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Preface to the English Edition 

This book is based on the lectures which I have now been giving 

for more than 20 years to chemists and other scientists at the 

Westfalische Wilhelms-Universitat, Miinster. It is a translation 

of the fourth German edition, which will also be appearing in 

1993. 

It has been my intention to introduce the crystallographic 

approach in a book which is elementary and easy to understand, 

and have thus avoided lengthy mathematical treatments. As will 

be clear from the contents, topics in crystallography have been 

covered selectively. For example, crystal structure analysis, 

crystal physics and crystal optics are only touched on, as they do 

not fit easily into the scheme of the book. 

The heart of the book is firmly fixed in geometrical crystal- 

lography. It is from the concept of the space lattice that 

symmetry operations, Bravais lattices, space groups and point 

groups are all developed. The symmetry of molecules is des- 

cribed, including the resulting non-crystallographic point 

groups. The treatment of crystal morphology has been 

brought into line with the approach used by International 

Tables for Crystallography. The relationship between point 

groups and physical properties is indicated. Examples of space 

groups in all crystal systems are treated. Much emphasis is 

placed on the correspondence between point groups and space 

groups. The section on crystal chemistry will serve as an 

introduction to the field. Of the various methods of investi- 

gation using X-rays, the powder method is described, and an 

account is given of the reciprocal lattice. At the end of each 

chapter are included a large number of exercises, and solutions 

are given for all of them. 

The first stimulus to have this book translated was given 

by Professor P. E. Fielding of the University of New England in 

Armidale (Australia). The translation was undertaken by Dr. 

R. O. Gould of the University of Edinburgh. I thank Dr. Gould 

for his enthusiasm and for the trouble he has taken over the 

Vv 



translation. It was practicularly beneficial that we were able to 

consider the text together thoroughly. 

Professor E. Koch and Professor W. Fischer, both of the 

University of Marburg, have discussed each edition of this book 

with me, and their criticism has been invaluable. I wish to record 

my thanks to them also. 

Miinster, Autumn 1993 W. BORCHARDT-OTT 
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Introduction 

At the heart of crystallography lies an object — the crystal. Crystallography is 

concerned with the laws governing the crystalline state of solid materials, with 

the arrangement of atoms in crystals, and with their physical and chemical 

properties, their synthesis and their growth. 

Crystals play a role in many subjects, among them mineralogy, inorganic, 

organic and physical chemistry, physics, metallurgy, materials science, 

geology, geophysics, biology and medicine. This pervasiveness is perhaps 

better understood when it is realised how widespread crystals are: virtually all 

naturally occuring solids, i.e. minerals, are crystalline, including the raw 

materials for chemistry, e.g. the ores. A mountain crag normally is made up of 

crystals of different kinds, while an iceberg is made up of many small ice 

crystals. Virtually all solid inorganic chemicals are crystalline, and many solid 

organic compounds are made up of crystals, amgng them benzene, naphtha- 

lene, polysaccharides, proteins, vitamins,-rubber and nylon. Metals and 

alloys, ceramics and building materials are all made up of crystals. The 

inorganic part of teeth and bones is crystalline. Hardening of the arteries and 

arthritis in humans and animals can be traced to crystal formation. Even 

many viruses are crystalline. 

This enumeration could be continued endlessly, but it is already obvious 

that practically any material that can be regarded as solid is crystalline. 

In many countries, especially in Germany, crystallography is mainly 

taught as a part of mineralogy, while elsewhere, notably in Britain and North 

America, it is more often taught as a part of physics or chemistry. In any case, 

“crystallographers” may be from a wide variety of scientific backgrounds. 

Most countries have a National Crystallographic Committee representing the 

International Union of Crystallography, the body which publishes Acta 

Crystallographica and International Tables for Crystallography. 



1 The Crystalline State 

The outward appearance of a crystal is exceptionally variable, but all the 

variations which occur can be explained in terms of a single fundamental 

principle. To grasp this, we must first come to terms with the nature of the 

crystalline state. The following are a few properties that are characteristic of 

crystals: 

a) Many crystals not only have smooth faces, but, given ideal growth 

conditions, have regular geometric shapes (see Figs. 1.1-1.4). 

VA 

Fig. l.La,b. A garnet crystal with the shape of a rhomb-dodecahedron (a) and a crystal of 
vitamin B,> (b) 

bright yellow 

_ blue-grey 

blue 

blue-grey - : 
Fig. 1.2. Pleochroism as shown by a 

bright yellow crystal of cordierite 
s 

bho 



a Fig. 1.3. A crystal of kyanite, with a scratch illustrating the 

anisotropy of its hardness 

b) If some crystals (e.g. NaCl) are split, the resulting fragments have similar 

shapes with smooth faces - in the case of NaCl, small cubes. This 

phenomenon is known as cleavage, and is typical only of crystals. 

c) Figure 1.2 shows a corderite crystal and the colours that an observer would 

see when the crystal is viewed from the given directions. The colours that 

appear depend on the optical absorption of the crystal in that particular 

direction. For example, if it absorbs all spectral colours from white light 

except blue, the crystal will appear blue to the observer. When, as in this case, 

the absorption differs in the three directions, the crystal is said to exhibit 

pleochroism. / 

d) When a crystal of kyanite (Al,OSi0O,) is scratched parallel to its length 

by a steel needle, a deep indentation will be made in it, while a scratch 

perpendicular to the crystal length will leave no mark (see Fig. 1.3). The 

hardness of this crystal is thus different in the two directions. 

Cc 

(010) 

Fig. 1.4. A crystal of gypsum covered with wax showing 

the melting front. The ellipse is an isotherm, and shows 
the anisotropy of the thermal conductivity 



Representation 
of the state 

a) Gas 

Boiling point 
b) Liquid 

Retention of shape Retention of volume 

Distribution 

of molecules 

Physical 
properties 

No | No 

Statistically 
homo- 
geneous! 

Isotropic? 

Yes | No 

Periodically 
Yes | Yes | homo- 

geneous! 

Anisotropic? 
= ‘ 

' Equal physical properties in parallel directions —__¥ 

* Equal physical properties in all directions 

> Different physical properties in different directions 

Fig. 1.5a—c. Schematic representation of the states of matter, a gas, b liquid, ec crystal 
a 
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e) If one face of a gypsum crystal is covered with a thin layer of wax and a 

heated metal tip is then applied to that face, the melting front in the wax layer 

will be ellipsoidal rather than circular (Fig. 1.4), showing that the thermal 

conductivity is greater in direction III than in direction I. Such behaviour - 

different values of a physical property in different directions — is called 

anisotropy, (see also Fig. 1.5c). If the melting front had been circular, as it is, 

for example, on a piece of glass, it would imply that the thermal conductivity 

is the same in all directions. Such behaviour — the same value of a physical 

property in all directions - is called isotropy, (see the right hand side of 

eigeiles)): 

Anisotropy of physical properties is normal for crystals. It is, however, not 

universal, as there are some crystals whose properties are isotropic. The 

origin of all of the phenomena listed under (a) to (e) lies in the internal 

structure of crystals. In order to understand this better, let us now consider 

the various states of aggregation of matter. 

All matter, be it gas, liquid or crystal, is composed of atoms, ions or 

molecules. Matter is thus discontinuous. Since, however, the size of the atoms, 

ions and molecules lies in the A region (A =10 §cm=0.1nm) matter 

appears to us to be continuous. The states of matter may be distinguished in 

terms of their tendency to retain a characteristic volume and shape. A gas 

adopts both the volume and the shape of its container, a liquid has constant 

volume, but adopts the shape of its container, while a crystal retains both its 

shape and its volume, independent of its container (see Fig. 1.5). 

Gases. Figure 1.5a illustrates the arrangement of molecules in a gas at a 

particular instant in time. The molecules move rapidly through space, and 

thus have a high kinetic energy. The attractive forces between molecules are 

comparatively weak, and the corresponding energy of attraction is negligible 

in comparison to the kinetic energy. 

What can be said about the distribution of the molecules at that particular 

instant? There is certainly no accumulation of molecules in particular 

locations; there is, in fact, a random distribution. A. Johnsen [21] has 

illustrated this by a mental exercise (Fig. 1.6a): we scatter 128 lentils over the 

64 squares of a chessboard, and observe that in this particular case some 

squares will have no lentils, some 1, 2, or even 3 - but on average 2. If, instead 

of single squares we considered blocks of four squares, the number of lentils 

in the area chosen would fall between 7 and 9, while any similar block of 16 

squares would have exactly 32 lentils. Thus, two distinct areas of the same size 

will tend to contain the same number of lentils, and this tendency will increase 

as the areas considered become larger. This kind of distribution is considered 

to be statistically homogeneous, i.e. it shows the same behaviour in parallel 



Fig. 1.6a,b. Statistical (a) and periodic (b) homogeneity. Johnsen [21] 

directions, and it may easily be seen that the physical properties of the 

distribution are isotropic, i.e. are equal in all directions. 

Liquids. As the temperature of a gas is lowered, the kinetic energies of the 

molecules decrease. When the boiling point is reached, the total kinetic 

energy will be equal to the energy of attraction among the molecules. Further 

cooling thus converts the gas into a liquid. The attractive forces cause the 

molecules to “touch” one another. They do not, however, maintain fixed 

positions, and Fig. 1.5b shows only one of many possible arrangements. The 

molecules change position continuously. Small regions of order may indeed 

be found (local ordering), but if a large enough volume is considered, it will 

also be seen that liquids give a statistically homogeneous arrangement of 

molecules, and therefore also have isotropic physical properties. 

Crystals. When the temperature falls below the freezing point, the kinetic 

energy becomes so small that the molecules become permanently attached to 

one another. A three-dimensional framework of attractive interactions forms 

among the molecules and the array becomes solid - it crystallises. Figure 1.5¢ 

shows one possible plane of such a crystal. The movement of molecules in the 

crystal now consists only of vibrations about a central position. A result of 

these permanent interactions is that the molecules have become regularly 

ordered. The distribution of molecules is no longer statistical, but is 

periodically homogeneous; a periodic distribution in three dimensions has 

been formed (see also Fig. 2.1a). 

How can this situation be demonstrated using the chessboard model? 

(Fig. 1.6b). On each square, there are now precisely two lentils, periodically 

arranged with respect to one another. The ordering of the lentils parallel to 

the edges and that along the diagonals are clearly different, and therefore the 

physical properties in these directions will no longer be the same, but 
a 
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Energy 

Fig. 1.7. Heating curves for a crystal (—) 

and a glass (— — —), T, is the melting point 

of the crystal 

Ts Temperature 

distinguishable - in other words, the crystal has acquired anisotropic 

properties. This anisotropy is characteristic of the crystalline state. 

Definition. A crystal is an anisotropic, homogeneous body consisting of a three- 

dimensional periodic ordering of atoms, ions or molecules. 

All matter tends to crystallise, if the temperature is sufficiently low, since 

the ordered crystalline phase is the state of lowest energy. There exist, 

however, materials, e.g. glass, which never reach this condition. Molten glass 

is very viscous, and the atoms of which it is made cannot come into a three- 

dimensional periodic order rapidly enough as the mass cools. Glasses thus 

have a higher energy content than the corresponding crystals and can best be 

considered as a frozen, viscous liquid. They are amorphous or “form-less” 

bodies. Such materials do not produce flat faces or polyhedra since an 

underlying order is missing. 

How then is it possible to distinguish amorphous material from crystals? 

One possibility is to examine the melting behaviour. As is illustrated in 

Fig. 1.7, a crystal has a sharp melting point T,, while amorphous bodies have 

a region of softening. Another possibility derives from their different 

properties relative to an incident X-ray beam. The three-dimensional 

ordering of the atoms in crystals gives rise to sharp interference phenomena, 

as is further examined in Chapter 12. Amorphous bodies, as they do not have 

underlying order, produce no such effect. 

Exercise 1.1. Determine the volume of a gas associated with each molecule at normal 

temperature and pressure. 

Exercise 1.2. Determine the packing efficiency of Ne gas (Ry. = 1.60A) under normal 

conditions. The packing efficiency is the ratio of the volume of a neon atom to the volume 

calculated in example 1.1. For comparison, a copper crystal has a packing efficiency of 74%. 

Exercise 1.3. Discuss the use of the term “crystal glass”!. 



2 The Lattice and Its Properties 

A three-dimensional periodic arrangement of atoms, ions or molecules is 

always present in all crystals. This is particularly obvious for the a-polonium 

crystal illustrated in Fig. 2.1. If each atom is represented simply by its centre 

of gravity, what remains is a point or space lattice (Fig. 2.1b). 

A point or space lattice is a three-dimensional periodic arrangement of 

points, and it is a pure mathematical concept. The concept of a lattice will 

now be developed from a lattice point via the line lattice and the plane lattice, 

finally to the space lattice. 

2.1 Line Lattice 

In Fig. 2.2, we may consider moving from the point 0 along the vector a to the 

point 1. By a similar movement of 2a, we will reach point 2, etc. By this 

movement, one point is brought into coincidence with another, and a 

repetition operation takes place. By means of this operation, called a Jattice 

translation, a line lattice has been generated. All points which may be brought 

into coincidence with one another by a lattice translation are called identical 

points or points equivalent by translation. \a|=ap is called the Jattice 

parameter, and this constant alone completely defines the one-dimensional 

lattice. 

Fig.2.la,b. Three-dimensional periodic arrangement of the atoms in a crystal of 
a-polonium (a) and the space lattice of the crystal (b) 

. 
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Fig. 2.2 Fig. 2.3 

Fig. 2.2. Line lattice with its lattice parameter |a| =a 

Fig. 2.3. Plane lattice with the unit mesh defined by the vectors a and b 

2.2 Plane Lattice 

If a lattice translation b (b } a) is then allowed to operate on the line lattice in 

Fig. 2.2, the result is the plane Jattice or plane net (Fig. 2.3). The vectors a and 

b define a unit mesh. The entire plane lattice may now be constructed from the 

knowledge of three lattice parameters, |a| = ao, |b| =by and y, the included 

angle. If any point is moved by any arbitrary lattice translation, it will come 

into coincidence with another point. A plang lattice thus has lattice 

translations not only parallel to a and b, but also to any number of 

combinations of them, I.e. an infinite number of lattice translations. 

2.3 Space Lattice 

If yet another lattice translation ¢ is now introduced in a direction not 

coplanar with a and b, its action on the plane lattice in Fig. 2.3 generates the 

space lattice shown in Fig. 2.4. This space lattice can also be produced solely 

by the operations of three dimensional lattice translations. In contrast to a 

finite crystal, a space lattice is infinite. 

According to the arrangement of the vectors a, b and ¢, we may introduce 

an axial system with the crystallographic axes a, b and c. The vectors a, b and ¢ 

and their respective crystallographic axes a, b and c are chosen to be right- 

handed. That is, if the right thumb points in the direction of a (a) and the index 

finger is along b (b), the middle finger will point in the direction of ¢ (c). A 

lattice, or a crystal described by it, may always be positioned so that a (a) 

points toward the observer, b (b) toward the right, and ¢ (c) upwards, as is 

done in Fig. 2.4. 

The vectors a, b and € define a wnit cell, which may alternatively be 

described by six lattice parameters: 



Fig. 2.4. Space lattice with the unit cell 
defined by the vectors a, b and c 

length of lattice translation vectors interaxial lattice angles 

|a| =a aAb= 

|b| =bo aAC= 2 

|e] =Cp bAc=@ 

Further application of lattice translations to the unit cell will produce the 

entire space lattice. The unit cell thus completely defines the entire lattice. 

Every unit cell has eight vertices and six faces. At all vertices there is an 

identical point. Can all of these points be considered part of the unit cell? The 

lattice point D in Fig. 2.4 is not only part of the marked-out unit cell, but part 

of all eight cells which meet at that point. In other words, only one eighth of it 

may be attributed to the marked unit cell, and since 8x;=1, the unit cell 

contains only one lattice point. Such unit cells are called simple or primitive, 

and are given the symbol P. 

2.4 The Designation of Points, Lines and Planes in a Space Lattice 

2.4.1 The Lattice Point uvw 

Every lattice point is uniquely defined with respect to the origin of the lattice 

by the vector T =ua + vb + we. The lengths of a, b and @ are simply the lattice 

parameters, so only the coordinates u, v and w require to be specified. They 

are written as a “triple” uvw. In Fig. 2.5, the vector tf describes the point 231 

(which is read as two-three-one). The coordinates u, v and w normally are 

integers, but can also have values of integers +3, } or 3, as is further explained 

in Chapter6.4. When they have integral values, the points uvw are the 

coordinates of the points of a P-lattice. The coordinates of the vertices of a 

unit cell are given in Fig. 25; 

10 



Fig. 2.5. Designation of lattice points using the coordinates uvw that define the vector from 

the origin to the lattice point uvw, tT = ua + vb + we 

2.4.2 Lattice Lines [uvw] 

A line may be specified mathematically in any coordinate system by two 

points. The lattice line I in Fig. 2.6 contains the points 000 and 231. Since the 

lattice line passes through the origin, the other pomt on its own describes the 

direction of the line in the lattice, and the coordinates of this point thus define 

the line. For this purpose, they are placed in square brackets [231], or in 

general [uvw], to show that they represent the direction of a line. 

The lattice line II’ passes through the points 100 and 212. Line II is parallel 

to this line, and passes through the origin as well as the point 112 and 

consequently both lines may be referred to by the symbol [112]. 

Fig. 2.6. Designation of lattice lines using the coordinates [uvw] (in square brackets) that 

define the vector from the origin to the given point t =ua + vb + we (I: [231], I: [112]) 

1 



[i00}.a [210] 

Fig. 2.7. Projection of a space lattice along c onto the a, b-plane. The lattice line A is defined 

by the triple [210], while B may be given as [130] or [130] 

Note that the triple [uvw] describes not only a lattice line through the origin, but 

the infinite set of lattice lines which are parallel to it and have the same lattice 

parameter. 

Figure 2.7 shows a projection of a space lattice along c onto the a, b-plane. 

The lattice line A intersects the points with coordinates 000, 210, 420 and 210 
(note that minus signs are placed above the numbers to which they apply - 

this applies to all crystallographic triples). Each point on the line has different 

values uvw, but the ratio u:v:w remains constant. In this case, the smallest 

triple is used to define the lattice line. Lines parallel to a or b are thus 

identified as [100] or [010] respectively, while the line B is given as [130] or 

[130]; note that these two representations define opposite directions for the 

lattice line. 

2.4.3 Lattice Planes (hkl) 

Consider a plane in the lattice intersecting the axes a, b and c at the points 

m00, On0 and 00p. (These coordinates are given as mhp and not uvw to show 

that the values need not be integral. An example of a lattice plane which does 

not intersect the axes at lattice points is plane D in Fig. 2.10). The coordinates 

of the three intercepts completely define the position of a lattice plane 

(Fig. 2.8). Normally, however, the reciprocals of these coordinates are used 

rather than the coordinates themselves: 
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The smallest integral values are chosen for the reciprocal intercepts, and 

they are then written as a triple (hkl) in round brackets. 

The values (hkl) are called Miller indices, and they are defined as the smallest 

integral multiples of the reciprocals of the plane intercepts on the axes. 

The lattice plane shown in Fig. 2.8 has the intercepts m|n|p =2|1]|3 the 

reciprocals of these are 5|1|4, leading to the Miller indices (362). 

Fig. 2.9. The indexing of lattice planes by Miller indices, the smallest integral multiples of the 

reciprocals of the intercepts on the axes; I (111), II (211) 
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Fig. 2.10. Projection of a space lattice along c onto the a, b-plane. The “lines” A-G are the 

traces of the lattice planes parallel to c with the Miller indices (210). The “line” His the trace 

of a lattice plane (230) 

In the space lattice shown in Fig. 2.9, two lattice planes have been drawn in 

| ial || ia |) fo J 2 | (hkl) 
m n 

I aay WL 1 i) Ly ir) 

II i ee ee i 4 5 (211) 

In Fig. 2.10, a projection of a lattice is shown together with the lines 

representing the traces of lattice planes perpendicular to the plane of the 

paper and parallel to the c-axis. These lattice planes are indexed as follows: 

am |) TL | je f | L : (hkl) 
a 18 

IN Wo RE eS | 0 | (210) 

Bian eean Say cont ae : 0 | (210) 

Cy lee exch ale nl ! 0 | (210) 
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E =f ey eS = ae = 
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Crd ie il i Or arQ10) 

lees : r 
BL Ne cP a ; 0 | (230) 



The lattice planes A to G belong to a set of equally spaced, parallel planes 

resulting in the same indices. Generally, they are all described by the triple 

(hkl), which represents not merely a single lattice plane, but an infinite set of 

parallel planes. Since the plane E intersects the origin, it cannot be indexed in 

this position. Note that (210) and (210) define the same parallel set of planes. 

Planes which are parallel to b and c will thus only have intercepts with a 

and are indexed as (100). Similarly, (010) intersects only the b-axis, and (001) 

only c. The line H is the trace of the plane (230). 

2.5 The Zonal Equation 

We may ask what the relationship is between the symbols [uvw] and (hkl) if 

they represent sets of lines and planes that are parallel to one another. The 

equation of any plane may be written: 

XE OS VER, 
IL 
ig if 

b) 

where X, Y and Z represent the coordinates of points lying on the plane, and 

m, nand pare the three intercepts of this plane on the crystallographic axes a, 
/ 

b and c (see Sect. 2.4.3). If the substitution is then made oem rea 
m n i é : 

and |~—, the equation may be written 

hX+kY+1IZ=C, 

where C is an integer. The equation describes not only a single lattice plane, 

but a set of parallel lattice planes. For positive h, k and 1, giving C a value of 

+1 describes that plane of the set which lies nearest to the origin in the positive 

a, b and c directions. Similarly, a value of —1 defines the nearest plane in the 

negative a, b and c directions from the origin. The plane (hkl) which cuts the 

origin has the equation: 
hX+kY+1Z=0. 

As an example, the planes D, E and F in Fig. 2.10, are defined by the above 

equation where (hkl)=(210) and C takes on the values 1, 0 and —1 

respectively. For any of these planes, the triple XYZ represents a point on the 

plane. In particular, on the plane passing through the origin (C =0) this triple 

XYZ could describe a lattice line — the line connecting the point XYZ to the 

origin 000. In this case, we would replace XYZ by uvw giving the relationship: 

hu+kv+lw=0. 

For reasons which will appear later this relationship is called the zonal 

equation. 
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Fig. 2.11. The lattice lines [u,v;w;] and [u)v2w2] define the lattice plane (hk]) 

Applications of the Zonal Equation 

a) Two lattice lines [u,;v;w;] and uyv2w>2] will describe a lattice plane (hkl) 

(cf.Fig. 2.11), whose indices may be determined from the double application 

of the zonal equation: 

hu; +kv;+lw,=0 

hu.+kv.+lw2=0. 

The solution of these two simultaneous equations for hkl may be expressed in 

two ways as the ratio of determinants: 

ViW) WU, uv 
h:ik:l= (1) 

VoW> Wu U2V> 

nl vowo Wu UoV> 
ed oe Rag Wier y ES) cei ati (2) 

Vi Wy WU) u,v} 

The lattice plane symbols (hkl) and (hkl), however, describe the same set 
parallel planes. 

h:k:1l=(vyw2 = v2W,) : (W) U2 — W20}) : (UyV2 — UsV)). 

The following form is particularly convenient: 

u Vy Ww WwW vy | WwW 

os 
Up Vo 5. Us Vo W2 

(h_ k LD 
«> 

Example. What is the set of lattice planes common to the lines [101] and [121]? 
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Fig. 2.12. The lattice lines [101] and [121] lie in the lattice plane indicated by the dashed lines. 

Since, however, that plane passes through the origin, it is necessary to consider an 

alternative origin such as N’ in order to assign its indices (111) 

This result can also be obtained geometrically, as in Fig. 2.12. The lattice lines 

[101] and [121] (—-—-—- ) lie-in the lattice plane (+ — —). Other lines lying in 
the plane are also shown (—-—-—- ) in order to make it more obvious. The 

indicated lattice plane cannot be indexed, as it passes through the origin. The 

choice of an alternative origin N’ makes it possible to index it: 

m|n|p=1|1|/1—-(111). 

If the determinant is set up in the alternative manner: 

1 
1 

jhe pies | af 
See ey bal 

2 2-2 -(111). [see Eq. (2)] 

(111) and(111) belong to the same set of parallel lattice planes; in the description 

of crystal faces (Chap. 4) the symbols (hkl) and (hkl) are taken to represent a 

crystal face and its parallel opposite. 

b) Two lattice planes (h;k,1,) and (h2k»1,) intersect in the lattice line [uvw] 

(see Fig. 2.13), which can be identified by the solution of the equations: 

hju+k,v+l,w=0 

hou+kov+hbw=0. 

Proceeding in the same method as above leads to the required lattice line 

[uvw]: | 
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Fig. 2.13. The lattice planes (hy kjl)) and (hokoly) intersect in the lattice line [uvw] 
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Note that, as in (a), two solutions are possible: [uvw] and [vbw]. In this case, 

these represent the opposite directions of the same line. 

Example. Which lattice line is common to the lattice planes (101) and (112)? 

je cA eileen Ue Be 

OR eae lO at a 

oan) 

If the values of (hkl) are interchanged, the result will be [131]. 

Exercise 2.1. Make a copy on tracing paper of the lattice points outlining a single unit cell in 

Fig. 2.5. Lay your tracing on top of a unit cell in the original drawing and satisfy yourself 

that you can reach any other cell by suitable lattice translations. 

Exercise 2.2. 

a) Examine the lattice in Fig. 2.14, and give the coordinates of the points P,, P>, P; and P4, 

the values of [uvw] for the lattice lines that are drawn in. 

b) On the same diagram, drawn in the lines [211], [120] and [212]. 

c) Determine the latticesplanes to which the lines [131] and [111] belong. 
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Fig. 2.14 

Exercise 2.3. Figure 2.15 is the projection ofa lattice along the c-axis onto the a, b-plane. The 

dark lines labelled I and II are the traces of planes that are parallel to the c-axis. 

a) Index planes IJ and II. 

b) Calculate [uvw] for the line common to the two planes. 

c) Draw the traces of the planes (320) and (120) on the projection. 

Sal 
SS SS Sa 
BP eds fae (os Jo) 
SE ie ta a Fig. 2.15 

Exercise 2.4. Give (hkl) for a few planes containing the line [211], and give [uvw] for a few 

lines lying in the plane (121). 

Exercise 2.5. What condition must be fulfilled to make (a) [100] perpendicular to (100), 

(b) [110] perpendicular to (110) and (c) [111] perpendicular to (111)? 

Exercise 2.6. What are the relationships between (110) and (110); (211) and (211); [110] and 

[110]; [211] and [211]? 
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3 Crystal Structure 

In order to progress from a lattice to a crystal, the points of the lattice must 

be occupied by atoms, ions or molecules. Because the points are all 

identical, the collections of objects occupying them must also be equal. In 

general, crystals are not built up so simply as the crystal of a-polonium in 

Fig, 2.1! 

Let us consider the construction of a crystal by means of a hypothetical 

example. Figure 3.1a shows a lattice with a rectangular unit cell projected on 

the a,b-plane. We now place the molecule ABC in the unit cell of the lattice 

in such a way that A lies at the origin and B and C within the chosen cell 

(Fig. 3.1b). The position of B or C with respect to the origin may be described 

by a vector r in terms of the lattice translations a, b, and ¢: 

T=xat+yb+zc (see Fig. 3.3). 

The coordinates are yet another triple: x,y,z, where 0 <x,y,z<1 for all 

positions within the unit cell. In our example, the atoms have the following 

coordinates: 

A: 0,0,0 Box Mi 216 C: Xo, V2, Zo. 

This arrangement of atoms within a unit cell is called the basis. Lattice 

translations reproduce the atoms throughout the entire lattice (Fig. 3.1c), 

or: 

lattice + basis = crystal structure. 

It follows that not only the A-atoms but also the B- and C-atoms lie on the 

points of congruent lattices, which differ from one another by the amount 

indicated in the basis (see Fig. 3.2). Every atom in a crystal structure is 

repeated throughout the crystal by the same lattice translations. 

Thus, the following simple definition of a crystal is possible. 

Crystals are solid chemical substances with a three-dimensional periodic array 
of atoms, ions or molecules. This array is called a crystal structure. 

y 
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Fig. 3.1 a-c. Interrelationship of the lattice (a), the basis or the arrangement of atoms in the 

unit cell (b) and the crystal structure (c), all shown as a projection on the a, b-plane 

Fig. 3.2. All atoms of the crystal 

structure shown in Fig. 3.1 lie on 

the points of congruent lattices 

all 



Fig. 3.3. Description of a point in a unit cell by 

the coordinate-triple x, y,z defining the vector 

rf =xa +yb +z¢c 

Fig. 3.4a-c. The CsI structure shown in a perspective drawing taking account of the relative 

sizes of the ions (a), with ions reduced to their centres of gravitiy (b) and as a parallel 

projection on (001) (c) 

An example of a simple crystal structure is caesium iodide. The unit cell is 

a cube (ay = by = Cy = 4.57 A, a=f =y =90°)!. The basis is I~: 0,0,0; Cs*: 4,4, 4. 
In Figure 3.4a, a unit cell is shown as a perspective picture, with the relative 

sizes of the ions indicated. For more complex strucutres, this method of 

illustration is less useful, as it prevents the positions of atoms from being 

clearly seen. Consequently, it is more usual merely to indicate the centres of 

gravity of the atoms, as in Fig. 3.4b. Figure 3.4c shows the same structure 

represented as a parallel projection on one cube face. 

An important quantity for any structure is Z, the number of chemical 

formula units per unit cell. For CsI, Z=1as there are only one Cs* ion and one 

' The Angstrém unit (A) = 10° cm =0.1 nm. If a row of spheres with a radius of 1 A is made, 
these will be 50000000 of them per centimetre! 

-— 194A —— 

FOOLS OOF 5,100: 10 Fr Oo ee: a 
lem 
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I ion per cell. Using only structural data, it is thus possible to calculate the 

density of CsI, since 

_m =3 
Oo Vv gcm ~, 

where mis the mass of the atoms in the unit cell and V is the volume of the cell. 

The mass of one chemical formula is M/N,, where M is the molar mass and 

Nag is the Avogadro number, so 

Z:M 
m= and / 

Na ‘ 

eee Meas 
Na: V 2 

Thus, taking N, as 6.023 x10-*? mol ', for CsI, where M = 259.81 ¢ mol! 

» 259. 
Ocsi gon =4.52e¢m ~. 

G02 3022457 >* Wee 

In a structure determination, this operation is carried out in reverse: from the 

measured density, the number of formula unit per cell is estimated. 

Using the values (hkl) and [uvw] we have so far only described the 

orientations of sets of planes and lines. Consideration of the contents of a unit 

cell makes it necessary to describe specific planes and lines in the cell. Use 

of the coordinates x,y,z makes this possible. For example, the coordinates 

x, y,+ identify all points in the plane parallel to a and b which cuts ¢ at }. 

Figure 3.5 shows the planes x, y,;and 3, y,z. The line of intersection may easily 
be seen to be described by the coordinates 3, y, 3. 

oe) 



Exercise 3.1. Cuprite, an oxide of copper, has the 

lattice: a) =by =¢p =4.27 A, a= B=y=90° and the 

basis: Cu: 

a) Draw a projection of the structure on x,y,0 (the a,b-plane) and a perspective 

representation of the structure. 

b) What is the chemical formula of this compound? What is Z (the number of formula units 

per unit cell)? 

c) Calculate the shortest Cu-O distance. 

d) What is the density of cuprite? 

Exercise 3.2. The cell dimensions for a crystal of AIB) were determined to be ap = bo = 3.00 A, 

9 =3.24A, a=B=90°, y=120°. There is an Al-atom at 0,0,0, and B-atoms at $s 
ut 

and 

WIM O rie 
>> 

a) Draw a projection of four unit cells of this structure on (001). 

2 A°ATAR'A ATATATAAATRTAD TRE raa"a MAtATACAY ANAT ROARS ROO REY rat scare ranaracata ater anata Wave ATAKAVA Yar avavaca ce sCavava Yar avaratava’a 
VACA CACACA ACACACACA* ACAVACACA "ACA CACACA VACA CACACR °. 

AN SANSA WVACAY a VACACATAYs VACACACAY A CACACACA”, 

a Wa 
IWVNV YY VA QOORY WA VAVACAY ANA PACA CA ACA CAAA 
PAA XX fa arate’ afatavava’aata ara’ atata Yate", 
WYN a a erature STATA CAV ACA CATA CAV ACACA CA CA, FESS SY r\ {\ t\ t\ C\ 

ATACACAY ACA TA CATA ACA ACARD ACA ACA CAT ACA ACACA ATA ¥ 
ROO arate arate arate ae y ava 

aan Gaeaae ana aemiamee ‘as y at a’ ., 

BRANSON ONY EE EY f\ t\ ESSERE REN ORY 
Sie cee ee Cone Cree ere ROR PES EEE ESS ATA 

b) Calculate the shortest Al-B distance. 

c) Calculate the density of AIB>. 
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Exercise 3.3. In the accompanying drawing of the unit cell of a lattice, give the coordinates of 

the points occupied by small circles, which, as we will later learn, represent inversion centres 

(Chap. 5.3). 

Exercise 3.4. Draw the unit cell of a lattice and give the coordinates which describe its 

“edges”. 

Exercise 3.5. For the same unit cell, give the coordinates Which describe its “faces”. 
4 

Exercise 3.6. Give the coordinates for the planes and lines drawn in the unit cell shown 

below. 
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4 Morphology 

By the term “morphology”, we refer to the set of faces and edges which 

enclose a crystal. 

4.1 Relationship Between Crystal Structure and Morphology 

The abundance of characteristic faces and, at least in ideal circumstances, the 

regular geometric forms displayed externally by crystals result from the fact 

that internally, crystals are built upon a lattice. What is, then, the relationship 

between the crystal structure (the internal structure) and morphology (the 

external surfaces)? Figure 4.1 shows the crystal structure and the morphology 

of the mineral galena (PbS). Lattice planes are parallel to the crystal faces, 

and lattice lines to the crystal edges. The relationship can be succinctly 

described thus: 

a) Every crystal face lies parallel to a set of lattice planes; parallel crystal faces 

correspond to the same set of planes. 

b) Every crystal edge is parallel to a set of lattice lines. 

Fig. 4.1a,b. Correspondence between crystal structure (a) and morphology (b) in galena 
(PbS). In a, the atoms are reduced to their centres of gravity 
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The reverse conclusions must, however, certainly not be drawn, since a 

crystal will have a very large number of lattice planes and lines, and generally 

only a few edges and faces. 

Furthermore, it should be noted that the shapes in Fig. 4.1 have been 

drawn to vastly different scales. Suppose the edge of the crystal marked with 

an arrow is 6mm in length; then that edge corresponds to some 10’ lattice 

translations, since the lattice parameters of galena are all 5.94 A. 

Since crystal faces lie parallel to lattice planes and crystal edges to lattice 

lines, Miller indices (hkl) may be used to describe a crystal face, and [uvw] a 

crystal edge. The morphology of the crystal gives no information about the 

size of the unit cell, but can in principle give the ratio between one unit cell 

edge and another. Normally, however, the lattice parameters are known, so 

the angles between any pair of lattice planes can be calculated and compared 

with the observed angles between two crystal faces. 

The crystal of galena in Fig. 4.1 has been indexed, i.e. the faces have been 

identified with (hkl). Thus, with the origin chosen suitably inside the crystal, 

(100) cuts the a-axis and is parallel to b and c; (110) is parallel to c and cuts a 

and b at the same distance from the origin; (111) cuts a, b and c all at the same 

distance from the origin. 

4.2 Fundamentals of Morphology 

Morphology is the study of the external boundary of a crystal, built up of 

crystal faces and edges. In morphology, the words “form”, “habit” and “zone” 

have special meanings. 

a) Form. The morphology of a crystal is the total collection of faces which 

characterise a particular crystal. The morphology of the crystals shown in 

Fig. 4.2 consists of the combination of a hexagonal prism and a “pinacoid”; a 

pinacoid is a pair of parallel faces which in this case make up the ends of this 

prism. The prism and the pinacoid are examples of a crystal form, which is 

further discussed in Chapter 8. In the meantime, we will simply consider a 

crystal form as a set of “equal” faces. It is thus possible to describe the 

morphology as the set of forms of a crystal. 

b) Habit. This term’is used to describe the relative sizes of the faces of a 

crystal. There are three fundamental types of habit: isometric or equant, platy 

or tabular, and prismatic or acicular (needle-shaped). These habits are 

illustrated in Fig. 4.2 by the relative sizes of the prism and the pinacoid. 

c) Zone. A zone is a set of crystal faces whose intersecting edges are parallel. 

The direction of these edges is called the zone-axis. In Fig. 4.1b, the crystal 
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Fig. 4.2a-c. The three basic habits: a isometric or equant, b planar or tabular, c prismatic or 

acicular with the relative rates of growth in different directions shown by arrows 

faces (001), (101), (100), and (101) belong to a zone with the zone axis [010]. 

The zonal equation (see Chap. 2.5) naturally applies not only to the general 

lines and planes of the lattice but equally to faces and edges parallel to them. 

The faces (001), (111), (110) and (111) similarly constitute a zone. The 

determinant scheme gives the zone axis: 

1S (eet eed es 

ie) tee O rai el 

ee Hy 

4.3 Crystal Growth 

It is easier to understand the morphology of a crystal if the formation and 

growth of crystals is considered. Crystals grow from, among other things, 

supersaturated solutions, supercooled melts and vapours. The formation of a 

crystal may be considered in two steps. 

1. Nucleation. This is the coming together of a few.atoms to form a three- 
dimensional periodic array - the nucleus - which already shows faces, 
although it is only a few unit cells in size (see Fig. 4.3a). 

2. Growth of a Nucleus to a Crystal. As the nucleus attracts further atoms, 
they take up positions on its faces in accordance with its three-dimensional 
periodicity. In this way, new lattice planes are formed (Fig. 4.3b-d). Note that 
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Fig. 4.3a-d. Nucleation and growth of the nucleus to a macrocrystal illustrated in two 

dimensions. a Nucleus, e.g. ina melt. b Atoms adhere to the nucleus. e Growth of a new layer 

on the faces of a nucleus. d The formation of a macrocrystal by the addition of further layers 

of atoms 

the illustration is two-dimensional only. The growth of the nucleus, and then 

of the crystal, is characterised by a parallel displacement of its faces. The rate 

of this displacement is called the rate of crystal growth, and is a characteristic, 

anisotropic property of a crystal. 

Figure 4.4 shows a few stages in the growth of a quartz crystal. 

The nucleus shown in Fig. 4.5 is bounded by two different types of faces, 

and the rates of growth of these faces, v,; and v2 are thus, in principle, 

distinguishable. Figure 4.5a illustrates the case in which these rates of growth 

are similar, while in Fig. 4.5b, they are very different. A consequence of this 

difference is that the faces corresponding to the slow growth rate become 

steadily larger, while those corresponding to rapid growth disappear entirely. 

In addition, it should also be noted that crystal growth rates are affected by 

temperature, pressure, and degree of saturation of the solution. The actual 

crystal faces which eventually enclose the crystal depend on the ratios of the 

growth rates of the various faces, the slower-growing ones becoming more 

prominent than those that grow more rapidly. Those faces which do 
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Fig. 4.4. Quartz crystal showing its stepwise growth 

Fig. 4.5a,b. Crystal growth showing 

a small (a) and a large (b) difference 

b) in growth rate with direction 



+ Normal of the face 

Fig. 4.6. Despite difference in rates of 

growth of different parts of a crystal, the 
angles between corresponding faces remain 

equal 

eventually develop generally have low Miller indices and are often densely 
populated with atoms. 

The three basic types of crystal habit may be understood in terms of the 

relative growth rates of the prism and pinacoid faces, which are indicated in 

Fig. 4.2 by arrows. 

Figure 4.6 shows how crystals of different shapes can result from the same 

nucleus. Crystal I is regular in shape, while, crystals II and III have become 

very much distorted as a result of external influences on the growth rate. None 

the less, the angles between the normals to the crystal faces remain constant, 

since the growing faces have simply been displaced along their normals. A 

parallel displacement of the faces cannot change interfacial angles. This 

observation applies equally to all growing faces of a crystal. 

This observation is the basis of the Jaw of constancy of the angle: in 

different specimens of the same crystal, the angles between corresponding 

faces will be equal. This law, which is valid at constant temperature and 

pressure, was first formulated by N. Steno in 1669, without any knowledge 

of crystal lattices! 

The relative positions of the normals to the faces of the crystals in 

Fig.4.6 remain constant. It is possible, by measurement of the angles 

between faces, to determine these relative positions and thus eliminate the 

distortion. 

So far, our discussion has assumed the existence of a single crystal nucleus, 

or only a few, which can grow separately into single crystals like those shown 

in Fig. 1.1. If many nuclei are formed simultaneously, they may grow into one 

another in a random fashion, as illustrated in Fig. 4.7. This disturbance will 

prevent the development of crystal faces and forms. Instead, a crystal 

aggregate or polycrystal results. Figure 4.7 shows an example of single phases 

in the development of such an aggregate. 
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Fig. 4.7a-c. Development of a crystal aggregate. a Formation of several nuclei, which 

initially can grow independently. b Collision of growing crystallites leads to interference and 

irregularity in growth of the polyhedra. Eventually, the polyhedral shape of the crystallites is 

entirely lost. c The single crystal domains of the aggregate with their grain boundaries 

4.4 The Stereographic Projection 

Since crystals are three-dimensional objects, it is necessary to use projections 

in order to work with them on a flat surface. One such projection is the 

parallel projection onto a plane, which was illustrated in Fig.3.4c for 

representing a crystal structure. 

For morphological studies, the stereographic projection has proved to be 

particularly useful. The principle of this projection is shown in Fig. 4.8. A 

crystal, in this case galena (PbS), is placed at the centre of a sphere. The 

normals to each face, if drawn from the centre of the sphere, will then cut the 

surface of the sphere in the indicated points, the poles of the faces. The angle 

between two poles is taken to mean the angle between the normals, not the 

dihedral angle between the faces. These two angles are simply related as: angle 

of normals = 180°-dihedral angle. The poles are not randomly distributed 

over the surface of the sphere. In general they will lie on a few great circles, i.e. 

circles whose radius is that of the sphere. Those faces whose poles lie on a 

single great circle will belong to a single zone. The zone axis will lie 

perpendicular to the plane of the great circle. Considering the sphere as a 

terrestrial globe, a line from each of the poles in the northern hemisphere is 

projected to the south pole, and its intersection with the plane of the equator 

is marked with a point ¢ or a cross + (see Fig. 4.9). Lines from poles in the 

southern hemisphere are similarly projected to the north pole, and their 

intersections with the equatorial plane are marked with an open circle O. For 

those poles lying exactly on the equator, a point or cross is used. 

Figure 4.10 shows the stereogram of the crystal in Fig. 4.8, only those 

planes belonging to the northern hemisphere being shown. Poles belonging to 

a single zone lie on the projections of the relevant great circles. The points 

resulting from the projections of each face are indexed. 
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Fig. 4.8 Ss Fig. 4.9 Si 

Fig. 4.8. Crystal of galena at the centre of a sphere. The normals to the faces of the crystal cut 

the sphere at their poles, which lie on great circles 

Fig. 4.9. In a stereographic projection, lines are drawn between the poles of the faces in the 

northern hemisphere and the south pole, and the intersection of these lines with the 
equatorial plane is recorded 

Figure 4.11 a shows the stereographic projectidn of a tetragonal prism and 

a pinacoid, while Fig. 4.11 b gives that of a tetragonal pyramid and a pedion. A 

pedion is the name given to a crystal form which consists of a single face. In 

both cases, the altitude of the prism or pyramid 1s set in the N-S direction. 

Both the tetragonal prism and the tetragonal pyramid have square bases and 

square cross-sections. The faces of the prism are perpendicular to the plane of 

the stereographic projection, so their poles lie on the circumference of the 

circle of that projection. The faces of the pyramid make equal angles with the 

Fig. 4.10. Stereographic projection of the 

100 crystal in Fig. 4.8; see also Fig. 4.1b 
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Fig. 4.11a,b. Stereographic projection of a tetragonal prism and a pinacoid (a) and of a 

tetragonal pyramid and a pedion (b). The angular coordinates g and @ are given for one of 

the pyramid faces 

equatorial plane, so the poles of these faces are at equal distances from the 

centre of the plane of projection. 

The representation of the stereographic projection in Fig. 4.8-11 is only 

intended to explain the principles of the method. In practice, the projection is 

based on the values of measured angles. 

4.5 The Reflecting Goniometer 

The angles between crystal faces may conveniently be measured with a 

reflecting goniometer. The crystal is mounted on a goniometer table, which is 

essentially a rotating plate with a graduated angle scale (see Fig. 4.12). The 

crystal mount (or goniometer head) is a construction of arcs and slides which 

makes it possible to bring a zone axis of the crystal into coincidence with the 

rotation axis of the goniometer table. The crystal is then rotated until the light 

beam from a lamp maunted horizontally is reflected from a crystal face onto 
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Lamp 

Goniometer table 
with crystal 

Fig. 4.12. Light path for a one-circle 

Telescope reflecting goniometer 

the cross-hairs of a telescope, also mounted horizontally. The reading on the 

scale of the table then fixes the position of that crystal face. The table is then 

rotated until another face comes into the reflecting position, and the angular 

reading for this position is taken. The difference between the two readings is 

the angle between the normals to the crystal facés. Continuing to rotate the 

table through 360° will allow the angles corresponding to the selected zone to 

be measured. This is the principle of the one-circle goniometer. For the 

measurement of the angles corresponding to other zones on a one-circle 

reflecting goniometer, the crystal must be remounted. 

A two-circle reflecting goniometer makes it possible to rotate and measure 

the crystal about two mutually perpendicular axes. In this way, all possible 

faces can be brought into the reflecting position. From the position of the two 

circles, the angular coordinates ¢ and 9 may be measured. These coordinates 

uniquely define the orientation of a crystal face, and the values can be directly 

plotted on a stereographic projection. 

4.6 The Wulff Net 

The Wulff net is a device to enable measured crystal angles to be plotted 

readily as a stereographic projection. The Wulff net is itself the stereographic 

projection of the grid of a conventional globe orientated so that the N’-S’ 

direction lies in the plane of projection (Fig.4.13). The equator and all 

meridians of the globe are great circles, while all of the parallels except the 

equator are small circles. All circles on the surface of a sphere will be 

represented on the plane of a stereographic projection by circles, arcs of 
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Fig. 4.13. a The grid net of a globe with 
the plane of a stereographic projection 

(PP). The stereographic projection of 

this grid produces the Wulff net. The 

position of the pole of a crystal face is 

defined by the coordinates ¢ (azimuthal 

angle) and o (pole distance). b The pole 

P has the coordinates ¢ =90°, 0 = 60°. 

(After Ramdohr and Strunz [37]) 
PP Si 

circles or straight lines (Fig.4.13b). The stereographic projection thus 

represents circles consistently, as it does angles. With the help of the Wulff 

net, the angle between any two poles on the surface of the sphere can now be 

plotted directly on the stereographic projection. The angle measured between 

any two crystal faces is the angle between their normals or the angle between 

their poles. The two normals define the plane of a great circle (Fig. 4.8). The 

arc of the great circle between the two normals is the measured angular value. 

It is thus crucial that only arcs of great circles are used when angles are plotted 

on or estimated from a stereographic projection! 

We shall now demonstrate the use of the Wulff net to plot the two angles 

measured with a two-circle goniometer (the azimuthal angle ¢ and the pole 

distance 0) ona stereographic projection. The circle of the plane of projection 

is taken as the azimuth @, so possible ¢-values run from 0-360°. The front 

face of the tetragonal pyramid in Fig.4.11b thus has a ¢-value of 90°. 

The o-axis is perpendicular to the ¢-axis. The faces of the tetragonal pyramid 

have -coordinates of 0°, 90°, 180° and 270° respectively and all faces have 

the same o-value. 
x 
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A similar consideration of a tetragonal dipyramid, e.g. no. 6 in Exercise 

4.4 results in the following angular coordinates (¢, @) for the eight faces: 

0°, 0; 90°, 0; 180°, 0; 270°, o and 0°, —o; 90°, — a; 180°, —o; 270°, —o. Note 

that faces in the northern hemisphere are assigned values 0 < 0 <90°, while 

those in the southern hemisphere have —90°<o<0° where both 90 and 

—90° represent positions on the equator. For an example, see the table of 

é, o-values for the galena crystal in Exercise 4.9. 

For practice, a Wulff net with a diameter of 20 cm and a 2°-grid is bound 

inside the rear cover. For best results, this should be carefully removed and 

pasted ona card with a minimum thickness of 1 mm. Drawings are then made 

on tracing paper secured by a pin at the centre of the net so as to be readily 

rotated. 

The stereographic projection is also very useful for the description of the 

point groups. In this case, there is a departure from the normal convention of 

plotting the stereogram. For rotation axes and rotoinversion axes, the 

symbols of these axes are used to indicate their intersection with the surface of 

the sphere of projection. Similarly, for mirror planes, the corresponding great 

circle of intersection is indicated (for an example, see Fig. 6.8e). 

4.7 Indexing of a Crystal 4 

Today, it is rarely necessary to index a crystal whose lattice constants are 

unknown. In general, lattice constants give no indication of which faces of a 

crystal will actually be prominent, but it is possible to produce a stereogram 

showing all the poles representing faces that are possible for that lattice. Since 

crystals usually develop faces with low Miller indices, the number of poles 

which must be drawn is small. 

We shall now draw the stereogram of the poles of a crystal of topaz. The 

lattice parameters are ay =4.65, by =8.80, co = 8.40 A, a@ p= =O) a hie 

six faces (100), (100), (010), (010), (001), (001) which are normal to the 
crystallographic axes can be entered immediately into the stereogram 

(Fig. 4.14). These faces lie on the following zone-circles: [100] =[(001)/(010)], 

[010] =[(100)/(001)], [001] =[(100)/(010)]. The zone axis is normal to the 

plane of the zone-circle, and is parallel to the set of lattice lines which are 

common to the lattice planes making up the zone. 

Figure 4.15 shows a (010)-section through the crystal lattice with the 

traces of the planes (100), (101), and (001), which belong to the [010]-zone. 

The angle 6 is the angle between the normals to (001) and (101). Since 

tan 0 ry 6=61.03°. Similarly, Fig. 4.16, showing the (100)-section of the 
ag 

same lattice, gives the angle between the normals to (001) and (011). In this 
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Fig. 4.14. Stereogram of the 
poles of a few of the faces of 
a topaz crystal allowed by 

the lattice which have low 

a indices 

case, tan heer and 6’=43.67°. With the help of the Wulff net, the 
0 

angles 6 and 0’ can be placed on the great circles corresponding to the zones 

[010] and [100] respectively, giving the positions of the poles of the planes 

(101) and (011). Since the planes (101), (101) and (101) have the same 

inclination to the crystallographic axes as (101) and (011), (011) and (011) that 
of (011), they may likewise be entered on the stereogram. 

The great circles for the zones [(100)/(011)] and [(101)/(010)] may now be 

drawn in, and the two intersections of these circles will occur at the poles with 

Miller indices (111) and (111). These traces of zone-circles lying in the 
southern hemisphere are given as dashed lines. ! 

The drawing in of the circles for further zones gives the poles for further 

faces. From these, the poles can be located for all faces with the same axial 

Application of the zonal equation leads to 

1 Oo Ot @ 0 0 IL © @ i 
0 kk Qa it al ov il @ 

(Canoe LOA Br Gi) 

If the values of [uvw] are interchanged, the result is (111). Two zone circles intersect in two 

poles. In morphology, (hkl) and (hkl) represent two parallel faces, which are related to 

only one set of lattice planes, which may be designated as (hkl) or (hkl). 

0 
il Or! RIir Or! oo 
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(001) . (001) 

(010) 

e e 

Fig. 4.15 Fig. 4.16 

Fig. 4.15. Section parallel to (010) through the lattice of a topaz crystal, showing the traces of 

the planes (001), (101) and (100), all of which belong to the zone [010]. 6 is the angle between 

the normals to (001) and (101) 

Fig. 4.16. Section parallel to (100) through the lattice of a topaz crystal, showing the traces of 

the planes (001), (011) and (010), all of which belong to the zone [100]. 0’ is the angle between 

the normals to (001) and (011) 

inclination as (111), viz. (111), (111), (111), (111),4111), (11D) and (111). For 
further faces, the zonal equation is used. Eventually, a stereogram, like that 

in Fig.4.17 may be produced showing the poles for all faces (hkl) with 

Dah. ko and 0x l22. 

An actual topaz crystal is shown in Fig. 4.18. Once such a crystal has been 

indexed with the aid of a stereogram, it is only necessary to measure a few 

angles on the actual crystal in order to bring the angles of the crystal into 

correspondence with the angles in the stereogram. 

39 





Fig. 4.19. Pattern for a model of a galena (PbS) crystal 
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Exercise 4.1. With the help of the pattern in Fig. 4.19, build a model of the galena crystal 

shown in Figs. 4.1 b and 4.8. Make a photocopy of the pattern, cut it out, and lightly score all 

the remaining lines. Fold away from you along the lines and stick sufficient neighbouring 

faces together with transparent tape to hold the model together. 

Exercise 4.2. Plot the poles of the faces of the following objects on a stereogram. 

i 
house: plan house: elevation 

Exercise 4.3. Plot the directions corresponding to the following axial systems on a 

stereogram. 

Cc 

a= 30" 

b 

a 

ae = 
we x ae ae 

/ \ / \ 
/ \ f \ 
/ \ f \ 

| \ ; | 
. y \ i 

N i 
SS ca / 
eat On as 

1. Orthogonal axial system 2. Hexagonal axial system 

(cubic, tetragonal, 

orthorhombic) 
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Exercise 4.4. Photocopy and cut out the following patterns, which may be made into models 
of (a) a rhombic dipyramid, (b) a tetragonal pyramid with a pedion and (c) a hexagonal 
prism with a pinacoid. With a little imagination, you can make similar models of the crystals 
in the following diagram (p. 44 and 45). 

Fig. 4.20a-c. Pattern for models of a rhombic dipyramid (a), a tetragonal pyramid and 

pedion (b) and a hexagonal prism and pinacoid (c) 

43 



Plot the poles of the faces of the crystals you have made on a stereogram with the 

orientation chosen such that the altitude of each crystal is perpendicular to the plane of 

projection. The drawings below give the geometric shape of the base or of any section 

normal to the altitude. 

= 

Pyramid 

Dipyramid 

Basal 

plane 

or section 

of the 

polyhedron 

rhombic tetragonal 

Ses 
To ~ 

: \ | 
\ ) 
\ 
Scena 

SSN 

sj 

4 

Square | 

Exercise 4.5. Which faces of the hexagonal prism and pinacoid and of the tetragonal 
dipyramid belong to a single zone? Draw in the zone circle on the appropriate stereogram in 

Exercise 4.4. 
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Pyramid 

Dipyramid 

Basal 

plane 

or section 
of the 

polyhedron 
Equilateral 
triangle 

Regular 

hexagon 

Exercise 4.6. What is represented by the following stereograms? 
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Exercise 4.7. What is the relationship between the normals to the faces comprising a zone? 

How are they related to the zone axis? 

Exercise 4.8. In the cubic unit cell shown in Fig. 4.21 three different sorts of axes are shown. 

Three axes (CJ) pass through the midpoints of opposite faces (x,4,4; 4,y,5; and 3,3,2). 

Four axes (A) lie along the body diagonals. Six axes (()) pass through the mid points of 

opposite edges. All of these axes intersect in the centre of the unit cell. 

A eee en BO Sh aes 

Fig. 4.21. Cubic unit cell showing the 

axes through the midpoints of opposite 

V faces (LC), along the body diagonals (A), 

and through the midpoints of opposite 

VY edges (()). (After [6]) 

Draw the axes ona stereographic projection making use of the Wulff net. It is convenient 

to place one of the axes (LC) at the centre of the plane of projection. The angles between the 

various axes may be taken from Fig. 4.22 and 4.23, which show cross-sections through the 

centre of the cube. 

Fig. 4.22. Section through the centre of the cubic unit cell in Fig. 4.21 parallel to a cube face 

(5,Y>Z OF X,5,Z OF X,y,5) 

Fig. 4.23. Section x,x,z or x,1—x,z through the cubic unit cell of Figure 4.21. The angle O 

is 54.73°, half of the tetrahedral angle (the H-C-H angle in methane) of 109.46° 
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Exercise 4.9. The galena crystal in Fig. 4.24 (see also Fig.4.1) was measured using a 

reflection goniometer. The angular coordinates @ and @ are given in the accompanying 

table. 

a) Draw the stereogram of the pole faces. 

b) Compare this stereogram with that of the axes in the cube drawn in Exercise 4.8. 

Face 2 & 

IL il? - cmai}e 
Dy Or +45° 
3 0° ore 
4,4’ 45° 4a 
5 45° 902 
6,6’ 908 +45° 
7 90° Soe 
8,8" I3}5)° +54.73° 
9 BD 90° 

10,10’ 180° +45° 
11 180° Qe 
Pian? PIS” +54.73° 
13 Die 90° 
14,14’ 270° 445° 
15 270° 90° 
16,16’ SSS? +54.73° 
17 SIS 90° 

Fig. 4.24. Crystal of galena 

Exercise 4.10. Draw a stereogram showing the pole faces of a crystal of rutile. The lattice 

parameters are given in Table 9.5. Compare your stereogram with the crystal given in Table 

Si ILileitsy. 
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5 Principles of Symmetry 

Up to now, the only repetition operation that we have used formally has been 

the lattice translation: the operation of three non-coplanar lattice translations 

on a point which gives rise to the space lattice. 

Fig. 5.1. This wheel may be considered either as derived 

from an object consisting of a single spoke which is 

repeated by rotation every 45° or as an object which is 

brought into coincidence with itself by a rotation of 45° 

In addition to lattice translations, there are other repetition operations, 

such as rotations and reflections. In these cases, an object is brought into a 

coincidence with itself by rotation about an axis or reflection in a plane. A// 

repetition operations are called symmetry operations. Symmetry consists of the 

repetition of a pattern by the application of specific rules. In the wheel 

illustrated in Fig. 5.1, the spokes are repetitions of one another at intervals of 

45°, or alternatively, as the wheel rotates, it is brought into coincidence with 

itself by every rotation of 45°. When a symmetry operation has a “locus”, that is 

a point, a line, or a plane that is left unchanged by the operation, this locus is 

referred to as the symmetry element. 

Fig.5.2. Reflection of either side of this gypsum crystal in the hatched 

plane indicated brings it into coincidence with the other side. This 

plane is called a mirror plane 

48 



Fig. 5.3. Rotation of the pair of scissors through 180° about the 

axis marked with an arrow brings it into coincidence with itself. 

This axis is called a rotation axis 

Figure 5.2 is an illustration of a crystal of gypsum. The right-hand half of 

the crystal can be brought into coincidence with the left-hand half through a 

reflection in the hatched plane, which will equally bring the left-hand side into 

coincidence with the right. Every point in the cr¥stal will be moved by this 

reflection operation except those which actually lie on the reflection plane 

itself. The plane containing these points is thus the symmetry element 

corresponding to the symmetry operation of reflection; it is called a mirror 

plane. 

Rotation through 180° about the axis marked with an arrow will bring 

either half of the pair of scissors in Fig. 5.3 into coincidence with the other 

half. Alternatively, rotation of the pair of scissors through 180° brings it into 

coincidence with itself. Every point on the scissors moves during this 

operation except those that lie on the rotation axis (the arrow) itself. The 

points comprising this axis make up the symmetry element corresponding to 

the symmetry operation of rotation: the rotation axis. 

Fig. 5.4. Either pentagon is brought into coincidence with the 

other by reflection in a point. This is called inversion, and the 

point which remains unmoved by the operation is called an 

inversion centre or centre of symmetry 
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Another type of symmetry is shown by the pair of irregular pentagons in 

Fig. 5.4. Reflection of either pentagon through the indicated point will bring 

it into coincidence with the other pentagon. In this symmetry operation, 

which is called inversion, only a single point remains unchanged, it is the 

symmetry element of the symmetry operation inversion and is called an 

inversion centre or a centre of symmetry. 

5.1 Rotation Axes 

What symmetry elements are present in a general plane lattice, such as that 

shown in Fig. 5.5? Make a copy of the figure on tracing paper and lay the copy 

directly over the original. Then rotate the copy about the central lattice point 

A until both lattices come into coincidence once more. In this case, this will 

happen after a rotation of 180°, and a further rotation of 180° makes a full 

360° rotation, returning the upper lattice to its original position. 

The symmetry element corresponding to the symmetry operation of 

rotation is called a rotation axis. The order of the axis is given by X where 
360° : ive ; 

X= , and ¢ is the minimum angle (in degrees) required to reach a 
é 

position indistinguishable from the starting point. In the above case, 

X= =, and the axis is called a 2-fold rotation axis. The symbol for 

this operation is simply the digit 2. In a diagram, it is represented as (() if it is 

normal to the plane of the paper, or as — if it is parallel to it. 

Whenever a 2-fold axis passes through a point A, a 2-fold axis must pass 

through all points equivalent by translation to A. 2-fold axes normal to the 

lattice plane will also pass through all points B, C and D which lie on the 

midpoints of a translation vector. There are thus an infinite number of 

rotation axes normal to this plane. 

Objects are said to be equivalent to one another if they can be brought into 

coincidence by the application of a symmetry operation. If no symmetry 

Operation except lattice translation is involved, the objects are said to be 

“equivalent by translation” or “identical”. 

In Fig. 5.5, all rotation axes A are equivalent to one another, as are all axes 

B, C and D. On the other hand, the axes A are not equivalent to B, and so 

forth. 

A crystal, in which congruent lattice planes (Fig. 5.5) lie directly one above 

the other, may develop a morphology in which the lower and upper faces are 

corresponding parallelograms (pinacoid), and the side faces are all perpen- 

dicular to these (Fig. 5.6). Such a crystal will come into coincidence with itself 

if it is rotated throug} 180° about an axis through the middle of the upper and 
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Fig. 5.5a,b. A general plane lattice (a) and its symmetry (b). es elements marked with 

the same letter are equivalent to one another 
4 

lower faces. It thus contains a single 2-fold axis. This observation may be 

generalised as follows: 

The morphology of a single crystal will show only one symmetry element of a 

particular type in a particular direction, although both its lattice and its crystal 

structure will show infinitely many parallel elements. 

Fig.5.6. A crystal with upper and lower parallelogram 
faces and sides perpendicular to them has - so far as its 
morphology is concerned - only a single 2-fold axis 
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Fig. 5.7a-c. The arrays of points resulting from the operation on a point of a 3-fold, b 4-fold, 

and ¢ 6-fold axes normal to the plane of the paper can lead to lattice planes. © additional 

points produced by lattice translations 

Let us now consider whether it is possible to have axes of order higher than 2. 

An axis with X > 2 operating on a point will produce at least two other points 

lying in a plane normal to it. Since three non-colinear points define a plane, 

this must be a lattice plane. Thus, rotation axes must invariably be normal to 

lattice planes, and we must decide whether the points generated by a rotation 

axis can fulfill the conditions for being a lattice plane, specifically, that 

parallel lattice lines will have the same translation period. 

a) Threefold Rotation Axis: 3 (graphical symbol A). Figure 5.7a shows a 

3-fold rotation axis normal to the plane of the paper. By its operation, a 

360° 
rotation of 120° | | point I comes into coincidence with point IJ, 

and, by a second rotation of 120° with point III. A further rotation of 120° 

returns it to its original location. A lattice translation moves point I to point 

IV, and the four points thus generated produce the unit mesh of a lattice 

plane. Thus, 3-fold axes are compatible with space lattices. 

b) Fourfold Rotation Axis 4 (graphical symbol (Q). Fourfold axes are also 

compatible with space lattices. As shown in Fig. 5.7b, the action of a 4-fold 

axis On a point results in a square of points which is also the unit mesh of a 

lattice plane. 

c) Fivefold Rotation Axis 5. The operation of this axis on a point results in a 

regular pentagon of points, as shown in Fig. 5.8a. The line through points III 

and IV is parallel to that through II and V. If these are to be lattice lines, the 

spacings of the two pairs of points must either be equal or have an integral 

ratio. Since this is clearly not the case, the points in Fig. 5.8a do not constitute 
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Fig. 5.8a—c. The arrays of points resulting from the operation on a point of a 5-fold, b 7-fold, 

and c 8-fold axes do not fulfil the conditions for a lattice plane, in that parallel lines through 

equivalent points do not have equal spacings. These rotation symmetries cannot occur in 

lattices 

a lattice plane, and we may conclude that 5-fold axes are impossible in space 

lattices! 

d) Sixfold Rotation Axis 6 (graphical symbol OQ)". This operation, applied to 

a single point, results in a regular hexagon (Fig. 5.7c). A lattice translation 

places a lattice point on the axis itself, and the resulting array meets the 

condition for a lattice plane. Inspection of Fig. 5.7a and c will show that the 

lattices resulting from 6-fold and 3-fold axes are, m fact, equal. 

e) Rotation Axes of Order Higher Than 6. Figure 5.8b and c shows the effect of 

attempting to build up a lattice plane by applying 7-fold and 8-fold axes to a 

point. The results are analogous to those for the 5-fold axis described in 

paragraph (c) above. These arrays do not produce equal spacings of points 

and so cannot occur in lattices. The same result will occur for any rotation 

axis with X > 6. 

In space lattices and consequently in crystal structures, only I-, 2-, 3-, 4-, and 

6-fold rotation axes can occur. 

Note that the wheel in Fig. 5.1 contains an 8-fold axis. 

5.2 The Mirror Plane 

A further symmetry operation is reflection and the corresponding symmetry 

element is called a plane of symmetry or, more commonly, a mirror plane, and 

given the symbol m. The graphical symbol for a plane normal to the paper is a 

' The standard international symbols for 2, 3, 4 and 6 are , A, Hand @, respectively. For 

convenience, (), A, Nand © are also used here. In Chapter 8, filled and unfilled symbols 

are used to distinguish the ends of a polar rotation axis X,. 
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Fig. 5.9. The operation of a mirror 

G plane m on an asymmetric molecule. 

The mirror plane, perpendicular to 

the paper, transforms A into B and 

A B likewise B into A 

bold line, as in Fig. 5.9. A mirror plane parallel to the paper is represented by 

a bold angle; an example of this is in Chap. 14.2. Any point or object on one 

side of a mirror plane is matched by the generation of an equivalent point or 

object on the other side at the same distance from the plane along a line 

normal to it (Fig. 5.9). 

Figure 5.10 shows the operation of a mirror plane on a lattice line A, 

generating another lattice line A’. Whether the line A is parallel to the mirror 

plane or not, the result is a rectangular unit mesh. The generation of the lattice 

plane in Fig. 5.10b requires that a lattice point lies on m; this lattice contains 

two points per unit mesh and is called centred. A primitive mesh is not chosen 

in this case since the rectangular cell (with the symmetry plane parallel to an 

edge) is easier to work with. 

Fig.5.10a,b. Operation of m on a lattice line: in a the lattice line is parallel to m. The 
resultant plane lattice is primitive with a rectangular unit cell. In b, the lattice line is tilted 
with respect to m. The resultant plane lattice again has a rectangular unit cell, but is now 
centred. © additional paints produced by lattice translations 
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5.3 The Inversion Centre 

The symmetry operation called inversion relates pairs of points or objects 

which are equidistant from and on opposite sides of a central point (called an 

inversion centre or centre of symmetry). The symbol for this operation is 1, 

and is explained in Section 5.4.1a. An illustration of this operation on a 

molecule is given in Fig. 5.11. The graphical symbol for an inversion centre 1s 

a small circle. Every space lattice has this operation and is thus centrosym- 

metric, see Fig.).12. 

The operation of an inversion centre on a crystal face generates a parallel 

face on the opposite side of the crystal. An example of this is the crystal of 

malonic acid in Table 8.11.2 which has no symmetry other than inversion, and 

is entirely enclosed by pairs of such parallel faces (or pinacoids). The 

occurrence of such pairs of parallel faces is important for the detection of 

inversion symmetry in crystals. 

Fig. 5.11. The operation of an inversion centre (O) on asymmetric molecules 

Fig. 5.12. The unit cell of a general lattice, 

showing the inversion at },!,. All lattices are 
Dine 

centrosymmetric 
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5.4 Compound Symmetry Operations 

The operations of rotation, inversion, reflection and lattice translation may 

be linked with one another. There are two possibilities to be considered here: 

a) Compound Symmetry Operation. Two symmetry operations are performed 

in sequence as a single event. This produces a new symmetry element but the 

individual operations of which it is composed are lost. 

b) Combination of Symmetry Operations. In this case, two or more individual 

symmetry operations are combined which are themselves symmetry opera- 

tions. Both they and any combination of them must be compatible with the 

space lattice. 

These different cases may be illustrated for 4-fold rotation and inversion 

by considering the examples given in Fig. 5.13. 

a) Compound Symmetry Operation. Figure 5.13a shows an operation which 

consists of a rotation of 90° about an axis followed by an inversion through a 

point on the axis. Successive applications of this compound operation move a 

point at 1 to 2, 3, 4, and back to 1. Note that the resulting array has neither an 

inversion centre nor a 4-fold rotation axis. 

b) Combination of Symmetry Operations. Figure 5.13b illustrates the result of 

the operations 4-fold rotation and inversion also being present themselves. 

Fig. 5.13a,b. Compound symmetry operation a and combination of symmetry elements b of 
a 4-fold rotation and an inversion, illustrated by the effect on the point 1. In a the rotation 
and the inversion are not present; in b they are present. The open circles in a represent 
auxiliary points occupied when only one part of the compound operation has been applied. 
In b, the combination of the rotation and the inversion results also in a mirror plane normal 
to the axis . 
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Table5.1. Compound symmetry operations of simple operations. The corresponding 

symmetry elements are given in round brackets 

; 
Rotation Reflection Inversion Translation 

Rotation x“ Roles eS EON 
reflection inversion rotation 

s 

, Roto- - i 
Reflection ( i : = 2 fold os : 

reflection axis) rotation reflection 

tL | 
: (Roto- (2-fold F 

Inversion ; , : ; : x Inversion 
inversion axis) rotation axis) 

; : : In i 
Translation (Screw axis) (Glide plane) pnvarson x 

centre) 
1 

Successive operations of the 4-fold axis move a point from 1 to 2, 3,4 and back 

to 1, while the inversion centre moves it from each of those positions to 7, 8, 5 

and 6 respectively. 

Combinations of symmetry operations il be further examined in 

Chapters 6, 8 and 9. Compound symmetry operations are summarised in 

Table 5.1, where the names of the symmetry elements corresponding to the 

symmetry operations are given in round brackets. Neither reflection plus 

inversion nor translation plus inversion results in a new operation. Glide and 

screw operations are beyond the needs of the present discussion and will be 

covered in Chapter 9.1. 

5.4.1 Rotoinversion Axes 

The compound symmetry operation of rotation and inversion is called 

rotoinversion. Its symmetry elements are the rotoinversion axes, with the 

general symbol X(pronounced X-bar or bar-X). There are only five possible 

rotation axes X: 1, 2, 3, 4 and 6, and five corresponding rotoinversion axes XG 

1, 2, 3, 4 and 6. 

a) Rotoinversion Axis 1 (Fig. 5.14a). 1 implies a rotation of 360° followed by 

inversion through a point on the 1-fold rotoinversion axis. The operation of 1 

on a point 1 returns it to its starting position, and the subsequent inversion 

takes it to point 2. The rotoinversion operation | is thus identical to inversion 

through an inversion centre. For this reason, / is used as a symbol for the 

inversion centre. 
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0) A 3S=341 

Fig.5.14a-d. The operation of rotoinversion axes on a point |: a Li bQ=mie3=34r 

d6=3 1m. For 4, see Fig. 5.10a. The unfilled circles represent auxiliary points which are 

not occupied when the two operations of which the compound operation is composed are 

not themselves present 

b) Rotoinversion Axis 2 (Fig. 5.14b). The effect of rotation through an angle 

of 180° followed by inversion is to take a point from | to 2. A repetition of this 

compound operation returns it to its original position. The two points are, 

however, also related to one another by reflection in a plane normal to the 

axis. The operation 2 is thus identical with m, and need not be considered 

further. Note, however, that 2 represents a direction normal to m. 

c) Rotoinversion Axis 3 (graphical Symbol A) (Fig. 5.14c). Successive appli- 

cations of the operation 3 move a point to altogether six equivalent positions. 

In this case, both of the simple operations 3 and 1 are necessarily present - 

3=3+1, so the compound symmetry operation is here a combination of 

symmetry operations. 

d) Rotoinversion Axis 4 (graphical symbol @) (Fig. 5.13a). The 4 axis has 
already been analysed in the previous section. As may be seen in Fig. 
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5.13a, and as the graphical symbol indicates, 4 implies the presence of a 
parallel 2. 

e) Rotoinversion Axis 6 (graphical symbol @) (Fig. 5.14d). Successive appli- 

cations of 6 move a point to altogether six equivalent positions. It can be 

seen that 6 implies the presence of a parallel 3 and a perpendicular m - 

6=3 1m. 

The unambiguous demonstration of the relationships: 1= inversion 

centre, 2=m, 3=3+1, 4 implies 2, and 6=3 1 m in Figs. 5.13a and 5.14 is 

only possible when an object such as an unsymmetrical pyramid is 

operated upon by symmetry operations (see exercise 5.1a). Note particular- 

ly that only rotoinversion axes of odd order imply the presence of an inversion 

centre, viz. 1 and 3. 

5.4.2 Rotoreflection Axes 

Like the rotoinversion axes, rotoreflection axes S;, Sy, S3, S4, and Ss may be 

defined. Rotoreflection implies the compound operation of rotation and 

reflection in a plane normal to the axis. However, these axes represent 

nothing new, since it is easy to demonstrate the correspondence S; =m; 

S,=1; S;=6; S,=4; S,=3. Rotoinversion axes are now invariably used in 

crystallography. 

The symmetry elements with which the crystallographer is concerned 

are the proper rotation axes X (J, 2, 3, 4 and 6) and the rotoinversion or 

improper axes X (1 =inversion centre, (2)=m, 3, 4 and 6). In addition to 
these, there are screw axes and glide planes (see Chap. 9.1). 

The axes X and X, including 1 and m, are called point-symmetry elements, 

since their operations always leave at least one point unmoved. In the case of 

rotation axes, this property applies to every point on the axis. 

ay) 
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Exercise 5.1. The ten crystallographic point symmetry operations are shown on pp. 60 

and 61. Carry out these operations on: 

a) An unsymmetrical pyramid, whose base lies into the plane of the paper. Sketch the 

appearance of the generated pyramids, using dotted lines for those lying below the 

paper. 
b) A general pole on a stereographic projection. 

Exercise 5.2. Carry out the rotoreflection operations S;, S2, S3, Sy and S, on a general pole 

on a stereographic projection, and compare these with the stereograms of the rotation- 

inversion axes 1, 2=m, 3, 4 and 6 in Exercise 5.1. 

Exercise 5.3. What crystal form is developed by the faces whose poles result from the 

operation of 3, 4, 6 and 6 on a general pole? (see Exercise 5.1 b). 

Exercise 5.4. What shape is implied for the section of a prism which has a 2-, 3, 4, or 

6-fold axis? 

Exercise 5.5. Which rotoinversion axes contain an inversion centre? 

Exercise 5.6. Determine the location of the rotation axes of a cube. 
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6 The 14 Bravais Lattices 

The general space lattice, with no restrictions on the shape of the unit cell, 

may be used to describe all crystals. In most cases, however, the lattices which 

occur are special in that they have special features, such as unit cell 

dimensions (lattice parameters) which are equal in two or three directions or 

angles between cell edges with particular values, such as 60°, 90°, 120° or 

54.73°. The general lattice has no point symmetry elements except inversion 

centres. The presence of rotation axes and mirror planes will restrict the cell 

parameters in some way, and give special lattices. These special lattices give 

rise to simplifications in the crystal morphology and in other physical 

properties. 

When lattice translations in two directions are equivalent, all physical properties 

are equal in these directions. ; 

In addition to the general space lattice, there are several special lattices. 

Before we consider these space lattices, however, it is useful to develop the 

concepts by consideration of general and special plane lattices. 

The General (Oblique) Plane Lattice 

If we take a point 1, and operate on it with a 2-fold axis, we will generate an 

equivalent point 2 (Fig.6.1a). The application of a lattice translation a to 

point 1 generates an identical point 3 (Fig. 6.1b), and the 2-fold axis then 

relates point 3 to point 4 (Fig. 6.1c). We have now generated a unit mesh of the 

lattice. It has the shape of an oblique parallelogram, where ap 4 by and y 490°. 

<= 
Qt 

<= 

3 

a) b) 

Noe Noe 

Fig. 6.1a—-c. Development of the general plane lattice, with an oblique unit mesh 
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Note that here and throughout this book, in reference to symmetry, # means 

need not be equivalent while = means are required by symmetry to be equivalent. 

It is possible to vary ao, by and y in any way we like without losing the 2-fold 

axis. Thus this lattice is fully general. 

Special Plane Lattices 

a) Returning to Fig. 6.1 a, point 3 could have been chosen so that the points 1, 

2 and 3 described a right triangle, with the right angle at point 3 (Fig. 6.24). 

The operation of the 2-fold axis now results in a rectangular unit mesh, ag #bo, 

y =90°. The arrangements of the points is now “special”, as further symmetry 

has been introduced, namely two mutually perpendicular mirror planes, 

parallel to the 2-fold axis (Fig. 6.2b). 

1 B 4 5 ° : 

a () Fig. 6.2a,b. Development of the 

special plane lattice with a rectangular 

‘ 5 a) ° sb) unit mesh (a) and its symmetry (b) 

b) A further possibility in Fig. 6.1 a would be to choose the location of point 3 

so that points 1, 2 and 3 formed an isosceles triangle with the two equal edges 

meeting at point 3. The unit mesh of the resulting lattice is a rhombus: ap = bo, 

y 460°, 90° or 120° (Fig. 6.3a). Extension of the edges 1-4 and 1-3 a further 

unit translation on the other side of 1, an alternative choice of unit mesh arises 

(Fig. 6.3b). It is rectangular (aj + bj, y = 90°), and is called centred because it 

has a point at its centre identical to those at the vertices. Consideration of the 

e-———-—--—--—¢? 

c) 

Fig. 6.3a—c. Development of the special plane lattice with a rhombic unit mesh (a), and its 

alternative description by a centred rectangular mesh (b). Symmetry of the plane lattice (c) 
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Fig. 6.4a,b. Development of the special 

plane lattice with a square unit mesh 

3 yD) and its symmetry 

symmetry of this cell shows that there are a pair of mirror planes, similar to 

those in Fig. 6.2b, and several 2-fold axes (Fig. 6.3c). 

c) Returning once to Fig. 6.1a, we choose the position of point 3 in such a 

way as to make the points 1, 2 and 3 describe an isosceles right triangle, with 

the right angle at 3. The resultant lattice now has a square unit mesh: ap = bo, 

y=90°. As shown in Fig. 6.4b, there are now a 4-fold axis and four mirror 

planes parallel to it in the cell. 

d) Finally, let us choose the position of point 3 in Fig. 6.1a such that the 

points 1, 2 and 3 make an equilateral triangle (Fig. 6.5a). The unit mesh of the 

resulting hexagonal lattice is now a 120° rhombus, or a) =bo, y = 120°. In 

addition to the 2-fold axis, there are now 3- and 6-fold axes as well as several 

mirror planes. The axes are shown in Fig. 6.5b (see also Fig. 5.7a,c). 
é 

a ° . ° 
re 

a) : b) 

Fig. 6.5a,b. Development of the special hexagonal plane lattice and its symmetry. The unit 

mesh is a 120° rhombus 

We have now developed all four of the possible special lattice planes 

(which were, in fact, introduced in a different way in Chapter 5) from the 

general plane lattice. These plane lattices are summarised in Table 6.1 with 

their characteristic symmetry elements. The general lattice (see Fig. 5.5) 

possesses 2-fold axes only, but the special lattices (a)—(d) all have further 
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] 
a 

Fig.6.6a—-d. Symmetry elements of the special lattice planes with a primitive (a) anda centred 

(b) rectangular unit mesh, and a square (c) and a hexagonal (120° rhombus) (d) unit mesh 

symmetry elements, which are shown on their diagrams in Fig. 6.6. It should 

be noted that only point symmetry elements are shown here. There are 

compound symmetry elements involving translation, glide planes (see 

Chap. 9.1). 

6.1 The Primitive Space Lattices (P-Lattices) 

The relationships between lattices and symmetry elements in three dimen- 

sions are similar to those in two. From the general space lattice, several 

special space lattices may be derived, in which congruent lattice planes are 
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stacked above one another. If the symmetry of the lattice planes is not 

changed, the five space lattices with primitive unit cells (P-lattices) are 

produced. These are given in Table 6.2. 

Compare the stacking processes illustrated in Figs. 6.8-6.10a, b; 6.12 and 

6.13a,b. Notice that the centred rectangular plane lattice (b) does not occur. 

The square lattice may be stacked either with cy 4a) = bp or cy = a9 = by; the 
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former develops the tetragonal P-lattice and the latter the cubic P-lattice. The 

cubic lattice is a special case of the tetragonal, since new, characteristic 

symmetry elements appear (three-fold rotation axes along the body diagonals 

of the unit cell). The generation of the general or triclinic P-lattice by stacking 

is shown in Fig. 6.7a. All of the P-lattices are illustrated in Table 6.3. 

Table 6.1. Plane lattices 

. : enon 
Shape of Lattice : 

: symmetry Figure 
unit mesh parameters 

elements 

iF r 
| General ay # bo 5.1 | 

; Parallelogram 2 
plane lattices y#90° 6.la 

=} 
Special Rectangle ag # bo 

plane lattice (primitive) y=90° ie Qe 

Rectangle ag # bo 

P (centred) y=90° 6.3b 4 

¢ Square a5) 4 6.4¢ 

b i | d 120° ap = Do 0° Rhombus y= 120° 6 (3) 6.5a 

Table 6.2. P-Lattices 

Shape of unit mesh : : ; 
in stacked layers Interplanar spacing Lattice Figure 

i , 
Parallelogram* ya 
(ay 4c) bo Monoclinic P 6.8a, b 

Rectangle : 

(ay + bo) Co Orthorhombic P 6.9a,b 

Square if 

(ap =by) Cy # (ap = bo) Tetragonal P 6.10a,b 

Square ‘ 
(a9 = bo) Co = (a9 = bo) Cubic Px 6.13a,b 

120°-Rhombus 
(ay = by) Co Hexagonal P 6.12a,b 
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/ a Plane lattice with oblique unit mesh showing its symmetry. 

b Triclinic P-lattice, lattice parameters in the unit 

cell are: 

ag # Dy #Cg 

ar pry 

ik 
a 

d Space group P1. 

Projection of the symmetry elements of the triclin- 

ic P-lattice parallel to c onto the plane x, y, 0. This 

is the space group of highest symmetry in the 

triclinic system 

Stacking of such planes directly above one another leads to the 

monoclinic P-lattice (cf. Fig. 6.8a,b). If, however, the lattice 

points of the stacked planes do not coincide with the 2-fold 

axes, these are lost, and the triclinic P-lattice has been 

generated. (cf. b) 

¢ Triclinic axial system: 

ax#b#c 

a+¢Bp+y 

(O) 

e Point group 1. 

Symmetry of a lattice point in a triclinic P-lattice. 

This is the point group of highest symmetry in the 

triclinic system 

f 1 is the triclinic point group of lower symmetry 

than 1 (formed by removal of 1) 

Fig. 6.7a-f. The triclinic crystal system 
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F do 

a Plane lattice with oblique unit mesh showing its 

symmetry. Stacking of such planes directly above —_ 

one another with interplanar spacing bp leads to 

the monoclinic P-lattice (cf. b) 

0) ie 

oe za 
a 0 

a 

d Space group P 2/m. 

ib 

b 

b Monoclinic P-lattice, lattice parameters in the 

unit cell are: 

ay # bo 4 Co 

a=y=90° £B>90° 

| c Monoclinic axial system: 

a#b#c 
a a=y=90° f>90° 

Projection of the symmetry elements of the mo- 

noclinic P-lattice on x,0,z (above) and on x,y,0 

(below). This is one of the space groups of highest 

symmetry in the monoclinic system 
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c : c 

; . 
b ree) / 

za = 
a Yo Ne e Symmetry elements and stereograms of the 

( c \ point group 

/ \ y) b 
the symmetry of lattice point of the monoclinic 

a P-lattice. This is the highest symmetry point group 

as Gos in the monoclinic crystal system 

x 
‘ ih ye 

o> 

a 
| 

Re A Le ae op 

r4 | ! | oO 

/ \ x 

f Symmetry elements and stereograms of the monoclinic point groups of lower symmetry than 2/m 

(formed by removal of symmetry elements from it). 

Fig. 6.8a-f. The monoclinic crystal system 
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’ ) )—b 

a, Ee 

| ) ( 

e| 

a Plane lattice with rectangular unit mesh show- 

ing its symmetry. Stacking of such planes directly 

above one another with interplanar spacing co 

leads to the orthorhombic P-lattice (cf. b) 

SEN a 1a ss 

Co 

<2 bys 

b Orthorhombic P-lattice, lattice parameters in 

the unit cell are: 

B=) 

a=fh=y=90° 

—— ——e = 

—— 

— eS 

—=— od 

Ae at 
a 

d Space group 

P 2/m 2/m 2/m (Pmmm) 

" { J 

a bac 

Projection of the symmetry elements of the or- 

thorhombic P-lattice on x,y,0. This is one of the 

space groups of highest symmetry in the ortho- 

rhombic system 

G 

c Orthorhombic axial system 

a#b#c 

Cp 008 

Fig. 6.9a-f. The orthorhombic crystal system 



a 

2/m 2/m 2/m—D),, 

e Symmetry elements and stereogram of the point 

group 

2/m 2/m 2/m (mmm), 

{ { J 

EY AO ae 

the symmetry of a lattice point of the orthorhom- 

bic P-lattice. This is the highest symmetry point 

group in the orthorhombic crystal system 

mm2— C5 

f Symmetry elements and stereograms of the orthorhombic point groups of lower symmetry than 

2/m 2/m 2/m (formed by removal of symmetry elements from it) 
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a Plane lattice with square unit mesh showing its 

symmetry. Stacking of such planes directly above 

one another with interplanar spacing Cp #ao + bo 

leads to the tetragonal P-lattice (cf. b) 

b Tetragonal P-lattice, lattice parameters in the 

unit cell are: 

ay = bo # Co 

a@=Bp=y=90° 

a ‘ 

oA A 

va ee ey ae 

a(a,) ' F10] 

d Space group 

P 4/m 2/m 2/m (P 4/mmm) 

| 1 I 

¢ «ay C0) 

Projection of the symmetry elements of the tetra- 

gonal P-lattice on x,y,0. This is one of the space 

groups of highest symmetry in the tetragonal 

system 

(a,)a7 | b(a,) 

ce Tetragonal axial system 

a=b#c (a;=a+c) 

(= /j=V= Qe 

Fig. 6.10a-f. The tetragonal crystal system 
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mii 
ail 

e Symmetry elements and stereogram of the point 

group 

4/m 2/m 2/m (4/mmm), 

{ | | 
ce (a) (110) 

the symmetry of a lattice point of the tetragonal 

P-lattice. This is the highest symmetry point group 

in the tetragonal crystal system 

—b 

a el ENS } te a r —bfa,) by 
da,) 

; a be) 
422-—D, 4/m—Cg4,, 

(e Cc 

oe oa 
Rass 

PEAS 

a va Hee Ni as eee ‘ 
b \ has tre be et a 2  —-@----}—we) | Dect bey oe 

ee eee A eZ 

= es aa, 
4-S, 4—C, 

f Symmetry elements and stereograms of the tetragonal point groups of lower symmetry than 

4/m 2/m 2/m (formed by removal of symmetry elements from it). Note that a change in choice of axes in 

the point group 42m gives a point group 4m2 ((a ) Lm). The two settings are equally satisfactory 
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(a; ) We 3 V3 Ve 

er enn 
A(a,) % 5 % 

a Plane lattice with 120°rhombic unit mesh 

showing its symmetry. Stacking of such planes 

above one another so that the second lattice plane d Space group 

is at a height of co/3 with a lattice point on 2 3 fold 

axis, while the third plane is at a height wie 5Co with 

its lattice point on the other 3-fold axis. The fourth 

plane will then come directly above the first. This 

arrangement reduces the 6-fold axes to 3-fold, and Projection of the symmetry elements of the trigo- 

removes the symmetry planes in x,0,z; 0,y,z nal R-lattice on x,y,0. This is one of the space 

and x,x,z as well as the two-fold axis parallel to c groups of highest symmetry in the trigonal sys- 

(cf. b) tem 

R 3 2/m (R3m) 
ve th 
c (a) 

c Axial system: see Fig. 6.12c 

I) Trigonal R-lattice; the lattice parameters of the 

cell are: 

ay =bo Co 

C—O 0 — 02 

Il. Rhombohedral P-lattice; the lattice parame- 

ters of the cell are: 

b From this arrangement of lattice points, two 

distinct unit cells may be chosen: aha 
ap = bo =¢9 

Fig. 6.11a-f. The trigonal crystal system 
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e Symmetry elements and stereogram of the point 

group 

3 2/m (3m), 

yo 

c (a) 

the symmetry of a lattice point of the trigonal 

R-lattice. This is the highest symmetry point 

group in the trigonal crystal system 

f Symmetry elements and stereograms of the trigonal point groups of lower symmetry than 3 2/m 

(formed by removal of symmetry elements from it) 
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a Plane lattice with 120° rhombus unit mesh 

showing its symmetry. Stacking of such planes 

directly above one another with interplanar 

spacing Cy leads to the hexagonal P-lattice (cf. b) 

b Hexagonal P-lattice, lattice parameters in the 

unit cell are: 

ao = bo # Co 

C= b= 90 ye 

ML es 

EES vi 
fa) [210] 

d Space group 

P6/m 2/m 2/m (P6/mmm). 

{ ! { 

Ce Kae Q10) 

Projection of the symmetry elements of the hexa- 

gonal P-lattice on x, y,0. This is the space group of 

highest symmetry in the hexagonal system 

Gc 

c Hexagonal axial system 

a=b#c (a;=a.=a3*C) 

a=f=90°. y=120° 

Fig. 6.12a-f. The hexagonal crystal system 
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CON 

—b{a,) 

da,) gh 

e Symmetry elements and stereogram of the point 

group 

6/m 2/m 2/m (6/mmm), 

u | t 

ce (a) (210) 

the symmetry of a lattice point of the hexagonal 

P-lattice. This is the highest symmetry point group 

in the hexagonal crystal system 

f Symmetry elements and stereograms of the hexagonal point groups of lower symmetry than 

6/m 2/m 2/m (formed by removal of symmetry elements from it). Note that a change in choice of axes in 

the point group 6m2 gives a point group 62m ((a)||2). The two settings are equally satisfactory. 
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a Plane lattice with square unit cell showing its 

symmetry. Stacking of such planes directly above 

one another with interplanar spacing Cp = ap = bo 

leads to the cubic P-lattice (cf. b). 

C 

Eg ener ee = 

Co 

b = b, ae b 
ae Ta Sa SD 

as at 

b Cubic P-lattice, lattice parameters in the unit 

cell are: 

ap = by = Co 

a=B=y=90° 

7 
eae (a,) 

Aq,) : 

d Space group 

2/m (Pm3m) 

| 

P4/m 3 

{ | 

(a) (111) (110) 

Symmetry elements (incomplete) of the cubic 

P-lattice. This is one of the space groups of highest 

symmetry in the cubic system 

(a3)c 

= (. 
(a,)a | b (a5) 

e¢ Cubic axial system 

a=b=c (a,;=a)=a3) 

@=f=y—90° 

Fig. 6.13a-f. The cubic crystal system 
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e Symmetry elements and stereogram of the point 

group 

P4/m 3 2/m (m3m), 

—b(a,) | | 1 
(a) (111) (110) 

the symmetry of a lattice point of the cubic 

/P-lattice. This is the highest symmetry point group 

in the cubic crystal system 
hep) 

\\ < jo=—= 

<S SSS 

f Symmetry elements and stereograms of the cubic point groups of lower symmetry than 4/m 3 2/m 

(formed by removal of symmetry elements from it) 

6.2 The Symmetry of the Primitive Lattices 

Before considering the symmetry of lattices, it is useful to learn two rules 

governing the generation of a symmetry element by the combination of two 

others. In the following two cases, the presence of any two of the given 

symmetry elements implies the presence of the third. Combination of 

symmetry elements is no casual occurrence; it is fundamental to the nature of 

symmetry. 
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Table 6.3. The 14 Bravais Lattices 

Triclinic 

Monoclinic 

Orthorhombic 

Tetragonal 

Trigonal 

Hexagonal 

Cubic 
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Fig. 6.14a—-c. Symmetry rule I: a 21m =i (at the intersection of 2 and m); b 1 on m>2 

(passing through 1 and normal to m); ¢ 1 on 2> m (passing through | and normal to 2) 

a) eer. 

Fig. 6.15a-c. Symmetry rule II: a m’ | m” > 2 (along the intersection of m’ and m”; b 2 on 

m”—>m’, »” (with 2 as the line of intersection); c 2 on m’>m”, , (with 2 as the line of 

intersection) 

Rule 1. A rotation axis of even order (X, = 2, 4 or 6), amirror plane normal to X,, 

and an inversion centre at the point of intersection of X. and m (Fig. 6.14)'. 

Rule 2. Two mutually perpendicular mirror planes and a 2-fold axis along their 

line of intersection (Fig. 6.15). 

Every lattice is centrosymmetric and has inversion centres on the lattice 

points and midway between any two of them. US in a P-lattice, there are 

inversion centres at 0,0,0; 5,0,0; 0,5,0; 0,0,5; 5,5,0; 5,0,5; 0,5,5 and 3,3,5. 

Symmetry of the Triclinic P-Lattice. The only point symmetry elements of the 

triclinic lattice are inversion centres (Fig. 6.16) at the coordinates given above. 

A projection of the symmetry elements parallel to c onto x,y,0 is 

Xe) ALOT: The illustration only includes the case X, =2. The rule is not completely 

general, since m+1 can only generate 2. 
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S———— 

Fig. 6.17. Projection of the symmetry 

elements of space group P1 onto x,y, 0. 

The z-coordinates of 1 are 0 and 5 : 

Fig. 6.16. Triclinic P-lattice with the _ 
symmetry elements of space group Pl 

(@ 1 on lattice point) 

shown in Fig. 6.17. The z-coordinates implied for the inversion centres are 0) 

and 4. The complete set of symmetry operations in a lattice or a crystal 

structure, or a group of symmetry operations including lattice translations is 

called a space group. The space group of a primitive lattice which has only Lis 

called P1, and the conditions for its unit cell parameters: ay # by) #Cp3 @#P FY. 

Symmetry of the Monoclinic P-Lattice. The set of lattice planes from which we 

generated the monoclinic P-lattice (Fig. 6.8a) contain a set of 2-fold axes 

paral! to b. In addition, there are mirror planes normal to b at x,0,z and 

X,5,zZas well as the inversion centres that were present in the triclinic case. The » 

location of the mirror planes follows from our first rule: (2 and 1 generate 

m | 2at 1.) The array of symmetry elements of the lattice is shown in Fig. 6.8d 

in projections on x,0,z and x,y,0.” Since the 2 is normal to the m, this 

combination is given the symbol 2/m, pronounced “two over m”. It is not 

necessary to represent the inversion centre, since 2/m implies 1, by Rule 1. 

The space group of the monoclinic P-lattice is P2/m, where it is 

conventional to choose the b-axis parallel to 2and normal to m. The b-axis is 

called the symmetry direction. The a- and c-directions thus lie in the plane of 

m. This is called the “second setting”. Occasionally, the so-called “first 

setting” is encountered, with the c-direction parallel to 2 and normal to m. 

When this convention is used, the lattice is formed in the more usual way by 

the stacking of parallel lattice planes with ay 4 bo, y 90°, and a spacing of cp. 

we 
In the diagrams, ue symbol _/ indicates a mirror plane parallel to toe plate of the page 

at heights out and 5 . When the planes lie at other heights, such 7 3 ;and 3 = unis is shown 
by adding ; ;: Note that if there is an m, 2 or lat 0, it is also found at 5 5 ate it ie ati ;, it is also 

at 3, etc. % 
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Ea 

Fig. 6.18. Symmetry elements of 

space group P 2/m 2/m 2/m. The 

finer inversion centres are not shown 

a 

Symmetry of the Orthorhombic P-Lattice. In addition to the symmetry of the 

stacked planes (Fig. 6.9a), the orthorhombic P-lattice (Fig. 6.9b) has mirror 

planes normal to c at x,y,0 and x,y,3 and inversion centres (Fig. 6.9d). 

Further, the application of rulel (n+1>241m) or rule2 (mlLm=2) 

generates 2-fold axes at x,0,0; x,0,5; x,5,0; x,3,4; 0,y,0; O,y,4; 4,y,0 
and 5, y,3. 

An alternative approach, which leads to the same result is the following: 

the unit cell of the orthorhombic P-lattice is a rectangular parallelepiped; it is 

bounded by three pairs of lattice planes with primitive rectangular unit 

meshes. These planes all have the same symmetry, that shown in Fig. 6.9a. 

The arrangement of symmetry elements 1s shown in Fig. 6.18, which should be 

compared with Fig.6.9d. This set of symmetry elements can be given a 

symbol. The symmetry elements are arranged in the order of the crystallogra- 

phic axes: a, b, c. Each axis has a 2-fold rotation axis parallel to it and mirror 

planes normal to it. Thus, the symbol for this space group is: P 2/m 2/m 2/m. 

{ { { 
Ae Daeg C 

Here the a-, b- and c-axes are all called symmetry directions. Fig. 6.19, 

gives a projection of all point symmetry elements of space group 

P2/m2/m 2/m, and separate projections showing those elements related to 

the symmetry directions a, b and c. 

Symmetry of the Tetragonal P-Lattice. In addition to the symmetry of the 

stacked planes (Fig. 6.10a), the tetragonal P-lattice (Fig. 6.10b) has mirror 

planes 1 ¢ at x, y,0 and x, y,} and inversion centres (Fig. 6.10d). Further, the 

application of Rule 1 (m+1—>2 1m) or rule2 (m | m= 2) generates several 

2-fold axes. It should be noted in passing that the projection of the symmetry 

elements for this space group in Fig. 6.10d is incomplete, since there are also 

glide planes present (Section 9.1). The same is true for the space groups in 

Figs. 6.11 d-6.13d, which in addition contain screw axes. These symmetry 
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Fig. 6.19. a Space group P 2/m 2/m 2/m. In the other diagrams, only the symmetry elements 

corresponding to the symmetry directions a, b, c are shown: 
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Fig. 6.20. Symmetry elements of space group 

P 4/m 2/m 2/m. The 2 along (110) and the inversion 
centres are not shown 

Pa.) 

Aa,) 

elements are essentially irrelevant to our present purpose, and will not be 

considered further here. 

The unit cell of a tetragonal P-lattice has the shape of a tetragonal prism; it 

is bounded by two lattice planes with square unit meshes and four planes with 

rectangular meshes, the symmetries of which are shown in Fig. 6.20. Compare 

Fig. 6.20 with Fig. 6.10d, noting that the 2-fold axes parallel to [110] and [110] 

do not appear in Fig. 6.20. 

The 4-fold axes have the effect of making a and b equivalent, and they 

are often denoted as a; and ay, as in Fig. 6.10d). Similarly, the directions 

[110] and [110] are equivalent to one another. We must now introduce a 

further type of brackets, pointed brackets (). The symbol (uvw) denotes the 

lattice direction [uvw] and all directions equivalent to it. Similarly, (a) denotes 

the a-axis and all equivalent axes. For the tetragonal lattice, (110) implies 

both the [110] and the [110] directions, and (a) implies both the a- and 

b-axes. 

In the space group symbol, the symmetry elements are given in the order: 

c, (a), diagonal of the (a)-axes, viz. (110), all of which are called symmetry 

directions. Thus, equivalent symmetry operations are given only once. The 

space group symbol is thus P 4/m 2/m 2/m. 

eye oh gage! 
ea) (110). 

Figure 6.21 gives a projection of all point symmetry elements of space group 

P4/m 2/m 2/m, and separate projections showing those elements related to 

the symmetry directions c, (a) and (110). 

Symmetry of the Hexagonal P-Lattice. In addition to the symmetry of the 

stacked planes, the hexagonal P-lattice, like the orthorhombic and tetragonal 

lattices, has mirror planes | c at x,y,0 and X,y,3, inversion centres, and 

several 2-fold axes (Fig. 6.12d). The application of Rule 1 (m+1> 2.1m) or 

rule 2 (m | m= 2) thus generates several 2-fold axes. 
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Fig. 6.21. a Space group P 4/m 2/m 2/m. In the other diagrams, only the symmetry elements 
corresponding to the symmetry directions c, (a), (110) are shown: 
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eo «6 ® 

OE 4 8 N Ee 
Vi x Fig. 6.22. Hexagonal P-lattice 

projected on (0001) emphasising the 

symmetry directions (a) =a, ap, a3 

[210] and (210) =[210], [110] and [120] 

Figure 6.22 shows the projection of a hexagonal P-lattice on (0001). The 

6-fold axis makes a =b, and a and b may also be written as a; and a>. Another 

direction, called the a3-axis, may then be added, making an angle of 120° with 

a, and a>, and equivalent to them both. Thus, (a) now represents aj, a7, a3. The 

diagonals bisecting the (a)-axes are [210], [120] and [110]. As for the 
tetragonal lattice, the symmetry elements are arranged in the space group 

symbol in the order, c, (a), diagonals of the (a) axes, viz. (210), all of which are 

called symmetry directions. 

The space group symbol is thus: P 6/m 2/m 2/m. 

{ | | 
© are 10): 

Figure 6.23 gives a projection of all the point-symmetry elements of space 

group P6/m2/m2/m, and separate diagrams showing those elements related 

to the symmetry directions c, (a) and (210). 

Symmetry of the Cubic P-Lattice. The symmetry of the stacking planes is 

shown in Fig. 6.13a. The stacking results in a lattice with a cubic unit cell 

(ag =bp =Co). This means that the lattice planes 0,x,z and x,0,z have the 

same symmetry as x,y,0, see Fig.6.13d). This equivalence of the planes 

generates four 3-fold axes along the body diagonals of the unit cell as well as 

inversion centres, so these axes are represented as 3(=3+1). Application of 

rule 1 (m+1>2 1m) or rule2 (m _|m= 2) generates 2-fold axes parallel to 

[110] and equivalent directions. (These 2-fold axes are not included in 

Fig. 6.13d). 
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Fig. 6.24. a Space group P 4/m 3 2/m : In the other diagrams, only the symmetry elements 

corresponding to the symmetry directions (a), (111), (110) are shown. 
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In the space group symbol, the symmetry elements are given in the 

order: (a), (111)=body diagonals of the unit cell, (110)=face diagonals 

of the unit cell. The space group symbol for the cubic P-lattice is thus: 

P4jim, 3.) 2/m, 

| | | 
(aye LL0y, 
Figure 6.24 gives a projection of all the point-symmetry elements of 

space group P4/m 3 2/m, and separate diagrams showing those elements 

related to the symmetry directions (a), (111) and (110). 

6.3 The Centred Lattices 

Consideration of the primitive lattices we have so far generated raises the 

question as to whether it is possible to import into the P-lattices one or 

more further lattice planes without destroying the symmetry. Let us first 

consider the monoclinic P-lattice. 

Figure 6.25 shows the monoclinic P-lattice and its symmetry, P2/m, 

projected onto x,0,z (see also Fig. 6.8d). Each point of the lattice has 2/m 

symmetry, which implies the presence of an inversion centre on the point. 

Insertion of new lattice planes parallel to (010) into the lattice is only 

possible if the lattice points fall on a position which also has symmetry 

2/m, 16. on 5,00: 0,5,0; 0,0)5: 5,530: 5,0,5; Ojaess Ofc, oe | hese 
possibilities must each be considered. 

a) Lattice Plane with Lattice Point at ;,3,0 (Fig. 6.26). These new lattice 
points centre the a,b-face of the unit cell. This is called a C-face centred 

lattice, or more simply a C-/attice, although this name is formally inexact, 

being used to describe a “lattice with a C-face centred unit cell”. The 

monoclinic C-lattice is illustrated in Table 6.3. 

S 
/ 

Fig. 6.25. The monoclinic P-lattice and its symmetry elements projected onto x, 0,z(O lattice 
point with y =0) 

x 
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/ / 
/ / 

/ i 
v / Fig. 6.26. The monoclinic C-lattice projected 
/ / on x,0,z (® represents a lattice point with 

a—@® O s, 

Fig. 6.27. The monoclinic A-lattice (ag, bo, co) 

can, by interchanging a and c, be converted 

to a monoclinic C-lattice (ag, bp, c4) 

b) Lattice Plane with Lattice Point at 0,5, (Fig. 6.27). If the new plane centres 

the b,c-face, the result will be an A-face centred lattice. Since, however, in 

monoclinic cells, the a and c axes may lie anywhere in the mirror plane, they 

may be swapped, converting the A-lattice into a C-lattice. 

c) Lattice Plane with Lattice Point at +,0,+ (Fig. 6.28). The result is now a 

B-lattice, from which a smaller, primitive unit cell can be chosen (outlined in 

bold) that still has monoclinic symmetry. 

d) Lattice Plane with Lattice Point at},+,+(Fig. 6.29). A lattice is formed, with 
a lattice point at the body centre of the unit cell. This is called a body centred 

or I-lattice (from the German innenzentriert). As with the A-lattice, choice of 

different axes convert this to a monoclinic C-lattice. 

e) Lattice Plane with Lattice Point at $,0,0; 0,4,0 or 0,0,3. In any of these 
cases, the result is simply to halve the cell; no new type of lattice is formed. 

f) It is also possible to introduce two lattice planes at the same time, for 

example, as in both a) and b), giving additional lattice points at ;,5,0 and 
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Fig. 6.28. The monoclinic B-lattice (ao, bo, Co) 

can be converted to a smaller monoclinic P-lattice 

(a9, bo, Co) 

Fig. 6.29. The monoclinic I-lattice 

(ap, bo, Co) can be converted to a 

monoclinic C-lattice (ag, bo, co) 

0,4,4 (Fig. 6.30a). Since it is necessary that all lattice points have the same 
environment, and parallel lattice lines the same period a further lattice point 

(shown with a dashed outline) must be added at 5,0,5. Thus, all the faces of 

the unit cell are now centred, giving an all-face centred or F-lattice. 

A general principle following from this is that a /attice centred on two faces 

cannot exist because the requirement that all lattice points are identical and 

parallel lattice lines have the same lattice period will convert it to an all-face 

centred lattice. 

The monoclinic F-lattice can, in fact, be reduced to a C-lattice of half the 

volume, as is shown in Fig. 6.30b. 

We have now considered all the possibilities for tntroducing extra lattice 

planes into the monoclinic P-lattice, and have shown that all of these may be 

represented either as P- or C-lattices (A, I, F>C; BP). 

The orthorhombic lattice may be developed in the same way, giving rise of 

orthorhombic A-, B-, C-, I- and F-lattices. The I- and F-lattices are now not 

reducible as they were in the monoclinic case. The A-, B- and C-lattices are 
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Fig. 6.30a,b. The development of the monoclinic F-lattice a. The monoclinic F-lattice 

(a, bp, co) can be converted. to a monoclinic C-lattice (aj, bo, co) b 

alternative representations of the same lattice; the a-, b-, and c-axes can 

always be chosen so as to generate a C-lattice. There are a few space groups 

which are customarily treated as having an A-lattice (see Table 9.2). The 

C-lattice may also be developed by the vertical stacking of planes with the 

centred rectangular unit mesh (Fig. 6.6b). 

Similar considerations to those in the mondéclinic case lead from the 

tetragonal P-lattice to the tetragonal I-lattice, and form the cubic P-lattice to 

the cubic I- and F-lattices (Table 6.3). 

An examination of the hexagonal P-lattice will show that the only point 

with the same symmetry as 0,0,0 is 0,0,5. The addition of a lattice plane 

there will merely halve the size of the unit cell. 

A 6-fold axis always contains a 3-fold axis. Starting from this fact, the 

plane lattice will a 120° rhombus as unit mesh contains a 3-fold axes at 0,0,z; 

+,4,z and 3,+,z (Fig. 6.11 a). It is possible to add a second plane at a height 
of }cy with a lattice point on the 3-fold axis at j,;,z and a third plane at a 
height of }cy with a lattice point on the 3-fold axis at },3,z (Fig. 6.11b). 
The fourth plane will then come at a height of co, directly above the first. This 

new arrangement of lattice points reduces the 6-fold axes to 3-fold and 

removes the mirror planes at x,0,z; 0,y,z and x,x,z as well as the 2-fold 

axes parallel to the c-axis. The resulting lattice has the shape of a hexagonal 

lattice (aj =by4#co, a=fh=90°, y=120°) but contains three lattice points 

per unit cell (0,0,0; 3,4, 33 3,354) 

It is possible, however, to describe this lattice by a primitive unit cell 

(ag = by =o, a’ =f’ =y’ 90°). If the first cell is used to describe the lattice, it is 

called a trigonal R-lattice, if the second is used, the lattice is called 

rhombohedral P (Fig. 6.11b). The unit cell of the rhombohedral P-lattice has 

indeed the shape of a rhombohedron, with six rhombi as faces. 
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Special cases of the rhombohedral P-lattice are: (a) a = 90° gives the cubic 

P-lattice; (b) a=60° gives the cubic F-lattice and (c) a=109.47° gives the 

cubic I-lattice. 

6.4 The Symmetry of the Centred Lattices 

With the exception of the trigonal R-lattice, the derivation above of the 

centred lattices always paid strict attention to retaining the full symmetry of 

the corresponding P-lattice. All the symmetry elements of the P-lattice 

remained, only the translation properties were altered. The centring does 

indeed introduce new symmetry elements, notably screw axes and glide 

planes (see Chap. 9.1). In spite of this, the symbols for the space groups of the 

centred lattices may easily be given, since the new symmetry elements do not 

appear in them. 

Now it is not difficult to derive the symbol for the trigonal R-lattice 

from the reduced symmetry of the lattice planes. There are, in addition 

to the normal ones, further inversion centres, which, by Rulel 

(m+1+21m), generate a set of 2-fold axes parallel to aj,a>,a3 

(Fig. 6.11d). The 3-fold axis becomes 3 since 3+1=3. The order of the 
symmetry directions here is: c, (a), giving the symbol R 3 2/m. 

[>aql 
c (a). 

The space group symbols of the 14 Bravais lattices are given in Table 6.4 in 

the same order as Table 6.3. 

Table 6.3 contains the 14 lattices, which are usually known as the Bravais 

lattices. They represent the 14 and only ways in which it is possible to fill space 

by a three-dimensional periodic array of points. All crystals are built up on one 

of these lattices. In Chapter 3, we defined a crystal structure as a lattice plus a 

basis. While the number of lattices is fixed at 14, there are infinitely many 

possible ways of arranging atoms in cell. Any crystal structure, however, has 
only one Bravais lattice. 

The number and coordinates of the lattice points in the unit cells of the 
Bravais lattices is given in Table 6.5. 
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Table 6.4. The space group symbols for the 14 Bravais lattices 

C I F 
—_!| 

Triclinic 

Monoclinic P2/m C2/m 

= — 
Orthorhombic | P2/m2/m2/m | C2/m2/m2/m| 12/m2/m2/m | F2/m2/m2/m 

Tetragonal P4/m 2/m2/m 14/m2/m 2/m 
———— J. = 

Trigonal R32/m 
P6/m2/m2/m 

Hexagonal 

Cubic P4/m32/m 14/m32/m F4/m32/m 

Table 6.5. Number and coordinates of the lattice points in the unit cells of the Bravais lattices 
— 

roi No. of lattice points Coordinates of lattice points 

hte a in unit cell in unit cell 

1p i 

A D) 0,0,0; 0,355 

Sale 
B a 0,0,0; Osis 

5 dk al C 2; WOOO saa 

yd ei 
I 2 0, 0,0; 222 

ee 5 
R 3 0,0,0; 3 5p 33 123 

, i iL i dle. ray i 
FE 4 0, 0,0; ape Ose ON 
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Exercise 6.1. Symmetry of plane lattices. 

a) Determine the symmetry elements for the given plane lattices, and draw these in their 

places on the lattice. Note that only m, 2, 3,4 and 6 normal to the plane of the paper need 

be considered. 

b) Draw in the edges of the unit mesh and give the lattice parameters. Which lattice 

parameters are equivalent and why? 

c) Determine which symmetry elements are themselves equivalent by symmetry. 

@ e e e 

6 e 8 e 

® @ ® ® 

® e ® e 1) 

® e e ® 

® e e e 

@ @ e ® 

° e e e 2) 
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Exercise 6.2. For the given two-dimensional structures, determine: 

a) The unit mesh. 

b) The symmetry elements. It is only necessary to indicate those symmetry elements which 

lie within the unit mesh. As in Exercise 6.1, only m, 2, 3, 4 and 6 normal to the plane of 

the paper need be considered. 

Two-dimensional structures after Kockel 





Exercise 6.3. (Refer to Symmetry Rule 1) 

a) Draw the given combinations of two symmetry elements on the stereographic 

projection. As the inversion centre is a single point, it cannot be shown on the 

stereogram, but may be taken to lie at the centre of the projection. Draw ina pole which 

does not lie on any symmetry element, and allow the symmetry elements to operate on it. 

On the basis of the positions of the resulting poles, determine the third symmetry 

element generated by the combination of the given symmetry elements, and draw it on 

the stereogram. 

12 2 PY Bho SP 3)m+T7 

but | 

| 6 lone | GE fein m+1-—2. 

b) Below are given an orthorhombic unit cell and its projection on x, y,0. Draw the third 

symmetry element generated by the two given elements on either or both of these, give its 

symbol and the coordinates of its position. Note that only one symmetry element of each 

type is drawn in the cell. 

TTT ae 

a a 

m at 0,y,z and | at 0,3,0 Senenatere ater. 

sy 
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ef 

ae —p ) 

on a 

2 at 0,0,z and 1 at 0,0,4 generate Banat irs 

iG 

3) 

4 _b 

ae: We 

am a 

2 at+,0,z and mat x, y,4 generate ... at ... 

4) 5) 
i 

© 2 

os 

6 at 0,0,z and | at 0,0,0 4 at 5,5,z and mat x,y,4 
generate... at... generate... at... 

6) 7) 3 

a 

a! 

m at x,4,z and | at $,4,5 m at x,y,4and | at 0,4,5 
generate... at... generate... at... 
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Exercise 6.4. (Refer to symmetry rule 2) 

a) On the following stereograms, draw in the third symmetry element generated by the 

combination of the given two. 
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b) An orthorhombic unit cell and its projection on x,y,0 are given below. On either of 

them, draw the third symmetry element generated by the two given elements, and give its 

symbol and the coordinates of its position. 

1) 

ell 

| oe 

a 

m at x,4,z and at x,y,5 generate ... at... 

2) c 
is 

— 
ae | 

ee a 
qa 

m at 0, y,z and 2 at 0,y,+ generate ... at... 

| —|+ | | 

ee Al ren Re at ! and 2 at 1,0 m at x,>,z and at;,y,Z mat5,y,Zand <at,,U,z 25>? 

generate een Daeiees generate SoD NE sao 
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Exercise 6.5. 

Which of the 14 Bravais lattices are each of the following? 

c) 

ag # bo # Cy # AQ 

atBty#a a8, y#90° 

ag # bo # Cy # AQ 

a=y=90° £B>90° 

=) 
7 

gl agi 

als: Qo ee 

a is 

d) 

maf 3. HP — 
LO a 

all eee 

ag # by # Cy HAQ 
a= B= y=90° 

a 

ag = by # Co 
a= B= y=90° 

106 

f) 



Exercise 6.6. 

a) 

b) 

c) 

d) 

Draw the unit cells of each of the following lattices as a projection on x,y,0, or, in 

the monoclinic case, on x,0,z. Use a scale of 1A=1cm. 

Monoclinic P: a) = 5.5, by = 4.0, co = 4.0 A; B = 105° 
Orthorhombic P: a9 = 3.0, by = 4.5, cy =4.0A 
Tetragonal P: ap = 4.0, cy = 3.0 A 

Hexagonal P: ap =4.0, cy =3.0 A 

Trigonal R: Ay Sebo), co =3.0A 

Determine the symmetry operations of lattices you have drawn, and plot the sym- 

metry elements on the projection of the lattice. 

Now use a coloured pen to colour the symmetry elements, using colours so that sym- 

metry elements have the same colour if they belong to the same symmetry direction 

(i.e. one of the various symmetry directions used in the space group symbol). 

Give the space group symbol for each lattice, making use of the colours of symmetry 

elements you have chosen in (c). 

Exercise 6.7. Derive the three centred orthorhombic lattices (cf. Section 6.3). 

a) 
b) 

c) 

What is the symmetry of a lattice point in the orthorhombic P-lattice? 

Which points in the unit cell of the P-lattice have the same symmetry as the lattice points? 

Give their coordinates. 

Bring a lattice plane, parallel to (001) into a position such that a lattice point comes into 

coincidence with each of the positions you have determined in (b). Repeat the above 

exercise with two planes. / 

4 

Exercise 6.8. Similarly, derive the centred tetragonal lattices. 
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7 The Seven Crystal Systems 

In the various lattices, the vectors a, b and € must be chosen and associated 

with a system of suitable crystallographic axes, a,b,c. This is not done 

arbitrarily. Generally, so far as is possible, the choices are made so that the 

direction of rotation axes, rotoinversion axes and the normals to mirror 

planes are parallel to a,b,¢ and to a,b,c: 

a,b, ¢; a,b,c //X, X, normal to m. 

It is possible to distinguish six axial systems (systems of crystallographic 

axes), which are given in Figs. 6.7c-6.13c and which correspond to the six 

primitive lattices. These axial systems naturally apply equally to the centred 

lattices. On this basis, we may define a crystal system: 

All lattices, all crystal structures and all crystal morphologies which can be 

defined by the same axial system belong to the same crystal system. 

This definition distinguishes six crystal systems. It is, however, usual to 

separate the system of crystallographic axes based ona=b#c, a=f=90°, 

y = 120° into a hexagonal and a trigonal crystal system. The hexagonal system 

is characterised by the presence of 6 or 6, while the trigonal is characterised 

by 3. 

In Table 7.1, the seven crystal systems are listed along with the restrictions 

on the axial system. It is important to remember, however, that equivalence of 

crystallographic axes and special values of the angles are simply a conse- 

quence of the underlying symmetry. Those symmetry elements which cause 

equivalences to arise between crystallographic axes are listed. A full list of 

the symmetry elements characterising the various crystal systems is given in 

Table 8.9. 

The space groups of the lattices themselves have the highest symmetry 

which can occur in that crystal system (cf. Table 6.4). Symmetry elements in 

each crystal system can only be orientated in certain directions with respect to 

one another, since it is not those symmetry elements alone, but they and all 

their combinations which must be in accordance with the properties of the 

. 
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Table 7.1. The seven crystal systems 

Equivalences of 

Figure crystallographic 

axes caused by: 

Restrictions on the 
Crystal system 4 

y y axial system 

Triclinic a#b#c atxLPFAy? 6.7¢ 

Monoclinic a#b#c a=y=90°, £>90° 6.8¢ 

Orthorhombic | a#b#c a=fh=y=90° 6.9¢ J 

Tetragonal ODES aed ere 6.10 4,4 
g pele one SS 

Trigonal> 6.12¢ 3//c 

a=b4#c a=f=90°, y=120° 1 ne 
(a; =a. #C) 2 

Hexagonal 6.12¢ 6, 6//c 

: a=b=c a=f=y=90° e 
Cubic Ce) y 6.13¢ 3//A11) 

@ As usual, the signs =and # are to be read as must be equivalent and need not be equivalent 

respectively as a consequence of symmetry. 
> An alternative definition divides the hexagonal and trigonal systems differently, giving a 

hexagonal and a rhombohedral system. The rhombohedral system (see Fig. 6.11 b) has the 

restrictions on its axial system: a’=b’=c’; a’=f’=y’. 

space lattice. The symmetry of the lattice automatically determines all the 

angles which the symmetry elements of the particular crystal system may 

make with one another. 

The symmetry directions in crystal systems are summarised in Table 7.2. 

These symmetry directions are used for point groups (Chap. 8) and, in most 

cases, for space groups (Chap. 9). Symmetry directions are defined differently 

for each crystal system. For some subgroups, a symmetry element does not 

necessarily exist in the second and/or third position of the symmetry 

directions (cf. Table 8.10). 
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Table 7.2. Symmetry directions in the seven crystal systems 

Position in the international symbol 

Ist ah 2nd | 3rd 

Triclinic - 

Monoclinic b 

Orthorhombic a b c 

Tetragonal c (a) (110) 

Trigonal c (a) - 

Hexagonal c | (a) (210) 

Cubic (a) | (111) i (110) 
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8 Point Groups 

8.1 The 32 Point Groups 

As has been noted, the space groups of the Bravais lattices are those with the 

highest possible symmetry for the corresponding crystal systems. When the 

lattice points are now replaced by actual atoms, ions or molecules, they must 

themselves possess at least the full symmetry of the lattice point if the space 

group Is to remain unchanged. Now the symmetry of a lattice point is easily 

determined from the space group; it consists of all of the point symmetry 

elements of the space group that pass through the point (X, X, m) or lie on it 

(1). In each crystal system, only the space group of the P-lattice or, in the 

trigonal system the R-lattice, need be considered (see Figs. 6.7 d-6.13d), since 

the centred lattices in each system define identical points. Lattice translations, 

the most important of all the symmetry operations for space groups, are now 

discarded, and the set of symmetry elements remaining is called a point group. 

The symmetry elements of these point groups and their stereographic 

Table 8.1. Correspondence of one of the space groups of highest symmetry in each crystal 

system with the point group of highest symmetry in that crystal system 

Crystal system Space group Point group Fig. 

Triclinic Pl > ] 6.7d,e 

Monoclinic P 2/m => 2/m 6.8d,e 

Orthorhombic Fi P 2/m 2/m 2/m > 2/m 2/m 2/m 6.9d,e 

Tetragonal P 4/m 2/m 2/m > 4/m 2/m 2/m 6.10d,e 

i Trigonal a R32/m > 32/m iia 6.lld,e 

Hexagonal P 6/m 2/m 2/m > 6/m 2/m 2/m 6.12d,e 

Cubic P4/m32/m — 4/m32/m 6.13d,e 
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projections are set out in Figs. 6.7e—-6.13e, and the conversion from space 

group to point group in Table 8.1. There is a great deal of useful information 

in the diagrams, and it is worth taking the trouble to study them carefully. 

The point groups are made up from point symmetry operations and 

combinations of them. Formally, a point group is defined as a group of point 

symmetry operations whose operation leaves at least one point unmoved. Any 

operation involving lattice translation is excluded. The symmetry directions 

have the same relationship to the symmetry elements of the point group as 

they do to those of the space group (Table 7.2). Those point groups derived 

from the space groups of the lattices are also the highest symmetry possible 

for the particular crystal system. 

These point groups of highest symmetry in each crystal system all contain 

the symmetry elements of one or more point groups of lower symmetry 

(subgroups). These will be developed below for some crystal systems: 

a) Triclinic. The only subgroup of 1 is 1. Starting from the space group PI 
(Fig. 6.16), all points which do not lie on inversion centres have the point 

symmetry l. 

b) Monoclinic. 2/m has the subgroups 2,m,1 (cf. Symmetry rule 1) and 1. 

Since 1 and 1 belong to the triclinic system, only 2 and m are monoclinic 

point groups (cf. Fig. 6.8f). They possess sufficient symmetry to define the 

monoclinic system: m | b in the a,c-plane, and 2 parallel to b and normal 

to the a,c-plane. In the space group P2/m (Fig. 6.8d), the point 0,0,0 has 

the point symmetry 2/m, while any point on x,5,z has point symmetry m, 

and any point on the line },y,5 has point symmetry 2 (cf. Fig. 9.13) 

c) Orthorhombic. If inversion symmetry is removed from point group 

2/m 2/m 2/m, each 2/m must be reduced either to 2 or to m (Symmetry 

rule 1). The possible orthorhombic subgroups are thus mmm, mm2 (or m2m 

or 2mm), m22 (or 2m2 or 22m) and 222. The symmetry elements of mmm are 

given on the stereogram in Fig. 8.1. By Symmetry rule 2(m | m= > 2), 2-fold 

rotation axes are formed at each intersection of planes, and the point group 

2/m 2/m 2/m has been reformed. Similarly, the combination 22m also 

regenerates 2/m 2/m 2/m (cf. Fig.8.2). The orthorhombic subgroups of 

2/m 2/m 2/m are thus 222 and mm? (Fig. 6.9f). As an example, in the space 

group P2/m 2/m 2/m, all points on 5,5,z (z 40 or $) have point symmetry 
mm2. 

Ina similar way, the other crystal systems may be treated, giving in total 32 

point groups or crystal classes, which are summarised in Table 8.2. They are 

called the crystallographic point groups. 
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Fig. 8.1. The three mutually perpendicular 

mirror planes of mmm showing with 

dashed outline the automatically developed 

2-fold axes (Symmetry rule 2). Thus mmm 

is in fact 2/m 2/m 2/m and is used as an 

abbreviated symbol for it 

Fig. 8.2. The symmetry elements of m22 

(fully drawn in) on the stereogram, auto- 

matically generate (Symmetry rule 2) the 

other symmetry elements shown with 

dashed outline, generating 2/m 2/m 2/m. 
Thus, m22 is in fact identical with 

2/m 2/m 2/m 

Table 8.2. The 32 point groups 

Symmetry 

: and stereograms 
Crystal system Point groups Some oi: roan: 

in Fig. 

Triclinic i 1 atid 

Monoclinic 2/m m, 2 6.8e,f 

Orthorhombic NE IGN ELEY iy Gaiemt 
(mmm) 

= 1 
4/m2/m2/m 42m, 4mm, 422 

Tetragonal Ginn) ads 6.10e,f 

: | 32/m 3m, 32, 3,3 
Trigonal Gm) Gulilionti 

6/m 2/m2/m 6m2, 6mm, 622 
Hexagonal (G/mnraua) Gen ene Glenn 

Cubic 4/m 3 2/m 43m, 432, 2/m3, 23 6.13e,f 

(m3m) (m3) | 

All crystallographic point groups are subgroups of either 4/m 3 2/m or 

6/m 2/m 2/m or both. The hierarchy of the subgroups is illustrated in Fig. 8.3. 

Some point groups have overdefined symbols, as we have seen for 

2/m 2/m 2/m (Fig. 8.1). In some of these cases, the symbol is abbreviated; the 

abbreviated symbols are shown in round brackets in Table 8.2. These 

113 



Number otf faces in the general Crystal LOrii 

48 

24 

Fig. 8.3. The crystallographic point groups and their subgroups, after Hermann [18]. The 

circles corresponding to the highest symmetry group of each crystal system are outlined in 

bold. Double or triple lines indicate that the supergroup is related to the subgroup in two or 

three inequivalent settings. Connecting lines between point groups of the same crystal 

system are bold, all others are plain or dashed. The presence of a line of any sort indicates that 

the lower group is a subgroup of the higher. On the ordinate is.given the order of the point 

group, i.e. the number of faces in the general crystal form 
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Table 8.3. The Schénflies symbols for the point groups with the equivalent International 

symbols 

C,: n-fold rotation axis; identical with X 

EC Ci Cy | C3 Cy | Ce | 

= ii | 2 | y 3 4 | 6 | 

C,;: odd-order rotation axis and inversion centre i= X (odd) 

C,: (s for German Spiegelebene) = mirror plane; 

S,: n-fold rotoreflection axis (only Sy and S¢ used) 
+ 

C Cc | Ci 5 S4 

x Bi i G) 3 
m 

Cyn: n-fold axis normal to mirror plane = X/m 

Cah 

— —- 

Cy, C3h Can Con 

X/m 2/m ne =) 4/m 6/m 
/ 

C,y: n-fold axis parallel to n mirror planes = Xm 

r 

Cry (Coy, (Cx Gr Cis 

Xm mm2 3m 4mm 6mm 

abbreviated forms are also used for space groups (Chap. 9). They are called 

short symbols to distinguish them from the full symbols. 

Up to now, symmetry symbols have always been used in relation to the 

symmetry directions. The symbol on its own, however, clearly shows the 

relative orientation of the various symmetry elements. Thus: 

x2: rotation axis X and 2-fold axes perpendicular to it, e.g. 42(2) 

(Fig. 6.10f). 

rotation axis. X and mirror planes parallel to it, e.g. 3m (Fig. 6.11 f). 

rotoinversion axis X and 2-fold axes perpendicular to it, e.g. 42(m) 
(Fig. 6.10f). 

rotoinversion axis X and mirror planes parallel to it, e.g. 6m(2) 

(Fig. 6.12f). 

rotation axis X and mirror planes both parallel and perpendicular to 

it, e.g. 4/mm(m) (Fig. 6.10f). 
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Table 8.3 (continued) 

D,: n-fold axis normal to n 2-fold axes = X2 

ae i De) oe 
| X2 32 422 | 622 

Da: as D, plus mirror planes bisecting 2-fold axes 

| Dna | Dog Dg 

| Xm | 42m 3m 

Dyn: as D, plus mirror plane normal to n-fold axis 

Don Do, Dn Dan Den Fi 

(3/mm =) X/mm mmm 6m? 4/mmm 6/mmm 

T (tetrahedral) and O (octahedral) groups 

| a Th O Tg On 
} | 

| 23 m3 432 43m m3m 

The symbols we have been using so far for space groups and point groups are 

known as the International or Hermann-Mauguin symbols. In physics and 

chemistry, the older Schdnflies symbols are widely used. Unfortunately, 

Sch6nflies symbols are impossible to adapt as useful space group symbols. 

Although they are adequate to define point groups, there is no particular 

advantage to using them. Table 8.3 gives the International equivalents of all 

the Schénflies symbols for the crystallographic point groups. 

8.2 Crystal Symmetry 

A space group reveals the entire symmetry of a crystal structure. When we 
consider only the morphology of a crystral, the lattice translations which 
characterise the space group are no longer relevant, and what is left is the 
point group which is implied by that space group. If the crystal is bounded by 
plane faces, the symmetry of its morphology will be the symmetry of that 
point group. 

x 
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Fig. 8.4a-d. A galena crystal in point group 4/m 3  2/m. 

J J t 

(a) (111) (110) 

In a, only those symmetry elements which relate to the a-axis 

and equivalent directions (i.e. the b- and c-axes) have been 

drawn in (4/m — (a)); in b, only those relating to the [111] 
and equivalent directions (3 — (111)); in ¢, only those relating 

Moa) to the [110] and equivalent directions (2/m — (110)). The 

a d) stereogram of the symmetry elements is given in d 

Figure 8.4 illustrates the symmetry of a crystal of PbS (galena) (cf. 

Fig. 4.1). The symmetry elements which are apparent in the crystal are 

summarised on the stereographic projection. The point group of the crystal is 

4/m 3 2/m. In Table 8.11, examples of crystals in various point groups are 

given in the right-hand column. 

8.2.1 Crystal Forms 

In Chapter 4.2, crystal form was provisionally defined as a set of “equal” 

faces. We are now in a position to give an exact definition. 

When the symmetry operations of a point group are applied to a crystal 

face, a number of equivalent faces will be produced. Thus, as shown in the 

stereographic projection in Fig. 8.5a, application of the symmetry operation 

of the point group 4 on the pole of a face produces a tetragonal pyramid. Such 

a set of equivalent faces is called a crystal form. Exercise 5.1b gives a 

manipulation which will always result in the production of the stereogram of 

a crystal form. 

The individual faces of the tetragonal pyramid in Fig.8.5a have been 

indexed, i.e. assigned the values of their Miller indices. A scheme for indexing 

the faces of tetragonal crystals will be given later (Fig. 8.8). A crystal form is 

identified by the indices of one of the faces belonging to that form. In the case 

of a form, the indices are placed in braces, thus: {hk]}, in order to distinguish 
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Fig. 8.5a,b. Stereograms of point group 4. a General form, tetragonal pyramid {hkl}. 

b Limiting form tetragonal prism {hk0} of general form tetragonal pyramid {hkl} 

between a face and a form. The relationship between (hkl) and {hkl} is the 

same as that between [uvw] and (uvw). 

Each face of the tetragonal pyramid in Fig. 8.5a is itself unsymmetrical, as 

there is no symmetry element normal to it. On its own, it thus has face 

symmetry l. 
Three types of crystal forms must now be distinguished: a general form, a 

special form and a limiting form. A general form is a set of equivalent faces, 

each of which has face symmetry 1. In other words, when the poles of the faces 

of a general form are placed on a stereogram of the symmetry elements, they 

do not lie on any of them. General forms have general indices {hkl}. The 

tetragonal pyramid {hkl} in Fig. 8.5a is such a general form. The poles of the 

faces of a general form have two degrees of freedom, shown as arrows in the 

figure. The face can be displaced in two directions without causing the 

tetragonal pyramid to cease to be a crystal form. All that happens is that the 

inclination of the faces to one another is altered. 

The variation of the indices {hkl} gives rise not to only one, but to an 

infinite number of general crystal forms. In some point groups, care must be 

taken with the signs of the indices. In any case, the possibility of infinitely 

many crystal forms is only of theoretical interest, since in practice, crystals 

rarely have faces with large values of h, k or 1. 

A special form is a set of equivalent crystal faces which themselves have a 

face symmetry higher than I. In a stereogram of the symmetry elements, the 

poles of the faces of a special form lie on at least one of them. Figure 8.6a 

shows the stereogram of the symmetry elements of the point group 4mm. If 

the pole of a face (hhl) is entered, the application of the symmetry elements 

gives a tetragonal pyramid {hhl}. This is a special form, as the faces lie on a 

symmetry element, and each has face symmetry ..m. The symmetry is given as 

..m with reference to the order of the symmetry directions used for point 

groups of the tetragonal system: c, (a), (110). The mirror planes with which we 

are concerned here are those normal to (110). The poles of the faces of this 
a 
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Fig. 8.6a,b. Stereograms of point group 4mm. a Special form, tetragonal pyramid {hhl}. 

b Limiting form, tetragonal prism {110} of special form, tetragonal pyramid {hh} 

special form have only a single degree of freedom. The form will remain a 

tetragonal pyramid only as long as the pole remains on the mirror plane ..m. 

Should the pole move until it coincides with the 4-fold axis, another special 

form arises, the pedion {001} with face symmetry 4mm. This form no longer 

has any degree of freedom. A special form always has indices which are a 

special case of {hkl}, such as {hhl}, {h0l} or {100}. 

A limiting form is a special case of either a general ora special form. It has 

the same number of faces, each of which has the same face symmetry, but the 

faces are differently arranged. Consider the situation in Fig. 8.5a if the pole 

moves to the periphery of the equatorial plane of the stereographic 

projection. The result is a tetragonal prism {hk0} which is the limiting form of 

the general form tetragonal pyramid {hkl} with face symmetry 1. A similar 

movement of the pole f{hhl} in Fig.8.6b, along the mirror plane to the 

periphery of the equator gives rise to the tetragonal prism {110}, the limiting 

form of the special form {hhl} with face symmetry ..m. 

Each point group has characteristic forms. What follows is a description 

of those of the point group 4/mmm, the point group of highest symmetry in 

the tetragonal system. Figure 8.7a is a stereogram of the symmetry elements 

of this point group. A single, asymmetric face unit is shown hatched in 

Fig.8.7a. The asymmetric face unit of a point group, in terms of its 

stereographic projection, is the smallest part of the surface of the sphere which, 

by the application of the symmetry operations, will generate the entire surface of 

the sphere. This particular asymmetric face unit is bounded by m.., .m. and 

..m. The vertices have face symmetry 4mm, m2m. and m.m2. If a pole is 

entered in the asymmetric face unit on the stereogram and operated on by the 

symmetry, the result is a ditetragonal dipyramid, {hkl}, shown in Fig. 8.7a. 

This form has two degrees of freedom. A ditetragonal dipyramid will be 

generated as long as the pole does not move onto one of the symmetry 

elements which constitute the boundary of the asymmetric face unit. The 

ditetragonal dipyramid is a general form (face symmetry 1, two degrees of 
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Fig. 8.7a-g. Crystal forms of point group 4/mmm, with their face symmetries. A stereogram 
of the symmetry elements is given, with the asymmetric face unit and stereograms of each 
form 
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freedom, {hkl}). The size of the asymmetric face unit is simply the ratio of the 

surface area of the sphere to the number of faces in a general form. 

Licsigoa area of the sphere 

number of faces in the general form 
at face unit 

In this case, the number of such faces is 16, so the asymmetric face unit shown 

hatched in Fig. 8.7a is ;; of the total surface area of the sphere. An asymmetric 

face unit of a point group contains all the information necessary for the complete 

description of the crystal forms in this point group. (This definition may be 

compared with that of the asymmetric unit on p. 193.) 

If the general pole (hkl) is moved onto the mirror plane m.., this pole, and 

all the others in the general form {hkl} will undergo a change. As the poles 

approach this mirror plane, the angle between (hkl) and (hkl) becomes 

progressively smaller, and is equal to 0 at the mirror plane. At this point, the 

two faces (hkl) and (hkl) have coalesced into a single face (hk0). As shown in 

Fig. 8.7b, the ditetragonal dipyramid has become a ditetragonal prism {hk0}. 

Figure 8.8 shows the stereographic projection of a ditetragonal prism 

{hk0} and the indices of the poles of its faces. In the stereogram, a section 

through the ditetragonal prism is shown in bold lines which are extended 

(dashed lines) to show the intercepts on the axes,better, (hk0) = (210). 

A pole of a face on the mirror plane .m. gives, after the application of the 

symmetry operations, a tetragonal dipyramid, {h0l}, shown in Fig. 8.7c. A 

pole of a face on ..m gives a tetragonal dipyramid {hhl}, shown in Fig. 8.7d. 

The three forms {hk0}, {h0l} and {hhl} all have eight faces, 1.e. half of the 

number of faces of the ditetragonal dipyramid. These three forms each have 

one degree of freedom. Each form retains its identity so long as the pole 

remains on the appropriate edge (m) of the asymmetric face unit. 

Fig. 8.8. Section through a ditetrago- 
nal prism (outlined), in the equatorial 

plane of a stereographic projection, 

with the poles of the relevant faces 
and their indices, {hk0} (= {210}) 
shown. The dashed lines serve to 

indicate the intercepts of the faces 

on the axes 
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a(a,) 
Fig. 8.9. Stereogram of the poles of the faces of all crystal forms of 4/mmm, the point group 

of highest symmetry in the tetragonal system. The stereogram shows the position and the 

indices for each face in each form. Poles of faces with negative values of | are not included. 
The spherical triangle with vertices (001), (100) and (110) is an asymmetric face unit of the 

point group 4/mmm 

The poles of faces on the vertices of the asymmetric face unit have no 

degree of freedom. The application of the symmetry operations to a pole with 

face symmetry m2m. gives a tetragonal prism {100} (Fig. 8.7e). Similarly the 

pole with face symmetry m.m2 gives a tetragonal prism {110} (Fig. 8.7f), while 

that on 4mm gives a pinacoid {001} (Fig. 8.7). 

The forms {hk0}, {h0l}, {hhl}, {100}, {110} and {001} have the face 

symmetries given in Fig. 8.7 and are thus special forms. 

Figure 8.9 shows a stereogram with the poles of the crystal forms of point 

group 4/mmm, the highest point symmetry of the tetragonal system. The 

poles of the faces with negative indices | are not shown. The heavy lines divide 

the surface into the 16 asymmetric face units of the point group 4/mmm. 

Those poles which lie on the corners of the asymmetric face unit have no 
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degree of freedom. Those on the edges of the asymmetric face unit have one 

degree of freedom, and represent all other poles lying on the same edge. The 

poles lying within the asymmetric face unit have two degrees of freedom and 

represent all faces whose poles lie in this area. In every case, taken together, 

these faces produce ditetragonal dipyramids. 

If the poles of the faces of a ditetragonal prism {hk0} (Fig. 8.8) are split and 

moved an equal amount in the directions of (001) and (001), a ditetragonal 

dipyramid {hkl} will be formed. The indexing of the faces of this form arise 

from the {hk0} of the ditetragonal prism by the replacement of 0 with 1 and 1, 

as in Fig. 8.9, the indices of all 16 faces of the ditetragonal dipyramid can be 

read from the stereogram in Fig. 8.9, as can the indices for the faces of all of 

the tetragonal forms. 

In 4/mmm, there are n=16 poles for faces of the general form, and 

2n+2=34 poles for faces of special forms, each type of form being 

considered only once. The same relationship between the numbers of faces for 

the general form and the total number of faces for all special forms also 

applies to the point group of highest symmetry in the orthorhombic, 

hexagonal and cubic systems. 

Starting from the point group of highest symmetry in a crystal system, the 

subgroups can be developed — see Section 8.1. There is a similar relationship 

between the general crystal form of the point group of highest symmetry and 

those of its subgroups belonging to the same crystal system. These may be 

illustrated by starting from the stereogram of the crystal forms of 4/mmm in 

Fig. 8.9 and developing those of the subgroup 4mm. 

Place a piece of tracing paper over the stereogram in Fig. 8.9, choose 

suitable symmetry directions and mark on it those symmetry elements which 

belong to 4mm. A possible asymmetric face unit for this point group is a 

region bounded by the pole faces (001), (100), (001) and (110). Because half of 

this asymmetric face unit lies in the southern hemisphere, it is shown checked 

in Fig. 8.10a. It is twice the size of the asymmetric face unit of 4/mmm, and is 

made up by combining two such asymmetric face units. 

Now enter on the tracing paper the pole of the general face (hkl), and allow 

the symmetry operations of 4mm to act on it. The result is eight poles which 

define a ditetragonal pyramid {hkl} (Fig.8.10a,). The pole (hkl) which 

belongs to the same asymmetric unit as (hkl) in 4mm gives a second 

ditetragonal pyramid {hkl} (Fig. 8.10a,). Thus, the ditetragonal dipyramid 

which is the general form in 4/mmm reduces to two ditetragonal pyramids in 

4mm. The doubling of the size of the asyrametric face unit results in a halving 

of the number of faces in the general form. 

In the same way, the general forms of the other tetragonal point groups 

may be developed. The relevant asymmetric face units are given in Table 

8.4. 
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Fig. 8.10a-d. Crystal forms of point group 4mm, in so far as these differ from those in point 
group 4/mmm (Fig. 8.7), with their face symmetries. A stereogram of the symmetry 

elements is given, with the asymmetric face unit and stereograms of each form. 

d_ Pedion, 4mm, {001} and {001} 

The general form of point group 4/m is a tetragonal dipyramid. The poles 

(hkl) and (hkl) both give tetragonal dipyramids, {hkl} and {hkl}, by the action 
of the symmetry operations, and these two dipyramids may be distinguished 

by their positions. Figure 8.11 shows the square cross-sections of {hkl} and 

{hkl}. Taking them together, and ignoring the dashed lines, they make up the 

cross-section of the ditetragonal dipyramid {hkl} of 4/mmm. 

The general form of 42m is the tetragonal scalenohedron, and of 422 the 

tetragonal trapezohedron [Table 14.1.2 (13) and (11)]. The combination 
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Fig. 8.11. Square cross-sections through the tetragonal dipyramids {hkl} and {hkl}, general 

forms in point group 4/m. Together, they make up the fully outlined ditetragonal cross 

section of the ditetragonal pyramid. The same relationship holds for the four tetragonal 

pyramids {hkl}, {hkl}, {hkl} and {hkl}, general forms in point group 4 

of {hkl} and {hkl} regenerates in both point groups the ditetragonal 

dipyramid. 

The asymmetric face unit for 4 and 4 is four times the size of that of 

4/mmm (Table 8.4). In 4, the ditetragonal dipyramid is split into four 

tetragonal pyramids, {hkl}, {hkl}, {hkl} and {hkI}/while in 4, it becomes four 

tetragonal disphenoids, {hkl}, {hkl}, {khl} and {khl} [Table 14.1.2 (9)]. 

The special forms of point group 4/mmm in Fig. 8.7 are given in Table 8.4 

with their face symmetries. 

With the help of the stereogram in Fig. 8.9, we may derive the limiting and 

special forms of point group 4mm. As in 4/mmm, the pole of the face (hk0) 

gives rise to the ditetragonal prism {hk0} (Fig. 8.7b). This ditetragonal prism 

is the limiting form of the general form ditetragonal pyramid {hkl}. These 

forms both have face symmetry | and a total of eight faces. 

Application of the symmetry operations 4mm to the pole of the face (h01) 

results in a tetragonal pyramid {h0l} (Fig. 8.10b,), having point symmetry 

.m., a special form. Similarly, {hl} is a tetragonal pyramid (Fig. 8.10b,). 

These pyramids are distinguished only by their settings, and their combi- 

nation gives the tetragonal dipyramid {h0l} of point group 4/mmm. The 

tetragonal prism {100} is a limiting form of the special form tetragonal 

pyramid {h0l}, also having face symmetry .m., and a total of four faces. 

Tetragonal pyramids are also generated by fhhl} and {hhl} (Fig. 8.10c), 

this time with face symmetry ..m. These forms combine to give the tetragonal 

dipyramid {hhl} of 4/mmm. The tetragonal prism {110} is a limiting form of 

the special form tetragonal pyramid {hhl}. Finally, the pole of the face (001) 

gives the pedion {001}, with face symmetry 4mm. All of the forms of the point 

group 4mm are given in Table 8.4. 
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The special and limiting forms of the rest of the tetragonal point groups 

are also to be found in Table 8.4. It will be seen that the various forms of the 

point groups of lower symmetry are greatly simplified. For point group 4, for 

example, all that remains beside the general form tetragonal pyramid is a 

single limiting form, the tetragonal prism, and a single special form, the 

pedion. 

In Table 8.4, the general forms and their limiting forms are separated from 

special forms by heavy lines, while dashed lines are used to separate the 

general forms from their limiting forms. Equal forms with the same face 

symmetry are collected together, as is also done in Tables 8.5-8.7. 

The face symmetries in Table 8.4 are always derived from a three- 

component symbol for the point group, which is expanded as required, e.g. 

4/m(1) (1). Thus, the face symmetry in {hk0} is given as m.., and that in {001} 

is given as 4... The same expansion is used for those point groups in other 

crystal systems which have symbols with only 1 or 2 components, e.g. 3m(1), 

PCM), Cie 

Crystal forms in the other crystal systems can be developed in the same 

way to that we have done for the tetragonal system. In the following pages, 

the crystal forms for the hexagonal (trigonal), cubic and orthorhombic 

systems are set out to show their interrelationships and to provide an aid in 

the indexing of faces. The crystal forms are first given for each system (Tables 

8.4-8.7), and Table 14.1 gives a summary of the 47 fundamental forms. The 

names used here are those in the Jnternational Tables for Crystallography {14}. 

Crystal Forms in the Hexagonal and Trigonal Systems 

In each crystal system, an axial system a, b, c must be chosen which is 

appropriate for the symmetry. For the hexagonal and trigonal systems, in 

addition to the unique c-axis, it is convenient to choose three equivalent axes 

a,, a) and a; (cf. p.89 and Fig. 6.22) and to use the Bravais-Miller indices 

(hkil). The index 1 corresponds to the a; axis. The indices h, k and i are not 

independent, but are related by h+ k +i=0 orh +k =i. The application of this 

relationship can be seen in Fig. 8.12. Joint consideration of the hexagonal and 

trigonal systems is useful since all of the trigonal forms may be derived from 

the dihexagonal dipyramid, the general form of 6/m 2/m 2/m, the highest 
symmetry point group of the hexagonal system (see Figs. 8.12 and 8.13 and 
Table 8.5). The trigonal and hexagonal crystal forms are all set out in Table 
14.1.3. ; 

Crystal Forms in the Cubic System 

The cubic crystal forms are collected in Table 14.1.4; see also Figs. 8.14 and 
8.15 and Table 8.6. 

SY 
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a) ala) nki0 b) ala) ikhd 

Fig. 8.12a,b. Section through a hexagonal prism {hki0} (a) and {khi0} (b), in the equatorial 

plane of a stereographic projection, with the poles of the relevant faces and their indices 

indicated. The dashed lines serve to indicate the intercepts of the faces on the axes 

[{(hki0) = (2130); (khi0) = 1230)} 

ikhl 2110 

e é 

A / uxt 
hohl . 

0710 hh2hl ® hn 7100 

hhol 

kiho ik hiko 

h2hh1@———- 1210 

hiko © wl L 

1700 

Fig. 8.13. Stereogram of the poles of the faces in all crystal forms of the point group of 

highest symmetry in the hexagonal system, 6/m 2/m 2/m. The stereogram shows the 

positions and the indices of all hexagonal and trigonal forms. The poles of faces with 
negative | are excluded. The spherical triangle with vertices (1010), (0001), (1120) is an 

asymmetric face unit for the point group 6/m 2/m 2/m 
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The special and limiting forms of the rest of the tetragonal point groups 

are also to be found in Table 8.4. It will be seen that the various forms of the 

point groups of lower symmetry are greatly simplified. For point group 4, for 

example, all that remains beside the general form tetragonal pyramid is a 

single limiting form, the tetragonal prism, and a single special form, the 

pedion. 
In Table 8.4, the general forms and their limiting forms are separated from 

special forms by heavy lines, while dashed lines are used to separate the 

general forms from their limiting forms. Equal forms with the same face 

symmetry are collected together, as is also done in Tables 8.5-8.7. 

The face symmetries in Table 8.4 are always derived from a three- 

component symbol for the point group, which is expanded as required, e.g. 

4/m(1) (1). Thus, the face symmetry in {hk0} is given as m.., and that in {001} 

is given as 4... The same expansion is used for those point groups in other 

crystal systems which have symbols with only 1 or 2 components, e.g. 3m(1), 

23 (ld) setcs 

Crystal forms in the other crystal systems can be developed in the same 

way to that we have done for the tetragonal system. In the following pages, 

the crystal forms for the hexagonal (trigonal), cubic and orthorhombic 

systems are set out to show their interrelationships and to provide an aid in 

the indexing of faces. The crystal forms are first given for each system (Tables 

8.4-8.7), and Table 14.1 gives a summary of the 47 fundamental forms. The 

names used here are those in the /nternational Tables for Crystallography {14}. 

Crystal Forms in the Hexagonal and Trigonal Systems 

In each crystal system, an axial system a, b, c must be chosen which is 

appropriate for the symmetry. For the hexagonal and trigonal systems, in 

addition to the unique c-axis, it is convenient to choose three equivalent axes 

a,, a and a; (cf. p.89 and Fig. 6.22) and to use the Bravais-Miller indices 

(hkil). The index 1 corresponds to the a3 axis. The indices h, k and i are not 

independent, but are related byh +k +i=Oorh+k =i. The application of this 

relationship can be seen in Fig. 8.12. Joint consideration of the hexagonal and 

trigonal systems is useful since all of the trigonal forms may be derived from 

the dihexagonal dipyramid, the general form of 6/m 2/m 2/m, the highest 

symmetry point group of the hexagonal system (see Figs. 8.12 and 8.13 and 

Table 8.5). The trigonal and hexagonal crystal forms are all set out in Table 

14.1.3. 

Crystal Forms in the Cubic System 

The cubic crystal forms are collected in Table 14.1.4; see also Figs. 8.14 and 
8.15 and Table 8.6. 
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kihO 7 hikO 

a) ala) b) —ala)) kno 

Fig. 8.12.a,b. Section through a hexagonal prism {hki0} (a) and {khi0} (b), in the equatorial 

plane of a stereographic projection, with the poles of the relevant faces and their indices 

indicated. The dashed lines serve to indicate the intercepts of the faces on the axes 

[(hki0) = (2130); (khi0) = 1230)] 
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Fig. 8.13. Stereogram of the poles of the faces in all crystal forms of the point group of 
highest symmetry in the hexagonal system, 6/m 2/m 2/m. The stereogram shows the 

positions and the indices of all hexagonal and trigonal forms. The poles of faces with 
negative | are excluded. The spherical triangle with vertices (1010), (0001), (1120) is an 

asymmetric face unit for the point group 6/m 2/m 2/m 
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Fig. 8.14. Indices for the cubic faces belonging to the form {hk0} (= {210}). If these are shifted 

from their special position so that their poles move toward the pole of the (111) face, faces 

will be obtained with general indices {hkl} in the point group 4/m 3 2/m (cf. Fig. 8 15) 

In the cubic, hexagonal (including trigonal) and tetragonal systems, all 

crystal forms except the pinacoid and the pedion are characteristic of the 

system. 

Crystal Forms in the Orthorhombic, Monoclinic and Triclinic Systems 

All of the “rhombic” forms are listed in Table 14.1.1, see Fig. 8.16 and 

Table 8.7. 

Only relatively simple forms occur in the monoclinic system. The general 

form in 2/m is the rhombic prism; in m and 2, the general forms are both 

dihedra: a dome in m and a sphenoid in 2 (Table 14.1.1). The pinacoid and the 

pedion are special or limiting forms. 

The triclinic system gives only the pinacoid (1) and the pedion (1). 

The symmetry of a crystal form can be considered in two separate ways. A 

tetragonal pyramid is generated by the symmetry operations of 4; that is its 

generating symmetry. On the other hand, a tetragonal pyramid actually 

displays the symmetry of 4mm; that is its eigensymmetry'. In Table 8.8, these 

elgensymmetries and generating symmetries are given for all tetragonal 

forms. 

Normally, crystals are not characterised by a single form but by a 

combination of forms, which must, of course, all conform to the point group 

of the crystal. The rutile crystal in Table 8.11.25 is a combination of a 

tetragonal dipyramid {111}, and two tetragonal prisms, {100} and {110}. 

! eigen (German) = own 
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Fig. 8.15. Stereogram of the poles of the faces in all crystal forms of the point group of 

highest symmetry in the cubic system, 4/m 3 2/m. The stereogram shows the positions and 

the indices of all cubic forms (hk0) =(310), (hkk) =(311), (hhk) = (221), (hkl) = (321). The 
poles of faces with the third index negative are excluded. The spherical triangle with vertices 

(100), (110), (111) is an asymmetric face unit for the point group 4/m 3 2/m 

8.3 Molecular Symmetry | 

Point symmetry is a very great help in the description of molecules, by which 

term we include polyatomic ions of any charge. Figure 8.17a shows a 

molecule of H,O, on which the symmetry elements, two mirror planes anda 

2-fold rotation axis, have been drawn. The point group mm2 (C),) is shown 
on the stereogram in Fig. 8.17b. 

In Table 8.11.1-37 (left hand column) molecular examples are given for 

several point groups. The stereogram for the point group is in most cases in 

the same orientation as the example molecule. 
a 
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Fig. 8.16. Stereogram of the poles 
of the faces in all crystal forms of 

the point group of highest sym- 

metry in the orthorhombic system, 

2/m 2/m 2/m. The stereogram 
shows the positions and the indices 

of all orthorhombic forms. The 

poles of faces with negative | are 

excluded. The spherical triangle 
with vertices (100), (010), (001) is 

an asymmetric face unit for the 

point group 2/m 2/m 2/m 

Table 8.8. Eigensymmetry and generating symmetry of the tetragonal forms 

Eigensymmetry Generating symmetry 

Tetragonal pyramid 4mm | 4,4mm 

Tetragonal disphenoid af 42m 4, 42m 

Tetragonal prism 4/mmm ee ulee Re | 

Tetragonal trapezohedron 422 422 
1 =| 

Ditetragonal pyramid 4mm 4mm 

Tetragonal scalenohedron 42m 42m 

Tetragonal dipyramid 4/mmm 4/m, 422, 42m, 4/mmm 

Ditetragonal prism 4/mmm 7 422, 4mm, 42m, 4/mmm 

Ditetragonal dipyramid | 4/mmm bal 4/mmm | 

The point groups of molecules are not limited to the 32 crystallographic 

groups. They may contain such symmetry elements as 5-fold axes which are 

incompatible with a crystal lattice. Table 8.11.33-37 and Fig. 11.6b give a few 

examples of important non-crystallographic point groups with molecular 

examples. 
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Fig. 8.17a. Point symmetry (mm2-C),) of 

the HO molecule. b Stereogram of the 

" symmetry elements of this point group 

Fjg. 8.18 a-e. Equivalence within 

« molecules. Equivalent atoms 

have the same letter symbols; 

equivalent bonds have the same 

pair of letters. a Benzene and 

b coronene (6/mmm - Dg); 

c naphthalene and d pyrene 

(mmm - D;,); e phenanthrene 

(mm2 7 Gy) 

The point group of a molecule indicates which atoms and which bonds 

are equivalent. Thus, in benzene, CsH¢, with point group 6/mmm — Ds, all 

C-atoms and all H-atoms are equivalent, as are all C-H and C-—C bonds 

(Fig. 8.18a, and also Table 8.11.27). Coronene, C,4Hj>, also belongs to point 

group 6/mmm - Dg,. In Fig. 8.18b, equivalent carbon atoms are indicated by 

the letters a, b and c, and all bonds between pairs of similarly labelled atoms 

are equivalent. There are thus four symmetry independent C—C bonds in 

coronene (a-a, a—b, b-c and c-c). Further examples are naphthalene, C,)Hg, 

and pyrene, Cj¢Hjo, both (mmm-D),) (Fig. 8.18c), and phenanthrene, 

C\4H jo, (mm2 - C,,) (Fig. 8.18e). The equivalences can be particularly clearly 

shown by copying the stereogram of the appropriate point group (Table 

8.11.7, 8 and 27) onto transparent paper and superimposing it on the 

molecules in Fig. 8.18. 
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fea SS 
Tl A 
te x 

pe eae ‘Se Se 5 
eer ay 

ome ne b) 
* ' ra Fig. 8.19a,b. The PF; molecule (a) has point group 

ll A 6m2 (D3,) (b). All atoms marked F, are equivalent, as 

are all marked F,, but F, and F, are not equivalent to 

ie a) one another 

In PFs, phosphorus is surrounded by five fluorine atoms. Were this a 

planar pentagonal molecule, all F-atoms and all P-F bonds would be equiv- 

alent (point group 5/mm2 (10m2), Table 8.11.35). In fact, the molecule has 

the shape of a trigonal dipyramid (Fig. 8.19) with the P-atom at the centre, 

and point symmetry 6m2(D3,). Thus, the two atoms labelled F, are equivalent, 

as are the three labelled F,, but F, and F, are not equivalent to one another. 

If one of the methyl groups of an ethane molecule is rotated about the C—C 

bond through 360° with respect to the other, various different conformations 

will be generated. These are illustrated in Fig.8.20 together with the 

stereograms of the respective point groups. Conformations are the spatial 

arrangements of the atoms of a molecule which result from rotation about a 

chemical single bond. 

Fig. 8.20a-d. Conformations of ethane. a Eclipsed: p=0 or 120 or 240°: (6m2-Ds,). 
b Skew: 0<9<60°, 120<@<180° or 240<g<300°: (32-D3). ¢ Staggered: @=60 or 
180 or 300°: (3m — Dag). d Skew: 60 <p <120°, 180 <p < 240° or 300 <— < 360°: (32- Ds). 
The conformations in b and d are enantiomorphs 

. 
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8.4 Determination of Point Groups 

Before the determination of the point group of a crystal (or a molecule having 

a crystallographic point group), it should be assigned to one of the seven 

crystal systems. For this, it is necessary to know the characteristic symmetry 

elements of the crystal systems; these are given in Table 8.9, and can be derived 

from the symmetry information given in Table 8.10. 

In determining the point group of molecules or crystals, it isin general not 

necessary to find each and every symmetry element. Using Tables 8.9 and 

8.10, it may generally be done by answering a few, well-chosen questions. In 

practice, it is best to consider first an important property of rotation axes. All 

rotation axes are polar. This means that they have distinct properties in 

parallel and antiparallel directions. Various other symmetry elements can 

destroy this polarity, viz.: 

(a) I (b) m LX (Cyr EX 

Table 8.9. Characteristic symmetry elements of the seven crystal systems 

rile . . 

Crystal ; A Characteristic 
Point groups 

system ¥ symmetry elements 

: 4/m 3 2/m i 

OHNE | 43m, 432, 2/3, 23 oe 
—| 

6 /m 2/m 2/m 

Hexagonal 6m2, 6mm, 622, T Foa®) 

i. 6 /m, 6, 6 

Tetragonal see le moe etra tal Su aks) r i jm 4, 4 (3 @ or 3 @ => cubic) 

| 
5 1A 

Trigonal Sm (remember that m normal 
Sin, B23, 3 Sahai 

i aol eet oat os to 3 gives 6 = hexagonal 

; 2/m 2/m 2/m 2 and/or m 

poz bosbombie mm2, 222 in three orthogonal directions 

fay 2/m 2 and/or m 

te m, 2 in one direction 

- : I 
ee 1 = 

Triclinic 1 1 or | only 

L 
4 Characteric symmetry elements are underlined. 
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The 2 in Fig. 8.17 and the 3 in Table 8.11.19 are examples of polar rotation 

axes. The ends of polar axes are represented in symmetry diagrams and 

stereograms by one solid and one open symbol (cf. Figs. 6.8f-6.13f). 

Questions to use for point-group determination: 

1. Are rotation axes higher than 2 present (3, 4, 6)? 

2. Are these axes polar? or 

Is an inversion centre present? 

(crystals with an inversion centre are characterised by sets of parallel faces 

opposite one another.) 

Point group determination will be illustrated by two examples: 

a) The methane molecule (CH,) (Table 8.11.31). It is easily seen that a polar 

3-fold axis lies on each C—H bond. As there are four of these, the point 

group must belong to the cubic system, and it must be one with polar 

3-fold axes (indicated in Table 8.10 by a subscript p by the graphical 

symbol (e.g. &,). This indicates either 23 or 43m (Table 8.10). These are 

readily distinguished, since only 43m has mirror planes. These planes are 

readily seen in CHg, so the point group is 43m. 

b) A crystal of magnesium (Table. 8.11.27). The crystal contains a 6-fold 

rotation axis, and so must belong to the hexagonal system. An inversion 

centre is also easily found. This limits the point group to 6/m and 6/mmm 

(Table 8.10). These may be distinguished by the mirror planes parallel to 6 

in 6/mmm and not in 6/m. Since these planes are evident in the crystal, the 

magnesium crystal may be assigned to point group 6/mmm. 

Determination of the symmetry of a crystal is not always unambiguous. 

For example, the cube (hexahedron) occurs as a form in all five cubic point 

groups (Table 8.6). Determining the symmetry of a cube will naturally lead 

to the point group of highest symmetry, m3m (Table 8.11.32). The mineral 

pyrites, FeS, (point group m3) has cube-shaped crystals. The cube-faces, 

however, frequently have characteristic striations which indicate the lower 

symmetry (Table 8.11.29). 

In other ambiguous cases, “etch-figures” will indicate the true symmetry of 

a crystal face and hence of the entire crystal. These figures are bounded by 

faces with high Miller indices and arise from the action of a solvent on a 

crystal face. Crystals of the mineral nepheline (Table 8.11.21) have a 

morphology (a hexagonal prism and a pinacoid) which indicate the point 

group 6/mmm. The etch figures show that the true symmetry is only 6. 
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8.5 Enantiomorphism 

The point group 1 (C,) is asymmetric. All other point groups with no 

symmetry other than rotation axes are called chiral or dissymmetric. The 

relevant point groups are: 

I eas D, 3 4, 6 (Cag (Cy): C, C3, C,; Ce 

X2: 222, 32, 422, 622 De eoe Db: 
3:23) 432 EO 

Asymmetric and dissymmetric crystals and molecules are those which are not 

superimposable on their mirror images by rotation or translation. These 

mirror images are said to be the enantiomorphs of each other. In Fig. 5.9 and 

Table 8.11.3 and 18, examples are given of enantiomorphic crystals and 

molecules. Enantiomorphic molecules are also called enantiomeric. 

8.6 Point Groups and Physical Properties 

We shall now examine a few properties of molecules and crystals which are 

related to their point groups, or whose effects may be traced back to specific 

symmetry considerations. 

8.6.1 Optical Activity 

Optical activity refers to the ability of certain crystals and molecules to rotate 

the plane of polarised light. It can only arise in those point groups which are 

enantiomorphic (cf. Sect. 8.5 and Table 8.10). Two sorts of optical activity 

may be distinguished: 

a) Optical Activity as a Property of a Crystal. The crystal is optically active, 

and this acitvity is lost when the crystal is melted or dissolved. Examples 

include MgSO,:7H,0O, SiO, (low-quartz), NaClO3 (Table 8.11.6, 18 and 28). 

Not only the morphology: but also the crystal structures exist in two 

enantiomorphic forms. The “left” form rotates the plane of polarised light to 

the left, and the “right” form an equal amount to the right. 

b) Optical Activity as the Property of Molecules. Some molecules are 

themselves enantiomeric, and both their solutions and the crystals they form 

are optically active. Well-known examples of this type of optical activity are 

the crystals of D- and L-tartaric acid (Table 8.11.3). In contrast, the 

“racemate” DL-tartaric acid is optically inactive and gives crystals with point 

group 1 (C;). Molecules of the isomeric form meso-tartaric acid (1, (C;), Table 

8.11.2) are centrosymmetric and hence optically inactive. 
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Optical activity is not limited to the 11 point groups in which enantiomor- 

phism occurs (Sect. 8.5). It can also occur in crystals in the point groups 

m(C,), mm2(C,), 4(S4) and 42m(Dyq), cf. Table 8.10. 

8.6.2 Piezoelectricity 

Some crystals, when subjected to pressure or tension in certain directions 

develop an electric charge; this property is called piezoelectricity. This effect is 

clearly seen in plates of quartz (point group 32), cut normal to the a-axis or 

any polar 2-fold rotation axis (Fig. 8.21). The direction of the applied pressure 

or tension must be along a polar axis. Polar axes are those which have distinct 

physical properties in the parallel and antiparallel directions. These direc- 

tions must thus not be themselves related by symmetry. It follows that within 

the crystal there will be an asymmetric charge distribution along polar axes. 

The opposite faces, normal to the polar axis, develop electric 

charges when a pressure is applied along the axis. The direction of this electric 

field is reversed when the pressure is replaced by a tension. 

Piezoelectricity is only observed in crystals which have polar axes. Polar 

directions only exist in point groups without a centre of symmetry. There are 

21 such point groups, as is shown in Table 8.10. The point group 432 is also 

excluded, as the symmetry is too high for the eff€ct to develop. 

The piezoelectric effect is reversible. If an electric field is applied in the 

direction of the polar axis of a quartz plate, the crystal will undergo 

compression or expansion. The application of an alternating field will cause 

the crystal to vibrate. 

Other crystals which show piezoelectricity include D- and L-tartaric acid 

(2-C,), Table 8.11.3; tourmaline (3m-C;3,), Table 8.11.19; NaClO; (23-T), 

Table 8.11.28; ZnS (sphalerite) (43m -T,), Table 8.11.31. 

Piezoelectricity has many technical applications, including ultrasonic 

generators, amplifiers, microphones and quartz time-pieces. 

Fig. 8.21a-c. The piezoelectric effect in a quartz plate arising from pressure along a polar 

axis, here parallel to the a; axis 

145 



8.6.3 Pyroelectricity 

When a crystal of tourmaline (Table 8.11.19) is heated, the polar ends of the 

crystal develop electric charges. Heating causes the positive end of the c-axis 

to become positively charged relative to the negative end, and cooling has the 

opposite effect. This effect results from the fact that tourmaline has a 

permanent electric dipole. The charge which builds up is soon dissipated by 

conduction into the surroundings. Changes in temperature change the size of 

the electric dipole. 

The dipole moment is a vector. Pyroelectricity can only arise when the 

point group has no symmetry operations which alter the direction of this 

dipole. The vector must remain unchanged by all the symmetry operations. 

Point groups having this property include those with only a single rotation 

axis: 2(C>), 3(C3), 4(C4) and 6(C¢) as well as those which have only these axes 

plus mirror planes parallel to them: mm2(C,), 3m(C3,), 4mm(C4,) and 

6mm (C,,). The dipole-moment vector lies in the rotation axis. The conditions 

for the presence of a dipole moment are also found in the point groups m (for 

all directions parallel to the mirror plane) and 1 (for every direction), cf. Table 

8.10. 

Knowledge of the symmetry gives only a qualitative indication of the 

possible presence of pyroelectricity. It does not indicate the size of the dipole 

moment or the directions of the positive and negative ends. 

Sucrose, C)7H»)O);, (2— C2) and hemimorphite, Zny[(OH)2/Si.07]: H»O 

(mm2—C),) are examples of crystals showing pyroelectricity. 

8.6.4 Molecular Dipole Moments 

Many molecules have an asymmetric distribution of electric charge and hence 

an electric dipole moment. The relationship between the point group of a 

molecule and the direction of its dipole is the same as that developed above 

for the pyroelectricity of crystals (cf. Sect. 8.6.3). 
The measurement of a dipole moment can give important information 

about the shape of a molecule. PF; has a dipole moment, while BF; does not. 
Molecules of the formula AB; may have the shape of an equilateral triangle 
with A at the centre [6m2(D3,)] or a triangular pyramid with A at the apex 
[3m(C3,)], cf. Table 8.11.19 and 26. The shape of BF; is thus the former, while 
PF; 1s the latter. 
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Table 8.11. Examples of molecules and crystals for the point groups 

Molecules 

® Ss 

== ——<— aS Ze 

Point group Crystals 

LENS : 

\ 
1- C, SrH,(C,H4O¢)o ‘ 4H,O 

CaS,0, 2 6H,O 

COOH 2 

H OH f= 

HO H 

HOOC ° / fe 

H é 

ve \ COOH ; 

See ve 1—¢ CH,(COOH), (Malonic acid) 
———c# 

we Sak Ri castes 
HOOC “OH H;BO;, CuSO,-5H,0 

H MnSiO; (Rhodonite) 

Meso-Tartaric acid NaAlSi,O; (Albite) 

3 

m 
HOOC COOH 

H OH | HO H 

H OH \ HO H 

HOOC COOH 

The enantiomers of tartaric acid 

Tartaric acid 

LipSO, cS H,0O 

Cj2Hy0;,; (Sucrose) 
C,4H 9 (Phenanthrene) 
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Table 8.11 (continuation) 

Molecules Point group Crystals 

4 

Cl 

NOCI m—C, 

K,S405¢ 

CuSO,-3H,O 

5 

Cl 

iN vs oye 
are 

yi f 
ci ess 

Trans-\,2-Dichloroethene 2/m—C,, KCIO, 

CaSO,:2H,O (Gypsum) Fig. 5.6 
FeSO,:7H,O 
KAISi;0¢ (Sanidine), S 
CoH, Ci4Hio (Anthracene) 

(COOH): 2H,0 
ase 

6 

— ATE 
en Ps I \\ 

O-=-O [tH / 
Xe | J 

Diphenylethine S ie a 

222—D, nod 

MgSO,-7H2O (Epsomite) 

Vitamin By, (Fig. 1.1b) 
KNaC,H,0,:4H,O 
(Rochelle salt) 
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Table 8.11 (continuation) 

Molecules 

H H 

\or ates 

ve \ 

Point group Crystals 

2-C,, : i 
Cis-1,2-Dichloroethene ae : AEE SO OSU OKS 2) 

C.H4(OH), (Resorcinol) 
Ag3Sb (Dyskrasite) 
FeAlO; 

eee P| Dele 

<Geni 8 
H. ip) 

iG; Cc 

H H 4 

Ethene mmm—D,, 

CaCO; (Argonite) 

CaSO, (Anhydrite), KCIO, 
BaSO, (Barytes), S 

u (COOH), (Oxalic acid), CeHe, I, 

ww Ti 

aes 
ax = A tae 

SHoD : CH; Vi \ ( 

\ f I Ox 
H NeweCuss NH | | \ v 
he eae \ : 

fHO ES C2Hs =< / 
° v7 =N 0 == 

o “ CN PbMoO, (Wulfenite) 

(CH;CHO), (Metaldehyde) 

ee 10 

& 
Ca,[AsO,4/B(OH),] (Cahnite) 

BPO,, BAsO, 
C(CH,OH), (Pentaerythritol) 
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Table 8.11 (continuation) 
—— 

Molecules Point group Crystals 

co 2+ 
v ech 

ee is ae H 

Si. : / 
Niseene= Cui -=N. 

gee: ie 
ask zu p22) 

Hore fe) 

= 4/m— Cah CH,OH : (CHOH),: CH,OH 
(Isoerythritol) 

CaWO, (Scheelite) 
NaJO,- BaMoO, 

a8 Ee 
S 6) 

/ QT ae. 
“HO OC. — 0 CH 

e OW eS H=-9 : CoH Napali 
aq i @ <r \ 
ke Benes N h [a = 

H-O i Xe H Noel 7 
y N SaGiLee 

ee ess na CCl,;COOK : CCl; COOH 

P. 1& 422-D, 
Core age NiSO,:6H,O 

Tetrachlorocyclobutane 

H H 

H H 

CH, (Allene) 
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14 

Hg(CN); 

KH)PO,, 
CO(NH)2)» (Urea) 
CuFeS, (Chalcopyrite) 
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Table 8.11 (continuation) 

Molecules Point group Crystals 

15 

is (mn, 

(110) 

PtCls 
4/mmm — D,, 

TiO, (Rutile) 

SnO) (Cassiterite) 
TiO, (Anatase) 
ZrSiO, (Zircon) 

16 

H Cl = 
a ae SS 

/ i uz 
cI | | » 
H H Se js /| IS 

Cl Se 

CH.CeE 3-C, NalO,:3H,O 

TLS 

17 

a ey oe oO 

“8 e fear 
ee: a. / \ 4) 
2 Y 4 ee \ ‘ AIAG y, el res MK y 

A 72 4 ——- 
@ seeHIGS A 52, 

CaMg(CO3)2 (Dolomite) 

FeTiO; (Ilmenite) 
Be2SiO, (Phenacite) 

Li,BeF, 
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Table 8.11 (continuation) 

Molecules Point group Crystals 

HH on 

jo 
/ iN aN 

H H t Ve \ { 

H H a S 7 

C,H, (Skew conformation) 32—D, 

L R- 

Low-quartz SiO, 

AIPOx,, Se, Te, HgS, K2S20¢ 

(CsH;CO) (Benzil) 

| es et | 

19 

10; scO;;, AsO:= 

3m—C,, 
Tourmaline 

Ag;3SbS; (Pyrargyrite) 
NiS (Millerite) 
LiNaSO, 

20 

C.6H,2 Cyclohexane (Chair-form) Ca€O; (Calcite) 

As, Sb, Bi, CdCl,, NaNO; 
Al,O; (Corundum) 

Fe,0; (Haematite) 
Mg(OH)) (Brucite) 
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Table 8.11 (continuation) 

Molecules Point group Crystals 

S ime 

A : age 
MD ron ye \ 

of Oo i 

l S$ 
re) P \ 

~ ¢ 

> Cy ae eA 

5 ' fae 
Aras Cc 6—C, 

a KNa;3(AISiO,4)4 (Nepheline) with 
etch-figures 

CHFCI = R 

LiKSO, 
Hexa-R-Benzene CHI, 

ee ee 

“ On, 

H Se 

eae 
ie EO, 

Oo 
a 
a 

(SOR t 
B(OH), ‘ 

23 

6/m—C,,, 
Hexaazacorone Cas[F/(PO,)3] (Apatite) 

Ce2(SOx4)3 :. 9H,O 

Hexaphenylbenzene 
KAISi0O, (Kaliophilite) 
Si0, (High-quartz) 
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Table 8.11 (continuation) 

Molecules Point group Crystals 

25 

Ye SS 

\c a \ 

CH, Br 6mm—C,, (VS 

Brh,C CH,Br Sy 
BrH,C CH,Br Agl 

Capel ZnS (Wurtzite), CdS 
Hexabromomethylbenzene ZnO, BeO 

26 

NOM CO-s be BaTi(Siz04) 

6m2—Dsy (Benitoite) 

27 

Benzene 6/mmm — Dg, Mg 

Be, Zn, CuS, NiAs, 

Be3Al)SigO}3 (Beryl) 

C (Graphite), MoS, 

CH 

28 
BO eee err Fe 

Ae ING ie aes LS hs : BN 
(ite | LIS. 

ean Ve | Se aise 
Lobe cone " ‘ au | OY 
1 1 

aot peas Car 
i owe beat 

Chye=nea Soo a TR Left-NaClO, 

Tetramethylmethane 
NaBrO, 
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Table 8.11 (continuation) 

Molecules 

CgHg (Cubane) 

Point group Crystals 

FeS, (Pyrite) with Striations on 
the cube faces 

Alums (e.g. KAI(SO4)2* 12H,O) 

SiO, (Melanophlogite) 

Ag3AuTe 

ZnS (Sphalerite) 

CuCl, CuBr, Cul 

Al(PO3)3, Ag3PO4 

32 

NaCl, KCl, CaF), MgO 

PbS (Fig. 4.1), CsCl 
Garnet (Fig. 1.1a) 
Cu, Ag, Au, Pt, Fe, W, Si 

C (Diamond) 
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Table 8.11 (continuation) 

A few non-crystallographic point groups 

Molecules Point group Crystals 

—- hie =e 

A fold i is with infinitel a noo-fold rotation axis with infinitely many 

O e mirror planes parallel to it. ; 
Impossible 

COVHCIECNa 
oom — Day 

—S 

34 

O—O 
186, An -fold rotation axis with infinitely many 

O, mirror planes parallel to it and infinitely 

OL many 2-fold axes normal to it, a mirror plane 

normal to it ; 
Impossible 

© @ © co/mm - Den 

CO, 

C,H, 

<_<. 

O 35 

@ Fe 

Impossible 

Ferrocene 

(eclipsed conformation) 

36 

SC ) Impossible 

Le) : 
Ss 
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Exercise 8.1. 

a) What is meant by a polar rotation axis? 

b) Which symmetry elements can compensate the polarity of a rotation axis? The arrows in 

the diagram represent X-fold polar rotation axes, X,. The polarity will be compensated 

by a symmetry operation which reverses the head of the arrows. Draw in the location of 

symmetry elements which can do this. 

c) Howcan polar rotation axes be recognised in symmetry diagrams and in the stereograms 

of point groups? 

Exercise 8.2. Are there polar rotoinversion axes? If so, specify which; if not, state why 

not. 

Exercise 8.3. Combine the operations 1+1, 2+1, 3+1, 4+1, 6+1. Which point groups 

result? Give their symbols. 

/ 

Exercise 8.4. Combine the operations (A) 2+ 2, (B)m-+m and (C) 2+m, where the elements 

intersect at angles of 30, 45, 60 and 90°. Take the direction of m to be the direction of its 

normal. 

Complete the stereographic projections shown in Table 8.12. Which symmetry elements 

are generated? What are the resultant point groups? Give the symbols for each. 

Copy the stereograms of the point groups in columns A, B or C into column D, and add 1. 

Which new point groups are generated? Give their symbols. 

For each point group, choose an axial system and assign each point group to a crystal 

system. 
The solution of that part of the exercise will explain the following symmetry rules: 

A) The combination of two 2-fold axes at an angle of a produces an X-fold axis 

2 360° 
é ey 

B) The combination of two mirror planes at an angle of — produces an X-fold axis 

360° z 
rr 

through their point of intersection perpendicular to their common plane. X= 

along their line of intersection. X = 

ley 



Table 8.12 

2+M M+mM 2+2 
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C) The combination of a 2-fold axis with a mirror plane at an angle of = produces an 

X axis through the point of intersection of the axis with the normal to the plane and 

perpendicular to the common plane of the axis and the normal. X = ot : 
o 
CG 

Since only X=1, 2, 3,4 and 6 or X=1, 2=m, 3, 4 and 6 are permitted, a can only 

have the values 30, 45, 60, 90 and 180°. The combinations at an angle of 180° are not 

included in Table 8.12. 

Exercise 8.5. Combine the operations of (E) 2 + 3, (F) 4 + 3 and (G) 4 +3, where the elements 

intersect at an angle of 54.73° (the angle between the edge and the body diagonal of a cube). 

Complete the stereographic projections shown in Table 8.13, and give the symbols for the 

resultant point groups. Copy the stereograms in E, F and G into H, I and K and add 1 to 

them. Give the symbols of the point groups which now result. 

Table 8.13 

2+3 ha¥S) 443 

a DAS 

ve a ae aes 
Ce See vale. / Sayed 2 Z ; 
eo + AO / aye As 4 
Os EN hy 2 CEN tle ie 
< Se <= se 

Ba | ie G 
eae afi 7N auf Pe NG +) 

Mee BNO. on NG nee ZO 
Tee aN 7 ea (Efe EN ~ 

Le Rae eas ly oll INS 
eee nerer bSeae, ees ete ales 
ee areas Gt Sv ES) Sag Se 

So we | oe eS 
ies Sa yee oe 
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Exercise 8.6. Starting from the point of highest symmetry in the trigonal system 3 2/m, 

develop its trigonal subgroups. 

Exercise 8.7. Colour the circles of the point groups in Fig. 8.3, using the same colour for all 

point groups belonging to the same crystal system. 

Exercise 8.8. 

a) Howis it possible to identify the crystal system of a point group from its International 

symbol? 

b) For each crystal system, give the characteristic point-symmetry elements, and, if 

necessary, the number of such elements or their relationship to one another. Mark the 

position these elements occupy in the International point-group symbol, and give an 

example for each crystal system. 

Crystal system 

4 
Characteristic 

number and 

relationship 
to one another 

symmetry elements 

Position of 

characteristic 

in the symbol 

Ist | 2nd | 

symmetry element(s) Example 

3rd 

Triclinic 

Monoclinic 

4 

Orthorhombic 2 a + 

Tetragonal | 

a a 

Trigonal 

e Cubic 

Hexagonal 

ee 

i 

= 
J 
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Exercise 8.9. Determine the International symbol for the point groups whose symmetry 

elements are illustrated in the following stereograms: 

a) First, find the symmetry elements that charcterise the crystal system. 

b) Indicate the crystallographic axes a, b, c on the stereogram, bearing in mind the 

orientation of the symmetry directions for the crystal system. 

c) Give the International symbol and, in brackets, the Schénflies symbol. 

33) aN 

/ eH N a iy 
ef Oe 
AS 

5) 

2) Ca 

6) 
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Exercise 8.10. In the stereograms below, indicate the symmetry elements for the given point 

group: 

a) Determine the crystal system. 

b) Draw the appropriate axial system on the stereogram. The c-axis should always be 

perpendicular to the plane of projection. 

c) Analyse the point group symbol with respect to the symmetry directions. 

d) Finally, draw the symmetry elements on the stereogram. Remember that rotations and 

rotoinversion axes, as well as the normals to mirror planes are arranged parallel to their 

symmetry directions. 

222 eS 2/m va i 

za \ cn ae 
\ | Bea | 

polis aon Gas ag WZINe7 
\ Rae XN Dey 
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Exercise 8.11. Determination of point groups 

Determine the point groups of the molecules and ions given below, using the method 

described in Section 8.4. Give the International symbol and the Sch6nflies symbol, and draw 

the symmetry elements on the stereographic projection. 

Chlorobenzene 

3. 1,2-Dichlorobenzene | 4 1,3-Dichlorobenzene 

7 

om \ 
1.2- ~S : — 

5 

Naphthalene 

Phenanthrene 1-Chloronaphthalene 
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10 

11 

12 

13 

14 

SF 

SF 

SF 

SE 

164 



Methane 
15 

cH, 

Chloromethane 

CHCl 
16 

Dichloromethane 

CHCl, 
ug 

Chloroform 
A 

CHC1, 
18 

Carbon tetrachloride 

ctl, 
19 

10, 

Se0 20 
3 

AsO 

NO 
21 

co. 
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22 

23 

24 

25 

26 

27 

28 

Cyclopropane 

CoH. 

Monochlorocyclopropane 

CZHoCL 

Dichlorocyclopropane 
CoH, Cl, 

Trichlorocyclopropane 
CoH.C1. LEXELUY 
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29 

30 

31 

32 

33 

34 

35 

Trichlorocyclopropane 
are as 

CyHAe1. I ~ 

i ua 1 \ ) 

NN ieee 

age pe 

(ave 
b \ 

/ N ee, 

/ l 
1 \ / 

N 7 
Seen Pd 

Yi SS 
\ 

mag d moe 
chair form a / hair f ; \ eee 

Cyclohexane 
— 

CoH me SS 612 / \ 

a \\ \ , 
boat form Se ne 

Vane 
a =e za \ 

H295 ar, Pa Sea / 

toe / 
N ae, 

aoa 
cv \ 

M0 RS : 
\ / S ees 

167 



38 

40 

41 

42 

Cyclobutane 

CAH 

Tetrachlorocyclobutane 

CiH 
4 
Cl 4 

EEELEEY 
168 



Tetrachlorocyclobutane he es NS 

i Dr eae aH : \ 
] / 

iN y; 

ea 

i a 
44 

( j 7 

a tae 2 

IES. 

: lees 28 \ ; 
eee 7 

ear 
Ya SS f ee) 

dé eS vy, 

Se shes 

aa 
47 

| : J J \ / 
ee 

Vat ce \ 48 
| ) 7 

peo 7 

i mi PS 
dh \ 

49 | 
N 7, 

a) Which isomers of tetrachlorocyclobutane are enantiomers? 

b) Which molecules possess a dipole moment? 
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Exercise 8.12. What information about the spatial arrangement of the atoms in the following 

molecules can you infer from the point group symmetry? 

— 

170 

“| 

H,C=C-CH, 

Allene 



Exercise 8.13. Rotate one of the CHCl groups of a 1,2-dichloroethane molecule about the 
C-C bond stepwise through 360° with respect to the other. Which symmetry distinct 
conformations are encountered? Give their point groups, and compare them with the 
corresponding conformations of ethane in Fig. 8.20. 

ClI|Cl 

Exercise 8.14. Will measurements of their dipole moments distinguish the cis and trans 

forms of dichloroethene? 

Exercise 8.15. 

a) Determine the point groups of the following crystals with the help of Table 8.10 and 

crystal models such as those illustrated in Exercise 4.4. Draw the symmetry elements on 

the stereogram, and give the International symbol for the point group. 

b) Indicate the position of the crystallographic axes on the stereograms and the crystal 

diagrams. 

c) Estimate by eye the positions of the crystal faces, and enter the poles on the stereogram, 

using different colours for different forms. 

d) Index the crystal forms. 
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SS ae 

Rhombic Tetragonal 

dipyramid dipyramid 

V2 

eas 

NX 

Ys 
See 

Trigonal Hexagonal 

dipyramid dipyramid 

/ 

‘ 

13 14 

as: Pe 

Ve a We ~ 
[ : 

S ee \ 
SSS SS a4 

Hexahedron 
Octahedron 

15 16 

a eae 

oS ame ES / ‘ 

Tetrahedron Rhombohedron 
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Exercise 8.16. Which of the crystals in Exercise 8.15 might, on the basis of its crystal forms, 

show the piezo-electric effect? Mark the appropriate diagrams “Piezo-elect.” 

Exercise 8.17. There is a simple relationship between the numbers of faces, edges and vertices 

of a polyhedron. Work out what it is. 

Exercise 8.18. The figure shows the cross-section of a ditetragonal prism on the equatorial 

plane of a stereographic projection, together with the corresponding poles. The dashed lines 

have been added to point out the axial intercepts of the faces. 

a(a,) 

a) Index all the faces of the crystal form {hk0} or {210}. 

b) Ifthe faces of a ditetragonal prism are inclined by a given angle in the direction of the 
positive and negative c-axis, the poles of the faces move a corresponding amount away 
from the periphery in the [001] and [001] directions. What is the resulting crystal form? 
Index all the faces of this form. 
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Exercise 8.19. The figure shows the cross-section of a hexagonal prism on the equatorial 

plane of a stereographic projection, together with the corresponding poles. The dashed lines 

have been added to point out the axial intercepts of the faces. 

03 

mae 

a(a,) 

a) Index all the faces of the crystal form {hki0} or {2130}. 

b) If the faces of a hexgonal prism are inclined by a given angle in the direction of the 

positive and negative c-axis, the poles of the faces move a corresponding amount away 

from the periphery in the [0001] and [0001] directions. What is the resulting crystal form? 

Index all the faces of this form. ‘ 

Exercise 8.20. Derive the crystal forms of the following point groups: 

a) Use the characteristic symmetry elements to determine the crystal system (cf. Table 8.9). 

b) Look up the stereogram of the poles of the forms for the point group of highest 

symmetry in that system: Fig. 8.16 for orthorhombic, Fig. 8.9 for tetragonal, Fig. 8.13 

for hexagonal or trigonal, and Fig. 8.15 for cubic. 

c) Place a piece of tracing paper over the stereogram, and draw in the symmetry elements 

for the point group, appropriately orientated to the crystallographic axes. 

d) Indicate the asymmetric face unit. 
e) Draw in first the poles for the faces of the general form. What is it called? Index all the 

faces. 

f) If the general form has limiting forms, draw these in and name and index them. 

g) Draw in the special forms and their limiting forms (if any). Name and index them and 
give the point symmetry of their faces. 

(It is a good idea to use several pieces of tracing paper!) 

1) 42m 5) 6/mmm 
2) 4 6) 622 
3) mmm 7) 3m 

4) mm2 8) m3m 
9) 43m 

IR) 



Exercise 8.21. In International Tables for Crystallography, Vol. A, for the point group 

4/m 3 2/m, the trapezohedron (or deltoidicositetrahedron), is given as the special form 
{hhl}, |h|<{l| and the trisoctahedron for {hhl}, |h|>|l|. In Table 8.6, however, the 

trapezohedron is given for {hkk} and the trisoctahedron for {hhk}. Explain this apparent 

inconsistency. 

Exercise 8.22. Which special forms in the hexagonal and trigonal systems have limiting 
forms? 
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9 Space Groups 

9.1 Glide Planes and Screw Axes 

The 32 point groups are the symmetry groups of many molecules and of all 

crystals, so long as only the morphology is considered. Space groups give the 

symmetry not only of crystal lattices, but also of crystal structures. 

In Table 6.4 are given the space-group symbols for the 14 Bravais lattices; 

the space-group symbol does not in general enumerate all the symmetry 

elements of the space group. In particular, the space groups of centred lattices 

contain new symmetry operations. These are compound symmetry opera- 

tions which arise through reflection and translation (1) and rotation and 

translation (2) (cf. Chap. 5.4-and Table 5.1). / 

1. In the orthorhombic C-lattice, reflection through a plane (- — —) at i, y,z, 

followed by a translation of > moves the lattice point 0,0,0 to 5,5,0 

(Fig. 9.1a). This symmetry operation is called a glide reflection, and the 

corresponding element is a glide plane (in this case, a b-glide plane). 

Fig. 9.1. a Location of a b-glide 

plane in an orthorhombic C-lattice. 

b Position of 2-fold screw axis in an 

orthorhombic I-lattice. (@ lattice 

point with z= ) 

2. In the orthorhombic I-lattice, a 180° rotation about an axis @ at 4,45Z, 
C ; 

followed by a translation of a moves the lattice point 0,0,0 to 3, 3,4 

(Fig. 9.1b). This symmetry operation is called a screw rotation, and the 

corresponding element is a screw axis (in this case, a 2-fold screw axis). 

hy 



9.1.1 Glide Planes 

The compound symmetry operation “glide reflection” implies: 

A)a reflection and 

B) a translation by the vector g parallel to the plane of glide reflection where 

|g| is called the glide component. 

Figure 9.2 contrasts the operation of a mirror plane with that of a glide 

plane on a point lying off the planes. 

he 

a) a b) 

Fig. 9.2a,b. Operation of a mirror plane m (a) and of a glide plane c (b) on a point shown in 

perspective and as a projection on (001) 

A second application of the glide reflection brings one to a point identical 

to the starting point, i.e. g is one-half of a lattice translation parallel to the glide 

plane, |g| =3|t|. Glide planes are developments of mirror planes, and can 

only occur in an orientation that is possible for a mirror plane. 

For this reason, in the orthorhombic system, glide planes only occur 

parallel to (100), (010) and (001). Compare the space group P2/m 2/m 2/m in 

Fig.6.9d with the point group 2/m 2/m 2/m in Fig.6.9e. Since the glide 

component |g| must be half of a lattice translation parallel to the glide plane, 
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(001) 
oO 

al 
ante d 

(010) 

Rf (100) 

Fig. 9.3. Glide planes in the orthorhombic system 

9 

in an orthorhombic space group the only possible glide planes parallel to 

(100) will have glide components 3|b], 4|¢|, $b +¢| and 4|b +¢], and this last 
type will only occur in centred lattices, where j|b +¢| can be half of a lattice 

translation. In Fig. 9.3, these cases are illustrated, together with those parallel 

to (010) and (001). 

Glide planes are designated by symbols indicating the relationship of their 

glide components to lattice vectors a, b and ¢. Those with axial components: 

t|a|, 4/b| or 3|¢| are given the symbols a, b and ¢ respectively, those with 

diagonal components 3|T,+T| have the symbol n, while those with the 

component j|T; +T>2|, known as diamond glides, have the symbol d. 

Since glide planes play so important a role in space groups, the operation 

of a few examples will be given in an orthorhombic cell projected on x, y,0. In 

these projection diagrams, only a single glide plane is shown - see Chapter 

14.2 for an explanation of the graphical symbols. 

a) In Fig. 9.4a, an a-glide is shown at x,j,z. Reflection of a point x,y,z in 

this plane gives x,;—y,z, called an “auxiliary” point and the translation 3a 

then moves this auxiliary point to +x,5—y,z. 
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NIm 

oF O° 

: 1 a a-glide at x,7Z 

F 

| | 

TY 
1A 

dp da 
777 : 

{ 
OF 2 YZ 

7 
L 

a 

ae 
xh4y,Z XYZ 3 xXbytez 

b b-glide at x,y,0 c c-glide at x,5,z 

d n-glide at X,Y54 with glide component 

sla +b| 
e n-glide at 0, y,z with glide component 

t]b+¢| 

Fig. 9.4a-e. Operation of glide planes on a point. In each case, only a single glide plane is 
shown projected on x,y,0 in an orthorhombic cell. 

x 
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b) The b-glide plane at x,y,0 in Fig.9.4b reflects a point x,y,z to the 

auxiliary point x,y,Z, which the translation of $b then moves to x,4+ y,Z. 

c) The c-glide plane at x,},zin Fig. 9.4c reflects a point x, y, z to the auxiliary 

point, x, 1—y,z which the translation of }¢ then moves to x,l—y,}+z. 

d) The n-glide plane at x,y, jin Fig. 9.4d is parallel to the a, b-plane, and thus 

has a glide component 5|a +b]. It reflects a point x,y,z to the auxiliary point 

X,Y,3—2Z, which the translation of }(a + b) then moves to }+x,4+y,4—z. 

e) The n-glide plane at 0,y,z in Fig. 9.4e has a glide component 3|b+¢|. It 

reflects a point x,y,z to the auxiliary point x,y,z, which the translation of 

s(b+C) then moves to %,3+y,3+2z. 

9.1.2 Screw Axes 

The compound symmetry operation “screw rotation” implies: 

A) a rotation of an angle ¢= < mOxX=1523)456) and 

B) a translation by a vector s parallel to the axis, where |s| is called the screw 

component. 

For rotation axes and rotoinversion axes, he direction of rotation was 

unimportant. This is not the case for screw axes; for a right-handed axial 

system, X, Y, Z (Fig. 9.5, see also Chap. 2.3) a rotation about an axis on Z 

from the X-axis toward the Y-axis is linked with a positive translation along 

Z. This is the motion of a right-handed screw, which corresponds to the 

motion of advancing the thumb of the right hand in the direction of the vector 

s as the fingers of this hand point in the sense of rotation. 

Figure 9.6 shows the operation of a 6-fold screw axis (¢ = 60°) on a point 

lying off the axis. The points 1, 2,3... are arranged like the treads of a spiral 

staircase. After X rotations (X = 6) through the angle ¢ (X - ¢ = 360°), the point 

1 will return to its starting point. In this case, however, the rotations have been 

accompanied by a translation of X-s, and the point 1’ has been reached, 

which is identical to the starting point. The vector 1-1’ is not necessarily a 

single lattice translation T, but may be any integral multiple a of T. 

X*(s|=alzt\" or 

Since |s| <|t|, @< X and can have the following values: 

G=0, I, 2%, ooo MHI 
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Fig. 9.5. The handedness of a screw axis 

Fig. 9.6. Operation of a 6-fold screw axis 6; ona 

point lying off the axis 

= a eee yo 8 » Ss 
and Se UI re alle oer [flier [7 | 

x x x 

since the screw component 

J 4 Ores 
[S (eee 

x 

screw axes are designated X,= Xo, X), Xo, ... Xx_1. 

For X=4, o=0, 1, 2, 3. The resulting screw axes are 4) (a 4-fold 

rotation axis), 4;, 4) and 4;, with screw components 0, |Z|, 7|t| and 3|T]. 
(Note that the screw component is directly derivable from the symbol, by 

inverting it and considering it as a fraction, e.g. 4, >}.) The 4-fold rotation 

and screw axes are compared in Fig. 9.7. Successive operations of the 4-fold 

screw axes on a point lying off the axis move point 1 to 2, 3 and 4. A lattice 

translation of t generated the points 1’, 2’, 3’ and 4’. The operations of the 

screw axes are also illustrated in Fig.9.7b by projection of the points 

within a single lattice translation onto the plane normal to the axis. Note 

that the sets of points generates by 4, and 4; are mirror images of one 

another, i.e. they are a pair of enantiopmorphs. Since 4, represents a right- 

handed screw, 4; may be described as a left-handed screw with a screw 

component |s’| =4|T| also. 

Figure 9.8 shows all of the other screw and rotation axes possible for 

crystals (see also Chap. 14.2). The enantiomorphous pairs are 3; and 35, 4, 

and 4;, 6, and 6;, and 6) and 6y. 

Screw axes can only occur in crystals parallel to those directions which are 

possible for rotation axes in the corresponding point group. 
a 
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WwW 

Fig. 9.7a,b. Operation of a 4-fold rotation axis and the three 4-fold screw axes on a point 
lying off the axes. a shows perspective views and b projections on x, y, 0 

9.2 The 230 Space Groups 

The 32 crystallographic point groups have been derived from the point 

groups of highest symmetry in each crystal system (see Table 8.2). All of the 

space groups can be derived in a similar manner. Starting from the space 

groups of highest symmetry in each crystal system, i.e. those of the 14 Bravais 

lattices (see Table 6.4), it is possible to derive an analogous scheme for 

determining all of their subgroups. It must, however, be borne in mind that 

screw axes can replace rotation axes, and glide planes mirror planes thus: 

22) 

SP esp OD 

Al <= 4, 4), 4, 

Os 61, 6, 63, 64, 65 

90 Sb, Lo), Gy Tals Gel 
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Fig. 9.8. Operation of rotation and screw axes on a point lying off them. The enantiomor- 
phous pairs 3;-3), 6;-65;,and 6)-6, are given together. 4, 4,, 4, and 4; are shown in Fig. 9.7 
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Fig. 9.8 (continued) 

The space groups of the monoclinic system will be derived as an example for 

all crystal systems. We start from the two monoclinic space groups of highest 

symmetry; P2/m and C2/m (Fig. 9.9). Additionally, in C2/m, there are a- 

glide planes at x,3,z and x,j,z, and 2)-axes at j,y,0; 3,y,3; 7,y,0 and 3,y,}. 
The monoclinic subgroups of the point group 2/m are m and 2. The point- 

symmetry elements 2 and m can be replaced by 2; and a glide plane 

respectively. Since m is parallel to (010), only a-, c- and n-glides are possible. 

However, a different choice of the a and c axes will convert either an a- or an 

n-glide into a c-glide (Fig. 9.10). Thus, only the c-glide need be considered. 

Replacement of 2 and m by 2, and ¢ results in the 13 monoclinic space 

groups shown in Table 9.1 as subgroups of P2/m and C2/m. 

The sets of symmetry elements for these space groups are shown in 

Fig. 9.9, in the same order as Table 9.1, as projections on x, y, 0. Additionally, 

a- and n-glide planes occur in C-centred space groups. Thus it can be seen that 

the pairs of symbols C2/m and C2,/m, C2/c and C2,/c, and C2 and C2, 

represent only a single space group each, cf. exercise 9.4. 

In the same way, inspection of the other crystal systems leads to the entire 

230 space groups. These 230 space groups are listed in Table 9.2, sorted by 

crystal system and point group. Only the standard abbreviated symbols 

(short symbols) are given. 

In every case, the point group is easily derived from the space group 

symbol. The screw axes are replaced by the corresponding rotation axis, the 

glide planes by a mirror plane, and the lattice symbol is omitted, the result 

being the point group to which the space group belongs. 

It would be useful to revise the space groups of the Bravais lattices, which 

are given in Figs. 6.7d-6.13d. 

185 



BI= S|- 

f|- 

INES 

PS es 

sie 

_—s oom — 

J J 
— Oo ©) — 

I J 
I I => eae = — i i 

i] ‘ 
Fa, Oo (eo) — 

1 1 

a J rat — oan ae 

a P2/m a C2/m 

<_— O- — > 

“< oO — — => 

SS PRY a 

P2,/m 

1 fl pl 
Sik y Sec to me be. © sade eee 

: : : ; : i : ! : 1 : 3 : te ° : Q =F 
: : : . i : ! : 
5 : 4 ° : R : 4] <—os 6 o—>t + <6 1 fe) ! o> 
: : : : 1 : ! : : : t—i 9 $ 6 j= 
: : 5 : 1 : - 3 : : : : : : : 4 

—o fos o— >t 1 <6 i 6 1___6—+ 7 

P2/c C2/e 

—o . roy a —t 

—o 3 fe) : —t ees 

——© a Oo a ieee 

P2,/c 

a Space groups of point group 2/m 

Fig. 9.9a-c. The monoclinic space groups projected on x, y, 0. The c-axis is not normal to the 
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Table 9.1. The point and space groups of the mono- 

clinic crystal system 

Point groups Space groups 

P2/m C2/m 

P2,/m 4 

ae P2/c C2/c 
P2,/c =! 

Pm Cm 

- RG Ge «| 

5 i. P2 (C2 

P2, —< 
| 

4 C2,;/m=C2/m, ° C€2,/c=C2/ce, *° C2;=C2 

Table 9.2. The 230 Space groups 

Point 
Crystal system sme Space groups 

triclinic 1 PIL 

1 Pl 

monoclinic 2 P2 P2, 2 

m Pm Pe Cm Ce 

2/m P2/m P2,/m C2/m P2/c 

P2,/c C2/c 

orthorhombic | 222 1D P222, P2,2,2 P2)2)2) 

C222, @222 F222 [222 

12,22, 

mm2_, Pmm2 Pmc?2, Pcc2 Pma2 

Pca2, Pne2 Pmn2, Pba2 

Pna2, Pnn2 Cmm2 Cme?, 

€cez Amm2 Abm2 Ama2 

Aba2 Fmm2 Fdd2 Imm2 

Iba2 Ima2 

mmm Pmmm Pnnn « Pccm Pban 

Pmma Pnna Pmna Pcca 

Pbam Pcen Pbem Pnnm 

Pmmn Pben Pbca Pnma 

Cmcem Cmca Cmmm Cccm 

Cmma Ceca Fmmm Fddd 

i Immm Ibam Ibca Imma il 
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tetragonal 4 P4 P4, P4, P4, 

14 14, 
4 P4 14 
4/m P4/m P4,m P4/n P4,/n 

14/m 14,/a 

422 P422 P42,2 P4,22 P4,2,2 

P4522 P4,2,2 P4322 P4322 

1422 14,22 

4mm P4mm P4bm P4,cm P4,nm 

P4cc P4nc P4,mc P4,be 

14mm 14cm 14,;md 14;cd 

42m P42m P42c P42;m P42:¢ 

P4m2 P4c2 P4b2 P4n2 
14m2 14c2 142m 142d 

4/mmm P4/mmm _  P4/mcc P4/nbm P4/nnc 

P4/mbm P4/mne P4/nmm P4/nce 

P4,;/mmc P4:/mcm  P43/nbc P4,/nnm 

P4,/mbe P4,/mnm  P4,/nmc P4,/ncm 
14/mmm _ ——‘[4/mcm 14,/amd 14,/acd 

trigonal 3 P3 P3, P3, R3 

3 P3 R3 
32 PN) P321 Pl P3,21 

P3412 P32 R32 

3m P3ml -P31lm P3cl P3lc 

R3m R3c 

3m P31lm P3lc P3m1 P3cl 

R3m R3c 

hexagonal 6 P6 P6, P65 P6> 

P64 P63 

6 P6 
6/m P6/m P63/m 

622 P622 P6,22 P6522 P622 

P6422 P6322 

6mm P6mm P6cc P63cm P63mc 

6m2 P6m2 P6c2 P62m P62c 

6/mmm P6/mmm _ __—~P6/mcec P63;/mem  P63;/mme 

cubic 23 P23 F23 123 P2,3 

12,3 

m3 Pm3 Pn3 Fm3 Fd3 
Im3 Pa3 Ia3 

432 P432 P4532 F432 F4,32 

1432 P4332 P4,32 14,32 

43m P43m F43m 143m P43n 
F43c 143d 

m3m Pm3m Pn3n Pm3n Pn3m 

Fm3m Fm3c Fd3m Fd3c 

pe Im3m Ia3d 
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Fig. 9.10a-c. In the monoclinic system, a-, c-, and n-glide planes parallel to (010) are all 

possible. These are shown in a, b and c respectively. Suitable alteration of the choice of axes 

will convert a- and n- into c-glides 

The International (Hermann-Mauguin) symbols thus indicate the symmetry 

of each space group clearly. Schénflies symbols, on the other hand, merely 

assign an arbitrary number to each space group within a given point group. 

Thus, for point group m(C,), we have: 

Pac Ca )naepca(C~), a cme (G-)e@c. (Ca) 

This is the main reason that Schdnflies symbols are rarely used in 

crystallography. 

9.3 Properties of Space Groups 

It is certainly not necessary to study each of the 230 space groups individually, 

but a general knowledge of how space groups differ from one another is 

useful. For this reason, the properties of a few space groups will be explored in 

detail. 

Figure 9.11 gives the symmetry elements for the space group Pmm2. The 

application of the symmetry operations to a point x,y,z will generate the 

points x, Y¥, z; X, y,z and x, ¥,z, as well as equivalent points such as x, | —y,z; 

1—x,y,z and 1—x,1-—y,z. The number of equivalent points in the unit cell 

is called its multiplicity, in Fig. 9.11a, the position is “4-fold”, or said to havea 

multiplicity of 4. This position has no restrictions on its movement; it has 

three degrees of freedom, and, as long as it does not move onto a point 

symmetry element, it continues to have a multiplicity of 4. Such a position is 

called a general position, i.e. a set of equivalent points with point symmetry (site 

symmetry) 1. It is asymmetric, and this is indicated in Fig. 9.11 by the tail on 

the circle. The figure is, of course, not really asymmetric, as it is unchanged on 

reflection in the plane of the paper, but it is sufficiently unsymmetrical for our 

present purpose! x 
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Viz b Oxy,z 

Fig. 9.11a-c. Symmetry elements 

of space group Pmm2? in projec- 

tion on x, y,0. a The general 

position x,y,z. b the special 

position }, y,z. ¢ The special 
position 1 

Moai 

/ 

Table 9.3. Positions of the space group Pmm2 

= Degrees “i Male Site Coordinates 

Position of lieit Sn of equivalent Fig. 

freedom ave y y points 

a +f a poeieaee 
general 3 4 il ee 91la 

X,Y,Z, X,Y,Z 

» m | 5, ¥5Z5 5,952 9.11b 

2 m airA, Up Wigr4 

Z 1 2 m Kis X52 

9) m SQhIA YO ,74 
special { | seul 

1 mm2 | 14,2 9.11¢ 

fe 1 mm2 50,2 rs 

: 1 mm2 0,552 

il mm2 0,0, z 
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If the point in the general site x,y,z is moved on to the mirror plane at 

+,y,z, the point 1—x,y,z comes into coincidence with it; the two points 
coalesce at the mirror plane to a single point 5, y,z. At the same time, the 

points x,l—y,z and 1—x,l-—y,z coalesce to the single point 5,1 ~Y,Z 

(Fig. 9.1la, b). From the 4-fold general position, we have obtained a 2-fold 

special position. The multiplicity of a special position is always an integral 

factor of the multiplicity of the general position. Special positions are not 

asymmetric; they possess site symmetry higher than 1, and in Fig. 9.11, the site 

symmetry is m. A special position is a set of equivalent points with point 

symmetry (site symmetry) higher than I. This particular special position has 

two degrees of freedom. As long as the point remains on the mirror plane, its 

multiplicity is unchanged. Other similar special positions arise from the 

mirror planes at x,0,z; x,5,z and 0,y,z. A special position arises from the 

merging of equivalent positions. 

If a point on $,y,z moves onto the 2-fold axis at },3,z the two points 

5,Y,z and 3,1—y,z coalesce to },3,z. This special position retains only a 
single degree of freedom. The point symmetry of the position rises to mm2, 

and the multiplicity falls to 1. The positions 0,0,z; 3,0,z and 0,4,z are 

similar to ;,5,z. Some space groups have special positions with no degrees 

of freedom, an important case of this being a point on an inversion centre 

(see Table 9.4). 

The general and special positions in space group Pmm2 are set out in 
Table 9:3. 

[aerate ainsi | 
| oe | 

| 4a ae ee i 
py ty 
® x,y,z, @ 4$+x3-y,z, @ 3-xdt+yd4z< @ 1-x1-yd+z 

a 
Au 1 1 

Oa @) F442, @) 4-x33+z, 1—-x34+z 

Fig. 9.12. Symmetry elements of the space group Pna2, in projection on x, y,0 showing the 
general position x, y,z (1). Even if a point lies on the a-glide plane at x, i, z (1), this does not 
reduce its multiplicity. Glide planes and screw axes, unlike point-symmetry elements, do not 
reduce the multiplicity ofa position which lies on them 
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a 

Fig. 9.13. Space group P2/m shown in projection on x, y,0 with the general position x, y, z 

and the special positions on m, 2 and 2/m 

Another space group in point group mm2 is Pha2,, shown in Fig. 9.12. The 

space group symbol indicates that the unit cell is orthorhombic, with n-glide 

planes normal to the a-axis with a glide component Ib +¢|, a-glides normal 

to the b-axis, and 2\-screw axes parallel to the c-axis. The general position, 

x, y,Z, as Shown in Fig. 9.12, is again 4-fold. When, however, the point moves 

onto the a-glide at x,4,z, the multiplicity is unchanged. A special position 

does not arise, since glide planes and screw axes do not alter the multiplicity of 

a point. As a result, the space group Pna2, has no special positions. 

Figure 9.13 shows the projection of the space group P2/m on x, y,0. In 

addition to the general position, there are special positions with m, 2 and 2/m 

site symmetry. Table 9.4 shows these points, and gives the degrees of freedom, 

the multiplicities, and the site symmetries of each type of position. Note that 

as the site symmetry rises, the multiplicity falls. 

The asymmetric unit of a space group is the smallest part of the unit cell from 

which the whole cell may be filied exactly by the operation of all the symmetry 

operations. Its volume is given by: 

Whetieal 

multiplicity of the general position 
Veerat unit 

and it has the property that no two points within it are related to one another 

by a symmetry operation, cf. the asymmetric face unit of a point group in 

Chapter 8.2.1. 
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Table 9.4. Positions of the space group P2/m 

Iti Si Coordinates 

Position estes vee ie ? of equivalent 
of freedom plicity symmetry pone 

ie 

enV. 

x, l—-y, z 
general QO 3 4 1 eens 

3G vel = 

Kae 2 

Q 2 ; - 1l—x, a 1—z 

F ee a 
special l ) ») 39 Ys 5 

q ie 

e| 0 1 2/mn lit 
[Pee 

An asymmetric unit contains all the information necessary for the complete 

description of a crystal structure. An asymmetric unit of the space group P2/m 

is the volume limited by 0 <x <3;0<y <3;0<z<1. Its volume is one quarter 
of that of the unit cell, so the equation above is fulfilled, as the multiplicity of 

the general position is 4. 

The tetragonal space group P4,/mnm will be described in Section 9.4. The 

general position in the hexagonal space group P6, is illustrated in Fig. 9.14. 

We shall now consider, as an example of the cubic system, the space group 

P4/m 3 2/m. This is the space group of the cubic P-lattice, which has already 

been introduced in Fig. 6.13d. That diagram of the space group P4/m 3 2/m 

is incomplete. It was, however, adequate for the introduction of symmetry 

relationships, and is also entirely suitable for the application of this space 

group, as we shall see later. M. J. Buerger [6] developed projections of the 

cubic space groups which have been included in the third edition of the 

International Tables [14]. Figure 9.15 shows such a projection on x, y, 0 of the 

space group P4/m 3 2/m. In order to include those symmetry elements which 

are parallel to (110) and (111) in the diagram, Buerger used an orthographic 

projection', and representations of the oblique rotation- and screw-axes. In 

In the orthographic projection, a pole in the northern hemisphere is projected parallel to 

the N-S direction. This contrasts with the stereographic projection, in which the projection 
is along the line connecting the pole to the south pole. Compare the stereogram of 
4/m 3 2/m in Fig. 6.13¢ with the orthographic projection in Fig. 9.15. 
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Fig. 9.14. a Operation of a 6)-screw axis at 0,0,z on a point in a general site x,y,z. 

b Displacement of the points originated in a by lattice translation into the unit cell (general 

position). c Space group P6, 

order to understand the relationship of the various symmetry elements, it is 

useful to study Fig. 9.15 and Fig. 6.13d, to see that they are representations of 

the same thing. 

Even for so complex a space group as P4/m 3 2/m, it is relatively easy to 

describe a general position. Figure 9.16a shows a section of a cubic unit cell. A 

3-fold rotation axis lies along the body-diagonal of the unit cell x, x, x, but it is 

not shown here. Starting from a point x,y,z (x=0.3, y=0.2, z=0.1), the 

operation of the 3-fold axis generates the points z,x,y and y,z, x (Fig. 9.16a). 

Figure 9.16b shows the projection of these three points on x,y,0. The 

application of the mirror plane at x, x,z to these points converts them to a set 
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Fig. 9.15. Space group P4/m 3 2/m [6], [14] projection on x,y,0 

of six points in a planar ring (Fig. 9.16c). The further application of the 4-fold 

axis at 0,0,z converts this ring to a set of four rings (Fig. 9.16d). Finally, the 

mirror plane at x, y,0 reflects these rings downwards and produces the full set 

of points for this 48-fold position. The coordinates of all 48 of these points are 

given in Fig. 9.16d, if each triple is taken to imply one with a minus sign on the 

third co-ordinate as well. These 48 equivalent points are generated entirely by 

the symmetry of 4/m 3 m! 

There is a simple relationship between the number of faces in the general 

form of acrystal ofa particular point group and the multiplicity of the general 

position of a space group in that point group (cf. Table 9.2). For space groups 

with a P-lattice, the multiplicity of the general position is equal to the number 

of faces in the general form for the point group. For space groups with C-, A- 

and IJ-lattices, the multiplicity of the general position is twice as great as the 
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Fig. 9.16a-d. The 48-fold general position of space group P4/m 3 2/m. 
a Section of a unit cell showing the operation of the 3-fold rotation axis at x, x, x (not drawn) 

ona general point x, y,z with x = 0.3, y=0.2, z=0.1. b Projection of the equivalent points in 

a on x,y,0. e The operation of the mirror plane at x,x,z on the points in b generates six 

equivalent points in a planar, 6-membered ring. d The operations of the 4-fold axis at 0,0,z 

and the mirror plane at x, y,0 on the points in c complete the full set of 48 equivalent points 
of the general position. Only those points lying above the plane of the paper are shown. The 

rest may be generated by giving a minus sign to the third co-ordinate of each triple 
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number of faces, and for those with an F-lattice four times. The general form 

of the point group mm2 is the rhombic pyramid (cf. Exercise 8.15(5)) with 

four faces. The multiplicity of the general position in Pmm2 (Fig. 9.11a) or 

Pna2, (Fig. 9.12) is 4, while for Cmm2, Aba2, Imm2 or Ima2 it is 8, and for 

Fmm2, it is 16. 

If the point group includes an inversion centre, all the corresponding 

space groups will be centrosymmetric, cf the monoclinic space groups in 

igo! 

Consider now the space group P4,/n 2,/c 2/m. Removing the lattice 

symbol and converting all glide planes and screw axes to the corresponding 

point symmetry elements (4, — 4; 2; > 2; n, c > m) gives the point group of this 

space group: 4/m 2/m 2/m. 

9.4 International Tables for Crystallography 

Many of the most important properties of the 230 space groups are collected 

in International Tables for Crystallography, Vol A. [18], [17], [14]. These tables 

are very useful. The information they contain may be illustrated with respect 

to the space group P4,/mnm (Fig. 9.17). 

(1) Short space group symbol, Schénflies symbol, point group, crystal 

system, number of the space group, full space group symbol. 

(2) Projection of the symmetry elements of the space group on x, y, 0; a points 

down the page, b across to the right, and the origin is in the upper left 

corner. 

(3) Projection of a general position on x, y, 0; the axial directions are as 1n (2), 

O represents a point, © a point projecting on top of another, while © 

implies that one of the points is derived from the other by a reflection or 

rotoinversion operation. The z-coordinate is indicated. 

(4) Information about the choice of origin, here at an inversion centre at the 

intersection of three mutually perpendicular mirror planes. Since this is a 

tetragonal space group, the symbols 2/m 1 2/m imply the symmetry 

directions, c, (a), (110). 

(5) The asymmetric unit: 

Vaniteal 

multiplicity of the general position 
Weer unit 

(6) The symmetry operations of the space group. 

> 

Fig. 9.17. Space group P4./mnm, from International Tables for Crystallography, Vol. A. [14] 
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(5S) Asymmetric unit OSS OS St ONS ery) 

(6) Symmetry operations 

(1) 1 Q)r2 010% (3¥ 4*(0,0,4) 0,4,z (4) 4-(0,0,4) 4,0, 
(5) 2(0,4.0) ty,4 (6)-2.050) x4, f) eG) 2 x0 (8) 2. x,¥,0 
(9) 1 0,0,0 (10) m x,y,0 (i) 40-7284 054 (12)i54= 1053525034. 

(13) n(4,0,4) x,2,z (14) n(0,4,4) 2,y,z (15) m_ x,&,z (16) m x,x,z 
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Wyckoff letter, 

Site symmetry 
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(5) teh. yi: Zt pe(O) x te Vet ett CLY (8) § 
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(7) General and special positions. 

Col. 1: the multiplicity of the position. 

Col. 2: the Wyckoff letter assigned to this position; the letter furthest 

down the alphabet, here k, represents the general position. 

Col. 3: the site symmetry (point symmetry of the position), in the order c, 

(a), (110). 

Col. 4: the coordinates of equivalent points in the position. 

9.5 Space Group and Crystal Structure 

In Chapter 3, we defined a crystal structure as lattice + basis. It is thus possible 

to describe it as a geometrical arrangement of atoms. Table 9.5A gives the 

lattice and the basis for the rutile (TiO) structure. The perspective drawing 

and the projection on x, y,0 in Fig. 9.18 are derived from these data. 

Every crystal structure can be similarly described by its space group and the 

occupation of general or special positions by atoms. The crystal structure of 

rutile is in space group P4,/mnm. The titanium atoms occupy the position a, 

and the oxygen atoms the position f with x =0.3 (cf. the page of International 

Tables in Fig. 9.17). The special position a is 2-fold, implying 0,0,0 and 3, 5,3; 
f is 4-fold: x,x,0; 3+x,3—x,3;3—X,3+X,3 and X,x,0 (Table 9.5B). 0,0,0 
and x,x,0 (x =0.3) lie in a single asymmetric unit of space group P4,/mnm, 

cf. Fig. 9.17. Substituting 0.3 for x in the coordinates for the O-atoms gives 

the specific coordinates listed for the basis in Table 9.5 A. The description of 

a crystal structure in terms of the space group is much simpler than that 

in terms of the basis when positions of high multiplicity are involved. In 

addition, the space group shows clearly which atoms are related to one 

another by the symmetry elements of the space group. This relationship is 

Table 9.5. Description of the crystal structure of rutile T10> 

A B 

Lattice Basis Space group Positions of the atoms 

tetragonal P| Ti: 0,0,0 P 4,/mnm | a| Ti: 0,0,0 

: 8) ; $555 

ay=4.59 A | O: 0.3, 0.3, 0 ay = 4.59 A f| O: x,x,0 

co=2.96 A 0.8, 0.2,2 co =2.96 A aK 5 Kee 
0.2, 0.8,! Ieee tig ae CESARE) ie X, al X, 5) 

0.7, 0.7, 0 ey My 0) 
J | 
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SZ 

a) neil C)- q 

Fig. 9.18a,b. The crystal structure of rutile, TiO), shown: a in a perspective drawing, b in 

projection on x, y,0 

particularly important for positions with one or more degrees of freedom. 

Any movement in x (cf. position fin Fig. 9.17) alters the relationship of all the 

related atoms; for example, an increase of x results in the movement of the 

O-atoms indicated by the arrows in Fig. 9.18b. 
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Exercise 9.1. For the two-dimensional “Knockel” structures given below, indicate: 

a) The unit mesh. 

b) The symmetry elements, paying particular attention to glide planes. 
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Exercise 9.2. Glide planes and screw axes. In the projections below of a unit cell onto x,y, 0, 
only a single symmetry element is given. Allow this symmetry element to operate on an 
asymmetric point (in a general site) at x,y,z and give the coordinates of the equivalent 
point(s) generated. 

a) 

N= 

Ney Bs 
mM Un xX y-5 

c) 

us 
a in X Yop 

2) 

ern x,$,2 

9) 

ie tater Ae) 

b) 
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m in Xs70z 

d) 
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b in fy sz 

h) 

| 
fal Anh Se lols, 
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4, aie Ole Olez Sn) sli Wa War 1 

Exercise 9.3. The figures show the operation of a glide plane and a 2)-axis on a point. The 

arrangement of the points appears to be the same in the two diagrams. Discuss this apparent 

contradiction. 
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Exercise 9.4. Show that (a) C2;/c =C2/c, (b) C2,/m =C2/m, and (c) C2, =C2. 
Start from the projections of the space groups (a) P2;/c, (b) P2;/m and (c) P2, as 

given in Fig.9.9. Place a point at x,y,z and another at S+x,4+y,Z (C-centring), and 

allow the symmetry elements to operate on them. This will give the general positions for: 

(a) C2,/c, (b) C2;/m and (c) C2;. Using these general positions, the complete symmetry 

of the space groups can be determined. Using Fig.9.9, show the correspondence of 

(a) C2;/c with C2/c, (b) C2,/m with C2/m, and (c) C2; with C2, moving the origin of the 
diagram as necessary. 

Exercise 9.5. Determine the symmetry of the orthorhombic C- and I-lattices. Indicate the 

symmetry elements on a projection of the lattice onto x,y,0, and give the space group 

symbol. 

Exercise 9.6. Draw the symmetry diagram of space group Pmm2 on a piece of graph paper. 

Enter points in the general positions 0.1,0.1,0.1; 0.1,0.4,0.1; 0.25,0.25,0.1; and 

0.4, 0.4, 0.1 and those points resulting from the operation of the symmetry elements on them. 

Exercise 9.7. The symmetry diagrams for seven space groups are given below as projections 

on x,y,0. 

a) Enter on each diagram a point ina general site x, y,z, and allow the symmetry to operate 

on it. 

b) Give the coordinates of the points equivalent to x,y,z. 

c) What is the multiplicity of the general position? / 

d) Work out the space group symbol. (The graphical symbols for symmetry elements are 

given in Chap. 14.2). 

e) Indicate a special position — if there are any - and give its multiplicity. 
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Exercise 9.8. Make a tracing of the projection of a hexagonal unit cell on x, y,0 (Fig. 9.14) 

and place at 0,0,z (a) a 65-axis, (b) a 63-axis. 

1. Allow the symmetry elements to operate on a point in a general site, and give the 

coordinates of the resulting equivalent points. 

2. Draw in the other symmetry elements of the space group in the unit cell. 

3. Which symmetry elements are contained within 6 and 63? 

Exercise 9.9. Consider the space group P4/m 3 2/m (Figs. 9.15 and 9.16). In a projection on 

x,y, 0, draw in the special positions (a) x,x,z, (b) x,x,x, (c) x, 0,0. 

Give the coordinates of the equivalent points and the multiplicities and site symmetry of 

the positions. 

Exercise 9.10. Draw a projection of the symmetry diagram for the space groups P2,/c, 

Pna2,, Pmna, Pbca, and P422. 

Exercise 9.11. Criticise the symbol Pabc. 

208 



10 The Interrelationship of Point Groups and Space Groups 

When point groups and space groups are compared and contrasted with one 

another, various relationships between them become clear. Table 9.2 shows 

the 230 space groups arranged according to the corresponding point groups. 

Table 10.1 contains a comparative summary of properties of point groups and 

space groups. 

The only forms which can occur ona crystal are those which belong to the 

point group resulting from the space group of the crystal structure. The rutile 

structure, for example (Fig.9.18) has the space group P4,/mnm, and 

consequently point group 4/mmm. Point group 4/mmm includes only those 

forms given in Fig. 8.7. Of these, the crystal in Table 8.11.15 has developed 

only {111}, {110} and {100}. 

Molecules are also characterised by point groups. What is the role of 

molecular symmetry when equal molecules associate with one another in a 

crystal? Hexamethylenetetramine molecules belong to point group 43m 

(Fig. 10.la). These molecules form crystals with space group 143m 

(Fig. 10.1 b), in which the molecules occupy positions with the site symmetry 

43m. Unfortunately, this correspondence is far from common! 

Ethylene molecules (point group 2/m 2/m 2/m (mmm) Fig. 10.2a), give 

crystals with space group P2,/n 2;/n 2/m (Pnnm) in which they occupy 

positions with site symmetry 2/m only (Fig. 10.2b). 

Similarly, benzene molecules, which have the very high point symmetry of 

6/mmm, give orthorhombic crystals (space group Pbca) in which they occupy 

a) 

Fig. 10.1a,b. Symmetry of hexamethylenetetramine (C,H,)N,). a molecule: 43m. b crystal 

structure: 143m. (After [2]) 
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Table 10.1. Comparison of point groups and space groups 

Point group Space group 

A group of point symmetry 
operations whose operation leaves at 

least one point unmoved. Any oper- 

ation involving lattice translations is 

excluded. 

A group of symmetry operations 

including lattice translations 

: 
ital il 
2m Din, — PAE Ay lon tenia! 

33 33) Sos 
44 44 4,,4, 43 
6 6 6 6 61, 62, 63, 64, 65 

lattice translations 

2\y lose ag, bo, Co 

a, Bb, i a, B, Y 

Order of the symmetry directions 

e.g. 4/m 2/m 2/m 

ares eet 
© (ah) Cio) 

Order of the symmetry directions 

e.g. P4,/m 2;/n 2/m 

| aes 
c (a) (110) 

General form 

Set of equivalent faces with 

face symmetry 1 

General position 

Set of equivalent points with 

site symmetry 1 

Devries Unit 

Drees area of the sphere 

Vv asym. unit — 

Vv unit cell 

number of faces in the general form multiplicity of the general position 

Number of faces in the general form 

of a point group 
Multiplicity of the general position for 

all space groups with P-lattice, 

belonging to the point group 

Special form 

Set of equivalent faces with 

face symmetry > 1 

Special position 

Set of equivalent points with 
site symmetry > 1 

positions with site symmetry | only (Fig. 10.3). Here the symmetry of the free 

molecule is higher than that of the crystal structure. 

Molecules octasulphur, Sg (Table 8.11.36), have the non-crystallographic 

point group 82m. These molecules associate to give orthorhombic crystals, 

with space group Fddd. 

210 



Fig. 10.2a,b. Symmetry of ethylene (C)H,). a Molecule: 2/m 2/m 2/m b Crystal structure 

P2,/n 2,/n 2/m 

/ 
Fig. 10.3a,b. Symmetry of benzene 

(CeHe). a Molecule: 6/mmm. 

b Crystal structure: Pbca 

There is no simple relationship between molecular and crystal symmetry. 

The crystal structure that is adopted depends on many factors, including the 

type of chemical bonding, the shape and the packing possibilities of the 

molecules. 

Exercise 10.1. In each of the space groups Pl (Fig.6.7d), Pm and P2/m (Fig. 9.9) and 

P2/m 2/m 2/m (Fig. 6.9d), place an atom A at the origin (0,0,0) and a different atom B 
at a general position x, y,z (x,y,z <}). 

a) What is the chemical formula of this structure? 

b) What is the value of Z, the number of formula units per cell? 
c) Describe the shape of the resulting molecule. 

d) Give the point group of the molecule. 

e) What is the site symmetry of the molecule in the crystal structure? 
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11 Fundamentals of Crystal Chemistry 

Crystal chemistry is concerned with the crystal structure of the elements and 

of chemical compounds. It attempts to explain why particular types of crystal 

structures arise under specific conditions. It is, however, still only possible to 

understand how relatively simple crystal structures arise from the atoms that 

make them up. 

A fundamental concept in crystal structures is the idea of sphere packing. 

In this approach, the atoms or ions of which the structure is composed are 

regarded as hard spheres which pack with one another. Goldschmidt and 

Laves summarised this approach in three principles: 

1. The Principle of Closest Packing. Atoms in a crystal structure attempt to 

arrange themselves in a manner which fills space most efficiently. 

2. The Symmetry Principle. Atoms ina crystal structure attempt to achieve an 

environment of the highest possible symmetry. 

3. The Interaction Principle. Atoms in a crystal structure attempt to achieve 

the highest coordination (Sect. 11.1), 1.e. the maximum possible number of 

nearest neighbours with which they can interact. 

Chemical bonding is a very important factor in crystal chemistry, as it is 

concerned with the forces holding the atoms together in the structure. The 

atoms of a structure are held together in a characteristic order by the chemical 

bonding. This bonding arises from interaction of the electron shells of the 

atoms, and is conventionally divided into: 

a) metallic bonding 

b) van der Waals bonding 

c) ionic or heteropolar bonding and 

d) covalent or homopolar bonding. 

They are illustrated schematically in Fig. 11.1. Aetual compounds rarely 

correspond exactly to one of these types. In most cases, the bonding is a 

mixture of two or more types, which should be regarded only as limiting 
cases. 

It is beyond the scope of this book to discuss the theory of chemical 
bonding. We shall restrict ourselves here, so far as bonding theory is 

a 
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an 
rene ; 
Fig. 11.1a-d. Schematic summary of bonding types in crystals. 

a Metallic bonding. Valence electrons of the metal atoms are delocalised in an “electron 

cloud”. This negatively charged cloud encloses the positively charged atom cores and holds 

them together. 

b Van der Waals bonding. This arises from random variations in the charge distributions of 

the atoms and is very weak. The atoms and molecules tend toward a closest packing. 

c Ionic bonding. In an ionic crystal, the positively and negatively charged ions are held 

together by electrostatic forces. 

d Covalent bonding. This represents the four sp?-orbitals in the diamond structure 

concerned, to a small number of principles on which further study may be 

based. 

The principles stated above work well in rationalising the structures of 

metallic and ionic materials. They also have some application to molecular 

crystals, those held together by van der Waals forces. For covalent structures, 

the principles of closest packing and of high coordination are rarely fulfilled. 

This results from the fact that covalent bonding is directional in nature. 

11.1 Coordination 

In crystal chemistry, the immediate neighbourhood of each atom and the 

forces which bind it to its neighbours play a leading role in the explanation of 

the overall geometry of the crystal. 

The number of nearest neighbours of a central atom or ion is called its 

coordination number, and the polyhedron formed when the nearest neigh- 

bours are connected by lines is called its coordination polyhedron. 

Some important coordination polyhedra are given in Table 11.1 along 

with actual examples. The coordination number, in square brackets, can be 

inserted in the chemical formula as a superscript, and thus add significant 

crystal-chemical information to the formula. 

Ideally, coordination polyhedra have a high point symmetry. However, a 

coordination polyhedron is nothing like so sharply defined as a crystal form 

(Chap. 8.2.1). Even atoms of the same element coordinated to the same 

central atom are not necessarily equivalent. Strictly speaking, cubic (m3m), 
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Table 11.1. Important coordination polyhedra 

Coordination 

I | Configuration | Polyhedron or polygon Ra/Rx Examples 

Qo a LP 
Cubic 

\\ i} 7 closest 

a) ONG =@ Cuboctahedron packing 

oe v4} Ne of spheres 
oO / oO No (Cu, Ne, etc.) 

ie) 

x | me Hexagonal 

3} MZ O closest 

b) o-= Seer Ss Disheptahedron packing 

2) Vb WO of spheres 

/ Be (Mg, He, etc.) 

@) 1) 

o Z 

cys Cs!1C] c)| [8] * Cube 0,73 vee 
LG ‘ = so Ca HS 

oO 

e) O \ A 
Q 7 

Ny 
d) Ay Trigonal prism 0,53 AIBEl® 

ee 
OF) ‘Oo 

Ayes Roa | 
° 
i NaC] 

¢) Se FO@---o Octahedron TiM0, 

Prlici2 - 

Oo 

0,41 
ox LP 

~ 7 
SW 

4 vas Square Ptitice- 
¢ oS 

| me ‘o 

[4] ss % 
~ 7 

PN Zn'4Ig 
8) i. Tetrahedron 0,23 SiO, 

1 0 S41Q2— 
ie) 

0 ae 
| 
| 

h)| [3] Equilateral CB192- 

a triangle oS NEIOS 

ae tee 
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octahedral (m3m) and tetrahedral (43m) symmetries can only arise in the 

cubic system. Coordination polyhedra are often more or less distorted. The 

cubic coordination in cubic CsI (Fig. 3.4) and the octahedral coordination in 

NaCl (Fig. 11.17) are strictly regular, while the octahedral coordination in 

tetragonal rutile (Fig. 9.18) is distorted, cf. Exercise 11.10. 

11.2 Metal Structures 

A simple picture of metallic bonding is that the valence electrons of the metal 

atoms are delocalised in an “electron cloud” (Fig. 11.1a). This negatively 

charged cloud encloses the positively charged atom cores (not ions) and 

shields them from one another. The bonding forces are not directional; they 

are equal in all directions. 

In a metal, one can consider the atoms as spheres. Each atom attempts to 

associate itself with the maximum number of similar atoms. This can be 

achieved for 12 nearest neighbours in two different arrangements (coordi- 

nation polyhedra), shown in Figs. 11.2a and 11.3a, and also Table 1l.la 

and b. Starting from these coordination polyhedra as nuclei, crystal growth 

will result in the formation of two distinct crystal structures. These structures 

can be described as stackings of closest packed fayers of spheres, and they 

differ in the layer squence. 

A ° 

Isun se Tlie 

B B 

A A 

Structure I may be described by a cubic unit cell, with a cubic F-lattice, and 

is called the Cu-type, while structure II has a hexagonal unit cell, and is 

called the Mg-type. The two structures are thus called cubic and hexagonal 

closest packing respectively, abbreviated to ccp and hcp. Examples of each 

structure are given in Table 11.2. Some metals occur with both structure 

types, e.g. Ni. 

The atoms of the Cu or ccp structure are all related by simple lattice 

translations, and are thus identical. In the Mg or hcp structure, atoms in the 

Footnotes to Table 11.1 

4 The limiting value of the radius ratio Ra /Rx is that at which spherical coordinating atoms 

X just touch one another, and the central atom A fits precisely into the resultant hole. 

> Cf. exercise 3.2. 
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Fig. 11.2a-c. Cubic closest packing of spheres (Cu-type). a Coordination polyhedron [12] 

(cuboctahedron) as a perspective representation, using spheres reduced in size, and as a 

projection of the spheres on a close-packed layer. b The crystal structure. One of the layers 

parallel to (111) is shown together with the layer sequence ABCA. ¢ A unit cell (cubic 

F-lattice). The spheres are reduced in size, and their correspondence to the stacked layers is 

indicated. The unit cell is also sketched in b 

A-layers are all identical, as are atoms in the B-layers. The A- and B-atoms 

are, however, equivalent but not identical to one another. This is shown by 

the positions given in Table 11.2. 

If the lattice constant is known, the radius of a sphere (the atomic radius) 

may be calculated. Figure 11.2b,c shows the diagonal of a (100) face of the 

cubic unit cell of the ccp-structure. Its length is equal to four sphere radii 

(B-2C-A). Thus R=!ayVJ/2. In the hcp-structure, R =4a (cf. Fig. 11.3b,c). 

Radii of metal atoms are given in Table 11.3. 

It is possible to fill spaces completely by packing‘equal cubes, or, indeed, 

equal general parallelepipeds. This is not possible with spheres. In both types 

of closest sphere packings, there are interstices remaining of specific 

coordination; these are usually called “holes”. These may be bounded by four 

spheres (tetrahedral holes) or by six (octahedral holes), (Fig. 11.4) and are 

examples of tetrahedral and octahedral coordination (Table 11.1). 
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Fig. 11.3a-c. Hexagonal closest packing of spheres (Mg-type). a Coordination polyhedron 

[12] (disheptahedron) as a perspective representation, using spheres reduced in size, and as a 

projection of the spheres on a close-packed layer. b The crystal structure. One of the layers 

parallel to (0001) is shown together with the layer sequence ABA. c A unit cell. The spheres 

are reduced in size, and their correspondence to the stacked layers is indicated. The unit cell 

is also sketched in b 

The packing efficiency is defined as the ratio of the sum of the volumes of 

the spheres making up a unit cell to the volume of the unit cell. If the spheres 

are equal in size, it is given by 

ZT? 

NV raiecell 

: ; 4R 
As we have seen, 1n the ccp structure, R=ja9 yo Thus a i and 

V=16R?\/2. Since Z=4, the packing efficiency is thus 7 \/2=0.74. The 

corresponding calculation for the hcp structure gives the same result. 

S 
For the hcp structure, the ideal ratio may be calculated, since ¢p is 

a 

the height of two coordination tetrahedra of edge 2R = ao, sharing a common 

PAG} 



Table 11.2. Data for the three most important metal structure types, Cu, Mg and W, and 

for a-Po 
= 

Cu Mg W a-Po 

cep hep bec a, sc 

Lattice Cubic F Hexagonal P Cubic I Cubic P 

se ‘ ina ; ; basis 0,0,0 005 0; a5a05 0,0,0 0,0,0 

Space group F 4/m 3 2/m P 63;/m 2/m 2/c | 14/m 3 2/m 4 P 4/m 3 2/m 
i, ay F a 

Positions (c) 
0,0,0 0,0,0 

occupied OD 0,0,0; 4,4 Oe (a) 

Coordination 
6 Aan [12] [8] [6] 

Atomic radii fe tao ey | tao i ao V3 5 ao 

pane 0.74 0.68 0.52 
efficiency 

; Mg (1.62) 
Ag, Au Ni (1.63) Mo, V 

Further Ni, Al Ti (1.59) Ba, Na 

examples Bin. Lr atin (RSS) Zr, Fe - 

Pb, Rh Be (1.56) 
Zn (1.86) 

CD 
& 

AX 
a) 

Fig. 11.4. a Tetrahedral [4] 

holes. b Octahedral [6] 

holes in closest packed 

arrays of spheres 

vertex (cf. Fig. 11.3c). This gives a value for ash of <=: \/6=1.63. In Table 
a 

< ’ 11.2, the —* values for several metals are given; they tend to lie between 
ao 

1.56 and 1.63. The value for Zn is considerably larger. 
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a) 

Fig. 11.5a,b. Crystal structure of tungsten. a With atomic radii shown to scale. b Showing 

only the centres of gravity of the atoms 

In addition to the two types of closest packing, a further structure adopted 

by some metals is the W-type, with a cubic I-lattice, usually simply called 

body-centred cubic, and abbreviated bcc (Fig. 11.5). In this structure, the 

body-diagonal of the unit cell consists of four sphere radii, i.e. R =} a We). 

The packing efficiency of this structure is = V3=0.68. The coordination 

number is [8], and the coordination polyhedron is a cube. 

An arrangement of metal atoms in a cubi¢ P-lattice occurs only for 

a-polonium (Fig. 2.1, Table 11.2). It has ‘a packing efficiency of 0.52, a 

coordination number of [6] and an octahedron as its coordination poly- 

hedron. 

Considering the above data for the hcp and ccp structures, the Gold- 

schmidt and Laves principles are very well fulfilled: 

1. The packing efficiency is 0.74, the highest possible for the packing of equal 

spheres. 

2. F4/m 3 2/m is one of the highest symmetry space groups of the cubic 

system, and P6;/m 2/m 2/c is one of the highest symmetry space groups of 

the hexagonal system. 

[12] is the highest possible coordination number for spheres of equal size. ios) 

The W-type or bcc structure has a packing efficiency of only 0.68 and its 

coordination number, [8], is smaller than that of the closest packed 

structures, but its symmetry, I4/m 3 2/m is also high. 
The a-Po structure also has a high symmetry (P4/m 3 2/m), but its packing 

efficiency and coordination of 0:52 and [6] respectively are very small. This is 

certainly the reason for a-Po being the sole example of this structure. 

Metals attempt to achieve a high symmetry and a high packing efficiency. 

The great majority of metals crystallise in one of the first three given structure 

types. 
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Metals have many characteristic properties which are related to their 

structure and bonding: 

a) Electrical and Thermal Conductivity. Metals are good conductors of both 

heat and electricity. These properties arise from the fact that the electron 

clouds between the atom cores can move freely. 

b) Plastic Deformation. Plastic deformation in a metal is a shearing parallel to 

closest packed layers. This property is most prominent for metals with cubic 

closest packing in which four equivalent (111)-planes can undergo shear 

efficiently. These metals are generally soft, malleable and ductile. Gold, for 

example, can be beaten to a thin foil that weakly transmits green light. 

Crystals with hexagonal closest packing of the atoms are less malleable, since 

they have only one shear plane, parallel to (0001). Body-centred cubic metals 

are yet more brittle. 

11.3 Structures of Noble Gases and Molecules 

In noble gas and molecular structures, the molecules or atoms are held 

together by van der Waals forces. These forces are very weak. This is apparent 

from the very low melting points of such crystals, e.g. neon: -247.7°C, 

ethylene: -170°C, benzene: 5.5°C and phenyl salicylate 43°C. 

Noble gas atoms can also pack together as spheres, having a noble gas 

electron configuration. The bonding forces, like those in metals are non- 

directional, and the same sphere packings occur: 

a) cubic closest packing (cf. Fig. 11.2): Ne, Ar, Kr, Xe, Rn. 

b) hexagonal closest packing (cf. Fig. 11.3): He. 

Molecular structures are characterised by the fact that the energy holding 

the atoms in the molecules together (covalent bonding) is large, while that 

holding one molecule to another is very weak. Most molecular compounds 

are organic, inorganic examples include sulphur (cf. the Sg molecule in Table 

8.11.36) and Cg, see below. 

Three molecular structures were introduced in Figs. 10.1-10.3 (hexa- 

methylenetetramine, ethylene and benzene). As was made clear in Chapter 10, 

there is no simple relationship between crystal symmetry and molecular 

symmetry. Although molecules are not spherical in shape, they do attempt to 

pack as closely as possible in crystals. The hexamethylenetetramine structure 

(Fig. 10.1), for example, has a packing efficiency of 0.72. In the crystal 

structure of CO), the C-atoms occupy the positions of a cubic closest packing, 

the linear molecules being parallel to (111). 
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6 O+10A+15§+15m HT 

Fig. 11.6a,b. The Ceo-molecule forms an almost spherical cage with 20 six-membered rings 

and 12 five-membered rings (a) ([41]). The non-crystallographic point group 2/m35 (I,) of 

the molecule (b) ({14]) 

Since the forces holding the molecules together are weak, it follows that 

the lattice energies of organic compounds are, in general, low. Nonetheless, 

the great majority of organic compounds can be crystallised. Even “giant” 

molecules with very large unit cell dimensions have been crystallised, for 

example: 

1. vitamin By: Co3;HggNj4Oi4PCo, P2,2;21, “a9 =25.33 A, be= 22.30 As 
cy = 15.92 A, Z=4 (cf. Fig. 1.1b) 

2. pepsin: M ~ 40000, P6,22, a9 =67A, co =154 A, Z=12. 

A recent discovery is a new series of molecules containing only carbon, the 

main one of which has the molecular formula Cgo. In this molecule, the atoms 

form an almost spherical cage, made up of 20 six-membered rings and 12 five- 

membered rings. The structure is that of a soccer ball (Fig. 11.6a). The 

molecule has the non-crystallographic symmetry 2/m35(I),) (Fig. 11.6b), and 
for this reason, all atoms are equivalent. 

Ceo molecules have been crystallised with a ccp structure (a) = 14.17 A). 

11.4 Ionic Structures 

Ionic crystals are built from positively and negatively charged ions, and the 

bonding energy is Coulombic forces, which are non-directional and equal in 

all directions. The strength of a bond is related to the charge on the ions, e, 

and the distance, d, between them: 

1° &2 
Coulomb’s Law: K = ls 8, 

d2 
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Each cation seeks to maximise the number of neighbouring anions, while 

each anion equally seeks to maximise its neighbourhood of cations 

(Fig. 1l.1c). The formation of ionic structures is thus another packing 

problem, but now the spheres are ions of opposite charge which generally are 

also different in size. The relative sizes of the radius of the cation, Ra, and that 

of the anion, Rx, the radius ratio Ra/Rx, can suggest the appropriate 

coordination polyhedron and thus the crystal structure (Sect. 11.4.2-11.4.4). 

11.4.1 Ionic Radii 

Table 11.3 gives ionic radii as a function of atomic number. 

The size of anion, considering an ion as a sphere, depends on the charge on 

the nucleus and on the number of electrons. 

a) Within a column of the periodic table, the ionic radius generally rises with 

the increasing nuclear charge. 

ie e005 F- =133A 
Na‘ =0.98A Cle = 18 LA 
Kt =133A Br- =1.96A 
Row m52A Te 20904 
Cs? =1:70:A 

b) For isoelectronic ions, an increase in the nuclear charge results in a 

lowering of the ionic radius. 

Na* Mg?" Al?* Si** p>* So Cr 

OO8Ae 065A, 057A p009A. 0.044 294. 02608 

c) For a particular element, the ionic radius falls as the positive charge rises: 

Cf. S(16) or Mn(25) in Table 11.3. 

11.4.2 Octahedral Coordination [6] 

The octahedron as a coordination polyhedron is illustrated in Table 11.1e. 

The limiting value for the radius ratio Ra/Rx for this coordination may be 

determined by considering an octahedron composed of spherical anions 

which touch one another, and placing a cation precisely in the hole in its 

centre. Figure 11.7 shows a section through such an octahedron. It can be 

seen that Ra +Rx=Ry os or Ra/Rx= Noe 1=0.41. Octahedral coordina- 

tion is only stable if Ra/Rx is greater than or equal to 0.41 (Fig. 11.8a, b). A 

section through an unstable octahedron is shown in Fig. 11.8c. 

Octahedral coordination occurs in the NaCl (Figs. 11.9 and 11.17) 
and rutile TiO, (Fig. 9.18) structure types. The NaCl structure type can be 
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VN 
Fig. 11.7. Cross-section through a coordination octahedron 

([6]) 

a) 0.54 b) 0.41 c) 0.25 

Fig. 11.8a—-c. Section through a coordination octahedron, with the corresponding radius 

ratio, Ra/Rx. The arrangements in (a) and (b) are stable; that in (b) shows the limiting case 

with Ra /Rx =0.41, and that in (c) is unstable y 

Fig. 11.9. Na!!Cl structure, Fm3m 
Wattices ss cubic 

Basis: Na‘ at 0,0,0; Cl at +,0,0 

considered as a cubic closest packing of anions with cations in the octahedral 

holes. For LiCl (Ra/Rx=0.43), the ideal radius ratio for octahedral 

coordination is almost achieved. By contrast, NaCl itself has a radius ratio of 

0.54 (Fig. 11.8a). 

The spinel structure Mg"!A1,10, is based on a cubic closest packed array 
of oxide ions. The Mg’' ions occupy tetrahedral holes and the Al?’ ions 

octahedral holes. Let us consider how many of the octahedral and tetrahedral 

holes are occupied. 

Considering the NaCl structure as a cubic closest packing of Cl” ions 

(Fig. 11.9), it will be noted that all octahedral holes are occupied by Na’ ions. 
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In NaCl, the ratio Cl’: Na* is 1:1, thus each sphere in a ccp array (Cl ) 

corresponds to an octahedral hole (Na’). Figure 11.11 shows the “antifluor- 

ite” structure. The sulphide ions are in a ccp array (Fig. 11.11a), and the Li” 

ions occupy all tetrahedral holes. In LinS, the ratio Li’: S?> = 2:1 soseach 

sphere in a ccp array (S* ) corresponds to two tetrahedral holes (Li). The 

relation 2[4], 1[6] per sphere applies equally to both closest packings. 

Returning now to the spinel structure, Mg™!AL!O,, we can see that ; of 
the tetrahedral holes are occupied by Mg?* and 3 of the octahedral holes by 

INES 

In the Ni“! As (niccolite) structure (P6;/mmc), the As atoms are arranged 
as a hexagonal closest packing and the Ni atoms occupy all of the octahedral 

holes (Ni:As=1:1, Fig. 11.18). The O? -ions of the corundum, Al,!O,, 

similarly form a hexagonal closest packing. The Al** ions are in octahedral 

holes. From the above relationship, ; of the octahedral holes are occupied. In 

corundum, every third octahedral hole is vacant, but in the ideal structure, all 

holes are equivalent. This results in a lowering of the space group symmetry to 

R3c. Thus, corundum is trigonal, while in NiAs, the symmetry of the 

hexagonal closest packing (P6;/mmc) is retained. 

The O?-ions in forsterite, Mg,'!Si“0,, also are arranged as a hexagonal 

closest packing. The Si** ions occupy ; of the tetrahedral holes, and the Mg* 

ions half of the octahedral holes. The symmetry is lowered to Pnma. 

The atoms or ions in tetrahedral or octahedral holes are not statistically 

disordered. In most cases, they are ordered in the structure. 

11.4.3 Cubic Coordination [8] 

As the radius ratio increases, there should be a range in which the trigonal 

prism, with limiting Ra/Rx = 0.53, is stable (cf. Table 11.1). In fact, for ionic 

structures, the stable structure becomes cubic [8]-coordination, cf. Table 

ll.1lc. Making use of Fig. 11.10, which shows a section through a cube 

parallel to (110) (cf. Fig. 3.4), the limiting value for Ry/Rx for cubic co- 
ordination can be calculated: Ra +Ry=Rx:* V3, so Ra/Rx= = =0,7/3). 

{55 
Fig. 11.10. Section parallel to (110) through a 

coordination cube [8] (cf. Fig. 3.4a) 
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Fig. 11.11a,b. The fluorite or Ca'*!F, structure, and the “antifluorite” structure (e.g. 
Li,S), space group Fm3m 

Lattice: cubic F 

Basis: Gaz or S$? at 0,050; 
For Li at ppp Rid (a) 

Structure drawn with Fat 0,0,0 in order to emphasise the cubic coordination (b) 

This implies that octahedral coordination is stable for the range 

0.41 <Ra/Rx < 0.73, while cubic coordination is preferred for Ra /Rx > 0.73. 

Cubic coordination is found in structures of the Cs'*!Cl-type, and for the 
fluorite or Ca!!F,-type (Fig. 11.11). Cs®!I (Fig. 3.4) has the Cs!*!Cl structure 
with an almost ideal radius ratio of 0.75. « 

In Fig. 11.11 b the CaF, structure has been drawn with an F -ion at 0,0,0. 

This makes the cubic coordination of the Ca** more evident. Ca?' ions 

occupy every second cubic hole. The Cl ions have the same arrangement in 

the CsCl structure; in that case, every cubic hole is occupied by Cs*. The 

fluorite structure is found for SrF,, BaF,, SrCl,, UO, etc., and also for a 

number of alkali metal sulphides, e.g. Li.S, Na»S, KS etc. As is indicated by 

the chemical formulae, in these sulphides, the positions of the cations and the 

anions must be reversed, i.e. S*- ions occupy the Ca’ positions and the alkali 

metal cations occupy the F-positions. This structure is called the “antifluor- 

ite” structure. Init, the S?- ions forma ccp array, and the cations occupy all of 

the tetrahedral holes. 

In Table 11.4, a number of AX and AX, compounds are listed, arranged 

according to structure type. The radius ratio values are also given. The 

agreement between theory and experiment is reasonable, considering that the 

use of radius ratios'‘makes the assumption that ions are hard spheres. 

11.4.4 Tetrahedral Coordination [4] 

Table 11.1 g shows the tetrahedron as a coordination polyhedron. A suitable 

radius ratio can also be calculated for tetrahedral [4]-coordination. In 
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Fig. 11.12a, b. Coordination 

tetrahedron A"!X,, inscribed in 
a cube (a); (110)-section through 
a coordination tetrahedron 

derived from sphere packing (b) 

Fig. 11.13. Zn''S-structure (sphalerite Fig. 11.14. Zn4)S-structure (wurtzite). 
or zinc blende). Space group F43m Space group P63mc 

Lattice: cubic F Lattice: hexagonal P 
apes e ; pate aad Oh Sate Basis: Sat0,0,0; Zn at tiree Basis: Sat 0,0,0; tes 

diane ye Beil Zn at 0,0)542; aaa e (Za) 

Fig. 11.124, a coordination tetrahedron is shown inscribed in a cube. Figure 

11.12b shows a section through the cube and tetrahedron parallel to (110), 

with the radii of ions drawn to scale. Since Ra+Ry is half the body 

diagonal of the cube (a /3) and Rx is half of the face diagonal (4a VP AE 

(Ra + Rx)/Rx = V3/vV/2, and Ra/Rx =V/2-1=0.225. 
This implies that tetrahedral coordination will have a range of stability for 

0.225 <R,/Ry<0.41. Important examples of this coordination are the 

sphalerite or zinc blende (ZnS) structure (Fig. 11.13), the wurtzite (Zn!S) 
structure (Fig. 11.14) and all modifications of SiO, except stishovite. Figures 

11.15 and 11.24 show the structures of different modifications of Si!#/O,. The 

SiO, tetrahedra build a framework structure through the sharing of vertices. 

The radius ratio for SiO; is 0.29. 

The bonding in both ZnS structures is, in fact, largely covalent in nature. 
If, however, the geometry alone is considered, the S-atoms in the sphalerite 

structure occupy the positions of a cubic closest packing, and in the wurtzite 

structure those of a hexagonal closest packing. In both structures, the Zn- 

atoms occupy half of the tetrahedral holes. 
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Fig. 11.15. Structure of high cristobalite, Si"!O,, 

Fd3m 

How, then, do the basic principles for the formation of ionic structures 

work out in practice? 

1. In general, ionic structures have space groups of high symmetry, e.g. CsCl: 

P4/m 3 2/m; NaCl and CaF): F4/m 3 2/m. Structures based on the closest 
packing of anions retain the space groups of those arrangements when the 

interstices of a particular type are completely filled, e.g. Na!®!Cl: 
F4/m 32/m (Fig. 11.9). When the interstices are only partly filled, the 

symmetry may be lowered, e.g. Al,'!O3: R3c. 
2. The packing efficiency of ionic structures is usually high: for the ideal CsCl 

type, with Ry /Rx =0.73, it is 0.73; for the NaCl type with Ra/Rx =0.41, it 

is 0.79. As the radius ratio increases for a particular structure type, the 

packing efficiency decreases. For the structure of the NaCl type, for 

example, with Ra/Rx =0.54 (cf. Fig. 11.8a) it is 0.66. 

3. In ionic structures, the commonly occurring coordination numbers, [8], 

[6], and [4], are dependent on radius ratio and are relatively small. A better 

correlation is obtained if only the coordinations of the anions are 

considered, e.g. NaCl and Al,O3: Coordination number [12]. 

Finally, the linking of coordination polyhedra in ionic compounds 

should be considered. Linking by shared vertices is favourable. The sharing 

of edges, and in particular the sharing of faces lowers the stability of a 

crystal structure. This effect is greatest when a cation has a high charge or a 

low coordination number: Pauling’s third rule. In Fig 11.16, the linking of 

pairs of tetrahedra and octahedra through a vertex, an edge and a face is 

shown. Taking the distance between cations in the vertex-sharing polyhedra 

to be 1, the values in Fig. 11.16 show the decrease in cation-cation distance in 

the edge- and face-sharing cases. Note that it is more severe for the linked 

tetrahedra (0.55, 0.38) than for the linked octahedra (0.71, 0.58). The closer 

the cations come to one another, the greater is the Coulombic repulsion, and 

the lower the stability of the structure. The effect is greater when the cations 

have higher charge. 
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Fig. 11.16a, b. Linking of pairs of tetrahedra (a) and octahedra (b) through a vertex, an edge 

anda face. The numbers give the relative distances apart of the two coordinated cations, after 

[35] 

Fig. 11.17. The NaCl structure, 

showing the edge-sharing coordination 

RA octahedra. Every edge is shared by two 

octahedra 

The SiO{ tetrahedra of numerous silicate structures, and of SiO, 

structures, share vertices (cf. the Si'!O, structures in Figs. 11.15 and 11.24). 
There are a few exceptions; stishovite, Si!O,, for example, has the rutile 

structure. In the fluorite structure (Fig. 11.11 b), the coordination cubes share 

edges. 

In the NaCl and NiAs structures, the cations have octahedral coordi- 

nation. This coordination is indicated on the structures in Figs 11.17 and 

11.18. In NaCl, the octahedra share edges, in NiAs, they share faces. 

Comparison in this respect of the Na"!Cl and Cs®!Cl structures favours 
the NaCl structure, since the Cs* ions have a cubic coordination in which all 

cube faces are shared. 
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Fig. 11.18a,b. Ni‘! As structure, P6;/mme 
Lattice: hexagonal P 

Basis: As 0,0,0; 743 

Ni LRH MAE 
a Perspective drawing. b As projection on 
(0001). The As-octahedra are face-sharing 

The coordination octahedron of the rutile structure (Fig. 9.18) shares two 

edges. This becomes clear when the unit cells above and below that shown are 

considered. Two other forms of TiO), brookite and anatase, have coordi- 

nation octahedra which share three and four edges respectively. The rutile 

structure is thus the most stable form of TiO,, and, unlike brookite and 

anatase, its structure is adopted by many compounds. 

11.5 Covalent Structures 

Covalent or homopolar bonding, will be illustrated by the diamond structure, 

which consists entirely of carbon atoms. The outer shell of a carbon atom is 

occupied by 2s?2p7-electrons. In free space, there will be one electron in each 

of a 2s, 2px, 2p, and 2p, orbitals. We may consider these mixed to form a set of 

four sp? orbitals, pointing to the corners of a tetrahedron (Fig. 11.1d). Each 

C-atom can form bonds with a maximum of four other C-atoms. This results 

in the formation of a crystal structure, based on tetrahedra (Fig. 11.19), which 

Fig. 11.19. Diamond structure, Fd3m 
Lattice: cubic F 

Basis: Gat 050;0and 4 2 aa 4 

yey) 



has the same overall ordering of atoms as the sphalerite type in Fig. 11.13. 

Each C-atom is surrounded by a tetrahedron of four other C-atoms. 

In this case, the picture of bonding as sphere-packing is inapplicable as the 

main forces are due to the directional bonding of overlapping atomic orbitals. 

The packing efficiency of the C-atoms in diamond is not high. The bonding in 

diamond is exceptionally strong, resulting in its great hardness. 

11.6 Isotypes, Solid Solutions and Isomorphism 

Crystals which have the same crystal structure are said to belong to a 

structure type or to be isotypes. Isotypes are generally characterised by having 

the same space group, analogous chemical formulae, and the same coordi- 

nation polyhedra occupying the same sites. Neither the absolute size of the 

atoms nor the type of chemical bonding 1s important; ionic NaCl and metallic 

PbS crystals are isotypes, as are metallic Cu and van der Waals Ar crystals. 

The relationship between isotypic structures becomes closer if atoms in 

one structure can replace those in the other. The following experiment will 

illustrate this. Two single crystals of the isotypic structures Au and Ag are 

pressed together as the temperature is raised, but kept below the melting point 

of either crystal. By diffusion, silver atoms pas§ into the gold crystal and 

occupy the places vacanted by gold atoms, while gold atoms similarly diffuse 

into the silver crystal. This diffusion can proceed to such an extent that 

eventually, in some parts of the mass, an atomic ratio Au:Ag of 1:1 is 

reached. The single crystal nature of the starting materials is apparently lost. 

In some regions, arrangements of atoms like that in Fig. 11.20 will occur. 

Figure 11.20a shows the initial situation, with separate crystals of Ag and Au, 

while Fig 11.20b gives the situation after the diffusion process. The diffusion 

process has distributed the Au and Ag atoms statistically over the sites of the 

crystal structure. 

Crystals in which one or more positions are occupied by a statistical 

distribution of two or more different atom types are called mixed crystals or 

solid solutions. The reciprocal exchange of atoms in crystals is referred to as 

diadochy or replacement. Solid solutions in which one atom directly replaces 

another are called substitutional solid solutions. 

The chemical formula is also an indication that a crystal structure is 

actually a solid solution. Interchangeable atoms are written together in a 

chemical formula, separated by a comma. The solid solution described above 

would be written as Ag, Au. K(Cl, Br) describes a solid solution in which Cl~ 

and Br replace one another. In olivine, (Mg, Fe).Si1Og, the oxide ions form an 

hep array. The Mg” and Fe?’ ions are statistically distributed over specific 

octahedral holes. 
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Fig. 11.20. a Single crystals of Ag and Au pressed against one another. b The resultant solid 

solution Ag, Au resulting from diffusion of one metal into the other. Only a single layer 

at x,y,0 is shown 

Solid solutions form most commonly when the replaceable atoms or 

groups of atoms are most similar in chemical properties and size. A rule of 

thumb for solid solution formation is that the radu of the interchangeable 

atoms should differ by no more than 15%. Silver and gold are miscible in all 

proportions (Ra, = 1.44 x WRiten = 1a A, difference 4 ~ 0.0%). Ag, Au solid 

solutions are generally formed by slow cooling of a mixture of melts of the 

two components. 

Copper and gold are only miscible in all proportions at high temperatures 

Qe 28 A, A=11%). During slow cooling the (Cu, Au) solid solution is 

converted to ordered structures, called superstructures. The superstructures 

with composition Cu;Au and CuAu are given in Fig. 11.21. Note that CuAu is 

tetragonal, and no longer cubic. 

Gold and nickel 4 = 14%) are also miscible at high temperature. At lower 

temperature, the solution separates into Ni-rich and Au-rich solid solutions. 

The separation can be essentially complete, so that only pure Ni and Au 

domains remain. 

Plagioclases are solid solutions whose limiting compositions are 

NaAlISi,Og and CaAlSin0s3. Here, the formation of a solid solution occurs 
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Cu Au b) 

Fig. 11.21. a The CuAu structure. b The CuAu; structure as superstructures of the Cu, Au 

solid solution 

through the simultaneous substitution of Ca for Na and Al for Si, or vice 

versa. In order to keep the charges balanced Na* +Si** =Ca?* + Al?*. 
When crystals of the same structure type (isotypic crystals) form solid 

solutions with one another, the structures are said to be isomorphous. As the 

following examples will show, however, solid solution formation is no 

criterion for isotypes. 

Zn" (sphalerite-type, Fig. 11.13) and FeS (Ni!*!As-type, Fig. 11.18) are 

clearly not isotypic. In sphalerite, however, a (Zn, Fe) substitution up to 

about 20% is possible. Fe*’ and Zn’ are bivalentions with almost equal radii 
of 0.74 A. A substitution (Fe, Zn) in FeS does not occur. The occurrence of 

substitution is thus not only dependent on the size of the atoms but also on the 

properties of the crystal structures. 

Ag Br (NaCl-type) and Ag"!I (sphalerite-type) show limited solid 
solution formation. In AgBr, a (Br/I) substitution of up to 70% I is possible, 

while in AgI, substitution of Br occurs only very slightly. 

LiCl (NaCl-type) and MgCl, (CdCl)-type, a layer structure) have not 

only different crystal structures, but also different chemical formulae. In both 

cases, the Cl ions form ccp arrays, and Li’ and Mg?’ occupy octahedral 

holes in these arrays. All octahedral holes are occupied in LiCl, while in 

MegCh, only every second hole is occupied. When solid solutions are formed, 

a Mg?’ ion occupies one Li°* site in LiCl, and causes another Li’ site to be 

vacant. Similarly, when a Li’ ion occupies a Mg?’ site, another Li’ ion will 

occupy one of the empty octahedral holes in MgCl). 

11.7 Polymorphism 

Under different conditions, many solid substances can produce different 

crystal structures of the same chemical constitution. This phenomenon is 

known as polymorphism. 
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Nickel crystallises in both the Cu!'?!-type (ccp) and the Mg!"*_type (hep), 

zirconium in both the Mg!!”!-type (hcp) and the W"!-type (bcc), and Zn!"!S in 

both the sphalerite and wurtzite types. CaCO; can give crystals of both the 

calcite-type (Ca'!CO;) and the aragonite-type (Ca®!CO;). These CaCO; 
structures naturally produce different morphologies (cf. Table 8.11.8 and 20). 

The interconverison of polymorphs, also called structure transformations, 

can proceed ina variety of ways. Buerger [5] distinguished the following types 

of transformation: 

1. Transformations of First Coordination 

The transformation alters the coordination numbers, and thus the arrange- 

ment of nearest neighbours. The new structure thus has new coordination 

numbers. 

a) Dilatational Transformations. Cs®Cl is converted, above 445°C to the 
NaICl type. The CsCl structure (Fig. 11.22a) is converted to the NaCl 
structure by a dilatation along a body diagonal of the cube (Fig. 11.22b). 

From the cubic arrangement of the Cl ions (a cube is a special rhombohed- 

ron with a 90° angle) arises a rhombohedral arrangement with a 60° angle. A 

rhombohedral P-cell with a=60° is a cubic F-lattice (cf. Chap. 6.4). The 

movement of the Cl ions causes the Cs” ions to lose two neighbours, and the 

cubic coordination is transformed to octahedral. Dilatational transforma- 

tions are rapid. 

b) Reconstructive Transformations. Ca®!CO; (aragonite) is converted about 
400°C to Ca!!CO; (calcite). The coordination number falls from [9] to [6]. 
The bonds between Ca** and CO;?- are broken and reformed. Another 
example of this type of transformation is the conversion of Zr from the Mg!"”!- 

b) 

Fig. 11.22a, b. Dilatational transformation in the first coordination. The Cs"!CI structure 
(a) is converted by means of a dilitation along the body diagonal of the cube into the Na“!C] 
structure (b). (After [5]) 
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Table 11.5. The occurrence of the calcite and aragonite structures as a function of cation 

radius. 

Structure type Formula Cation radius (A) Coordination number 
—}-— 

MgCo; 0.66 
FeCO; 0.74 
ZnCO 0.74 

Calcite MnCO, ’ 9.80 [6] 

CdCO; 0.97 
CaCO; 0.99 

CaCO; 0.99 
: SrCO Ih 

Aragonite PbCO, 1.20 [9] 

BaCO; 1.34 

type (hcp) to the W!_type (bcc). Reconstructive transformations are very 

slow. 

In Table 11.5, examples are given of compounds crystallising in the calcite 

and aragonite structure types, with the radii of the cations. Rc,2» = 0.99 A is 

the limiting radius for the two types. Smaller cations fit well into the [6]-holes 

of the calcite structure, while larger ones fit better into the [9]-holes of the 

aragonite structure. Ca** ions can form both structures. Raising the tem- 

perature favours the conversion of Ca”!CO; (aragonite) to Ca!CO; (calcite), 
while raising the pressure converts calcite to aragonite. These observations 

may be summarised by the rules: higher temperatures favour lower coordi- 

nation numbers; higher pressures favour higher coordination numbers. 

2. Transformations in secondary coordination 

In these cases, the arrangement of nearest neighbours, i.e. the coordination, is 

unchanged. The arrangement of next-nearest neighbours is changed. Figure 

11.23 shows such a change diagrammatically. The three structures are all 

made up of planar AB, “polyhedra” which are interconnected in different 

ways. 

a) Displacive Transformations. These involve a direct conversion of (a) 

into (b) (Fig. 11.23). The polyhedra undergo rotation only, and no bonds are 

broken. An angle A-B-A which is less than 180° in (a) becomes equal to 180° 

in (b). The density falls and the symmetry rises. 

Low- and high-quartz structures, Si4lO, are three-dimensional networks 

of SiO, tetrahedra, which share vertices with one another. In right-handed 

low-quartz (P32) (cf. Table 8.11.24), these tetrahedra form a helix about a 
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Fig. 11.23a-c. Transformations in 
the secondary coordination sphere 

for structures based on square AB, 
coordination. 

ab is displacive, 
bc is reconstructive. (After [5]) 

35-screw axis, parallel to the c-axis. In right-handed high-quartz (P6722), this 

becomes a 6)-screw axis. Figure 11.24 gives a projection of both structures 

onto (0001). At 573°C, a displacive transformation between low- and high- 

quartz occurs. The two structures are very similar; only a small rotation of 

one tetrahedron relative to another has occurred. The conversion of low- to 

high-quartz lowers the density from 2.65 to 2.53gcm ?. 

b) Reconstructive Transformations. Consider the conversion of (b) to (c) in 

Fig. 11.23. For this to occur, the bonds in b must be broken, so that the 

4-membered rings of,(b) may be rebuilt into the 6-membered rings of (c). 
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870°C reconstructive 

P6,22 

Fig. 11.24a-c. Transformations 

in the secondary coordination 

of Si@10, structures shown as 
projections on (0001). 

ab Displacive: right-handed 
low-quartz (P32) © right- 

handed high-quartz (P6722). 

bc Reconstructive: right- 

handed high-quartz (P6722) - 

high-tridymite (P63/mmc). 
a, b after [39] 
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When high-quartz is heated above 870°C, it undergoes a reconstructive 

transformation to high-tridymite (P6;/mmc, Fig. 11.24c). The tridymite 

structure consists of 6-membered rings of SiO, tetrahedra, which are packed 

above one another, normal to the c-axis. 

The transformation between sphalerite and wurtzite is also reconstructive. 

Displacive transformations require little energy and are relatively rapid; 

reconstructive ones require more energy and are very slow. 

3. Order-Disorder Transformations 

Copper and gold are miscible in all properties at high temperatures. In the 

(Cu, Au)-solid solution, the Cu and Au atoms are statistically distributed over 

the sites of the ccp crystal structure (disorder). On cooling, there is an ordering 

through the formation of the CuAu and Cu;Au superstructures (Figs. 11.20 

and i221. cf 2Sect 211.6) 

4. Transformations Involving Changes in Type of Bonding 

Carbon occurs as diamond (Fig. 11.19), graphite (Fig. 11.25) and the various 

fullerenes (e.g. Coo, Fig. 11.6a). In diamond, the bonding throughout the 

crystal is covalent. In graphite and in the fullerenes, covalent bonds hold the 

atoms in the layers or molecules while van der Waals forces hold layers and 

molecules together. Transformations of this sort are very slow. 

In the graphite structure, the carbon atoms are ordered in 6-membered 

rings in the layers. The coordination “polyhedron” in this case is an 

equilateral triangle [3] (Table 11.1h). The layer stacking can repeat itself at 

b) 

Fig. 11.25a,b. Polytypes.of graphite structure. a 2H; b 3R. After [37] 
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intervals of either two or three layers (Fig. 11.25). Both of these structures 

have been observed. This special form of polymorphism is called polytypism. 

In these polytypic structures, (a) gives a hexagonal unit cell and (b) a 

rhombohedral. The structures are thus labelled as the 2H- and the 3R- 

polytypes of graphite, respectively. 

11.8 Literature on Crystal Structures 

Further information about specific crystal structures is obtainable from 

many sources. The following references are particularly recommended: [29], 

[43]-[45], [51]. 
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Exercise 11.1. Calculate the ideal radius ratio Ra/Rx for the coordination polyhedra: 

trigonal prism [6] and equilateral triangle [3] (cf. Table 11.1). 

Exercise 11.2. Give a description of the following structures in terms of lattice + basis: 

a) a-Polonium (cubic P-lattice), cf. Fig. 2.1. 

b) Tungsten (cubic I-lattice), cf. Fig. 11.5. 

c) Magnesium (hexagonal closest packing) cf. Fig. 11.3. 

d) Copper (cubic closest packing) cf. Fig. 11.2. 

e) Draw four unit cells of the Mg-structure in projection on (0001). Find those symmetry 

elements which characterise the structure as hexagonal. 

Exercise 11.3. Calculate the radii of the atoms in the structures in Exercise 11.2, using the 

following lattice parameters: 

a) a-Po: a)=3.35A. 

b) W: ap =3.16A. 
c) Mg: ap=3.21A, co=5.21A. 
d) Cu: a)=3.61 A. 

Compare these values with those given in Table 11.3. 

Exercise 11.4. Calculate the ideal co/ay ratio for hexagonal closest packing. 

Exercise 11.5. The packing efficiency is the ratio of the sum of the volumes of the atoms 

making up a unit cell to the volume of the cell itself. Calculate the packing efficiencies of: 

a) a-Polonium (cubic P-lattice). 

b) Tungsten (cubic I-lattice). 

c) A hexagonal closest packing. 

d) A cubic closest packing. 

Exercise 11.6. The diamond structure has: 

lattice: cubic F, aj =—3.57 A 
He : ella 5 basis: CEM O08 nets 

a) Draw a projection of the structure on x, y,0. Sketch tapered C—C bonds with colours 
indicating the height (use green for 0 <z <5 and red for h< Zi) 

Atoms with 
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b) Calculate the length of a C—C bond. 

c) What is the value of Z? 

d) Describe the structure. 

e) Compare the diamond structure with that of sphalerite (Fig. 11.13). 

Exercise 11.7. The graphite (2H) structure has 

lattice: hexagonal P: ay = 2.46 A; cy = 6.70 A. 

basis Ga ONOs0; 0-0, 120, 211 DDE) YN CVINL-) SORT CV GY 

a) Draw a projection on four unit cells on x,y,0. Join each C-atom to its three nearest 

neighbours with the same z-coordinate with coloured lines (z=0 green, z=} red). 

b) Calculate the length of a C-C bond. 

c) What is the value of Z? 

d) Describe the structure. How large is the inter-layer spgcing? 

e) Calculate the densities of diamond and graphite,and comment on the difference. 

Exercise 11.8. LiCl (NaCl-type; aj =5.13 A) has an arrangement of Cl- ions which is cubic 

closest packed (Rx/R, =0.43). Calculate the ionic radii of Cl’ and Li and the packing 

efficiency of the LiCl structure. 

Exercise 11.9. Draw the ions on the x,y,0-plane of the NaCl (ay = 5.64 A), LiCl (aj = 5.13 A) 
and RbF (a) =5.64 A). The ionic radii can be taken from Table 11.3. 

Exercise 11.10. Calculate the Ti—O distance in the coordination octahedron of the rutile 

structure (cf. Table 9.5). Which distances are equivalent by symmetry, and hence required to 

be equal? 

Exercise 11.11. The pyrites structure (FeS) has: 

a) Space group Pa3 (P2,/a3) 

: 3 - ALR lay lays 
Fe: 4a3 0,0,0; Or ao ap UE ap Oe: 

ey 5 : es Sihraes Seetcrcr XOX Xe XK, X,, EX eX, 5 Kh PX; 

zx x! 1 1 I I (x = 0.386). 
£55 5%, XX X55 PR; 54H, AS5 

b) Lattice constant: a) = 5.41 A. 

Draw the structure as a projection on x, y,0 (let a9 = 10 cm). 

Describe the structure. 

What is the value of Z? 

Calculate the shortest Fe—S and S—S distances. 

Draw the symmetry elements on the projection. eg SOARS tS 
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Exercise 11.12. A compound of NH,/Hg/Cl has: 

a) Space group P4/mmm. 
b) Lattice constants: a) =4.19 A, Co = 7.94 A. 

c) Positions: Hg: 0,0,0 

NHg: 133 

Cl(1): 5,3,0 

Cl(2): +(0,0,z) z=0.3 

1. Draw a projection of the structure on 0,y,z (1 A=lcm). 

2. Give the chemical formula of the compound, and the value of Z. 

3. Describe the coordination of Hg and NHa, giving the coordination number and the 

coordination polyhedron. 

4. Calculate the shortest Hg—Cl and NH,—Cl distances. 

Exercise 11.13. The crystal structure of BaSOy, has: 

a) Space group Pnma oe special and general positions: 

(4c) 2,4 4? Z; Z; $+X X 455 ; aA) 

(8d) +(x, y,z; X,4+y,z; 37X53 y,4—Z; 3—x,J,5+2) 

b) Lattice constants: ap = 8.87 A, bp =5.45 A, Ch tale A. 

c) Occupation of positions: 

— 

Position multiplicity ; ; 

and Wyckoff letter ‘ y : 

Ba (4c) 0.18 | : 0.16 
=F 

s (4c) 0.06 1 0.70 
- 

O(1) (4c) -0.09 : 0.61 
es 

O(2) (4c) 0.19 : 0.54 
ee a Pp a Se eee 

O(3) (8d) 0.08 0.03 0.81 
= 

1. Draw a projection of the structure on x, 0, z. 

2. What is the value of Z? 

3. Determine the coordination of O atoms around S. 
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12 Studies of Crystals by X-Ray Diffraction 

Since the wavelengths of X-rays and the lattice parameters of crystals are of 

the same order of magnitude, X-rays are diffracted by crystal lattices. It was 

from the discovery of this effect in 1912 by Max von Laue that we may date the 

beginning of modern crystallography. Only then did it become possible to 

determine the structures of crystals. 

We shall only describe here one X-ray method, the Debye-Scherrer 

technique, in detail, because it is a very important research tool for the 

scientist. Also, a brief description will be given of how a crystal structure 

may be determined. 

For a fuller description of X-rays and ther properties, the reader is 

referred to textbooks of crystallography or physics. 

12.1 The Bragg Equation 

The diffraction of X-rays by crystals can be formally described as a reflection 

of X-rays from sets of lattice planes. Assume that a parallel, monochromatic 

beam of X-rays (i.e. one characterised by a single wavelength A) falls on a 

set of lattice planes with a spacing of d, making a glancing angle of @ with 

them (Fig. 12.1). The waves I and II will be reflected at A, and B, and will 

b) a) peSIE* 

Fig. 12.1. a Diffraction (“reflection”) of an X-ray beam by a set of lattice planes. b aoe 

ference of waves reflected by a set of lattice planes ("= 1A) 
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thus undergo interference. At the point A;, the waves will have had a 

path difference [=BA,—A,B’=BA;—BC=CA3, since BA,=BA; and 

BA — 8B Gaius: 

fae 
2d 

An interference maximum will be observed when J is an integral multiple n of 

A, or P=nd/, where n is the order of the interference. This gives rise to the 

Bragg equation: 

nA=2dsin 0. 

12.2 The Debye-Scherrer Method 

In the Debye-Scherrer method, a fine powder of a crystalline substance is 

irradiated with monochromatic X-rays. According to the Bragg equation, a 

set of parallel planes (hkl) will reflect X-rays with certain characteristic 

glancing angles 6 (Fig. 12.2a). Since the crystallites are randomly arranged in 

a fine powder, there will always be a large number of crystals orientated in 

such a way that a given set of planes (hkl), which make an angle 6 with the 

X-ray beam can cause reflection to occur. These planes are tangent to the 

surface of a cone with a cone-angle of 20. The beams reflected by these planes 

lie on the surface of a cone with a cone angle of 40 (Fig. 12.2b). Figure 12.2¢ 

shows the reflection cones of a few different sets of planes. 

In the Debye-Scherrer method, a cylindrical camera is used with the 

powdered specimen, contained ina thin tube mounted along the cylinder axis. 

The cones of reflection intersect the film in Debye-Scherrer lines (Fig. 12.2¢,d). 

The angle between pairs of lines originating from the same cone is 46. Thus 

5 40 

InR 360° 

where R is the radius of the camera. For R = 28.65 mm (2zR =180 mm), the 

measured value of S in mm is thus equal to the value of 20 in degrees. 

In order to obtain information from X-ray photographs, it is necessary to 

index the reflections, i.e. to determine which set of lattice planes gave rise to 

the observed interference. Since the value of @ is easy to read from the 

photograph and A is known, the Bragg equation allows d, the spacing of the 

lattice planes, to be calculated. 

How are these d-spacings related to (hkl)? The plane lying next to the 

one which passes through the origin in Fig. 12.3 intercepts the orthorhom- 

bic axes at the point m00 (a-axis), On0 (b-axis) and 00° (c-axis), cf. Chapter 
2.4.3. 
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Point at which 
X-ray beam enters 
the camera 26 = 0° / \ 

\ c 

Mees es) =] (al oeeo 
+— S ——“4 

Fig. 12.2. a Relationship between the primary beam and a ray diffracted by the lattice planes 

(hk1). b Possible orientations of the set of planes (hkl) in a crystalline powder. The result of 

the random orientation of the planes giving a glancing angle of @ is a cone with a generating 

angle of 40. c, d The rays diffracted from the various lattice planes lie on concentric cones 

about the primary beam. Their intersections with the film give rise to the “lines” of the 

powder diagram. (After [11]) 
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Fig. 12.3. Relationship between the Miller indices 

of a set of lattice planes and the spacing of the 

planes d 

For a set of planes (hkl): 

d h 
COS Pa = =d: 

mM °* ag ao 

k 
COS Pp = g =d- 

n: bo bo 

] d 
COS Mo = — 

p*Co Co 

Squaring these and adding them together gives: 

hee ke? 

Age eDG. CG 

1 

h2 k2 12 

7. 

an Moab aa unCe 

this relationship applies to the orthorhombic system. In the cubic system, it 

simplifies to 

dak Aid 

ao 

Vh2 +k? 412 - 

Substituting this equation for the d-spacing into the Bragg equation and 

squaring gives: 

dix 

Ds 

sin’@ = -(h?+k?+1?). 
ap 

The right-hand side of this equation is the product of a constant factor A7/4.a4 

and an integer (h* +k? +1’). The values of sin’0 for individual reflections are 
thus related to one another as integers. 

The powder pattern for tungsten in Fig.12.4 was taken with CuK, 

radiation, A =1.54 A. Table 12.1 shows the calculations for this photograph. 
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i 7 

ee 

Fig. 12.4. Powder diagram of tungsten (reduced to 0.65 of original size) 

Note that this table includes the reflections 200, 220 and 400, which 

contravene the definition of Miller indices as they do not represent the 

smallest integral multiples of the reciprocals of intercepts on the axes. In 

fact, they are Miller indices multiplied by the factor n, the order of 

diffraction. In other words, 200 may be regarded as the second order of 

diffraction from the (100) planes. These hk] triples, written without brackets, 

are called Laue symbols, and their use makes the factor n of the Bragg 

equation unnecessary. 

From the constant factor A?/4.a§ = 0.0592, the lattice parameter ay = 3.16 A 

may be determined. Z, the number of formula units per unit cell, can also be 

determined (cf. Chap. 3) j 

pg. 
M 

7 EOS REN IS OLE 
183.86 

Z~2. 

A cubic structure of an element with Z =2 can only occur if the substance has 

a cubic I-lattice, cf. Fig. 11.5. 

In Table 12.1, 100, 111 and 210 do not occur. Such absences occur in 

structures which have centred lattices or contain glide planes or screw axes. 

The absent reflections are said to be extinct. Those reflections which do 

occur in Table 12.1 obey the rule h+k+1=2n, where nis an integer, and this 

is characteristic for all structures with an I-lattice. 

The number of reflections which can be observed on an X-ray photograph 

: A ‘ 
is limited. In the Bragg equation sin 0 aye —l<sin@<+1. Thus x < +] 

and d><. Diffraction can only arise from those sets of lattice planes for 

which aaa. For CuK, radiation, 4=1.54 A, the limiting value for d is 
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Table 12.1. Interpretation of the powder pattern of tungsten 

2 
et 5 @ | sin29-7—-(h? +k? +2) | ie 
reflection mm degree 4a6 

1 40.3 20.15 0.1187 = 0.0594 - 2 110 

2 58.3 29.15 0.2373 =0.0593-4 200 

3 (32 36.60 0.3555 = 0.0592 - 6 Bila 

4 87.1 43.55 0.4744 = 0.0593 - 8 220 

5 100.8 50.40 0.5937 = 0.0594 - 10 310 

6 115.0 57.50 0.7113 =0.0592-12 (ibe 222 

7 131.2 65.60 0.8294 = 0.0592 +14 321 0.85 
[eet = ie 

8 154.2 HMO 0.9502 = 0.0592: 16 400 0.79 

thus 0.77 A. The pattern for tungsten contains no reflections with a d-value 

eA ao7Tk. 
2 

The greatest use of the Debye-Scherrer method is in the identification of 

crystalline substances. Every sort of crystal produces a pattern of lines with 

characteristic positions and intensities. The intensity is roughly proportional 

to the blackness of a photograph. The American Society for Testing Materials 

published an index (the ASTM index) containing data for all crystalline 
inorganic and organic substances which have been studied by X-ray 
diffraction. This index is now administered by the Joint Committee for 
Powder Diffraction Standards (JCPDS) at the International Center for 
Diffraction Data in Swarthmore, USA. Every substance has an index card 
which contains the d-values and the relative intensities for individual 
reflections, as well as many other crystallographic data. The PDF-card for 
tungsten is given in Fig. 12.5. For the identification of an unknown substance, 
use is made of the lines with the strongest intensities, which are given in 
tabular form. Naturally, the file is now normally accessed by computer. 

12.3 The Reciprocal Lattice 

Crystals are three-dimensional systems. A stereographic projection, which 
gives a useful summary of the arrangements of the crystal faces with respect to 
one another, can be derived simply from a consideration of the morphology 
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4-806 JCPDS-ICDD Copyright © 1991 Quality: * 

WwW 

Tungsten 

Rad: CuKat Lambda: 1.5405 Filter: Ni 

Cutoff: Int: Diffractometer I/Icor: 18.00 

Ref: Swanson, Tatge, Natl. Bur. Stand. (U.S.), Circ. 539, 1 28 (1953) 

———— Sys: Cubic S.G.: Im3m (229) 

a: 3.1648 cs A: 

A: (C3 L222 

Ref: Ibid. 

Dx: 19.262 Dm: SS/FOM: F8 = 108 (.009.8) 

Bo 

ea: nwB: ey: Sign: 2N: 

Ref: 

Color: Steel-gray to tin-white 

Pattern at 26°C. Sample prepared at Westinghouse Electric Corp. CAS no.: 

7440-33-7. Analysis of sample shows SiO, 0.04%, K 0.05%, Mo, ALO, and 0.01% 

each. Merck Index, 8th Ed., p. 1087. W type. Also called: wolfram. PSC: cIZ. Mwt: 

183.85. Volume [CD]: 31.70. | 

| Strong lines: 2.24/X 1.29/2 1.58/2 0.85/2 1.00/1 1.12/1 0.91/1 0.79/1 

Fig. 12.5. PDF (formerly ASTM) index “card” for tungsten, as a computer printout 
/ 

é 

of a crystal. As described in Chapter 4.4, the normals to the crystal faces are 

used for this purpose. 

An alternative system for representing the lattice planes was proposed by 

P. P. Ewald to discuss the scattering of X-rays by the crystal lattice. Since, as is 

described in section 12.1, the diffraction of X-rays can be interpreted as the 

reflection of the rays by sets of parallel lattice planes, it was important to 

devise an aid to illustrate both the orientations of the lattice planes and their 

diffraction. This aid is the “reciprocal lattice”. Each set of lattice planes in the 

crystal is represented by a point in the reciprocal lattice. The construction of a 

“reciprocal lattice” from the corresponding “direct lattice” may be performed 

as follows: For each set of lattice planes (hkl), the normal is drawn from the 
G ; 

origin with a length d* =——., where d is the lattice spacing and C is a pro- 
hkl 

portionality constant. 
The construction of the reciprocal lattice corresponding to the projection 

on (010) of a direct monoclinic P-lattice is shown in Fig. 12.6. The normal to 

the set of lattice planes (001) is drawn from the origin and assigned a length 

Gig : -. The resulting point is called Poo. A similar construction for the 
doo 

set of (100) planes gives the point Pjjo. The points Py, and Pj represent the 

relative orientations of the (001) and (100) lattice planes. 
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(oo) 

Fig. 12.6. Monoclinic P-lattice as a projection on (010) with the points Poo; and Pio. Pooo, Poo 
and Pj define a lattice, the reciprocal lattice 

Making use of the three points P09, Pio and Poo, a two-dimensional lattice 

can be constructed. This reciprocal lattice plane is indicated by dashed lines in 

Fig. 12.6. It must now be shown that the reciprocal lattice points correspond- 

ing to all sets of lattice planes with indices (h0l) fall on this same plane. 

Figures 12.7-12.9 show the relevant constructions for the sets of (101), (201) 

and (102) planes. When all relevant points are added to the drawing, its 

lattice-like nature is apparent (Fig. 12.10). This construction does not, 

however, lead to all of the points required by the reciprocal lattice. For 

example, P%o2, P39 and P39 are missing since lattice planes with indices such as 

(002), (200) and (202) contravene the definition of Miller indices given in 

Chapter 2.4.3. It is, of course, possible to define a set-of “lattice planes” (002) 

doo 
with a spacing d= . In these “lattice planes”, only half of the planes 

intersect points of the direct lattice. Furthermore, the Bragg equation (Sect. 

2.1) can be written in the form an ina 0. If this is done, every n-th 
n 

order diffraction with a plane spacing of d can be replaced by a first-order 
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Fig. 12.7 Fig. 12.8 

Fig. 12.7. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes 

(101) and the point P;, of the reciprocal lattice 
/ 

Fig. 12.8. Monoclinic P-lattice as a projection on (10) with the traces of the lattice planes 

(201) and the point P39, of the reciprocal lattice 

202 rvad 002 
" ‘ \ 

\ \ i 
‘ \ \ 

20" : ia R ani 
\ \ \ 
\ N \ 

\ \ \ 
\ \ tia 

200° 100 i 000 

Fig. 12.10 

Fig. 12.9 

Fig. 12.9. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes 

(102) and the point Pj» of the reciprocal lattice 

Fig. 12.10. Reciprocal lattice (a*c*-plane) corresponding to the monoclinic P-lattice of 

Fig. 12.6 
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; : dae Pape 
diffraction from planes with a spacing of —. Pjo2 describes in the same way 

n 

a second-order diffraction from the planes (001), Poo3 a third order, and so on. 

The same sort of reasoning applies to the points Pin, Pans etc. (seenalso 

Sccip=)s 

The rule for constructing the reciprocal lattice given above (p. 251) is thus 

8 
incomplete and should read: ... with a length d* = , and all integral mul- 

hkl 

tiples thereof, where d is the lattice spacing .... 

The reciprocal lattice, like the direct lattice, is defined by six lattice 

parameters: 

= : it boc sin & 
|a*| =ag= a 

(100) Vi 

5 1 AgCy SiN [B*| bs Bey 
d(o10) Vv 

és 1 Agbo Sin } |e*| =c§ aS 
door) Vv 

V =ayboco: V1 — cos2a —cos2f — cos?) + 2cos a cos f cos y 

(Volume of the unit cell) 

cos fh cos y —cos @ 
G5 = DUNC san cos a - 

sin f siny 

cos acos y—cos fp 
B= Glas: cos B* : 

sin @siny 

cos acos /—cosy 
Vie at WN Ss ul COS) ™ 

sin asin fp 

The use of the reciprocal lattice allows an elegant discussion of the 

application of the Bragg equation to the diffraction.of X-rays by a lattice. 

Figure 12.11 shows a section through a reciprocal lattice. The direction of the 

primary beam is indicated by a straight line through the point P¢o9. A sphere 

(which in Fig. 12.11 becomes a circle) with a radius of a and a centre at 

the point M on the line is then constructed so that the surface of the sphere 

intersects the origin of the reciprocal lattice, Pgjp. This sphere is known as the 
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—-QO — — +9- — —-O-— —-9O 

Fig. 12.11. 
30) The Ewald construction 

sphere of reflection. In general, no point of the reciprocal lattice other than 

Poo lies on the surface of the sphere. By choosing the direction of the primary 

beam appropriately, however, it may be pgssible to cause another point Py, 

to lie on the surface of the sphere of reflection, as in Fig. 12.11. In this case, the 

condition for the Bragg equation nj = 2d sin 0 is fulfilled precisely for the set 

of planes (hkl). Diffraction occurs, and the diffracted beam has the direction 

MP. The orientation of the planes (hk1) is shown in Fig. 12.11 by a dotted 

line. It is obvious that the diffracted beam with a glancing angle equal to can 

equally well be described as a reflection from the lattice planes (hk1). It will be 

1 

noticed that for the triangle Pyi,MT, sin 8 = oe ~ fulfilling the Bragg 
1 

A 

condition. This geometrical construction is known as the Ewald construction. 

If a single crystal is rotated about an axis which is perpendicular both to 

the primary beam and to a selected plane of the reciprocal lattice, then the 

reciprocal lattice itself rotates about an axis through Po. During this 

rotation, other points of the reciprocal lattice will pass through the surface of 

the sphere of reflection, and the corresponding lattice planes will come into 

the diffracting position. These relationships are the basis of rotating crystal 

methods. 

The precession method of M. Buerger produces an undistorted represen- 

tation of the reciprocal lattice. In this technique, an axis of the crystal 

precesses about the primary beam. The resulting picture is of the reciprocal 
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Fig. 12.12. Precession photograph of /-eucryptite, LiAlSiO, (space group P6422): a*b*- 

plane (Photograph A. Breit) 

lattice plane perpendicular to this axis. A precession photograph of f-eucryp- 

tite, LiAlSiO, (space group P6422) is shown in Fig. 12.12. It represents the 

a*b*-plane. The reciprocal lattice of a hexagonal lattice is itself hexagonal, as 

is shown in Fig. 12.13 which should be compared with Fig. 12.12. 

12.4 Laue Groups 

In general, the intensity of an X-ray beam diffracted from one side of a set of 

lattice planes is equal to that diffracted from the other. A diffraction pattern is 

thus centrosymmetrit. It follows that instead of 32 point groups only the 11 
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which contain an inversion centre can characterise a diffraction pattern. 

These 11 point groups are known as Laue groups (cf. Table 8.10). 

As an example, the Laue groups of the tetragonal system will be explained. 

An inversion centre is added to each point group: 

Laue group 4/m 

4+1—4/m (Symmetry rule 1) / 

4+1—>4/m_ (cf. Fig. 5.13) The operation of an inversion centre on the 4 
array in (a) results in the 4/m array in (b). 

Laue group 4/m 2/m 2/m (4/mmm) 

422 +1—4/m 2/m 2/m (Symmetry rule 1) 

4mm +1—>4/m 2/m 2/m (Symmetry rule 1) 
42m +1—4/m 2/m 2/m (4+1=4/m as above and symmetry rule 1). 

Consideration of the first Symmetry rule together with the relationships 

3+1=3 and 6+1=6/m will allow the Laue groups of the other crystal 
systems to be derived from each point group (cf. Table 8.10). 

12.5 The Determination of a Crystal Structure 

Powder diffraction patterns allow the determination only of relatively simple 

structures. Techniques have been developed which make use of measure- 

ments of the intensities of the reflections of sets of lattice planes from single 

crystals. Study of relationships among intensities and “systematic absences” 

in the diffraction pattern can lead to the determination of the space group. 

Measurement of the density of the crystals gives Z (cf. Sect. 12.2), the number 

of formula units in the unit cell. The intensity of the individual reflections 
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depends on the extent to which the sets of lattice planes are occupied by 

atoms. Since different sets of lattice planes will vary greatly in both the 

number of atoms occupying them and the “heaviness” (in terms of electrons) 

of those atoms, the intensities of a very large number of reflections can allow 

the determination of the arrangement of atoms in the unit cell. 

For simple crystal structures, it is possible to make useful structural 

conclusions from only a small amount of data. 

Exercise 12.1. Draw the (100)- and the (001)-lattice planes of the rutile structure (cf. Fig. 9.18 

and Table 9.5). Using the introduction in Section 12.3, construct the a*c*- and the a*b*- 

planes of the reciprocal lattice. 

Exercise 12.2. For the crystal structure of thallium, the lattice parameters are 

ap = bo = Co = 3.88 A, a= =y =90°, and the density is 11.85gcm *. Determine the crystal 

structure, and draw it, projected on x,y, 0. 

Exercise 12.3. An AX-structure has been determined to have the space group Fm3m with 

Z=4. Describe the structure. 

Exercise 12.4. A crystal being studied gives the following data: 

1. Lattice parameters: ay =4.59, cp =2.96 A. 

2. Space group P4,/mnm (cf. Fig. 9.17). 

3. Chemical formula TiO. 

4. Density =4.26gcm 3. 

The ionic radii Ti** =0.64 A and 02 =1.32A may be taken from Table 11.3. 

a) Determine the value of Z. 

b) Select those sites (positions) which are formally possible for Ti and O. 
c) Making use of the ionic radii of Ti*’ and O? , propose a crystal structure for this 

compound. 
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13 Crystal Defects 

A crystal with a volume of 1cm? will contain about 10” atoms. Lattice 
theory requires in principle that all of these atoms occupy a regular lattice. 

The array of atoms must conform to one of the 230 space groups. The 

equivalent points of a position of a space group must be fully occupied by 

atoms of the same type. This theoretical model is only achieved concep- 

tually, by an ideal crystal. 

The observation of a large number of crystals will show that they in fact 

have cracks and fissures, and that crystal faces are often not really flat. At 

cleavage surfaces, crystalline domains are often displaced with respect to one 

another. Inclusions occur in crystais, which may themselves be crystalline, 

liquid or gas. In practice, a real crystal deviates considerably from the ideal 

model described above. P 

All deviations from ideal crystalline behaviour are described as crystal 

defects. Many important properties of crystals derive from defects, including 

luminescence, diffusion, mechanical properties, etc. Nevertheless, the ideal 

crystal structure is the starting point for all studies of crystals. 

Individual defects make themselves apparent in many ways. They can be 

categorised in terms of their dimensionality (Table 13.1). 

Table 13.1. Types of crystal defects 

T 
13.1 Point defects 13.2 Line defects 13.3 Plane defects 

a) Substitution defects a) Edge dislocations a) Small angle 

b) Solid solutions b) Screw dislocations grain boundaries 

c) Schottky and Frenkel b) Stacking faults 

defects c) Twin boundaries 

ASS) 



13.1 Point Defects 

Point defects are concerned with atomic dislocations. 

a) Substitution Defects. Anideal crystal must consist entirely of the substance 

to which its formula refers, and this situation never occurs. As there are about 

1023 atoms in lcm? of a crystal, even a purity of 99.99999% implies the 
presence of some 10!° foreign atoms! These foreign atoms will in general be 

larger or smaller than the atoms they replace. Furthermore, the foreign atoms 

may have different bonding capacities. This can result in the propagation of 

further irregularities in the crystal which may no longer be of the point-defect 

type. 

In some cases, crystals with specific impurities are actually required. It is 

such impurities which control the electrical conductivity of many semicon- 

ductors. 

b) Solid Solutions. The statistical distribution of atoms in solid solutions (cf. 

Chap. 11.6) can also give rise to point defects. 

c) Schottky- and Frenkel Defects. Every crystal contains voids. These are 

places in a crystal where the expected atoms do not occur. If these missing 

atoms have “wandered” to a surface of the crystal, the result is called a 

Schottky defect, while if they have moved to places between other atoms 

(interstitial sites), the result is called a Frenkel defect. Both of these types are 

illustrated for an ionic crystal in Fig. 13.1. The concentration of faults in a 

crystal is in thermal equilibrium, and increases with rising temperature. The 

type of fault which occurs depends on the structure itself, its geometry and its 

bonding type. In alkali halides, Schottky defects predominate, while Frenkel 

defects predominate in silver halides. Measurement of the density of a crystal 

gives an indication of the defect type, since Schottky defects decrease the 

©) © @e One® ORO VOM Oe S OVO RS 

OC Omomeie >. @- 2) OVO® © @°6 eS) 

(SO eR EP IOVAORIC) O°) 2 O_O On ©. Ooms 

Cri@s © OF ® CHO OIG) <S) © O16 (Oe 

ey OPS) An 1) 1) b) @) “O. -@ O. @) oe 0 @°6 © 

Fig. 13.1a-c. Schottky defects (a) and Frenkel defects (c) in an ionic crystal (CJ void); (b) the 

ideal crystal = 
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density (more volume for the same mass) while Frenkel defects leave the 

volume and hence the density unchanged. 

Wuestite (NaCl-structure type) does not have the ideal stoichiometry FeO, 

because the Fe* ions in some places are replaced by Fe*’. This unbalanced 

charge results in a corresponding number of cation vacancies, giving a 

formula Fe,_,O. 

The occurrence of these faults gives rise to a number of properties. The 

defects make possible the diffusion of ions through the crystal. If a gold 

crystal and a silver crystal are pressed firmly against one another as the 

temperature is raised, Ag-atoms diffuse into the gold crystal, and Au-atoms 

into the silver, forming solid solutions (cf. Fig. 11.20). At sufficiently high 

temperatures, ionic crystals, such as NaCl, show a small electrical conduc- 

tivity. This does not result from electronic conduction, as in metals, but is 

brought about by ionic movement. Without crystal defects, this would not 

occur. 

Solid-state reactions are almost always propagated by crystal defects. The 

heating of a mixture of finely powdered ZnO and FeO; crystals to a 

temperature well under their melting points brings about a reaction yielding 

crystals of the spinel zinc ferrite, ZnFe,O,4. The rates of solid-state reactions 

are much less than those taking place in the gas or liquid phase. They do, 

however, rise with temperature as the coneentration of crystal faults and the 

rates of diffusion rise. 

13.2 Line Defects 

This type of defect forms along a line, the line of dislocation. 

a) Edge Dislocations. The upper portion of the crystal in Fig. 13.2a has been 

displaced by the vector BC (= B’C’) in the plane ABA’ B’ relative to the lower 

portion in sucha way that the line AA’ (the line of dislocation) marks the limit 

of the displacement. Figure 13.2b shows the structure of a plane normal to the 

line of dislocation AA’. The displacement vector, which amounts to a 

displacement (= BC) is known as the Burgers vector b, and is normal to the 

line of dislocation AA’. 

b) Screw Dislocations. The crystal in Fig. 13.3 contains a screw dislocation 

which arises from a displacement in the plane ABCD with the line of 

dislocation AD. In the region of the line of dislocation, the crystal does not 

consist of neatly stacked lattice planes, but of an arrangement of atoms which 

repeat through the structure in a helical manner (screw dislocation). In this 

case, the Burgers vector b is parallel to the line of dislocation. 
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rs 

J 

m3 | 
a) a b) 

Fig. 13.2a, b. Edge dislocation; pictorial (a), structural representation (b) (1 end of the line 

of dislocation) 

Fig. 13.3. Screw dislocation ([38]) 

Edge- and screw dislocations, as described here, are only limiting cases; 

intermediates also occur. Dislocations are important in the plastic defor- 

mation of metals (Chap. 11.2) (movement of dislocations). 

Screw dislocations also play an important role in crystal growth. The 

deposition of atoms on a step of the helix is always energetically favourable, 

and these steps persist during the growth of the crystal, permanently. 

Dislocations are active regions in crystal faces, and etching gives rise there 

to characteristic etch-figures (cf. Table 8.11.21). By etching, the concentration 

of dislocations per cm? can be estimated. This varies from virtually zero in the 

most perfect single crystals of germanium (semiconductor) to 10? per cm? in 

the most strongly deformed metals. 

“Whiskers”, or ultrathin, needle crystals, often form with the screw 

dislocation parallel to the needle axis. They display remarkable mechanical 

properties. For example, the breaking strength of a NaCl-whisker of 1 ~m 

diameter is as much as110kP mm ”. 
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13.3 Plane Defects 

a) Small Angle Grain Boundaries. It frequently occurs that different domains 
of a single crystal are tilted by a small angle with respect to each other. Their 
boundary faces are small angle grain boundaries, and are built up by a series 
of dislocations. A small angle grain boundary, consisting entirely of step 
dislocations, is illustrated in Fig. 13.4. The inclination angle @ which the 
crystal domains make with each other, may be calculated from the Burgers 

vector b and the separation of the displacements D, since 

pa 
D 

Sromene (eee eve ceuenyel ee ue SHOTS -%, DT mye d et 6 0B 1010 pO One STOR OC. 0.50 GOK Fig. 13.4. Small angle grain boundary formed from edge 

ec dislocations (@= inclination angle) 

(C) 

of 

b) Stacking Faults. Stacking faults are disturbances of the normal layer 

sequence in the building of a structure. They are most frequently observed in 

metals (ccp and hcp, Figs. 11.2 and 11.3) and in some layer structures (e.g. 

graphite, Fig. 11.25). Cobalt crystallises with both cubic and hexagonal 

closest packing, and it also occurs that both stacking sequences (ABCA... 

and ABA...) may alternate irregularly. Such an array is only periodic in two 

dimensions and thus does not qualify to be called a crystal. 

c) Twin Boundaries. A twin is the regular growing together of crystals of the 

same sort. The crystals lie in a symmetric relationship to one another. The 

commonest twinning symmetry elements are 2 and m. Twins can arise during 
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e Fig. 13.5. Twin with twin-plane (101) 

crystal growth (growth twins) or through mechanical stress (deformation 

twins). In Fig. 13.5, the twin element is a mirror plane parallel to (101). 

In general, because of the occurrence of small angle grain boundaries, a 

crystal may be thought of as being built up of small mosaic blocks, which are 

only slightly displaced relative to one another. Figure 13.6 shows such a 

mosaic formation, with the inclination angles grossly exaggerated. 
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14 Appendix 

14.1 Symbols for Crystallographic Items 

2), 10), € 

a}, 42; aj, a2, a3 

(a) 

aa 
| 

os 

—~ De 

\| 

2!) oo | Ps Siolay 

Crystallographic axes 

Symmetrically equivalent crystallographic axes 

Set of symmetrically equivalent crystallographic axes 

(a), 42; a), a2, a3) 

Lattice vectors of the unit cell 

Lengths of vectors 

Lengths of cell edges i 
Lattice parameters 

Interaxial angles 

Crystallographic “triples” 

key Ms 74 

uVW 

[uvw] 

(uvw) 

(hkl) 

(hkil) 

Coordinates of the vector f =xa + yb +z¢ 

Coordinates of a point in the unit cell, 0<x,y,z<1 

Coordinates of the lattice translation vector 

T=ua+vb+we 

Coordinates of a lattice point, integers and integers +5, 4, 3 

Indices of a set of parallel lattice lines. Indices of a zone axis 

or parallel crystal edges 

Indices of a set of symmetrically equivalent lattice lines or 

directions 

Miller indices: Indices of a crystal face or of a set of parallel 

lattice planes 

Bravais-Miller indices: indices of a crystal face, or of a set of 

parallel lattice planes, for the hexagonal axes aj, a2, a3,¢ 
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{hkl} Indices of a set of symmetrically equivalent crystal faces 

(crystal form) or lattice planes 

{hkil} Indices of a set of symmetrically equivalent crystal faces 

(crystal form) or lattice planes, for the hexagonal axes 

a}, a2, 43,C 

hkl Laue symbol (indices): indices of a X-ray reflection from a 

set of parallel lattice planes (hkl) 

ae, b*, c* Vectors of the unit cell in the reciprocal lattice 

|a*| =ad 
ib* |= be Lengths of vectors 

|e*| =co Parameters of the 
GPT ACE reciprocal lattice 

De =a Noe Interaxial angles 

14.2 Symmetry Elements 

a) Symmetry elements (planes) 

= 

Glide Graphical symbol 

Symmetry element component | Symbol 

|| L Plane of || Plane of 

projection projection® 

Mirror plane | 

Plane of symmetry w zi ey 

Glide plane x Ee | Sa 
with axial 2 a = = oe om = 

glide component 

oa b 2 cae | 
| 

6 ie 
SAS OE pd le 1 BRAIAT Ss Eee ttt deen 5 c 

If the z-coordinate is not 0 or 4, its value is given. 
In tetragonal and cubie systems only. os 
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Glide Graphical symbol 
Symmetry element component | Symbol 

|g| Plane of | || Plane of 

projection projection® 

Glide plane a+b — 

with diagonal 2 

glide component ee 

at+¢ 

2 
n 

b+é 

2) 

at+b+e° 

2 

| “Diamond” a+b [— 

4 s [ts glide plane 

atc b 

4 s 

bie d eo. —-m. - 

iy ae) pee Reo >:— 

at+b+é> 
4 

b) Symmetry elements (axes) 

= 

Screw Graphical 
Symmetry element Components! Symbol Sita 

Onefold rotation axis = identity - 1 

= 

Inversion centre = 5 
- 1 fe) 

Centre of symmetry 

L Plane of 

projection 
Twofold rotation axis - 2 

— 

|| Plane of 

al projection® 
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Symmetry elements (axes) (continued) 

Screw Graphical 
-$ bol Symmetry element component [5| Symbo symbol 

| Plane of 

projection 
Twofold screw axis 1 21 

are 

|| Plane of 

projection® 

Threefold rotation axis - 3 4 A A 

R Threefold rotoinversion axis - 3 A 

Le 3; % 
Threefold screw axes = 

27 3, A 
| 

Fourfold rotation axis - 4 8 

Fourfold rotoinversion axis - 4 rd 

Ly= ioe aid 4 _s 
Fourfold screw axes || 4, re | 

= 

sit 4s a 
Sixfold rotation axis - 6 SO 

Sixfold rotoinversion axis = 6 @ | 

Gia 2 
600 E 6, “ais e 

Sixfold screw axes 2co 63 & 1 

£Co 64 6 | 

C9 6; ‘ | 

c) Symmetry directions in the seven crystal systems, cf. Table 7.2. 

d) Characteristic symmetry elements in the seven crystal systems, cf. Table 8.9. 
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14.3 Calculation of Interatomic Distances and Angles 

in Crystal Structures 

Specific interatomic distances (e.g. bond lengths) and the angles between the 

corresponding vectors (bond angles) are often of great interest. 

Interatomic Distances. The distance’1 between atoms A (x,,y;,zZ;) and B 

(Xo, Y2, Z2) may be calculated by use of the following formulae: 
: 

Crystal system | 

{(4x)*ap + (Ay)?bp + (4z)*c) +24xAyagby cos y+ 
Triclinic 

+2AxAzagcey cos B +2AyAzbocy cos a}? 

Monoclinic {(Ax)*a5 + (Ay)?bp + (4z)°c, +24xAzZagcy cos B}"? 

Orthorhombic {(Ax)?aj + (Ay)?b? + (4z)?c2} 1 

| Tetragonal {((4x)? + (4y))ag + (4z)?¢5}1? 

Trigonal or hexagonal {((4x)* + (Ay)? — 4x Ay)az + (42)? }"/ 

Cubic {((4x)?+ (Ay)? + (42))a8}? 

Fig. 14.1. The triangle formed by atoms, A, B and C 

Angles. The angle o, relating the atoms A, B and C (Fig. 14.1) may be readily 

calculated by calculating the lengths of the three edges, 1), 1, and 1; of the 

triangle ABC and applying the cosine rule: 

15413 
21,1; 

COS @ = 
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14.4 Crystal Forms (Table 14.1) 

Table 14.1. The 47 crystal forms 

Triclinic, monoclinic and orthorhombic systems 

1. Pedion = 

(Monohedron) 

we) Pinacoid 

(Parallelohedron), Fig. 8.7g ye 

3. Dihedron IS 

(Sphenoid (2), Dome (m)) @) 

4. Rhombic disphenoid iv (3) 

5. Rhombic pyramid, 

Exercise 8.15(5) 

lon . Rhombic prism, 

Exercise 8.15(1) 

~ . Rhombic dipyramid, 

Exercise 8.15(9) (4) 

The tetragonal system 

8. Tetragonal pyramid, 

Fig. 8.10b, c 

\o . Tetragonal disphenoid 

10. Tetragonal prism, 

Fig. 8.7e, f 

ll. Tetragonal 

trapezohedron 

12. Ditetragonal pyramid, 

Fig. 8.10a 

Ara ea pees oe 
mt \! 

13. Tetragonal 

scalenohedron 

14. Tetragonal dipyramid, (11) 

Fig. 8.7c, d 

15. Ditetragonal prism, 
Fig. 8.7b 

16. Ditetragonal dipyramid, 
Fig. 8.7a 

1 Pedion 
2 Pinacoid Some crystal forms after Niggli [32] 
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The hexagonal (trigonal) system 

We 

18. 

19. 

20. 

2 — 

2D 

PPS) 

24. 

WS 

26. 

Dip 

28. 

DS), 

30. 

Ske 

BZ. 

Trigonal pyramid, 

Exercise 8.15(7) 

Trigonal prism, 

Exercise 8.15(3) 

Trigonal trapezohedron 

Ditrigonal pyramid 

. Rhombohedron, 

Exercise 8.15(16) 

Ditrigonal prism 

Hexagonal pyramid, 

Exercise 8.15(8) 

Trigonal dipyramid, 

Exercise 8.15(11) 

Hexagonal prism, 

Exercise 8.15(4) 

Ditrigonal scalenohedron 

Hexagonal trapezohedron 

Dihexagonal pyramid 

Ditrigonal dipyramid 

Dihexagonal prism 

Hexagonal dipyramid, 

Exercise 8.15(12) 

Dihexagonal dipyramid 

1 Pedion 

2 Pinacoid 

(28) 

(30) 
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The cubic system 

38): 

35: 

36. 

37. 

38. 

3), 

40. 

41. 

42. 

43. 

44, 

45. 

46 

47. 

Tetrahedron, 

Exercise 8.15(15) 

. Hexahedron (cube), 

Exercise 8.15(13) 

Octahedron, 

Exercise 8.15(14) 

Tetartoid (Tetrahedral 

pentagon-dodecahedron) 

Pyritohedron 

(pentagon-dodecahedron) 

Deltoid-dodecahedron 

(deltohedron) 

Tristetrahedron 

Rhomb-dodecahedron, 

Fig. 1.la 

Diploid 
(disdodecahedron) 

Trisoctahedron 

Trapezohedron 

(deltoid-icositetrahedron) 

Gyroid 

Hexatetrahedron 

(hexakistetrahedron) 

. Tetrahexahedron 

(tetrakishexahedron) 

Hexaoctahedron 

(hexakisoctahedron) 

x 

ees, 

SS (39) 

ON 
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15 Solutions to the Exercises 

The solutions to a few exercises are incomplete, as the drawings would require 

too much space. 

Chapter 1 

Ll 22.41 (the molar volume)/6.023 x 103 (the Avogadro number, Na) 
~ 37191 A}, which corresponds to a cube with an edge of 33.4 I 

1.2 0.046%. 

1.3. No glass can be a crystal, nor any crystal a glass! 

/ 
Chapter 2 é 

mee) C)) (072) 

[270] 

(c) (112). 
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2.3 

(b) [001]. 

2.4 (111), (102), (120), (11) 
[111], [107], [210], (012). 

2:5) a) B= 7=90° 

b) ap=by; a= =90° 
C) ag=bo=C; @=fP=y 

2.6 (hkl) and (hkl) belong to the same set of parallel planes; [uvw] and 
[uvw] are opposite directions. 

Chapter 3 

Sil (@) 

2292) ae) 

OF << Py OD OAl 
@) Or C)B (b) 2.37A — (c) 3.20 g/em3 

3.3. Allcombinations of 0,5, and 1 from 0,0,0, to 1,1,1. Figure 2.5 includes 
a partial solution; see also p. 83 
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a4 x: 050; Oy, 0: 0,0; 2 

xo Ose ye Ot O27, 

5G On nO, vol 0, a7, 
5 ol a Nes ales eed SO If 

SS HV5 04 eZ OLY. 7 

XV ky eee ys zZ 
Ls, 1 . l 

3.6 X,Y545 X,9,2Z,; X,954- 

Chapter 4 

4.2 (1)+(2)= Fig. 4.11 a (lower part). 

Or — (Og a 
INS 7e e 

@ ~ ie ‘\ 

\ / i / \ 
* = ‘ ~ ae ee. aa . 

4.3. (1)=Exercise 4.4 (4) (2) = Exercise 4.4 (10). 

4.4 / 



4.5 Cf. Exercise 4.4 (6) and (10). 

4.6 1. Trigonal pyramid and pedion. 

2. Tetragonal dipyramid. 

3. Hexahedron, tetragonal prism and pinacoid, rectangular box, 

orthogonal axes. 

4. Hexagonal prism and pinacoid, hexagonal axes. 

4.7 They lie in a plane, perpendicular to the zone axis. 

4.8 Cf. Fig. 6.13f (432). 

4.9 Cf. Fig. 4.10. The stereograms in Exercises 4.8 and 4.9 are geometrical- 

ly equivalent. 

(100) 

Chapter 5 

Sl) Ch pps277 and27s. 

5 ES et 
seas 

S<4 
Sheu Caclate 
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Se) Trigonal, tetragonal, hexagonal pyramid; trigonal dipyramid. 

5.4 Rhombus’, equilateral triangle, square, regular hexagon. 

Smee (odd\lasu 

D.6-2 Cie Bret 1. 

Chapter 6 

6.1 Cf. Figs. 6.6 and 5.5b. 

6.25. (1) (2) Cf. Fig. 6.6a, (6). CE Fig: 6:6, 

Et 
JES (5) Cf. Fig. 6.6d, (6) Cf. Fig. 5.5b, 

te 
(7) (8) 

(9) No symmetry except lattice translation. 

' Solids with rectangular or parallelogram cross-sections are not prisms in the crystallogra- 

phic sense as their faces are not all equivalent (cf. Chapter 8.2.1). 
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(10) 

6.3 (a) (b) 

tee (1) 2 in x, 5,0, (2) m in x, y,3, 

He OO > (3) Ein 35.033, (4) m in x, y,0, 

as Be (S)Tin3.33, (©) 2inz,y,3, 
\ ji (7) 2 in 0,4 75 Z. 
ae we 

6.4 (a) Cf. Fig. 6.9f (right) and Fig. 8.11.7 

(b) (1) 2 in x, 3,3, (2) m in x, y,, 
(3) 2 in ,5,z, (4) m in x,0,z. 

6.5. (a) cubic P, (b) monoclinic P, (c) triclinic P, (d) orthorhombic P, 

(e) tetragonal P, (f) hexagonal P. 

6.6 (a) Cf. Fig. 6.7a-6.12a, 

(b) Cf. Fig. 6.7d-6.12d, 

(c) and (d) Cf. Figs. 6.18-6.23. 

6:7) (A)(B) Cree: 

6.8 I. 

Chapter 8 

8.1a The directions parallel and antiparallel to a pola axis have distinct 

physical properties. 

8.1b (1) 1, (2) m LX, (3) 21 X [also valid for 4 and 6]. 

8.2 No. Rotoinversion implies rotation through an angle followed by 

inversion. The two ends of the axis remain equivalent. 

8.3 1, 2/m, 3, 4/m, 6/m. 
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8.4 

8.5 

8.6 

8.7 

8.8 

8.9 

8.10 

8.11 

8.12 

8.13 

6227) | 6mm 6m2 6/m 2/m 2/m 

422 4mm 42m 4/m 2/m 2/m 

32 3m 3 2/m 3 2/m 

222 mm2 mm2 2/m 2/m 2/m 

Cf. also Figs. 6.9e, f-6.12e, f. 

23 43m | 432 

2/m 3 4/m 3 2/m | 4/m 3 2/m 

Cf. also Fig. 6.13e, f. 

3my32, 3,3) 

Cf. Table 8.4. 

Ci p-139: , 

(1) 42m, (2) m, (3) 32, (4) 6mm, (5) mm2, (6) 43m. 

Cf. Figs. 6.8e, f-6.13e, f. 

(1) 6/m 2/m 2/m, (2)-(4) mm2, (5) + (6) 2/m 2/m 2/m, (7) mm2, 

(8) m, (9) 4/m 3 2/m, (10) 4mm, (11) 4/m 2/m 2/m, (12) mm2, 

(13) 3m, (14) mm2, (15) 43m, (16) 3m, (17) mm2, (18) = (16), 
(19) =(15), (20) 3m, (21) + (22) 6m2, (23) m, (24) mm2, (25) m, (26) 2, 

(27) 2, (28) 3m, (29) m, (30) + (31) 1, (32) 3 2/m, (33) mm2, (34) 2, 
(35) mm2, (36) 4/m 2/m 2/m, (37) 4mm, (38) 42m, (39) 2/m 2/m 2/m, 

(40) mm2, (41) 2/m, (42) + (43) m, (44) + (45) 2, (46)-(49) 1 

(a) Enantiomers: (26)-(27), (30)-(31), (44)-(45), (46)-(47), (48)-(49). 
(b) Polar molecules: (2)-(4), (7), (8), (10), (12), (14), (16)-(18), (20), 

(23)-(31), (33)-(35), (37), (40), (42)-(49) 

(1) Bent, (2) pyramidal, (3) Table 8.11.14, (4) Fig. 8.9. 

mm2 (0°); 2 (0°<@<180°); 

2/m (180°); 2 (180° < @ < 360°). 

Yes; mm2(+); 2/m(0). 
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8.15 

8.16 

8.17 

8.18 

8.19 

8.20 

8.21 

8.22 
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(1) 2/m 2/m 2/m, (2) 4/m 2/m 2/m, (3) 6 m2, (4) 6/m 2/m 2/m, 

(5) mm2, (6) 4mm, (7) 3m, (8) 6mm, (9) 2/m 2/m 2/m, - 

(10) 4/m 2/m 2/m, (11) 6 m2, (12) 6/m 2/m 2/m, (13) + (14) 4/m 3 2/m, 

(15) 4 3m, (16) 3 2/m. 

(3), (5), (6), (7), (8), C1), C15). 

Faces + vertices = edges + 2 (Euler). 

a) Cio Fig.8.8. P 

b) Ditetragonal dipyramid; from (hk0) arise (hkl) and (hkl) etc., or 

from (210) arise, for example, (211) and (211) etc. 

a) Cian igas.l2 a. 

b) Hexagonal dipyramid; from (hki0) arise (hkil) and (hkil) etc. or 

from (2130) arise, for example, (2131) and (2131). 

(1), (2): Table 8.4; (3), (4): Table 8.7; 

(5), (6), (7): Table 8.5; (8), (9): Table 8.6. 

001 

Ga, jin] & (aki) 

(hhi, || = |1|) 
if 

Gato, (pall S {pahl|)) 

100 

(Part.of Fig: $15) 

The pole (113) corresponds to the crystal form trapezohedron or 

deltoid icositetrahedron {311} or {hkk}. (311) lies in the asymmetric 

face unit. 

6m2: (m..); ditrigonal prism {hki0}: hexagonal prism {1120} 

3 2/m: (.m.);rhombohedron {h0hl}: hexagonal prism {1010} 
6mm: (.m.); hexagonal pyramid {hOhl}: hexagonal prism {1010} 

(..m; hexagonal pyramid {hh2hl}: hexagonal prism {1120} 
3m:  (.m.), trigonal pyramid {hOhl}: trigonal prism {1010}. 



Chapter 9 

9.1 

9.2 

a5 

(1) (4) 
ee ene 2 ry = 

tea es 

ape Pte heey 1 ] 
i es See 

4 

(2) 65) / 

o-2 

o-|e|-> @-'-@-'|_@ 

(@) %y.1 =z, (0) X 3952, (Cara yn5—Z,- (d) 52x54 YZ, 
Cay Zoe Ss octane Zt (8) ah Ka As 2, 
(Dye Vers (54,952 G1 %, 9,37 2,k) kia yy3 2, 
OLS eA Ss RSs ab ocom (Oe. S55 228 

KE Wo 4 aiaeZe 

The difference between the operation of a glide plane and a 2, is only 

evident when a “fully asymmetric point” is considered. An example is 

the asymmetric pyramid in the following figure. 
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C 2/m 2/m 2/m 

9.6 
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9.7 °o ° ° 

° ° ‘oun (2) 

(i) (2) xyyez7 sy. Z,-G) 2, G) PL) GC) on all’ I, One-fold: 

F 

Paks 
fee eee ce ce ee ee 

I 
| 
| 
| 
| 
| 
| 
| 
| 
| 

== (1) 

(b) (@)X,y,Z; %, 9.25 3+%,5—-Y,255+,2+YZ, (3) 4, (4) Cm, 
(5) on m, 2-fold. ‘ 

(c) (2) x, Y,2334+%,5-Y.253-% 3+ Y, ZX, ¥, z, (3) 4, (4) Poa2, 
(5) on 2, 2-fold. 

? Coordinates are given as in International Tables [18] [17] [14], i.e. instead of 1—x, 1—y, 

1—z is written x, Y, Z. 
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(d) 

(f) 

286 

ey oy i Seimen (1) 

(2) X,Y, 25 X,5—Y,3+ Z3 %3+y,5+Z; X, y, Z, (3) 4. (4) Pnc2 

(Syon 2. 2told: 

Cooter 
bpeccreeeeds Qsucecsccces: a ae 

Or lO; 

‘ena #25 

1 ey Rail 1 , l Teas 
CDOS ESS SWE Sing A= a Nig HIE 

| 

SEX, 5+Y,3+Z; 5 +X, Von + Zs Xyo3+Y, Zs X,Y, Z- (3) 8, (4) Ibm, 
(5) on 2, 4-fold. 

St 
| 4 

or mc Gana ea 
po y ia 

io™ EOril 
Ee ae hemes 

at ) Somes 
o> | Oo | 

| | | a 
(QV, Bo hog 23 hag 7s ky 2 ee 

3 +X, V5.7 Z; %, 9,2, (6)8, 4) P2/m 2/n2)/a, (6) on mand 2-4-toles 
on 1, 2-fold. 



(g) 

9.8 a) 

b) 

——— — —y - 

NOR 7) | cs 
Ib>: of | 4 

Smet 
2% N | 

I sel 1 4 
rX,9 Y,Z; > Xo Yo 25 

= | , =, jl 
(2) Bee X, ee oR an 2s YX 

| 1 1 

Z 2 »27 Rie 

= 

aS, 

a 4 Ni— e3 one 27 Y, 

ho Wo Za Ss Wot 28 WS Z+5;X+Y,K, 2455 

¥,X—-Y,Z+33 y,X+y,Z+5 
2 in 3,0, 23 3,3,Z; 0,4, 25-32 im §,4, Z; 559,Z 

S57? 

KWVZ0X Yo 2; & sk 2 XV, Ry aos 
K,y,Z+3; y,X+y,z+3 ; 

21 in 4, 0,2; 4,45,22 0,4,2Z; 3 in 4,4, 2; 47952 

By 

8, (4) P4,bc, (5) on 2, 4-fold. 
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X,X,xO 
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(2) 

xi (es) (=) 

oO 

0,0,x 

x,0,0 

OQ 

Ox x 

0,x,0 

b) 

c) 

24 

.3m 

4m.m 



9.10 P2,/c (Fig. 9.9a), Pna2, (Fig. 9.12), Pmna (Exercise 9.6f). 

~ van LS 
P422 

9.11 This is absurd: an a-glide plane cannot be normal to the a-axis ... 

9.9 Coordinates are not given for those points which are reflected by m to 

locations below the plane x, y,0. The third coordinate of each triple 

must be taken to have both a plus and a minus sign. 
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Chapter 10 

10.1 PI: 

=6 -O 
e 

O+ 

-O 
e @ 

Or 

Pm: 

e 

Oo re) +O 

@ 

+O Or +O 

P 2/m: 

fe) O -O 
e 

+O Oo +O 

Oo O -O 
2 = 

+O Or +O 

P27 2) me2/ mi: 

+O- [Or oe 

@ 

+O- Or +O- 

+O- O+ +O 
e 

+O- Or +O- 

290 

@z 

+O- 

(a) AB», (b) Z=1, (c) linear, 

=0 (d) co/mm, (e) 1. 

(a) AB», (6) Z=1, 
(c) bent, (d) mm2, (e) m. 

(a) AB,, (b) Z=1, (c) planar 

[4]-coordination 

(rectangular), 

(d) 2/m 2/m 2/m, (e) 2/m. 

(a) ABs, (b) Z=1, 
(c) [8]-coordination 

(rectangular parallelepiped), 

(d) and (e) 2/m 2/m 2/m. 



Chapter 11 

11.1 Cf. Table 11.1d and h. 

ee) cuba ea RowOnOs0 

(b) cub. I; W: 0,0,0 

(c) hex. P; Mg: 0,0, 0; 3,4, 3 

(d) cub. F; Cu: 0,.0,.0 

(e) 63 in $,3,z; 6 in 0,0,z 

11.3. (a) 1.675A, (b) 1.37A, (c) 1.605 A, (d) 1.28 A. 

11.4 1.63. 

11.5 (a) 0.52, (b) 0.68, (c) 0.74, (d) 0.74. 

11.6 (a) Cf. Fig. 11.14 

‘ / 
(b) 1.546 A, (c) 8, (d) each C is tetrahedrally coordinated by 4C. 

(e) The two structures have the same geometry. 

1 (avers lida 

(b) 1.42 A, (c) 4, (d) 3.35 A, (d) @p = 3.50 g/em?; 
0G =2.27 s/cm°. 

11.8 Li*: 0.76 A; Cl: 1.81 A; 0.79 

JS) 



_—" — ‘© 

NaCl 

se 
LiCl 

ore 
RbF 

11.10 

a 
1.95 A (distances indicated by thick lines), 1.97 A (distances indicated 

by thin lines), cf. Fig. 9.18. 

2o2 



11.11 

@ | Oe } G)3 

The 3 are orientated parallel to (111). S c 
e 

(3) 4, (4) Fe—S: 2.27 A; S—S: 2.06 A. 

11.12 

O ts 

t Qa 

Ow 

(1) 

(2) HgNH,Ch, Z=1, (3) Hg"! (octahedron), NH!*! (cube), 
(4) Hg—Cl: 2.38 A; 2.96 A, NHy,-Cl: 3.36A. 
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11.13 

(2) 4, (3) S is tetrahedrally coordinated by 40. 

Chapter 12 

294 



12.2— Z=2, W-type (Fig. 11.5). 

12.3 NaCl-structure. 

12.4 (a) Z~2, (b) Ti: (a) and (b), O: (c)-(g), (c) cf. Fig. 9.18. 

/ 
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Rotoreflection 57 

- axis 57,59 

Rutile 151, 200, 209, 222, 228, 232 

Schénflies symbol 115, 116, 141-143, 190 | 

Schottky-defect 260 
Screw axis 57, 177, 181-185 

—- component 181 

- dislocation 261 

— rotation 57, 177, 181 

Single crystal 31 

SiO, 229-231 
Site symmetry 190-194, 199 

Sixfold rotation axis 53 

Small angle grain boundaries 263 

Solid solution 233, 234, 260 | 
Short symbol 115 

Space group 84, 97, 111, 177, 183, 186, 

188, 200, 257 
Space groups 

Pl 69, 84, 205, 285 
P2 187 
Pose 
(Si 
Pm 187 
Lee Lsi7/ 
Cm_ 187, 206, 285 
Comal si 

P2/m 70, 84, 186, 193, 194 
P2,;/m 186 
C2/m 186 
P2/c 186 
P2,/c 186 
C2/c 186 
Pmm2 191, 192 

Pne2 206, 286 



Pba2 206, 285 
Pna2,; 192 

Ibm2 206, 286 
P2/m 2/m2/m_ 72, 85, 86 
P2/m 2/n 2;/a 207, 286 
P2,/b2;/c2;/fa 289 
C2/m 2/m2/m 284 
12/m 2/m 2/m 284 
P4/m 2/m2/m_ 74, 87, 88 
P4,/m2,/n2/m 198, 199 
P4,be 207, 287 
P422 289 
P32/m 76 
P6/m 2/m2/m_ 78, 87 

P6, 195 
P4/m32/m 80, 89, 91, 195-197, 288 
P2,/a3 243, 293 

Space lattice 8,9 
Special form 118, 210 

- plane lattice 64-68 
- position 192, 210 

Sphalerite 155 

Sphalerite-structure 

Sphenoid 135, 270 
Sphere of the reflection 255 

Spinel structure 223 

Stacking faults 263 

Statistically homogeneous 4, 6 

Steno 31 

Stereographic projection 32 
Struvite 149 

Substitution defect 260 
Superstructure 234 

Symmetry 48, 81 

- direction 84-91, 96, 110, 141-143, 210 

— element 48-59, 210, 266 
— operation 48-50, 53, 55-57 

- principle 212 

S55 2295235 

Tabular 28 

Tartaric acid 

Tetragonal 

144, 147 

Wes, 2 IAD, XS, D7) 

- dipyramid 120, 126, 127, 173 

— disphenoid 126, 127, 270 

— prism 120, 126, 172 

— pyramide 124, 126, 127, 172 

— scalenohedron 126, 270 

— trapezohedron 126, 270 

Tetrahedral coordination 227 

— holes 216 

— pentagon-dodecahedron 132, 272 

Tetrahedron 132, 173 

Tetrahexahedron 132,272 

Tetrakishexahedron 132, 272 

Tetartoid 132, 272 

Thermal conductivity 220 

Threefold rotation axis 52 

TiO, 151, 200, 232 

Topaz 37-40 

Tourmaline 152 

Transformation in secondary 

coordination 237 

Transformation involving changes in type 

of bonding 240 

Transformation of first coordination 236 

Trapezohedron 132, 272 

Triclinic 69, 82 

Tridymite 239 

Trigonal 76, 128-130 

— dipyramid 128, 129, 173 

= prism 128, 129, 172 

- pyramid 129, 172 

— trapezohedron 129, 271 

Trisoctahedron 132, 272 

Tristetrahedron 132, 272 

Tungsten , 219, 248 

Twin boundaries 263 

Twofold rotation axis 50 

Unit cell 9 

Unit mesh 9, 68 

uvw 10 

[uvw] 11, 23, 265 

(uvw) 87, 265 

Van der Waals bonding 212 

Vitamin By 2, 221 

W-type 218, 219 

Whisker 262 

Wulfenite 149 

Wulff net 35 

Wurtzite-structure 229 

Wyckoff 200 

X-ray 7 

Y-ray diffraction 245 

oy A), AOS 

TANS NSS), 22S), 28) 
Zonal equation 15 

LOne 2 oe, 

303 
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Crystallography 

: As aself-study guide, course primer or teach- 
ing aid, Borchardt-Ott’s Crystallography is 

myisl-a ol-lat-reim(-> 41 Lote) are) ms illel-Walitelatekicveleal-es 
alike. In fact, it can be used by chemists, 
mineralogists, physicists and geologists. 
Based on the author’s more than 20 years of 
teaching experience, the book has numer- 
oLU-aITal-nelcenwalave xe l=\tlelal-teR-1 el-Yello] | harela ate 
ame] komen Cel ge[-MalUlnn| ol mol m=} (Ine X-ee Wa 
solutions — at the end of each chapter. 

MNa-McolOlaam-tellitelamenmint-xelale|fatel a @t-lanstoln 
yam slolMol-t lam igelar(olicte lain alate am iolarela 
Malclaatehikeyavel Macxelei-te-1al] om 
The heart of the book is firmly fixed in geo- 

metrical crystallography. It is from the con- 
cept of the space lattice that symmetry opera- 
tions, Bravais lattices, space groups and 
eXeliaime] cel] oKelg-Me] | me [-NZ-1 fel oX-Xo MNNACol (tell fol 
symmetry and crystal forms are treated. 
WANS Cela Tha) LiKe tIcICM ol elel-to Rola at-Metolga-t sfolae 
dence between point groups and space 
groups. The sections on crystal chemistry and 
Size hel tainelouitolakole-Mfali-Vatel-veRoksnelaiislineteltler 
tion to these fields. 


