18). 

By eq. (1.18), which can also be written as 

r 

1 * 

Nii 

it is possible to determine the reduction of a representation D(G) with 

character x(G). One can determine whether the representation is irreducible 

or not by the irreducibility criterion in the following proposition. 

PROPOSITION 1.7. D(G) is irreducible if and only if 

, 
z nlx(C) I? =N. (1.20) 
l= 

Proof. When the representation D(G) can be written as a sum of irreducible 

components D(G) = 2m, D,(G), it follows from eq. (1.16) that 

r la r r if 

D nglx(G)P=2 LZ nymymgx(C)x(C)=N ZV mymgdyg=N EZ m2. i=1 i=l a,p a, 6 a= 

If D(G) is irreducible, there is only one a such that m, = 1 and mg = O for any 

6 #a. If D(G) is reducible me > 1. This proves the proposition. 

To find another relation for representations we consider the regular re- 

presentation, which is in general reducible. The character of an element g€G, 

ie. the number of elements g; for which gg; = g;, is zero for g # e, and it is the 

order N of G for g = e. Hence for the regular representation 

x(g)=0 for g#e, 

x(e) = N =d = dimension of the representation . 

Consider the reduction of this representation into its irreducible components 

D,(G), D2(G), ... of dimension d), do, ... respectively. The multiplicities of 

the irreducible components are found from eq. (1.19). 

my = (1/N) 2 x(g)xa(g) = (1/N) x(e) Xq(€) = da - 
gEG 

Hence in the decomposition of the regular representation an irreducible re- 
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presentation D,(G) occurs as many times as its dimension d,. Because 

r 

x(e)= 2B _mgXale) 
one has 

if r r 

N= x(e)= 2 m,x,(e)= 2 IXq(e) I? = 2 ce 
a=1 a=] a= 

This is called Burnside’s formula. We now come to the following fundamental 

proposition. 

PROPOSITION 1.8. The number of nonequivalent irreducible representations 

of a finite group G is equal to the number of its conjugacy classes. 

Proof. The equivalence of representations is an equivalence relation (cf. § 1.2). 

Therefore, we can form the equivalence classes of irreducible representations. 

From each equivalence class we take one representative D,(G). The functions 

DAG, with a= 1, 2,...andi,j= 1, ...,d,, are functions on the group G. 

There are eae = N of these functions. With respect to the positive definite 
Hermitian function defined on the vector space V of functions on G by 

F(f\, fo) => fi (2) fol) 
gEG 

the NV functions Dig); are orthogonal, for from eq. (1.15) one has 

F(D, j;,Dex)) = = _ D(g);;D eae zi: Be a8) ij Da(8)k1 = Sag Dik iG, 

where Dy jz is the function D8); on G. We recall that the dimension of the 

vector space V is N, as discussed in § 1.7. This means that the V functions 

form a basis in V. A subspace is formed by all class functions. An arbitrary 

class function f(g) can be expanded in basis functions with complex coeffi- 

cients Sei’ 

aij 

As f(g) is a class function, one has 

= Aes ll ae f(g) a (1/N) ae foig De(hgh") iy 

= ee (1/N) peg ial DN) ix Do BK Dhh~")j; - 
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Using eq. (1.14) one arrives at 

Te do if HA 

all 

Therefore, each class function can be written as a linear combination of the 

character functions x,(g) for the irreducible representations. This means that 

there are at least r (= number of conjugacy classes) of these functions, or in 

other words that there are at least r nonequivalent irreducible representations. 

On the other hand we have seen that the number of equivalence classes of 

irreducible representations is at most r. 

COROLLARY. The functions D,A8)ij with o= lo 25eand 7,7 = 15.) 101m 

an orthogonal basis in the space of all functions on G. The characters x,(g) 

with a= 1, ...,7 form an orthogonal basis in the subspace of all class functions. 

As the character is a class function, the character of a representation of a 

group G with r classes is given by r complex numbers. On the other hand, 

according to the last proposition, there are r nonequivalent irreducible repre- 

sentations. Therefore, the characters of the nonequivalent irreducible repre- 

sentations may be given by ar X r matrix, called the character table of the 

group. The aj-element of this matrix is the character x,(C;). Consider the 

matrices M and M’ defined by 

ets | 
Moe Xo(G) , Mig = wy Xe(Cd : 

These r X r matrices are inverses one of the other as one sees from 

' rel 
(MM Jap a 7 XolG) Xg(G) a7 = 5 ag e 

Consequently, one has also 

6, = 1M); = 25, (6) x3(C) - C21) 

PROPOSITION 1.9. If c;;, are the class multiplication constants of G, and n; 

the order of the class C;, one has 

r 

Nj Xo Gi) Nj XalG) = Fe i CifkKMKXa( Cx) - 
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Proof. For the irreducible representation D,(G) one defines a matrix D,(C;) 

by 

J= ZX D ; D,(€ j) oe (8) 

As g@,;g~!=C@, fora class sum C; and for any g €G, one has D,(g) D(C j) = 

D(C ;) Do(g) for any g € G. Now D,(C;) commutes with all the elements of 

an irreducible representation. From Schur’s lemma it follows that D,(C;) = 1. 
The complex constant A; can be found comparing tr D,(€ ;) = Ajd,, and 

D(C) = UEC; tr D,(g) = n; X(C;). Therefore, A; = n; X_(C;)/dy- From the 

definition of class multiplication constants D,(@ ;) Dy(C;) = 2x Ci DolC x) 

or Aj Ay = Ly Cj Ay. Substituting the values for A; one obtains the desired 

formula. 

We sum up the important relations found for the character table. 

a 

me 1p XC) XC) = Bap (1.22) 

ie ‘ 1 
Nea (Cina C = nj OFF (1.23) 

12 

Ni Xol G) 1 Xo(G) = dey ce Cie XolCp) - (1.24) 

A special case of eq. (1.23) is 

ed Ne (1.25) 

Using eqs. (1.22) —(1.24) one can always construct the character table of a 

given group. It is a straightforward, but often tedious calculation. To do this 

with the help of an electronic computer, programs have been made as de- 

scribed in Flodmark and Blokker [1967], Brott [1966], and McKay [1968]. 

However, for small groups the character table may often be found using only 

some of the relations. Examples will be given later, in §3.5 and Ch. 3, § 2.2. 

For small groups one can often obtain the number and the dimensions of the 

irreducible representations directly from eq. (1.25). 

The character of the sum representation (D, ®D,)(G) is given by x = 

X1 + Xz. It is evidently reducible. The character of the product representation 

is given by x(g) = x; (g)X>(g). In general this representation is reducible. The 
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multiplicities m, in D, e Dy = Xym,D, are given by eq. (1.18). 

r 

m,, = (1/N) E mixi(G) x) Net) 

The character of the outer Kronecker product D,(G) X D(H), which is a 

representation of the direct product G X H is x(g,h) = x, (g) X7(A). If D\(G) 

and D(H) are irreducible representations the representation (D, X D))(G X A) 

is also irreducible. We will come back to this point in Ch. 3, § 2.3. 

1.3.4. Example: the representations of the group of permutations of three 

elements 

We will treat as an example for which the results of the foregoing sections 

are worked out in more detail, the group considered in § 1.8. This group, 

denoted by S3, is isomorphic to the group of three-dimensional rotations 

which transform an equilateral triangle into itself. As these rotations are non- 

singular linear transformations of the three-dimensional space, they form a 

representation of S3. Choosing a basis @1, 9, €3 (fig. 1.2) one obtains the 

elements (€3 is perpendicular to e; and €>) 

1 0 0 =H 24-0 
D(e)=e€=/0 1 0 D(a) =a= en0e0 

lo 01 Tue 

Oo io 0-1-0 
Da v=o =) 1 =1 60 DOS 641.1010 

Om On iat 

==) 20 eeu, 20 
Diac)=o8=|-0 1 0 D(a2c)=a2B=|—-1 -1 0 

Ge Ot 0: 8014 

It is a faithful representation of 53, because all matrices are different. The 

representation is reducible, as one can check also with the reducibility 

criterion eq. (1.20). One has aa nj | (EDIE =1X32+2Xx07+3xX (a0 = 

12 = 2N. The two-dimensional component 

Peis) Gal Ce hid 
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is seen to be irreducible from the same criterion. The regular representation 

is given by the matrices 

TeOLOLORONO 001000 000100 
Ouloro.O20 170, 0108080 000001 

Hoot 0.020 fio i on00n0 G0 Of 0LOnINO 
DO)=| 990100] 27 000001 | OO \1 00000 

Or On ORi0 OFOROnt ORO 001000 
000001 000010 010000 

and their products. 

The character table can be found as follows. From eq. (1.25) one has 

dé + a 1 d3 = 6, which has the unique solution (up to a change of order) 

d, =d, = 1, and d3 = 2. For the first row x (Cy) = x1 (C2) = X4(C3) = 1. 

For the second row one has x(a) = x,(a?), but as the representation is one- 

dimensional X7(a?) - X9(a)?. Hence x>(a) = 1 = x7(C2), because the character 

of a one-dimensional representation can not be 0. Using eq. (1.22) with B = 1 

one obtains 1 + 2x(Cz) + 3x2(C3) = 0. Therefore x(C3) = —1. Using eq. 

(1.23) with j = 1 one has 1 + x(C;) + 2x3(C;) = 0, from which it follows 

that x3(C2) = —1, and x3(C3) = 0. The character table of S3 is table 1.2. For 

its construction we needed only a few of the relations (1.22) —(1.24). The 

remaining relations are readily verified. It is to be noted that for a general 

group one has to proceed in a more systematic way. However, for almost all 

crystallographic groups the character table can be found in a similar ad hoc 
way. 

With the aid of the character table we can reduce an arbitrary representa- 

tion into its irreducible components. For the regular representation with 
x = (6, 0, 0) one has 

3 

Ma = iy 2 MXa(C)X(G) =F XalCy) 6= dy, 

For the product representation (D, ® Dg)(S3) one has 

3 
Bel * 
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Table 1.2 

Character table of $3 

Ci,=e C= [e,a?] C3 = [c,ac,a2c] 

dD, 1 l 1 

D2 1 1 —] 

D3 2 —1 0 

This gives 

D,eD,=D, Dy @D, =D), D3@D, =D3 

D, 2D, =D) Dz ®D,=D, D3 @ Dy =D3 

D,@ D3 =D; Dy ® D3 =D3 D;®D3=D,®D,°D3. 

1.3.5. Projective representations 

For physics a useful generalization of the concept of representation is that 

of projective representation. In a linear vector space the one-dimensional sub- 

spaces are the straight lines through the origin. They are the elements of the 

set called projective space. By a nonsingular linear transformation of the 

vector space V, one-dimensional subspaces are mapped onto one-dimensional 

subspaces. Moreover, linear transformations of V which differ only by a 

factor give the same mapping of the projective space. This leads us to consider 

transformations differing by a factor as “the same” in some sense. 

Consider a mapping P of a group G into GL(V). We will denote the corre- 

sponding matrices by P(g). We call this mapping a projective representation, 

if for some complex number w(g,h) one has 

P(g) P(h) = w(g,h) P(gh) (any g,hEG). (1.26) 

The function w which assigns to each pair of elements g,h € G a complex 

number is called a factor system. The theory of these projective represen ta- 

tions for finite groups was given by Schur (Schur [1904], [1907]). They are 

also called ray or multiplier representations. A particular case is given by 

w(g,h) = 1 for all g,h © G. Then P is an ordinary representation, also called 

vector representation, discussed in the foregoing sections. As P(gh) and 
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P(g) P(h) only differ by a factor, they determine the same transformation of 

the projective space. This transformation is unchanged if we replace P(g) by 

u(g) P(g) with u(g) # 0 a complex function on the group. We call the projec- 

tive representations P(G) and P'(G) = u(G) P(G) associated representations. 

We will choose a projective representation always in such a way, that P(e) is 

the unit matrix. For the factor system w this means that w(g,e) = w(e,g) = | 

for any g © G. Moreover, in this case one derives from eq. (1.26) 

P(g~!) = w(g,g-!) P(g)! = w(g-!,g) P(g)! . (1.27) 

As an example, consider the mapping of the direct product C, X Cy of two 

cyclic groups of order two into the group GL(2, C), given by 

ro=(.°) ave(°) noel?) mne(t 2) 
The group is generated by a and b with relations a? = b2 =e, ab = ba, and is 

of order four. The mapping P is a projective representation of C) X C> with 

factor system w(g,g) = w(g,e) = w(e,g) = 1 for all g, w(a,ab) = w(b,a) = 

w(ab,a) = w(ab, b) =i, and w(a, b) = w(b,ab) = —i. To the defining relations 

correspond the following relations between the matrices: P(a)* =1, 

P(b)2 = 11 , P(a) P(b) = — P(b) P(a). 
Not every function w can occur as a factor system. A necessary condition 

follows from the associativity of the matrix multiplication. Because 

[P(g)P(h)] PD) = P(g) {P(A)P())] one has 

w(g,h) w(gh, 1) = w(g, hl) wh, /) for all 2h, leGe (1.28) 

On the other hand one can show that any w satisfying eq. (1.28) can occur as 

a factor system for a projective representation. For this and for other results 

mentioned in this section we refer to Schur. Because the product of two 
functions satisfying eq. (1.28) also satisfies this relation, the factor systems 
form a multiplicative Abelian group, denoted by Z2(G). The inverse of w is 
w!, the unit element is w(g,h) = 1 for all g,h €G. If P and P’ are associated 

projective representations there is a function u(G) such that P’'(g) = u(g)P(g). 

The corresponding factor systems are then related by 

u(g)u(h) 
wig, h)= u(gh) 

w(g,h). (1.29) 
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Two such factor systems are called associated factor systems. In particular a 
factor system associated with the (trivial) factor system of an ordinary repre- 
sentation has the form w(g,h) = u(g)u(h) u(gh)~!. The factor systems of 
this form set up a subgroup of Z2(G) denoted by B2(G). The relation (1.29) 
gives an equivalence relation between factor systems. The equivalence classes 
are the elements of the factor group Z2(G)/B2(G). This group is called the 

Schur’s multiplicator of G, denoted by M(G). In our example of the projec- 

tive representation of the group C, X C4 it is easily verified that the factor 

system is not equivalent with the trivial one. Hence the multiplicator of 

Cz X Cy has at least two elements. 

For projective representations one can also introduce the notions of 

equivalence and irreducibility in a way similar to that for ordinary representa- 

tions. Two projective representations P and P’ are equivalent if they are 

equivalent as sets of transformations. This means, if there is a non-singular 

matrix S such that P’(g) = S~! P(g)S for any g €G. It follows immediately 

that equivalent representations have the same factor systems. For a given 

factor system w, this equivalence relation gives a division into equivalence 

classes of the projective representations with this factor system. Two projec- 

tive representations P and P’ are called similar if they satisfy the relation 

P'(g) = u(g)S~!P(g)S for some function u(g), some nonsingular S, and for all 
g ©G. Equivalent representations are similar, as are associated representations. 

The set of all projective representations can be divided into similarity classes. 

Each similarity class can be divided into subclasses with the same factor sys- 

tems, and each such class into further subclasses of equivalent representations. 

PROPOSITION 1.10. For a finite group G of order N each factor system is 

associated with one consisting entirely of N‘" roots of 1. 

Proof. From eq. (1.28) it follows that for any g,h © G one can write 

N 
_fw(g,hDw(h,D\ _ w(g, hl) wh, 1) 

cota n= ( «(gh 1) ) =n, ( w(gh, 1) ) 

Now define a function f(g) = Il, w(g,/). Then one has the relation 

w(g, hy = fle) fA)/f(gh) - 

As this factor system is associated with the trivial one, the factor system 

1/N 

’ uf (gh) 
wten=(xeet) wls,h) 
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is associated with w(g,h) and (w'(g,h))% = 1. In the following we always will 

take a factor system which consists of Nt roots of 1. This means that the 

elements w(g,h) are of modulus one. 

PROPOSITION 1.11. Every projective representation of a finite group G with 

a factor system of modulus one has an equivalent unitary representation. 

Proof. As in §3.1 we consider a positive definite Hermitian function f on the 

representation space V. We define another function f' by 

f'(«,y) = ae f(P,%, Py) : 

This function f’ is invariant because 

VP ea PV) ein (P,P, ly) 
gEeG 

& 

as |w(g,h)| = 1. With respect to the orthonormal basis for which the matrix 

of f’ is the unit matrix the matrices P(h) become unitary for allh €G. 

A projective representation on V is reducible if V contains an invariant 

subspace different from both V and O. Because a projective representation of 

a finite group is equivalent to a unitary one, the orthogonal complement of 

the invariant subspace (the subspace of elements of V orthogonal to all ele- 

ments of the invariant subspace) is also invariant. Hence a reducible represen- 

tation of a finite group is fully reducible. Therefore, a projective representa- 

tion of a finite group is decomposable in irreducible components, all with the 

same factor system. On the other hand, for two projective representations P 

and P’ with the same factor system w the direct sum P(G) ® P'(G) again 

gives a projective representation (P®P’)(G) with this factor system. The 

inner Kronecker product P(G) @ P'(G) of two projective representations with 

factor systems w and w’ respectively forms the product representation. As 

[(Pe P’)(g))] (Pe P')(g2)] = (P(g) @ P'(g,)] [P(@2) @ P'(g9)] = 
[P(g)) P(g2)] @ [P'(g1) P'(g2)] = @(81,82) (81,82) [P(g 182) @ P'(g18)] = 
«(g1,82) © (81,87) (Pe P’)(g)g) the factor system of the product represen- 
tation is the product of the two factor systems. The same is true for the outer 

Kronecker P(G) X P'(H) which is a projective representation of the direct 

product G X H with a factor system which is the product of the two factor 
systems. Here this means that if the factor systems for P(G), P'(H), and 
P(G) X P'(H) are w, w', and w” respectively, and if a=(g,h),a' = (g',h'), one 
has w' (a, a’) = w(g,g’)w'(h,h’). 
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Orthogonality relations can also be formulated for projective representa- 
tions. Suppose that P)(G) and P(G) are irreducible projective representations 
of G with the same factor system w and of dimensions d, and d, respectively. 
For an arbitrary d, X dy matrix R one defines 

P,(g)R P(g!) 

seG w(g,g-!) 

For an element k €G one has 

SP3(h) = a P(g) R Py(g~!h) w(g!,h)/w(g,¢7!) 

w(g!,h) w(h—',g) 1S z  Py(he) RP? Ee Se 

From eq. (1.28) one sees that 

w(g7!h) w(h7!,g) _ w(g7!,h) w(g 1h, he“) w(h7!,g) 
w(h,Aw(g,g") wg t,e)wh,r-!) — w(g,g7!) w(g-!h, 7!) 

= 1/w(g-!h,h-!g). 

Therefore, one has 

P,(h~!g) RP>(g—!h) 
SPH) = Pi(h) & Ive = = P\(h)S 

because of eq. (1.27). As both P; and P, are irreducible, one concludes with 
Schur’s lemma that either S = O(and P, + P2) or S is nonsingular (and 

P, ~ P2). In the ne case one concludes like in §3.2 that 

ZeeGPa (g);Pa(g)a' = = 0. In the other case we take P; = P7. Then S isa 

scalar multiple of the unit matrix: S = A1 . Moreover, 

trS= 2 tr P,(g)R P2(g)~! =Ad; . 
gEG 

Then one has proved: for two irreducible, projective representations P,(G) 

and P,(G) with the same factor system one has the orthogonality relations 

N 
pe  PaleijPol@er ao pone tne (1.30) 
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For a unitary representation eq. (1.30) becomes 

N ee Cal : . 

The character of a projective representation is defined by x(g) = tr P(g). 

Again, the characters of equivalent representations are the same, but in this 

case the character is not a class function as x(hgh~!) = tr P(hgh') = 

wo(h,h-!) w(h,g)~!wolhg,h-!)~! tr P(g) = (hh!) c(h, g) 1wo(hg,h—!)-!X(g). 
For characters corresponding to irreducible representations with the same 

factor system one again has orthogonality relations 

Dee) vas eben) Noa. (1.31) 
geEG 

and for characters of unitary irreducible representations with the same w 

A reducible projective representation can be decomposed into irreducible 

components with the same w. The multiplicities of these components are 

m,= & x(g)x,(s) (1.33) 
gEG 

as follows from the orthogonality relations. 

To determine the projective representations of a group G one can use a 

procedure due to Schur. First we consider the following situation. Suppose 

that a group R has an Abelian subgroup A such that all elements of A com- 

mute with all elements of R. As A is an invariant subgroup, one can consider 

the factor group R/A. We now suppose that R/A is isomorphic to G. With the 

canonical epimorphism 7 : R > R/A ~G any representation T of G gives a 

representation D of R by D(h) = T(m/A) for any h ER. It is a representation, 

since D(h,) D(hy) = T(th,) T(th) = T(m(hyhy)) = D(A, hz). Now consider 

on the other hand an irreducible representation D(R). As 7 is an epimorphism 

from R onto G, for each g © G one can choose one element r(g) € R such that 

mr(g) = g. Now we define P(g) = D(r(g)). For the product of two matrices P 

one has P(g}) P(gy) = D(r(g1)) D(r(g2)). Because m(r(g,)r(g3)) = 
mr(g\) mr(gz) = g18, the product r(g,g>)r(g,)- !r(g)~! is mapped by 7 on 

e €G. Hence there is an element a(g,,g9) €A such that r(g,)r(g7) = 

a(Z 1,82) 1(g1 87). As a(g1,7) is an element of A and therefore commutes 

with all elements of R, the matrix D(a) commutes with all matrices of D(R). 
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According to Schur’s lemma it is a multiple of the unit matrix: D(a(g),82)) = 

«(g},£2) 1, for some complex number w depending on g,, and gy. Then 

P(g 1) P(g2) = D(a(e1,82)) P(g, 82) = @(81,87) P(g) 2). This means that P isa 
projective representation of G. In this way every irreducible representation of 

R gives for a fixed choice of r(G) a projective representation of G. Now Schur 

has shown the following proposition. For its proof we refer to Schur [1904, 

1907]. 

PROPOSITION 1.12. For each finite group G, there is at least one group R, 

containing an Abelian subgroup A of elements commuting with all elements 

of R, such that 

i) R/A is isomorphic to G, 

ii) A is isomorphic to the multiplicator M(G), 

iii) each projective representation of G can be obtained from the irreducible 

representations of R in the way described above. 

The group R in the proposition is called a representation group. In general, 

the representation group of G is not unique. Its order is the product of the 

orders of G and of M(G). Point iii) in the proposition has to be understood in 

the following way. For a fixed choice of the mappingr : G>R the non- 

equivalent irreducible representations give, for each class of associated factor 

systems, one set of nonequivalent irreducible projective representations. 

As an example consider again the direct product Cy X C). This group G is 

of order four. It is generated by a and b with relations a? = b2 = e, and 

ab = ba. Its elements are e,a,b, and ab. Its multiplicator has two elements 

and a representation group is the group of order 8, generated by a and with 

defining relations a4 = B2 = (a) = €. It has a subgroup A consisting of e and 

a2. The homomorphism 7 maps € and a one, (a,a3) on a, (B, a8) on b, 
and (a8, a36) on ab. Now one can choose r(e) = €, r(a) = a, r(b) = B, 

r(ab) = a8. The group R has the character table given in table 1.3. The four 

Table 1.3 

Character table for the representation group R of Cz x Cp. 

R e [a,a?] [a7] [8,076] [af, 076] 

Die 1 1 1 1 

Dee tat 1 1 =| 

Dealt ee fel =T 

Dat ieee 1 
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representations Dj, ..., Dg give projective representations with trivial factor 

system. These are the four irreducible, ordinary representations of the Abelian 

group Cy X C> of order four. For D5 (R) one finds a projective representation, 

which can be chosen to be 

roe(l*) moe(2 5) nore(?) man-(’ 2) 
It is an irreducible representation with nontrivial factor system. One has the 

relations P(a)? = — 1, P(b)? = 1, P(a) P(b) = — P(b) P(a). The associated 
representation P'(e) = P(e), P'(a) = iP(a), P'(b) = P(b), P'(ab) = P(ab) has 
the same matrix relations as the projective representation of C) X Cp dis- 

cussed in the beginning of this section. These two two-dimensional represen- 

tations are similar. Notice that the four representations Dj, ..., Dg give non- 

equivalent representations, but these representations are associated because 

one can be obtained from the other by elementswise multiplication with a 

complex number. 

For more details concerning projective representations we refer to Schur 

[1904], [1907], Rudra [1965], Harter [1969], and Janssen [1972]. 



CHAPTER II 

GROUP THEORY AND QUANTUM MECHANICS 

In the preceding chapter we discussed the basic mathematical theory 

needed for group theoretical treatment of our physical problems. We will now 

turn to a subject which has already more connection with the mathematics 

one encounters in books on quantum mechanics. As is well known, the 

states of physical systems are usually described by vectors in a Hilbert space. 

Such a Hilbert space is also a complex linear vector space. It will turn out that 

this vector space can be considered as the carrier space of representations of 

certain groups. Therefore we start with a discussion of representations in a 

Hilbert space. Afterwards we define symmetry groups of operators on this 

space. The most important symmetry group will be that of the Hamiltonian 

operator. The properties of the representations of these groups will lead to 

physical consequences that we look at in the second section of this chapter. 

This will bring us to topics, like classification of eigenstates, selection rules, 

perturbation theory, and the construction of invariants. Like in the first 

chapter we will not give an exhaustive treatment of the theory. For more 

details we refer to other books. The classical text is the book by Wigner, 

Wigner [1959]. Other works on applications of group theory on quantum 

mechanics are Hamermesh [1962], Heine [1960], Lomont [1959], 

Ljubarski [1962], and Jansen and Boon [1967]. 

2.1. Representations in a Hilbert space 

2.1.1. Hilbert space 

First we give a definition of the notion of Hilbert space, which plays such 

an important role in quantum mechanics. A Hilbert space is a complex linear 

vector space with an inner product: for any two Wj, 2, elements of H, is 

given a complex number (W/,| >) such that 

45 
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1) (Wy la + 3) = (Wy 1 + YI 3), 

2) (Wy laW=a(W |W) for any complex a, 

3) WylWo? = old, 

4) (W|W)> 0, and (W| Y) = Oif and only if y = 0. 

Moreover, must be complete, which means that for any sequence 1, Wp, ... 

with the property that lim(y, —wW,,|W, — WV) = 0 when n,m, there 

exists an element y € H such that lim(y, —wWly, —W)= 0 when n>. 

The real number (|W) is called the norm of y. A Hilbert space can be of 

finite, as well as of infinite dimension. 

A mapping P of H into itself is called an operator on H. The operator P is 

linear if Pay, +B Wy) = oP(W,) + BP( 2) for any a, 6 € C. It is antilinear, if 

Pla, +BW7) =a" P(W1) + 8° P(W2) for any a,6 € C. 
An example of a Hilbert space is given by the set of square integrable func- 

tions of one variable. Here the inner product is defined by 

(Wil Wy) =S dx Wi(x) Wax). 

A linear operator on this space is the derivation d/dx, which maps (x) on 

dw/dx. An antilinear operator is the operator which maps W(x) on W*(x), as 

(ay, +BW>)" Son vi + p* >. The operator is the complex conjugation opera- 

tor. We notice that the sum of two (anti-)linear operators is again an (anti-) 

linear operator. The product of two antilinear operators is linear, the product 

of a linear and an antilinear operator is antilinear. Here, by product of the 

operators P and Q we mean the operator (PQ) defined by (PQ) = P(Qy). 

The inverse of an operator P does not always exist. If it exists, it is denoted 

by P-!. The adjoint P? of a linear operator P is defined by (Wi IPY.)= 

(pi W,1W) for all ), W> © KH. If for a linear operator Pap the operator is 

Hermitian or self-adjoint. A unitary operator P is a linear operator for which 

the inverse exists and P! P= PP? = 1. An operator is antiunitary if it is anti- 

linear, has an inverse and (PY, |PW>)= | W>)”. 

We mentioned here only some of the most important notions and we did 

not go into detail. For a more complete treatment of Hilbert spaces and 

operators on it we refer to the mathematical literaure, or to books on quan- 
tum mechanics, like Messiah [1961]. The theory of Hilbert spaces is so im- 

i We do not treat notions like bounded operators, unbounded operators, domain of an 

operator and so on. Properly speaking, in the example given one has to discuss the 
domain of the operator d/dx. However, we will not speak about this aspect. 
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portant for quantum mechanics, because in the usual formulation the states 
of a quantum mechanical system can be described by vectors in a Hilbert 
space. We restrict ourselves to normalized states associated with vectors of 
norm |. Then there is still not a one-to-one correspondence between states 
and vectors, as vectors differing by a phase factor (a complex number of 

absolute value 1) describe the same state. The observables are associated with 

Hermitian operators. Then the expectation value of the observable A in the 

state W is given by (W|A )/(W| W). The transition probability from a state Vy 

to a state > is given by |(Y,| YI]. If W is an eigenvector of the Hermitian 

operator A, i.e. if AY = aw for some real number a, the expectation value of 

A in the state W isa. The vectors Y which are eigenvectors of A with eigen- 

value a form a Hilbert subspace of H.If A has a discrete spectrum the space 

H can be decomposed in the direct sum of the eigenspaces of A with different 

eigenvalue. This means that there is a basis of H consisting of eigenvectors of 

A.IfA,, A), ...,A, isa complete set of commuting observables, there is a 

basis of H consisting of simultaneous eigenvectors of all the operators 

A1,...,A,. That the set is complete means that each element of the basis is 

characterized by the n eigenvalues of the operators on this basis element. 

2.1.2. Representations in a Hilbert space 

Since a Hilbert space is a linear vector space, it can carry a linear represen- 

tation of a group G if there is a homomorphism of G into the group of non- 

singular linear operators on H. Suppose 7, is the linear operator correspond- 

ing to the element g © G. We denote the group of all operators T, with g €G 

by T,. If in H a subspace Hy of dimension d exists which is invariant under 

Tg (we say also that it is G-invariant), this subspace carries a d-dimensional 

representation of G. Suppose that yj, ..., Wg is a basis of Hy. Then for an 

y € Hz, the element TW is a linear combination of the basis elements. In 

particular 

d 

TV; merch D(8)ji v; . (2.1) 

For g)8 =g one has on one side 

d 

I, 7 ,, v= TV; er D(8)ji %; 

and on the other side 
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d dead 

Tz, 1g, ¥i = Te, ro DEVE = a re D(8y)Ki DS jK¥; 

because T, is a linear operator. It follows that D(g182) = D(g,) D(g2), ie. 

the matrices of D(G) form a matrix representation of G of dimension d. The 

vectors Wy, ..., Wg are called basis functions for this representation. One uses 

the name basis functions instead of basis vectors as the vectors of # corre- 

spond to wave functions. In the following we suppose again, as we did in 

Ch. 1, §3, that G is a finite group of order V. Then one can easily indicate a 

finite-dimensional, G-invariant subspace of H.If is an element of H the 

elements T,, W, ..., T,,,W span a subspace which is clearly invariant under G. 

Moreover, its dimension is at most NV, the order of G. 

If the representation space H,, spanned by basis functions Wj, ..., Wg, has 

a G-invariant subspace (# H, #0) it is reducible; if there is no such subspace, 

KH, and the representation are irreducible. 

Suppose that #, is irreducible. When the operators T, are unitary, the 

corresponding matrices D(g) are unitary if the basis is orthonormal. One has 

(Wl Wi) = (Til TyW;) (for any g €G) 

d 

=(1/N) ee ares D(2)4iD(g)ij Vx Wp 

d d 

Therefore, if W; = W;(d~!Z, (Wy, 1W;,))” one has 

(hil i) = 85. (2.2) 

In the following we will assume basis functions of irreducible, unitary repre- 
sentations to be orthogonal and normalized. 

2.1.3. Expansion in basis functions of irreducible representations 

Now we will show that one can decompose H into the direct sum of sub- 
spaces carrying irreducible representations of the group G. In order to see this 
consider an arbitrary function y, i.e. a vector in H. By speaking about func- 

b 
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tions instead of vectors we have a better correspondence with the terminology 
of quantum mechanics. The set Tg spans a subspace of H, which is finite- 
dimensional and G-invariant. It carries a representation of G which is, in 

general, reducible. Suppose the reduction of the matrix representation D(G) 
is performed by a matrix U. Then one has UD(G)U~! = D'(G) = 
ee m,D,(G), where D,(G) are irreducible representations. If W,, ..., Wg 

form a basis of D(G), the elements y; = Uy, (i= 1, ...,d) form a basis for 

D'(G). As Hy is the direct sum of 2m, irreducible subspaces, the basis ele- 

ments for D'(G) can be characterized by three indices: one denoting the irre- 

ducible component, one labeling the subspaces which carry the same irreduc- 

ible component, and one labeling the basis functions of the subspace specified 

by the two preceding labels. If d, is the dimension of the component D,(G), 

one can write 

ee t= 3, et (We e= lar l= lag mse tnd, } > 

The functions ¥,71, -., Vaig form a basis for D,(G). As the multiplicity of 

D,(G) ism,, the different spaces carrying this same representation are dis- 

tinguished by the index /. Under the operator T, the basis functions with 

given a and / transform according to 

d 

TW eli & oa DAZ) Voli : (2.3) 

One says that the function W,), belongs to the k-th row of the irreducible 

representation D,(G). To come to the result announced in the beginning, one 

can write, taking the arbitrary w as the first element y, of the basis, 

: r Mg dy 

W=Wy= 2 Uyy= ve Aras Uetk, Valk » 

where the triple (alk) labels basis functions of the space spanned by 

W 1, Wg- As the functions Walk are basis functions for irreducible represen- 

tations, we have proved that any function can be expanded in such basis func- 

tions: 

: (2.4) v & atk Volk > 

for arbitrary Wy €H, the coefficients f,,), are complex numbers. 
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2.1.4. Construction of basis functions 

According to eq. (2.4) each function w can be written as a sum of terms 

transforming under the operators 7, as the different rows of the various irre- 

ducible representations of G. To find these components we can make use of 

projection operator techniques. As a second result we will find functions 

which are basis functions of the irreducible representations. In order to do 

this we choose one representation from each equivalence class of irreducible 

representations of G. If the matrices of these representations are D,(G), with 

a= 1,...,7, we define an operator 

Di — (dai) z ED ts ’ (@,j= Lies Qe, (2)5) 
gEG 

where d, is the dimension of D,(G), and N the order of G. We now suppose 

that both 7, and D,(g) are unitary. 

PROPOSITION 2.1. The operators pi satisfy the relations 

1) (p#)! = p% , 

2) PF Oki = Sap dix Pit - (2.6) 

Proof. 

a t = ne t = S =i = 

2) pS py = (d,dg/N*) : Dy, D(g)j;D3(M iT Ty 

= adgiN’) 2D . D3(8)i;Dg(@ | @)y1T with a = gh 

a 2 Y rs = (d.dg/N Meera Du()iz gle") Dp(@) ii Ta 

dg 
= 2 i 
pe aie cg Pal) Palme Pa @miTa 

d a 

ACN 3 a oo8 im 5jnD5 (Di Ty 
m=) ae 

= (4gIN) Di (it Ts bap 8jx = Bap Bix OF 
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Consequently for i= the operator p;; is Hermitian. Moreover, it is idem- 
potent: p§;p%; = p%;. Hence it is a projection operator. We recall that P is a 
projection DESI if it is Hermitian and if P? = P. Fori#j the operator ve 
is nilpotent: py ae 0. 

To see what the Late P;; projects out, we consider the action of pj on 

an arbitrary function ¢. Using eq. (2.4) we have 

o= 5 , Ipik Volk > 

and 

a = * 

dg 
= OF faix(dg/N) = DAS); ae Dg(®) mk Yelm 

= 2 Tatk Ung Cum 7k Vein — = ol) Voli - 
BIk l 

From this we derive the following conclusions. The operator pf; projects from 

¢ the component which belongs to the i-th row of the representation D,(G). 

The summiation over a and i of these operators gives I, because Lai Pid = 

Loli Sali Voli = > (eq. (2.4)) and consequently D,; pf = 1. That 7; really gives 

the ai-component is seen from the transformation property of pi? under the 

action of T,: 

T,p%}6= (daIN) Dy M)ij Ten = alN) Dg 'h)i Th 

dy 

(AN) s2oe 32 D(8)miPaMmj Th 
heG m=1 

dy 

EZ Dy(E)niP nj? (2.7) 
m=1 

i 

Eq. (2.7) gives for i =/ 

T, pi? = 2 DoS miPmi® - 

Therefore, for fixed 7 the functions pi (i=1,...,d,) form a basis for the 

irreducible representation D,(G), and the function pj;¢ belongs to the i-th 
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row of this irreducible representation. 

We recapitulate the results of this section. 1) The projection operator psi 

projects from an arbitrary function ¢ its component which transforms as the 

i-th row of the irreducible representation D,(G). 2) To find a basis of the 

irreducible representation D,(G) one can take an arbitrary function ¢. Then 

the d, functions pi with fixed j andi= 1, ..., d, are either zero (if ¢ has no 

ai-component), or they form a basis for the representation. Notice that it is 

important to keep j fixed, as the functions p¥;¢ do not form a basis. 

2.1.5. Example 

Consider the Hilbert space of three-particle states in one dimension. The 

elements are functions $(x,,x7,x3) and the scalar product is given by 

(1162) =f dx dx 7dx340](x1,%7,%3) b2(X1,x2,X3). For the group G we 
take the group of Ch. 1, $1.8, the permutation group of three elements: 

e,a,a*,c,ac,a*c. The operators T, for the permutation g G, ‘ i,) are 

defined by T,$(x1,x2,%3) = (Xj, ,Xig> Xia), which is denoted by g@. 

We give two three-particle functions: 

(15% 95%3)=(8TOr1 +XQ — 3) + x39 +3 — 4) 
+x4(x5 fie) exp (x4 2x5 e) ; 

$2(%1,%75%3) = 64 (%2,% 1,3) - 

One easily checks the relations 

ab, =0°b,=$), ab) =a) = $5, eG) =(ac)$; = (a2c)o = 9, 

CO = (ac) = (a2c)$ = O41. 

Hence the space spanned by the functions ¢, and $5 is invariant under G. It 

carries a two-dimensional representation of G with matrices (with ¢, and oy) 

as basis) D(e) = D(a) = D(a?) = G oe: D(c) = D(ac) = D(a2c) = @ I. The 

representation is reducible as using eq. (1.20) one sees from the character 

X = (2, 2, 2,0, 0, 0). A basis which gives the matrices the reduced form is 

¥, =, + $9, and p> = >) — $y. The representation with respect to this basis 

is determined by ay, = a*y, =¢V, = (ac)v, = (a2c)p, =W1,a2= a*W> = 
Wo, and cW7 = (ac) p> = (a*c) p> = —W>. This means that Y, spans a one- 
dimensional representation denoted by D,(G) in Ch. 1, §3.4 and W> spans 
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the one-dimensional representation D (G). 
In the same space of three-particle states we give an example of the projec- 

tion operator technique. From an arbitrary function ¢ = $(X1,%7,X3) One can 
construct basis functions for each of the irreducible representations DG), 
(a= 1, 2,3). They are 

016 = {6(x4,x9,%3) + O(%7,%3,%1) + $(%3,%4,x2) + 6(%7,%],%3) 

+ b(x3,X2,X1) + O(%1,x3,%2) 1/6 

7b = {6(%1,x2,%3) + O(%y,%5,%4) + $(%3,%1,%9) — O(x2,% 1,3) 

~ $(%3,%7,1) — $(%1,x3,%) }/6 

Pi1d = {$(x4,%2,%3) — O(%7,%3,X1) — 6(%3,%9,1) + O(%],x3,x9)}/3 

£319 = {9(%2,%3,%1) — (%3,%1,Xy) + O(%9,%1,%3) — $08 1,%3,%2) 3 - 

It is possible that some of these functions are zero. In that case we have to take 

another function which has a component in each representation. Notice that 

the function p!¢ is fully symmetric in its three indices, whereas the second one, 

p26, is fully antisymmetric. The first function can describe bosons, because 

the wave functions of bosons have to be fully symmetric. The second function 

can describe fermions. However, according to the symmetrization postulate, 

which states that wave functions of identical particles are either symmetric, or 

antisymmetric, the functions pid and p31 do not describe systems of identi- 

cal particles. The operator p! is the projection operator on the space of sym- 

metric wave functions, the operator p2 that on the space of antisymmetric 

wave functions. 

2.1.6. Projective representations on a Hilbert space 

In quantum mechanics to each vector of the Hilbert space # corresponds a 

state of the system. This correspondence is not one-to-one because all vectors 

differing only by a complex factor give the same state. Therefore, for quantum 

mechanics the important objects are the one-dimensional subspaces of H, 

called the vector rays of the Hilbert space. These rays are the elements of the 

projective Hilbert space H, to be compared with the projective space discussed 

in Ch. 1, §3.5. The ray is the one-dimensional subspace to which wp belongs. 

Although # is not a linear vector space, we can define a kind of inner product, 
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more precisely a mapping which assigns to each pair Y,, Wy a real number 

(2.8) 
/2 

(Wl YW W>))? 

The reason for this definition will become clear in the next section. We notice 

that it corresponds to the transition probability between Y, and W>. As the 

ray of W is the same as the ray of ay, it is readily verified that the definition 

eq. (2.8) does not depend on the choice of the vectors Y,; and Wy from their 

respective rays. If one chooses ay, and By, instead of Y, and 4, one has 

Kaw, |BY2)|/(KKav | a )(BW IBY)? = (¥,, V,). Now we can consider 

mappings of # onto itself which leave invariant this “inner product”. We call 

these mappings automorphisms of #. 

Let A be a unitary or antiunitary operator on the Hilbert space H. The 

operator A defined on H by AW= (AY) is an automorphism of #, as one 

easily verifies. On the other hand Wigner has shown that every automorphism 

of H can be obtained in this way from either a unitary, or an antiunitary 

operator on H. Moreover, any two unitary or antiunitary operators giving the 

same automorphism differ only by a scalar factor. The set of all operators aA 

differing only by the scalar factor @ is called the operator ray A. The operator 

rays of unitary operators form a subgroup (of index two) of the group of 

automorphisms of #. A homomorphism of a group G into this subgroup is a 

projective representation of G in H. Now consider a subspace Hy of dimen- 

sion d, which is invariant under all the (linear) operators corresponding to the 

rays of the projective representation on J. Then the projective space Hy 

Carries a projective representation in the sense of Ch. 1, $3.5. If we choose in 

each operator ray of the representation a unitary operator, the set of opera- 

tors satisfies eq. (1.26). 

2.2. Symmetry and quantum mechanics 

2.2.1. Symmetry transformations 

A state of a physical system corresponds to a ray in a Hilbert space. A re- 

presentative chosen from this ray is described by its coordinates with respect 
to a basis of eigenfunctions of a complete set of commuting observables. 
This set of commuting observables describes a series of measurements in a 

certain reference system. In another reference system the description would 
be different. Let Y be the state vector (determined up to a phase factor) for 
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one observer, and yw’ the state vector for another observer. Suppose that the 
reference systems are related by a transformation g, which is a transformation 
in space and time. The transformation g induces a transformation of states 
ypoy'= T,W. Of course the physical content of the description must remain 

the same. This means that transition probabilities |(w|y)| have the same value 

in both reference systems. (Here we only consider transformations of the 

spatial coordinates, time reversal, and time translations.) The condition 

CW'ly>| = CW 1 y)| means that g induces an automorphism of the projective 

Hilbert space H. According to Wigner’s theorem (§ 1.6) there always exists a 

unitary or antiunitary operator T, which induces this automorphism. It turns 

out that only when time-reversal is involved we have an antiunitary operator. 

In all other cases the operators are unitary. 

As an example we consider a particle without spin. Its wave function is 

given by W(x) for one observer, by w(x’) for the other one. In this case we 

can choose for the operator 7, the so-called substitution operator P,, defined 

by its action 

PW (x)= W(g-tx) . (2.9) 

In that case y'(x') = ae ) (gx) = W(x), which means that the value of w’ in 

the point described by x’ for one observer is the same as the value of y in the 

same point described by x for the other. Of course the same transformation 

of the projective space, ie. the same mapping of the rays, is given by the 

operator exp (iy) Pe, which differs only by a phase factor from P,. The opera- 

tor P, is indeed a unitary operator as 

(g'lw')= fdxg(g-1x) p'(g-lx) = fdxlgle (x) W(x) = (el, 

where the Jacobian |g| is assumed to be unity. This is the case for all transfor- 

mations we will consider. Moreover, we notice that for the elements g of a 

group of transformations G, the operators P, form a representation as 

P,P, W(x) = Py, W(g 1x) = Wh 1g 1x) = W((gh)~!x) = Pep W(X) . 

If an observable is associated with the Hermitian operator A for observer 

one, the sane quantity for observer two is associated with the operator 

A'= TAT, ', because (y| 41) = (Tz y|T,AT, I T,9) = 68 |A'| wy’). If the 

two Gee and A’ are the same, i.e. ae Today or [T, A| = 0, the 

operator T, is called a symmetry operator for A, and g is male a caymaneay 

of the erica More in general, one defines a symmetry operator for A asa 
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unitary or antiunitary operator P commuting with A. A special kind of sym- 

metry operators are those arising from space (and time) transformations. 

These are called geometric symmetry operators. The other symmetry opera- 

tors can not be interpreted as arising from transformations connecting differ- 

ent reference systems. The product of two symmetry operators is again a sym- 

metry operator. So we can consider a group of symmetry operators for A. A 

symmetry group of the operator A is a group of unitary or antiunitary opera- 

tors commuting with A. If the symmetry operator is induced by a space-time 

transformation, we call it an invariance operator for A. It is the product of a 

substitution operator and an operator such that the combination commutes 

with A. A group of invariance operators (geometric symmetry operators) is 

called an invariance group or invariance operator group for A. The group of 

space-time transformations which induces the invariance operator group is 

also called an invariance group for A. The importance of the symmetry opera- 

tors follows from the following property. If P is a symmetry operator for A, 

it transforms eigenfunctions of A into eigenfunctions with the same eigen- 

value: if A| Y)=alw), then AP| Y)=PA|wW)=aP| wy). For an operator which 

is not a symmetry operator one has PA Pt|W)=alw’). This simply means, 

that for geometric operators P the description of one observer can be trans- 

lated into the description of the other. For a symmetry operator it is not only 

a transformation: both observers see the same system. 

Suppose the geometric transformation g gives the relation between the 

reference systems of observers | and 2. A state is described by the first one 

with the ray W, by the other one with W’. As transition probabilities must be 

the same for both observers, one has (VW, ¥) = (4, W>) for any pair ¥,, > 
(cf. eq. (2.8)). This means that to g corresponds an automorphism of the 

projective Hilbert space #€. According to Wigner’s theorem there is a (anti:) 

unitary operator T, such that T,W='. As T,T;, = (T,,) for two transfor- 
mations g and h, one has TT), = w(g,h) T gh: This means that for a symmetry 

group G of space transformations the operators Tg form a projective repre- 

sentation of G. 

In the general definition of symmetry operator for an operator A we con- 

sidered all unitary and antiunitary operators commuting with A. If [P,A] = 0 

for an arbitrary phase factor exp (iy) also [exp (iy) P, A] = 0, and exp (iy)P 

is also a symmetry operator. Therefore, the symmetry group, which is the 

group of all symmetry operators, is never a finite group. As both P and 

exp (ip) P determine the same automorphism of the projective space, the 
symmetry group determines a subgroup G of the automorphism group of H. 
Choosing one operator from each operator ray in this group G, one obtains a 
projective representation of G. However, it is nearly always possible to choose 
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the phases of the operators in such a way that choosing one or two operators 

from each ray of G, one obtains a group of operators on H. This group G’ is a 

subgroup of the symmetry group, and is homomorphic to G: to each element 

of G correspond a number of elements of G’. In the case of spinless particles 

to each symmetry transformation g corresponds an Operator ray i , and in 

each ray one can choose one substitution operator P, such that thee form a 

group. For particles with spin, as we will see later in Ch. 5, it will be possible 

to choose two operators from each ray such that the resultant set of operators 

forms a group. In general, we can choose a number of operators from each ray 

to form a group. We take this number as small as possible. As we will see later 

on, the consequences of the existence of this smaller group are the same as 

those for the complete symmetry group of all operators with all phases com- 

muting with A. 

2.2.2. Symmetry operators for the Hamiltonian operator 

Although the concept of symmetry group of an operator is useful for an 

arbitrary operator, that for the Hamilton operator is especially important. All 

unitary and antiunitary operators commuting with the Hamilton operator H 

form the symmetry group of H. Any subgroup of this group is a group of sym- 

metry operators for H. Among these subgroups is the group of all invariance 

operators. Consider the most simple case: a particle without spin in a poten- 

tial V(x). Then H = p2/2m + V(x). Let us look for the substitution operators 

commuting with H. First we remark that the commutation of a substitution 

operator P, with a function f(x) depending only on the position coordinates 

is given by 

P,f)P, |= fe ‘x), 

because acting with this operator on a nee function W(x) gives 

P, f(x) Pz | W(x) = Pe fx) W (gx) = flg- 1) W(x). For the commutation of 
P, with the momentum operator one has 

3 
=] _ 

etme arg irie 

where R is the homogeneous part of g given by its aceen on x by (gx); = 

2, Ry Xx; + t;. Then P eDiPg 1 W(x) =—niP g( 0/0x;) Py 'y(x)= 

hie (a/ax; NCE = " hi(a/a(g-!x),) W(x) = = 

— iB ,(9/8x,) We) (8xj]0(g-1x);) = — RIE Ryj(8/x;) W(X) = By RiP) VX). 
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If the matrix R is orthogonal one has P,p;P; = x, Ri; or P pe = Rp. 

This means that for the commutation of P, with the Hamilton operator H one 

has 

Pe(p?/2m+ V(x))Py | =(R~p)?/2m + Vig x). 

If R is orthogonal (R-1p)? = pe. Hence H commutes with P, if the homo- 

geneous part of g is orthogonal and if the potential V(x) is invariant under g. 

The invariance group of H is then determined as the group of transformations 

g with R orthogonal and leaving V invariant. For particles with internal 

degrees of freedom, like spin, the operator 7, is, in general, not plainly a sub- 

stitution operator. We will come to this in Ch. 5. 

Until further notice we will consider only the symmetry operators of H 

which are substitution operators. These form the group G. When dq is a sub- 
space of the Hilbert space belonging to an eigenvalue F of H, one has for an 

eigenvector WC Hq : AP, = PHY = EP,W for any g ©G. This means that 

Hg is an invariant subspace of H. If the operators P, are unitary (and not 

antiunitary) this space carries a representation of G. The dimension of this 

representation is the dimension of Hg, i.e. the degeneracy of the energy level 

E. In general, such a representation is reducible. 

Assume that ( is an irreducible representation space of G. Then H is an 

irreducible representation space of G. This dC, is also a representation space 

for any subgroup K of G. When the representation of G corresponds to the 

matrices D(g,), ..., D(gy), the matrices for K are D(K) € D(G). In general, 

this representation is reducible. The smaller K is, the more representations, 

found in this way, are reducible. The eigenvalue belonging to an eigenspace 

which yields an irreducible representation of G is said to be naturally degen- 

erate with respect to G. Is G a symmetry group of H, a level is accidentally 

degenerate with respect to G if its eigenvalue corresponds to an eigenspace 

which carries a reducible representation of G. When this occurs the degeneracy 

can be removed by a change in the Hamiltonian H without changing its sym- 

metry. With respect to a subgroup of the full symmetry group, e.g. for the 

symmetry group of substitution operators, one can easily have accidental 

degeneracy. A well known example is the Hamiltonian of an electron in the 

Coulomb potential. If one considers the substitution symmetry, the sym- 

metry group is the orthogonal group O(3). With respect to this symmetry the 

Jevels are accidentally degenerate. However, Fock has shown that there is in 

fact O(4) symmetry and with respect to this group the levels are naturally 

degenerate. In the following we suppose that there is no accidental degeneracy. 
The Hamiltonian H has eigenvalues £;, where the index 7 runs through a 
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discrete set of parameters. The corresponding eigenspaces H,; are representa- 
tion spaces for irreducible representations of the symmetry group G, consist- 
ing of unitary operators T , (g&G) commuting with H. Choosing a set of basis 
functions which are orthogonal and normalized one has also a basis for the 

representation. Hence the basis functions are labelled by three indices: 
ere (= Wes P= 2.28 k= 1) ...,d,), Where / is a label distinguishing 

between eigenspaces with the same a. The eigenspaces and corresponding 

eigenvalues are denoted by H,) and E,,) respectively. In this way the sym- 

metry group of the Hamiltonian may be used for the classification of eigen- 

functions and eigenvalues. The degeneracy of Ey) is given by the dimension 

d, of H,;. According to §1.2 the eigenfunctions transform under the group 

G as TeWotk = Lm D2)mkValm- A Well known example is the classification 

of the eigenfunctions in a rotationally symmetric potential. There the eigen- 

functions are denoted by w,,),,, where n is the principal quantum number, / 

the eigenvalue of the operator L? (which denotes the representation D, of the 

symmetry group, which is the three-dimensional rotation group), and m the 

eigenvalue of L3, which numbers the (2/+ 1) eigenfunctions which are the 

basis functions of the representation. 

A Hermitian operator commuting with H has an expectation value which 

does not depend on the time, because (d/dt)(W|P| ¥) =i(W|[H,P]|)/h. 

Hence any Hermitian operator commuting with A gives a constant of motion. 

The symmetry group consists of unitary operators. A unitary operator is only 

Hermitian if it is of order two: U-! = Ut = U. On the other hand if the oper- 

ator P is Hermitian and commutes with H, also the unitary operator exp (iPf) 

commutes with H for every value of the real parameter ¢. This is an element 

of an infinite group (tf can vary continuously). Therefore, there is a corre- 

spondence between continuous symmetry groups and constants of motion, as 

one knows very well e.g. for the rotation group. As we will consider here only 

finite groups, the symmetry operators do not give rise, in general, to constants 

of motion. 
As the Hilbert space # is the direct sum of eigenspaces of the Hamiltonian 

H, and for each eigenspace one can give a basis consisting of basis functions of 

irreducible representations, a basis for H is given by the functions W,;;. These 

functions are simultaneous eigenfunctions of the operators H (with eigenvalue 

E,,)) and p§;, because the projection operator pj acts on We) as Pri Vek = 

Soe Six Yeix- Moreover, the operators p;; commute with H because they are 

linear combinations of the operators 7, commuting with H. This resembles 

the description of Dirac. In Dirac’s formulation a basis of H is formed by 

simultaneous eigenfunctions of a complete set of commuting operators. 

However, if accidental degeneracy occurs, an eigenfunction is not completely 
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determined by its eigenvalues for H and p§;. An eigenvalue E fixes the space 

H, but if this space carries a reducible representation of G with two identical 

irreducible components, say D,(G), the i-th basisfunctions in both irreducible 

subspaces are eigenfunctions of p;; with eigenvalue 1. In the case where no 

accidental degeneracy occurs the basisfunctions are completely determined 

by their eigenvalues under H and p¥;, of course up to a phase factor. 

2.2.3. Symmetry and perturbation theory 

A second region, where group theory is useful in quantum mechanics is 

perturbation theory, where group theory can make predictions about the 

splitting of degenerate energy levels under a perturbation. One considers a 

Hamiltonian H which can be decomposed as H = H, + 4; in the Hamiltonian 

of the unperturbed system and an interaction part \H; which is supposed to 

be small compared with H,. We will denote the symmetry group of H, by G5, 

that of H by G. Usually one takes H, in such a way that it has a larger sym- 

metry. In general G is a subgroup of G,, but this is not necessarily the case, 

as we shall see in Ch. 6, §3, where we will discuss the symmetry of a system 

in a magnetic field. 

For a level E° of H, the eigenfunctions of H, transform according to a 

d-dimensional representation D(G,) which is, barring accidental degeneracy, 

irreducible. As one knows from the theory of perturbation of degenerate 

levels, an orthonormal basis of the eigenspace of F° is in general not a good 

zeroth order approximation for the eigenfunctions of H. One has to perform 

first a unitary transformation on this basis. To see what this has to do with 

the symmetry we consider the splitting of the level by the perturbation. 

Under \H; the eigenvalue F° splits up into a number of levels Bag lesbo 

each of these levels FE, belongs a representation D,(G) which we will assume 

to be irreducible. In each subspace H, one may choose an orthonormal basis 

Wax (K= 1,...,d,). For vanishing interaction, i.e. in the limit \ > 0 one has 

lim By = E° and lim Wx = Wo,. Then W9;, (@=1,...,2;k= 1,...,d,) form an 

orthonormal basis for the eigenspace of the level E°. The functions of this 

basis are apparently good zeroth order approximations by definition. 

In the space H, belonging to the eigenvalue E, of H an irreducible repre- 

sentation of G is given by 

doy 

TeVar = % Dal@ixVar (8G). 

In the limit 4 > 0 one obtains 
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dy rh 
T Wok = es DiAsVur (gEG). 

As the function Wo, (a=1,...,n and k=1, ...,d,) form an orthonormal basis 
in the space belonging to the eigenvalue £° of H,, this space carries a repre- 
sentation of G. However, if the level splits into more than one level, the repre- 
sentation is reducible. Here we used the fact that the functions Wax Which are 
linearly independent, remain so in the limit. Then the functions wex span for 
fixed @ a G-invariant subspace of the eigenspace with eigenvalue E°. On the 
other hand, this eigenspace carries an irreducible representation of G, and 

consequently also a representation of the subgroup G. In general, this repre- 

sentation is reducible: if a basis 9), ..., dg gives a representation 

Tb; = % DOE)ibj (any g€G), 

the basis W9 1, -... Woz... Ung. gives a representation D(G) = Y,m,De(G), 
which is equivalent to D°(G). The basis We, in the eigenspace belonging to 

the eigenvalue F° is the basis which brings the representation D°(G) in re- 

duced form, and which consists of functions which are good zeroth order 

approximations to the eigenfunctions of H. As the representations D,(G) are 

the irreducible components of the reducible representation D°(G), or of its 
equivalent representation D(G), one can determine to which irreducible re- 

presentations of G correspond the levels of H into which splits the level F° of 

H,. Among other things this means that the degeneracies of the sublevels are 

determined from the dimensions of the irreducible components of D(G). 

Now we drop the assumption that the levels correspond to irreducible re- 

presentations of the symmetry groups. Then by accident the energy levels 

denoted by £,; and Eg, can coincide. This means that for this level we have 

accidental degeneracy, and that the eigenspace of the Hamiltonian carries a 

reducible representation of the symmetry group. One can have the following 

four situations. 

1) The groups G and G, are the same and F£° is naturally degenerate. This 

means that the symmetry is not lowered by the perturbation. As both D and 

D® are irreducible representations of G, = G, there is no level splitting. 

2) G is a proper subgroup of G, and £° is naturally degenerate. The represen- 

tation D(G,) is irreducible, but D(G) may be reducible: D(G) ~ DT Daa): 

In this case the level splits up into n sublevels. By accident some of these 

levels may coincide and then we have accidental degeneracy. The degeneracies 

of the sublevels are given by the dimensions d, of the irreducible components 

D&(G), which are the irreducible components of the representation D(G,) 

restricted to the subgroup G. 
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3) G, = G, and E° is an accidentally degenerate level. Then the eigenspace is 

a reducible space with respect to G, and the corresponding representation 

D(G,) is reducible: D(G,) = es -,D,(G,). As G = G, only the representa- 

tions D,(G), ..., D (G) occur as Shen oe pomponcnts of D(G). The level 

E° may split up Hehe sublevels. Again by accident some of these sublevels 

may coincide. This means that in general the accidental degeneracy is partially 

or completely lifted, such that the natural degeneracy remains. 

4) IfG CG, and F° is accidentally degenerate, one can write 

De 
D(G) = 2 D(G)= EE Dai(G), 

where D,(G,) are the irreducible components of D(G,) and D,;(G) are the 

irreducible components of D,(G). The level E° now splits up into as many 

sublevels as there are irreducible components D,,;(G). Some of the levels may 

again coincide. 

Concluding one can find the splitting of an energy level E° under a pertur- 

bation H;, if the symmetry group of H is a subgroup of that of H,. To find the 

splitting one has to reduce the restriction of the representation D(G,), carried 

by the eigenspace of E°, to the subgroup G (i.e. D(G)) into its irreducible 

components. Each irreducible component corresponds to an energy level of H. 

The degeneracy of this level is the dimension of the representation. The re- 

duction gives the maximal number of energy sublevels, because some levels 

may coincide. 

2.2.4. Selection rules 

In the last section we considered the splitting of an energy level under a 

perturbation. We found a method of making qualitative predictions about 

this splitting. However, the method said nothing about the magnitude of 

splitting. In quantum mechanics the transition from one eigenstate y, of the 

Hamiltonian H, to another one 5, and the energy shift under influence of a 

perturbation H; is determined by the matrix element (W,|H;|W >). Group 

theory alone is not sufficient to calculate this matrix element, but it is very 

useful to facilitate these calculations by general statements. A central role here 

is taken by the following proposition. 

PROPOSITION 2.2. Basis functions belonging to different irreducible repre- 
sentations, or to different rows of identically the same irreducible representa- 
tions are orthogonal. 

Proof. Suppose that ,; is a basis function of the i-th row of the irreducible 
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representation D,(G) in H and Wa; a basis function of D,(G) in KH’. Then the 
inner product of two such functions is 

' ' if Ul Wail Yap = Te bail TV a= iy Ee Teil Te¥gp 
reo : : = Nice is Dy(8)Ki Dgl8)1j Vax | Yr? 

dy 

l Ul Ul / 1 == © 846549 Oy (Wax! Wer) = Sa 7 5 D. Woxl Won? - dy kl ab © klY ij Yak! YB! a ~ ij dy a ak! ¥ ak 

This proves the proposition. Notice that the inner product does not depend 

on the row, but only on the representation a and on H and X’. 

The proposition enables us to determine whether matrix elements between 

two functions vanish on symmetry grounds or not. To see this, consider a 

basis 1, ..., Vay for an irreducible representation D,(G) of a group G. 

Further consider an operator A which commutes with T, for any g © G. Then 

AW ys s+ Ava, is a basis for the same representation because 

dy 

This means that a matrix element of A between two basis functions of irre- 

ducible representations of the symmetry group of A is 

, ! , 1 / 

Wi |A |W aj? = (Wai lA Wey? — 5 ag bi re Z (Wox lA | Wey : (2.10) 

Qa 

Therefore, the matrix element vanishes between functions which belong to 

nonequivalent representations or to different rows of identically the same re- 

presentation. 
For an arbitrary matrix element (,|A |? one can use the decomposi- 

tion by the projection operators pi; (cf. § 1.4). One has 

Vi = py» 
al 

2 == phy. 
ies 

Suppose that A is an operator such that Al = 0 for any g €G. Then the 
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matrix element is given by 

(WylAlWy)= © (ow 1A leg vo) 
a Bl] 

= J 5485 (Wig llAll¥2.)» 
apy 

where (W I| All V2.) = C/dy) 2p (oxy 1 1A lox, V2». This means that the 

matrix element vanishes if the decompositions of , and Wz have no common 

terms. 

As an example consider an interaction V(r) which is invariant under the 

parity transformation P defined by PV(r)P* = V(—r). Invariance means that 

PV(r)P! = V(r). The group G is here the group of order two consisting of 

the unit matrix and its negative. Its irreducible representations are given by 

D,,(P) = +1. Hence the projection operators are p* defined by p* y(r) = 

z[¥(r)+¥(—r)], and” defined by p” W(r) =2[¥(r)— W(—1)]. The pro- 
position about matrix elements says that the matrix element of V(r) between 

symmetric and antisymmetric functions vanishes. 

2.2.5. Tensor operators 

In the preceding sections we considered operators which were invariant 

under certain transformations. However, this is a special case. In quantum 

mechanics also operators play a role which are not invariant, but which trans- 

form in a specific way under Hilbert space operators. As an example we 

mention the momentum operator p. Under the substitution operators Pp 

corresponding to rotations R this operator is not invariant, but transforms as 

a vector. This means the following. Consider a rotation R. In the three-dimen- 

sional space this corresponds, with respect to an orthonormal basis, to a 

matrix with elements R;;. This matrix is orthogonal (R = R~!), and all three- 

dimensional orthogonal matrices form a (faithful) irreducible representation 

of the group of orthogonal transformations. If one determines the commuta- 

tion of Pr with the components of p, one obtains 

3 

jes piPRi= 2 Ryd; G= eee e 

We call an operator which transforms in this way a vector operator. 

We generalize this definition in the following way. An irreducible tensor 
operator for the irreducible representation D,(G) of a group G is a set of dy 
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(the dimension of D,(G)) operators such that the commutation relations 
with the operators T,, are given by 

doy 

— 1 : 
TO; Ty Fa D,(8);;O; (i = ie eee) 5 (a 1) 

where D,(g) is the matrix representing T,. When one does not specify the 
group G one usually has in mind the orthogonal group in 3 dimensions. As one 
knows (see e.g. Boerner [1967]) the irreducible representation of this group 

are denoted by D™, which has dimension 2/+1. 

A special case of a tensor operator is one which transforms according to 

the trivial representation. In this case Ol. = O, or [T,, 0] = O. Such an 

operator is called a scalar operator. It is nothing but the invariant operator 

from the preceding sections. The operator T, is a symmetry operator for O. 

A vector operator T for the rotation group in 3 dimensions is an operator 

which transforms according to D“) of this group. It has 2/+ 1 = 3 components 

T,, T,, T3. An example is the operator p. 

When the operators Of, ..., OZ, are the components of an irreducible 
tensor operator for the representation D,(G), and Ore. o§ those of one 

for D,(G), the operators osof transform according to 

eee =| 1 ee i ogof Laat Onl, T; of ine D8); Dg(8)1j Ok Of . 

Hence the operators ozo8 transform according to the tensor product 

(D,® Dg)(G). This is in general not an irreducible representation. If the repre- 

sentation is reducible, one can make linear combinations of the operators 

ozo which belong to irreducible representations. Although the three-dimen- 

sional rotation group is not finite, we choose this group again as an example, 

because this gives tensor operators which are well known from quantum 

mechanics. If T;, 7, 73 are the components of a vector operator, the opera- 

tors 7,7; belong to the product representation D™ @ D™), which is reducible 

into three components, of dimension 1, 3 and 5. The operator 7,7, + T,7 + 

T3T3 is a scalar operator, belonging to the representation D© The 3 opera- 

tors Vi ice (TT; = T3T>), V> = aT T3 — T3T\), and V3 oa at T> = T>T\) 

are the three components of a vector operator. Finally there are five other 

operators which form the components of a five-dimensional tensor operator. 

In § 2.4 we found that matrix elements of an operator which is invariant 

under a group G, vanish between functions belonging to nonequivalent irre- 

ducible representations or to different rows of identically the same represen- 

tation. To generalize this result we consider the transformation properties of 
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the function OF Wk: where O}* is an irreducible tensor operator belonging to 

D,(G), and Wx is a basis function belonging to the k-th row of D,(G). Then 

one has 

TOF Vox = TOP Te TeVpx = © Dal )jiDo(@xO/" Yer 

= a (D,,® Dg)(8)j1, xO; Y¢I - (2:12) 

Therefore, the d,d, functions Of Wx form a basis for the product represen- 

tation (D, ® Dg)(G). This is, in general, a reducible representation, i.e. there is 

a matrix S such that S[D, @ Dg](g) = D(g) S, where D(g) is the direct sum 

Za m,D,(§). The matrix S determines a basis transformation (eq. (1.4)). 

When Vol (y=1,..5752= 1, tee, Mo f= il. et) are basis functions which 

bring the matrices into the reduced form D(g), one has 

OF Vek = a Sj, apik Y ylj ° (2.13) 

To what extent are the functions y,,,; determined by the requirement that 

they bring [D,,® Dg](G) in reduced form? Suppose S' also gives such a basis, 

i.e. S'[D,@ Dg](G) = D(G)S' as well. Then S'S—1D(G)S = D(G)S", or 
U=S'S~! commutes with every matrix D(g). If D(G), and thus [D, @ Dg\(G), 
were irreducible, U would be a multiple of the unit matrix according to 

Schur’s lemma. In that case the basis functions are determined up to a common 

factor. When D(G) is not irreducible, one can write its matrices in block form 

O20 WHC) OxeO 
D(g) = a 

where D;;(G) is the i-th irreducible component. Write U in the same block 
form 

U; 1 U, 2 Pec ccccecece Ci 

Cec Aie eee weiner eee 

Bi ies toed ees Ue 

such that Uj; is ad; X d; matrix. The condition UD(g) = D(g) U then reads 



GROUP THEORY AND QUANTUM MECHANICS 67 

Ui; Dj (G) = D,;;(G) U;;. AS a consequence of Schur’s lemma 

0 if DytD, 
U.:= 

ij 

We recall that from each equivalence class of irreducible representations we 

have taken one representation, such that, if D;; ~ Dj, one means Dj; = Dj. 

Hence, if all components of D(G) are Gicient Ui e a diagonal mati aid 

the basis functions are determined up to a factor which is common to all 

functions belonging to the same component. [t does not depend on the row 

of the function. If an irreducible component occurs with a multiplicity 

greater than 1, one can make line ar combinations of the basis elements 

belonging to the same row of the various equal components. However, the 

linear combinations must be the same for all rows. 

An example of the last case is the following. Suppose that D(G) = 
D,(G) ® D,(G), and that a basis which gives this reduced matrix represent: 

tion is given by Wy), --. Voda? Wop ao Wad . Then another basis which gi 5 

the same matrix representation is given by ve te UW is PWoit OW yi 

(i= 1,...,d,), where A, wu, p, and o do not depend oni, and where Ao — uo # O 

in order to have a nonsingular transformation. It gives rise to the same 

matrices because 

=2 D(8)ji Voj t HV aj] , 
J 

T (OW yj * OW yi) = D, (8); 12 Vea; t owas] - 

The corresponding matrix U is 

y ( Al pl 

pil ol 

Now we choose for a basis Wyg ix Gah 2.50 ah= Leds) of [D,,@ Dg\(G) 

a basis transformation which reduces an representation. 

Veg, ik = eh aoa Yay: (2.14) 

The a, G a ;) are the (generalized) Clebsch—Gordan coefficients. 
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They are determined by the representations D,(G) up to factors A,). For the 

matrix S in eq. (2.13) one has 

Syl, pik =40G ala : 

Using this relation one can determine the matrix element 

VaslOPlY yi) = = CF tl DAst Yai! ¥sim? - 

In the proof of proposition 2.2 we have seen that (Wy; |Wsrm) = Sa Sim Bal: 

where B does not depend on the row index m. Hence 

(ailOPl Wyn? = =P RF 1) Car (2.15) 

where C,,, is a constant which does not depend on the row index. Eq. (2.15) 

is a generalization of the Wigner—Eckart theorem, which is often used in 

quantum mechanics. A special case is eq. (2.10), where the invariant operator 

transforms Se the trivial representation, which sere =j=1. Then 

( TIS 1) = 8 q,djx, and therefore (Wy;141Wi x) = 55;¢Cq1> where now 
=(1/d, )z; (World lWo,) depends only on a, - east in eq. (2.10). 

"The Clebsch— orden coefficients have the following properties. 

WER Hy 

2G nly) vanishes if in the product [D, ® Dg](G) the irreducible compo- 

nent D, ‘does not occur, or if / is larger than the multiplicity of Dy. 

The Wigner—Eckart theorem eq. (2.15) in combination with the peepee: of 

the Clebsch—Gordan coefficients makes it possible to predict the vanishing of 

matrix elements of tensor operators between basis functions of irreducible 

representations. 

2.2.6. Invariants 

Let Tg be an irreducible representation of G in a space H. Unless this is 

the trivial representation no element # 0 of H remains invariant under G. 

However, if G is a finite group, one can construct a second order invariant. 

This is a Hermitian form on H which is invariant under G. To obtain these 

invariants we consider the space of complex linear functions on H. These 

form the dual space #4. Any element of H gives a linear function by 

o> (W1¢)(VWo EH). It is readily verified that the mapping H > H4 which 

assigns the function (| to the element is an isomorphism. We define in 
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H7 a representation Te of G by 

(TE p16) = (WIT 19) (all $E30). 

It is a representation because (TET y |d) = (Thy IT _, d= le py” = 

(TE, W |). It is called the adjoint or contragredient representation. When H 
carries the representation D,(G) the matrices of the adjoint representation 

are D4(g) - Dee *). For a unitary representation this is Dg)’ - The product 

space H” ® H carries the representation De ® D, with character x(g) = 

x..(g) X,(g). It is, in general, a reducible representation which contains the 

trivial representation exactly once, because the multiplicity of this representa- 

tion is 

m= = x =e 1 N geG xX (g) x(g) 

The unique invariant Hermitian form is constructed as in Ch. 1, §3.1: 

en (Y19) aie ae 

For a unitary representation this is exactly (|). 

Let A be an irreducible scalar operator. This operator is invariant if and 

only if TA ics = A for any g © G. However, again one can construct invari- 

ant operators from arbitrary irreducible tensor operators. Suppose that A; 

and B, are irreducible tensor operators transforming according to the same 

irreducible representation D(G) of G. This means that T, Ae = 

he D(8)ji A, and T, Altes S 5; D(e):A} (we assume T, to be unitary). The 

tensor operator ALB. transforms according to the representation D“(G) @ D(G) 

which contains the trivial representation exactly once. The component trans- 

forming according to this trivial representation is SHAl Bs It is invariant 

because D; 7,4} B; Ty | = Lijz D(e)jD(6)niA}By = 2A}B; when D(G) is 
unitary. If D(g) is not unitary, it is equivalent to a unitary representation, 

because G is finite. Then D(G) = S~!D'(G)S with D'(G) unitary. An example 

is the tensor operator Pp. It is an irreducible tensor Opstalon of the eneie ; 

group. The only invariant operator one can construct isp; +p) + p3 =p’. 



CHAPTER III 

CRYSTALLOGRAPHIC POINT GROUPS 

Following the general discussion of the role of symmetry in quantum 

mechanics the present chapter and the following one will deal with examples 

of symmetry groups. We start with groups of transformations which leave a 

point fixed. Groups of this kind, called point groups occur as symmetry 

groups of atoms and ions in molecules and in crystals. The symmetry group 

of an atom in a crystal has particular properties. Such a group is called crys- 

tallographic point group. The definition and properties of these groups are 

given in section one. As we have seen, the representations of symmetry 

groups play an important role for the physical consequences of symmetry. 

The representations are treated in section two. In the third section we study 

atoms or ions in a crystal from a viewpoint of point group symmetry. In this 

crystal field theory, the use and the limitations of symmetry considerations 

as discussed in the preceding chapter can be seen. 

3.1. Crystallographic point groups 

3.1.1. The orthogonal group 

A large class of transformations occurring as symmetries of physical sys- 

tems is formed by transformations in the three-dimensional space which leave 

a point fixed. To be more precise, we consider a three-dimensional Euclidean 

vector space, which is a real linear vector space with an inner product (cf. 

Ch. 1, §2). The group of nonsingular linear transformations is denoted by 

GL(3, R). The inner product of two vectors x and y is denoted by (x, y) or 

sometimes by x + y. A subgroup of GL(3, R) is formed by the elements 

which leave the norm (x, x) invariant for any x in the space. This subgroup 

is the orthogonal group denoted by O(3). After a choice of a basis the ele- 

ments of GL(3, R) and of O(3) are three-by-three matrices. With respect to 

an orthonormal basis the elements of O(3) are orthogonal matrices: AA = 1. 

70 
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When we take determinants of this relation we get det (A) det (A) =1,or 
det (A) = +1. The orthogonal transformations with determinant + 1 (this does 
not depend on the basis) are called rotations, and form a subgroup of index 
two denoted by SO(3). Any element of this rotation group SO(3) can by a 
suitable choice of basis be brought into the form 

cos¢@ sing O 

—sind cos¢d 0 |. (3.1) 

0 0 ] 

It is evident that both O(3) and SO(3) are infinite groups. 

An element of O(3) with determinant —1 is —1. We denote this element 

by J. All matrices of O(3) which are not in SO(3) are the product of a rota- 

tion with /. As / is of the order two and commutes with all elements of O(3), 

the group O(3) is the direct product SO(3) X Cy, where C4 is the cyclic 

group of order two. The elements of O(3) of order two which are not in 

SO(3) are called reflections. An example of such a reflection is the element J, 

also called central inversion. The other elements in O(3) with determinant —1 

are products of / with a rotation through an angle ¢ # 7. These are called 

roto-reflections. 

Any rotation has an axis. This means that, if we consider a sphere of unit 

radius around the origin, any rotation transforms this sphere into itself and 

there are exactly two points on the sphere which are left invariant. On the 

other hand, a rotation is determined by its axis and the angle of rotation ¢. 

The axis of a rotation is an eigenvector with eigenvalue one. The two other 

eigenvalues are exp (+i). Two rotations through the same angle are conju- 

gated by a rotation which transforms the axes into each other. If the axes are 

v, and v, and the rotations R; and Rp, and R a rotation such that v; = RV), 

then RR»R~!Rv, = RRxV> = RVy, or RRyR~!v, = V1. Moreover, for Ry 
and RR»R-! the eigenvalues (1, e*!%), hence the rotation angle ¢, are the 

same. 

SRS MESS 

Another group of transformations of the three-dimensional space is the 

group of translations. When a point x has components &,, £7, £3, the action of 

a translation t = (7),77,73) is defined by x > x +f =(€ +7), £) +77, £3 +73). 

The translations form an Abelian group 7(3). One can define a scalar multi- 

plication by at = (atT,,a7 7,073) for any a€ R. Then 7(3) has the structure 
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of a linear vector space isomorphic to IR}, the space of triplets of real numbers. 

Suppose 4,4, 43 are three linearly independent translations. We can 

speak about linear independence since 7(3) has the structure of a vector space. 
The elements a ,,4 7, 43 generate a subgroup of 7(3) with elements n,a, + 

Nya + N3a3, where ny, Nz, N3 are integers. Such a subgroup of 7(3) is called 

a lattice group U. It is a group of translations acting on the space V. Starting 

from one point in V and operating with U on this point one obtains a subset 

of V which is called a lattice A. Although A is a set of points of V (the points 

of V are also called vectors, since V is a vector space), and U is a group of 

translations, it is clear that they are closely related. For many purposes we 

can identify A and U by choosing the null vector of V as the point on which 

U acts. In the same way we can identify the space V and the group of trans- 

lations T7(3). However, sometimes it is convenient to distinguish between 

points and operations. It is for that reason that we have introduced the dis- 

tinct notions of lattice and of lattice group. 

3.1.3. Point groups 

Each subgroup of O(3) is called a point group, because it leaves the origin 

invariant. Point groups occur as symmetry groups of molecules and of atoms 

in a crystal. In the latter case the point group has an additional property: it 

transforms a lattice into itself. Any point group which does so for some 

lattice A is called a crystallographic point group. When K is a crystallographic 

point group, there is a lattice A such that for every x € A and any a€ K the 

point ax belongs to A. We write this as KA = A. In this chapter we will be 

concerned mainly with crystallographic point groups. 

Two point groups which are isomorphic have the same multiplication 

table. One can say that they are both isomorphic to an abstract group which 

is given by its multiplication table. This group is called the abstract point 

group. It is an arbitrary element from the isomorphism class and not necessar- 
ily a subgroup of O(3). The different abstract point groups are representatives 
of the isomorphism classes of point groups. 

With respect to an orthonormal basis €1,€ 7, €3 the element a of a point 

group K is an orthogonal matrix A(a). Moreover, for a crystallographic point 
group there is a lattice which is left invariant. If this lattice A is obtained by 
the action of U on a point XQ, also U is left invariant. Take a€ K, a EU. 

Then ad = a(x, +a—X4) = a(x, +a)—ax,=x,t+a'—x,—a'(a',a"EU) 
€ U. With respect to a basis of U the point group elements are nonsingular 
matrices $(a). When a basis a,,@,@3 is obtained from €1,€7,€3 by a basis 
transformation S, then one has $(a) = SA(a)S~! for any « € K. Furthermore, 
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the entries of the matrix $(q) are integers because aa; = 2; (a); a a; belongs 
to the lattice. Hence one can say that a pre stallopuaphic bon bras isa 
three-dimensional representation of an abstract point group K and this repre- 
sentation is equivalent to one with orthogonal matrices and also to one with 
integral matrices. 

Two point groups which are equivalent as representations of an abstract 

point group are called geometrically equivalent. This means that they are 

related by a nonsingular transformation S € GL(3, R), or in other words they 

are conjugate subgroups of GL(3, R). Both point groups are subgroups of 

O(3). There is a theorem (see Burckhardt [1967], p. 47) which states that 

two geometrically equivalent point groups are orthogonally equivalent. This 

means that there is an orthogonal transformation which links both groups. 

Hence geometrically equivalent point groups are conjugate subgroups of O(3). 

The equivalence classes of the geometric equivalence relation are called the 

geometrical crystal classes. Since two geometrically equivalent point groups 

are isomorphic each isomorphism class contains complete geometrical crystal 

classes. In three dimensions — the only case we consider here — the 18 iso- 

morphism classes can be subdivided into 32 geometrical crystal classes. A 

derivation of these classes will be given in the next section. Finally we notice 

the following. If two point groups are conjugated by an orthogonal transfor- 

mation they are also conjugated by a rotation: either the conjugating matrix 

is a rotation, or it is a rotation multiplied with /, in which case the rotation 

part also conjugates the point groups. We can interpret this as follows. If one 

point group describes a group of orthogonal transformations in one basis, the 

other group describes the same transformations in a basis obtained from the 

first by the conjugating rotation. 

Although we have given here the definitions for point groups for the three- 

dimensional space only, they can be generalized in a straightforward way to 

arbitrary dimension. For spaces up to dimension four the isomorphism classes 

and the geometrical crystal classes have been determined. The number of 

abstract crystallographic point groups (isomorphism classes) for dimension 

n= 1, 2,3, and 4 is equal to 2, 9, 18, and 118 respectively. The number of 

crystal classes is 2, 10,32, and 227 respectively. For the four-dimensional 

classes see Hurley [1968]. 

3.1.4. Derivation of abstract point groups and geometrical crystal classes 

To determine the isomorphism classes of the crystallographic point groups 

we consider first those groups which are subgroups of SO(3). We call these 

groups, consisting entirely of rotations, point groups of the first kind. Each 
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element can by a suitable basis choice be written as in eq. (3.1). The character 

of the element in this representation is 1 + 2 cos@. As this character is invari- 

ant under similarity transformations, it is the same in a representation with 

integral matrices, for which the character is of course integral. Hence 

1 + 2.cos¢ must be an integer. This means that there are only five possibilities 

for @: 0°, 60°, 90°, 120°, and 180° (the character being 3, 2, 1,0, —1 respec- 

tively). It follows that any axis of rotation in a crystallographic point grcup 

is 1-, 2-,3-,4-, or 6-fold. 
Lemma. A crystallographic point group is of finite order. 

Proof. Consider a crystallographic point group K. There is a lattice left in- 

variant by K. Let a,,@ , a3 be a basis of this lattice. Now construct a sphere 

around the origin which encloses the basis vectors. Inside the sphere there are 

only a finite number of vectors. Each element a € K gives a permutation of 

these vectors. If a leaves fixed all vectors inside the sphere, it leaves the lattice 

pointwise fixed, in which case a must be the identity. Therefore, K has only a 

finite number of elements, because there is only a finite number of permuta- 

tions of a finite number of vectors. 

So the crystallographic point groups are among the finite subgroups of 

O(3). We will determine here all finite subgroups of O(3) and start with the 

finite subgroups of SO(3). Suppose that K is such a group, not only consisting 

of the unit element. Any element g # Il of the group has an axis of rotation 

which intersects the unit sphere around the origin in two points, the poles of 

the rotation. We introduce an equivalence relation between the poles of the 

elements of K. We call p, and p> equivalent if there is an element g © K such 

that p, = gp2. The equivalence classes of poles are denoted by C), ..., C,,. 

When the pole p is in class C;, and when K, is the subgroup of K leaving the 

pole p invariant, one can decompose K into cosets of Ky by K= Ky zt &2Kp + 

.. + g,K,. The different poles in class C; are p, gp, ..., gp. Therefore, the 

number of cosets, which is equal to the number of poles in class C; depends 

only on the class, not on the choice of the pole p. For two poles p, and pp in 

C; the invariance groups K,,, and K,,, are related by K,, = SiG sae if p> = gp}. 
This means that the order of K,, also depends only on the class. It is denoted 

by n;. Then the order of K is N = n;r; for any 7. In K there are V—1 elements 
different from 1. We now count the number of elements corresponding to the 

various poles. For a pole p in the class C; there are n;,—1 elements different 

from I in the group K,,, for the r; poles in C; there are r;(n;—1) of these 

elements. In all there are Y ;r;(n;—1) elements # 1. However, each element 
has two poles. Hence N — 1 = 52,7,;(n;—1) or 
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2 ( -1)=2 (: >) (3.2) 

The eq. (3.2) will give us all possible finite subgroups of SO(3). From 
N 2 n; > 2 we have the inequalities 2> 2(1—1/N) > 1 and 1> (1-1/n,) > 5 
Hence m can take only the values 2 and 3. We consider now the different 
cases. 

1) m= 2. In this case eq. (3.2) gives 

Moreover, 1/n, > 1/N, 1/ny > 1/N. Hence ny =n, =N> 2. 

2) m=3. This case leads to 

Ny MN hg N 

We now suppose 2; 2 2 n3. Then necessarily n3 = 2 in order to satisfy the 

inequality. Because 2/n, > 1/n, + 1/n, = 1/2 + 2/N> 1/2, n can take the 

values 2 and 3. For n = n3 = 2 one has 1/n, = 2/N or N= 2n, = 4. For 

Nz = 3,3 = 2 there are three possibilities. Either the triple (n,,n2,n3) = (3, 3, 2), 

or (4, 3, 2), or (5, 3, 2). The order N follows from eq. (3.2): it is 12, 24, or 60 

respectively. Taking into account the restrictions on n; for crystallographic 

point groups one has the following possibilties. 

=, 92,354,000; iy == IN, 

wi=3, = 2,3, 4,01 6, > T= ZN = 2a, 

= 3,92) = Spt — 3g = 2, = 17, 

any — 4415 = 3, Nz = 2, N = 2A. 

The corresponding groups are described in the next section. They belong 

together with the group consisting only of the identity to 11 isomorphism 

classes. The finite subgroups which cannot occur as crystallographic point 

groups can appear as symmetry groups e.g. of molecules. Although not im- 

portant for crystals, we shall enumerate them. They are 
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m=2, n,=5,7, 8, .... Ny =n, =N, 

m=3, Riso nae Pree No =Na = 2, N= hae 

m=3, nN =5, ny =3, ny = 2, N=60, 

They are respectively the cyclic groups of order 5, 7, 8, ..., the dihedral groups 

of order 10, 14, 16, 18, ..., and the icosahedral group which is isomorphic to 

the so-called alternating group As. 

A point group of the second kind is a point group which contains elements 

with determinant —1. Such a point group K contains a subgroup of elements 

with determinant +1. As the product of two elements with determinant —1 is 

an element with determinant +1, this subgroup, denoted by K,, is of index two. 

The coset which contains all the elements with determinant —1 is denoted by 

K_.One can write K = K, + K_. We will construct now another subgroup of 

O(3), related to K, but which is in addition a subgroup of SO(3). We multiply 

all elements of K_ with the central inversion /. If 7 © K andB © K_, one has 

78 €K and thus/6 © K,.In that case /K_ = K,. On the other hand, if B © K_ 

and/B6 €K,, it follows that J= I6B-! © K. Therefore, if K does not contain J, 

IK_ and K, have no elements in common. In that case a new subgroup of 

O(3) defined by K’= K, + /K_ isa point group of the first kind isomorphic 

to K. The isomorphism is given by 

o(a)=aEK,CK' for a€K,CK, 

o(a)=Ia€ K’ fOr SK eK, 

Since the groups K and K' are isomorphic, point groups of the second kind 

not isomorphic to one of the first kind must contain /. If a group contains /, 

itis the direct product of its rotation subgroup with the cyclic group of order 

two: K = K, X C), because K contains K, and the group generated by J as 

subgroups which have only the identity in common, and J commutes with all 

elements of K,.In this way one finds another 7 abstract crystallographic 

point groups. A more complete derivation can be found in Burckhardt [1967]. 

There it is proved that the 11 classes found previously correspond to 11 iso- 

morphism classes and 11 geometrical crystal classes. 

Because the 11 different classes of finite subgroups correspond to 11 

different geometrical crystal classes, there are 11 geometrical crystal classes 
of the first kind. The classes of the second kind which contain / consist of 
direct products of a group of the first kind and C . So there are also 11 of 
them. Finally, the groups of the second kind which do not contain J can be 
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found in the following way. Consider one group from each geometrical 
crystal class of the first kind, and determine all possible subgroups of index 
two. Multiply the coset of such a subgroup by /. The union of the subgroup 
and its coset multiplied by / gives a group of the second kind. Among the 

groups found in this way several are still geometrically equivalent. Elimination 

of equivalent groups gives the remaining crystal classes of the second kind. A 

complete discussion can be found in Burckhardt [1967]. The results are dis- 

cussed in the next section. 

3.1.5. The abstract crystallographic point groups and the geometrical crystal 

classes 

Since any crystallographic point group is either isomorphic to one of the 

first kind, or to the direct product of a group of the first kind with Cy, it is 

convenient to treat first the isomorphism classes of the groups of the first 

kind. They were discussed in the preceding section. Including the group of 

order one we have the following possibilities. 

1) The cyclic groups C,, for n= 1, 2,3, 4, or 6. The group C, is an Abelian 

group of order ” generated by an n-fold rotation. This group has two classes 

of poles: both with one pole of an n-fold rotation (n,=n =n). As an abstract 

group it is generated by a with defining relation a” = e. The elements of the 

group are q, Go, on? =e: 

2) The dihedral groups D,, for n= 2,3, 4, or 6. It is the group of three-dimen- 

sional rotations transforming a regular n-gon into itself. It is a group of order 

2n with a cyclic subgroup of order n. This group has 3 classes of poles: one 

with 2 poles of an n-fold rotation and two with n poles of 2-fold rotations. 

It is generated by an n-fold rotation and a 2-fold rotation with axes perpen- 

dicular to the axis of the first rotation (fig. 3.1a). As an abstract group it is 

generated by a and § with defining relations a” = 6 2 = (af)? =e. As from 

these relations it follows that Ba = a~! the elements of the group are a, a2, 

a7 =€,8, a8, 028, ...,@”—16. The conjugacy classes of the different 

groups are given in table 3.1. We recall that rotations in the same conjugacy 

class have the same order. 

3) The tetrahedral group T is the group of rotations transforming a regular 

tetrahedron into itself (fig. 3.1b). It has order 12. The group has 3 classes of 

poles: two with 4 poles of 3-fold rotations and one with 6 poles of 2-fold 

rotations. Its elements are 8 3-fold rotations, 3 2-fold rotations and the 

identity. As an abstract group it is generated by a and f with defining relations 

a3 = B2 = (aB)3 = €. In terms of the generators, the elements can be written 

as a, BaB, Ba, aB (forming one conjugacy class of order 3 elements), a7, aba, 
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Fig. 3.1. Elements of the groups D3, T and O. 

Table 3.1 

The dihedral groups D,,: conjugacy classes. 

Defining relations: a” = 6? = (ag)? = € 
The order of the elements in the /-th class is denoted by p;. 

Dy Ea I) ae (p2=2) B (p3=2) o8 (p4=2) 

D3 €(p1=1) «0? (p2=3) B,06,06 (p3=2) 

Da €(p1=1) @ = (P2=2) a3 = (93=4) Be B (p4=2) 08,036 (p5=2) 

Dg €(@4=1) «7,04 (p2=3) 08,048 (p3=2) a? (p4=2) aa (ps=6) 08,0°8 (p6=2 

a2, Ba? (forming another class of order 3 elements), 8, a2Ba, aBa? (forming 

a class of order 2 elements) and €. So there are 4 classes. The multiplication 

table is given in table 3.2. Matrices for the rotations with respect to an ortho- 

gonal basis are given in table 4.4. 

4) The octahedral group O is the group of rotations which transform a cube 

into itself (fig. 3.1c). The order of the group is 24. According to the preced- 

ing section the group has 3 classes of poles: one with 6 poles of 4-fold rota- 

tions, one with 8 poles of 3-fold rotations and one with 12 poles of 2-fold 

rotations. Its elements are 6 four-fold rotations, 8 three-fold rotations, 3 two- 

fold rotations which are squares of four-fold rotations, 6 more two-fold rota- 

tions and the identity. The multiplication table is given in table 3.2. Matrices 

for these rotations are given in table 4.4. The abstract group is generated by 

a and B with defining relations a+ = 63 = (af)? = €. The group has five classes 
which are given in table 3.2. All four-fold rotations belong to one class, as 
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2 
table and classes of the tetrahedral and octahedral groups 

: Pil p2=3 p3=2 pa=4 Ps=2 

T classes p; 1 pz=3 p3=3 p4a=2 

ee epee eae 42S 6. eT 89 OUI 4213) 14 15.16.17 418.19 205 21 0234 

€ ele eee ab bets LO 1D IS S14 dS) 16517 18. 19220928 0903204 
a eee 0 OS PS A Ee Ti 5 3325420 16 24.29 13 15, 23, 1714198 
Bap sy 8 ME LG tT TTL KO) a hs Sy op TEES. USE lee Spek GI) Te nh 98}, GIS) DO) 116 
Ba ar GE SY GS) IO so aS IGS sy ily Ic OAL TOI IG AG. AD 
a8 S 8 0 ey SP un Te i IE SSNS XO le Cy Thay ey TG Per NS Oe 
a? SiG my Geta Oe ee ee Sem Omer Seale) 24 2203 Gwe oel Oma 
apa viel eee OR ee eee) OES ee Ol SO 22604 Ga 4a S23 eo OMe 2 lea 
a?B Seok. 10) 1a 3 4. 2 G7 921 17 16.23.22 13. 20 124" (ke ba 519 
Ba? Seo LOM all ete Sees Ome OL els 2 0) 1 SaS a) 3. ol 6m 4a?) 24 wale Tl 
6 (NO) MO) “2b SP a eh a TI Oy OS IE XO) A alee SS IN De 83 
Be epehi ae) D5) 43D) 76 Sh dD 1g 0).232 24 217 DONS, 22.91" 16s 1918.13 14 
Rese ie tes aioe Sd <8 9.06. Hs M101) 24 23 19.18 23 16. 1522/17 -20 14°13 

13) Tige Dal TS) Tiss aye kes atey Be PX) IE OS ee mi I he By) SG. eh TP ah, 51) 
eA Sma ete OD GE US ES 2374) IS NONE We 15. (Ones) 9) eae eel mel 
US) 10S} AS 2 ee ey a AIS) Ai th sh il Abie Sy I@. By ak 1G 
GG 4 Se AS eon ISS 2 002 el Semler re ial 2 er Seelien oles wl OAs 
Liat Op Se OPO A AOS See SO) ES yi Geel aa ome ee OM 2m 2 4 Baro eee 
HSS TUS Ts) EE Dey IE on sy leh IS AP A) ANG a SI pF AMO GF Sy 
TSS) TUS) De AD) eh a 1S) EE AS ey aly yh SO ay ile ey I Ee 
MO BE WAS DE We as TS) al ea Gs ss es) PA i LUO Eth kf a ett 
Di Di MWS AO MG DY ile wey zh OMe hy sy ee I ee Oe sk DD) 
BY DD AB WA WBN NG GE SS ae aes GS PAD Esp keh PI os RS LS 
DS BS WO DL Way Tiss DP PO WG, GAN al el ey ee AE EO 
MAL MAL a) GS SY BIL WG 1 WO De sy Ss A a es GES) DD) 

column expresses the elements of O in generators w = g13 and 6 = g2, the second column expresses the 

; of T in generators a = gy and 6 = gy, the defining relations are a4 = g3 = (af)? = € for O and 

= (a8)? = ¢ for T. 

nents £1, .-., £12 form the group TJ the Cayley table of which is given in the outlined part of the table. 

sr of the elements in the i-th class is given by p;. 
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for any pair of axes of these rotations there is a three-fold rotation in the 

group which transforms one into the other. Moreover, any two-fold rotation 

perpendicular to a four-fold axis transforms a 90° rotation into a rotation 

with inverse sense, which is the inverse element of the first rotation. 

The point groups of the second kind containing J are direct products of a 

point group of the first kind with Cy. Because one has the isomorphisms 

Cy Xx Cy = Cs, C> Xx Cy = De C3 Xx Cy = Ce and D3 Xx C> =D; the groups 

of the second kind give only 7 new isomorphism classes: Cy X Cy, Ce X Cp, 

Dy XC, Dg X Cz, Dg X Cy, TX Cy, and O X Cp. So there are 18 isomor- 

phism classes of crystallographic point groups, or 18 abstract crystallographic 

point groups. The rotation groups C,,, D,, (n= 1, 2, 4), T and O leave invariant 

a lattice with orthonormal basis @ ,, @7, €3, C,,, D, (n= 3,6) one with ey, 

$e, +3V3e>, €3. As/ leaves invariant any lattice, one sees that indeed all 

these groups are crystallographic. 

The 32 geometric crystal classes can be given by one representative point 

group from each class. The elements of such a point group are orthogonal 

transformations. If one takes a sphere around the origin, and a point x on the 

sphere in such a way that for any element a of the group K the point aw is 

different from x, the group K can be visualized by projection of the sphere 

on a tangent plane. When the sphere is given by x2 +y2+z2=1, the projec- 

tion of the point x,,y,,Z, on the plane z = —1 is the point (x,, y,). If 

Z, > 0, one denotes the point of the projection with an open circle, if z, < 0, 

by across. In fig. 3.2a such a projection is given for a group from the iso- 

Fig. 3.2. Diagrams for the rotation group 422. 
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morphism class D4. The point group of the first kind is generated by a 90° 
rotation around the z-axis and a 180° rotation around the x-axis. The group 
is of order 8. As all points on the sphere obtained from the starting point by 
the action of the point group are different, there are 8 points in the projection. 
The points with circles lie on the upper hemisphere, the points with crosses 
on the lower hemisphere. 

To denote geometrical crystal classes one uses either the international 

symbol (Hermann—Maugin notation), or the Schoenflies symbol. For the 

international symbol an n-fold rotation is denoted by the number n, the 

product of an n-fold rotation with J by n with a bar on the number. A mirror 

plane, i.e. a reflection which is not the central inversion, through a rotation 

axis, i.e. a reflection which leaves this axis invariant, is denoted by the letter 

m next to the number indicating the order of the rotation. A mirror plane 

perpendicular to an n-fold axis by n/m. The central inversion is denoted by 1. 

A second way to visualize a point group is to indicate in the projection of 

the unit sphere the projection of the poles of rotations, the poles of rotations 

occurring combined with / to roto-reflections, and the intersection of mirror 

planes with the sphere. An example is given in fig. 3.2b for the same group as 

that used in fig. 3.2a. Notice that a group is not uniquely determined by the 

first kind of diagram, but that it is so by the second kind. For example, the 

diagram of the point group m shows two points which could also be obtained 

from each other by a rotation. This ambiguity is not present in the second 

kind of diagram where the mirror plane is indicated. Finally, we remark that 

by the second kind of diagram a crystal class is completely determined, and 

that each group of a crystal class can be represented by the same diagram as 

two groups from the same class are conjugated by a rotation which only 

rotates the unit sphere. The 32 crystal classes are given in table 3.3. The 

groups are visualized in the diagrams of table 3.4. 

3.2. Representations of crystallographic point groups 

3.2.1. Representations of cyclic groups 

As the cyclic group C,, is an Abelian group, each element forms a class. 

Thus there are n classes and consequently  nonequivalent irreducible repre- 

sentations. For the crystallographic point groups we denote the i-th irreducible 

representation by I',(G). The n irreducible representations of C;, are 

Lis ely. We have ead seen that the irreducible epee naan of an 

Abelian group are one-dimensional, as follows also from 2; d? =n. When 
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Table 3.3 

The 32 geometric crystal classes. 

CRYSTALLOGRAPHIC POINT GROUPS 

Abstract group Order Point groups 

1St kind 2nd kind without7 = 294 kind with / 

C1 1 I= 6; - - 

Cy 2 25° = Cy n=. f =C; 

C3 3 3 =C3 - - 

C; 4 Ana Cys Ae aS = 

D> Cyn) a4 222=Dy 2mm = C3; 2im = = Coy, 

C=C XC, 6 6 =Ce 6 =Csp, 3 = S6 

D3 6 3225 De5 3m. Cy, _ 

Ca C> 8 = = 4/m  =Can 

Da 8 422 = D4 4mm = Cay = 

42m = Dog 

Dz X C2 8 — — mmm = Doyp 

De Da Cy 12 622=De 6mm=Cey 3m = D3y 

6m2 = D3p 

in 12 23 =T = is 

(PS eeh 12 = = 6jm = Coy 

Da X C2 16 ~ - 4/mmm = Dap 

O 24 432=0O 43m =Tg - 

Deo X Co 24 ~ = 6/mmm = Den 

TEx C5 24 = m3 = Ty, 

OPEC> 48 = = m3m = Op 

The symbols for the crystal classes are given both in the notation of the international 

tables of X-ray crystallography (at the left in each column) and in the Schoenflies nota- 

tion (at the right). 
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Table 3.4 

The geometric crystal classes in 3 dimensions (diagrams). 

(Left Schoenflies notation, right international symbol) 

rotations 

32 4 

dihedral 

a=) 
Cc 

—s 

~ 
wn 
Ss 

+ 

56 
cyclic x Co 

jm Dan 7 4/mmm 

dihedral x C2 

second kind: with inversion 

tetrahedral Cy octahedral xC2 
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Table 3.4. (continued) 

Su 
cyclic 

= 
= 
wn 
uc 
o 
> 

a 
1S, 
> 
r=) 

= 

a=) 
= 
= 

a=) 
= 
3S 
ra) 
rr) 
wn 

upper, lower half — sphere 

2-,3-,4-,6- told axes of rotation 

inversion 

mirror plane 

3-,4-,6- fold rotation x inversion 
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I';(@) is the complex number representing the generator a of C,, in the i-th 
irreducible representation, one has P;(a)” = I;(a”) = 1;(€) = 1. So T,(a) isa 
n-th root of unity. There are exactly n of them. Therefore, the representations 
are given in the following table. As the representations are one-dimensional, 
characters and representing matrices are the same. 

€ a a? ofl 

| 

Fj | sl 1 es | 

1 | 1 exp (2zmi/n) exp (4ri/n) ae exp (—27i/n) 

ne 1 exp (—4mi/n) exp (—8zi/n) a exp (4mi/n) 

ih | 1 exp (—2rmi/n) exp (—4mi/n) 38 exp (27i/n) 
cL 

The character tables for the cyclic crystallographic groups are given in the 

appendix. As the point groups are real three-dimensional representations of 

these abstract groups, they can be decomposed into irreducible components. 

E.g. for Cy the point group 2 is equivalent to!) ©, ® Ty, the point group 

m is equivalent tol, © I’, © 15, and the point group 1 is equivalent to 

I, @1, 61. The representation, @1, ©T, is not faithful. 

As the multiplicator of a cyclic group is trivial (see Schur [1904]), each 

projective representation of a cyclic group is similar to an ordinary one with 

trivial factor system. 

3.2.2. Representations of the dihedral and polyhedral groups 

As these groups are of low order and have a simple structure, one can ob- 

tain the character table in a nonsystematic way using only some of the prop- 

erties of the characters. An example is given for D3, which is isomorphic to 

the group of permutations of 3 elements, in Ch. 1, $3.4. In an analogous way 

one can find the character table for Dy. For the other dihedral groups one has 
Dy = Cy X Cy and Dg = D3 X Cp. The representations of such direct products 

will be treated in the next section. The character tables of Dz and D4 can be 

found in the appendix. 
The multiplicator of D3 is trivial, those of D7, D4, and D¢ are isomorphic 

to C> (see e.g. Déring [1959], where the projective representations of the 

crystallographic point groups are discussed). For the latter 3 groups there are 

nontrivial factor systems. Explicit matrix representations for the projective 
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representations of these and the other crystallographic point groups can be 

found in Hurley [1966]. 

The dimensions of the irreducible Rica ae 1 of the tetrahedral group 

T follow from eq. (1.25): 12 = 1 + d5 + dh + di, ONG 7 = df= es a EOe 

the 3 one-dimensional representations one has x(6) = x(a2Ba) = x (aba?) ». As 

the elements of the classes 1 and 4 form an Abelian subgroup with B(a2Ba) = = 

aa, one has x(8) = 1. Eq. (1.23) then gives for the 4-th column 1+ 1+ 1+ 

lx4(C4) |? = 4 or x4(Cq) = +1. Also for the 3 one-dimensional representations 

one has x(a) = x(a)* and x(a)? = 1. Hence x(q) is a third root of one. In 

order to have nonequivalent representations the characters x (a), x7(@) and 

x3(a) must be different. Therefore, x ,(a) = 1, x2(a) = wo? = exp (2mi/3) and 

X3(@) = w+. The sum of the squares of the absolute values of the characters 

in the second and third column must be 3. Hence x4(@) = X4(a7) = 0. Finally 

the orthogonality of the first and fourth row gives x4(8) = —1. This leads to 

the character table which can be found in the appendix. 

In an analogous way one finds the character table for the octahedral group 

O. This group of order 24 has five classes which implies that there are 2 one- 

dimensional, | two-dimensional, and 2 three-dimensional irreducible repre- 

sentations. The character table is given in the appendix. The multiplicators of 

both 7 and O are isomorphic to Cy. Hence both groups have two classes of 

nonassociated factor systems. Explicit projective matrix representations are 

given in Hurley [1966]. 

3.2.3. Representations of direct products 

When G is a group with r conjugacy classes Cj, ...,C, and H a group with 

s classes Cj, «. AGratlic group G X H has rs classes. Suppose a and b belong to 

C;, and g and h belong to Ce Then there are elements c © G and f © A such 

that b=cac~!andh= fef- 1 Then the elements (a,g) and (b,h) belong to 

the same class of G X H, as (c, f)(a,g)(c, f)~! = (b,h). On the other hand, if 

this relation holds, a and b belong to the same class of G and g and hk to the 

same class of H. Therefore, the class Ci of G X H consists of all pairs (a, b) 

witha © C; andb€ Ge This means that there are indeed rs classes. 

When D,(G) is an irreducible representation of G and D g(H) an irreducible 
representation of H, the outer Kronecker product D,(G) X ‘D g(H) is a repre- 
sentation of G X H with character x(a, b) = Xq(a)x9(b). Using eq. (1.20) we 
have 

» | a,b)|2= D Ss ® BN Oe tipo 

(@,b)eGXH ee axe pe hOl Ixp(2)| Ney SIN 
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where NV, is the order of G, N> that of H and N that of G X H, and one sees 
that D,(G) X D,(#) is an irreducibie representation D,, glG X H) of the direct 
product. There are rs irreducible representations of this “eee which is the 
total number of nonequivalent irreducible representations of G X H. Moreover, 
the representations DaglG X H) and D,’ g(G X A) are nonequivalent if a # a’ , 
or B ¥B’, because from Xo(4)Xg(b) = XQ! "(aX ‘(b) for any (a,b) €G X Hit 
follows that 

I 1 r 1 : 

Bey, 2 NGOS a)xs(a) == 2 b)xa(b 
N (a,b)eGXH xt Ni aeG Xala)Xa'l 5 beH Xp (b)xpi(b) 

= 8a’ ge - 

Consequently the rs nonequivalent irreducible representations of G X H are 

exactly the rs representations D,(G) X D,(H). 

Now one can obtain the character tables for the other crystallographic 

point groups which are the direct product of a group from the preceding 

sections and the cyclic group C,. As an example consider the group 

Do = D3 X Cz. The character tables of D3 and C) are 

rm p41 1 l aay J 

ie a ie ee Be ed 

Then the character table of Dg looks like 

De | Ci=Cir C2=Co1 C3= C31 Ca=Ci2 Cs=Co2 Co= C32 

P| i 1 1 1 1 1 

eae 1 xi 1 1 =i 

Poel I 0 2 74 0 

Teh 1 1 fi =f ai 

Be: es 1 =) = eA 1 

Pen = 0 =) 1 O 
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3.2.4. The irreducible representations of O(3) 

The orthogonal group O(3) is an infinite group. Therefore, the representa- 

tion theory of Ch. 1, §3 cannot be applied. Especially expressions involving 

summation over group elements have to be reconsidered. It turns out that with 

some changes the theory for finite groups can be extended to a certain class 

of infinite groups, the compact Lie groups. In the following we will need only 

representations of the group O(3) which is an example of a compact Lie 

group. In the present section we will mention some properties of these repre- 

sentations, but we will not go into details. For a more profound treatment we 

refer e.g. to Hamermesh [1962]. 

The subgroup SO(3) has an infinite number of nonequivalent irreducible 

representations denoted by D, where / = 1, 2,.... The dimension of D© is 

21+ 1. Apart from / = 0 these representations are faithful. The representation 

for /= 1 can be realized by the 3 by 3 real orthogonal matrices with deter- 

minant +1 (sometimes called the identical representation). The character of a 

representation is a class function. Two rotations are conjugate elements in 

SO(3) if they describe rotations through the same angle. The character of a 

rotation ¢ is given by 

sin (1 +3) 

sin}¢ ee 
x1(¢ 

Basis functions for the representation D”) are the spherical harmonics YG 

G1. +2): 

The group O(3) is the direct product SO(3) X C of the group of rotations 

with the group generated by the central inversion /. Therefore, exactly as in 

§ 2.3, for each representation D™ of SO(3) there are two representations of 

O(3). One has D{0(g) = D(g) and DM(g) = + DO(g) for any g € SO(3). 

3.3. Crystal field theory 

3.3.1. Splitting of atomic energy levels by a crystal field 

Consider an atom (or an ion — we will always speak here about atoms, 
although we always mean atoms or ions) with m electrons around a nucleus. 
We assume the nucleus to be fixed in space. The Hamiltonian of the electron 
system is 
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2 
Pi 

a a ts in 

a = om Pee eee 

where fp; is the momentum operator for the i-th particle, V(r) the potential 
created by the charge of the nucleus, V;; the interaction potential between 
the i-th and j-th electrons, and V, the term describing spin effects like spin- 

orbit coupling. In this chapter we will neglect the last term, to keep the dis- 

cussion simple. We will come back to this in Ch. 5, where we will treat spin 

effects. When the atom has a number of closed shells with n electrons outside, 

one can approximate the Hamiltonian in a natural way by 

n p? 

= ean 
1 te Heore Pe 2m 1 n V(r;) : oF Viz ? 

where now V(r) denotes the spherically symmetric potential created by the 

core electrons and the nucleus. The summation runs only over the outer elec- 

trons. Their wave functions are linear combinations of products of one- 

particle wave functions, or in other words they are elements of the n-fold 

tensor product of one-particle Hilbert spaces H @ H ... @H. The Hamiltonian 

in this space is 

2 
Pi 

Hae Vr) ee Vo. 3.4 
i; 2m ie a pad Ce 

We denote the first two terms by H,. To determine the invariance group of H 

we first consider the case n = 1. Then we get the Hamiltonian of Ch. 2, §2.2, 

which has O(3) as invariance group, because the potential V(r) is spherically 

symmetric. Then the Hamiltonian H, has the n-fold direct product O(3)” = 

O(3) X O(3) X... X O(3) as invariance group, because on each coordinate one 

can apply an orthogonal transformation and these transformations can be 
different for the various coordinates. The group of operators constituting the 

invariance group consists of substitution operators Eee given by 

a = = Pee Vlas tay= Vey t<58n th) (3.5) 

The group O(3)” is not the full symmetry group. We did not consider, e.g. 

the permutation symmetry which exists because the electrons are identical 

particles and their coordinates may be interchanged. When P;; is a permuta- 

tion operator defined by 
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EVAL Te. rei eal ee t= VCs i ec liRD cen Eee (3.6) 

it commutes also with H,. For the moment we only consider the invariance 

group O(3)”. 
The substitution operator P,,,,, commutes with the complete Hamil- 

tonian 7 only il 27>... = 2, =2 = 0(3). The reason is that V;, is transformed 

into itself by a coordinate transformation only if the distance between the 

various electrons remains the same. The substitution operators with g, = ... 

... = g, form a group homomorphic to O(3). Therefore, the invariance group 

of H is O(3). A symmetry operator is now P, defined by Pew(ry, Oh aN 

W(g—!r,, ct Da) If we identify g € O(3) with the element (g, g, ...,g) © 

O(3)", the symmetry group of H is a subgroup of that of H, and one can 

apply the general procedure from Ch. 2, § 2.3. The eigenfunctions of H, can 

be labeled by indices n;, /;, m;, the principal quantum number, the orbital 

angular momentum and the z-component of this angular momentum, respec- 

tively, for the i-th particle. These indices also indicate the irreducible repre- 

sentation and the row of the representation of O(3)” to which the eigenfunc- 

tion belongs. The irreducible representations of O(3)” are DY)» p®) 

..@ Dn) and the rows of this representation are labeled by 77), ..., my, 

(—1; <m; <+1;). By the interaction the symmetry is lowered. The eigenfunc- 

tions of H belong to irreducible representations of O(3). They are labeled by 

L (denoting the representation D“)) and M (denoting the row of the repre- 

sentation). This corresponds to the fact that for H the /,, ...,/,, are no longer 

good quantum numbers, but have to be replaced by the total orbital angular 

momentum L. Also, mj, ...,™, are no longer good quantum numbers, but 

the z-component of L (i.e. M) remains good. 

When one considers an atom in a crystal, an additional term occurs in the 

Hamiltonian describing the interaction of the electrons with the crystal. This 

interaction is very complicated. In crystal field theory one assumes that it 

can be described by a potential W(r) created by the electric charges of the 

surrounding particles of the atom. We do not discuss the validity of this 

approximation. A discussion is given, e.g., in Herzfeld and Meijer [1961]. 

Since the potential W(r) is created by the surrounding charges in the crystal, 

the symmetry of W(r) is no longer O(3), but is the symmetry of the site of 

the atom. This is a crystallographic point group. Then the symmetry of the 

total Hamiltonian 

H=H,+ ZW r)+ 2 Vz (3.7) 
i i<j 

is this crystallographic point group K. As the symmetry of the Hamiltonian 
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is lowered by the crystal potential, the energy levels split up further in general. 
This level splitting produced by the crystal potential was studied in detail in 
Bethe [1929]. The splitting can occur in several ways depending on the mutual 

strength of the terms in eq. (3.7). The term H,, is always the most important 

one; the splitting by W(r) can vary over a large range. One can distinguish 

three cases. 

1) Strong field: the influence of W(r) is stronger than the interaction between 

the electrons. This is usually found in covalent compounds of the transition- 

metal ions. 

2) Intermediate field: the influence of W(r) is less than that of the interaction, 

but greater than that of the spin term neglected in eq. (3.7). This case is found 

in ionic compounds of transition-metal ions. 

3) Weak field: the splitting by W(r) is even smaller than the splitting by the 

spin term V,. In this chapter we only consider systems where the spin effects 

may be neglected. In Ch. 5 we will discuss these effects and the weak field 

case. Here we are only concerned with the first two cases. 

3.3.2. The simplest case: one electron 

We start with the case of an atom with only one electron outside the closed 

shells. In this case the difference between strong and intermediate field 

vanishes. The Hamiltonian is now 

2 
H= — Vir) + Wr) =H, + W(r). (3.8) 

As we have already seen, the invariance group of H, is O(3), that of H isa 

crystallographic point group K. An energy level of H, is denoted by the prin- 

cipal quantum number v and the orbital angular momentum /. The eigenfunc- 

tions of this level transform according to the representation D”. The eigen- 

functions of H belong to irreducible representations of K. As K is a subgroup 

of O(3), the representation D© subduces a representation D(K) of K 

which is, in general, reducible. When I, ..., ', are the irreducible represen- 

tations of K, one has 

; 
D(K) = 2 mT, , 

l= 

where mi is the.multiplicity of T; in D°(K). According to Ch. 2, § 2.3 the 

level E,,; splits up into mi) eee mi? sublevels, each of which is d;-fold 

degenerate. 
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As an example, consider an ion in a cubic lattice, where the crystal produces 

a field at the position of the ion which has the symmetry of the cube, i.e. 

m3m symmetry. We restrict us to the subgroup 432 of rotations. As we will 

see below, this is sufficient. For 432 the character of the representation sub- 

duced from D\ is given by 

”) 0° 120° 180° 90° 180° 
= =! 
D() S-state 1 1 1 1 1 

Df 1) P-state 3 

D() D-state 5 

D®) F-state | 7 he Sa 

DY G-state 9 

eae a ee Se i ee ra 

The character table of 432 = O is given in the appendix. From this the reduc- 

tion of D/(K) is easily determined using eq. (1.19). 

DYM= Ty 

DOA = r; ors 

D®)=T, eT, oT; 

DO=T, eb, el, ers 

Hence an S-level or P-level is not split up in a crystal field with cubic sym- 

metry. A D-level is split up into one two-fold and one three-fold degenerate 

level and so on. Moreover, the eigenfunctions of the level coming from a P- 

level transform according to Py under transformations of 432, etc. 

We considered only rotations in this case, whereas the full invariance group 

also contains the central inversion /. That this procedure is justified, can be 

seen from the following reasoning. The point group K is a direct product 

H X Cy. When [, are the irreducible representations of H, those of K are Dis 

The multiplicity io the irreducible representation I} in DO(K) (with 
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€1, €) = +1) is given by (Nis the order of K) 

€ 1 * * 
Moser — Ny (Xi B) XalB) + €€2X7 (8) Xql(8)} 

rs 
ie X7(8)Xq(g) if €;6,=+1 

0) : if €jey =. 

Hence even represeftations reduce into even representations and odd repre- 

sentations reduce into odd representations. The multiplicity is equal to the 

multiplicity of Py(H) in D(A). 

3.3.3. Levels of pairs of nonequivalent electrons 

Consider now an atom with two electrons outside closed shells. In order to 

avoid difficulties with the Pauli exclusion principle we assume that the two 

electrons are not equivalent. This means that they do not belong to the same 

representation space of an irreducible representation of the invariance group 

of H, (3.7) (either they have different principal quantum number, or they 

have different orbital angular momentum). When the i-th electron is in the 

state W,,),,(7;) belonging to the irreducible representation D of O(3), the 

two-particle state Vn lym TD Waylom(12) belongs to the representation 

Do) x D“) of the symmetry group O(3) X O(3) of H,. 

When the atom is placed in a strong crystal field, the level of the i-th 

electron is split up according to 

, 

D“O(K) = Z MOLT MK) , 
a 

where I’;, ..., , are the irreducible representations of K. The symmetry 

group of H, is O(3) X O(3). The symmetry is lowered to K X K by the 

crystal field, and further to K by the interaction between the electrons. The 

representation DY) x D™®) of O(3) X O(3) subduces a representation of 

K X K which can be decomposed as 

DD) x D@(K XK) = > MV mP Py g(K XK) ; 
op 

whereas the subduced representation I’, ,(K) can be reduced into 
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D,3(K)= fe EO 

Therefore, the level £ characterized by nj, 1), 17, /, is split up into 

x ap m Pm sublevels characterized by a,6 and each of these sublevels 

splits up into 2, me sublevels. 
As an example, consider 2 d-electrons (/= 2) in different shells. The five- 

fold degenerate level of each electron is split up into two sublevels when 

placed in a crystal field with cubic symmetry, because D(K) = D3 @7Ts. 

Then the 25-fold degenerate two-electron level is split up into four sublevels 

corresponding, respectively, to 133, 735, 53 and I’55. Restricted to the 

group K = O, the splitting of these four levels is determined by the reductions 

P3ef,=P, er, 6b; 

P3eP5=Ps el, = ors 

Pets f or, el, obs, 

as is easily seen from the character table of O. The splitting of the energy 

levels by the subsequent switching on of the interactions W and V can be 

visualized in a level scheme (fig. 3.3). 

When the atom is placed in a crystal field of intermediate strength, the 

symmetry O(3) X O(3) is lowered to O(3) by the interaction between the 

electrons, and further to K by the crystal field potential. The representation 

of O(3) subduced from D“1) x D2) of O(3) X O(3) can be decomposed into 

irreducible representations D©). 

] rc 
ae RS Oa 

Ya@Y 4 fas ae eect, 
Ge a ned Ph a 1 

/ fe / Y,@V_ (6 ae ri 
7 oO SS Sas 3 eS 

(2). (2) ee 5 

ded Se Vee, (6 pe eee ee i 

\ = ey 3 e 
x 5 

x 1 

\ Y,@Y ee r. 
5 cd SS 5 eens 9 3 

= jae 
5 

Fig. 3.3. Splitting of a level of 2 nonequivalent electrons in a strong crystal field of 
cubic symmetry. 
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DYv~» p22) => mv!) p©) : 

iE 

The representation of K subduced from the representation D“) of O(3) de- 
composes into 

D©)(k) = 2 mOT (kK). 
Qa 

Consequently, the (2/,+1)(2/,+1)-fold degenerate level characterized by 

11,114, y,/, is split up into 2, mit!) sublevels which are (2L+1)-fold 

degenerate and each of these levels is split up into 2, me) sublevels. 

As an example we consider again an atom with two d-electrons in a field 

of cubic symmetry. From the interaction between the electrons, the 25-fold 

degenerate level splits up. From the theory of representations of O(3) (cf. 

e.g. Hamermesh [1962]) one has the following decomposition. 

D®%e D®=DOeDVeDAepDQ@ ep , 

according to the general formula 

l,+1, 

\1;—ly| 

For the subsequent splitting by the crystal field one can use the decomposi- 

tion of D“)(K ~O) given in the preceding section. The level splitting by the 

subsequent switching-on of the various terms in the Hamiltonian is visualized 

= t 

o (3) ee 3 
ing Ey ce ry, 

J “Shs [5 
¥ 

= i) / ae 
Voge a "% 

(2), ,(2) ES es iE 
d\'ed See 

\S 0 (5 oan i 

eS 5 
eS PSs Ses BLES Ty 

\ 
\ Soll eine eee ee r; 

Fig. 3.4. Splitting of a level of 2 nonequivalent d-electrons in an intermediate crystal 

field of cubic symmetry. 
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by the level scheme in fig. 3.4. Of course, the number and the kind of the 

different sublevels is the same for a strong field as for an intermediate field, 

since they are found from a decomposition of the subduced representation 

p&iyx D&2)(K) into irreducible components; and this decomposition is 

unique, so can not depend on the steps of the different reductions. However, 

the distance of the levels and their ordering on the energy scale will be 

different for different fields. The magnitude of the splittings cannot be found 

in this way. One has to perform explicit calculations. Using perturbation 

theory one can also apply other group-theoretical methods as treated in 

Ch 2, §2.4. We will not treat this aspect here. 

3.3.4, Levels of equivalent electrons and the influence of the Pauli principle 

In the foregoing sections we did not take into account the fact that elec- 

trons are fermions. This was possible, as we will show, because we treated the 

case of electrons belonging to different levels. In general, however, we have to 

take into account the Pauli exclusion principle. The wave function of a system 

of electrons does not belong merely to the tensor product of one-particle 

Hilbert spaces, but it must be a totally antisymmetric wave function too. Con- 

sider first a system of two electrons in a centrally symmetric potential. We 

denote the Hamiltonian of the system by H(1, 2) = H,(1, 2) + VC, 2), where 

H,(1, 2) = H(1) + A(2) and V(1, 2) is the interaction between the electrons. 

Apart from the group O(3) X O(3), the Hamiltonian H,(1, 2) also has permu- 

tation symmetry, because one can interchange the particles without changing 

the Hamiltonian. The permutation operator P acts on A(1, 2) as PH(1, 2)P7! 

= H(2, 1). Hence the symmetry group S contains both O(3) X O(3) and the 

group of order two generated by P, but it is not the direct product of the two 

groups, as P does not commute with an element (g,) € O(3) X O(3) unless 

gah. Let >; (= 1,...,d,) denote the one-particle eigenfunctions of H(1) or 

H(2). A basis for the two-particle space is given by ¢,;(1) g;(2). 

First we consider two different levels denoted by a and B. Here we assume 

that the space generated by ¢,; (= 1,...,d,) is different from the space gen- 

erated by g;- A basis for the eigenspace of the eigenvalue E,, + E, of Hy(1, 2) 

is given by the functions Pqi(1) bp ;(2) and $,;(1) $4;(2). The dimension of 

this space is 2d,d,. This space is invariant under the group S generated by P 

and O(3) X O(3). It carries a representation of this group which, with respect 
to the basis given before, has the matrix form 

D, (81) @ Dg(8r) 0 
D(g,,25)= 

ee ( 0 oe 
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0 1 
D(P) = 

1 0 

The given basis functions cannot be wave functions for the two-electron sys- 
tem as they are not antisymmetric. One can choose another basis, with func- 
tions (¢,;(1) g;(2) + $, ;(2) ,;( 1))/\/2, which are either symmetric or anti- 

symmetric. With respect to this basis, the representation is given by the 

matrices 

/ D8 )®Df82) *Dol82)®Dg(81) Do(81)®Dg(82)—Dy(82)@ Dols) 
Dg), 8) Fe - 

Pol )@Dg(82)—D(82)®Dg(8 1) Dy(81)@Dg(¢2)+ Dy (82) @Dg(g 1) 

Bae 
D(P)= (n=d,dg=n). 

Chie ae 
A 

We notice that the symmetric and antisymmetric functions form a basis of 

the 2d,,d,-dimensional space, because Pqi(1) 6 ;(2) can never be equal to 

$,;() 6; (2) because the spaces of antisymmetric and of symmetric func- 

tions are not invariant under O(3) X O(3). This means that in the space of 

antisymmetric functions the invariance group can not be O(3) X O(3). The 

Pauli principle effectively acts as a repulsive force. Therefore, as soon as we 

consider fermions the symmetry is the same as when we introduce the inter- 

action V(1, 2). Now, the symmetry of H(1, 2) is O(3) X Cz, where C) is the 
group generated by P. The representation of this group subduced from the 

group S is given by the matrices 

Dg) @ Dg(g) 0 
D@aDigig)= 

0 D,fg) ® D,(g) 

Pia0 
D{P)= 

Ot 

The product representation D, ® Dg can be decomposed into irreducible 

representations as before. For electrons, one has only to consider the sub- 

space of antisymmetric functions which is now an invariant subspace, and so 
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carries a representation of O(3) X C. In this subspace one has 

D(g) = D,(g) @ Dg(g) = i m,-D, (8) 

DPs)=—De), 

where the multiplicity m,_ (the multiplicities m, , vanish all) is determined 

from the reduction of (D, @Dz)(G), ie. entirely from the subgroup O(3). 

Hence in this case one can forget about the Pauli principle for the determina- 

tion of the level splitting. For a strong field the situation is analogous. 

The situation is entirely different if the spaces spanned by $,; and $,; are 

the same (a=). In this case a basis of two-particle functions at ne level 2E, 

is given by Poi) bq; (2). This a2 -dimensional space is ee under the 

group S generated by P and (3) X O(3). However, the 3d, (d,—1)-dimensio- 

nal subspace of antisymmetric eigenfunctions is not an venta subspace. A 

basis for this space is (6, ;(1) $q;(2) — $qi(2) a; (I))/V 2 with 1 <i< j <dg. 
A basis for the $d, (d,t 1)-dimensional subspace of symmetric functions is 

given by (¢ wil) bqj2)4 bq i(2) da ;(IV 21S i<j <d,). The subduced 

representation of the group O(3) X P which is a subgroup of S leaving both 

spaces invariant is given by 

D(g) = D,(g) ® D,(g) with respect to the first basis, 

1, 

D(?)= with respect to the second basis, 

(n= 3d,(d,t1), n'=3d,(d,—1) . 

The character of the subduced representation is given by x(g) = [x,(g)] 2 and 

x(P) = d,. An arbitrary representation of O(3) X Cy can be reduced into 

irreducible components D, However, we are more interested in the represen- 

tation carried by the space of symmetric or antisymmetric functions. The 

representation carried by the (anti)symmetric functions is called the (anti)- 

symmetrized Kronecker product. The character of these representations are 

found from 

Ty {Gai(1) $—j(2) * bgi(2) $a,j(1)} 

5 = (Dg ® Da) (8)ic1, if {Pox (1) Gq 1(2) + box(2) bq1()} - 
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Therefore, the character of the representation carried by the space of anti- 
symmetric functions is 

XFe)= = (Dy 2 Dy) x1 ki = 3 z (Dy2 Dy)(@)ei ki — 2 y Dr(g)kx » 

whereas the character for the space of symmetric functions is 

XB) = E (Da DaMB)Ki,k1 = FE (Das DV Binet +E = Dawe 
Hence 

x*(g) = (XQ (8)? + x,(¢)) (3.9) 

x°(P) = 4d, (d, #1). 

The level splitting of a system of two electrons is determined by the reduction 

of the representation in the space of antisymmetric functions, when the spi 

is neglected or when the spin of the system forms a triplet state (even in spi 

space). It is determined by the reduction of the representation in the sym- 

metric space, when the spins form a singlet (odd) state. 

As an example we consider again a system with 2 d-electrons. Now we 

assume that they are in states with the same principal quantum number. Also 

we again take the case of the atom placed in a crystal field of cubic symmetry. 

The Hamiltonian is H(1, 2) = H,(1, 2) + W(1, 2) + VC, 2), where H, is the 

Hamiltonian of the two electrons in the spherically symmetric potential of 

the core, W is the (strong) crystal field potential and V(1, 2) is the interaction 

between the electrons. The invariance group of H, is the group generated by 

O(3) X O(3) and P. The eigenspace with eigenvalue 2F, carries a 25-dimensio- 

nal representation of this group with basis functions ¢,;(7,) $y j(r2) where 

i,j=1, ..., 5. The space is irreducible under O(3) X O(3) and a fortiori under 

the whole invariance group. The representation restricted to the subgroup 

K X K is reducible: according to §3.3 it has four irreducible components: 

133, 35, 153, and 55. The spaces carrying the representations I’, and Iss 

are also invariant under P, and consequently they carry irreducible represen- 

tations of the invariance group of H, + W: the group generated by K X K and 

P. However, the spaces carrying the representations I'53 and I’3« are inter- 

changed by P. Hence their direct sum carries an irreducible representation of 

the invariance group of H, + W. We draw the conclusion that by the crystal 

field the 25-fold degenerate level of H, splits up into three levels of degeneracy 

4, 9 and 12 respectively. By the interaction V these levels are again split up. 
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The invariance group of H is the direct product K X C, where C) is the group 

generated by P. Let us consider the three levels already found separately. 

1) The space carrying the irreducible representation 33 carries a reducible 

representation of K X Cy. The subduced representation is given by 

D(g) = 13(g) @ 13(g) 

103020 

0 1 0 
D(P)= 

LOs"0 

ORO SOF al 

On the subspace of symmetric functions the subduced representation of 

K X Cy is given by the character (cf. eq. (3.9)) 

x(g) = 3(x3(g)? + x3(¢7)) 

B= ad3(da rl) oe 

whereas the representation in the subspace of antisymmetric functions is 

given by the character 

x(g) = 3(x3(8)* —x3(8?)) 

NE eral, 

For the group K = 432 = O the character is x(€,B, a2, a, af) =(3).0,3 ie) 

on the symmetric space and (1,1, 1,—1,—1) on the antisymmetric space. 

This means that the subduced representation of K X Cy on the space of sym- 

metric functions reduces into Ty ® iy whereas that on the space of antisym- 

metric functions is 1 . Hence 

D(KXC,)=Ty ely eF3. 

2) In an analogous way one finds that the 9-dimensional representation sub- 

duced from Iss has four irreducible components 

D(KXC,)=TypeT3eryers . 
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Fig. 3.5. Splitting of a level of 2 equivalent d-electrons in a strong cubic crystal field. 

3) The case of the direct sum of the representations 3, and I'53 corresponds 

to the case of nonequivalent electrons: one electron is in the state character- 

ized by the representation 35, the other in that of I’53. It splits into a 6- 

dimensional space of symmetric functions and a 6-dimensional space of anti- 

symmetric functions. Hence the subduced representation of K X Cy reduces 

according to 

D(KXC,)=Tg+T§+Ty +Ts . 

The level scheme of the subsequent splitting under the influence of W and V 

is given in fig. 3.5. 

We considered in this section both symmetric and antisymmetric functions, 

although the particles involved, the electrons, are fermions. The reason for 

our interest in symmetric functions is the fact that the wave function of a 

pair of electrons is either the product of an antisymmetric spatial wave func- 

tion and a symmetric spin wave function (triplet spin state), or the product 

of a symmetric spatial wave function and an antisymmetric spin wave func- 

tion (singlet spin state). In this way the spin enters into our symmetry con- 

siderations, although we neglected spin-orbit interaction here. A proof for our 

assertion is the following. If H(i) is the Hilbert space of spatial wave functions 

of particle i, and H,(i) its two-dimensional spin space (i= 1, 2), the Hilbert 

space of the two-electron system is the subspace of antisymmetric functions 

of the space H,(1) 2 H,(1) @ H,(2)@ H,(2). If H,(1) @ H,(2) carries a repre- 

sentation D, of the permutation group 5S, and if H,(1) @ H,(2) carries a 

representation D,, the product space carries a representation D, @ D,. Anti- 

symmetric functions transform according to the representation I". Since 

T,ef,=l) eV, =F, andl, e Py =P, an antisymmetric function has 

either a symmetric spatial part and an antisymmetric spin part or the inverse. 
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Fig. 3.6. Splitting of a level of 2 equivalent d-electrons in an intermediate crystal field of 

cubic symmetry. 

Returning to our example and taking into account the spin degeneracy of the 

two-electron system with electrons in d-states, the total degeneracy is 45 for 

the d?-level, 6 for the P33-level, 15 for the I'55-level and 24 for the 135 © I's3- 

level. 

For an intermediate field, the invariance groups of H,,H, + V and H are 

the group generated by O(3) X O(3) and P, the group O(3) X C and the 

group K X C5, respectively. The corresponding level scheme is given in 

fig. 3.6. It must be stressed that the figs. 3.5 and 3.6 only visualize the way 

the levels split, but that they are not realistic examples of level schemes. 

From other arguments, which involve not only group theory, one can derive 

general rules (e.g. Hunds rule) about the order of the energy levels. For more 

details we refer to books on crystal field theory, e.g. Griffith [1961]. 

The generalization to a system of n electrons is now straightforward. Con- 

sider n electrons in the same shell of an ion in a strong crystal field. The in- 

variance group of (1, 2, .2,n) =H (1; 2,22,7) + WU, 2325) Vi a) 

is K. The symmetry group of H, is generated by O(3)” and S,,, the permuta- 

tion group of n elements. By the crystal field the symmetry of H, + W is 

lowered to the group generated by K” and S,,. Because of the interaction V 

between the electrons, the symmetry of H is K X S,,. Suppose the n electrons 

are in the same level of H, + W which belongs to an irreducible representation 

of its symmetry group. The eigenspace #, carries a reducible representation 

of S,,. The component #4 which carries the fully antisymmetric representa- 

tion of S,, (the representation with + I for even permutations and — I for odd 

ones) is invariant under K. The space 4, carries the n-fold Kronecker product 
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of a representation D,(K). The representation DK) ®... ®D,(K) (with n 
factors) restricted to #4 is called the antisymmetrized n-fold Kronecker prod- 
uct of D,(K). In the same way the space which carries the trivial representa- 
tion (the fully symmetric representation) of S,, carries also the symmetrized 
n-fold Kronecker product of D,(K). However, ifm > 2 one cannot assert that 
the spatial wave function belongs to either the symmetrized or the antisym- 
metrized Kronecker product, because in this case it is in general not possible 
to write the total wave function as a product of a symmetric spatial part and 
an antisymmetric spin part or the inverse. E.g. for a 3 particle system, the 
wave function in the product space must belong to the representation Dy, of 
53. As one sees from Ch. 1, §3.4 the representation D, occurs in the products 
D,® Dz, Dy ® D, and D3; @ D3. When the space H,(Z) is two-dimensional, as 

is the space H,(), neither H,(1) ® H,(2) @ H,(3) nor H,(1)® H,(2)@ H,(3) 

can carry a representation Dy of S3. Hence the three-electron wave function 

must belong to D3 ® D3, i.e. both its spatial part and its spin part belong to 

the representation D3. Of course, the n-electron wave function belongs to the 

antisymmetrized n-fold Kronecker product of the representation carried by 

H,@H,. 

3.3.5. Symmetry adapted functions 

Consider again the problem of level splitting for one electron in an atom in 

a crystal field. For the unperturbed Hamiltonian H,, the invariance group is 

O(3). Then an energy level space carries a representation of O(3), which is the 

representation D™) in the case of natural degeneracy. Basis functions for this 

representation are the spherical harmonics Y/”. When the atom is placed in a 

crystal, the symmetry is lowered to the point group K. The subduced repre- 

sentation D“(K) is, in general, reducible, but this does not mean that the 

matrices are in reduced form with respect to this basis. A basis with respect to 

which the matrices are in reduced form is obtained by linear combinations of 

the spherical harmonics. This new basis will be a better zeroth order approxi- 

mation to the eigenfunctions of H (according to Ch. 2, §2.3). When K is the 

cubic group m3m, the new basis functions are called cubic harmonics. In 

general, the functions which reduce D((K) for a point group K are called 

lattice harmonics or symmetry adapted functions. They can be found by 

application of the projection operators from Ch. 2, §1.4 and they are tabu- 

lated for several crystallographic point groups and for values up to /= 30 in 

Bell [1954], Altmann and Bradley [1965], Altmann and Cracknell [1965], 

Puff [1970]. 
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Table 3.5 

Cubic harmonics for /] < 4. 

SRS Basis functions of the reduced representation 
components D (kK) 
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As an example we give in table 3.5 the cubic harmonics for /= 0, 1, 2, 3, 4. 

The reduction of D™) for the group m3m has already been determined in 

63.2: 



CHAPTER IV 

SPACE GROUPS 

In this chapter we will treat another class of groups: groups of inhomo- 

geneous spatial transformations which describe the symmetry of crystals. 

Their elements are translations, orthogonal transformations or combinations 

of both. The study of these so called space groups goes back to the 19th 

century when Schoenflies [1891] and von Fedorow [1892] determined the 

three-dimensional space groups. The general theory of n-dimensional space 

groups was given by Bieberbach [1911, 1912]. A nice derivation and a dis- 

cussion of their properties can be found in Burckhardt [1966]. The first 

section of the present chapter is devoted to the general properties. The 

second section discusses the representations of space groups. Their determina- 

tion was given for the first time in Bouckaert et al. [1936] and more general 

in Wintgen [1941]. A more recent treatment can be found in Koster [1957] 

and Bradley and Cracknell [1971]. The third section deals with some simple 

applications of the representations. A more complete discussion is postponed 

till Ch. 6. The representations of space groups are published in tabular form 

in Miller and Love [1967] and in Zak [1969]. Diagrams and many properties 

of the space groups are tabulated in the International Tables for X-ray Crys- 

tallography: Henry and Lonsdale [1965]. 

4.1. Properties of space groups 

4.1.1. The Euclidean group E(3) 

Consider a three-dimensional real vector space V. We define for any non- 

singular linear transformation S and translation f a transformation of V by 

LOS Ae ee daa 4 Gnyx eV). 

The product of two such transformations is defined by their successive action 

105 
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Or 

It is easily verified that the set of elements {S|¢} forms a group under this 

multiplication rule. It is called the affine group A(3). Notice that the elements 

of A(3) are not linear transformations: for x, y © V one does not have 

g(x+y)=gx + gy! The unit element of A(3) is {1|O}. A subgroup of A(3) 

is formed by the elements { f| t} (for any translation t). This subgroup, iso- 

morphic with the three-dimensional group 7(3), is Abelian and invariant 

because for any {S|t} € A(3) and any { f|t’} © T(3) one has 

{Sie}{ Mie F {Soyo = (Set SESS | =S- th = 18 SE Ge 

Another subgroup is the group of elements {S|O} which is the group of non- 

singular transformations GL(3, R). As 7(3) is an invariant subgroup, one can 

consider the factor group A(3)/7T(3). Two elements {S,|f, } and {S5|£5 } 

belong to the same coset of 7(3), if there is an element { |} © 7(3) such 

that 

This means that they belong to the same coset if and only if S$; = Sj. The 

multiplication in the factor group is defined by: the product of the coset of 

{S| t,} and the coset of {S'4| £5} is the coset of {S,S5|t,+S,t,}. Hence 

A(3)/T(3) = GLG3,R) . (4.2) 

A group with such a structure, partially recalling the structure of a direct 

product, is called a semidirect product. A group G is the semidirect product 
of two groups A and B if 

1) for any b © B there is an automorphism y(b) of A such that 

9(b1){ (bz )a} = y(byby)a (any a€A), 

2) there is an isomorphism between G and the group of pairs (a,b) with 

a€A and b €B having the multiplication law 

(4), b1)(@y,b3) = (a, [9(b1)ay],b 159) . 
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When we use an additive notation for_A (which does not mean that.A is 
Abelian) and write ba for y(b)a, the last formula reads 

(a,5,) (a, b>) = (a, +b, a,b,b>) . 

The semidirect product of A and B is denoted by A &B or by A KX, B when 
we wish to show explicitly the dependence on the action y(B). The: direct 
product is a special case of the semidirect product, where the automorphism 
y(b) is the identity: y(b)a =a for any a€ A, b GB. In the present case we 

have 

A(3) = 7(3) KX GL(3,R), (4.3) 

where y(S)t¢ is defined as St. 

We now suppose that V is a three-dimensional Euclidean vector space, i.e.a 

real three-dimensional linear vector space with a positive definite inner product. 

One can define the distance between two points x and y as the norm of their 

difference: d(x, y) =(x-y, xy)”. The elements of the translation group 

T(3) leave the distance between any pair of points invariant. One defines the 

Euclidean group E(3) as the subgroup of elements of A(3) keeping the dis- 

tance of any two points invariant. It can be shown that all distance preserving 

mappings belong to A(3). The element g= {S|f} does so if d(gx gy) =d(x,y) 

for any x,y © V. As this is equivalent to (x—y, x—y) = (Sx—Sy,Sx-Sy) 

this means that {S| t} € E(3) if and only if S € O(3). Therefore, the Euclidean 

group E(3) is the group of elements {R|t} with R € O(3) and t € 7(3). As 

for the affine group, one has the properties: 

1) T(3) is an Abelian invariant subgroup of £(3), 

2) E(3)/T(3) = O(3), 
3) E(3) is the semidirect product of T(3) and O(3). 

The elements of £(3) which leave the origin (null vector) fixed form the 

subgroup O(3). The elements which leave a point x fixed also form a sub- 
group. If {R|t} leaves x fixed and if x is obtained from the origin x, by a 

translation { 1|u} one has 

{R\t}{flu}x, = {Ilu}x, 

Then {f|u}—-!{R|t} {Llu} = {R|t + Ru—v} is an element of E(3) leaving 

the origin fixed and is therefore an element of O(3). From this it follows 

that t = u — Ru. The elements {R|u — Ru}, which leave x =x, + u fixed, 

form the orthogonal group of x. It is denoted by O,(3) and it is isomorphic 
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to O(3). Notice that each element {R|t} € £(3) can be written as 

{R|t}={Llt-—ut+Ru}{R|u-Ru}. 

This means that the element {R|t} can be obtained by the successive action 

of the element {R|u — Ru} € O,(3) and the translation {1|f -u+Ru}.In 

fact, we have performed a change of origin. 

The elements of A(3), although not linear transformations, can be brought 

into one-to-one correspondence with the elements of a group of linear trans- 

formations in four dimensions. To the element {S|f} corresponds the trans- 

formation of the space V ® R (with elements (%, w)) given by {S|f}(x,w) = 

(Sx +wt,w). A matrix for this linear transformation is 

ua as 
where ¢ is a three-dimensional column vector. It is easily verified that this 

correspondence is in fact an isomorphism. 

The elements of £(3) are sometimes called Euclidean motions. As E(3) is 

the semidirect product of 7(3) and O(3) one could denote the Euclidean 

motions by (¢,R). For crystallography the Seitz notation {R|t} is more 

customary. We will use it here. 

4.1.2. Space groups 

The atoms in an infinite crystal are arranged in a regular pattern. This 

means that there is a finite region in space which is repeated in all directions. 

In other words, there is a /attice group U, generated by three linearly inde- 

pendent basis vectors 4,4 ,@3, which transforms the pattern into itself. 

Each element of such a lattice is an integral, linear combination of the three 

basis translation vectors. This means that the group U is isomorphic with Z3, 

the additive group of triples of integers. Any element of U is given by three 

integers, once the basis is chosen. 

There may be other Euclidean motions which transform the pattern into 

itself. All these motions together form the space group of the pattern. We 

will now give a more rigorous definition of this very important notion. 

A space group G is a subgroup of E(3), such that its intersection with the 

translation group 7(3) is isomorphic to Z? and is generated by three linearly 
independent basis vectors. We denote the translation subgroup G  T(3) by U. 
Then the definition requires that U is a lattice group. 
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The translation subgroup U is an Abelian invariant subgroup of G. To 
prove this, take an element g © G and an element u € U. Since u € G, also 
gug—! €G. Furthermore, w is a translation and g€G C £(3) is an Euclidean 
motion. Hence gug~! € GN T(3) = U. This means that U is invariant. 

The factor group G/U has as elements the cosets of U in G. Again it is 

easy to see that any two elements {R|¢} and {S|v} of G belong to the same 

coset if and only if S= R. The elements R from all {R|t} © G form the point 

group K: K={R|{R|t} © G}. Therefore G/U = K. 

Because U is an invariant subgroup, for any { 1|a} © U and any {R|t}EG 

one has 

{R|t}{Lla}{Rit}-l= {L)Ra} Ev. 

Consider now the lattice A obtained by the action of U on the origin x,. For 

any X © A one hasRX = R(X, +U)=X,+ Ru for any R EK and {L|u} Ev. 

Hence 

KA=A. (4.5) 

Consequently the point group K is a crystallographic point group, which is of 

finite order. So any point group of a space group G is one of the groups dis- 

cussed in Ch. 3. The definitions were given for the three-dimensional case. The 

generalization to m dimensions will be obvious. 

4.1.3. Nonprimitive translations 

Because the translation subgroup U is an invariant subgroup of the space 

group G, the latter can be decomposed into cosets 

Calne UF 20s 

The number of cosets is equal to the order N of the point group K. To any 

R EK belongs one coset with representative g= {R|tp}. The translation 

{ | tg} is determined up to an element of U. When {1 |tp} is an element of 

U, it is called a primitive translation. Then one can choose a representative 

with tp = O. If tp does not belong to U, it is called a nonprimitive transla- 

tion. A nonprimitive translation { 1|t} is never an element of the space group, 

as from {1|t} €G follows {1|t} €GN T(3) = U or {It} is a primitive 

translation. The translation ¢ is a real linear combination of the three basis 

vectors 41,47, a3 of U: t= ta, + tp + 1343. When ¢ is primitive, the 
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3 numbers ¢; are integers, when ¢ is nonprimitive, not all ¢; are integers. How- 

ever, one can write ¢; =; + 7; with n; an integer and 0 <1; <1. The coordi- 

nates of t with respect to the basis a), 4, @3 are called lattice coordinates. 

A set {tp|R € K} such that {R| tp} are representatives of the cosets is 

called a system of nonprimitive translations (even when all the translations 

tp are primitive). A space group is given by its translation subgroup U, deter- 

mined by a basis @,,@ ,43, by its point group K and by a system of non- 

primitive translations. 

Once a basis for U is chosen one can express the orthogonal transforma- 

tions R © K with respect to this basis. Because of eq. (4.5) these are matrices 

with integral entries: it is an integral three-dimensional representation of the 

point group K. Also the translations fp can be expressed with respect to this 

basis in lattice coordinates, which can be chosen between 0 and 1 because tp 

is determined only up to a primitive translation. When all fp can be chosen to 

be O the space group is called symmorphic. A more general definition of 

symmorphic space group will be given in § 1.6. 

When fp = O the orthogonal transformation {R|O} is an element of the 

space group G. However, in general the point group K is not a subgroup of G. 

The elements of K occur only in combination with nonprimitive translations 

(in general). When R is a rotation and fp a translation in the direction of the 

axis of R, the element {R|fp} represents a screw motion. When R is a reflec- 

tion from a plane and fp a translation in this plane, {R|tp } is a glide reflec- 

tion. A rotation R combined with a translation tp perpendicular to the axis 

of rotation is a rotation around a point different from the origin. As R has 

eigenvalues | and exp (+iy), the equation (1—R)t =fp has a solution. Hence 

{R| tp} is a rotation through an angle y around the point t. A roto-inversion 

R has eigenvalues —1, exp (intiy). If p #7 the equation (1 —R)f =tp hasa 

solution. Hence {R| fp} is then a roto-inversion around f. Finally, if R is a 

reflection, it has 2 eigenvalues | and one eigenvalue —1. A nonprimitive 

translation fp perpendicular to the mirror plane can be written as $(1 —R)tp. 

Therefore, in this case {R| fp} is a reflection from a mirror plane through 

3tp. So any space group element is either a screw motion, a glide reflection 

or an orthogonal transformation which leaves invariant a point which can be 

different from the origin. As for point groups we can indicate the space group 

elements by diagrams. These can be found in Henry and Lonsdale [1965]. 

[1965]. 

4.1.4. Lattices 

A lattice group U can be determined by its metric tensor, which is the 
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matrix of the real symmetric bilinear form g(x, y)=x-+y with respect toa 
basis @),44, a3 of U: Bij = 4; °4; (cf. Ch. 1, §2.2). With respect to another 
basis, Bbtamed: from the nel he a nonsingular transformation S, the metric 
tensor is given by g’ = Ses according to eq. (1.6). When S is an orthogonal 
transformation, one has g= Ses. Notice that, although S is an orthogonal 
transformation, it is in general not an orthogonal matrix with respect to the 
basis @;, 47, a3. So U is determined by its metric tensor up to an orthogonal 
transformation. This is as it should be, as the three vectors a; have 9 compo- 

nents, whereas g has only 6. The remaining 3 parameters are the parameters 

of the orthogonal transformation: the orientation of the lattice in space is 
not determined by g. 

When S is a basis transformation which transforms the basis a = (41,45, a3) 

into another basis a’ = aS of U, the matrix of S with respect to the basis a 

must have integral entries. The matrices of dimension 3 with integral entries 

for which the inverse exists and has also integer entries, form the group 

GL(3, Z ) which is a subgroup of GL(3,JR). As the determinant of an element 

of GL(3, Z ) is integral and has an integral inverse, it must be +1. Any element 

of GL(3, Z ) transforms the lattice into itself. It is an orthogonal transforma- 

tion, i.e. an element of the point group leaving the lattice invariant, if and 

only if g= Ses. 

A lattice A is determined by a lattice group U and a point x,. Choosing 

for x, the origin one can identify A and U. Considering such a lattice one 

defines the holohedry of A as the subgroup of all elements of O(3) which 

transform the lattice into itself. We call two lattices geometrically equivalent 

if their holohedries are geometrically equivalent, i.e. if there is a nonsingular 

transformation S such that the holohedries H and H’ are related by 

H' =S—'HS. This is the case when there are bases for the vector space such 

that the matrix groups corresponding to the holohedries are the same. The 

equivalence class of this relation is called a system. The lattices in 3 dimen- 

sions belong to one of 7 systems. For each system the crystal class of the 

holohedry is determined. As any crystallographic point group leaves a lattice 

invariant, any such group is a subgroup of the holohedry of that lattice. We 

say that a point group K belongs to a certain system, when the holohedry of 

that system is the smallest holohedry containing K. The 7 systems and their 

holohedries and point groups are given in table 4.1. A lattice left invariant 

by a point group K is at least left invariant by the holohedry of K. 

The arithmetic holohedry of a lattice with metric tensor g is the subgroup 

of elements S of GL(3, Z) such that g=SgS. It is the group of matrices 

corresponding to the holohedry with respect to the basis of the lattice which 

gives g. We denote the arithmetic holohedry by $(H). With respect to another 
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Table 4.1 

Systems in 3 dimensions. 

System Holohedry Point groups 

Triclinic at Ta 

Monoclinic 2/m 2,m,2/m 

Orthorhombic mmm 222,2mm,mmm 

Tetragonal 4/mmm 4,4/m,422, 4mm,4,42m,4/mmm 

Trigonal 3m 3,32,3,3m 3m 

Hexagonal 6/mmm 6,6mm,622,6/m,6,6m2,6/mmm 

Cubic m3m 23,m3,432,43m,m3m 

basis of the lattice the arithmetic holohedry becomes ¢'(H) = S~!$(A)S 

according to eq. (1.4). We call two lattices arithmetically equivalent if there 

is a matrix S € GL(3, Z ) such that their holohedries (H) and 6(H’) are 

related by 6(H’) = S—!$(H)S. The equivalence classes of this relation are 
called Bravais classes. Two lattices belong to the same Bravais class if and 

only if there are bases for them with respect to which the arithmetic holo- 

hedries are the same. As a basis for the lattice is also a basis for the space to 

which it belongs, two lattices from the same Bravais class belong also to the 

same system. Hence each system can be subdivided in a number of Bravais 

classes. 

In several cases lattices from one Bravais class contain sublattices which 

belong to another Bravais class. A sublattice of U here is a subgroup of U 

which is again a lattice group. A basis for the sublattice-is obtained by integral 

linear combinations of the basis of the original lattice. However, the matrix 

describing this basis transformation is not an element of GL(3, Z ). Otherwise 

the lattice group generated by the new basis would be the same as that gen- 

erated by the old basis. On the other hand a basis of the original lattice can 

be obtained from a basis of the sublattice by a linear transformation de- 

scribed by the inverse of a matrix with integral entries. The sublattice is often 

chosen in such a way that the matrices of the holohedry are in a simple form. 

The sublattice is called the primitive lattice, the original lattice the centered 

lattice. The reason for this terminology will become clear in the following. 

In particular the different Bravais classes belonging to one system can be 

considered as centerings of each other. Usually one chooses the primitive 

lattice in such a way that the matrices of the holohedry get a simple form. 
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As an example consider a two-dimensional case. The system with holohedry 
2mm contains two Bravais classes. A lattice A, of the first class is generated 
by 4; = (a, 0) and ay = (0,5). The arithmetical holohedry of this Bravais class 

Genital 
A lattice A, of the second Bravais class is generated by a= (a,b) and 

a5 = (—a,b). The arithmetical holohedry for this lattice is the matrix group 

(_ ’) (" | ( sae —] ") 

Oe NY Oho CARY Oye onal: 

It is easily verified that there is no matrix S € GL(2, Z) which links one 

group to the other. This means that they really belong to different Bravais 

classes. However, the sublattice A generated by Ay = a} + a =(0, 2b) and 
A,=a)- a> = 2a, 0) has the same holohedry and the same arithmetic 

holohedry as the first lattice A,. The basis A,, A, of the sublattice is ob- 

tained by the matrix S from the basis a}, a4 and conversely a, a from 

A,, A) by S~! with 

<) ie 

‘cee Pe? se 
1 -1 

The sublattice A belongs to the Bravais class of lattice A, . The lattice A, is 

obtained from A by S~!. 
The different Bravais classes belonging to one system are given in table 4.2 

by a primitive lattice (i.e. an conveniently chosen element of the system) and 

the matrices S~! necessary to obtain a lattice in the Bravais class from the 

primitive lattice. 

A unit cell for a lattice A is a region in the vector space such that for every 

x €V there is exactly one point y in this region and one element u of the 

lattice group U such that x = y + uw. The unit cell of a lattice is not uniquely 

determined. A possible choice is the parallelopepid spanned by 3 basis vectors 

@ 1,4, 43. Another possible choice is the so called Wigner—Seitz cell defined 

as the set of points which have a smaller distance to a fixed lattice point than 

to all other lattice points. An advantage of the latter choice is that this cell is 

transformed into itself by the holohedry of the lattice. A drawback is the fact 

that for lattices with a low-order holohedry it is often difficult to construct 

or to visualize. 

Ni 
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Table 4.2 

SPACE GROUPS 

Bravais classes in 3 dimensions. 

System Metric tensor Bravais class Centering matrix Number of 

primitive lattice a points per 
a,b,c,d,e,fER unit cell 

Triclinic a) DaC Primitive - 1 

(: d :) 

Cie ip 

Monoclinic ab 0 Primitive — 1 

(: C 0| 

00d 

Body-centered =! 1, A 2 
1 
2 ( 1-1 '} 

1 1-1 

Orthorhombic a0 0 Primitive ~ 1 

(c b 0] 

ORORe. 

Body-centered Say “il al 2 
1 
5 ( 1-1 1) 

1 1-1 

Side-centered -1 1 0 2; 
1 
z( lie 0) 

ORO: 

All-face- LO 4 
1 centered 5 (: 0 y 

Oe laemel 

Tetragonal a Wy W Primitive — 1 

(0 a 0) 

005 

Body-centered 2 

N|- 

| 

SS 

| - ion 

—— 
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Table 4.2 (continued) 

System Metric tensor Bravais class Centering matrix Number of 
primitive lattice S points per 
a,b,c,d,e,fE R unit cell 

Trigonal * ab b Primitive - 1 

(: a i) 

fala Pape te (h.c.p.) 

Hexagonal aya 0 Primitive _— 1 

(1. a ) 

0056 

Cubic a0 0 Primitive - 1 

(0 a 0) 

00a 

Body-centered -1 1 1 2 

(b.c.c.) +( 1-1 ) 
1 1-1 

Face-centered 10 4 

(f.c.c.) t (: 0 ] 
Oil 

* A trigonal lattice is a rhomboedric centering of a hexagonal lattice via the centering 

2, 
1 
(1-2 i). 

Fees Bea 

According to the definition, in each unit cell there is exactly one element 

of the lattice. When we have a primitive and a centered lattice, in each unit 

cell of the sublattice (the primitive lattice) the number of points of the 

lattice is equal to the determinant of the matrix S. Since S ¢ GL(3, Z), this 

number is an integer greater than one. This is the reason why the original 

lattice is called a centering of the sublattice. In table 4.2 the number of 

lattice points per unit cell of the primitive lattice is given. For one lattice 

from each Bravais class either a unit cell, or a unit cell of a sublattice and a’ 

centering is drawn in fig. 4.1. 



SPACE GROUPS 

Nn 

nee bee 

ered sublattices, Unit cells of the cent 
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Bases of the lattices with respect to 

the centered sublattice 

Fig. 4.1. The unit cells of the 14 Bravais classes. 

4.1.5. Examples of space groups 

In this section we will consider some space groups which occur as groups 

of Euclidean motions which transform regular patterns into itself. We choose 

our examples here in two dimensions in order to have a simple case. We con- 

sider three two-dimensional regular patterns (fig. 4.2). 

Fig. 4.2. Some two-dimensional space groups. 
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In the first example all points (fig. 4.2a) can be obtained from each other 

by elements of the lattice group U generated by a, and @). If we choose P 

as origin, the elements of the space group which leaves the pattern invariant 

are products of 

{elnja, tna, EU, where € is the identity, 

{a|O} where a is the reflection leaving a, fixed, 

{B|O} where is the reflection leaving a> fixed, 

{aB|O} which is the 180° rotation around the origin P. 

In the second example (fig. 4.2b) only half of the points can be obtained 

from one point by a lattice group. The lattice group U is generated by a, and 

ay. If we choose P as origin, the pattern is transformed into itself by ele- 

ments of U, by the Euclidean motions 

{B|O} which is a reflection interchanging a, and a), 

{a2|0} — which is a 120° rotation, 

{a|3a,+3a } where ais a 60° rotation, 

and products of these elements. The point group K has the elements €, a, a, 

a>, a4, a5, B, ab, 028, a38, a4B, a8. It isa point group from the geometrical 

crystal class 6mm with abstract point group D¢. Notice that U is invariant 

under each element of K. 

When we choose the,pattern with origin in Q, it is transformed into itself 

by all elements {e|u} © U and by all elements {R|O} with R © K. Hence in 

this case there are no nonprimitive translations. So the space group is sym- 

morphic. This shows that a system of nonprimitive translations depends on 
the choice of the origin. As we will discuss in the next section the space 

groups of the same pattern are identified. We will call the space group of the 

pattern with origin in P also symmorphic, because the nonprimitive transla- 

tions can be removed by another choice of origin. 

In the example of fig. 4.2c the lattice group is generated by a, and ap. 

The pattern is transformed into itself by the reflection {a|O} and by the 
Euclidean motions {8|3 4} and {a6|4a}. The nonprimitive translation 
54> cannot be removed by another choice of basis. The space group is then 
called nonsymmorphic. 
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4.1.6. Identifications 

The number of space groups is infinite. However, many of these space 
groups describe patterns which are in many respects the same. In fig, 4.2a 
e.g. one can change the ratio of a, and a4. The symmetry remains the same 
as long as @, and @> are of different length. Also, another choice of origin 

gives another space group for the same pattern which can be identified with 

the first space group. 

In crystallography, it is customary to identify space groups which are 

conjugate as subgroups of the affine group A(3). Two space groups G and G’ 

are equivalent if there is an element {S|t}€A(3) such that 

{Slt} GESIE = G". (4.6) 

This implies that G and G’ are isomorphic. Bieberbach has shown (Bieberbach 

fiOrtE) 

PROPOSITION 4.1. Two space groups are isomorphic if and only if they are 

conjugate subgroups of the affine group A(3). 

PROPOSITION 4.2. The number of isomorphism classes of space groups is 

finite. 

In three dimensions the number of nonisomorphic space groups is 219. 

However, one sometimes identifies space groups only when they are conju- 

gate subgroups of A(3) with conjugating element {S|t¢} such that det (S) = +1. 

With this identification there are 11 pairs of space groups which are pairwise 

isomorphic but not conjugate by an element with det(S) = +1. Then there 

are 230 different space groups. 

When we choose a basis for the translation subgroup U of a space group 

G, the elements of the point group K correspond to a group of matrices with 

integral entries. Such a group ¢(K) with elements ¢(a) with a an element of 

the abstract point group K, is called an arithmetic point group. Choosing 

another basis for U related to the first by S€ GL(3,Z) the point group cor- 

responds to another arithmetic point group ¢'(K) = S~!@(K)S. Two arith- 

metic point groups that are conjugate subgroups of GL(3, Z ) are called 

arithmetically equivalent. The equivalence classes of this relation are the 

arithmetic crystal classes. Notice that from arithmetic equivalence follows 

geometric equivalence. The converse is not true. Several arithmetic crystal 

classes may belong to the same geometric crystal class. So every space group 

determines an arithmetic point group up to arithmetic equivalence, i.e. it 

determines an arithmetic crystal class. Moreover, isomorphic space groups 
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determine the same arithmetic crystal class. To prove this we first remark 

that by an element of A(3) conjugating the space groups G and G' the trans- 

lation subgroups U and U’ are conjugated according to eq. (4.6). So an iso- 

morphism x : G > G' maps U onto U'. Now consider for g= {R|t}©G the 

relation gag! = {1|(Ra,)}= {1 |Z; (a); ;4; | in G, where y(q) is the element 

of GL(3, Z) describing the element R € K with respect to the basis @),@5, 

a, of U. By the isomorphism x, this relation is mapped on x(g)x(a,)x(g)! = 
2; (a);¢X(q) in G'. As the translations x(a;) form a basis for U' one has 
x(a;) = B; S;;q;. Therefore, one has x(g)a;x(g)~' = 2), (S 1) (0), X (ax) = 
D)(Sy(a)S~!),,a). On the other hand x(g)a;x(g)~! = Z)y'(a),; a). Consequent- 
ly y (K') = Sy(K)S~! with § € GL(3, Z). This shows that the arithmetic 

point groups y'(K’) and y(K) are in the same arithmetic crystal class. Hence 
isomorphic space groups determine the same arithmetic crystal class. 

For every arithmetic crystal class there may be several nonisomorphic 

space groups. However, there is only one isomorphism class of space groups 

with the structure of a semidirect product. A space group with the arithmetic 

point group y(K) is given by the elements {R|w}, with uw a primitive trans- 

lation from the lattice left invariant, and R an orthogonal transformation de- 

scribed by y(a) with respect to the basis a;,@ , 43 of U. It isa space group 

without nonprimitive translations, so it is a symmorphic group. Every space 

group isomorphic with this group is also called symmorphic. As there is 

exactly one isomorphism class of symmorphic groups in every arithmetic 

crystal class, there is a one-to-one correspondence between the symmorphic 

space groups and the arithmetic crystal classes. In three dimensions there are 

73 arithmetic crystal classes. Thus there are 73 symmorphic space groups. 

The groups which are not symmorphic are called nonsymmorphic space 

groups. There are 219—73 = 146 nonisomorphic nonsymmorphic space groups 

in three dimensions. 

In summary one can classify the 219 nonisomorphic space groups as follows. 

For each of the 73 arithmetic crystal classes there is one symmorphic and 

possibly several nonsymmorphic space groups with an arithmetic point group 

in the crystal class. Each of the arithmetic crystal classes belongs to one of 

the 32 geometric crystal classes. The space groups belonging to such a crystal 

class have a point group from this class. Every geometric crystal class belongs 

to one of the 7 systems. The space groups belonging to a system have a trans- 

lation subgroup with lattice belonging to this system. When we associate a 

space group to that Bravais class which has the smallest arithmetic holohedry 

containing the arithmetic point group of the space group as a subgroup, each 
space group belongs to one of the 14 Bravais classes. Finally each of the 14 
Bravais classes belongs again to one of the 7 systems. In table 4.3 the 73 
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Table 4.3 

The arithmetic crystal classes in 3 dimensions. 

System Bravais class Holohedry Arithmetic  Iso- Generators Number 

crystal morphism point space 

class class groups groups 

Triclinic Primitive Pl Pi Cy 1 1 
Pt C2 2 1 

Monoclinic Primitive P2/m Pin C2 7 2 

P2 C2 3 2 

P2/m D2 Ba 4 

Body- 12/m Im C2 il 2 

centered 12 C2 I3 1 

12/m Dy Hayle 2 

Orthorhombic Primitive Pmmm P22) D4 3,4 4 

P2mm Dy 8,9 10 

Pmmm Dz X C4 7,8,9 16 

Body- Immm L222 Dy 13,14 2 

centered 72mm D2 Tigh IE) 3 

mmm Dz xX C2 MAY IES) 4 

Side- Ammm A222 Dy A3,A4 2 

centered 1A 2mm D2 A8,A9 3 

2A2mm Dz FAT Vlte) 4 

Ammm D2 X C2 A7,A8,A9 6 

All-face Fmmm F222 D2 F3,F4 i 

centered F2mm Dy F8,F9 2 

Fmmm Dx C4 EA ee 

Tetragonal Primitive P4/mmm P4 C4 12 3(4) 

P4/m C4 X C2 We 7) 4 

P422 Da 2S 6(8) 

P4mm Ds 12,8 8 

P4_ C4 C3 1 

1P42m Da LFS 4 

2P42m Dg 13,4 4 

P4immm —- Da X C2 [2.87 16 
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Table 4.3 (continued) 

SPACE GROUPS 

System Bravais class Holohedry Arithmetic  [so- Generators Number 

crystal morphism point space 

class class groups groups 

Tetragonal Body- 14/mmm 14 C4 112 2 

centered 14/m (Cri (ED JAI 2 

1422 Da LAPS 2 

14mm D4 712,78 4 

14 CG 13 1 
1142m Ds 113,15 2 
2142m Ds 113,14 2 
14/mmm Da X C2 712,/8,J7 4 

Trigonal Primitive R3m R3 C3 R14 1 
R32 D3 R14,R6 1 

R3 ee R15 1 
R3m D3 R14,R10 2 

R3m De RAUS2RA10 82 

Hexagonal Primitive P6/mmm P3 C3 14 2(3) 

2S D3 14,5 2(3) 

2P32 D3 14,6 2(3) 

(PS C6 15 1 

1P3m D3 14,11 2 

2P3m D3 14,10 2 

1P3m De 15511 2 
2P3m De 15,10 2, 

P6 CE 16 4(6) 
P6mm De 16,10 4 

P622 De 16ND 4(6) 

P6/m C6 X C2 16,7 22 

P6 Ce 17 1 

1P6m2 De 175 2 
2P6m2 De 17,6 2 
P6/mmm De X Co 1s UO 7 4 

Cubic Primitive Pm3m PQS It 18,3 2 

Pm3 Te XiCo (Neh Bh, 3 

P432 O 129 3(4) 

P43m O T3519 2 

Pm3m OXC2 2, UG) 2 4 
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Table 4.3 (continued 

System Bravais Class Holohedry Arithmetic Iso- Generators Number 

crystal morphism point space 

class class groups groups 

Cubic Bice: Im3m 23 if HAUS HE} z 

Im3 TXC, TASES 2 

1432 O TAPES ONES) 2 

[43m O JAS INS) Z 

Im3m OXC2 ENGI), 2D 

Rec: Fm3m F23 ip F18,F3 1 

Fm3 TX C2 PAU SOS 2 eee 

F432 O F12,F19 2 

F43m O EAS ENS y 

Fm3m OXC, FZ ENO 24 

219(230) 

1) The arithmetic crystal classes are denoted by the symbol for the corresponding symmorphic 

space group. 

2) The generators of the point groups are given in the following table 

Leo Sil ie = 0 © ik © @ tf @ 

1=(o 1 0) 2= ( Oj) il 0) ‘| 0) Al 0) 4= (0-1 ) = (: 0 0) 

Ores OO O i OROE ST OMOR et 

lO 1 0-0 LOO -1 0 0 0 0 

6=(0-1 0) [= (0 1 0| 8= (0-1 0) o-( Ome o) LO (: 0 0) 

Om Or Ono 0) a @ @ 1 OR Oneal 

she 0-1 O OT O =f=1 0 il i @ 

u=(0 =I! 0) = (: 0 0] 13=(-1 0 0) 14 ( 1 O 0) 1S) = (. 0 0) 

OOr st Oy Oi 0 0-1 Om Oma O =i 

=O (tk al a, 0) © tt 

16=(1 1 0| Wf = (1 =1 0} 18 = (0 0 i) i= (: 0 0] 

OMOnr OmOrt it x @ Oi 
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arithmetic crystal classes and the 219 associated space groups are given as well 

as the Bravais class and system to which they belong. 

A space group can be given by the underlying lattice (determined by its 

metric tensor), generators for the arithmetic point group y(K) and the lattice 

coordinates of the nonprimitive translations associated to these generators. It 

is sufficient to give only the nonprimitive translations associated to the gen- 

erators, because from {Rltp}{S|to} = {RS|t{p+Rtg} it follows that the 

nonprimitive translation associated to RS is equal to tp + Rts up toa primi- 

tive translation (a system of nonprimitive translations is determined up to 

primitive translations). The 219 space groups are given in the appendix. More 

ex tensive information about the three-dimensional space groups can be found 

in the International Tables for X-ray Crystallography (Henry and Lonsdale 

{1965]). See also Burckhardt [1966], Ascher and Janner [1965, 1968] for 

mathematical aspects, and Buerger [1963] for a crystallographer’s point of 

view. 

4.1.7. Crystal structure, in particular diamond structure 

The particles constituting an infinite crystal form a regular pattern. This 

means that when we consider the particles as point particles their equilibrium 

positions form such a regular pattern. The group of Euclidean motions which 

transform the crystal into itself (the symmetry group of the crystal) is a space 

group. When the crystal vibrates, when the particles are described by quantum 

mechanical wave functions, or when the crystal has imperfections, the sym- 

metry is broken. The space group of the pattern formed by the equilibrium 

positions does not, in general, transform the real crystal into itself. However, 

the Hamiltonian of a perfect crystal will again show the symmetry of the 

space group. 

When the space group of the crystal is G, one chooses a unit cell of the 

translation subgroup U to describe the positions of the particles. Because any 

point in space is the sum of a primitive translation and a vector in the unit 

cell, a point is given by x = a +t with a©U and t in the unit cell. Fora 

crystal with the particles at their equilibrium positions, the pattern is left 

invariant by U. The s particles in the unit cell can be described by the vector 

t; with j = 1, ..., 8. The position of any particle in the crystal can then be de- 

scribed by x(") =a(n)t+ t;, where a(7) is the element of U given by the triple 

of integers # = (ny,N7,N3): a(M)= nya, + nya7 +1443. 

The crystal is transformed into itself by the Euclidean motion {R| t} if for 

any ” andj at the position Rx(") + ¢ one has a particle of the same kind as at 
the position x("). The expression “of the same kind” must be understood in 
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connection with the problem one wants to consider. It can happen that they 

are different in some sense. For example, in considering lattice vibrations one 

is usually not interested in excited states of the constituting atoms. In that 

case atoms in different states may be considered as ‘of the same kind”’, 

As an example of crystal structure we will consider a crystal with the 

structure of diamond. It is transformed into itself by a lattice group from the 

Bravais class of face-centered cubic lattices. This lattice has a sublattice from 

the Bravais class of primitive cubic lattices. We will give the point group ele- 

ments and the nonprimitive translations with respect to a basis A,, A, A3 of 

this lattice. The unit cell of the f.c.c. lattice may be chosen as the parallelo- 

piped spanned by basis vectors 4), 44, @3 (fig. 4.3). In each unit cell there are 

two carbon atoms. When we put one of the atoms at the origin, the second 

atom has a position in the unit cell given by its lattice coordinates [j 4] with 

respect to A,,A), A3. The points with integer lattice coordinates form a 

lattice Aj, the other atoms a lattice Aj obtained by a translation [3 4 4] from 
Nac 

The point group of the space group is of order 48. It is a group from the 

geometric crystal class m3m and from the isomorphism class O X C). Its 

elements with respect to A;, A>, A; are given in table 4.4. The point group 

contains as a subgroup the group 23 (the tetrahedral group). Another sub- 

group is formed by the subgroup 23 and the products of the rotations € 23 

with the central inversion. This is the group 43m. 

ae Fe = KA | 

ae ee 
Kone ty 
\e pe 

Pe Poa ile <=>. 
pe al as 

—<e aye 

lattice crystal 

Ly (eas 
@ height o atoms ae lice wrt A, AA, 

1 if Ore Sk [2t2].[422] 
L&bJ LL’ bb 

pe 73 A, 

3 fel do» 2h, atom (t7) wht aaa, 

Fig. 4.3. Diamond structure. 
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Table 4.4 
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Matrices of the point group of Fd3m. 

Elements of the rotation subgroup 432 (the numbers correspond with those in table 3.2). 

1 10 0 
i <= (0 i 0) 

O70 4 

2 Or ON 

Bxyz = (: 00) 
0 10 

6 OP a) 
Soya (0 01} 

1.020 

13 0-10 
4, = (1 0 0} 

\ 

ii} 

| 

ore =) (=) {Stes} 

— 

10 

OO eel 

0 0-1 4 

(: 0 0) 3xZ7 

0-1 O 

12 ~1 0 0 
2y =| Ors 0) 

0 0-1 

5 Ot Oe 
3x25 = (1 0 0) 

0-1 0! 

9 0-1 0 
32.5= (0 0-1] 

1 2020 

16 O10aet 
4, -( Oi apt ) 

-1 0 0 

20 yO 
jis (0-1 0| 

Teh. 

24 0; a WG 
2xy = (1 0 | 

0 0-1 

Elements of m3m—432 can be obtained by putting a — sign in front of each of the matrices 

of 432. 

Nonprimitive translations associated with the point group elements are: 

[0 00] 
tee 

[saa] 

for the elements of 43m , 

for the other elements . 

The space group is denoted by F d3m or by OF It is generated by the trans- 

lations a, = (A, +A)), ay = 3(A, +A3), a3 = 4(A+A;3) and the elements 

010 

=) 050 

001 SH Be DBP ’ 

OA Ore ed 

OFORt 0 

LOR Ono 

le Ont) 

Ot 0 

0 0-1 al- BP Sp 
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The point group 43m pe with the primitive translations forms a sym- 
morphic subgroup F 43m or ee This subgroup of F d3m does not inter- 
change the atoms in the unit cell. The coset F d3m — F 43m does inter- 

change the atoms. Hence, if the two atoms in the unit cell were different the 

space group of the crystal would be only the subgroup F 43m. 

4.1.8. Space groups as extensions 

We will discuss here once more some of the algebraic properties of space 

groups, as these properties can be seen in a formulation which is more ab- 

stract than the one used in the preceding sections. We recapitulate some 

results. A space group has an invariant subgroup U which is isomorphic to the 

group of triples of integers Z3 and the factor group G/U is isomorphic to the 
point group K. This point group acts as a group of automorphisms on U. This 

situation is well known in group theory. We call a group G an extension of a 

group A by a group B if G has an invariant subgroup isomorphic to A (we 

denote this subgroup also by A) such that the factor group G/A is isomorphic 

to B. So a space group is an extension of Z 3 by a finite group K. In the 

following we assume that A is Abelian and that B is finite. 

The mapping o which assigns to each element g € G the coset to which it 

belongs is an epimorphism of G onto the factor group G/A and consequently 

onto B (fig. 4.4). We write the products in A and G with a + sign, although 

this does not imply that G is Abelian. The product in B is written as multi- 

plication. The coset which is mapped by o on a € B can be written as 

A+r(qa), where r(a) is a representative of the coset. Notice that or(a) = a. 

Any element g €G can be written in a unique way as g = a + r(a) for some 

a€A and some a€B. 

Because A is an invariant subgroup, it is invariant under an inner automor- 

phism of G: for any g © G and any a €A one hasg + a — g €A. In particular 

g = r(q) gives an automorphism of A, denoted by y(a) and defined by 

y(a)a=r(a) +a —r(a) (4.7) 

for any a € A and any a € B. We also write y(a) a = aa. 

MANS EET ow, pS 
Fig. 4.4. Extension of A by B. 
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For two representatives r(a) and r(8) their product r(a) + r(8) is in general 

not a representative, but it belongs to the coset with representative r(aB). 

Then there is an element m(a,8) €A such that 

r(a) + r(B) = m(a,B) + r(aB) . (4.8) 

The set m(a,6) with a, 6 © B is called a factor system. 

For a fixed choice of the representatives r(a) we denote the element 

at+r(a) by (a,a). The product of two such pairs is given by 

(a,a)+(b,B)=at+r(a)t+b+r(B) 

=atr(a)t+b—r(a)t+r(a)t+r(6) 

=(at+ab+m(a,B), xB) . (4.9) 

On the other hand one can ask when the pairs (a,a) witha € A anda€B 

with the product rule (4.9) will form a group. When one chooses (aq, €) = 

m/(e€, a) = e © A, which can always be done by the choice r(€) = e, the unit 

element is (e, €) and the inverse of (a,a) is(—a~!a—a~!m(a,a7!),a7!). 
The associativity postulate requires 

[(a, a) + (6,8) + (c, x) = (@,) + [(0,8) +(c, ¥)] 

Or 

m(a,B) + m(aB, y) = am(B, y) + m(a, by) (4.10) 

for any a,b,c € A and any a,6,y € B. It can be shown (see e.g. Hall [1959]) 

that the pairs (a, a) with product (4.9) form a group if and only if the set 

m(a, B) satisfies eq. (4.10). 

When two sets m(a,f) and m'(a,B) satisfy eq. (4.10) also their sum 

(m+m')(a,B) = m(a,B) + m'(a,8), the set m(a,B)= 0 and —m/(a, 8) satisfy 
this relation. HOT the factor systems m(a,6) form an Abelian group, 

denoted by Z a, A). Any factor system determines a group which has as 

invariant spigenanys the group of elements (a, €) which is isomorphic to A, 
with factor group isomorphic to B. Therefore, each element m © ZB A) 
determines an extension of A by B. 

For another choice of the representatives of the cosets of A in G one ob- 

tains another factor system m’. When r'(q) is another representative of the 
coset to which r(a) belongs, one has an element u(a) such that r'(a) = 
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u(a) + r(a). Then the factor system m’ is determined by 

m'(a,B) + r'(aB) = r'(a) + r'(B) = u(a) + r(a) + u(B) + (8) 

= u(a) + au(B) + m(a,B) + r(aB) 

or 

m'(a, 8) = u(a) + au(B) — u(aB) + m(a,8) . (4.11) 

Two factor systems m and m’ satisfying eq. (4.11) are called equivalent. The 

extensions Of A by B with these factor systems are also called equivalent. It is 

easy to show that equivalent extensions are isomorphic. 

One extension always exists, because the factor system m(a, 6) = 0 for any 

a,B © B satisfies eq. (4.10). For this extension the product rule is 

(a,a) + (b,6) = (at+tab,aB) . 

This is the semidirect product A Xi, B. As remarked already in §1.1 the 

semidirect product is a direct product if the automorphism y(q) is the identi- 

cal one for any a € B. An extension which is equivalent to the semidirect 

product has a factor system given by eq. (4.11) 

m(a,B) = u(a) + au(B) — u(aB) (4.12) 

for some u(a), u(G), u(aB Deas The factor systems Sanlshy ine eq. (4.12) form 

an Abelian subgroup of Z pe, A). It is denoted by B 2B, A). The cosets of 

BB, A) in ZAR A) are ard by the equivalence castes of factor systems. 

Hence the pee group 

H2(B, A) = Z2(B,A)/B5(B, A) (4.13) 

corresponds to the set of nonequivalent ex tensions. Notice the similarity 

with the case of factor systems of projective representations. There the auto- 

morphism y(qa) is always the identical one. 

As we have seen, each space group is an extension of Z> by a finite group 

K. This group K, the point group, acts as a group of automorphisms on the 

Abelian group Z 3, because (with respect to a basis of the translation sub- 

group U) the group K corresponds to a group y(K) of integral 3 X 3 matrices. 

It has been shown (Ascher and Janner [1965]): 

PROPOSITION 4.3. Any extension of Z? with a finite group K such that its 
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action on Z3 is faithful (the matrices y(a) for a € K are all different) is iso- 

morphic to a space group. 

PROPOSITION 4.4. When the arithmetic point groups y(K) and y(K) are 

arithmetically equivalent, for each extension with y(K) there is an isomorphic 

extension with y'(K). 
To find all space groups one can take one arithmetic point group from 

each arithmetic crystal class and determine all nonequivalent extensions of 

Z3 with these point groups. The number of nonequivalent extensions of Z3 

obtained in this way is 305. Two equivalent extensions are isomorphic, but 

the converse is not true. Therefore, one has to determine the nonisomorphic 

groups among the 305 nonequivalent extensions. Their number is 219 as we 

have mentioned already. Among the 219 space groups there are 73 which are 

equivalent to a semidirect product. These are the 73 symmorphic space 

groups. Among the 73 symmorphic groups, none is a direct product, except 

the one with point group of order one, which is isomorphic to Z3. Algorithms 

for obtaining the nonisomorphic space groups for arbitrary dimension, once 

the arithmetic crystal classes are known, are given in Zassenhaus [1947], 

Janssen et al. [1969b] and Fast and Janssen [1971]. 

4.2. Representations of space groups 

4.2.1. Representations of the translation subgroup U 

The translation subgroup U of a space group G is an Abelian group gener- 

ated by three basis vectors a@,, 47,43. Its elements can be written as a = 

na, + Na + N34 for some triple of integers n,,n7,n3. As Euclidean 

motion one has 

a= {A |nya,t+nyay+n3a3}= (Llay}™{Llay}"2{1 ag} | 

The group U is an infinite group. Although the unitary representations of 

this group can be found, one usually applies a trick which makes the group 

finite. It consists of imposing periodic boundary conditions, i.e. we put 

{Lla}%¥ = {1|Na}= {1|O} for any a € U and for some large, but finite 

number N. This means that we consider a space filled with exactly the same 

crystals, each with NV? unit cells. As one always has to do with finite crystals 
there never is an infinite group of transformations leaving the crystal invari- 
ant. So the space group of a crystal is only an approximate symmetry. How- 
ever, when N is large enough the boundary effects will be unimportant. One 
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can put the situation in a more precise form. The group U has an invariant, 
Abelian subgroup NU generated by Na,, Nay, Na. The factor group U/NU 
is a finite group which is isomorphic to the direct product of three cyclic 
groups of order V. When D(U/NU) is a representation of this finite group and 
o the epimorphism U > U/NU, the composition D(oU) is a representation of 
U with the property that all elements of the subgroup NU are represented by 

the unit matrix. Identification of the elements Na with the identity gives just 

the definition: Na = O for anya €U. 

The irreducible representations of the group Cy X Cy X Cy of order N23 

are all one-dimensional. According to Ch. 3, §2.1 and § 2.3, they can be 

characterized by a triple p,,P, p3 of integers which give 

3 
eer 1 2 njaj})= exp {2ni(npytnyp2+n3p3/N}, (4.14) 

l= 

because a representation of Cy, is characterized by the N-th root 

exp {27ip/N} with 

D®)({ L|a;}) = exp {2nip/N} . 

Because 0 <p; <N there are exactly N3 irreducible representations of the 

group. All these representations are representations of U. We recall that we 

consider only those representations of U which give D(a)" = Il for any a EU. 

To label the representations given in eq. (4.14) in a simpler way one intro- 

duces the reciprocal lattice. 

When 4, 4), 43 are basis vectors of the group U, a dual basis is defined by 

(the dot denotes the inner product) 

The integral linear combinations of b,, by, b3 form a lattice called the reci- 

procal lattice A”. Thus K = 1,6, + nyb, + n3b; isa vector of A*. Any vector 

of A* has the following inner product with a vector a =m a, + ma + 

m3, of the lattice A, which is called direct lattice to make the distinction: 

K+ a= 2n(nym,tnym,+n3m3). (4.16) 

When an Se transformation R transforms A into itself one has 

(RB;)° a; = -R- la = 2n (integer). This means that RB; is an element of 

the ae lattice. So the reciprocal lattice is Catone’ into itself by 
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every orthogonal transformation which does so for the direct lattice. The 

holohedries of direct and reciprocal lattice are the same. 

When D‘?1:P2P3)(U) is an irreducible representation of U one defines a 
vector R by 

which gives another notation for the representation using k 

D{?P .P2P3)(q) a D® (a) = eikea (4.18) 

Representations characterized by vectorsk andk + K [written ask + K= 
k(mod A*)] with K € A* are the same because exp {i(R+K) +a} = 

exp {ik a} exp {27i(integer) } = exp {ik- a}. Therefore, the nonequivalent 

irreducible representations of U are characterized by vectors from a unit cell 

of the reciprocal lattice. Usually one takes the unit cell as the Wigner—Seitz 

cell: the volume around a reciprocal lattice point consisting of all points 

which have a smaller distance to this point than to any other lattice point. It 

is bounded by the perpendicular bisecting planes of the lines connecting a 

lattice point with all other lattice points. This unit cell is called the (first) 

Brillouin zone. The vectors in the Brillouin zone characterizing representa- 

tions of U form a lattice with generators a,/N, a4/N, a3/N. When N > © the 

density of these k-vectors becomes infinite. 

4.2.2. Irreducible representations of space groups 

The fact that every space group has an Abelian invariant subgroup, for 

which we know the irreducible representations, will be of great help in find- 

ing all nonequivalent irreducible representations of the space group. As for the 

translation subgroup, we will be interested only in those representations 

which map the elements Va of U onto the identity. The translations Na 

form also an invariant subgroup (VU) of the space group (see exercise 4.5). 

Therefore, we will consider the representations of the factor group G/NU. 

In the following by G we mean G/NU, by U the group U/NU. 

Consider an n-dimensional representation D(G) of the space group G. The 

matrices D({ 1|a}) with {1 |a} © U form a reducible representation of U, 

unless n = 1. This means that there is a basis for the representation space such 

that the matrices of D(U) are diagonal. The irreducible components of the 

representation D(U) are characterized by vectors Ry, ..., Ry. 
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(eee A eae ae 0 

Orme Oeste, 0 

DE ai)= 07 70,283" Oj... |. (4.19) 

EOieesesans Qperene 

Among the vectors Rj, ..., R,, equal ones may occur. When y is a basis func- 
tion for the irreducible representation of U that is characterized by the vector 

R in the Brillouin zone, we will say that W transforms with k, or according to 

the vector R. If W is a basis function of the irreducible space transforming 

with Rk, and if TrR\t} is the linear operator on the representation space corre- 

sponding to the space group element {R|t}, the function w’ = Terri 

transforms under a translation { 1 |a} © U according to 

Te 10}T (ris}¥ = Terie}T Ea ie tayy =e Ray 

Because Rk; + R7 lg= Rk, +a the function w' transforms under U according 

to the vector RR. As W’ belongs to the representation space, the vector RR, 

must occur among ky, ...,R,,. This is the case for any R from the point 

group K. We call the set of R-vectors {RR|R€K } the star ofk. Ask and 
k + K characterize the same representation, two vectors in the star, R,R 

and R54, are the same if there isa K € A* such thatR,k =R5k + K. Then, 

when & occurs in the matrix (4.19), all the members of the star of R occur 

also. It can be shown (details are given in § 2.7), that if D(G) is an irreducible 

representation all occurring R-vectors belong to one star, and that the multi- 

plicities of the irreducible components characterized by the vectors of this 

star are the same. So when a vector R occurs d times, the other vectors of the 

star of R occur also d times. When R, = 1, Rp, ..., R, are elements of K such 

thatk, R»k, ..., R,R are the vectors of the star of k, denoted by ky, ..., Ry, 

respectively, the matrix (4.19) can be written 

kia y 0 

D({1la})= (4.20) 
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Each block in the diagonal is of the same dimension d. For the dimension n 

of D(G), one has n= sd. 

For a given vector k one defines a group Gy called the group of R. It is the 

subgroup of G of all elements with a homogeneous part R which leaves k 

invariant (up to a reciprocal lattice vector): 

Gy = {({RIt} €G|RR=k+K forsome KEA*}. (4.21) 

Notice that U C G,. The group G can be decomposed into cosets of the sub- 

group G,. As representatives of the cosets one can choose elements { I |t,}, 

{Ry|t>}, ..., {R,lt,} such that k; = R;k,. Denoting {R;|t;} by g; one has 

G= Gp + goGx ete Te Gp C 

The subspace of the space which carries D(G) that transforms under U 

according to the vector R, is invariant under G,: when {R|t} © G, and 

pg as Ty fig} ¥ = elke “y, the function Trp), transforms with 
=k (up toK € A’), so also belongs to the same space. Choose a basis 

a (with u = 1, ...,d) of this space. Then the functions 

Win = Ty Vip Gass, Se ed) (4.22) 

form a basis for the space carrying D(G) because for fixed i the functions 

Wj, carry a space of functions belonging to k,. The matrix representation of 

TG with respect to the basis (4.22) is constructed as follows. 

Consider {R|t } © G. The element {R|f}g; belongs to a coset g;Gx. So 

there is an element {S|u}€G, such that {R|t}g; = g{S|u}. The index 7 

and the element {S|w} are uniquely determined by {R|tf} and 7. With this 

relation one can now write 

TeryeyYin = Te T{siu}T ae Yin = Te, T {sia} 1p 

d 

= = T,, be PROS D Hy = = Dg {SUD u Vip + 

a 

Here Dy(G,) denotes the representation of Gy carried by the space of the 

vector k. One can divide the matrix D({R|t}) into s? blocks of dimension d, 

according to the division of the matrix (4.20). In the i-th column of these 

blocks the matrix D({R|t}) is different from zero only in the j-th row, 

where j is determined by {R|t}g; E giGx. The block on the intersection of 
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i-th column and j-th row is the matrix D,({S|u }). When we define ans X s 
matrix with exactly one nonzero element in each row and each column given 
by Mj; = 1 for i,j such that {R|t}g; © g; Gx, the matrix D({R|t}) is 

DRI EV jy ig = MRI th; Dylgy {RID} Soy - (4.23) 

So D(G) is determined by the representations D,(G;). It can be shown that 

D(G) is irreducible and unitary if and only if Dy(G,) is irreducible and 

unitary. 

To find the irreducible representations Dy(G,) one proceeds as follows. 

First we remark that U C G, and that under elements of U basis functions of 

Dx(Gx) transform according to the vector k, so Dy({ Lla}) = exp {ik- a} 1 . 

As any element {S|u”}€ G_ can be written as {1 |a}{S|t,} for some non- 

primitive translation f, one can write 

Dg({S|u}) = e* *Dy({S|tg}) = elk SITS) | (4.24) 

Here the matrix I'(S) is defined by P'(S) = exp {—ik +t} Dy({S|t5}). The 

matrix I(S) is independent of the choice of tg, because for ty = ty + a one 

has I'(S) = exp (— ik: (at+tg)) Dy({ 1 |a} {S| t5}) = D(S). The product of two 
matrices '(S) and I'(S’) is 

T(S) P(S’) = exp {—ik - (ty + ts) } Dg({SS'| tg + Sts}) 

= exp {-ik+ (ts: — Sty) } T(SS') . (4.25) 

Thus the matrices ['(S) form a projective representation of the point group 

Ky of the space group Gz. In two cases the projective representation is an 

ordinary representation: when G, is symmorphic or when k is inside the 

first Brillouin zone. When Gx is symmorphic, both ty, and ft, in eq. (4.25) 

can be chosen to be zero. When R is inside the Brillouin zone, one has 

exp {—ik + (ts: —Stg’)} = exp {—i(R— S-!k)+ty }= 1 because Sk=k+K 

but this is possible only with K = O. So when Gx is symmorphic or when R 

is inside the Brillouin zone (not on the border) the irreducible representa- 

tions of Gy are given by eq. (4.24) with (Kx) an irreducible representation 

of Kz. The nonequivalent irreducible representations of Ky give the non- 

equivalent irreducible representations of G,. When Gx is a nonsymmorphic 

space group and k is on the border of the Brillouin zone, the nonequivalent 

irreducible representations of Gy are given by the nonequivalent irreducible 

projective representations with factor system 



136 SPACE GROUPS 

wo(S,S") =e HR-S TB ts (4.26) 

This method of finding the irreducible representations of space groups is 

in fact the method of induction of representations. This method will be 

treated in more detail in § 2.7, as it is also of importance for other problems 

in group theory. In § 2.7 we will also be a bit more precise in our statements. 

The nonequivalent representations of G are characterized by the star of a 

vector RX and by an irreducible (projective) representation of the point group 

K,. One can define a domain in the Brillouin zone with the property that in 

this domain lies exactly one vector from each star. This domain is called a 

fundamental region, reduced zone, or representation domain. Then the non- 

equivalent irreducible representations of G are characterized by a vector Rk 

from such a fundamental region and an irreducible representation of Ky. 

4.2.3. Example 

Consider the two-dimensional symmorphic space group G for the pattern 

of fig. 4.2b. Its translation subgroup U is generated by two translations of 

equal length making an angle of 60°. The point group K is the group 6mm of 

order 12, which is isomorphic to Dg = D3 X C. The reciprocal lattice is 

again a hexagonal lattice generated by b, and b, (fig. 4.5a). The first 
Brillouin zone is a regular hexagon. Each vector in this zone belongs to a star 

of a vector in the triangle POR, which is a fundamental region in the 

Brillouin zone. The-group of a vector R is a symmorphic space group with 

point group K,. This point group and the number s of vectors in the star is 

Ky =6mm=D3,XC,, s=1 for R=P=O, 

Kasi = Dae s=2 for R=Q (fig. 4.5b) , 

Ke 2m = D5. Sas for tk = Re 

Kam =O, , s=6 for R=S,VorT (fig. 4.5b), 

Kessl = Ce s=12 for kinsidePOR (fig. 4.5c) . 

The nonequivalent irreducible representations of G are found as follows for 
each Rk from POR. 
1) For k = P. Here Gy = G and the point group Kg has 6 nonequivalent 
irreducible representations I,, ..., 'g. The corresponding representations 
Dp;(G) are given by 

Dp;({R | t}) = T;(a) > 
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2 Q, 

Fig. 4.5. k vectors and their stars in the Brillouin zone of P6mm. 

where a is the element of the abstract point group corresponding to R. 

2) For k = Q. Here G= Gy + g Gx, where one can choose gy = {R|O} with 

Ra60° rotation. The point group is generated by a (corresponding to R) 

and 6 (which corresponds to the reflection which interchanges b, and 55). 
The group D3 has 3 nonequivalent irreducible representations. When 

{S|£} € Gz, one has {S|t}g, = {S|t}{1|O} = {1|O}{S|t} and {S|t}g>= 

{S|t}{R|O}= {R,O}{R+SR|R—!t}= go{R-!SR|R—!t}. The matrix 
Do; ({S|t}) has the form 

[ e*r(y) 0 
Do; ({S\t}) = | 
: 0 &RktD (qué! ya) 

when y in the abstract point group corresponds to S and when {S|t} € Gx. 

The matrices of Do; for the elements of the coset gyG, are the products of 

the matrix Do;(82) and the matrices representing the elements of G,. Thus 

the representation is known if one gives Doil82). This matrix follows from 

the relations g>g, = g2{1|O} and gpg = g,{R*| O}. Therefore, 

0 T(a?) 

Doi({R1O}) = (i= 1,2,3). 
1 0 

3) For R in general position one has the decomposition G = U+ gyU t+... 

... + gyU, where g; = {R;|O} are the elements of the point group K. The 

representation for this Rk is 12-dimensional. There is only one representation 

for Ky = C,. The matrix D({R | t}) is obtained as the product of the matrices 

D({R|O}) and D({ f |t}). The matrix for g, is obtained from the relations 

GES fae tal 1 | O}, where g; is the product of g, and g;. The matrix D(g;) is 

the matrix in the regular representation. In each row and column there is 
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exactly one | and the other elements are 0. For an element {1 [tveU= Ge 

the matrix D({ 1|w}) for this R is 

D({1|u})= 

One can proceed in an analogous way for the other points in the fundamental 

region. 

4.2.4. Subduced representations 

When A is a subgroup of a group G and D(G) a representation of G, the 

matrices D(h) with h € H form a representation of H. The representation 

property follows in a trivial way from that of D(G). The representation D(H), 

also denoted by (DJ A), is called a representation subduced from D(G). 

When the subduced representation is irreducible, the representation D(G) is 

also irreducible, but the converse is in general not true. The subduced repre- 

sentations can be decomposed into irreducible components. 

In the case that H is an invariant subgroup of G one can define representa- 

tions D(H) for an arbitrary representation D(H) by 

D,(h) = D(ghg~!) (¢EG, heh). (4.27) 

The representations D(A) and D(H) are called conjugate representations with 

respect to G. The representation property is easily verified from 

D,(hy) Dghy) = Dighyg” !ghog~') = De(hyha) . 

Notice that the matrices of D(A) and D(H) are the same. Only the corre- 

spondence between matrices and elements of H has been changed. 

The dimensions of D(H) and D,(H) are the same. The representation 

D(H) is irreducible if and only if D(A) is irreducible, as follows from the 

fact that the matrices are the same. The representations D(H) and D(H) are 

not necessarily equivalent. They are equivalent when g is an element of H, 

because then 

D,(h) = D(ghg—') = D(g) D(h) D(g)-! . 
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For the same reason the representations (DJ H) lH) and (D J H)(A) are 
equivalent for g © G. When a representation D(H) of H © G is equivalent to 
D (HH) for any g €G, the representation is self-conjugate with respect to G. 
All elements of G such that D(H) and D,(H) are equivalent are called elements 
of the little group of D(H) in G. The little group of a subduced representation 
or of a selfconjugate representation is always the group G itself. In general the 
little group L satisfies H C L CG. The first inclusion is a consequence of the 
fact that for any h €H the representations D(H) and D,(H) are equivalent, 

the second inclusion follows from the definition. The little group is indeed a 

group. To prove the group property one takes /],,l, © L. Then Di, (H) = 

U,D(A)U;! and D), (A) = U,D(A) Us: for te nonsinenlay aus 

tions U, ane U>, Then Dj, lb (h) = By LE i Ms D, (hl Ne = 

U, D(Iyhlz Nip =U, U>D(h) U5} Uy Thus D,, ly (H) is equivalent to 

D(#) and /,/, is an element of the little group. Moreover, €eH Cl and tt 

Fey, aor ler, 
In general for a subduced representation one has 

(D\H)(H) == m,D,(4) , (4.28) 

a decomposition into irreducible components. In particular one can consider 

the subduced representation D(L) 4 H, where L is the little group of D'(A). 

When the irreducible components of this subduced representation are all 

equivalent to D'(H), the representation D(L) is called an allowable represen- 

tation. The meaning of several of the concepts introduced here will become 

clear in the next section. 

4.2.5. Induced representations 

A process which is in some sense inverse to subducing is the induction of a 

representation of a group G from a representation of a subgroup H. The 

classical theory of induced representations of finite groups was given by 

Frobenius (1898), Weyl (1920) and Clifford (1937). See Clifford [1937]. 

The next important contribution was given by Mackey (Mackey [1955]) 

who discussed induced representations for a large class of infinite groups. The 

method has become of great importance in physics. Examples are the papers 

by Wigner (Wigner [1939]) on the representations of the Poincaré group and 

by Koster (Koster [1957]) on the representations of space groups. A nice 

review is given in Coleman [1968]. The results of this section will be a repe- 

tition of those of § 2.2. However, we will treat induced representations here 

in view of their importance. We will not give full proofs of all the propositions, 
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but state only the most important results. 

An induced representation is a generalization of the concept of regular 

representation. Let H be a subgroup of a group G. Suppose D(#) is a repre- 

sentation of H in a linear vector space V. In Ch. 1, § 1.7 we considered func- 

tions on a group. Here we consider functions on G with values in V. When 

f and fy are such functions, so that f;(g) and f(g) are elements of V for 

each g €G, the function (af, +B f>)(g) = af }(g) + Bf>(g) is also a function 
on G. Thus these functions form a linear vector space V°. A subset of this 

space is formed by those functions f which satisfy 

f(gh) = Dh") f(g) (any g€G, any hEA). 

On this linear vector space W we define linear operators T,, for any a© G by 

T, f(g) = f(a-'g) . (4.29) 

Since (T,f)(gh) = f(a! gh) = Dh!) f(a~!g) = D(h-!) (T, f(g) it is an 
operator on W. As T,(af, +Bf>)(g) = af (a—!g) + Bf,(a~!8), it is a linear 

operator. As 7,7; f(g) = f(b~ !a~!2) = T,,, f(g), Tg is a representation of G. 
This representation is called the representation of G induced from D(A). It is 

denoted by D t G or D(A) t G. 

To obtain a matrix representation for D t G one has to choose a basis in 

W. Suppose that €), ..., @g forms a basis for the vector space V. Then a basis 

for V© is formed by the functions fai (@SG, i= 1, ...,d) defined by 

O wheng#a 

fiai@= 
e:- ; wheng=a. 

The functions belonging to W are already determined by their values on repre- 

sentatives g; of the cosets of H in G, where 

Gaia gyi ee geld (4.30) 

Therefore, a basis of W is given by the functions iia (US eess (= ad) 

defined by 

F ui) i Coup : 

These functions form a basis because an arbitrary function f can be written 
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as a linear combination 

f= = Ao Be : 

where ; f(g); €; = f(g). Then one obtains for the function Dif 

Taf yi(8,) = fui@'8,) = fyi(goh ys ea aes WintuOue 

where a— ae belongs to the coset g,H and ag, = g,h for some h € H. 
Finally one has 

L, hi = (This i) @,); iy z aaa Oty : 

So the matrix (D t G) (qa) is given “a 

(Dt G) (2), 5 47 =D); 5 (4.31) visi We eH 

It is an sd X sd matrix which can be divided ind X d blocks. There is only one 

nonzero block in each row. In the v-th row it is the block in the o-th column. 

This block is given by D(h) = D(g, 'ag,). Compare this with eq. (4.23). 
Introducing 

(lik ag, =eoh 

M(a,h),,, = (4.32) 

O otherwise 

one can write 

(DtG)(a)= 2 {M(a,h)e@D(h)}. 
hEH 

From the construction it is easily seen that an equivalent representation 

D(H) or another choice of representatives g,, give an equivalent induced re- 

presentation. A special case of an induced representation is the regular repre- 

sentation of G. It is obtained by choosing the unit element as the subgroup 

H. The only irreducible representation of this group is given by the complex 

number D(e) = 1. Then D t G(g) = M(g) with the definition of eq. (4.32). 

For the character of D t'G one finds from eq. (4.31) 

x(g) = D' trD(g, !gz,), (4.33) 
Vv 
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where the prime means summation over all v such that gg, © g,,H. 

We now mention three propositions without proof. The proofs can be 

found, e.g. in Coleman [1968], or in Jansen and Boon [1967]. 

PROPOSITION 4.5. Induction is transitive: 

(D(A) tL) tG=D(A)tG when ACLCGG. 

PROPOSITION 4.6. (Frobenius reciprocity theorem). When D is an irreduc- 

ible representation of a subgroup H of G, and A an irreducible representation 

of G, the multiplicity of A in D t G is equal to the multiplicity of D in A ¥ H. 

PROPOSITION 4.7. Let D be an irreducible representation of HCG. Let H, 

be the intersection gHg—! 0 H for any g €G. The induced representation 

D ¢ G is irreducible if and only if the representations D(g—!H,g) and D(H,) 

have no irreducible component in common, unless g € H. 

The two last propositions imply that in general the representation induced 

from an irreducible representation is not irreducible. In the following we will 

suppose that H is an invariant subgroup of G. Even then, as proposition 4.7 

shows, a representation of G induced from an irreducible D(A) is in general 

not irreducible. To find the irreducible representations of G one proceeds as 

follows. When D(#/) is a representation, its orbit is the set of equivalence 

classes of the conjugate representations DAH) for all g © G. Thus G maps the 

elements of the orbit onto each other. The little group of D(H) maps the 

equivalence class of D(H) onto itself. ForG=L+g5L + ...+ g,L the elements 

of the orbit are the s equivalence classes of D, (H) with 7=1,...,s. If D(A) is 

irreducible, all elements of the orbit of D(A) are irreducible, because D(H) 

and D,(H) are the same sets of matrices. Now we can formulate 

PROPOSITION 4.8. When H is an invariant subgroup of the finite group G, 

D(A) an irreducible representation of H and A an allowable irreducible re- 

presentation of the little group L of D(A) with respect to G, then 

a) the representation A ¢ G of G is irreducible, 

b) all irreducible representations of G may be obtained in this way. 

PROPOSITION 4.9. All irreducible nonequivalent representations of G can 

be found by taking one representative D(H) from each orbit of irreducible 

representations of H, constructing all nonequivalent allowable representations 

of the little groups of the representations D(H) and forming the induced 

representations of G from the representations of the little groups. 

4.2.6. Representations of space groups by the method of induction 

To obtain the nonequivalent irreducible representations of a space group 
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G one uses the fact that G has an invariant subgroup U for which the irreduc- 
ible representations are known. The method used in this section is essentially 
the same as that used in §2.2, but we now apply the more precise proposi- 
tions 4.8 and 4.9 which have a great generality. Later on we will see other 
examples of the method of induction. 

Consider a representation D™) of the translation subgroup U. The orbit 

of this representation is obtained from 

DM ({ 1a} =D (ett late!) = DY 1|Ra}) 
o “pip, zl = glk Ra = IR Nha < p(RURK)( 6a | gh), 

where g= {R|t}, {1 |a} © U and K a reciprocal lattice vector such that 

R~-'k +K in the first Brillouin zone. Thus the orbit of D™) has elements 

characterized by the k-vectors RR for all point group elements R, i.e. by the 
k-vectors of the star of R. The orbit is characterized by the star of Rk. The 

number of points of the star is the number of elements of the orbit. 

The second step is the determination of the little group of one represen- 

tation from each orbit, i.e. for one point from each star. An element g = 

{R|t} belongs to the little group of p® if Do is equivalent to D™ i.e. if 

R-!k=k+K for some K€ A”. This means that the little group of D™ is 
the group of k denoted by G,. Among the representations of Gy those are 

allowable which subduce a multiple of the representation D‘), i.e. those 

Dy (Gy) for which Dy({1 |a}) = e**% 1 for a € U. The allowable represen ta- 
tions of Gz are given by 

DRT p= TAR) Stor {RIPE C es 

as was derived in §2.2. Here ,(K,) are nonequivalent irreducible projective 

representations of the point group K, of the group Gx. 

According to eq. (4.31) the representations induced from Dy(G;) are 

found using the decomposition 

G= GE + goGy “LE Se 1g. Gy : 

The matrices of Dy t G have a block structure. In the i-th row of d Xd blocks 

of the matrix (D, t G)(g), only the block in the j-th column is different from 

zero, where 88; € g;G,. The nonzero block in the i-th row is the matrix . 

Dy lg; '88;)s as we found already in § 2.2. However, because of the proposi- 

tions 4.8 and 4.9 we are now sure that we have found all representations of G. 
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To be more precise, we have constructed all nonequivalent irreducible repre- 

sentations of the factor group G/NU where NU is the subgroup of U gener- 

ated by Na,, Nay, Na3. A discussion of the projective representations of 

space groups can be found in Backhouse [1970, 1971] and Backhouse and 

Bradley [1970]. 

4.2.7. Irreducible representations of the group F d3m 

In section 2.3 we considered the irreducible representations of a two- 

dimensional space group. In order to show the technique once more in an 

example in three dimensions, and in view of later applications, we will con- 

sider the irreducible representations of the space group of $1.7, the space 

group of diamond. The reciprocal lattice of A® generated by A,, A, A; is 

again a simple cubic lattice with basis elements B; = 27A;/|A; |2. The reci- 

procal lattice of A generated by 4,,4@ 4,43 is then generated by 

b, =B,+B,-B; 

b,=—B,+B, +B, “ 

The reciprocal lattice on b,, by, b3 is a b.c.c. (body-centered cubic) lattice. 

The Brillouin zones of the lattices A and A® are drawn in fig. 4.6. A possible 

choice for the fundamental region, i.e. a region in the BZ in which one point 
of each star lies, is "LUX WK. Any vector from this region characterizes a 

star. One obtains all nonequivalent irreducible representations of F d3m by 

taking all vectors Rk from the fundamental region, determining the associated 

groups G, and considering the allowable irreducible representations of the 

BZ of lattice BZ of lattice a fundamental region 
A AA, a, ay a, 

Fig. 4.6. The Brillouin zone and a fundamental region for the space group of diamond. 
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groups G,. For the various points in the fundamental region the groups Gx 

and K, are given in table 4.5. For some points we will discuss the correspond- 

ing representations in more detail. 

1) The point [': k = [000]. Here G, = G. The irreducible representations 

of G with the star of k = O are the allowable representations of Gy, which in 

turn are, according to eq. (4.24), the irreducible representations of Ky = 

O X Cy. The group O X C has 10 nonequivalent irreducible representations: 
ihe iy Ts. Hence there are four one-dimensional representations of G with 

k = O, two two-dimensional ones and four three-dimensional ones. 

2) The point X : k = [100]. The group Gy is of index 3 in G. One can 

neers, for the coset representatives the elements g, = {1|O}, g, = 1357105, 

c= eo The allowable irreducible representations of G, are found from the 

irreducible projective representations of the point group Ky = Dg XC) with 

factor system given by eq. (4.26). The group D4 X C3 has generators a, B, y 

with defining relations a4 = B2 = (a8)? = 72 =aya-!y =ByBy =e. One can 

choose for the Aga ge transformations of the group K the elements 

R(a) = 4,, R(6) = 2yz R(y) = —1=T. The allowable representations of 

G,, are obtained from projective representations (D4 XC) with factor sys- 

tem determined by eq. (4.26). As R(a)k = R(B)Rk =R one has P'(a)4 = 
T'(6)2 = [P(a) P(B)]2 = 1. Because k — R(y)k = 2k = [200] = = 2B, one has 
T'(y)? = w(y,y) 1 = exp (— 2iB,-t)1 =—1 with t= [5 54] = tp) Further- 

more, one has I'(a) F'(y) = w(a, y) P(ay) = Pay) because R(a)R =k, 

whereas I'(y) I'(@) = w(y, a) M(ay) = exp (—2iB,-t) (ay) = —P(@y). 

Finally, P(8) P(y) = (8, y) P(By) = P(By), and My) PCB) = w (7,8) PBY) = 
(By), because tag) = O. This means that the representation (D4 X C ) has 

relations 

T(a)* = 1(8)? = [P@)P(8)]? = PB) Py) PB)! (yy) - = 1, 

My)? =T@ Mylo) ry)-! =-1. 

To compare this with the relations for the representations given in the appen- 

dix we notice that [(D4 X C}) is associated to the representation I''(a) = 

Ta), (8) = P'(B), P'(y) = exp (in/2) P(y) with relation ['(y)2 = 1. In the 
appendix the factor system is characterized by the parameters \, = A3 = 1, 

Ay = —1. There are four nonequivalent irreducible representations with this 
factor system. They are all of dimension 2 (notice that indeed 4 X 22 = 16= 
order of K). The induced representations are 6-dimensional. 

3) The point A : k = [c00] with O<c <4. The group Gx is a symmor- 
phic space group with point group Ky = D4. There are 5 nonequivalent 



SPACE GROUPS 147 

irreducible ordinary representations of this group. For the decomposition of 
G into cosets of Gy one can choose coset representatives g, = {1|O}, = 
{3 yz! O}, Bq 8508, 15 Se Sie Ge Tes Pot this k there are five irre- 
ducible representations of G: four of dimension 6, one of dimension 12. 

For the other points we can proceed in an analogous way. For X, L and W 

projective representations occur, for the other points the irreducible represen- 

tations are determined by ordinary representations of Ky. The groups G;, 

Ky and the information for the representations of the 219 space groups are 

given in Miller and Love [1967] and Zak [1969]. 

4.3. Periodic potentials 

4.3.1. Bloch electrons 

The Hamiltonian of a crystal can be split up in a natural way in parts de- 

scribing the cores, consisting of nuclei and electrons of the inner shells, the 

outer electrons, and their interaction, respectively. This can be done, because 

the interactions between the different cores are in general small compared 

with the binding energies of the inner electrons to the cores. The outer elec- 

tron system can be described, neglecting spin effects, by 

pi I 
=> —t+ Vt Ge 

Pern gE sents 
where V(r) is the potential created by the cores and Vij is the interaction 

between the i-th and j-th electrons. In the way which is usual in many-body 

quantum mechanics, the system without mutual interaction can be described 

by Slater determinants of one particle solutions of the Schrodinger problem 

with Hamiltonian 

ay ue 4.34 H= 5+ V(r), (4.34) 

where V(r) is the crystal potential. This potential has the symmetry of the 

space group of the crystal: V(gr) = V(r) for any g © G. In particular V(r) is 

a periodic potential with the periodicity of the lattice of the space group. 

Then the eigenfunctions of H (eq. (4.34)) may be chosen as basis functions 

of irreducible representations of the translation subgroup U. These represen- 

tations are characterized by a vector Rk from the first Brillouin zone. A basis 
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function for the representation D‘®)(U) transforms under a € U according to 

it Wx(1) = RA alied| Te 

On the other hand for spinless particles the Hamiltonian H commutes with 

the substitution operators P,. So the representation of U is given by these 

operators. This leads to 

PWy(1) = ¥,(r—a) = yy (7). 

Then W,(r) can be written as exp (—ik* a) ¥,(r—a), so exp (ik-1r) (1) = 

exp(ik- r—ik:+ a) \,(r—a) = u,(7r) for a function u,(r) which has the 

property 

Up(r—@) = uz (1) foranya€eU. (4.35) 

Thus the basis functions of the eigenspaces of H (eq. (4.34)) can be chosen 

to be 

Wine” u(r). (4.36) 

This is the form of a Bloch function. 

4.3.2. Eigenfunctions of an electron in a crystal 

The Hamiltonian H (4.34) commutes with the substitution operators Pe 

for g an element of the space group G. This implies that the eigenfunctions of 

H transform according to irreducible representations of G, barring accidental 

degeneracy. The levels of H can be characterized by irreducible representa- 

tions and a label distinguishing between levels with equivalent representations. 

The irreducible representations of a space group are characterized by ak- 

vector from a fundamental region and a (projective) representation of the 

point group of G,. Therefore, the eigenvalues of H can be characterized by a 

k-vector, a representation of Ky and an integer numbering the levels with the 

same representation. This is not the customary way of labelling the levels. 

Usually one gives a R-vector for the level and one numbers the different 

levels for each R by their order on the energy scale starting from below. Then 

a level is denoted by E,,,. The integer v is called the band index. As the 

vector is only one point from the star of the representation for the level one 

has Ey, = Erg, for any R from the point group. This means that the eigen- 
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value function, which is a many-valued function on the first Brillouin zone, 
has the symmetry of the point group. One can describe Ex, by a hypersur- 
face in the four-dimensional (£,)-space. To each point R in the first 
Brillouin zone correspond a number of such hypersurfaces distinguished by 
their band index. For each value of v there is a representation of G, such 
that this representation together with R gives a representation of the space 
group. 

The eigenfunctions carrying the eigenspace of H with eigenvalue Ex, are 

characterized by their transformation property under the translation sub- 

group U, i.e. by a vector from the star of k, and an index labelling the rows 

of the corresponding representation of Ky. When WI? oa. a WE denote the 

basis functions of the representation of K,, a basis for the eigenspace Ex, is 

given by (cf. eq; (4.22)) 

aE Ve, Ce ya ars pe 

The transformation properties of these functions under space group elements 

are given by eq. (4.23). 

4.3.3. Selection rules for space groups 

Selection rules for systems with space group symmetry are determined by 

the decomposition of Kronecker products of representations into irreducible 

components according to Ch. 2. These decompositions in turn may be deter- 

mined from the characters of the representations. Let us first consider the 

translation subgroup U. The character of the representation D‘*) is given by 

e’k*@ We have seen that vectorsk andk+K with KE A" give the same re- 

presentations. This means that a representation with k = K is equivalent with 

the trivial one. Therefore 

1 whenkEA* , 

N3 aeU 0 otherwise . 

The product representation of D™ @ D(*)(U) is “decomposed” according to 

D®) @ D{k’) = Dik+k'+K) ~~ where R+k'+ K € Brillouin zone . 

The matrix element of a tensor operator transforming according to the repre- 

sentation D(*) between states belonging to D{®) and D&") satisfies 
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Wp lOpour? = 2 6 _xagek’+K VE LOR PR” ; (4.37) 

This can only be different from zero when k,k',k” satisfy the relation called 

quasi-momentum conservation 

R'=k+k'+K for some KE A* . (4.38) 

Selection rules using the full space group symmetry can be found from 

decompositions 

Dw) @ DEY) = > (kuk'v|k"0) DF , (4.39) 
k"o 

where (Ruk'py|k"o) denotes the multiplicity of the irreducible component 
characterized by a vector k" from a fundamental region and a representation 
(Ky) of the group Ky”. The multiplicity is found using eq. (1.18). 

First one can determine which k”-vectors may occur in the decomposition 

(4.39). When the star of k has s points, and that of k’ has s’ points, when the 
dimension of T (Kx) isd,, and that of I (Kp) iss, the SS d,, basis func- 

tions of the product representation carry a representation of U which can be 

reduced into irreducible components characterized by the vectors Rk}, ..., Ry 
of the stars of the k”-vectors occurring in (4.39). Because of eq. (4.38) the 
points k/ must satisfy the relation 

k;+k;=k; (modA*). (4.40) 

Thus there are ss’ triples of vectors k; _k;,R] from the stars of k,R',R" 
respectively, which satisfy eq. (4. 40). me eq. (4.40) implies R(R; + k' i) = Rk; 
(mod A“) for any R €K, the triples can be taken together in such a way that 

the vectors k/ form the star of a vector k". Often the triples belonging to one 
star k” can be obtained from each other by the action of elements of the 
point group, but this is not always true. Anyhow, in the decomposition 

(4.39) the multiplicity (Ruk'vy|Rk"o) can only be different from zero, if there 
are vectors Rk; and k; in the stars of k and Rk’ such that the vector k; +k; 
occurs (up ‘e a reciprocal lattice vector) in the star of R". 

As an example we consider the two-dimensional space group treated in 

§ 2.3. Consider two irreducible representations of the space group both 

characterized by the same vector S in the fundamental region (fig. 4.5): 

k=k'=[kO]. From the 12 vectors in the stars of k and k’ one can form the 
following triples: denoting k; + k; by (ij) one has 

1) (14), (25), (36), (41), (52), (63) giving the star of the point P= [00] 6 times, 
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2) (11), (22), (33), (44), (55), (66) giving the star of the point S’= [2k 0], 
3) (12), (23), (34), (45), (56), (61), (16), (65), (54), (43), (32), (21) giving the 

star of T= [kk] twice, 

4) (26), (13), (24), (35), (46), (15), (62), (31), (42), (53), (64), (51) giving the 
star of the point S = [KO] twice. Thus in the decomposition of 

D{ku) @ D‘K'v) only representations with the stars of k” = [00], [2k O], 
[kk] or [KO] can occur. 

The character of the irreducible representation D4“) of the space group 

is given by eq. (4.33) 

RY 

Xku(8) = zo tr Dy, (8; '& 8) . 

In the following we denote tr Dxy(8; '88;) by k w6R) when g= {R| fp}. 

The prime on the summation means summation over those values of i for 

which gg; © g;G,. Choosing for any R € K an element gp = {R| ftp} one has 

(using eq. (1.18)) 

, " 2 GG, a (kuk'v| Ro) = an Xkeu(B) Xk’ v(S) Xk’o(8) » 

where nis the order of the point group K and N3 that of U. It is equal to 

] , i(k;+ki—kj)-a 
z 

J 
# ” R 

nN3 ne nee z F 
Fk ju R) PKR) Phil ) 

_ l Uy ”" * 

Sfaest ae 8 (R; +k; 1,35) Pk ul R) ¥'(R) ki (R) 

with 

S(k)= = KkR=K), 
KES 

because of the quasi-momentum conservation. Now we define a subgroup 

K;; of the point group Kx, of the group of k; by 

Ky = (R EKIRR; =k; RR =Rj} 

Because of the 6-function one has Kj; = Kx. Kx  Kxy. Summation over 

all R © K and the restriction on iJ is Aqannen to summation over all 

triples ij and all R © K;;. Thus the multiplicity becomes 
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(kuk'v|k"o) = (1/n) = ee 5°(R; +k;- k;) Pk u(R) PKR) Piet g(R) 
UT] E os 

(4.41) 

Suppose now that the triple k,R;,R7' is found from the triple k;,R;,R} by 
an element S, € K. Choose an lemon g, = {S,|t,} © G. The following 

statements are easily seen to be true: 

1) Ry + Ry — k; =O if and only if k; +k;—k; =O 
2) since k= R;k, andk; = S,R; one can ‘choose gj! ae 

Taste. 

3) whenR qk, then R See USK ij) 

4) Pry (R) = i Dy,(gj 8,8 8R 8, 8,8) = Skyu(R)- 
These statements imply that the terms in eq. (4. 41) are equal for triples ob- 

tained from each other by an element S, © K. When we call triples equivalent 

if there is such a S,, the set of ss’ triples in the product representation can be 

divided into equivalence classes (called stars, because often an equivalence 

class is the set of triples with ak such that the k;' form one or more stars of 
k"). If w, is the number of triples in a “star” one has finally 

WwW 

(Ruk'v{k"o)= 2 — Z sX(ki tk —R1) Me u(R) Py RIG Kio(R) 
starsof @ REKy 
triples (4.42) 

where (R;,k;,R/) are representatives of the stars of triples. For symmorphic 
space groups eq. (4.42) can be simplified using 

Pky (R) = X,(R; 'RR;). 

Hence for symmorphic space groups one has the expression 

WwW 

(Rukin io) =e ks . "(ki +k; —R/)x,(R)X,(R)X,(R) - (4.43) 
ee of © REK 
triples 

Let us illustrate the procedure with the example of D!#) @ DY) with 

uM=1,v=2 for the two-dimensional space group from the beginning of this 

section. The 36 basis functions can be collected into four stars of triples. 

1) R"=[00] ; i=1,/=4,/=1; Kyj=m=C ,n=12,w,=6 ; Kp =6mm= De; 
2) k"=[2k0]; i=1,j=1,J=1; Kjos Cy, n=12,w.=6 3 Kpr=m 
8) R= (kk) ai= ea eS >n=12,w,=12; Kyv=m : 
AVR =|h0|i=2 j= 651-1 ie ne n= 12, w,=12;Kp=m 

For k” = [00] the eq. (4.43) ares 
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Uy ” — 6 * 

(RuR'v|k"0)= % ee Xu(R)X(R)XG(R) = H(4,,.4,d, + x,(B)x,(B)x2(8)) - 

From the representations of D¢ given in Ch. 3, §2.3, one finds 

| for u=1, v=2, o=2,3,5, or 6 

(kuk'v|k"o) = 

QO for w=1, v=2, o=lor4. 

For k" = [2k 0] one finds with u=1, v= 2 

] for a=2 

(Ruk'v|k"o) = 
0 for o=1, 

as there are two irreducible representations of Ky» in this case. For k" = [kk] 
and fork” = [KO] only R=1 occurs in the summation. Therefore, the multi- 

plicity in this case is 

(kuk'v| k"c) = dyads. 

In summary, for the decomposition of the product representation with u= | 

and y= 2 and with the notation P = [00], S= [k0],S’ = [2k 0], T= [kk] one 
has 

DS) 2 niS2 = p(P2) 6 PP) « DPS) e DPS) @ pls’2) 

oD!) e DT?) 6 DiS) ps2). 

with the dimensions 

ew  e2 POtG6 POOF 6. 

To determine selection rules here we have made use of the full space group. 

This method gives an answer to the question: is the matrix element of a 

tensor operator associated with vector k’ between states belonging to repre- 

sentations with stars k and k” different from zero? The answer is: it can be 
different from zero only when in the combinations of vectors from the stars 

of k' and k” vectors from the star of R occur. Another question one can ask 
is: is the matrix element between states belonging to specified points k’ and 

k" of a tensor operator belonging to a given k'-vector different from zero? 
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To answer this question one has to consider representations of the subgroup 

GeO Ge O Gar. The reduction of product representations of groups G, will 

not be treated here, but is useful in answering the last question. The former 

method is called the full-group method, the latter is called the subgroup 

method. A discussion of these problems has been given by several authors. 

We can refer to Zak [1962], Birman ’[1962, 1963, 1966], Bradley [1966], 

Litvin and Zak [1968] and Bradley and Cracknell [1970]. 



CHAPTER V 

SPIN AND TIME REVERSAL 

In the physical systems we considered in the preceding chapters, we neg- 

lected the spin of the electrons completely. Since we know that spin effects 

are very important, this is rather unrealistic. However, in this way we could 

keep the presentation simpler. In this chapter we will discuss the changes we 

have to introduce in order to take the spin into account. The general proce- 

dure remains the same, but the symmetry groups become slightly more in- 

volved. They are known as the crystallographic double groups. 

Another refinement of the theory is obtained by taking account, not only 

of space symmetries, but also of symmetries involving the time. Apart from 

time translations, the time reversal operation is the operation involving the 

time which is most frequently encountered in physical systems. This time 

reversal will be treated here in some detail. Still more general space-time sym- 

metries will be discussed in the last chapter. 

5.1. Double groups 

5.1.1. Spin representations of the rotation group 

In chapter II we found that, for physical systems, not only the ordinary 

representations of the symmetry group are important, but also the projective 

representations. In chapter III we discussed the ordinary representations of 

the orthogonal group, and in particular those of the rotation group SO(3). 

We now want to discuss also the projective representations of this group. As 

in chapter III, we will only give some results needed in the following sections. 

For more details we refer to books treating the representations of this con- 

tinuous group, like Boerner [1967]. 
It turns out that the multiplicator of SO(3) consists of two elements. 

This means that there are two classes of representations: the ordinary ones, 

and those with a nontrivial factor system. These are called spin representations. 

155 
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The factor system w can be chosen in such a way that w(R,,R>) = +1 for any 

pair of rotations R, and Ry. This means that for a projective representation 

D of SO(3) one has D(R ,)D(R >) = &(R1,Rz)D(R,R2) = +D(R{ Ro). For an 

ordinary representation, w is identically equal to unity, for a spin representa- 

tion there are elements R, and Ry such that w(R,,R>)= —1. Therefore, the 

former are also called single valued representations, and the latter double 

valued representations. 

A representation group for SO(3) is the group SU(2) of two-dimensional 

unitary matrices. It is easily found from the definition of unitary matrix, that 

an element u € SU(2) has the form 

a?) 
u=( z ) with |al?+|b|2=1. (5.1) 

ot a 

A homomorphism y : SU(2) > SO(3) is found as follows. It is easily seen 

that the set of two-dimensional hermitian, traceless matrices 

L={AESLO,€)| A’ =A, A= 0} 

forms a real three-dimensional vector space. A basis for this space is formes Uv 

the 3 Pauli matrices. An isomorphisin of R3 and L is determined by 

Zz af = hy 
r=(x,yV,Z)>r-o= ; : 

Na Le 

The Euclidean norm in IR? induces a norm in L: 

Ir-o|2=r2 =—Det(r-o). 

Any u © SU(2) determines a linear transformation of L, if one defines 

A’=udAu7!, 

Moreover, this transformation conserves the norm: 

(r)? =—Det(r' +o) = —Det(r:a)=r2 (VrER3). 

This means that for any wu © SU(2) there exists a unique R € SO(3) such that 

u(r-a)u-l=(Rr)-o, (Vre R3), 
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We denote the mapping SU(2) > SO(3) defined in this way by y : R = yu. 
Actually the mapping y is a homomorphism, because 

Uzu,(r eS), ta, =u,(Ryr o)uz! =(R>Rir-s) (VrER?). 

The kernel of y is the group of matrices w satisfying 

uAu-l=A (WAG) < 

Hence Ker, consists of the matrices + 1 . Therefore, to each R € SO(3) corre- 

spond two elements tu(R) of SU(2). Both +u(R) satisfy the equation 

> R09; = u(R)~!o;,u(R) : (Ge) 
J 

An explicit expression for u(R) with R given by its axis” and its rotation 

angle y is 

u(R) = + [cos (y/2) 1 + i sin(y/2) 6+]. (5.3) 

We recall that the statement that SU/(2) is a representation group for SO(3) 

means that any projective representation of SO(3) can be obtained from an 

ordinary representation of SU(2). When 2’ is an ordinary representation of 

SU(2), one chooses for any element R of SO(3) one of the two elements 

u(R). The definition P(R) = D'(w(R)) gives a projective representation of 

SO(3), because P(R 1) P(Rz) = D'tu(R ;)u(R)) = D'(tu(R,R)) = +P(R,R3). 
The ordinary representations are found from those SU(2) representations for 

which D(1L) = D(—1), whereas the others (spin representations) come from 

D(SU(2)) with D(—1) = —D(1). 
According to the representation theory of the group SU(2) the irreducible 

representations are characterized by j = 0,4, 1, #, 2, .... The dimension of 
representation D) is 27 + 1. The integral / representations (odd dimensions) 

give the ordinary representations of SO(3) discussed in Ch. 3, § 2.4. The half- 

integral j representations (even dimensions) are faithful and give the spin re- 

presentations of SO(3). For an element u of SU(2), which is mapped by y on 

the rotation R through an angle W the character in the representation DD) is 

given by 

Gan ceyy SHG ty 5.4 CaF a (5.4) 



138 SPIN AND TIME REVERSAL 

In a spherical symmetric potential the eigenspaces with orbital angular momen- 

tum / carry a representation D© with integer /. For spin} particles the eigen- 

spaces with total angular momentum J carry a representation DW” with half- 

integral J. 

5.1.2. Double groups 

To each rotation R correspond two elements + u(R) of SU(2). Therefore, 

to a crystallographic point group of the first kind, consisting only of rotations, 

and of order N, corresponds a set of 2N elements of SU(2). As u(R)u(R') = 

+u(RR’) for any R,R’ in SO(3), it is easily verified that this set is a subgroup 
of SU(2). It is denoted by K4, and is called the double point group for K. As 

we will see in the next section, these crystallographic double groups will play 

the same role for spin } particles as the ordinary point groups for spinless 

particles. When K4 is the double group for K, to the unit element of K corre- 

spond the two elements + I, in K4. As these two elements commute with all 

the elements of K4, they form an invariant subgroup of order two in K¢. The 

factor group K4/{+ 5} is isomorphic to the group K. Therefore, from any 

representation I of K one can obtain a representation of K4 by assigning 

T(R) to both elements +u(R) of K4. However, in general K@ has also repre- 

sentations for which one does not have I'(+ 115) = [(— 11). These representa- 

tions of K@ are called extra representations. 

To find these extra representations we study the classes of the double 

group. One has the following proposition. 

PROPOSITION 5.1. The elements of K4 which are mapped on one class in K, 

form either one or two classes in K4. When the class in K consists of 180° ro- 

tations and if there exists in K a 180° rotation axis perpendicular to the 180° 

rotation axis of one of the elements of this class, the elements of K? mapped 

onto this class form just one class in K4. In all other cases, the elements of 

K4 mapped onto the class in K form two classes in K4. 
Proof. Suppose that S and R are elements of the same class in K. Then there 

is a rotation T such that R = TST~!. Now choose for each element of K a 

fixed element u(R) in K@. Then one has u(R) = tu(T)u(S)u(T)~!, which 

means that either u(R) and u(S), or u(R) and —u(S) are in the same class in 

K4. So for each class in K one finds at most two classes in K4. One finds only 

one class when u(R) and —u(R) are in the same class. To investigate this, we 

recall that all elements of a class in K describe rotations through the same 

angle. If this angle is y the element u(R) can, by a suitable choice of basis, be 

written in the form 
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elvl2 g 

u@=(_ ues) 

However, there is no element U in SU(2) such that Uu(R) = —u(R) U, unless 
y=. Hence only for classes of 180° rotations it is possible to find only one 
class in K4, classes of another kind always lead to two classes. In the case of 
y= the SU(2) matrix U relating u(R) and — u(R) is given by 

0 e” 

U= ( (W arbitrary real number) 
ais ew O 

which corresponds to a rotation through 180° with axis perpendicular to the 

axis of R. This proves that the class of the 180° rotation R gives rise to only 

one class in K4, if U belongs to K4, or in other words if the corresponding 

rotation belongs to K. This proves the proposition. 

Consider as an example the point group K = 32, which is of order six. It is 

generated by a three-fold axis taken to be the z-axis, and a perpendicular two- 

fold axis, taken here along the y-axis. Then the corresponding double group is 

generated by 

1+1i,/3 0 OF al 

; rie and p= u(s) =( ) a=u(R)=( 

The twelve elements of K4 are 

a,a2,03 =—15,a4,0°,a°=1,=€ 

B, a8, o28, 038 = —B, a*B, 08 . 

Each of the three classes of K gives rise to two classes of K4. The classes of 

K4 are: {e}, {—e}, {a,a°}, {a2, 04}, {8,026,048}, {a8, «38, 0°8}. From this 
it follows that there are six nonequivalent irreducible representations for K4: 

4 one-dimensional ones, and 2 two-dimensional ones. (12=1+1+1+1+2? +22). 

Three of them are already determined by the representations of K. The extra 

representations (denoted here by a prime) can be found using the techniques 

of Ch. 1. The character table for 32¢ is given in table 5.1. Compare this with 

the character table of 32 discussed in Ch. 1, §3. 
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Table 5.1 

The character table for the double group of 32. 

Rds ei a a B ap 

Pie ale eel 1 1 

alae VW Mg dea hs ot 

eee ou aioe ees 

Tew ey) less gay i 

Ree a ee 0 0 

tee tee we at 0 0 

The extra representations are tabulated, e.g. in Koster [1957] and in 

appendix B. In fact the representations of the double group K4 are projective 

representations of the group K. Choosing one element u(R) © K4 for any 

R€K, a representation I of K4 gives a projective representation D of K on 

putting D(R) = T'(u(R)). If P is not an extra representation, D is an ordinary 

representation of K, as we have seen. However, it is quite possible that even 

an extra representation is not a projective representation of K with nontrivial 

factor system. That means that the factor system may be associated to the 

trivial one. As an example, consider the representation ls of the group 329. 

This gives a projective representation of K = 32 by D(R) = T¢(a), D(R2) = 

T4(a)2, D(S) = P¢(8), D(RS) = Te (ab), D(R2S) = TE(a28). As one easily 
checks, the factor system for this representation is not trivial. E.g. one has 

for a certain choice of the representation I'¢ 

g+ziv3 0 am! 
nir)=(" eae) Doy=(_ y 

and consequently D(R2)D(R) = —D(1), D(S)? = —D(1), and D(RS)? = 

—D(1). If one now takes the associated representation D'(R) = — D(R), 

D'(S) = iD(S), one obtains an ordinary representation of 32. This proves that 

every extra representation of a double group K@ gives a projective representa- 

tion of the group K, but it is possible that the factor system of this projective 

representation is associated to the trivial factor system. The projective repre- 

sentations of the point groups corresponding to the extra representations of 

their double groups are given in the appendix. 
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5.1.3. Crystal field theory with spin-orbit coupling 

In chapter III we considered the level splitting by a crystal field with spin 
effects neglected. Let us once again consider the same problem, now taking 
into account the spin terms in the Hamiltonian. Here we restrict ourselves to 
the one-electron problem. The extension to cases with more electrons can be 
made in the same way as was done in chapter III. We consider an atom or ion 

in a crystal field. Suppose that this atom contains one electron outside closed 

shells. Then the Hamiltonian for such an electron can be written 

2 

H -f + V(r) + Wt V, (5.5) 

where the first term gives the kinetic energy, V(r) is the spherical symmetric 

potential of the atom core, W(r) is the crystal field potential created by 

charges in the neighbourhood, and V, is the spin-orbit coupling given by 

Ve=0) SL. 

In this expression u(r) is some function of the radius r, S is the spin operator 

with components S; = 5ha,, and L is the angular momentum operator. The 

Hamiltonian H (5.5) is an operator in the space of two-component spinors. 

Each spinor ~(r) has components W,(r) and W_(r). The first 3 terms of H act 

trivially in spin space, i.e. they can be written as (p2/2m+ V(r)+ W(r)) 1. 

The term V, acts both on space and spin variables. We proceed in the same 

way as in chapter III. Thus we have to determine the symmetry group of H 

and of the unperturbed Hamiltonian Hp. 

Again we consider the situation where the symmetry of H is smaller than 

the symmetry of Hp = p?/2m + V(r). We denote the symmetry group of H 

by G, the symmetry group of Hy by Go. As explained in Ch. 3, §3 there are 

two cases: for a strong crystal field, W(r) is more important than V,, for a 

weak crystal field the opposite holds. In the former case we denote Hy + W(r) 

by H' and its symmetry group by G’. In the latter case H” denotes Hy + V,, 
with symmetry group G”. To determine the group G one considers a substi- 
tution operator P, defined by its action on a function Y(r) as PW(r) = 

W(g—!r). This operator commutes with p2/2m if g is an element of the 

Euclidean group £(3). For g © E(3) the operator commutes with V(r) if and 

only if g is an orthogonal transformation, because P, V(lr Dears = V( le lr |). 

P, commutes for the same reason with W(r) if and only ifg is an element of 

the space group of the crystal. Therefore, P, commutes with Hg + W(r) if 
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and only if g = R is an element of the point group K, the symmetry of the 

atom site. Finally we have to look at P,V,P, ! for g © K. One has in this case 

lie lars He u( lg trl)S: ee LP, >! Since L teats asa pode under 

pinecone aneiune tonal one has P, LP, l=(detR)R'L forg=REK. 

Consequently one has Pp V, Pe =(det R)(RS) - L. Here we see that Pp does 

not commute with V,. However, we can combine Pr with a linear transforma- 

tion u(R) in the two- Ginene oral spin space. This operator u(R) acts only on 

the spin oer not on the space variables. For Tp = u(R)Pp one has 

Tr yi = (det R)v(r) u(R)(RS)u(R)- 1. L. which is equal to V, if u(R) 

satisfies the relations 

uM ww 

_ KdetR)u(R) Ryo u(R)-! = 9; C= ae (5.6) 
j iy oy 

If R is a rotation, this is simply eq. (5.2). Then one can choose u(R) as in 

eq. (5.3). When the elements R form a point group K of the first kind, the 

elements + u(R) form the double group K4. The operators Tp form a repre- 

sentation of K?. When R has determinant —1, one can choose u(R) = u(/R) 

according to eq. (5.6). 

Choosing one element u(R) € SU(2) satisfying eq. (5.6) for each RE K 

the operators Tp commuting with H (5.5) satisfy 

Trlr, = u(R,)u(Ro)Pr Pr, = wA(R1,R>) TRER> (Sal) 

with w,(R,,R) = +1 depending on the choice of u(R). Thus the operators 

Tr form a projective representation of K with factor system w,. It may 

happen that this factor system is associated to the trivial one. In that case one 

can give the operators Tp phase factors such that they form an ordinary re- 

presentation of K. This is the case for the rotation groups 1, 2,3, 4,6, and 32, 

the groups m, 4, 6, and 3m and the direct products 1, 2/m,3,4/m,6/m and 

3m. The nonequivalent irreducible spin representations of the point groups 

with nontrivial factor system w, are given in the appendix. 

Another approach is to extend the set of operators Tp in such a way that 

one obtains a group of operators. As we remarked already, if w, is associated 

with the trivial factor system it is sufficient to endow the operators with 

phase factors in order to obtain a group of operators commuting with H. 

When this is not possible, one can make a group by taking all operators + Tp. 

As we saw, for a point group of the first kind they form a representation of 

the double group K¢. When K is a point group of the second kind, to an 
element R © K M SO(3) is associated + u(R) Pp, to an element JR € K with 
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R €SO(3) correspond + u(R)Pp. This means that for a point group of the 
second kind without /, the group of operators is a representation of K4 which 
is the double group of the isomorphic group of the 1‘t kind. For a group 
K X Cy, where C4 is the group of J, the group of operators is a representation 
of K4 x C . It contains as subgroups K4 (with elements tu(R)Pp,R EK) 

and Cy (with elements 1 and P;). We call K4 X C) the double group of 
K'=KX Cy and denote it by K¢. 

Let us now consider the symmetry groups G,, G', G", and G. As we have 
taken the spin into account, and as any wu © SU(2) commutes with H, and 

H', the symmetry group of H, is not merely O(3), but the direct product 

O(3) X SU(2). Notice that an element of SU(2) is not induced by a space 

transformation: the invariance group is O(3). This is the case, because in H, 

the spin does not appear. For a s rong crystal field the group G’ is, for the 

same reason, the direct product K X SU(2). For a weak crystal field the term 

V, in H" couples the transformations in ordinary space and in spin space. In 

this case the symmetry group G” is the double group of O(3), which is 

SU(2) X Cy. The invariance group of # is K4. 

For a weak crystal field one has the sequence of Hamiltonians of increas 

ing accuracy: H,, H, + V,, H with corresponding symmetry groups O(3) X 

SU(2), SU(2), K4. For H,,, both orbital angular momentum and spin are con- 

served quantities, which means that / and s determine an irreducible represen- 

tation D X D™) of G,. For H", the total angular momentum J remains a , 
good quantum number. The (/,5) level splits up into two levels, with J = l+. 

Finally, the splitting of these two levels under the influence of the crystal 

field is determined by the reduction of the representation of K4 subduced 

from DY). As the character of DY) has the property: x (a) = x (—a@) for 
integral J and x (a) = — x ,(—a) for half-integral J, the character of the repre- 

sentation DY)(K 4%) is orthogonal to the character of the irreducible extra re- 
presentations for integral J, and orthogonal to the other ones for half-integral 

J. This means that a level with half-integral J splits up into levels belonging 

to the extra representations. 

As an example we consider an atom in a field of cubic symmetry. For 

half-integral J the characters of D')(O4) are given by 
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Class; fe] [-e] [el =e) [o?] [a] [-a] [a8] 

i 
1/2 a) ail 0 See ny 2 eR 

3/2 | =I 1 0 0 0 0 

5/2 Gy fen6 0 0 0 ery OF 27-0 

7/2 > S78 po il 0 0 0 0 

9/2 {Ome 0 = 0 0 2 a 

The reductions of the induced representations follow from the character 

table of O4 in the appendix. 

DG/2) = Ve D7/2) = Peer, on, 

DG/2) = Ts D@/2) = Ty, 2Pg 

DEAT Tan * 0 oOE celled Aes 

Thus levels with J = 1/2 or 3/2 are not split in such a field. 

For a strong crystal field, the sequence of Hamiltonians isH,,H)+Vx,H 

with symmetry groups O(3) X SU(2), K X SU(2), K4. By the crystal potential 

Vx. the levels of H, characterized by (/,>) are split up into levels character- 

ized by irreducible representations [;(K) X D(™) of K X SU(2). The reduc- 

tion of D(K) into irreducible components is as discussed in Ch. 3. The sub- 

sequent splitting by the spin-orbit coupling is determined from the reduction 

of 1’; X D™) subduced to K4, 

As example we consider again an atom in a cubic field. The reduction of 

D(0) is given in Ch. 3, §3.2. This also gives the reduction of D x D(”), 

The subduced characters of O4 are obtained from the product I;(a) @ D(a). 
It is given by 
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Class: fe] [-e] [6] [-8] [a7] [a] [=a] [ag] 

r,xD™) 2 a es CE es 6 Le ome =16 

Tox Dt) 2 Se Berl gate Un we AD, AO Sree 

r3x D4) 4 = oe 139 290 0 Coan = 1, 

T4 x D4) 6 “G7, 1 OF Ne ean & 0 =Preer, 

rs xD) 6 6 0 ORR ee a =i et, 

Thus a d-level is split by spin-orbit coupling into aJ = 3/2 and aJ = 5/2 level, 

which split in a weak cubic field into three levels: two with I'g, one with T. 
In a strong cubic field the d-level splits up into a 3 and a I's level, and is 

split further by spin-orbit coupling into the levels Pg, 17, Mg. 
As in Ch. 3, one can construct symmetry adapted functions. For the 

double groups they can be found in Cracknell [1969a]. 

5.1.4. Double space groups 

An electron in the electrostatic crystal potential V(r) can be described by 

the Hamiltonian obtained in the nonrelativistic approximation of the Dirac 

Hamiltonian: 

2 4 
ey p + V(r)+ he Vie-p = we o-(V) Xp). ©.8) 

2M 8m3¢2 8m2c2 4m2c2 

Here p2/2m is the nonrelativistic kinetic energy, the second term isa relativ- 

istic correction arising from the series expansion of (m2c4 + c2p2)? —m?c4, 

V(r) is the crystal potential, the 4"" term is called the Darwin term and the 

last one is the Thomas term describing the spin-orbit interaction. In a cen- 

trally symmetric potential the Thomas term becomes (dV/dr)S ° L/2m2c?r. 

To determine the symmetry of the Hamiltonian we proceed in the same way 

as in the foregoing section. The substitution operator P, commutes with the 

first two terms, if g € E(3), it commutes with the first three terms, if g is an 

element of the space group G. For g €G this P, also commutes with the next 

term, because ENV AG) , pee =R'V V(g"'r) : Rp =VV(r)° p. 

Finally, P, does not commute with the Thomas term: P, 6° (VV X p)Pe = 

o:(R-!VV(g-'r) X R-!p) = (detR) 6° R1(VV(r) Xp) = 
(det R)(Ro) -(VV X p). However, combining P, with the spinor operator 

u(R) satisfying eq. (5.5) the operator P,u(R) commutes with the Thomas 
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term. This operator De u(R) P, also commutes with the other terms. To 

determine the symmetry group of H one can follow two different lines: one 

approach via the projective representations, the other via the double group. 

Let us first consider the approach using projective representations. Then we 

choose for each g = {R|t}©G one element u(R) satisfying eq. (5.6). The 

operators T, = u(R)P, form a projective representation with factor system 

w,(g,g) = w,(R,R’) given in eq. (5.7). To find the nonequivalent irreducible 

representations with this factor system we follow the same method as used in 

Ch. 4 for ordinary representations. Here we will only indicate the steps and 

omit rigorous proofs. These can be given by a generalization of the method 

of induction (Ch. 4, § 2). Suppose an irreducible projective representation of 

G with factor system w, is realized by operators T, on an n-dimensional space 

V. The representation can be chosen in such a way that the subduced repre- 

sentation of U is diagonal. This can be done since this subduced representation 

is similar to an ordinary one because w,(a,g) = w,(g,a) = 1 for any a€ U and 

any g ©G. The irreducible components of D(U) are characterized by vectors 

R in the Brillouin zone. When a basis function Y belongs to the component 

with vector & the function Trrip}¥ belongs to the component with vector 

Rk because Tea a}T frie} ¥ = sR) Tray (air ay = 

Trrit} exp (iRR - a). So the irreducible components belong to the vectors 

of one star. The group of R is defined as for ordinary representations. The 

eigenspace belonging to the vector k (under U) is invariant under Gy and 

carries a d-dimensional projective representation Dy(G,). Let Wy, ..., Wy be 

basis functions for this representation. The sd functions TeV = vag where 

g; are coset representatives of Gy, in G, form a basis for V. The matrices for 

the (induced) representation D(G) are given by 

_ W6(8,8;) g 

Ty Viy = lg). h) E Dy(b)yy Vip > (5.9) 
p= 

where j and hare determined Py o> gin with h € Gx. Suppose that Dy (Gx) 

has factor system w . Forg,g ©G one determines /,/,h, h’ by eee gh and 

£8; = gh’. Then g'gg; = gg;h = gh'h. One has the relations 
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d 
w6(g,8;),(g',8;) = 

Ww(g;,1)w,(g),h') cat [Dy(h DM) pu Yip Ty T, Vin 4 

z w,(g',g) Ty eWin 

= w,(g' Coen D,(n' Barer Cen MAY geie ee rPulle’ 
Application of eq. (1.28) then leads with Dy(h’) Dy(h) = w'(h', h) Dy (hh) to 

w'(h',h) = w,(h',h) (all h,h' © Gx) . (5.10) 

The irreducible allowable projective representations Dy(G,) can be found 
from 

DpGRith) =e" TR), (5.11) 

where now I'(Kx) is a projective representation of K,, the point group of G,. 

In order that Dy(G,) has the factor system w’ (5.10) the representation I(K,) 

must have a factor system w determined by 

wo(R,R') = &,(R,R’) fRUK-B tr (5.12) 

For the symmorphic space groups or for R inside the Brillouin zone the factor 

systems w and w, are the same. 

One can show (see Mackey [1958]) that all irreducible projective represen- 

tations with w, (the spin representations) can be found in this way. Just as 

for ordinary representations one obtains all nonequivalent spin representa- 

tions by taking all k in a fundamental region of the Brillouin zone, consider- 

ing all irreducible representations of Ky, with factor system (5.12), and then 

constructing the induced representations (5.9). Since w or w, may be asso- 

ciated to the trivial factor system, the representations of G can be similar to 

ordinary representations. This may happen if the factor systems of the point 

group are al! trivial, but also when w, is not trivial, but k is on the border of 

the zone such that eR -'*-4) tr’ ~ @(R, RY 
The second approach is by completion of the set of operators T, toa 

group. This group consists of all operators + 7,. Then to each g € G corre- 

spond two operators. The elements form the double space group G4. One can 

denote the elements by {a|t} with product rule {a|t}{a’|t'} = {aa’ |t+at’}, 

where at = Rt for the R corresponding to a€ K4. To find the irreducible 
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representations of the double space group one proceeds as for the ordinary 

space groups. Notice that G4 has an Abelian, invariant subgroup U4 which is 

the double group for U. U4 is Abelian and invariant, because for {a|f} € Gd 

one has {alt}{+ela}{a—!|—R—!t} = {+e|Rt}. A subgroup of U4 is formed 

by the elements {€|a@}. This group is isomorphic to U. When Cj is the group 

of order two generated by {—e|O}, U4 is isomorphic to the direct product 

UX C). Therefore, the irreducible representations of U4 can be obtained in a 

trivial way from those of U. They are characterized by a vector in the first 

Brillouin zone together with a + or — sign. The characters of the elements are 

{ela} {—ela} 

p(kt) elk °a elk "a 

pD{k-) elk °a _eik-a 

The representations of G4 can be found from those of U4 by the method of 

induction. The orbit of the representation (R+) is characterized by the star of 

k, all vectors of which have a + sign. The orbit of the representation (R—) is 

characterized by the same star, but with a — sign, because for g = {a|t} €G4 

one has the conjugate representations D&)({—ela}) = + DR**)(4 6) a}), 

The little group of the representation D“**) is the group Ge the double 

group of the group of R. The little group of D‘*~) is the same group Gg. The 

allowable representations of the little group are found in the same way as for 

G,,. They are given by 

DyCalt}))=e*' 4) for {alt}ece, 

where LOK) is a representation of the double point group ee which is the 

double group of Ky. For a symmorphic group G, or for R inside the 

Brillouin zone the representation is an ordinary one. For Rk on the border of 

the Brillouin zone for a nonsymmorphic group Gy it is a projective represen- 

tation. The projective representations of the double point groups were deter- 

mined by Kitz [1965]. The representations of G4 with D({—e€|O}) = 
—D({+e|O}) are called the extra representations. 
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5.2. Time reversal 

5.2.1. Time reversal operators 

The symmetries considered in the foregoing chapters affected only the 

spatial coordinates. However, often physical systems are also invariant under 

transformations involving the time. An example is the invariance under time 

translations, when the Hamiltonian is not time dependent. This invariance is 

the reason why in these cases the time independent Schrodinger equation can 
replace the time dependent one. We will not discuss these transformations. 

Another transformation is the time reversal T. The operator induced by this 

transformation is the time reversal operator, denoted here by 6. 

Let us first consider a spinless particle in a time independent potential. The 

Hamiltonian for this particle is H = p2/2m + V(r). It is evident that this H 

commutes with the substitution operator P7 defined by P7, W(r,t) = V(r, —2). 

In this case 6 = Py. We can give another expression for 8. Consider the time 

evolution of a function y(r, f). It is given by the Schrodinger equation 

ni 2 VW(r,t)=HAV(r,t). (5213) 

Take the complex conjugate of this equation: 

0 
xX v (r,t)=HAy (r,t), hi 

or 

nO * — * 

nia ¥ (r,-t)=Ay (r,—-t). 

If W(r,t) is a solution, W*(r, —2) is also a solution. The state W* (r,t) has the 

same evolution along the (—Z) axis as the state W(r, ¢) along the f-axis. There- 

fore, in this case one can choose @ equal to the operator 8, which maps a 

function W on the function y”. It is the operator of complex conjugation. 

One has 

OP ee Sy poe (5.14) 

The commutation relations of 0, with the operators p and r are 

6,70, =15 6,p0o'=—?P.- (5.15) 
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Moreover it commutes with the substitution operators Pe when g is a space 

transformation. 

For a particle with spin, one has to require that apart from satisfying eq. 

(5.15) the time reversal operator 0 has the same commutation relations with 

the spin operator S as it has with the operator of orbital angular momentum 

L: 6 L6-!=6r X po! = —(rX p) = —L. Thus 

OSeut= = S- (5.16) 

One has to consider a combination 6 = u@, such that 6 has the required com- 

mutation relations with S. In the standard representation of Pauli matrices 

one has 

845105) = 4h0.0;95'=S), 

OER) he CoS Ona. 

Hence for the two by two matrix u one has 

WOU = "013 Ud, =0,3, ud,u- =—O, 

It follows that uv is a multiple of 05. So for a system with H (5.5), one has, 

choosing the phase factor equal to 1, 

C050 an (See) 

We have now shown that the time reversal operator 6 for a particle in a 

time independent potential is to be defined as 

Ge for a system without spin, 

00, fora system with spin} . 

The operator @ is antilinear and antiunitary, because 

1) O(a, +BY) =a" OY, +B OW), 
2) for a spinless particle (0, Y,10,W>)= Wi | W>) = (W |W 1), whereas for a 

particle with spin one has(W* and y~ denoting the spin-up and the spin- 
down component of ) (030,W,100,W2)= iW] lia) + GT Livy") = 
CUTTS?) + YW) = yl)”. 
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5.2.2. Time reversal symmetry 

The Hamiltonian of an electron in a crystal is given by 

2 
H=H,+ MEAD) eo ss VATE Ve, (5.18) 

© 4m2¢2 

where V(r) is the crystal potential which is invariant under the space group G 
and V, is the spin term which is invariant under the double space group G4. 
We want to determine the symmetry groups of H and H,, including time 

reversal. The Hamiltonian H, commutes with @, and with all elements P, 

with g © G. The Hamiltonian H commutes with @ and with all elements 

+u(R)P, of the double space group G4. The operator 6, commutes with all 

elements of the space group. Therefore, the invariance group of the Hamil- 

tonian H, is the direct product of the group G with the group generated by 

6. As @, is of order two the symmetry group is G X Cp. 

For the Hamiltonian H we investigate 0. Since 02 = — I, it generates a 

cyclic group of order four. Moreover, @ commutes with all elements of SU(2) 

and consequently with all elements of G4. To see this we use eq. (5.1): 

wel ado et) CaN) 0 i— = 

ND ee ep ae ale acl FA (eee ae fi 

i ty 0 -i 

. (‘. -) (, 0 Je. Suet” 

However, the invariance group of H is not the direct product G4 X Cy, 

because G4. C4 =— 1. It is an extension of Cy, generated by 0, by the space 

group G. 

The group of underlying space-time transformations we have considered 

here is a subgroup of the direct product of the Euclidean group £(3) and the 

group generated by the time reversal 7. This direct product £(3) X C) is 

called the Shubnikov group and is denoted by S(4) * Itisa group of trans- 

formations of four-dimensional space-time. The subgroup of S(4) which is the 

i There seems to be no standard use for this term. Since this group #(3) X C2 = 

IR? w (O(3) X C2) occurs very often here, it is convenient to give it a name. However, 

sometimes the term (homogeneous) Shubnikov group is used for O(3) X Cz, whereas 

sometimes by inhomogeneous Shubnikov group is denoted the semidirect product 

R* w (O(3) X Cp). 
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symmetry group of the system is the direct product of the space group G and 

C). For a spinless particle, the mapping which assigns P, tog © G and @,P, to 

gT is a homomorphism on a group of operators commuting with the Hamil- 

tonian. However, as some of the operators are antilinear, it is not a represen- 

tation of G X C). To see the properties of the homomorphism we consider 

an eigenspace of H, with a certain eigenvalue. Since the operators commute 

with H, any vector of this eigenspace is transformed into a vector of the same 

space by the operators. In particular for basis functions 

PW = UC) iY; (any sEGXC)). 
] 

The matrices C(s) do not form a matrix representation because Py is anti- 

linear. For g),g, © G and with P7 = @,, one has 

Pe Peg ¥i = 2 (COC ni Ye » 

Ce 2 [Cle Ceri Ve ; 

iit ty OC Ke “(eK YE - 

Then the matrices C(s) form a set, related to the elements s€ G X Cy by 

C(g182) = C(e,) C2) 

C(g,82T) =C(g,)C(g2T) 
(5.19) 

C(g\Tgy) =C(g,T)C (g) 

C(g,TgoT) = C(gT)C'(goT) . 

A set of matrices satisfying these relations is called a co-representation of the 

group. See Wigner [1959] or Jansen and Boon [1967] for details. 

For a particle possessing spin one can choose one element u(R) Pz of the 

Loe group G4 for any element g © G. Then the mapping which assigns 

= =u(R)P, tog €G and T,7 = = 070 ,u(R)P, togT © G XC) is a mapping 

os a set of pono commu ane with the Hamiltonian. Now the mapping of 

the product of two elements is the product of the mappings of these elements 
only up to a phase factor. Again, we do not obtain a (projective) representa- 
tion, but rather a projective co-representation. We return to this subject in 
Ch. 6, §4.4. 
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5.2.3. Consequences of time reversal symmetry 

When the symmetry group contains time reversal, an eigenspace belonging 
to an eigenvalue of the Hamiltonian is a co-representation space of this sym- 

metry group. Consider first the spinless case. If is a state of the eigenspace, 
the functions PW (g ©G) span an irreducible representation space for the 

space group G. Suppose that W),..., Wy is a basis of this space. Also the func- 

tions 6,W/), ....0 Wg form a basis for a representation of G. Now, either the 

two spaces spanned by Wj, ..., Wg and @,Wj, ...,0, Wy coincide, or they are 

different spaces with only the nul! vector in common. In the first case the 

functions 6, W; are linear combinations of the elements W ,--, Wg and the 

level is d-fold degenerate. When the two spaces are different they span a 2d- 

dimensional space belonging to one eigenvalue. Then the eigenvalue is 2d-fold 

degenerate. With respect to the group G this is an accidental degeneracy. It is 

called additional degeneracy. 

In the same way, for a particle with spin the elements + u(R)P, span a 

representation space for the double group G4. When W 1. --. Wg form a basis 

for this space, also 0, ...,@W form the basis for a representation space. 

However, in this case the states ; and 0; are always orthogonal, because 

the inner product of the spinors 

ve). onal 
is zero. Hence for spin; particles one has always at least two-fold degeneracy. 

This is called Kramers degeneracy. This does not mean that the sets W,, ..., Wg 

and Oy), ...,9W, span different spaces. One has d-fold or 2d-fold degeneracy. 

The question of when additional degeneracy occurs is answered by Herrings 

criterion. When Wy, .... Wg form a basis for the representation D(GO) of 

G), the functions 6, ..., 9g form a basis for the representation D (GM), 

Either D ~ D*, or D # D*. When D ~ D’, there is a matrix S such that 

D*(g) =SD(g)S—! for any g€ G4). It can be shown that SS* = + 1. Then 

the dimension of the spac> spanned by Wy, ..., Wg, 91, -.., 9g is given by 

table 5.2. In practice it is often difficult to determine which of these possibil- 

ities occurs. Then one can make use of a theorem by Frobenius and Schur: 

—i(V;) 

 i(¥7) 
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Mablerse2: 

Herrings criterion. 

Cases Dimension irreducible space 

1) D~D* and SS*=+1 with spin: 2d without spin: d 

2) D+ D* with spin: 2d without spin: 2d 

3) D~D andsss*==1 with spin: d without spin: 2d 

d is the dimension of an irreducible component of the subduced unitary representation. 

PROPOSITION 5.2. When D is an irreducible representation of a group G of 

order NV, one has 

N, if D~D* and SS* =1, 

exe Hy. 0. if DED , (5.20) 
geG 

-N, if D~D* and SS* (| | 
re 

Proofs for Herrings criterion and for the Frobenius—Schur theorem can be 

found in Ch. 6, §4, where we will consider more general groups involving time 

reversal. 

For groups of small order, such as the point groups, the Frobenius—Schur 

theorem is very convenient. However, for space groups the summation over all 

group elements requires some more study. Using eq. (4.33) one has 

== 4 es 

ye x@e’)= 2 LT trDy(gz'g7e,) 
geG REK acU i 

Rk =k; 

=Z 2X D' trDy(h?) with h=g7 "gg, = {S|tyt+a}, 
j acU SEK 

where the prime denotes summation over those elements S of the point group 

for which the square S? is in the point group of the group of k: S2k =k, or 
equivalently R°R; = R?R;R, = R,S7ky =k;. The summation over the elements 
a of U can be performed: 



SPIN AND TIME REVERSAL 175 

» tr Dp(h2)= Dt D,({82lte+ a+ Stet 
acu . acu a Its aay 

= 1k+(Sata) 2 
fae e trD,({S Its +Sto}) 

= tr Dy ({S?| ts + Stg}) >» el(S'k+k)-a 

acu 

= trDy({S*ltgt+Sts) N32 D  6(S1k+k—K). 
Kea* 

This gives 

= 
= 

= Mie") HEN? SSSR ER) DES t5)7). 

S*EK 

where 6°(Rk) = © 6(R—K), (summation over all reciprocal lattice vectors K). 

We now introduce the set of all elements of the point group K which invert 

the vector k: 

M, = {SEK|Sk=-k}. 

This gives finally, since the contribution of S vanishes unless Sk = —k, 

s VE SN? SS 2 ns 1S \fal2),. Lon =, x(g-) soi (LS | ts 3°) (3:21) 

where for each S © M,, one element {S|t>} of the space group G is selected. 

This element is not uniquely determined, because fy is determined only up to 

a primitive translation, but because of the definition of M, another fy gives 

the same result. In this way, we have an expression in which the summation is 

over point group elements only. Herrings criterion becomes with eq. (5.21) 

n/s_ forcase 1, 

Y td, ({Sltp}*)={ 0  forease2., (722) 
SEM k 

=njis ior case 3 , 

where n denotes the order of the point group and s the number of points of 

the star of kK. When —R does not occur in the star of k, M;, is empty and we 
have case 2. This means additional degeneracy in spinless problems. When —k 

occurs in the star of k, butk # —R (ie. 2R is not a reciprocal lattice vector), 

then there is an element R of K with -k =RR. Then M, = RKg. In particular, 
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when the central inversion / occurs in the point group, one has 

SED Sta y= Sa Dea Ree eae (LS | t5}°) pee (LR | tp }*) 



CHAPTER Vi 

APPLICATIONS IN SOLID STATE PHYSICS 

In the preceding chapters we have considered space-time transformation 

groups and their representations which play a role in crystal physics. In the 

present chapter we will discuss application of this theory to two important 

systems: we have taken as examples the cases of an electron in a crystal (elec- 

tron band theory) and of lattice vibrations. To these examples we could add 

a large number of other systems, but the techniques will not be different. We 

assume some familiarity with the fundamentals of solid state theory and 

refer for a deeper understanding to other books. 

In two further sections we shall give two generalizations of the notions and 

methods used so far. These generalized notions are important for other situa- 

tions in solid state physics. In the third section we treat a charged particle in 

an electromagnetic field. In the equation of motion of such a particle, i.e. in 

the Schrodinger equation, occurs the potential of the field. It turns out that 

it is necessary to study the relation between the symmetries of field and 

potential. The theory is applied to a Bloch electron in a homogeneous mag- 

netic field. In the fourth section we study crystals with localized magnetic 

moments. For such systems plain time reversal is not a symmetry transforma- 

tion. However, one can define symmetry transformations which combine 

spatial transformations with time reversal. This leads to magnetic groups and 

their co-representations. In the Bibliography we shall give a list of papers on 

the use of group theory. In that list are given also papers on subjects not dis- 

cussed in this book. 

6.1. Electron bands 

6.1.1. Electrons in a crystal 

We can consider a crystal as a large system composed of nuclei and elec- 

trons. The Hamiltonian of the system is H = H,, + H, + H,,,, where H,, de- 

a7 
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scribes the nuclei, H; the electrons and Hes their interaction. However, there 

is a great difference between the strongly bound electrons of the cores and 

the loosely bound outer electrons. Therefore, it is better to write 

H=H, +H, +Hee , (6.1) 

where H,, describes the cores of nuclei and strongly bound electrons, H, the 

loosely bound electrons and H,, their interaction. In the quasi-stationary 

approximation one can neglect H,, and consider the electrons as moving in a 

fixed crystal potential. Then 

ND; 
H=2 Pre deat uee W; , (6.2) 

j=1 “i<j i 

where V;; is the Coulomb repulsion and W, the potential energy. Finally in 

the Hartree—Fock approximation the V-electron wave function is given by a 

Slater determinant 

= det (y(/)) 
VN! 

where ;(/) is an eigenfunction for particle j of the Hamiltonian 

v= 

2 

Fee VAG Vg (6.3) 

Here V(r) is the sum of the potential due to the atom cores in the crystal and 

a smeared-out potential due to the repulsion of the outer electrons. The term 

V,, is the spin-orbit term 

as Oy 
oe med IVE Dae (6.4) 

which arises in the nonrelativistic approximation to the Dirac Hamiltonian. 

When we neglect the spin term, we obtain the Hamiltonian of eq. (4.34), 

because V(r) is invariant under space group transformations (cf. Streitwolf 

[1967], p. 114). Taking the spin into account we obtain, apart from some 

relativistic corrections, eq. (5.5). Therefore the invariance group of H of (6.3) 

is the double space group G4, or the space group G if we can neglect spin 
effects. Hence, the eigenfunctions of H belong to representations of the 
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(double) space group. Barring accidental degeneracy these representations are 
irreducible. The basis functions for these representations are Bloch functions 
We,» Where R is in the first Brillouin zone and p is the band index. It is possible 
to choose Wz,, as basis functions of standard representations of G (or G4) 
such that they form an orthonormal set 

Wavl Varn? = Ske S yy" - (6.5) 

As we discussed in Ch. 4 the function Wx, can be written as 

Ven=e ey lr), (6.6) 

where uz ,(r) has the periodicity of the (direct) lattice. 

Substitution of eq. (6.6) in the Schrodinger equation with H from eq. (6.3) 
yields 

p2 h h — pl 
fig yas Seas V(r) et p> jyte o° [VV(r) X(k—p)] }ug, =F, ey 

with cD 

a h2x2 
Exy ) Expy Dee 

The new Hamiltonian H’ has a more involved structure than the old one, but 

the advantage is that one has only to solve for solutions inside one cell, 

because uz ,(r) is periodic. This situation is analogous to the Schrodinger 

problem for a particle in a spherically symmetric potential, where one derives 

from the original equation the more complicated radial equation, which has 

the advantage that it does not contain the angle variables. The first, second 

and fourth terms in eq. (6.7) have the symmetry of the (double) space group. 

This symmetry is lowered by the k-dependent third and fifth terms. These 

terms have only the group of R as invariance group. This means pe the energy 

levels are labelled with the irreducible representations of Gy or Gg. Here one 

sees immediately the dependence of the degeneracy on the k-vector. Of 

course the description of wave functions and energy levels is equivalent to 

that given in Ch. 4, §3. In the present case we ee the wave functions 

by irreducible representations of the subgroup Gf 4) of the invariance group 

GY) of H. This is called the “subgroup method”. A wave function is labelled 
by avector R from the first Brillouin zone and the band index v which at 

in a way described in Ch. 4, §3, both the irreducible representation DG )) 

and the row of the corresponding representation r(K{%) to which pz, 



180 APPLICATIONS IN SOLID STATE PHYSICS 

belongs. Since the irreducible representations of G‘4) may be obtained by in- 

duction from those of GC, the functions W;,,, with k running through its 

star and v denoting the rows of one representation of K,, form a basis for an 

irreducible representation of G. The eigenfunctions of H can then also be de- 

scribed by the star of k and the index v, or more simply by the pair kv. Now 

k-star and pv denote an irreducible representation of the full group G(®). This 

is called the “‘full group method”. As discussed in Ch. 4, §3 for selection rules 

the two methods show slight differences. 

6.1.2. Compatibility relations 

The eigenvalues of H in eq. (6.3) are denoted by Ex,, where R is in the 

first Brillouin zone and v the band index. The pair kv denotes a representa- 

tion of the invariance group G. (We consider here the case where the spin 

may be neglected. The spin case is easily obtained by taking every where the 

double group instead of the ordinary symmetry group.) It is the representa- 

tion induced from a representation of the group of R. If the representation of 

G, has a basis z1, ..., Veg, it induces a representation with basis Vk; 1> ee 

oo Whedy (i = 1, ..., s) where k; runs through the set of vectors of the star of k. 
This means that Eki denotes the same energy level as E,,,. Hence 

Exy = Erk y (R EK) 

for any element R from the point group of G. Therefore, it is sufficient to 

know the function E,,, only in a part of the first Brillouin zone. We call a 

domain in the first Brillouin zone, containing exactly one vector from each 

star, a fundamental region. Like the unit cell of the reciprocal lattice it is not 

uniquely determined. Any domain of the zone which covers the complete 

zone exactly once under the action of the point group will do. However, in 

the literature the choice of the fundamental regions is more or less standard- 

ized, cf. Koster [1957]. 

The degeneracy of the level E,,, is the dimension of the corresponding 

representation of G. It is the product of the dimension of the representation 

of G, from which the representation of G is induced, and the number of 

points of the star of k. The dimension of the representation of the group of k 
is the degeneracy of the Hamiltonian H’ (6.7). As this Hamiltonian depends 

on R via the third and fifth term, the degeneracy depends on k. Moving over 
an energy surface Ey, for fixed v, level splitting may occur along the path. 
However, the degeneracy and the transformation properties of the corre- 
sponding eigenfunctions, in short the associated representations of Gx, have 
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to obey certain rules, called compatibility conditions. 

Consider a point & in the Brillouin zone and an irreducible representation 

D,(Gx) of the group of k. A basis of the representation is formed by Wp, «.- 
+, Wgq: These may be chosen in the form of Bloch functions and in such a 
way that for another point Rk’ the functions limp _,x' Wz; = Wz; belong to a 

basis of a representation Dy'(G,'). Suppose that, barring accidental degeneracy, 

the level Ey, corresponds to Dy(G,) and Ey, with the same v to Dy:(G,’). 
Furthermore, we assume that Gy is a subgroup of Gy. Then the subduced 
representation D,:(G,) contains in the limit fork >k' the representation 
D,(G,). This means that in the reduction of Dy (G,) the irreducible compo- 
nent Dy(Gx) must occur. If this happens, which can be determined from the 
character table, the representations are called compatible. 

As an example we consider an electron in ¢ crystal with space group 

Pm3m. Neglecting spin effects the invariance group is also Pm3m. This space 

group has a simple cubic lattice. The reciprocal lattice is also simple cubic. In 

fig. 6.1 a fundamental region (XMR) is indicated. Its volume is 1/48-th of 

the volume of the complete Brillouin zone because the point group m3m is 

of order 48. The R-vectors with different groups Gx are also indicated. They 

are the points ',R, X and M, the points A, S, A, 2, Z and T on symmetry 

lines, and the points in the symmetry planes -XR, [XM, [MR and RMX. 

Let us see what is happening if we move on a By,, surface along the k,.-axis. 

The group of I, i.e. R = 0, is the group Pm3m. Its point group is the direct 
product of the octahedral group O with the group of order two. Its ten irre- 

ducible representations are Ij, ..., M5. Going to a point A, i.e. R = (e, 0, 0) for 
some number €, the symmetry is lowered to P4mm with point group 4mm. 

This group is isomorphic to Dg and has five irreducible representations, 

Aj, «.., As. Going from IT to A the level corresponding to a representation ¥; 

splits into levels corresponding to representations of 4mm. On the other 

hand in the limit € > 0 the eigenfunctions of H corresponding to k = A and 

given v and A, go continuously over into eigenfunctions at k =T. These eigen- 

Fig. 6.1. Brillouin zone of the primitive cubic lattice. 
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Table 6.1 
Compatibility conditions for points A and I in a cubic Brillouin zone. 

Irreducible characters 4mm _ Characters of 4mm subduced from m3m Compatibility 

fe] [a7] [a] [4] [a6] fe] [a7] fa} [8] [es] 
A, 1 jah, aie arated cP Gee) ay ee aE = A, resp. Ay 

NG eek pla tial. Bord ac. daied eek a4 = A3 resp. A4 

A3 1noittinedtorqts od} ‘A P382I01 12iil Of#2i O =A, e Ag resp. Are Ay 

Ag HMO a pug 4a (pep gO 1¢ 1Q984 =1 = = Ag @ Ag resp. Ay @ As 

Age2. 22. 0. 0. Op Psd. =le alo Fingl, | = AgieAs respyAz en. 

functions belong to a representation T such that '3(4mm) contains A,. The 
characters of the irreducible representations of 4mm and of the representa- 

tions of 4mm subduced from a I, are given in table 6.1. Compare the sub- 

duced characters with the character table of O and notice that €,a,a2,a> are 

rotations of order 1, 4, 2, 4 respectively, that 6 and a2@ are products of the 

central inversion J with rotations of order 2, and that aB and a8 are products 

of J with the square of a rotation of order 4. From table 6.1 one sees that A, 

is compatible with I], 13 and Ty, Ay with Py, Pz and TY, Ag with T5, 73 
and Is , Ay with P7,13 and Us; As with iw and Ts. Moving along the k,- 

axis over a Ey, -surface the representation A, remains the same. Approaching 

the point I’ this representation goes over into a subrepresentation of ie At 

the point I several surfaces come together. On the other hand, starting from 

I the level splits up in general. One could obtain a behaviour like that sketched 

in fig. 6.2. The same can be done for other paths in the Brillouin zone. Leay- 

ing a point of high symmetry in the direction of lower symmetry the level 

splits up, in general. The splitting depends on the direction of the path. Inside 

the fundamental region, where the k-vectors have only the identity as sym- 

Fig. 6.2. Possible energy levels along the ky-axis. 
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metry point group, the levels become nondegenerate. 

6.1.3. Symmetrized plane waves 

From translational symmetry it follows that the eigenfunctions of Hin eq. 

(6.3) can be written as Bloch functions (6.6). The functions Uz, are solutions 

of a Schrodinger equation with Hamiltonian H’ (6.7). To solve: this equation 

is the goal of band structure calculations. As this cannot be done exactly one 

has to apply perturbation theory. The choice of the\zeroth order approxima- 

tions is then important. Here come in arguments which differ from case to 

case. For some solids one can apply the nearly-free electron model. Here the 

crystal potential is considered as a small perturbation on the kinetic energy. 

The zeroth order wave functions are in this case plane waves. As one has 

degeneracy in the unperturbed states, notievery set of plane waves forms a 

good approximation. One has to construct symmetrized plane waves. The 

eigenvalue problem we will have to solve will become —— easier using these 

symmetrized wave functions. v 

Which plane waves have to be considered to construct the functions) ) o//) 
Uz, (1)? Since uz ,(r) has the periodicity of thelattice one has fora) translay; »» 
tionae&U 

Pte te i= 8) =U Ar). 

This means that the u,,(r) form a basis for a representation of U which is 

equivalent to one with wave vector k = 0. This means that in the Fourier 

decomposition of u,,(r) into plane waves only those waves occur which have 

a wave vector from the reciprocal lattice. Then one has,,|) ;, noidssilqitluM 

Vay =e ug ylt)= Edy y(K) Mr (6.8) 

When the nearly-free electron model can be used’the function W,,, can be 
approximated by a small number of plane waves. In this case it will not be 

necessary to calculate all coefficients a, ,(.K). When the model is not valid, the 

convergence will be poor and we will have to consider other approximations. 

Consider an element g = {R|a} from the group of k. For such an element 

Py exp [—i(R+K) +r] = exp [—i(R+K) -(R- ly | R~1g)] = 

se [—iR(Rk+K) -(r—a)] = exp [iR(R+K)- a]- exp [—iR(R+K)- r|. 

Because g © Gy one has RR'+ RK =k + K'+K"=k+K"" for certain reci- 

procal lattice vectors K', K", K’"”. Therefore, the functions 

exp [—iR(R+K)-r] forR EK, form a basis of a representation of Ga ne 
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general, this representation is reducible. Moreover, it is an allowable represen- 

tation since for a translation a = {e|a@} one has P, exp [—iR(R+K) +1] = 

exp [~iR(R+K) +(r—a)] = exp [iR(R+K) +a]: exp [—iR(R+K) +r] = 
exp [iRR*+a] exp [—iR(R+K)-+1r] and exp [iRR* a] = exp [i(R+K') +a] = 
exp(ik:a). The collection R(k+K) for R € Ky and for given K € A* forms 

the (k+K)-star. The plane waves corresponding to one (R+K)-star transform 
according to a representation of Gy. One can replace eq. (6.8) by 

k ¥ z x ap (Kye EtK er ‘ (6.9) 
stars K+K in 

one star 

As we will see, under the perturbation plane waves will combine to form per- 

turbed states. Because the symmetry of the perturbation is G,, only plane 

waves belonging to equivalent irreducible representations of G, will mix. 

Therefore, it is convenient to combine the plane waves in such a way that they 

form bases of irreducible representations of Gy. 

We consider eq. (6.7) and neglect here the spin terms. Generalization to 

the complete Hamiltonian H’ is straightforward. Substituting the Fourier 

expansion (6.8) in eq. (6.7) one obtains 

= n 2) —1 Kar — 
a REAM E (R+K) at V(r) ee é| ay (K) aldol MBO 

a 

Multiplication from the left with (1/Q) e/*°, where Q is a normalization 
volume, and integration over r gives 

h2 

Here the matrix element Vx x is defined by 

Vex’ = A faye &K'r yy) e iKir = Vek! : 

We assume that Vx x is taken as part of the unperturbed energy 42(k+K)2/2m. 
Then one has the equation 
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h? 
2 sm (RIK 8K KR! ~ Exo’ + VK’ | ap, (K’) = 0. (6.11) 

The solution of eq. (6.7) is obtained by diagonalization of eq. (6.11). This 

means diagonalization of an infinite-dimensional matrix. However, for the 

nearly-free electron one can restrict oneself to a limited number of stars. 

In order to use the invariance group of the Hamiltonian H' one has to 

combine plane waves into basis sets of irreducible representations. We will 

show this symmetrization procedure on an example. Consider an electron in 

a crystal with space group Pm3m. If one wants to construct the function 

Uz, for Rk = 0, one can consider the (R+K)-stars as in eq. (6.9). The first star 

contains only the point = (0, 0, 0). The second star is the one formed by 

the six reciprocal lattice vectors (fig. 6.3) 

(2n/a,0,0), (—2n/a,0,0), (0,27/a,0), (0,—2n/a, 0), 

(0, 0, 27/a), (0,0,—27/a) , (6.12) 

where a is the length of the side of the unit cell. We denote the corresponding 

six plane waves e !**" by 

(100), (100), (010), (010), (001), and (001), 

res_ectively. They span a six-dimensional representation of Gg which is 

Pm3m. The character of the representation is obtained from 

—iK+r _ ,-iRK*(r—a) — ,iRK-a ,—-iRK>r 
Prria}e =e e€ e ; 

(007) 

Fig. 6.3. The star of (100). 
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when {R|a}© Pm3m. As the space group is symmorphic one has 

x({R|a}) = x({R|O}) = number of K-vectors with RK =K. 

The representation of Ky, = m3m is then given by the character 

{e} {B} {a} {a2} {aB} {y} {By} {ay} {a*y} {aby} 
ClO ae Oe One 20 0 4 2 

where {8} denotes the class of 3-fold rotations, {a} that of 4-fold rotations, 

{y} that of the central inversion and so on. As one sees from the character 

table of m3m, which is isomorphic to O X C), the representation I" is reduc- 

ible and 

rel) er er, . 

The six basis vectors (6.12) do not form a basis of a reduced matrix represen- 

tation. To find such a basis one can apply the projection operators from 

Ch. 2, §1.A basis for Ty is given by 

{(100) + (100) + (010) + (010) + (001) + (001) }/\/6. 

A basis for the irreducible representations T3 is given by the two functions 

{(100) + (100) — (010) — (010) — 2(001) — 2(001) }//8 , 

{2(100) + 2(100) — (010) — (010) — (001) — (001) }//8 . 

Finally a basis for 4 is given by the three functions 

{(100) — (100) }//2 

{(010) — (010)}//2 

{(001) — (001) }/V/2.. 

One can do this for any star. For the lowest stars one finds: 



APPLICATIONS IN SOLID STATE PHYSICS 187 

star of (000) gives iy ; 

star of (100) gives lM + TS Pips 

star of (110) gives ly + r3 eo rs ¥ Te ete. 

If we want to approximate u,,, by a linear combination of these 3 stars we 

have to diagonalize the 19 X 19 matrix Vy x’ (K, K' in one of the three stars) 
in eq. (6.11). However, by taking the symmetrized plane waves as basis func- 

tions instead of the plane waves one has also to diagonalize a 19 X 19 matrix, 

but as V has only nonvanishing matrix elements between functions belonging 

to the same row of the same irreducible representation, the matrix of V 

between symmetrized plane waves falls apart in a 3 X 3 block (connecting the 

3 i functions), two 2 X 2 blocks (connecting the rows of FS), three 2 X 2 

blocks (between Ig functions), and six diagonal elements between the func- 

tions of I's and TS. Thus the diagonalization is simply a diagonalization of at 

most a 3 X 3 matrix. This spectacular reduction of the V matrix is caused by 

the high symmetry of the point I’. For a less symmetric point the reduction is 

not as great. For a R-vector in general position the representation is the trivial 

one and the diagonalization is not at all simplified by symmetry considera- 

tions. Hence the calculation is much easier at a point in the Brillouin zone 

with large point symmetry. 

6.1.4. Other band structure models 

Qualitatively, an electron in a crystal will behave as quasi-free only far 

away from the ions. In the neighbourhood of an atom its wave function will 

vary more like an atomic wave function. This means that the quasi-free elec- 

tron model will not be very good. Although it can give in certain circum- 

stances a fairly good overall impression, the number of plane waves needed in 

the expansion of ug,, for an accurate description will be to great. To describe 

the behaviour near the ions, plane waves with big k-vectors would be re- 

quired. To get an expansion which converges more rapidly, Herring (Herring 

[1940]) proposed another set of expansion functions which have a better 

behaviour near the ions. The lowest energy bands have their origin in the core 

electron states. Usually there is a clear distinction between these core states 

and the outer electron states. Suppose Wx,, are the bands corresponding to 

the core states. They can be approximated by Bloch sums. 

Yet) ~ 2 elk 4g (r—a), 
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where the summation is over all lattice vectors and o,(r— a) is the u-th 

orbital of an electron centered around the atom at site a. Anyhow, we 

suppose the Weyl?) core band functions to be known. Herring proposed as 

basis functions 

Xe k(n) =e (MAY _ yd Ru R+K) UY), (6.13) 
; im 

where the summation is over all core states, and (Ru|R+K) is the inner 

product of W,,,(r) and exp {—i(R+K) +r}. This function is orthogonal to the 
core states and behaves in the neighbourhood of the core as an orbital func- 

tion. We can expect that an expansion of the conduction electron wave func- 

tions 

Vel") ate) - ap y(K)X~ KY) (6.14) 
KEA 

converges more rapidly than an expansion in plane waves. One can substitute 

eq. (6.14) in the Schrodinger equation. Again one has to diagonalize an 

infinite-dimensional matrix which can be approximated by a finite one. To 

simplify the interaction matrix one must consider the transformation proper- 

ties of the orthogonalized plane waves (OPW) Xx x(r). For an element 

g= {R|a} from the group G, of Rk one has 

PX 4 K(?) = eo (K+ K)(R™'r—-R1a) —D (Rul k+K) PWry(1) ; 

be 

Now we can choose the functions VeulY) as basis functions for a (unitary) 

representation Dy(G,). This means 

Powe Ar) = ; Dg(8) ou Veo") « 

Using the definition of (ku |k+K) and the transformation property of the 
plane waves, there isak + K'’=R(kR+K) in the R+K-star such that 

PRkgi g(r) = e HET) a) _ z Di Bou PeV aul Py exp {-(R+K) -1}) Vy (r) 

= pl(K+K')oay -i(k+K')- ; = QMRFK ray .-i(k+K')or _ ey D2) ou PK (Bou ROLR+K Uy, (r)} 

= l(ktK rary HRHK' Jor __ yy (RoIR+K yy (r)} 
p 

=e En), (6.15) 
? 
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Here we see that the functions xg x(r) with k + K in one k+K-star form a 
basis for a representation of Gz, just as the plane waves exp {—i(R+K) +r} 
did. As the interaction V is invariant under Gx, its matrix is simplified if we 
use symmetrized combinations of the Xx,K(") which form bases of irreduc- 
ible representations of Gy. Moreover, as Xx,x(") transform in exactly the 
same way as the plane waves, the linear combinations one has to take are the 
same as those for plane waves. This is the reason why the study of symmet- 

rized plane waves in the preceding section is so useful, although the nearly- 

free electron model is such a crude approximation. 

Apart from NFE and OPW models there exist a great number of other 

methods for band structure calculations. In these methods as well use can be 

made of the existing symmetry of the problem. A further discussion of the 

role of symmetry considerations in band structure calculations can be found 

in Nussbaum [1966], Luehrmann [1968] and Cornwell [1969]. 

6.2. Lattice vibrations 

6.2.1. A crystal in the harmonic approximation 

Contrary to the case of electron states discussed in the preceding section, 

where we neglected the contribution of the cores H,, in this section we will 

be concerned with the dynamics of the system of cores. Here the electron 

contribution is taken as a uniform charge background. The cores are con- 

sidered as rigid particles with an interaction which can be described by a 

potential. As in Ch. 4, §1.7 the positions of the cores (which can also form 

complete atoms or ions) are denoted by x(%) with 2 € A andi= 1, ...,s. The 

Hamiltonian of the system of sN? particles is 

Pri n H= Dm, * PC CF): (6.16) 

Here p,,; is the momentum of the particle with position x(') and ® is the 

potential energy. As the system vibrates, the positions are time-dependent. 

One can write x(7), =x(")q + u(7),, where u(7) is the displacement from the 

equilibrium position. For smail displacements one can expand ® in a power 

series. The zeroth order gives only a shift in the energy, the first order 

vanishes because we expand in displacements from a stable equilibrium posi- 

tion. When the third and higher order terms are neglected, one considers the 

crystal in the so-called harmonic approximation. When we denote the second 
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derivative by 

ny Aoi = 02 

Sh a G iz 

Sees ole mae ys 

the Hamiltonian in the harmonic approximation is 

n,n i m2 
Ge In ) aC) Malia) , Sy = 2 #3 Ri nny 

120102 

or in vector notation 

ny EWG dM) (6.17) 

For the theory of lattice vibrations we refer to Born and Huang [1954] or 
Maradudin et al. [1963]. Here we give only a brief sketch in order to see the 

role of symmetry in this problem. 

When we consider the system in the frame-work of classical mechanics, 

the pe of motion is 

HQC} pain = b Path MY (M). (6.18) 

We notice tliat the tensor o( a) has a number of symmetry properties, 

Among them 

OG i) Pals v oD) ? (6,19) 

which follows from the definition, and 

Da P I= Dee F) Kea) 
because the potential energy depends only on the mutual distance of the 

particles. We use the translational invariance by making the Ansatz 

WA (8) = (mn) TP U4(P) fla 4 O(4)?) | (6.21) 
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for the solutions of eq. (6.18). Here q is a vector in the reciprocal space. We 
will give an argument for the choice (6.21) in the next section. Substitution 
of (6.21) in eq. (6.18) gives 

= QC) UG) LV = — FE Daa FM \(mp) uh (9) f° 
nay 

We now introduce a matrix D(q), called the dynamical matrix, by 

Doo! (ii | q) =r Dya'(;*') (mm;)? e 4 . 
n 

Then the equation of motion becomes 

w(q)?u4(?) = %, Dooi(d i'4) U9 (2). (6.22) 
a 

Forming a 3s-dimensional vector u(q) from the components ud(?), one has 

w(q)? u(q) = D(q)u(q) . 

The frequencies w*(q) are the 3s eigenvalues of the matrix D(q). In this way 

use of the translational invariance leads to a 3s-dimensional problem instead 

of the original 3sV3-dimensional problem. For each of the N? vectors q in 

the first Brillouin zone there are 3s eigenvalues denoted by w; (qe The 

corresponding eigenvectors are e(q|j). The matrix D(q) has the following 

properties. 

1) It is Hermitian: 

Dag (i 114) = = (my my) Beil jj) 011" 

=) (mmj:) Bag; ")) e 4" — (cf. eq. (6.19)) 
n 

a 2 (m my)? Bya ;'")) elq'n = Dyod 114)” ‘ (6.23) 

2) From the definition of D(q) follow 

D(q)=D(-4)’ . 
(6.24) 

D(q+K)=D(q) (any KE A"). 

The Hermiticity implies that the 3s eigenvectors can be chosen in such a way 
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that 

a“ # Ae oe 

a Cui (Gli) Cail |i) = 5)" « (6.25) 

When we form from the 3s eigenvectors a matrix e(q) with columns e(q|/), 

the eigenvalue equation is 

D(qg)e(q) = eq) 2(q) (6.26) 

where §2(q) is a diagonal matrix with elements w(q)?. Solution of the eigen- 

value equation (6.26) is equivalent to a solution of the equation of motion 

(6.18). 

6.2.2. Symmetry of the dynamical matrix 

After this brief introduction to the theory of lattice vibrations in the har- 

monic approximation, we want to discuss the role of the symmetry. Because 

the particles vibrate, only for some special modes the symmetry of the real 

crystal will exactly be a space group. However, the configuration of the equi- 

librium positions (which are the time averages of the positions) is transformed 

into itself by an element of the space group of the crystal. As always, we 

assume an infinite perfect crystal. Suppose that x()o is the equilibrium posi- 

tion of an atom of a certain kind. Then for an element g = {R|t} from the 

space group G the position 

{Rlt}x()o =Rm+ Rr +t 

is also the equilibrium position of an atom of the same kind. Then there is a 
pair (m’,7') such that 

KF oq = {RIE} XC) . (6.27) 

The pair (m', j') is uniquely determined by the pair (7m, /) and the element g. 

We suppress the information about g to have a not too cumbersome notation. 

When t; is the position of an atom in a unit cell, Rt, +¢ is also an atom 
position: 

Re t+b=ty + uc, j) 

for some primitive translation u(g,/). Then t,: is again in the unit cell. From 
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eq. (6.27) it follows that 

Rm+u(g,j)=m'. (6.28) 

As the lattice is invariant under elements of the point group, Rm is again a 
lattice point. 

Under a point group element R, the displacements u("") transform accord- 
ing to 

u'(™) = Ru(™) , 

because u("*) is a vector. The potential energy ® is a scalar function and is 

transformed into itself by elements of the space group: 

P(... u(™) ce ous 1 ay 7 (a 

For the second order term one has consequently 

m, M2) ~ mm: 
Potag Gy’ in) oe Rea, Rpr02P A606 iy i? : (6.29) 

In particular, one has for a primitive translation a = {1|a} 

® my, We) = fii) ek aa 

CAG Ty Oy AQ 

as we have seen in eq. (6.20). As the equation of motion is a linear one, the 

solutions form a linear vector space which carries a representation of the in- 

variance group. Among other things this means that one can choose a basis 

for the space with transformation property 

Prtia} u("") = lq'a u("") : 

This implies that there is a basis consisting of solutions of the form (6.21). 

Here we see that the values of g can be restricted to vectors in the first 

Brillouin zone. Choosing periodic boundary conditions means restriction to 

the lattice A*/N inside the Brillouin zone. 

The transformation law (6.29) can be used to simplify the tensor ®, 

because it gives relations between its components. As an example we con- 

sider a crystal with diamond structure. We assume an interaction between the 

atoms for which the range is restricted such that only nearest neighbours have 

interaction. For an atom at position [000] there are four nearest neighbours: 
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Fig. 6.4. The four nearest neighbours in the diamond crystal. 

(444). (4-3 4]. [-3 44], and [1 4-3] (fig. 6.4). Hence only the 36 elements 
of DD = (000), 2 = (710) @@) = (10), 4) = (01) can be differ- 
ent from zero. Using eq. (6.29) where we take for R three generators of the 

point group m3m, respectively, we get: 

1) Oe 50 ef % Pe) 

1S (1 0 0 gives PD = ROAR = R2OQ)R2 = RIGDDRG ; 
0 0-1 

OON! = ~ 

R= (-1 0 0) gives PD = ROYR = R2GOR2, 62 = ROOQR ; 
0-1 0 

3) the central inversion / interchanges the two sublattices, which means that 

for g= {J|t} with t = [3 5 4] one has 

x05 °V>aP 9°) 

xO 9°) > x95 °) 

which leads (using eq. (6.19)) to ®yg(9"1) = Pag(7 6) = Psa"): Because the 
three elements used above are generators of the point group, all other rela- 

tions follow from the ones obtained. Use of these relations gives the four 

tensors &): 

a B28 a—p —B 
pl) = ( B a — p(2) = (-s oy 46) 

=o pio —B Ba 

ao 6. 8 a —8 —B 
3) = ( 6 a 8 | w= (-p a 8 | 

[ergs A) = See 



APPLICATIONS IN SOLID STATE PHYSICS 195 

for arbitrary real numbers a and 8. From the 36 elements of the 4 tensors only 
two are independent. The same procedure can of course be used to simplify 
the form of the other matrices. Herman (Herman [1959]) has done this for 
the five nearest neighbours. In that case there are 15 independent elements. 

The transformation (6.29) of ® leads to the transformation of the dynami- 
cal matrix. For the space group element g one finds with eq. (6.29) 

oe e Sh saat 
Dapiii2Q) = = Papl jin) (mj mj) ° o8™ 

n)—n} 

= 2D RyRy gu ol Ai ja 
)(m;.m;.)~? e #4 a) 

ny uv Jie 

Eq. (6.28) gives m}—4 = R(m,- n>) + u(g,j,) — u(g, j). Hence 

n—n> ze vd —Y; 
Dy gli /2!Q) re i Ry oRygP ul; iy mys js) : 

1 

X exp {—iRq + (n —n4 —Uu(g,j,)+U(g,j2)} 

= Ry oRygDy ii 72/Rq) exp {iRq  (u(g, 71) -Ule, j2))} 

=zy 26 
uv 11, 

where 6); is the Kronecker symbol. The last line is only a trivial remodelling 

of the preceding one. Then we define a 3s X 3s matrix I'(q, g) 

IR i ay; SUR *u(g,/2) ag eRe q:u(g WD (ly ly|RQ)R, ge q 2 S inis . 

se hs 
10g, a) = Rgg & RE MENS, (6.30) 

which is composed of s? blocks of dimension 3. In the /-th row of blocks only 

the j'-th column is different from zero, where j’ is determined by j andg €G. 

The block /j’ is the matrix R exp (—iRq-u(g,/)). For a primitive translation 

one hasj =/', which means that I'(q, g) is the direct sum of s three-dimensio- 

nal matrices. One can write 

* vB 

Dogii2lg)= = PG. 87.) Puri aI ROG, igi, > 
pv 

or in matrix form 

D(q)=T(q,g)' D(R4)T(q,8)- (6.31) 
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Because I is unitary, as follows from the definition (6.30), one also has 

the relation D(q) = T(q,g)'D(Rq) I'(q,g). This means that D(q) and 

D(Rq) have the same eigenvalues. We can choose the order of the 3s eigen- 

values such that w, AG.) w,(Rq). Therefore, the functions w;(q) have the 

symmetry of the Goin Pece! Moreover, since D(q) = D(— q)’. one can order 

the eigenvalues w wo; (— q) in such a way that w; HOM i (—q). Then we have 

the relations 

w(q) = 0; (q+ K) for any KE A* , 

0;(q) = &; (Rq) for any R in the point group, 

w(q) = @/ (4). 

6.2.3. Transformation properties of the normal modes 

Using the matrices [(qg, g) for g € G one can construct eigenvectors of 

D(Rq) from those of D(q). For the polarisation matrix e(q), for which the 

3s columns are the eigenvectors of D(q), one has D(Rq) I'(qg, g) e(q) = 

I'(q, g) D(q) e(q) by eq. (6.31). From eq. (6.26) it follows that e(Rq) = 

I'(q, g)e(q) is a polarisation matrix for the wave vector Rq. In the special 

case that g is an element of Gg, the group of qg, the matrices I(q, g) and 

D(q) commute. Then 

D(q)1(q, 8)e(q) = 19,8) e(q) 29) . 

which means that both e(q) and I'(q, g) e(q) are polarisation matrices for q. 

It also means that the columns of I'(qg, g) e(q), which are eigenvectors of 

D(q), are linear combinations of the eigenvectors e(qg|j). One can write 

I'(q,g)e(qg) = e(q) A(q, g) forg Gg : (6.32) 

Putting the eigenvectors with the same eigenvalues next to each other, the 

matrices A(q, g) become direct sums of a number of matrices. This number 

is the number of different eigenvalues of D(q), because a column of 

I'(q, g)e(q) is a linear combination of those columns of e(q) which corre- 
spond to the same eigenvalue. The dimension of a component of A(q, g) is 
the degeneracy of the eigenvalue to which it belongs. 

The matrices I\(q, g) and consequently also A(q,g) form a representation 
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of the group Gg. To prove this, suppose that g, = {R,|t,} and g, = {R|t>} 
are elements of Gq. One hast; = R,t; +t, —u(g,,j) and tin = Rote tbs 
— U(g>,7 ). On the other hand tiv = RoR, tj + by + Rot) — U(eyg4,/). There- 
fore, 

U(g781,/)= U(gz, 7.) +R U(g),/). (6.33) 

We now use this relation to calculate 

rq. )l(q.e) 1% 

a S (R DeyR2)485ix'dK;' exp {—i(R1q°U(g),k) + Roq°U(gy,j))} 

=(R1Ro)og5j exp {— 1g + (U(gy,7') +Uu(go, f))} 

=(R1Ry)agdi" exP {— 1° U(g189,/)} =1(g,e182)9° - (6.34) 

This shows that I'(q, Gq) forms a unitary representation of G,, equivalent to 

the representation A(q, Gg). The representation A(q, Gq) is already in block 

form and each block corresponds to a number of coincident eigenvalues 

w,(q)?. The reduction of the representation I'(q, Gq) would also give a re- 

presentation in block form, and there also the eigenvalues corresponding to a 

given block are the same. If one has natural degeneracy, blocks belonging to 

different components correspond to different eigenvalues. If two blocks 

belong to the same eigenvalue, one has accidental degeneracy. For each q in 

the first Brillouin zone, w(q) takes 3s values. Degeneracy is determined by 

the irreducible components of I(g,G,). The functions w(q) can be seen as 

a number of hypersurfaces in the four-dimensional (q, w)-space. The various 

sheets correspond to various branches of phonons. This picture shows many 

analogies with electron bands. In both cases one has a multi-valued function 

(E, or w(q)) with point group symmetry. However, in the electron case the 

number of sheets is, in principle, without limit, whereas it is at most 3s in the 

phonon case. 
Here we have described the normal modes (basis solutions) with the sym- 

metry group Go. This is called the subgroup method, as we did not consider 

the full space group. If we take the whole group G into consideration, one 

has the full-group method. To see the relation between the two, notice that 

for a primitive translation a the matrix '(q, a) has the form 

rq, a)iP = §.4g5)) e qa 
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Therefore, '(q,G,) is an allowable representation of Gq, as are the irreduc- 

ible components A(g,G gq) of A(q,G q): These representations AMG, G ry) 

induce irreducible Pcnnnons of G. When the eigenvectors e(q |/) with 

Paes Tg, carry the representation AM, G qe and when the points of the 

star of g are denoted by g, Rod, ..., Ryq, the Wane representation is 

carried by rq, R,) e(q\j) with /= iL ASANO eel Ag, These eigenvec- 

tors of respectively DQ) DUG) oe all the same eigenvalue Ww; (q)- The 

dimension of the induced representation is sd;, where s is the Aes of 

points of the star and d; is the dimension of AO(Y, Gq). 

For a path on a sheet, to every point q of the sheet corresponds a repre- 

sentation of Gg. For two adjacent points with the same Gg the representa- 

tions of Gq are the same. On the other hand, if for any point of a path the 

G, is the same except in some limit point q’, where the group is Gg! and if 

G, contains G,, the limit representation of Gg for q +q' must BS a compo- 

nent of the eqnietion of the representation of Ga to Gg. The representations 

belonging to different points are therefore not ie pendeae They have to 

satisfy compatibility relations like those discussed in §1 for electron bands. 

The compatibility relations are determined in the same way as in the case of 

electron bands. An example of an assignment of representations to sheets of 

w(q) is given in fig. 6.5 for a crystal with diamond structure. 

We will now treat an example of the use of the representation I'(q,Gq). 

First we determine the matrices (q,g) for a crystal with diamond structure. 

One can distinguish two cases. z 

1) For an element g = {R|tp+a} in the symmorphic subgroup F 43m one 

has j'=j and tp = 0. Therefore, u(g, j) = (R — 1)t, +a and consequently 

exp(—iRq-u(g,j)) = exp(—iRq -a) exp(—iRq: Ry FIRQ?4;) = 
exp(—iRq-a) exp(iRkq: Tlgae, ae exp (—ig- ay exp(iKp°t; with 

mec It wy Te OE OIF ON OL 
point group Gq OxC, D, Dy xl, Do OxC, D3 Dg 

— transversal 
----- longitudinal 

Fig. 6.5. Phonon branches and the representations of Gq for silicium. 
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Rq=q+ Kp and Kp € A’. Then the matrix I(q,g) becomes 

Rat ; 
rig.)=(" ee) earee Wath t= data (6.35) 

2) When g is not in the symmorphic subgroup, the two sublattices are inter- 

changed: tp = t andj'=1 forj = 0,j'=0 for j= 1. In this case 

exp (—iRq-u(g,7)) = exp(—iq:a) exp (—iRkq “Rt, +iRq-t;.1 —iRq a) 

i.e. exp (—iRq -Uu(g, 0) = exp(—ig-a) and exp(—iRq-u(g, 1)) = 

exp (—iq a) exp (—iRq: [Rt+ t]) = exp (—iq-a) exp(—i(2q + Kp)°t). 

Then one finds for the matrix I(q,g) 

0 R ; 
= —iq*a I'(q,8) ees 4) e . (6.36) 

The representation I'(q, Gg) is then specified by the character 

m | x(R)(1 + exp {iKp:t}) exp(—ig-a) for g€F 43m 
XS) = = 

0 for gEF 43m. 

For q inside the first Brillouin zone one has Kp = 0 or 

ae | 2x(R) exp(—ig-a) for g€F 43m 

ig 0 for g¢F 43m : 

As an example we take g = 0(the point I in the Brillouin zone). The group 

Gg is the full space group. The allowable irreducible representations of Gg 

have character 

Xa(g) = & '4°*x(R) = XQ(R) 

whereas for I'(q, Gq) one has the character 

2x(R) = 2trR for gEF 43m 

xg) = 0 for g¢F 42m. 

The matrices R form a three-dimensional representation 4 of the point 

group O X C>. Hence, from the character table it follows that P= ls ory. 

Then one can say that for g = 0 there are two three-fold degenerate phonon 

branches. To find the polarisation matrix e(q) we have to look for a matrix 
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which diagonalizes D(q). This is also a matrix which reduces the representa- 

tion P(q,G q) as we see from eq. (6.32). However, although e(q) is such a 

matrix, note every diagonalizing matrix is a polarisation matrix. First we look 

for a matrix S which reduces P(0,g) by 

ST, g)S~! = 14 (g) © TE(g) . 

Taking for g two generators of the point group 432 one obtains for the 

matrices (0, g): 

0 TyRp) ae (0) 
r(0.2)=( for Ry = U0k4) = ie we 0), 

ER, 0 O0aM 

Pi(Rs) 0 010 
r(0,8)=( for Ry =T4(R>)= (0 0 1). 

0 F(R) a0 

Putting 

A B 

cle =) 

one obtains the equations 

gee ie ie eee 

DE (Ry) Gls, PR) Ca LARD 

and 

TOM, (R5)\a DI(R5)/s I\e( Rs) @ BARS)D 

Then Ge yle A Ti(RD and Py(R7)A =AT4(R>). As now A COIS 

with all the matrices of the irreducible group generated by 4(R4) and 

P'4(R>), according to Schur’s lemma it is A = and See 

B=V4(R,)AT4(R))~ ie HEN Dee )C= CT;(Rj{) and P5(R3)C= 

CI'<(R>), because I (2a) (Ra) and [4(Ry) = 15(R2). Then C=pl and 

D=— 1. This means that the matrix S must be of the form 

Al Al s=( ). 
pt —pi 
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However, in general e(q) does Ag effect a Sh ilalee into the form Ty ® Ps 
but in an equivalent form Ply P~ le OYs Oa , for certain nonsingular 
matrices P and Q. This means that e(q) is of the form 

PQ 
(4) E: ad, 

We see that in the first 3 columns the eigenvectors for one eigenvalue describe 
vibrations where both atoms in a unit cell move in the same way (acoustical 

phonons), whereas the 3 last columns describe vibrations in which the two 

atoms in a unit cell move with opposite phase (optical phonons). The acous- 

tical phonons for g= 0 describe a translation of the whole crystal. For these 

modes the frequency is zero. In this case we could determine the degeneracy 

and the possible forms of the polarisation matrix using the symmetry of the 

problem. Of course one needs more in order to evaluate explicitly the modes. 

6.2.4. The phonon wave functions 

In the frame of quantum mechanics the problem is described by the 

Hamiltonian 

PAT) Plt) 4 —n nyt no 

FS ae cpp CAA (6.37) 
fiji x0, 

where now p,(7) and u,(7) are operators with commutation relations 

[p.(7), uns )] = hid eo mn® ls = 

A state of the system is given by a wave function /(... x(7) ...), or with the 

variables u(7) by $(... u(7) ...) = WC... *(7)g tU(F) ...). How does such a 
wave function transform under an element g of the space group G? Consider 

the action of the substitution operator P,. One has P, Pl. u(}) ...) = 

an eexCG de )] ...). Notice lane not a linea transformation, but 

g (xptu)=R7 ER” ‘wR t= ¢ ‘Xo +R 'u, when g = {R|t}. 
Then P gol u(? ee J=G(.. Rou )tg! x(7)9 —x(7)o ...). Furthermore, 

Puy Pp, =Reut)y ts x"), — x(7)9. Consequently the operator P, 
cles not (Senne with H. However, if one defines a permutation epentc: 

Sy defined by S X(T) Se) = = x(7h ) which transforms the particle with equi- 

onan position x(7 Jo aitie the one at (7 )o (cf. eq. (6.27)), one has for the 
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combined operator 7, = So Py the action 

T,u(q) Tz! =R'u(7) + eK pe eo = Ruy. (6.38) 

The action of the operator 7, on the wave function ¢(... u(7) ...) is 

Ty9(...UG) .) = OC. RUA) ...) 

The operators commute with the Hamiltonian and form a group homomor- 

phic to G, since for g = {R|t} andh= {S|v} one has 

TT 0(... UG) ...) = Tyo(.. RUG) «..) = Typ (UG) -.) - 

They form the invariance operator group of H. 

The eigenvalue problem for H can be solved by a diagonalization procedure. 

We give here the steps of this procedure, but we refer for details e.g. to 

Maradudin et al. [1963]. We combine the 3s operators p,(7) into a column 

p(n), the operators u,(7) into u(m). Then 

H=}>p(n)'M'p(n)+} © u(n,)' o(n,-n,)u(n,), (6.39) 
n nin 

where M is a 3s dimensional diagonal matrix with elements m,,™m,,™,,™, 

M 7,7, ..., Ms, M,, M,. With the substitution 

u(n) = N~3/2 > e'4'"U(q) 
q 

p(n) =N~3? ¥ e!9"" P(g) 
q 

and the definition of the dynamical matrix D(q) one obtains 

1 — 1 a 1 H=—~ © P(q)'M'P(q) + —. = U(q)'M”*D(q)M”U(q) . sear (q CIE ie : (9) (qyM°U@) 

One can use eq. (6.26) to diagonalize this Hamiltonian by 

P(q) = M*! e(q)t(q)N?? 

U(q) = MM"? e(q) ViqyNn??? . 

Then the Hamiltonian becomes 
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— 2 {M(q)'M1(q) + V(q)' Q(q) V(q)} 

Introducing 

a(q) = i(h)~° [2(q) *M(— g) — 12(q)* Vig) 

a(q)' = —i(h)~* [Q(g) “11 (q) + 12(g)* V(— gq) 

one obtains the well known form of the Hamiltonian of a system of un- 

coupled harmonic oscillators 

H=3h : {a(q)' 2(q)*a(q) + tr 2(q)”} 

=} E hw,(q){a); aq; * 3) (6.40) 

The operators Qqj and aj are the creation and absorption operators with 

commutation relations 

6 = eh ale e 
E [4g j4q';'] = 8gq'5;j' - 

al Yet 

[4g j+4q'j') = ag 00977] 

As the operators Ng; = ah ja Mg; commute with H, the eigenfunctions of H can 

be chosen to be Guul@icons eigenfunctions of NV, ;. They are denoted by 

es Ng j ...), Where n,, is the eigenvalue of the operator Ng}: The normalized 

eigenfunctions are 
qi 

|njny.... =(ny!n)! ... yentan Wa ah ;,)'?...19), (6.41) 

where the vacuum state |0) is defined as the state with aq; \0) = O for any q 

and j. The function (6.41) is an n-phonon state, when n, + nj +... =n. AS 

they are eigenfunctions of H, they are stationary states. This means that the 

quantum numbers fg; are constants of motion. This is no longer true if an- 

harmonic terms are taken into account. 

The relation between the operators uy(7), Pg(7) and the operators dg ; 

and aj is given by 

u() = (h/2N? m)* 2 Fe (gq jw (q) (ag; tal gj) 

Pat) = (my/2N°)” Eo Mea Qi); (qyiGi,;=4_4)) 
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=1(2/AN?Y" & 29" fea(qy Peg (q lim “PalT) 

— 10/(q) eg (—Gli)mjug(7)} - (6.42) 

From the transformation properties of u,(7) and p,(7) (cf. eq. (6.38)) 

Te Clee = Rags?) and Da ee = Rog Pal’) 

the transformation properties of the creation and absorption operators follow. 
i 

We define Bg; = 4g; + ag; and A 9; = i(ah; — @_gj): They transform accord- 

ing to 

Ud eee {(2/nhN3)” = ean). (9) *egi(— qlidmPu,(7)}Ty! 

= (2/nn3)* ae R ge "4" e3(Q)* eq (—G li)mf*ug(?) - 

Using n' = Rn +.u(g,/) and the expression for ug) this becomes 

i 4 ¥, = ar -~y, 

T Bg jl, sh 1(q.g)}*"e2;(q) Cg (—4 7 )egi(RQ 7 )a(RQ) “Brg ;' 

or, in matrix notation, 

T, B(q)Tz | = 2°(q)e(q) 'T(q.g) 'e(Rq)2(q) “B(Rq). (6.43) 

To simplify this expression we recall that '(q,g) e(q) = e(Rq) A(q,g) and 

that the matrix A(q,g) commutes with Q(q). Then eq. (6.43) becomes 

T,B(q)T, | = A(q.g) 'B(Rq) = e(q) 'P(q.g) 'e(Rq)B(Rq). (6.44) 

Analogously we find for the matrix A(q) with elements Ag; 

T, A(q)T, | = e(q) 'T(—q.g) ‘e(Rq) A(Rq) - (6.45) 

We recall that the elements ea forg€ Gq form a representation of Gq. 

As the one-phonon state | qj) = yj!0= B_gj |O) transforms according ic 

T,\qi)= T,B_qjTg | Tz\0)= A(q,8)j;' B_pqj' 10) = A(4,8))7 IRQi? 

the one phonon states with g in one star andj labelling modes with the same 
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frequency span an irreducible representation of Gq. The states with more 
phonons transform according to product ee caaton. 

We have discussed here some only of the symmetry properties of phonon 

states. Other properties are treated in Streitwolf [1964] and Waeber [1969]. 

A slightly different approach to the symmetry properties of lattice vibrations 

is given in Raghavacharyulu [1961], Maradudin and Vosko [1968] and Warren 

[1968]. They are mainly concerned with the properties of the dynamical 

matrix and of the polarisation vectors. Because of eqs. (6.40) and (6.42) the 

quantum mechanical eigenvalues of H and the operators u,(7) are determined 

by e(q) and w;(q): which gives the reason for our interest in these quantities. 

6.3. Electrons in electromagnetic fields 

6.3.1. Symmetries of electromagnetic fields and potentials 

The symmetry of a physical system in an electromagnetic field is deter- 

mined by the symmetry of the force fields E(r, t) and H(r, t). However, in 

the equations of motion like the Schrodinger equation it is the potentials 

A(r,t) and $(r,t) that appear rather than E(r,t) and H(r, t). As the symme- 

tries of fields and potentials are in general different, we want to discuss the 

relation between these symmetries. As is well known, the fields can be ob- 

tained from the potentials by 

Er.) =-vor.d - = A(r,t) 
(6.46) 

Her, = VX ACD). 

The potentials are not uniquely determined by the fields. The same fields are 

obtained from potentials 

A'((r,t)= A(r,t)+ Vx(r,0) (6.47) 

Or.) =O.) -S x9, 

where x(r, t) is an arbitrary three times differentiable real function of space 

and time. The transformation of eq. (6.47) is called a gauge transformation. 

On the other hand, two potentials giving the same fields are related by such a 
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gauge transformation. We will often denote the two potentials A(r, t) and 

o(r,t) by one four-potential A = (¢, A). 
Let us consider the transformation properties of potentials and fields 

under elements of the Shubnikov group S(4), i.e. under elements gT 72-9 

with g an element of £(3), T the time reversal and e = +1. The potentials 

transform according to 

(g,€) A(r,t) = eRA(g |r, e0) 
(6.48) 

(g,€)0(r,t) =o(g 'r,€2), 

where g = {R|uw} € E(3). The fields transform according to 

(g,€) E(r,t)= RE(g 'r,t) 
(6.49) 

(g,¢€)H(r, t) = e(detR)R H(g'r,et). 

When (g, €) leaves the potentials invariant, it also leaves the fields invariant, 

but the converse is, in general, not true. Consider e.g. a uniform electromag- 

netic field. It is invariant under arbitrary translations, but a potential which 

gives this field can not be invariant under all translations, unless the fields 

vanish, because of eq. (6.46). From the physical point of view the fields are 

the important quantities. Hence symmetry transformations of the field must 

have a significance, even when they are not symmetry transformations of the 

potentials. In fact, when (g, €) leaves (E , H) invariant, it transforms the four- 

potential A into A’ which gives the same fields. Therefore, A and A’ are 
related by a gauge transformation. We define the action of a pair (x,s) with x 

a gauge function and s = (g, €) © S(4) on potentials by 

OG) ACs) = (SA) (151) — Vx(F-0) 
(6.50) 

(X97) = (60) 7.0 +S-X(r,0). 

When (x, s8)A = A, the function x is called a compensating gauge function for 

s © S(4). This implies that s leaves both E and H invariant. 

The subgroup of S(4) which leaves the fields E and H invariant is called 
the symmetry group of the field (E, H). For each element g €G, the sym- 
metry group of (E, H), there exists a gauge function which is compensating. 
However, this function is not uniquely determined. 
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The functions x form a group in a natural way by the definition 
(tx (7, O= X,(r,t) + X>(r, t). Then one can also give the set of pairs 
(x, 8) with s © $(4) the structure of a group by 

(x, 5) X'8') = (Xt sx’, ss’) , (6.51) 

where the action of s = (g,€) on x(r, f) is given by 

ly en). sx(r,t) = ex(g” 

It is easily verified that eq. (6.51) gives the set of pairs (x,s) the structure of a 

semi-direct product of the Abelian group of functions and the group S(4). 

Moreover, one has 

(x, {KX s)AT={O,.9 OX S)IA , (6.52) 

as should be the case. However, (6.51) is not the only possibility of obtaining 

a group with the property (6.52). From (6.52) one obtains 

% OCs) = tsx tn(s,5), 85) , (6.53) 

where n(s,s’) is an arbitrary real constant. As constants are also constant 

gauge functions, they transform under s according to 

sn(s,s )=en(s,s ), (s,8,8 €S(4)). 

Eq. (6.53) determines a group if and only if (cf. Ch. 4, § 1.8) 

n(s,s') + n(ss',s’)=sn(s,s')+n(s,s's'), (6.54) 

for any s,s’,s” © S(4). The group determined in this way is denoted by J,. It 
is the group of pairs (x,5), when x is a gauge function and s © S(4) with 

product as defined by eq. (6.53). It is evident that J,, depends on the choice 

of the factor system n. In particular, the choice n= 0 gives the semi-direct 

product Jg of eq. (6.51). The group J, is an extension of the group of 

Abelian functions by S(4) with factor system n. We now define the symmetry 

group of the four-dimensional potential A as the subgroup Q,, of J,, which 

leaves A invariant. It consists of all pairs (x, s) such that (x,s)A =A. The 

symmetry group clearly depends on the choice of the factor system n. A sub- 

group R CQ, is formed by all elements (y, e) with ya real constant function 
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and e the identity of S(4). Moreover, the subgroup R is an invariant one, 

because for any (x,5) €Q, one has, because n(s,e) = n(e,s) = 0 for all s, 

(x, 5) (v, e) (x, 8) = (xt ey, 8) (—s-!x —en(s,s~1), 5) = (ey, €) 

and 

(vey .e=(vty.e=(y',e)(y,e). 

The factor group Q,,/R is isomorphic to the symmetry group of the field G, 

because (x, s) and (x’, s’) are in the same coset if and only if s=s’ and x’ = 

x + y. Thus the group Q,, is an extension of the Abelian group R by the 

group G. Its structure has some analogy with that of a space group. The group 

R corresponds to the group of translations, the group G to the point group. 

For every element g €G there is a compensating gauge transformation Xg as 

there is for every element R of the point group a nonprimitive transtaion fp. 

The compensating gauge is only determined up to a constant: Xe and Xgty 

are both compensating for g, just like the nonprimitive translations are deter- 

mined up to a primitive translation. One can choose for any g © G a com- 

pensating function x, with (X28) € @,,. Such a set of functions Ces =XG 

is called a system of compensating gauges, just as one can obtain a system of 

nonprimitive translations for a space group. 

Evidently the group Q, depends on the choice of the gauge. When the 

same field is derived from a potential A’ = (n,e) A, the symmetry group Q), 
is different from Q,,. If (x,g) © Q,,, the element g is a symmetry for the 

fields. Then a symmetry element for the potential A’ is (x +(1—g)n,g), as 

OU =2)n.8)4 =e on) =o en en) 

=gA —dx-—dn=A-—dn=A , 

where A + 0x means (¢ — c~!dx/dt, A+ Vx). Again x’ in (x’,g) € Q,, is deter- 

mined up to a constant. Hence yx’ = x + (l—g)n + y. Fora system of compen- 

sating gauges x; one has 

On 0G e) 20g ekg Xe ne. @ Ne) OG eee 

Denoting Xz + £X,¢' by f(g,g’) one obtains the relations — Xge' 

(Xg,-81) Xp, +82) = C1,.82) +2@1,82), 6) Xp,2,:8182) - (6.55) 
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It is readily verified that f(g}, ) satisfies relation (4.10), which means that f 
is a factor system. Therefore, the group Q,, is an extension of R by the group 
G with factor system f+n. For another gauge A’ =A + dn one gets a system 
XG of compensating gauges related to XG by 

XG=Xet(l-gnty., (allgeG) (6.56) 

for some constant Yo - Choosing Qe O for any g © G one obtains a system of 

compensating gauges which determines a product as in eq. (6.55), with the 

same factor system f. This means that Q,, and Q), are equivalent extensions 

of R by G. A fortiori, they are isomorphic. In this way the isomorphism class 

of the symmetry group of the potential is determined by the field and by the 

choice of the factor system n. We will make use of the freedom we still have 

for n to obtain a simple relation between the symmetry group G and the in- 

variance operator group of the Hamiltonian describing a system in such a 

field. 

6.3.2. Invariance group of the Hamiltonian 

In the following we restrict ourselves to time-independent electromagnetic 

fields. We consider an electron in such a field. For a particle for which we can 

forget about the spin the Hamiltonian is 

a= (p-£a) +09. (6.57) 

The spin is taken into account in the nonrelativistic approximation of the 

Dirac equation, i.e. in the Pauli equation. This is a Schrodinger equation with 

Hamiltonian 

» 
eae (onse Sas) feats -£a)) = 5 (p ©) TED cary as0 H+ Me 6-(vox(p ade 

(6.58) 

Notice that in the Hamiltonian the potentials A and ¢ occur. 

We denote the Hamiltonians by H(p,r, A, 6). Then for any Shubnikov 

group element s which leaves the potential A invariant, the substitution 

operator P, commutes with H (6.57) since 
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ey 

PHP} = o (ex fio © aie) or ed(g 'r) 

(6.59) 

a (p ioe Racer) +eop(r)= 5 (p = ; ain) +ed(r)=H, 
Tay 

where s = (g, €) © S(4). However, the symmetry of the system is the symmetry 

of the field and not only that of the potential. For a symmetry element of 

the field g © G one has gA = A + 0x. Now we consider the operator 

exp (f(r)), where f(r) is an arbitrary function of r. Then one has the follow- 

ing commutation relation 

(p oh exp (f(r)) = (p -£A) exp(f(r)) (p Vi = a) 

2 

= exp(f(r)) (p =A 2 nis) 

Therefore, the operator U, = exp {(—ie/hc)x} satisfies the relation 

2 
Zar earl e e€ 

CHU = om (p Per Vx <A) ted. (6.60) 

So, if X¢ is a compensating gauge for g € G and Peau, gfe one has the 

relation 

eo 
2 

TET ce = ( = ~ (eA) + vx.) + e(g¢) =H — PEP. (6.61) 

When g¢ = ¢ — (1/c) (0/0) Xg = ¢, we have found operators commuting with 

the Hamiltonian. However, when g¢ # 4, the operator Ty does not commute 

with H but with the operator H + fi(0/dr): 

So ad eae ee ool Ao 1, (a wi 3) 7, =H £2 +niv,, (202) +n 

By erase 
=H hia. 

This means that the solutions of the time-dependent Schrédinger equation 
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transform according to irreducible representations of G. We will not discuss 
this problem here (see Janner and Janssen [1971]), but we assume that the 
scalar potential ¢ is left invariant by G. Then the product of two operators 
T, and YT, commuting with the Hamiltonian H is given by 

= ib ie 
TT y= Uy Pe Uy Pe = exp & (Xp F8Xg" ~Xee)) T gg! - 

Recalling the definition of the factor system f one has 

TT,’ = exp i f(g, “)) 7 Lo OAR 2 Te (6.62) 

Consequently, the operators T¢ form a projective representation of G with 

factor system w(8,8)- However, they form an ordinary representation of 

the symmetry group Qo of the potential, when one assigns to the element 

(x,g) © Qp the operator T(x, g) = U, P,. Then 

which shows that these operators form an ordinary representation of Qo. 

Thus for an electromagnetic field (E,H) with potential A the symmetry 

group G of the field and the symmetry group Qj of the potential form an 

invariance group for the Hamiltonian H (6.57) (always assuming that ¢ is G- 

invariant). 

For the Hamiltonian H (6.58), the substitution operator P, for an element 

g, leaving the potential invariant, is Re ne a Some operator for 

H. One has P,H(p,r,A,¢)P,'=H(eR'p,h- '+ A, ¢), when g = (h,€) 
andh = {R|u}. This implies 

2 
= 1 e = a 

PyHPs = 5\-(p—e® RACH ip) +ego(h- Ip) peepee Aa Ip) 

(6.64) 

This means that P,, does not commute with H. However, according to Ch. 5, 

§ 1.4 the combination u(R)P, does commute if g leaves the potential invari- 

ant. When g €G, the sone) group of the field, one has 
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d) 
h 

he 

Bae in2 Ce 

Considering again a compensating gauge x for g one sees that the operator 

U, P,u(R) commutes with H (6.58). For a system of compensating gauges 

Xg the product of two operators 7, = U, Peu(R) is given by 

TeTy = exp | GE (eve) + 516.8) | Tye (6.65) 

where w,(g, 2’) = exp {(—ie/hc) s(g,g')} is the factor system determined by 

u(R)u(R') = w,(g,g')u(RR’). So the operators T, (g © G) commute with H 
and form a projective representation of G. 

We consider next the group Q, which is the set of elements (x, g) leaving 

the potential A invariant with group structure given by eq. (6.53) taking 

n=s. Define the operator T(x,g) = U, P,u(R). Then 

VOCE) TCC se) = Ua pe Pz @.(g,2 )u(RR) = TOG 2) Ose Ie 

This means that the operators 7(x,g) form an ordinary representation of the 

group Q,. So Q, is an invariance group of the Hamiltonian H (6.58). Since the 

isomorphism class of Q, is determined by the field, the invariance is gauge- 

independent. 

6.3.3. A Bloch electron in a homogeneous magnetic field 

The properties of solid state materials in an external magnetic field are 

very important for several effects. In this section we will study such a system 

from a group theoretical point of view. The fundamentals of this analysis 

were developed in the preceding section. When one considers the electro- 

magnetic field in which the electron moves as a superposition of a crystal 

potential V(r) and a homogeneous field, the four-potential appearing in the 

Hamiltonian is (V(r), A(r)). As we have seen, the gauge can easily be dealt 

with. We choose the so-called symmetric gauge 

A(r)=4HXr. (6.66) 
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The symmetry group of the magnetic field, i.e. the group of Shubnikov trans- 
formations leaving the field invariant, contains as a subgroup the full three- 
dimensional translation group 7(3). Besides this it contains all rotations around 
the direction of the field, the central inversion and combinations of 180° rota- 
tions perpendicular to the field direction and time reversal. Here we will con- 
sider the translation symmetry only. The crystal potential V(r) has the perio- 

dicity of the lattice and can be written as 

Glos aie e 
Kea* 

The electric field derived from V(r) using eq. (6.46) has also the periodicity 

of the lattice. So the symmetry group of the electromagnetic field contains 

the lattice group U, the translation subgroup of the space group of the crystal. 

As the translational symmetry of V(r) and E(r) is the same, one only needs 

compensating gauge transformations for A(r). To determine these compensat- 

ing gauge transformations for A(r) consider the transformation of A(r) 

under a translation t: A'(r) = A(r —t) = A(r) — }(HXt). The pair (x, g) 

leaves A invariant according to eq. (6.48) if Vx = 3(H Xt). One can choose 

X,=3(HXt) -r=—1(Xr)°t. (6.67) 

The factor systems f and w are given by eqs. (6.55) and (6.62). 

f(ty,t2) =3(t,Xt>)°H 
(6.68) 

w(t), t>) = exp E- (t, Xt): H). 

The operators 7; = Ue. (with t € U) commute with the Hamiltonian (6.57) 

and form a projective representation of U with factor system w (6.68). One 

can proceed in two ways. Either one studies this projective representation or 

one tries to construct a group of operators commuting with H. We choose 

here the second method. We have found already such a group of operators. 

It is the group Q, with elements (x, + y,f). It is an infinite group. However, 

imposing periodic boundary conditions one can get a finite invariance group. 

Imposing periodic boundary conditions means that we consider only those 

representations of U which give the identity for all elements a for some 

integer N and for all a € U. This means that for any a € U one has TygW = y. 

In particular, one has 



214 APPLICATIONS IN SOLID STATE PHYSICS 

w(Na,a') 
Tyg Tq'¥ = (Na, a') Tryg+a'¥ See agie) Ty'Tna¥ 

a w(Wa, a) TW, 

w(a,Na) 

which implies 

w(Na,a') = w(a', Na) forall g,a EU. 

The application of eq. (6.68) leads to 

(a Xa')-H= oni for some integer m . (6.69) 

This holds in particular for a = a; and a'= a;, where @;, a; are basis elements 

of U. When we write the magnetic field in components with respect to a basis 

a 1,4 7,43 one has H=h,a, + hya, + h3a3. Then eq. (6.69) gives 

eN eN 
Fie Gi X aj) A= 7 Qohy = 2mm A 

where i,j,k = 1, 2,3 or acyclic permutation, Q, is the volume of the unit 

cell spanned by @),4 7,43: 0, = (a; X aj) +a, and mx is some integer. So the 

numbers e{2, h;,/2mhc are rational numbers m,/N. One can choose a basis 

with h, = hy = 0. Then 

(Fe 27 he 

e 
oF a3 (6.70) 

Q|d 

for some rational number p/q, where p and q are relatively prime. So the 

periodic boundary conditions put restrictions on the magnetic field. In order 

to have these conditions one has to require the rationality relation (6.70). 

This means that in general it is not possible to put periodic boundary condi- 

tions on this system. However, it is always possible, also for infinite crystals, 

to consider rational fields (6.70). 

The field (6.70) gives with a = n,a, +n ay +n34; for the factor system 

(6.68) the value 

w(a,a') = exp(mi(nyny —nyn}) pla) . 
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An associated factor system consisting of g-th roots is obtained by eq. (1.29) 
for u(a) = exp(—imn,np/q). Then one has 

w (a, a’) = exp(2min,nyp/q) . (6.71) 

To find the nonequivalent irreducible representations with this factor sys- 
tem, one notices that the elements w(a,a’) are q-th roots of one. In general 
one can show that there is a group F which is an extension of the cyclic group 

C, by U such that the projective representations of U with factor system w 

can be obtained from ordinary representations of the group F, in the way dis- 

cussed in Ch. 1, §3.5. The group F can be obtained by adding phase factors 

to the operators 7, such that the set of operators with phases form a group. 

Here we put phase factors exp(27im/q) with m = 0, 1,...,q—1 in front of 

each operator 7,. The operator exp(27mi/q)T, is denoted here by (m, a). 

Then the couples (m, a) with m = 0,...,qg—1 anda € U form a group F with 

product rule 

(m, a)(m',a')=(m+m'—n,nyp,ata’'), (6.72) 

where @ = ;n, a; and a’ = Y; n;a;. The elements (m, O) form a subgroup 
isomorphic to C,, and they commute with all elements of F. Notice that 

(na) =Car N\N7 p,—4a) 

(6.73) 
(m, a)(m',a')(m,a)~! =(m' — njNyp,4a'). 

For any irreducible representation D(F’)) one obtains a projective representa- 

tion P(U) by P(a) = D((O, a)) with factor system determined by w(a, a’) = 

D((—n,n} p, O)). So we have to look for the irreducible representations of 

F with D((m, O)) = exp(2ami/q) 1. 
Representations of F can be constructed by the method of induction. 

First we look for an invariant, Abelian subgroup of F. From eqs. (6.72) and 

(6.73) it follows that such a group F’°* is formed by the elements (m, A) with 

m= 0,...,.qg-l and A =n qa, +n7@, + 1343. This means that F’* is a sub- 

group of index q in F. The elements A form a subgroup U* CU, also of index 

q. The group F’° is an Abelian, invariant subgroup since (m, A)(m', A’) = 

(m+m'—n,qn)p, At A')=(mt+m', A+ A’)=(m', A’)(m, A) and for any 

(m, a) € F and any (m’, A) € F* 

(m,a)(m', A’) (m,a)! = (71 = nn, p,A NEF®., (6.74) 
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As F* contains (m, O) and (0, A) for any m and any A € US, 

F°=C, X Cyjq X Cy X Cy 

The irreducible representations of F’* are given by 

Dg (m, A) = eemmiriq iq-A (6.75) 

where r = 0, 1, ...,qg—1 and q a vector inside the Brillouin zone of the reci- 

procal lattice (A*)* for US. The vectors b,, by, b3 span the reciprocal lattice 
A* belonging to U and b,/q, b>, b the lattice (A*)”. The little group of the 
representation Dg , is obtained from eq. (6.74): 

—| = 9) I. =) ° ‘ . °A’' 

Dg, [(m, 4) (m', A’)(m, a) =e" ir[q—2nirnynyp/q giqrA’ 

Because the element (m, O) must be represented by exp(27mi/q) 1 one has 

to take r = 1. The expression may be simplified using 27 = by + A’. Then 

Dg i((m,a)(m', A')(m, ay t] = e214 e(G-mPb2/q)A’ 

= Dg—nypby/q, iG yA). 

Therefore, (m, a) is an element of the little group if —n,pb,/q € (AS)*. As 

p and q are relatively prime, this is only the case when n, is a multiple of q, 

i.e. for (m,a) © F*. This means that F’* is the little group of Dg \(F*). The 
orbits of the representations of F* are characterized by q points in a unit cell 

of (A‘)*. A fundamental region is the parallelepiped spanned by 

b,/q, 64/¢, 63. This is called a magnetic Brillouin zone or magnetic cell 

(fig. 6.6). Each point in this region characterizes an irreducible representation 
of F. 

Fig. 6.6. The magnetic Brillouin zone. 
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The decomposition of F in cosets of F® is given by 

Fok *(0/a E+ (O, 24;)F 4.4 (0,(q—1)a,)F*. (6.76) 

Then from (m, a) (0, /a,) €(0,ja,) F° it follows that j = n,+land 
(m, a) (0, la) = (0,(n, + Da,)(m— n,lp,a—nj,a@,). Thus the induced repre- 
sentation Dg | t F is given by 

[Dg(m, a]; = Dg (mt jngp, 4+ (lj) ay); nist : 

Notice that j is determined only up to a multiple of g. One can put D,(m, a) 
into the form 

[D,(m, a)\i; = eommi/q SPOS ois (6.77) 

The induced representation D,(F ) is a q-dimensional irreducible representa- 
tion. The nonequivalent representations are characterized by vectors R in the 

magnetic Brillouin zone. 

t is a straightforward calculation to show that the representation Dy (F) 

gives a projective representation of U with factor system (6.71). As there are 

N3/q? vectors in the magnetic Brillouin zone and each representation is q- 

dimensional, the sum of the squares of the dimensions of the nonequivalent 

irreducible representations is V3, the order of U. This should be so according 

to exercise 1.9. This proves once more that we have obtained all irreducible 

projective representations with factor system (6.71). These representations 

are called physical representations. This name is also given to the representa- 

tions of F from which the projective representations are derived. The other 

representations of F give representations with nonassociated factor systems. 

Since the equivalence class of the factor system w is determined by the 

electromagnetic field, these other representations are called nonphysical. 

Knowing the invariance group of a Bloch electron in a homogeneous mag- 

netic field and the irreducible physical representations of this group, one can 

proceed to apply the usual group-theoretical machinery, to construct basis 

functions and to derive selection rules. We will not go further here, but refer 

to the reviews of the problem of Bloch electrons in a homogeneous magnetic 

field given by Brown [1968] and Fischbeck [1970]. The group theoretical 

problem goes back to Harper [1955], Fischbeck [1963], Zak [1964] and 

Brown [1964]. In these papers the non-Abelian group F called the magnetic 
translation group was introduced, although in various formulations. The 

physical irreducible representations of the group were discussed there for A 
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in the symmetric gauge. As we have seen in §3.2 other gauges are easily dealt 

with. The problem for arbitrary gauge and arbitrary (i.e. also nonrational) 

fields was discussed in Opechowski and Tam [1969]. 

Here we have considered the Hamiltonian (6.57), it is clear that the in- 

variance group of H (6.58) is the same, because s(#, t') = 0 in eq. (6.65). The 

spin does not affect the translational symmetry. The situation is different 

when one considers symmetry transformations of the field which are not 

translations. When one considers the group G which is the intersection of the 

space group of the crystal and the iat group of the magnetic field, the 

operators T, commuting with H are T, = xe e (g © G) for H(6.57). G is the 

subgroup of all elements {R |} in ne wae eas such that R leaves H in- 

variant. Thus G is a space group itself. The operators T, form a projective 

representation of G with factor system w. One has to mae the irreduc- 

ible representations of G with this factor system as was done for the transla- 

tion group U. The group G and its corresponding operator group were treated 

by Tam [1969] and Overhof and Roessler [1968]. 

6.4. Magnetic groups 

6.4.1. Magnetic symmetry 

In the chapters 3 and 4 we discussed transformations of the three-dimensio- 

nal space in the role of symmetry transformations of physical systems. In 

chapter 5 we also took time reversal into consideration. The group of space- 

time transformations considered is the Shubnikov group S(4) = E(3) X Cp. 

Any element (g,¢€) € S(4) with g = {R|v} € E(3) and € = £1 acts ona point 

of the four-dimensional space-time (r, t) according to 

g(r, t)=(Rrtv,et). 

In particular, ({1|0}, —1) is the time reversal 7. In $3.1 we discussed the 

transformation properties of electromagnetic fields under elements of S(4). 
According to eq. (6.49) a time-independent electric field E(r) is left invariant 
by its spatial symmetry group (i.e. the subgroup of E(3) leaving E(r) 
invariant) and by time reversal. When E(r) is the electric field inside a crystal, 
its symmetry group is the direct product of the space group G of the crystal 
and the group generated by 7. A magnetic field H(r), however, is not in- 
variant under time reversal. Nevertheless, it is often possible to combine 
Euclidean motions which do not leave H(r) invariant with 7, such that the 



APPLICATIONS IN SOLID STATE PHYSICS 219 

combinations are symmetry transformations for H(r). In general we define 
the magnetic symmetry group of an electromagnetic field as the subgroup of 
S(4) which leaves the field invariant. Analogously the magnetic symmetry 
group of an electromagnetic potential is defined. 

A subgroup of £(3) can also be considered as a subgroup of S(4). Mathe- 
matically speaking there is a natural monomorphism which maps the sub- 
group of £(3) onto a subgroup of S(4) of elements with € = +1. Such a group 

is called a nonmagnetic group. Examples are the space groups and point 

groups considered in Chs. 3 and 4. A subgroup of S(4) which contains T is 

the direct product of a nonmagnetic group and the group C, generated by T. 

Such a group is called a trivial magnetic group. A subgroup of S(4) which 

contains elements with € = —1, but which does not contain T itself, is called 

a nontrivial magnetic group. Nontrivial magnetic groups occur as symmetry 

groups of magnetic fields. As an example, one can consider a crystal in which 

the constituting particles carry a magnetic moment. Since the magnetic mo- 

ment is reversed by 7, this is not a symmetry element for such a crystal. An 

element g= {R|f} of the ordinary space group of the crystal carries each 

particle position into the position of a particle of the same kind. However, 
to the particles are attached magnetic moment vectors transforming accord- 

ing toM'(r) = RM(g"!r). When the orientation of the magnetic moment 

vectors is arbitrary M'(r) # M(r). When M'(r) = M(r) the element g is a 
symmetry element of the crystal with moments. Now, it can also happen that 

M'(r) = —M(r) for any particle position r. Since T reverses the direction of 

M, the combination gT leaves the vector field invariant in that case. This 

situation has much in common with the problem of symmetry of a pattern 

consisting of black and white particles. If a space group element carries each 

white particle into the position of a black one and vice versa, its combination 

with an operator which changes the colour of the particles, is a symmetry 

element of the coloured pattern. Actually magnetic groups were studied for 

the first time by Heesch [1929] and Hermann [1928] as such groups. This is 

the reason why nontrivial magnetic groups are also called black-and-white 

groups. The trivial magnetic groups are called gray groups. Both kinds are 

also denoted by the name Shubnikov groups. 

The elements of a magnetic group with e = —1 are denoted by a prime: 

g = aT, the product of an Euclidean motion g and time reversal T. As T 

commutes with all elements of £(3), the product of two primed elements is 

an unprimed element. This means that a magnetic group has a subgroup H of 

index two formed by its unprimed elements. This yields a method of con- 

structing the magnetic groups. Take a subgroup G of E£(3). A trivial magnetic 

group G X C> is generated by G and T. If H is a subgroup of index two in G, 
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a nontrivial magnetic group is G’ = H + (gT)H, when G = H+ gH. All mag- 

netic groups which give the same nonmagnetic group G form a set called the 

family of G. 
When G’ is a magnetic symmetry group which transforms a crystal into 

itself, we obtain a space group G by omitting all primes on the elements, 

because G leaves invariant the crystal obtained from the first one by neglect- 

ing the magnetic moments. The group G’ is called a magnetic space group. 

It is a nontrivial magnetic group, if it describes the symmetry of a crystal with 

magnetic moments. It has a subgroup of index two which is a nonmagnetic 

space group. The magnetic space group G’ belongs to the family of the non- 

magnetic space group G. In the same way, a nontrivial magnetic space group 

which belongs to the family of a (crystallographic) point group. is called a 

(crystallographic) magnetic point group. The properties of magnetic space 

and point groups are treated in Belov et al. [1957] and in Opechowski and 

Guccione [1965]. Some properties are discussed in the next section. 

6.4.2. Crystallographic magnetic groups 

a. Magnetic point groups. These groups can be constructed from the non- 

magnetic point groups by the general method explained in the foregoing 

section. Take a point group K and consider all its subgroups of index two. If 

His such a subgroup, and gH its coset, one obtains a nontrivial magnetic 

point group by giving all elements of gH a prime, i.e. by multiplying all these 

elements with 7. The elements of such a group are of the form 

RAO Ro rit ces 1 

( \ | (RE): (6.78) 

QO «€ 

The orthogonal transformations R form the point group K. 

Two magnetic point groups are geometrically equivalent if they are con- 

jugate subgroups of S(4), i.e. if the nonmagnetic point groups to which they 

correspond are geometrically equivalent in such a way that corresponding 

elements of the two groups are either both primed or both unprimed. The 

equivalence classes of the crystallographic magnetic point groups are called 

the magnetic crystal classes. There are 58 nontrivial magnetic crystal classes, 

32 trivial magnetic and 32 nonmagnetic crystal classes. They are given in 

table 6.2 in the international notation. Elements in the group with € = —1 are 
denoted by a prime. If T is an element of the group, it is denoted by 1’. One 
can visualize magnetic point groups in the same way as is done for nonmag- 
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Table 6.2 

The 122 nonmagnetic and magnetic geometric crystal classes. 

Nonmagnetic Trivial magnetic Nontrivial magnetic 

(in parentheses subgroup of elements with ¢ = +1) 

1 ie 

1 11 1’) 

2 21' 2'(1) 

m mi’ m'(1) 

2/m 2/m1' 2'/m(m), 2/m'(2), 2'/m'(A) 

222 22240 2272;(2) 

2mm 2mm1' 2'mm'(m), 2m' m'(2) 

mmm mmm\' m'mm(2mm), m'm'm(2/m), m'm'm'(222) 

4 41’ 4'(2) 

422 4221' 4'22'(222), 42'2'(4) 

4 41' 4'(2) 

4/m 4/m1' 4'/m(2/m), 4/m'(4), 4'/m'(4) 

4mm 4mm\1' 4'mm'(2mm), 4m'm'(4) 

42m 42m1' 4'2'm(2mm), 4'2m'(222), 42'm'(4) 

4/mmm 4/mmm1' 4'/mmm'(mmm), 4'/m'm'm(42m), 4/m'mm(4mm), 

4/mm'm'(4/m), 4/m'm'm'(422) 

3 Sie 

32 B2)e 32,(3) 

3 Bi" 3'(3) 

3m 3m’ 3m'(3) 

3m 3m1' 3'm(3m), 3m'(3), 3'm'(32) 
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Table 6.2 (continued) 

Nonmagnetic Trivial magnetic Nontrivial magnetic 

6 61' 6'(3) 

622 6221' 6122 (32) 62.216) 

6 61 6'(3) 

6/m 6/m1' 6'/m(6), 6/m'(6), 6'/m'(3) 

6mm 6mm\' 6'mm'(3m), 6m'm'(6) 

6m2 6m21' 6'm2'(3m), 6'm'2(32), 6m'2'(6) 

6/mmm 6/mmm1' 6'/mmm'(6m?2), 6'/m'm'(3m), 6/m'mm(6mm), 

6/mm'm'(6/m), 6/m'm'm'(6 22) 

P28} 28s 

432 4321’ 4'32'(23) 

m3 m31' m '3(23) 

43m 43m\' 4'3m'(23) 

m3m m3m\' m'3m(43m), m3m'(m3), m'3m'(432) 

netic point groups, when one makes a distinction between points obtained 

from the first point by a primed transformation and those obtained by an 

unprimed one. Diagrams can be found in Koptzik [1966]. 

b. Magnetic lattices. These are obtained from the nonmagnetic lattices by 

considering sublattices of index two and by application of the general con- 

struction. On giving primes to elements which do not belong to this sub- 

lattice one obtains a magnetic lattice. For each lattice there are 7 sublattices 

of index two. The corresponding 7 magnetic lattices are generated by 

4743, 44543, 44743, aaa, a'\a7a3, a\a5a4, aaa, when 
a a4 generates the nonmagnetic lattice. The holohedry of a magnetic 

lattice is the subgroup of O(3) which transforms the lattice into itself taking 

account of the primes. The holohedry is a nonmagnetic point group. As an 

example, consider a cubic lattice generated by three mutually orthogonal 

vectors of equal length. The holohedries of the 7 magnetic lattices belonging 

to its family are 

1) generators a aay, @ 4443 01 4,474}: holohedry 4/mmm; 
(7 Uy 

2) generators 4,4 7@3, 4\a a3 or a\a5a3: holohedry 4/mmm ; 

3) generators aa5a3 : holohedry m3m 
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We will not give a discussion of the notions of system and Bravais class. These 
concepts are treated in Opechowski and Guccione [1965] and Janner [1966]. 
c. Magnetic space groups. A complete list of magnetic space groups was given 
by Belov et al. [1955]. In principle, the procedure for the derivation of the 
magnetic space groups from the ordinary space groups by considering sub- 

groups of index two is the same as for all magnetic groups. However, a 

precise derivation is rather involved. A subgroup of index two has either the 

translation subgroup or the point group of the space group. Two nontrivial 

magnetic space groups are called equivalent if there is an isomorphism 
between them that maps primed elements onto primed elements and un- 

primed ones onto unprimed ones. Just as for ordinary space groups, this 

equivalence relation is similar to the one which puts into correspondence 
space groups which are conjugated subgroups of A(3) such that by the con- 

jugation primed elements are mapped onto primed elements. A finer equi- 

valence relation is: two nontrivial magnetic space groups are equivalent if 

they are conjugated subgroups of A(3) X C) such that the conjugating element 

is (g,é€) with g = {S|t} € A(3) and det S > 0. With this definition there are 

1191 nontrivial magnetic space groups and 230 trivial magnetic space groups. 

A discussion of their derivation can be found in Opechowski and Guccione 

[1965] and Janner [1966]. The properties of the 1421 magnetic space groups 

are tabulated in Koptzik [1966]. 

6.4.3. Corepresentations of magnetic groups 

We now consider once more the problem of an electron in an electromag- 

netic field, in particular in a crystal with charges and magnetic moments. The 

Hamiltonian of this system is given by eq. (6.57) or (6.58). The electromag- 

netic field has the symmetry of a space group and we assume that there is a 

corresponding potential with this same symmetry. As symmetry transforma- 

tions we consider elements of the Shubnikov group S(4). The symmetry 

group is now a nontrivial magnetic space group G. For an unprimed element 

g &G the substitution operator P, commutes with the Hamiltonian (6.57), 

for a primed element g’ € G the operator 0,P, commutes with H. Taking the 

spin into account, for an unprimed element g € G with g = {R|t} the opera- 

tors + u(R)P, commute with the Hamiltonian (6.58) and for a primed 

element g’ = {R|t}' €G the operators +0u(R)P, commute with H. In this 

context, the cases considered in Ch. 5, §2 have as symmetry group a trivial 

magnetic space group containing the time reversal T. 

The structure of the invariance operator groups for the various cases is 

seen as follows. 
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1) For H (6.57) with a trivial magnetic symmetry group G X C), the operators 

commuting with H form a group Pg + 4) Pc. 

2) For H (6.57) with a nontrivial magnetic symmetry group G, the unprimed 

elements form a subgroup H C G of index two. When a’ is an arbitrary primed 

element of G one can write 

G=Htd@H and Po=Py+(0,P,)Px- 

In this case the element (0, P,,) does not in general commute with P,, for all 

Rel: 
3) For H (6.58) and trivial magnetic symmetry group G X C) the elements 

tu(R)P, form a (unitary) representation of the double group G4, Therefore, 

in this case the group of invariance operators is T¢q + 97 ¢q. As @ is of order 

four, this is not a direct product, although @ commutes with all elements 7, 

with a € G4: the intersection of Toa and the group generated by @ is +1. 

The invariance operator group is an extension of C, by G4. 

4) For H (6.58) and a nontrivial magnetic symmetry group G the operators 

tu(R)P, and +@u(S)P, with g = {R|t} €G andh' = {S|v}' €G commute 

with H. When H is the subgroup of unprimed elements of G andG=H+a'H 

the invariance operator group is 

Tat (OT,)Tya 

In all four cases the invariance operator group contains a subgroup of index 

two consisting of unitary operators. These unitary operators form a represen- 

tation of the group of unprimed elements in the spinless case, and of its 

double group in the case with spin. Moreover, the elements of the invariance 

operator group which are not in this unitary subgroup are antiunitary. 

Therefore, the invariance operator group can be written as 

TT ae Te (6.79) 

where 7, is the subgroup of unitary operators and 7, is an arbitrary anti- 

unitary operator of the group. When the symmetry group is a trivial magnetic 

group, one can choose a’ = T and T,,, = 0, in the spinless case and [=O 0e 

in the case with spin. Notice that G in eq. (6.79) denotes the symmetry group 

of the field in the spinless case and its double group in the case with spin. 

As we discussed in Ch. 5, §2 the operators Tg do not form a representation 

of G, because not all operators are linear. Suppose that H, is a subspace of the 
Hilbert space #€ which is invariant under T¢, but which does not contain a 
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proper invariant subspace. Suppose a basis of H(, is given by Viscosity) oo nen 

m 

TW cae Dh); ¥; (hE A) 

= (6.80) 

Ty'n¥; ers Dah), ;¥; (hEA). 

The matrices D(G) satisfy the relations 

(6.81) 
D(a'h,)D(hy)* = D(a'hy hy) 

D(a'h,) D(@'hy)* = D(a'hya'hy) , 

which means that the matrices D(G) form a corepresentation of G. Corepre- 

sentations were introduced by Wigner (see Wigner [1959]). A treatment of 

the corepresentations of magnetic groups is given in Dimmock and Wheeler 

[1964], Jansen and Boon [1967], and Bradley and Davies [1968]. A brief 

treatment will be given below. 

The space H, carries a representation of H via the unitary operators T;,. 

Now this representation is either irreducible or reducible. Suppose H, is an 

irreducible representation space for H. As the elements Wj,..., ¥,, forma 

basis, the same is true for 7,1, ..., T,:W,,. With respect to the basis ¢; = 

T, w, (i= 1,...,m) the matrices of the representation are given by 

m 

Ti = TT a Vi = Ta'To-tha¥i= 2 D(a™tha);i; . (6.82) 
ve 

Hence the space H, carries both D(A) and D(a~! Ha)". Therefore, these repre- 

sentations are sean ae there is a matrix S such that D(a~'ha)* = 

SD(h)s for any hE dH. on course the nonsingular matrix S is just the 

Ga Dia’ ) co $; = Us 7 D(a’ Wii ;W;. This means that in this case SS” = 

D(a’) D(a')* = =a ) according to eq. (6. 81). Therefore, oe situation can 

only occur when D(a_ Ha) 1S 1D(H)S with SS* = = D(a? i: 

The other possibility is that H, carries a reducible representation of H. Let 

$1, --» bg be a basis of an Predtcible component. Then the space spanned by 
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D ys vs Pgs Ty'Pys +> Tybg is invariant under G. Consequently it is the space 

H,,. We have to check if this space does not contain an invariant proper sub- 

space for G. The matrices corresponding to the elements of Tg with respect 

to $1, ..., Ty'bg are 

A(h) 0 

Do» =( ) 
0  A(a'ha) 

(hE) (6.83) 
0 = A(a‘ha’) 

D(a'h) = ( 

A(h)" 0 

where A(H) is the irreducible matrix representation of H carried by ¢),..., dg. 

We stress the fact that, although we can give the antilinear operators T,, by 

matrices, one has to be careful in applying the calculation rules for matrices. 

The operation of T,, on an arbitrary element ¢ of H, is given by 

m 

Ty'n? = Ty'h 2 ao; = 2 a; D(a'h);; 9) . 
i= i,j 

Furthermore, with respect to another basis d; = pie S;;0; the matrices are 

given by (cf. eq. (1.4)) 

D(h)=S~'D(h)S and D(a'h)=S~'D(a'h)S* — (any h EH). (6.84) 

When A(/7) is not equivalent to A(a~'Ha)* it follows that the only matrix S$ 

which keeps D(#) in reduced form is the direct sum A 1g +i. But such a 

matrix S can not bring D(a'H) into reduced form. Hence KH, is irreducible if 

A(A) + A(a~!Ha)*. On the other hand, it is also possible that D(H) reduces 

into two equivalent components. Suppose that the basis is chosen in such a 

way that both A(H) and A(a~'Ha)* are unitary matrix representations. Then 

there is a unitary matrix U such that A(a@~!ha)* = U-!A(h)U (for anyh€#). 

It follows that A(a~!ha) = UA(a~?ha*)* U-! = UA(a~*)* A(h)* [UA(a2)*]1. 
Then A(A) = UA(a7'ha)* U! = UU* A(a~*) A(h) Aa”) U* |. From 
Schur’s lemma it follows that UU*A(a~?) = orl = A(a?). Moreover, 

one has A(a2)* = U-! A(a2)U. Then it is easily proved that A= +1: 

UU*=+A(a?). (6.85) 
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We now try to reduce the set (6.83). First we can transform these matrices 
using eq. (6.84) with 

rs) 
into the form 

A(h) 0O ao 0 ACA) 
(hEH) (6.86) 

.- 0 A(a‘ha')U*! 
D(a‘h) = ; ) : 

UA(h)* 0 s 

As discussed in Ch. 2, §2.5, a matrix S which leaves D(h) in the same form is 

necessarily 

Al ull 

ae Pi 

One has to choose S in such a way that S~'p(a'H) S* is in diagonal block 

form in order to have a reducible set of matrices and a reducible space #,. It 

requires some straightforward algebra to prove that this is impossible if 

UU* = —A(a?). However, if UU* = A(a?) one can choose i, u, p, and o in 

such a way that 

is A(aha')U 0 
S-!D(@h)S = 

oe ( 0 moe ed) 

As we have supposed that H, is irreducible under G, this can not happen. 

Therefore, we have proved 

PROPOSITION 6.1. A space H,, which is invariant under a group Tg of uni- 

tary and antiunitary operators does not contain an invariant proper subspace 

if and only if one has for the group H (of index two and corresponding to the 

unitary operators) one of the following properties: 
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1) H, carries an irreducible representation A(#), 

2) 1, carries a reducible representation A(H) ® A(a~!Ha)* with nonequi- 

valent components, 

3) H, carries a reducible representation A(H) ® A(a~'Ha)" ue equivalent 

components and A(a~!Ha)* = S~'A(A)S with SS* =—A(a? ). 
When the Bee 1) occurs, one has the relation A(a~ 'Ha)* =S- lA(A)S with 

SS =A(a ay, 
To distinguish between the 3 cases one has the following criterion: the 

character y of A(/) satisfies 

N = order of H for case 1) 

x x{[(a'h)2] =( 0 for case 2) (6.87) 
heEH 

—N for case 3). 

Proof: 

d 

LY x(@ha'h)= 2 = A(a'ha'h),,= DV = A(a*), AC "ha), ACA); - 
hEH hEH i=1 hEH ik, l 

This expression is zero if A(a~!Ha)* + A(H) because of eq. (1.15). In the 

case that A(a~! Ha)" = S~!A(A)S one obtains 

> ahah)= > Si A(G2 (Se AUS AC 
heH Cua D, hEH ik.Lm.n (ail km AM nS A; 

ple ara 2 (S78). ae Aa") (Sr Sit ae A(a*)i(S Six 

N 
iat A(a?),,A(a~ 2) ,=tN. 

Here we have used that S and A(#) are unitary. 

A particular case occurs when one can take a’ to be the time reversal. This 

is the situation we investigated in Ch. 5, §2. In this case a” = 1 and proposi- 

tion 6.1 together with eq. (6.87) leads to Herrings criterion. 

reducible if A(H)* = S~! A(H)S with SS* =+ 1 

ae A(H)* = S~!A(H)S with SS*=—1, or 
irreducible if 

A(H)" + A(H). (6.88) 
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The eq. (6.87) simplifies in this case. For the spinless case T°=10, and 

> x{(a'h)2]= D x(h2). 
heH heH aoe 

For the case with spin one has 7, = 6 and 62 = — 1. Then 

x x{(@’h)2]= 2 x(—h2)=-— 2 x(h?). 
heH heH xt ) heH ae) 

Therefore, in the case that a’ is the time reversal, i.e. that the symmetry group 

of the field is a trivial magnetic group, 

N, when A(H)* ~ A(A), SS* = + 1 (spinless), SS* = —1 (with spin) 

0, when A(H)* + A(A), (6.89) x x(h*)= | 
heH 

—N, when A(H)* ~ A(A), SS” = —1 (spinless), SS* = + 1 (with spin). 

Proposition 6.1 together with eq. (6.87) give a tool to investigate the 

degeneracy of energy levels in an electromagnetic field with magnetic sym- 

metry. 

6.4.4. Projective co-representations of magnetic space groups 

Gradually we have generalized the types of transformation groups and the 

kinds of representations we could handle. Now combining the methods of 

Ch. 4, §2.2, Ch. 5, §§ 1.4 and 2.3, and Ch. 6, §§3.2 and 4.3, we can study a 

charged particle with spin 0 or 5 in an electromagnetic potential which has a 

magnetic space group as invariance group. The only restriction we make is 

that we only consider fields which have a potential with the same symmetry. 

E.g. we will not consider uniform fields. When G is the magnetic space group, 

for each element g €G there is an operator 7, commuting with the Hamil- 

tonian, (6.57) for spinless particles, (6.58) for spin 3 particles. The operator 

T, is given by 

Pe for spin 0, g an unprimed element of G, 

oP, for spin 0, g a primed element of G, 
1S 

z u(R)P, for spin 5, g an unprimed element of G, 

0786 u(R)P, for spin 5, g a primed element of G. 
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The operators T, are unitary or antiunitary and satisfy Dlg = o£ 1,82)T 2.2, 

with 

1 for spinless particles, 

w(g 1,82) = w(R,,R7) for spin ,g, or g> unprimed, (6.90) 

—w,(R,,R) for spin 5,g, and gy primed, 

where R; is the homogeneous part of g;. Such a homomorphism up to a factor 

into a group of unitary and antiunitary operators is called a projective co- 

representation. Our problem is the determination of the nonequivalent irre- 

ducible projective co-representations of G with factor system (6.90). Notice 

that the subgroup of unprimed translations U is mapped homomorphically on 

a group of unitary operators. This makes it possible to use the same methods 

as in the preceding chapters. Suppose that H carries an irreducible projective 

co-representation of G with factor system w. The subduced representation of 

U can be brought into diagonal form. Hence # can be decomposed into a 

direct sum of spaces i, carrying a unitary representation of U characterized 

by a vector R in the Brillouin zone. If y belongs to H,, the vector TW with 

g=({R|t},e=+1)€G (e=1 for an unprimed element, € = —1 for a primed 

element) belongs to Hy, with k'= eRR. The space A, is invariant under the 

group of k which is defined in this case by 

Gy, = {g €GleRR=k}. (6.91) 

Decompose G into cosets of Gy: G = Gg + goGy + ... + g,G_ and take a basis 

Wip os Wig of Hy. Then y,,; = TeV ii (i= 1).:83t= [220) Loma basts 

for the sd-dimensional representation of G carried by H. The representation 

of G is expressed in terms of the representation of Gy carried by H, via 

Ww 

TW yi = TT Mii = w(g,,h) if Th, Wii (with &§y =o <7 Ge) 

w(g,8,,) Mad | 

w(g,,h) Dy lh)jiV yj if g,, is unprimed 

(6.92) 

(8,8) 
* ; < c: 

Ay oda See 

In this way one has reduced the problem to the determination of the irreduc- 
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ible co-representations of G, with the property that its restriction to the sub- 
group U is the direct sum of d representations characterized by k. Define on 
Hx an operator Pr for each element R of the point group Ky of Gy by 

Pr = exp(— IR tr) T {Ritp},6) 

It is easily shown that Pp does not depend on the choice of the element 

{R | fp}. Moreover, the operators Pp form a projective co-representation of 
Ky with factor system 

w'(R,R') = w(R,R’) exp [i(R 'k —ek) + tp]. (6.93) 

Hence the sd-dimensional co-representation of G is found by induction from 

a co-representation of Gy, which in turn is determined by an irreducible pro- 

jective co-representation of K, with factor system (6.93). It is possible to 

find all these co-representations of Ky in a way similar to that used for pro- 

jective representations. We will not discuss this method here, since this would 

lead us to far, but refer to Janssen [1972], where the method of determina- 

tion of these projective co-representations is treated. 

It will be clear that the theory of irreducible representations of space 

groups is a special case. Then there are no primed elements in G. For a spin- 

less particle w = 1 in (6.93) which reduces to eq. (4.26), for a spin 5 particle 

one obtains eq. (5.12). Another special case is that of a trivial magnetic space 

group G = Gy X J, where J is generated by the time reversal transformation T. 

The group U is the ordinary translation subgroup of the nonmagnetic space 

group Ga. Hence the Brillouin zones of G and Gg are the same. For a given k 

in the Brillouin zone, the group of R is Gy = Gox + Hy, where Go, is the 

group of k for Gg, whereas H, = {({R|t},e=—1) €G|RR=—k} = 

{{R |t} © Go| Rk =—k}. One can distinguish two cases: 1) Hy is empty, 
2) there is an element gg © Gg with Rok = —R, in which case Hy = ggGo, OF 

for the point groups My = RgK ox. In the first case the dimension of the re- 

presentation of G is twice that of Go,, because G, = Gog, but the number of 

points in the star of Rk is for G twice that for Gg. In the second case the index 

of Gx in G is equal to the index of Go, in Go. Then the relation between the 

representations of G and Gg corresponding to R is determined by the repre- 

sentation Dy(Goxz). According to §4.3, one has for an ordinary representation 

(i.e. when w = 1 in eq. (6.93)) 

n/s_ when there is no additional degeneracy 

hex (So) 
SaMk —n/s when there is additional degeneracy. 
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Here n is the order of the point group of Gox. This is in agreement with eq. 

(5.22) for a symmorphic group. 

To conclude this section we give a recipee to find all nonequivalent irreduc- 

ible projective co-representations with factor system (6.93) of an arbitrary 

magnetic space group G. The proof of the validity of the procedure is analo- 

gous to that for ordinary space groups and will not be given here. 

1) Consider the group U of unprimed translations and construct its Brillouin 

zone. 
2) Divide this Brillouin zone into stars. The star of a vector R is the set 

{eRR| all (R,€) from the point group K of G}. 

3) Determine a fundamental region in the Brillouin zone in which exactly one 

vector R from each star is found and take one & in this fundamental region. 

4) Determine the group G; (6.91) and its point group Kx. 

5) Find all nonequivalent irreducible projective co-representations of Kz with 

factor system (6.93). Unfortunately they can not yet be found in tabular 

form as for the unitary projective representations, but they can be found 

from the ordinary co-representations of a larger group. (See Appendix C.) 

6) Induce from each of these projective co-representations a projective co- 

representation of G via eq. (6.92). 

6.5. Other applications 

In the preceding sections and chapters we have considered a number of 

physical systems and their symmetry. The considerations were concerned with 

the three levels one can distinguish in the application of group theory: the 

determination of the symmetry, the determination of the invariance operator 

group and finally the physical consequences. As symmetry transformations, 

we considered elements of the Shubnikov group S(4), to be combined with 

permutations of particles for many-particle systems. The invariance operators 

form an ordinary or projective representation or co-representation of the sym- 

metry group. The third level was treated only briefly. Once one has the in- 

variance operator group and the irreducible representations, one can apply 

the general theory of Ch. 2 to obtain selection rules, symmetry adapted func- 

tions and so on. 

Apart from the systems considered here, there are a lot of other problems 

which can be treated along the same lines. We will just mention some of them. 

In Ch. 4, §3 we discussed selection rules for space groups. These can be 

used to derive selection rules for the interaction of infra-red light with crystals. 

The interaction is given in the dipole approximation by a matrix element 
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(f|p li). As the momentum operator p has well defined transformation 

properties for space group elements, the vanishing of the matrix elements is 

determined by the rules of Ch. 4, §3. For infrared absorption and Raman 

scattering on crystals, this was done in Birman [1963] and Chen et al. [1968]. 

In the theory of second order phase transitions, one considers phases with 

different symmetry such that the symmetry group of one phase is a subgroup 

of that of the other phase (see Landau and Lifshitz [1959] Ch. 12). The 
behaviour around the transition point is partly determined by the symmetry. 

A review of the application of group theory to ferroelectric phase transitions 

is given in Birman [1967]. 

The symmetry transformations we have considered were Shubnikov trans- 

formations. One can go further and determine the relativistic four-dimensio- 

nal symmetry group, which is the subgroup of the inhomogeneous Lorentz 

group leaving the system invariant. This leads to crystallography in four di- 

mensions. Four-dimensional crystallographic groups were studied by Hermann 

[1948], Hurley [1951], [1966] and Neubtiser [1969], who considered sub- 
groups of O(4), and by Janner and Ascher [1969], [1970] and by Janssen 

et al. [1969], who studied subgroups of the inhomogeneous Lorentz group. 

Of course, in relativistic quantum mechanics one has the Dirac equation of 

the Schrodinger equation. 

Apart from some aspects of the theory of lattice vibrations, the symme- 

tries discussed were symmetries of quantum mechanical systems. For classical 

mechanics the use of group theory is much less developed. Apart from vibra- 

tions, group theory is used for the study of macroscopic properties of crystals. 

E.g. the electromagnetic properties are described by the dielectric and mag- 

netic susceptibility tensors. There is a close relation between the form of 

these tensors (the number of independent parameters) and the symmetry of 

the crystal. A discussion of this point is given in Baghavantam [1966], and 

for magnetic crystals in Birss [1964]. 

Still other examples can be found in the list of references. 
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EXERCISES 

Construct the multiplication tables for all groups with order smaller 

than or equal to six. 

Consider the group of permutations of n elements S,,. Let O(n) be the 

group of all  X n orthogonal matrices. Let £7; be an Xn matrix with 1 

on the j-position (i-th row and j-th column) and everywhere else 0. 

Define a mapping y: S,, > O(n) by 

n 

y(o) = 2 ae (allo€S,). 
l= 

Show that y is a homomorphism. What is its kernel? Is y an epimor- 

phism or a monomorphism? 
Consider the set S of matrices of the form a ”) with integer n. 

Show: a) the set is not equivalent with a anneane set, b) it is not fully 

reducible, and c) with the usual matrix multiplication as product rule 

the set is a group isomorphic to the additive group of integers. 

Consider a complex linear vector space V. A linear function on V isa 

function f with the property f(ax + By) = af(x) + Bf(y), with 
x,y €V anda, € C. Show that the set of all linear functions on V 

form a linear vector space V, called the dual space. Show that V and V 

are of the same dimension. If @), ..., é,, form a basis of V the functions 

é; defined by e; i(@; j= 6;; form a basis ne V. 

ret T bea representation of a group G in a linear vector space V. 

Define a mapping T oe into the group of nonsingular transformations 

of V by le fe) = ee '\). Show that Tis a representation of G. Let 

D(G) bea aaa fear conmanon of Tg with respect to the basis 

Cin sent What is the matrix representation of Tg with respect to the 

basis €}, ..., €,? The representations Tg and Hi are called adjoint or 

Se eee representations. 

Let D(G) be a matrix representation of a group G. Show that the 

mappings g > D(g)* and Gee D(g> ') are also matrix representations of 

G. Show that D(G)* and D(G) are irreducible if and only if D(G) is 

irreducible. 

234 
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EXERCISES 235 

Consider the representation of S3 defined in exercise 1.2. Is this repre- 

sentation reducible? What are the invariant subspaces of the representa- 

tion space? 

Let C,, be the cyclic group of order n and P a projective representation 

of this group. Show that its factor system w is associated to the trivial 

one. 

Define analogous to the regular representation a projective regular re- 

presentation of a group G with a given factor system w by P,a= 

w(g,a) (Ga). Show that this is a representation with factor system w. 

What are its character and irreducible components? 

Show that the sum of the squares of the dimensions of the nonequiva- 

lent irreducible projective representations with factor system w is equal 

to the order of the group (analogue of Burnside’s theorem). 
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EXERCISES 

Let H be the Hilbert space of complex valued functions on the unit 

sphere. For each rotation g we define a mapping P, of H into itself by 

Pf (X,Y, 2) = f(g—!(x,y,z)). Show that g > P, is a unitary representa- 

tion of the group of three-dimensional rotations. Consider f(x, y,2Z) = x. 

What is the subspace of H generated by all Pep (g € O(3))? 

Let G be the group generated by A (a 120° rotation around the z-axis) 

and B (a 180° rotation around the x-axis). Show that this group is iso- 

morphic to $3. Construct the operations Pi; with a = 1, 2;3and7,) = 

1,...,d,. Construct with these operators basis functions for the irreduc- 

ible components of the representation g > P, defined in exercise 2.1. 

What is the arbitrariness in the choice of these basis functions? 

What is the symmetry group of the potential 

V(x, y,2) = 4m(wix? + wy? + wz")? 

Distinguish the various possibilities for the values of w1, wy and w3. 

A second rank tensor a belonging to a representation D of a group G is 

and object transforming as a; > i = Xx D(8)ixD(8)j1 a,;. [In particular, 

a second rank tensor is an object transforming under linear transforma- 

tions R of a real three-dimensional vector space as a’ = Rak] Show 

that the tensors form a linear vector space carrying the product repre- 

sentation D(G) @ D(G). Show that the symmetric tensors (a= a) as well 

as the antisymmetric tensors (a= —q) form invariant subspaces. Give 

basis functions for these subspaces. Show that the invariant tensors 

(a' =a) form a subspace carrying the trivial representation. Give a basis 

for this subspace, and prove that its dimension is equal to the multi- 

plicity of the trivial representation in the product D(G) @ D(G). 
Prove that the operator p* = (d,/N) eG x" (g) T, is a projection 

Operator on the space of functions transforming according to the irre- 

ducible representation D,(G). Prove that 

(0% Wi pPW) = Sago pep’). 

Discuss the Stark effect (level splitting of an atomic level in a homo- 

geneous electric field) for the n= 2 level of the hydrogen atom from a 

group theoretical point of view. Notice that for E along the z-axis the 

interaction Ez transforms as Ye 

Consider the Abelian group generated by the central inversion J = — 1 

and time reversal 7. According to which representation of this group 

transform the density operator p, the current iE the position r and the 

angular momentum L, respectively? 
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The momentum p transforms according to an irreducible three-dimen- 

sional representation of the symmetry group of the cube O. Construct 

an invariant tensor operator with the components of p. 

Consider a hydrogen atom. The transitions between the various levels 

by the electric dipole interaction is determined by the matrix elements 

of A = er (r is the position operator). Determine the selection rules of 

this operator between states with given angular momentum and parity. 

Consider a particle in a rectangular box with infinitely hard walls. The 

potential is given by 

0 for |x| <3), lyl<$L5,1z1<5L3, 
V(x,y,Z) = 

ce outside 

What is the symmetry of this potential for a) L,, lL, L3 all different, 

b) L, =Ly#L3,c)L, =L z= L3? Consider the lowest energy levels 

and determine to which representation of the symmetry group they 

belong. 
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Determine all finite subgroups of SO(2), the group of rotations in two 

dimensions. Which of them are crystallographic? Give for each of the 

crystallographic ones an invariant lattice. Show that all crystallographic 

point groups in two dimensions may be obtained by adding the reflec- 

tion on an arbitrary line to the groups of rotations. Derive the 10 plane 

geometric crystal classes. 
Show that a lattice A is completely determined by its Wigner—Seitz 

cell. Prove that A is invariant under an orthogonal transformation A if 

and only if the Wigner—Seitz cell is invariant under A. 

Derive the character table for the octahedral group O. Determine the 

reduction of the 15 Kronecker products of the five irreducible repre- 

sentations. Do the same for the five antisymmetrized Kronecker prod- 

ucts D, AD, using eq. (3.9). 

Consider an atom in a crystal with one electron outside closed shells. 

Let H = Hy) + H, + Hy be the Hamiltonian. Suppose that the symmetry 

groups of Hy, Hy, and H> are respectively O(3), m3, and 3m 

(3m C m3 C O(3)). Determine the splitting of a/= 2 level when H, is 

weak compared to Hy, and H> is weak compared to H,. 

The functions x, y, z defined on the unit sphere form a basis for the 

representation D‘) of SO(3). Construct a basis in this space which 

reduces the subduced representation of D4 = 422. 

Consider a tensor of rank two (cf. exercise 2.4). Show that the space of 

antisymmetric tensors carries a representation I, © I; of D3 = 32. 

What is the representation carried by the space of symmetric tensors? 

Use this to show that there are no antisymmetric invariant tensors for 

this group, and that the dimension of the space of symmetric invariant 

tensors is two. Prove that such a tensor can be brought into the form 

a ia 0 

a=|3a a0 (a,bER). 

OR ORD 

Suppose that an eigenspace of H carries a representation D(G) of the 

group G. Prove that the space of three-particle states with all 3 particles 

in this eigenspace carries a representation D(G) ® D(G) @ D(G). Prove 

that the completely antisymmetric states form an invariant subspace 

which carries a representation with character 

x(g) = (§) [x(g)? — 3x(e7)x(g) + 2x(g3)] , 
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where x(G) is the character of D(G). Prove that the completely symme- 

tric states carry a representation with character 

x(g) = (3) [x(@)? + x(¢3)] - 

Discuss the splitting of a level with 2 p-electrons under influence of 

their Coulomb repulsion and an intermediate crystal field of cubic 

symmetry. 

Show that a second rank tensor which is invariant under the point 

group 4 is also invariant under 4/mmm. 
a) Determine a set of two generators for the point group m3m. Which 

point groups are subgroups of this group? 

b) Determine a set of generators for 6/mmm. Which point groups are 

subgroups of this group? 

c) Show that every point group corresponds to a group of integral 

matrices with respect to a basis @;,@7, @3 which is either orthonormal 

or consists of unit vectors with L(e,é>) = 60°, €31@,,@,1é3. 
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Prove that a function which is invariant under a lattice group U can be 

expanded in a Fourier series in which only the components belonging 

to R vectors in the reciprocal lattice A” can be different from zero. 

Let V(r) denote a three-dimensional potential. Suppose that the group 

of translations leaving this potential invariant form a lattice group. 

Prove that the symmetry group of V(r) is a space group. 

Construct a basis for an irreducible representation of the space group 

Pb, which has a monoclinic lattice group U, a point group m, and a 

nonprimitive translation 5a associated with the generator of the point 

group. The representation is characterized by the vector R and the re- 

presentation I’, of the point group C. 

Diffraction of X-rays by a crystal is determined by a matrix element 

(k'\V |R) of the potential V(r) between plane waves with wave vectors 

Rk and k’. 
a) Show that from the invariance of V(r) under the translation group 

U follow the Laue conditions k'=k (mod A’). 
b) If V(r) is invariant under the space group Pb (see exercise 4.3), 

one has 

(R'|\VIRY= Z' apd(k'-k—-K), 
KEA* 

where the prime means restriction of the summation to the sublattice 

of all elements K € A* with K- a3 = 4n X integer. Prove this. 

Consider a space group G with translation subgroup U. We want a re- 

presentation of G in the space of functions which obey periodic 

boundary conditions W(r) = Y(r+Na) for any r and all a € U. Define 

the subgroup U* of all elements Na of U. Prove that the space con- 

sidered carries a representation of G with D(a’) = 1 for any a’ € U®” 

Show that U* is an invariant subgroup of G. Each representation of the 

factor group G/U* gives a representation of G with D(a’) = 1. for 

a’ € U*. Prove that we get all the representations with this property 
in this way. 

Let g be a metric tensor for a lattice with basis a), 4, a,. Show that 

the metric tensor of the associated basis of the reciprocal lattice is 

4n*g-!. Show that Aj and A} belong to the same Bravais class if and 

only if A, and A, belong to the same Bravais class. Therefore, there is 

a one-to-one correspondence between the classes of the direct and the 

reciprocal lattices. Give this correspondence for the 14 three-dimensio- 
nal Bravais classes. 
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4.7 Suppose that G is a symmorphic space group. Each representation 

D(G) subduces a representation D(K) of the point group K and a repre- 

sentation D(U) of the translation subgroup U. Show that D is com- 

pletely determined by D(K) and D(U). How are the representations 

D(K) and D(U) for a representation characterized by a vector in general 

position in the Brillouin zone? 
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Show that the expression (5.3) is a solution of eq. (5.2) for R given by 

its axis # and its rotation angle y. Use the fact that any rotation can be 

written as the product of rotations a, B, y (the Euler angles) around, 

respectively, the z-axis, the y-axis and again the z-axis. 

The mapping 1 > 1, T> A074 is a co-representation of the group 

generated by the time reversal T up to a complex factor. Show that this 

factor must be of modulus one in order to have an antiunitary operator, 

and that it is impossible to choose A in such a way that the mapping 

becomes an ordinary co-representation. 

Construct the double group of the tetrahedral group 7. Choose one 

from each pair of elements of T¢ which is mapped on the same element 

of T. Show that one obtains a set of 2 X 2 matrices which forms an 

irreducible projective representation P of T with nontrivial factor sys- 

tem. Choose the matrices corresponding to the generators a and B in 

such a way that P(a)3 = 1, P(6)? = — 1, [P(a) P(6)]? =— 1. 
Determine the spin representations of the space group F d3m (the 

diamond group) for the points [(R = 0) and Atk, =k, =0,k, #0) in 

the Brillouin zone. 

Show that the Pauli matrices and the two-dimensional unit matrix form 

a projective representation of D. What is its factor system? The group 

of matrices generated by 0, and 05 isa group of order eight. Discuss 

the structure of this group (the quaternion group). Is it isomorphic to a 

crystallographic point group? Derive its character table and discuss the 

relation with the table for D, given in the appendix. 

Consider an electron in a potential V= Vy + V;, where Vo is spherically 

symmetric, V; has the symmetry of a point group K and both are in- 

variant under time reversal. Show that the levels of Vp have no additio- 

nal degeneracy. Discuss the level splitting under the influence of V;,. 

Determine the additional degeneracies for a spin } particle in a potential 

with point group symmetry 6m2, resp. m3m. 

Apply eq. (5.22) to determine the additional degeneracies of levels of 

an electron in a crystal potential with space group F 43m. Do this for 

the points T, A and & in the Brillouin zone (fig. 4.6). 
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CHARACTERS OF ORDINARY AND PROJECTIVE 

REPRESENTATIONS OF CRYSTALLOGRAPHIC 

POINT GROUPS 

In the following tables are giv>n the characters of the nonequivalent irre- 

ducible ordinary and projective representations of the 18 three-dimensional 

abstract point groups. For each isomorphism class of point groups (characters 

of isomorphic groups are the same) is given the character table for the ordinary 

representations. Here the character is a class function and giving the character 

of each class the character table is completely determined by the abstract 

group. 

For projective representations the situation is completely different. First 

one can divide the representations into similarity classes. The factor systems of 

representations from one similarity class are associated. One can choose one 

factor system from each similarity class. Finally one can determine the equi- 

valence classes of irreducible representations with a given factor system. The 

characters of equivalent representations are the same, but the character is by 

no means determined by the similarity class, as one can multiply each matrix 

by an arbitrary phase factor. Therefore, one has to fix a choice of factor sys- 

tems, one from each similarity class. Once one has done this, the equivalence 

classes are distinguished by the character. However, the character is here not 

a class function. 

A factor system is determined as follows. Suppose the group K is generated 

by a), ...,@, with defining relations ®;(q), ..., @,) = €, (i=1, ..., 7). When P is 

a projective representation, one has ®;(P(a}), ..., P(a,)) = g; 1, where g; is a 

phase factor. The elements g), ..., g, are completely determined by P, but also 

by the factor system w of P. On the other hand w is not determined by 

81, «+» &- However, it can be shown (Janssen [1972]) that i) elements 

81, «+» & determine the class of w, ii) the elements gj, ..., 8, and a choice of 

an expression a= w, (a, ...,@,,) for any a € K determines w. An example is 

given below. In the tables values of gy, ..., g, are given for one factor system 

from each similarity class. Moreover, expressions w,(@,, ..., @,) are given for 

243 
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all elements of the groups. Then for each set gy, ..., g,, i.e. for each factor 

system, the characters are given for the nonequivalent irreducible representa- 

tions. Similar representations P’ are found from P'(a) = u(a)SP(a)S—! (with 

a © K, S anonsingular matrix and u a phase factor) which has character 

x(a) = u(a)x(a) and factor system determined by ®;(P'(a), ..., P'(@,)) = 

®;(u(a)), ..., U(a,))g;. 

If one wants to know the nonequivalent irreducible representations of K 

with given factor system w, one calculates g; = ®;(P(a1), ..., P(a,)). It is 

always possible to find an associated representation such that the elements 

81, «+ & are those given in the tables. 

Example. For the group D one can take generators a and 8 with defining 

relations a2 = B2 = (aB)? = e. It has two nonassociated factor systems. The 

trivial one (ordinary representations) is determined by P(a)? = P()* = 

[P(a) P(B)|2 = 1, the nontrivial one by P(a)? = P(B)? = — [P(a)P(6)]? = 1. 

When the four elements of D> are written as €, a, 6, and a, the nontrivial 

factor system is given by 

w(a, a) = P(a)? = 1 

wo(a, B) = P(a)P(B)P(aB)~! = 1 

w(B, a) = P(B)P(a)P(aB)—! = —-1, ete. 

For this factor system there is one equivalence class of irreducible representa- 

tions given by the character x(e€) = 2, x(a) = x(8) = x(aB) = 0. For the trivial 

factor system there are four nonequivalent one-dimensional representations. 

lsomorphism class C,: only ordinary representations 

rs Ure 



CHARACTERS OF CRYSTALLOGRAPHIC POINT GROUPS 

Isomorphism class C3: only ordinary representations 

w = exp (7/3) 

Isomorphism class Cy: only ordinary representations 

Classes | [e] [a] [a7] [a3] 

TB) Ai ] 1 1 

T2 1 i-l -i 

r3 1 as he Page a 

[Pa 1 -i -1 i 

Isomorphism class Cg: only ordinary representations 

Classes | [e] [a] [a2] [a3] [a*] [a5] 

ry 1 mest 1 1 1 

12 ib ees, ie =!) ise w° 

T3 Licata 1a go? tot 

T4 ite Se Se Ee 1 -l 

Ts 1 wt w? gon or 

if tor st 1) es 
Schoen ee ee at 

Isomorphism class D3: multiplicator M = C 

P(a)? = P(B)? = 1, [P(a)P(B)]* =A 1 

A=1\Classes | [e] [a] [8] [as] 
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Isomorphism class D3: only ordinary representations 

Isomorphism class Dg: multiplicator M = Cy 

P(a)* = X11, P(B)? = [P(a)P(B)]? = 1 

A=1]Classes |[e] [a7] [a] [8] [a8] 

rT; 1 ts Re ms CP 
Pr, ih ie Sere eA 
T3 te rie =1 ei 
Tq a ey 
Ts 22 FOP 0 a) 

A=—1|Elements| « a? a wo B ap af 238 | 

re DP lOe = 2 415/20 tre 0) m0 
a 

In Dee OA) 2b ny 2 OO. 0 1 Ee 

Isomorphism class Dg: multiplicator M = C, 

P(a)® = PCB)? = 1, [P(@)P(B)]? =r 1 

A=1/Classes |{e] [a7] [6] [a7] [a] [a6] 

Py | [PRI AIS ole ot 
TP, te Te LN etileke 
T3 291%) O02 Yeo 
T4 yey Cie Set 
Ts ie lees te 
ig Oe tek we) 

ie: 

A=—-l\|Elements| « a? at B a?B at ae a a ap a3 a> 

face “ij 

Tr 2) eae) 0 0. 0 Onne70. 0 0 
Ts eal els OF eed 0 On Vin/S 1x) 3, 20 0 0 
De ET i 0), ee 0 OF iA (3 N38, 0 0 0 
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Isomorphism class T: multiplicator M = C 

P(a)? = 1, P(B)? = [P(a)P(B)]3 = Al 
As 

A=1/Classes |[e] [a] [a7] [6] 

r 1 ibe ll 1 

r2 Tpeotkor 8 
T3 1 wt w? 1 

14 3 0 oO -1l 

Elements EY AS One iae So eel Omen tit 12 

-1 1 il 1 -1 -1 -1 -1 0 0 0 

ww WO ww wa wo w> we 0 0 0 

oie Gayl. es i ete ts tao ae 0 0 0 

Isomorphism class O: multiplicator M = C, 

P(a)* = X11, P(B)3 = [P(a) P(B)]? = 1 

A= 1/Classes |[e] [6] [a7] [a] [06] 

ie Pb he eee ia 
2 owe bene Were Ba 
r3 LES Ramee sae ves 
iit 3 0 -1 1 -l 

i 3 O0O-1 -il 1 
pate le 
Rae oac DS a SD 6 7 8 9 10 11 12 

- 

T% 2A ni tote At eller We FO Og 0G 
ry Ja=toere eA is =i) | ity i 0” a0re .0 
Tg ee ta St) ai eT eet 0k 07-0 

eee | = 

fo Meets eG Pe17 a8 1199 200 9122324 
z 4 

We PDE he Hig 2 ie 10 0" 09 0 0 
Dn in Dos) DE DN 20 0” 10. 00 

0 Oe O) Oe hr PO oy 0 OTe 

To give the irreducible characters of the projective representations of the 

direct product groups K X Cy we use the fact that the Kronecker product of 

an irreducible representation with factor system w and an ordinary one- 

dimensional representation is again an irreducible representation with the 

same factor system. The Kronecker product representation is similar to the 

original one, but the representations are in general not equivalent. In the 
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following tables we give nonequivalent, but similar representations as Kronecker 

products. 

Isomorphism class Cy X Cy: multiplicator M = Cy 

P(a)4 = P(B)? = 1, P(a)P(B) = XP(B) PCa) 
— 

Elements « ..aa? a? B af a*B a8 | 
— —-- 

A=] QT, 1 rari EA Ee: Pel 

rT, Weep ter a eas 
+ 

By eer (07) 

Ts See taal 

To =Tse 02,07 =0s @ (12), Pg = Ts @ (2)? 

A=-1 To 20 10e 2s 0mn0 0: seo 

I | Ti9 =T9 eT | 

Isomorphism class Cg X Cy: multiplicator M = C4 

P(a)® = P(6)? = 1, P(a) P(B) = AP(B)P(a) 
Gar = 

Elements « aa? arata® Ba a26 036 a4 a5 

A=1 SCT or ea see kGee et 

[2 1 Voices | te cs 1 wa 
+ —__ 

T'3 = (T2)?, P4 = (1o)3, Ps = (12)*, Po = (L2)° 

T7 Woo a a i WS heh ah a el 

T's = 17 e ((2), [9 = 17 @ ((2)?, Pin = Te (L2)3, 
T11=ITve (T2)*, Ti2=Ty0 (E>)? 

ate 

Re S1 143 » WY 2 oO? oO OO © © ® 

| L P14 =T13@ [2,05 = 113 @ (C2)? 
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Isomorphism class Dy X Cy: multiplicator M = C) X Cy X Cy 

P(a)? =, 1, Pa) PCy) = Ap P(y) Pla), P(B)PCY) = 43 P(y) PCB) 
P(8)? = P(y)? = [P(a)P(6)]? = 1 

Ay Az AZ te a Pap yay By aby 
i T 

Hert eer Ady dewiial sl) 1 ok 44 
ae 2p ee ie bs ak Gee ae em 
an, fae ey kes Oa ue ee ee 
Posti=ai\t t=tok 
Diy (eel “ned te 

Reiss Clo ll Dssoullsnelig als onlal 
i: | ne te 

SE De a ce dc 

| Tio =ToeTs 
eaa'e 

SE ee 2-090 <0). 0.40 

Ty2=Ti10eT3 
Se bs 

Hebd Gee 1227 20-0) 0. 020° 0 
mes 

Diao hase ho 
—— Ea 

2 Valais 2-0 0)-.0604.0° 2.50 
— 

Ti6 =Ti15se 13 

Petite 1 f7n(2- 0: «0-200 0.27 0 0 
ean 

Dis i7 ol 

Mel Ds op 2a O02 7 SOOO) 0 

T2909 =Ti9 @ V2 

Pade Waa 2 Ors sO 0.0, 0.28 

[P22 = 0210 Ta 
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Isomorphism class D4 X Cy: multiplicator M = Cy X Cy X Cy 

P(a)* =r, 1, P(a)PC(y) = Ap PCy) PCa), PCB) PCY) = Az PCY) PB) 
P(8)* = P(y) = [P(a)P(6)]* = 

— =F 

Ay Ag A3 IF a a! Baflap a8 am ay oa) py a* Bylapy a7 By 

ibe th Sle Bok ee ly ah SU at a ake aby ay al [pal teal 1 1 1 

1) 1 eee ee es ees Cees Des Me es 1 1 1 1 

T3 1} 1j-1 -1] 1 1}-1 —-1} 1] 1J-1 -1] 1 1} -1 -1l 

T% 1} 1j}-1 —1/-1 -1] 1 1] 1} 1J-1 -1/]/-1 -1l 1 1 

Ts 21-2} 0 O| O O; O OF} 2}-2)] O 0 OOO, 

6 ali ey I abl a aati saih ei 1 |-l 1 1 -l 
jee —} 

T7=leel2, lg =Teel3,lo9 =Tee 4, Tio =Teels 

Stee td tia) 2 Ory. O20 mO..0) med OuIn/ 2 a) 2a sO Om 

ie Doves witasS ba heme atate lions 
| 

esi al mig ee OO PD PhO OO) WO OM wi @ 0 oO 0 

Ti6 =TiseT2 

Pe ps2 10 0200" 050" Or 0) FO c 0na: oe 0 

ip = Digele 

Get Sidhe le) aoe 2. D9. 0 S040 wh ON OF On OmhOe RO ROMEO 

T290 =TigeT3 

Pe e220 0 200 OO SOLO mer 2 50 ay 

b22 Lane We 
— 

aS Wie oo O © O © OU 0 O @ O @ @ OF 050 
== el 

Simtel Wrz qih 2* Was) 215/22 000 20 0 10 27> 0" HORI 
pees 

el i a aceasta tS 27 

0A Ty |e ea (0 (ht () (eC) OR Ona 

T'29 =T2ge@ 1 
| = ees 

my | 22 O 0 O 0 © OO 0 O OO @ QO -—2 -2 
pemevela 2 

ey = eyes 
ee 

| ebsd pS, it 00 00 1060.5 0) OOS TOpCOr comer CamO 0 @ @ 



251 CHARACTERS OF CRYSTALLOGRAPHIC POINT GROUPS 

Lye 8ty = 6%] 

Yo 

© 

O 

oO 

@ 

© 

O 

GD 

@ 

OOOO 

mG 

OF 

Om 

OOF 

10M 

Us 

eCard 

Gi 

ve 

(Oc 

PRON 

POF 

0 

Car 

ae, 

WAC 

(OU 

OO 

OT 

FORO: 

WO 
gn 

On 

a 
Ole 

Cs 
care 

mented 

t= 

Oly 

erty 

= 

Ley 

SLyT 

Ove] 

= 

MY 

‘vy 

ervey 

= 

Sty 

‘vy 

@e%y 

= 

EU] 

OO 0 = <= 0 0 20. Ona E M00 7G 0 EI ae SM ONamn VER Dah ON cee iar 9 

oY 

OO 

@O 

08 

Oo 

© 

O 

GO 

G 

@ 

D900 

© 

OO 

& 

# 

© 

© 

0 

© 

ee 

SUT 

i 

7y 

oe 
6ly 

= 

0%] 

(ak 

eee 

(eee 

() 
Se) 

ee 
() 
ae 

() 
ee 

() 
oC) 

ee) 

OG 

0 

w 

© 

QO 

Ol 

0)" 

Os 

200 

Olt. 

bel 

0 

0 

0 

OO 

0 

0 

Oe 

9 
0) 

oO 

@ 

oO 

@O 

@ 

OO 

© 

@ 

6.6 

EG 

OC 

Tt 

==] 

Oly 

@ST 

y= 

8ly 

‘Ly 

oSty 

= 
Liz 

‘vy 

oSl 

yu 

9 

yz 

Lyeelyivly 

——_ ST 

AO 

O 

S/E10 

S028 

AOSTA 

LG 

0 

Oe 

One 

ae 

0 
Ath 

nO 

AG) 
Sok 

comer 

sacl 

0 

0 

0 

OPO 

RO 

ees 

0) 

0 

3G 

CLG 

WW 

O. 

OPeO.0) 

> 
ONt0l 

wee 

Ce 

[ae 

ti 

=| 

OO 

it 

CU 

Te 
Oiay 

abe 

Taavay 

ened 

OTe 

1 
eL47 

=o 

ey 

elie 

Sor 

Spe 

wai 

= 

Oe 

Oak 

OAT 

= 

Sa 

if 

I 

if 

lee 

[ 

I 

I 

I 

I 

Lise 

oe 

We 

SUP 

IE 

MTG 

ei 

RS 

aA 
he 

| 

Ly 

ae 

ee 

rae) 

ee 

Deen 

Eatin 

I 

I 

I 

[Eee 

a 

ee 

Pca 

ee 

SSI 

h 

UE 

IA 
sc 
ie 

at 

ual 

0 

0 

0 

Vee 

Rl 

eae 

0 

0 

0 

[SG 

MON 

MO 

10) 

Ne 

OI 

OY 

Oe 

Wai 
[leas 

ey 

Peet 

ee 

Veet 

iae 

al 

I 

(re 

ees 

adh 

I 

SS 

NS 

a 

ee 

nk 

Gq 

I 

I 

I 

il 

if 

i 

I 

i! 

q 

[BN 

AU 

RI 

EE 

RE 

Ee 

ae 

Gant 

LA 

il 

if 

= 

= 

— 

——t 

cat 

+ 

ee 

aga 

Aid 

h 

ih 

oj 
hg 

70 

Ag, 

Lg 

A 
0 

Anh 

Jog 

oo 

9.0 

0 

6” 

ce? 

|9,0 

920 

9 

p? 

2)? 

Ey 

ty 

Ty 

4 

a!) 

= 
z[()d()d] 

= 
¢(A)d 

= 
29d 

‘(Nd 

Md 

*v 
= 
Kd 

(Pd 

‘()d 

Md 

= 
(Hdd 

‘EV 

= 
9) 

f
o
x
 

(9
 

x 
9
 

Sw
 

s
o
q
e
o
y
d
n
 

nu
t 

:%
 

x 
I
g
 

ss
ep
o 

ws
ty

di
o 

wo
s]

 



CHARACTERS OF CRYSTALLOGRAPHIC POINT GROUPS 252, 

L
I
@
6
y
a
P
l
y
 

9
p
 

s
6
T
u
—
 

E
L
T
 

‘
S
y
 

e
6
y
—
 

e
y
 

‘
E
y
o
e
6
y
o
l
y
 

‘
t
y
 

a
6
 

7 
- 

O
T
F
 

i 
; 

= 
>|

 
0 

0 
@ 

I 
I!
 

B
e
l
l
 

U.
 

i
g
 

OE
 

Ue
 

a
i
e
 

i
e
 

oe
 

4 
l
w
 

6
 

I
-
=
X
 

‘
P
T
 

S
e
S
p
=
a
8
j
‘
t
y
o
e
t
y
e
S
y
 

o
l
y
 

t
y
 

e
S
 

y
a
o
 

‘
t
j
 

e
t
y
 

= 
e
y
 

m
s
 

a
n
t
 

T 
T 

Lp
 

| 
i 

I 
ESN

 
e
s
 

28
 

i
t
 

il
 

(
F
S
 

TB
 

iB
 

Am
 

2]
 

Bs
 

So
nd
 

L
i
 

S
I
 

Pe
s 

0
)
 

0 
0”

 
@ 

IO
 

@ 
© 

@ 
is
 

i=
 

1
0
 

08
 

© 
O
1
0
 

O
O
 

O
F
 

a
 

I 
p
e
e
 

ee
 

eR
e?
 

a
y
 

e
e
 

ie
 

O
M
e
 

El
l 

gr
e 

Da
y 

el
 

oe
r 

ee
 

ta
e 

ca
l 

T 
I 

a
 

\!
 

I 
e
e
l
 

4
k
 

| 
I!

 
S
E
F
 

A 
ES
 

Se
 

M
e
 

ae
 

a!
 

P
R
E
 

in
g 

(
P
a
x
 

—
-
 

-
+
 

|
 

=
|
 

Ai
og
 

~
7
 

A
 

ng
fo
 

A
g
 

k
o
d
 

A
g
o
 

A
i
g
o
 

A
”
 

L
o
o
 

L
o
g
 

A
g
o
g
 

|x
 

n
g
,
 

z
g
 

g
 

z
e
d
 

J
z
2
 

i
g
h
 

z
 

g
o
 

n
g
 

J
o
g
n
 

fa 
|
 

4
 

IX
 

= 
(
M
d
 

)d
] 

= 
79

)d
 

(
P
d
 

)d
 

= 
(K
d(
9)
d 

‘(
)d

 
(e

d 
= 

(h
)d

()
d 

‘T
= 

7
d
 

= 
¢
)
d
 

C
D
 

= 
Ww

 
jo

ye
oy

dn
yy

nu
r 

:%
5 

x 
7 

ss
ej
o 

ws
ty

di
ow

os
 

| 

L
y
 

@
0
v
y
 

—
 

I
v
y
 

=
 

—
—
—
—
—
—
—
—
—
 

|
 

(
e
e
)
 

S
e
)
 

()
 

a
 

()
 

C
C
)
 

C
C
)
 

O
m
R
O
m
O
M
O
 

ME
E 

G 
0 

O
0
0
 

O
O
 

C
E
 

FH
 

C
E
 

C
t
 

E
Y
 

=O
 

CU
 

OW
 

Oo
 

fh
 

wf
 

Om
 

O
O
M
 

OM
E)

 
O
C
 

O
O
 

O
W
 

6 
e
e
 

O
A
 

e
e
e
 

v
i
e
 

l
e
y
 

=
 

8
€
]
 

o 
© 

© 
© 

© 
@ 

© 
© 

0 
@ 

O
R
O
 

O
O
 

ME
O)

 
® 

© 
O
O
 

© 
© 

B
e
 

vy
 

B
a
 

(
O
e
)
 

eee
 

()
 

a
s
 

()
 

a
 

()
 

(
S
C
)
 

O
O
 

@
 

he
 

ie
= 

© 
0 

© 
0 

© 
0 

@€
 

B
e
 

B
i
 

a
e
 

O
l
]
 

@
c
e
y
 

= 
M
y
 

‘
L
y
 

O
L
E
]
 

— 
S
E
Y
 

‘
H
y
 

O
L
E
 

—
~
 

P
E
T
 

‘
L
Y
 

@
I
E
]
 

— 
U
E
]
 

O
S
D
 

0D
 

Be
l 

Cm
 

OR 
08S

 
OL
E)
 

e
r
i
e
 

0 
O
m
 

Ome
 

=
 

6
/
0
0
 

60
.0
) 

i
k
e
 

et
d 

O 
© 

© 
#
%
 

€ 
© 

© 
O
°
 

@ 
O
R
O
 

M
O
M
 

OM
EE
( 

0 
0 

© 
® 

0 
0 

€ 
e
e
 

“
a
l
e
r
t
 

ce
 



P(y)P(B) 

GAS SHE HO 

=C, XC, 

2 P(y) P(a), P(B)3 = [P(a)P(B)| 2: multiplicator M 

A, 1, P(a)P(y) = 

Isomorphism class O X C P(a)4 

CHARACTERS OF CRYSTALLOGRAPHIC POINT GROUPS USS33 

299 = On a (=) =) (3) iS) (=) S) =) 

970,90 St et et et ous oer Sore 

20799 | Am One SS) Sore oo 

go ss On Sy Xe=y SiS) Sy (=) 

og SS te a2) (=) foxy, Kae) Toe} =) =) 

se ORS Soa (=) SN) oo P2I2? l aS 
gho ss SH OM GS @ Se SSK) (=) es} 

t 
se ™ 
i- 

=—a Ss On 8 io =) Se, 2) oo 
P79 ‘o — 

i ~ iS 

iT] = 
og =e On ° ee @ (2) (2) (3) yc) 

€ = ne w 

Ge i= 
0 se OMS vt AO 1 SS) = S=) Ie Ky = a 

@ es a 

2 i= 
0 sao OM SH i= NO i Sa = o> 

€ 1 = iS WS ES 

> ae One SES @ Qieir> Qe 

- beg a = 

J,o-9 asa aN SS ae oo Jen eee oo 

(a4 tl 
gg == SN SS es (=) (=) t+ NAN oo 

(4L¢ [ay = | 

2? ms ANA TI oo a pee oS 

- CO \o 

J, saan On = “44 i< Aa oO 4N 
e°7 & | @ | 

ss oe CO fea — = NANA CO aN 

e782 s tes 
g,09 sao Se CO - ey aie] tI lo ee) =—N 

z Ky | - | 
sos OK ll w=! Aco - NO aN 

rag Ea - 
ng sas oH OH = ae re Na oO .o rao a 

t eS i= i<) 
g,0 see Oe ay a @ Aa oO ® aN ®@ 
4 ® | = oy | pe 

70,70 saat On Ee ar ie fo a) a Tan 2 
4 i= 
g sae ne Om i ee pe Se che a ne 

= a a 
es af aaam = er) cae | ke | et ete | Gl seek oe 

= Mn ~ oo a mM 
Om s+ 0 Pat eat Ce hen) ASK aa 

Geese | age or a fa a 

| _ Sel Sool Seal 

A | | 
= el o fol a 

< 2 de ee oe | 



254 CHARACTERS OF CRYSTALLOGRAPHIC POINT GROUPS 

i | 
902d aA On S&S =) Se) =) 

Ag ,0 280 es kG SS) = SS 

A 7 70 meal Son TRY Seo} sol or Se = 

Agio an On oo eae) 

Log aa Ones oo SSS) 

AD 7970 ee ean Se SSeS) 

aH Om IN oO Secae 
A 790 | — 

| 

aH OMG A © Sia} =) 

hve | > 

T 
ase OMG NO ao) (=>) (==) 

A. ] ice 
T 

sae ORS AS Sis =) Ag 0 | | S 

i 
se Ons Q'S ooo 

Aer | l = 
soe OMS No 2 SiS) 

Ae ] | S 
Ag 0-9 OT S15) Syi=) (=) 

hod 709 fa ea, ore) So) 

L FN el it Seo SS) =) 
i 

“4 4 S = | =— 4 Neel TS) 

hd? | | | >, 

=—s= ae Oo — 4 oOlmM © K .rgto 2 

sae eH Oe Sealine! om oO 
9709 Vane) ] = 

sa SHO “so oOlmM © 

hed | | | > 

los sae eH Oe eee! Sica S 
9 | | | a 

T 
hid = Ss Ss CO Ss =“ oS OInN oO 9 : ng 

T 
he sas HO “4 olm Oo 7 - 0 ac 

al 
uy alert So) SAS sat Sa como J Ko 

y 
S Ah Basar ONG N+ ooo 

S Ee a=) =] mt RN CSE ND) =~ 4 = - a 
& Book & oy. oy Bo 

S 

5 
wm eS PS PK) PG 

oO OO We ORO ROR ORe Ome OmnO 

0 0 

ORO ORO 

0 

0 

On/3) 3 WSL IW SO SWB 0) 07-0 0 

121 123 



APPENDIX B 

EXTRA REPRESENTATIONS OF THE 

CRYSTALLOGRAPHIC DOUBLE GROUPS 

In the following we give those extra representations of the double groups 

which can not, by a suitable choice of phase factor, be transformed into a 

representation of the (single) group. Moreover, we give only the extra repre- 

sentations of the double groups of rotation groups (crystallographic point 

groups of the first kind). The double group of a point group of the second 

kind is isomorphic to the double group of the group of the first kind ob- 

tained from the former by multiplication of the elements with determinant 

—1 by the central inversion. The double group of direct product groups 

G XC, is G4 x Cy, when C% is generated by the central inversion /. So we 

consider only the double groups of the crystallographic point groups 222, 

422, 622, 23 and 432. 

— 

2224 | [e] [-e] [+a] [+6] [+a8] 
ri 2 2a. 0 

4224 | [e] [-e] [+07] [a] [-a] [+ 8] [+a] 
lM 2) i en = 20 0 
ry Ded.) 0 = Se 8 ae 0 

6224 | [fe] [-e] [a?] [-a?] [#6] [+09] [a°] [—a°] [+0°6] 
V3 

= 

Ts a at i 0  ~=/3 0 
1s Joe ee teal G0 ex snsow 0 
Ir 2 -2 -2 2 0 0 0 0 0 

Fail =| 

a3¢ . [= = Fi [a] [a7] [-a7] [+8] 
re ae Cees oa 
iY 3 se Oe wr won we” 0 w = exp (11/3) 

4 i gS em Aaa 0 
aN ——1 

45) 
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APPENDIX C 

PROJECTIVE CO-REPRESENTATIONS OF 

FINITE GROUPS 

Here we will give some definitions and propositions from the theory of 

projective co-representations. We give only those results we need for Ch. 6, 

§4.4 and leave out the proofs. A more profound treatment and the proofs 
can be found in Janssen [1972]. 

Let G be a group, H a subgroup of G. Either H = G or H is of index two in 

G. A projective co-representation of G with respect to H in a Hilbert space H 

is a homomorphism up to a factor from G onto a group of linear and anti- 

linear operators on H. A projective unitary/Antiunitary representation of G 

with respect to H (a PUA rep of (G,H)) is a mapping P of G into the set of 

unitary and antiunitary operators on H such that 

1) P(a@)P(B) = (a, 8) P(ap) (Va,B €G, |w(a,B)| = 1), 
(C1) 

2) P(a) is unitary if a € AH, antiunitary ifae€G—H. 

An ordinary unitary/antiunitary representation (UA rep) of (G,H) isa PUA 

rep with w(a,8) = 1 (a,8B © G). A projective unitary representation of G isa 

PUA rep of (G,G). An ordinary unitary representation of G is a UA rep of 

(G,G). 
A PUA rep P of (G,#) in K is irreducible if #( does not contain a proper 

G-invariant subspace. Two PUA reps P and P’ are equivalent if there is a uni- 

tary operator U such that P’'(a) = UP(a) UT (all a€ G). Two PUA reps P and 

P’ are similar if there are a unitary operator U and for any a € G a complex 

number u(q) of absolute value 1 such that 

P'(a)=u(a)UP(a)Ut = (alla€G). (C2) 

The mapping w: G X G> C is called a factor system. Because of the associa- 

tivity of the product of operators one has 
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wa, By) (8, Y) if CCH 

w(a, 8) w (a, ) = | 
w(a,By) w(B,y)” 1a =e 

Now we define the action of «€ G on a complex number of absolute value 1 

by 

r for weGH 
Ne = | (C3) 

h for weG—H. 

Then we have for the factor system w: 

(a, B) (4B, 7) = (a, By) w(B,)* . (C4) 

Two equivalent PUA reps have the same factor system. Two similar PUA reps 

P and P' have factor systems w and w’ such that 

wo'(a,B) = co(a, B) u(a) u(B)*u(ap)! . (CS) 

Two factor systems w and w’ satisfying eq. (C5) are called associated factor 

systems. 

One can show that for any factor system w satisfying (C4) there is a PUA 

rep. When w and w’ satisfy eq. (C4), then also (ww) (a,B) = w(a, B) w'(a, B), 
wo(a, 8) = 1 and (w!)(a, 8) = o(a,8)—! do so. Hence the factor systems 

form an Abelian group Z. A subgroup B of Z is formed by those factor sys- 

tems which are associated with the trivial one. They satisfy 

u(a)u(B)° 
Os cianye (all a, B € G) (C6) 

for some mapping u from G into the group of complex numbers of absolute 

value 1. The factor group Z/B is called the co-multiplicator M(G,H). Its 

elements are the classes of associated factor systems. 

When G isa finite group generated by ay, ..., a, with defining relations 

®; (a, ..., a) = €(7= 1, ..., 7), and P is a PUA rep, one has 

;(P(a,), ..., P(a,)) =A, 1, (C7) 

where hj, ..., A, are complex numbers with |A;| = 1. One can prove the follow- 
ing propositions. 
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PROPOSITION C1. When P(G) is a PUA rep which gives eq. (C7), the 
elements Aj, ..., A, determine the association class of the factor system w of 
P(G). 

PROPOSITION C2. When for any a € G one chooses a fixed word a= 

Wa(@y, ..., %,) such that P(a) = wy(P(a), ..., P(a,)), the elements Maney 
determine the factor system w of P(G) completely. 

Hence it is useful to give the nonassociated factor systems of G by nonequi- 

valent sets {A;}, like we did also for PU reps in Appendix A. 

Consider an extension R of the Abelian group A by G (cf. Ch. 4, § 1.8) 

with factor system m: G X G>A and with action of G on A given by 

a he ONE TS/ 

y(a)a= (a€A,a€&G) (C8) 

q7! io Gee 

The subgroup of R which is mapped by the canonical epimorphism o on 

H ©G is denoted by U. Now consider an irreducible UA rep D of (R, U) and 

a mapping r : G>R such that or(a@) =a (alla €G). Fora €A one has 

D(a) D(r) = D(r) D(a) if r € U and D(a)~! D(/) = D() D(a) if rE R — U. Now 

one has the following generalization of Schur’s lemma. 

LEMMA. If a unitary operator S satisfies SU = US, AS~! = SA for any unitary 

operator U and any antiunitary operator A from an irreducible UA rep, it isa 

scalar multiple of the identity operator. 

This lemma implies that the unitary operator D(a) satisfies 

D(a) = x(a) 1. 

Then we define 

P(a) = D(r(a)) (a€G). (C9) 

One has consequently the relation 

P(a)P(B) = D(r(a)) D(r(B)) = D(m(a,B)) P(aB) = x(m(a, B))P(aB) , (C10) 

which means that P(G) is a PUA rep of G with factor system 

w(a,B) = x(m(a,8)) . (C11) 

For fixed mapping r: G > R any irreducible UA rep of (R, U) determines in 
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this way an irreducible PUA rep of (G, H). One can show that every PUA rep 

of (G,H) can be obtained from the irreducible UA reps of a couple (R, U), 

where the finite group R is an extension of the co-multiplicator M(G, AH) by 

G. However, we will not investigate this problem, but the problem of the 

determination of all irreducible PUA reps of (G,H) with given factor system 

Ww. 
We consider again a finite group G generated by qj, ...,a,, with defining 

relations ®;(a), ...,@,) = € (i= 1, ...,7). A PUA rep of (G,H) with factor sys- 

tem w determines a set Aj, ..., A, by eq. (C7). When the factor system is of 

order d, i.e. when w@(a,B) = 1 for all a,B € G, the numbers Ay, ---» A, are d-th 

roots of unity. Suppose that 

Neer ‘(ep (C12) 

where e€, is a primitive d-th root. Then one can show the following. 

PROPOSITION C3. A PUA rep of (G,) with a set Aj, ..., A, (determined by 

eq. (C7)) consisting of d-th roots of unitary can be obtained from a UA rep of 

(R, U), where R is an extension of the cyclic group of order d by G, generated 

by a, a, ..., @, with defining relations 

at =e 

®;(ay, ..., a) = at (i= 1, ..., 7; 0; given by C12) (C13) 

Q,; aa; | =o. 

and where U is o-!(H) for o the canonical epimorphism R > G. 

Example. Suppose that G is the dihedral group D3, H is its subgroup C3. The 

group G is generated by a, and a, with defining relations (a,) = (a>)? = 

(a, a)? = €. H is cyclic and generated by a,. We will determine the irreduc- 

ible PUA reps of (D3,C3) with factor system w determined by 

P(a,)? = — P(aq)? = — [P(a,)P(ay)]? = 2 
Or 

N= bay 0a (C14) 

First we determine the factor system. To do that we have to choose expres- 
sions in the generators for all elements of G. One can take: e, Qy, at, Ay, AQ, 
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aay. oe P(a,)P(a>) = P(ay)P(a,)?, one finds w(a@),a,) 1 = P(a,)P(a,) X 
P(e) = 1, w(ap, a) 1 = P(a)P(a)P(e)! = — 1, etc. The factor system 
is the following. 

ieee 
ie ay a? a2 a, a2 aya2 

ay i 1 1 1 1 

ay 1 1 l 1 1 

a7 1 1 =] a = 

a1 a2 1 1 —l —] —1 

2 
aya 1 1 —1 =i —1 a 2 

According to proposition C3 the irreducible PUA reps of G with the given 

factor system can be obtained from the UA reps of a group of order 12. This 

group is generated by a, ay, a ae defining relations a* = e, aj =e, a4 =a, 

(a,a>)* = = 4, a= dQ}, 4 =a “A> = aay. The subgroup U is formed by the 

elements e€, @), @], @, aa), aar which is a cyclic group of order six generated 

by aa,. This group has 6 nonequivalent irreducible unitary representations. 

To determine the UA reps of (R, U) one can use eq. (6.87). One has 

EY x((au)*) = 6x(a) . 
ucU 

Using the character table for U = Cg (Appendix A) one sees that for P',, 13, 

I’; the irreducible UA reps of R subduce irreducible (one-dimensional) repre- 

sentations of U, whereas for 5,14, ¢ one has 6x(a) = —6, which means 

that in those cases the irreducible UA reps of (R, U) subduce reducible repre- 

sentations of U with two identical components. Hence R has 3 one-dimensio- 

nal and 3 two-dimensional irreducible UA reps with respect to U. These 6 UA 

reps determine 6 nonequivalent PUA reps of (G, 7). Three of them (those 

with x(a) = 1) have trivial factor systems. The other three give PUA reps 

with the factor system found above. Hence for a factor system with A), Az, A3 

given by (C14) there are 3 nonequivalent irreducible PUA reps of (D3, C3). 

It will be clear that the ordinary projective representations as discussed in 

Ch. 1 and in Appendix A can be treated in the same way. In this case the 

action of G on the complex numbers and the action (C8) on A are trivial. 



APPENDIX D 

THE THREE-DIMENSIONAL SPACE GROUPS 

In the following tables the 219 three-dimensional space groups are given 

by their generating elements. A space group is generated by 3 basis transla- 

tions and the generators of the point group combined with nonprimitive 

translations. The space groups are divided into seven systems. For each sys- 

tem we choose a basis of the lattice or a sublattice such that we obtain the 

metric tensors of table 4.2. In the case of a centered lattice the primitive 

translations are obtained from our basis by the centering matrix. The primi- 

tive translations inside a unit cell of the (sub) lattice are given for each 

Bravais class. All point group elements and nonprimitive translations are 

given with respect to the basis of the (sub) lattice. 

One obtains all elements of the space group as follows. As the generators 

of the point group are given with their nonprimitive translations, and each 

element R of the point group can be written as a product of the generators, 

the nonprimitive translation belonging to R can be found using the relation 

trr' =trt Rtp’ (up to a primitive translation) . 

Notice that for each isomorphism class of space groups only one representa- 

tive is given. In particular, the nonprimitive translations are not uniquely 

determined. By choosing another origin one obtains the nonprimitive trans- 

lation tp: = fp + (1 —R)v, where v is an arbitrary vector. Equivalent non- 

primitive translations are easily obtained from the tables. 

Example. The space group /2, 2,2, belongs to the body-centered orthor- 

hombic Bravais class. With respect to an orthogonal basis of a primitive 
orthorhombic lattice the primitive translations are (m1, 4,3) and 
(ny +3,n7 + 3,73 +4) with ny, 1, n3 integers. The elements of the point 
group with their nonprimitive translations are 
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oO 

Nie Ne 

The nonprimitive translations associated with the generators R, and Ry can 
also be chosen as tr, = (Gtx, y,4), tr, = (3,3+3,2), Where x,y,z are arbitrary 
real numbers. The point group generators are given by numbers indicated in 
table 4.3. 

I Triclinic, primitive 

Primitive translations in unit cell: (000) 

] 
Arithmetic | Isomorphism | R, tR, Ro tR, R3 tr, | Symbol 

class class point 

group | 
| 

Pl C; | 1 000 Pl G 

PI C 2° £94000 PI C} : | | 
II Monoclinic, primitive 

Primitive translations in unit cell: (000) 

Pm G 7 000 Pm C. 

7 040 Pb Ce 

P2 G 3 000 P2 Gs 

3 003 P2, C3 
P2/m D» 3 000 7 000 P2/m Con 

3 005 7 003 P2,/m C3p 

3 050 7 050 P2/b Ch 

ie 3. Way. 7 04S P2,/b cs, 

III Monoclinic, body-centered 

Primitive translations in unit cell: (000), (333) 

7 ~~ 000 

7 ~~ 040 

3 000 

3. 000 7 000 

360,07 = 040 
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IV Orthorhombic, primitive 

Primitive translations in unit cell: (000) 

THE THREE-DIMENSIONAL SPACE GROUPS 

- 

P222 

P2mm 

Pmmm 

— 

D2 

D2 

D2XC, 

SS SS Se So Sy SSS SSS SSS See ee) ee ee ea eo Toot ee tes ech US ABS) eb AUS) 

000 

005 

000 

COM OOH CONN IOONNIOOn § OO! NCO; CONN OO7 OO! CON OO O08 OO OO" GOP SNOT TO) ONO NOR NOTING SUNOS NOT NO es NG St -fa ehe se pane es 

000 

KO MNOM INO) BECO m SON NO USOm NON os NO PRNO NOE NOs NOTING ENO) 



THE THREE-DIMENSIONAL SPACE GROUPS 265 

V Orthorhombic, body-centered 

Primitive translations in unit cell: (000), (444) 

be D3 3 000 4 000 1222 p | 

3 403 4 30 EX CRP N OKs 

12mm Dz 8 000 9 000 12mm cs 

8 005 9 003 Iba2 Cs, 

6.5 9h 200" 9. (6 400 Ima2 Cr 

Immm | D2 XC Z 000 8 000 9 000 | mmm D3}, 

7 000 8 003 9 003 | Ibam Di, 

7 030 8 $00 9 003 | Ibca D3}, 

| 7 030 8 030 9 000 | mma Dih| 

VI Orthorhombic, side-centered 

Primitive translations in unit cell: (000), (55 0) 

4222 | D> 3 000 4 000 | C222 De 

3, 00% 4. | 4000 C222, D3 

C2mm | D2 8 000 9 000 C2mm Gy 

| } 8 003 9 000 (a es 

| 8 003 9 005 C2ec Ce 

A2mm Ds eee 000 8 000 A2mm ch 

I Eno 201 S040 Adbm C35 
7 003 8 003 Adma Cx 
(Cet Creel ee ie A2ba OF 

Cmmm Dy XC) 7 000 8 000 9 000 | Cmmm D4), 

7 005; 8 003 9 000 | Cmcm D4} 

7, PO53) Sw 250548 59. 0008). Cries Di, 

7 000 8 003 9 005 | Cccm D3), 

7 100 8 400 9 000) mma D4), 

ae TamniOss | 8 eee0,, 29°) 0,511 Ceca Pah 
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VII Orthorhombic, face-centered 

Primitive translations in unit cell: (000), (33 0), (503), (035 

F222 D; 3 000 4 000 F222 De 

F2mm D 8 000 9 000 F2mm (ap 

8 ian 9 aad Fdd2 (ar 

Fmmm Dex 7 000 8 000 9 000 | Fmmm __—iD3}, 
7 ele 8 eae 9 ig Fddd Day 

ie I 444 444 444 PE th| 

VUI Tetragonal, primitive 

Primitive translations in unit cell: (000) 

mf 

P4 Cs 12 000 | P4 Cs 

121004 | Pay Ca 
3 isomorphic 4 

12 003 P43 Ga 

12 003 P4, BF; 

P4/m C4 X C2 120 S000) © % 000 P4/m Chh 

12 005 7 000 P4y/m Con 

12° RAO F - WEFO P4/n Ci, 

Less Teas Paain = Cy 
P422 (By 12” 4000) —5 000 P422 Da 

i2 $50 5 000 P42,2 D4 

12) O05) Sod Sie _ ( P4,22 Da 
3 ' isomorphic Z 

12> [P03 5 00} P4322 D4 

[26 eh Sar a S000 NN a (P4232) ED 
oe isomorphic . 

i eS 000 PAg? 20 DS 

12 005 5 005 P4,22 Di 

DP Eee 000 P4522) De 

P4mm Dy 12 000 8 000 P4mm Cay 

12 000 8 330 P4bm (or 

12 005. 8 too! P4ycm (Pe 
111 VW ka | 12) ane 8 shh P4nnm Ci 

12 000 8 003 P4cc Ce 

12° ©1000" > 8. 335 P4nc Cas 
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12) 005 8. 000 P4ymc Gs 

12 005 8 30 P4, be Ch; 
P4 CG 13. 000 Pa Sa 

P42m Dg 13. 000 4 ~~ 000 P42m Dag 

13) 000° 4 .005 P42c Dig 

13324000. 145 yp c220 P42\m —- Dg 

13. 000 4 333 P42,¢ Dod 

P4m2 Dg 13. 000 5 000 P4m2 Dig 

131-9000". 3.» 200% P4c2 Dba 

13; 1000 5, «_/ 550 P4b2 Daa 

| iss 000). 6) - 455 P4n2 Diag 

| P4i/mmm_ | Dg X C2 12>) S Dont s 000 7 000 | Pa/mmm Diy, 

12 000 8 005 7 000 | Pa/mee Dip 

| 12 000-8. 550007 310 | Pa/nbm Dap 

12,/. 8000 8 Gn 7 555) Pa/nnc = Dap 

12 000 8 430 7 330 | Pa/mbm Dip 

12 000 8 334 7 $33 | Palmne D&S, 

12 Ho 8 000 7 4350 P4jnmm Daj, 

12, 2436= 8.005 97 “HO | Paice Daz 

12 005 8 000 7 000 | P4,/mmc Dy, 

12 00 8 004 7 000 | P4g/mem Dah 

Ee ee og” adh Pa inboreDs,, 

12 dt g bit 7 = | Paoinnm = Dah, 

12 003 8 hho 7 433 | Paglmbe Daj 

12 343 g 242 7 000 | Pag/mnm = Daj 

i2 #44 8 000 7 453 | P4a/nme Dah 

i ig 8 0057 13 | Paa/nem Dai, | 
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IX Tetragonal, body-centered 

Primitive translations in unit cell: (000), (335) 
—— S| 

Re Cs 12 000 14 GC 

We Soe 14, ay 

I4/m GCs [2 e000N 7 000 14/m Cy 

127-035, 7 05) 14, /a Cr 

1422 Da 12 000 15 000 1422 D3 

12 03; 15 000 | 14122 Dae 

I4mm Ds 12 000 8 000 | [4mm Ci 

12 000 8 440 | I4em Ch 
12 053 8 000 14,md Cas 

12 034 8 004 I4\cd Cay 

14 CG; 13. 000 I4 54 

14m2 Da 13 000 5 000 14m2 Dea 

13-000; <5) #7005 | 14c2 age 

142m Da 13. 000 4 000 142m Dia 

13 000 4 033 142d Ds 

I4/mmm | Dg X C2 12 000 8 000 7 000 | 14/mmm Dap 

12 000 8 004 7 000] 14/mem  D4¥, 

12 054 8 000 7 034] I4,/amd Daj, 

12 053 8 005 7 0353) I4,/ecd Dio 

X Trigonal, rhombohedral 

Primitive translations in unit cell of hexagonal lattice 

(000), (333), 

R3 C3 14. 000 R3 (oA 

R32 D3 14 000 6 000 R32 D3 

R3 G 15 000 R3 C3; 
R3m D3 14 000 10 000 R3m Cx 

14 000 10 004 R3c Ce 

R3m De 15 000 10 000 R3m Dog 

I 15 000 10 003 R3c De 



XI Hexagonal, primitive 

Primitive translations in unit cell: (000) 
eee 
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P3 

P312 

P321 | 

| P31m 

P6 

P6mm 

C3 

D3 

len 

000 

004 

00§ 

000 

GY ONE ON Cen Ofna 

10 

10 

10 

10 

isomorphic in 
P32 

isomorphic 

isomorphic 

isomorphic 

isomorphic 

: 
| 

| 
| 

P3N2 

3,12 

P3212 

[Pa2i 

P3,21 

P3221 

ce 

P31m 

Jee 

P3m1 

P3eEl 

P31m 

P3lc 

P3ml 

P3cl 

P6 

P6; 

P65 

P64 

P64 

P63 

P6mm 

A) JeSee 

P63cm 

P63mc 
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P622 

P6/m 

P6 

P6m2 

P62m 

P6/mmm 

XII Cubic, primitive 

THE THREE-DIMENSIONAL SPACE GROUPS 

De 

C6 X Co 

Db X Co 

1 

16 

16 

000 

00 

008 

005 

002 

005 

000 

000 

003 

005 

SO a Sa I ea 

Or ON, Cn tan 

000 

002 

002 

003 

003 
1 

005 

000 

Primitive translations in unit cell: (000) 

1g 

P432 

P43m 

ap 

TX Cy 

18 

18 

18 

18 

18 

12 

12 

12 

12 

13 

13 

000 

000 

000 

Pie BIW Nie Bw Bie nie Bie BW Nie 

| P622 De 

somos ae Ze 
P6522 Dz 

sonore stag: De 
P6422 De 

P6322 Dé 

P6/m Cap 

P63/m Cen 
P6 Chy, 

P6m2 Dip 

P6c2 D3, 

P62m D3, 

P62c Day 

7 000 | P6/mmm Dkp 

7 000 | P6/mee Dey, 

i 005 P63/mcm Dip 

7 005 P63/mmc Dey 

P23 ie 

P2,3 Ta 

2 000 | Pm3 Tj 

Dey eens T; 

2 000 | Pa3 TR 

P432 oO} 

P4432 Ox 

isomorphic Oe oi 
P4132 ae 

P43m Th 

P43n T4 
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Pm3m OXC> 12, 000 19 000 2 000 | Pm3m Oh 

12 000 19 000 2 4333 | Pn3n O}, 

12 335 19 000 2 000 | Pm3n O;, 

12 353 19 000 2 433! | Pa3m On 

XII Cubic, body-centered 

Primitive translations in unit cell: (000), (553) 
— — — 
123 T 18 000 3 000 123 Ts 

18 000 3 505 W203 T 

Im3 | TXC, 18 000 3 000 2 000 | Im3 TP 

18-000 3° 030° ©2) 000 “023 Ty 

1432 | O 12 000 19 000 1432 0° 

12 233 19 000 14,32 Oo 

143m O 13 000 19 000 143m T3 

13. 333 19 ~— 000 143d i 

Im3m OXC2 12 000 19 000 2 000 | Jm3m O}, 

a 12 333 19 000 2 000 | la3d On 

XIV Cubic, face-centered 

Primitive translations in unit cell: (000), (55 0), (5 03), (055 

P23 [ . 18 000 3 000 F23 7 

Fm3 TXO> 18 000 3 000 2 000 | Fm3 T; 

18 000 3 000 2 434 | Fa3 Th 

F432 O 12 000 19 000 F432 0? 

i2 333 19 000 FA, 32 800 

F43m O 13 000 19 000 F43m T4 

13. 003 19 000 F43c tS 

Fm3 OX Cy 12 000 19 000 2 000 |Fm3m Of 

12 003 19 900 2 000 | Fm3c Of 

12 212 19 000 2 444 | Fd3m o; 

Ee | | 12) 445 19) 000) <2 dae | Fd3c Of | 



BIBLIOGRAPHY 

In the following list we give the references cited in the text as well as some 

other papers treating solid state problems by group theoretical methods, but 

which were not discussed in the preceding pages. 

In the list appear a number of books on related subjects which can be use- 

ful for consultation, further reading or a deeper understanding. A book which 

has much in common with the present one is Streitwolf [1967]. Other books 

especially concerned with the symmetry of the solid state are Knox and Gold 

[1967], which includes many reprints of important papers, and the reprint 

volume Meijer [1964]. For the mathematical treatment of crystallographic 

point groups and space groups we recommend Burckhardt [1966]. The repre- 

sentation theory of these groups is treated in Bradley and Cracknell [1971]. 

In Buerger [1963] the space groups and their elements are discussed more 

from the point of view of a crystallographer. 

Altmann, S.L. and C.J. Bradley, 1965: Lattice harmonics II, Rev. Mod. Phys. 37, 33-45. 

Altmann, S.L. and A.P. Cracknell, 1965: Lattice harmonics I, Rev. Mod. Phys. 37, 

19-32. 

Ascher, E., 1966a: Role of some maximal subgroups in continuous phase transitions, 

Phys. Letters 20, 352—357. 

Ascher, E., 1966b: Some properties of spontaneous currents, Helv. Phys. Acta 39, 

40-48. 

Ascher, E., 1967: Symmetry changes in continuous phase transitions, a simplified theory 

applied to V3Si, Chem. Phys. Letters 1, 69-72. 

Ascher, E. and A. Janner, 1965a: Subgroups of black—white point groups, Acta Cryst. 

18, 325—330. 

Ascher, E. and A. Janner, 1965b: Algebraic aspects of crystallography I: space groups 

as extensions, Helv. Phys. Acta 38, 551—572. 

Ascher, E. and A. Janner, 1968: Algebraic aspects of crystallography II: nonprimitive 

translations in space groups, Comm. Math. Phys. 11, 138—167. 

Aviram, A. and J. Zak, 1968: Matrix elements in systems with nonunitary symmetry, 

J. Math. Phys. 9, 2138—45. 

Backhouse, N.B., 1970, 1971: Projective representations of space groups II and III, 

Qu. J. Math. Oxford (2) 21, 277—295; 22, 277-290. 

Backhouse, N.B. and C.J. Bradley, 1970: Projective representations of space groups I, 

Qu. J. Math. Oxford (2) 21, 203-222. 

272 



BIBLIOGRAPHY 27/3} 

Bell, D.G., 1954: Group theory and crystal lattices, Rev. Mod. Phys. 26, 311. 
Belov, N.V., N.N. Neronova and T.S. Smirnova, 1957: Soviet Phys. Cryst. 2, 311. 
Bethe, H., 1929: Termaufspaltung in Kristallen, Ann. Phys. 3, 133 (English edition by 

Consultants Bureau, New York). 

Bhagavantam, S., 1966: Crystal symmetry and physical properties, Academic Press, 

New York. 

Bieberbach, L., 1911: Uber die Bewegungsgruppen der Euklidischen Ratime, Math. Ann. 
70, 297-336. 

Bieberbach, L., 1912: II Die Gruppen mit einem endlichen Fundamentalbereich, Math. 
Ann. 70, 400-412. 

Birman, J.L., 1962: Space group selection rules, Phys. Rev. 127, 1093. 

Birman, J.L., 1963: Theory of infrared and Raman processes: selection rules in diamond 

and zincblende, Phys. Rev. 131, 1489—96. 

Birman, J.L., 1966: Full-group and subgroup methods in crystal physics, Phys. Rev. 150, 

771-782. 

Birman, J.L., 1967: Contribution to ‘‘Ferroelectricity”’ (Weller ed.), Elsevier. 

Birss, R.R., 1964: Symmetry and magnetism, North-Holland, Amsterdam. 

Boerner, H., 1967: Representations of groups, North-Holland, Amsterdam. 

Boon, M., 1964: The dependence of the anisotropic Knight shift on crystal symmetry, 

Physica 30, 1326—40. 

Born, M. and K. Huang, 1954: Dynamical theory of crystal lattices, Oxford University 

Press, Oxford. 

Bouckaert, L., R. Smoluchowski and E. Wigner, 1936: Theory of the Brillouin zone and 

symmetry properties of wave functions in crystals, Phys. Rev. 50, 58—67. 

Bradley, C.J., 1966: Space groups and selection rules, J. Math. Phys. 7, 1145—52. 

Bradley, C.J. and A.P. Cracknell, 1966: Corepresentations of magnetic point groups, 

Prog. Theor. Phys. 36, 648—9. 

Bradley, C.J. and A.P. Cracknell, 1970: Some comments on the theory of space group 

representations, J. Phys. C3, 610-618. 

Bradley, C.J. and A.P. Cracknell, 1971: Mathematical theory of symmetry in solids, 

Oxford University Press, Oxford. 

Bradley, C.J. and B.L. Davies, 1968: Magnetic groups and their corepresentations, Rev. 

Mod. Phys. 40, 359-379. 

Bradley, C.J., D.E. Wallis and A.P. Cracknell, 1970: Some comments on the theory of 

space group representations II, J. Phys. C3, 619-626. 

Brinkman, W. and R.J. Elliott, 1966: Space group theory for spin waves, J. Appl. Phys. 

37, 1457-59. 

Brinkman, W., 1967: Magnetic symmetry and spin waves, J. Appl. Phys. 38, 939-943. 

Brott, C., 1966: Program zur Bestimmung absolut irreduzibler Charaktere und Dar- 

stellungen endlicher Gruppen, Diplomarbeit, University of Kiel. 

Brown, E., 1964: Bloch electrons in a uniform magnetic field, Phys. Rev. 133 A, 1038. 

Brown, E., 1968: Aspects of group theory in electron dynamics, Solid State Physics 

(ed. Seitz and Turnbull) Academic Press, New York, 22, 313—408. 

Buerger, M.J., 1963: Elementary crystallography, John Wiley, New York. 

Burckhardt, J.J., 1966: Die Bewegungsgruppen der Kristallographie (2nd ed.) 

Birkhatiser, Basel. 

Chen Li-Ching, R. Berenson and J.L. Birman, 1968: Space group selection rules: Fm3m, 

Phys. Rev. 170, 639-648. 



274 BIBLIOGRAPHY 

Clifford, A.H., 1937: Representations induced in an invariant subgroup, Ann. Math. 38, 

533-550. 
Coleman, A.J., 1968: Induced and subduced representations, in: “Group theory and its 

applications” (M. Loebl ed.) Academic Press, New York. 

Cornwell, J.F., 1969: Group theory and electronic energy bands in solids, North-Holland, 

Amsterdam. 

Cornwell, J.F., 1971: Origin dependence of the symmetry labelling of electron and 

phonon states in crystals, Phys. stat. sol. 43, 763—767. 

Cracknell, A.P., 1968: Crystal field theory and the Shubnikov point groups, Adv. Phys. 

17, 367-420. 
Cracknell, A.P., 1969: Symmetry adapted functions for double point groups I, Non- 

cubic groups, Proc. Cambridge Phil. Soc. 65, 567-578. 

Dimmock, J.O., 1963: Use of symmetry in the determination of magnetic structures, 

Phys. Rev. 130, 1337-44. 

Dimmock, J.O. and R.G. Wheeler, 1964: Symmetry properties of magnetic crystals, in: 

“Mathematics of physics and chemistry II” (Margenau and Murphy eds.) D. Van 

Nostrand, Princeton. 

Doering, W., 1959: Die Strahldarstellungen der kristallographischen Gruppen, Z. Natur- 

forsch. 14a, 343-350. 

Elliott, R.J. and R. Loudon, 1960: Group theory of scattering processes in crystals, 

J. Phys. Chem. Solids 15, 146. 

Fast, G. and T. Janssen, 1971: Determination of n-dimensional space groups by means 

of an electronic computer, J. Comp. Phys. 7, 1—11. 

Fedorow, E. von, 1892: Zusammenstellung der kristallographischen Resultate, Z. Krist. 

20. 

Fischbeck, H.J., 1963: Theory of a Bloch electron in a magnetic field, Phys. stat. sol. 3, 

1082, 2399. 

Fischbeck, H.J., 1968: General theory of the Bloch electron in a magnetic field, Phys. 

stat. sol. 30, 779-789. 

Fischbeck, H.J, 1970: Theory of Bloch electrons in a magnetic field, Phys. stat. sol. 38, 

11-62. 

Flodmark, S., 1968: Group theory in solid state physics, in: ““Group theory and its 

applications” (M. Loebl ed.) Academic Press, New York. 

Flodmark, S. and E. Blokker, 1967: A computer program for calculation of irreducible 

representations of finite groups, Int. J. Quantum Chem. Is, 703-711. 

Frei, V., 1967: On energy bands of crystals with lowered point symmetry, Phys. stat. 

sol. 22, 381—390. 

Glick, M., Y. Gur and J. Zak, 1967: Double representations of space groups, J. Math. 

Phys. 8, 787-790. 

Griffith, J.S., 1961: The theory of transition-metal ions, Cambridge University Press, 

Cam bridge. 

Hall, M., 1959: The theory of groups. Mac Millan, New York. 

Hamermesh, M., 1962: Group theory, Addison Wesley, Reading. 

Harper, P.G., 1955: General motion of conduction electrons in a uniform magnetic 

field, Proc. Phys. Soc. (London) A68, 879—892. 

Harter, W.G., 1969: Algebraic theory of ray representations of finite groups, J. Math. 
Phys. 10, 739-752. 

Heesch, H., 1929: Z. Krist. 71, 95. 



BIBLIOGRAPHY YS) 

Heine, V., 1960: Group theory in quantum mechanics, Pergamon Press, New York. 
Henry, N.F.M. and K. Lonsdale, 1965: International Tables for X-ray crystallography, 

I symmetry groups, Kynoch Press, Birmingham. 

Herman, F., 1959: Lattice vibrational spectrum of germanium, J. Phys. Chem. Sol. 8, 
405-18, 421-2. 

Hermann, C., 1948: Kristallographie in Ratime beliebiger Dimensionszahl, Acta Cryst. 2, 
139-145. 

Herring, C., 1937a: Effect of time reversal symmetry on energy bands of crystals, Phys. 

Rev. 52, 361—36S. 

Herring, C., 1937b: Accidental degeneracy in the energy bands of crystals, Phys. Rev. 52, 

365-373. 

Herzfeld, C. and P. Meijer, 1961: Group theory and crystal field theory, in: “Solid state 

physics” (Seitz and Turnbull eds) Vol. 12. 

Hurley, A.C., 1951: Finite rotation groups and crystal classes in 4 dimensions, Proc. 

Cambridge Phil. Soc. 47, 650-661. 

Hurley, A.C., 1966a: Ray representations of point groups and irreducible representations 

of space groups and double space groups, Phil. Trans. Roy. Soc. A 260, 1—36. 

Hurley, A.C., 1966b: Finite rotation groups and crystal classes in four dimensions, in: 

“Quantum theory of atoms, molecules and the solid state” (L6wdin ed.) Academic 

Press, New York. 

Janner, A., 1966: On Bravais classes of magnetic lattices, Helv. Phys. Acta 39, 665-682. 

Janner, A. and E. Ascher, 1970a: Space-time symmetries of crystal diffraction, Physica 

46, 162-164. 

Janner, A. and E. Ascher, 1970b: Relativistic symmetry groups of uniform electromag- 

netic fields, Physica 48, 425-446. 

Janner, A. and T. Janssen, 1971: Electromagnetic compensating gauge transformations, 

Physica 53, 1—27. 

Jansen, L. and M. Boon, 1967: The theory of finite groups, North-Holland, Amsterdam. 

Janssen, T., 1969: Crystallographic groups in space and time II, Physica 42, 71—92. 

Janssen, T., 1972: On projective unitary/antiunitary representations of finite groups, 

J. Math. Phys., 13, 342—S1. 

Kitz, A., 1965: Uber die irreduzible Darstellungen der Raumgruppen und die Strahlvor- 

stellungen der kristallographischen Punktgruppen, Phys. stat. sol. 8, 813-829. 

Klauder, L.T. and J.G. Gay, 1968: Note on Zak’s method for constructing representa- 

tions of space groups, J. Math. Phys. 9, 1408—09. 

Knox, R. and A. Gold, 1967: Symmetry properties in the solid state, Benjamin, 

New York. 

Koptzik, V.A., 1966: Shubnikovskie Gruppi (in Russian) Izdatelstwo Moskowskowo 

Universiteta, Moscow. 

Koster, G.K., 1957: Space groups and their representations, in: “Solid state physics” 

(Seitz and Turnbull eds.) Vol. 5S. 

Koster, G., J. Dimmock, R. Wheeler and H. Statz, 1963: Properties of the 32 point 

groups, MIT-press, Cambridge (Mass.). 

Kovalev, V., 1961: Irreducible representations of space groups (in Russian) Izdatelstwo 

Ak. Nauk SSSR, Kiev. 

Landau, L. and E. Lifshitz, 1959: Statistical physics, Pergamon, London. 

Lax, M., 1965: Subgroup techniques in crystal and molecular physics, Phys. Rev. 138, 

A 793-802. 



276 BIBLIOGRAPHY 

Lax, M. and J.J. Hopfield, 1961: Selection rules connecting different points in the 

Brillouin zone, Phys. Rev. 124, 115. 

Litvin, D.B. and J. Zak, 1968: Clebsch—Gordan coefficients for space groups, J. Math. 

Phys. 9, 212-221. 

Lomont, J.S., 1959: Applications of finite groups, Academic Press, New York. 

Léwdin, P.O., 1967: Group algebra, convolution algebra and applications to quantum 

mechanics, Rev. Mod. Phys. 39, 259—287. 

Luehrmann, A.W., 1968: Crystal symmetry of plane-wave-like functions, I symmorphic 

groups, Adv. Phys. 17, 1—78. 

Lyubarski, G., 1962: Anwendungen der Gruppentheorie in der Physik, VEB Deutsche 

Verlag, Berlin. 

Mac Kay, J., 1968: A method for computing the character table of a finite group, in: 

“Computers in mathematical research’ (Churchhouse ed.) North-Holland, Amsterdam. 

Mackey, G.W., 1955: Lectures given at the University of Chicago. 

Mackey, G.W., 1958: Unitary representations of group extensions, Acta Math. 99, 

265-311. 

Maradudin, A.A. and S.H. Vosko, 1968: Symmetry properties of the normal vibrations 

of a crystal, Rev. Mod. Phys. 40, 1—37. 

Maradudin, A.A., E.W. Montroll and G. Weiss, 1963: Theory of lattice dynamics in the 

harmonic approximation, Academic Press, New York. 

Messiah, A., 1961: Quantum mechanics, North-Holland, Amsterdam. 

Meijer, P.H., 1964: Group theory and solid state physics, I A selection of papers, Gordon 

and Breach, New York. 

Miller, S. and W.F. Love, 1967: Tables of irreducible representations of space groups 

and co-representations of magnetic space groups, Pruett Press, Boulder. 

Murthy, M.V., 1966: Ray representations of finite nonunitary groups, J. Math. Phys. 7, 

853-857. 

Nussbaum, A., 1966: Crystal symmetry, group theory and band structure calculations, 

in: “Solid state physics” (Seitz and Turnbull eds.) Academic Press. 

Opechowski, W., 1940: Sur les groupes cristallographiques doubles, Physica 7, 552—562. 

Opechowski, W. and R. Guccione, 1965: Magnetic symmetry, in: “Magnetism” (Rado 

and Suhl eds.) Vol. Ila, Academic Press. 

Opechowski, W. and W.G. Tam, 1969: Invariance groups of the Schrodinger equation for 

the case of a uniform magnetic field, Physica 42, 529-556. 

Overhof, H. and U. Roessler, 1968: Magnetic space groups and their irreducible represen- 

tations, Phys. stat. sol. 26, 461—468. 

Puff, H., 1970: Contribution to the theory of cubic harmonics, Phys. stat. sol. 41, 11—22. 

Raghavacharyulu, I.V.V., 1961a: Representations of space groups, Can. J. Phys. 39, 

830-839. 

Raghavacharyulu, I.V.V., 1961b: Normal vibrations in crystals, Can. J. Phys. 39, 

1704-20. 

Rudra, P., 1965a: On projective representations of finite groups, J. Math. Phys. 6, 

1273-77. 

Rudra, P., 1965b: On irreducible representations of space groups, J. Math. Phys. 6, 

1278-82. 

Rudra, P., 1966: On irreducible tensor operators for finite groups, J. Math. Phys. 7, 
935-937. 

Schoenflies, A., 1891: Krystallsysteme und Krystallstructur, Leipzig. 



BIBLIOGRAPHY 277 

Schur, I., 1904: Uber die Darstellungen der endlichen Gruppen durch gebrochene 

lineare Substitutionen, J. reine u. angew. Math. 127, 20-50. 

Schur, I., 1907: Untersuchungen tiber die Darstellung der endlichen Gruppen durch 

gebrochene lineare Substitutionen, J. reine u. angew. Math. 132, 85—137. 

Seitz, F.: A matrix-algebraic development of the crystallographic groups, Z. Krist. I 88, 

433 (1934); II 90, 289 (1935); III 91, 336 (1935); 1V 94, 100 (1936). 

Shubnikoy, A.V., N.V. Belov et al., 1964: Coloured symmetry (Holser ed.) MacMillan, 

New York. 

Streitwolf, H.W., 1967: Gruppentheorie in der Festkorperphysik, Geest und Portig, 

Leipzig. 

Tam, W.G., 1969: Invariance group of the Schrédinger equation for the case of a uniform 

magnetic field Il, Physica 42, 557—S64. 

Tinkham, M., 1964: Group theory and quantum mechanics, Mac Graw Hill, New York. 

Waeber, W., 1969: Lattice vibrations of gallium, J. Phys. C 2, 882. 

Warren, J.L., 1968: Further considerations on the symmetry properties of the normal 

vibrations of a crystal, Rev. Mod. Phys. 40, 38-76. 

Wigner, E., 1932: The operation of time reversal in quantum mechanics, Gottinger Nach- 

richten 546—S59. 

Wigner, E., 1939: On unitary representations of the inhomogeneous Lorentz group, Ann. 

Math. 40, 149-204. 
Wigner, E., 1959: Group theory, Academic Press, New York. 

Wintgen, G., 1941: Zur Darstellungstheorie der Raumgruppen, Math. Ann. 118, 195—215. 

Zak, J.,1960: Method to obtain the character tables of nonsymmorphic space groups, 

J. Math. Phys. 1, 165-171. 
Zak, J., 1962: Selection rules for integrals of Bloch functions, J. Math. Phys. 3, 1278—79. 

Zak, J., 1964a: Magnetic translation group, Phys. Rev. 134, A 1602-11. 

Zak, J., 1964b: Group-theoretical consideration of Landau level broadening in crystals, 

Phys. Rev. 136, A 776—780. 
Zak, J., 1969: The irreducible repregentations of space groups, Benjamin, New York. 

Zassenhaus, H., 1947: Uber einen Algorithmus zur Bestimmung der Raumgruppen, 

Comm. Math. Helv. 21, 117-141. 



affine group 106 

algebra 11 

arithmetic 

— crystal class 119 

— equivalence 112, 119 

— holohedry 111 

— point group 119 

automorphism 9, 54 

inner — 10 

— group 10 

band index 148 

basis 17 

— functions 48 ff. 

Bieberbach theorems 119 

bilinear function 20 

bilinear form: see bilinear function 

black—and—white group 219 

Bloch function 148 

Bravais class 112, 240 

Brillouin zone 132 

magnetic — 216 

Burnside’s formula 32 

canonical epimorphism 9 

Cayley table 4 

central inversion 71 

character 29, 42 

— crystallographic point group 243 

— table 33 

class 7 

— function 12 
— multiplication constant 14 

— sum 13 

Clebsch—Gordan coefficients 67 

commutativity 4 

compatibility 181, 198 

compensating gauge 206 

component, irreducible — 27 

— of a vector 17 

INDEX 

comultiplicator 258 

conjugate, elements 7 

— subgroups 8 

convolution product 12 

corepresentation 172, 223, 225 

projective — 229, 257 

coset 7 

crystal, class 73, 119 

— field 88, 161 

— structure 124 

crystallographic point group 72 

cubic harmonics 103 

cyclic group 5, 77, 81, 244 

defining relation 5 

degeneracy 58 

accidental — 58, 61 

additional — 173 

diamond space group 125, 144, 193, 198 

diffraction 240 

dihedral group 77, 85, 245 

dimension 17 

direct, lattice 131 

— product 6, 107 

— sum, matrices 21 

— — representations 26 

— — sets of matrices 22 

— — spaces 21 

double, point group 158, 255 

— space group 165 
dual space 234 

dynamical matrix 191, 192 

electromagnetic, fields 205 

symmetry of — — 206 

electron bands 177 

endomorphism 9 

epimorphism 9 

canonical — 9 

equivalence relation 6 



equivalent, extensions 129 

— factor systems 129 

— matrices 19 

— sets of matrices 22 

— space groups 119 

Euclidean, group 107 

— motion 108 

— vector space 70, 107 

extra representations 158, 168, 255 

extension of a group 127 

factor group 8 

factor system 37, 128, 257 

associated — — 39, 258 

equivalent — — 129 

family of magnetic groups 220 

field 10 

form 

bilinear — 20 

Hermitian — 19 

invariant — 20 

positive definite — 20 

Frobenius reciprocity theorem 142 

Frobenius—Schur theorem 173 

full group method 154, 197 

full reducibility 23 

function, bilinear — 20 

Hermitian — 19 

fundamental region 136, 180 

gauge transformation 205 

compensating — — 206, 208 

generator 5S 

geometric, crystal class 73 

— equivalence 73, 111 

— symmetry 56 

glide reflection 110 

gray group 219 

group 3 

Abelian — 4 

— algebra 12 
cyclic — § 

— extension 127 

factor — 8 

finite — 4 

invariance — 56 

magnetic symmetry — 219 

— of k 134 

— ring 13 

symmetry — 56, 124 

INDEX 

Hermitian, conjugate 19 

— function = — form 19 

— matrix 19 

Herring’s criterion 173, 228 

Hilbert space 45 

holohedry 111, 222 

arithmetic — 111 

homogeneous magnetic field 212 

homomorphism 9 

image 9 

index 7 

inner Kronecker product 22 

integral group ring 13 

international symbol 81, 220 

invariant 68 

— form 20 

— subgroup 8 

— subspace 21 

irreducible, components 27 

— set of matrices 23 

— space 21 

isomorphism 9 

kernel 9, 24 

Kramer’s degeneracy 173 

Kronecker product 22 

inner — 22 

outer — 22 

symmetrized — 98, 103, 238 

lattice 72, 110 

centered — 112 

— coordinates 110 

— group 72, 108, 110 

— harmonics 103 

primitive — 112 

— system 111 

— vibrations 189 

left coset 7 

linear, independence 17 

— mapping 18 

— transformation 18 

— vector space 11, 17 

little group 139 

magnetic, Brillouin zone 216 

— cell 216 

— crystal class 220 

— field 212 

— group 218 

SMattices 22 

YS) 



280 

— point group 220 

— space group 220, 223, 229 

mapping 9 

matrix 18 

monomorphism 9 

multiplication table 4 

multiplicator 39 

multiplicity 27, 31 

natural degeneracy 58 

nonprimitive translation 109, 110 

nonsymmorphic space group 118, 120 

norm 46 

normal subgroup 8 

octahedral group 78, 247 

operator 46 

adjoint — 46 

antilinear — 46 

antiunitary — 46 

geometric symmetry — 56 

Hermitian — 46 

linear — 46 

projection — 51 

— ray 54 

scalar — 65 

self-adjoint — 46 

substitution — 55 

symmetry — 55 

tensor — 64 

unitary — 46 

vector — 65 

orbit 142 

order, of an element 5 

— of a group 4 

— of a set 22 

orthogonal group 70, 88, 107 

orthogonal matrix 19, 70 

orthogonality relations, for characters 30 

— for projective representations 41 

— for representations 27 

orthogonalized plane waves 188 

Pauli equation 209 

permutation group 14, 35 

perturbation 60 

point group 72, 109 

abstract — 72 

crystallographic — 72, 77 

— — of Ist kind 73 

— — of 2nd kind 76 

INDEX 

polarisation matrix 196 

pole of rotation 74 

primitive translation 109 
projective, corepresentation 229, 257 

— representation 37, 257 

— unitary representation 37, 257 

quasi-momentum 150 

quotient group 8 

ray 53 

— representation 37 

rearrangement theorem 4 

reciprocal lattice 131 

reduced zone 136 

reducible, matrix 21 

— representation 26 

— set of matrices 23 

— space 21 

reflection 71 

relation 5 

defining — 5 

representation 24 

adjoint — 69, 234 

allowable — 139 

associated — 38 

conjugate — 138 

contragredient — 69, 234 

dimension of — 24 

— domain 136 

double valued — 156 

equivalent — 24 

extra — 158, 168, 255 

faithful — 24 

fully reducible — 26 

— group 43 

induced — 139 

irreducible — 26 

matrix — 24 

multiplier — 37 

— of point groups 81, 243 

product — 27, 40 

projective — 37, 53, 257 

ray — 37 

reducible — 26 

regular — 25, 235 

self-conjugate — 139 

single valued — 156 

— of space groups 130, 142 

spin — 155 



subduced — 138 

sum — 26 

unitary — 25 

vector — 37 

right coset 7 

ring 10 

rotation 71 

— group 71, 155 

roto-reflection 71 

scalar 11 

— operator 65 

Schoenflies symbol 81 

Schur’s, lemma 23 

generalized — — 259 

— multiplicator 39 

screw motion 110 

Seitz notation 108 

selection rules 62 

— for space groups 149 

semi-direct product 106, 129 

set of generators 5 

set valued function 11 

similarity 19, 39, 257 

Shubnikov group 171, 206, 218, 219 

space group 108, 262 

spin 155 

splitting of levels 62, 88 

star 133, 152, 184 

INDEX 

subgroup 5 

— method 154, 179, 197 

proper — 5 

invariant — 8 

conjugate — 8 

sublattice 112 

subspace 20 

invariant — 21 

irreducible — 21 

symmetric matrix 19 

symmetrized plane waves 183 

symmetry adapted functions 103 

symmorphic space group 118 

system, of lattices 112 

— of nonprimitive translations 111 

tensor 236 

— operator 64 

— product 21, 22 

tetrahedral group 77, 247 

time reversal 169 

translation group 71, 109 

transpose matrix 19 

unit cell 113 

unitary matrix 19 

vector 11 

— operator 65 

<= imiy 513" 

Wigner-Eckart theorem 68 

Wigner-Seitz cell 113 









18K Q0905.2 136 
anssen, I, 
és — aphic groups 

Weiner Library/Fairleigh Dickinson Univ. 
Teaneck, NJ 07666 

wi 0 
08 O0eb 

SS = 



Cs oe aay) ea dege atte tata. 
We eaten, airs i “ ia Se se ve Ct ed nena ae 

f : Saat aie a Ts rik ook 
facereie toric) Ys woe is gist tet A oy be 

Ae MAES Evie Seek 
a os ¢ eae asi Oe ot Re APN ON OLOT BAO Waele tecumsoa ts Stee) Reno ESE NO EVE es SUD PA LD ‘ee NEG Fl hie Pipe pe he MOEA es # Lee 'G PEK Seat BGs 

PN ee anata Po Net eb 
rain olgenielene an Pe ert tel dente tates Tena ne atmo geet Ae: fares LEA ala sisi ie Cypha 

eae oct See 5D ak Ranh epee hoy Spm mans PP eam plac PLB EOIN 
"Ae Becnia BASAL EEE GP OSS BA SEE PERE ere es IO} 

“ i OTE 
¢ Teettehaed 

Gre to Pate he > 
La era 

Surrey ese} PPro ahh eek ears 
Seine Monieoues 

Ro Ree 
sh Wg ED CCH SCA BA A a hee | 
Ata te t 

PAnataneieates ss EOS Sans a ttl nth 8 amg ’ chee ered #4 Tee Stee ae 
ene nt 

SSS Seas 
ee ear Stars yma) 

Oat 
Zee 

WS ie 
Derr Aes 

Wi 8 Aes ee 
eat 

oe 
ante 

cet lege! 

Range 
G} : 

San 

ac 
Sia 

Ss Ait hat 

par <a 

= é 

Sei 28.5 
82538 

iS 

Seen 

Rode Te GN wa Nr eet ata Hox teland hana Af DUae Pen PON eh pear) 

mete 
RSS Ss 

SA ORES ESOS AE CS SS 

yer ye} 
SNegh ie cewitcch aon = SE Seva ewe rece:t 

bet aesgelelS 
RR SE AS MS gee as LILO ERT ab eats ei te PUN eT Rar ear OORT Seo braun ihiv et ettaue Gawana and ee 

SS SUE Ais a eee eae ‘ Wea ele Mi cgoe oe eee wl a he i ae PIT ranger a ones 
pote Ene a arorn kato Eebrarttan Sy eS AD ae 

or ame ED 
oer 
eT 

Pei en art oot ope yy 
BR Crary iru S600) ds SU ina 4 eet RNIN LS Pontes inl ate 

Fem AST Bat Ba Wseahia Wiig GD INO as Siesey erase lure ee 
aa kee tree) imino Rane os yee bape Capen Potente eierey TRU hear eda SIN) he rob A LS SS a ease asus Nave Ciara 3 9 SRS a Tee TOT CTO este ie Pee oE eS Peae acer met or ae 

aicose 
PO [IRR EES 

z Lear ee rk ae es Rae eee SRS PSDL PAO eM MDE ELON Due Mn 


