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Preface 

The uses of crystallography cover a wide spectrum. At one extreme lies the 
occasional recording of a powder pattern, usually for purposes of identification: at 
the other lies the full-scale structure determination that employs the whole range of 
modern automated equipment and powerful computers. Recently the glamour of the 
latter has tended to overshadow the many other ways in which crystallography can 

help scientists, and it is hoped that this book may help to redress the balance. 
It is not intended here to provide a complete guide to crystal structure analysis, 

although the subject is briefly covered. There are many excellent texts available for 

those who intend to specialize in this field—some are listed in the Bibliography—and 
it is not my intention to compete with these in any way. Instead I am trying to 
emphasize the many other ways in which a knowledge of crystallography can be 

useful. In addition to discussing routine identification techniques, I have tried to 
point out such uses as studies of reactions in the solid state, applications to polymer 
science and the use of a knowledge of unit cell parameters to establish composition. 

In writing the text I have had in mind two groups of people. On the one hand, I 

hope that it will be useful to the advanced undergraduate who would like a general 
introduction to the subject in all its aspects without undue emphasis on crystal 
structure analysis; in particular it should appeal to students following courses with an 
applied or materials science bias. On the other hand, I would hope that it might also be 
a useful practical guide for those research workers (industrial as well as academic), who 
without wishing to specialize in crystallography would like to use some of its tech- 

niques to help them along. Since a book of this length cannot hope to treat all aspects 
of the subject in depth, I have provided copious suggestions for further reading so that 
a reader, having established his or her area of interest, can then pursue the topic in 
more depéh if desired. 

The shape of the book has been determined by these considerations. The first 
chapter is devoted to providing a thorough grounding in the concepts used when talking 
about crystalline order. Subsequent chapters develop these concepts in relation to 
crystal optics, and powder and single crystal diffraction effects. The final chapters 
give a brief survey of the principal techniques used in crystal structure analysis, mainly 

with the aim of enabling the reader to understand and assess papers on the subject, 
and a short treatment of the complementary techniques of neutron and electron 
diffraction. The last chapter attempts to give a ‘cost-benefit’ analysis for the various 
techniques covered, to enable the reader to assess the information likely to be obtained 
against the effort likely to be expended. 

I am grateful to those of my colleagues who have constructively criticized parts of 
the text, and in particular to Professor H. F. W. Taylor, especially for his comments 

on the chapter on crystal optics, and to Dr. J. A. Gard for his comments on the section 
on electron diffraction. I am also grateful to those of our honours students who read 
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various parts of the manuscript and helped greatly by pointing out obscurities in the 
text. Any remaining errors, omissions or obscurities are entirely my own responsibility. 

The cover design is based on a high resolution electron micrograph of Nb22054 kindly 
provided by Professor Sumio Iijima. 

Finally I should like to thank my family for their help with proof reading, for 
comments (constructive and otherwise) and for putting up with me in general. Also 
my thanks to Mr. B. G. Cooksley and Mr. J. R. Price for their help with the photo- 
graphs and Fig. 6.11, and to Miss Elma McGrath who typed, deleted and retyped 
successive versions of the manuscript with unflagging cheerfulness. 
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CHAPTER 1 

Pattern and symmetry 

1.1. The solid state 

It is not easy to give a completely satisfactory definition of a solid; examples of 

‘borderline’ materials can always be found. I shall use ‘solid’ to mean any material 
whose constituent particles (atoms, ions or molecules) are relatively fixed in position, 
except for thermal vibrations; ‘fluid’, on the other hand, will mean a material whose 

particles are in a state of constant translational motion. 
A solid may be composed of particles arranged in a regularly repeating pattern (a 

situation difficult to achieve with any degree of permanence in a fluid) in which case it 

is said to be crystalline. A solid whose particles show no long-range order is said to be 
amorphous, and in many of its properties it will resemble a fluid whose particles have 
suddenly ceased to move; indeed, one school of thought does not regard such materials 
as solid at all, but classifies them as supercooled liquids. This idea has some merit when 
glasses are being considered (although even here it runs somewhat counter to common 

sense: most of us have enough faith in the solidity of glass to use it freely for con- 
taining liquids and will avoid bringing our heads into violent contact with large chunks 

of it) but there are many amorphous solids that are not supercooled liquids—charcoal 
for example. Moreover, if crystalline and solid are considered to be synonymous, how 

shall we describe the many semi-ordered materials whose structures are intermediate 

between amorphous and crystalline? 

Let us therefore use the definition of a solid given in the opening paragraph, and 
regard the solid state as a continuum between the extremes of perfect order and com- 
plete disorder. The extreme of perfect order (Fig. 1.1(a)), in which the atomic pattern 
extends unbroken throughout the solid, is rarely encountered. More commonly small 

imperfections occur in the atomic pattern (Fig. 1.1(b)), which is thus broken up into 
small blocks of perfectly ordered material very slightly misaligned with respect to one 

another. Most crystals have this mosaic block type of structure; the blocks are large in 
comparison with atomic dimensions, but far smaller than the whole crystal. The mis- 
alignment between adjacent blocks is extremely small, usually only a few minutes of 
arc. The term single crystal implies a solid whose atomic pattern is broken only by 

small imperfections of this type. For many purposes we can treat such a crystal as if it 
were perfect, and for the present the slight imperfections will be ignored. 

The extreme of complete disorder is also rare; most amorphous solids show at least 
some local order even though long-range order is lacking. Between the two extremes, 
many intermediate states are possible. A solid may, for example, consist of many crys- 
tals grown together in an interlocking mass, the relationships between their orien- 
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tations being quite random (Fig. 1.1(c)); such a mass is said to be polycrystalline. Most 
metals are like this unless special efforts are made to grow them as single crystals. 
Other solids contain regions of order connected by regions of disorder; this type of 
structure occurs in many composite materials such as concrete, glass-ceramics and 
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Fig. 1.1 Two-dimensional representations of crystalline order. (a) Perfect order. (b) 
Mosaic block structure, with a small portion enlarged to show how the discontinuities 
can arise at the atomic level; both the amount of misalignment and size of the blocks 
are somewhat exaggerated. (c) A polycrystalline mass. 

paint films. Yet others show partial order throughout; for example they may have a 
regularly repeating pattern in only one or two directions—some polymers can have this 
sort of structure. 

All materials interact to some extent with electromagnetic radiation, but the 
amount of information that can be obtained from such interactions varies enormously. 
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Amorphous solids, having no long-range order, behave towards incident radiation in 
much the same way as fluids. They absorb or transmit it equally in all directions, or 
isotropically, and if a particle scatters some of the incident radiation it does so virtu- 

ally independently of the other particles. In contrast, the behaviour of crystalline 

materials towards radiation is modified by the ordered arrangement of their particles. 
Crystals may, for example, show anisotropy because different directions within the 

repeating pattern interact differently with the incident radiation. Such interactions 

with visible light form the basis of optical crystallography, which will be discussed 
briefly in the next chapter. If the wavelength of the incident radiation is of the order 

of the interatomic distances, scattering or diffraction phenomena become important, 
and these too are modified by the ordered arrangement of crystalline materials. 

The techniques of diffraction can be used to study any substance, but the infor- 
mation obtained about those devoid of long-range order is very limited; one may per- 
haps deduce the coordination number of some of the atoms and the average distance 
between neighbours, but very little more. Such studies can hardly be termed crystal- 

lography and will not be dealt with here. Provided that the material is even partially 
ordered, diffraction studies become much more powerful; the particles do not scatter 
the radiation independently, and interference effects arise. These may be interpreted 
to give detailed information about the structure of the material being examined. 

Diffraction studies on crystals most often use X-rays as the incident radiation, 
although beams of neutrons or electrons of suitable wavelength may also be used. Most 
of this book will be concerned with the practical details of such studies and the in- 
terpretation of the results. However, a proper understanding of both diffraction effects 
and optical crystallography requires some familiarity with the basic concepts of 
pattern and symmetry; a concise account of these follows. 

1.2 Concepts of pattern 

Since patterns or arrays are so basic to crystallography, it is convenient to devise 

shorthand ways of describing them. To begin with, let us consider the two-dimensional 
patterns in Fig. 1.2. 

Figure 1.2(a) shows a simple pattern and demonstrates three different ways of 

defining the pattern repeat or unit cell. All three cells have the same size, orientation 
and shape, although they start and finish in different parts of the pattern; that is they 

differ only in the choice of origin. Most people would instinctively choose A, but 
choice C is also good as it emphasizes that only one complete motif is associated with 
each unit cell (in A, each of the four motifs at the corners is shared between four cells) 
and that the space between motifs is as much a part of the pattern as is the motif it- 
self. Choice B has little to commend it aesthetically, and there are also sound intel- 
lectual reasons for rejecting it; these will emerge later. 

For many purposes, the pattern may be represented by an array of points, one for 
each repeat unit, as on the right-hand side of the diagram. The arrangement of these 

points reproduces the size, orientation and shape of the unit cell. The array formed is 

called a lattice, and the points lattice points. The arrangement shown in Fig. 1.2(a), 
with only one repeat unit or lattice point associated with each unit cell, is called primi- 
tive. 

The choice of unit cell for the pattern shown in Fig. 1.2(b) is trickier. Leaving aside 
the question of origin, cells can be chosen that differ in shape and size. Both A and B 
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(b) 

Fig. 1.2 Two-dimensional patterns (left) and their associated lattices. (a) A primitive 

pattern; the pattern unit may be chosen with its origin in different parts of the 

pattern, but its size, orientation and shape are unchanged. (b) A centred pattern; the 

primitive pattern unit (A or B) is an inconvenient shape and moreover has the wrong 

look wrong, although each contains the smallest area of pattern that if repeated will 

reproduce the whole. Choice C is preferable; it is a more convenient shape and also 

reflects the symmetry of the pattern, a point that is discussed in detail below. In this 
case more than one pattern unit or lattice point is associated with each unit cell, and 
such an arrangement is called non-primitive or centred. 

The orientation of the motifs must be considered when the repeat unit of the pat- 
tern is being determined. Although each unit cell of the patterns shown in Fig. 1.2(c) 
and (d) has two motifs associated with it, the arrangements are nevertheless primitive: 
no smaller area of pattern can be found that will, by a simple repeat, reproduce the 
whole. Comparison of Fig. 1.2(b) and (d) should make the distinction clear. 
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(d) 

symmetry; the proper choice (C) has two lattice points per cell. (c) The orientation of 

the motif must be considered when determining the pattern repeat; although the unit 

cell here contains two motifs, it is nevertheless primitive. (d) Another example 

showing the importance of the orientation of the motifs: compare with (b). 

The study of two-dimensional patterns is excellent training for the beginner crystal- 

lographer, and has the advantage of providing intellectual stimulation in unlikely situ- 
ations: many a bus or tube journey has been beguiled by a detailed study of the up- 

holstery on the seats. 

In crystals, everything is a bit more difficult because the pattern and lattice are 
three-dimensional. In general, the unit cell is a parallelepiped (Fig. 1.3) whose edges a, 
b and c are unequal, as are the angles between them (a, 6, y). Very often, however, as 

with two-dimensional patterns, symmetry requires that the unit cell be less general 
than this. A fuller discussion of this point will be deferred until after the next section, 
in which symmetry concepts will be considered in some detail. 
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Fig. 1.3 A three-dimensional unit cell, showing the arrangement of edges and angles. 

The directions of a, b and c are also the x-, y- and z-axes of the crystal. The position of 

a point P within the cell is defined by coordinates xp, yp and Zp, given as fractions of 

the appropriate cell edges. 

1.3 Symmetry of finite objects 

An object has symmetry if it can be divided into parts that correspond exactly 
through reflection across a plane, rotation about an axis, inversion through a point, or 
some combination of these operations. Moreover, performing the appropriate sym- 
metry operations on any one of these parts generates the whole object. 

To put this on a less formal basis, consider a teacup. If it were possible to slice it in 
half through the handle, as in Fig. 1.4(a), each half would be the mirror image of the 

other; holding either half with its cut edge against a mirror would reproduce the ap- 
pearance of the whole. The molecule of monochloramine (Fig. 1.4(b)) shows the same 
type of symmetry. For obvious reasons this is called a mirror plane; in the Hermann- 
Mauguin notation usually used in crystallography it is given the symbol m. In the older 
Schoenflies notation used in spectroscopy it may have the symbol h, v or d according 

to its orientation (horizontal, vertical or diagonal, with respect to the principal axes). 
Figure 1.5 shows the standard diagrammatic representation used in crystallography 

for vertical and horizontal mirror planes and also serves to introduce some of the other 

conventions used. Crystallographic diagrams are conventionally referred to x-, y- and 
z-axes; the unit-cell edges a, b and c are the repeat distances in these directions. Nor- 

mally, in projections, x and y lie in the plane of the paper; y is horizontal with its posi- 
tive direction to the right and the positive direction of x points down the page, 
although not necessarily at right angles to y. The positive direction of z points upwards 
from the paper but again need not be perpendicular to the xy plane. Unless otherwise 
stated, diagrams in this book conform to this convention. 

The asymmetric unit—any one of the ‘parts’ referred to in the opening paragraph of 
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Fig. 1.4 (a) A teacup, showing its mirror plane of symmetry. (b) The molecule of 

monochloramine. 

this section—is represented by an open circle, and a circle with a comma in it is its 
mirror image or enantiomorph; these are often called ‘right handed’ and ‘left handed’. 
In the present context these may represent any object or part of an object (half a 

teacup, for example!). In a molecule or crystal they will represent an atom or group 
of atoms; we shall see later how molecular and crystal symmetry interact. 

Where right- and left-handed units are superimposed in projection, a divided circle is 
used with a comma in one half. Heights are represented by ‘+’ and ‘—’ signs meaning 
respectively ‘+z’ and ‘“—z’ from the plane of the paper. If this is not clear, try con- 
verting Fig. 1.5 into three dimensions by using your hands as asymmetric units. 

The pair of scissors shown in Fig. 1.6(a) has a rotation axis, one half being related 
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Fig. 1.5 Mirror planes perpendicular to x (top left), y (bottom left) and z (right), 

shown in conventional form. The symbols © and © represent right- and left-handed 

asymmetric units respectively; heights (+ or —) give distances along the z axis, whose 

positive direction points up from the paper. 

to the other by rotation about the line indicated. (Most real scissors have only pseudo- 

symmetry.) Objects having rotational symmetry only are uncommon; a chemical 

example is the molecule of hydrogen peroxide shown in Fig. 1.6(b) together with the 

conventional representations of a two-fold axis. 
Both the rotation axes shown in Fig. 1.6 are two-fold. More generally, objects may 

have rotation axes of order n (or n-fold) meaning that all the following are true: 

(a) The parts are related by a rotation of 27/n about the axis. 

(a) (b) 

Fig. 1.6 Two-fold rotation axes: (a) in a pair of scissors, (b) in the molecule of 
hydrogen peroxide; two views, showing the conventional symbol for a two-fold axis in 
the plane of the paper (top) and perpendicular to it (bottom). 
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(b) Performing the operation n times will generate the whole from one of its parts 
and bring the original part back to where it started. 

(c) In the course of one complete revolution of the object about its symmetry axis, 

there will be n positions in which it presents an identical appearance. 

For an isolated object, m may take any value including infinity (consider a wine 
bottle), but crystal lattices can have only those axes that are compatible with a space- 
filling array. For example, individual molecules can have a five-fold rotation axis 

(cyclopentane) but they cannot be fitted together in an array which retains this sym- 
metry; Fig. 1.7 shows the results of trying. This means that in crystallography can 

have only the values 2, 3, 4 and 6, which simplifies things considerably. 

ae 

Fig. 1.7 An attempt to construct an infinite array based on five-fold symmetry. 

In crystallographic notation a rotation axis is represented simply by its order, 7; the 
equivalent spectroscopic notation is C,,. A ‘one-fold’ axis is equivalent to no symmetry 

at all, and the corresponding symbols (1 or C,) are used for a totally asymmetric ob- 
ject. Conventional representations of all these axes are to be found in Fig. 1.9; note 
that axes of order greater than two are taken perpendicular to the plane of the paper if 

Rotate through x 
=_— 

= ~ 
La \ 
x \ 

-@) \ \ 
Ss \ 

and? 5 h 
[e) invert N | 

= / 

O- -- 
1 (S,) 2=m(S}4) 

(a) (b) 

Fig. 1.8 (a) A centre of symmetry (small open circle) relating an enantiomorphous 

pair of objects. (b) A two-fold inversion axis passing vertically through the black dot is 
equivalent to a mirror plane in the plane of the paper. 
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possible, because of the difficulty of representing them convincingly in any other 

direction. 

Inversion through a point is illustrated diagrammatically in Fig. 1.8(a); the point is 

called a centre of symmetry. In crystallographic notation it is given the symbol & 

because it is a special case of an inversion axis. An n-fold inversion axis, symbol n, 

rotates the asymmetric unit through 27/n and then inverts it through a point lying i in 

the axis. Thus 1 means ‘rotate through 27 and invert’, which is of course simply 

inverting through a centre. Figure 1.8(b) shows that 2 is equivalent to a mirror plane, 

and in practice this is usually represented by m. Nevertheless it is sometimes helpful to 

think of a mirror plane in terms of the perpendicular two-fold inversion axis: the 

expression ‘two-fold symmetry in the x-direction’ then covers a two-fold rotation axis 

parallel to x, a mirror plane perpendicular to x, or both. Illustrations of 3, 4 and 6 axes 

can be found in Fig. 1.9; notice that only the odd orders produce a centre of symmetry 

in the final arrangement. 
The Schoenflies notation uses a different operator called an alternating axis (S,,), 

which combines rotation through 27/n with reflection across a plane perpendicular to 
the axis. Reference to Fig. 1.8 shows that S, is a simple mirror plane and S, a centre 

of symmetry (also represented by i or C;). The operator that a crystallographer would 
call a three-fold inversion axis is equivalent to a six-fold alternating axis (see Fig. 1.9) 
and vice versa. Although this is inconveniently confusing, it does at least demonstrate 
that the distinction between three- and six-fold symmetry is to some extent arbitrary. 

Any finite object possesses one or more of the above symmetry elements, and the 
collection of elements necessary to describe its symmetry completely is called its point 
symmetry or point group because its operation necessarily leaves at least one point in 
the object unchanged. The thirty-two point groups that can be derived from the sym- 

metry elements compatible with a crystal lattice are illustrated in Fig. 1.9, together 

Fig. 1.9 The thirty-two crystallographic point groups, arranged in the appropriate 

systems (see Section 1.4). The Schoenflies symbols are given in parentheses below the 

Hermann- Mauguin ones; where two are given, the second is that less commonly used. 
Faint lines represent possible directions for crystallographic axes, where these are not 

already defined by symmetry elements; in the trigonal and hexagonal systems there are 

three equally good positions for the two x- and y-axes; the third of these is shown by a 
dotted line. The monoclinic groups are shown with their two-fold symmetry perpen- 

dicular to the paper. 

The conventional crystallographic symbols for two-fold axes and mirror planes have 

been mentioned already. Those for three-, four- and six-fold axes are shown in groups 

3, 4 and 6 respectively, and those for the corresponding inversion axes in groups 3, 4 

and 6. Where the combination of an axis with a mirror plane produces a centre of 

symmetry on the axis, this is indicated by an open circle in the centre of the latter 

(see, for example 4/m, 6/m). 
The cubic groups are difficult to represent satisfactorily, and a somewhat uncon- 

ventional method has been used. Four-fold axes in the plane of the paper are given 

diamonds rather tnan squares, and three-fold axes inclined to the plane of the paper 
are shown with tapering, dashed shafts. The three asymmetric units related by these 

latter axes are connected by light solid lines, and the size of the circle is proportional 

to the distance from the plane of the paper, either up or down, of the unit that it 
represents. Some symmetry elements inclined to the plane of the paper have been 

omitted for clarity: not all the three-fold axes are shown, and in groups 432, 43m and 

m3m some elements of two-fold symmetry lying at 45° to the crystallographic axes 
have not been shown. The latter are generated by the operation of the 4 or 4 axes upon 
those that are shown. 
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with the crystallographic and equivalent Schoenflies symbols. The latter are given to 

provide concordance for those familiar with them, but are not explained further since 
they will not be used here. Details of the crystallographic nomenclature that are not 
self-evident, and the reasons for classifying the groups as triclinic, monoclinic, etc., will 

be explained in Section 1.4. 
Full appreciation of symmetry comes only with using the concepts. Determining 

the symmetry of everyday objects (ashtrays and vases are particularly rewarding) is 
splendid practice and an additional source of intellectual stimulation for life’s duller 

moments; you can ponder over the reasons why the symmetries m and mmz2 are found 

so frequently in man-made objects. It is also instructive to investigate some of the 

‘missing’ groups: why, for example, is there no group with symmetry 22 or 4/m? 

A crystal is a finite object, and, if perfectly developed, its external shape or mor- 
phology reflects its internal symmetry and enables it to be assigned to the appropriate 

point group, which is then referred to as its crystal class. For example, common salt 

normally crystallizes as cubes, but can be made to crystallize as octahedra; both shapes 

have symmetry m3m, and this is the crystal class of NaCl. Uneven development of 
faces frequently obscures the true symmetry, which can however be revealed by 

measurements of the angular relationships between faces. Such goniometric measure- 

ments, although not inherently difficult, are seldom made, except by mineralogists, 

probably because few laboratories possess the necessary goniometer. Occasionally, 

however, they give information not readily obtainable by other means, and then they 
should certainly be considered. More information will be found in some of the texts 

suggested for further reading; a mineralogical laboratory should be able to help with 
both instrument and know-how. At least you should consult the literature to see 
whether someone else has already made the measurements for you, particularly if you 
are repeating a preparation first made before the development of X-ray diffraction, for 
then the study of the morphology of crystals was often an important part of the 
characterization of a compound. 

Even if complete goniometric measurements are not possible, it is useful to note the 
shape of the crystal, since the faces that develop usually bear simple relations to the 
crystal axes. In the example of common salt just quoted, the formation of cubes 
means that the faces developed are those perpendicular to the crystal axes; octahedra 
are formed if the faces that develop are those perpendicular to the body diagonals of 

the unit cell. 
If crystals grow as prisms or needles, the needle or prism axis is usually also a crys- 

tal axis; if the prism faces are well developed, other axes may be perpendicular to them 
or bisect the angle between them. Plate-like crystals often have a principal axis perpen- 
dicular to the plate, or nearly so; the outline of the plate may indicate the possible 
symmetry of the crystal and the positions of the other axes. The relation of mor- 
phology to crystal axes will be discussed further in the next chapter. 

1.4 Systems and lattices 

The crystal classes fall into seven crystal systems, according to the way in which 
their symmetry elements restrict the shape of the unit cell. This is explained in the 
following brief notes, which should be studied in conjunction with Table 1.1 and Fig. 
1.9. 

If a crystal has no symmetry (point group 1), or a centre of symmetry only (1), 
there are no restrictions on the shape of the unit cell; all three angles, a, 8, and y have 
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to be specified and the system is hence called triclinic or occasionally anorthic (that is, 

non-orthogonal). A monoclinic crystal has two-fold symmetry in one direction only 

(2, m(=2) or 2/m; the last means ‘a two-fold rotation axis with a mirror plane per- 
pendicular to it’). One crystallographic axis is taken parallel to the direction of two- 
fold symmetry, and the other two axes must therefore be perpendicular to it. The 
choice of cell is thus restricted to a parallelepiped having two right angles; one angle 

has to be specified, hence the name monoclinic. 
An orthorhombic crystal has two-fold symmetry in three mutually perpendicular 

directions; the crystallographic axes are taken parallel to the symmetry directions, so 

the unit cell is orthogonal. The point groups (222, mm2, mmm) give the symmetry of 
each crystallographic axis in turn (that is, mm2 has 2 parallel to x and y, and 2 paral- 

lel to z). Note that here, as in many other more symmetrical groups, redundant sym- 

metry elements may be omitted. The full symbol for mmm is 2/m 2/m 2/m, but the 

three mirror planes generate the two-fold rotation axes, which are therefore omitted 
from the symbol. 

Higher symmetry, involving axes of order greater than two, imposes more stringent 
restrictions on the shape of the unit cell. The trigonal, tetragonal or hexagonal systems 
are characterized by a single three-, four- or six-fold axis respectively. One crystal- 
lographic axis, always designated c, is taken parallel to this unique axis (except for 

primitive setting of rhombohedral cells: see p. 16), the other two must be perpen- 
dicular to it and equal to each other. The point group symbol begins by stating the 

nature of the unique axis; any mirror plane perpendicular to it is denoted by /m, as 
above. One or more symbols follow, representing the symmetry in various directions 

perpendicular to the unique axis. An example may make this clearer. The symbol 42m 
means a four-fold inversion axis with two-fold rotation axes perpendicular to it, the 
angle between the latter being bisected by mirror planes (see Fig. 1.9). The final m is 
strictly speaking redundant, since it is generated by the combined action of the other 

two elements; retaining it is convenient because the symmetry in all principal direc- 

tions is then specified. 
The highest symmetry of all is that of the cubic system. The three crystallographic 

axes are orthogonal and equivalent, being related by secondary three-fold axes running 
parallel to the body diagonals of the unit-cell cube. Rather unexpectedly, the cubic 

system is defined not by the symmetry of its crystallographic axes, but by the pos- 

session of these secondary three-fold axes. The point group symbols give first the sym- 

metry of the crystallographic axes, then the essential three-fold axes, and finally any 
symmetry parallel to the face diagonals of the unit cell. 

There is an unfortunate inconsistency in the convention for naming the axis parallel 

to a unique symmetry direction. In the monoclinic system this has historically been 
called crystallographic b, whereas in systems where the unique axis is of higher than 
two-fold symmetry it is called c. Some years ago an attempt was made to bring the 

monoclinic system into line with the others; it turned out to be one of those reforms 

to which nearly everyone assents in theory but which hardly anyone adopts in prac- 

tice. The current edition of International Tables for X-ray Crystallography Vol.1 [1] 
which is the standard work of reference on the subject, gives both settings for mono- 

clinic crystals; it is thus permissible to use either, and it is as well to be aware of this 
potential source of confusion. This book will follow the almost universal practice of 
calling the unique exis b (thereby providing a fine example of the attitude that pre- 
vented the adoption of the reform). 

It must be emphasized that it is the symmetry of the atomic pattern of the crystal 

that determines the shape of the unit cell and not vice versa. It is unwise to deduce the 
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Fig. 1.10 A face-centred cubic unit cell; the dashed lines show an alternative choice 

of cell. Being primitive, this is smaller, but its shape is inconvenient and it does not 

exhibit the full symmetry of the cubic system. 

crystal system from the shape of the unit cell alone, because the latter may fortu- 
itously be more regular than that demanded by symmetry. For example, monoclinic 

crystals are known with 6 = 90°; this makes the unit cell orthogonal, but does not 

make the crystal orthorhombic. 

The reasons for sometimes choosing non-primitive unit cells should now be obvious 

(refer back to Fig. 1.2). It is always possible to define a primitive unit cell, but one 
should not normally do this if it makes the cell an inappropriate shape. Figure 1.10 
illustrates this point for a cubic unit cell. 

Table 1.1 lists the lattice types that occur in the various crystal systems. The R 
lattice is unique to the trigonal system and is dealt with below; the other possible 
types are shown, for the orthorhombic system, in Fig. 1.11. They are symbolized by 
capital letters: P for Primitives, J for body-centred (/nner-centred, or strictly from the 
German innenzentrierte), F for all-Face-centred, and A, B, or C for centred on one face 

only, the letter indicating the crystallographic axis opposite to the face concerned (for 
example, an A-centred lattice is centred on the be face). A, B and C lattices are not 
normally distinct, since they differ only in the choice of labels for the axes. 

Not all systems give rise to all these types; for example, a cubic cell cannot be 

centred on one face only (wrong symmetry) and a C-centred tetragonal cell can be 
reduced to a smaller, primitive cell which still has the correct shape. All told, there are 
fourteen distinct combinations of crystal system and lattice type, and the resulting 
arrays are known as the Bravais space lattices, after the nineteenth century French 
crystallographer who worked them out [2]. 

The R or Rhombohedral lattice deserves special mention, as it is a first-rate source 
of confusion. It is shown in Fig. 1.12. Although the primitive unit cell shown there 
and listed in Table 1.1 has the proper trigonal symmetry, it is usually more convenient 
to work in terms of the larger, non-primitive cell witha =b #c anda=$ =90°, 
y = 120°. This cell has three times the volume of the primitive cell, with lattice points 
at 2/3, 1/3, 1/3 (that is 2a/3, b/3, c/3) and 1/3, 2/3, 2/3, in addition to those at the 
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Fig. 1.11 Possible lattices of the orthorhombic system, shown ‘solid’ (axes at top left) 

and in plan (looking down z). In the plans, solid circles represent lattice points at 

heights 0 and c (and by implication at 2c, 3c, etc., since the array is infinite). Half- 
filled circles represent points at c/2 (and 3c/2, etc.). Note that there is no fundamental 

difference between the A, B and C arrangements. 
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Fig. 1.12 The rhombohedral lattice (obverse setting: see text) showing alternative 

choice of cells; for clarity, those in the upper drawing do not have a common origin. 

Heights in the plan (lower drawing) are indicated by the amount of filling of the 
circles. In the upper ‘solid’ drawing, the same system is used, so that the layers of 

points can be distinguished; it is not meant to imply that there is any difference 

between the points, which by definition are all identical. The parameters of the 
primitive and centred cells are ap ,aanda, b, c respectively. Note that there are three 

equivalent directions in the lattice, and that the selection of two of these asa and b is 
arbitrary; this is true for all trigonal and hexagonal crystals. 

corners. The extra points could equally well be at 1/3, 2/3, 1/3 and 2/3, 1/3, 2/3, 

producing an enantiomorphous relationship between the small and large cells; the two 
settings are usually distinguished as ‘obverse’ and ‘reverse’ respectively. 

The term ‘rhombohedral’ thus defines a lattice type in the trigonal system; it is not 
correct to use it for a crystal system, and although some systems of nomenclature 

based on morphology use it to describe crystal class 3, this use is better avoided as it is 
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liable to lead to confusion: crystals in class 3 need not have rhombohedral lattices, nor 
is the occurrence of the latter restricted to crystals of this class. The terms ‘trigonal’ 
and ‘rhombohedral’ are not synonymous, as is sometimes stated or implied; the re- 

lationship is rather that of ‘dogs’ to ‘terriers’. 
Because (regardless of lattice type) so many people have difficulty at first in figur- 

ing how many lattice points are associated with each unit cell, it is worthwhile to re- 

peat and amplify a point made earlier. Although a primitive cell has a lattice point at 
each corer, each of these eight points is shared by eight cells, so that the net result is 
one point per cell. The same conclusion may be reached by mentally displacing the 
origin of the cell so as totally to include one lattice point; the other seven will then 

automatically be excluded (cf. Fig. 1.2(a)). Or you can use the following rule: a point 
does not count if it is related by simple unit cell translations to one already counted. 
Applying this to the primitive cell, the point at the first corner counts as one; the 
points at the other corners are derived from it by translations along one or more of the 
unit cell edges and therefore do not count: each must be associated with an adjoining 

cell. 
It is important to be clear about this; the same principle applies to atomic coordi- 

nates, and failure to appreciate it has led many a student to claim that the unit cell of 
sodium chloride contains Na,3Cl,q4. A useful check on your understanding is to count 

up the number of points per cell in the various centred lattices; you should find that 
A,B,C and J lattices give two points per cell, F gives four, and X, referred to the non- 

primitive cell, gives three. 

1.5 Translational symmetry elements 

In an extended array, such as the atomic pattern of a crystal, symmetry elements 

may occur that involve translation as well as rotation or reflection. The imaginary 

climbing plant in Fig. 1.13 illustrates such a symmetry element. An axis of symmetry 
lies in the pole up which the plant climbs; each flower is related to the next by ro- 
tation through 27/4 about this axis, combined with translation along it. Repeating this 

operation four times brings the original flower into coincidence with a flower immedi- 

ately above or below it, whereas an ordinary four-fold rotation axis would bring it 
into coincidence with itself. The plant has a screw axis whose formal symbol would be 
4, , meaning that each rotation of 27/4 in an anti-clockwise direction about the axis is 

accompanied by a translation of one quarter of the pattern repeat in the positive direc- 
tion. Figure 1.14 shows a representative selection of screw axes, and the results of 
operating with them on an asymmetric unit. 

Similarly, combining reflection and translation produces a glide plane, illustrated in 
Fig. 1.15 by an aerial view of a car park containing an array of externally identical 

parked cars. The glide plane, indicated by the dashed line, relates each car to the one 

at right angles to it and incidentally converts right-hand-drive cars into left-hand-drive 
ones and vice versa. Formal representations of some glide planes and their effects on 
asymmetric units are shown in Fig. 1.16. They are shown in the context of the unit 
cell repeat, and it can be seen that placing one glide plane in a cell automatically cre- 
ates another (this is clearly seen in Fig. 1.16(d), (e) and (f)). Thus glide planes occur in 
sets; in the examples illustrated they are separated by one half of the perpendicular 
cell edge. Similar effects are found with other symmetry elements when they are ap- 
plied to infinite arrays; some examples are shown in Fig. 1.17. 

Translational symmetry elements are by their nature found only in infinite arrays. 
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Fig. 1.13 Tetragona scandens; an imaginary climbing plant illustrating a four-fold 

screw axis. Each rotation of 27/4 around the axis is accompanied by a translation 

along the axis of 1/4 of the repeat distance. 

If they are present in a crystal structure, their non-translational equivalents appear in 
the point symmetry of the corresponding finite crystal; thus a screw axis becomes a 
rotation axis and a glide plane a mirror plane. Therefore the crystal class does not 
distinguish between translational and the equivalent non-translational symmetry ele- 
ments in the structure of the crystal. Proceeding in the other direction, most crystal 

classes can give rise to more than one infinite array of symmetry elements. In fact, by 

systematically adding translation to the symmetry elements of the thirty-two crystal- 
lographic point groups, two hundred and thirty different arrays of symmetry elements 
can be produced, and these are known as space groups. 

These were derived in the late nineteenth century [3] as an intellectual exercise, 
well before the development of X-ray diffraction produced a practical application for 
the theory. The reader will no doubt be relieved that it is not proposed to repeat the 
derivation here; for our purposes it is more important to know how to use the results. 

The standard work of reference, Jnternational Tables Vol. I has already been men- 
tioned. In addition to diagrams for all the space groups, except the cubic ones, and 
other information about them, it contains a clear and concise account of all the neces- 

sary concepts. Let us illustrate some important points using as an example space group 
number 36, Cmc2, . Its diagrams are reproduced in Fig. 1.18; on the left is the array of 
asymmetric units, on the right the array of symmetry elements that relates them. 

From the space-group symbol itself, Cmc2, , by replacing all translational operators 
with the equivalent non-translational ones, we can derive the crystal class mm2, and 
hence the system—orthorhombic. The initial letter of the symbol, C, gives the lattice 
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Fig. 1.14 A representative selection of screw axes with their standard symbols. Not 
illustrated: 43, 63, 64, 65. 

type, and the subsequent letters the essential symmetry elements in the direction of 

the three crystallographic axes a,b,c in turn. So the symbol Cmc2, tells us that the 

array is C-centred orthorhombic, with a mirror plane perpendicular to a, a c-glide plane 
perpendicular to b, and a two-fold screw axis parallel to c. Reference to Fig. 1.18 

shows that other symmetry elements are present as well; these have been generated 

through the interaction of the named ones, a phenomenon encountered already in 
some of the point groups. The two-fold screw axis passing through the origin is in fact 
produced by the combined operation of m and c; it is the one at 1/4 that produces, or 
is produced by the C-centreing. 

The same principles apply to space groups in all systems. Thus P2, /c means class 
2/m, system monoclinic, lattice primitive, with a two-fold screw axis parallel to b and 

ac-glide plane perpendicular to it; R3c means class 3m, system trigonal, lattice 
rhombohedral, with a set of c-glide planes (referred to the centred cell) parallel to the 
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OS 
Fig. 1.15 An idealized car park. Right-hand-drive cars are related to left-hand-drive 

ones by reflection across the glide plane (dashed line) combined with translation 

through half the repeat distance. 
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Fig. 1.16 A selection of glide planes, shown with the appropriate symbols. The light 
solid lines indicate the edges and halves of the unit cells, except where these are 
defined by symmetry planes. (a) a-glide perpendicular to c, at z = 0, 4. (b) b-glide 
perpendicular to c, at z 1/4, 3/4. (c) n-glide perpendicular to c, at z = 0, 4. (d) a-glide 
perpendicular to b, at y = 0, 4. (e) n-glide perpendicular to b, at y = 1/4, 3/4. (f) 
c-glide perpendicular to a, at x = 0,4. Note that in (b) and (e) the glide plane does not 
pass through the origin of the cell. 
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(c) (d) 

Fig. 1.17 In extended arrays, symmetry elements occur in sets. (a) Centres of sym- 

metry; each position marked in the projection represents two centres of symmetry, 

one at height zero, the other at c/2, giving a total of eight in the cell. (b) Mirror planes. 

(c) Two-fold rotation axes. (d) Two-fold screw axes. 

Fig. 1.18 Part of a page of /nternational Tables, showing the system used for repre- 

senting space groups. The one shown is number 36, Cmc2,. The equivalent positions 

are shown on the left, the symmetry elements that relate them on the right. Note the 

symmetry elements not mentioned in the space group symbol. The conventional 

orientations of a, b and c have been added to the diagram. [Reproduced by courtesy 

of the International Union of Crystallography. ] 

three-fold inversion axis. Space groups P42m and P4m72, illustrated in Fig. 1.19, both 
belong to tetragonal class 42m; comparison with Fig. 1.9 shows that they differ in the 
orientation of the symmetry elements of the point group relative to the crystal- 
lographic axes. As inspection of Fig. 1.19 shows, this produces profound differences 
between the resultant space groups. It was noted earlier that the final m of the point- 
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ON ee 
(b) 

Fig. 1.19 Two tetragonal space groups based on the same point group, 42m, oriented 

differently with respect to the crystal lattice are very different. (a) P42m, with the two- 

fold rotation axes parallel to the crystallographic axes. (b) P4m2, with the mirror planes 
perpendicular to the crystallographic axes. 

group symbol is redundant; so is the final character of each space-group symbol, but 
retaining it makes the relationship between them clearer. Similar devices are adopted 
in other cases in which a point group can relate to a lattice in more than one way. 

Finally, a word about cubic space-group diagrams. It is probably obvious from Fig. 

1.9 that representing cubic symmetry in two dimensions presents formidable prob- 
lems. Because of this, and because for most purposes one can get along perfectly well 
without them, the diagrams for the cubic space groups are omitted from the current 

edition of /nternational Tables. However, should you require them for any reason, 
such diagrams can be found in an earlier German edition [4]. 
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CHAPTER 2 

Elementary optical crystallography 

2.1 Light waves and crystals 

The optical properties that concern us are those of transparent crystals viewed in 

transmitted light; opaque crystals such as metals can be studied only in reflected light, 
a more specialized technique which will not be covered here. Nevertheless, a surprising 
number of materials are transparent if viewed in sufficiently thin sections: a fact con- 
stantly made use of by biologists. Rocks, rust and rubber are just three examples of 

apparently unpromising materials that can be examined in transmitted light. 
The wavelength of visible light (4000-7000 A, depending on its colour; or roughly 

half a micrometre) is much greater than the interatomic distances in crystals, and we 

can therefore neglect diffraction effects when considering the interaction of light with 
matter on the atomic scale. Even so, a full analysis of the transmission of light through 
crystals is complicated, and in the following simplified account some apparently im- 
probable results are taken for granted; the sceptic should consult an advanced text on 
crystal physics. 

We must begin with some definitions. A light wave, being a form of electromagnetic 

radiation, is accompanied by periodic variations in the strengths of electric and mag- 
netic fields perpendicular to its direction of travel. Only the electric field need be con- 
sidered here, and the direction in which it oscillates will be called the vibration direc- 
tion of the light. A beam of light coming directly from a radiant source such as an 
electric lamp contains waves vibrating in all directions perpendicular to its direction of 
travel; these are represented in Fig. 2.1(a) by vectors. Such a ray is said to be un- 
polarized. Light in which all the waves are vibrating in the same plane (Fig. 2.1(b)), is 
said to be plane polarized. It can be produced by passing unpolarized light through 
some device that will transmit only light waves vibrating in one particular direction. 
Nicol prisms and Polaroid sheets are examples of such devices; we will refer to them 
collectively as polars, and not worry about how they work. 

Because the electric field interacts with the electron clouds of atoms, light waves 
travel more slowly in matter than in a vacuum. The effect is negligible in gases at 

normal pressures, because the atoms occupy only a tiny fraction of the total volume; 
in liquids and solids, the atoms are more densely packed and the retarding effect is 
considerable. It is expressed as the refractive index, n, where 

_ velocity of light in vacuum 

velocity of light in medium 
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(a) (b) 

Fig. 2.1 Diagrammatic representation of the vibrations of the electric field for a ray 

of light travelling perpendicular to the paper. (a) Unpolarized. (b) Plane polarized. 

The value of n varies slightly with wavelength, so that different colours of light travel 

through matter with slightly different velocities; the splitting of white light by a prism 
and the formation of a rainbow are both manifestations of this. For most transparent 
solids, n lies between 1.3 and 2.0. 

When light passes through an isotropic medium, all vibration directions are equally 
affected and, except for the slight variation with wavelength, there is only one value of 

the refractive index. In an anisotropic medium, vibrations may interact more strongly 
in one direction than in another; the refractive index will then vary with vibration 
direction. It is chiefly this effect that is studied in optical crystallography, and it is 
usually large compared with the variation of n with wavelength. Most elementary opti- 
cal studies are therefore made using white light and the effects observed are often 
beautiful as well as useful. However, before proceeding to describe them we need a 
little more theory. 

2.2 The optical indicatrix 

The variation of refractive index with vibration direction within a crystal is de- 

scribed by the optical indicatrix. This is the surface defined by the end of a roving 
vector of fixed origin whose orientation gives the vibration direction of the light and 
whose length is proportional to the appropriate refractive index. 

In its most general form, the indicatrix is an ellipsoid (Fig. 2.2). From its mode of 
construction, it follows that the length of any radius vector represents the refractive 
index for light vibrating in that direction (that is travelling in some perpendicular 
direction). The ellipsoid is defined by its three principal semi-axes, which are the major 
and minor semi-axes of three mutually perpendicular ellipses (see Fig. 2.2). The 
shortest of these is also the shortest radius vector and is called a, the longest (and 
longest radius vector) is y, and the intermediate one is 8. These three values are the 

principal refractive indices of the crystal. They may also be written ny, ng and n,,a 
useful notation if there is any possibility of confusion with the interaxial angles of the 

unit cell.t 

+ Other notations are sometimes used, including nx, ny, nz and ny, ny, nz. The latter 
notation in particular should be treated with caution, as it is also used to mean the 

refractive indices for light vibrating along the crystallographic x, y and z axes. Refer- 

ence to Table 2.1 will show that this is not at all the same thing as ng, ng, ny. 
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Fig. 2.2 The optical indicatrix. The ellipsoid (top left) is defined by the major and 

minor axes of the three mutually perpendicular ellipses which are shown projected 

onto the plane of the paper. 

With increasing crystal symmetry, restrictions are imposed on the shape and orien- 

tation of the indicatrix (cf. the unit cell). For triclinic, monoclinic and orthorhombic 
crystals (collectively called biaxial, for reasons given below) the shape is the general 
one described above, but there are increasing restrictions on the orientation as the 
crystal symmetry increases (Table 2.1); note that there is no restriction as to which 

principal refractive index is parallel to a given crystallographic axis. 

TABLE 2.1 
Properties of the optical indicatrix 

Crystal system Shape Orientation 

Triclinic Triaxial ellipsoid No restrictions 
Monoclinic Triaxial ellipsoid One principal axis parallel to b 

Orthorhombic  Triaxial ellipsoid All principal axes parallel to 
crystallographic axes 

oe Ellipsoid of € parallel to unique axis, 
Hexagonal revolution @ perpendicular to it 

Cubic Sphere — 

For tetragonal, trigonal and hexagonal crystals, the refractive index for light travel- 

ling along the unique axis is the same for all vibration directions, so the indicatrix is an 
ellipsoid of revolution (Fig. 2.3). This needs only two parameters to define it, and such 
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Ly ne 
\a 

eE>W 

Fig. 2.3. The optical indicatrix for uniaxial crystals. A general section is indicated in 

the left-hand figure by dotted lines; note that no matter how this is tilted, it must 

contain w as one of its semi-axes. 

uniaxial crystals have only two principal refractive indices. These are called € and w, or 

n, and n,,, not (as you may be thinking) from a perverse desire to introduce as many 
Greek letters as possible, but because of a fundamental difference from a, B and . The 
latter are defined simply in order of increasing magnitude and are never in themselves 

sufficient to define completely the orientation of the indicatrix with respect to the 
crystal (see above), but in uniaxial crystals € is reserved for the refractive index for 

light vibrating parallel to the unique axis and may be either greater or smaller than w, 
the radius of the perpendicular circle. 

Cubic crystals have a spherical indicatrix whose radius n is the sole refractive index. 
They are therefore optically isotropic, like fluids and unstrained amorphous solids. 

The behaviour of light as it passes through a crystal depends on the shape of the 
section of the indicatrix perpendicular to its direction of travel. In the general case this 
is an ellipse, and the light is split into two plane polarized beams whose mutually per- 

pendicular vibration directions are parallel to the axes of the ellipse. The refractive 
indices for the two vibration directions being different, the two beams travel through 
the crystal at different speeds. In uniaxial crystals, all such elliptical sections must have 
w as one semi-axis (see Fig. 2.3). Light travelling perpendicular to a circular section of 

the indicatrix is not split in this way; this is the case for light travelling along the 
unique axis of a uniaxial crystal, along either of two special directions in biaxial ones 
(hence the name), or in any direction in a cubic one. 

2.3. Using the polarizing microscope 

The optical properties of transparent crystals of the size commonly formed in 

chemical preparations are conveniently studied with a polarizing microscope. In using 
this, as with any other instrument, practice makes perfect. Even a rudimentary optical 

examination will be a great help in any subsequent X-ray studies; with practice you 
- will find that you can often identify specimens with the aid of the microscope alone. 

A polarizing microscope (Fig. 2.4) has the usual parts of a microscope, as listed on 
the right of the figure, plus some extra features, of which the ones we shall consider 
are listed on the left. Most importantly, two polars are provided. One of these, the 

polarizer, is placed below the stage, so that the light entering the specimen is plane 



30 ELEMENTARY OPTICAL CRYSTALLOGRAPHY 

Eyepiece 

Analyser —-——-—--——-—— 

Accessory --—--—-——---- 
slot 

Objective 

Stage 

Condenser 

Iris diaphragm 

Polarizer -—————————— 

Fig. 2.4 The polarizing microscope (highly diagrammatic). Labels on the right refer 

to the solid lines, which represent the parts of a conventional microscope. Dashed 

lines, labelled on the left, represent those additional features of a polarizing micro- 

scope that are discussed in the text. 

polarized; the other, placed just below (occasionally above) the eyepiece, is called the 

analyser. The latter can readily be removed or inserted; when inserted its vibration 
plane is usually kept perpendicular to that of the polarizer, so that the field appears 
dark. Cross-hairs provided in the eyepiece are normally set parallel to the vibration 

directions of the polars. 
By rotating either the polars or the stage (depending on the model) the specimen 

can be rotated relative to the vibration direction of the incident light. This will be 
called ‘rotating the specimen’, even though it may be the polars that actually move. 
Various accessory plates, some of whose functions will be described later, can be in- 
serted into a slot provided somewhere between the objective and the analyser. 

There are too many different models of the polarizing microscope for it to be 
possible to give detailed instructions for their use in a book of this length. The best way 
of learning how to use one is under the guidance of an experienced user; failing that, 
study the manufacturer’s handbook carefully. There are two golden rules: never use a 
polarizing microscope without permission and never make an adjustment to it unless 
you are quite sure you know what you are doing. Neglect of these two simple rules can 
result in quite exraodiary apoun of ill-will. 

The following sections describe some simple studies with the polarizing microscope, 
using white light. They illustrate the sort of information obtainable by anyone able to 
focus the microscope and to control the illumination, and who knows how to put the 
analyser in and out and where the accessory slot is located. At the end of. the chapter 
there is a list of suitable practice materials. 
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2.4 Sample preparation 

Crystals that have formed as isolated individuals of a suitable size 10 um-100 mm 
need no further preparation; all that need be done is to sprinkle a few on a microscope 
slide—using large heaps is both wasteful and unhelpful. Very large crystals may be 
gently crushed between two microscope slides or, if they are very hard, with a pestle 

and mortar. Unfortunately crushing usually produces a selection of fragments whose 
shape is quite unlike the natural form in which the crystals grew, making it very diffi- 
cult, if not impossible, to interpret observations. In such cases it may be practicable to 
recrystallize the material, with the aim of producing crystals of a more suitable size. 
This can be done either in bulk or, if the material is scarce, on a small scale on a micro- 

scope slide. If the crystals are all very small, and recrystallization is impracticable, the 
only thing to be done is to try another preparation. 

Sometimes the crystals may be intergrown, or twinned (p. 70), or fused together, or 

embedded in an amorphous matrix; if so the resulting mass should be gently crushed, 

as described above, with the aim of separating a few individual crystals. Alternatively, 
scraping the surface with a needle or a knife may produce the desired result. Although 
preliminary examinations and the selection of single crystals can be done dry, better 
results are often obtained by adding a drop of immersion liquid to the material on the 
slide to reduce light scatter; the liquid used should not react with or dissolve the 

material being examined. The correct procedure is to cover the material with a thin 
glass coverslip; a drop of the chosen liquid placed at the edge of this will be drawn in 
by capillarity and without trapping air bubbles. However, if it is desired to manipulate 
the crystals in any way, the coverslip must be omitted and the liquid run gently onto the 
material. 

2.5 Examining the specimen 

We will now describe the step-by-step examination of an imaginary preparation, 
digressing as necessary to explain the meaning of our observations in terms of the 

theory outlined above. Initially, we do not know whether the preparation is homo- 

geneous or not, or even whether it is wholly crystalline. A small sample is prepared for 
optical examination as described in the preceding section. 

The first step is to view the specimen in plane polarized light (that is with the ana- 
lyser out) at low magnification; the magnification may be increased as necessary. 
Figure 2.6(a) on p. 35 shows what we see. The shape of the particles suggests that both 
‘A’ and ‘B’ types are crystalline and of less than cubic symmetry; these conclusions 
should be checked in other ways, as morphology can be misleading. As the specimen is 

rotated, particles of type A show no noticeable change in appearance, but those of 
type B show a marked change in relief (the extent to which they stand out from the 
background of immersion liquid). Change in relief is caused by the variation of n with 
vibration direction, and this observation confirms that particles of type B are neither 
amorphous nor cubic. 

The next step is to view the specimen between crossed polars, that is with the 
analyser in. Most of the particles show up light or coloured against the dark ground, 
and as the specimen is rotated all change alternately between bright and dark. When 
they are dark—every 90°—they are said to extinguish; they are at maximum brightness 
at 45° from the extinction position. The bright appearance of the particles means that 
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light is travelling through them perpendicular to a non-circular section of the indi- 

catrix; this confirms that all are anisotropic, and therefore, as we suspected, crystalline 

and non-cubic. | 

The explanation of these phenomena is as follows. When the plane polarized light 

from the polarizer enters a crystal not in the extinction position it is resolved into two 

rays p and q (Fig. 2.5 (a) and (b)). These travel through the crystal and on reaching the 

In crystal 

At polarizer (tL. cae At analyser 
Section of Resolved 
indicatrix components 

ya. 
(a) 4 | N 

N(p) (a1 
See oni) 
$e | 

p q 

ib 
(b) Ve), 

| \ ple 

pe 

ceases 
————_——>- Passage of light through microscope ————————=> 

Fig. 2.5 Interaction of light with an anisotropic crystal between crossed polars. Faint 

lines represent permitted vibration directions in the polars or the crystal. Heavy arrows 

represent vibration directions of actual rays of light; the length of the shaft is pro- 

portional to the amplitude of the ray. Where appropriate, the trace of the ray(s) 

present at the previous stage of the interaction is shown as an arrow with a dashed 
shaft. For explanation see text. (a) Crystal in 45° position. (b) Crystal in intermediate 

position. (c) Crystal in extinction position. 

analyser are resolved yet again into the rays p’ and q’. Note that the two successive 

resolutions effectively introduce a phase shift of 7 between p’ and q’ and the ampli- 

tudes of p’ and q’ are equal for all orientations of the indicatrix. If p and q travelled 
through the crystal at the same speed, p’ and q’ would therefore cancel and no bright- 
ness would be seen. However, because the refractive index in the crystal is different for 

the vibration directions of p and q, the rays do not travel through the crystal at the 
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same speed; since in general the phase difference thus introduced does not equal 27m 
(m is an integer), p’ and q’ do not cancel, and the crystal appears bright. In the 45° 

position (Fig. 2.5(a)) this brightness is at a maximum; as the crystal is turned away 
from this position, the amplitudes of both p’ and q' diminish (Fig. 2.5(b)) and less 
light is transmitted by the crystal. In the limit, when one or other of the axes of the 
ellipse is parallel to the vibration direction of the polarizer (Fig. 2.5(c)), no component 
vibrating in the perpendicular direction can pass through the crystal, p’ and q’ are both 
zero, and the crystal appears dark. This is the extinction position. 

The colour shown by the crystals in the bright position depends on both the differ- 
ence between the relevant refractive indices or birefringence (An) and the thickness of 
the crystal (t); the product tAn is called the retardation. If tAn is a whole number of 

wavelengths, the phase difference introduced is 27m. Light of these wavelengths thus 
interferes destructively at the analyser; the remaining light is often beautifully 
coloured. The sequence of colours with increasing retardation is shown in Table 2.2; 
note that white appears twice in the list, at low and at very high values of the retard- 

ation. (Anomalous colours may sometimes be observed, for example with crystals 
which are naturally strongly coloured.) 

In our specimen, all the B crystals appear white between crossed polars, as do the 
smaller of the A crystals, but the larger of the A crystals show colours, usually yellow 
and orange. Reference to Table 2.2 suggests that the retardation due to the A crystals 
is small; when ¢ is large, tAn is sufficient to produce low order yellow and orange 
colours, but when ¢ is small, low white is shown. On the other hand, none of the B 

crystals shows colour, and it seems likely that they are all showing high white. Unless t 

is very different for the two types of crystal, this means that the birefringence of the A 

crystals is very low and that of the B crystals very high. This agrees with the obser- 

vations made regarding change of relief in plane polarized light (see above). 
High and low white are readily distinguished by the use of the accessory plate 

usually known as the gypsum plate, being commonly made of that substance. Its 

formal name is the unit retardation plate, because it has a retardation equal to one 
wavelength of sodium light (~590 nm). When it is inserted in the microscope between 
crossed polars, wavelengths from the yellow part of the spectrum cancel and the field 

appears a uniform magenta (see Table 2.2). When the gypsum plate is introduced, 

those A crystals that looked white change colour dramatically to blue or yellow, de- 
pending on their orientation. Table 2.2 shows why; their low retardations are either 

adding to or subtracting from that of the gypsum plate thus shifting the observed colour 
respectively up or down the scale. The colours of the larger A crystals also change. The 
B crystals, on the other hand, still appear white when the gypsum plate is inserted; 
reference to Table 2.2 shows that at large values of tAn the effect of the additional 

retardation introduced by inserting the gypsum plate is negligible. This confirms that 
the B crystals are showing high white. 

The position at which the crystals extinguish is studied next. We find that the A 
crystals are dark when they are in the position shown in Fig. 2.6(b). This is called 
parallel extinction, because extinction occurs when the vibration plane of either polar 
(shown by the cross-hairs) is parallel to a principal edge of the crystal. The axes of the 

elliptical section of the indicatrix being viewed must therefore also lie along these 
directions. With only rare exceptions, at least one of these will be a principal refractive 
index direction parallel to a crystallographic axis, and it follows that the A crystals are 

probably at least of monoclinic, and possibly of higher, symmetry. Their shape accords 
well with these conclusions. 

The B crystals behave differently; they show inclined extinction (Fig. 2.6(c)), in 
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TABLE 2.20) 
Normal interference colours shown by anisotropic 

materials between crossed polars 

Retardation 

(tAn, nm) Colour 

0 black 

grey 
white (‘low’ white) 

yellow gypsum plate — low white 

orange 
500 magenta gypsum plate 

purple 
blue gypsum plate + low white 

green 
yellow 

1000 orange 
red 

purple 

blue 
green 

1500 yellow 
pink 

green 
pink repeated, 
green becoming paler 

2500+ white (‘high’ white) 

(1) This table can give only an approximate idea of the colour sequence; for advanced 

work a coloured chart should be consulted. 

which the extinction directions, and hence the axes of the elliptical section of the 
indicatrix being viewed, bear no simple relation to a principal edge of the crystal. This 
type of extinction behaviour is characteristic of triclinic crystals or of monoclinic 
crystals when b is not lying in the plane of the microscope slide. 

One explanation of the above observations, taking into account the shapes of A and 
B, is that the specimen is homogeneous and consists of monoclinic crystals lying on 
the slide in two perpendicular orientations. If this is so, b must be parallel to one of 
the principle vibration directions, probably one of those shown in Fig. 2.6(b). The in- 
clined extinction shown by the crystal in Fig. 2.6(c) shows that b cannot be parallel to 
the length of the crystal; it must therefore lie across the crystal shown in (b) and is 
probably perpendicular to the section shown in (c). This knowledge will be very help- 
ful if a crystal is to be mounted for examination by X-ray diffraction. 

There is of course another possible explanation of the observations, which a wise 
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(a) 

(b) (c) 

Fig. 2.6 Crystals under the polarizing microscope. (a) General view. (b) Enlarged 

view of an ‘A’ crystal, showing position of cross-hairs at extinction. (c) Enlarged view 

of ‘B’ in the extinction position. 

chemist will not discount: the preparation may contain two different sorts of crystals. 
There are several ways of checking this. In the present example, the simplest way is the 
obvious one; turning one of the crystals over with a microscope needle shows that A 
and B represent perpendicular orientations of the same sort of crystal. 

Unfortunately, in practice, crystals are not usually so obliging as to arrange them- 
selves thus, in two perpendicular orientations. They frequently grow as laths or plates, 
which obstinately refuse to sit on their narrow edges. If they cannot be persuaded to 
do so by lifting them with a microscope needle, it may be possible to turn them by 
sticking them to a fine glass fibre, itself attached to the tip of a microscope needle with 
a small piece of modelling clay or plasticene. The tip of the fibre is coated with a suit- 
able adhesive and applied to the crystal. If the latter is small, this must be done under 
the microscope—an operation requiring a steady hand and lots of practice. It is never- 

theless an essential skill for anyone intending to proceed to single crystal diffraction studies. 
A more refined technique is to attach the mounted crystal to some form of 

‘twiddler’ (Fig. 2.7), which can readily be home-made. This allows much better control 
than a hand-held microscope needle, and the graduated drum can be used to measure 
the angle through which the crystal has been turned. 

Whichever technique is used, snags can arise. Many plate-like crystals are relatively 
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Fig. 2.7 A simple device for manipulating crystals under the microscope. 

very large in all directions parallel to the plate faces, and moreover the edges of the 
plates may be rough; the net result is that they do not transmit enough light to study 

them edge-on. Analogous problems are presented by needle-shaped crystals. Use of an 
immersion liquid should theoretically improve one’s chances of obtaining useful infor- 
mation, but in practice the surface tension effects introduced tend to hold the crystal 
with its largest dimensions parallel to the slide, sometimes with sufficient force to pull 
it off its mounting or to twist the fibre. In such cases one has to make do with the 

information obtainable from the orientations that are possible. 

2.6 Some further examples 

When the specimen shown in Fig. 2.8(a) is viewed between crossed polars, the crys- 
tals appear uniformly dark in all positions. The light is therefore passing through 

them perpendicular to a circular section of the indicatrix; no splitting of the incident 
light occurs, and no interference colours or extinction effects are seen. This almost 
certainly means that the crystals are either 

(a) cubic, and therefore isotropic, or 
(b) uniaxial, with the unique axis vertical (Fig 2.8(b)). In view of their shape they 

are more likely to be tetragonal than trigonal or hexagonal. 

The two cases can be distinguished by tilting one of the crystals. Cubic crystals, 

being isotropic, will remain dark whatever the direction of the incident light; tetra- 
gonal ones will show interference colours and extinction effects because the relevant 
section of the indicatrix becomes elliptical (Fig. 2.8(c)). The effect may be quite weak 
if the angle of tilt is small, but the transmission of any light, however faint, eliminates 

cubic symmetry. In practice, crystals rarely lie so neatly upon the slide as in the dia- 
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Fig. 2.8 Tetragonal crystals (a) under the polarizing microscope, (b) with the light 

travelling parallel to c, and (c) with the c-axis slightly tilted from the axis of the 

microscope. 

gram; usually some will be lying partly on top of others, or may have small crystals 
adhering to them, or be malformed in some way, with the result that any anisotropy is 
revealed. 

The crystals shown in Fig. 2.9 are coloured. When they are viewed in plane polar- 
ized light (analyser out), they change colour as they are rotated, from blue when their 
length is parallel to one of the cross-hairs to brown when it is parallel to the other. This 
means that some frequencies of light are being absorbed more strongly in one vibration 
direction than another. This change of colour or tint with vibration direction shown 

by some (not all) coloured crystals is called pleochroism; it can give information about 
the distortion of ions in inorganic crystals, or the position of double bonds in organic 
ones. Biaxial crystals may show up to three different colours (or, more precisely, ex- 
tremes of colour), uniaxial ones only two; the latter are said to be dichroic. 
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The crystals in Fig. 2.9 show only two colours; when one crystal is rolled over its 

appearance does not change and it still shows the same two colours. This strongly 

suggests that the crystals are uniaxial. Between crossed polars, all show parallel extinc- 

(a) 

(b) (c) 

Fig. 2.9 Hexagonal prisms (a) viewed under the microscope, (b) viewed end-on, (c) 

mounted on a ‘twiddler’. (Note that this type of morphology can be shown by trigonal 

as well as hexagonal crystals.) 

tion, and again no change in behaviour is observed on turning one over. The extinction 

behaviour could be shown by orthorhombic crystals or by monoclinic ones with b lying 
along the needle axis, but the similar appearance of the crystals when turned over and 
the observations in plane polarized light both suggest a higher symmetry. There are 
several ways of confirming this. The most direct is to manipulate one of the crystals so 

as to view it end-on; Fig. 2.9(b) shows its appearance, which strongly suggests trigonal or 
hexagonal symmetry. Theoretically, the crystal should now appear isotropic, but in 
practice its thickness and the difficulty of aligning it vertically will probably prevent 
this from being established with certainty. Alternatively, it may be mounted on a 
‘twiddler’ as in Fig. 2.9(c), and an attempt made to measure the angles between its 
faces by turning it in the horizontal plane; at the same time its refractive indices may 
be checked as described in the next section. 

Occasionally, crystals extinguish when the vibration direction bisects the angle 
between the crystal edges (Fig. 2.10) and this is called symmetrical extinction. Figure 
2.10(a) shows how this arises for a trigonal crystal lying on one face of a rhomb; the 
unique axis (and e) runs from A to A’, so the section of the indicatrix normal to the 
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incident light is an ellipse with one axis parallel to the projection of AA’, along the 
long diagonal of the upper face. Figure 2.10(b) shows how it may arise for an ortho- 
rhombic crystal with one crystallographic axis vertical; the faces parallel to it have 
developed obliquely but symmetrically with respect to the other two axes, which lie 

along the lines indicating the extinction directions. 

A 

At 

(a) (b) 

Fig. 2.10 Crystals showing symmetrical extinction in the directions indicated by the 

horizontal and vertical light lines. (a) In a trigonal crystal lying on one face of a 

rhomb. (b) In an orthorhombic crystal with one crystallographic axis perpendicular to 

the plane of the drawing; the other two coincide with the extinction directions. 

Space does not permit the discussion of further examples; hopefully enough have 
been given for you to grasp the essentials of the technique, and, equally important, to 
encourage you to try it out for yourself. Enthusiasts can pursue the matter further 

with the help of the more advanced texts listed in the Bibliography. 

2.7. The measurement of refractive indices 

Refractive index measurements can serve to identify compounds, to check deduc- 

tions regarding symmetry, or to give information about composition. With the polariz- 

ing microscope, the several refractive indices of anisotropic crystals can be indepen- 

dently determined. However, measurements on isotropic substances will be considered 
first; they are simpler to describe, because there is only one value of n to be deter- 
mined. 

The method is to immerse the test substance in one of a series of standard liquids of 
known refractive index. If substance and liquid are of widely different n, the outlines 
of the former stand out clearly, that is, it shows strong relief. If a liquid is selected 

whose nv more nearly matches that of the test substance, the relief becomes weaker, 
and when an exact match is found the outlines of a colourless substance should 

virtually disappear. Plainly one could proceed by trial and error, although with a set of 



40 ELEMENTARY OPTICAL CRYSTALLOGRAPHY 

standards containing up to forty liquids (depending on the range covered and the inter- 
val between refractive indices) this would be rather tedious even if only one index had to 

be determined. 
The method can be systematized as follows. Using a medium power objective and a 

reduced intensity of illumination, the microscope is slowly moved through the focused 
position; a bright line will be seen to move across the boundaries of the particles. This 
is the Becke line, and it moves into the medium of higher n as distance between the 

stage and objective lens is increased (and vice versa). This shows whether the selected 
liquid has a higher or lower n than the test substance, and hence speeds up the search 
for a match. In white light, n can usually be measured to 0.005; if greater accuracy is 

needed, monochromatic light must be used and its wavelength stated. 
The intervals between the refractive indices of the standard liquids may be too great 

for an exact match to be obtained. This is usually overcome by making an ad hoc 

mixture from a few drops of the two adjacent liquids; a ‘dimple’ slide or very small 
watch glass is a suitable container. As soon as a match is found, the refractive index of 

the mixture is measured with a refractometer. Even if the set of standards is suf- 
ficiently finely graded, it is still a useful precaution to check them from time to time; 
since the standards are in general mixtures whose components do not have the same 
vapour pressure, their compositions, and hence their refractive indices, are liable to 
change slowly with time. 

In the course of the determination, the test substance has to be compared with a 

number of different liquids. If plenty of sample is available, it is best to take a fresh 
supply for each liquid tried; if the available amount is limited, it is possible to draw off 

the liquid with a piece of filter paper, wash the sample with a suitable solvent, dry 

with more filter paper and add the next liquid. 
Measurements on anisotropic crystals are complicated by the need to measure more 

than one refractive index. One procedure can be illustrated by considering the case of 
the monoclinic crystals discussed in Section 2.5. To determine the refractive index 
parallel to b, the specimen is rotated so that light from the polarizer is vibrating across 
one of the A crystals (Fig. 2.6). (The plane of vibration of the polarizer must of course 
be known; this is usually stated by the manufacturer, but if not can be readily deter- 

mined with the aid of a crystal of known optics.) The other two refractive indices can 
be determined from B crystals, rotated so that they lie in each of their extinction 
positions in turn. 

These results should be checked to see that they are consistent with the bire- 

fringence already observed, making due allowance for crystal size. For example, the A 
crystals showed low order colours; if they were about 0.1 mm thick, the two refractive 
indices might reasonably differ by up to 0.01, but not by as much as 0.1 (tAn < 500 
nm). 

At this point some additional jargon may usefully be introduced. Prismatic or lath- 
like crystals showing parallel (or sub-parallel) extinction with the higher refractive 
index parallel to their longer dimension are described as ‘length slow’ or as having 
‘positive elongation’; conversely, if the lower refractive index is parallel to their length 

they are said to be ‘length fast’ or to have ‘negative elongation’. Crystals with 6 parallel 
to their length may appear either length slow or length fast according to their orien- 
tation on the slide, a situation known as ‘+ elongation’. 

The elongation shown by crystals can often be determined by using one of the 

accessory plates, and gives a useful additional check on the measured refractive indices, 
which should, of course, be consistent with the elongation. In Section 2.5 it was ex- 
plained that when the gypsum plate is inserted, crystals showing low white appear blue 
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Fig. 2.11 The effect of introducing accessory plates. (a) The gypsum plate. (b) The 
quartz wedge. In both (a) and (b) the crystals are length fast (negative elongation), 

while the accessory plate is length slow. 

or yellow according to whether the retardations are adding or subtracting (Table 2.2). 
Figure 2.11(a) shows how the observed colours can be used to compare the elongation 
of the crystals with that of the gypsum plate (whose vibration directions are usually 
labelled). For a gypsum plate cut with the opposite elongation, the colours would of 
course be reversed. 

If the crystals are showing colours rather than low white, their elongation can be 

checked with another accessory plate, the quartz wedge; Fig. 2.11(b) shows how. The 
wedge is cut to have steadily increasing retardation; since crystals are usually thinner at 

the edges, if their retardation is adding to that of the quartz wedge, their bands of 
colour will move outwards as the quartz wedge is pushed in, and mutatis mutandis. 
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The simple techniques described here will generally not suffice to determine com- 

pletely the optical constants of any given crystalline specimen. The examples given 

have all been imaginary, and therefore not subject to the well-known law governing the 

contrary behaviour of real substances. More often than not, you will have to be satis- 

fied with examining only one orientation of your crystals, and determining the higher 

and lower refractive indices shown in that orientation. It is not correct to equate these 

values with a and 7, although this is frequently done, often by people who ought to 

know better. Unless the crystals are showing parallel extinction, there is no guarantee 

that either value corresponds to any of the principal refractive indices; even when 

parallel extinction is shown, there are still a great many unknowns (refer back to the 

example in Fig. 2.6). In these circumstances it is best to play safe and merely record 

your observations which, although incomplete, are still useful. 

2.8 Some practical applications 

Many substances can be identified by their optics alone; some reference works 
useful in this connection are listed in the Bibliography. The process is of course easier 
if you have some idea of what the compound might be. 

The polarizing microscope can be used to check both purity and reproducibility of 
preparations. If a preparation contains two or more sorts of crystals of very different 
appearance, you should be alert to the possibility that it may contain more than one 

phase. Alternatively, of course, it may be a single phase whose crystals lie in different 
orientations (as in our first example) or have grown in different habits (that is with 
different morphologies). If all the crystals are the same phase, then their optics must 
be consistent with this; for example, if both values of n shown by one crystal are lower 
than either of those shown by another, the two cannot possibly be the same phase. 

The polarizing microscope can also be used to estimate the composition of solid 

solutions (see Section 5.3, p. 114). The refractive index of structurally similar sub- 
stances changes regularly with composition. A plot of n against composition for some 

standard preparations enables the composition of unknowns to be estimated. 
It is sometimes possible to use refractive index measurements to estimate the 

density (d) of a compound, if for some reason the latter is difficult to measure di- 
rectly. Various equations have been derived that relate n and d; the most useful one for 
solids is that due to Lorentz and Lorenz: 

where n is the mean refractive index, M is the formula weight and R the molecular refrac- 
tivity, a quantity which to a good approximation is given by 

Rep eh pyre 

where p,, etc. represents the number of each kind of atom in the formula of weight M, 
and r;, etc. their respective contributions to the refractivity. Values for r, , etc. must 
be obtained empirically from the measured values of n and d of other compounds 
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containing the same elements as the unknown. The value of r for an element varies 
somewhat from compound to compound, particularly if the coordination number of 
its atoms changes. Because of this, and the difficulty of deciding the appropriate value 
of n for anisotropic crystals, the relationship is not exact but it holds sufficiently often 

to be useful in practice. 
Finally, the microscope is invaluable for the selecting and mounting of crystals for 

single crystal X-ray diffraction studies. This will be discussed in more detail in Chapter 

4. 

2.9 Suitable practise materials 

Unfortunately, since manufacturers of chemicals are not usually concerned with the 
suitability of their products for optical examination, few materials can be examined 
directly as they come from the bottle. If you find that the crystals are too small, or 

too large, or too ill-formed, you will need to recrystallize them from a suitable solvent. 
In many of the examples that follow this can be done quite simply by taking a few 

milligrams on a ‘dimple’ microscope slide. Add a drop of hot water, stir with a micro- 
scope needle, and then leave the slide in a warm place until crystals form. 

To practise measuring refractive indices, it is best to begin with an isotropic 

material. Any of the common alkali halides are suitable, and these usually can be used 

straight from the bottle. 
A good example of uniaxial crystals that lie with their unique axes perpendicular to 

the slide (cf. Fig. 2.8) is given by lead iodide ‘spangles’ (precipitated PbI, recrystal- 
lized from hot water: this is best done in a test-tube). Well-crystallized iodoform crys- 
tals show a similar habit. NH,H, PO, (or KH, PO.) crystals are also uniaxial, but form 

prisms and lie with their unique axes in the plane of the slide (cf. Fig. 2.9). Try to 
decide to which crystal system these materials belong. 

NaNO; is also uniaxial, and if this is recrystallized on a slide it forms birefringent 
thombs showing symmetrical extinction (cf. Fig. 2.10). The birefringence is very high 
(€ ~ 1.336, w ~ 1.587); if the crystals are immersed in a liquid of refractive index 
1.58- 1.59, pronounced change in the relief will be observed as the plane of polarized 
light is rotated. (Remember that all sections through the indicatrix of uniaxial crystals 
contain w; see Fig. 2.3.) 

Crystals of FeSO, -7H,0 or of phthalic acid are monoclinic and show effects similar 
to those given by the hypothetical crystals in Fig. 2.6. FeSO, -7H,O forms more or less 
equant grains, phthalic acid short tablets, and a search through a number of crystals of 
either will show that some have parallel and others inclined extinction. Being real crys- 
tals rather than an idealized example they behave rather less perfectly than the crystals 
in Fig. 2.6! 

Crystals that form needles or tablets with parallel extinction are very common. 
Examples are oxalic acid (monoclinic, b//needle axis) and potassium sulphate (ortho- 
rhombic). 

Good examples of pleochroic materials are to be found among transition-metal 
complexes, and these you will have to prepare yourself. An easy one to prepare is 

potassium trioxalatochromate (II])trihydrate, K3 [Cr(C,0,4)3 ]- 3H, O. Dissolve 9 g 
oxalic acid dihydrate in 20 ml of water and cautiously add 3 g potassium dichromate, 

a little at a time, to the warm solution. When the reaction has subsided, heat the sol- 

ution to boiling and dissolve 3.5 g of potassium oxalate monohydrate in the hot sol- 
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ution; leave to cool. Addition of a few millilitres of ethyl alcohol to the cold solution 

will precipitate the product, which can be filtered at the pump and washed with a 
50/50 alcohol-water mixture. The crystals are blue-green and fibrous; in plane polar- 
ized light they appear blue when the light is vibrating parallel to the length of the fibre 
and brown when it is vibrating across the fibre. 



CHAPTER 3 

The diffraction of X-rays 

3.1 The production of X-rays 

At the beginning of the century, Moseley studied the X-ray spectra emitted by 
atoms that are being bombarded with high-energy electrons. He found that the fre- 
quencies of the lines in these spectra were characteristic of the target element, and was 
thus able to make direct measurements of atomic numbers. These characteristic X-rays 
are used in diffraction experiments, for which it is a great convenience to have mono- 
chromatic radiation. 

X-rays, like visible light, are a form of electromagnetic radiation; they differ from 
visible light in having much shorter wavelengths, typically of the order of 1 A (107? 
nm), that is they represent a relatively high-energy form of radiation. The highest 
energy (highest frequency, shortest wavelength) characteristic X-rays result from the 
displacement of electrons from the innermost shell, or K-shell, of the target atoms; 
these are then replaced by electrons from the outer shells, which emit their excess 

energy as X-rays. Most often they are replaced by electrons from the next shell, result- 

ing in the Ka line (Fig. 3.2). Although for many purposes this can be treated as mono- 
chromatic, it is actually a very close doublet, because of the slight energy differences 

between the 2s and 2p levels; the slightly higher Ka, frequency (2p > 1s) predomi- 
nates over Kay (2s 1s). A still higher frequency line, KG, results from their replace- 

ment by electrons from the third shell, but this is a less probable transition and the 

line is correspondingly much weaker. The K-radiations from elements of intermediate 
atomic weight have wavelengths comparable to interatomic dimensions and thus are 
suitable for crystal diffraction experiments. 

The essential parts of an X-ray tube are set out in Fig. 3.1. The heated tungsten 
filament provides a source of electrons, and, if it is maintained at a large negative volt- 
age relative to the target or anode, the electrons are accelerated towards the latter, 
where they excite X-rays. About 30-50 KV is required to provide sufficient energy to 
excite reasonable amounts of K-radiation; to prevent the electrons from losing their 
energy by colliding with gas molecules before they reach the target, the intervening 

space is evacuated. This arrangement is effectively a diode valve, and if supplied from a 
high-tension a.c. source will be self-rectifying; many sets are built this way. More 
sophisticated versions supply rectified, or (better) rectified and smoothed current, and 
this improves output and tube life. 

The negatively charged screen surrounding the tungsten filament serves to focus the 
electron beam onto the target. The X-rays produced pass out of the tube through 
windows usually made of beryllium, which when not in use are covered by shutters 
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Fig. 3.1 The principles of an X-ray tube (highly diagrammatic). The cathode is 

maintained at a high negative voltage relative to the anode or target which is earthed. 

A small fraction AV, of this high voltage is used to generate a heavy current (of the 

order of several amps) in the tungsten filament. The emitted electrons are directed 

towards the target by the negatively charged focusing screen. 

made of lead. These materials are chosen because they have respectively low and high 
absorption coefficients for X-rays, absorption increasing in a general way with atomic 
number. 

The current carried by the electrons (the tube current) is about 20 mA; multiplying 

this by the tube voltage shows that the tube consumes about 1 kW. Because the pro- 
duction of X-rays is a very inefficient process, most of this energy appears as heat. 
Since for X-ray diffraction experiments the tube must be run for long periods (hours 
or days), the target gets hot and must be water-cooled. The X-ray set should have some 
sort of safety switch to shut off the power if the water supply becomes inadequate, 
‘adequate’ usually being about 5 1 min™'. One of the commonest causes of failure in 
X-ray sets is reduction of the water supply by clogged filters; the remedy is to clean 

the filters. The trouble may result from connecting the set to the mains with trans- - 
parent plastic hose; the light admitted through this often results in a splendid growth 
of algae. Hoses and their clips should be inspected regularly for signs of deterioration, 
if only out of consideration for anyone occupying the rooms below. 

The choice of target material depends on several factors. From the engineering 
point of view, it should be a good conductor of heat (so that it can be efficiently 
cooled) and of electricity (because it has to function as an electrode), which in prac- 
tice means a metal; it should also have a reasonably high melting point. From the 

crystallographer’s viewpoint, it should emit X-rays of a convenient wavelength 
(0.5-2.0 A). This limits the choice to the first- and second-row transition metals. The 
most widely used material is copper (Axq| 1.542 A), which fulfils the above conditions 
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well. Its chief drawback is that materials containing a high proportion of iron or man- 
ganese fluoresce in copper Ka radiation, often producing an unacceptably high level of 
background ‘noise’; in such cases iron, chromium or cobalt radiation can be used. 

Molybdenum or silver are suitable targets if a short wavelength radiation is required. 
Since most other metals are poor conductors of heat compared with copper, cooling 
the target is more difficult. For this reason, the bulk of the target is usually made of 
copper, with the required metal merely forming a thin surface layer; even so, the out- 
put from such a tube is reduced and the beam intensity correspondingly weakened. 

It is important not to exceed the power rating of the tube, which is limited by the 
rate at which heat can be removed from the target; recklessly increasing the tube volt- 
age or current can cause premature failure. Recently, efforts have been made to in- 

crease the power of tubes; one method has been to use a rotating anode. Since this is 
constantly moving, the heat produced by the electron beam is spread over a larger 

area, and the power input can be correspondingly increased. 

X-ray tubes may be permanently sealed after evacuation, or may be demountable, 
with the vacuum maintained by continuous pumping. In the first type, there is no 
possibility of changing any of the components or of rotating the anode; when the 
target or windows become coated with tungsten evaporated from the filament (as 
happens gradually in use) the whole tube has to be replaced. Moreover a different tube 

is needed for each type of radiation. 
However, against the apparent advantages of demountable tubes must be set the 

extra maintenance required. Most crystallographers use permanently sealed tubes, 

which are relatively robust and are available for use immediately after switching on. A 

tube life of several thousand hours can be expected, and can be increased if the tube is 
not run at the limits of its performance. 

The relevant part of the spectrum emitted from an X-ray tube operating under 
normal conditions is shown in Fig. 3.2. The characteristic lines are superimposed on a 
continuous background of ‘white’ radiation emitted by the exciting electrons them- 
selves as they are decelerated at the target; the short wavelength cut-off corresponds to 
the maximum energy of these electrons, and this varies with the tube voltage. The 
dotted line represents the absorption curve of an element suitable for use as a 6-filter 
with the given radiation; the vertical portion, or absorption edge, corresponds to the 
energy required to eject K electrons from the filter element. If the atomic number of 
the filter element is one or two less than that of the target element, the absorption 

edge lies between the Ka and K8 wavelengths of the radiation to be filtered. After 
passing through such a filter, the intensity of the KG radiation will be greatly dim- 
inished relative to the Ka, and the resulting beam, while not strictly monochromatic, is 

quite suitable for many diffraction experiments. More sophisticated methods of pro- 
ducing monochromatic beams are sometimes needed, and will be described along with 

their applications. 
X-rays are dangerous. Exposure of small areas of the body to a direct beam can 

result in nasty burns, while lower levels of radiation absorbed by the whole body can 
cause genetic mutations and sterility. The former can be avoided by never allowing the 
direct beam to escape into the room, and the latter by reducing incidental scatter to a 
minimum. Many sets are provided with safety shutters that interlock with the equip- 
ment in use at the windows they protect. These then close automatically whenever 
operations are in progress that might allow the escape of X-rays. Such devices can be 

made foolproof but they can seldom be idiot-proof: the maxim should be CARE, 
always. Anyone who is responsible for X-ray diffraction equipment should be familiar 
with the local regulations covering hazardous radiations, and should ensure that these 

are complied with. 
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Fig. 3.2 The X-ray spectrum emitted by a typical tube, showing intensity, J, plotted 

against wavelength, A. The solid line shows the characteristic radiation bands super- 

imposed on a background of ‘white’ radiation. The dotted line shows the absorption 

characteristics of a material suitable for use as a B-filter, to give approximately mono- 

chromatic radiation. 

3.2 Diffraction of X-rays 

The electric fields of X-rays, like those of visible light waves, interact with the elec- 
tron clouds of atoms. Because of their shorter wavelength, X-rays scattered by 

adjacent atoms in crystals can interfere and diffraction effects become important. In 
crystal optics, we were concerned with the effect of the crystal on the direct beam; in 
X-ray diffraction we are interested not in the direct beam, but in the scattered radi- 

ation. The diffraction pattern which the latter produces can tell us much about the 

internal arrangement of the crystal. 
Corresponding to the three-dimensional atomic pattern of the crystal, there is a 

three-dimensional pattern of electron density, all of which takes part in the scattering 
of the X-rays. Although at first sight the task of interpreting the resulting diffraction 
effects appears rather daunting, the problem is greatly simplified by tackling it in two 

stages. The first considers the geometry of the interaction of X-rays with a simple 
periodic arrangement consisting of a primitive lattice with a single electron (considered 
in this context to be a particle) at each point (Fig. 3.3(a)); the second modifies the 
conclusions drawn from this highly artificial model to take account of the arrangement 
of electron density within each pattern unit of the real crystal. 

When a beam of X-rays strikes an array of electrons such as that shown in Fig. 
3.3(a), each electron scatters some of the radiation in all directions. In general, the 
radiation scattered by adjacent electrons is not in phase; only when it is will reinforce- 
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Fig. 3.3 The diffraction of X-rays. (a) a ‘single electron lattice’. Each dot represents 

an electron; points behind the surface layers are omitted for clarity. (b) The inter- 

action of an X-ray beam with the top layer of the lattice. (c) The interaction of the 
beam with subsequent layers in the stack; d is the distance between successive layers. 

The thickened line AA’ represents the path difference between beams reflected from 
adjacent layers. Reinforcement will occur only when this is a whole number of wave- 

lengths (nA). 

ment occur and a diffracted beam be observed. It is not too difficult to work out the 
conditions for this; the following derivation is pictorial rather than rigorous, but leads 
to the right result. 

The array shown in Fig. 3.3(a) can be regarded asa stack of parallel layers each like 
that shown in Fig. 3.3(b). (There are of course other ways in which the stack could be 



50 THE DIFFRACTION OF X-RAYS 

divided into layers; Section 3.3 will explain how these are distinguished.) If a beam of 

X-rays strikes one such layer at any angle, 0, (Fig. 3.3(b)) most of it passes straight 

through, but a small fraction is scattered by the electrons. Most of the scattered radi- 

ation interferes destructively with that scattered by the other electrons. However, in 

the plane containing the incident beam and the normal to the electron layer, and at an 

angle @ to the layer, the scattered radiation from all electrons is in phase, and hence 

produces a diffracted beam. This result holds for all directions of approach by the 

incident beam. The diffracted beam, in other words, behaves as if it were being reflec- 

ted from the electron layer; in fact, diffracted X-ray beams are almost invariably called 

‘reflections’. Note that only a very small fraction of the incident radiation is reflected 

and that 0, the angle between the beam and the plane, is not the ‘angle of incidence’ as 

defined in optics. 
When the X-ray beam strikes a stack of such layers, each layer produces a reflected 

beam; only if all of these are in phase will a diffracted beam arise from the stack as a 
whole. For this to occur, the distances travelled by waves reflected from successive 

layers must differ by a whole number of wavelengths. The condition for this is shown in 

Fig. 3.3(c); it is that 

2d sin 0 = nd 

where d is the interplanar spacing or distance between layers, \ is the wavelength of 
the X-rays and n is an integer which we shall eventually eliminate. This relationship is 
known as Bragg’s law, after W. L. Bragg who first derived it. The diffracted beams thus 
fulfil the geometry of a reflection but arise only for certain discrete values of 0 for 

which Bragg’s law is fulfilled. 
It remains to apply the result obtained from this ‘single electron lattice’ to a real 

crystal. Let the lattice in Fig. 3.3 now represent that of the real crystal with a con- 
tinuous variation of electron density within each pattern unit. Since this arrangement 

is periodic, an electron at any point in a given cell diffracts in phase with those at the 
same point in all other cells whenever the conditions derived above are fulfilled. In this 
respect the situation is unchanged: possible angles for reflections are still predicted by 
Bragg’s law. Now, however, we are in effect dealing with a large number of single elec- 
tron lattices (one for each electron in the cell) which in general do not all diffract in 
phase with each other. Although the interference that occurs between the different 
electron lattices cannot change the position of the diffracted beam, it will have a pro- 
found effect on its intensity. Under certain conditions, total destructive interference 

may cause the potential reflection to be completely absent. These points will be 
explored further in Section 3.4. To sum up, the size and shape of the unit cell control 
the positions of possible reflections and hence the geometry of the diffraction pattern; 
the intensity of the individual reflections is controlled by the distribution of electron 
density within the cell. 

The diffraction pattern is usually recorded either by allowing the diffracted beams 
to strike and blacken photographic film (Figs. 4.4, 4.11 and 6.8 show some typical _ 
patterns recorded in this way), or by measuring the diffracted radiation with some 
form of counter. The relative merits of the two methods will be considered in the 
appropriate places. 

3.3 Indices 

In the last section, we derived the conditions for diffraction from a set of layers or 

planes within a crystal lattice without specifying which set was being discussed. Plainly 
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this will not do; we need a way of labelling the planes, and this is done with three 
integers called indices. A set of planes whose indices are h, k and / intercepts the x, y 

and z-axes at intervals of a/h, b/k and c/I respectively. 
This is illustrated in Fig. 3.4, using a two-dimensional lattice for the sake of clarity; 

only two of the three indices are then needed, and the planes become lines. The set of 
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Fig. 3.4 Indices of sets of lines in a two-dimensional lattice. 

lines at the top left of the diagram intercepts the x-axis at intervals of a, or one whole 
cell edge, so h = 1; the lines are parallel to the y-axis, which means that they intercept 

it at infinity, so k = 0. The indices for this set of lines are thus (10) (we say ‘one-oh’, 
not ten). To the right is shown a parallel set of lines at half the spacing; these cut the 
x-axis at intervals of a/2, and are thus the (20) lines. At the lower left, the (11) and 
(22) sets of lines intercept the x- and y-axes at intervals of a, b, and a/2, b/2, respec- 
tively. 

The remaining set of lines (lower right) cuts the x-axis at intervals of a and the 
y-axis at b/2; to get from one line to the next, however, if we count the x intercept in 
the positive direction, then the y intercept will be in the negative one and vice versa 

(compare the directions of the dotted arrows with those in the (11) lines). This is 
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expressed by making one of the indices negative, that is by writing (12) or (12). In the 
orthogonal array in Fig. 3.4, the spacing between lines is the same as it would be for 

the (12) set, but this will not always be true as can be seen from Fig. 3.5. 
The question now arises as to which is correct—(12) or (12)? Reference to Fig. 3.4 

suggests that the correct choice depends on whether the lines are approached from the 
top right or the bottom left. In considering the interaction of planes with X-rays, the 

signs thus indicate the direction from which the beam is approaching. Often the two 
cases are indistinguishable and you can use whichever indices are more convenient. It 

follows that the sets labelled (20) and (11) could equally well be called (20) and (11) 
if there were good reason for doing so. (See also p. 179.) 

The labelling of sets of planes in three dimensions is exactly the same in principle, 
but it is much more difficult to produce a convincing drawing of planes intercepting 

(12) 

Fig. 3.5 Sets of lines in a non-orthogonal, two-dimensional lattice. Note that the 
spacing of the (12) lines differs from that of the (12) lines. 

three axes than of lines intercepting two. Figure 3.6 shows two attempts. Figure 3.6(a) 
shows a set of (020) planes in relation to a lattice; Fig. 3.6(b) shows the (213) planes 
of the same lattice in terms of their intercepts on the axes.t 

We can now reconsider the integer n in the Bragg equation. Figure 3.7(a) shows the 
formation of the first-order reflection (n = 1) from the (100) planes; Fig. 3.7(b) shows 
the formation of the second-order reflection (n = 2) from the same set of planes. 

+ Readers with a knowledge of mineralogy will recognize that these indices are related 
to the Miller indices used to specify the faces of crystals. The Miller indices, however, 
never contain a common factor (as in, say, (020) or (222) which would be reduced to 
(010) and (111) respectively), and when dealing with external form, differentiation 
between (hkl) and (hkl) may be more important. 
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(b) 

Fig. 3.6 Sets of planes in a three-dimensional lattice. (a) The (020) planes drawn in 

relation to the lattice; lattice points behind the surface are omitted for clarity. (b) The 
(213) planes of the same lattice shown in terms of their intercepts on the axes. 

Figure 3.7(c) shows that the latter is geometrically equivalent to the first-order reflec- 
tion from a set of parallel planes with half the spacing, that is the (200) planes. In 
other words, the 1 can be absorbed in the indices; we speak not of ‘the second-order 

100 reflection’ but of ‘the 200 reflection’ and so on. Note the omission of the brackets 
from the indices of a reflection; the set of (Akl) planes gives rise to the hki reflection. 

The remarks made regarding the choice of signs of indices in two dimensions apply 

equally in three. The (Hk/) and (hk/) planes are indistinguishable if the crystal is 
centrosymmetric. Even if it is not, the hkl and hkl reflections are normally identical in 
intensity; crystals for which this is true are said to obey Friedel’s law. Crudely ex- 
pressed, this means that, so long as the Bragg condition is fulfilled, it usually does not 
matter from which side of a given set of planes the X-ray beam approaches; for 
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(100) 
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2do09sin 8 =) 

(200) 

pd=) 

(c) 

Fig. 3.7 Formation of (a) the first-order reflection from the (100) planes, (b) the 

second-order reflection from the (100) planes and (c) the first-order reflection from 

the (200) planes; pd = path difference. Note that (b) and (c) are merely different ways 
of describing the same reflection. The dots represent lattice points. 

example in Fig. 3.7 the beam could equally well have been shown approaching from 
the bottom of the page. We shall assume that Friedel’s law is obeyed, unless otherwise 
stated. Exceptions are discussed on p. 179. 

3.4 Information received 

The practical process of obtaining information about a crystal structure from a 
study of its diffraction pattern falls roughly into two stages, corresponding to the two 
stages in the argument used in Section 3.2. The first step is to study the positions of 
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the diffracted beams, with the object of determining the size and shape of the unit 
cell. The second is to study the intensity of the beams, with the object of deducing 
details of the atomic arrangement within the cell. Both these processes will be described 
in some detail in the following chapters; meanwhile to get a general picture of the way 
in which the atomic arrangement affects the intensities of diffracted beams, let us 

consider diffraction from two simple crystalline substances. 

(a) 

— a@------- @------- en— 

B----@------- ©--- 3 — 

planes —— 6@----=- Ons @°— Frianes 
© © — 

— @ © e — 

From AA‘ 

From 
AA! From BB’ 

From 

From 

CC’ 

(c) 

Fig. 3.8 (a) The body-centred structure of a-Fe, shown in perspective. (b) The 

structure of a-Fe projected down c. Full circles represent Fe atoms at 0, c, 2c, etc; 
half-filled circles represent Fe atoms at c/2, 3c/2, etc. The (100) and (200) planes are 

indicated. (c) The Bragg condition for the formation of the 100 and 200 reflections. 
In the former, waves from the centreing (BB’) exactly cancel those from the 

corner atoms, and the reflection has zero intensity. 
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The first, a-Fe, has a body-centred cubic lattice, with an Fe atom at each lattice 

point (Fig. 3.8(a)). The atoms are finite in size and vibrating about their mean pos- 

itions; both these facts can be allowed for, but it will not affect the present argument 

if, for convenience, we treat the atoms as stationary points. The condition given by the 
Bragg equation for the formation of the 100 reflection is that waves reflected from 
successive (100) planes (Fig. 3.8(b), left-hand side) have a path difference of one wave- 
length. This means that the waves scattered by the atoms (strictly, by their electrons) 
at the corners of the cell are all in phase. However, as pointed out in Section 3.2, this 
does not mean that they will necessarily be in phase with those scattered by the other 

atoms in the cell. In a-Fe, an equal number of atoms lie at the centres of the cells, and 
these also scatter in phase with one another. What is more, they are exactly halfway 
between the set of (100) planes illustrated, on which the corner atoms lie. A little 
thought shows that when the wave diffracted from the atoms in layer CC’ is one wave- 
length behind that from atoms in the layer AA’ (the Bragg condition for the formation 
of the 100 reflection), the wave from the atoms in BB’ will be one half-wavelength out 
of phase with either (Fig. 3.8(c)). The net result is that the waves diffracted by the 
corner atoms exactly cancel those from the centre ones, and the 100 reflection has 

zero intensity. The 200 reflection, on the other hand, is strong; for the (200) planes, 

TABLE 3.1 

Conditions imposed by various types of centreing 

Lattice type Possible reflections 

kK+l=2n 

h+1l=2n 

h+k=2n 

h+k+1=2n 

h+k=2n 

k+1l=2n 

h+l=2n 

(h, k and / are either all odd or all even) 
RG) eer 

Tn =k PS 3a 
(depending on setting) 

m7 Qa 

(1) On trigonal axes; see Chapter 1. 

shown on the right of Fig. 3.8(b), the Bragg condition is that waves from BB’ and CC’ 
shall be respectively one and two wavelengths behind those from AA’ (Fig. 3.8(c)); all 
atoms consequently scatter in phase. 

The argument can be extended. Figure 3.9 shows the (110) and (120) planes; for 
the former all the atoms scatter in phase, making the 110 reflection strong, while the 

(120) planes (like the (100) planes) have atoms halfway between them, and the 120 
reflection is consequently absent. In general, all reflections with (h + k + J) odd are 
absent for this reason. This can be proved more formally, as we shall see; for the 

present the important thing is that the idea be grasped in a qualitative way. 
Any crystal with a centred lattice shows systematic absences of this kind; indeed 

this is how centreing is detected. The rules for lattice absences are summarized in 
Table 3.1; if you have followed the argument so far, you should be able to work out 
the reasons for them (except perhaps for rhombohedral, which is, as ever, difficult). 
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Returning to Fig. 3.8, let us now suppose that the atoms at the cell corners are Cs 
and those at the centre Cl. The diagram then represents the CsCl] structure, with each 
Cs ion surrounded by eight Cl ions at the corners of a cube, and vice versa. 

(110) 

ee ye va 
@ y ; sya : oa 

(120) 

Fig. 3.9 The(110) and (120) planes in a-Fe. 

Since the atoms at the cell corners are no longer identical with those at the centres, 

the lattice is primitive, not body-centred. Figure 3.10 shows the effect of this on re- 
flections with (h + k + 1) odd. Ina-Fe, waves from the atoms at the cell corners are 
exactly out of phase with and exactly equal in amplitude to those from the centreing 
atoms (Fig. 3.10(a)). In CsCl, waves from the corner (Cs) atoms are still exactly out of 
phase with those from the centreing (Cl) atoms, but since Cs has more electrons than 
Cl, the amplitudes are no longer the same. Consequently, the scattered waves do not 

cancel entirely, though the amplitude of the resultant wave (Fig. 3.10(b)) is reduced 
relative to those from planes with (h + k + J) even. Reflections with (h + k + J) odd are 
thus weaker than the others. 

These very simple examples show how the cell contents govern the intensities of the 

diffracted beams. In more complicated structures, it is difficult to use such a quali- 
tative approach and the amplitude of the resultant wave is usually calculated math- 
ematically. Nevertheless, it is important to remember that the mathematical formulae 
are a convenient way of expressing the physical realities discussed above, and not just 
an arbitrary collection of symbols. 

The general expression for any crystal is complex: 

N 
Fryp = 2 Sp CX 27x, * ky, +12) 

r 

This can be rewritten in the form 

N 

Fri a pa fr {cos 2n(hx,, + ky, es Iz) +7 sin 2n(hx, + ky, ne Iz,)} 
r=1 
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From Fe 
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(b) 

Fig. 3.10 Resultant amplitudes of waves corresponding to reflections with (h + k + /) 

odd in (a) a-Fe and (b) CsCl. 

F nx, the structure factor for the set of planes concerned, is thus obtained by summing 
the waves diffracted by each of the NV atoms in the cell. Each term in the summation 

represents one such wave; its amplitude is given by f,, the scattering factor (or form 
factor) for the rth atom, and its relative phase by the rest of the term in which x,, etc., 

are the fractional coordinates of the rth atom. The value of f, depends on the number 
of electrons in the atom concerned, and also (for reasons that will be discussed later) 
on the angle 0 at which the reflection occurs. 

If there is a centre of symmetry at the origin of the unit cell, then for every atom 

with coordinates x,, y,, Z, there is an identical atom at —x,, —y,, —Z,, and since 

sin(—X) = —sin(X), the imaginary part of the expression vanishes, leaving a simplified 
form involving only the cosine terms: 

N 
Fria = eS fr cos 2n(hx, + ky, +1z,) 

r=1 

This is the form that will generally be used in the text, in order to keep things rela- 

tively simple, but it should be borne in mind that for non-centrosymmetric crystals the 
complex expression must, in general, be used instead. 
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If only one of each pair of centrosymmetrically related atoms is included in the 
summation, the expression may be written: 

N/2 

Fri = 2 o fr cos 2m(hx, as ky, - Iz,) 
r=1 

provided that there are no atoms situated on the centres of symmetry. The examples 
that follow are drawn from relatively simple substances that do have atoms so situated, 
so the other form of the expression will be used. 

Substituting the coordinates of the two atoms in the cell of a-Fe, we get: 

Frat =Ffre cos 27(h0 + k0 + 10) + fre cos 2n(h4 + k4 +14) 

=fre[cos0+cos (h+k + Ir] 

Since cos0 = 1, and cos(h +k +1) 7=1 if(h+k+/J) is even 
and cos(h+k+l)n=—1if(h+k+J) is odd 

then: F;,,; is 2ffe or 0 respectively, which agrees with the result arrived at previously. 

Similarly, for CsCl 

Frat =fcs + fc, when (h + k + J) is even and 
= fos —fcy when (h + k + 1) is odd 

again in line with our previous deductions. 

3.5 The reciprocal lattice 

We are now able to predict the angle that the reflection from a given set of planes 
will make with the direct beam, and conversely we could calculate d-spacings from a 
powder pattern (Figs. 6.2 and 6.8), obtained, as its name implies, from a randomly 
oriented, powdered specimen. The interpretation of single crystal photographs (Figs. 
4.4, 4.11 and 4.21) is however made much easier by the introduction of a little more 
theory. 

This is best approached by way of analogy with optical diffraction patterns. You 

may be familiar with the appearance of the pattern produced when a distant street 
lamp is viewed through fine material, such as a silk umbrella or a fibreglass curtain. 
Figure 3.11(a) shows such an arrangement of fibres and Fig. 3.11(b) the pattern of 
diffracted light observed. Successive orders of beams diffracted by the vertical fibres 
form a horizontal row of points of light, and vice versa (cf. Fig. 3.11(c)); if ‘x’ and ‘y’ 
axes are defined in the fabric so that the vertical fibres define the (01) lines in the 
two-dimensional lattice (cf. Fig. 3.4), the horizontal row of diffracted beams can be 
indexed as in Fig. 3.11(b). Because the wavelength of light is very short compared with 
the spacing of the fibres, the angles through which the beams are diffracted are small, 

so the 02 beam is about twice as far from the centre of the pattern as the 01 (and the 
03 three times as far), that is the spacing of the points of light in the diffraction pat- 
tern is roughly inversely proportional to the spacing of the lines in the lattice that give 

rise to them. The 40 row of points of light can similarly be associated with diffraction 
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(a) (b) 

Direct beam 

First order diffracted beam 

(c) 

Fig. 3.11 The relation between gratings and diffraction patterns. (a) A two- 
dimensional grating such as a fine-woven cloth. (b) The pattern seen when a distant 
light is viewed through a cloth such as that in (a). (c) Demonstrates that because the 

wavelength of light is very short compared with the spacing of the cloth, the dif- 

fraction angles are very small. The second order, or 02, beam is thus roughly twice as 

far from the centre of the pattern as the first. 

by the horizontal fibres, and the point labelled 11 with diffraction by the corre- 

spondingly labelled lines in the fabric; the same principle applies to other values of h 
and k. Note that the pattern of diffracted light itself forms a lattice. 

The formation of an X-ray diffraction pattern by a crystal is an analogous process 
in three dimensions. Interpreting the pattern is greatly simplified if we redefine the 
crystal ‘grating’ in terms of the directions and spacings of the lattice planes; in so doing 
we produce a three-dimensional array of points analogous to the two-dimensional 

array in Fig. 3.11(b); because of the inverse relation between the spacing of the points 
and the planes giving rise to them, this is called the reciprocal lattice. 

Figure 3.12(a) and (b) shows how this is constructed, and also serves to formalize 
the relation between Fig. 3.11(a) and (b). For simplicity we begin with an orthogonal 
lattice, reduce it to two dimensions by projecting it down c, and deal only with planes 
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(a) 

(b) 

a* 

Fig. 3.12 (a) Part of an orthogonal lattice projected down c. (b) Part of the corres- 

ponding reciprocal lattice. If @* = 0.30 r.u., use a ruler to find b*. If A= 1.542 A, 
calculate a and b, and hence the scale to which (a) is drawn. Use these results to 

convince yourself, by direct measurement, that df,9 = A/d1j0. 

whose / index is zero. From a point O within the crystal lattice, or real or direct lattice 
(Fig. 3.12(a)), lines are constructed perpendicular to the lattice planes; these are then 
marked off at distances inversely proportional to the interplanar spacings. If the dis- 
tance d* in reciprocal space is taken as 1/d, the dimensions of the reciprocal lattice 

will be A~!, or reciprocal angstroms, but for the interpretation of diffraction patterns 
it is usually more convenient to take d* = A/d, where A is the wavelength of the X-rays 

used. In this case d* is measured in dimensionless reciprocal units (r.u.). 

From O in Fig. 3.12(a), therefore, a line is drawn perpendicular to (100); this is the 
line labelled a* in Fig. 3.12(b), and because the real lattice is orthogonal it is parallel 
to a. Using a suitable scale, a distance is marked off along this line proportional to 
1/d(100); thus defining the reciprocal lattice point labelled 100. The (200) plane is of 
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Fig. 3.13 (a) Part of a monoclinic lattice protected down b, the unique axis. (b) The 

corresponding reciprocal lattice. 

Note that a* = d/a sin B = A/djo9, and conversely that a = A/a* sin B* = A/P, where P 
is the perpendicular distance between rows of reciprocal lattice points. If, on this 

diagram, c* = 0.30 r.u., use a ruler and protractor to determine a*, B* and P. Calculate 

a and convince yourself that both expressions give the same answer; calculate c 

(assume A = 1.542 A). Measure d,9, from the diagram of the real lattice. Compare the 
value with that calculated from dj; measured on the reciprocal lattice. 

course parallel to the (100), but with half the spacing; the 200 reciprocal lattice point 
thus also lies along a*, but twice as far from the origin as 100. The positions of the 

other 400 points are similarly determined. 
Similarly, the 0k0 points lie along a line perpendicular to (010), labelled b* in Fig. 

3.12(b); again, since the lattice is orthogonal, b* is parallel to b. The same is true of 
the c* direction, which is not shown; note that a*, etc. are commonly used to denote 
both the direction and length of the reciprocal axes. In the example shown, a is 2/3b, 
and d(190) = 2/3 d(o10), So that a* = 3/2 b* and the point marked 100 is one and a 
half times as far from the origin as that marked 010. 
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Generation of the non-axial points follows the same principles. For example, the 
line marked do) in Fig. 3.12(b) is perpendicular to the (110) plane in Fig. 3.12(a). 
Application of Pythagoras’ theorem will show that marking off a distance along it 
proportional to 1/d(1;9) completes the rectangle outlined with heavy lines in Fig. 

3.12(b); this represents the projection of the reciprocal unit cell down c*. 
For non-orthogonal lattices, the relation between real and reciprocal lattice is less 

straightforward. The construction for a monoclinic lattice is shown in Fig. 3.13; B* is 

(0110) 

(01-0) 

(c) 

Fig. 3.14 Assigning indices to trigonal and hexagonal lattices. (a) When indices are 

assigned relative to two axes perpendicular to c, equivalent planes have indices that 

appear to be different. (b) Introducing a third axis u and an extra index i makes the 
equivalence more apparent; since i = —(h + k) it is often omitted. (c) The corres- 

ponding reciprocal lattice, with equivalent reflections linked by dashed lines. (Note 

that it is not possible to define a third axis in reciprocal space that corresponds to u 

in real space.) 

If a* = 0.120 1.u., A = 1.542 A, calculate a; then use the value of a to calculate 

dio.9- Check your working by recalculating a*. 
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180° — 6, and only b* is parallel to the corresponding real axis. For triclinic crystals, 
none of the reciprocal axes need be parallel to the corresponding real one, and the 
trigonometry relating real and reciprocal cell is complicated; it is summarized in the 

Appendix. The important thing to remember is that for all systems, by definition, a* is 

perpendicular to (100), and so on. 
Trigonal and hexagonal crystals are a fruitful source of confusion, both in assigning 

indices to planes and in relating real and reciprocal lattices. The crystallographic a and 

b axes have to be arbitrarily selected from, respectively, three and six equivalent direc- 

tions perpendicular to c. The result of assigning indices on this basis is shown in Fig. 
3.14(a). Although it is obvious from the drawing that (for example) the three planes 
(110), (120) and (210) are all equivalent, it is by no means obvious from an inspection 
of their indices. The difficulty is resolved by introducing a third equivalent axis in real 

space, designated u (Fig. 3.14(b)), and including the intercept on this in the indices. 
Planes on trigonal and hexagonal axes are thus formally given four indices: (hkil). The 
three planes mentioned above thus become (1120), (1210) and (2110); permutation of 
h,k and i then produces equivalent reflections in a satisfactory manner. 

The index 7 is not independent of h andk;h +k +i=0,ori=—(h+k). For this 
reason the value of i is not always explicitly stated; the alternative notation (hk./) 
(Fig. 3.14(b)) automatically implies a trigonal or hexagonal lattice. When dealing with 
any problem involving equivalences it is helpful to write the indices out in full. 

The indices of reciprocal lattice points in Fig. 3.14(c) are given in the short form; 
convince yourself that the marked reflections really are equivalent. Since the shape of 
the unit cell is the same for both trigonal and hexagonal crystals, the reciprocal lattices 

are also geometrically equivalent. The two systems can however be distinguished by 
considering the intensities of various reflections, and this will be explained in Section 
STi 

3.6 Conditions for forming a reflection 

Figure 3.15 shows how the Bragg condition is reinterpreted in terms of the recipro- 
cal lattice. The heavy line represents one of a set of (hk/) planes perpendicular to the 
paper and inclined to the incident X-ray beam XO at the appropriate Bragg angle 0. 
The point P represents the corresponding reciprocal lattice point, using the scale d* = 
/d; OD is the direction of the diffracted beam. The perpendicular to OP at P 
intersects the incident beam at X, and the angle PXO = @. Since OP = Nd, then if the 
Bragg condition 2d sin 0 = > is fulfilled, OX = 2. Thus when a set of planes in real 
space is in the reflecting position, the corresponding reciprocal lattice point P is at the 
apex of a right-angled triangle whose hypotenuse equals two units and lies along the 
X-ray beam. The locus of such a point is a sphere of unit radius having the X-ray beam 
as diameter; it is called the sphere of reflection. 

The line CP from the centre of the sphere to P is parallel to OD, and hence to the 
diffracted beam. In fact, the most convenient way of interpreting diffraction effects, 
described in the next chapter, is to imagine the crystal to be at C, while the origin of 
the corresponding reciprocal lattice remains at O. This apparent ‘fiddle’ can be justi- 
fied on the basis that the reciprocal lattice is concerned with directions within the 
crystal, and so long as the angular relationships are maintained the two lattices need 
not have a common origin; the fact that it works will probably be sufficient justifi- 
cation for most people. 
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Fig. 3.15 The Bragg equation interpreted in terms of the reciprocal lattice. The 

heavy line through O represents one of a set of planes that is in the reflecting position; 

P is the corresponding reciprocal lattice point. The direction of the diffracted beam is 

given by OD if the crystal is considered to be at O, and by CP if, as in the usual con- 
struction, it is assumed to be at C while the origin of the reciprocal lattice remains at 

O. 

To record a diffraction pattern, the crystal at C is usually rotated or oscillated in 

some way; the reciprocal lattice with its origin at O moves in parallel with it. The 

sphere of reflection is, of course, stationary, and each time a reciprocal lattice point 
passes through its surface, the Bragg condition for the corresponding set of planes is 

satisfied. A reflected beam is then momentarily produced and its direction is given by 
the line CP joining the crystal to where the reciprocal lattice point intersects the 

sphere of reflection. Chapter 4 will show how helpful this construction is in inter- 
preting single crystal photographs. 

3.7. The weighted reciprocal lattice 

The purpose of introducing the reciprocal lattice is to provide a convenient way of 
visualizing and describing the diffraction pattern of the corresponding crystal. The 

picture that the reciprocal lattice provides is improved by assigning to each point a 

weight proportional to the intensity of the corresponding reflection. The resulting 
weighted reciprocal lattice (Fig. 3.16) is usually drawn by marking each point with a 
dot whose size is roughly proportional to the observed intensity. 

Weighting the points in this way brings out the relationship between the symmetry 

of the crystal and the symmetry of its diffraction pattern. Assuming that Friedel’s law 

(Section 3.3, p. 53) is obeyed, a diffraction pattern will display the point symmetry 
of the crystal that gives rise to it plus a centre of symmetry; this combination is called 
the Laue symmetry of the crystal. 

This is illustrated in Fig. 3.16, which also amplifies a point made on p. 64. Figure 
3.16(a) shows part of the zero layer of the weighted reciprocal lattice of a trigonal or 
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(b) (c) 

Fig. 3.16 Weighted reciprocal lattices. (a) Zero layer, trigonal or hexagonal, (b) First 

layer, trigonal. (c) First layer, hexagonal. If a* = 0.10 A7', what is a? 

hexagonal crystal. The crystal system cannot be deduced from this layer alone; the 
apparent six-fold symmetry could result either from a six-fold axis in the crystal, or 
from a three-fold axis (which makes, for example, 41.0, 54.0 and 15 .0 equivalent) plus 
the operation of Friedel’s law (which makes 41.0 = 41.0, etc.). However, it is possible 
to deduce that the crystal has no two-fold symmetry perpendicular to the three- or 

six-fold axis; if it had, pairs of reflections such as (for example) 41.0 and 14.0, or 41.0 
and 51.0, should have equal intensity and they plainly do not. Upper levels of the 
weighted reciprocal lattice distinguish the two systems. Friedel’s law does not affect 
the relative intensities of pairs of reflections such as 41.1 and 41.1, or in general of any 
hk. land hk. 1 pairs; if these are all equivalent there must be a six-fold axis in the crystal. 

The geometrical arrangements of the points in the two patterns shown in Fig. 3.17 

are the same, but the symmetries of the weighted patterns are quite different. In (a), a 
centred orthogonal cell should be chosen with its axes lying along the symmetry lines 
in the pattern. In (b), the presence of an orthogonal grid is not reflected in the sym- 
metry of the pattern, and a primitive unit cell such as that indicated would normally 
be chosen. These patterns might represent the hO/ levels of a centred orthorhombic 

and a monoclinic crystal respectively. 

The hkO and Oki levels of monoclinic crystals normally show two lines of sym- 
metry. Suppose that Fig. 3.18(a) represents the hkO level of the weighted reciprocal 
lattice of a crystal whose point group is 2. The operation of the two-fold axis makes 
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Fig. 3.17 Two arrays of points based on the same grid, but displaying different 

symmetries. An array like that in (a) might be observed when a centred orthorhombic 

crystal is being examined. Despite the orthogonal grid, the array in (b) must arise from 

a crystal of lower than orthorhombic symmetry. 

hkO and hkO equivalent in intensity; if Friedel’s law is obeyed hkO and hkO have the 

same intensity as well. Some sets of equivalent reflections are marked on the dia- 

gram. The hkl and hkl reflections of Fig. 3.18(b) however are not related by the 

two-fold axis and therefore not equivalent; the two-fold axis makes Hk1 (not shown) 
equivalent to hk1, and Friedel’s law gives hk1 the same intensity. Consequently the 
hk1 (and hk2, etc.) level has only one symmetry direction, although the array is still 
orthogonal. Unless 6 = 90° it will be slightly displaced in the a*c* plane relative to the 
hkO level. Similar considerations apply to the OKI, 1k/, etc., levels. 

As an exercise, satisfy yourself that similar relationships result if one begins with 
the assumption that the point group of the crystal is m. In fact the Laue group of all 
monoclinic crystals is the same, 2/m; that of all orthorhombic ones is mmm (exercise: 

prove this by adding a centre of symmetry to 222 and finding the total symmetry that 
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Trace of a” 

(a) (b) 

Fig. 3.18 (a) The hkO level of a monoclinic crystal, showing the two directions of 

symmetry. (b) the hk1 level of the same crystal. Note the lower symmetry, and the 

displacement in the a*c* plane relative to the zero level. 

results) and of triclinic ones, 1, The Laue groups corresponding to all point groups, 
including the more symmetrical ones, are listed in International Tables, Vol. 1, pp. 
31-2. 



CHAPTER 4 

Single crystal diffraction photographs 

4.1 Selecting and mounting crystals 

Before a single crystal diffraction photograph can be taken, a single crystal has to 

be found; both the quality of the final photographs and the ease with which they 
are obtained may depend on the care used in selecting and mounting this crystal. 
Usually it is best to start by examining a little of the sample or preparation under the 
polarizing microscope; this will help you to decide whether it is likely to contain suit- 

able crystals, and may also serve to warn you if it contains more than one phase. 
(Bitter experience teaches that if a preparation is mainly tiny fibres, the one or two 
well-crystallized prisms that can be seen will usually not be the same phase as the bulk 
of the specimen.) If the material looks promising, you can then select the most suitable 
crystal for your purpose. A study of its shape and optics will save time in orienting it 
suitably. 

The crystal selected should be of a suitable size. For accurate intensity work choose 
one whose largest dimension is about 0.1-0.5 mm (according to its composition: see p. 
192); for a preliminary survey of cell dimensions and symmetry you can use a larger one 
to cut down film exposure times. Do not choose too large a crystal: it is impossible to 

get decent results from ‘rocks’ 3 mm long. If all the crystals are as large as this, they 
may have to be cut or cleaved with a razor blade or partially redissolved or even 
crushed, according to their nature, or alternatively recrystallized as described in Chapter 

2. In many fields of study, the problem is more likely to be that of finding a crystal 

big enough to mount. If a preparation has yielded only very tiny crystals, time spent 
in trying to prepare larger ones will probably be time saved in the long run. Often the 
quality of the crystals improves with successive preparations, even though the 
conditions have not been changed. This may have something to do with the pres- 

ence of nuclei in the environment, or if the material crystallizes from solution suc- 

cessive recrystallizations may remove impurities that if adsorbed onto the surface of 
the tiny crystals inhibit their growth. A good general rule is that slow growth favours 
better crystals; if the rate of crystallization can be controlled it should be adjusted 

with this in mind. If the crystals are being grown from the melt, then the temperature 
should be lowered very slowly through the freezing point; if they are being grown 
from solution, care should be taken to keep the degree of supersaturation low, pare 
ticularly while the first crystals are forming. 

The selected crystal should if possible have clean outlines, with no other crystals 
sticking to it. If it is birefringent it should extinguish cleanly, that is all at once. Avoid 
crystals that show wavy extinction, or patterns like those in Fig. 4.1. The latter are 
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(a) (b) 

Fig. 4.1 Twinning in crystals. The extinction directions of the different individuals 

are indicated by the lines in the shading. 

twinned; they consist of two or more individuals grown together in some definite 
orientation. Twins such as those shown in Fig. 4.1(a) can sometimes be separated, but 
some, such as the lamellar twin shown in Fig. 4.1(b), are quite intractable. Twinning 
can be a problem; sometimes working with twins cannot be avoided and one just has 
to make the best of it, but interpreting the results can be very tedious and dis- 
couraging, particularly for a beginner. 

The selected crystal is normally mounted on a glass fibre (see also p. 35) and this is 
easier to do if the use of immersion liquid can be avoided during the microscopic ex- 

amination. Where the addition of immersion liquid is unavoidable (for example if two 
phases can be distinguished only by their refractive indices) the crystal must be care- 
fully dried before mounting is attempted, lest small traces of liquid cause it to stick to 
the slide or interfere with the action of the adhesive. 

The adhesive used to mount the crystal should not give an X-ray diffraction 
pattern. For temporary mounting, provided the ambient temperature is not too high, 
there is a lot to be said for using petroleum jelly or vacuum grease: the crystal can be 

moved relative to the fibre, and is easily removed with a little benzene should you wish 
to remount it in a different orientation. For a more permanent mount, shellac (sol- 
uble in alcohol) or glue or epoxy resin (which can seldom be successfully removed) 
can be used, but all these have the disadvantage of setting rather quickly; unless you 
are handy at manipulation under the microscope, they may well have hardened by the 
time you actually manage to bring the fibre into contact with the crystal. 

The glass fibre used should be of reasonable thickness. A suitable variety of sizes 
can be made by heating and pulling out soft glass rod. Avoid using fibres that dwarf 
the crystals mounted thereon, and vice versa. Glass wool fibres are suitable only for 
very small crystals; being so fine they are too flexible to support larger crystals, and 
they are also rather difficult to handle. 

The fibre, with the crystal suitably attached, is mounted on a device such as that 
shown in Fig. 4.2, so that the crystal can be aligned precisely. This is properly called a 
goniometer head, but is often colloquially referred to as a ‘set of arcs’ or simply ‘arcs’. 
The crystal is commonly adjusted to have a principal axis (say, b) parallel to the axis 
of the goniometer head and is then usually described as being mounted ‘about the 
b-axis’. More rarely the description ‘with the b-axis vertical’ may be encountered; this 
is less desirable, since it is only strictly correct if the axis of the goniometer head is 
vertical, and in practice the head is often mounted horizontally. 

Aligning the crystal is generally much easier if it can be mounted initially with a 
principal axis in roughly the right place, and, as implied above, the optical examination 
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Fig. 4.2 The basic parts of a goniometer head or ‘set of arcs’. A key is provided to fit 

the square pins, which operate worm gears. 

can be a great help in selecting an appropriate direction. The ease, or otherwise, with 
which the crystal can be picked up in the required orientation varies with the shape of 

the crystal. Prisms, needles or lath-like crystals are easily mounted about the direction 

parallel to their length (Fig. 4.3(a)). Plates or flakes are also easy to mount about axes 
in the plane of the plate (Fig. 4.3(a)), but less easy about the perpendicular direction: 
a plate can be attached to a fibre at right angles by using a very thick fibre or a very 
large blob of glue, but such crudities are to be deplored. A neater method is to bend 
the fibre; two ways are shown in Fig. 4.3. In Fig. 4.3(b), a very fine glass fibre (from 

glass wool) has been bent into a loop by sticking both ends into modelling clay. In Fig. 

4.3(c), a somewhat thicker fibre has been bent into an ‘L’ shape; this can be done by 
touching it with a white-hot rod or with a very small flame, and allowing it to bend 
under its own weight. 

Cubic crystals may be very difficult to align. Those that have crystallized as recog- 
nizable cubes or octahedra do not present great problems, but cubic crystals can grow 
in much more complicated shapes than these, and finding an axis is then very tricky. 
Even worse is the problem of selecting and mounting cubic crystals grown from a melt; 
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Fig. 4.3 Methods of attaching crystals to fibres. The examples shown in (a) are of 

relatively straightforward cases; to mount a crystal about a very short dimension, one 

may need to resort to one of the methods shown in (b) and (c). 

unless there is a pronounced difference in refractive index it will not be possible to 
distinguish the crystals from any surrounding glass. Moreover, only rarely will the 
crystals be sufficiently well developed for it to be possible to know, until diffraction 
patterns are obtained, whether the piece picked up consists of one crystal or many. 

It is sometimes possible to separate the crystals from any remaining glass and from 
each other by treating the crushed mass with a suitable reagent, but all too frequently 

the crystals dissolve at least as rapidly as the glass. In the last resort, the process 
becomes one of trial and error, and can be very tedious. 

Precise alignment of a crystal can seldom be achieved from optics and shape alone; 
one must usually make final adjustments from diffraction photographs, and some ways 
of doing this will be described in the relevant sections. If necessary, a crystal can be 

aligned entirely from diffraction photographs; cubic crystals without well-developed 
faces, for example, must be tackled in this way. This procedure is very slow, and even if 

study of shape or optics permits only rough alignment, much time will be saved 
thereby. Hence the emphasis on learning to use the polarizing microscope. 

4.2 Single crystal cameras in general 

The design of X-ray diffraction apparatus varies somewhat from make to make and 
it is unfortunately impossible within the scope of this book to describe all possible 
variations in detail. Therefore the precedent established for optical microscopes in 
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Chapter 2 will be followed: the basic principles will be described but for practical oper- 
ational details you should consult an experienced colleague or a manufacturer’s hand- 
book. The rest of this chapter will be devoted to the most commonly encountered 
types of single crystal camera; powder cameras will be discussed in Chapter 6. Do not 
attempt to adjust a camera yourself: because X-rays are dangerous, this should be done 

only by an experienced worker. 
All single crystal diffraction cameras have certain features in common. The crystal 

is bathed in a narrow beam of approximately parallel X-rays, produced by passing the 
tube output through a series of small concentric holes which collectively form the 

collimator. The film on which the pattern is recorded must be held in some form of 
film-holder or cassette, and kept covered with light-tight paper; Polaroid film and 
holders are available for some types of camera, and are useful for speeding up the 

setting of crystals. 
If the undiffracted beam were allowed to strike the film, it would produce blacken- 

ing over a wide area. To prevent this, either a small hole is punched in the film to allow 

the direct beam to pass through to a lead-lined beam stop (or backstop), or else the 
latter is suspended between the crystal and the film. In the latter method, a small part 

of the pattern is lost because of the shadow of the beam-stop support. Unless Polaroid 
film is being used, the casette must be loaded and unloaded in a dark room, and the 

film is developed and fixed by normal photographic processes. Films may be labelled 

in pencil before or immediately after unloading: the labelling will remain throughout 
the subsequent processing. It should not only identify the exposure, but also indicate 

unambiguously how the film lay in the cassette. 
It is also usual for some sort of optical system to be provided to assist in aligning 

and centreing the crystal. At its crudest this may consist merely of a lamp and tele- 
scope; at its most sophisticated it may approximate to an optical goniometer. 

4.3 Undistorted records of the reciprocal lattice 

The easiest types of X-ray diffraction patterns to interpret are those that give an 

undistorted picture of the reciprocal lattice; two examples are shown in Fig. 4.4. These 
were produced by moving the crystal and the film simultaneously, keeping the film 
parallel to a selected layer of the reciprocal lattice throughout. The basic geometry of 

the arrangement is shown in Fig. 4.5. A principal axis of the crystal is set perpen- 

dicular to the film; the film is thus parallel to a set of reciprocal lattice layers, as 
shown. Provided that the crystal axis is not parallel to the X-ray beam, the zero layer 
of the reciprocal lattice intersects the sphere of reflection in a circle, whose diameter 
OP is shown in Fig. 4.5. Any reciprocal lattice point that lies on this circle gives rise to 
a reflection; for example, a point at P would produce a reflection at P’ on the film, and 
the distance O'P’ is proportional to OP. If the zero layer is to be photographed, un- 

wanted reflections from other layers of the reciprocal lattice are excluded by suitable 
positioning of a layer screen having an annular slit, such that only reflections from 
the cone subtended at the crystal by the zero-layer circle are permitted to reach the 
film. 

Crystal and film are now moved together, so as to bring other reciprocal lattice 
points into the surface of the sphere of reflection, and the corresponding planes into 
the reflecting position. Providing only that the film remains perpendicular to the crys- 

tal axis, with O’ remaining in the same straight line with O and the crystal, the reflec- 
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ted beams strike the film to give an undistorted record of the reciprocal lattice; the 

scale depends on the crystal-to-film distance F (Fig. 4.5(a), similar triangles: O'P’/OP = 

O'C/OC = F/1). 
Since the scale chosen when drawing the reciprocal lattice is quite arbitrary, it is 

permissible to use the alternative construction in Fig. 4.5(b). In this the reciprocal 

lattice is drawn so that 1 reciprocal unit (1 r.u.) = F, making the zero layer coincident 

with the film. It is a matter of individual preference as to which construction is used. 

Subsequent diagrams use the first, with the expanded sphere of reflection corre- 

sponding to the second faintly indicated; they may thus be visualized in terms of 

whichever construction is found easier to understand. 

b* 

(a) 

Fig. 4.4 Undistorted photographs of the reciprocal lattice of ammonium oxalate 

monohydrate (orthorhombic, P2,2,2;a = 8.04, b = 10.27, c = 3.82 A). Cu radiation, 

Ni filter, \ = 1.542 A. (a) de Jong-Boumann photograph of the hk0 layer; the a* 

and b* axes, and some key indices are labelled. Note the systematic absences caused 
by the screw axes (see Section 5.1). (b) A precession photograph of the hO/ layer of 

the same crystal. This layer of the reciprocal lattice is perpendicular to that in (a), and 
related to it by a 90° rotation about a*. ; 
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Of the possible types of motion that might be imparted, two have been found use- 
ful in practice. Of these, the easier to visualize is the rotation used in the de Jong- 
Boumann method; the geometry for recording a zero-level photograph is shown in Fig. 
4.6(a) and the photograph in Fig. 4.4(a) was recorded in this way. The geometry of 
recording upper layers is shown in Fig. 4.6(b); the relative positions of crystal, screen 
and the rotation axis of the film are unchanged, and the upper level is brought into the 
recording position by altering the angle of incidence of the X-ray beam. To maintain 
the proper relative motions of film and reciprocal lattice layer, the former must be set 
back along its rotation axis by a distance proportional to the height of the latter above 
the zero layer. The formulae relating to the recording of upper layers are given in the 
Appendix. 

(b) 

Both photographs were taken using the Stoe Reciprocal Lattice Explorer. The 

crystal was a needle; note the corresponding elongation of the spots along c*, parallel 

to the needle axis. 
Measure the photographs with a ruler; given that 52.0 mm on the film = 1 r.u., 

check the cell dimensions. 
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Fig. 4.5 

The precession motion used in the method developed by Buerger is quite different 
and rather more difficult to visualize. The crystal is set initially with a principal axis 
parallel to the X-ray beam; this axis is then tilted to make an angle u (generally about 

20- 30°) with the X-ray beam and caused to precess about it (Fig. 4.7). This means 
that the axis travels around the beam on the surface of a cone of semi-vertical angle u 
(Fig. 4.7(a)). The perpendicular to the film, similarly inclined, follows the motion of 
the crystal axis. The film does not rotate in its own plane, nor does the crystal rotate 

about its own axis. 
Figure 4.7(a) shows the arrangement for recording the zero layer, which intersects 

the sphere of reflection in the circle of diameter OP. As the crystal axis precesses 
around the X-ray beam, the tilt of the reciprocal lattice follows it. The circle OP thus 
rolls around O to sweep out a circular area of the zero layer. The layer screen is attached 
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Fig. 4.5 The production of an undistorted record of the reciprocal lattice. Alter- 

native geometrical constructions are shown in (a) and (b). 

to the crystal mounting and precesses with it. A photograph recorded in this way is 
shown in Fig. 4.4(b). As with the de Jong-Boumann method, the geometry of recording 
upper levels is more complicated (Fig. 4.6(b)); in this case the required layer is selected 
by changing the position (and sometimes the size) of the layer screen, and here also 
the film position has to be changed to maintain the correct relative motions. Formulae 
are given in the Appendix, but usually the necessary adjustments are read off charts 
supplied with the instrument. A full account of the method will be found in the books 
by Buerger listed under suggestions for further reading. 

Note that while the de Jong- Boumann method records reciprocal lattice layers 
perpendicular to the axis of the goniometer head, the precession method records layers 
that are parallel to it. Thus for an orthogonal crystal mounted about, say, c, the de 
Jong- Boumann method can be used to record the k0, hk1, etc. layers and the pre- 

cession method to record both the OK/, 1ki/, etc., and hO/, 11, etc., layers, all without 
having to reset the crystal. A non-orthogonal crystal, for which c and c* are not paral- 
lel, might need adjustment between taking the two types of photograph, but would 
probably not have to be remounted. To be able to obtain a complete set of undis- 
torted reciprocal-lattice photographs without dismounting the crystal is obviously a 
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Fig. 4.6 The de Jong-Boumann method; (a) photography of the zero layer (b) 
photography of an upper level. 
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great convenience, and the commercially available ‘reciprocal-lattice explorer’,t carries 

the principle to its logical conclusion by providing for both types of recording 
geometry on the same instrument. 

The chief drawback to both the methods so far described is that only a small part 
of the reciprocal lattice can be recorded. If the crystal being examined has one or more 
short reciprocal dimensions, this may not matter; indeed this is precisely the sort of 

crystal for which it is most important to have easily interpretable photographs. For 
crystals with larger reciprocal repeat distances, too little information may be recorded 

for the systematic absences to be fully investigated; the precession photograph in Fig. 
4.4(b) illustrates this. The amount of information can be increased by using a radi- 
ation of shorter wavelength, thereby decreasing the scale of the reciprocal lattice, but 
for various reasons this may be inconvenient. One must then use other methods of 

recording that allow more of the reciprocal lattice to be explored at the expense of 

producing a distorted record (Sections 4.4 and 4.5). 
There are various ways of aligning the crystal accurately or setting it. If the goni- 

ometer is provided with a good optical system, as a well-designed instrument should 

be, and the crystal has well-developed faces, light reflected from these faces can be 
used to set the crystal to within a few minutes of angle. Figure 4.8 shows how the 

system might be used to align a monoclinic crystal about b. When the reflected light 

_ Axis of ; 
goniometer head is 
perpendicular to screen 
plane of paper precesses 

_-—7 \ with 
crystal 

X-ray 
beam 

Principal 
axis of crystal 

All precess about 
the X-ray beam 

(a) 

Fig. 4.7 (see caption overleaf) 

+ Manufactured by Stoe, Darmstadt, Germany. 
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Fig. 4.7 Precession photography; (a) zero and (b) upper levels. 

returns along the same path as the incident light, the (001) plane and hence the a and 
b axes are perpendicular to the light beam; the crystal is then rotated and the process 
is repeated for the (100) plane. This aligns the b-axis with the axis of the goniometer 
head and the crystal is suitably set for either precession or de Jong- Boumann pho- 

tography. The same system serves for any crystal of higher than monoclinic symmetry, 

assuming that suitable faces are present. 
After alignment by this method, triclinic crystals, or monoclinic ones mounted 

about a or c, will be suitably set for de Jong- Boumann photography, but may need 
adjusting before precession photography is undertaken. This is illustrated in Fig. 4.9(a) 
for a monoclinic crystal mounted about c. If the X-ray beam is travelling perpendicular 
to the plane of the diagram, precession photographs of the HOI, etc. layers can be taken 
without further adjustment, but a simple rotation of the arcs through 90° will not 

serve to bring a into coincidence with the X-ray beam. To explore the Oki, etc. layers, 
the crystal must be adjusted to bring c* parallel to the axis of the goniometer head as 
in Fig. 4.9(b). Triclinic crystals mounted about an axis in real space will in general 
need adjustment before precession photography no matter which section of the re- 

ciprocal lattice is to be explored (see also Fig. 4.13). For these, or for crystals whose 
faces are too poorly developed for optical setting, photographic methods must be 
used; these are usually necessary in any case for final, precise alignment. 
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Fig. 4.8 Setting a well-formed crystal by optical means. The crystal is adjusted to 
bring the incident and reflected light beams into coincidence; (001) is then perpen- 

dicular to the light beam. The head is rotated and the operation repeated for (100). 

The b-axis is then necessarily parallel to the axis of rotation and provided that it is 
perpendicular to a and c (as for a monoclinic crystal) the crystal is correctly aligned 

for both de Jong-Boumann and precession photography; otherwise some adjustment 

may be needed before the latter is undertaken (see text and Fig. 4.9). 
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(a) (b) 

Fig. 4.9 Setting a monoclinic crystal for precession photography; the X-ray beam is 

assumed to be travelling perpendicular to the paper. (a) The crystal is set about c. The 

hOl and parallel levels can be photographed, but rotation of the head about its axis will 

not bring a parallel to the beam, or the Ok/ level into the plane of the paper. (b) The 
crystal is set about c*. Both hO/ and OKI, etc., levels can now be explored by rotating 
the head through 90°. 

If the crystal were triclinic, it would in general be necessary to adjust it before any 

precession photography could be done. Once it was set about c*, the hO/ and Ok/ 

sections would be related by rotation through y. 
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(a) 

(b) 

(c) 

Fig. 4.10 Setting a crystal for precession photography. (a) The appearance of the 

setting photograph when the crystal is correctly aligned. (b) A crystal slightly mis- 

aligned in the plane of the paper. The heavy lines show the actual position of the 

crystal axis, and indicate the area of the zero level that is swept out; the correct 

position of the axis, coincident with the precession axis, is shown by light lines. The 

shaded area represents the extent of the mis-setting. (c) The appearance of a setting 

photograph when the crystal is slightly mis-set as in (b). 

Photographic methods of setting crystals for precession photography have been 
described in detail by Buerger (loc. cit.), so only a brief description will be given here. 

Unfiltered radiation is used, with a small precession angle (5- 10°), no layer screen, 
and the film set in the position to record the zero layer. If the crystal is properly set, 
the result looks something like Fig. 4.10(a). A small central portion of the zero layer 
of the reciprocal lattice, complete with the KG reflections and the streaks due to white 
radiation, is recorded in the centre of the film. Additional spots due to upper-layer 
reflections occur further out from the centre; they are easily distinguished from the 

zero-layer reflections because they are doubled (the film not being positioned to 
record upper levels) and are ignored. A crystal slightly mis-set, as in Fig. 4.10(b), 

sweeps out an asymmetric circular area (Fig. 4.10(c)); small adjustments must be made 
to the alignment of the crystal to correct the asymmetry. Formulae for calculating the 
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Fig. 4.11. Rotation photograph of the same crystal as in Fig. 4.4, rotating about the 

needle axis, c. The reflections visible in Figs. 4.4(a) and 4.21 are here compressed into 
the equatorial layer (/ = 0). (Cu radiation, Ni filter). 

magnitude of these corrections have been given by Buerger; charts are also available. 
The art lies in applying the correction in the right direction: this is relatively easy to 

work out with the film and instrument to hand, but not at all easy to describe on 

paper. Needless to say, it is essential to know how the film was placed in the holder; 
some instruments provide locating marks automatically. Otherwise, writing on the film 
in pencil before removing it from the holder will serve; should you forget to do this, it 
is sometimes possible to retrieve the situation by a careful study of the position of the 
shadow of the backstop support, but this method is not recommended for routine use. 
It is also a good idea to note the values of all settings of arcs and instrument before 
making any adjustment; if you then find that your correction has only made matters 
worse, you can work out where the mistake occurred and put it right. 

Photographic setting for de Jong- Boumann photography, if the necessary align- 

ment is not identical to that for precession photography, is by the oscillation tech- 
niques described in the next section. 

4.4 Rotation and oscillation photographs 

Figure 4.11 shows a typical rotation photograph, obtained using the arrangement 

shown in Fig. 4.12. The X-ray beam is perpendicular to a principal crystallographic 
axis, which in the following discussion is assumed to be c (if it were a or b the same 

arguments would apply, with appropriate changes of axes and indices). The crystal 
rotates about this axis, and the diffraction pattern is recorded on a film mounted as a 
cylinder concentric with the rotation axis. Although this axis is not vertical in all 

cameras, for simplicity we will assume that it is. 
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Fig. 4.12 The geometry of rotation (or oscillation) photographs. (a) The motion of 

the reciprocal lattice with respect to the sphere of reflection, showing the formation of 

a diffracted beam. The reciprocal lattice layers are perpendicular to the rotation/oscil- 

lation axis of the crystal; ¢ is the vertical distance of any level above the zero layer. The 
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Fig. 4.13 The formation of a rotation photograph from a triclinic crystal mounted 
about c; (a) shows the relation of a* and b* to c; (b) shows that the consequence is 

that all reciprocal lattice layers with a given / are horizontal; hence the formation of 

layer lines. 

The most immediately striking feature of such a photograph is the arrangement of 
the spots in horizontal lines, or layer lines. These arise because if a real axis of a crystal 
(of any symmetry) is vertical, two of the reciprocalaxes are, by definition, horizontal. 

Figure 4.13(a) illustrates this for a triclinic crystal mounted about c. The reciprocal 
lattice points thus lie in layers perpendicular to the vertical axis; as we shall see, the 

reciprocal lattice rotates about an axis through its origin and parallel to the crystal axis; 

£ is the horizontal distance of any point from the rotation axis of the reciprocal lattice. 

(b) Recording the photograph on a cylindrical film whose axis coincides with the 

crystal rotation axis. The dotted lines show the position of the layers on the film cor- 

responding to the diffracted beams produced as in (a). 
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position of a reflection on the film depends on the height § of the corresponding 
reciprocal lattice point above the zero layer, and its horizontal distance & from the 

rotation axis (Figs. 4.12(a), 4.13(a)). As the crystal rotates about c, the reciprocal 

lattice rotates about a parallel axis through O; consequently all the points on a given 
layer pass through the sphere of reflection at the same vertical height above O, giving 
rise to the layer lines observed on the photograph (cf. Figs 4.11, 4.12 and 4.13(b)). 

The distance between successive layers of the reciprocal lattice can be determined 
by measuring the spacing on the film and applying trigonometry, but it is more con- 
venient to use a Bernal chart (named after its inventor Professor J. D. Bernal) like that 
shown in Fig. 4.14. Copies on transparent paper or plastic are commercially available 
and enable the coordinates ¢ and & for any reflection to be read directly. Figure 4.15 is 

an enlargement of part of the rotation photograph reproduced in Fig. 4.11 super- 
imposed on such a chart; the coordinates of the spots are given in Table 4.1. The value 
of ¢ for the /th layer is related to c by 

c=1X/F 

TABLE 4.1 
Reciprocal coordinates from the photograph in Fig. 4.15@) 

0.30]0.36/0.39|0.41|0.49 | 0.60} 0.63]0.65)| 0.71] 0.73 

(1) For puposes of reproduction, the photograph in Fig. 4.15 is somewhat over- 

exposed. The coordinates cannot therefore be read very accurately. (Observed reflections 
are indicated by x.) 

Fig. 4.16 The formation and interpretation of rotation photographs. (a) The crystal 
is rotating about an axis perpendicular to the plane of the paper; the reciprocal lattice 
rotates about a parallel axis through O. The paths followed by zero-layer reciprocal 
lattice points at successively greater distances from O, that is with increasing &-values, 
are shown as a, b, c, etc. All the corresponding reflections appear on the same straight 
line on the film, at positions determined by their £-value only. Upper layers behave 
similarly, except that they intersect the sphere of reflection in a circle of reduced 
diameter (cf. Fig. 4.12(a)). (b) Provided that the crystal is fairly symmetrical and its 
cell not too large, it may be possible to work back to the reciprocal lattice, given only 
the &-values of successive row-lines. The data from Fig. 4.15 and Table 4.1 are here 
plotted as a series of circles. Assuming that the first two of these correspond to the 
paths followed by the 10/ and 01/ reflections respectively, an orthogonal net can be 
constructed which successfully accounts for the other row-lines. The hk indices 
assigned in this way are given in Table 4.1. Note that with increasing &-values it be- 
comes progressively more difficult to assign indices unambiguously. The results may be 
compared with the undistorted zero-layer photograph from the same crystal repro- 
duced in Fig. 4.4(a); compare the absences in the latter with the zero layer of Table 
4.1. 
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and the rotation photograph thus gives a direct measure of the repeat distance along 

the rotation axis. (In the example in Table 4.1, the crystal lattice is orthogonal and the 
value of ¢ derived from the rotation photograph is equal to c* and may be compared 

directly with the value of c* derived from the precession photograph. However, if the 
rotation axis is not a symmetry axis, ¢ will not be equal to the corresponding recipro- 

cal axis; see Fig. 4.13(b).) 

The value of £ gives the horizontal distance between the reciprocal lattice point and 

the rotation axis through O; assigning h and k indices to spots within a layer is usually 

not a straightforward process. The problem is that all the information from the two- 

dimensional reciprocal lattice layer is compressed into the one-dimensional layer-line 

(Fig. 4.16(a)). For crystals with low symmetry and/or large unit cells it is usually not 

worthwhile to try to sort this out; better spread the information out into two di- 

mensions using a moving film camera—either one of the two types described already or 

a Weissenberg camera (Section 4.5). 

If the rotation axis is a symmetry axis, however, the spots on the rotation photo- 
graph will be arranged along vertical curves which follow those on the Bernal chart; 
these row lines are plainly seen in Fig. 4.15. Further information can then be extracted 

from the rotation photograph, using a graphical construction to reverse the process 
shown in Fig. 4.16(a). Whether this is worth the effort in any given case is a matter of 
judgement, depending on the complexity of the pattern, the availability of moving 
film cameras, the urgency of the problem and human factors such as whether you 
enjoy solving problems. The worked example in Fig. 4.16(b) is based on the data in 
Table 4.1 derived from the photograph in Fig. 4.15 and shows the work involved for a 
crystal of moderate complexity. Notice that although a high proportion of the theo- 
retically accessible reflections (A/2d = sin 9 < 1;d* <2 1.u.) are recorded, the problem 
of overlap becomes severe at quite low angles, so that much of the information cannot 
be interpreted. 

Most cameras provide for the crystal to be made to oscillate through a small angle 
instead of rotating completely; Fig. 4.17 shows such an oscillation photograph. The 
amount of information recorded is thus reduced, and the interpretation made corre- 
spondingly easier. It is possible, though tedious, to record the reciprocal lattice on 

successive Oscillation photographs and to plot out the information so obtained, and 
very rarely one meets a problem that is best tackled in this way. However oscillation 
photographs are more often taken for other reasons. 

Study of one or more oscillation photographs is a rapid way of determining the 
symmetry of the relevant axis. If an oscillation photograph shows symmetry of both 
geometry and intensity about the equator as in the example in Fig. 4.17, the vertical 
axis is a direction of at least two-fold symmetry. If the two-fold symmetry takes the 
form of a mirror plane (that is the vertical axis is 2) the reason can be seen intuitively; 
the reciprocal lattice has a mirror plane, just like the real lattice. Providing Friedel’s 
law holds, a two-fold axis produces the same effect, for reasons discussed in Section 
3.4 ,.0; 003 

A series of oscillation photographs can also establish the nature of an axis of higher 
order, if the crystal be rotated through the appropriate angle about its axis between 
exposures. For a hexagonal crystal, for example, oscillation photographs taken at 60° 

intervals around the hexad axis will all be identical. They serve to distinguish it from a 
trigonal crystal, whose oscillation photographs may show geometrical symmetry across 

the equator but will not be symmetrical as regards intensity; a triad axis produces 
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Fig. 4.17 A 15° oscillation photograph of the crystal used for Fig. 4.11 about the 

same axis. Note the reduction in the information density. Note also the symmetry of 

the reflections, as regards both position and intensity, about the equatorial layer; this 

shows that c must be a symmetry axis (Cu radiation, Ni filter). 

identity only between photographs at intervals of 120°, the intervening ones being 
inverted across the equator. Although this information can be obtained equally well, 

and usually more conveniently, from moving film photographs, it is sometimes 

quicker to use the oscillation method. 
The usual reason for taking an oscillation photograph is to help align the crystal, 

and for this purpose one may use unfiltered radiation; this reduces exposure times, and 
the additional spots and streaks on the photograph are frequently found to be posi- 
tively helpful. 

When the crystal is approximately aligned, its crystallographic axis remains slightly 
tilted relative to the oscillation axis and the reciprocal lattice layers tilt with it. Conse- 

quently, the layer lines on the oscillation photograph, instead of being straight, are 

curved, as shown in Fig. 4.18. The crystal is aligned by adjusting it to correct the tilt. 
One method, which works well for crystals that give sharp spots out to the edge of the 
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Beam stop 

X-ray beam perpendicular 

to plane of diagram sind= ane 283 If D= 60mm, 8 =2n (mm) 

X-ray beam in plane 

of diagram 

(c) 

(d) 

Fig. 4.18 Setting a single crystal from oscillation photographs. (a) Left, the position 
of the zero layer if the crystal is mis-set only in the plane perpendicular to the X-ray 
beam; right, the appearance of a photograph taken with the crystal oscillating about 
this position. (b) Left, the position of the zero layer when the crystal is mis-set in the 
plane containing the X-ray beam; right, the corresponding oscillation photograph. (c) 
The appearance of an oscillation photograph from a crystal mis-set in both planes, that 
is with a combination of the above errors. For ease in calculating the necessary cor- 
rection, the oscillation photograph is usually taken with one arc of the goniometer 
head parallel to the X-ray beam; the other is then perpendicular to it. The necessary 
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film, is explained in Fig. 4.18; the deviation of the zero-layer line from the equatorial 
position gives the correction. When the crystal is very nearly set, the chief difficulty 
lies in deciding the exact position of the equator. This is resolved by making two 
exposures on the same film, the crystal being rotated 180° about its own axis between 
exposures. The resulting double oscillation photograph (Fig. 4.18(d)) carries two 
images of the zero layer, reflected in the equatorial plane, and the correction is ob- 
tained by measuring the appropriate distance between them and dividing by two. To 

determine the sense of the correction, it is of course necessary to be able to distinguish 
the two exposures. This can be done by making one exposure considerably longer than 
the other or by using a filter for one but not the other. 

(b) 
Fig. 4.19 Crystals requiring other setting techniques. (a) Oscillation photograph from 

a crystal whose pattern fades out below 20 = 90°. The tangent to the zero-layer curve 

at the centre gives the approximate correction for the arc perpendicular to the X-ray 

beam. To determine the other correction, the arcs are rotated 90°. This method is 
often helpful in the preliminary stages of trial-and-error setting, when the location of a 

principal axis is not known even approximately. (b) Oscillation photograph from a 

crystal with a very long vertical axis; location of the zero layer is difficult, and it is 
easier to adjust the row lines. 

angular correction can then be resolved between the two arcs as follows. The deviation 

of the zero layer is measured at 20 = 90°, or § = /2; normally the high-0 gap in the 
film is negligible and one can assume that this is halfway between the middle and the 

edge of the film as shown. The necessary corrections in the two directions are given by 

(x + y) and (x — y), which is which being determined by inspection. In the example 

shown, the larger correction is clearly in the direction perpendicular to the X-ray 

beam, and anti-clockwise as the crystal is viewed from the direction of the approaching 

beam, as in (a). The smaller correction is in the direction parallel to the beam, and 

requires the crystal to be tilted down towards the point where the beam enters, as in 

(b). (d) A double oscillation photograph from a crystal mis-set as in (c). The longer 
exposure corresponds to the orientation of the head that produced (c). 
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For crystals whose patterns fade out at relatively low angles, the more rough-and- 

ready method shown in Fig. 4.19(a) can be used. Occasionally, if the vertical axis is 
extremely long and the horizontal axes relatively short (Fig. 4.19(b)), it may be easier 
to set the crystal by adjusting the row lines [1]. 

4.5 The Weissenberg camera 

The two types of moving film camera already described give an undistorted pic- 
ture of the reciprocal lattice, but are capable of recording only a relatively small part 
of it. The Weissenberg method (Fig. 4.20) is geometrically more nearly related to the 

—— Film cassette travels —= : 
g = Film 

Screen 

Crystal 

oscillates (a) 

SS PRES 

Second First Zero Sphere of 
layer layer layer reflection 

X-ray 
beam 

Screen moved 
through r tan 5 

_— 

Crystal and film 
tilted through 8 

(b) 

Fig. 4.20 Weissenberg photography. (a) Photography of the zero layer. (b) Photogra- 
phy of the first layer, using the equi-inclination setting. The crystal and film holder 
are tilted through 6, where sin 5 = ¢/2; the screens are moved through r tan 6. Notice 
that the second layer, which does not intersect the sphere of reflection in the zero- 
layer setting, now does so, For this reason more layers are accessible than are recorded 
on a rotation photograph. The practical limit is set by the limits of tilt that the 
instrument allows. 
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Fig. 4.21 A Weissenberg photograph of the hkO layer of ammonium oxalate mono- 

hydrate. This photograph should be compared with that in Fig. 4.4(a) and axes, 

‘streamers’ and some indices have been marked on it for this purpose; the photographs 
are related in the same way as the pairs of drawings in Fig. 4.24. This photograph was 

taken with Cu radiation and a Ni filter; the streaking due to white radiation is rather 

prominent because it was over-exposed for reproduction reasons. Note that it includes 

many more reflections than Fig. 4.4(a), but that because it gives a distorted picture of 
the reciprocal lattice it is not so easy to interpret. 
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rotation method, and shares its ability to explore a large part of reciprocal space. To 

avoid the drawback of the rotation method—that too much information is compressed 

into each layer line—the layers are selected one at a time and photographed on a mov- 

ing film, so that each two-dimensional layer is recorded in two dimensions, albeit in a 

distorted form (Fig. 4.21). The film forms a cylinder concentric with the crystal axis, 
as in a rotation/oscillation camera, and if it is kept stationary, oscillation photographs 

can be recorded and used for checking crystal alignment as described in Section 4.4. 
When the instrument is being used as a moving film camera, movable cylindrical 

metal screen(s) are positioned so that only reflections from the selected layer can 
reach the film; Fig. 4.20(a) shows the arrangement for recording the zero layer. The 
crystal oscillates through a predetermined angle (usually about 200°); the film simul- 
taneously travels along its own axis. The two motions are coupled, and they reverse 

together; in most instruments the film moves 1 mm for each 2° of crystal oscillation. 
The result is the rather odd looking photograph in Fig. 4.21, in which the distance of 
any spot from the equator depends on &, while its horizontal distance along the film 
represents the angular position of the crystal as the corresponding reciprocal lattice 
point passed through the surface of the sphere of reflection. 

This is in fact a highly distorted picture of the reciprocal lattice; Fig. 4.22 shows 
how the distortion may be visualized. Imagine the weighted reciprocal lattice layer 
(Fig. 4.22(a)), drawn on a sheet of some infinitely stretchable material, with a rod 
inserted along each axis to keep it straight. The ‘axial rods’ are then pulled apart at the 

origin (Fig. 4.22(b)) until they become parallel (Fig. 4.22(c)). The result may be com- 
pared with the photograph in Fig. 4.21. The axes are inclined to the equator because 

to bring successive axial points into the sphere of reflection the reciprocal lattice has 
to rotate, and while it is doing so the film of course moves proportionately. 

Quantitative interpretation is usually done with the help of a Weissenberg chart 
(Fig. 4.23), which enables Cartesian coordinates in reciprocal space to be read directly 
from the photograph. Beginners will probably find it easiest to plot the coordinates of 
reflections on squared paper, to give an undistorted picture of the reciprocal lattice; 
the reciprocal cell dimensions and the indices of reflections are then determined from 
this. With practice, photographs can often be indexed and reciprocal dimensions 

measured directly; charts with only one set of curves are then useful if the lattice is 
not orthogonal. It is often helpful to draw in the reciprocal lattice rows, or ‘streamers’ 
or ‘festoons’, and label key reflections with their indices as in Fig. 4.21; it is however 
normally somewhat risky to do this directly on the photograph, because if done 

wrongly it cannot be put right. Not only will wrong labelling be confusing, but also, 
and worse, it may well obliterate some detail that is later found to be essential to the 

interpretation. It is safer to make drawings on tracing paper or a transparent envelope, 

although this too has its drawbacks. It is sometimes difficult to keep film and paper in 
register and faint reflections may not be visible through the extra thickness of material. 

Upper levels of the reciprocal lattice are photographed by moving the screens to 
isolate the appropriate layer; at the same time the entire assembly is tilted so that the 

incoming X-ray beam lies in the same cone as the required level (Fig. 4.20(b)). The 
advantage of this equi-inclination method over other possible settings is that the form 
of the curves is the same as for the zero layer, and the same chart can be used for inter- 
preting the photographs; moreover, as Fig. 4.20 shows, it enables the maximum 
volume of reciprocal space to be examined. The formulae for calculating the settings 
are given in Fig. 4.20(b). Notice that for upper layers the circular area of reciprocal 
lattice explored has a radius of /(1 — (¢/2)*), and since this is spread over the same 
area of film as the zero layer, the scale of the upper layers is increased by 
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(a) 

(b) 

(c) 

Fig. 4.22 The relationship of a Weissenberg photograph to the undistorted reciprocal 

lattice. (a) The weighted reciprocal lattice. (b) The axes are kept straight, but pulled 

apart at the origin. (c) The axes become parallel, the horizontal distance between them 

being proportional to the original angle. 

1/V/( — (§/2)). The effect is barely noticeable for small values of ¢, but increases 
rapidly with larger values. 

If an upper-level photograph looks very similar to that of the zero level, there may 
be a perfectly valid structural reason, but, before seeking this, you should check that it 
is not simply the result of moving the layer-line screen in the wrong direction. It can 

readily be seen from Fig. 4.20(b) that the result of this mistake will be that the zero 
layer is photographed again on a slightly different scale. When the screens are in the 
right place, the collimator points through the gap between them. 

Some typical Weissenberg patterns, together with the appropriate undistorted 
weighted reciprocal lattice layers, are shown in Fig. 4.24. Notice particularly how 

the angular separation of the axes in the undistorted lattice becomes a linear sepa- 
ration in the Weissenberg photographs; notice also the symmetry relations. 
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Fig. 4.24 (see caption on p. 102) 
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b* a’ b* 

(d) / 

b*= 0-577 r.u. 

a* = 0-577 r.u. 

Fig. 4.24 Some typical Weissenberg patterns, together with the corresponding 
weighted, undistorted reciprocal lattices. Some key indices have been marked on the 

Weissenberg patterns, to assist in relating them to the undistorted lattices. (a) The hkO 

layer of a centred orthorhombic crystal. (b) The hO/ layer of a monoclinic crystal. (c) 
the hkO layer of a tetragonal crystal. (d) The hkO layer of a hexagonal crystal, with the 

third set of streamers indicated by dashed lines; compare with Figs. 3.13 and 3.15. 

Assuming that CuKa radiation was used for all these photographs (A = 1.542 A), 
calculate the real cell dimensions corresponding to the given reciprocal ones. In (b) 
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Provided that the rotation axis is a symmetry axis, a rotation or oscillation photo- 

graph plus a set of Weissenberg photographs about that axis will be sufficient to es- 

tablish the unit-cell parameters. If the rotation axis is not a symmetry axis, the number 

of parameters that can be accurately determined is limited; for a triclinic crystal rotat- 
ing about c, for example, the rotation photograph gives the value of c, and the zero- 

layer Weissenberg photograph gives a*, b* and y*. The values of a* and B* can be 

roughly estimated from the amount by which upper layers are offset, but to get accu- 
rate values Ok/ and hO/ photographs are needed. If a precession camera is available, the 
simplest procedure is to transfer the crystal to that; adjustments will be required as 
described in Section 4.2 (the Weissenberg alignment bears the same relationship to the 
precession alignment as does the de Jong- Boumann). Otherwise it will be necessary to 
remount the crystal about the other two principal axes (or to mount further crystals 

about these axes), which is sometimes easier said than done. Thin needle-shaped or 
fibrous crystals, for example, may be difficult to mount except with the needle axis, 
and even when other orientations have been achieved, the morphology often causes the 

photographs to be of poor quality. For such crystals it is a great advantage to have access 

to a precession camera. 

4.6 Laue photographs 

It would be wrong to conclude this chapter without some mention of the first type 
of X-ray diffraction photograph ever taken [2]. This used unfiltered radiation with the 
crystal stationary, and it conclusively proved both the wave nature of X-rays and the 

periodicity of crystals. Subsequently the structures of a number of relatively simple 

cubic structures were successfully attacked by this method, but it was soon found that 
diffraction experiments that used monochromatic radiation were easier to interpret. 

Stationary crystal or Laue photographs are more useful for determining symmetry 

and orientation than for determining unit cells and structure. They are used by metal- 

lurgists and materials scientists for the study of the texture of materials of known 
structure, but they are of little help in the identification of phases. A Laue photograph 
of a carefully aligned crystal exhibits its symmetry in a singularly pleasing fashion (see 
Fig. 4.25), although it does not give any information that could not be more easily, if 
less aesthetically, obtained by other means. 

Very occasionally a stationary crystal photograph will help to set a crystal when other 

methods are getting nowhere. A true Laue photograph uses a flat-plate film and white 
radiation. For setting purposes it is sufficient to use an ordinary oscillation camera 
with unfiltered radiation, keeping the crystal stationary. The resulting film will have 

you will need to estimate B*; you can do this from the upper drawing if you remember 

that the pattern repeats every 180°, and that horizontal distances along the film are 
proportional to the angular travel of the crystal. Check your result by measuring 6* 

directly from the lower drawing with a protractor. In (a) the reciprocal lattice shows 

no absences other than those due to the centreing; what is the lattice type? What sort 

of centreing might be present in (b)? Do you think that the crystals that gave patterns 

(c) and (d) have two-fold symmetry perpendicular to c? 
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spots arranged in curves like those in Fig. 4.25; points where large numbers of these 

intersect indicate the position of the zero layer, or at least of some important section 

through the reciprocal lattice. 

Fig. 4.25 A Laue photograph, taken using unfiltered Cu radiation and a stationary 

crystal. The crystal has a large tetragonal cell, and the X-ray beam is travelling along its 

four-fold axis. 
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CHAPTER 5 

Simple single crystal studies 

5.1 Unit cell and space group determination 

Provided that no complications (such as twinning or disorder) arise, the use of one 
or more of the techniques described in the previous chapter enables a picture of the 

reciprocal lattice to be produced. From this it is only a short step to working out the 
unit cell; indeed, some of the dimensions of the real cell will probably have been deter- 
mined en route. The necessary relationships were developed in Chapter 3; for ortho- 
gonal cells the problem of converting from reciprocal to real space and vice versa is 
almost trivial, but for non-orthogonal systems a certain amount of thought is usually 
needed. 

The next task is to survey the reciprocal lattice to see whether there are any sys- 
tematic absences. Absences due to lattice centreing (Chapter 3) occur throughout the 
whole of reciprocal space, and a general survey to see whether there are any rules 
governing the permitted values of h, k and / will enable the lattice type to be deter- 
mined (cf. Table 3.1). Absences that affect only certain layers or rows of points in the 
reciprocal lattice may also be found; these denote the presence of glide planes and 
screw axes. 

To see how this comes about, refer back to Fig. 1.16(a) on p. 22, which represents 

an a-glide plane perpendicular to c. Now imagine what happens when this pattern is 
projected onto the plane of the paper; that is you view it down c and ignore all 

z-coordinates. Under these conditions, left- and right-handed objects are indistinguish- 
able; in the same way you cannot tell a left from a right hand if you have only its 
shadow on the wall to go on. The result is that in this projection the a-axis will appear 
to be only half as long as it really is, so when the structure is viewed down c, a is 

apparently halved. Transferring this into reciprocal space, for hkO reflections (those 
from planes parallel to c) a* is apparently doubled, which means that these reflections 
are missing when h is odd. The formal statement of this result is that ‘in hkO, h = 2n’. 

The same conclusion can be reached using the expression for the structure factor 
given in Chapter 3. The presence of the a-glide perpendicular to c means that for any 
atom at x, y, z there must be an identical atom at x +4, y, —z (that is moved half a 

cell along a, which turns x into x + 4, and reflected across the glide plane at z = 0, 

which turns z into —z). The structure factor summation must thus cover V/2 such 
pairs of atoms. The contribution from the rth pair is: 

f, {cos 2m [hx, + ky, Izy] + cos 27 [h(x; + 5) + kyy - Izy] } 
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For hkO reflections, / = 0 and the expression simplifies to: 

f- {cos 2n[hx, + ky,] + cos 2n[hx, +h} + ky,]} 

=f, {cos 2n[hx, + ky,] + cos [2m(hx, + ky,) + hr] } 

The two cosine terms are equal in magnitude but differ in phase by hz; they therefore 
cancel when h is odd, and reinforce when h is even. Consequently, the structure factor 
Fyxo is zero whenever h is odd. This is, of course, precisely the same condition that 
was deduced from more ‘qualitative’ reasoning in the previous paragraph: hk0 reflec- 

tions occur only when h is even. 
Similar arguments can be applied to other translational symmetry elements. Screw 

axes produce absences among reflections from the planes perpendicular to them. For 
example, a 4, axis parallel to c limits the 00/ reflections to those with / = 4n, while a 
2, axis parallel to a means that in hOO, h = 2n. The effects produced by various types 

of symmetry elements are summarized in Table 5.1. 

If, therefore, systematic absences are found that are additional to those due to any 
lattice centreing, it can be safely concluded that translational symmetry elements are 
present. It is, however, important to be certain that the observed conditions really are 
additional, and not merely a special case of the lattice absences: in a C-centred lattice, 

h +k = 2n for all hkl, and the observations that h = 2n in hOl and k = 2n in Okl are 
consequences of the more general absence and prove nothing either way about the 

presence of the corresponding glide planes. Similarly, once it is established that h = 2n 
in hO/, the absence of h00 reflections with h odd tells us nothing about whether or not 
there is a screw axis parallel to a. 

(Refer back to Fig. 4.24(b). If you were told that the lattice was primitive, how 
would you then explain the systematic absence?) 

The study of systematic absences should therefore begin with the most general 
reflections and work down to the less general. We can illustrate the process by study- 
ing Fig. 5.1, which shows part of the reciprocal lattice of an orthorhombic crystal. We 
first see that there are no conditions restricting the occurrence of hkl reflections over- 
all, so the cell is primitive. The Ok/, hO/ and hkO layers are examined next, and we find: 

in Okl,k +1=2n 

inhOl, h’=2n 

in hkO, there are no conditions. 

Satisfy yourself that you agree with these conclusions before proceeding further; you 
may find it helpful to make additional sketches showing the Ok/ and hOI/ layers. From 
these absences it can be deduced (if necessary with the aid of Table 5.1) that there is: 

a diagonal or n-glide plane perpendicular to a, 
an a-glide plane perpendicular to b, 
no translational symmetry perpendicular to c. 

(If you have forgotten what a diagonal glide is, refer back to Fig. 1.16.) Finally the — 
axial reflections are examined, and although we find that in h00, h = 2n, in OkO, 
k = 2n and in 00/, / = 2n, these are all special cases of the glide plane absences already 
listed and are therefore no help in deciding whether the crystal has screw axes or not. 
Thus although there must be two-fold symmetry in the c-direction (because the crystal 
is orthorhombic) the only information we have about it is that it is not a glide plane. 
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TABLE 5.1 
Systematic absences due to translational symmetry elements 

Detection of glide planes 
If absences are noted in: 

OkKl 

hol 
hkO 
Ani) 

Reflections observed only if: 

h=2n 
kK=2n 
l1=2n 

h+k 

or Kats] \- 2n 

Or Ith 

h+k 
or fear 

or lth (= 4n 
or A+ktl 

Detection of screw axes 

If absences are noted in: 

hoo 
0kO 
0O/ 

Reflections observed only if: 

h 
k} =2n 

l 
1 =3n 

h 
k} =4n 

1 
1 =6n 

the glide plane is: 
perpendicular to a 

perpendicular to b 

perpendicular toc 

parallel to (110) 

indicate: 

a-glide plane 

b-glide plane 

c-glide plane 

n-glide plane 

(diagonal glide) 

d-glide plane(?) 
(diamond glide) 

the screw axis is parallel to: 

a 
b 
c 

indicate: 

21 ; 4, or 63 

3; (32) or 62 (63) (3) 

4, (43) 

6, (65) 

(1) Not found in systems of orthorhombic or lower symmetry. 

(2) Found only in centred cubic or tetragonal and in two F-centred orthorhombic space 
groups. 

(3) Absences of this type among axial reflections occur only in trigonal and hexagonal 
space groups; the screw axis will then be parallel to the unique axis c, and the absences 

found in the OO/ reflections only. 

We can therefore write only a partial space group symbol, Pna-. At this point, having 
proceeded as far as we reasonably can from first principles, the best course is to check 

our observations against the absences listed in International Tables, Vol. I, pp. 111-119 

and 133-151, or use the list on p. 350 therein, bearing in mind that ifa, b, and c are 

interchanged an apparently different set of systematic absences will result. In fact, the 
absences given above are compatible with either Pna2, or Pnam, and the standard setting 
for the latter is actually Pnma (that is with b and c exchanged relative to our original 
axes). 
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103 
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Fig. 5.1 Part of the reciprocal lattice of an orthorhombic crystal. Black dots indicate 

observed reflections. 

It is in the orthorhombic system that the possibility of permuting axes causes most 
difficulty. In the monoclinic, tetragonal, trigonal and hexagonal systems, symmetry 

defines one axis; while at the two extremes, in both the triclinic and cubic systems the 
a,b and c axes can be freely permuted without changing the apparent space group 
(though for rather different reasons). International Tables, Vol. 1, pp. 545-549, pro- 
vides a list of equivalent space group symbols related through change of axes. 

The symmetry of the diffraction pattern together with the systematic absences is 
thus not always sufficient to establish the space group uniquely; very often, as in the 
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example above, there are two or more possibilities. This is in part because special sets 
of absences may be eclipsed by more general ones, but mainly because, as explained in 

the previous chapter, the symmetry of the diffraction pattern will not normally dis- 
tinguish between two-fold axes and mirror planes in the crystal, or give any infor- 

mation with respect to the presence or otherwise of a centre of symmetry. The 
example above illustrates all three of these points (which are to some extent inter- 
dependent). 

Sometimes other physical methods may help to distinguish between the various 
possibilities. If the crystals are well formed, their morphology may establish their 
point group; the space group can then usually be determined unequivocally. If the 

crystals show piezo- or pyro-electric effects (when subjected to compression, or to 
heating or cooling, they develop a polar separation of charge) it can be assumed that 
they do not have a centre of symmetry; unfortunately the reverse does not hold, since 
many non-centrosymmetric crystals do not show these effects to a detectable extent. 

Crystals that show optical activity (rotate the plane of polarized light) can belong only 
to certain classes. Tables summarizing these limitations will be found in the invaluable 

International Tables, Vol. 1, p. 42, and information on any or all of these points should 
be borne in mind when space groups are being determined. 

It may be possible to distinguish between the various possibilities on the basis of 

cell contents, calculated as described in the next section. Consider, for example, a 

monoclinic crystal of a molecular substance whose X-ray pattern shows no systematic 
absences. The three possible space groups, P2, Pm and P2/m, are illustrated in Fig. 5.2, 

together with the appropriate asymmetric groups. A series of imaginary examples 
shows the type of reasoning that might be used. 

Suppose first that the cell is found to contain only one molecule. Figure 5.2 shows 
that the first two space groups have two asymmetric units in the cell and the last one 
has four. It is not therefore possible to place a single molecule in a general position— 
just anywhere in the cell: it must be placed in a special position, on one or more 
symmetry elements. That is to say, it could be placed on a two-fold axis in P2, or ona 

mirror plane in Pm, or at a centre of symmetry, where the two-fold axes and the 
mirror planes meet, in P2/m. In all these examples, the asymmetric unit is not the 
whole molecule, but a part of it and the molecule itself must have the symmetry of the 
chosen site. If it is known from other evidence (say, spectroscopic) that the molecule 
has, for example, a mirror plane but no two-fold axis, then the choice is limited to a 
mirror plane in Pm, and the space group is unequivocally fixed. 

Suppose next that the cell contains two molecules. These might be placed either in 
the general position in P2 or Pm, on either the mirror plane or a two-fold axis in 
P2/m, or possibly there might be two independent molecules each lying on one of 

the special positions appropriate for a single molecule. Here again, a knowledge of the 
chemistry of the molecule may help. If, for example, individual molecules are known 
to be optically active but the solution from which the crystals grew was not, then the 

correct space group is unlikely to be P2 (which could accommodate two right-handed 
or two left-handed molecules, but not one of each) unless the crystals themselves are 
of two types, right- and left-handed, which might be apparent from their morphology. 

Conversely, if the solution of the compound is optically active, the space groups con- 

taining a mirror plane are excluded. (The crystals themselves may show optical activity 
as already mentioned, but the interpretation of this is not quite so straightforward. Its 
presence excludes a centre of symmetry, but not necessarily a mirror plane; see /nter- 
national Tables, Vol. 1, p. 42.) 

If the cell contains four molecules it becomes more difficult to draw conclusions, 
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Fig. 5.2 Symmetry elements and the arrangements of asymmetric units in (a) P2, 

(b) Pm and (c) P2/m. 

although arguments based on optical activity may still help. It may then not be pos- 
sible to determine the true space group without embarking on a full structure determi- 
nation; there are many examples in the literature of crystals whose space groups re- 
mained uncertain until the final stages of the structure analysis, although the true 
space group usually emerges earlier than this. 

The above type of reasoning is not restricted to molecular substances; it is equally 
applicable to ionic compounds (with the proviso that these are somewhat more likely 
than molecular compounds to show disorder and its associated effects); many an early 
structure determination was based on little more than the space group determination 

plus a dash of informed chemical intuition. Structures that can be solved in this way 
are now only rarely encountered, but examples do occur from time to time. 

Space group determination is occasionally complicated by a phenomenon known as 

double reflection. If the beam reflected from a set of planes (h,k,/, ) strikes another 
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set of planes (h,k,/,) at the appropriate angle, it may be reflected again. This doubly 
reflected beam will appear to arise from the (h'k'/') planes of the crystal where 

h' =h, +h, 

kK’ =k, +k 

I =1, +], 

The doubly reflected beam will obviously be rather weak, but sometimes, if h,k,1, 
and h,k/, are both strong reflections and the real h’k’/' reflection is absent, a spuri- 
ous reflection may result. 

If, therefore, a pattern of systematic absences is violated only by one very weak 

reflection, the possibility of double reflection should be considered before assuming 

that the corresponding glide plane or screw axis is only approximate. (Lattice absences 
cannot be violated in this way, because the two planes giving rise to the double reflec- 
tion must themselves obey the lattice conditions; adding their indices can only pro- 

duce a set of indices that also obeys these conditions.) On film, double reflections may 
be distinguished by their appearance; because of the way they are formed, they are 
much sharper than the true reflections. They should disappear if the X-ray wavelength 
is changed. They may also vanish if the crystal is remounted in a different orientation. 
The final check is to search the diffraction pattern for a pair of strong reflections 
whose indices are appropriately related; this must of course be done in three dimen- 
sions, since a spurious 110 reflection might arise from a combination of, say, 211 and 

101 as easily as from 210 and 100. Fortunately double reflection is not often en- 
countered; the above is more in the nature of a caution than an account of a routine 
occurrence. 

5.2 Density and unit cell contents 

The relationship between the volume of the unit cell, V, measured in A*, and the 

density, D, measured in g cm™?, is 

~166ZxF 

V 
D 

where F is the formula weight of the substance concerned and Z is the number of such 
formula units within the cell. Provided that the density can be measured, or estimated 

as described in Section 2.8, this relationship can be used to check analyses, to deter- 

mine molecular weights and occasionally to establish compositions that are not readily 
determined by other means. 

Densities can be determined in various ways. If ample material is available, perhaps 
the most satisfactory method is by means of an air displacement pyknometer, which 
compares the volume of air contained in an empty chamber with that in a chamber 
containing a weighed quantity of the material under test. The commercially available 
models give good results, but require 5- 10 g of sample, and one cannot always prepare 

or obtain such large quantities. Where amounts in the region of 1 g are available, the 
classical method using a,density bottle may be used, assuming that a liquid can be 
found that neither dissolves the test substance nor is too volatile for accurate weighing. 

Very often even one gram of material represents an impossibly large amount, and 

suspension methods must be used. The most common one is colloquially—and de- 



112 SIMPLE SINGLE CRYSTAL STUDIES 

scriptively—referred to as ‘sink or swim’. This uses a mixture of liquids whose compo- 

sition can be varied until the crystals neither sink nor float; the density of the liquid 

mixture is then determined by conventional means. A more sophisticated version of 

this uses a column of liquid of continuously varying density, calibrated by floating in 

it standard glass beads; the density of the test material is determined from the height 

at which it settles. Although the actual measurements can be made very rapidly, the 

columns are troublesome to set up and the range of density covered by any one 

column is limited so the method is only really useful if large numbers of measurements 

have to be made on a series of materials of similar density. These suspension methods 

require particles of material that are large enough to be visible, and have an upper limit 

set by the availability of suitable high-density liquids. Bromoform- benzene mixtures 

are often used for materials of moderate densities (up to 2.89 g cm~*). For very high 

density materials, concentrated solutions of thallium salts can be used; great care must 

be exercised with these, as they are highly poisonous. 

Whatever method is used, the errors tend to make the measured density too low; all 

methods may be affected by crystal imperfections, and in addition those that employ 

liquids will be severely affected should the test sample contain small quantities of 
occluded air. Experience shows that the density calculated from the correct cell con- 
tents and the measured unit cell (the ‘X-ray density’) will invariably be slightly higher 
than the measured density. The extent of the disagreement varies with the method 

employed, as implied above, but the direction is constant; results that give an X-ray 
density that is apparently /ower than the measured density should be regarded with 

extreme suspicion. 
The information thus derived has various uses, depending on what is being ex- 

amined. For molecular substances, a check can be obtained on the molecular weight, 
since in general the unit cell must contain a whole number of molecules, and unless 

these are occupying special positions, as discussed in the previous section, the number 
of molecules must either equal or be a simple multiple of the number of general 

equivalent positions. 
An example of the use of cell contents/space group considerations to establish an 

exact composition [1] is given in Table 5.2. The crystals were produced by 
devitrification of lead silicate glasses containing about 40 mole % PbO, but could never 

be obtained completely free either of other phases or of small amounts of uncrystal- 
lized glass; the composition, although known to be close to that of the original glass, 
could thus not be established with certainty by chemical means. The density had also 
to be measured on a somewhat impure sample. However, it was found possible to 
extract a few single crystals and determine the unit cell. The crystals were ortho- 
thombic and the conditions for possible reflections were the same as those for the 

lattice in Fig. 5.1, discussed in the previous section: in this case physical methods 
proved that the crystals were non-centrosymmetric and the space group is therefore 

Pna2,. This is shown in Fig. 5.3; it has four general equivalent positions, and since 

all the symmetry elements are translational ones, there are no special positions— 
moving an atom onto a two-fold screw axis, for example, does not reduce the number 
required by the symmetry operation. Therefore the number of atoms of each kind in 

the unit cell must be divisible by four (unless the material is disordered in some way; 

this is discussed in the next section). All this is summarized in Table 5.2, which also 
shows that for a composition corresponding to that of the original glass, 2 PbO. 3 SiO>, 

or Pb2Si3Og, the unit cell would contain 10 formula units or 30 Si atoms. This is 

unlikely, so the contents were recalculated for other ratios of PbO and SiO, close to 
the original one. 
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TABLE 5.2 
Deduction of composition from crystallographic data and density 

Crystal data: 

approximate composition 2 PbO . 3 SiO, 

measured density 5.95 + 0.03 gcm~3 
orthorhombic with a = 9.123 A 

b=11.807A 
c= 16.268 A 

cell volume V =1752.3 A? 

Conditions for reflections: 

in Okl, k + l= 2n (n-glide perpendicular to a) 
in AOI, h= 2n (a-glide perpendicular to b) 
no other conditions 
no centre of symmetry 

fourfold general position 
Space group therefore Pna2, with bes speriai postions 

166ZxF 
BRS De eet er ise ki r OLUO.6 

If composition is 2 PbO . 3 SiO, (Pb2 Si;0g), F = 626.65 giving Z = 10.02. 

Cell contents would then be 20 PbO . 30 SiOz (Pb29Si39Ogo) which is unlikely since 
30 is not a multiple of 4. 

Possible alternative cell contents are 

20 PbO. 28 SiO, weight 6145.3, dxsay = 5.82 g cm73 

20 PbO .32 SiOz, weight 6386.7, dxsay = 6.05 g cm? 

The latter seems more probable, giving the composition 5 PbO. 8 SiO, and cell contents 
4 (Pb; Sig O2;). 

1 

2+O 

Fig. 5.3 Symmetry elements and general equivalent positions of space group Pna2,. 
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It seems likely that the number of Pb atoms in the cell is indeed 20; the nearest 

alternatives, 16 or 24, both give ridiculous values for the density, Pb being by far the 

heaviest atom in the cell. The original value of 20 PbO is therefore retained and the 

assumed SiO, content is varied slightly. The two most probable formulae are given in 

the table; of these the one of higher silica content is preferred, because the X-ray 

density calculated from this is slightly higher than the measured density. The observa- 

tion that small amounts of PbSiO;—a compound of higher PbO content—were fre- 

quently formed along with the unknown phase supports this conclusion. 

5.3 Order, disorder and polytypism 

Passing reference has already been made to the occurrence of imperfections and 

disorder in crystals, and we will now discuss briefly the effects that these may have on 

X-ray diffraction patterns. The subject is complicated, and if you encounter examples, 

you will need to seek help from more advanced works than this. 

Disorder can take various forms. In inorganic chemistry (and mineralogy and metal- 

lurgy) one of the most common is solid solution. Typically this occurs between two 

substances of similar structure whose atoms or ions are of similar size and charge and 

can thus replace one another without undue distortion. Table 5.3 gives some examples 

of materials that can form solid solutions—the replacement of Al** by Cr** in the 

TABLE 5.3 
Materials capable of forming solid solutions 

K, SO4—Cs, SO4 

KCl—KBr 
Ag2S—PbS 
KAI(SO4)2 3 12H, O—KCr(SOq)2 . 12H,0 

alums is a classical case. If an ion is replaced by another of different charge, other 

changes must take place simultaneously to maintain overall charge balance. If some 

ions are omitted, or some extra ones included on interstitial sites, non-stoichiometric 

compounds such as the oxides of iron result. This class of substances is very important 
technically, in that it includes semi-conductors. Charge balance can also be maintained 
if two substitutions involving change of charge occur simultaneously. An example of 

this, drawn from mineral chemistry, is the replacement of the Si in silicates by Al, with 
simultaneous replacement of Na* by Ca**, or some similar exchange. 

How do such substitutions affect the X-ray diffraction pattern? Provided that they 
take place in a way that does not produce any long-range ordering, the substituted site 
can be considered to be ‘statistically’ occupied, or occupied by a sort of composite 
atom made up of the appropriate proportions of the atoms involved. An example is 
shown in Fig. 6.8, which reproduces the powder patterns (see next chapter) of KCl, 
KBr, a physical mixture of the two and a solid solution produced by melting that 
physical mixture and cooling the melt. The pattern of the solid solution is inter- 
mediate between those of the two pure substances. 

Sometimes the substituting ions occupy the available sites in an ordered way; 
annealing a solid solution may produce such ordering. In complicated structures which 
have sites of more than one type available an ion may occupy one of them prefer- 
entially ; this of course increases the tendency to order. Even where all sites are identi- 
cal, occupation of one site by a larger ion may distort adjacent sites, making them 
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more likely to be occupied by other large ions. An example of this is the replacement 
of the Ca in rhombohedral CaCO3 (calcite) by Mg. This can take place in a completely 
random way, but Ca”* is considerably larger than Mg”* and a structure can also form 
in which whole layers of calcium ions parallel to the plane of the CO3~ groups are 
replaced by Mg?*; this is the structure of the mineral dolomite. 

When structures are perfectly ordered in this way, they are, strictly speaking, no 
longer solid solutions but compounds in their own right. They are considered here as 

one extreme of a continuum, at the other end of which lies complete disorder. Since 
many substances can exist in either an ordered or a disordered form (as in the example 
just given), it is not surprising that examples of partial ordering also occur. The extent 
to which a substance is ordered often reflects its history. For example, a substance 
which is ordered at low temperature may become progressively less ordered as the 
temperature is raised, because the increased amplitude of the atomic vibrations makes 
the difference between sites less critical. Sudden cooling of such materials to tempera- 

tures at which atomic migrations become sluggish may preserve indefinitely the dis- 
ordering present at the higher temperature. Since many minerals behave in precisely 
this way, studying the degree of order preserved gives information about the thermal 

history of the rocks containing them, and this technique has proved invaluable to 

geologists. 
Replacement of one sort of atom by another in an ordered way usually has a more 

profound effect on the diffraction pattern than the mere changes in the intensity and 

spacing of reflections shown by solid solutions. Ordering usually results in a decrease 

in symmetry, or an increase in cell size to some multiple of the original, or both, and 

in either case extra reflections normally appear in the diffraction pattern; when these 
indicate an increase in the size of the lattice repeat compared with that of the parent 
structure, they are often called superlattice reflections. 

A related phenomenon found in some non-stoichiometric compounds is that of the 
ordering of defects or formation of Magneli shear structures. This is a complex subject, 
and for further information specialist reviews should be consulted [2]; in general the 
result is to superimpose an extremely large true repeat unit onto a basically simple 
structure. The diffraction pattern may look something like Fig. 5.4; the simple pattern 

Fig. 5.4 Typical diffraction pattern from a material with a fairly simple pseudo- 

structure modulated over a larger distance. The reciprocal pseudo-cell is outlined by 

bold lines; the corresponding reciprocal lattice accounts for the strong reflections. The 

true reciprocal lattice, which accounts for the weak reflections as well, is shown by the 
fainter lines. The true reciprocal cell is much smaller, and the true real cell much 

bigger, than the respective pseudo-cells. 
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of strong reflections indicates the size and shape of the simple repeat or pseudo-cell, 
but the presence of the satellite spots shows that the true cell is very much larger. 
Similar patterns may be given by other structure types, and do not necessarily imply 
non-stoichiometry, but whenever they are encountered it is safe to assume that a 
simple basic pseudo-structure is being modulated in some way over a very much larger 
distance. A profitable way of attacking the problem is to try to solve the pseudo- 
structure first (often this may be obvious from analogy with a simpler, known struc- 
ture) and then consider how it may be altered slightly in some ordered way to give the 
true structure. 

Finally, we must consider the effects produced by the stacking disorder or poly- 
typism shown by certain types of layer structure. This is best illustrated with reference 

to an actual example, for which we will use ZnS. This occurs in a large number of 
structural modifications. The two simplest are the cubic sphalerite, which can be re- 
garded as derived from the diamond structure through replacing alternate carbon 
atoms by Zn and S, and the hexagonal wurtzite, which bears the same relation to 

sphalerite as hexagonal to cubic closest packing. In the cubic form, layers of atoms 
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Fig. 5.5 Diagrammatic representations of the reciprocal lattices of (a) wurtzite 
rotated about c (2-layer stacking), (b) cubic sphalerite rotated about the equivalent 
[111] direction (3-layer stacking: the / indices refer to the equivalent hexagonal cell), 
(c) a crystal containing a mixture of 2- and 3- layer stacking, together with: some 
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perpendicular to [111] (a body diagonal of the cube) repeat in a sequence of three 
(ABCABC . . .); the hexagonal form has a two-layer sequence (ABABA .. .) perpendicular 
to c. In ZnS, as in other compounds that can adopt these two forms, regular repeats of 
more complicated stacking sequences (e.g. ABABCBABABCB .. .) may occur. A crystal 
like this, which does not have the true structure of either simple end-member but is 
not sufficiently different to warrant classification as a separate structure, is called a 
polytype. It can readily be seen that an infinite variety of stacking sequences is theor- 
etically possible, and many of these have been observed in practice. When the stacking 

sequence is ordered throughout the crystal, this shows in the X-ray pattern as a change 
in the length of the axis perpendicular to the layers. It is, however, also possible for 
the sequence of layers to be completely without order, and in this case the length of 
the c-axis becomes indeterminate; as a result, the corresponding reciprocal lattice points 
are extended into rods parallel to c*. Crystals containing two or more distinct poly- 
types, connected by regions of disorder, give patterns of spots, corresponding to 

the polytypes, connected by streaks, corresponding to the disordered regions. These 
effects are illustrated in Fig. 5.5. Certain reflections remain unaffected by this streak- 
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disordered regions that give rise to the streaking along the c-direction, (d) an ordered 

hexagonal polytype with a longer c-repeat than wurtzite (6-layer stacking). 

These are rather simplified versions of the effects that can occur; in practice, 

crystals often exhibit more complicated patterns than these. 
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ing, notably the 00/’s; a pattern consisting of sharp 00/ reflections accompanied by hk 

rods is quite characteristic of layer structures showing disorder in the stacking of the 

layers. A two-dimensional analogy may help to make the reason for this clearer. Figure 

5.6(a) shows a brick wall with the courses properly arranged; Fig. 5 .6(b) shows a wall 

built with the same sort of bricks, but with the sequence of the coursing random. The 

(a) 

(b) 

Fig.5.6 A brick wall used to show, by analogy, the difference between (a) ordered 

and (b) disordered layer structures. 

thickness of the courses remains unchanged, as does that of the individual layers in a 
layer structure; the pattern within each course is unchanged, and again this is true of 
the layer structure. Only the relationship of one course or layer to its neighbours has 
altered. Hence the reflections perpendicular to the layers, corresponding to the layer 
thickness, remain sharp, but the hk/ reflections become diffuse rods parallel to c*, in 
which the hk repeats are preserved, but the / repeat is lost. (In the ZnS pattern system- 
atic absences in the hkl reflections due to the fact that both Zn and S lie on special 
positions in the cell are responsible for the lack of streaking in certain hkl reflections; 
this will not usually be found in structures with more atoms in the unit cell.) 

The above very brief introduction to an exceedingly complicated subject should 
enable you to recognize these effects if you encounter them; and then you must de- 
cide whether you need to go into the subject in more detail. 
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5.4 Topotactic studies 

A single crystal can sometimes be made to undergo a ‘solid state reaction’ in such a 

way that it produces one or more single crystals of another compound. This is known 
as a topotactic transformation, and study of the relative orientation of the crystals of 

reactant and product materials can give interesting insights into the mechanism by 
which the reaction proceeded. Typical of such reactions are polymorphic transform- 
ations, decompositions (such as dehydration), and redox reactions or other changes 

brought about by heating the reactant crystal in a special atmosphere or by allowing it 
to react with a solution. Examples of reactions that have been studied extensively in 

this way are the transformations between the many hydroxides, oxides and oxy- 

hydroxides of iron and manganese and the decomposition of carbonates to the 
appropriate oxides. 

There are several possible ways of determining the relative orientations of reactant 
and product. Perhaps the easiest and most satisfactory method, when it can be applied, 
is to arrest the reaction before it has reached completion. The specimen will then con- 
tain both reactant and product, and their relative orientations can be determined 
directly from their diffraction patterns. If it is not possible to stop the reaction before 
completion, some other way has to be devised of relating the product orientation to 

that of the reactant. 
If the reactant crystal has a definite and easily recognizable morphology, a drawing 

can be made showing the positions of its crystallographic axes relative to its shape. 
After the reaction, the orientation of the product(s) is determined relative to the crys- 
tal outline, and hence related to that of the original crystal. If the reactant crystal has 
no recognizable shape, one must determine orientations relative to the instrument on 
which it is mounted and any adhesive used must therefore be able to withstand the 

conditions of the reaction. Problems of adhesion are particularly acute if the crystal is 
to be heated, since normal organic-based glues will carbonize at temperatures between 

200 and 300°C. An inorganic cement that is quite successful for high temperature 
work can be made by mixing high alumina cement to a paste with a little waterglass 
(sodium silicate) diluted with water; the waterglass makes the mixture sufficiently 

tacky, and the addition of the cement causes the mixture to set and prevents the 
bubbling that occurs when sodium silicate is heated alone. Whatever adhesive is chosen 

should not, of course, react with the crystal, and due allowance should be made for 

any diffraction pattern arising from it. It may indeed be better to dispense with ad- 
hesive altogether and mount the crystal in a capillary or something similar. 

Studies of polymorphic or other transformations that are reversible with tempera- 

ture require that the photographs be taken while the crystal is being heated or cooled 
as appropriate. To this end various high- and low-temperature cameras have been de- 

vised; some of these are described in Section 5.6 and some in Section 6.7. 

Closely related to the phenomenon of topotaxy is that of epitaxy, in which one 
compound grows on another in a definite orientation; indeed it is sometimes difficult 

to decide which phenomenon is being studied. Epitaxial growth does not necessarily 
imply a chemical relationship between the host and guest substances (crystals of iodo- 

form, CHI;3, will grow epitaxially on LiF) but where it does, study of the relationships 

of the two materials may yield useful chemical information. An obvious example is the 
study of the growth of oxide films on metals. 
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5.5 Intensity measurements 

The determination of the unit cell and space group alone may not provide as much 

information about your compound as you need or would like; in that case you may 

decide to measure the intensities of some or all of the accessible reflections, either to 

check deductions made from the earlier studies or as a preliminary to a full structure 

analysis as outlined in Chapter 7. We will assume that your crystals show no symptoms 

of disorder or twinning; although it is perfectly possible to tackle the structure of such 

crystals, it is not the sort of task with which to begin your studies. 

Methods of determining intensities fall into two groups. We will consider first those 

that utilize the photographic techniques already described. An X-ray diffraction pat- 

tern recorded on film shows a considerable variation in the amount of blackening 
corresponding to different reflections; simple examination of such a film enables us to 
classify intensities as weak, moderate or strong, or perhaps on a scale running from 
very, very weak up to very, very strong, with a number of intermediate grades. This 

may be all that is needed to confirm a relatively simple structure; indeed many early 
structure determinations, even of quite complicated crystals, were based on no more 

than this. However, more precise numerical values for the intensities are usually 
needed, particularly if it is hoped to determine structural details such as bond lengths 

and angles with any accuracy. 
To avoid problems caused by overlapping reflections, intensities are usually 

measured from films taken using one of the moving film cameras. The Weissenberg 
method is the most usual, because of the large volume of reciprocal space accessible to 
it; for very complicated crystals, whose patterns may well fade out at quite low angles 

anyway, the ease of interpretation of precession photographs may outweigh this con- 

sideration. 
The blackening of film is linear with exposure only for low exposure (Fig. 5.7); the 

reason for this is that once a particular silver halide particle in the coating has been 
activated through absorbing a quantum of X-radiation, it will be reduced to silver 
when the film is developed, regardless of whether it receives further radiation. Conse- 
quently as the proportion of activated particles rises, the effect produced by further 
radiation falling on that region of the film diminishes; or, put more crudely, the film 

cannot be blacker than completely black. The range of intensities in most crystal pat- 

terns is so great that all cannot be measured on the same film; if the exposure is adjus- 
ted to bring the strongest reflections into the approximately linear range, the weakest 
ones will be too weak to observe, and conversely if the exposure be increased so that 
the weakest reflections are recorded, the most intense ones will be unmeasurable. 

Therefore each set of reflections is recorded on a series of photographs of differing 

exposure; the most convenient way of doing this is to use a multiple film pack. The 
camera is loaded with a pack of up to five films all stacked together;} the film nearest 

the crystal gives the strongest pattern because before reaching the next film the beams 

are attenuated by their passage through the first, and so on. If CuKa radiation is being 
used it is found that for many types of film the effective exposure of successive films 
in the pack is reduced by between 1/2 and 1/4; if the diminution is less than this, 

additional layers of, say, aluminium foil may be intoduced between the layers to pro- 
duce the required attenuation. A factor of two between successive films represents an 

+ This technique cannot be used with precession geometry, nor with any other 

arrangement where the crystal-to-film distance is critical. 
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100% 

—_ 

Blackening 

Exposure —=— 

Fig. 5.7 Typical graph showing the relation between the blackening of film and 

exposure to X-rays; the exact shape of the curve will depend on the film and the 
radiation used. In all cases, estimates of exposure from the extent of blackening 

become less and less reliable as the exposure increases. 

effective exposure ratio of 2* or 16 between the first and the fifth film, so that a fair 
range of intensities can be recorded simultaneously; a factor of four between films 

extends this range considerably. 

The blackening of the film may be converted into relative intensities either by 
measurement with a photometer (densitometer) or by visual comparison with a prepared 
set of standard intensities. A photometer gives a more precise set of values, providing 
due allowance can be made for any irregularities in the shape of the spots; some pho- 
tometers are designed to scan the spots to give an integrated value for the intensities. 

Sometimes this function is performed by the recording instrument, as in the ‘integrat- 
ing’ Weissenberg or precession cameras which produce square spots by moving the film 
through very small distances along a grid during the exposure. In either case, for mini- 

mum effort one would like to have the photometer scan the film automatically; this is 
relatively easy to arrange for the undistorted arrays produced by the precession 
method, but much less easy for the photographs produced on a Weissenberg camera.{ 

The alternative of visual matching is less precise, but a perfectly acceptable set of 

data can be obtained in this way. The standard intensity strip should be produced 
with some care. The best method is to select one of the stronger spots from the 
crystal being measured and record it with a series of known exposures on a strip of 

film, moving the film between exposures. These should be adjusted so that the weakest 

spot is barely visible, successive exposures increasing in intensity in known ratio to this 
one; a factor \/2 between the intensities of successive spots is suitable. The advantage 

of preparing the strip in this way is that any irregularity in spot shape appears on both 
film and intensity strip, and this makes matching very easy and more accurate. 

To get a complete set of relative intensities two different scaling operations are 

£ In the U.K., a microdensitometer service for scanning Weissenberg films has been 

established by the Science Research Council. Information may be obtained from: SRC 

Microdensitometer Service, Atlas Computer Laboratory, Chilton, Didcot, Oxfordshire 
OX11 OQY. 
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needed. First, one must determine the scale factor relating successive films in the mul- 

tiple pack; this is usually fairly simple to do, using a few spots that lie on the measur- 

able scale on each of the two films in question. Since the factor is pretty well constant 

throughout the whole pack, an averaged value can be used for any pair of films for 
which sufficient measurable reflections are not found. These factors are then used to 
scale the reflections on the weaker films up to the values corresponding to the ex- 

posure of the strongest one. 
The other scaling operation is necessary to relate, say, different layers recorded on a 

Weissenberg camera. This can be done using a further set of data selected to intersect 
the layers of the first. For example, sets of hkO, hk1,hk2,... etc. data can be placed 

on a common scale using either hO/ or OK/ precession photographs. If no precession 
camera is available one can remount the crystal about another axis and take more 

Weissenberg photographs; this is only satisfactory if the crystal is reasonably equi- 
dimensional. If it is not, indexed rotation or oscillation photographs may be used for 
scaling. Before the actual scaling operation is carried out the intensities must be correc- 

ted for geometric factors, to be described later. 

The diffracted beams need not necessarily be recorded as blackening on film; in- 
deed, some of the earliest measurements were made using a gold-leaf electroscope as 
detector. The modern equivalent is to use some sort of counter, which converts the 
X-ray quanta it receives into a recordable electrical signal. An instrument that uses 

such a device to record a diffraction pattern is called a diffractometer. 
For recording intensities, diffractometers are inherently somewhat more accurate 

than film-based methods. However, it is not so much this as the relative ease with 

which they can be designed to collect data automatically that makes them so attractive 
to crystallographers. Having set the necessary parameters, the crystallographer can go 

away and do something else while the data accumulate, instead of squinting at spots or 
manipulating a densitometer; moreover the results are produced as a punched tape or 
set of cards ready to be fed into a computer for further processing, which saves the 
labour and possible errors of transcribing the data. 

There are numerous designs and a number of different modes of operation of auto- 
matic single crystal diffractometers. All that need concern us here is that they system- 
atically explore reciprocal space; wherever a reflection is to be expected they pause 
and measure the diffracted intensity due to the reflection and also the adjacent back- 
ground radiation. This information, together with the appropriate indices, is usually 
printed out so that the run can be monitored, in addition to being recorded in a form 
suitable for computer input. Some machines incorporate a small computer which may 
do some initial processing of the data in addition to controlling the movements of the 
crystal and counter; some are run on-line from a larger computer on a time-sharing 
basis and yet others need to be supplied with paper-tape instructions previously pre- 
pared on a separate computer. There is one drawback common to all: they are very 
expensive. 

5.6 Special techniques 

From time to time one may wish to maintain a crystal under special conditions 
while it is being studied. Perhaps it decomposes when exposed to the atmosphere, or 
undergoes a polymorphic transition reversible with temperature. Perhaps one wants to 
maintain a very low temperature in order to reduce the thermal vibrations of the 
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atoms or to suppress the free rotations of groups of atoms (such as CO3~ or NH4), or 
to study a substance that is a liquid or gas at room temperature. 

Probably the most common requirement is to heat or cool the crystal. Provided 
that the required temperature is not far removed from ambient, one might enclose the 
whole apparatus in some sort of temperature-controlled jacket. This method is plainly 
unsuitable for attaining very high or very low temperatures. For studies at more extreme 

temperatures, one has to devise a way to heat or cool the crystal without damaging the 

instrument. 
Much ingenuity has been expended on this problem, as a study of the bibliographies 

[3] will show. A number of difficulties must be overcome: the heating or cooling 

device must not obstruct the diffracted beams that are to be studied, the film or 

counter must be protected from extremes of temperature, the crystal must be moun- 
ted so that it does not move with change in temperature and, at low temperatures, ice 

must be prevented from forming in unsuitable places. 
The problem of protecting the film or counter is generally more severe when design- 

ing high-temperature apparatus. One reason is that the minimum temperature that can 

be attained in a low-temperature device is still only about 300°C below ambient, 
whereas in a high-temperature device one may well be aiming to raise the temperature 

by 1000°C or more, and the larger the difference in temperature between crystal and 
detector, the greater the problem. Moreover, low temperatures are probably, on the 

whole, less damaging. 

Perhaps the most successful designs have been those based on an indirect method of 
heating or cooling, such as blowing a jet of hot or cold air at the crystal or (less desir- 
ably) dripping liquid nitrogen onto it; induction heating, focused radiant heating, and 
heating or cooling by conduction through the mount have also been tried. 

Many of these methods, when used in conjunction with a fairly ‘open’ type of 
instrument such as a precession camera or a diffractometer, do not produce unaccept- 
able changes in the temperature of the film or counter. In a more enclosed system such 
as a Weissenberg camera, the film must be shielded and perhaps cooled if very high 

specimen temperatures are sought. Sometimes thermal exchange with the surroundings 
is minimized by provision of a vacuum and this also prevents ice forming if the crystal 
is being cooled. 

More complicated devices such as miniature furnaces may give better temperature 

control and increase the potential range of temperature, but they are inherently more 
likely to block off part of the diffraction pattern and are therefore more suitable for 
powder studies (q.v.), in which only a narrow strip of diffraction pattern is needed 
anyway. Nevertheless, successful applications to single crystal studies have been re- 

ported; further details will be found in the Bibliography [3]. 
A crystal for high-temperature studies may be mounted in a capillary (usually silica) 

and fixed in place either with a high-temperature cement or by wedging with tiny silica 
fibres; or it may be fixed to a silica fibre with high-temperature cement. Although the 
latter method avoids loss of diffracted intensity through absorption in the walls of the 

capillary, it increases the likelihood of total loss of the crystal. 
Crystals that are sensitive to atmosphere present another type of problem. If the 

difficulty is no more than a slight tendency to pick up carbon dioxide or to change 

hydration state, it may be sufficient to cover the surface of the crystal with a pro- 
tective coating such as a thin layer of shellac, artist’s lacquer or petroleum jelly. More 
labile materials, for example those that oxidize rapidly in air, require more positive 
protection. It is sometimes possible to fill the whole instrument with an inert atmos- 
phere, but it is usually more convenient to seal the crystal itself in a capillary tube. 
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This latter method must be used for compounds that have to be handled by high- 
vacuum techniques. Sometimes these materials can be handled in a glove box, but 

more often the capillary must be sealed onto the high-vacuum system. If a single crys- 

tal can be grown in it from the vapour phase, the capillary is then sealed off and 
mounted. Otherwise the capillary is sealed onto a larger vessel and the sample is intro- 
duced into that. This vessel is then sealed off and then shaken or otherwise manipu- 
lated with the aim of getting one, and only one, crystal to enter the capillary, which is 

then itself sealed off. (This exercise is a bit like one of those Christmas puzzles that 
involves rolling ball-bearings into holes.) When one crystal has been isolated, it must be 
wedged securely in the capillary, so that it does not slip while its diffraction pattern is 

being recorded. One method is to use a slightly tapering capillary, gently tapping it so 
that the crystal lodges in the narrower end. 

Some crystals grown from solution decompose unless kept in contact with the 
mother liquor or its vapour and these also must be mounted in capillary tubes; bio- 
logical materials such as proteins behave in this way. These may also have to be 

wedged in their tubes so as to prevent movement; sometimes if only a little liquor is 
present they will adhere to the tube walls by capillarity [4]. When crystals have been 

fixed in such relatively insecure ways, radical changes in the position of the capillary are 
best avoided. If the bulk of the measurements are to be made with the capillary hori- 
zontal, as on a Weissenberg or precession camera, it should be kept in this position 

from the start; indeed even moving the crystal from one instrument to another should 

be avoided if possible. 
Finally, one may want to study crystals under high pressure. Apparatus for produc- 

ing high pressures tends to be cumbersome, which brings attendant design difficulties. 
One way of overcoming these is to construct the high-pressure cell of materials such as 
diamond or beryllium that are relatively transparent to X-rays. Single crystal attach- 

ments based on this principle are commercially available. 
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CHAPTER 6 

The uses and abuses 

of the powder method 

6.1 What is a powder pattern? 

A powder pattern is produced when X-rays are diffracted not by one single crystal 
but by a sample consisting of a very large number of randomly oriented crystalline 

particles, that is a powder. Figures 6.2 and 6.8 show such patterns recorded on film; 
they consist of a series of curved lines or rings, depending on the geometry of the 
camera. Powder patterns are chiefly used as a rapid means of identification, but they 
are sometimes used for structural studies, particularly if crystals large enough for single 
crystal study cannot be obtained. 

The only condition governing the position of a reflected beam from a powder 

sample is Bragg’s law; since 2d),,; sin 8y,, =A, for any given hki all the reflections 
from all the tiny crystals lie on a cone of semi-vertical angle 20),;,; (Fig. 6.1(a) (b)). In 
reciprocal lattice terms, the corresponding point may intersect the sphere of reflection 
anywhere on the circle PP indicated in Fig. 6.1(c). Provided that the material is suf- 

ficiently finely ground and the orientation of the particles completely random, the 

spots of the single crystal photograph extend into smooth lines on the powder pattern; 

compare Figs. 6.2, 6.3 and 4.11. Rotating the sample in the beam increases the num- 
ber of planes passing through the reflecting position and helps to ensure that the lines 

are smooth rather than spotty. 
It is sometimes difficult to ensure that the orientation of the particles is completely 

random. This is particularly true of materials that grow either as plates or needles. For 

obvious reasons, such crystals tend to line up during sample preparation, so that the 

intensity of certain types of reflection is enhanced in some regions of the diffraction 
cone. This is known as preferred orientation; methods of detecting and avoiding it will 
be dealt with later. 

Figure 6.3 shows how the spots of the single crystal photograph become lines in the 
powder photograph; the powder pattern is derived from the rotation photograph by 
extending each spot along a line corresponding to constant d*, where d* =./(¢? + £7). 
Since only d (or d*) can be measured from a powder pattern, all the information 
from the three-dimensional reciprocal lattice has thus been compressed into one di- 

mension. In view of the complexity of most single crystal patterns, it obviously may 
be difficult to interpret powder patterns fully without additional information. 
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(a) 

(b) 

(c) 

Fig. 6.1 Formation of a powder pattern. (a) The hk planes of one of the tiny 
crystals lie at the Bragg angle 8 to the X-ray beam (XRB). (b) The hki reflections from 
all the randomly oriented crystals in the sample lie on a cone of semi-vertical angle 260. 

(c) The situation in (b) redrawn in reciprocal lattice terms. The point P, representing 
the reciprocal lattice point hkl, can intersect the sphere of reflection anywhere on the 

circle PP’, since there is no restriction on the direction OP. 

In theory, even without additional information, it should be possible to determine 
the unit cell from, and assign indices to, the lines of the powder pattern of any pure 
phase; the availability of computers makes this very tempting. In practice, except for 
the simplest patterns, such efforts are liable to be vitiated for several reasons. In the 
first place, only the most intense reflections will be recorded in a powder pattern; most 
trial-and-error methods rely on assigning tentative indices to a few of the lowest-angle 
lines in the pattern, and many of these may in fact be missing. Secondly, if the unit 
cell be large or complex or both, lines corresponding to different indices frequently 
overlap. Finally, unless the sample is indeed a pure phase the pattern may contain ex- 

traneous lines due to traces of impurity or to the presence of more than one polymorph 
of the material under examination. 

In short, it is always possible to determine some sort of unit cell from a powder 

pattern only, but much more difficult to be certain that it is the right one. If a unit 
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Fig. 6.2 An X-ray powder photograph of ammonium oxalate monohydrate, using the 

same camera as for Fig. 4.11, with which it should be compared. (Cu radiation, Ni 

filter). See also Fig. 6.3. 

cell so determined is large and of low symmetry it should be viewed with suspicion. In 
practice, cubic unit cells determined from powder patterns are usually reliable even if 

they are quite large, particularly if the symmetry is corroborated by optical evidence. 
Simple patterns indexed on small hexagonal or tetragonal cells or very small ortho- 
rhombic ones will also often be correct. Everything else is suspect unless supported by 

some other evidence, such as single crystal data or analogy with related materials. 
The above should not be taken to imply that the powder method is of no value; on 

the contrary in many fields it is invaluable. It is however largely complementary to 
single crystal techniques; it is not, and should not be treated as, a substitute for them. 

6.2 Recording the pattern 

6.2.1 Simple powder cameras 

The powder pattern shown in Fig. 6.2 was recorded on the type of cylindrical 

camera used for rotation photographs. This method is useful if it is wished to compare 
single crystal and powder photographs directly (Fig. 6.3), either to see whether they 
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Fig.6.3. The photographs shown in Figs. 4.11 and 6.2 have been superimposed, and 

the central portion enlarged. Notice how the spots on the rotation photograph corres- 

pond to lines on the powder photograph. Some of the indices of the former, deter- 

mined as described in Section 4.4, have been marked in; the corresponding powder 

lines are thus indexed also. 

are of identical phases or as a help in indexing the powder pattern (see below). 
The diameter of the cassette is, however, rather small; although this can be an advan- 

tage when working with ill-crystallized materials, the lines of complicated patterns will 
not be well resolved. Moreover, except in the special circumstances mentioned, record- 
ing powder patterns in this way wastes both film (there is no point in recording so 
much pattern when only a narrow equatorial strip is needed) and equipment (a less 
sophisticated camera will give the same result). 

A simple Debye- Scherrer camera designed for powder work is shown in Fig. 6.4. 

Basically, all that is needed is a simple light-tight cylindrical box to hold the film, a 

collimator to admit a narrow beam of X-rays and a backstop to catch the direct beam, 
and some means of adjusting the specimen. The latter should be roughly cylindrical; it 
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XRB 

XRB 

Magnetized disc 

To motor 

Fig. 6.4 A simple powder camera. The upper diagram shows the view from above 

with the lid removed; the lower diagram is a cross-section through the collimator and 

backstop with the lid in place. When the lid is in place, the camera is light-tight. 

can be made by packing the powder into a thin-walled capillary tube (preferably made 
from Lindemann—lithium borate—glass, which has a low absorbancy for X-rays), or by 

making it into a paste with a little adhesive, such as gum arabic or tragacanth, and 
rolling or extruding narrow cylinders of this. Some specimens if pressed with a spatula 
form a thin flake from which a tiny rod can be cut with a razor blade; not all materials 

adhere well enough for this to work, but when it does it provides a particularly simple 

method of specimen preparation. The rod is then mounted on a glass fibre using the 

same technique as for handling a large single crystal. 
The prepared specimen is mounted in modelling clay or plasticene. Moving the 

sample in the modelling clay usually gives the necessary height adjustment and allows 

the sample to be roughly centred in the beam; in the camera illustrated in Fig. 6.4, 
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final centreing is done by moving a magnetic disc. A motor rotates the sample in the 
beam. The long narrow strip of film records only the equatorial part of the pattern; 
the best way to mount the film and the optimum diameter of the camera depend on 
what is being studied. The larger the diameter of the camera, the better the resolution 
and the greater the potential accuracy—and the longer the exposure. Figure 6.5 shows 
different ways of mounting the film, and the relation between distances measured on 
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Fig. 6.5 Methods of mounting film for powder photography. (a) The simplest 
method if low-angle reflections are of interest. (b) The simplest method for examining 
high-angle reflections. (c) The Straumanis method is suitable for both high- and low- 
angle reflections and has a ‘built-in’ calibration for film shrinkage. 
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the resultant photograph(s) and the angle 20. The method shown in (a) is best if low- 
angle reflections are of most interest, while for studying the high-angle reflections 
method (b) is preferred. In either method errors arise if the film changes in size during 
processing; calibration can be provided by a pair of knife-edges which cast shadows at 
known positions on the two ends of the film. The asymmetric method of mounting 
shown in (c) has a built-in calibration, as indicated, and is useful for measuring both 
high- and low-angle reflections. For accurate work, an internal standard is often in- 
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corporated; that is the specimen under test is mixed with a suitable simple substance 
whose d-spacings are accurately known. This technique is applicable to any method of 

recording powder patterns. 

6.2.2 Focusing cameras 

The simple cameras described above utilize only a minute fraction of the radiation 
potentially available for diffraction. Focusing cameras use the available radiation 
more efficiently and hence greatly reduce exposure times; at the same time the reso- 
lution, or separation between lines from planes of similar spacings, is improved. 

The principle on which such cameras are based is shown in Fig. 6.6: an arc of a 
circle subtends equal angles at all other points on the circle; thus the angles ACA’, 

ADA’, etc., are all equal, and for the same reason the angles CAD and CA’D are equal. 
Therefore if the sample, represented by AA’, is irradiated by a beam diverging from C, 
planes that reflect when 20 = 180° — CAD will all give rise to diffracted beams focused 

\B 

Fig.6.6 The principle of a focusing camera. The specimen, AA’, is irradiated either 

with divergent radiation from C or with convergent radiation B focused at F. All the 

angles subtended by the specimen at the circumference of the circle (ACA’, ADA’, 
etc.) are equal, and all angles subtended at the specimen by, say, the arc CD (CAD, 

CA'D and the angles at all points between A and A’) are equal. Therefore reflections 

having the same 26 value will all be brought to a focus at the same point on the circle, 
even though they arise from different parts of the specimen. 
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at D and so on. This focusing effect, therefore, is achieved simply by arranging for C, 

AA’ and the film to lie on the same circle. This is the principle of the Seemann- Bohlin 

camera; an advantage of this is that it can be used to study massive polycrystalline 

specimens as well as powders. Alternatively, the specimen may be irradiated in trans- 

mission with a convergent beam, B, whose focus lies at F. In this case all diffracted 

beams for which (for example) 20 = FAE will be brought to a focus at E; this is the 

principle of the Guinier camera. The specimen is commonly prepared by dusting the 

powder onto transparent adhesive film; care must be taken that sufficient is used to 

give a diffraction pattern, but not so much that the beam is totally absorbed. 

\ Reflecting 
planes 

/ 
/ 

R 

F 

Fig. 6.7. A curved crystal monochromator. The reflecting planes are bent to have a 

radius of curvature 2R and ground to give a radius of curvature R. The value of R is 

chosen so that the incident radiation diverging from S strikes the planes at the Bragg 

angle @ corresponding to the selected wavelength (normally Ka for the incident radi- 

ation; sometimes Ka, and Ka, are separated). Radiation of this wavelength is thus 

brought to a focus at F. 

A divergent beam for use in reflection is easily produced, either by passing the 
beam emerging from the X-ray tube through a slit or by using the focal spot of the 
tube itself, if this is sufficiently fine. The convergent beam needed for the transmission 
arrangement is conveniently produced by reflecting a divergent beam from a curved 
crystal monochromator, or focusing monochromator (Fig. 6.7). This is a single crystal 
cut parallel to a set of strongly reflecting planes, and then bent and ground to give the 

configuration shown in Fig. 6.7. The curvature is arranged so that radiation diverging 
from the source S always strikes the planes at the Bragg angle corresponding to its Ka 

component. A set of highly monochromatic beams is thus brought to a focus at F. 
Comparison of Figs. 6.6 and 6.7 shows that to use a monochromator with the trans- 
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mission type of focusing camera, the focal point F (Fig. 6.7) must coincide with F 
(Fig. 6.6), that is the monochromator is placed at the appropriate point in the path B 

(Fig. 6.6). Since the beam diverges again beyond F, a monochromator can also be used 
as a source of divergent monochromatic radiation for reflection geometry by making F 

coincide with C (Fig. 6.6). 
Use of either type of focusing geometry with monochromatic radiation can give 

sharp, well-resolved lines on a clean background at relatively short exposures (Fig. 
6.8). The optimum arrangement depends on the application: whether it is the high- or 
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Fig. 6.8 Powder photographs taken using a Nonius focusing (Guinier) camera with 

monochromatized CuKa radiation. The samples are KBr, KCl, a mechanical mixture of 

the two (1 : 1 mole ratio), and the solid solution produced when the mixture is heated 

to 750°C. The indices of the lines are marked. Notice that lines with h, k and/ odd are 

missing from the KC] pattern; this is because the scattering power of K* and Cl” for 

X-rays is identical so that their contributions to these reflections cancel exactly (cf. Fig. 

8.9). 
The lines of the solid solution appear at d-spacings intermediate between those of 

the end-members. The slight fogging that can be observed between equivalent pairs of 

lines in the 1 : 1 mixture is caused by the production of small amounts of solid 
solution through the mechanical act of mixing the two salts. 

low-angle part of the pattern that is of interest, or whether great precision of measure- 

ment is needed. The reflection arrangement shown in Fig. 6.6 with the source at C, for 

example, is unsuitable for studying the low-angle part of the pattern, because these 

reflections strike the film obliquely, as at H, making precise measurements difficult. 
On the other hand high-angle reflections strike the film almost normally as at E; to 

take maximum advantage of this the incoming beam should travel along the diameter 

of the camera and the reflected beams be recorded symmetrically on either side. The 

situation is reversed if the transmission arrangement, with the source at B, is used; 

the low-angle reflections then strike the film almost normally as at E, and are corres- 
pondingly sharp. Such considerations must be borne in mind when selecting (or per- 
haps designing) a camera; a variety of models is commercially available. 

6.2.3 Powder diffractometers 

The basic arrangement for a powder diffractometer is shown in Fig. 6.9(a). The 
specimen forms a flat plate that rotates about an axis at O, normal to the plane of the 
diagram, and a counter travels on a circle centred at O; the two motions are coupled so 
that the incoming beam and the radius to the receiving slit are both inclined to the 

specimen at the same angle. Since the incident beam is divergent, and each diffracted 
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Specimen 

Incident 

beam 

Diffracted 
beam 

(b) 

Fig. 6.9 The principle of a powder diffractometer. (The divergence and convergence 
of the beams are somewhat exaggerated.) (a) General arrangement. (b) Details of the 
formation of a diffracted beam, 8 being a Bragg angle for the specimen. Rays of the 

incident beam make an angle 0 with the surface of the specimen at the centre (O); at 

this point the reflecting planes (heavy lines) lie parallel to the specimen surface. 
Because the incident beam is diverging, rays that strike the specimen at other points, 

such as P and Q, are diffracted from planes (also shown as ‘heavy lines’) that are not 

quite parallel to the specimen surface. It is this that produces a covergent beam and 

the consequent semi-focusing effect. . 
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ray makes an angle of 20 with the appropriate ray of the incident beam, the diffracted 
beam is convergent (see detail in Fig. 6.9(b)). Consequently, the arrangement in Fig. 
6.9(a), in which source slit, receiving slit and O all lie on a circle to which the specimen 

is tangential, has a semi-focusing effect; true focusing geometry would require that the 
specimen be curved, but the appropriate radius of curvature would vary with @. Pro- 
vided that the distances between source slit and sample and between receiving slit and 
sample are large compared with the size of the sample, the arrangement is a good 

approximation to focusing geometry. 

An additional slit system limits the divergence of the beam in the plane perpen- 
dicular to the drawing, and a safety shield prevents radiation from being scattered 
about the room. 

Methods of preparing the specimen are shown in Fig. 6.10. For best results, the 
powdered sample is packed into a window in an aluminium holder backed by a glass 
slide, as shown in (a). The obvious way of doing this is to fill the hole from above, 

Face of 

Al holder 

Specime 
Section across AA’ 3 g Al holder 

BS SSS SSS See 
Py, 

Glass slide Modelling clay 

(b) 

ee 

Fig. 6.10 Methods of preparing samples for powder diffractometry. (a) The pukka 

method. (b) the quick n’ easy method. Method (a) uses more sample than (b), but it 

can all be easily recovered, since no adhesive is used; (a) gives accurate 20 values; (b) is 
less liable to preferred orientation. 
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packing the sample down and smoothing the surface with another slide or with a 

spatula or similar implement, but this technique tends to maximize preferred orien- 

tation. It is better, if trouble from this source is expected, to lay the empty holder face 

down on a glass plate or other smooth surface, remove the glass slide, and pack the 

sample in from the back, finally replacing the glass slide. A more rough-and-ready 

method of sample preparation is shown in (b). An ordinary microscope slide is cut in 

half; one half of this is smeared with a thin layer of petroleum jelly and the sample 

sprinkled thinly onto this. This method is quick, requires very little sample, and comes 

as near as any method can to eliminating preferred orientation altogether; but because 

the specimen is not flush with the surface of the holder, it will not be correctly 

centred (at O, Fig. 6.9), and this introduces slight inaccuracies in the measured 20 

values. 

The commonest way of operating a diffractometer is to set it to scan between the 

required angular limits; the signal from the counter is fed into a recorder to produce a 

continuous trace (Fig. 6.11). Whenever the angle of the incident beam satisfies the 

Bragg equation, an increased signal reaches the recorder. The 6 values for the various 

reflections can be read from the resulting trace and the d-spacings of the reflecting 

planes calculated. For routine work, it is common to scan at about 2° 20/minute, so 

that to record the pattern between 70° and 10°20 takes about half an hour; this is 

much quicker than using a simple powder camera, but comparable to the time for an 

exposure on a focusing camera. If very accurate d-values are required, a slower rate of 

scan is used, down to 1/8° 26/minute, and an internal standard should be included. 

For a given chart speed the slower the scan, the more the pattern is spread out on the 

chart and in theory, the more precisely the peak positions can be measured; at the 

same time the peaks become broader, making it more difficult to determine their exact 
centres. The time required to record an entire pattern at the very slowest speed is 
prohibitively long; the main use of very slow scan speeds is to investigate small shifts in 

the d-spacings of one or two lines in a pattern as a function of some variable. 
The diffractometer can also be operated in a discontinuous mode, in which it is set 

to an appropriate fixed position and the count rate recorded, by measuring either the 
number of counts received in a fixed time, or the time to collect a fixed number of 
counts. This is usually the preferred method when accurate intensity data are sought, 

the routine being to count at fixed small angular intervals over the peak, finally inte- 
grating the results in some way. A simple method is to plot the results on graph paper 
and measure the area: 

by counting squares, 
by planimeter, : 

or by cutting out the peak and weighing it. 

Provided that overlapping peaks do not cause problems, intensities measured on a 
powder diffractometer have certain advantages over single crystal measurements. In 

particular, the relative intensities are not affected by absorption (or loss of energy 
from incident and diffracted beam as they pass through the sample; see Section 9.1) in 
the way that single crystal measurements are. 

6.2.4 Comparison of the various methods 

Some of the advantages and disadvantages of the various methods of recording 
powder patterns have already been mentioned; for convenience, these and other fac- 
tors are summarized here. 
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Debye- Scherrer cameras are relatively cheap, robust, and easy to use, and with care 

can give accurate d-values; on the other hand they are rather slow, up to 24 hours 

exposure being needed for some specimens. Such a camera would be a suitable choice 

for a laboratory needing only occasional photographs. If ill-crystallized materials are 

being dealt with, a small diameter camera should be chosen. 
There is usually no point in choosing an oscillation- rotation camera unless single 

crystal work is also to be undertaken, because the main advantage of using this type of 

camera for powder work is that powder and single crystal patterns can be compared 
directly (Sections 6.3 and 6.4 explain in more detail why this is useful). Any labora- 
tory that studies single crystals will almost certainly have a suitable camera anyway; a 

Weissenberg camera can be used with the cassette in the fixed position. 
Focusing cameras are more expensive than simple powder cameras; although they 

give a high degree of precision, accuracy may be poor unless great care is taken with 

alignment or an internal standard is used. For sensitivity to weak reflections they 

cannot be beaten, and they are comparable with small diameter Debye- Scherrer 

cameras for examining ill-crystallized materials. They are extremely rapid, typical 
exposure times for inorganic materials being of the order of 15-30 minutes, and give 
better resolution than Debye-Scherrer cameras of the same radius; if large numbers of 

samples are to be examined routinely by the powder method, they are strongly recom- 

mended. 
Diffractometers are even more expensive than focusing cameras, and the length of 

time taken to record a pattern is comparable. On the other hand, the diffractometer is 
a more flexible instrument; it can be used either for a rapid survey of a pattern or for 
slow precise measurements, and can produce very accurate parameters. It differs fun- 
damentally from all film methods in that the pattern is recorded peak by peak and not 
all at once; this can be an advantage in following small changes in cell parameters as a 
function of some variable, since this can be done by scrutinizing only part of the 
pattern. Relative intensities of lines can be compared only if the X-ray tube is well 
stabilized against changes in voltage. Provided this is so, the intensities can be 
measured directly, whereas photographic methods depend on estimating the relative 

blackening of the film. One seldom mentioned disadvantage of the diffractometer for 
routine identification is the quantity of paper produced; when comparing patterns of 

various samples it is far more convenient to be able to lay out strips of film about 10 
mm wide and 150 mm long on a light screen than to have to struggle with a large 
number of one metre lengths of chart paper. 

Preferred orientation is more a function of the method of specimen preparation 
than of recording. One advantage of recording a large fraction of the diffracted cone, 
as on an oscillation-rotation camera, is that at least it is possible to see directly whether 

there is a problem. Focusing cameras usually give some hint of trouble, which manifests 

itself as uneven blackening along the lines. The diffractometer gives no information at 
all on the point, and it is by no means unknown for the effect to result in a complete 
misidentification of the material being examined. 

For obvious reasons, methods of sample preparation requiring some form of mech- 
anical compaction are most suspect; methods in which the sample is sprinkled onto 
a sticky surface are generally safer, though by no means foolproof. (Consider what 
would happen if you dropped a pack of cards onto wet cement.) Mechanical mixing 
with some sort of reasonably viscous adhesive which subsequently sets is perhaps safest 
of all. The use of common sense is always an invaluable safeguard. 
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6.3. ‘Fingerprint’ methods 

Perhaps the commonest single reason for recording a powder pattern is to identify 
the phase or phases of which the specimen consists. In general, each substance gives its 
own unique powder pattern which can be used to identify it—hence the term ‘finger- 

print’ methods. There is a limited number of examples of two different substances 
having virtually identical powder patterns, but these are sufficiently rare that they are 

not usually troublesome in practice. 
Suppose that one is faced with the task of identifying a totally unknown substance. 

(It is of course rare for nothing whatever to be known about the sample, and any 
information about its provenance should be noted as potentially useful.) The first step 
should always be to examine it under the microscope to determine, if possible, 
whether it is a single phase or a mixture. For simplicity, we will assume that it appears 
to be a single phase. The pattern is then recorded by whichever of the available 
methods seems appropriate, and a list of d-spacings and relative intensities prepared. 
This will probably enable the material to be identified using the Powder Diffraction 
File [1]. The File lists, mainly on cards, the powder diffraction patterns (d-spacings 
and intensities) for most known crystalline phases; the unit cell, indices and optical 
data are, if known, also included. It is periodically brought up to date by the issue of 
new sets of cards, and new data published in the literature are normally included auto- 
matically. Various key indices are provided for rapid matching of patterns, together 
with full instructions for using them; space will not be used to describe these here. 
There are, however, a few pitfalls for the unwary that should be mentioned. Perhaps 
the most dangerous of these is the possibility of gross changes in relative intensity 

due to preferred orientation (discussed above). In extreme cases, this may make the 
pattern unrecognizable; less extreme ones merely complicate the identification by 

changing the relative intensities of the strongest lines. Another difficulty sometimes 
occurs with patterns recorded on a diffractometer, because the range of these instru- 

ments may be limited at the high-angle end of the spectrum; it is also usual to limit the 

low-angle end to avoid the risk of exposing the counter to the direct beam. Lines with 
very short or very long d-spacings may thus be missed, and occasionally they may be 
crucial to the identification. 

Besides these technical difficulties, there may be others inherent in the nature of 

the substance under test. One of these has been mentioned above; two dissimilar sub- 

stances may have similar powder patterns. Fortunately this tends to occur mainly 

among fairly simple substances for which a simple chemical test is usually sufficient to 
complete the identification. It is not surprising that, say, materials having the sodium 

chloride structure should give similar patterns; if the sum of the respective ionic radii is 

similar, the d-spacings will follow suit, and if the relative atomic numbers are similar 

there will also be similarities between the relative intensities. It is less obvious that 
patterns from substances of quite unrelated structure may be similar, for example 
those from Ag,O and CdO. Most of the diffracted radiation comes from the heavy 
atoms and the pattern is relatively insensitive to the arrangement of the light ones; the 
spatial arrangement of the heavy atoms is similar and the patterns are alike. 

Materials that can form solid solutions (Section 5.3) present almost the reverse 

problem. In these the pattern may vary continuously from one end member to the 
other, and if your sample happens to be intermediate between the ones quoted in the 
File, its pattern will agree with neither (see Fig. 6.8). One has then to combine all 
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known facts about the material with a dash of intuition—use intelligent guess-work. On 

the credit side, once you know that you are dealing with such a solid solution, careful 

measurements of the spacings of one or two lines from samples of known composition 

provide a graph of d-spacing versus composition; the composition of the unknown can 

then be determined. 
If after making due allowance for all the above factors you cannot identify a 

sample, it is probably a mixture or possibly a material whose pattern is not recorded in 
the File. If microscopic examination also suggests a mixture, it may be possible (though 

tedious) to sort out the phases with a needle under the microscope, but before resort- 
ing to this, try some easier method of separation. If the phases differ enough in density 

and occur as separate particles, gravity separation using a liquid of intermediate 
density is often effective and easy. Sometimes one phase can be selectively dissolved, 

but you must be sure that the solvent does not also alter the remaining phase. 
If separation proves impossible, you can try to guess the identity of one phase 

probably with help from the File; the lines due to this phase are then subtracted 
from the pattern and an attempt made to match the rest. This is fraught with diffi- 
culties, since there is nothing to prevent the two phases from having coincident lines, 
and part of the second pattern may be subtracted along with the first. This method 
becomes harder the more phases the mixture contains; a good practical example is the 
difficulty of identifying the phases present in Portland cement clinker. 

There are one or two ‘tricks of the trade’ that can help in dealing with mixtures. 
One is to study the texture of the lines on a powder photograph. If one phase is con- 
siderably more coarsely crystalline than the other(s), its lines may be rather spotty; the 
effect is enhanced in Debye-Scherrer photographs by keeping the specimen stationary 

instead of rotating it. If one phase is very poorly crystallized, on the other hand, its 

lines will be very broad and ‘fuzzy’. The presence of either effect may allow at least a 
partial resolution of the problem. 

If the microscopic examination showed crystals large enough to give single crystal 

photographs, the tedious work of sorting out the phases manually can be short- 
circuited. A rotation photograph of one of the larger crystals, which for this purpose 
need not be set, can be superposed on a powder pattern taken on the same camera; 

lines in the powder pattern that coincide with spots on the rotation photograph belong 
to the same phase. 

Materials whose patterns are not in the File need chemical detective work, and the 
method of attacking the problem depends so much upon circumstances that it is 

difficult to give any general guidance. One obvious line of attack is to consider where 
the sample came from and how it might have formed; this knowledge, combined if 
possible with a chemical analysis, may enable you to produce the material or suspected 

alternatives synthetically, and the powder patterns of these can be compared with the 
unknown. 

An interesting example of this type of study concerns the identification of opaci- 
fying agents in ancient glasses, including the white opaque glass that decorates the 
Portland Vase [2]. Only a minute scrap of the latter material was available, and was 
much to valuable to be destroyed by subjecting it to chemical analysis. The opaci- 
fying agent, however, was crystalline, and the powder pattern from the scrap of the 
Portland Vase was similar to that given by another, less valuable, white glass of the 

same period. Chemical analysis of the latter showed that it contained a significant 
amount of antimony oxide, in addition to the usual constituents of a soda-lime-silica 

glass. A compound of CaO and Sb2O; seemed probable; synthetic Ca, Sb, 0, proved 
to be identical with the crystalline material in the Portland Vase opal glass. Similar 
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studies identified other opacifying agents employed in glass-making from Egyptian 

times—approximately 1450 B.C.—to the present day [3]. 
Many problems do not require recourse to the File. If you are studying the reaction 

A+B-C under various conditions, and wish only to know to what extent A and B 
have reacted and whether C has been produced, all you need is a set of standard pat- 
terns of A, B and C, which you can easily produce yourself. A related type of study is 

1:02 20° 30° 40° 

Fig. 6.12 The X-ray diffraction patterns from a disordered polymer, KE, and an 

ordered one, K1. Both polymers consisted of diphenylmethane and hexamethylene 

units joined by disulphide linkages. In K1, which melted sharply at 1207; these were 
believed to alternate regularly: 

SS-(CH,)e-S-S1 

whereas in KE, which melted over the range 90- 96°C they were believed to be 
arranged randomly: 

Z S—S/—\(CH2)s-S-S ft, 

where x and y vary. 

(After G. G. Cameron and S. A. Stachowiak, [4] .) 
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of reaction kinetics, which means making an estimate of how much C forms in a given 

time. 
This brings us to the problem of using powder patterns for quantitative estimations. 

In principle careful measurement of the relative intensities of the lines present in the 
pattern should enable the amount of the respective phases present in the mixture to be 
estimated. In practice even in favourable cases the accuracy is only about +5% and it is 

often much poorer than this. One difficulty, in patterns of any complexity, is to find 
sufficient lines that are not overlapped by lines from other phases; another is the possi- 
bility of varying degrees of preferred orientation due to changes in morphology. More- 

over, the intensity of a pattern depends on the perfection of crystallinity; an apparent 
increase in the proportion of a given phase may mean only that its crystallinity is im- 
proving. Amorphous material, of course, cannot be estimated by diffractometry, and if 
present may prevent absolute values being estimated for the crystalline phase. Notwith- 

standing these reservations, for many studies quantitative powder diffractometry may 
be the best, or indeed the only way to follow the phase changes that are occurring. 

The effect that increasing perfection of crystallinity has on a powder pattern can 
itself have useful applications. Figure 6.12 shows the X-ray diffraction patterns from 
two polymers of the same empirical formula. In one of these, K1, the two types of unit 

forming the polymer were believed to repeat regularly along the chain, whereas in the 

other, KE, they were believed to be arranged randomly. Their X-ray powder diffrac- 

tion patterns supported this belief: the ordered polymer could form a more ordered 
solid, and the peaks in its diffraction pattern are relatively sharp. The diffraction 

pattern from the other sample is by contrast relatively unstructured; its rather broad 
maximum probably corresponds to interatomic distances over relatively small ordered 
regions. In this way, the ideas about the structures of the two polymers could be 
checked extremely rapidly [4]. 

6.4 Indexing powder patterns 

The process of determining the indices of the plane giving rise to each particular 
line in a powder pattern is known as indexing the pattern. For the ‘fingerprint’ 
methods just discussed, the indices of the lines are usually quite unimportant, and 

indexing is unnecessary. When it is necessary there may or may not be information 

from other sources about the probable shape and size of the unit cell. Some fairly 

trenchant remarks were made earlier (Section 6.1) regarding indiscriminate attempts to 

index powder patterns by trial and error. Some practical guidelines on how and when 
to try it now follow. 

The general expression relating d-spacing to cell dimensions is most easily obtained 

through the reciprocal lattice. Taking d* = \/d, from the extension of Pythagoras’ 
theorem: 

d*? = (ha*)? + (kb*)* + (ic*)? + 2ha*kb* cos y* + 2kb* Ic* cos a* + 2ic*ha* cos B* 

This is simpler than the real-space equivalent. For the more symmetrical systems it 
simplifies further: for example, all the cos terms vanish if the cell is orthogonal, and 
for a cubic cell a* = b* = c* so that d** =(h? + k* +1*)a*? [in real space this becomes 
d=a/(h? +k? +I°)]. If the microscopic examination suggests that the substance is 
cubic, a simple slide-rule calculation will show whether the spacings are in the inverse 
ratios of the sums of squares (for practice, try this on the pattern in Fig. 6.11, assum- 
ing the first line to be 100: solution in Section 6.6). Even here caution is necessary. 
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Table 6.1 lists the first twelve lines of the powder pattern of a body-centred cubic 

substance with a = 8.0 A, for which reflections with (h + k + J) odd are missing. With 
one exception, the lines can be indexed equally well on a primitive cell with a = 8//2; 

TABLE 6.1 
A cubic powder pattern indexed on two alternative cells. The true cell is body- 
centred witha = 8.00 A, the false cell primitive with a = 5.66 A (= 8.00/+/2) 

Pattern True indices False indices 

d(A) hkl (h2 +k? + /2) hkl (h2 +k? +1?) 

5.66 110 ?, 100 1 

4.00 200 4 110 2 

3.26 21 6 lil 3 

ASS 220 8 200 4 

Depys 310 10 210 5 

Desi 222 ih Delt 6 
2.14 321 14 v V 

2.00 400 16 220 8 

330 300 1.885 a | 18 aa 9 
1.788 420 20 310 10 

1.704 332 22 Sia 11 

1.630 422 24 222 12 

had that one line been missed because it was weak, the resulting cell and indexing 
would be totally wrong. This example is fictional, but it is based on a true-life error 

that was not detected until single crystal photographs were available. 

Given that such mistakes can occur in the cubic system, it does not require much 
imagination to see the possibilities for howlers presented by less symmetrical systems. 

Inter alia there have been examples of patterns from hexagonal crystals satisfactorily 

indexed on tetragonal cells, and on cells with hexagonal a = (true a)/x/3. Hence the 

need for caution. It is fair enough to say of a pattern indexed in this way that ‘it 
indexes satisfactorily on such-and-such a unit cell’: it is most unwise to state dog- 
matically that ‘the unit cell is so-and-so’. 

If single crystals are available the unit cell can usually be determined unam- 
biguously, and it is then a simple matter to calculate the possible spacings and compare 
them with the pattern. For the higher symmetry systems this can be done by graphical 
methods, but it is usually quicker to generate the possible spacings by computer or 

with a desk calculator. Whichever method is used, remember that only the most 
intense reflections may be visible on the powder pattern; this effect is most pro- 

nounced with complicated patterns from crystals of low symmetry. In a pattern of any 
complexity there is often doubt about which of a number of possible indices to assign 
to a given line; the difficulty is compounded because the observed and calculated spac- 
ings cannot be expected to agree exactly anyway, both the measured pattern and the 
unit-cell parameters being subject to experimental error. It is important not to become 
bemused by your computer output, repeating the calculation with slight random vari- 

ations of the input parameters instead of getting to grips with the real problem. 
The solution is to consider the relative intensities of the reflections observed on the 
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single crystal photographs. A list of these can be prepared for the strongest reflec- 
tions, and compared with the calculated indices to decide which are the most probable 
(you may need to allow for multiplicity: see next section). Alternatively, the single 

crystal photographs may be used directly, by superposing powder and rotation photo- 
graphs in the manner already described; for indexing, the crystal must be set. It is 
usually easy to see which single crystal reflection is contributing most to a given 
powder line. If the rotation photograph is fully indexed, then the indices of the 
powder lines are also fully determined (see Fig. 6.3); if the rotation photograph is too 
complicated to be fully indexed, it is at least possible to determine the layer on which 
the reflection lies, and hence get a numerical value for the corresponding index. In the 
latter case, it is obviously an advantage to have rotation photographs about all three 
principal axes. 

Many substances never yield crystals large enough to give single crystal photo- 
graphs; selected area electron-diffraction patterns sometimes help in coping with these. 
This will be considered in Chapter 8. 

Finally, it is sometimes possible to recognize in a pattern a similarity to a pattern of 

a substance whose unit cell is already known. This is largely a knack which comes with 
practice, but there are some obvious leads. If you know the chemical formula, even 
approximately, you can make a list of compounds that might have the same structure; 
this can be fairly wide ranging: Table 6.2 lists some less obvious examples of iso- 
structural substances, drawn from simple inorganic compounds. It is even possible to 
perform what might be called ‘structure determination by analogy’ this way, if the 
powder pattern is shown to be similar to that of a compound of known structure. 

TABLE 6.2 
Some pairs of isostructural substances 

Sr3 SiO; Cs3 CoCl; 

(Sr3 OSiO,) (Cs3Cl1CoCly) 

TiO, MnF, 

CaCO3 KNO3 

Cd, SiO, Naz SO4 

NaAlO, Naz ZnSiO4 

(Naz Alz Og) 

Once the pattern has been indexed satisfactorily, the cell parameters can be adjusted 
to give the best fit between observed and calculated d-spacings, using the method of 
least squares; computer programs exist for this purpose. This is in fact an excellent 
way of determining accurate cell parameters, but it cannot be too strongly emphasized 
that it is a waste of time unless the pattern is correctly indexed. 

6.5 The intensities of powder lines 

The intensity of a diffracted beam depends on a number of factors. The amplitude 
and phase of the scattered wave is determined by the arrangement of the atoms of the 
crystal relative to the plane in question. This was discussed earlier (p. 57) and for 
centrosymmetric crystals was expressed mathematically by the structure factor: 

N 

Fox = > fr cos 2n(hx, an ky, 1 Iz,) 
r= 
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If the phase of a scattered wave is not known we can write |F),,;| to represent its struc- 
ture amplitude. Since atoms have finite size, unless 20 is zero there is a small differ- 
ence in the path distance travelled by X-rays scattered by the electron cloud on oppo- 
site sides of the atom, and as Fig. 6.13(a) makes clear, this difference increases with 

Path 

difference Electron cloud 
of atom 

Diffracted 
beam 

Ss . 

- \ 

XY Diffracted beam 
(a) \__ at higher angle 

Z (or number of electrons 
in an ion) 

(b) 

Fig. 6.13 The dependence of atomic scattering factor on the angle of the diffracted 
beam. (a) The path difference between waves scattered from opposite sides of the 

atom increases with the angle of scatter. For simplicity the electron cloud of the atom 

is represented crudely as a sphere. (b) The consequent decrease in atomic scattering 

power with scattering angle. 

increasing 20. The consequent small phase difference between the diffracted waves 
from opposite sides of the atom results in a reduction of f,, the scattering power of the 
atom, with increasing 0. Figure 6.13(b) shows the form of the typical curve obtained 
when the scattering power of an atom is plotted against sin 0/X (usually called its 
f-curve); the value of f is equal to Z, the number of electrons in the atoms (or ion), 
only when @ is zero. 

Moreover, in all real crystals above absolute zero, the atoms are not stationary and 
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fixed: their apparent coordinates represent only the mean positions about which they 

are vibrating. As far as the diffraction effects are concerned, this makes the atom effec- 

tively larger, producing an additional falling-off of scattering power with 0, for reasons 

similar to those given in the last paragraph. If the atom is vibrating isotropically, the 

correction involves multiplying the appropriate f value by the function exp(—B(sin? 
6)/X?), where B is called the temperature factor, and is related to the mean-square 
amplitude of vibration of the atom concerned. The correction for an atom vibrating 
anisotropically is similar in principle but more complicated since it has to allow for 
vibrations of different magnitude in specified directions. Before computers became 

generally available it was usual to apply a single overall temperature factor to the 

whole structure rather than to treat each atom individually, and this is still a useful 
way of conserving computing time. Some early work used f-curves that assume vibrat- 

ing rather than stationary atoms and thus have a built-in correction for the tempera- 
ture factor; these curves [5] apply only to a limited number of rather similar struc- 
tures, since they implicitly assume that the environment of a given atom type does not 

vary greatly. 

From the above, we conclude that although the value of the structure factor will 

vary irregularly from one reflection to another, depending on the atomic coordinates, 

we can expect a gradual decrease in the overall values with increasing 0. For a crystal 

with the sort of mosaic structure described in the introductory section the intensity of 

a diffracted beam is proportional to the square of its structure amplitude. It might 

therefore be expected that the observed intensity of reflections would also show a 
gradual overall diminution with increasing 6. A glance at the photographs in, for 
example, Fig. 4.11 or Fig. 4.21 shows that this is true only up to a point; there are 

other factors dependent on 6 that must be considered. 

The X-ray beam as produced by the tube is unpolarized, but the crystal does not 

reflect waves vibrating in all directions with equal efficiency, so the reflected beam is 
partially polarized. It can be shown that this reduces the intensity of the diffracted 
beam by a factor of (1 + cos? 20)/2. This causes the greatest reduction for 26 = 90°, 
and the least for 20 = 0° or 180°, aiid the intensities of reflections at very low and 
very high Bragg angles are enhanced relative to those at intermediate values. 

A similar effect is produced by the Lorentz factor, which is a term expressing the 
relative time for which a given set of planes is in the reflecting position. The factors 
involved are illustrated in a general way in Fig. 6.14 in terms of the reciprocal lattice. 
Because of the mosaic structure of the crystal, the reciprocal lattice points are not 
true points but have finite size. They therefore spend a finite time in passing through 
the surface of the sphere of reflection, and this is not the same for all points. Figure 
6.14 shows the path followed by some of the points as the reciprocal lattice rotates 
about O. Since all travel with the same angular velocity, their linear velocity increases 
with distance from the origin (that is with 20 for the reflection concerned). Points near 
to the origin (low-angle reflections) such as A and B therefore pass through the surface 
more slowly than those further out (at higher angles) such as C and D, and the intensities 

of the corresponding reflections are enhanced. Still further from the origin, as the limit 
of observable reflections is approached (20 > 180°), points such as E pass through the 
surface of the sphere of reflection almost tangentially, and the time spent in the reflecting 
position again increases, enhancing the intensity of the corresponding reflections. The 

exact form of correction to be used varies with the recording geometry and need not 
concern us here. 

The increase of intensity in the high-angle region is enhanced still further in the 

powder method because the energy diffracted from a given set of planes is spread over 
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Fig. 6.14 A given set of planes is in the reflecting position for the time taken for the 

corresponding (finite) reciprocal lattice point to pass through the surface of the sphere 

of reflection. This is longer for points such as A and B than for C and D, because linear 

velocity increases with distance from O. For points such as E the time increases again; 

although their linear velocity is fairly high they are passing almost tangentially through 

the surface. 

a cone of semi-vertical angle 20 (Fig. 6.1). Up to 20 = 90", the surface of this cone 

increases with increasing values of 20, but beyond this point—in the back-reflection 

region—it decreases again. 

As all the above factors are functions of @ it is convenient to correct for all of them 
at once. Most suites of crystallographic computer programs are designed to do this. 
For powder patterns other than those using focusing geometry the corrected relative 
intensity of the diffracted beam, Jor, is related to the observed intensity, [ops by: 

1 + cos? 26 
obs . Sib 

sin? @-cos@ “"" 

This is often written as 

BRP: 
She eset 

Tables listing this function are available in, for example, Jnternational Tables for X- “ray 
Crystallography , Vol. I, pp. 270-271. 

It is the corrected intensity, /.,,,, for a given set of planes that is proportional to 
the square of the amplitude of the scattered wave. However, in some sorts of recording 
geometry, waves scattered from other sets of planes with equivalent indices may 
follow the same path, thus increasing the observed intensity. The number of equivalent 
sets of planes capable of being so recorded is the multiplicity of the reflection con- 
cerned. 

In moving film methods of recording, each spot on the film corresponds to one, and 

only one, reciprocal lattice point, and all reflections have the same multiplicity—unity. 
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On the other hand, on a c-rotation photograph of an orthorhombic crystal the 210, 

210, 210, and 210 reflections all superimpose, so that the 210 reflection has a multi- 

plicity of four while the 200 reflection, which is superimposed only on the 200 reflec- 

tion, has a multiplicity of two. The observed intensities of the spots on the film are 

increased accordingly. 

In the powder method, all planes of the appropriate spacing contribute to a given 

diffracted beam, and this must be taken into account when working out multiplicities. 

This can be done from first principles via the reciprocal lattice, or by considering how 

many permutations of positive and negative indices will give rise to the same spacing. 

In cubic crystals, for example, there are 48 planes contributing to reflections of the 

general type hki+t, there being eight possible combinations of positive and negative 

indices, and six ways of permuting each of these: 

hkl hkl hkl hkl hkl hkl hkl hkl 
kih_ klh_ kih 
Ink thk 
khl 
Alk 
Ikh 

For planes of less general type, that is where two or more of the indices are equal, 
or one or two of them are zero, there are fewer possibilities. For planes of the type hhl 
(112, or 225, say) hkl and khi become identical, and the multiplicity drops to 24. If an 
index is zero, its ‘positive’ and ‘negative’ values become identical, so there are only 24 

planes of type hO/. The planes with the lowest multiplicities are those of the least 
general type: h00 planes have a multiplicity of six, hhh planes have a multiplicity of 

eight. Since in cubic crystals multiplicity increases the intensity of the most general 

reflections by a factor of up to eight relative to the least general, its effect is very 

marked. 
We can now relate the observed intensities from a powder pattern to the structure 

of the sample; the next section gives a worked example. 

6.6 A practical example 

We will now use the theory so far developed to interpret the diffractometer trace 
shown in Fig. 6.11. This trace was taken on a standard instrument by normal tech- 
niques (without introducing any special refinements), and thus is a fair representation 
of the sort of results obtainable by any reasonably competent person. For the calcu- 
lations, a slide rule was used, plus standard tables for converting 26 into d; correction 
factors and f-curves were taken from /nternational Tables. 

+ Note that in Laue group m3, these planes are not all equivalent. The weighted 

reciprocal lattice has no mirror plane through the Ahi reflections, and the hkl and khl © 
reflections have the same spacings, but not in general the same intensity. There is no 

simple way of disentangling the two contributions without recourse to single crystal 

measurements. This, together with the problem of the overlapping of reflections from 

unrelated planes, limits the usefulness of the powder method for determining inten- 

sities; this is a pity, because in other ways intensities measured from powder data are 

potentially very accurate (see Section 9.1). 
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The first two columns of Table 6.3 list values of 20 and relative observed intensities 

(Je) taken from the trace in Fig. 6.11. The values used for /,.) are those of peak 

TABLE 6.3 
Indexing a powder pattern 

e 2 3 4 5 6 7 
20(") Tret dops (A) (4.13/d)? hkl deac(A) — catc(A) 

21.5 29, bud 13 1 100 4.13 4.126 
30.7 100 2 4102.91 2.01 110 4.12 2.918 
37.8 12. 2.38 3.01 111 4.12 2.382 
43.9 is 2.06 4.02 200 4.12 2.063 
49.4 12 1.845 5.01 210 4.125 1.845 
54.5 22 1.684 6.02 211 4.125 1.684 
6338 5 1.459 8.01 220 4.127 1.459 
68.2 5 1.375 9.02 os 4.125 1.375 
72.4 6 1.305 10.02 310 4.127 1.305 
16.5 2 1.245 11.01 311 4.129 1.244 
80.6 1 1.192 12.00 222 4.129 1.191 
84.6 1 1.145 13.02 320 4.128 1.144 
88.7 5 1.103 14.02 321 4.127 1.103 
96.7 4 1.032 16.01 400 4.128 1.032 

410 100.9 1 0.998 17.07 ood 4.122 1.001 

105.0 2 (0.9717 18.06 pm 4.123 0.9725 

eee 4.126 
value 

Columns 1 and 2 - observed data from Fig. 6.11. 

Column 3 - d-spacings calculated from Column 1. 

Column 4 - values of (a/d)? assuming the first line to be 100. 
Column 5 - hkl indices derived from (a/d)? = (h? + k? +17). 
Column 6 - values of a, calculated from dgpg and hkl (mean value at foot of column). 
Column 7 - d-spacing recalculated from the mean value of @¢aj¢ and hkl. 

height above background (strictly speaking the area under the peak should have been 
used) scaled to make the maximum value one hundred. The next column (3) gives the 
corresponding values of d,p,, and from these and the intensities we identify the com- 
pound as CsCl, using the Powder Diffraction File. Most of the remaining information 

in the table can be obtained directly from the File, but since this is supposed to be a 
demonstration of how to interpret data, we will derive it from the experimental results 
instead. 

The polarizing microscope showed that the crystals were isotropic, so we can safely 

assume that they are cubic. If the longest spacing is the 100 reflection, then a ~ 4.13A 
and calculating (a/d)’ for the remaining lines should yield a series of approximately 
integral values representing (h* + k? + /*), as explained in Section 6.4. As column 4 in 
Table 6.3 shows, this is in fact so and the following column (5) gives the appropriate 
hkl values. All lines can be satisfactorily indexed, and all indices are present, so we 
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conclude that the lattice is primitive. Column 6 shows values of a calculated from each 

d-spacing in turn, and suggests a mean valuet of 4.126 A for a compared with the 

value of 4.123 given with the standard pattern in the File. Finally column 7 lists a 

series of calculated d-spacings based on this value for a; the excellent agreement with 

the measured values in column 3 gives us confidence in our interpretation. 

The next step is to calculate the cell contents using the relationship 

_166ZxF 
V 

as explained in Section 5.2. The observed density is 3.97 g cm, the formula weight 

168.4 and the volume of the cell 70.2 A®; consequently Z = 1, giving an X-ray density 

of 3.981 gcm~°. 
The primitive unit cell thus contains one atom each of Cs and Cl, and a little 

thought shows that the only possible arrangement consistent with cubic symmetry is 

to place one atom (say, Cs) at the corner of the cell with coordinates 0, 0, 0, and the 
other (Cl) at the centre with coordinates 4, 3, 4. (This is the arrangement described in 
Section 3.4; the derivation of the appropriate structure factor expression is, for con- 
venience, repeated briefly at the foot of Table 6.4). Let us see if this arrangement 
successfully explains the observed intensities. 

Table 6.4 shows the method of correcting the observed intensity data. The observed 
relative intensities have to be corrected for polarization and geometric factors before 
they can be related to the amplitudes of the scattered waves; the column headed 
4Lp/sin 0) gives the appropriate correction for the arrangement used in this experi- 
ment. The values were taken from /nternational Tables, Vol. Il, pp. 270-271, where 
they are tabulated against sin 6. At low angles this factor greatly enhances the intens- 

ity as measured by the counter. Beyond sin 0 ~ 0.5, the effect is less dramatic; the 

measurements in Table 6.4 have been carried to sufficiently high angles so that, 
towards the bottom of the table, the factor is beginning to increase again with sin 6. 
The other factor that profoundly affects the intensity observed at the counter is the 
multiplicity of the contributing sets of planes (see p. 148), listed in the column headed 
m. A problem arises when two unrelated sets contribute to the same powder line, as 
for example (300) and (221). In this particular case it is permissible simply to add the 
multiplicities, because, as a glance at the final two columns or at the formula at the 

foot of the table shows, the value of F, is the same for both reflections, depending as 

it does solely on whether h + k +/ is odd or even. For more complicated structures the 
two reflections would be unlikely to have identical values of F, and apportioning the 
observed intensity between them would then not be simple. (In cubic space groups for 
which Fy,,; # Fyn; the problem is still more serious (cf. p. 148).) Although this 
severely limits the use of powder data for the solution of complicated structures, it 
need not trouble us in the present example. 

The values of /,.) are corrected for the above factors: because the scale is still 
arbitrary, it is permissible to multiply all the results by 100 to produce a more con- 

venient set of figures. These are listed in column 6 of Table 6.4, as J,,.,,. The final two 
columns, 7 and 8, give the scattering factors for Cs and Cl at the appropriate values of 
sin 0/\, together with the appropriate signs. Already a general correspondence can be 
seen between the fluctuations in the value of J,o,, and the combination of signs in the 

final columns; reflections with h + k +1 even (two positive signs) have higher values of 
Icorr than neighbouring reflections with h + k +1 odd. 

+ This is an unweighted average of all but the first four values. 



Columns | and 2 - indices and observed intensities from Table 6.3. 

Columns 3 and 4 - sin 8 and the corresponding correction factor. 
Column 5 -the multiplicity of the plane concerned; pairs of planes such as (300) and 

(221), for which h? + k? +]? are identical can here be used (by dividing 
by the sum of the multiplicities) because the structure factors of the two 
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TABLE 6.4 
Reduction of intensity data 

1 2 3 4 5 6 7 8 
hkl T rel sin@ 4Lp/sin 6 m Tse Ses fa 

100 39 0.187 54.29 6 11.97 (+) 49.6 (—) 14.7 
110 100 0.265 25.68 13 32.45 (+) 46.2 (+) 13.0 
111 12. 0.324 16.35 8 9.18 (+) 43.8 (—) 11.6 
200 13 0.375 11.63 6 18.63 (+) 41.9 (+) 10.7 
210 12 0.418 8.966 24 6.97 (+) 40.2 (—) 10.1 
oa 22 0.458 7.170 24 12.78 (+) 38.9 (+) 9.6 
220 5 0.529 5.027 12 8.29 (+) 36.4 (+) 8.8 
300 6 (+) (—) 591 5 0.561 4.365 54 382 (+) 35-4 es 8.6 

310 6 0.591 R872 24 6.46 (+)34.4 (+) 83 
311 2 0.620 3.493 24 2.38 (4)33-6-— Ge sa 
999 1 0.647 3.216 8 3.89 (+) 32.9 (+) 8.0 
320 1 0.674 3.005 24 1.39 OSE ayers 
321 5 0.700 2.859 48 3.64 (+)31.4 (+) 7.6 
400 <4 0.748 2.731 6 <6 (+)30.1 (+) 7.4 
322 24 (+) (=) nee 1 0.772 2.737 = Gye es en 
330 12 (+) (+) aT 2 0.794 2.787 A gh ee 

planes are equal but this will not in general be true. 

Tee X 100 
—_———.. These are still relative values. 
mx 4Lp/sin 6 

Column 6 - the corrected intensity J gos, = 

Columns 7 and 8 - scattering factors for Cs and Cl for each plane, together with the 

appropriate signs. 

F. = fos cos 2n(h.0 + k.0 + 1.0) 
+ fo cos 2m(h.4 +k.4 +145) 

=fes t+ fo cos (ht k + I)m 

fest faifh+k+1=2n 

= eee ith Pe EIS IAS 

Table 6.5 makes this correspondence quantitative. The values of F, were derived by 
taking the square root of /,,,, and scaling the results to make 

X VU con/k) = Fo =X Fe 

where F, is the final calculated value. The next column, headed F¢, gives values of 
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TABLE 6.5 
Comparison of observed and calculated F's 

hkl Fo F. F. Ae | Folie ol 

100 32.1 34.9 33.5 eg 
110 52.8 59.2 52.1 0.7 
111 28.1 32.2 26.7 1.4 
200 40.0 52.6 41.0 1.0 
210 24.5 30.1 22.6 1.9 
211 33.1 48.5 34.0 0.9 
220 26.7 45.2 28.1 Sea 
on 18.1 26.8 16.1 2.0 
310 23.6 42.7 23.5 0.1 
311 14.3 25.5 13.5 0.8 
222 18.3 40.9 20.4 a" 
320 10.9 24.3 11.4 65 
321 17.7 39.0 17.2 0.5 
400 (< 22.7) 37.5 14.6 in 
322 : oral 8.1 22.5 8.3 0.2 
330 ek 13.1 36.4 12.8 0.3 

S|Fl= 361.4 SIF] =361.2 DJ Al = 15.2 

SIAl 15.2 
pp oe do enna 
S|Fo| 361.4 

Fe =fcostfa 

F.=(fcs + fc) exp (—B sin? 6/2?) 

with B = 4.0 A? 

Fy =kVI corr where k is chosen to give Y | Fol = Z | Fel 

fcs + fc, that is the structure factor calculated assuming stationary atoms. The agree- 
ment between F, and F, becomes progressively poorer with increase in angle, F 

getting relatively larger. Obviously the agreement will be improved if we make some 

allowance for atomic vibrations. Although strictly speaking we should use separate 
temperature factors for each atom, for present purposes we will assume an overall 
temperature factor for the structure as a whole and write: 

F. = (fcs t fcr) exp (—B sin? 6/?) = Fy exp (-B sin? 0/2?) > F, 

where in an ideal world, with no experimental errors, the last equality would be a true 
one. In any case it can be used to estimate B, because 

F,/Fo © exp (—B sin? 6/2?) 

and taking logs: 

In F,/F¢ = 2.303 logio Fo/Fo © —B sin? 6/2? 
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Plotting log; Fo/Fc against sin? 6/2? gives a fairly good straight line, from which B 
was estimated to be about 4.0 A”. (This corresponds to a root mean square vibration 
of about 0.2 A for the atoms.) Multiplying the F, values by exp (—4 sin? 6/7) pro- 
duced the column headed F,, and now the agreement between F’, and F, is really very 
good indeed; the final column gives A = |Fo| — |F,| and provides a measure of the 

degree of misfit. This misfit is generally quantified as 

eee 

x | Fol 

which is used by crystallographers to express the extent of agreement between the 
assumed structural parameters and the measured data; the lower the value of R, the 

better the fit. 
The use of R as a measure of agreement can be—and frequently has been—criticized 

on statistical grounds, but its use is enshrined in the literature from the days of the 
earliest quantitative determinations. Although there is not even general agreement as 

to whether R stands for Residual or for Reliability Index, the R-factor will probably 
continue to fill its historically determined role in structure determination. 

In this example, the R-factor is 0.042, and this is satisfactory agreement, particu- 
larly since the intensity measurements were made in a rather rough-and-ready fashion; 

on the other hand, of course, the structure is a particularly simple one, with no 
positional parameters to vary. As a very rough rule of thumb, a value of 0.2-0.3 sug- 
gests that a structure is roughly correct, but that the positions of at least some of the 
atoms need correcting; a value of less than 0.1 indicates that all the atoms are cor- 
rectly placed and their parameters known with fair accuracy. 

6.7 Special techniques 

Techniques for studying single crystals under conditions other than ambient were 

described in Section 5.5, together with some reasons for wishing to do this. Similar 
studies may be made with powder specimens and on the whole the design difficulties 
are then less acute because the adjustment of the specimen is less critical, and the 
aperture for observation can be reduced to a narrow slit. More extreme ranges of con- 
ditions can thus be used, and a wider variety of commercial equipment is available. 

6.7.1 High-temperature studies [6] 

Probably the most common requirement is for high temperature, and a variety of 
high-temperature cameras and attachments for diffractometers is on the market. Perhaps 
the most elegant is the Lenné camera, a high-temperature version of the Guinier camera. 
The sample is supported on a Platinum grid within an approximately spherical furnace 
with an equatorial slit through which the diffraction pattern emerges. The film is held in 
a cassette which is much broader than for the standard Guinier camera and is driven 
slowly past the slit by an electric motor; since the temperature of the furnace can 
be regulated automatically, the apparatus can be used to give a continuous record of 
changes in the pattern with temperature. Chemical reactions and transitions (including 
those that are reversed on cooling) can thus be studied, and this is particularly useful 
when used in conjunction with other techniques, such as differential thermal analysis, 
which do not lie within the scope of this book. 
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Design problems, like those encountered in single crystal devices (Section 5), vary 

with the temperature required, and the accuracy to which the temperature of the 

sample must be known. Slightly elevated temperatures—up to about 100°C—can be 

achieved with very little difficulty, the intermediate range—up to about 1000°C— 
requires considerably more care, and temperatures above 1000°C present formidable 

technical problems. Film, if used, must be kept cool; this becomes more difficult as 

the specimen temperature is increased. The holder is sometimes water-cooled, and 

screening between the furnace and the film may be provided; aluminium foil makes a 

good screen because it is a good reflector for radiated heat but does not unduly 
impede the diffracted X-rays. As a last resort, the specimen-to-film distance may be 
increased; this is undesirable because of the increased exposure times involved, but 
may be worth considering for materials that give strong diffraction patterns. The prob- 
lems are less acute in designing attachments for powder diffractometers, in which the 

distance from sample to detector is fairly large and the instrument relatively ‘open’, 

allowing more working space. 
If the dimensions of the furnace are to be kept small, as they must usually be, the 

problem of temperature gradients within the furnace has to be considered, together 

with that of measuring the exact temperature of the sample. In many cases, however, 

this is not so important as one might think; if a transition is being studied, for 
example, the exact temperature may be known from other studies, and all that is re- 
quired of the high-temperature camera is that a temperature be achieved above the 

transition temperature, so that the nature of the transition may be studied. Hence the 
advantage of having access to supplementary techniques such as differential thermal 

analysis or thermogravimetric analysis. 
Unless the specimen being studied is massive in form, such as a wire or slab of solid 

material, mounting it suitably for high-temperature studies may be a major problem 
(just as it is for single crystals). Even if an adhesive can be found that neither decom- 
poses nor reacts with the sample at high temperature, the problem of thermal ex- 

pansion remains, and this is often the undoing (literally!) of even the most carefully 
prepared specimens. From this point of view, it is most satisfactory to use a com- 

pacted specimen that remains more or less horizontal during the experiment, but this 
is not possible for all recording techniques. For Debye-Scherrer cameras, the sample 

may be packed into a silica capillary or formed into a self-supporting rod; for trans- 
mission focusing cameras the specimen has normally to be supported on a wire grid. 

6.7.2 Low-temperature studies [7] 

Design of equipment for low-temperature studies tends to present fewer problems, 
for reasons already discussed under single crystal techniques. The techniques and diffi- 
culties are much the same as in any other type of low-temperature study; suitable 
cryostats are commercially available, or can be specially designed, and are cooled with 
the appropriate liquefied gas. 

6.7.3 Controlled-atmosphere studies 

One sometimes wants to control the atmosphere around the sample being studied, 
often in conjunction with controlling the temperature. For example, high-temperature 
studies may need the sample to be in an inert atmosphere to prevent oxidation. Many 
cameras and diffractometer attachments for high- and low-temperature studies provide 
for this, or at least can be readily adapted to do so. 
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Some commercially available cameras allow the body of the camera to be evacuated 
or filled with an appropriate gas. Quite apart from any other advantages, evacuation of 
a camera body reduces scatter of the X-rays from the molecules of the air and this 
both cuts down the exposure time and improves the quality of the film by reducing 

fogging of the background. 
Various ad hoc measures can also be devised. If a rod-like sample is suitable, the 

simplest thing may be to collect and seal it in a suitable capillary tube. Samples for 
Guinier cameras, usually mounted on transparent sticky tape anyway, can be simply 

protected (for room-temperature studies) by enclosing them between two layers of the 

same tape. Holders for diffractometer samples can easily be provided with sealed or 
sealable covers—thin Perspex is often suitable. Aluminium foil can be used provided it 
is free of pinholes; it must be suitably strengthened if it is to be subjected to a pressure 

differential. 

6.7.4 High-pressure studies 

The study of materials under very high pressure yields information that is import- 
ant both to the geologist and to the materials scientist. It is however a relatively 
specialized field and only a brief outline will be given here; a review of developments 
in the field up to 1969 [8] has been given, and is the source of much of the material in 
this section. The principal design problem of getting the incident beam in and the 
diffraction pattern out of the high-pressure chamber is more easily solved for the 
powder method than for single crystal studies and most high-pressure studies have 
been tackled in this way. 

At first sight a simple solution might seem to be to convert the entire camera into a 
high-pressure vessel, but this does not work because of film failure. Successful designs 
have used cells wholly or partly of X-ray transparent materials capable of withstanding 
high pressures; in practice this means using no elements heavier than carbon. One 

successful design generates the pressure with two massive opposing anvils, the sample 
being contained within a beryllium gasket which also serves to transmit the X-rays. 
Other designs have employed a cell made wholly of diamond; against the obvious 
drawbacks of expense and difficulty in working the material may be set the greater 
geometrical flexibility allowed. ‘ 
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CHAPTER 7 

Structure determination 

7.1 Trial and error 

The calculations given in Section 6.6 show how to verify a structure that is known 

or easily guessed. Determining more complicated structures presents a variety of 

problems, and this chapter describes some of the ways of tackling these. 
Historically, the first method used, and perhaps the simplest to understand, is that 

of trial-and-error, so we will consider this first. Although now seldom used in its pure 
form, many of the concepts are still an important part of more sophisticated methods. 
Basically it consists of attempting to build within the framework of the known unit 
cell and space group a structure that satisfies the cell contents, explains the relative 
magnitude of a few key intensities and also makes crystal chemical sense. Trial struc- 
tures deduced in this way are then checked by comparing the calculated structure 
factors or intensities with the observed values. (Many successful early determinations 

merely used intensities estimated visually on a scale ranging from very, very weak to 

very, very strong.) Any parameters not fixed by space-group restrictions are adjusted 
to give the best possible agreement. 

The example in Section 6.6 was a very elementary example of this kind of reason- 
ing; there was only one possible arrangement within the unit cell and lattice type 
observed. The process in more complicated cases is best understood from an actual 
example. The heyday of this method was from about 1925 to 1935; a particularly rich 

source of examples is Zeitschrift fiir Kristallographie, especially those volumes pub- 
lished in the early thirties. From among these we choose CuO (found in nature as the 
mineral tenorite), partly because the early structure [1] has recently been checked 
[2]. 

The unit cell, determined from rotation and Weissenberg photographs, and other 

pertinent data are given in Table 7.1; the more recently determined cell parameters (in 
brackets) are included for comparison. The systematic absences are consistent with 
either of the space groups C2/c or Cc; the morphology of the naturally occurring 

crystals suggested C2/c, and this proved to be correct so we will not consider Cc. The 
symmetry elements for C2/c are shown in Fig. 7.1, together with the general equiv- 

alent positions; since there are eight of the latter and the cell contains only four each 
of copper and of oxygen atoms, both types of atom must occupy special positions. 

Only one arrangement gave a chemically plausible structure and at the same time 
explained the observed intensities of a limited number of low-angle reflections. This 
placed Cu on a centre of symmetry at 1/4, 1/4, 0, etc., and O on the two-fold axes at 
0, y, 1/4. The value of y was then adjusted to give the best possible agreement between 
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TABLE, 72141) 
Crystal data for CuO 

Unit cell monoclinic a = 4.653 (4.6837)A 
b= 3.410 (3.4226)A 
€ = 5.108 (5.1228)% 
B = 99°29' + 20’ 

(99.54° + 0.01°) 

Systematic absences: inhkl,h+k =2n 

hOl, (h = 2n)1 =2n 

Crystal habit suggests point group 2/m; probable space group therefore C2/c. 

D meas Ez G45: Z= 4, Dyx-ray = 6.569 = cm73 

(1) Values in brackets are taken from [2], other data from [1]. 

Four-—fold positions: 

On centres of symmetry: a 0,0,0; $130; 0,055 3,4,1. 

b 0, 5,0; 50,0; 04,35 50, 3. 

c ir 4105 3, 3,0; 53553 3,4,4. 

d $40 229 bbb bbt 
a : Meta te Weeele ese Det 3 On two-fold axes: Oy ts $5+y, 45 O-¥, 93 595 Yd. 

Fig. 7.1 Symmetry elements and general positions in space group C2/c. Coordinates 

of four-fold special positions are listed below the diagram. 

The diagram has the unique (b) axis perpendicular to the plane of the paper; the 

directions of a and c, in the plane of the paper, are indicated. 
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observed and calculated intensities, the final value being 0.416. In the final arrange- 

ment, shown in Fig. 7.2, each copper atom is surrounded by four oxygen atoms, 

roughly at the corners of a square, and each oxygen atom is surrounded by four 

copper atoms at the corners of an irregular tetrahedron; the Cu-O distances are all 

about 1.95 A. 
It is not easy to visualize a structure in three dimensions from a diagram projected 

onto a printed page, and if you are not skilled at this you should spend a few minutes 

c 

Fig. 7.2 The final structure, projected down b. Large circles indicate oxygen atoms, 

smaller ones copper atoms. Heights are given as fractions of b. The coordination about 

one copper and one oxygen atom is shown by bonds, tapered to give perspective. 

studying Fig. 7.2 to convince yourself that the above description of the structure is 

correct. The heights of the atoms are given as fractions of the vertical axis b; remember 
that the structure repeats in all directions. In Fig. 7.2 some bonds have been drawn in, 
tapering to indicate perspective. The oxygen atom at 0.916, for example, is bonded to 
two copper atoms below it (at 3/4 in the same cell) and two more above it (at 1/4 in 
the next cell up). Likewise the copper atom at 1/4 (lower centre) is connected to two 
oxygen atoms above it (0.416 and 0.584 in the same cell) and two below it (0.084 in 
the same cell and 0.916 in the next cell down, that is at —0.084). Now try to visualize 
the bonding at some of the other atoms to make sure that you have followed this. 
Finally make a mental check with the symmetry elements shown in Fig. 7.1 until you 
can see clearly how the structure relates to the space group; can you trace the c-glide 
plane operation? 

The convention of drawing bonds as tapering rods is often used to help make the 
three-dimensional arrangement clearer; in a compound containing finite molecules it is 
possible to give a reasonably clear picture of the whole molecule in this way. In an 
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infinite three-dimensional network such as that in Fig. 7.2 only a limited amount of 
such bonding can be shown—trying to connect up the two atoms at the lower left-hand 
corner will show you what the problem is far better than any words could describe it. 

Another convention shown in Fig. 7.2 is that of labelling atoms whose height is fixed 
by symmetry with a fraction (1/4) rather than a decimal (0.250). (Heights may also be 
given as integral numbers representing hundredths or thousandths of the vertical repeat 
rather than in the decimal form used in Fig. 7.2; this would be stated in the caption.) 

This structure was originally determined by manual computation using intensity 

data estimated visually from about forty powder lines. In a recent reinvestigation using 

a high-speed computer and 267 independent reflections measured on an automatic 
diffractometer, an R-value of <4% was obtained and the y-coordinate of the oxygen 

atom was found to be 0.4184 (estimated standard deviation 0.0013) instead of the 
original 0.416. It is only fair to add that the later investigation also included a very 
careful examination of the anisotropic temperature factors, which could not have been 

attempted with the earlier data; the accuracy of the positional parameter obtained 
using quite crude data is nevertheless most striking. The explanation is that if there is 
only one variable with which to fit forty observations, even if the observed data are 

not individually very accurate, the value of the variable parameter that gives the best 
fit can be expected to be quite reliable. It is normal in structure analysis to have a large 

excess of observations over unknown parameters and because of this one can work 
successfully with measured intensities that are accurate to perhaps only +10%, a degree 
of error that would not be tolerable in most scientific work. 

The crudest way of fixing a variable parameter is to vary it little by little, calcu- 

lating structure factors for each value until satisfactory agreement is found. This is 
fairly tedious even for only one unknown, becoming more so as the number increases, 

so that ways of systematizing the search for a fit are desirable. An early method was to 
plot structure factor graphs, which show how the structure factor varies with the 
unknown parameter(s), for a number of key reflections. The value of the parameter 
that gave the best fit to the observed data was then selected. The oxygen parameter in 
CuO was originally determined in this way. However, this becomes impracticable as 

the number of variables increases and a more general method is needed. One such is 
described in the next section. 

7.2 Fourier synthesis 

The expression for calculating structure factors: 

N 

Foi F 2 Sr exp 2mi (hx, + ky, z Iz,) 
r=1 

uses a knowledge of the arrangement of the NV atoms in the cell to find the amplitude 
and phase of the wave scattered in a given direction. Looked at from another point of 
view, it expresses the distribution of scattered radiation in reciprocal space in terms of 
the atomic pattern, or electron density distribution, in real space. An analogous 

expression: 

+00 +c 

>, Fans xp —2ni(hX + KY + IZ) 
rc) 

h=—« k=—-—« [=—° 

ae 
1 

PRY Za V 
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enables us to proceed in the reverse direction, and, given a knowledge of the ampli- 
tudes and phases of the scattered waves in reciprocal space, we can calculate the 
electron density p at any point XYZ in the unit cell. 

If this is done at sufficient points in the cell, an electron density map can be con- 
structed; by looking for the points with the highest electron density, the atoms can be 

located. At first sight, it seems that we need only measure as many values of F,,; as 

possible, perform the appropriate calculation to produce an electron density map and 
lo! the structure is solved. It sounds too good to be true—and of course it is. The catch 
is in the condition ‘given a knowledge of the amplitudes and phases of the scattered 

waves ...’; the amplitudes of the waves can be measured fairly easily, but neither film 
nor counter tells us anything about their relative phases. This is known as the Phase 

Problem, and although every crystallographer engaged in structure determination spells 

it, at least mentally, with capital letters, if it did not exist a lot of the fun would be 

taken out of solving crystal structures. 
Before discussing ways and means of tackling the phase problem, let us consider the 

relationship between the two expressions quoted above. They differ in the sign of the 
exponent, and this is a mathematical consequence of the fact that they are Fourier 

transforms of each other; we need not worry about just what this means, except to 

reiterate that they perform the complementary functions of transforming magnitudes 
in real space into magnitudes in reciprocal space, and vice versa. They also differ in 
that the continuous function expressing electron density can be sampled at any point 
XYZ of our choosing, but the Fourier transform of the unit cell contents can in 
practice be sampled only at specific points in reciprocal space, namely the reciprocal 
lattice points. In other words, the Fourier transform of the cell contents is only 
directly observable if Bragg’s law is fulfilled. 

Like the structure-factor expression, the electron-density expression for centro- 

symmetric structures simplifies to one with cosine terms only: 

Asner = By » > Frys CoS 20(hX + kY + IZ) 
h=—e% k=—oo [=— co 

1 +00 +00 + co 

V 

At the same time, the phase angle associated with F,,,;, which in the general case can 
have any value a, becomes either 0 or 7. This means that the summation covers waves 

that are either exactly in phase or exactly out of phase; we have +F,,,; for all those 
waves with a = 0, and —F’y,x, for those with a = 7. For the centrosymmetric case 
therefore, the phase problem reduces to one of sign determination. 

Once a trial structure has been established, either by the sort of reasoning used in 
the previous section or by one of the methods yet to be discussed, a Fourier synthesis 

using the measured amplitudes (F,) with signs (or phases) taken from the calculated 
structure factors (F,) gives an electron-density map from which improved atomic 
parameters may be deduced. If a partial solution has been found, missing atoms may 
be located by the same process. One must be intelligently selective about which terms 
to include in the Fourier synthesis; if the calculated term is very much smaller than the 
observed one, not much reliance can be placed on the phase deduced from it. A small 
value of F’, means that the contributions from the various atoms almost cancel and, in 
a centrosymmetric structure, a small shift in the atomic coordinates, or the intro- 
duction of one or two missing atoms, could easily change the sign of F,; on the other 
hand, terms for which F, is much bigger than Fy, although they show that all is not 
yet well with the trial structure, probably indicate the correct sign to attach to F. an 
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Similar, but more complicated, reasoning applies to the phases to be assigned in 
non-centrosymmetric structures. Normally, therefore, one introduces some criterion 

for the inclusion of individual terms; a common one is to omit all terms for which F, 

is more than three times as big as F.. 
Historically, the calculation of electron densities from the Fourier summation of 

observed structure amplitudes was first used as a systematic way of improving the 

values of those atomic coordinates not fixed by space-group considerations. Calcu- 
lating a complete'three-dimensional electron density map is a formidable task, and 
only became a routine part of crystal structure determination with the advent of high 
speed computers; previously it was seldom attempted. It is, however, much simpler to 

calculate the projection of the electron density along a line or onto a plane. For 
example, a summation that includes only the 00/ reflections is relatively simple: 

+00 +00 

ab ab 
pz, y Fo; Cos 2n1Z = 2 a » Foo) cos 271Z 

j= 00 1=0 

(because Foo; = Foor ) 

The resulting curve represents the variation of electron density projected on the z-axis. 
Figure 7.3 gives an example. The structure of hexagonal ZnS, described earlier, is 
shown on the right of the diagram, viewed along b; the x and y coordinates of both Zn 
and S are fixed by symmetry, but the z coordinates are not. An OO/ Fourier sum- 

mation, using phases based on an approximate structure, shows peaks which indicate 

values for the z coordinates. 
Such one-dimensional summations are not very useful; in complicated structures 

peaks representing different atoms overlap. Two-dimensional summations are a 

compromise between the amount of computation an individual can reasonably under- 

Fig. 7.3. An example of the type of problem that could be solved by a one- 

dimensional Fourier synthesis. The structure of hexagonal ZnS is shown on the right; 

small black dots represent zinc atoms, open circles sulphur atoms. Only the z co- 

ordinates of the atoms are not fixed by symmetry; a one-dimensional Fourier synthesis 

using the 0O/ reflections with phases from a trial structure would yield a curve similar 

to that shown on the left, from which more accurate values could be obtained. 
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take and the amount of information necessary to solve a structure; they formed the 

backbone of crystal structure determination for more than thirty years, from the early 

1930s until comparatively recently. Various methods of easing the computational 

labour were devised. Perhaps the most celebrated of these were the “Beevers- Lipson’ 

strips [3]; the principle on which these worked is still used in present-day computer 

programs. 
Instead of evaluating the summation point-by-point, the trigonometric expression 

for p is expanded. For example, for a centrosymmetric c-projection we have to sum 

Fro cos 2n(hX + KY) over all available h and k and at as many points X and Y as we 

judge necessary to get a reasonable picture of the structure. The cosine term may be 

expanded: 

cos 2n(hX + kY) = cos 2mhX - cos 2nkY — sin 2thX - sin 27k Y 

At first sight this appears merely to have made the expression more complicated, but 

in fact the computational labour is reduced, because we can deal with one index at a 

time. The summation of the first (cosine product) term for example: 

> > Feo COS 20hX - cos 2nkY 
h_ k 

may be rewritten as 

SS Fee cs 2mnx | cos 2nkY 
k\h 

and evaluated in two stages. The reflections are grouped according to their k-values, 

and for each k the expression within the brackets is evaluated over the various values 
of h and at appropriate intervals of X; this is the first summation. For each value of k 

we now have a set of coefficients Cyxx, corresponding to the chosen intervals of X, and 

a second summation: 

> Crxz cos 2nkY 
k 

over the different values of k and at appropriate intervals of Y yields the required 
result. The sine product can be dealt with similarly. 

The method is efficient because the two-dimensional summation is split up into two 
steps, each of which requires only one-dimensional summations. Three-dimensional 
summations may be treated in an analogous manner; the appropriate trigonometric 

function is expanded into a number of triple products and three summations are 
required instead of two. For non-centrosymmetric structures more terms will be 
needed. 

Various devices, mechanical, optical and electrical, have been designed to function 

as analogue computers to produce Fourier summations. The most successful of these. 

was probably XRAC [4]. This represented the Fourier coefficients by electrical waves; 
these were summed electronically and the results presented on a cathode ray oscillo- 
scope as contours which could be photographed. XRAC was great fun to use, but 

having been constructed before the era of transistors and miniaturization the units that 

generated the necessary waves occupied a vast area of floor space. Setting up the 

coefficients for a synthesis was therefore by no means a sedentary occupation. 
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Fig. 7.4 (see caption overleaf) 
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Generally, the results of the summation, whether calculated by hand or by digital 

computer (nowadays usually the latter), comprise a set of figures representing the 

values of electron density, or projected electron density, at various points on a grid 

subdividing the unit cell; on this grid, contours of constant electron density are 

drawn by hand (Fig. 7.4). The intervals at which the function shall be computed are 

decided by the crystallographer. A coarse grid saves computing time, but may miss 

fine detail; too fine a grid may result in unmanageable quantities of paper, and waste 

computing time into the bargain. Figure 7.4 shows a two-dimensional projection; a 

three-dimensional synthesis is printed on a number of sheets of paper, each repre- 
senting a slice across the structure. In the latter case, the contours from each ‘slice’ are 

often traced onto individual transparent sheets which can be stacked one above the 

other to give a three-dimensional view of the structure. 
Nowadays, electron density maps are seldom used for refining atomic coordinates: 

drawing contours takes human time, and there are ways of making the computer do 
more of the work. Electron density maps are still much used for locating missing 
atoms in a partially solved structure. Once enough of the scattering matter in the cell 

has been located for phases to be assigned to a fair proportion of the structure ampli- 
tudes, an electron density map can be computed, and this should show peaks indi- 
cating probable positions for the missing atoms. The ease and smoothness with which 
this method proceeds depends on how much of the scattering matter was correctly 
placed in the original trial structure. 

It is important to realize that the result of such calculations is a sort of ‘hybrid’ 
between the postulated structure and the true structure: a synthesis using calculated 
phases and amplitudes would merely reproduce the trial structure, while one using the 

true phases and amplitudes gives the true structure. One using calculated phases and 
measured amplitudes therefore gives something in between, provided that there was at 

least some truth in the trial structure. If the trial structure is hopelessly wrong, the 

electron density map usually has large negative regions; positive peaks will occur where 
trial atoms were inserted but they will be ill-formed and lower than would be 

expected. If the trial structure is partially correct, the electron density map should not 

show any very negative values. Peaks at the sites of correctly placed atoms will be of 

about the expected height; if the peak at the site of a trial atom is too low, there is 
probably no atom at that position. Peaks indicating the position of atoms not yet 

allowed for will also be somewhat weaker than would be expected. 

There is no rule-of-thumb as to what fraction of the scattering matter must be 

Fig. 7.4 An electron density map. The signs of the Ok/ structure factors of tin(II) 

thiocyanate, Sn(SCN)., were determined using parameters for the Sn and S atoms 
derived from the Patterson function. The resulting Fourier summation shows the 

electron density (on an arbitrary scale) projected onto the yz plane. The map is 

slightly distorted, the cell actually being triclinic, a = 5.680, b = 4.975, c= 10.300 A, 

a= 195", p= 84.5°, Y= 100.0°; as a result the peaks are elliptical rather than circular. 

Contours are at 5, 10, 20 and 30, except that an additional contour was drawn around 

the SCN group that lies roughly perpendicular to the plane of the paper. 
Careful examination of the map shows a number of maxima, particularly around 

the Sn atom, that do not correspond to atomic positions. Such features are common 
on Fourier maps, and caution is therefore necessary in interpretation. They arise 

mainly because only a finite number of reflections can be measured and included in 

the summation, whereas theory requires an infinite number (see the relevant equa- 
tions). The more limited the data used, the more liable this effect is to occur; it is 

known as the ‘termination of series’ error. (From data provided by R.A. Howie and 

A. Filby.) 
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correctly placed before this method will work. The most favourable cases are those in 
which one atom in the structure is considerably heavier than the rest; if this is cor- 

rectly located, it may be sufficient to determine the phases, even though it constitutes 

only a tiny fraction of the total scattering matter in the unit cell. A classical case is 
that of the structure determination of vitamin B12 [5] which rested on the location of 
the single Co atom in a C,3;Hgg0,4N,4P Co molecule; successive electron density 
maps based first on the Co alone, and then on Co and other nearby atoms, as these 

emerged a few at a time from the Fourier syntheses, slowly revealed more and more of 
the structure. In this paper, Professor Hodgkin remarks that caution in interpretation 
had to be used as ‘it is very easy to ‘“‘make” atoms and so to invent a completely unreal 

chemical structure’. 

7.3 Getting started 

7.3.1 The Patterson function 

In most structures that are tackled nowadays, it is not possible to place atoms and 

derive a trial structure from space group and packing considerations alone; all the 

common substances that can be dealt with in this way were solved long ago. 
Often, a structure determination begins by computing the Patterson function of the 

crystal. Although it is not possible to compute px yz directly because of the un- 

certainty about the phases of the F-values, there is no such uncertainty about the |F|? 

values. The function 

I M45 
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Sy > |Fncol? cos 2n(hU + kV + IW) 
co kK =—oo | =—o0o 
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which is always centrosymmetric, can be computed directly. Patterson [6] showed 
that the resulting function is a map, not of atomic positions, but of interatomic 
vectors. A peak in the Patterson function at UVW, in other words, implies that there 
are two atoms in the crystal structure at x, ,Z, and x.y2Z, such that x, —x, =U, 

yz — ¥1 = V, and z, — z, = W; moreover the height of the peak in the Patterson 

function will be proportional to the product of the number of electrons in each of the 
two atoms involved. The last property is important in the interpretation of Patterson 
functions. 

Fig. 7.5 The relationship between a structure and its vector map. (a) An imaginary 

structure projected down c. The ‘atomic coordinates’ as fractions of a (5 units) and b 

(8 units) are: 

x Y 
A 0.100 0.125 
DeOSO0R0375 
COS 00 0.750 
D 0.900 0.250 

(b) The corresponding vector map. The label ‘AB’ implies the vector from A to B, and 

so on. (c) The vector map decomposed into a series of images of the original structure 

by connecting all peaks whose first letter is A, and so on. 
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Figure 7.5(a) shows the projection of a simple four-atom structure and Fig. 7.5(b) 
the corresponding vector map, with the interatomic vectors labelled according to the 

system indicated in (a), that is to say AB is the vector from atom A to atom B, and BA 
the vector in the reverse direction. The connection between these two maps should be 
studied closely, as unless this is well understood, it will not be possible to follow the 

rest of the argument. It is probably worthwhile to redraw (a) on squared paper on a 
cell 5 x 8 units (‘atomic’ coordinates are given in the figure caption) and derive (b) 
from it before proceeding further. When doing this, remember that both the crystal 
structure and the corresponding vector map are periodic functions—this is emphasized 
in the diagram by drawing slightly more than one complete unit cell of each—other- 

wise it may be puzzling to see just where to plot the vectors. Note that the vector map 

has a large origin peak, corresponding to the vector from every atom to itself. 
By now it will be obvious that for any cell containing more than two atoms, there 

are more vectors than atoms—generally a lot more. If there are m atoms in the cell, 

there are n — 1 vectors from each of them to the n — 1 other atoms, a total of m(” — 1) 
vectors, plus the v vectors piled up at the origin; it begins to look as though it would 
be hopeless to try to work back from the vector map to the atomic pattern. 

Figure 7.5(c) shows that the map in (b) is not quite so formless as it looks at first 
sight. The four peaks labelled AB, AC and AD, together with AA at the origin, repro- 
duce the arrangement in (a), and this is also true of the set of peaks whose first letter 
is B, or C, or D. To try to make this clearer, these sets have been connected with 
distinctive lines in (c). Moreover, each of these sets is displaced from the origin of the 
vector map by a distance corresponding to an interatomic vector. Since the Patterson 

function is centrosymmetric, an arrangement that is the mirror image of the original 

(in (a)) is found if all peaks whose Jast letter is A, etc., are taken as a set. Plainly these 
observations contain the germ of an idea for sorting out the vector map; one can look 
for an arrangement of peaks that is repeated in other parts of the map. 

In a simple structure such as that in Fig. 7.6(a) it may be possible to see the 
solution intuitively. In the (imaginary) triatomic molecule illustrated, one atom, 
represented by the black dot, is much heavier than the other two, represented by open 
circles. Peaks on the vector map corresponding to vectors between the two heavy 
atoms (black dots in Fig. 7.6(b)) are consequently very much higher than the others, 
and stand out prominently on the vector map; the next highest peaks can be assumed 
to represent heavy atom-light atom vectors, and it may be possible to pick out the 

shape of the molecule directly and produce a complete solution to the structure. (Note 
that in the example shown one would instinctively place the origin of the cell in the 
middle of OX, that is take the coordinates of the heavy atom as +4 OX. This shifts the 

origin from that shown in (a), but does not change the arrangement in any way.) 
More often than not, one cannot proceed intuitively beyond the stage of locating 

the heavy atom. The molecule may simply be too complicated for further progress to 

be possible, or accidental coincidences between light atom-light atom vectors may 
bedevil the interpretation. When this happens, there are in general two possible ways 
of proceeding. The lazy way, which nevertheless usually succeeds, is to hope that 
the contribution of the heavy atom is sufficient to determine the phases, use its 
position to calculate structure factors and subsequently an electron density map and 
then search for the missing atoms as described in Section 7.2. Alternatively, the knowledge 
of the heavy atom position may be used to proceed further with deciphering the 
Patterson map, using a superposition method. The theory of these methods has been 

exhaustively discussed by Buerger [7] so nothing more will be said about it here. For 
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(b) 

Fig. 7.6 The use of a superposition method to unravel a Patterson map. The 

molecule in (a) has two light atoms (open circles) attached to a heavy one (solid 

circles). The unit cell contains two molecules, related by a centre of symmetry. The 

corresponding vector map is shown in (b). The heaviest, or largest, vector peaks are 

represented by solid circles, the lightest by open ones, and there are two intermediate 

grades. The four grades represent, in order of increasing solidity, 

single weight light atom—light atom peaks 

double weight light atom—light atom peaks 

double weight heavy atom—light atom peaks 

single weight heavy atom—heavy atom peaks 

The method of regenerating (a) from (b) by the use of a superposition method is 

explained in the text. 
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present purposes, it will be far more illuminating to try out a practical example for 
yourself, and Fig. 7.6 was designed with this in mind. 

You will need two small pieces of tracing paper. On one of these, copy all the peaks 
from Fig. 7.6(b), including those that lie outside the cell boundaries. Now slide the 
tracing in the direction X-O, until the peaks X on the tracing are exactly superposed 
on the peaks O in the diagram in the book. At this point a couple of paper clips will 
come in handy to hold the diagram and tracing together in this position, while you 

examine the relationship between them. You will find that most of the peaks on the 
tracing do not coincide with those in the original drawing, but a few of them do. Mark 
these coincidences on the second piece of tracing paper, using a full circle for the 
coincidence of two heavy peaks, and an open one for that of two lighter ones. Com- 

pare the result with Fig. 7.6(a); if all has gone well the two will be identical, given the 
proper choice of origin. 

This is not really such black magic as it may appear at first sight; it is a logical 
development of the concepts introduced on p. 167 in the discussion of Fig. 7.5(c). 
Moreover, the method is not without its pitfalls. If no suitable heavy atom- heavy 

atom peak is available, other peaks must be tried. A little experimentation with Fig. 
7.6 and your tracing will show that a true solution is obtained only if the selected peak 

is single weight, that is the result of a single interatomic vector; multiple peaks yield 
multiple solutions. Moreover, if you try the same technique on the vector map in Fig. 

7.5(b), derived from the non-centrosymmetric structure in Fig. 7.5(a), you will again 
get a multiple solution, containing the true solution and its mirror image. In theory 

these difficulties can be overcome by making successive superpositions, but this does 

not always work out in practice. 
Moreover, in our examples the atoms have been nearly points, and the vector map 

has correspondingly sharp peaks; in practice both are continuously varying functions. 
More sophisticated methods are then needed to determine whether the superposed 
Patterson functions show a possible coincidence of vectors, and for this purpose the 

minimum function is probably the best choice. This is prepared by comparing the two 
(or more) maps point by point and taking the minimum value at each point. This can 
be done either graphically or with a computer; the former is undoubtedly more fun, 

but in three-dimensional work can result in unwieldy amounts of paper. Buerger [7] 
has given practical details for the graphical method. In either case, the result is a map 
whose contours show peaks only at points where peaks, or at least ‘upland areas’, on 
the contributing maps coincide; it is the equivalent of the tracing you prepared from 
Fig. 7.6. 

7.3.2 When the Patterson function is not enough 

There are two principal classes of problem in which the above approach fails. One 
comprises structures that contain, or can be induced to assimilate, a heavy atom, but 

which are so very complex that even though the heavy atom can be located the rest of 

the structure can neither be unravelled from the Patterson map nor located by Fourier 
synthesis, the contribution of the heavy atom to the structure factor being relatively 
too small to determine the phases. The other comprises structures that contain only 

light atoms. 
The first situation is frequently encountered with biological materials such as 

proteins, and these are tackled by the method of isomorphous replacement. This works 
for crystals that can assimilate different heavy atoms while leaving the light atom part 

of the structure unchanged. Comparison of relative values of the structure amplitudes 
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of reflections from the different crystals may then enable their phases to be deter- 

mined. Asa simple idealized example let us consider two centrosymmetric compounds 

HL and H'L, where L, the light atom part of the structure, is the same in both, and H 

and H' represent two different heavy atoms. Then for any given reflection: 

| Ful =Fu thy and [Put |=Fy’ t+ Py 

where |F44;| and |Fy',| are the measured structure amplitudes. Fy} and Fy’ are 

the contributions to the structure factor from the heavy atoms; these can be calcu- 

lated, the heavy atoms having been located from a Patterson function in the usual way. 

F,,, the light atom contribution, remains the same for both compounds. Suppose, for 

example, that 

[Ful = 20 Py =+5 
and then Fy = +15 

lFy’L| = 25 Fy’ = +10 

Alternatively, if 

| Fup | = 25 Fy =+5 

and then Fy, = —30 
Poel 20 Fy’ = +10 

Real examples are of course not likely to be so clear-cut as the above; difficulties in 

placing the measured structure amplitudes on the proper scale, and random errors of 
measurement are two of the most obvious snags. An additional problem has to be 
faced if the structure is non-centrosymmetric because then the complex nature of the 

structure factor means that, even in theory, application of the above reasoning is 
bound to lead to two possible phase angles; to distinguish between these information 

from a third isomorphous compound is required. The labour involved in such calcu- 

lations is enormous, yet this is how the structures of proteins have been unravelled. 

Usually, information from the original protein and from two different heavy atom 
derivatives has been used. The results of these efforts represent one of the great 
triumphs of crystallography in recent years; accounts of some of the struggles involved 
will be found among the suggestions for further reading. 

For the other class of structures that are unlikely to be solved through the 

Patterson function—those containing only light atoms—there is fortunately an alterna- 
tive approach via the so-called direct methods. For a full account of these, the reader 
should consult more advanced texts, but a brief account of some of the underlying 
physical principles will be given. 

A crystal, as we have said, can be represented by a periodic function giving the 
electron density at any point, and in a real crystal two conditions must be fulfilled: 

(i) The electron density can never be negative. 
(ii) Atoms are atom-shaped, that is the electron density about an atomic centre, or 

electron density maximum, is approximately spherically symmetrical. For a stationary 

atom, the diminution of electron density with distance from the atomic centre falls off 

in a manner predictable from the f-curve for that atom; in practice, atoms vibrate 
about their mean positions to an extent that depends on the absolute temperature and 
the atomic shape must be modified to take account of this. : 



GETTING STARTED 171 

If it can be further assumed that the distribution of scattering material about the 
cell is approximately random—a condition usually fulfilled reasonably well by a 
structure such as we are considering here, containing a large number of light atoms— 
various deductions can be made regarding the way in which the intensities of reflec- 

tions are related. 
The earliest of these [8] related the average observed intensity at a given value of 

sin 9/X to the value corresponding to a random assemblage of stationary atoms; from it 
both the temperature factor and the scaling constant necessary to convert the 
measured relative intensities to approximately absolute values could be deduced. It 

was also shown that the distribution of intensities about the average intensity could be 
used to test for the presence or absence of a centre of symmetry [9], which can 
normally not be ascertained from a simple examination of the X-ray diffraction 
patterns. It was next shown that for centrosymmetric structures inequality relation- 
ships can be developed that give the signs of a number of very strong reflections 
unambiguously [10]. To apply these relationships, the normal structure factor Fy,x, is 
converted into the corresponding unitary structure factor, U),): 

N 
Ona = Fai 2 we 

where f, is the scattering factor for the rth atom at the appropriate value of sin 0/X. This 

expresses the value of the structure factor as a fraction of its maximum possible value 
(;=1 f,, for all the atoms scattering in phase). A very strong reflection is one for 
which this fraction, U, is large. 

One of the simplest of these inequalities can be used to show that 

2 1 
Vier S21 + Ury2K2)) 

If the two Us are large, say 0.6, the inequality is satisfied only if the sign of U,;,, 3) is 
positive. A physical interpretation of this statement is shown in Fig. 7.7. The use of 
this particular inequality is limited to proving that Uz, 2,2, is positive, but further 

inequalities can be developed which extend the range of determinable signs, making the 
method more useful than might appear at first sight. Nevertheless, it generally becomes 

necessary to include sign relationships that are only probably true (instead of certainly 
true). Largely thanks to the availability of high speed computers, these methods are 
now applied routinely. Comparatively recently they have been extended to non- 
centrosymmetric structures so that the phases can be approximately determined by 

analogous methods, 
Once a sufficient number of phases have been determined in this way, a Fourier 

synthesis is computed. It should be possible to recognize most, if not all, of the struc- 

ture in the resulting map, and from this point the structure determination follows the 
sequence outlined in Section 7.2 and/or is refined as described in the next section. 

There is another method which is useful if the shape of the molecule, or of a large 
part of it, is known, and the problem is that of finding the orientation of the known 
group of atoms in the unit cell. This uses the fact noted earlier (p. 160) that the 
diffraction pattern of a crystal can be regarded as the Fourier transform of the cell 
contents observed at those points in reciprocal space where Bragg’s law is satisfied, 
that is at the reciprocal lattice points. If the relative positions of some or all of the 
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Fig. 7.7. A physical interpretation of the inequality quoted on p. 172. For waves 
diffracted by both hkl and 2h2k21 to have large amplitudes, the scattering matter must 

be arranged mainly in bands in one of the ways indicated by the stippling in the 
diagrams. The arrangment in (a) will make F;,,; + ve, whereas that in (b) will make 

Fyx — ve; in either case F242 21 will be tve. 

atoms in the cell are known, the Fourier transform of the arrangement can be calcu- 
lated as a continuous function. This is then compared with the observed intensities at 

the reciprocal lattice points to find the orientation of the known group of atoms 
within the unit cell that gives the best agreement. 

In practice the method has more often been applied in projection than in three 

dimensions. The transform can then be generated by optical diffraction methods thus 
saving the labour of computation. There is not space here to go into details of these 
methods, for which see the Bibliography. Briefly the atomic arrangement is simulated 
by a number of holes, one for each projected atom, punched in a mask. The optical 
diffraction pattern of one such group gives a representation of the Fourier transform; 
the pattern from a regularly repeating array of them gives a representation of the 
appropriate section of the reciprocal lattice. 

Remembering the reciprocal nature of the operations that relate atomic arrange- 
ments and X-ray diffraction patterns, one might wonder whether the optical dif- 

fraction pattern from a mask representing the reciprocal lattice section would corres- 

pond to a projection of the structure in the appropriate direction. Unfortunately this 
is so only if all the diffracted X-ray beams have the same phase; for a centrosymmetric 
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arrangement with a heavy atom on the origin (all phase angles zero) one can get quite a 
good picture of the projected structure in this way. Otherwise one is back with the old 

Phase Problem. Even if the phases are known, the utility of the method as a rapid 
means of Fourier synthesis is limited by the difficulty of introducing the appropriate 

phase changes into the optical system. 
Finally, in extremis, one might try what have been appropriately dubbed ‘Monte 

Carlo’ methods, or trial-and-error methods without any real starting point. In these, 

trial structures are set up more or less at random (hence the name) and tested against a 
limited amount of diffraction data until one that gives a reasonable degree of fit 
emerges. Even if the possible structures are limited by restricting them to those that 
make crystal chemical sense, the number of possibilities is usually so large that the 
method is only practicable if a very fast computer is available. Quite apart from such 
material considerations, the method is so totally lacking in finesse that most people 
would not consider it except as a last resort. 

7.4 Refinement 

When a solution believed to be approximately correct has been obtained, it must be 

refined to give the best possible fit between observed and calculated data. The use of 

the electron density map for adjusting coordinates has already been mentioned 

(Section 7.2), but once the coordinates are approximately correct, this is a relatively 
insensitive method, and progress becomes rather slow. For one thing it is usually 

difficult to determine the exact centre of a peak; for another, the computed electron 

density map is a hybrid between that of the true structure and that of the assumed one 

(cf. Section 7.2). 
Figure 7.8(a) illustrates the latter point. P, and P, represent the true and assumed 

positions of an atom, and the dotted curves show sections across the corresponding 
electron densities, p, and p,. The solid line pmap,, representing the electron density 
found from the Fourier synthesis, lies between the other two curves. The true position is 

thus not at the maximum of the peak on the Fourier synthesis, but on the opposite 
side of this from the assumed position; one way to speed up refinement is to move 
atoms by up to twice the distance between their assumed positions and the centre of 
the peak on the map. The difficulty of locating this centre with accuracy remains. 

One way round this, shown in Fig. 7.8(b), is to use as Fourier coefficients not the 
values of f’y,but (F, — F,). This produces a difference map, which consists essentially 
of the true electron density, with the electron density due to the assumed structure 

subtracted. If the assumed structure is correct, the difference map should be feature- 
less; theoretically it should be zero everywhere, but in practice random errors in the 

observed data make this only approximately true even for fully refined structures. If 
an atom is slightly misplaced, as in Fig. 7.8(b), its assumed position will lie on a steep 
gradient on the difference map, not far from the zero contour, with a large negative 
region to one side of it, and a large positive one to the other (Fig. 7.9(a)). To correct 
its position, the atom should be moved up the steepest gradient by an amount propor- 
tional to the gradient at its centre. Exact equations relating the shift Ar to the gradient 
dp/dr are to be found in more advanced works; in practice it is usually satisfactory to 
shift the atom by k - dp/dr, where the constant k is (for three-dimensional work) of 

the order of 0.02-0.01 for light atoms, and less for heavy ones, and is adjusted 
empirically in the course of the refinement. It is usually easiest to evaluate the gradient 

along each of the three axial directions in turn. 
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Fig. 7.8 Refinement by Fourier methods. (a) The relationship between the assumed 
position, P,, the true position P; and the electron density peak due to a slightly 

misplaced atom. (b) Similar relationships for a difference synthesis. 

If an atom is completely misplaced, the difference map will show a large negative 
region at its assumed position (Fig. 7.9(b)), and one has to look for a new site; with 
luck the difference map will indicate this as a positive region where no atom was 

placed. Other features that may appear on a difference map are shown in Fig. 7.9(c) 
and (d). Figure 7.9(c) shows the effect of having used too small a temperature factor 
when calculating F’, values, thus estimating too great an electron density at the atomic 
centre, and too little further out; using too large a temperature factor would, of 
course, produce the opposite effect. Contours like those in Fig. 7.9(d) suggest that the 
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(a) (b) 

(d) 

Fig. 7.9 Some typical features to be found on difference maps. The assumed atomic 

position is shown by a black dot; negative contours are shown as dashed lines, zero and 
positive ones by solid lines. (a) Atom slightly misplaced; should be moved to the right, 

up the gradient. (b) Atom totally misplaced. (c) Atom given too small a temperature 

factor; its electron density needs ‘spreading out’ more. (d) Atom is probably vibrating 

anisotropically; assigned temperature factor slightly too large. 

atom is not vibrating equally in all directions, and that in calculating its contribution 
to the structure factors anisotropic temperature factors should be used. Most com- 
puter programs include this facility as a standard feature, but it should be used with 
discretion (see Chapter 9). 

The other method of refinement that is commonly used in effect solves the com- 
plete set of equations 

N sin? 6 
LS Vie Si 2 f, exp| —B, aN? oi exp 2ni (hx, + ky, + Iz,). 

r= 

This cannot be done directly, but is approached via the corresponding differential 
equations. If the nth parameter (B, x, y or z for the rth atom) is in error by An, 
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correcting it changes F, by (0F,/dn) - An, provided An is small. Correcting all the 

parameters changes F’, by 

M 
OF 

MF E= pe ay - An 

n=1 

where M is the total number of variable parameters. The correct values of An are those 
that make 

APC = f= 

for each of the observed reflections. However, the values of F, are known to be 

subject to experimental error; on the other hand there are many more of them than 

there are parameters to be determined. The best values of An are therefore determined 
by choosing those that minimize 2),,,(F, — F.)*. This is the method of least squares. 
It is a very tedious procedure to apply by hand, but with the advent of high speed 

computers it became the routine method of completing a structure. 
Most crystallographers employ one of the standard programs available for least- 

squares refinement. These require to be given a set of parameters that is approximately 

correct, and a list of the hk/ reflections to be used with the appropriate F,-values. To 
calculate F,, the scattering factor for each atom at the angle corresponding to each 
reflection is needed; this requirement is most efficiently met by calculating the values 

once and for all and storing them in the data list along with the F’, values. 
Provision is usually also made for weighting each reflection in some way according 

to how accurately it is judged to have been measured: in other words it is actually 

Lani WF, — F,)? that is minimized, where w is the allotted weight. In addition to the 
parameters x, y, z and B mentioned above, one can usually refine the temperature 
factor anisotropically, and also refine the occupancy factor, or fraction of an atom that 
is occupying the site in question. The latter is particularly useful if statistical distri- 
bution is suspected, or where solid solutions are being treated. Most programs allow 

one to fix those parameters that are not to be refined: for example, positional para- 
meters of atoms on special positions, or the occupancy factor when it is not in doubt. 

The program then calculates F, and F, — F, (or some related quantity) for each 
reflection, determines the required parameter shifts and the estimated standard devi- 
ations of the new parameters, and prints all this information along with the R-factor 

and the new parameters. The crystallographer can then examine the figures and decide 
whether the structure is completely refined, or whether the calculation should be 
repeated starting with the new parameters. Each such complete set of calculations is 
known as a cycle. 

The very ease with which the calculation can be performed, the almost routine 
nature of the operation, can produce a false sense of security; it is all too easy to 
forget the limitations imposed by the (admittedly complicated) underlying math- 
ematics. The most serious of these concerns totally or partially misplaced atoms; the 
least-squares routine is normally capable of making only quite small corrections to 
atomic positions; it will find the best position for an atom near to where you have put 
it. If you have put it in the wrong place, some warning may be given by the least- 
squares program through the emergence of an abnormally high-temperature factor for 
the atom concerned, but it is also possible for a perfectly sensible set of figures to 
emerge, and the error may not be detected unless the result appears to be chemically 
unreasonable, for example, it includes an abnormal bond length. Refinement from 
difference syntheses is not liable to this type of error, but requires more effort on the 
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part of the crystallographer. The temptation to rely on successive least-squares cycles 

is strong; beginners seem especially prone to wasting computer time in futile refine- 

ments of wrong structures. A close check should therefore be kept on the progress of 
the refinement; temperature factors must be closely watched and bond lengths cal- 
culated from time to time to ensure that the structure continues to make crystal- 

chemical sense. Even when all has gone smoothly it is still advisable to check the final 
results with a difference map. 

The refined structure should therefore satisfy three criteria: 

(a) It should be chemically sensible. 
(b) It should give reasonable agreement between observed and calculated structure 

factors—R should be fairly low. 

(c) The difference map should be essentially featureless. 

Of the three, the last is probably the most significant. To illustrate this, let me tell a 
cautionary tale based on personal experience. A structure containing tetrahedral groups 

was refined by least squares to a satisfactory R-value, with no abnormal temperature 
factors, and the resulting structure made chemical sense. Nevertheless, two atoms in 

the tetrahedron were in fact wrongly placed and when their positions were corrected 
the tilt of the tetrahedron was reversed. Accidental coincidences between the right 
and wrong parameters of the two atoms concerned appeared to account for their 
temperature factors remaining normal and to this extent we were perhaps unlucky; 

but it does go to show that you cannot be too careful! Full details of this sorry 
affair are in the literature [11]. 

Finally, what is a satisfactory value for R? It is fairly well known, and widely 
quoted, that random models for a structure would give R-values of 0.83 for a centro- 
symmetric and 0.59 for a non-centrosymmetric structure, so a trial structure should 

give values significantly better than these before any reliance can be placed on it. Just 
how much better depends on circumstances; it is difficult to give a rule of thumb. 
Note that a poor choice of scale factor can give an illusion of better agreement than 

has actually been obtained; if X2F, is relatively rather too big, R may have a spuriously 
low value. Although it should be easy to spot when this has happened, it can be 
temporarily deceptive. 

A structure that is correct will refine rapidly and smoothly to below 0.20; a model 

that stops refining at rather higher values is probably only partly correct. The final 
R-value that you can expect to reach depends on how carefully the data were collected 
and corrected. Even fairly rough-and-ready data usually refine to about 0.1; with good 
data, values in the range 0.03-0.05 can be expected. 

However, beware of trying to refine a structure beyond what the data are worth. 

You can always improve the agreement by introducing some more variable parameters, 
for example by changing from isotropic to anisotropic temperature factors, by refining 

site occupancies or by introducing, where appropriate, hydrogen atoms that were not 

initially considered. It is more difficult to decide whether the improvement is signifi- 
cant; a useful test has been given by Hamilton [12]. 

Further discussion on this topic will be found in Chapter 9. 

7.5 Anomalous scattering 

The structure factor of a given reflection is the vector sum of the waves scattered 
by the various atoms; this has so far been expressed as an equation. It can also be 
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Fig. 7.10 The effect of anomalous scattering. (a) The structure factors Fy,,) and Fpx7 
for a non-centrosymmetric structure shown on a vector diagram. (b) The real and 

imaginary parts of the scattering factor of an anomalously scattering atom, showing 

how a phase change is introduced. (c) The effect on F',,; and Fyxj of introducing an 
anomalous scatterer into the structure shown in (a). 
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represented by a vector diagram such as Fig. 7.10(a), in which f,,, etc. are the ampli- 

tudes and ¢, etc. the phases of the waves scattered by the three atoms A, B and C of a 
non-centrosymmetric structure: although the resultants Fy,,; and Fyz differ in phase, 

they have the same magnitude, the observed intensities are equal, and Friedel’s law is 
obeyed. 

. Up to this point we have assumed that the phases ¢, , etc., depend only on the 
position of the scattering atom, that is the scattering process at the atom does not 

introduce any additional relative phase change. It is in general true that such changes 

are negligible; this is why Friedel’s law normally holds. There are however important 
exceptions: atoms that have an absorption edge (Fig. 3.2) close to the frequency of 

the incident radiation introduce an additional phase change, and this is known as 
anomalous scattering. For such atoms the simple scattering factor, f, which is calcu- 
lated on the assumption that the electrons in the atom can be treated as free electrons, 

has to be modified to take account of the interaction of the incident X-rays with the 
bound electrons; it is of course this interaction that produces the absorption edge. The 

modification is shown in Fig. 7.10(b); the simple scattering factor now becomes a 
complex quantity f+ f'+ if”. It is the imaginary part—if’—that concerns us here as this 
is the component that introduces the phase difference. 

The effect of the presence of an anomalous scatterer in a non-centrosymmetric 

structure is shown in Fig. 7.10(c). Here atom C is assumed to scatter anomalously; the 
real part of fc is the same as in Fig. 7.10(a), to emphasize the effect of f¢. The 
resultants /’,,; and F7,z7 are equal neither in phase nor magnitude, and Friedel’s law is 

not obeyed. An important consequence of the existence of this effect is that the 
absolute configurations of structures that have crystallized in non-centrosymmetric 
space groups can be determined; indeed this is how the absolute configurations of 

optically active compounds have been established. 
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CHAPTER 8 

Other diffraction methods 

8.1 Particles and waves 

Although the vast majority of crystal structure determinations are based on X-ray 

diffraction data, there are two other diffraction techniques of practical importance. 
These use beams of electrons or neutrons, and the information they provide neatly fills 

in some of the gaps left by X-ray diffraction. 
A moving particle can also be described by a wave, whose length is given by the de 

Broglie equation: 

mv 

where h is Planck’s constant, m is the mass of the particle and v its velocity. The 
wavelength thus depends on the velocity of the particle, and this in turn depends on its 

kinetic energy, since E =4 mv”. Substituting 

v =/(2E/m) 

in the de Broglie equation we obtain 

eerie ttia. 
m/(Q2E/m) (2m) 

The kinetic energy of neutrons depends on the temperature of the generating pile, 

while that of electrons depends on the accelerating voltage to which they are subject. 
The next two sections will consider each technique in turn. 

8.2 Neutron diffraction 

The neutrons emerging from a pile do not all have the same kinetic energy; rather 
their energies follow a Maxwell distribution, with a most probable kinetic energy kT, 
where k is the Boltzmann constant and T the absolute temperature. The wavelength of 
neutrons from a normal pile, whose temperature runs somewhere between ambient 
and 100°C (300- 400°K), will be distributed about a most probable value of 1.0-1.5 A; 
this value is eminently suitable for diffraction experiments of the usual type, but 
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the wide range of other wavelengths present in the beam is not acceptable. A more or 
less monochromatic beam can be produced by reflection from a suitable set of crystal 
planes (cf. X-ray monochrometers, Section 6.2.2). The reflection angle @ is adjusted so 
that the fraction of neutrons having energies close to KT is selected (Fig. 8.1). The 
extent of the angular range over which the neutrons are collected is a compromise: if it 
is kept small, the beam will be highly monochromatic but very weak, whereas if a 
larger angular range is accepted the beam will be stronger but less monochromatic. 

From pile, temperature 7°K 

Range of wavelengths 
centred on 

a UTTER 

Crystal 
monochromator; 

interplanar 
spacing = d h uss 20,8 in iBaceee cortee 

en y-7% g 

Specimen 

Fig. 8.1 Production of a monochromatic neutron beam; in practice neutrons dif- 

fracted over a small range of @ are collected. The larger the range of angles, the 

stronger the beam and the greater the range of included wavelengths. The mono- 

chromator is chosen to select neutrons with wavelengths near to the most probable 

value for the pile. 

In any case the beam is not very strong, so for neutron diffraction single crystals 
must be much larger than those usually used for X-ray diffraction: at least 1 mm, and 
usually more, in linear dimensions. Single crystal investigations by neutron diffraction 

are thus limited to those materials that can be obtained as large crystals, and the 
intensity measurements are subject to errors due to extinction (see Section 9.1). 

The diffracted beams cannot be recorded on film, but must be measured with a 

counter. This and the rest of the apparatus must be heavily shielded, making it very 
much more massive than comparable X-ray diffraction equipment. Moreover, sources 
of suitable neutrons are relatively rare. It is thus not surprising that neutron diffraction 

is much less widely used than X-ray diffraction; indeed you may well wonder why 

anyone should bother with it at all. 

In fact the diffraction of neutrons differs fundamentally from that of X-rays, in 

that, with certain exceptions, neutrons are scattered by the nucleiiof atoms and not by 
their electrons. The exceptions are atoms that have a magnetic moment, whose 

electron clouds do interact with neutrons. The magnetic structure of materials con- 
taining such atoms can be studied by neutron diffraction; these studies will not be 

discussed here but the interested reader will find the subject reviewed in [1]. 
Because the nucleus of an atom, unlike its electron cloud, is negligibly small in 

comparison with the wavelength of the scattered radiation, waves diffracted from 
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opposite sides of the atom do not interfere destructively (cf. Fig. 6.1 1). Consequently 

neutron scattering factors are constant, instead of falling off with increasing @ like the 

X-ray curves. Moreover, neutron scattering factors are not proportional to atomic 

numbers as are X-ray values. Neutron scattering factors vary comparatively little, and 

quite irregularly, throughout the periodic table. 
This last property means that the determination of the positions of light atoms in 

the presence of heavy ones, which may be difficult or impossible from X-ray data, 
becomes relatively easy. For example, the structure of the orthorhombic form of PbO 

was first investigated by X-ray diffraction [2], but because lead atoms are so heavy 
their contribution to the diffraction pattern overwhelms that of the oxygen atoms. 
The agreement between the observed and calculated structure factors is thus insensi- 

tive to the positional parameters allotted to the latter. Their arrangement had to be 

determined by neutron diffraction [3]: the neutron scattering factors of Pb and O are 

0.96 and 0.577 respectively. Peak heights on Fourier syntheses based on neutron 
diffraction data naturally show a similar lack of dependence on atomic number: this 
may mean that it is difficult to identify atoms from them unless a parallel X-ray study 

has been made. 
The classical use of neutron diffraction is in the location of hydrogen atoms. 

Approximate positions for these can be established by very careful X-ray work, pro- 
vided the compound contains no very heavy atoms; more often their positions have to 
be inferred from indirect evidence such as probable hydrogen bonding schemes. On the 
other hand, the hydrogen atoms can be located directly and with considerable 

accuracy from neutron diffraction data, even in the presence of much heavier atoms. 
Usually the non-hydrogen part of the structure is solved from X-ray diffraction data in 

the normal way, and this partial structure used to phase the observed neutron dif- 

fraction amplitudes for a Fourier or difference synthesis. 
Since neutron diffraction locates the nuclei of atoms and X-ray diffraction gives a 

picture of their electron clouds, a combination of the two techniques should 
provide information about the way electron clouds are distorted by the formation of 

bonds between atoms. Relatively recently, detailed pictures of electron density distri- 
butions have been obtained in this way, and the results compared with the predictions 

of theoretical chemistry; this is discussed in Section 9.2. 

Although neutron diffraction can be used for powder investigations, this normally 
offers little advantage over X-ray techniques. However, the range of wavelengths in 

the neutron beam issuing from the pile has been put to good use in the design of 
high-pressure and high-temperature apparatus. If monochromatic radiation is used and 
diffracted intensity measured as a function of angle, a major difficulty is that a rela- 
tively large exit must be provided for the diffracted beams. If, instead, one uses ‘white’ 

radiation (containing a range of wavelengths) and measures the diffracted intensity as a 
function of wavelength while keeping 26 fixed, the design problems are greatly 
reduced [4]. This can be done for neutrons by using the technique of time-of-flight 

analysis (Fig. 8.2). The monochromator used in conventional diffraction experiments 

is omitted, so that the incident beam is ‘white’; it is pulsed by a mechanical chopper 
and the diffracted neutrons are collected by a fixed detector some distance away. The 
time taken by a neutron to travel from the chopper to the detector depends on its — 
speed, which is inversely proportional to its wavelength. The diffracted beam is 

analysed in terms of the number of neutrons arriving at the detector within specified 
time intervals—hence the term time-of-flight analysis. Since time-of-flight is pro- 

portional to wavelength, this is equivalent to studying the diffracted intensity asa 
function of wavelength at fixed angle. 
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Fig. 8.2 The principle of time-of-flight analysis. The beam from the pile contains a 

range of wavelengths, and is pulsed by the chopper at C. Neutrons whose wavelengths 

satisfy the Bragg equation for one of the sets of planes of the specimen, at the given 20 

value, are diffracted to the counter at C’. The time to travel the distance CC’ is 

measured electronically, and since \ = h/my, it is proportional to the wavelength. 

8.3 Electron diffraction, 

Apparatus for electron diffraction has something in common with an X-ray tube: 

electrons are emitted from a hot wire and accelerated through a vacuum by applying a 
high voltage. The electrons, however, are not used to produce secondary radiation but 

are themselves diffracted. 
The energy £ acquired by these electrons depends on the accelerating voltage V, 

approximately according to 

E=eV 

where e is the charge on the electron. The expression is only approximate because at 
the high voltages usual in electron diffraction the velocity of the electrons begins to 
approach that of light, so that they gain mass due to the effect of relativity. However, 
if we ignore the relativity correction, and substitute E in the expression for \ derived 
in Section 8.1, we find: 

h h 
A= = MS 

V(2mE) /(2meV) 

The wavelength is thus roughly inversely proportional to the square root of the 
accelerating voltage; if the latter is of the order of 10° volts, the wavelength of the 
electron beam will be roughly 0.04 A, which is very much shorter than that of even 

the shortest X-rays used in diffraction work. For various reasons, including the rela- 
tivity correction that is necessary at high voltages, the effective wavelength is in 
practice established by calibration with a standard sample rather than calculated. 

A very simple electron diffraction camera is shown diagrammatically in Fig. 8.3. 

The essentials are the electron gun, a collimating aperture, a photographic plate to 
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Fig. 8.3. The fundamentals of an electron diffraction camera. The stream of electrons 

emitted from the gun (a hot wire) is accelerated towards the anode; the cathode cap 

controls and focuses it. Beyond the anode, the beam may be further focused by one or 

more lenses. After passing through the collimating aperture, it is diffracted by the 

specimen, and the pattern recorded on a plate. The direct beam may be caught in a 

backstop, which must be earthed to prevent it from charging-up and consequently 

deflecting the beam. 

record the pattern and of course the specimen. Because the penetrating power of 

electrons is not great, the specimen must be quite thin, of the order of 1077 m or 
1000 A, and for the same reason the use of a backstop is optional. One or more lenses 
may be added between the gun and the specimen to improve the resolution of the 
pattern. A simple camera of this type can be adapted so that the specimen can be 
heated or cooled, but (unlike the electron microscope, see below) there is no provision 
for obtaining an electron image of the specimen. Consequently, portions of the 
material can be selected for study only by trial and error, and for this reason the 
instrument is mainly used for studying polycrystalline materials. 

Electron diffraction patterns can also be obtained using an electron microscope, 
and this has a number of advantages. The most important is that the normal arrange- 
ment for electron microscopy gives a highly magnified image of the material on a 
fluorescent screen, so that one can select the portion that is to be studied before 
switching to electron diffraction; this technique is called selected area electron dif- 
fraction, and it enables diffraction patterns to be obtained from crystals that are far 
too small to be examined by X-rays. 

An electron microscope works in roughly the same way as an optical microscope, 
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the lenses being electromagnetic; because of the very short wavelength of the electrons 

the resolution, and hence the magnification, that can be achieved is very much greater 

than for a light microscope. Figure 8.4 shows one stage of magnification, from which 
it can be seen that the lens that is forming an image of the specimen is at the same 
time producing an image of the diffraction pattern; since the diffracted beams are 

parallel, the latter is to be found in the focal plane of the lens. In practice, the instru- 

ment usually has three lenses, and after a suitable portion of the specimen has been 
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Fig. 8.4 One stage of magnification in an electron microscope. Note the formation of 

a diffraction pattern in the focal plane of the electromagnetic lens. 

selected, the focal length of one of them is adjusted so that the image of the specimen 
on the fluorescent screen is replaced by that of its diffraction pattern. The screen can 
subsequently be removed and the pattern photographed. 

The formation of an electron diffraction pattern is shown in Fig. 8.5 in terms of the 
reciprocal lattice. Because the wavelenth of the electron beam is very short, the radius 
of the sphere of reflection is very large. If a crystal is lying with a principal crystallo- 
graphic axis (say c) parallel to the electron beam, its hkO layer is perpendicular to the 
diameter of the sphere of reflection, or tangential to its surface. Because the crystal is 
very thin the reciprocal lattice points are somewhat elongated into rods, the dimen- 

sions of reciprocal lattice points being inversely related to the size of the ordered 
regions in the real crystal. The extended reciprocal lattice points intercept the almost 
flat surface of the large sphere of reflection and a diffraction pattern is formed even 
though the crystal is stationary. Moreover, the resulting pattern is a virtually un- 

distorted picture of the relevant section of the reciprocal lattice (see Fig. 8.9). 
If the crystal be slightly tilted as shown in Fig. 8.6 a rather different picture results. 

Both the hk0 and hk1 layers now cut the sphere of reflection, but over a smaller area. 
The pattern is therefore broken into curved Laue zones, corresponding to the various 
layers, and a rough estimate of the value of c can be obtained from the curvature of 
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Fig. 8.5 The formation of an electron diffraction pattern. The crystal (top of dia- 

gram) is a very thin flake; its c axis is parallel to the electron beam. Part of the corres- 

ponding reciprocal lattice is shown (middle of diagram); because the crystal is so thin 

the ‘points’ are extended into rods parallel to c. The diffraction pattern is shown at the 

bottom of the diagram. 

these zones. A picture of the reciprocal lattice can be built up by comparing the 
positions of reflections in successive Laue zones; the pattern in Fig. 8.6 shows the 

effect obtained from a primitive reciprocal lattice; Fig. 8.7, (a) and (b), shows the 
zero- and first-order Laue zones from an A-centred orthorhombic crystal and a C- 
centred monoclinic crystal respectively. 

Plainly the appearance of the pattern depends on the tilt of the crystal. A specimen 
for electron microscopy is prepared by dispersing the fine grained material thinly on a 
thin film of some amorphous material supported on a grid. Early work either 
depended on finding crystals that were by chance suitably tilted, or used the mechan- 

ism intended for producing stereoscopic pairs of micrographs, which permitted the 

stage to be tilted by up to 10°. The goniometric stage was subsequently developed; 
it permits the specimen to be tilted by much larger amounts (up to 60° in some of the 
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Fig. 8.6 The electron diffraction pattern from the crystal in Fig. 8.5 if its c-axis is 

inclined to the electron beam. The reciprocal lattice layers cut the sphere of reflection 

obliquely, and the diffraction pattern breaks up into Laue zones corresponding to the 
different layers. 

latest instruments) in any desired direction giving much greater flexibility. For 

example, the length of an axis initially perpendicular to the stage need no longer be 
estimated from the curvature of the Laue zones produced when the crystal is tilted. 
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With a goniometric stage the crystal can be tilted far enough for other sections of the 
reciprocal lattice to be studied, and the third axis can then be measured directly and 
more accurately. 

It has already been remarked that because of the poor penetrating powers of the 
electron beam the crystal must be very thin. The method is thus particularly suitable 
for studying crystals whose natural morphology is that of flakes or laths, or which 
cleave to give such shapes. However, the thinner the crystal, the more the elongation 
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Fig. 8.7 The appearance of the zero- and first-order Laue zones of (a) an A-centred 
orthorhombic crystal and (b) a C-centred monoclinic crystal. 
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of the reciprocal lattice points; in the limit they may become virtually continuous 
rods, which all record at once, as shown for the ‘zero’ and ‘first’ layers in Fig. 8.8. 

Such a ‘two-dimensional’ pattern is effectively a projection of the reciprocal lattice 
along the direction of view. It is distinguishable from the type of pattern already 
discussed because it does not give Laue zones when the crystal is tilted; instead a 

change of spacing will be observed because the rods intercept the almost flat sphere of 
reflection obliquely. It is possible to obtain two unit cell dimensions from such a 
pattern, but not’the third, nor is it in general possible to determine the lattice type: 
the pattern in Fig. 8.8 is consistent with either a C-centred or a body-centred recipro- 
cal cell. 

LHS 

‘hkO' 

‘hk1' ‘hkO' 

Fig. 8.8 The electron diffraction pattern from a ‘two-dimensional’ crystal. 

The techniques used to interpret electron diffraction patterns are thus rather 
different from those used in X-ray and neutron diffraction. The considerations 

governing the observed intensities are also different. Whereas X-rays are scattered by 

the electron clouds of atoms, and neutrons (usually) by the nucleus, electrons are 

scattered to some extent by both. Although electron scattering factors are available for 
most elements, the use of single crystal electron diffraction intensities for structure 

determination has been limited because their conversion to structure factors is not 

straightforward. Among other things a phenomenon analogous to the ‘double reflec- 
tion’ discussed in Section 5.1 is very important in electron diffraction. It causes 
‘forbidden’ reflections to appear much more frequently than with X-rays, so that space 
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group deductions must be made cautiously. The intensities of ‘observed’ reflections 

from single crystals may be altered in the same way. The problem is further compli- 

cated by the sort of multiple scattering that causes ‘primary extinction’ of X-rays 

(Section 9.1). Intensities from polycrystalline specimens are less subject to both errors 

and have been used successfully for structure determination. 

Qualitatively, the difference between atomic scattering factors for electrons and for 

X-rays can be useful. KCl provides a neat example. 
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Fig. 8.9 Anelectron diffraction pattern of KCl, tilted to bring a face-diagonal of the 

unit cell parallel to the electron beam. Some of the spots are indexed; the weaker ones, 

with h, k and / odd, are completely absent from X-ray photographs (compare with Fig. 

6.8) but appear here because the scattering powers of K* and Cl” for electrons depend 

on the nuclear charge as well as on the electron cloud, and hence are not exactly equal. 

(After Gard [5].) 

The electron clouds of K* and Cl are so similar that the atoms are not distinguish- 

able to X-rays, and reflections with h, k and / all odd, although permitted by the space 
group, are in practice absent; the powder pattern in Fig. 6.8 shows this. Because the 

nuclear charges on the two atoms are different, these reflections do appear in the 
electron diffraction pattern (Fig. 8.9) [5]. These are not spurious reflections pro- 
duced by double reflection, because this cannot change the lattice type—see Section 
Seb: 
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Like neutron diffraction, electron diffraction is often most useful when it is com- 

bined with X-ray diffraction, although the combination takes a different form. By its 
nature, electron diffraction is eminently suited to the examination of very small 
crystals, and is therefore invaluable for determining some or all of the unit cell para- 
meters of phases whose crystals are too small for single crystal X-ray diffraction studies. 
These data may be used to index the X-ray powder pattern, and in favourable cases the 
intensities from the latter can then be used for the structure analysis that is seldom 
possible from single crystal electron diffraction intensities alone. A slightly different 

combination of the two techniques is useful in studying the kinds of preparation that 

tend to yield a fine-grained intimate mixture of phases whose X-ray powder data 
alone may be very difficult to interpret. A combination of electron microscopy and 
electron diffraction may enable the various diffraction patterns to be correlated with 
the observed morphologies of the different phases, and this in turn may help to sort 

out the X-ray powder patterns. 
One drawback of-electron diffraction is that the specimen is subjected to extremely 

high vacuum together with bombardment by high energy electrons. Some materials 
may decompose or otherwise alter under these conditions, and this possibility must 
always be borne in mind when interpreting results. 

One of the more exciting recent developments in electron microscopy/diffraction 
has been the use of very high resolution instruments to produce images of matter on 
the atomic scale. As Fig. 8.4 shows, each stage in the magnification process involves 
the recombination of diffracted beams to produce an image. This is the same process 
as that carried out mathematically when an electron density map is calculated from 
X-ray structure amplitudes. The successive images and diffraction patterns that form in 
the electron microscope are thus Fourier transforms of one another, and given suf- 
ficient magnification one might hope to see images of atoms. Although the physical 

limitations of the lenses prevent the image from being perfect, quite remarkable 
results have been achieved. Very beautiful photographs have been published showing 
the distribution of scattering matter in the unit cell and pinpointing defects of the 
type discussed in Section 5.3 [6]. The cover design of this book is based on such a 
photograph. 
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CHAPTER 9 

Assessing crystal structure analyses 

9.1 Sources of error 

To be able to gauge the reliability of any given set of structural parameters, one 

must be aware of the likely sources of error in the measured intensities from which 
they were derived. The most serious are those that are inherent in the diffraction 
process itself and thus affect the intensity of the beams being measured. These are 
functions of the crystal being used and can be difficult to correct. By contrast, errors 

deriving from the measuring process are relatively controllable. 

9.1.1 Errors inherent in the crystal 

As an X-ray beam travels through matter, it is attenuated through interaction with 
the electron clouds of the atoms it encounters (in addition to any energy lost through 
diffraction); this is called absorption, and the reduction in intensity is given by 

T=Io exp(—ut) 

where Jo is the initial intensity of the beam, / the reduced intensity after travelling a 

distance ¢ through the absorbing medium and y the linear absorption coefficient of the 
medium for radiation of the appropriate wavelength. Tables of absorption coefficients 
are readily available; for convenience mass absorption coefficients are usually listed 
because they are independent of the state of the material. From these the linear 

absorption coefficient of a compound is readily calculated, provided its formula and 
density are known. Unfortunately, applying the correction to beams diffracted from a 

crystal is not at all straightforward, because it is difficult to calculate the effective value 

of t. The reason can be seen from Fig. 9.1(a), which shows a crystal in the reflecting 
position. The paths travelled by the beams reflected from the two small elements of 
crystal A and B are shaded; their lengths are very different. To get an estimate of the 
effective value of t, one has to calculate the path length for the beam reflected by each 

such tiny element throughout the crystal—a task of some magnitude. Worse, this has to 

be done for each reflection, since the total distance travelled plainly varies with 0 (Fig. 
9.1(a) and (b)) and even more plainly varies with the orientation of the crystal (Fig. 
9.1(c)). 

Given a high speed computer, t can be calculated provided the shape of the crystal 
is accurately known [1], but it is more usual to deal with the problem of absorption in 
a way that avoids such calculations. There are several ways of setting about this, of 
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(b) 

(c) 

Fig. 9.1 Absorption correction for a diffracted beam. (a) The path lengths of the 
beams reflected from the two small elements of the crystal, A and B, are very dif- 
ferent. To correct for absorption, the distance travelled by the beams reflected from 

all such elements throughout the crystal must be calculated; (b) and (c) show that the 

result will not be the same for other reflections. 

which the most common is to ignore the problem altogether. How reasonable this is 
depends on circumstances; for small crystals containing only light atoms, the absorp- 

tion correction is likely to be quite small for all normal wavelengths; if the crystal 
contains some heavy atoms absorption is minimized by restricting intensity measure- 

ments to a short wavelength radiation such as Mo Ka. Errors are also reduced by 
having a reasonably equant crystal; crystals shaped like the one in Fig. 9.1 obviously 
exacerbate the situation and should be avoided if possible. Of course, it is not always 

possible to avoid them, and in that case one ought at least to estimate the maximum 
and minimum path lengths through the crystal and the corresponding absorption 
corrections, in the hope of satisfying oneself that the error introduced by ignoring 

absorption will not be unacceptable. Fortunately, even in the extreme case of a platey 
crystal containing a high proportion of heavy atoms, ignoring the absorption correc- 
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tion will not seriously affect the positional parameters of the atoms, provided that the 

cross-section of the crystal concerned is not markedly non-centrosymmetric. However, 

the thermal parameters will suffer, and the final agreement will probably be rather 

oor. 
For best results, unless the errors caused by absorption can be shown to be negli- 

gible, a correction should be made. The calculation is made easier if the crystal is 

converted into some regular shape. The most desirable shape is a sphere, for which the 

absorption correction is a function of 6 only. A simple device for turning crystals into 

spheres or near-spheres is shown in Fig. 9.2. It is constructed from a flat cylindrical 

Com pressed 
air 

Abrasive 
surface 

Fig.9.2 A simple device for converting irregularly shaped crystals into approxi- 

mately spherical ones. 

box (such as an old-fashioned pill-box), fine abrasive paper and a piece of tubing that 
can be attached to the compressed air supply; it works on much the same principle as a 
mechanical potato-peeler and like the latter may be very wasteful, particularly if the 
initial shape of the particles is very irregular. After a sphere, the next best choice of 

shape is a cylinder; for a cylindrical crystal mounted about its axis, the absorption 

correction for layers perpendicular to that axis is a function of 6 and ¢. Tables of the 
correction for both spheres and cylinders can be found in Vol. II of Jnternational 
Tables. ; 

A needle-shaped crystal may be a sufficiently good approximation to a cylinder 
without further shaping. This is just as well, as shaping cylinders needs a more 
subtle technique than that described for shaping spheres. Soluble crystals can be 
shaped by mounting them securely and revolving them against a camel-hair brush 
moistened with solvent. If you have not a steady hand, you may need to clamp the 
brush. If shaping proves impracticable, calculating the absorption correction on the 

basis that all roughly equant crystals are approximate spheres and all needle-shaped ones 

are approximate cylinders is better than nothing, although plainly far from ideal. 
If intensities are to be measured on a single crystal diffractometer, it is possible to 

measure and apply an empirical absorption correction [2] using the principle 
shown in Fig. 9.3. Suppose that the crystal is mounted about c; the instrument is 
adjusted to pick up an axial (00/) reflection and the crystal then rotated about its axis. 
The intensity recorded by the counter is noted at, say, every 15° as the crystal is 

rotated through 360°, and the variation gives an empirical absorption correction factor 
that compensates for inequalities in the dimensions of the crystal perpendicular to c. 

The intensity of the diffracted beams may also be reduced by extinction, a term 

that is used to cover two rather different phenomena. Figure 9.4 shows how this arises. 
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< 
ER 

00/ reflection 

Fig. 9.3. A method of estimating an empirical absorption correction. As the crystal is 

rotated about c, the variation in the intensity of the 00/ reflection with angle is 

recorded. This enables reflections in a given layer perpendicular to c to be corrected 
for the irregularity in crystal shape. 

Diffracted 
beams 

Incident 
A beam 

SGENeNUENe: 

Fig.9.4 Loss of intensity through extinction. The incident beam A is diffracted by 

the upper set of planes, and becomes steadily weakened until it reaches D. This is 
partly because energy is lost into the diffracted beams and partly because these may 

themselves be reflected again as at R; the doubly reflected radiation is exactly out of 

phase with the incident beam and destructive interference occurs. The incident beam 

B, suitably oriented for diffraction by the lower set of planes, has not been so 
weakened. 

The set of planes at the top of the figure is in the reflecting position, and as the inci- 
dent beam A passes through them it becomes weaker because energy is lost to the 

diffracted beams. The diffracted beams are themselves suitably oriented to be reflected 
again, as shown by the dotted line at R. After this second reflection, the radiation is 
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exactly out of phase with the incident beam, because there is a phase change of {2 

each time it is reflected. It is not intuitively obvious that this should be so, nor is the 

proof simple, but the result is to weaken the primary beam through destructive inter- 

ference. This is the effect referred to in Section 8.3 when the unreliability of inten- 

sities measured by electron diffraction was discussed. 
This weakening of the beam through destructive interference is called primary 

extinction, and it continues so long as the beam travels through the same perfect 

region of the crystal. However, most crystals contain dislocations and imperfections 

that produce the mosaic structure shown in Fig. 1.1, so that the beam reaches a 
discontinuity (D, Fig. 9.4) before it has been significantly weakened. An incident 

beam B suitably oriented for diffraction by the lower set of planes in Fig. 9.4 has not 

been weakened by extinction in the upper set. 
If an incident beam already weakened by extinction subsequently encounters 

another set of planes in the reflecting position, the weakening of the incident beam 
through loss of energy to the diffracted beam—or secondary extinction—continues, but 

the process of destructive interference does not carry over from the upper block. 

Primary extinction is therefore significant only if the individual mosaic blocks are 
large; secondary extinction may be important even when they are small if there are 
enough blocks in parallel orientation for the lower ones to be shielded from the total 

incident intensity because of diffraction in the upper ones. Both primary and second- 

ary extinction weaken the radiation incident on the lower layers and consequently 
weaken the observed intensity of the diffracted beam relative to that for a crystal 

bathed in a beam of uniform intensity. Both effects become more important as the 
fraction of energy that passes into the diffracted beam increases, and the errors are 
therefore most serious for the strongest reflections. 

To minimize extinction errors, therefore, the mosaic blocks should be small and 
sufficiently misaligned to make it unlikely that a number of them will lie in precisely 
the same orientation; the crystal is then said to be ideally imperfect. It is sometimes 
recommended that crystals be subjected to thermal or other shock to ensure that these 
conditions are fulfilled. 

If extinction cannot be eliminated, it is possible, though not easy, to correct for it 

[3]. However, in all but the most accurate work, a satisfactory compromise is to 
ignore the problem until the structure is reasonably well refined; the observed and 
calculated F values are then examined. If reflections at low angles with large F values 
(intense reflections) have F, consistently lower than F’, they are assumed to be 

affected by extinction, and excluded from any further least-squares cycles or given 
zero weights. 

Both extinction and absorption effects can be virtually eliminated from intensities 
measured using a powder diffractometer. If the sample is finely ground and randomly 
oriented extinction will be negligible; provided that it is ‘infinitely thick’, a condition 
fulfilled by the standard holder, and fills the incident beam, the absorption correction 
is independent of angle and can be ignored unless absolute intensities are required. For 
compounds whose powder lines can be resolved, therefore, powder intensity data can 
be used to correct single crystal measurements. This is particularly helpful in dealing 
with extinction because low-angle reflections are the most likely to be resolvable. 

9.1.2 Errors arising in the measurements 

In addition to the errors inherent in the reflection process, further errors may arise 
in the course of measuring the intensity of the diffracted radiation that actually leaves 
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the crystal. These are very much more controllable than the sort of error that we have 

just been discussing. 
For intensity measurements made from photographic film, some elementary pre- 

cautions have been outlined already (Section 5.5); the most important is that the spots 
be within the measurable range of blackening. It is advisable to have two independent 
workers check at least some of the measurements. It is very easy to mis-index high- 
angle reflections on Weissenberg photographs, and not totally unknown for more 
sweeping errors in indexing to occur. Allowance should be made for background 
scatter, as far as possible, and also for white radiation streaks. If visual matching is 
used, the correction necessary for reflections that lie in white radiation streaks can be 
made by placing the matching reflection in the same streak, as close as possible to the 
spot being measured. If a photometer is used, then the adjacent background must be 
measured for each reflection, and the intensity corrected appropriately. Normally, 
each reflection on a photograph will be matched by one or more equivalent ones; it 

is best to measure all of these and average them rather than to measure only one of 
each kind. The film should also be carefully inspected to see whether any low-angle 
reflections have been wholly or partially excluded by the shadow of the backstop. 

If the intensity measurements are made with a single crystal diffractometer, rather 

similar considerations apply. Counters can cope with a much wider range of intensity 
than can be recorded satisfactorily on a single film, but they still have limitations. If 

two pulses arrive at the counter in close succession, the second may not be recorded 
because the counter is still dealing with the first. Obviously losses from this cause 
become more important as the counting rate increases and very strong reflections may 

‘swamp’ the counter, resulting in serious loss in the recorded intensity. 
The standard deviation of a counted intensity is.\/N, where N is the number of 

counts—on a low count, this may be an appreciable fraction of the whole. Thus the 
standard deviation on 100 counts is 10, or 10%, whereas on 10,000 counts it is 100, or 

1%. It follows that precision will be higher for reasonably high counts than for low 
ones. If all reflections are counted for a fixed time, the weak ones will be only very 
imprecisely measured, particularly as a similar error in measuring the background has to 

be included. For this reason it may be better, though more time-consuming, to 
measure the time to accumulate a fixed number of counts. 

With counters, as with film, intensity due to radiation of wavelengths other than 
Ka must be eliminated. One way of doing this is to use a monochromator but this 

introduces other problems in single crystal X-ray work. In neutron diffraction there is 
no characteristic wavelength and a monochromator will be needed anyway, unless 
time-of-flight methods are being used. 

For X-ray studies, an alternative is to use balanced filters, that is a pair of matched 
filters having the characteristics shown in Fig. 9.5. One of these is the normal 6-filter 
for the radiation being used; the other, or a-filter, is made from the element of atomic 

number one or two less than the £-filter. They are ground so that their transmissions 
match as closely as possible in all regions except that lying between the two absorp- 
tion edges. The diffracted intensity is measured with the B-filter in place (/6) and then 

with the a-filter Ja); JB — Ja then gives a very close approximation to the intensity 
due to monochromatic Ka radiation. 

Balanced filters are often backed up by including a pulse height analyser in the 
counter circuit. This discriminates between pulses of different energies, so that the 

counter registers only those that arrive with an energy appropriate to the characteristic 
radiation in use. The energy resolution of the detectors at present available is too poor 
for the filters to be dispensed with entirely, but the elimination of wavelengths much 
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Fig.9.5 The principle of balanced filters. The absorption curves of the (-filter (solid 

line) and a-filter (dotted line) are shown superimposed on the spectrum of the X-rays 

being used. The a- and (-filters are ground to match as closely as possible in all parts of 

the spectrum except the region in which the characteristic Ka band lies. 

longer or shorter than that of the characteristic radiation compensates for the inevit- 

able deficiencies in the balance of the filters. 
If time permits, it is advisable to measure all the equivalent reflections, just as it is 

with film; this provides a built-in check against setting errors or slipping of the crystal, 
and may give warning of absorption effects that are too large to be ignored. If there is 

not time to do this, one or more ‘standard’ reflections should be remeasured from time 
to time to check the crystal orientation. If the crystal is liable to radiation damage, 

this should be done anyway. A useful additional precaution, if X-rays are being used, is 

to check the measured intensities qualitatively against any available films to ensure 

that no change of axes or other error has been introduced in setting the crystal up on 

the diffractometer. 

9.2. The reliability of structural details 

The earliest structure determinations gave a general picture of the arrangement of 
atoms in a structure; usually the coordination of each kind of atom was described and 
the lengths of the various bonds estimated. Tables of atomic and ionic radii were 

compiled in this period, and the foundations of crystal chemistry were laid. Although 
the intensity data used for these determinations were usually quite crude, the atomic 
parameters derived were, as pointed out in Chapter 7, often remarkably accurate. 

As equipment and methods of refinement have become increasingly sophisticated, 
so have crystallographers tried to extract more and more detail from the results of 

their analyses. In early work thermal parameters were seldom determined individu- 
ally; if used at all they took the form of a single overall temperature factor, or were 

built into the f-curves. The high-speed computer has changed all that, so that the norm 
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is now the determination of individual isotropic or anisotropic temperature factors, 
often, in the latter case, finishing up with a computer-drawn stereographic pair showing 

details of the vibrational ellipsoids. The meaning to be attached to these will be dis- 
cussed in the next section. 

With more accurate refinements available, bond lengths and angles can be studied in 

increasing detail and attempts made to correlate them with chemical theory. The 

differences in bond length between C—C single, double and triple bonds are on a 
relatively gross scale and emerged long ago; distortions due to the Jahn-Teller effect 

are now clearly recognizable, as are the differences in bond length between X—O and 

X—OH bonds, and between terminal and bridging XK—O bonds in condensed oxy-anions. 
Details such as the correlation of the X—O bridging distance with the angle X-O—X, 
or whether in certain situations the bonds in a benzene ring depart from equality can 
be studied. To assess such results usually needs a knowledge of statistics beyond the 

scope of this book, but a few pointers will be given. 
The output from a least-squares refinement includes the estimated standard devia- 

tion (e.s.d.) for each atomic parameter; this is based on the number of parameters 
being refined, the quality of the fit between the observed and calculated data and the 
contribution made to the latter by the atom in question. The last part of that state- 

ment means that in a structure containing a mixture of light and heavy atoms, the 

positional parameters of the heavy atoms will be determined more accurately than 

those of the light ones, and moreover that light atoms will be less well determined in 

the presence of a heavy atom than they would be in its absence. 
The first thing to note about these e.s.d.’s is that they are based only on the evi- 

dence available to the computer, and cannot therefore be expected to allow for 
systematic errors in the data. Consequently, they represent the minimum value that 

can reasonably be expected; if the observed data are of poor quality it is probably 

reasonable to multiply the e.s.d.’s by two or three when reviewing the absolute values 
of the bond lengths. 

As a very rough rule of thumb, two bond lengths in the same structure can be taken 

to be significantly different if they differ by more than three times the larger of their 

e.s.d.’s; this is a gross over-simplification, not a proper analysis. Deciding whether the 
mean values of two groups of bond lengths are truly different is much more compli- 
cated; one must take into account how many measured bonds are in each of the two 

populations and how these are distributed about the mean, as well as the e.s.d.’s 
themselves. The difference between the mean values of two such groups may well be 
significant even if it is considerably less than three times the individual e.s.d.’s. 

One of the most interesting details that could emerge from X-ray diffraction would 
be the distribution of electron density about the atoms, in particular any deviation 

from spherical symmetry caused by the formation of bonds or the presence of ‘lone 
pairs’ of electrons. It might seem that a difference map based on atomic parameters 
from the least squares should show any such distortions of the electron cloud. However, 

the least-squares refinement matches observed and calculated electron density, 
and if the true electron density around an atom is grossly asymmetric, the posi- 
tional parameters that emerge from the least-squares routine (and the anisotropic 
thermal parameters, if used) will have been shifted to compensate for this. In other 
words, one has blotted out part of what one is trying to observe. 

For very simple structures, such as sodium chloride, whose atomic coordinates are 

fixed by symmetry, there is no problem; provided that sufficiently accurate measure- 

ments of intensity can be made, accurate maps of electron density can be produced 
that show the effects of bonding and enable one to judge the state of ionization of the 
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atoms [4]. If the atomic coordinates are not fixed by symmetry, the positions of the 

nuclei can be determined from neutron diffraction (see Chapter 8; neutrons are, in 

general, scattered by the nucleus alone), and the X-ray diffraction data then used to 

calculate a difference map based on these positions—often called an “X — N’ map [5]. 

Again assuming that the measurements are suitably accurate, the features on such a 

map should show the distortion produced in the electron clouds by bonding, etc. 

Hydrogen atoms are particularly sensitive to this effect; positions determined for these 

by X-ray diffraction, which, with the usual refinement techniques, locates the centre 

of gravity of the electron cloud, are generally displaced relative to those determined by 

neutron diffraction, which locates the nucleus. The displacement is towards the atom 

to which the hydrogen is bonded, and presumably is a result of the bonding [6]. 

9.3 The meaning of temperature factors 

From what has already been said, it will be apparent that the temperature factors 
are apt to act as crystallographic scavengers, cleaning up quite a variety of errors. A 
wrongly placed atom may manifest itself in the least-squares refinement by an ab- 
normally high temperature factor; the program, presented with an atom that is not 

really there, attempts to minimize its effect by smearing it out as much as possible. 
Filling a site with the wrong sort of atom also affects the temperature factor—if the 

atom placed there is too light, its temperature factor may be abnormally low, and vice 
versa. This effect is sometimes used deliberately by the crystallographer. In the early 
stages of an organic structure determination it may be difficult to distinguish nitrogen 
from carbon atoms. A common practice is to treat all as carbon atoms; after a few 
cycles of least-squares refinement the temperature factors are inspected and the atoms 

with the lowest temperature factors assumed to be nitrogen. A similar effect may serve 

to distinguish oxygen atoms from hydroxyl groups in inorganic materials. 

If absorption corrections have been neglected, the overall effect is to make low- 

angle reflections too strong in comparison with high-angle ones, and this will be 
reflected in temperature factors that are too low. For small crystals containing only 

light atoms the effect is unlikely to be large (see Section 9.1, above) but it becomes 
more pronounced with heavier atoms; in extreme cases the temperature factors may be 

negative. If temperature factors are allowed to refine anisotropically, the values 
obtained will be affected by any uncorrected anisotropic absorption errors. For 
example, a crystal shaped like the one in Fig. 9.1 would give observed intensities that 

were relatively lower for reflections in which the beam passed more or less along its 

length. Refining temperature factors anisotropically would consequently produce 
values that were too large in this direction, the apparent ‘smearing out’ of the atoms 
giving a lower value of F’, for the appropriate reflections, and hence a better fit be- 
tween observed and calculated data. 

Before drawing conclusions from the absolute values of isotropic temperature 
factors or from the shape and orientation of the ellipsoids describing anisotropic ones, 

one should ascertain that such sources of error are absent or at least minimal: other- 
wise the conclusions will tell you more about deficiencies in experimental technique 
than about the properties of the crystal. Notwithstanding these reservations, tempera- 
ture factors can and do give useful information about the behaviour of atoms in their 
surroundings. 

Beginning with the crudest types of result, even if no correction for absorption has 
been made, the relative values of temperature factors may be informative. (Some 
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examples have already been given in the opening paragraph of this section.) In 
covalently bound groupings, bridging atoms often have lower temperature factors than 
terminal atoms of the same kind, presumably reflecting the more restricted movement 

allowed to the former. The atoms in a linear molecule with a heavy atom at one end 
may show increased thermal vibration the further they are from the heavy atom; the 
latter can be regarded as relatively fixed, and the molecular tail wags more and more 
vigorously as it gets more distant from that fixed point. Likewise, the presence of 
strong hydrogen bonding or similar interactions in a structure reduces thermal motions 

in its vicinity. 

If proper absorption corrections have been made, the absolute values of the thermal 
parameters reflect the rigidity of the bonding and it should be possible to make com- 
parisons between different structures. The variation of anisotropic temperature factors 
within a structure can likewise be expected to reflect the atomic environment, and 
where accurate values are known, they confirm, in general, what common sense would 

suggest: the atoms in the molecular tail described above have larger amplitudes of 
vibration perpendicular to the chain than along it, atoms in a cyclic molecule vibrate 
more vigorously in the direction perpendicular to the plane of the ring than in its 
plane, and so on. 
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CHAPTER 10 

A crystallographic ‘cost-benefit’ analysis 

10.1. The information: effort ratio of various techniques 

We will begin by assuming that you are working in a laboratory that is already well 
supplied with equipment, and consider how the information obtained by various 
techniques compares with the effort expended on them; in subsequent sections we will 
consider the questions of learning to perform these operations and of purchasing 
various items of equipment. We will further assume, for obvious reasons, that you are 
engaged in some operation that produces a reasonably crystalline solid whose pro- 

perties interest you. 

No matter what set of properties you are investigating, a quick check with a micro- 

scope, preferably a polarizing microscope, to see whether the material is homogeneous, 
is always worthwhile. It should not take more than five minutes, depending on how far 

you have to walk to reach the microscope, and ensures that the literature will not be 
further cluttered up with data relating to non-existent compounds (that were in fact 
mixtures, but no-one bothered to check). How much further you carry your optical 
examination depends on your interest in the compound. It should be possible to 
determine the crystal system in less than half an hour—probably very much less if the 

symmetry is high, indeed it may be obvious from the initial examination. If the pro- 

perties that interest you are symmetry-dependent, this is obviously time well spent. 
Refractive index measurements take from ten minutes up to several hours, depending 
on the symmetry of the material and the accuracy required. They may be useful 

(a) asa means of identifying an unknown, 
(b) to establish that two preparations are identical, 
(c) to determine the composition of a solid solution. 

For all these purposes, X-ray powder diffraction studies could be used instead; the 
choice depends on circumstances, including the existence or otherwise of reference 

data. It is often a good idea to use both methods, for extra confidence in the results. If 
there is any chance that glass or other amorphous material is present the microscope 
should certainly be used because these will be missed by X-ray diffraction. ; 

To record a powder pattern takes upwards of ten minutes, depending on the avail- 
able equipment, and possibly less personal effort than a microscopic examination; it 
is in general the most rapid means of routine identification (but see above, on using 

the microscope as a check). If standard films or charts are available, the effort involved 
is minimal; if the measured 20 values have to be converted into d-spacings for purposes 
of comparison, you will need to allow 10-30 minutes for this, depending on how 
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complicated the pattern is and how it was recorded. Direct comparison is not only 

quicker but also safer. 
To index a powder pattern takes from about five minutes (cubic materials with no 

complications) up to infinity, and the circumstances under which it may reasonably be 

attempted were outlined in Section 6.4. The value of the exercise is problematical; it 
can certainly serve to show that powder and single crystal data agree and that the 
powder pattern corresponds to a single phase, but both these pieces of information are 
obtainable in other ways. It is, however, a good way of determining accurate unit cell 

parameters. 

Single crystal techniques encompass a wider range of time and effort. To determine 
a unit cell and space group may take about a week—less if you are lucky/have good 

crystals/find an axis quickly/really get on with it; more if you are ham-fisted/have 
miserable crystals with ill-defined optics/leave equipment standing idle while you go to 
coffee. If you are interested in fine details of structural differences that are not observ- 
able on powder photographs, you must use these techniques, and this is also true if 
you are studying, say, solid-state reactions in single crystals. Otherwise, in itself, the 

determination is unlikely to provide much new information, except that in con- 
junction with a density determination it may settle an otherwise uncertain compo- 
sition or molecular weight; useful symmetry information may occasionally result, as 

discussed in Section 5.1. It is of course an essential preliminary to a complete structure 
determination. 

To collect the data for a structure analysis using an automatic single crystal dif- 

fractometer takes from about three days to about three weeks; it may take longer if 

multiple film packs have to be exposed and then measured either visually or with a 

photometer. It is much more difficult to estimate how long it will take to solve the 
structure—apart from purely logistical considerations like the speed and efficiency 
of the computing service, so much depends on the problem itself. 

If you are dealing with a reasonably sized unit cell (say around 1000 A?) containing 
one or more suitable heavy atoms, and everything goes smoothly, you can expect to 

have the answer in under three weeks from completing the data collection. Ideally the 
schedule might run: 

Day 1—sort and correct data; compute Patterson function overnight. 
Day 2—interpret Patterson function. 
Day 3—calculate structure factors based on coordinates of heavy atom; calculate 

Fourier synthesis overnight. 
Day 4—locate rest of atoms (or most of them); calculate full trial structure. 
Days 5-8—refine structure; at least one more Fourier synthesis will be needed. 
Day 9—calculate bond lengths and angles and make a drawing or construct a model 

of the structure. 
Day 10—write the paper. 

But of course it seldom works out like this. Even supposing you have no other 
demands on your time, it is unlikely that neither you nor the computer will make 

mistakes; one must allow a day or two for the inevitable errors. 
If complications arise, it may all take very much longer. For example, the heavy 

atoms may be on special positions, and hence not contribute to certain classes of 
reflection. It may not be possible to interpret the Patterson function unambiguously, 
so that several arrangements may have to be tried. There may be no heavy atom 
present, so that the phases must be determined by direct methods—although this often 
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takes no longer than computing a Patterson function. Worse, there may be too many 

heavy atoms, so that the light ones cannot be located. 

Even after the outline of the structure is well established, complications may arise. 

A molecule or ligand may adopt two alternative conformations at random, or an ion 

may occupy a site statistically; in either case site occupancies have to be refined. 

Unsuspected molecules of solvent may appear. A peculiar distribution of bond lengths 

may be found, and one then has to decide whether this is genuine and has to be 

explained, or whether it is the result of errors in the data and if so what errors and 

what are you going to do about them? 

Lest the above sounds too depressing, it should be added that most structure 

analyses do in fact proceed fairly smoothly, complications being much more common 

among ionic materials than among coordination compounds and organic materials 
generally. (With the latter, if complications arise it may be easiest to abandon that 
particular determination and ‘try another derivative’, an option that is unfortunately 
not usually open to inorganic crystallographers.) The point is merely that it is unwise 
to bank on having a particular result by a week on Friday. 

Whether to undertake a structure analysis is thus a question with no easy answer. 

Much depends on how badly you want to know the result, and whether great accuracy 
is needed. If all that is required is a general idea of the shape of a molecule, or the 
structure and arrangement of ions in a salt, it is not necessary to go to great lengths to 

correct the data for possible errors. If more detailed information is sought, such as the 
effect of different substituents on the length of an adjacent covalent bond, then data 
collection becomes a much more painstaking affair, to which more time and effort 
must be devoted. 

10.2 Learning crystallography 

The previous section estimated how long various operations take once you are 
reasonably skilled; the next question you may need to consider is how long it will take 

to acquire that skill, and how to set about it. You must realize that you will not learn 
to become a crystallographer by reading this, or any other, book or by attending a 

course of lectures, any more than you could learn to drive a car that way. You have to 

learn it ‘by doing’. It helps a lot if you can learn the ropes from an experienced and 
patient crystallographer, and a certain amount of natural aptitude is also beneficial, 

but in the end it all boils down to the amount of effort you put into it. 
Having said that, it is still true that some operations are very easily learnt. You 

could learn to record powder patterns in a very few minutes, provided that you were 

content to use them merely as ‘fingerprints’ and never seek a deeper interpretation. 
Many people do just that. Likewise you could learn in a few hours to use a polarizing 
microscope to the level of competence necessary to study materials as described in 

Chapter 2. Both of these skills are invaluable for identifying crystalline materials, and 
are plainly well worth acquiring. To an extent, one can apply these methods (particu- 
larly X-ray powder diffraction) with little knowledge of the underlying theory, but, 
quite apart from the fact that most people prefer to understand what they are doing, a 
knowledge of the theory can be a valuable safeguard. Some time should therefore be 

allowed for acquiring this; if you have read Chapters 2 and 6 you should have a fair 
idea of how long this would be likely to take you. 

It does not take long to learn to use single crystal equipment, although it takes 
longer to acquire the knack of selecting and setting the crystals. Learning how to 
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interpret the photographs is the real “energy barrier’, and requires a fair amount of 
mental effort. If your interest is in topotactic reactions, or polytypes, or solid state 
structures generally, there is really no choice in the matter: you will just have to get to 

grips with the techniques and theory. It is the person who is not primarily a 
crystallographer but has some nice crystals of an interesting substance who has to 

make a decision as to how to proceed. 
If you want to do it yourself the choice is broadly between (a) pitching in yourself 

and battling it out, turning to a more experienced colleague for advice only when you 
are stuck, or (b) leaning more heavily upon said colleague for guidance and interpre- 
tation. The second method will get quicker results, but you will learn more from the 
first. Which you choose is partly a matter of temperament and partly a question of 
whether you may need to repeat the performance with other crystals later on: even 
the most patient of colleagues will eventually tire of being leant upon, so if you expect 

to have a number of crystals to examine you may as well take a professional approach 

from the start. 
If you are content to act as a ‘pair of hands’ under competent guidance, the unit 

cell and space-group determination will probably take very little longer than the times 
quoted in Section 10.1. If you work through it for yourself, it will probably take very 
much longer, at least the first time. 

Time lost by working it out for yourself may well be made up later if a full struc- 
ture determination is to be attempted, because you will be more familiar with the 
problem and therefore less likely to make mistakes. If, for example, intensity data are 
to be collected from film you are less likely to make mistakes in indexing. If the data 
are to be collected by automatic diffractometer, you are most unlikely to be allowed 
to use the machine unsupervised, but familiarity with the reciprocal lattice will still be 
helpful when you examine the results because it will help you to spot errors, which 

can be either human or mechanical in origin: it is quite wrong to suppose that 

machines never make mistakes! 
In the final or computing stage, there are two considerations. First, are you going to 

learn some elementary computing? It is undoubtedly a great help to have a nodding 

acquaintance with the language in which the programs are written; experience shows 
that even if quite detailed instructions are given, mistakes will otherwise be common, 

and it is anyway terribly frustrating to have to await further instructions before being 
able to progress. Second, are you going to get to grips with the theory, and yourself 
interpret as much of the output as you can? If you decide to do this it will un- 

doubtedly take longer to solve your first structure, but you will learn a lot and pro- 
bably feel more satisfied when it is finished. 

Sometimes there is another option open. Many departments include a skilled 
crystallographer who can be induced to tackle the structure of any half-way decent 
crystal that comes along, in much the same spirit as other people solve crossword 
puzzles. Should you number one of these among your acquaintances, you may well be 

able to get your structure solved without doing any work at all—if that is what you 

want. 

10.3. Equipment 

In conclusion, we will try to draw up a similar sort of balance sheet for crystallo- 
graphic apparatus. It is pointless to quote prices in detail, since these can change so 
rapidly, but a guide to orders of magnitude will be attempted. 
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Any laboratory in which crystalline solids are being studied ought to have a 
polarizing microscope. This need not be one of the more expensive models; a very 

elaborate one is wasted unless there is someone really expert to use it, and may even 
confuse the less experienced through having a large number of adjustments that are 
not really needed. One of the so-called ‘student’ models should be adequate for all- 
purpose use, and its cost will be of the order of a few hundred pounds. 

If identification of samples or comparison of one product with another is fre- 
quently necessary, then powder diffraction equipment should be available as well. 
Section 6.2.4 discussed the considerations that govern the choice of recording equip- 
ment, and the price scale runs from about a hundred or so pounds for the simplest 
type of powder camera up to a matter of thousands for a diffractometer. A generator 
will also be needed, and the cost of this will be from about a thousand pounds up- 
wards. Prices vary widely, depending on the degree of sophistication, and it is worth 

bearing in mind that photographic recording does not demand such a stable beam 
output as a diffractometer. It may thus be possible to economize considerably on the 
generator if film is used, although perhaps at the expense of increased exposure times; 

obviously the likely volume of work must be considered. 
If single crystals are to be studied, priority should probably be given to the pur- 

chase of a Weissenberg camera. This is undoubtedly the most versatile type of camera, 
although for maximum flexibility it should be backed up by a precession-type camera. 
Prices here are in the thousand-pound range. If the crystals to be studied are expected 
to have very large or complicated unit cells, for example non-stoichiometric compounds 
or biological materials, then perhaps a precession or other camera able to give an 
undistorted picture of the reciprocal lattice should be the first choice. A cheaper but 

less versatile alternative would be a simple rotation-oscillation camera. 

If structure determination is contemplated, the range of possible expenditure 

becomes very large indeed. At the upper limit, the price of an automatic single crystal 

diffractometer is measured in tens of thousands of pounds, and the purchase of one is 
justified only if it can be kept running virtually full time. This normally means that it 

will be used jointly by a number of members of the same laboratory, or perhaps 
co-operatively by several groups of workers. However, convenient as these instruments 

are, they are by no means essential to structure determination; if your institution does 

not possess one, and you wish to determine the occasional structure, you should not 

be deterred; if you have a Weissenberg camera, or indeed any other sort of single 
crystal camera, a set of films suitable for intensity measurement can be produced at no 

extra expense, except possibly that incurred in modifying the cassette to enable it to 
take a multiple film pack. To measure these visually yourself takes time, but otherwise 
costs nothing. If you have, or can get access to, a photometer the measurements will 

probably be more precise and may well be more quickly made; some organizations and 

laboratories are equipped to make such measurements automatically, and may either 

allow you to use their equipment or measure your films for you. (The SRC operates a 

service in the U.K.: see footnote, p. 121.) Finally, you might be able to rent time on 
an automatic diffractometer, or you might be lucky enough to be offered time free by 
a group with spare capacity on their instrument; the latter is more likely to happen if 

you have already shown that you are keen by tackling one or two structures with such 
apparatus as you yourself have available. 

If you really want to know the answer, you will not be stopped—any more than 
were the pioneers of the subject—merely because you do not have the latest fully auto- 
matic equipment. 



Appendix 

USEFUL BUT COMPLICATED FORMULAE 

1 Relation of triclinic real and reciprocal cells 
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The angle 6 between a and a* is given by 

cos a* — cos B* cos y* 
(80.0 

cos 6* sin y* 

The above formulae, with appropriate permutations, apply to other reciprocal axes 
and angles. 

2 Undistorted photographs of the reciprocal lattice 

Let the unit cell translation along the relevant principal axis of the crystal (Fig 4.5) 
be t. Let the angle between this axis and the X-ray beam be y, and let the semi-angle 

subtended at the crystal by the cone of reflections to be photographed be v. For zero- 
level photographs, u = v. Let the magnification factor be F, as shown in the figure. 

(a) de Jong-Boumann photography 

A convenient arrangement is shown in Fig. 4.6(a), in which uw = v = 45° for zero-layer 
photography. The layer screen thus subtends a 90° cone at the crystal, and this is 
kept constant; upper layers are recorded as shown in Fig. 4.6(b), by changing yu. 
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For the nth layer: 

: fixe nr 
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since v is fixed. The film is moved away from the crystal by 

F-nx 

t 

(b) Precession photography 

The position of the layer screen depends on the value chosen for the precession 
angle u (Fig. 4.7); common values are 20°, 25° and 30°. The distance s between the 
layer screen and the crystal is given by s =r cot v, where r¢ is the radius of the annu- 
lar slot in the screen. For zero-layer photographs yu = v; for upper layers cos v, = 
cos uw — (mA)/t. In practice the appropriate value of s is normally read from a set of 
graphs supplied with the instrument. The film is moved towards the crystal (Fig. 4.7(b)) 
through (F’- nd)/t. 



Answers to problems 

(Those based on measuring diagrams are only approximate.) 

Chapter 3 

Figure 3.12 b* =0.20r.u. @=5.14, D=7.71 A 
Scale of diagram (a), 1 cm=2.00 A 

[542 
d¥o = 0.36 r.u. di10 =4.24 A 4.24 = 0.36 r.u. 

Fig. 3.13. a@* = 0.25 r.u. B* = 57° P=0.21 ru. 
a®* sin B= 0.21 r.u. a= 1.542/0.21 =7.34A 

1.542 1.542 
= =———— = 6:13A 

er Sify: 0.2516 

Scale of real lattice: 1 cm =1.59 A 
do, (measured) = 3.15 A 
d*, = 0.49 ru.d=Nd*=3.15A 

Fig. 3.14 a= /a* sin 60° = 1.542/(0.120 x 0.866) = 14.84 A 
Note that conversely a* = A/d9.9 
dioo =a sin 60° = 12.85 A; a* = 1.542/12.85 = 0.12 ru. 

Fig. 3.16 a= a* sin 60° = 1.542/(0.10 x 0.866) = 17.81 A. 

Chapter 4 

Figure 4.4(a) Mean distance between spots along 

a* : 11.45 mm = 0.1908 r.u.: 
a= 1.542/0.190 = 8.08 A. 

Along b* = 8.91 mm = 0.1485 r.u. b = 10.38 A 
(b) Along a*, mean distance between spots: 11.44 mm = 0.1906 r.u. 

along c* : 24.55 mm = 0.404 r.u.;¢ = 3.82 A 

Fig. 4.15 €=0.405; c= 1.542/0.405 = 3.81 A 

Fig. 4.24 (a) a@=7.71b=5.14A 
The reciprocal lattice has h, k, / all even or all odd (body centred): the real lattice 
therefore is F. 
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14.4 5 ° 
(b) B* = 37.0% 180 = 70.0°; measured value = 70 

a= d/a* sin B* = 1.542/0.399 = 3.86 A 
c= Nce* sin B* = 1.542/0.248 = 6.22 A 

The cell might be A-centred (kK + / even throughout hkl) 
(c)a= b= 1.542/0.50 = 3.08 A 

There is no two-fold symmetry perpendicular to c. 
(d) a= b = 1.542/0.58 x 0.866 = 3.07 A 

There is two-fold symmetry perpendicular to c, but it is not possible to say whether it 
is 2 or 2. 

((b) Rider, p. 118, If the lattice is primitive, the absence of / odd in hO/ indicates a 
c-glide plane perpendicular to b. An AlJ photograph would distinguish between the 
two possibilities.) 



Bibliography 

Suggestions for further reading 

(1) General introductions 

Elementary: 

Lipson, H. S., with Lee, R. M., Crystals and X-rays, Wykeham, London (1970). 

Lonsdale, K., Crystals and X-rays, Bell, London (1948). 
Wheatley, P. J., The Determination of Molecular Structure, O.U.P., London (1968) 

(Chapters V-IX). 
Wormald, J., Diffraction Methods, 0.U.P., London (1973). 

More advanced: 

Buerger, M. J., Elementary Crystallography: An Introduction to the Fundamental 
Geometrical Features of Crystals, Wiley, New York (1963). 

Bunn, C. W., Chemical Crystallography (2nd edn.), O.U.P., London (1961). 

Gay, P., The Crystalline State: An Introduction, Oliver and Boyd, Edinburgh (1972). 
James, R. W., X-ray Crystallography (Sth edn.), Methuen, London (1965). 
Jeffery, J. W., Methods in X-ray Crystallography, Academic Press, London (1971). 
McKie, D. and McKie, C., Crystalline Solids, Nelson, London (1974). 

Phillips, F. C., An Introduction to Crystallography (4th edn.), Oliver and Boyd, 
Edinburgh (1971). 

Wilson, A. J. C., Elements of X-ray Crystallography, Addison-Wesley, New York 

(1969). 
Woolfson, M. M., An Introduction to X-ray Crystallography, C.U.P., Cambridge 

(1970). 

(2) Crystal optics 

Gay, P., An Introduction to Crystal Optics, Longmans, London (1967). 
Hartshorne, N. H. and Stuart, A., Practical Optical Crystallography (2nd edn.), Arnold, 

London (1969). 
Hartshorne, N. H. and Stuart, A., Crystals and the Polarising Microscope (4th edn.), 

Arnold, London (1970). [More advanced than the above bogk by these authors. ] 
Stoiber, R. E. and Morse, S. A., Microscopic Identification of Crystals, Ronald, New 

York (1972). 
Wood, E. A., Crystals and Light: An Introduction to Optical Crystallography, Van 

Nostrand Reinhold, New York (1964). 



Di) BIBLIOGRAPHY 

(3) X-ray diffraction 

Recording techniques: 

Arndt, U. W. and Willis, B. T. M., Single Crystal Diffractometry, C.U.P., Cambridge 

(1966). [Includes material on neutron diffraction. ] 

Buerger, M. J., The Precession Method in X-ray Crystallography, Wiley, New York 

1964). 
de, i J., The Photography of the Reciprocal Lattice. ASKRED Monograph 

number 1, The American Society for X-ray and Electron Diffraction [now The 

American Crystallographic Association] (1944). This brief account of the principles 

is unfortunately now out of print. 

Henry, N. F. M., Lipson, H. and Wooster, W. A., The Interpretation of X-ray Dif- 

fraction Photographs (2nd edn.), Macmillan, London (1960). 

Powder techniques: 
D’Eye, R. W. M. and Wait, E., X-ray Powder Photography in Inorganic Chemistry, 

Butterworths, London (1960). 
Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline and 

Amorphous Materials (2nd edn.), Wiley, New York (1974). 
Lipson, H. and Steeple, H., /nterpretation of X-ray Powder Diffraction Patterns, 

Macmillan, London (1970). 
Peiser, H. S., Rooksby, H. P. and Wilson, A. J. C., X-ray Diffraction by Polycrystalline 

Materials, published on behalf of the Institute of Physics by Chapman and Hall, 

London (1960). 

With a more or less specialized aspect: 

Alexander, L. E., X-ray Diffraction Methods in Polymer Science, Wiley-Interscience, 
New York (1969). 

Brown, G. (Editor), The X-ray Identification and Crystal Structures of Clay Minerals, 
Mineralogical Society, London (1961). 

Cullity, B. D., Elements of X-ray Diffraction. Addison-Wesley, Reading, Mass. (1956). 
[Emphasis on metallurgical applications. | 

Guinier, A., X-ray Diffraction: In Crystals, Imperfect Crystals and Amorphous Bodies, 
Freeman, San Francisco (1963). [Emphasis on imperfections and disordering. ] 

Warren, B. E., X-ray Diffraction, Addison-Wesley, Reading, Mass. (1969). [Emphasis 
on disordered materials. ] 

Wilson, A. J. C., X-ray Optics (2nd edn.), Methuen, London (1967). [Emphasis on 
diffraction by imperfect crystals. ] 

(4) Crystal structure analysis 

General: 

Buerger, M. J., Crystal Structure Analysis, Wiley, New York (1960). 
Glusker, J. P. and Trueblood, K. N., Crystal Structure Analysis: A Primer, O.U.P., New 

York (1972). [Excellent introduction. ] 
Lipson, H. and Cochran, W., The Determination of Crystal Structures (3rd edn.), Bell, 

London (1966). 
Stout, G. H. and Jensen, L. H., X-ray Structure Determination: A Practical Guide, 

MacMillan, New York (1968). 



BIBLIOGRAPHY 213 

Special methods: 
Buerger, M. J., Vector Space: and its Application in Crystal Structure Investigation, 

Wiley, New York (1959). 
Lipson, H. and Taylor, C. A., Fourier Transforms and X-ray Diffraction, Bell, London 

(1958). 
Taylor, C. A. and Lipson, H. S., Optical Transforms, Bell, London (1964). 
Woolfson, M. M,, Direct Methods in Crystallography, O.U.P., Oxford (1961). 

Special applications: 
Holmes, K. C. and Blow, D. M., The Use of X-Ray Diffraction in the Study of Protein 

and Nucleic Acid Structure, Wiley- Interscience, New York (1966). 
Kitaigorodskii, A. I., Organic Chemical Crystallography, Consultants Bureau, New 

York (1961). 
Nyburg, S. C., X-Ray Analysis of Organic Structures, Academic Press, New York 

(1961). 
Robertson, J. M., Organic Crystals and Molecules: Theory of X-Ray Structure 

Analysis, with Applications to Organic Chemistry, Cornell U.P., Ithaca, New York 

(1953). 

(5) Neutron diffraction 

Bacon, G. E., Neutron Diffraction (2nd edn.), O.U.P., Oxford (1962). 
Bacon, G. E., Applications of Neutron Diffraction in Chemistry, Pergamon, Oxford 

(1963). 
Willis, B. T. M. (Editor), Chemical Applications of Thermal Neutron Scattering, 

U.K.A.E.R.E. Harwell Series, 0.U.P., London (1973). 

(6) Electron diffraction 

Gard, J. A. (Editor), The Electron Optical Investigation of Clays, Mineralogical 

Society, London (1971) (Chapters 1 and 2). 
Hirsh, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., The 

Electron Microscopy of Thin Crystals, Butterworths, London (1965). 
Rymer, T. B., Electron Diffraction, Methuen, London (1970). 

(7) Miscellaneous background material 

Bernal, I., Hamilton, W. C. and Ricci, J. S., Symmetry: A Stereoscopic Guide for 
Chemists, Freeman, San Francisco (1972). 

Bijvoet, J. M., Burgers, W. G. and Hagg, G., Early Papers on Diffraction of X-rays by 

Crystals, published for the International Union of Crystallography by Oosthoek, 
Utrecht (Vol. I, 1969, Vol. II, 1972). 

Bragg, W. L. (Edited by Phillips, D. C.), The Development of X-ray Analysis, Bell, 
London (1975). 

Harburn, G., Taylor, C. A. and Welberry, T. R., Atlas of Optical Transforms, Bell, 
London (1975). 

Macgillavry, C. Symmetry Aspects of M. C. Escher’s Periodic Drawings, published for 
the I.U.C. by Oosthoek, Utrecht (1965). 

Verma, A. R. and Krishna, P., Polymorphism and Polytypism in Crystals, Wiley, New 
York (1966). 

Watson, J. D., The Double Helix, Penguin, London (1970). 



214 REFERENCE SOURCES 

REFERENCE SOURCES 

International Tables for X-Ray Crystallography 
Vol.I Symmetry Groups (1952). 
Vol. II Mathematical Tables (2nd edn. 1965). 
Vol. III Physical and Chemical Tables (2nd edn. 1967). 
Vol. IV Revised and Supplementary Tables (1974). 

Published by the International Union of Crystallography at the Kynoch Press, 
Birmingham. 
World list of Crystallographic Programs, (edited by G. C. Bassi); J. Appl. Cryst. 6, 

309-346 (1973). 
Molecular Structures and Dimensions (series), published for I.U.C. by Oosthoek, 

Utrecht. 
BIDICS—Bond Index to the Determinations of Inorganic Crystal Structures (edited by 

I. D. Brown), Institute for Materials Research, McMaster University, Hamilton, 

Ontario, Canada. (Series beginning 1969.) 
Structure Reports (edited by W. B. Pearson), published for I.U.C. by Oosthoek, 

Utrecht. [Continuing series covering structures from earliest days of X-ray crystal- 

lography.] 
Index of Crystallographic Supplies 3rd edn. (edited by R. Rudman), published for 

I.U.C. by Oosthoek, Utrecht (1972). 
The Powder Diffraction File (edited by W. L. Berry), published by the Joint Com- 

mittee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, 

Pennsylvania 19081, U.S.A. 
Donnay, J.D. H. and Ondik, H. M., Crystal Data Determinative Tables 1 Organic 

Compounds (1972); II Inorganic Compounds (1973); published jointly by the U.S. 
Dept. of Commerce, the National Bureau of Standards and the Joint Committee on 
Powder Diffraction. 

Fang, J. H., and Bloss, F. D., X-Ray Diffraction Tables, Southern Illinois University 
Press, Carbondale, Ill. (1966). [Tables of 20 v d-spacing for a variety of X-ray 
wavelengths. ] 

Porter, M. W. and Spiller, R. C., The Barker Index of Crystals, Vol. 1 (1951), Vol. II 
(1956), Vol. III (1964), Heffer, Cambridge. 

Winchell, A. N., The Optical Properties of Organic Compounds, University of 
Wisconsin Press, Madison, Wis. (1943). 

Winchell, A. N. and Winchell, H., The Microscopical Characters of Artificial Inorganic 

Solid Substances. Academic Press, New York (1964). 
Wyckoff, R. W. G., Crystal Structures (2nd edn.), Vols, 1-6, Wiley- Interscience, New 

York (1963-71). 



Index 

Absences, systematic—see systematic Anorthic system—see triclinic 

absences Arcs, 70 

Absolute configuration, 179 Array, 3 
Absorption, 192 symmetry elements in, 19, 21 

coefficients, 192 translational symmetry in, 19 
corrections, 192-195 Asymmetric unit, 6 
in powder specimens, 196 and molecular symmetry, 7, 109 

Absorption edge, 47, 179 Atmosphere: 
Accessory plates, 30, 33, 40, 41 control of, 124, 154-155 

Accessory slot, 30 protection from, 123-124 
Accuracy of: Atomic coordinates, 58 

d-spacings, 130, 133, 136, 138 Axes: 

intensities from powder patterns, 196 alternating, 12 

quantitative diffractometry, 142 crystallographic, 6, 15 
refractive index measurements, 40 inversion, 12 

Adhesives for: of indicatrix, 28, 29, 33 

mounting single crystals, 70 reciprocal, 62 
topotactic studies, 119 rotation, 7-9 

Air displacement pyknometer, 111 screw, 19-21 
Aligning crystals, 70, 79 

by Laue photographs, 103 Back stop, 73 
for precession photographs, 81, 82 Balanced filters, 197 
optically, 34, 81 Beam stop, 73 

with oscillation photographs, 91-93 Becke line, 40 
Alternating axis, 12 Beevers-Lipson strips, 162 
Amplitude of scattered wave—see struc- Bernal chart, 86-88 

ture factor Biaxial crystals, 28, 29 
Amorphous solid, 1 Birefringence, 33 
Analyser, 30 and relief, 33, 40 

Anisotropic crystals and polarised light, Body-centred lattice, 14, 16, 17 
31-44 diffraction from cubic, 56 

Anisotropic media: Bond lengths and angles, 199 
and light, 27 Bonding electrons, 199 
refractive indices of, 40 Bragg’s law, 50 

Anisotropic temperature factors, 146, 159, and powder pattern, 125 

175,176, 199-201 and reciprocal lattice, 64 

Anisotropy, 3 Bravais space lattices, 14, 16, 17 

Anode of X-ray tube, 45 
rotating, 47 Cameras for X-ray photographs: 
suitable materials, 46, 47 Debye-Scherrer, 128-130 

Anomalous scattering, 177-179 de Jong-Boumann, 75, 78 
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Cameras for X-ray photographs:—(cont. ) 

focusing, 131 

Guinier, 132 
powder, 127-133 
precession, 76, 79-80 

relative costs, 138 

rotation/oscillation, 83-84 

Seeman-Bohlin, 132 

single crystal, 73 
Weissenberg, 94-97 

Cassette, 73 

Cell contents, 3,19, 111 

and space group, 109 
and structure determination, 150, 156 

calculation of, 111 

composition from, 112-114 

Centre of symmetry, 9, 12 

and inversion axis, 12 

and structure factor, 58 

repetition in array, 19, 23 
tests for, 109, 171 

Centred lattice, 4, 16, 56 
Centred pattern, 4 
Characteristic X-rays, 45 

wavelengths of, 46, 47 
Chart: 

Bernal, 86, 88 

Weissenberg, 98 

Collimator, 73 

Composition: 

from cell contents, 112, 113 

of mixture by diffractometry, 142 
of solid solution, 42, 140 

Coordinates, fractional, 6 

and structure factor, 58 

Counter, 122 

in neutron diffraction, 181, 182 

limitations, 197 

Coverslip, 31 
Crystal class, 13 
Crystal optics, 27-39 

practice materials for, 43 
Crystal, single—see single crystal 

Crystal structure: 

determination, 148, 156 

visualized from diagram, 158 

Crystal system, 13 
Crystalline solid (definition), 1 
Crystallinity, effect on powder pattern, 

140, 141, 142 

INDEX 

Crystallographic axes, 6, 15 
and indicatrix, 28 

intercepts of planes on, 5 1-53, 63-64 

Cubic system, 15 
cell, choice of, 16 

crystal indicatrix, 29 
lattices, 14 

point groups, 11 
space group diagrams, 24 

Cycle, least squares, 176 

d-spacings—see interplanar spacing 

de Broglie equation, 180 
de Jong-Boumann method, 75 

Debye-Scherrer camera, 128-130 
Densitometer, 121 

Density: 
and unit cell contents, 111 

composition from, 112-113 
comparison of observed and calcu- 

lated, 112 
electron—see electron density 
estimation from refractive index, 42 

measurements of, 111-112 

Dichroism, 37 

Difference map, 173 
and temperature factors, 174-175 
and wrongly placed atoms, 173-174 

refinement from, 173 

Diffracted beam, 49 

angle of, 50, 64-65 

focusing, 131-133, 134-135 

intensity of, 50, 55, 146 

Diffraction, 3 

electrons, 183 

light, 59, 60 
neutrons, 180 

X-rays, 48 
Diffraction patterns, 48, 73, 185 

electron, 185-191 

information from, 54 

optical, 59, 172 

powder, 125 

recording, 65 
symmetry of, 65-68 

Diffractometer, 122, 194, 197 

automatic single crystal, 122, 203, 
206 

powder—see powder diffractometer 
Direct methods, 171 



INDEX 

Disorder, 110, 114, 142 
complete, 1 

effects on diffraction patterns, 114, 
115,141, 142 

stacking, 116, 117 
Double oscillation photograph, 93 
Double reflection, 110 

and electron diffraction, 189 

Electron density map, 160 
and bonding, 199 

calculation by Fourier summation, 
160 

incorrectly placed atoms and, 164 
location of missing atoms from, 164 
positional parameters from, 161 
refinement by, 161 
relation to direct methods, 170 

Electron diffraction, 183-191 

selected area, 184 

Electron microscope, 184 
very high magnification, 191 

Electrons, energy of, 183 
Elongation, 40 
Enantiomorph, 7 

Epitaxy, 119 
Equi-inclination method, 94, 96 

Extinction of X-rays, 194-196 

Extinction position, 31, 33 

and crystal axes, 33, 34, 38, 39 

inclined, 33 

parallel, 33, 38 

symmetrical, 38, 39 

Face-centred lattices, 14, 16, 17 
Factor: 

form—see scattering factor 
scattering—see scattering factor 
structure—see structure factor 
temperature—see temperature factor 

Film: 
blackening v. exposure, 120, 121 
holder, 73 

intensity measurement from, 120-122, 

159, 203, 206 
mounting in powder cameras, 130 
multiple pack, 120 

Filters: 
water, 46 

X-ray, 47 

balanced, 197 
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Fingerprint methods, 139 
Focusing cameras, 131 

merits of, 138 

monochromators for, 132 

Form factor—see scattering factor 
Fourier summation, 159 

by analogue computer, 162 
by optical transforms, 172-173 
electron density from, 160 
one dimensional, 161 

Patterson function from, 165 
three dimensional, 161, 164 

two dimensional, 162 

using Beevers-Lipson strips, 162 
Fourier synthesis—see Fourier summation 
Fourier transform, 160 

and electron microscope, 191 
in structure determination, 171-172 

Fractional coordinates, 6 

and structure factor, 51-59 

in CuO, 156-158 
Friedel’s law, 53, 65-67, 89 

and anomalous scattering, 179 

General position, 109 
Glass, 1 

opacifying agents in ancient, 140-141 
separation from crystals, 72 

Glide plane, 19, 22 

in structure of CuO, 158 

repetition in array, 19, 22 

systematic absences due to, 105-107 
Goniometer head, 70, 71 

Goniometric stage, 186 

Goniometry, 13 

Group: 

Laue—see Laue group 
point—see point group 

space—see space group 
Guinier camera, 132, 133 

high temperature (Guinier-Lenne), 153 
Gypsum plate, 33, 41 

Habit, 42 
Heavy atom, 165, 167 

and isomorphous replacement, 169-170 
and superposition methods, 167-168 
phases from, 165, 167 

Hermann-Mauguin notation, 6, 12 
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Hexagonal system, 15 

crystal optics, 38 
indices, 63-64 

optical indicatrix, 28 
point groups, 10-11 
unit cell, 15 

weighted reciprocal lattice, 66 
High angle reflections, recording, 130, 

153 
High pressure studies: 

powder, 155, 182 
single crystal, 124 

High temperature studies: 
powder, 153, 182 
single crystal, 123 

High white, 33, 34 
Hydrogen atoms, location, 182 

Ideally imperfect crystal, 196 
Identification: 

by optics, 29, 39, 42 

by powder methods, 139 
of mixtures, 140 

of opacifiers in ancient glasses, 140 
of solid solutions, 140 

Immersion liquid, 31, 70 
and refractive index, 39-40 

Inclined extinction, 33 

practical examples, 43 
Index, refractive—see refractive index 
Indexing: 

powder pattern—see powder pattern 

rotation photograph, 88-90 
Weissenberg photographs, 95~102 

Indicatrix, optical—see optical indicatrix 
Indices, 50 

Miller, 52 
of lines, 51 

of planes, 52-53, 63 

of reciprocal lattice points, 59, 61-64 
of reflections, 53, 74, 75, 88-90, 95 
refractive—see refractive index 

Intensity of reflections, 55, 120, 136, 156 
and structure, 55, 150 

and temperature factor, 146 
and weighted reciprocal lattice, 65 
corrections to measured, 146-150, 

192-198 
distribution, 171-2 
errors, 197 

INDEX 

Intensity of reflections—(cont. ) 
in electron diffraction, 189, 190 

in powder patterns, 133, 136, 138, 

142, 144-148, 150 
measurement of, 120-122, 133, 148- 

149, 159 
relation to structure amplitude, 56-58, 

146 
Interatomic vectors—see Patterson func- 

tion 
Interference colours, 34 

and birefringence, 33, 40 

Interference of scattered X-rays, 50 
and intensity of reflection, 56-59, 145 
and systematic absences, 56 

Internal standard, 130, 136 

Interplanar spacings, 50 
accurate measurement of, 130, 136 

and cell dimensions, 142 

and indices, 51-54, 142 

and reciprocal lattice, 60, 61 

estimation of solid solution from, 140 

identification of unknown from, 139- 

140 
Inversion axis, 12 

Isomorphous replacement, 114, 169 
Isotropic media and light, 27 
Isotropic solids, 3, 36 

refractive index, 29, 39 

Lattice, 3 

Bravais space, 16 

centring, 4, 14, 16, 17 

non-primitive, 4, 14, 16, 17 

primitive, 3 
reciprocal—see reciprocal lattice 

rhombohedral/trigonal, 16, 18 
‘single electron’, 48, 49 
types, 14, 16-19 

Lattice points, 3 
number in cell, 19 

Laue: 

group, 67 
photographs, 103 
symmetry, 65 
zones, 185 

Layer: 
lines, 85 

screen, 73, 94, 96-97 
Least-squares refinement, 175-177, 199, 

200 



INDEX 

“Length slow’, 40 
“Length fast’, 40 
Light: 

and crystals, 26-44 

plane polarized, 26, 27 
properties of, 26 
vibration direction, 26, 27, 32, 37, 40, 

41 
wavelength of, 26 

white, and refractive index, 27, 40 
Lorentz factor, 146 

Lorentz-Lorenz equation, 42 
Low angle reflections, recording, 130, 

£38 
Low temperature studies: 

powder, 154 
single crystal, 123 

Low white, 33, 34 

Magneli shear structures, 115 
Manipulation of crystals, 35, 36, 70-72, 

123, 124 
Microdensitometer service, 121 

Microscope, polarizing—see polarizing 
microscope 

Minimum function, 170 

Mirror plane, 6, 7, 8 

and inversion axis, 9, 12 

repetition in array, 19, 23 

Mixtures: 

detection of using microscope, 42, 140 
quantitative estimation, 142 
resolution of, 140 

separation of, 140 
Molar refractivity, 42 
Molecular weight from density, 112 
Monochromatic X-radiation: 

balanced filters, 197 

B-filter, 47 

focusing monochromater, 132 
Monoclinic system, 15 

choice of axes, 15 

crystal optics, 34, 43 
optical indicatrix, 28 
point groups, 15 
unit cell, 15 

‘Monte Carlo’ methods, 173 

Morphology, 13 
and crystal axes, 13, 71 
and symmetry, 13, 31, 36, 38, 40 
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Mosaic block structure, 1 

and extinction, 196 

and Lorentz factor, 147 

Mounting crystals for: 

high temperature studies, 123 
microscopy, 35 
topotactic studies, 119 
X-ray work, 69 

Multiple film pack, 120 
Multiple scattering and electron diffraction, 

190 
Multiplicity of reflection, 147, 148 

Negative elongation, 40 
Neutron: 

diffraction, 181 

energy of, 180 
scattering factors, 182 

Non-stoichiometric compounds, 114 
occupancy factor of sites in, 114, 176 
ordering of defects in, 115 

Obverse setting of rhombohedral cell, 18 
Occupancy factor, 176 
Optical activity: 

and crystal class, 109 
and space group determination, 109 

Optical diffraction patterns, 59 
in structure analysis, 172 

Optical indicatrix, 27, 28, 29 

axes of, 27 

biaxial, 28 

restrictions on, 28 

uniaxial, 28, 29 

Optical microscope—see polarizing micro- 
scope 

Optically active compounds, absolute 
configuration, 179 

Order: 
and disorder, 114 

in polymer, 141, 142 
partial, 115 
perfect, 1 

Ordering, effect on diffraction pattern, 
114,115 

Orthorhombic system, 15 

crystal optics, 38, 39 
lattices, 14, 17 

optical indicatrix, 28 
point groups, 10, 15 

space groups, 20, 106-108 
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Oscillation photographs, 89 
for aligning (setting) crystals, 91-94 
symmetry from, 90, 91 

Parallel extinction, 33, 38, 40, 42 

practical examples, 43 
Parameter: 

positional—see positional parameters 
thermal—see thermal parameters 
unit cell—see unit cell parameters 

Pattern, 3-5 

and lattice, 3-5 

diffraction—see diffraction pattern 
powder—see powder pattern 

Patterson function, 165 

interpretation of, 167-169 
location of heavy atom from, 167 
relation to electron density map, 167 

Perfect order, 1 

Phase determination: 

by direct methods, 170 
by isomorphous replacement, 169-170 
from partial structure, 164, 167 

Phase of scattered wave, 56-58, 160 

Photographs: 
de Jong-Boumann, 74, 75 
Laue, 103, 104 
oscillation, 90-94 

powder, 125, 127-133 
precession, 75, 76-79 
rotation, 83-90 

Weissenberg, 94-103 
Photometry, 121 
Piezo-electric effects, 109 
Plane: 

glide—see glide plane 
mirror—see mirror plane 

Plane polarized light, 26, 27 
Planes: 

indices of, 51-54 

spacing of, 50, 142 
Pleochroism, 37 

practical example, 43 
Point—see lattice point 
Point group, 10, 11, 12 

Point symmetry, 12 
Polarization factor, 146 

Polarized light, 26, 27 

Polarizer, 29 

Polarizing microscope, 29, 30 

INDEX 

Polarizing microscope—(cont.) 
and solid solutions, 42 

checking purity with, 35, 42, 139, 140 

information : effort ratio, 202 

learning to use, 30, 204 
manipulation under, 35 
practice materials, 43 

Polaroid film, 73 

Polars, 26 
Polycrystalline, 2, 132 

see also powder 
Polymers, diffraction patterns of, 141, 142 

Polytypism, 114 
effect on diffraction pattern, 116-118 

Portland cement clinker, 140 

Portland Vase, 140 

Positional parameters, 6, 58 

accuracy of, 159, 198, 199 

determination of, 156, 164, 167 

refinement of, 173-177 

Positive elongation, 40 

Powder cameras: 

Debye- Scherrer, 128-131 
focusing, 131-133 
Guinier, 132 

relative merits, 136-138, 206 

Seemann- Bohlin, 132 
specialized, 153-155 

Powder Diffraction File, 139 

Powder diffractometer, 133-136 

accurate d-spacings, 136 
compared with cameras, 138, 206 
for neutrons, 182 

intensities from, 136, 144, 196 

quantitative estimates with, 142 
specimen for, 135 

Powder pattern, 59, 125-144, 182 

and crystallinity, 138, 140, 141, 142 

comparison of methods of recording, 136 

determination of unit cell from, 126 
identification from, 139 
indexing, 142, 149 

aided by electron diffraction, 144, 
191 

aided by single crystal photographs, 
144 

by analogy, 144 
by trial and error, 126 
when unit cell is known, 143 

information : effort ratio, 202 



INDEX 

Powder photographs, 125-133 
comparison with rotation photograph, 

125, 127, 128, 140, 144 
methods of mounting film, 130 

Powder specimen: 
for Debye- Scherrer camera, 128-129 
for diffractometer, 135 
for Guinier camera, 132 

for high temperature study, 154 
for Seemann- Bohlin camera, 132 

preferred orientation and, 136, 138 
protection from atomosphere, 154 

Precession method, 76 

setting crystals for, 81, 82 
Precession photograph, 75 

integrated, 121 

Preferred orientation, 125 

and identification of unknowns, 139 

and specimen preparation, 136, 138 
Primary extinction, 196 
Primitive lattice, 3 

Principal refractive indices, 27 
Protection of: 

counter in high temperature work, 123 
crystallographers from radiation, 47, 73 
crystals from atomosphere, 123 
film from temperature changes, 123 

Pseudo-cell, 115,116 

Pseudo-structure, 116 

Pulse height analyser, 198 
Pyknometer, air displacement, 111 
Pyro-electric effects, 109 

Quartz wedge, 41 

R-factor, 153, 159, 177 

Reciprocal axes, 62 
Reciprocal lattice, 59-68 

and Bragg’s Law, 64 
and real lattice, 61 

construction of, 60-62 

indices of points, 61, 62 

in electron diffraction, 185-189 

photography of undistorted, 73 
weighted, 65-68 
xi- and zeta-values, 84, 85, 88 

Reciprocal lattice explorer, 75 
Reciprocal units, 62 

Refinement by: 
difference synthesis, 173 

Fourier synthesis, 161, 164 
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Refinement by:—(cont.) 
least squares fit, 175-177 

Refinement of: 
anisotropic temperature factors, 176, 

177, 200 
atomic coordinates, 161, 176 
occupancy factors, 176 
temperature factors, 174, 176, 200 

Reflection 
indices of 53, 74, 75 

intensity of—see intensity 
of X-rays—see X-rays 
sphere of, 64 

Reflection operation, 6 
with translation, 19, 20, 22 

Refractive index, 26 

and composition, 42 
and density, 42 
and vibration direction, 27 

measurement, 39-42 

principal, 27 
standard liquids, 39 

Reliability index—see R-factor 
Relief, 31 

and birefringence, 33 
Residual—see R-factor 
Retardation, 33, 34 

and elongation, 41 

Reverse setting of rhombohedral cell, 18 
Rhombohedral lattice, 14, 16, 18, 19 

and trigonal lattice, 14, 18, 19 
Rotation axis, 7, 8 

repetition in array, 19, 23 

Rotation photograph, 83-90 
comparison with powder photograph, 

125, 127, 128, 140, 144 
formation of, 84, 85 

indexing graphically, 89, 90 
layer lines, 85 
row lines, 90 

Row lines, 90 

setting crystals from, 93, 94 

Sample preparation—see specimen prepa- 
ration 

Scattering, anomalous, 177-179 

Scattering factor, 58 
dependence on 0, 145 
for electrons, 189 

for neutrons, 182 
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Scattering power—see scattering factor 

Schoenflies notation, 6 

Screw axis, 19, 20, 21 
repetition in array, 19, 23 
systematic absences due to, 106 

Secondary extinction, 176 
Seemann- Bohlin camera, 132 
Selected area electron diffraction, 184 

Setting crystals: 
optically, 72, 79-81 

photographically, 82-83, 91-94, 103- 
104 

Shear structures, 115 

Sign determination—see phase determin- 
ation 

Single crystal, 1 
aligning, 70, 72, 79-81, 91-94, 103- 

104 
mounting, 35, 70, 71, 72, 123 

selecting for X-ray, 69 
specialized studies, 123, 124 

topotactic transformation, 119 
Single crystal photographs, 59 

de Jong- Boumann, 74 
information : effort ratio, 203 

Laue, 103, 104 
oscillation, 90-94 

precession, 75 

rotation, 83-90 

Weissenberg, 95-103 
Single crystal X-ray cameras, 72, 73 

de Jong- Boumann, 75, 77, 78 

precession, 76, 79, 80 

‘reciprocal lattice explorer’, 79 
rotation/oscillation, 83, 84 

Weissenberg, 94, 96 

‘Sink or swim’ method for density, 112 
Solid solutions, 114 

composition from refractive index, 
42 

examples of, 114 
occupancy factor in, 176 
ordering of, 114, 115 

variation of d-spacing, 114, 139, 140 

X-ray diffraction patterns, 114, 133 
Space group, 20, 23 

and cell contents, 109 

determination, 106-110 

diagrams of cubic, 24 
symbol, interpreting, 20 

INDEX 

Space lattices, 14, 16-19 

Spacing of planes—see interplanar spacings 

Special positions, 109, 112, 118 
and translational symmetry, 112 
in structure determination, 156 

Specimen preparation: 
avoidance of preferred orientation, 

135, 136, 138 
for microscopy, 31 
for powder cameras, 129, 132 

for powder diffractometry, 135 
for single crystal intensity measure- 

ments, 193, 194, 196 
for special techniques, 119, 123-124, 

153=1'35 
Spectrum, X-ray, 45, 47, 48 

Sphere of reflection, 64 
Statistical distribution: 

atoms on sites, 114, 176 

intensities of reflections, 171 

Structure: 
conventions in diagrams of, 158, 159 

Magneli shear, 115 
visualizing from diagram, 158 

Structure amplitude, 145 
Structure determination: 

accuracy of, 159 
criteria for correct, 153, 177 

direct methods, 170-171 

Fourier synthesis in, 159-164, 173- 

175 
Fourier transforms in, 171-173 
from Patterson function, 165-169 

from powder pattern (example), 148- 
153 

heavy atom methods, 165, 167 
isomorphous replacement, 169-170 
minimum time for, 203 

Monte Carlo methods, 173 

of proteins, 169, 170 
reliability of, 153, 159, 177, 198 
trial and error (example), 156 

Structure factor, 58, 59, 150-152, 

159 
graphs, 159 
unitary, 171 

Superlattice, 115 
Superposition methods, 167-169 
Symmetrical extinction, 38, 39 

practical example, 43 . 



INDEX 

Symmetry, 4 

and unit cell, 4, 13-16 

AXIS — OD NG 

centre of, 9 

Laue, 65 

plane of, 6-8, 19 
point, 10-12 | 
translational, 19 

Symmetry of: 
arrays, 19 
diffraction pattern, 65-68, 90-91, 

99-104, 108 
finite objects, 6- 13 
weighted reciprocal lattice, 65-68 

Symmetry symbols, 6-13, 19-24 

crystallographic (Hermann- Mauguin), 
6-13 

Schoenflies, 6- 13 

Systematic absences, 56, 105 
and centring, 56 
and space group determination, 105, 

107 
Systematic weakness, 57 

Systems, crystal, 13-16 

Temperature, control of, 122, 123, 153, 

154 
Temperature factor, 146 

and difference maps, 174, 175 

anisotropic, 159, 175, 176, 199-201 

estimating, 152,171 
significance, 200-201 

Tetragonal system, 15 
crystal optics, 36, 37 
lattices, 14, 16 

optical indicatrix, 28 
point groups, 10 
space groups, 23, 24 
unit cell, 14, 15 

Time-of-flight analysis, 182 
Topotactic transformations, 119 
Transformation, study of, 119 
Translational symmetry elements, 19 

and systematic absences, 105, 106, 

107 
relation to point symmetry, 20 

Trial and error: 
indexing of powder patterns, 126, 142 
structure determination, 156 

Triclinic crystal spacings, 142 
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Triclinic crystals, X-ray photographs: 
rotation, 85 

undistorted reciprocal lattice, 80, 81 

Triclinic system: 
Optical indicatrix, 28 
point groups, 10 
real and reciprocal lattices, 64, 207 

unit cell, 13-15 

Trigonal system, 15 

crystal optics of, 38, 39 
indices of planes, 63, 64 

lattices, 14 

optical indicatrix, 28 
point groups, 10 

relation to rhombohedral, 16, 18 

unit cell, 15 

weighted reciprocal lattice, 66 
‘Twiddler’, 35 

Twinning, 70 

Uniaxial crystals, 29, 36 
for optical practice, 43 
indicatrix, 29 

Unit cell, 3 

and lattice points, 4, 16-19 
and symmetry, 13-16 
centred, 4, 16 

non-primitive, 4, 16 
primitive, 3 

Unit cell contents, 109, 110, 112, 113 

determination of, 111,112 
Unit cell parameters, accurate, 136 
Unit cell parameters from: 

powder patterns, 126, 142-144 

rotation photographs, 88-90 
undistorted reciprocal lattice photo- 

graphs, 74, 75 
Weissenberg photographs, 96-103 

Unit retardation plate, 33 
Unitary structure factor, 172 

Unpolarized light, 26, 27 

Vectors, interatomic—see also Patterson 

function, 165 

Vibration direction of: 

accessory plates, 40, 41 
polars, 26, 40 

Vibration direction of light, 26 
and extinction, 32 

and refractive index, 27 



224 

Vibration of atoms, 1, 56 

and temperature factor, 146, 200, 

201 

Visual estimation of intensities, 121 

Wave properties of particles, 180 
Wavelength of: 

characteristic X-rays, 45 
electrons, 183 

light, 26 
neutrons, 180 

Weighted reciprocal lattice, 65 
Weighting in least squares analysis, 176 
Weissenberg method, 94 

equi-inclination setting, 96 
Weissenberg photographs, 95 

‘integrated’, 121 
interpretation, 96 

relation to reciprocal lattice, 97, 99- 
102 

Wrongly placed atom, 164 
and difference map, 173, 174 

and temperature factor, 176, 200 
in least squares refinement, 176, 177, 

200 

XRAC, 162 

INDEX 

X-ray density, 112 
X-ray diffraction patterns—see diffraction 

patterns 

X-ray diffraction photographs—see photo- 
graphs 

X-ray ‘reflection’, 50 
order of, 52, 54 

systematic absence of, 56 
X-ray set: 

maintenance, 46 

safety and, 47, 73 

X-ray tube, 45 
care of, 46, 47 

current, 46 

demountable, 47 

rotating anode, 47 

sealed, 47 

spectrum of, 47, 48 

target materials, 46, 47 

X-rays: 
characteristic, 45 

dangers of, 47 
filters for, 47, 48 

monochromatic, 45, 47, 132, 133, 

197 
spectrum, 47, 48 
white, 47, 48 
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