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Preface to the Second English Edition 

This second English edition has been required only IV2 years 
after the first; it appears shortly before the fifth German 
edition, of which it is a translation. A major change is the 
expansion and revision of Chapter 4 by new exercises on the 
use of the stereographic, orthographic and gnonomic projec¬ 
tions, and on indexing. Dr. R. O. Gould has again under¬ 
taken the translation and has made a thorough revision of the 
text of the first edition. I am very grateful to him for his 
efforts. I should also like to thank Dr. Wolfgang Engel of 
Springer Verlag, Heidelberg, very much for his encourage¬ 
ment and his help during a collaboration of more than a 
decade. 

Munster, Summer 1995 W. Borchardt-Ott 
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Preface to the First English Edition 

This book is based on the lectures which I have now been 
giving for more than 20 years to chemists and other scientists 

at the Westfalische Wilhelms-Universitat, Munster. It is a 
translation of the fourth German edition, which will also be 
appearing in 1993. 

It has been my intention to introduce the crystallographic 

approach in a book which is elementary and easy to 
understand, and I have thus avoided lengthy mathematical 

treatments. As will be clear from the contents, topics in 
crystallography have been covered selectively. For example, 

crystal structure analysis, crystal physics and crystal optics 
are only touched on, as they do not fit easily into the scheme 
of the book. 

The heart of the book is firmly fixed in geometrical 
crystallography. It is from the concept of the space lattice that 

symmetry operations, Bravais lattices, space groups and 

point groups are all developed. The symmetry of molecules is 
described, including the resulting non-crystallographic point 
groups. The treatment of crystal morphology has been 
brought into line with the approach used by International 

Tables for Crystallography. The relationship between point 
groups and physical properties is indicated. Examples of 

space groups in all crystal systems are treated. Much 

emphasis is placed on the correspondence between point 
groups and space groups. The section on crystal chemistry 
will serve as an introduction to the field. Of the various 

methods of investigation using X-rays, the powder method is 
described, and an account is given of the reciprocal lattice. At 

the end of each chapter are included a large number of 
exercises, and solutions are given for all of them. 

The first stimulus to have this book translated was given 

by Professor P. E. Fielding of the University of New England 
in Armidale (Australia). The translation was undertaken by 

Dr. R. O. Gould of the University of Edinburgh. I thank Dr. 

Gould for his enthusiasm and for the trouble he has taken 
over the translation. It was particularly beneficial that we 

were able to consider the text together thoroughly. 



X Preface to the First English Edition 

Professor E. Koch and Professor W. Fischer, both of the 

University of Marburg, have discussed each edition of this 
book with me, and their criticism has been invaluable. I wish 

to record my thanks to them also. 

Munster, Autumn 1993 W. Borchardt-Ott 
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Introduction 

At the heart of crystallography lies an object - the crystal. Crystallography is 

concerned with the laws governing the crystalline state of solid materials, with 

the arrangement of atoms in crystals, and with their physical and chemical 
properties, their synthesis and their growth. 

Crystals play a role in many subjects, among them mineralogy, inorganic, 

organic and physical chemistry, physics, metallurgy, materials science, geology, 

geophysics, biology and medicine. This pervasiveness is perhaps better 
understood when it is realised how widespread crystals are: virtually all 

naturally occuring solids, i.e. minerals, are crystalline, including the raw 
materials for chemistry, e.g. the ores. A mountain crag normally is made up of 

crystals of different kinds, while an iceberg is made up of many small ice 

crystals. Virtually all solid inorganic chemicals are crystalline, and many solid 
organic compounds are made up of crystals, among them benzene, naphtha¬ 

lene, polysaccharides, proteins, vitamins, rubber and nylon. Metals and alloys, 
ceramics and building materials are all made up of crystals. The inorganic part 

of teeth and bones is crystalline. Hardening of the arteries and arthritis in 
humans and animals can be traced to crystal formation. Even many viruses are 

crystalline. 
This enumeration could be continued endlessly, but it is already obvious that 

practically any material that can be regarded as solid is crystalline. 
In many countries, especially in Germany, crystallography is mainly taught 

as a part of mineralogy, while elsewhere, notably in Britain and North America, 
it is more often taught as a part of physics or chemistry. In any case, 

“crystallographers” may be from a wide variety of scientific backgrounds. Most 
countries have a National Crystallographic Committee representing the 

International Union of Crystallography, the body which publishes Acta 

Crystallographica and International Tables for Crystallography. 



. 



1 The Crystalline State 

The outward appearance of a crystal is exceptionally variable, but all the 

variations which occur can be explained in terms of a single fundamental 
principle. To grasp this, we must first come to terms with the nature of the 

crystalline state. The following are a few properties that are characteristic of 
crystals: 

a) Many crystals not only have smooth faces, but, given ideal growth 

conditions, have regular geometric shapes (see Figs. 1.1-1.4). 

b) If some crystals (e.g. NaCl) are split, the resulting fragments have similar 

shapes with smooth faces - in the case of NaCl, small cubes. This phenomenon 
is known as cleavage, and is typical only of crystals. 

Fig. 1.1 a, b. A garnet crystal with the shape of a rhomb-dodecahedron (a) and a crystal of 
vitamin B12 (b) 

bright yellow 

Fig. 1.2. Pleochroism as shown by a 
crystal of cordierite bright yellow 
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A 

\ 
/ 

Fig. 1.3. A crystal of kyanite, with a scratch illustrating the 
anisotropy of its hardness 

c) Figure 1.2 shows a corderite crystal and the colours that an observer would 
see when the crystal is viewed from the given directions. The colours that 
appear depend on the optical absorption of the crystal in that particular 

direction. For example, if it absorbs all spectral colours from white light except 
blue, the crystal will appear blue to the observer. When, as in this case, the 

absorption differs in the three directions, the crystal is said to exhibit 
pleochroism. 

d) When a crystal of kyanite (Al20Si04) is scratched parallel to its length by 
a steel needle, a deep indentation will be made in it, while a scratch 

perpendicular to the crystal length will leave no mark (see Fig. 1.3). The 
hardness of this crystal is thus different in the two directions. 

e) If one face of a gypsum crystal is covered with a thin layer of wax and a 

heated metal tip is then applied to that face, the melting front in the wax layer 
will be ellipsoidal rather than circular (Fig. 1.4), showing that the thermal 

conductivity is greater in direction III than in direction I. Such behaviour - 
different values of a physical property in different directions - is called anisotropy, 
(see also Fig. 1.5 c). If the melting front had been circular, as it is, for example, on 

IC 

Fig. 1.4. A crystal of gypsum covered with wax showing the 
melting front. The ellipse is an isotherm, and shows the 
anisotropy of the thermal conductivity 
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Fig. 1.5 a-c. Schematic representation of the states of matter, a gas, b liquid, c crystal 
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a piece of glass, it would imply that the thermal conductivity is the same in all 
directions. Such behaviour - the same value of a physical property in all directions 

- is called isotropy, (see the right hand side of Fig. 1.5). 

Anisotropy of physical properties is normal for crystals. It is, however, not 

universal, as there are some crystals whose properties are isotropic. The origin 
of all of the phenomena listed under (a) to (e) lies in the internal structure of 
crystals. In order to understand this better, let us now consider the various states 

of aggregation of matter. 
All matter, be it gas, liquid or crystal, is composed of atoms, ions or 

molecules. Matter is thus discontinuous. Since, however, the size of the atoms, 

ions and molecules lies in the A region (1A = 10 cm = 0.1 nm) matter appears 
to us to be continuous. The states of matter may be distinguished in terms of their 
tendency to retain a characteristic volume and shape. A gas adopts both the 
volume and the shape of its container, a liquid has constant volume, but adopts 
the shape of its container, while a crystal retains both its shape and its volume, 
independent of its container (see Fig. 1.5). 

GASES. Figure 1.5a illustrates the arrangement of molecules in a gas at a 

particular instant in time. The molecules move rapidly through space, and thus 
have a high kinetic energy. The attractive forces between molecules are 
comparatively weak, and the corresponding energy of attraction is negligible in 
comparison to the kinetic energy. 

What can be said about the distribution of the molecules at that particular 
instant? There is certainly no accumulation of molecules in particular locations; 
there is, in fact, a random distribution. A. Johnsen [21] has illustrated this by a 

simple analogy (Fig. 1.6 a): we scatter 128 lentils over the 64 squares of a 

chessboard, and observe that in this particular case some squares will have no 
lentils, some 1, 2, or even 3 - but on average 2. If, instead of single squares we 

considered blocks of four squares, the number of lentils in the area chosen 
would fall between 7 and 9, while any similar block of 16 squares would have 
exactly 32 lentils. Thus, two distinct areas of the same size will tend to contain 

the same number of lentils, and this tendency will increase as the areas 

8 • ' • • ' • • ! • • • *• .* 
7 • •• • • • • • • • ; • • • • 
8 • .* • :• • 1 • 

• •• 
• m 
• 

5 * ; • 
:• 

• • 
• , • :• . 

4 • • • • • • :• • • 
3 • • . • •. • 

• • 
• • • 
• • •• • 

2 t • • . • 
• • 
•• • • •• •. • .*! • 

1 • \ 
• • 
• • 

) a b c d e f g h b) abcdef & h 

Fig. 1.6a,b. Statistical (a) and periodic (b) homogeneity. Johnsen [21] 
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considered become larger. This kind of distribution is considered to be 
statistically homogeneous, r.e. it shows the same behaviour in parallel 

directions, and it may easily be seen that the physical properties of the 

distribution are isotropic, i.e. are equal in all directions. 

LIQUIDS. As the temperature of a gas is lowered, the kinetic energies of the 

molecules decrease. When the boiling point is reached, the total kinetic energy 

will be equal to the energy of attraction among the molecules. Further cooling 

thus converts the gas into a liquid. The attractive forces cause the molecules to 

“touch” one another. They do not, however, maintain fixed positions, and 
Fig. 1.5b shows only one of many possible arrangements. The molecules change 

position continuously. Small regions of order may indeed be found (local 

ordering), but if a large enough volume is considered, it will also be seen that 
liquids give a statistically homogeneous arrangement of molecules, and 

therefore also have isotropic physical properties. 

CRYSTALS. When the temperature falls below the freezing point, the kinetic 

energy becomes so small that the molecules become permanently attached to 
one another. A three-dimensional framework of attractive interactions forms 

among the molecules and the array becomes solid - it crystallises. Figure 1.5c 

shows one possible plane of such a crystal. The movement of molecules in the 
crystal now consists only of vibrations about a central position. A result of these 
permanent interactions is that the molecules have become regularly ordered. 

The distribution of molecules is no longer statistical, but is periodically 
homogeneous; a periodic distribution in three dimensions has been formed (see 

also Fig. 2.1a). 
How can this situation be demonstrated using the chessboard model? 

(Fig. 1.6b). On each square, there are now precisely two lentils, periodically 
arranged with respect to one another. The ordering of the lentils parallel to the 

edges and that along the diagonals are clearly different, and therefore the 
physical properties in these directions will no longer be the same, but 
distinguishable - in other words, the crystal has acquired anisotropic proper¬ 

ties. This anisotropy is characteristic of the crystalline state. 

Definition 

A crystal is an anisotropic, homogeneous body consisting of a three-dimen¬ 

sional periodic ordering of atoms, ions or molecules. 

All matter tends to crystallise, if the temperature is sufficiently low, since the 

ordered crystalline phase is the state of lowest energy. There exist, however, 

materials, such as glass, which never reach this condition. Molten glass is very 

viscous, and the atoms of which it is made cannot come into a three-dimensional 
periodic order rapidly enough as the mass cools. Glasses thus have a higher 

energy content than the corresponding crystals and can best be considered 

as a frozen, viscous liquid. They are amorphous or ‘ form-less bodies.' Such 
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Fig. 1.7. Heating curves for a crystal (-) and 

a glass (-), Tm is the melting point of the 

crystal 

materials do not produce flat faces or polyhedra since an underlying order is 

missing. 
How then is it possible to distinguish amorphous material from crystals? 

One possibility is to examine the melting behaviour. As is illustrated in Fig. 1.7, 

a crystal has a sharp melting point Tm, while amorphous bodies have a region of 
softening. Another possibility derives from their different properties relative to 
an incident X-ray beam. The three-dimensional ordering of the atoms in 

crystals gives rise to sharp interference phenomena, as is further examined in 
Chapter 12. Amorphous bodies, as they do not have underlying order, produce 
no such effect. 

EXERCISES 

Exercise 1.1. Determine the volume of a gas associated with each molecule at normal 
temperature and pressure. 

Exercise 1.2. Determine the packing efficiency of Ne gas (RNe = 1.60A) under normal 

conditions. The packing efficiency is the ratio of the volume of a neon atom to the 

volume calculated in example 1.1. For comparison, a copper crystal has a packing 
efficiency of 74%. 

Exercise 1.3. Discuss the use of the term “crystal glass”!. 



2 The Lattice and Its Properties 

A three-dimensional periodic arrangement of atoms, ions or molecules is 
always present in all crystals. This is particularly obvious for the a-polonium 
crystal illustrated in Fig. 2.1a. If each atom is represented simply by its centre of 
gravity, what remains is a point or space lattice (Fig. 2.1b). 

A point or space lattice is a three-dimensional periodic arrangement of 
points, and it is a pure mathematical concept. The concept of a lattice will now 
be developed from a lattice point via the line lattice and the plane lattice, finally 
to the space lattice. 

Fig. 2.1a, b. Three-dimensional periodic arrangement of the atoms in a crystal of a-polonium 
(a) and the space lattice of the crystal (b) 

2.1 Line Lattice 

In Fig. 2.2, we may consider moving from the point 0 along the vector a to the 
point 1. By a similar movement of 2a, we will reach point 2, etc. By this 
movement, one point is brought into coincidence with another, and a repetition 
operation takes place. By means of this operation, called a lattice translation, a 
line lattice has been generated. All points which may be brought into 
coincidence with one another by a lattice translation are called identical points 
or points equivalent by translation. |a| =a0 is called the lattice parameter, and 
this constant alone completely defines the one-dimensional lattice. 
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•3 

• i 

Fig. 2.2 Fig. 2.3 

Fig. 2.2. Line lattice with its lattice parameter |a| =a0 

Fig. 2.3. Plane lattice with the unit mesh defined by the vectors a and b 

2.2 Plane Lattice 

If a lattice translation b (b if a) is then allowed to operate on the line lattice in 
Fig. 2.2, the result is the plane lattice or plane net (Fig. 2.3). The vectors a and b 

define a unit mesh. The entire plane lattice may now be constructed from the 

knowledge of three lattice parameters, |a| =a0, |b| =b0 and y, the included 
angle. If any point is moved by any arbitrary lattice translation, it will come into 
coincidence with another point. A plane lattice thus has lattice translations not 

only parallel to a and b, but also to any number of combinations of them, i.e. an 
infinite number of lattice translations. 

2.3 Space Lattice 

If yet another lattice translation c is now introduced in a direction not coplanar 
with a and b, its action on the plane lattice in Fig. 2.3 generates the space lattice 

shown in Fig. 2.4. This space lattice can also be produced solely by the 

operations of three dimensional lattice translations. In contrast to a finite 
crystal, a space lattice is infinite. 



2.4 The Designation of Points, Lines and Planes in a Space Lattice 

According to the arrangement of the vectors a, b and c, we may introduce an 

axial system with the crystallographic axes a, b and c. The vectors a, b and c and 

their respective crystallographic axes a, b and c are chosen to be right-handed. 

That is, if the right thumb points in the direction of a (a) and the index finger is 

along b (b), the middle finger will point in the direction of c (c). A lattice, or a 

crystal described by it, may always be positioned so that a (a) points toward the 

observer, b (b) toward the right, and c (c) upwards, as is done in Fig. 2.4. 
The vectors a, b and c define a unit cell, which may alternatively be described 

by six lattice parameters: 

length of lattice translation vectors interaxial lattice angles 

| a | = a0 aAb = y 
|b|=b0 a a c = /? 

|c | =c0 b a c = a 

Further application of lattice translations to the unit cell will produce the 

entire space lattice. The unit cell thus completely defines the entire lattice. 
Every unit cell has eight vertices and six faces. At all vertices there is an 

identical point. Can all of these points be considered part of the unit cell? The 
lattice point D in Fig. 2.4 is not only part of the marked-out unit cell, but part of 

all eight cells which meet at that point. In other words, only one eighth of it may 
be attributed to the marked unit cell, and since 8 x | = 1, the unit cell contains 

only one lattice point. Such unit cells are called simple or primitive, and are 

given the symbol P. 

2.4 The Designation of Points, Lines and Planes in a Space Lattice 

2.4.1 The Lattice Point uvw 

Every lattice point is uniquely defined with respect to the origin of the lattice by 

the vector ? = ua+vb + wc. The lengths of a, b and c are simply the lattice 
parameters, so only the coordinates u, v and w require to be specified. They are 

written as a “triple” uvw. In Fig. 2.5, the vector f describes the point 231 (which 
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a 

Fig. 2.6. Designation of lattice 

lines using the coordinates 

[uvw] (in square brackets) that 

define the vector from the 

origin to the given point 

x = ua + vb + wc (I: [231], II: 

[112]) 

is read as two-three-one). The coordinates u, v and w normally are integers, but 

can also have values of integers + [; j or f, as is further explained in Chapter 6.4. 
When they have integral values, the points uvw are the coordinates of the 

points of a P-lattice. The coordinates of the vertices of a unit cell are given in 

Fig. 2.5. 

2.4.2 Lattice Lines [uvw] 

A line may be specified mathematically in any coordinate system by two points. 

The lattice line I in Fig. 2.6 contains the points 000 and 231. Since the lattice line 
passes through the origin, the other poinison it$ describes the direction of 

the line in the lattice, and the coordinates of this point thus define the line. For 
this purpose, they are placed in square brackets [231], or in general [uvw], to 
show that they represent the direction of a line. 

The lattice line II' passes through the points 100 and 212. Line II is parallel to 
this line, and passes through the origin as well as the point 112 and consequently 
both lines may be referred to by the symbol [112], 

Note that the triple [uvw] describes not only a lattice line through the origin and 
the point uvw, but the infinite set of lattice lines which are parallel to it and have 
the same lattice parameter. 

Figure 2.7 shows parallel sets of lattice lines [110], [120] and [310]. The 
repeat distance along the lines increases with u, v, w. 

Figure 2.8 shows a projection of a space lattice along c onto the a,b-plane. 

The lattice line A intersects the points with coordinates 000, 210, 420 and 2l0. 

Note that minus signs are placed above the numbers to which they apply - this 

applies to all crystallographic triples. Each point on the line has different values 

uvw, but the ratio u:v:w remains constant. In this case, the smallest triple is 
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— b 

[120] 

Fig. 2.7. Projection of a lattice onto the 

a, b-plane showing parallel sets of lattice 

lines [100], [120] and [310] 

Fig. 2.8. Projection of a 

space lattice along c onto 

the a, b-plane. The lattice 

line A is defined by the 

triple [210], while B may be 

given as [130] or [130] 

used to define the lattice line. Lines parallel to a or b are thus identified as [100] 

or [010] respectively, while the line B is given as [130] or [130]; note that these 

two representations define opposite directions for the lattice line. 

2.4.3 Lattice Planes (hkl) 

Consider a plane in the lattice intersecting the axes a, b and c at the points mOO, 

OnO and OOp. (These coordinates are given as mnp and not uvw to show that the 

values need not be integral. An example of a lattice plane which does not 

intersect the axes at lattice points is plane D in Fig. 2.11). The coordinates of the 
three intercepts completely define the position of a lattice plane (Fig. 2.9). 

Normally, however, the reciprocals of these coordinates are used rather than the 

coordinates themselves: 
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c 

Fig. 2.9. The intercepts on the axes of a lattice plane with 

the Miller indices (362) 

a-axis: h ~ — 
m 

b-axis: k ~ — 
n 

c-axis: 1- 
P 

The smallest integral values are chosen for the reciprocal intercepts, and they 
are then written as a triple (hkl) in round brackets. 

Definition 

The values (hkl) are called Miller indices, and they are defined as the smallest 
integral multiples of the reciprocals of the plane intercepts on the axes. 

The lattice plane shown in Fig. 2.9 has the intercepts m|n|p = 2|l|3 the 
reciprocals of these are || 11leading to the Miller indices (362). 

Fig. 2.10. The indexing of lattice planes by Miller indices, the smallest integral multiples of the 

reciprocals of the intercepts on the axes; I (111), II (211) 



2.4 The Designation of Points, Lines and Planes in a Space Lattice 

Fig. 2.11. Projection of a space lattice along c onto the a,b-plane. The “lines” A-G are the 

traces of the lattice planes parallel to c with the Miller indices (210). The “line” His the trace of 

a lattice plane (230) 

In the space lattice shown in Fig. 2.10, two lattice planes have been drawn in 

m n P 
1 

m 

1 

n 

1 

P 
(hkl) 

I 1 1 1 1 1 1 (111) 

II 1 2 2 1 1 
2 

1 
2 (211) 

In Fig. 2.11, a projection of a lattice is shown together with the lines 

representing the traces of lattice planes perpendicular to the plane of the paper 

and parallel to the c-axis. These lattice planes are indexed as follows: 

m n P 
1 

m 

1 

n 

1 

P 
(hkl) 

A 2 4 OO 1 
2 

I 
4 0 (210) 

B 3 
2 3 oo 2 

3 
1 
3 0 (210) 

C 1 2 OO 1 1 
2 0 (210) 

D 1 
2 1 oo 2 1 0 (210) 

E - - - - - - 

F \ 
2 1 oo 2 1 0 (210) 

G 1 2 oo I 1 
2 0 (210) 

H 3 2 oo 1 
3 

1 
2 0 (230) 

The lattice planes A to G belong to a set of equally spaced, parallel 

planes resulting in the same indices. Generally, they are all described by the 

triple (hkl), which represents not merely a single lattice plane, but an infinite 

set of parallel planes. Since the plane E intersects the origin, it cannot be 
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b 

Fig. 2.12. Projection of a lattice 

onto the a,b-plane, with the pro¬ 

jections of six sets of lattice planes 

indexed in this position. Note that (210) and (210) define the same parallel set of 

planes. 
Figure 2.12 gives the projection of a lattice onto the a,b-plane. This 

projection has a square unit cell. The projections of six sets of lattice planes with 

various indices are also shown. As the indices rise, the spacing between the 

planes decreases, as does the density of points on each plane. 
Planes which are parallel to b and c will thus only have intercepts with a and 

are indexed as (100). Similarly, (010) intersects only the b-axis, and (001) only c. 

The line H in Fig. 2.11 is the trace of the plane (230). 

2.5 The Zonal Equation 

We may ask what the relationship is between the symbols [uvw] and (hkl) if they 

represent sets of lines and planes that are parallel to one another. The equation 

of any plane may be written: 

X Y Z 1 
H-1 — 1, 

m n p 

where X, Y and Z represent the coordinates of points lying on the plane, and 
m, n and p are the three intercepts of this plane on the crystallographic axes 

1 1 
a, b and c (see Sect. 2.4.3). If the substitution is then made h~—-, k-, 

1 m n 
and 1-, the equation may be written 

P 

hX + kY + 1Z = C, 

where C is an integer. The equation describes not only a single lattice plane, but 

a set of parallel lattice planes. For positive h, k and 1, giving C a value of +1 

describes that plane of the set which lies nearest to the origin in the positive a, b 
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Fig. 2.13. The lattice lines [uiViWi] and [u2v2w2] define the lattice plane (hkl) 

and c directions. Similarly, a value of -1 defines the nearest plane in the negative 

a, b and c directions from the origin. The plane (hkl) which cuts the origin has 
the equation: 

hX + kY + 1Z = 0. 

As an example, the planes D, E and F in Fig. 2.11, are defined by the above 

equation where (hkl) = (210) and C takes on the values 1, 0 and -1 respectively. 
For any of these planes, the triple XYZ represents a point on the plane. In 
particular, on the plane passing through the origin (C = 0) this triple XYZ could 

describe a lattice line - the line connecting the point XYZ to the origin 000. In 
this case, we would replace XYZ by uvw giving the relationship: 

hu + kv + lw = 0. 

For reasons which will appear later this relationship is called the zonal equation. 

Applications of the Zonal Equation 

a) Two lattice lines [uiVjWi] and [u2v2w2] will describe a lattice plane (hkl) 
(cf.Fig. 2.13), whose indices may be determined from the double application of 

the zonal equation: 

hui + kvj + lwi = 0 

hu2 + kv2 + lw2 = 0. 

The solution of these two simultaneous equations for hkl may be expressed in 

two ways as the ratio of determinants: 

ViW[ W]Ui UjVj 

V2W2 w2u2 U2v2 

V2W2 W2U2 U2v2 

ViWi W[Ui UtVj 

(1) 

(2) 

The lattice plane symbols (hkl) and (hkl), however, describe the same set 

parallel planes. 

h : k: 1 = (vjw2 — v2Wi): (wfu2 - w2u0: (uiv2 - u2v,). 
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/c‘ 

Fig. 2.14. The lattice lines [101] and [121] lie in the lattice plane indicated by the dashed lines. 

Since, however, that plane passes through the origin, it is necessary to consider an alternative 

origin such as N' in order to assign its indices (111) 

The following form is particularly convenient: 

Ul Vj Wi Ul V] Wi 

XXX 
U2 v2 w2 u2 v2 w2 

(h k 1) 

EXAMPLE. What is the set of lattice planes common to the lines [101] and 
[121]? 

1 0 1 1 0 I 
I 2 I I 2 1 

2 2 2 -(111) 

This result can also be obtained geometrically, as in Fig. 2.14. The lattice lines 

[101] and [121] (-•) lie in the lattice plane (-). Other lines lying in 
the plane are also shown (— --) in order to make it more obvious. The 

indicated lattice plane cannot be indexed, as it passes through the origin. The 
choice of an alternative origin N' makes it possible to index it: 
m|n|p=l|l|l —(111). 

If the determinant is set up in the alternative manner:’ 

I 2 I I 2 I 
1 0 I 1 0 I 

2 2 2 -(III), [see Eq. (2)] 

(111) and (111) belong to the same set of parallel lattice planes; in the 

description of crystal faces (Chap. 4) the symbols (hkl) and (hkl) are taken to 
represent a crystal face and its parallel opposite. 
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Fig. 2.15. The lattice planes (hik^h) and (h2k2l2) intersect in the lattice line [uvw] 

b) Two lattice planes (hikih) and (h2k2l2) intersect in the lattice line [uvw] (see 
Fig. 2.15), which can be identified by the solution of the equations: 

h!u + kiv + liw = 0 

h2u + k2v + l2w = 0. 

Proceeding in the same method as above leads to the required lattice line [uvw]: 

hi kj h hj kj li 

XXX 
h2 k2 12 h2 k2 h 

[u v w] 

Note that, as in (a), two solutions are possible: [uvw] and [uvw]. In this case, 

these represent the opposite directions of the same line. 

EXAMPLE. Which lattice line is common to the lattice planes (101) and (112)? 

I 1 2 1 1 2 
1 0 1 1 0 1 

[1 3 I] 

If the values of (hkl) are interchanged, the result will be [131]. 

rvrDrici'C I 

Exercise 2.1. Make a copy on tracing paper of the lattice points outlining a single unit 

cell in Fig. 2.5. Lay your tracing on top of a unit cell in the original drawing and satisfy 

yourself that you can reach any other cell by suitable lattice translations. 

Exercise 2.2. 
a) Examine the lattice in Fig. 2.16, and give the coordinates of the points Pb P2, P3 and 

P4, the values of [uvw] for the lattice linesjthat are drawn in. 

b) On the same diagram, draw in the lines [211], [120] and [212]. 

c) Determine the lattice planes to which the lines [131] and [111] belong. 
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Exercise 2.3. Figure 2.17 is the projection of a lattice along the c-axis onto the 

a, b-plane. The dark lines labelled I and II are the traces of planes that are parallel to the 

c-axis. 

a) Index planes I and II. 

b) Calculate [uvw] for the line common to the two planes. 

c) Draw the traces of the planes (320) and (120) on the projection. 

Exercise 2.4. Give (hkl) for a few planes containing the line [211], and give [uvw] for a 
few lines lying in the plane (121). 

Exercise 2.5. What condition must be fulfilled to make (a) [100] perpendicular to (100), 

(b) [110] perpendicular to (110) and (c) [111] perpendicular to (111)? 

Exercise 2.6J What are the relationships between (110) and (llO); (211) and (211)- [110] 
and [110]; [211] and [2ll]? 



3 Crystal Structure 

In order to progress from a lattice to a crystal, the points of the lattice must 
be occupied by atoms, ions or molecules. Because the points are all ident¬ 

ical, the collections of objects occupying them must also be equal. In 
general, crystals are not built up so simply as the crystal of a-polonium in 
Fig. 2.1! 

Let us consider the construction of a crystal by means of a hypothetical 

example. Figure 3.1a shows a lattice with a rectangular unit cell projected on the 
a,b-plane. We now place the molecule ABC in the unit cell of the lattice 

in such a way that A lies at the origin and B and C within the chosen cell 
(Fig. 3.1b). The position of B or C with respect to the origin may be described by 
a vector r in terms of the lattice translations a, b, and c: 

r=xa + yb+zc (see Fig. 3.3). 

The coordinates are yet another triple: x,y,z, where 0<x,y,z<l for all 

positions within the unit cell. In our example, the atoms have the following 

coordinates: 

A: 0,0,0 B:xi,yi,zi, C:x2,y2,z2. 

This arrangement of atoms within a unit cell is called the basis. Lattice 

translations reproduce the atoms throughout the entire lattice (Fig. 3.1c), or: 

lattice + basis = crystal structure. 

It follows that not only the A-atoms but also the B- and C-atoms lie on the 

points of congruent lattices, which differ from one another by the amount 
indicated in the basis (see Fig. 3.2). Every atom in a crystal structure is repeated 

throughout the crystal by the same lattice translations. 
Thus, the following simple definition of a crystal is possible. 

Definition 

Crystals are solid chemical substances with a three-dimensional periodic array 

of atoms, ions or molecules. This array is called a crystal structure. 
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a) 

b) 

Lattice 

+ 

Basis 

Crystal 
structure 

Fig. 3.1 a-c. Interrelationship of the lattice (a), the basis or the arrangement of atoms in the 

unit cell (b) and the crystal structure (c), all shown as a projection on the a,b-plane 

Fig. 3.2. All atoms of the crystal 

structure shown in Fig. 3.1 lie on 

the points of congruent lattices 
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Fig. 3.3. Description of a point in a unit cell by 

the coordinate-triple x,y,z defining the vector 

r = xa + yb + zc 

Fig. 3.4a-c. The Csl structure shown in a perspective drawing taking account of the relative 

sizes of the ions (a), with ions reduced to their centres of gravitiy (b) and as a parallel 

projection on (001) (c) 

An example of a simple crystal structure is caesium iodide. The unit cell is a 

cube (a0 = b0 = c0 = 4.57 A, a = f = y = 90°)1. The basis is I“: 0,0,0; Cs+: In 
Figure 3.4a, a unit cell is shown as a perspective picture, with the relative sizes of 
the ions indicated. For more complex structures, this method of illustration is 

less useful, as it prevents the positions of atoms from being clearly seen. 

Consequently, it is more usual merely to indicate the centres of gravity of the 
atoms, as in Fig. 3.4b. Figure 3.4c shows the same structure represented as a 

parallel projection on one cube face. 
An important quantity for any structure is Z, the number of chemicalformula 

units per unit cell. For Csl, Z = 1 as there are only one Cs+ ion and one 

I" ion per cell. Using only structural data, it is thus possible to calculate the 

density of Csl, since 

p = —gcm"J, 

1 The Angstrom unit (A): 1 A = 10 '8 cm = 0.1 nm. If a row of spheres with a radius of 1A is 

made, these will be 50000000 of them per centimetre! 

i-10 A-< 

1*00000- 50 ooo ooo — OOOOO 
1cm 
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where m is the mass of the atoms in the unit cell and V is the volume of the cell. 
The mass of one chemical formula is M/NA, where M is the molar mass and NA 
is the Avogadro number, so 

Z-M 
m=- and 

Na 

Z-M 

na-v 
gem 

Thus, taking NA as 6.023 X10 23 mol ', for Csl, where M = 259.81 g mol 1 

Pcsi - 
1-259.81 

6.023 • 10 23 • 4.573 • 1(U24 
4.52gem 3. 

In a structure determination, this operation is carried out in reverse: from the 
measured density, the number of formula unit per cell is estimated. 

Using the values (hkl) and [uvw] we have so far only described the 
orientations of sets of planes and lines. Consideration of the contents of a unit 

cell makes it necessary to describe specific planes and lines in the cell. Use 
of the coordinates x, y, z makes this possible. For example, the coordinates x, y, \ 
identify all points in the plane parallel to a and b which cuts c at 

Figure 3.5 shows the planes x,y, \ and f,y,z. The line of intersection may easily 
be seen to be described by the coordinates 
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EXERCISES 

Exercise 3.1. Cuprite, an oxide of copper, has the 

lattice: a0 = bo = c0 = 4.27 A, a=f) = y = 90° and the 

basis: Cu: 

O: 

i i i. 
4>4>4> 

0,0,0; 

3 3 1. 

4’4’4’ 
ill 
2’ V T 

3 13. 

4’ 4’ 4’ 

13 3 

4’ 4’ 4' 

a) Draw a projection of the structure on x,y,0 (the a,b-plane) and a perspective 

representation of the structure. 

b) What is the chemical formula of this compound? What is Z (the number of formula 

units per unit cell)? 

c) Calculate the shortest Cu-0 distance. 

d) \Vhat is the density of cuprite? 

Exercise 3.2. The cell dimensions for a crystal of A1B2 were determined to be 

ao = b0 = 3.00A, c0 = 3.24A, <* = /? = 90°, y = 120°. There is an Al-atom at 0,0,0, and 

B-atoms at |, |, 1 and |, |, 

a) Draw a projection of four unit cells of this structure on (001). 

b) Calculate the shortest Al-B distance. 

c) Calculate the density of A1B2. 

Exercise 3.3. In the accompanying drawing of the unit cell of a lattice, give the 

coordinates of the points occupied by small circles, which, as we will later learn, 

represent inversion centres (Chap. 5.3). 

C 
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Exercise 3.4. Draw the unit cell of a lattice and give the coordinates which describe its 
“edges”. 

Exercise 3.5. For the same unit cell, give the coordinates which describe its “faces”. 

Exercise 3.6. Give the coordinates for the planes and lines drawn in the unit cell shown 
below. 



4 Morphology 

By the term “morphology”, we refer to the set of faces and edges which enclose a 
crystal. 

4.1 Relationship Between Crystal Structure and Morphology 

The abundance of characteristic faces and, at least in ideal circumstances, the 

regular geometric forms displayed externally by crystals result from the fact that 
internally, crystals are built upon a crystal structure. What is, then, the rela¬ 

tionship between the crystal structure (the internal structure) and morphology 
(the external surfaces)? Figure 4.1 shows the crystal structure and the mor¬ 

phology of the mineral galena (PbS). The faces of a crystal are parallel to sets of 
lattice planes occupied by atoms, while the edges are parallel to lattice lines 
occupied by atoms. In Fig. 4.1a, these atoms are represented by points. A lattice 

plane occupied by atoms is not actually flat. This may be seen for the lattice 

plane (100), (010) or (001) in Fig. 4.1c when the size of the spherical atoms is 
taken into account, and is even more marked for crystals of molecular corn¬ 

el 

Fig. 4.1a, b. Correspondence between crystal 

structure (a) and morphology (b) in galena 

(PbS). In a, the atoms are reduced to their 

centres of gravity (c) shows the atoms 

occupying the (100), (010) or (001) face. 
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pounds. Atomic radii are very small - of the order of 1 A - so crystal faces 

appear smooth and flat to the eye. A crystal face contains a two-dimensionally 

periodic array of atoms. 
The relationship between crystal structure and morphology may be summa¬ 

rised thus: 

a) Every crystalface lies parallel to a set of lattice planes; parallel crystalfaces 
correspond to the same set of planes. 

b) Every crystal edge is parallel to a set of lattice lines. 

The reverse conclusions must, however, certainly not be drawn, since a 

crystal will have a very large number of lattice planes and lines, and generally 
only a few edges and faces. 

Furthermore, it should be noted that the shapes in Fig. 4.1 have been drawn 

to vastly different scales. Suppose the edge of the crystal marked with an arrow 

is 6 mm in length; then that edge corresponds to some 107 lattice translations, 
. # o 

since the lattice parameters of galena are all 5.94 A. 
Since crystal faces lie parallel to lattice planes and crystal edges to lattice 

lines, Miller indices (hkl) may be used to describe a crystal face, and [uvw] a 
crystal edge. The morphology of the crystal gives no information about the size 

of the unit cell, but can in principle give the ratio between one unit cell edge and 

another. Normally, however, the lattice parameters are known, so the angles 

between any pair of lattice planes can be calculated and compared with the 
observed angles between two crystal faces. 

The crystal of galena in Fig. 4.1 has been indexed, i.e. the faces have been 

identified with (hkl). Thus, with the origin chosen suitably inside the crystal, 
(100) cuts the a-axis and is parallel to b and c; (110) is parallel to c and cuts a and 

b at the same distance from the origin; (111) cuts a, b and c all at the same 
distance from the origin. 

4.2 Fundamentals of Morphology 

Morphology is the study of the external boundary of a crystal, built up of crystal 

faces and edges. In morphology, the words “form”, “habit” and “zone” have 
special meanings. 

a) FORM. The morphology of a crystal is the total collection of faces which 

characterise a particular crystal. The morphology of the crystals shown in 
Fig. 4.2 consists of the combination of a hexagonal prism and a “pinacoid”; a 

pinacoid is a pair of parallel faces which in this case make up the ends of this 

prism. The prism and the pinacoid are examples of a crystal form, which is 

further discussed in Chapter 8. In the meantime, we will simply consider a 

crystal form as a set of “equal” faces. It is thus possible to describe the 
morphology as the set of forms of a crystal. 
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Fig. 4.2a-c. The three basic habits: a equant, b planar or tabular, c prismatic or acicular with 

the relative rates of growth in different directions shown by arrows 

Plane of the normals 

to the faces Fig. 4.3. A zone is a set of crystal faces 

with parallel lines of intersection. The 

zone axis is perpendicular to the plane 

of the normals to the intersecting 

faces, and is thus parallel to their lines 

of intersection (After [32]) 

is used to describe the relative sizes of the faces of a 

crystal. There are three fundamental types of habit: equant, planar or tabular, 

and prismatic or acicular (needle-shaped). These habits are illustrated in Fig. 4.2 

by the relative sizes of the hexagonal prism and the pinacoid. 

c) ZONE. The crystals in Figs. 1.1-1.4 show several examples of three or more 
crystals faces intersecting one another to form parallel edges. A set of crystal 

faces whose lines of intersection are parallel is called a zone (Fig. 4.3). Faces 

belonging to the same zone are called tautozonal. The direction parallel to the 

lines of intersection is the zone axis. Starting from any point inside the crystal, 

the normals to all the faces in a zone are coplanar, and the zone axis is normal to 

this plane. Only two faces are required to define a zone. 
The galena crystal in Fig. 4.1b shows_ several zones. For example, the 

face (100) belongs to the zones [(101)/101)] = [010], [(110)/(110)] = [001], 

(lll)/(lll) = [Oil] and [(lll)/lll)] = [011]. 
All intersecting faces of a crystal have a zonal relationship with one another. 

This is evident from consideration of Fig. 4.1b. 
The faces or the lattice planes (h1; kj, h), (h2, k2, E), and (I13, k3, I3), are 

tautozonal if and only if 

b) HABIT. This term 
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= 0 

i.e. h, k2l3 + kiI2h3 + lih2k3 — h3k2li — k312h 1 — l3h2kj= 0. 
Do the planes (hkl) belong to the zone [uvw]? The answer depends on 

whether or not the zonal equation hu + kv + lw = 0 is fulfilled. For example, (112) 

does lie in the zone [Ill] since 1 • (-1) + (—1) • 1 + 2 • 1 = 0. 

4.3 Crystal Growth 

It is easier to understand the morphology of a crystal if the formation and 

growth of crystals is considered. Crystals grow from, among other things, 
supersaturated solutions, supercooled melts and vapours. The formation of a 
crystal may be considered in two steps. 

1. NUCLEATION. This is the coming together of a few atoms to form a three- 

dimensional periodic array - the nucleus - which already shows faces, although 
it is only a few unit cells in size (see Fig. 4.4a). 

Fig. 4.4a-d. Nucleation and growth of the nucleus to a macrocrystal illustrated in two 

dimensions, a Nucleus, e.g. in a melt, b Atoms adhere to the nucleus, c Growth of a new layer 

on the faces of a nucleus, d The formation of a macrocrystal by the addition of further layers of 
atoms 
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Fig. 4.5. Quartz crystal showing its stepwise growth 

1CLEUS TO A CRYSTAL. As the nucleus attracts 
further atoms, they take up positions on its faces in accordance with its three- 

dimensional periodicity. In this way, new lattice planes are formed 
(Fig. 4.4b-d). Note that the illustration is two-dimensional only. The growth 

of the nucleus, and then of the crystal, is characterised by a parallel 
displacement of its faces. The rate of this displacement is called the rate of 

crystal growth, and is a characteristic, anisotropic property of a crystal. 
Figure 4.5 shows a few stages in the growth of a quartz crystal. 

The nucleus shown in Fig. 4.6 is bounded by two different types of faces, and 

the rates of growth of these faces, V! and v2 are thus, in principle, distinguish¬ 
able. Figure 4.6a illustrates the case in which these rates of growth are similar, 
while in Fig. 4.6b, they are very different. A consequence of this difference is 

that the faces corresponding to the slow growth rate become steadily larger, 
while those corresponding to rapid growth disappear entirely. In addition, it 

should also be noted that crystal growth rates are affected by temperature, 
pressure, and degree of saturation of the solution. The actual crystal faces which 

eventually enclose the crystal depend on the ratios of the growth rates of the 

various faces, the slower-growing ones becoming more prominent than those 

that grow more rapidly. Those faces which do eventually develop generally have 
low Miller indices and are often densely populated with atoms. 

The three basic types of crystal habit may be understood in terms of the 

relative growth rates of the prism and pinacoid faces, which are indicated in 

Fig. 4.2 by arrows. 
Figure 4.7 shows how crystals of different shapes can result from the same 

nucleus. Crystal I is regular in shape, while crystals II and III have become very 

much distorted as a result of external influences on the growth rate. None the 

less, the angles between the normals to the crystal faces remain constant, since 

the growing faces have simply been displaced along their normals. A parallel 
displacement of the faces cannot change interfacial angles. This observation 

applies equally to all growing faces of a crystal. 
This observation is the basis of the law of constancy of the angle: in different 

specimens of the same crystal, the angles between corresponding faces will be 

2. GROWTH OF A NU 
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Fig. 4.6 a, b. Crystal growth showing 

a small (a) and a large (b) difference 

b) in growth rate with direction 

* Normal of the face 
i 

Fig. 4.7. Despite difference in rates of growth of 

different parts of a crystal, the angles between 

corresponding faces remain equal 

equal. This law, which is valid at constant temperature and pressure, was first 

formulated by N. Steno in 1669, without any knowledge of crystal lattices! 

The relative positions of the normals to the faces of the crystals in Fig. 4.7 

remain constant. It is possible, by measurement of the angles between faces, 

to determine these relative positions and thus eliminate the distortion. 

So far, our discussion has assumed the existence of a single crystal nucleus, 

or only a few, which can grow separately into single crystals like those shown in 
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Fig. 4.8 a-c. Development of a crystal aggregate, a Formation of several nuclei, which initially 

can grow independently, b Collision of growing crystallites leads to interference and 

irregularity in growth of the polyhedra. Eventually, the polyhedral shape of the crystallites is 

entirely lost, c The single crystal domains of the aggregate with their grain boundaries 

Fig. 1.1. The term single crystal, as it is used here, implies one which has grown 
as such. It will normally display characteristic faces, but those grown in the 

laboratory often do not. If many nuclei are formed simultaneously, they may 
grow into one another in a random fashion, as illustrated in Fig. 4.8. This 
disturbance will prevent the development of crystal faces and forms. Instead, a 

crystal aggregate or polycrystal results. Figure 4.8 shows an example of single 
phases in the development of such an aggregate. The individual crystallites of an 

aggregate are themselves single crystals. 

4.4 The Stereographic Projection 

Since crystals are three-dimensional objects, it is necessary to use projections in 
order to work with them on a flat surface. One such projection is the parallel 

projection onto a plane, which was illustrated in Fig. 3.4c for representing a 

crystal structure. 
For morphological studies, the stereographic projection has proved to be 

particularly useful. The principle of this projection is shown in Fig. 4.9. A 

crystal, in this case galena (PbS), is placed at the centre of a sphere. The normals 

to each face, if drawn from the centre of the sphere, will then cut the surface of 
the sphere in the indicated points, the poles of the faces. The angle between two 

poles is taken to mean the angle between the normals n, not the dihedral angle f 
between the faces. These two angles are simply related as: angle of normals 

n= 180“-dihedral angle f (Fig. 4.12). The poles are not randomly distributed 

over the surface of the sphere. In general they will lie on a few great circles, i.e. 

circles whose radius is that of the sphere. Those faces whose poles lie on a single 

great circle will belong to a single zone. The zone axis will lie perpendicular to 

the plane of the great circle. Considering the sphere as a terrestrial globe, a line 
from each of the poles in the northern hemisphere is projected to the south pole, 

and its intersection with the plane of the equator is marked with a point • or a 

cross + (see Fig. 4.10). Lines from poles in the southern hemisphere are similarly 
projected to the north pole, and their intersections with the equatorial plane are 

marked with an open circle O. For those poles lying exactly on the equator, a 
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N 

N 

Fig. 4.11 100 

Fig. 4.9. Crystal of galena at the centre of a sphere. The normals to the faces of the crystal cut 
the sphere at their poles, which lie on great circles 

Fig. 4.10. In a stereographic projection, lines are drawn between the poles of the faces in the 
northern hemisphere and the south pole, and the intersection of these lines with the equatorial 
plane is recorded 

Fig. 4.11. Stereographic projection of the crystal in Fig. 4.9; see also Fig. 4.1b 
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circle 

Fig. 4.12. Relationship between the angle 

of intersection of the normals (n) and the 

dihedral angle (f) between the faces F, and 

F2. The poles of the faces lie on a great circle, 

the zone circle 

point or cross is used. The mathematical relationships of the stereographic 

projection are shown in Fig. 4.33. 
Figure 4.11 shows the stereogram of the crystal in Fig. 4.9, only those planes 

belonging to the northern hemisphere being shown. Poles belonging to a single 
zone lie on the projections of the relevant great circles. The points resulting from 

the projections of each face are indexed. 
Figure 4.13 a shows the stereographic projection of a tetragonal prism and a 

pinacoid, while Fig. 4.13 b gives that of a tetragonal pyramid and a pedion. A 

/ 

Fig. 4.13 a, b. Stereographic projection of a tetragonal prism and a pinacoid (a) and of a 

tetragonal pyramid and a pedion (b). The angular coordinates (p and p are given for one of the 

pyramid faces 
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pedion is the name given to a crystal form which consists of a single face. In both 
cases, the altitude of the prism or pyramid is set in the N-S direction. Both the 

tetragonal prism and the tetragonal pyramid have square bases and square 

cross-sections. The faces of the prism are perpendicular to the plane of the 
stereographic projection, so their poles lie on the circumference of the circle of 

that projection. The faces of the pyramid make equal angles with the 

equatorial plane, so the poles of these faces are at equal distances from the 
centre of the plane of projection. 

The representation of the stereographic projection in Fig. 4.9-11 is only 

intended to explain the principles of the method. In practice, the projection is 
based on the values of measured angles. 

The stereographic projection is also very useful for the description of the 
point groups. In this case, there is a departure from the normal convention of 
plotting the stereogram. For rotation axes and rotoinversion axes, the symbols 

of these axes are used to indicate their intersection with the surface of the sphere 
of projection. Similarly, for mirror planes, the corresponding great circle of 

intersection is indicated (for an example, see Fig. 6.8 e). 

4.5 The Reflecting Goniometer 

The angles between crystal faces may conveniently be measured with a reflecting 

goniometer. The crystal is mounted on a goniometer table, which is essentially a 
rotating plate with a graduated angle scale (see Fig. 4.14). The crystal mount (or 

goniometer head) is a construction of arcs and slides which makes it possible to 
bring a zone axis of the crystal into coincidence with the rotation axis of the 

goniometer table. The crystal is then rotated until the light beam from a lamp 
mounted horizontally is reflected from a crystal face onto the cross-hairs of a 

telescope, also mounted horizontally. The reading on the scale of the table then 
fixes the position of that crystal face. The table is then rotated until another face 

comes into the reflecting position, and the angular reading for this position is 

Fig. 4.14. Light path for a one-circle 
reflecting goniometer 
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9 

Telescop 

Lamp 

Fig. 4.15. Two-circle reflection goniometer 

with azimuthal circle cf> and pole distance 

circle p (After [22]) 

taken. The difference between the two readings is the angle between the normals 
to the crystal faces. Continuing to rotate the table through 360° will allow the 

angles corresponding to the selected zone to be measured. This is the principle 
of the one-circle reflection goniometer. For the measurement of the angles 
corresponding to other zones on a one-circle reflecting goniometer, the crystal 

must be remounted. 
A two-circle reflection goniometer makes it possible to rotate and measure 

the crystal about two mutually perpendicular axes (Fig. 4.15). In this way, all 

possible faces can be brought into the reflecting position. From the position of 

the two circles, the angular coordinates f and p may be measured. These 
coordinates uniquely define the orientation of a crystal face, and the values can 

be directly plotted on a stereographic projection. 

4.6 The Wulff Net 

The Wulff net is a device to enable measured crystal angles to be plotted readily 

as a stereographic projection. The Wulff net is itself the stereographic projection 
of the grid of a conventional globe orientated so that the N'-S' direction lies in 

the plane of projection (Fig. 4.16). The N-S direction of the stereographic 

Fig. 4.16a, b. The stereographic projection of the grid net of a globe (N'-S' i N-S) produces 

the Wulff net; the positions of the angular coordinates d> (the azimuthal angle) and p (the pole 

distance) are indicated. The pole P has coordinates <f> = 90° and p = 30° 
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projection (Fig. 4.9) is thus perpendicular to the N'-S' direction both of the grid 

net of the globe and of the Wulff net (Fig. 4.16). Fig. 4.16a shows the grid of only 
one hemisphere. The equator and all meridians of the globe are great circles, 

while all of the parallels except the equator are small circles. With the help of the 
Wulff net, the angle between any two poles on the surface of the sphere can now 

be plotted directly on the stereographic projection. The angle measured 

between any two crystal faces is the angle between their normals or the angle 
between their poles. The two normals define the plane of a great circle (Fig. 4.9). 
The arc of the great circle between the two normals is the measured angular 

value. It is thus crucial that only arcs of great circles are used when angles are 
plotted on or estimated from a stereographic projection! 

We shall now demonstrate the use of the Wulff net to plot the two angles 
measured with a two-circle goniometer (the azimuthal angle 0 and the pole 

distance p) on a stereographic projection. The circle of the plane of projection is 
taken as the azimuth 0, so possible 0-values run from 0-360°. The front face of 

the tetragonal pyramid in Fig. 4.13 b thus has a 0-value of 90°. The p-axis 

is perpendicular to the 0-axis. The faces of the tetragonal pyramid have 
0-coordinates of 0°, 90°, 180° and 270° respectively and all faces have the same 
p-value. 

A similar consideration of a tetragonal dipyramid, e.g. no. 6 in Exercise 4.4 
results in the following angular coordinates (0, p) for the eight faces: 0°,p; 
90 , p; 180°, p; 270°, p and 0°, —p; 90°, —p; 180°, —p; 210°, —p. Note that faces 

in the northern hemisphere are assigned values 0<p<90°, while those in the 

southern hemisphere have -90°<p<0° where both 90 and -90° represent 
positions on the equator. For an example, see the table of 0, p-values for the 
galena crystal in Exercise 4.13. 

For practice, a Wulff net with a diameter of 20 cm and a 2°-grid is bound 
inside the rear cover. For best results, this should be carefully removed and 

pasted on a card with a minimum thickness of 1 mm. Drawings are then made 
on tracing paper secured by a pin at the centre of the net so as to be readily 
rotated. 

The stereographic projection has two important properties: 

1) The projections of two vectors onto the sphere intersect with the same angle 
as do the vectors themselves. The parallels and the meridians of the global net 
are mutually perpendicular. Since the Wulff net is the projection of these circles 

the corresponding great and small circles of the Wulff net are perpendicular to 
one another, cf. Fig. 4.16. 

2) All circles, great and small, on the sphere will project as circles on the 

equatorial plane (Fig. 4.17). Exceptionally, the meridians, which are parallel to 

the N-S-direction, will project as straight lines. This property has several 

consequences. For example, consider a circle with a radius of 30° on the surface 
of the sphere. Select a general point on the Wulff net, place the pole M there and 

construct the locus of all points that are 30° from it. By rotating the tracing 

paper, the poles lying 30° from M on each of the great circles will be found 

(Fig. 4.18). These poles will indeed be found to lie on the circumference of a 
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S 

Fig. 4.17. A circle on the surface 

of a sphere remains a circle in its 

stereographic projection on the 

equatorial plane 

Fig. 4.18. Detail of the equatorial 

plane of a stereographic projec¬ 

tion. Points 30° from a pole M 

are shown. These poles lie on the 

circumference of a circle, whose 

centre M' may be found by 

bisecting the diameter K| K2 

circle. However, M is not at the center of this circle. The actual center M' may be 

found by bisecting the diameter K^K^. 

The following examples illustrate the principles of the stereographic projection 

and the use of the Wulff net. 

1) Given the two poles 1 and 2, determine the angle between them: Place the 
tracing paper over the Wulff net and rotate it until both poles lie on a great 

circle, the zone circle (cf. Fig. 4.19 a). The value of the angle can then be read 
from the great circle. If one of the poles lies in the southern hemisphere, it must 

be treated appropriately (cf. Fig. 4.19 b). 

2) Two faces define a zone. Their line of intersection is the zone axis, which is 

normal to the plane defined by the normals to the faces, (cf. Fig. 4.3). The zone 

circle is perpendicular to the pole of the zone axis. 

a) Draw the pole corresponding to a zone circle: Rotate the zone circle onto a 

great circle of the Wulff net; the zone pole will then be 90° from the zone circle 

along the equator (cf. Fig. 4.20). 

b) Draw the zone circle corresponding to a given zone pole: Rotate the pole 

onto the equator of the Wulff net. The zone circle is then the meridian 90° away 

from the pole (cf. fig. 4.20). 
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Fig. 4.19a, b. The angle between two poles may be read from the great circle on which they 
both lie 

Fig. 4.20. The zone circle and the zone pole (□) are mutually perpendicular 

Fig. 4.21. The angle e between the planes of two zone-circles is the angle between the poles of 
the corresponding zones (□) 

3) The angle £ between the planes of two zone-circles is the angle between the 
poles of the corresponding zones (cf. Fig. 4.21). 

4) Find the pole 3, which is separated from pole 1 by an angle x and from pole 2 

by an angle a>: This will lie at the intersections of the two circles with the given 

radii. Note that the centers and the radii of the circles must first be specified. The 

center of the x circle is the midpoint of the diameter K[K2 (cf. Fig. 4.18); the 
center of the w-circle is found by constructing the perpendicular bisector of a 
chord. Note that there are two solutions to this problem (cf. Fig. 4.22). 

5) Change the plane of projection of a stereographic projection: An octahedron 

is a crystal form consisting of eight equilateral triangular faces (Fig. 4.23 a). 

Fig. 4.23c gives the stereographic projection of this octahedron. The poles of the 

faces are marked with a cross; those lying in the southern hemisphere are not 

shown. The stereogram is now to be altered, so that the pole of one of the 
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Fig. 4.22. Construction of the two poles 3, which 

make an angle x with pole 1, and an angle co 

with pole 2 

54°44' 

N’ 

Fig. 4.23 a, b, c. The octahedron in (a) is rotated into the position in (b). This rotation is shown 

in the stereogram in (c). The crosses in the stereogram correspond to the faces in (a), the points 

to the faces in (b). The poles move along small circles 

octahedral faces is moved to the centre of the plane of projection. This may be 

done by rotating one of the poles onto the equatorial plane of the Wulff net. The 
pole will lie on the equator at 54°44' from its center. Rotating the pole about the 

N'-S' axis of the net by 54°44' then brings it to the centre of the projection. The 
other poles move along their own small circles by an angle of 54°44'. The new 

positions of the poles of the faces, which are shown by points in Fig. 4.23 c, cor¬ 
respond to the orientation of the octahedron in Fig. 4.23 b, which sits on a face. 

4.7 Indexing of a Crystal 

Today, it is rarely necessary to index a crystal whose lattice constants are 
unknown. In general, lattice constants give no indication of which faces of a 

crystal will actually be prominent, but it is possible to produce a stereogram 
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Fig. 4.24. Stereogram of the poles of a few of 

the faces of a topaz crystal allowed by the 

lattice which have low indices 

showing all the poles representing faces that are possible for that lattice. Since 
crystals usually develop faces with low Miller indices, the number of poles which 
must be drawn is small. 

We shall now draw the stereogram of the poles of a crystal of topaz. The 

lattice parameters are ao = 4.65, b0 = 8.80, c0 = 8.40A, cc = /3 = y = 90°. The 
six faces (100), (100), (010), (010), (001), (001) which are normal to the 

crystallographic axes can be entered immediately into the stereogram 
(Fig. 4.24). These faces lie on the following zone-circles: [100] = [(001)/(010)], 

[010] = [(100)/(001)], [001] = [(100)/(010)]. The zone axis is normal to the plane 
of the zone-circle, and is parallel to the set of lattice lines which are common to 
the lattice planes making up the zone. 

Figure 4.25 shows a (OlO)-section through the crystal lattice with the 
traces of the planes (100), (101), and (001), which belong to the [010]-zone. The 

F'g- 4.25 Fig. 4.26 

Fig. 4.25. Section parallel to (010) through the lattice of a topaz crystal, showing the traces of 

the planes (001), (101) and (100), all of which belong to the zone [010], 8 is the angle between the 
normals to (001) and (101) 

Fig. 4.26. Section parallel to (100) through the lattice of a topaz crystal, showing the traces of 

the planes (001), (011) and (010), all of which belong to the zone [100], S' is the angle between 
the normals to (001) and (011) 
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angle <5 is the angle between the normals to (001) and (101). Since 

tan <5 = — , (5 = 61.03°. Similarly, Fig. 4.26, showing the (lOO)-section of the 
ao 

same lattice, gives the angle between the normals to (001) and (011). In this 

case, tan<5' = —, and S' = 43.67°. With the help of the Wulff net, the angles 
b0 

<5 and S’ can be placed on the great circles corresponding to the zones [010] and 

[100] respectively, giving the positions of the poles of the planes (101) and (011). 

Since the planes (101), (101) and (lOl) have the same inclination to the 
crystallographic axes as (101), while (Oil), (Oil) and (Oil) have that of (Oil), they 

may likewise be entered on the stereogram (Fig. 4.24). 
The great circles for the zones [(100)/(011)] and [(101)/(010)] may now be 

drawn in, and the two intersections of these circles will occur at the poles with 

Miller indices (111) and (III). These traces of zone-circles lying in the southern 
hemisphere are given as dashed lines.1 

The drawing in of the circles for further zones gives the poles for further 

faces. From these, the poles can be located for all faces with the same axial 
inclination as (111), viz. (Ill), (ill), (III), (111), (III), (ill) and (III). For further 
faces, the zonal equation is used. Eventually, a stereogram, like that 
in Fig. 4.27 may be produced showing the poles for all faces (hkl) with 

2 < h, k < 2 and 0 < 1 < 2. 
An actual topaz crystal is shown in Fig. 4.28. Once such a crystal has been 

indexed with the aid of a stereogram, it is only necessary to measure a few angles 
on the actual crystal in order to bring the angles of the crystal into 

correspondence with the angles in the stereogram. 
The indexing of the stereogram in Fig. 4.27 may be accomplished very easily 

using the complication rule, formulated by V. Goldschmidt. This rule allows all 
of the faces of a zone to be indexed by addition or subtraction of the indices of 

two standard faces. The application of this rule is shown in Fig. 4.29. Let the 
starting faces be (100) and (010). Addition of (100)+ (010) gives (110); 

(010) + (110) gives (120); (110) + (120) gives (230), etc. It should be clear that 
subtraction will in the end lead to similar results. All of the calculated planes 

belong to the zone [001]. 
In Fig. 4.30, two zone circles are shown, each having two indexed poles on it. 

The complication rule may be used to index the pole at the point of intersection. 

In zone 1, (Oil) + (llO) gives (101), while in zone 2, (010) + (211) gives (201). These 
poles lie between their generating poles. The problem is solved when further 

1 Application of the zonal equation leads to 

1 0 0 10 0 0 10 0 1 0 
0 110 1 1 1 0 110 1 

[0 I 1] [10 I] 

0 I 1 0 I 1 
1 0 110 1 

(1 1 1) 

If the values of [uvw] are interchanged, the result is (111). Two zone circles intersect in two 

poles. In morphology, (hkl) and (hkl) represent two parallel faces, which are related to only 

one set of lattice planes, which may be designated as (hkl) or (hkl). 
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100 

Fig. 4.27. Stereogram of the poles of those faces of a topaz crystal allowed by the lattice which 
have indices (2 < h, k < 2; 0 < 1 < 2) 

001 

Fig. 4.28. Topaz crystal. (After [37]) Fig. 4.29. Complication of the faces (100) and (010) 

addition, or to be more precise subtraction, leads to a common point. In this 

case, from zone 1: (llO) + (101) gives (2ll); while from zone 2, (201) + (OlO) gives 
(211), so the pole corresponding to the intersection has been indexed. This 

example is taken from Fig. 4.27. Note the relative positions of (101) and (201). 
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Fig. 4.30. Indexing of the point of intersection of 

two zone circles by complication of the (hkl) for 

faces lying in these zones. 

Table 4.1. <f> and p angles for the topaz crystal in Fig. 4.28. 

Face (p P (hkl) 

U' 
_ ±0° 001 

2,2' 0° ±43°39' Oil 

3,3' 0° ±62°20' 021 

4 43°25' 90° 120 

5,5' 62°08' ±45°35' 112 

6,6' 62°08' ±63°54' 111 

7 62°08' 90° 110 

8,8' 90° ±61°0' 101 

A corollary of the complication rule is that all the faces of a crystal may be 

indexed by complication of the four simple planes (100), (010), (001) and (111). 
Table 4.1 gives the </> and p values for a crystal which has been measured on a 

two-circle reflection goniometer. Fig. 4.31 gives the corresponding stereo¬ 

graphic projection, in which the poles in the other octants may be inferred. The 

Q 
Fig. 4.31. Indexing of the 

topaz crystal in Fig. 4.28 
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faces are to be indexed without reference to lattice constants. The crystallo¬ 

graphic axes have been chosen to be parallel to the main zone axes of the 
stereographic projection. The faces normal to a, b and c can then be indexed 

directly. Since only (001) and (001) actually appear in the crystal, the positions of 
(100), (100), (010) and (010) have been added as auxiliary poles, and represented 

by open circles. One plane must then be chosen as the unit face (111), which cuts 
each crystallographic axes a, b, c, at unit length. These unit lengths give the 

relative spacings at which the unit face cuts the crystallographic axes, a, b, c. 
They are calculated below. The only faces that can be considered for this 

purpose are 5 and 6, as only they cut a, b and c all in a positive sense. It is 
reasonable to choose face 6 as the unit face, as the zone circles including this 

pole contain more poles than those cutting 5. It is now possible to index faces 
making equal intercepts on a, b and c, viz. (Ill), (Ill), (ill) and (III), together 

with those having poles in the southern hemisphere, (111), (III), (III) and (III). 
These last have not been included in the stereogram, nor have any others in the 
southern hemisphere, i.e. those with negative p. Using the complication rule, it 
is now possible to index the following faces and their equivalents: 

(101) = (100) + (001) = (111) + (111), 

(011) = (010) + (001) = (111) + (Ill), 

(110) = (100) + (010) = (111) + (111). 

The remaining faces are then: 

5: (111) + (001) = (101) + (Oil) = (112) 

3: (010) + (Oil) = (111) + (IlO) = (021) 

4: (110) + (010) = (111) - (Oil) = (120) 

The crystal is now fully indexed, and is, in fact, the topaz crystal shown in 
Fig. 4.28. 

_ • • • 3. O 
The morphological axial ratios a:b:c, normally given as — : 1 : —, are 

b b ’ 
characteristic of a crystal. The values for topaz can now be calculated: 
The (110) face cuts a and b at unit length (Fig. 4.32). The angle S" is the angle 

between (110) and (100), and from table 4.1 (7), it is 90° - 62°08' = 27°52'. Thus 

— = tan(27°52') = 0.529. From Fig.4.26, S' is the angle between (011) and 

001 011 

Fig. 4.32. The all-positive oc¬ 

tant of the topaz stereogram 

from Fig. 4.31 with the con¬ 

structed trace of the (110) face 
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(001), and from Tab. 4.1 (2), S'= 43°39\ Hence, — = tan (43°39') = 0.954, and 
b 

3. C 
the normalized morphological axial ratios may be given as —: 1: — = 

b b 
0.529 :1:0.954. The numbers 0.529, 1 and 0.954 give the relative spacings (unit 

lengths) at which the unit face cuts the crystallographic axes a, b and c. 

Today, it is usual to formulate the structural axial ratio in terms of the lattice 

constants; for topaz — : 1: — = 0.528 : 1 : 0.955 (cf. p. 42). 
b0 b0 

4.8 The Gnomonic and Orthographic Projections 

In addition to the stereographic projection, mention should be made of the 

gnomonic and orthographic projections. 

a) The gnomonic projection: 

As in the stereographic projection, the crystal is considered to lie at the center of 

a sphere. The normals to the faces produce points PG on a plane of projection, 
which is tangential to the sphere at the north pole (Fig. 4.33). The poles 
corresponding to the faces of a zone lie in straight lines on the projection plane. 

Fig. 4.34 shows a gnomonic projection of the galena crystal in Fig. 4.9. As p 
approaches 90°, the distances N — PG approach infinity. The poles of those faces 

with p = 90° are represented in the projection by arrows. The distance N —PG 

is R. tan p. 

b) The orthographic projection: 

As in the stereographic projection, the crystal is again considered to lie at 

the center of a sphere. In distinction to the stereographic projection, the 

S 

Fig. 4.33. The relationship of the stereo¬ 

graphic, gnomonic and orthographic 

projections 



48 4 Morphology 

Fig. 4.34. Gnomonic projection of the galena Fig. 4.35. Orthographic projection of the 

crystal in Fig. 4.9 galena crystal in Fig. 4.9 

poles in the northern hemisphere are projected onto the equatorial plane 
along the N - S direction, and not toward the south pole (Fig. 4.33). Fig. 4.35 

shows an orthographic projection of the galena crystal in Fig. 4.9. The 

distance M-P0 is R. sin p. Compare Figs. 4.11 and 4.35. The orthographic 
projection is widely used in the description of the symmetry of cubic space 
groups (Fig. 9.15). 
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EXERCISES I 

Exercise 4.1. With the help of the pattern in Fig. 4.36, build a model of the galena 

crystal shown in Figs. 4.1 b and 4.9. Make a photocopy of the pattern, cut it out, and 

lightly score all the remaining lines. Fold away from you along the lines and stick 

sufficient neighbouring faces together with transparent tape to hold the model 
together. 

Exercise 4.2. Plot the poles of the faces of the following objects on a stereogram. 

Exercise 4.3. Plot the directions corresponding to the following axial systems on a 

stereogram. 

1. Orthogonal axial system 2. Hexagona axial system 

(cubic, tetragonal, 

orthorhombic) 
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Fig. 4.36. Pattern for a model of a galena (PbS) crystal 
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Exercise 4.4. Photocopy and cut out the following patterns, which may be made into 

models of (a) a rhombic dipyramid, (b) a tetragonal pyramid with a pedion and (c) a 

hexagonal prism with a pinacoid (Fig. 4.37). With a little imagination, you can make 

similar models of the crystals in the following diagram (jp. 52 and 53). 

Fig. 4.37a-c. Pattern for models of a rhombic dipyramid (a), a tetragonal pyramid and 

pedion (b) and a hexagonal prism and pinacoid (c) 
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Plot the poles of the faces of the crystals you have made on a stereogram with the 

orientation chosen such that the altitude of each crystal is perpendicular to the plane of 

projection. The drawings below give the geometric shape of the base or of any section 

normal to the altitude. 

Exercise 4.5. Which faces of the hexagonal prism and pinacoid and of the tetragonal 

dipyramid belong to a single zone? Draw in the zone circle on the appropriate 
stereogram in Exercise 4.4. 
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Exercise 4.7. In a stereographic projection, choose a pole at random and draw in points 

30° away from it in all directions. What is the locus of the points produced? 

Exercise 4.8. Construct a Wulff net using a ruler, a protractor and a compass. Make the 

circles at intervals of 30°. 

Exercise 4.9. Insert poles on a stereographic projection with the following <j> and 

p values: 1) 80°, 60°; 2) 160°, 32°; 3) 130°, 70°. Determine the angle between a) 1 and 2; 

b) 1 and 3; c) 2 and 3. Indicate the zone pole for the zones determined by a) 1 and 2; 

b) 1 and 3; c) 2 and 3, and give the d> and p values for their positions. 

Exercise4.10. The poles for the faces with angular coordinates 40°, 50° and 140°, 60° 

lie on zone circle A, while the poles 80°, 70° and 190°, 30° are on zone circle B. These 

zone circles have two points of intersection. Determine the angular coordinates 4>, p 

for these points. How are these faces orientated relative to each other? 

Exercise 4.11. What is the relationship among the normals to the faces comprising a 

zone? How are they related to the zone axis? 

Exercise 4.12. In the cubic unit cell shown in Fig. 4.38 three different sorts of axes are 

shown. Three axes (□) pass through the midpoints of opposite faces (x,?,?;and 

\,z). Four axes (A) lie along the body diagonals. Six axes (Q) pass through the mid 

points of opposite edges. All of these axes intersect in the centre of the unit cell. 

Fig. 4.38. Cubic unit cell showing the 

axes through the midpoints of opposite 

faces (□), along the body diagonals (A), 

and through the midpoints of opposite 

edges (0). (After [6]) 

Draw the axes on a stereographic projection making use of the Wulff net. It is 

convenient to place one of the axes (□) at the centre of the plane of projection. The 

angles between the various axes may be taken from Fig. 4.39 and 4.40, which show 
cross-sections through the centre of the cube. 



4 Exercises 55 

Fig. 4.39. Section through the centre of the cubic unit cell in Fig. 4.38 parallel to a cube 

face (i y, z or x, A, z or x,y, A) 

Fig. 4.40. Section x,x,zor x,l-x,z through the cubic unit cell of Figure 4.38. The angle 

O is 54.73°, half of the tetrahedral angle (the H-C-H angle in methane) of 109.46° 

Exercise 4.13. The galena crystal in Fig. 4.41 (see also Fig. 4.1) was measured using a 

reflection goniometer. The angular coordinates </> and p are given in the accompanying 

table. 
a) Draw the stereogram of the pole faces. 
b) Compare this stereogram with that of the axes in the cube drawn in Exercise 4.12. 

Face <P P 

1.1' _ ± 0° 

2,2' 0° ±45° 

3 0° 90° 

4,4' 45° ±54.73° 

5 45° 90° 

6,6' 90° ±45° 

7 90° 90° 

8,8' 135° ±54.73° 

9 135° 90° 

10,10' 180° ±45° 

11 180° 90° 

12,12' 225° ±54.73° 

13 225° 90° 

14,14' 270° ±45° 

15 270° 90° 

16,16' 315° ±54.73° 

17 315° 90° 

Exercise 4.14. Draw a stereogram showing the pole faces of a crystal of rutile.The 

lattice parameters are given in Table 9.5. Compare your stereogram with the crystal 

given in Table 8.11.15. 

► 
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Exercise 4.15. Draw the stereogram of a cube in its normal setting, i.e. with one face 

normal to the N-S direction. Rotate the cube to bring a body diagonal of the cube 

parallel to N-S, and draw the resulting poles of the faces on the stereographic 

projection. 

Exercise 4.16. Draw the orthographic projection of the axes of the cube-shaped unit 

cell shown in Fig. 4.38. The necessary angular values may be taken from exercise 4.12. 

Sketch the main zone circles. 

Exercise 4.17. Draw a gnomonic projection of the topaz crystal in Fig. 4.28. The lattice 

constants are given on p. 42. 
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Up to now, the only repetition operation that we have used formally has been 
the lattice translation: the operation of three non-coplanar lattice translations 

on a point which gives rise to the space lattice. 

Fig. 5.1. This wheel may be considered either as derived from 

an object consisting of a single spoke which is repeated by 

rotation every 45° or as an object which is brought into 

coincidence with itself by a rotation of 45° 

In addition to lattice translations, there are other repetition operations, such 

as rotations and reflections. In these cases, an object is brought into a 

coincidence with itself by rotation about an axis or reflection in a plane. 

All repetition operations are called symmetry operations. Symmetry consists of 

the repetition of a pattern by the application of specific rules. 

In the wheel illustrated in Fig. 5.1, the spokes are repetitions of one another 

at intervals of 45°, or alternatively, as the wheel rotates, it is brought into 
coincidence with itself by every rotation of 45°. When a symmetry operation has 

a "locus”, that is a point, a line, or a plane that is left unchanged by the operation, 

this locus is referred to as the symmetry element. 

Fig. 5.2. Reflection of either side of this gypsum crystal in the hatched 

plane indicated brings it into coincidence with the other side. This plane 

is called a mirror plane 
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Fig. 5.3. Rotation of the pair of scissors through 180° about the axis 

marked with an arrow brings it into coincidence with itself. This 

axis is called a rotation axis 

Figure 5.2 is an illustration of a crystal of gypsum. The right-hand half of the 
crystal can be brought into coincidence with the left-hand half through a 
reflection in the hatched plane, which will equally bring the left-hand side into 

coincidence with the right. Every point in the crystal will be moved by this 
reflection operation except those which actually lie on the reflection plane itself. 

The plane containing these points is thus the symmetry element corresponding 
to the symmetry operation of reflection; it is called a mirror plane. 

Rotation through 180° about the axis marked with an arrow will bring either 
half of the pair of scissors in Fig. 5.3 into coincidence with the other half. 
Alternatively, rotation of the pair of scissors through 180° brings it into 

coincidence with itself. Every point on the scissors moves during this operation 
except those that lie on the rotation axis (the arrow) itself. The points 

comprising this axis make up the symmetry element corresponding to the 
symmetry operation of rotation: the rotation axis. 

Another type of symmetry is shown by the pair of irregular pentagons in 
Fig. 5.4. Reflection of either pentagon through the indicated point will bring it 

into coincidence with the other pentagon. In this symmetry operation, which is 

called inversion, only a single point remains unchanged, it is the symmetry 
element of the symmetry operation inversion and is called an inversion centre or 
a centre of symmetry. 

Fig. 5.4. Either pentagon is brought into coincidence with the other 

by reflection in a point. This is called inversion, and the point which 

remains unmoved by the operation is called an inversion centre or 
centre of symmetry 
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5.1 Rotation Axes 

What symmetry elements are present in a general plane lattice, such as that 
shown in Fig. 5.5? Make a copy of the figure on tracing paper and lay the copy 
directly over the original. Then rotate the copy about the central lattice point A 
until both lattices come into coincidence once more. In this case, this will 
happen after a rotation of 180°, and a further rotation of 180° makes a full 360° 
rotation, returning the upper lattice to its original position. 

The symmetry element corresponding to the symmetry operation of rota¬ 
tion is called a rotation axis. The order of the axis is given by X where 

360° 
X =-, and £ is the minimum angle (in degrees) required to reach a 

£ 

position indistinguishable from the starting point. In the above case, 
360° 

X =-= 2, and the axis is called a 2-fold rotation axis. The symbol for 
180° 

this operation is simply the digit 2. In a diagram, it is represented as (0) if it is 
normal to the plane of the paper, or as —> if it is parallel to it. 

Whenever a 2-fold axis passes through a point A, a 2-fold axis must pass 
through all points equivalent by translation to A. 2-fold axes normal to the 
lattice plane will also pass through all points B, C and D which lie on the 
midpoints of a translation vector. There are thus an infinite number of rotation 
axes normal to this plane. 

Objects are said to be equivalent to one another if they can be brought into 
coincidence by the application of a symmetry operation. If no symmetry 

Fig. 5.5 a, b. A general plane lattice (a) and its symmetry (b). Symmetry elements marked with 

the same letter are equivalent to one another 



60 5 Principles of Symmetry 

Fig. 5.6. A crystal with upper and lower parallelogram 

faces and sides perpendicular to them has - so far as its 

morphology is concerned - only a single 2-fold axis 

operation except lattice translation is involved, the objects are said to be 

“equivalent by translation” or “identical”. 
In Fig. 5.5, all rotation axes A are equivalent to one another, as are all axes B, 

C and D. On the other hand, the axes A are not equivalent to B, and so forth. 
A crystal, in which congruent lattice planes (Fig. 5.5) lie directly one above 

the other, may develop a morphology in which the lower and upper faces are 

corresponding parallelograms (pinacoid), and the side faces are all perpendicu¬ 
lar to these (Fig. 5.6). Such a crystal will come into coincidence with itself if it is 
rotated through 180° about an axis through the middle of the upper and 
lower faces. It thus contains a single 2-fold axis. This observation may be 

generalised as follows: 

The morphology of a single crystal will show only one symmetry element of a 
particular type in a particular direction, although both its lattice and its crystal 

structure will show infinitely many parallel elements. 

Let us now consider whether it is possible to have axes of order higher than 2. 

An axis with X > 2 operating on a point will produce at least two other points 

lying in a plane normal to it. Since three non-colinear points define a plane, this 

must be a lattice plane. Thus, rotation axes must invariably be normal to lattice 

planes, and we must decide whether the points generated by a rotation axis can 
fulfill the conditions for being a lattice plane, specifically, that parallel lattice 
lines will have the same translation period. 

a) Threefold Rotation Axis: 3 (graphical symbol A). Figure 5.7a shows a 

3-fold rotation axis normal to the plane of the paper. By its operation, a 

comes into coincidence with point II, 

and, by a second rotation of 120° with point III. A further rotation of 120° 
returns it to its original location. A lattice translation moves point I to point IV, 

and the four points thus generated produce the unit mesh of a lattice plane. 
Thus, 3-fold axes are compatible with space lattices. 
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Fig. 5.7 a-c. The arrays of points resulting from the operation on a point of a 3-fold, b 4-fold, 

and c 6-fold axes normal to the plane of the paper can lead to lattice planes. (> additional 

points produced by lattice translations 

Fig. 5.8 a-c. The arrays of points resulting from the operation on a point of a 5-fold, b 7-fold, 

and c 8-fold axes do not fulfil the conditions for a lattice plane, in that parallel lines through 

equivalent points do not have equal spacings. These rotation symmetries cannot occur in 

lattices 

b) Fourfold Rotation Axis 4 (graphical symbol (□). Fourfold axes are also 

compatible with space lattices. As shown in Fig. 5.7b, the action of a 4-fold axis 

on a point results in a square of points which is also the unit mesh of a lattice 

plane. 

c) Fivefold Rotation Axis 5. The operation of this axis on a point results in a 
regular pentagon of points, as shown in Fig. 5.8a. The line through points III 

and IV is parallel to that through II and V. If these are to be lattice lines, the 
spacings of the two pairs of points must either be equal or have an integral ratio. 
Since this is clearly not the case, the points in Fig. 5.8a do not constitute 

a lattice plane, and we may conclude that 5-fold axes are impossible in space 

lattices! 

d) Sixfold Rotation Axis 6 (graphical symbol O)1. This operation, applied to a 

single point, results in a regular hexagon (Fig. 5.7c). A lattice translation places 

1 The standard international symbols for 2, 3, 4 and 6 are f, A, H and •, respectively. For 

convenience, 0, A, □ and O are also used here. In Chapter 8, filled and unfilled symbols are 

used to distinguish the ends of a polar rotation axis Xp. 



62 5 Principles of Symmetry 

a lattice point on the axis itself, and the resulting array meets the condition for a 

lattice plane. Inspection of Fig. 5.7a and c will show that the lattices resulting 

from 6-fold and 3-fold axes are, in fact, equal. 

e) Rotation Axes of Order Higher Than 6. Figure 5.8 b and c shows the effect of 

attempting to build up a lattice plane by applying 7-fold and 8-fold axes to a 
point. The results are analogous to those for the 5-fold axis described in 

paragraph (c) above. These arrays do not produce equal spacings of points in 

parallel lines and so cannot occur in lattices. The same result will occur for any 

rotation axis with X > 6. 

In space lattices and consequently in crystals, only 1-, 2-, 3-, 4-, and 6-fold 

rotation axes can occur. 

Note that the wheel in Fig. 5.1 contains an 8-fold axis. 

5.2 The Mirror Plane 

A further symmetry operation is reflection and the corresponding symmetry 

element is called a plane of symmetry or, more commonly, a mirror plane, and 
given the symbol m. The graphical symbol for a plane normal to the paper is a 

bold line, as in Fig. 5.9. A mirror plane parallel to the paper is represented by a 
bold angle; an example of this is in Chap. 14.2. Any point or object on one side 

of a mirror plane is matched by the generation of an equivalent point or object 
on the other side at the same distance from the plane along a line normal to it 

(Fig. 5.9). 
Figure 5.10 shows the operation of a mirror plane on a lattice line A, 

generating another lattice line A'. Whether the line A is parallel to the mirror 

plane or not, the result is a rectangular unit mesh. The generation of the lattice 

plane in Fig. 5.10b requires that a lattice point lies on m; this lattice contains two 

points per unit mesh and is called centred. A primitive mesh is not chosen in this 
case since the rectangular cell (with the symmetry plane parallel to an edge) is 
easier to work with. 

m 

Fig. 5.9. The operation of a mirror plane 

m on an asymmetric molecule. The mir¬ 

ror plane, perpendicular to the paper, 

transforms A into B and likewise B into A 
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a) m 

A'J 

b) 

1 
• 
/ 

/ 
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\ 
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5 \ 

0 

; 
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m 

Fig. 5.10a, b. Operation of m on a lattice line: in a the lattice line is parallel to m. The resultant 

plane lattice is primitive with a rectangular unit cell. In b, the lattice line is tilted with respect 

to m. The resultant plane lattice again has a rectangular unit cell, but is now centred. 

O additional points produced by lattice translations 

5.3 The Inversion Centre 

The symmetry operation called inversion relates pairs of points or objects 

which are equidistant from and on opposite sides of a central point (called an 
inversion centre or centre of symmetry). The symbol for this operation is 1, 
and is explained in Section 5.4.1a. An illustration of this operation on a 

molecule is given in Fig. 5.11. The graphical symbol for an inversion centre is 

a small circle. Every space lattice has this operation and is thus centrosym- 

metric, see Fig. 5.12. 
The operation of an inversion centre on a crystal face generates a parallel 

face on the opposite side of the crystal. An example of this is the crystal of 
malonic acid in Table 8.11.2 which has no symmetry other than inversion, and is 

Fig. 5.11. The operation of an inversion centre (O) on asymmetric molecules 
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Fig. 5.12. The unit cell of a general lattice, showing 

the inversion at 1,1, j. All lattices are centrosym- 

metric 

entirely enclosed by pairs of such parallel faces (or pinacoids). The occurrence 
of such pairs of parallel faces is important for the detection of inversion 

symmetry in crystals. 

5.4 Compound Symmetry Operations 

The operations of rotation, inversion, reflection and lattice translation may be 
linked with one another. There are two possibilities to be considered here: 

a) Compound Symmetry Operation. Two symmetry operations are performed in 

sequence as a single event. This produces a new symmetry operation but the 
individual operations of which it is composed are lost. 

b) Combination of Symmetry Operations. In this case, two or more individual 

symmetry operations are combined which are themselves symmetry operations. 
Both they and any combination of them must be compatible with the space 
lattice. 

Fig. 5.13a, b. Compound symmetry operation a and combination of symmetry elements b of a 

4-fold rotation and an inversion, illustrated by the effect on the point 1. In a the rotation and 

the inversion are not present; in b they are present. The open circles in a represent auxiliary 

points occupied when only one part of the compound operation has been applied. In b, the 

combination of the rotation and the inversion results also in a mirror plane normal to the axis 
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Table 5.1. Compound symmetry operations of simple operations. The corresponding 
symmetry elements are given in round brackets 

Rotation Reflection Inversion Translation 

Rotation X 
Roto- 

reflection 

Roto¬ 

inversion 

Screw 

rotation 

Reflection 
(Roto- 

reflection axis) 
X 

2-fold 
rotation 

Glide 

reflection 

Inversion 
(Roto¬ 

inversion axis) 
(2-fold 

rotation axis) 
X Inversion 

Translation (Screw axis) (Glide plane) 
(Inversion 

centre) 
X 

These different cases may be illustrated for 4-fold rotation and inversion by 

considering the examples given in Fig. 5.13. 

a) Compound Symmetry Operation. Figure 5.13a shows an operation which 

consists of a rotation of 90° about an axis followed by an inversion through a 
point on the axis. Successive applications of this compound operation move a 

point at 1 to 2, 3, 4, and back to 1. Note that the resulting array has neither an 

inversion centre nor a 4-fold rotation axis. 

b) Combination of Symmetry Operations. Figure 5.13 b illustrates the result of 

the operations 4-fold rotation and inversion also being present themselves. 
Successive operations of the 4-fold axis move a point from 1 to 2, 3, 4 and back 

to 1, while the inversion centre moves it from each of those positions to 7, 8, 5 

and 6 respectively. 

Combinations of symmetry operations will be further examined in Chap¬ 

ters 6, 8 and 9. Compound symmetry operations are summarised in Table 5.1, 
where the names of the symmetry elements corresponding to the symmetry 

operations are given in round brackets. Neither reflection plus inversion nor 

translation plus inversion results in a new operation. Glide and screw 
operations are beyond the needs of the present discussion and will be covered 

in Chapter 9.1. 

5.4.1 Rotoinversion Axes 

The compound symmetry operation of rotation and inversion is called 

rotoinversion. Its symmetry elements are the rotoinversion axes, with the general 
symbol X(pronounced X-bar or bar-X). There are only five possible rotation 

axes X: 1, 2, 3, 4 and 6, and five corresponding rotoinversion axes X: 1, 2, 3, 4 

and 6. 
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Fig. 5.14a-d. The operation of rotoinversion axes on a point 1: a 1. b 2 = m. c 3 = 3 + 1. 

d 6 = 3 J_ m. For 4, see Fig. 5.10a. The unfilled circles represent auxiliary points which are not 

occupied when the two operations of which the compound operation is composed are not 

themselves present 

a) Rotoinversion Axis I (Fig. 5.14a). I implies a rotation of 360° followed by 
inversion through a point on the 1-fold rotoinversion axis. The operation of 1 

on a point 1 returns it to its starting position, and the subsequent inversion 
takes it to point 2. The rotoinversion operation I is thus identical to inversion 

through an inversion centre. For this reason, 1 is used as a symbol for the 

inversion centre. 

b) Rotoinversion Axis 2 (Fig. 5.14b). The effect of rotation through an angle of 

180° followed by inversion is to take a point from 1 to 2. A repetition of this 

compound operation returns it to its original position. The two points are, 

however, also related to one another by reflection in a plane normal to the axis. 
The operation 2 is thus identical with m, and need not be considered further. 

Note, however, that 2 represents a direction normal to m. 

c) Rotoinversion Axis 3 (graphical Symbol A) (Fig. 5.14c). Successive appli¬ 

cations of the operation 3 move a point to altogether six equivalent positions. In 

this case, both of the simple operations 3 and I are necessarily present -3 = 3 + 1, 

so the compound symmetry operation is here a combination of symmetry 
operations. 



5.4 Compound Symmetry Operations 67 

d) Rotoinversion Axis 4 (graphical symbol BB) (Fig. 5.13a). The 4 axis has 

already been analysed in the previous section. As may be seen in Fig. 5.13a, 
and as the graphical symbol indicates, 4 implies the presence of a parallel 2. 

e) Rotoinversion Axis 6 (graphical symbol @ ) (Fig. 5.14d). Successive appli¬ 

cations of 6 move a point to altogether six equivalent positions. It can be seen 

that 6 implies the presence of a parallel 3 and a perpendicular m - 6 = 3 1 m. 

The unambiguous demonstration of the relationships: 1 = inversion centre, 

2 = m, 3 = 3+1, 4 implies 2, and 6 = 3 lm in Figs. 5.13a and 5.14 is only 

possible when an object such as an unsymmetrical pyramid is operated upon 
by symmetry operations (see exercise 5.1a). Note particularly that only 

rotoinversion axes of odd order imply the presence of an inversion centre, viz. 1 

and 3. 

5.4.2 Rotoreflection Axes 

Like the rotoinversion axes, rotoreflection axes Sj, S2, S3, S4, and S6 may be 
defined. Rotoreflection implies the compound operation of rotation and 

reflection in a plane normal to the axis. However, these axes represent 

nothing new, since it is easy to demonstrate the correspondence Sj =m; S2 = l; 
S3 = 6; S4 = 4; S6 = 3. Rotoinversion axes are now invariably used in crystal¬ 

lography. 
The symmetry elements with which the crystallographer is concerned are 

the proper rotation axes X (1, 2, 3, 4 and 6) and^the rotoinversion or improper 
axes X (1 = inversion centre, (2) = m, 3, 4 and 6). In addition to these, there 

are screw axes and glide planes (see Chap. 9.1). 

The axes X and X, including 1 and m, are called point-symmetry elements, 

since their operations always leave at least one point unmoved. 

For 1, this property applies to every point in space, for m_to_every point 

on the plane, for 2, 3, 4, 6, to every point on the axis, and for 1, 3, 4 and 6 to 

a single point. 
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EXERCISES 

Exercise 5.1. The ten crystallographic point symmetry operations are shown on 
pp. 68 and 69. Carry out these operations on: 

a) An unsymmetrical pyramid, whose base lies into the plane of the paper. Sketch 

the appearance of the generated pyramids, using dotted lines for those lying 
below the paper. 

b) A general pole on a stereographic projection. 

Exercise5.2. Carry out the rotoreflection operations Sj, S2, S3, S4 and S6 on a 

general pole on a stereographic projection, and compare these with the stereograms 
of the rotation-inversion axes 1, 2 = m, 3, 4 and 6 in Exercise 5.1. 

Exercise 5.3. When two faces are related by an inversion centre I, how must they lie 
with respect to one another? 

Exercise 5.4. Carry out the rotoinversion operation a) 5 b) 8 c)T0 on a general 
pole on a stereographic projection. 

Exercise 5.5. Analyse the rotoinversion axes (cf. exercises 5.1 and 5.4) into simple 
symmetry elements, if it is possible. 

Exercise 5.6. Which rotoinversion axes contain an inversion centre? 

Exercise 5.7. What crystal form is developed by the faces whose poles result from 
the operation of 3, 4, 6 and 6 on a general pole? (see Exercise 5.1 b). 

Exercise 5.8. What shape is implied for the section of a prism which has a 2-, 3, 4, or 
6-fold axis? 

Exercise 5.9. Determine the location of the rotation axes of a cube. 



6 The 14 Bravais Lattices 

The general space lattice, with no restrictions on the shape of the unit cell, may 
be used to describe all crystals. In most cases, however, the lattices which occur 
are special in that they have special features, such as unit cell dimensions (lattice 

parameters) which are equal in two or three directions or angles between cell 

edges with particular values, such as 60°, 90°, 120° or 54.73°. The general lattice 
has no point symmetry elements except inversion centres. The presence of 

rotation axes and mirror planes will restrict the cell parameters in some way, 
and give special lattices. These special lattices give rise to simplifications in the 

crystal morphology and in physical properties. 

When lattice translations in two directions are equivalent, all physical pro¬ 

perties are equal in these directions. 

In addition to the general space lattice, there are several special lattices. 

Before we consider these space lattices, however, it is useful to develop the 

concepts by consideration of general and special plane lattices. 

The General (Oblique) Plane Lattice 

If we take a point 1, and operate on it with a 2-fold axis, we will generate an 
equivalent point 2 (Fig. 6.1 a). The application of a lattice translation a to point 

1 generates an identical point 3 (Fig. 6.1 b), and the 2-fold axis then relates point 

3 to point 4 (Fig. 6.1c). We have now generated a unit mesh of the lattice. It has 

the shape of an oblique parallelogram, where a0 * b0 and y * 90°. 

Fig. 6.1 a-c. Development of the general plane lattice, with an oblique unit mesh 
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Note that here and throughout this book, in reference to symmetry, ¥= means need 

not be equivalent while — means are required by symmetry to be equivalent. 

It is possible to vary a0, b0 and y in any way we like without losing the 2-fold 
axis. Thus this lattice is fully general. 

Special Plane Lattices 

a) Returning to Fig. 6.1 a, point 3 could have been chosen so that the points 1,2 

and 3 described a right triangle, with the right angle at point 3 (Fig. 6.2a). The 
operation of the 2-fold axis now results in a rectangular unit mesh, a0^b0, 
y = 90°. The arrangements of the points is now “special”, as further symmetry 

has been introduced, namely two mutually perpendicular mirror planes, 
parallel to the 2-fold axis (Fig. 6.2b). 

7 b 4 

3 2 
a) 

Fig. 6.2a, b. Development of the special 

plane lattice with a rectangular unit mesh 

b) (a) and its symmetry (b) 

b) A further possibility in Fig. 6.1 a would be to choose the location of point 3 
so that points 1, 2 and 3 formed an isosceles triangle with the two equal edges 

meeting at point 3. The unit mesh of the resulting lattice is a rhombus: a0 = b0, 
y ¥= 60°, 90° or 120° (Fig. 6.3a). Extension of the edges 1-4 and 1-3 a further unit 
translation on the other side of 1, an alternative choice of unit mesh arises 

(Fig. 6.3 b). It is rectangular (a^ * b0', y = 90 °), and is called centred because it has 
a point at its centre identical to those at the vertices. Consideration of the 
symmetry of this cell shows that there are a pair of mirror planes, similar to 
those in Fig. 6.2b, and several 2-fold axes (Fig. 6.3c). 

Fig. 6.3a-c. Development of the special plane lattice with a rhombic unit mesh (a), and its 

alternative description by a centred rectangular mesh (b). Symmetry of the plane lattice (c) 
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Fig. 6.4a, b. Development of the special plane 

lattice with a square unit mesh and its sym- 

b) metry 

c) Returning once more to Fig. 6.1 a, we choose the position of point 3 in such a 
way as to make the points 1,2 and 3 describe an isosceles right triangle, with the 

right angle at 3. The resultant lattice now has a square unit mesh: a0 = b0, y = 90°. 
As shown in Fig. 6.4b, there are now a 4-fold axis and four mirror planes 

parallel to it in the cell. 

d) Finally, let us choose the position of point 3 in Fig. 6.1 a such that the points 

1,2 and 3 make an equilateral triangle (Fig. 6.5 a). The unit mesh of the resulting 

hexagonal lattice is now a 120° rhombus, or a0 = b0, y = 120°. In addition to the 
2-fold axis, there are now 3- and 6-fold axes as well as several mirror planes. The 

axes are shown in Fig. 6.5b (see also Fig. 5.7a, c). 

Fig. 6.5a, b. Development of the special hexagonal plane lattice and its symmetry. The unit 

mesh is a 120° rhombus 

We have now developed all four of the possible special lattice planes (which 

were, in fact, introduced in a different way in Chapter 5) from the general plane 
lattice. These plane lattices are summarised in Table 6.1 with their characteristic 

symmetry elements. The general lattice (see Fig. 5.5) possesses 2-fold axes only, 

but the special lattices (a)-(d) all have further symmetry elements, which are 
shown on their diagrams in Fig. 6.6. It should be noted that only point 

symmetry elements are shown here. There are compound symmetry elements 

involving translation, glide planes (see Chap. 9.1). 



74 6 The 14 Bravais Lattices 

Fig. 6.6 a-d. Symmetry elements of the special lattice planes with a primitive (a) and a centred 

(b) rectangular unit mesh, and a square (c) and a hexagonal (120° rhombus) (d) unit mesh 

6.1 The Primitive Space Lattices (P-Lattices) 

The relationships between lattices and symmetry elements in three dimensions 

are similar to those in two. From the general space lattice, several special space 
lattices may be derived, in which congruent lattice planes are stacked above one 

another. If the symmetry of the lattice planes is not changed, the five space 

lattices with primitive unit cells (P-lattices) are produced. These are given in 
Table 6.2. 

Compare the stacking processes illustrated in Figs. 6.8-6.10a, b; 6.12 and 
6.13 a, b. Notice that the centred rectangular plane lattice (b) does not occur. The 

square lattice may be stacked either with c0 * a0 = b0 or c0 = a0 = b0; the former 

develops the tetragonal P-lattice and the latter the cubic P-lattice. The cubic 
lattice is a special case of the tetragonal, since new, characteristic symmetry 
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(c) 

-b 

(d) • 

elements appear (three-fold rotation axes along the body diagonals of the unit 
cell). The generation of the general or triclinic P-lattice by stacking is shown in 

Fig. 6.7a. All of the P-lattices are illustrated in Table 6.3. 
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Table 6.1. Plane lattices 

Shape of 

unit mesh 

Lattice 

parameters 

Characteristic 

symmetry 

elements 

Figure 

General 

plane lattices 
Parallelogram 

a0#b0 
y^90° 

2 
5.5 

6.1c 

Special 

plane lattice 
a 

Rectangle 

(primitive) 
a0#b0 
y = 90° 

m 
6.2a 

6.6a 

b 
Rectangle 

(centred) 
a0#b0 
y = 90° 

m 
6.3b 

6.6b 

c Square 
a0 = b0 

y = 90° 
4 

6.4a 

6.6c 

d 120° Rhombus 
a0 = b0 
y = 120° 

6(3) 
6.5a 

6.6d 

Table 6.2. P-Lattices 

Shape of unit mesh 

in stacked layers 
Interplanar spacing Lattice Figure 

Parallelogram51 

(a0 * c0) 
b0 Monoclinic P 6.8a,b 

Rectangle 

(a0*b0) c0 Orthorhombic P 6.9a,b 

Square 

(a0 = b0) 
c0 ^ (ao = bo) Tetragonal P 6.10a, b 

Square 

(a0 = b0) 

O
 

o
 II 

o
 II cr

 
o

 Cubic P 6.13a, b 

120°-Rhombus 

(a0 = b0) Co Hexagonal P 6.12a, b 

a Note that for historical reasons, the description a0 # b0, y # 90° has been changed in this case 

to a0^c0, /?#90°. 
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a Plane lattice with oblique unit mesh showing its symmetry. 

Stacking of such planes directly above one another leads to the 

monoclinic P-lattice (cf. Fig. 6.8a,b). If, however, the lattice 

points of the stacked planes do not coincide with the 2-fold 

axes, these are lost, and the triclinic P-lattice has been 

generated, (cf. b) 

cell are: 

a0*bo*c0 a*b#c 

/ 
a 

-b 
(O) 
e Point group 1. 
Symmetry of a lattice point in a triclinic P-lattice. 

This is the point group of highest symmetry in the 

triclinic system 

d Space group PL f 1 is the triclinic point group of lower symmetry 

Projection of the symmetry elements of the triclin- than 1 (formed by removal of 1) 

ic P-lattice parallel to c onto the plane x,y, 0. This 

is the space group of highest symmetry in the 

triclinic system 

Fig. 6.7a-f. The triclinic crystal system 
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a Plane lattice with oblique unit mesh showing its 

symmetry. Stacking of such planes directly above 

one another with interplanar spacing b0 leads to 

the monoclinic P-lattice (cf. b) 

b Monoclinic P-lattice, lattice parameters in the 

unit cell are: 

<to ^ bo ^ Co 

a = y=90° /?>90° 

a — 

d Space group P 2/m. 

1 
b 

Projection of the symmetry elements of the mo¬ 

noclinic P-lattice on x,0,z (above) and on x,y,0 

(below). This is one of the space groups of highest 

symmetry in the monoclinic system 

c Monoclinic axial system: 

a^b^c 

a = y = 90° /?>90° 
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a 

2/m — C2h 

e Symmetry elements and stereograms of the 

point group 

2/m, 
i 
b 

the symmetry of a lattice point of the monoclinic 

P-lattice. This is the highest symmetry point group 

in the monoclinic crystal system 

f Symmetry elements and stereograms of the monoclinic point groups of lower symmetry than 2/m (formed by 

removal of symmetry elements from it). 

Fig. 6.8 a-f. The monoclinic crystal system 
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a Plane lattice with rectangular unit mesh show¬ 

ing its symmetry. Stacking of such planes directly 

above one another with interplanar spacing c0 

leads to the orthorhombic P-lattice (cf. b) 

c 

b Orthorhombic P-lattice, lattice parameters in 

the unit cell are: 

ao ^ bo ^ Co 

a = P = y = 90° 

d Space group 

P 2/m 2/m 2/m (Pmmm) 

1 i l 
a b c 

Projection of the symmetry elements of the or¬ 

thorhombic P-lattice on x,y,0. This is one of the 

space groups of highest symmetry in the ortho¬ 

rhombic system 

c 

c Orthorhombic axial system 

a^b^c 

a=P = y = 90° 

Fig. 6.9 a-f. The orthorhombic crystal system 
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c 

e Symmetry elements and stereogram of the point 

group 

2/m 2/m 2/m (mmm), 
l l l 
a b c 

the symmetry of a lattice point of the orthorhom¬ 

bic P-lattice. This is the highest symmetry point 

group in the orthorhombic crystal system 

f Symmetry elements and stereograms of the orthorhombic point groups of lower symmetry than 

2/m 2/m 2/m (formed by removal of symmetry elements from it) 
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a Plane lattice with square unit mesh showing its 

symmetry. Stacking of such planes directly above 

one another with interplanar spacing c0#a0 = bo 

leads to the tetragonal P-lattice (cf. b) 

d Space group 

P 4/m 2/m 2/m (P 4/mmm) 

1 1 i 

c (a) (110) 

1 -C 

C 

y 

Q> 

^ bQ 

■Jr 'r 

Projection of the symmetry elements of the tetra¬ 

gonal P-lattice on x,y,0. This is one of the space 

groups of highest symmetry in the tetragonal 

system 

b Tetragonal P-lattice, lattice parameters in the 
unit cell are: 

ao — b0 i= Cq 
a = P = y = 90° 

c Tetragonal axial system 

a = b^c = 
a = p = y = 90° 

Fig. 6.10a-f. The tetragonal crystal system 
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e Symmetry elements and stereogram of the point 

group 

4/m 2/m 2/m (4/mmm), 

1 I l 
c (a) <110) 

the symmetry of a lattice point of the tetragonal 

P-lattice. This is the highest symmetry point group 

in the tetragonal crystal system 

f Symmetry elements and stereograms of the tetragonal point groups of lower symmetry than 

4/m 2/m 2/m (formed by removal of symmetry elements from it). Note that a change in choice of axes in 

the point group 42m gives a point group 4m2 ((a) ± m). The two settings are equally satisfactory 
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/ 
a 

a Plane lattice with 120° rhombus unit mesh 

showing its symmetry. Stacking of such planes 

above one another so that the second lattice plane 

is at a height of c0/3 with a lattice point on a 3 fold 

axis, while the third plane is at a height of ^c0 with 

its lattice point on the other 3-fold axis. The fourth 

plane will then come directly above the first. This 

arrangement reduces the 6-fold axes to 3-fold, and 

removes the symmetry planes in x,0,z; 0,y,z 

and x,x,z as well as the two-fold axis parallel to c 

(cf. b) 

b From this arrangement of lattice points, two 

distinct unit cells may be chosen: 

>/6 to to vs 

d Space group 

R 3 2/m (R3m) 

1 1 
c (a) 

Projection of the symmetry elements of the trigo¬ 

nal R-lattice on x,y, 0. This is one of the space 

groups of highest symmetry in the trigonal sys¬ 

tem 

c Axial system: see Fig. 6.12c 

I) Trigonal R-lattice; the lattice parameters of the 

cell are: 

a0 = b0^co 

a = /J = 90°, y = 120° 

II. Rhombohedral P-lattice; the lattice parame¬ 

ters of the cell are: 

ao = bo = Co 
a’=fi' = y' 

Fig. 6.11 a-f. The trigonal crystal system 
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9 

e Symmetry elements and stereogram of the point 

group 

3 2/m (3 m), 

1 1 
c (a) 

the symmetry of a lattice point of the trigonal 

R-lattice. This is the highest symmetry point 

group in the trigonal crystal system 

f Symmetry elements and stereograms of the trigonal point groups of lower symmetry than 3 2/m 

(formed by removal of symmetry elements from it) 
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a Plane lattice with 120° rhombus unit mesh 

showing its symmetry. Stacking of such planes 

directly above one another with interplanar 

spacing c0 leads to the hexagonal P-lattice (cf. b) 

d Space group 

P 6/m 2/m 2/m (P6/mmm). 

1 1 i 
c (a) (210) 

Projection of the symmetry elements of the hexa¬ 

gonal P-lattice on x, y, 0. This is the space group of 

highest symmetry in the hexagonal system 

b Hexagonal P-lattice, lattice parameters in the c Hexagonal axial system 
unit cell are: 

a = b#c (a[ = a2 = a3 54 c) 

a0 = b0*Co a = /? = 90°, y = 120° 
a = fi = 90°, y = 120° 

Fig. 6.12a-f. The hexagonal crystal system 
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e Symmetry elements and stereogram of the point 

group 

6/m 2/m 2/m (6/mmm), 

I i l 
c (a) <210) 

the symmetry of a lattice point of the hexagonal 

P-lattice. This is the highest symmetry point group 

in the hexagonal crystal system 

6/m 2/m 2/m - D6h 

f Symmetry elements and stereograms of the hexagonal point groups of lower symmetry than 

6/m 2/m 2/m (formed by removal of symmetry elements from it). Note that a change in choice of axes in 

the point group 6m2 gives a point group 62m ((a)||2). The two settings are equally satisfactory. 
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a Plane lattice with square unit cell showing its 

symmetry. Stacking of such planes directly above 

one another with interplanar spacing c0 = ao = b0 

leads to the cubic P-lattice (cf. b). 

d Space group 

P 4/m 3 2/m (Pm3m) 

(a) (111) (110) 

Symmetry elements (incomplete) of the cubic 

P-lattice. This is one of the space groups of highest 

symmetry in the cubic system 

(aJ 

b Cubic P-lattice, lattice parameters in the unit c Cubic axial system 

cell are: 
a = b = c (a1 = a2 = a3) 

ao = b0 = c0 a = /? = y = 90° 
a = y? = y = 90° 

Fig. 6.13 a-f. The cubic crystal system 
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—b(a2) 

e Symmetry elements and stereogram of the point 

group 

P 4/m 3 2/m (m3m), 

i> <m> (no) 
the symmetry of a lattice point of the cubic 

P-lattice. This is the highest symmetry point group 

in the cubic crystal system 

f Symmetry elements and stereograms of the cubic point groups of lower symmetry than 4/m 3 2/m 

(formed by removal of symmetry elements from it) 

6.2 The Symmetry of the Primitive Lattices 

Before considering the symmetry of lattices, it is useful to learn two rules 
governing the generation of a symmetry element by the combination of two 
others. In the following two cases, the presence of any two of the given 
symmetry elements implies the presence of the third (cf. p. 91). Combination of 
symmetry elements is no casual occurrence; it is fundamental to the nature of 

symmetry. 
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Table 6.3. The 14 Bravais Lattices 
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Fig.6.14a-c. Symmetry rule I: a 2±m_-T (at the intersection of 2_and m); b 1 on m->2 

(passing through 1 and normal to m); clon2-m (passing through 1 and normal to 2) 

Fig.6.15a-c. Symmetry rule II: a m'_Lm"—*2 (along the intersection of m' and m"; b 2 on 

m''->m'J.m" (with 2 as the line of intersection); c 2 on (with 2 as the line of 

intersection) 

In the following two rules the presence of any two of the given symmetry 

elements implies the presence of the third: 

Rule I. A rotation axis of even order (Xe = 2, 4 or 6), a mirror plane normal to Xe, 
and an inversion centre at the point of intersection of Xe and m (Fig. 6.14)'. 

Rule II. Two mutually perpendicular mirror planes and a 2-fold axis along their 

line of intersection (Fig. 6.15). 

Every lattice is centrosymmetric and has inversion centres on the lattice 

points and midway between any two of them. Thus, in a P-lattice, there are 

inversion centres at 0,0,0; 5,0,0; 0,j,0; 0,0,U,0; 0,2>2 an<^ 
1 1 1 
2? 2> 2* 

Symmetry of the Triclinic P-Lattice. The only point symmetry elements of the 

triclinic lattice are inversion centres (Fig. 6.16) at the coordinates given above. 

A projection of the symmetry elements parallel to c onto x,y, 0 is shown in 

Fig. 6.17. The z-coordinates implied for the inversion centres are 0 and 

1 Xe = 2, 4 or 6. The illustration only includes the case Xe = 2. The rule is not completely 

general, since m + 1 can only generate 2. 
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C 

a 

Fig. 6.17. Projection of the symmetry 

elements of space group Pi onto x,y, 0. 

The z-coordinates of I are 0 and cf. Fig. 6.16 

Fig. 6.16. Triclinic P-lattice with the _ 

symmetry elements of space group PI 

(O I on lattice point) 

Definition 

The complete set of symmetry operations in a lattice or a crystal structure, or a 

group of symmetry operations including lattice translations is called a space 
group. 

The space group of a primitive lattice which has only 1 is called PI, and the 
conditions for its unit cell parameters: a0 # b0 ^ c0; 

Symmetry of the Monoclinic P-Lattice. The set of lattice planes from which 
we generated the monoclinic P-lattice (Fig. 6.8 a) contain a set of 2-fold axes 

parallel to b. In addition, there are mirror planes normal to b at x, 0,z and 

x,j,z as well as the inversion centres that were present in the triclinic case. 
The location of the mirror planes follows from our first rule: (2 and I 

generate m _L 2 at 1.) The array of symmetry elements of the lattice is shown 
in Fig. 6.8d in projections on x,0,z and x,y,0.2 * 4 Since the 2 is normal to the 

m, this combination is given the symbol 2/m, pronounced “two over m”. It is 
not necessary to represent the inversion centre, since 2/m implies I, by 
Rule I. 

The space group of the monoclinic P-lattice is P2/m, where it is conventional 
to choose the b-axis parallel to 2 and normal to m. The b-axis is called the 

symmetry direction. The a- and c-directions thus lie in the plane of m. This is 

called the “second setting”. Occasionally, the so-called “first setting” is 
encountered, with the c-direction parallel to 2 and normal to m. When this 

convention is used, the lattice is formed in the more usual way by the stacking of 
parallel lattice planes with a0^b0, y^90°, and a spacing of c0. 

2 In the diagrams, the symbol —/ indicates a mirror plane parallel to the plane of the page 

at heights of 0 and When the planes lie at other heights, such as \ and this is shown 

by adding 1. Note that if there is an m, 2 or 1 at 0, it is also found at i; if it lies at ± it is also 
at etc. 2 4’ 

4 
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Fig. 6.18. Symmetry elements of space 

group P 2/m 2/m 2/m. The inversion 

centres are not shown 

Symmetry of the Orthorhombic P-Lattice. In addition to the symmetry of the 
stacked planes (Fig. 6.9a), the orthorhombic P-lattice (Fig. 6.9b) has mirror 

planes normal to c at x, y, 0 and x, y, \ and inversion centres (Fig. 6.9d). Further, 
the application of rule I (m +1 => 2 _L m) or rule II (m JL m => 2) generates 2-fold 

axes at x,0,0; x,0,j; x,|,0; x,|,j; 0,y,0; 0,y,j; i,y,0 and 
An alternative approach, which leads to the same result is the following: 

the unit cell of the orthorhombic P-lattice is a rectangular parallelepiped; it is 
bounded by three pairs of lattice planes with primitive rectangular unit 

meshes. These planes all have the same symmetry, that shown in Fig. 6.9a. 
The arrangement of symmetry elements is shown in Fig. 6.18, which should 

be compared with Fig. 6.9 d. This set of symmetry elements can be given a 
symbol. The symmetry elements are arranged in the order of the crystallogra¬ 

phic axes: a, b, c. Each axis has a 2-fold rotation axis parallel to it and mirror 
planes normal to it. Thus, the symbol for this space group is: P 2/m 2/m 2/m. 

1 i I 

a b c 

Here the a-, b- and c-axes are all called symmetry directions. Fig. 6.19, gives a 

projection of all point symmetry elements of space group P2/m2/m 2/m, and 
separate projections showing those elements related to the symmetry directions 

a, b and c. 

Symmetry of the Tetragonal P-Lattice. In addition to the symmetry of the 

stacked planes (Fig. 6.10a), the tetragonal P-lattice (Fig. 6.10b) has mirror 

planes _L c at x,y, 0 and x,y, \ and inversion centres (Fig. 6.10d). Further, the 

application of Rule I (m + I=>2_Lm) or rule II (m_Lm=>2) generates several 

2-fold axes. It should be noted in passing that the projection of the symmetry 
elements for this space group in Fig. 6.10 d is incomplete, since there are also 

glide planes present (Section 9.1). The same is true for the space groups in 
Figs. 6.11 d-6.13d, which in addition contain screw axes. These symmetry 

elements are essentially irrelevant to our present purpose, and will not be 

considered further here. 
The unit cell of a tetragonal P-lattice has the shape of a tetragonal prism; it is 

bounded by two lattice planes with square unit meshes and four planes with 

rectangular meshes, the symmetries of which are shown in Fig. 6.20. Compare 

Fig. 6.20 with Fig. 6.10d, noting that the 2-fold axes parallel to [110] and [110] do 

not appear in Fig. 6.20. 
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Fig. 6.19. a Space group P 2/m 2/m 2/m. In the other diagrams, only the symmetry elements 

corresponding to the symmetry directions a, b, c are shown: 
b P 2/m., c P...2/m..., d P.2/m 

i i 1 
a b c 

The 4-fold axes have the effect of making a and b equivalent, and they are 

often denoted as and a2, as in Fig. 6.10d. Similarly, the directions [110] and 
[110] are equivalent to one another. We must now introduce a further type of 

brackets, pointed brackets <). The symbol (uvw) denotes the lattice direction 
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c 

Fig. 6.20. Symmetry elements of space group 

P 4/m 2/m 2/m. The 2 along (110) and the inversion 

centres are not shown 

[uvw] and all directions equivalent to it. Similarly, (a) denotes the a-axis and all 
equivalent axes. For the tetragonal lattice, (110) implies both the [110] and the 

[110] directions, and (a) implies both the a- and b-axes. 
In the space group symbol, the symmetry elements are given in the order: 

c, (a), diagonal of the (a)-axes, viz. (110), all of which are called symmetry 

directions. Thus, equivalent symmetry operations are given only once. The 

space group symbol is thus P 4/m 2/m 2/m. 
1 1 I 
c (a) (110). 

Figure 6.21 gives a projection of all point symmetry elements of space group 
P4/m 2/m 2/m, and separate projections showing those elements related to the 

symmetry directions c, (a) and (110). 

Symmetry of the Hexagonal P-Lattice. In addition to the symmetry of the 

stacked planes, the hexagonal P-lattice, like the orthorhombic and tetragonal 

lattices, has mirror planes _L c at x,y,0 and x,y,j, and inversion centres 
(Fig. 6.12d), so the application of Rule I (m +1 =» 2 X m) or rule II (m _L m =» 2) 

generates several 2-fold axes. 
Figure 6.22 shows the projection of a hexagonal P-lattice on (001). The 6-fold 

axis makes a = b, and a and b may also be written as ai and a2. Another 

direction, called the a3-axis, may then be added, making an angle of 120° with a{ 

and a2, and equivalent to them both. ThusL(a) now_represents au a2, a3. The 
diagonals bisecting the (a)-axes are [210], [120] and [110]. As for the tetragonal 

lattice, the symmetry elements are arranged in the space group symbol in the 

order, c, (a), diagonals of the (a) axes, viz. (210), all of which are called symmetry 

directions. 
The space group symbol is thus: P 6/m 2/m 2/m. 

Ill 
c (a) (210). 

Figure 6.23 gives a projection of all the point-symmetry elements of space 

group P6/m2/m2/m, and separate diagrams showing those elements related to 

the symmetry directions c, (a) and (210). 

Symmetry of the Cubic P-Lattice. The symmetry of the stacking planes is 

shown in Fig. 6.13 a. The stacking results in a lattice with a cubic unit cell 
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-b(a?) 
f f f 

a (a,) 
b) 

P 4/m 

1 
c 

-+b(a?) 

I * I 

c) Cl fell) P ... 2/m .. 

1 
<a> 

<110) 

Fig. 6.21. a Space group P 4/m 2/m 2/m. In the other diagrams, only the symmetry elements 

corresponding to the symmetry directions c, (a), (110) are shown: 
b P 4/m., c P ... 2/m ..., d P.2/m 

i 1 1 
c (a) (110) 
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a3 

Fig. 6.22. Hexagonal P-lattice projected 

on (001) emphasising the symmetry direc¬ 

tions _(a)= a,, a2, a3 and (210) = [210], [110] 

and [120] 

(a0 = bo = Co). This means that the lattice planes 0,x,z and x,0,z have the same 
symmetry as x, y, 0, see Fig. 6.13 d. This equivalence of the planes generates four 
3-fold axes along the body diagonals of the unit cell as well as inversion centres, 

so these axes are represented as 3(= 3 +1). Application of rule I(m + 1^21m) 
or rule II (m _L m =» 2) generates 2-fold axes parallel to [110] and equivalent 

directions. (These 2-fold axes are not included in Fig. 6.13 d). 
In the space group symbol, the symmetry elements are given in the 

order: (a), (111) = body diagonals of the unit cell, (110) = face diagonals 

of the unit cell. The space group symbol for the cubic P-lattice is thus: 

P 4/m 3 2/m. 
i 1 1 

(a) (111) (110). 
Figure 6.24 gives a projection of all the point-symmetry elements of space 

group P4/m 3 2/m, and separate diagrams showing those elements related to 

the symmetry directions (a), (111) and (110). 

6.3 The Centred Lattices 

Consideration of the primitive lattices we have so far generated raises the 

question as to whether it is possible to import into the P-lattices one or more 
further lattice planes without destroying the symmetry. Let us first consider 

the monoclinic P-lattice. 
Figure 6.25 shows the monoclinic P-lattice and its symmetry, P2/m, 

projected onto x,0,z (see also Fig. 6.8 d). Each point of the lattice has 2/m 
symmetry, which implies the presence of an inversion centre in the point. 

Insertion of new lattice planes parallel to (010) into the lattice is only possible 

if the lattice points fall on a position which also has symmetry 2/m, i.e. on 

|,0,0; 0,],0; 0,0,]; U,0; ],0,]; 0,],], or ],],]. These possibilities must each 

be considered. 
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Fig. 6.23. a Space group P 6/m 2/m 2/m. In the other diagrams, only the symmetry elements 

corresponding to the symmetry directions c, (a), (210) are shown: 

b P6/m., c P...2/m..., d P.2/m 

i i i 
c (a) (210) 
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1 
<110> 

b(a2) 

Fig. 6.24. a Space group P 4/m 3 2/m . In the other diagrams, only the symmetry elements 

corresponding to the symmetry directions (a), (111), (110) are shown, 

b P 4/m . ..., c P ... 3 ..., d P ... . 2/m 

(i) ail) (n°) 
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C 

/ 

Fig. 6.25. The monoclinic P-lattice and its symmetry elements projected onto x, 0, z (O lattice 
point with y = 0) 

C 

/ / 
/ / 

/ / 

Fig. 6.26. The monoclinic C-lattice projected on 

x,0,z (3 represents a lattice point with y = i 

Fig. 6.27. The monoclinic A-lattice (a0, b0, c0) 

can, by interchanging a and c, be converted to a 

monoclinic C-lattice (ad, b0, c'0) 

a) Lattice Plane with Lattice Point at y ,0 (Fig. 6.26). These new lattice points 
centre the a, b-face of the unit cell. This is called a C-face centred lattice, or more 

simply a C-lattice, although this name is formally inexact, being used to describe 

a lattice with a C-face centred unit cell . The monoclinic C-lattice is illustrated 
in Table 6.3. 

b) Lattice Plane with Lattice Point at 0,y (Fig. 6.27). If the new plane centres 

the b, c-face, the result will be an A-face centred lattice. Since, however, in 

monoclinic cells, the a and c axes may lie anywhere in the mirror plane, they may 
be swapped, converting the A-lattice into a C-lattice. 
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O-o 

Fig. 6.28. The monoclinic B-lattice (a0,b0,Co) can be 

converted to a smaller monoclinic P-lattice (ao, b0, Cq) 

3-3 
/ / 

Fig. 6.29. The monoclinic I-lattice 

(a0, b0, c0) can be converted to a mono¬ 

clinic C-lattice (a^, b0, Co) 

c) Lattice Plane with Lattice Point at (Fig. 6.28). The result is now a 
B-lattice, from which a smaller, primitive unit cell can be chosen (outlined in 

bold) that still has monoclinic symmetry. 

d) Lattice Plane with Lattice Point at\,\,\ (Fig- 6.29). A lattice is formed, with a 
lattice point at the body centre of the unit cell. This is called a body centred or 
I-lattice (from the German innenzentriert). As with the A-lattice, choice of 

different axes convert this to a monoclinic C-lattice. 

e) Lattice Plane with Lattice Point at 1,0,0; 0,0 or 0,0, ±. In any of these cases, 

the result is simply to halve the cell; no new type of lattice is formed. 

f) It is also possible to introduce two lattice planes at the same time, for 
example, as in both a) and b), giving additional lattice points at |,|,0 and 

0,\,{ (Fig. 6.30a). Since it is necessary that all lattice points have the same 
environment, and parallel lattice lines the same period a further lattice point 

(shown with a dashed outline) must be added at 2,0,2- Thus, all the faces of the 

unit cell are now centred, giving an all-face centred or F-lattice. 

A general principle following from this is that a lattice centred on two faces 

cannot exist because the requirement that all lattice points are identical and 

parallel lattice lines have the same lattice period will convert it to an all-face 

centred lattice. 
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C 

/ 

Fig. 6.30 a, b. The development of the monoclinic F-lattice a. The monoclinic F-lattice 

(a0, b0, c0) can be converted to a monoclinic C-lattice (a(5, b0, Cq) b 

The monoclinic F-lattice can, in fact, be reduced to a C-lattice of half the 
volume, as is shown in Fig. 6.30b. 

We have now considered all the possibilities for introducing extra lattice 
planes into the monoclinic P-lattice, and have shown that all of these may be 
represented either as P- or C-lattices (A, I, F -*• C; B -* P). 

The orthorhombic lattice may be developed in the same way, giving rise of 

orthorhombic A-, B-, C-, I- and F-lattices. The I- and F-lattices are now not 
reducible as they were in the monoclinic case. The A-, B- and C-lattices are 

alternative representations of the same lattice; the a-, b-, and c-axes can always 
be chosen so as to generate a C-lattice. There are a few space groups which are 

customarily treated as having an A-lattice (see Table 9.2). The C-lattice may 

also be developed by the vertical stacking of planes with the centred rectangular 
unit mesh (Fig. 6.6b). 

Similar considerations to those in the monoclinic case lead from the 

tetragonal P-lattice to the tetragonal I-lattice, and form the cubic P-lattice to the 
cubic I- and F-lattices (Table 6.3). 

An examination of the hexagonal P-lattice will show that the only point with 

the same symmetry as 0,0,0 is 0,0J. The addition of a lattice plane there will 
merely halve the size of the unit cell. 

A 6-fold axis always contains a 3-fold axis. Starting from this fact, the plane 
lattice with a 120° rhombus as unit mesh contains a 3-fold axes at 0,0, z; 

3,3, z and 3,3, z (Fig. 6.11a). It is possible to add a second plane at a height 

of \Co with a lattice point on the 3-fold axis at |,|,z and a third plane at a height 

of § c0 with a lattice point on the 3-fold axis at |,|,z (Fig. 6.11b). The fourth 

plane will then come at a height of c0, directly above the first. This new 

arrangement of lattice points reduces the 6-fold axes to 3-fold and removes the 
mirror planes at x, 0, z; 0, y, z and x, x, z as well as the 2-fold axes parallel to the 

c-axis. The resulting lattice has the shape of a hexagonal lattice (a0 = bo^c0, 
a = /? = 90°, y = 120°) but contains three lattice points per unit cell (0 0 0- \ ± F 
12 2\ V’5935353? 

3 5 3 ? 3 j- 

It is possible, however, to describe this lattice by a primitive unit cell 

(ao = bo = Co, a' =/?' = /). If the first cell is used to describe the lattice, it is called 
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a trigonal R-lattice, if the second is used, the lattice is called rhombohedral P 

(Fig. 6.11b). The unit cell of the rhombohedral P-lattice has indeed the shape of 

a rhombohedron, with six rhombi as faces. 
Special cases of the rhombohedral P-lattice are: (a) a’ = 90° gives the cubic 

P-lattice; (b) a' = 60° gives the cubic F-lattice and (c) a' = 109.47° gives the cubic 

I-lattice. 

6.4 The Symmetry of the Centred Lattices 

With the exception of the trigonal R-lattice, the derivation above of the centred 

lattices always paid strict attention to retaining the full symmetry of the 
corresponding P-lattice. All the symmetry elements of the P-lattice remained, 
only the translation properties were altered. The centring does indeed introduce 

new symmetry elements, notably screw axes and glide planes (see Chap. 9.1). In 
spite of this, the symbols for the space groups of the centred lattices may easily 

be given, since the new symmetry elements do not appear in them. 
Now it is not difficult to derive the symbol for the trigonal R-lattice from the 

reduced symmetry of the lattice planes. There are, in addition to the normal 
ones, further inversion centres, which, by Rule I (m +1 =*• 2 _L m), generate a set 

of 2-fold axes parallel to a,^^ (Fig. 6.11 d). The 3-fold axis becomes 3 since 
3 +1 =* 3. The order of the symmetry directions here is: c, (a), giving the symbol 

R 3 2/m. 
1 1 
c (a). 
The space group symbols of the 14 Bravais lattices are given in Table 6.4 in 

the same order as Table 6.3. 
Table 6.3 contains the 14 lattices, which are usually known as the Bravais 

lattices. 

Table 6.4. The space group symbols for the 14 Bravais lattices 

P C I F 

Triclinic PI 

Monoclinic P2/m C 2/m 

Orthorhombic P2/m 2/m 2/m C2/m 2/m 2/m 12/m 2/m 2/m F2/m2/m 2/m 

Tetragonal P4/m 2/m 2/m 14/m 2/m 2/m 

Trigonal 
R 32/m 

Hexagonal 

P 6/m 2/m 2/m 

Cubic P 4/m 3 2/m 14/m 3 2/m F 4/m 3 2/m 



104 6 The 14 Bravais Lattices 

Table 6.5. Number and coordinates of the lattice points in the unit cells of the Bravais lattices 

Lattice 
No. of lattice points 

in unit cell 
Coordinates of lattice points 
in unit cell 

P 1 0,0,0 

A 2 0,0,0; 0,1,1 

B 2 0,0,0; 1,0,1 

C 2 0,0,0; y,0 

I 2 o 0 0* 1 1 x- 
2’2’2 

R 3 o 0 o- ? 1 L i 2 ? ’ ’ ’ 3’ 3’ 3’ 3’3’3 

F 4 0 0 O’ 1 1 O' 1 0 L 0 - 1 
2’ V 2’ 2’ v,2’2 

The 14 Bravais lattices represent the 14 and only ways in which it is possible to 
fill space by a three-dimensional periodic array of points. 

All crystals are built up on one of these lattices. In Chapter 3, we defined a 
crystal structure as a lattice plus a basis. While the number of lattices is fixed at 

14, there are infinitely many possible ways of arranging atoms in cell. Any 
crystal structure, however, has only one Bravais lattice. 

The number and coordinates of the lattice points in the unit cells of the 
Bravais lattices is given in Table 6.5. 
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EXERCISES 

Exercise 6.1. Symmetry of plane lattices. 

a) Determine the symmetry elements for the given plane lattices, and draw these in 

their places on the lattice. Note that only m, 2, 3,4 and 6 normal to the plane of the 

paper need be considered. 
b) Draw in the edges of the unit mesh and give the lattice parameters. Which lattice 

parameters are equivalent and why? 

c) Determine which symmetry elements are themselves equivalent by symmetry. 

• 1) 

2) 

► 
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Exercise 6.2. For the given two-dimensional structures, determine: 

a) The unit mesh. 
b) The symmetry elements. It is only necessary to indicate those symmetry elements 

which lie within the unit mesh. As in Exercise 6.1, only m, 2,3,4 and 6 normal to the 

plane of the paper need be considered. 

Two-dimensional structures after Kockel 

v~p v p 
<d <J z\ 

> ^1 > “V p 
<1 <J /s 

> P^, p 
<1 A_ <l £ 

> Z7 ZZ. 

► 
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~<3 <3 <3 < 
> r r p 

<3 <J <3 
p r r r 

<1 <1 <3 <3 
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Exercise 6.3. (Refer to Symmetry Rule I) 

a) Draw the given combinations of two symmetry elements on the stereographic 
projection. As the inversion centre is a single point, it cannot be shown on the 
stereogram, but may be taken to lie at the centre of the projection. Draw in a pole 
which does not lie on any symmetry element, and allow the symmetry elements to 
operate on it. On the basis of the positions of the resulting poles, determine the 
third symmetry element generated by the combination of the given symmetry 
elements, and draw it on the stereogram. 

1 ) 21m 2) 2 + T 3)m + T 

\ 

\ 

) 

/ 
/ 

I 
\ 
\ 

N 

\ 
) 

/ 

/ 
l 

\ 

/ 
/ 

Demonstrate that: 

4JLm-*l 4 + 1-^m 
but 

_ m+I-*2. 
61m — I 6 + l-*m 

b) Below are given an orthorhombic unit cell and its projection on x, y, 0. Draw the 
third symmetry element generated by the two given elements on either or both of 
these, give its symbol and the coordinates of its position. Note that only one 
symmetry element of each type is drawn in the cell. 

i) 
o 
o 

a 

m at 0,y,z and 1 at 0,^,0 generate ... at ... 

-b 
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2 at 1,0, z and m at x,y,A generate ... at... 

6 at 0,0, z and 1 at 0,0,0 

generate ... at ... 
4 at \,\,z and m at x,y,A 

generate ... at... 

m at x,l,z and 1 at 1,1,1 

generate ... at... 
m at x,y,A and 1 at 0,1,1 

generate ... at... 
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Exercise 6.4. (Refer to symmetry rule II) 

a) On the following stereograms, draw in the third symmetry element generated by the 

combination of the given two. 

► 
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b) An orthorhombic unit cell and its projection on x, y, 0 are given below. On either of 

them, draw the third symmetry element generated by the two given elements, and 

give its symbol and the coordinates of its position. 

m at x,|,z and at x,y,| generate ... at... 

2) 

^TTTTrTTTTTTTTn^| — b 

a 

m at 0, y, z and 2 at 0, y, ± generate ... at... 

4) 

If 

m at x, z and at y, z m at ±, y, z and 2 at ±, 0, z 

generate ... at... generate ... at... 
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Exercise 6.5. 

Which of the 14 Bravais lattices are each of the following? 
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Exercise 6.6. 

a) Draw the unit cells of each of the following lattices as a projection on x, y, 0, or, 

in the monoclinic case, on x, 0, z. Use a scale of 1A = 1 cm. 

Monoclinic P: a0 = 5.5, b0 = 4.0, c0 = 4.0A; /? = 105° 

Orthorhombic P: a0 = 3.0, b0 = 4.5,oC0 = 4.0 A 
Tetragonal P: a0 = 4.0, c0 = 3.0 A 
Hexagonal P: a0 = 4.0, c0 = 3.0 A 
Trigonal R: a0 = 4.5, c0 = 3.0 A 

b) Determine the symmetry operations of lattices you have drawn, and plot the 

symmetry elements on the projection of the lattice. 

c) Now use a coloured pen to colour the symmetry elements, using colours so that 

symmetry elements have the same colour if they belong to the same symmetry 

direction (i.e. one of the various symmetry directions used in the space group 

symbol). 

d) Give the space group symbol for each lattice, making use of the colours of sym¬ 

metry elements you have chosen in (c). 

Exercise 6.7. Derive the three centred orthorhombic lattices (cf. Section 6.3). 

a) What is the symmetry of a lattice point in the orthorhombic P-lattice? 

b) Which points in the unit cell of the P-lattice have the same symmetry as the lattice 

points? Give their coordinates. 

c) Bring a lattice plane, parallel to (001) into a position such that a lattice point comes 

into coincidence with each of the positions you have determined in (b). Repeat the 

above exercise with two planes. 

Exercise 6.8. Similarly, derive the centred tetragonal lattices. 
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In the various lattices, the vectors a, 5 and c must be chosen and associated with 
a system of suitable crystallographic axes, a,b,c. This is not done arbitrarily. 
Generally, so far as is possible, the choices are made so that the direction of 
rotation axes, rotoinversion axes and the normals to mirror planes are parallel 

to a,b,c and to a,b,c: 

a,b,c; a,b,c//X,X, normal to m. 

It is possible to distinguish six axial systems (systems of crystallographic 

axes), which are given in Figs. 6.7c-6.13c and which correspond to the six 
primitive lattices. These axial systems naturally apply equally to the centred 

lattices. On this basis, we may define a crystal system: 

Definition 

All lattices, all crystal structures and all crystal morphologies which can be 

defined by the same axial system belong to the same crystal system. 

This definition distinguishes six crystal systems. It is, however, usual to 
separate the system of crystallographic axes based on a = b¥=c, a = (3 = 90°, 

y = 120° into a hexagonal and a trigonal crystal system. The hexagonal system 
is characterised by the presence of 6 or 6, while the trigonal is characterised 

by 3. 
In Table 7.1, the seven crystal systems are listed along with the restrictions on 

the axial system. It is important to remember, however, that equivalence of 

crystallographic axes and special values of the angles are simply a consequence 

of the underlying symmetry. Those symmetry elements which cause equivalen¬ 
ces to arise between crystallographic axes are listed. A full list of the symmetry 

elements characterising the various crystal systems is given in Table 8.9. 
The space groups of the lattices themselves have the highest symmetry which 

can occur in that crystal system (cf. Table 6.4). Symmetry elements in each 
crystal system can only be orientated in certain directions with respect to one 

another, since it is not those symmetry elements alone, but they and all their 
combinations which must be in accordance with the properties of the space 

lattice. The symmetry of the lattice automatically determines all the angles 
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Table 7.1. The seven crystal systems 

Crystal system 
Restrictions on the 

axial system 
Figure 

Equivalences of 

crystallographic 

axes caused by: 

Triclinic aAbAc a A/? Aya 6.7c 

Monoclinic aAbAc a = y = 90°, /?>90° 6.8c 

Orthorhombic aAbAc a = P = y = 90° 6.9c 

Tetragonal 
a = bAc a=P = y= 90° 

(ai = a2 A c) 
6.10c 4, 4//c 

Trigonalb 

a = b Ac a = f} = 90°, y = 120° 

(ai = a2 A c) 

6.12c 3//c 

Hexagonal 6.12c 6, 6//c 

Cubic 
a = b = c a=p = y= 90° 

(aj = a2 = a3) 
6.13c 3// (HI) 

a As usual, the signs = and A are to be read as must be equivalent and need not be equivalent 

respectively as a consequence of symmetry. 

b An alternative definition divides the hexagonal and trigonal systems differently, giving a 

hexagonal and a rhombohedral system. The rhombohedral system (see Fig. 6.11b) has the 
restrictions on its axial system: a' = b' = c'; a'= /?' = /. 

which the symmetry elements of the particular crystal system may make with 
one another. 

The symmetry directions in crystal systems are summarised in Table 7.2. 

These symmetry directions are used for point groups (Chap. 8) and space 
groups (Chap. 9). Symmetry directions are defined differently for each crystal 

system. For some subgroups, a symmetry element does not necessarily exist 

in the second and/or third position of the symmetry directions (cf. Table 
8.10). 

3. C 
The normalized axial ratios from morphology — : 1: — or from the 

b b a o q 

crystal structure — : 1: — for an orthorhombic crystal are discussed in sec- 
bo b0 

tion 4.7. These ratios are summarised in Table 7.3 for all crystal systems. They 
may be expressed more simply for systems of higher symmetry. 

The U.S. Department of Commerce: National Bureau of Standards and the 
International Center for Diffraction Data have produced a series of volumes 

Crystal Data - Determinative Tables. These contain an extensive listing of 

important crystallographic data. Triclinic (anorthic), monoclinic and ortho- 
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Table 7.2. Symmetry directions in the seven crystal systems 

Position in the international symbol 

1st 2nd 3rd 

Triclinic - 

Monoclinic b 

Orthorhombic a b c 

Tetragonal c (a) (110) 

Trigonal c (a) 
_c 

Hexagonal c (a) (210) 

Cubic (a) (HI) (110) 

c There are a few trigonal space groups with a 3rd. symmetry direction (210) as in the 

hexagonal system, for example P31m or P312 with m or 2 in (210), cf. Table 9.2 

Table 7.3. Normalized axial ratios as used for the various crystal systems. 

Crystal system Axial ratios 

morphological structural 

Triclinic a c aQ . ^ , Cp 

bo bo 
Monoclinic 

Orthorhombic 
b b 

Tetragonal c Co 
Trigonal 

Hexagonal 
a a0 

Cubic - a0 

rhombic crystals are listed in the order of the -p- ratio, where c0<a0<b0. 

0 c0 
Tetragonal, trigonal and hexagonal crystals are arranged by the — ratio, 

ao 

and cubic crystals by the value of the lattice constant a0. 



■ 

ft 



8 Point Groups 

8.1 The 32 Point Groups 

As has been noted, the space groups of the Bravais lattices are those with the 

highest possible symmetry for the corresponding crystal systems. When the 

lattice points are now replaced by actual atoms, ions or molecules, they must 

themselves possess at least the full symmetry of the lattice point if the space 
group is to remain unchanged. Now the symmetry of a lattice point is easily 

determined from the space group; it consists of all of the point symmetry 
elements of the space group that pass through the point (X, X, m) or lie on it (1). 

In each crystal system, only the space group of the P-lattice or, in the trigonal 
system the R-lattice, need be considered (see Figs. 6.7 d-6.13d), since the centred 
lattices in each system define identical points. Lattice translations, the most 

important of all the symmetry operations for space groups, are now discarded, 

and the set of symmetry elements remaining is called a point group. The 
symmetry elements of these point groups and their stereographic projections 

are set out in Figs. 6.7e-6.13e, and the conversion from space group to point 
group in Table 8.1. There is a great deal of useful information in the diagrams, 

and it is worth taking the trouble to study them carefully. 

Table 8.1. Correspondence of one of the space groups of highest symmetry in each crystal 

system with the point group of highest symmetry in that crystal system 

Crystal system Space group Point group Fig. 

Triclinic Pi - I 6.7d, e 

Monoclinic P 2/m - 2/m 6.8d, e 

Orthorhombic P 2/m 2/m 2/m-* 2/m 2/m 2/m 6.9d,e 

Tetragonal P 4/m 2/m 2/m— 4/m 2/m 2/m 6.10d, e 

Trigonal R 3 2/m - 3 2/m 6.11 d,e 

Hexagonal P 6/m 2/m 2/m— 6/m 2/m 2/m 6.12d,e 

Cubic P 4/m 3 2/m — 4/m 3 2/m 6.13d, e 
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The point groups are made up from point symmetry operations and 
combinations of them. Formally, a point group is defined as a group of point 

symmetry operations whose operation leaves at least one point unmoved. Any 

operation involving lattice translation is excluded. 

The symmetry directions have the same relationship to the symmetry elements 

of the point group as they do to those of the space group (Table 7.2). Those point 
groups derived from the space groups of the lattices are also the highest 

symmetry possible for the particular crystal system. 
These point groups of highest symmetry in each crystal system all contain the 

symmetry elements of one or more point groups of lower symmetry (sub¬ 

groups). These will be developed below for some crystal systems: 

a) TRICLINIC. The only subgroup of 1 is 1. Starting from the space group Pi 

(Fig. 6.16), all points which do not lie on inversion centres have the point 

symmetry 1. 

b) MONOCLINIC. 2/m has the subgroups 2, m, I (cf. Symmetry rule I) and 1. 

Since I and 1 belong to the triclinic system, only 2 and m are monoclinic point 
groups (cf. Fig. 6.8f). They possess sufficient symmetry to define the mono¬ 

clinic system: mlb in the a,c-plane, and 2 parallel to b and normal 
to the a,c-plane. In the space group P2/m (Fig. 6.8d), the point 0,0,0 has 

the point symmetry 2/m, while any point on x,fz has point symmetry m, 

and any point on the line \ ,y,\ has point symmetry 2 (cf. Fig. 9.13) 

c) ORTHORHOMBIC. If inversion symmetry is removed from point group 

2/m 2/m 2/m, each 2/m must be reduced either to 2 or to m (Symmetry rule I). 
The possible orthorhombic subgroups are thus mmm, mm2 (or m2m or 2mm), 
m22 (or 2m2 or 22m) and 222. The symmetry elements of mmm are given on the 

stereogram in Fig. 8.1. By Symmetry rule II (mlm=»2), 2-fold rotation axes 

are formed at each intersection of planes, and the point group 2/m 2/m 2/m has 

been reformed. Similarly, the combination 22m also regenerates 2/m 2/m 2/m 

(cf. Fig. 8.2). The orthorhombic subgroups of 2/m 2/m 2/m are thus 222 and 
mm2 (Fig. 6.9f). As an example, in the space group P2/m 2/m 2/m (Fig. 6.9d), 

all points on \,\,z (z AO or \) have point symmetry mm2. 

In a similar way, the other crystal systems may be treated, giving in total 

32 point groups or crystal classes, which are summarised in Table 8.2. They are 
called the crystallographic point groups. 

All crystallographic point groups are subgroups of either 4/m 3 2/m or 

6/m 2/m 2/m or both. The hierarchy of the subgroups is illustrated in 
Fig. 8.3. 

Some point groups have overdefined symbols, as we have seen for 

2/m 2/m 2/m (Fig. 8.1). In some of these cases, the symbol is abbreviated; 
the abbreviated symbols are shown in round brackets in Table 8.2. These 
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/ 
\ 

' \ 

HH—I 

Fig. 8.1. The three mutually perpendicu¬ 

lar mirror planes of mmm showing with 

dashed outline the automatically deve¬ 

loped 2-fold axes (Symmetry rule II). 

Thus mmm is in fact 2/m 2/m 2/m and 

is used as an abbreviated symbol for it 

Fig. 8.2. The symmetry elements of m22 (fully 

drawn in) on the stereogram, automatically 

generate (Symmetry rule II) the other sym¬ 

metry elements shown with dashed outline, 

generating 2/m 2/m 2/m. Thus, m22 is in fact 

identical with 2/m 2/m 2/m 

Table 8.2. The 32 point groups 

Crystal system Point groups 

Symmetry 

and stereograms 
of the point groups 

in Fig. 

Triclinic I 1 

Monoclinic 2/m m, 2 6.8e,f 

Orthorhombic 
2/m 2/m 2/m mm2, 222 

(mmm) 
6.9e, f 

Tetragonal 
4/m 2/m 2/m 42m, 4mm, 422 

(4/mmm) 4/m, 4, 4 
6.10e,f 

Trigonal 
3 2/m 3m, 32, 3, 3 

(3m) 
6.11e, f 

Hexagonal 
6/m 2/m 2/m 6m2, 6mm, 622 

(6/mmm) 6/m, 6, 6 
6.12e,f 

Cubic 
4/m 3 2/m 43m, 432, 2/m3, 23 

(m3m) (m3) 
6.13e,f 

abbreviated forms are also used for space groups (Chap. 9). They are called 

short symbols to distinguish them from the full symbols. 
Up to now, symmetry symbols have always been used in relation to the 

symmetry directions. The symbol on its own, however, clearly shows the 

relative orientation of the various symmetry elements. Thus: 

X2: rotation axis X and 2-fold axes perpendicular to it, e.g. 42(2) 

(Fig. 6.10f). 
Xm: rotation axis X and mirror planes parallel to it, e.g. 3m (Fig. 6.11 f). 
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Fig. 8.3. The crystallographic point groups and their subgroups, after Hermann [18]. The 

circles corresponding to the highest symmetry group of each crystal system are outlined in 

bold. Double or triple lines indicate that the supergroup is related to the subgroup in two or 

three inequivalent settings. Connecting lines between point groups of the same crystal system 

are bold, all others are plain or dashed. The presence of a line of any sort indicates that the 

lower group is a subgroup of the higher. On the ordinate is given the order of the point group, 

i.e. the number of faces in the general crystal form 

X2: rotoinversion axis X and 2-fold axes perpendicular to it, e.g. 42(m) 
(Fig. 6.10f). 

Xm: rotoinversion axis X and mirror planes parallel to it, e.g. 6m(2) 
(Fig. 6.12 f). 

X/mm: rotation axis X and mirror planes both parallel and perpendicular to it, 
e.g. 4/mm(m) (Fig. 6.10f). 
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Table 8.3. The Schonflies symbols for the point groups with the equivalent International 
symbols 

Cn: n-fold rotation axis; identical with X 

Cn C, C2 C3 c4 c6 

X 1 2 3 4 6 

Cni: odd-order rotation axis and inversion centre i = X (odd) 

Cs: (s for German Spiegelebene) = mirror plane; 

Sn: n-fold rotoreflection axis (only S4 and S6 used) 

Ci CS C3i = Sg s4 

X I (2=) 
m 3 4 

Cnh: n-fold axis normal to mirror plane -X/m 

Cnh c2h c3h c4h c6h 

X/m 2/m 
(3/m-) 

6 
4/m 6/m 

Cnv: n-fold axis parallel to n mirror planes = Xm 

Cnv c2v c3v c4v C6v 

Xm mm2 3m 4mm 6mm 

Dn: n-fold axis normal to n 2-fold axes = X2 

Dn d2 d3 d4 d6 

X2 222 32 422 622 

Dnd: as Dn plus mirror planes bisecting 2-fold axes 

Dnd D2d D3d 

Xm 42m 3m 

Dnh: as Dn plus mirror plane normal to n-fold axis 

Dnh D2h D3h D4h D6h 

X/mm mmm 
(3/mm =) 

6m2 
4/mmm 6/mmm 

T (tetrahedral) and O (octahedral) groups 

T Th 0 Td oh 

23 m3 432 43m m3m 
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The symbols we have been using so far for space groups and point groups are 
known as the International or Hermann-Mauguin symbols. In physics and 

chemistry, the older Schonflies symbols are widely used. Unfortunately, 

Schonflies symbols are impossible to adapt as useful space group symbols. 
Although they are adequate to define point groups, there is no particular 

advantage to using them. Table 8.3 gives the International equivalents of all the 

Schonflies symbols for the crystallographic point groups. 

8.2 Crystal Symmetry 

A space group reveals the entire symmetry of a crystal structure. When we 
consider only the morphology of a crystal, the lattice translations which 
characterise the space group are no longer relevant, and what is left is the point 

group which is implied by that space group. If the crystal is bounded by plane 
faces, the symmetry of its morphology will be the symmetry of that point group. 

Figure 8.4 illustrates the symmetry of a crystal of PbS (galena) (cf. Fig. 4.1). 

The symmetry elements which are apparent in the crystal are summarised on the 
stereographic projection. The point group of the crystal is 4/m 3 2/m. In Table 

8.11, examples of crystals in various point groups are given in the right-hand 

column. 

8.2.1 Crystal Forms 

In Chapter 4.2, crystal form was provisionally defined as a set of “equal” faces. 

We are now in a position to give an exact definition. 

Fig. 8.4a-d. A galena crystal in point group 4/m 3 2/m. 

(ill) (iilo> 
In a, only those symmetry elements which relate to the a-axis 

and equivalent directions (i.e. the b- and c-axes) have been 

drawn in (4/m -> (a)); in b, only those relating to the [111] and 

equivalent directions (3 -* (111)); in c, only those relating to the 

[110] and equivalent directions (2/m (110)). The stereogram of 
the symmetry elements is given in d 
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Fig. 8.5 a, b. Stereograms of point group 4. a General form, tetragonal pyramid {hkl}. 

b Limiting form tetragonal prism {hkO} of general form tetragonal pyramid {hkl} 

When the symmetry operations of a point group are applied to a crystal 

face, a number of equivalent faces will be produced. Thus, as shown in the 
stereographic projection in Fig. 8.5a, application of the symmetry operation 

of the point group 4 on the pole of a face produces a tetragonal pyramid. 

A set of equivalent faces is called a crystal form. 

Exercise 5.1b gives a manipulation which will always result in the 
production of the stereogram of a crystal form. 

The individual faces of the tetragonal pyramid in Fig. 8.5a have been 

indexed, i.e. assigned the values of their Miller indices. A scheme for indexing 
the faces of tetragonal crystals will be given later (Fig. 8.8). A crystal form is 

identified by the indices of one of the faces belonging to that form. In the case of 

a form, the indices are placed in braces, thus: {hkl}, in order to distinguish 
between a face and a form. The relationship between (hkl) and {hkl} is the same 
as that between [uvw] and (uvw). 

Each face of the tetragonal pyramid in Fig. 8.5 a is itself unsymmetrical, as 
there is no symmetry element normal to it. On its own, it thus has face symmetry 1. 

Three types of crystal forms must now be distinguished: a general form, a 

special form and a limiting form. 

A general form is a set of equivalent faces, each of which has face symmetry 1. 

In other words, when the poles of the faces of a general form are placed on a 

stereogram of the symmetry elements, they do not lie on any of them. General 
forms have general indices {hkl}. The tetragonal pyramid {hkl} in Fig. 8.5a is 

such a general form. The poles of the faces of a general form have two degrees of 

freedom, shown as arrows in the figure. The face can be displaced in two 

directions without causing the tetragonal pyramid to cease to be a crystal form. 

All that happens is that the inclination of the faces to one another is altered. 

The variation of the indices {hkl} gives rise not to only one, but to an infinite 

number of general crystal forms. In some point groups, care must be taken with 

the signs of the indices. In any case, the possibility of infinitely many crystal 
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Fig. 8.6a, b. Stereograms of point group 4mm. a Special form, tetragonal pyramid {hhl}. 

b Limiting form, tetragonal prism {110} of special form, tetragonal pyramid {hhl} 

forms is only of theoretical interest, since in practice, crystals rarely have faces 

with large values of h, k or 1. 

A special form is a set of equivalent crystal faces which themselves have a face 

symmetry higher than 1. 

In a stereogram of the symmetry elements, the poles of the faces of a special 
form lie on at least one of them. Figure 8.6a shows the stereogram of the 

symmetry elements of the point group 4mm. If the pole of a face (hhl) is entered, 
the application of the symmetry elements gives a tetragonal pyramid {hhl}. This 

is a special form, as the faces lie on a symmetry element, and each has face 
symmetry ..m. The symmetry is given as ..m with reference to the order of the 
symmetry directions used for point groups of the tetragonal system: c, (a), (110). 

The mirror planes with which we are concerned here are those normal to (110). 
The poles of the faces of this special form have only a single degree of freedom. 

The form will remain a tetragonal pyramid only as long as the pole remains on 
the mirror plane ..m. Should the pole move until it coincides with the 4-fold axis, 

another special form arises, the pedion {001} with face symmetry 4mm. This 
form no longer has any degree of freedom. A special form always has indices 

which are a special case of {hkl}, such as {hhl}, {h01} or {100}. 

A limiting form is a special case of either a general or a special form. It has the 
same number offaces, each of which has the same face symmetry, but the faces 

are differently arranged. 

Consider the situation in Fig. 8.5 a if the pole moves to the periphery of the 

equatorial plane of the stereographic projection. The result is a tetragonal prism 

{hkO} which is the limiting form of the general form tetragonal pyramid {hkl} 

with face symmetry 1. A similar movement of the pole {hhl} in Fig. 8.6b, along 

the mirror plane to the periphery of the equator gives rise to the tetragonal 

prism {110}, the limiting form of the special form {hhl} with face symmetry ..m. 

Each point group has characteristic forms. What follows is a description of 

those of the point group 4/mmm, the point group of highest symmetry in the 
tetragonal system. Figure 8.7 a is a stereogram of the symmetry elements of this 

point group. A single, asymmetric face unit is shown hatched in Fig. 8.7a. 
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General 
form 

Special 
form 

b) Ditetragonal 
prism {hkO} 

m.. 

c) Tetragonal 
dipyramid {hOl} 

.m. 

d) Tetragonal 
dipyramid {hhl} 

..m 

/ 
/ 

< 
V 

e) Tetragonal 
prism {100} 

m2m. 

V 

f) Tetragonal 

prism {110} 
m.m2 

/ \ 

g) Pinacoid {001} 
4mm 

Fig. 8.7a-g. Crystal forms of point group 4/mmm, with their face symmetries. A stereogram 

of the symmetry elements is given, with the asymmetric face unit and stereograms of each 

form 
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The asymmetric face unit of a point group, in terms of its stereographic pro¬ 

jection, is the smallest part of the surface of the sphere which, by the application 

of the symmetry operations, will generate the entire surface of the sphere. 

This particular asymmetric face unit is bounded by m.., .m. and ..m. The 

vertices have face symmetry 4mm, m2m. and m.m2. If a pole is entered in the 
asymmetric face unit on the stereogram and operated on by the symmetry, the 

result is a ditetragonal dipyramid, {hkl}, shown in Fig. 8.7a. This form has two 
degrees of freedom. A ditetragonal dipyramid will be generated as long as the 

pole does not move onto one of the symmetry elements which constitute the 
boundary of the asymmetric face unit. The ditetragonal dipyramid is a general 
form (face symmetry 1, two degrees of freedom, {hkl}). The size of the 

asymmetric face unit is simply the ratio of the surface area of the sphere to the 

number of faces in a general form. 

c __^surface area of the sphere_ 
*-asym. face unit— , r r , , r 

number of faces in the general form 

In this case, the number of such faces is 16, so the asymmetric face unit shown 

hatched in Fig. 8.7a is ^ of the total surface area of the sphere. 

An asymmetric face unit of a point group contains all the information necessary 

for the complete description of the crystal forms in this point group. (This 
definition may be compared with that of the asymmetric unit on p. 198.) 

If the general pole (hkl) is moved onto the mirror plane m.., this pole, and all 

the others in the general form {hkl} will undergo a change. As the poles 
approach this mirror plane, the angle between (hkl) and (hkl) becomes 

progressively smaller, and is equal to 0 at the mirror plane. At this point, the two 

faces (hkl) and (hkl) have coalesced into a single face (hkO). As shown in 

Fig. 8.7b, the ditetragonal dipyramid has become a ditetragonal prism {hkO}. 
Figure 8.8 shows the stereographic projection of a ditetragonal prism {hkO} 

and the indices of the poles of its faces. In the stereogram, a section through the 
ditetragonal prism is shown in bold lines which are extended (dashed lines) to 

show the intercepts on the axes better, (hkO) = (210). 

A pole of a face on the mirror plane .m. gives, after the application of the 

symmetry operations, a tetragonal dipyramid, {hOl}, shown in Fig. 8.7c. A pole 

of a face on ..m gives a tetragonal dipyramid {hhl}, shown in Fig. 8.7d. The three 

forms {hkO}, {hOl} and {hhl} all have eight faces, i.e. half of the number of faces 
of the ditetragonal dipyramid. These three forms each have one degree of 

freedom. Each form retains its identity so long as the pole remains on the 
appropriate edge (m) of the asymmetric face unit. 

The poles of faces on the vertices of the asymmetric face unit have no degree 

of freedom. The application of the symmetry operations to a pole with face 

symmetry m2m. gives a tetragonal prism {100} (Fig. 8.7e). Similarly the pole 
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Fig. 8.8. Section through a ditetragonal 

prism {outlined), in the equatorial plane 

of a stereographic projection, with the 

poles of the relevant faces and their indi¬ 

ces, {hkO} (= {210}) shown. The dashed 

lines serve to indicate the intercepts of the 

faces on the axes 

b(a2) 

with face symmetry m.m2 gives a tetragonal prism {110} (Fig. 8.7f), while that 

on 4mm gives a pinacoid {001} (Fig. 8.7g). 
The forms {hkO}, {hOl}, {hhl}, {100}, {110} and {001} have the face symmetries 

given in Fig. 8.7 and are thus special forms. 
Figure 8.9 shows a stereogram with the poles of the crystal forms of point 

group 4/mmm, the highest point symmetry of the tetragonal system. The poles 
of the faces with negative indices I are not shown. The heavy lines divide the 

surface into the 16 asymmetric face units of the point group 4/mmm. Those 
poles which lie on the corners of the asymmetric face unit have no 

degree of freedom. Those on the edges of the asymmetric face unit have one 
degree of freedom, and represent all other poles lying on the same edge. The 

poles lying within the asymmetric face unit have two degrees of freedom and 
represent all faces whose poles lie in this area. In every case, taken together, 

these faces produce ditetragonal dipyramids. 
If the poles of the faces of a ditetragonal prism {hkO} (FigL8.8) are split and 

moved an equal amount in the directions of (001) and (001), a ditetragonal 

dipyramid {hkl} will be formed. The indexing of the faces of this form arise from 
the {hkO} of the ditetragonal prism by the replacement of 0 with 1 and 1, as in 

Fig. 8.9, the indices of all 16 faces of the ditetragonal dipyramid can be read 
from the stereogram in Fig. 8.9, as can the indices for the faces of all of the 

tetragonal forms. 
In 4/mmm, there are n = 16 poles for faces of the general form, and 

2n + 2 = 34 poles for faces of special forms, each type of form being considered 

only once. The same relationship between the numbers of faces for the general 

form and the total number of faces for all special forms also applies to the point 
group of highest symmetry in the orthorhombic, hexagonal and cubic systems. 

Starting from the point group of highest symmetry in a crystal system, the 

subgroups can be developed — see Section 8.1. There is a similar relationship 

between the general crystal form of the point group of highest symmetry and 

those of its subgroups belonging to the same crystal system. These may be 

illustrated by starting from the stereogram of the crystal forms of 4/mmm in 

Fig. 8.9 and developing those of the subgroup 4mm. 



130 8 Point Groups 

Fig. 8.9. Stereogram of the poles of the faces of all crystal forms of 4/mmm, the point group of 

highest symmetry in the tetragonal system. The stereogram shows the position and the indices 

for each face in each form. Poles of faces with negative values of 1 are not included. The 

spherical triangle with vertices (001), (100) and (110) is an asymmetric face unit of the point 
group 4/mmm 

Place a piece of tracing paper over the stereogram in Fig. 8.9, choose suitable 

symmetry directions and mark on it those symmetry elements which belong to 

4mm. A possible asymmetric face unit for this point group is a region bounded 
by the pole faces (001), (100), (001) and (110). Because half of this asymmetric 

face unit lies in the southern hemisphere, it is shown checked in Fig. 8.10a. It is 

twice the size of the asymmetric face unit of 4/mmm, and is made up by 
combining two such asymmetric face units. 

Now enter on the tracing paper the pole of the general face (hkl), and allow 

the symmetry operations of 4mm to act on it. The result is eight poles which 
define a ditetragonal pyramid {hkl} (Fig. 8.10a!). The pole (hkl) which belongs 

to the same asymmetric unit as (hkl) in 4mm gives a second ditetragonal 

pyramid {hkl} (Fig. 8.10a2). Thus, the ditetragonal dipyramid which is the 
general form in 4/mmm reduces to two ditetragonal pyramids in 4mm. The 

doubling of the size of the asymmetric face unit results in a halving of the 
number of faces in the general form. 

In the same way, the general forms of the other tetragonal point groups may 
be developed. The relevant asymmetric face units are given in Table 8.4. 
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a Ditetragonal pyramids, 1, {hkl} (1) and {hkl} (2) 

A 

+ ! 

/ O 
I 
\ 

°\ 
1 
/ Vo^jy 

b Tetragonal pyramids, .m., {hOl} (1) 

and {hOl} (2) 

c Tetragonal pyramids, ..m, {hhl} (1) 

and {hhl} (2) 

d Pedion, 4mm, {001} and {001} 

Fig. 8.10a-d. Crystal forms of point group 4mm, in so far as these differ from those in point 

group 4/mmm (Fig. 8.7), with their face symmetries. A stereogram of the symmetry elements 

is given, with the asymmetric face unit and stereograms of each form. 

The general form of point group 4/m is a tetragonal dipyramid. The poles 

(hkl) and (hkl) both give tetragonal dipyramids, {hkl} and {hkl}, by the action of 
the symmetry operations, and these two dipyramids may be distinguished by 

their positions. Figure 8.11 shows the square cross-sections of {hkl} and {hkl}. 

Taking them together, and ignoring the dashed lines, they make up the cross- 

section of the ditetragonal dipyramid {hkl} of 4/mmm. 
The general form of 42m is the tetragonal scalenohedron, and of 422 the 

tetragonal trapezohedron [Table 14.1.2 (13) and (11)]. The combination of {hkl} 

and {hkl} regenerates in both point groups_the ditetragonal dipyramid. 
The asymmetric face unit for 4 and 4 is four times the size of that of 

4/mmm (Table 8.4). In 4, the ditetragonal dipyramid is split into four tetragonal 

pyramids, {hkl}, {hkT}_, {hkl} and {hkl}, while in 4, it becomes four tetragonal 

disphenoids, {hkl}, {hkl}, {khl} and {khl} [Table 14.1.2 (9)]. 
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Q 

Fig. 8.11. Square cross-sections through the 

tetragonal dipyramids {hkl} and {hkl}, 

general forms in point group 4/m. 

Together, they make up the fully outlined 

ditetragonal cross section of the ditetrago- 

nal pyramid. The same relationship holds 

for_the four tetragonal pyramids {hkl}, 

{hkl}, {hkl} and {hkl}, general forms in 

point group 4 

The special forms of point group 4/mmm in Fig. 8.7 are given in Table 8.4 
with their face symmetries. 

With the help of the stereogram in Fig. 8.9, we may derive the limiting and 

special forms of point group 4mm. As in 4/mmm, the pole of the face (hkO) gives 
rise to the ditetragonal prism {hkO} (Fig. 8.7b). This ditetragonal prism is the 

limiting form of the general form ditetragonal pyramid {hkl}. These forms both 
have face symmetry 1 and a total of eight faces. 

Application of the symmetry operations 4mm to the pole of the face (hOl) 
results in a tetragonal pyramid {hOlj (Fig. 8.10b!), having point symmetry . m., a 

special form. Similarly, {hOl} is a tetragonal pyramid (Fig. 8.10b2). These 

pyramids are distinguished only by their settings, and their combination gives 
the tetragonal dipyramid {hOl} of point group 4/mmm. The tetragonal prism 

{100} is a limiting form of the special form tetragonal pyramid {hOl}, also having 
face symmetry .m., and a total of four faces. 

Tetragonal pyramids are also generated by {hhl} and {hhl} (Fig. 8.10c), this 
time with face symmetry ..m. These forms combine to give the tetragonal 

dipyramid {hhl} of 4/mmm. The tetragonal prism {110} is a limiting form of the 

special form tetragonal pyramid {hhl}. Finally, the pole of the face (001) gives 
the pedion {001}, with face symmetry 4mm. All of the forms of the point group 
4mm are given in Table 8.4. 

The special and limiting forms of the rest of the tetragonal point groups 

are also to be found in Table 8.4. It will be seen that the various forms of the 
point groups of lower symmetry are greatly simplified. For point group 4, for 

example, all that remains beside the general form tetragonal pyramid is a 
single limiting form, the tetragonal prism, and a single special form, the 
pedion. 

In Table 8.4, the general forms and their limiting forms are separated from 

special forms by heavy lines, while dashed lines are used to separate the general 

forms from their limiting forms. Equal forms with the same face symmetry are 
collected together, as is also done in Tables 8.5-8.7. 

The face symmetries in Table 8.4 are always derived from a three-component 

symbol for the point group, which is expanded as required, e.g. 4/m(l) (1). 
Thus, the face symmetry in {hkO} is given as m.., and that in {001} is given as 4.. . 

The same expansion is used for those point groups in other crystal systems 

which have symbols with only 1 or 2 components, e.g. 3m(1), 23(1), etc. 
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Crystal forms in the other crystal systems can be developed in the same way 

to that we have done for the tetragonal system. In the following pages, the 

crystal forms for the hexagonal (trigonal), cubic and orthorhombic systems are 

set out to show their interrelationships and to provide an aid in the indexing of 

faces. The crystal forms are first given for each system (Tables 8.4-8.7), and 

Table 14.1 gives a summary of the 47 fundamental forms. The names used here 

are those in the International Tables for Crystallography [14]. 

Crystal Forms in the Hexagonal and Trigonal Systems 

In each crystal system, an axial system a, b, c must be chosen which is 
appropriate for the symmetry. For the hexagonal and trigonal systems, in 

addition to the unique c-axis, it is convenient to choose three equivalent axes a1? 

a2 and a3 (cf. p. 95 and Fig. 6.22) and to use the Bravais-Miller indices (hkil). The 
index i corresponds to the a3 axis. The indices h, k and i are not independent, but 
are related byh + k + i = Oorh + k = i. The application of this relationship can be 
seen in Fig. 8.12. Joint consideration of the hexagonal and trigonal systems is 

useful since all of the trigonal forms may be derived from the dihexagonal 
dipyramid, the general form of 6/m 2/m 2/m, the highest symmetry point group 

of the hexagonal system (see Figs. 8.12 and 8.13 and Table 8.5). The trigonal and 

hexagonal crystal forms are all set out in Table 14.1.3. 

Crystal Forms in the Cubic System 

The cubic crystal forms are collected in Table 14.1.4; see also Figs. 8.14 and 8.15 

and Table 8.6. 

Fig. 8.12a,b. Section through a hexagonal prism {hkiO} (a) and {khiO} (b), in the equatorial 

plane of a stereographic projection, with the poles of the relevant faces and their indices 

indicated. The dashed lines serve to indicate the intercepts of the faces on the axes 

[(hkiO) = (2130); (khiO) = 1230)] 
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Fig. 8.13. Stereogram of the poles of the faces in all crystal forms of the point group of highest 

symmetry in the hexagonal system, 6/m 2/m 2/m. The stereogram shows the positions and the 

indices of all hexagonal and trigonal forms. The poles of faces with negative 1 are excluded. 

The spherical triangle with vertices (1010), (0001), (1120) is an asymmetric face unit for the 

point group 6/m 2/m 2/m 

Fig. 8.14. Indices for the cubic faces belonging to the form {hkO} (= {210}). If these are shifted 

from their special position so that their poles move toward the pole of the (111) face, faces will 

be obtained with general indices {hkl} in the point group 4/m 3 2/m (cf. Fig. 8.15) 

In the cubic, hexagonal (including trigonal) and tetragonal systems, all 
crystal forms except the pinacoid and the pedion are characteristic of the 
system. 
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Fig. 8.15. Stereogram of the poles of the faces in all crystal forms of the point group of highest 

symmetry in the cubic system, 4/m 3 2/m. The stereogram shows the positions and the indices 

of all cubic forms (hk0) = (310), (hkk) = (311), (hhk) = (221), (hkl) = (321). The poles of faces 

with the third index negative are excluded. The spherical triangle with vertices (100), (110), 

(111) is an asymmetric face unit for the point group 4/m 3 2/m 

100 

Q 

Fig. 8.16. Stereogram of the poles of the 

faces in all crystal forms of the point 

group of highest symmetry in the ortho¬ 

rhombic system, 2/m 2/m 2/m. The 

stereogram shows the positions and 

the indices of all orthorhombic forms. 

The poles of faces with negative 1 are 

excluded. The spherical triangle with 

vertices (100), (010), (001) is an asym¬ 

metric face unit for the point group 

2/m 2/m 2/m 
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Table 8.8. Eigensymmetry and generating symmetry of the tetragonal forms 

Eigensymmetry Generating symmetry 

Tetragonal pyramid 4mm 4, 4mm 

Tetragonal disphenoid 42m 4, 42m 

Tetragonal prism 4/mmm 
4, 4, 4/m, 422, 4mm 

42m, 4/mmm 

Tetragonal trapezohedron 422 422 

Ditetragonal pyramid 4mm 4mm 

Tetragonal scalenohedron 42m 42m 

Tetragonal dipyramid 4/mmm 4/m, 422, 42m, 4/mmm 

Ditetragonal prism 4/mmm 422, 4mm, 42m, 4/mmm 

Ditetragonal dipyramid 4/mmm 4/mmm 

Crystal Forms in the Orthorhombic, Monoclinic and Triclinic Systems 

All of the “rhombic” forms are listed in Table 14.1.1, see Fig. 8.16 and 
Table 8.7. 

Only relatively simple forms occur in the monoclinic system. The general 
form in 2/m is the rhombic prism; in m and 2, the general forms are both 

dihedra: a dome in m and a sphenoid in 2 (Table 14.1.1). The pinacoid and the 
pedion are special or limiting forms. 

The triclinic system gives only the pinacoid (I) and the pedion (1). 

The symmetry of a crystal form can be considered in two separate ways. A 
tetragonal pyramid is generated by the symmetry operations of 4; that is its 

generating symmetry. On the other hand, a tetragonal pyramid actually 
displays the symmetry of 4mm; that is its eigensymmetry1. In Table 8.8, these 

eigensymmetries and generating symmetries are given for all tetragonal 
forms. 

Normally, crystals are not characterised by a single form but by a 

combination of forms, which must, of course, all conform to the point group of 

the crystal. The rutile crystal in Table 8.11.15 is a combination of a tetragonal 

dipyramid {111}, and two tetragonal prisms, {100} and {110}. 

1 eigen (German) = own 
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8.3 Molecular Symmetry 

Point symmetry is a very great help in the description of molecules, by which 

term we include polyatomic ions of any charge. Figure 8.17a shows a molecule 

of H20, on which the symmetry elements, two mirror planes and a 2-fold 

rotation axis, have been drawn. The point group mm2 (C2v) is shown on the 
stereogram in Fig. 8.17b. 

In Table 8.11.1-37 (left hand column) molecular examples are given for 

several point groups. The stereogram for the point group is in most cases in the 

same orientation as the example molecule. 
The point groups of molecules are not limited to the 32 crystallographic 

groups.They may contain such symmetry elements as 5-fold axes which are 
incompatible with a crystal lattice. Table 8.11.33-37 and Fig. 11.6b give a few 

examples of important non-crystallographic point groups with molecular 

examples. 

<±> a) 

Fig. 8.17a. Point symmetry (mm2-C2v) of the 

H20 molecule, b Stereogram of the symmetry 

elements of this point group 

Fig. 8.18 a-e. Equivalence within mol¬ 

ecules. Equivalent atoms have the 

same letter symbols; equivalent bonds 

have the same pair of letters, a Ben¬ 

zene and b coronene (6/mmm - D6h); 

c naphthalene and d pyrene (mmm- 

D2h); e phenanthrene (mm2 - C2v) 
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a) 

b) 

Fig. 8.19a, b. The PF5 molecule (a) has point group 

6m2 (D3h) (b). All atoms marked Fa are equivalent, 

as are all marked Fb, but Fa and Fb are not 

equivalent to 

one another 

Fig. 8.20 a-d. Conformations of ethane, a Eclipsed: (p = 0 or 120 or 240°: (6m2-D3h). 

b Skew: 0<y><60°, 120 <^<180° or 240<(p<300°: (32-D3). c Staggered: cp = 60 or 

180 or 300°: (3m - D3d). d Skew: 60 < <p < 120°, 180 < <p < 240° or 300 < <p < 360°: (32 - D3). The 

conformations in b and d are enantiomorphs 

The point group of a molecule indicates which atoms and which bonds 

are equivalent. Thus, in benzene, C6H6, with point group 6/mmm-D6h all 

C-atoms and all H-atoms are equivalent, as are all C-H and C-C bonds 

(Fig. 8.18a, and also Table 8.11.27). Coronene, C24H12, also belongs to point 

group 6/mmm-D6h. In Fig. 8.18b, equivalent carbon atoms are indicated by 
the letters a or b or c, and all bonds between pairs of similarly labelled atoms are 
equivalent. There are thus four symmetry independent C-C bonds in coronene 

(a-a, a-b, b-c and c-c). Further examples are naphthalene, C10H8, and pyrene, 

C]6H!0, both (mmm - D2h) (Fig. 8.18c), and phenanthrene, C14H10, (mm2- C2v) 
(Fig. 8.18e). The equivalences can be particularly clearly shown by copying the 

stereogram of the appropriate point group (Table 8.11.7, 8 and 27) onto 

transparent paper and superimposing it on the molecules in Fig. 8.18. 

In PF5, phosphorus is surrounded by five fluorine atoms. Were this a 
planar pentagonal molecule, all F-atoms and all P-F bonds would be equivalent 
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(point group 5/mm2 (10m2), Table 8.11.35). In fact, the molecule has the shape 
of a trigonal dipyramid (Fig. 8.19) with the P-atom at the centre, and point 

symmetry 6m2 (D3h). Thus, the two atoms labelled Fa are equivalent, as are the 

three labelled Fb, but Fa and Fb are not equivalent to one another. 
If one of the methyl groups of an ethane molecule is rotated about the C-C 

bond through 360° with respect to the other, various different conformations 

will be generated. These are illustrated in Fig. 8.20 together with the 

stereograms of the respective point groups. Conformations are the spatial 
arrangements of the atoms of a molecule which result from rotation about a 

chemical single bond. 

8.4 Determination of Point Groups 

Before the determination of the point group of a crystal (or a molecule having a 

crystallographic point group), it should be assigned to one of the seven crystal 
systems. For this, it is necessary to know the characteristic symmetry elements of 

the crystal systems; these are given in Table 8.9, and can be derived from the 
symmetry information given in Table 8.10. 

Table 8.9. Characteristic symmetry elements of the seven crystal systems 

Crystal 

system 
Point groups3 

Characteristic 
symmetry elements 

Cubic 
4/m 3 2/m 

43m, 432, 2/m3, 23 
4 ▲ 

Hexagonal 

6 /m 2/m 2/m 

6m2, 6mm, 622, 

6/m, 6, 6 

• or $ 

Tetragonal 

4 /m 2/m 2/m 

42m, 4mm, 422, 

4/m, 4, 4 

1 ■ or i a 

(3 ■ or 3 B => cubic) 

Trigonal 
3 2/m 

3m, 32, 3, 3 

1 ▲ 
(remember that m normal 

to 3 gives 6 => hexagonal 

Orthorhombic 
2/m 2/m 2/m 

mm2, 222 

2 and/or m 

in three orthogonal directions 

Monoclinic 
2/m 

m, 2 

2 and/or m 

in one direction 

Triclinic 
I 

1 
I or 1 only 

a Characteric symmetry elements are underlined. 
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In determining the point group of molecules or crystals, it is in general not 

necessary to find each and every symmetry element. Using Tables 8.9 and 8.10, it 
may generally be done by answering a few, well-chosen questions. In practice, it 
is best to consider first an important property of rotation axes. All rotation axes 

are polar. This means that they have distinct properties in parallel and 
antiparallel directions. Various other symmetry elements can destroy this 
polarity, viz.: 

(a) 1 (b) mlX (c) 21X 

The 2 in Fig. 8.17 and Table 8.11.18 and the 3 in Table 8.11.19 are examples of 
polar rotation axes. The ends of polar axes are represented in symmetry 
diagrams and stereograms by one solid and one open symbol (cf. Figs.6.8f- 
6.13 f). 

Questions to use for point-group determination: 

1. Are rotation axes higher than 2 present (3, 4, 6)? 
2. Are these axes polar? or 

Is an inversion centre present? 

(crystals with an inversion centre are characterised by sets of parallel faces 
opposite one another.) 

Point group determination will be illustrated by two examples: 

a) The methane molecule (CH4) (Table 8.11.31). It is easily seen that a polar 3- 

fold axis lies on each C—H bond. As there are four of these, the point group 
must belong to the cubic system, and it must be one with polar 3-fold axes 

(indicated in Table 8.10 by a subscript p by the graphical symbol (e.g. Ap). 
This indicates either 23 or 43m (Table 8.10). These are readily distinguished, 

since only 43m has mirror planes. These planes are readily seen in CH4, so the 
point group is 43m. 

b) A crystal of magnesium (Table. 8.11.27). The crystal contains a 6-fold 

rotation axis, and so must belong to the hexagonal system. An inversion 

centre is also easily found. This limits the point group to 6/m and 6/mmm 

(Table 8.10). These may be distinguished by the mirror planes parallel to 6 in 

6/mmm and not in 6/m. Since these planes are evident in the crystal, the 
magnesium crystal may be assigned to point group 6/mmm. 

Determination of the symmetry of a crystal is not always unambiguous. For 

example, the cube (hexahedron) occurs as a form in all five cubic point groups 

(Table 8.6). Determining the symmetry of a cube will naturally lead to the point 

group of highest symmetry, m3m (Table 8.11.32). The mineral pyrites, FeS2 

(point group m3) has cube-shaped crystals. The cube-faces, however, frequently 
have characteristic striations which indicate the lower symmetry (Table 
8.11.29). 

In other ambiguous cases, “etch-figures” will indicate the true symmetry of a 
crystal face and hence of the entire crystal. These figures are bounded by faces 

with high Miller indices and arise from the action of a solvent on a crystal face. 
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Crystals of the mineral nepheline (Table 8.11.21) have a morphology (a hexa¬ 
gonal prism and a pinacoid) which indicate the point group 6/mmm. The etch 
figures show that the true symmetry is only 6. 

8.5 Enantiomorphism 

The point group 1 (Q) is asymmetric. All other point groups with no symmetry 
other than rotation axes are called chiral or dissymmetric. The relevant point 
groups are: 

X: (1), 2, 3, 4, 6 
X2: 222, 32, 422, 622 
X3: 23, 432 T, O 

Asymmetric and dissymmetric crystals and molecules are those which are not 
superimposable on their mirror images by rotation or translation. These mirror 
images are said to be the enantiomorphs of each other. In Fig. 5.9 and Table 
8.11.3 and 18, examples are given of enantiomorphic crystals and molecules. 
Enantiomorphic molecules are also called enantiomeric. 

8.6 Point Groups and Physical Properties 

We shall now examine a few properties of molecules and crystals which are 
related to their point groups, or whose effects may be traced back to specific 
symmetry considerations. 

8.6.1 Optical Activity 

Optical activity refers to the ability of certain crystals and molecules to rotate 
the plane of polarised light. It can only arise in those point groups which are 

enantiomorphic (cf. Sect. 8.5 and Table 8.10). Two sorts of optical activity may 
be distinguished: 

a) Optical Activity as a Property of a Crystal. The crystal is optically active, and 

this activity is lost when the crystal is melted or dissolved. Examples include 

MgS04*7H20, Si02 (low-quartz), NaC103 (Table 8.11.6,18 and 28). Not only 
the morphology but also the crystal structures exist in two enantiomorphic 

forms. The “left” form rotates the plane of polarised light to the left, and the 
“right” form an equal amount to the right. 

b) Optical Activity as the Property of Molecules. Some molecules are themselves 

enantiomeric, and both their solutions and the crystals they form are optically 

active. Well-known examples of this type of optical activity are the crystals of 
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D- and L-tartaric acid (Table 8.11.3). In contrast, the “racemate” DL-tartaric 
acid is optically inactive and gives crystals with point group I (Q). Molecules of 

the isomeric form mew-tartaric acid (I, (Q), Table 8.11.2) are centrosymmetric 
and hence optically inactive. 

Optical activity is not limited to the 11 point groups in which enantiomor- 

phism occurs (Sect. 8.5). It can also occur in crystals in the point groups m(Cs), 

mm2(C2v), 4(S4) and 42m(D2d), cf. Table 8.10. 

8.6.2 Piezoelectricity 

Some crystals, when subjected to pressure or tension in certain directions 
develop an electric charge; this property is called piezoelectricity. This effect is 

clearly seen in plates of quartz (point group 32), cut normal to the a-axis or any 
polar 2-fold rotation axis (Fig. 8.21). The direction of the applied pressure or 

tension must be along a polar axis. Polar axes are those which have distinct 

physical properties in the parallel and antiparallel directions. These directions 
must thus not be themselves related by symmetry. It follows that within the 

crystal there will be an asymmetric charge distribution along polar axes. The 
opposite faces, normal to the polar axis, develop electric charges when a 

pressure is applied along the axis. The direction of this electric field is reversed 

when the pressure is replaced by a tension. 
Piezoelectricity is only observed in crystals which have polar axes. Polar 

directions only exist in point groups without a centre of symmetry. There are 21 
such point groups, as is shown in Table 8.10. The point group 432 is also 

excluded, as the symmetry is too high for the effect to develop. 
The piezoelectric effect is reversible. If an electric field is applied in the 

direction of the polar axis of a quartz plate, the crystal will undergo 
compression or expansion. The application of an alternating field will cause the 

crystal to vibrate. 
Other crystals which show piezoelectricity include D- and L-tartaric acid (2 - 

C2), Table 8.11.3; tourmaline (3m-C3v), Table 8.11.19; NaC103 (23-T), Table 

8.11.28; ZnS (sphalerite) (43m -Td), Table 8.11.31. 
Piezoelectricity has many technical applications, including ultrasonic gener¬ 

ators, amplifiers, microphones and quartz time-pieces. 

Fig. 8.21 a-c. The piezoelectric effect in a quartz plate arising from pressure along a polar axis, 

here parallel to the a, axis 
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8.6.3 Pyroelectricity 

When a crystal of tourmaline (Table 8.11.19) is heated, the polar ends of the 
crystal develop electric charges. Heating causes the positive end of the c-axis to 

become positively charged relative to the negative end, and cooling has the 

opposite effect. This effect results from the fact that tourmaline has a permanent 
electric dipole. The charge which builds up is soon dissipated by conduction 

into the surroundings. Changes in temperature change the size of the electric 
dipole. 

The dipole moment is a vector. Pyroelectricity can only arise when the point 

group has no symmetry operations which alter the direction of this dipole. The 
vector must remain unchanged by all the symmetry operations. Point groups 

having this property include those with only a single rotation axis: 2(C2), 3(C3), 
4(C4) and 6(Cg) as well as those which have only these axes plus mirror planes 

parallel to them: mm2(C2v), 3m(C3v), 4mm(C4v) and 6mm(C6v). The dipole- 
moment vector lies in the rotation axis. The conditions for the presence of a 

dipole moment are also found in the point groups m (for all directions parallel 
to the mirror plane) and 1 (for every direction), cf. Table 8.10. 

Knowledge of the symmetry gives only a qualitative indication of the 
possible presence of pyroelectricity. It does not indicate the size of the dipole 
moment or the directions of the positive and negative ends. 

Sucrose, C12H220ii, (2-C2) and hemimorphite, Zn4[(0H)2/Si207] • H20 
(mm2 - C2v) are examples of crystals showing pyroelectricity. 

8.6.4 Molecular Dipole Moments 

Many molecules have an asymmetric distribution of electric charge and hence 
an electric dipole moment. The relationship between the point group of a 

molecule and the direction of its dipole is the same as that developed above for 
the pyroelectricity of crystals (cf. Sect. 8.6.3). 

The measurement of a dipole moment can give important information about 
the shape of a molecule. PF3 has a dipole moment, while BF3 does not. 

Molecules of the formula AB3 may have the shape of an equilateral triangle with 
A at the centre [6m2(D3d)] or a triangular pyramid with A at the apex [3m(C3v)], 

cf. Table 8.11.19 and 26. The shape of BF3 is thus the former, while PF3 is the 
latter. 
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Table 8.11. Examples of molecules and crystals for the point groups 
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Table 8.11 (continuation) 
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Table 8.11 (continuation) 
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Table 8.11 (continuation) 
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Table 8.11 (continuation) 
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Table 8.11 (continuation) 
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Table 8.11 (continuation) 
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Table 8.11 (continuation) 

Molecules Point group Crystals 

,0 

7 
N Q~_ 

\,>0 

-N \ \ N-1~*lCo^ 

!/ v 
iU-N xo 

Ko 
[Co(NQ2)6]3- 

29 

m 3 — Th 

FeS2 (Pyrite) with Striations on 

the cube faces 

Alums (e.g. KA1(S04)2‘ 12H20) 

CH, 

CH, 

cm 

CH, 

CH, 

CH, 

CH, 

Octamethylcubane 

-H- 

!\ 

V 

/C^\\ 

432-0 

Methane 

// 
'^==±: 

4 

\ 
\ 

h. 
w 

\'i/ 
F 

sf6 

/ 

/ / 
/ / 

C8H8 (Cubane) 

Si02 (Melanophlogite) 

Ag3AuTe2 

43m —Td 

m 3 m - Oh 

CuCl, CuBr, Cul 

A1(POj)j, Ag3P04 

/T 
' i 

1 
1 
1 
1 
1 

J- 
/ 

/ 
/ 

- 

NaCl, KC1, CaF2, MgO 

PbS (Fig. 4.1), CsCl 

Garnet (Fig. 1.1a) 

Cu, Ag, Au, Pt, Fe, W, Si 

C (Diamond) 

30 

32 



162 8 Point Groups 

Table 8.11 (continuation) 

A few non-crystallographic point groups 

Molecules Point group Crystals 
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EXERCISES 

Exercise 8.1. 

a) What is meant by a polar rotation axis? 
b) Which symmetry elements can compensate the polarity of a rotation axis? The 

arrows in the diagram represent X-fold polar rotation axes, Xp. The polarity will be 

compensated by a symmetry operation which reverses the head of the arrows. 

Draw in the location of symmetry elements which can do this. 

AAA 

c) How can polar rotation axes be recognised in symmetry diagrams and in the 

stereograms of point groups? 

Exercise 8.2. Are there polar rotoinversion axes? If so, specify which; if not, state why 

not. 

Exercise8.3. Combine the operations 1 + 1, 2 + 1, 3+1, 4 + 1, 6 + 1. Which point groups 

result? Give their symbols. 

Exercise 8.4. Combine the operations (A) 2 + 2, (B) m + m and (C) 2 + m, where the 

elements intersect at angles of 30, 45, 60 and 90°. Take the direction of m to be the 

direction of its normal. 
Complete the stereographic projections shown in Table 8.12. Which symmetry 

elements are generated? What are the resultant point groups? Give the symbols for 

each. . 
Copy the stereograms of the point groups in columns A, B or C into column D, and 

add 1. Which new point groups are generated? Give their symbols. 
For each point group, choose an axial system and assign each point group to a 

crystal system. 
The solution of that part of the exercise will explain the following symmetry rules: 

A) The combination of two 2-fold axes at an angle of y produces an X-fold 

axis through their point of intersection perpendicular to their common plane. 

B1 The combination of two mirror planes at an angle of — produces an X-fold 
. 360° 2 

axis along their line of intersection. X — 
£ 
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Table 8.12 
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C) The combination of a 2-fold axis with a mirror plane at an angle of y pro¬ 

duces an X axis through the point of intersection of the axis with the normal to 

the plane and perpendicular to the common plane of the axis and the normal. 

x=-“51. 
£ 

- - - - - - £ 
Since only X = 1, 2, 3, 4 and 6 or X = 1, 2 = m, 3, 4 and 6 are permitted, y can 

only have the values 30, 45, 60, 90 and 180°. The combinations at an angle of 180° are 

not included in Table 8.12. 

Exercise 8.5. Combine the operations of (E) 2 + 3, (F) 4 + 3 and (G) 4 + 3, where the 

elements intersect at an angle of 54.73° (the angle between the edge and the body 

diagonal of a cube). 
Complete the stereographic projections shown in Table 8.13, and give the symbols 

for the resultant point groups. Copy the stereograms in E, F and G into H, I and K and 

add I to them. Give the symbols of the point groups which now result. 

Table 8.13 

2+3 4+3 4+3 

AAvN 
\ ^ 

/ V-+--V'\ 
/T\l/K 

> V \ i / v 

/X s/_|_\//\ 
/AA+'a \ 
7+-X-r-^ 
\ a\/ 
\A 1 /V 

E F G 

-— 7K +T 

/V4-VN 

+T 

7 /' a 

\ A T /\ / < \ 1/ > 

H / K 
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Exercise 8.6. Starting from the point of highest symmetry in the trigonal system 3 2/m, 
develop its trigonal subgroups. 

Exercise 8.7. Colour the circles of the point groups in Fig. 8.3, using the same colour for 

all point groups belonging to the same crystal system. 

Exercise 8.8. 

a) How is it possible to identify the crystal system of a point group from its 
International symbol? 

b) For each crystal system, give the characteristic point-symmetry elements, and, if 

necessary, the number of such elements or their relationship to one another. Mark 

the position these elements occupy in the International point-group symbol, and 
give an example for each crystal system. 

Crystal system 

Characteristic 
symmetry elements 

number and 

relationship 

to one another 

Position of 

characteristic 

symmetry element(s) 

in the symbol 

1st | 2nd | 3rd 

Example 

Triclinic 

Monoclinic 

Orthorhombic 

Tetragonal 

Trigonal 

Hexagonal 

Cubic 
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Exercise 8.10. In the stereograms below, indicate the symmetry elements for the given 

point group: 

a) Determine the crystal system. 

b) Draw the appropriate axial system on the stereogram. The c-axis should always be 

perpendicular to the plane of projection. 

c) Analyse the point group symbol with respect to the symmetry directions. 

d) Finally, draw the symmetry elements on the stereogram. Remember that rotations 

and rotoinversion axes, as well as the normals to mirror planes are arranged parallel to 

their symmetry directions. 
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Exercise 8.11. Determination of point groups 
Determine the point groups of the molecules and ions given below, using the method 

described in Section 8.4. Give the International symbol and the Schonflies symbol, and 

draw the symmetry elements on the stereographic projection. 
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15 

16 

17 

18 

19 

Methane 

CH, 

Chloromethane 

CH3C1 nsu 
Dichloromethane 

CH2C12 

'>- 

- S , 
I i \A 

jXL 
>- 

Chloroform 

CHC1_ 
—T-^ 

- 1 
Carbon tetrachloride 

CC1, 
> 

-- 

20 

21 

IOi 
Seo; 

AsO" 

N0„ 

co„ 

/ 

\ 

\ 

J 
_/ 

\ 
( 

/ 
\ 

V 

\ 

/ 

X 
( \ 
\ ' I 

V / 

s 
{ 

\ 

/ 

( 
\ 

V 

/' 
I 

\ 
X 

\ 

\ 

J 



172 8 Point Groups 



8 Exercises 173 



8 Point Groups 



8 Exercises 



176 8 Point Groups 

Exercise 8.12. What information about the spatial arrangement of the atoms in the 

following molecules can you infer from the point group symmetry? 
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Exercise 8.13. Rotate one of the CH2C1 groups of a 1,2-dichloroethane molecule about 

the C—C bond stepwise through 360° with respect to the other. Which symmetry 

distinct conformations are encountered? Give their point groups, and compare them 

with the corresponding conformations of ethane in Fig. 8.20. 

Exercise 8.14. Will measurements of their dipole moments distinguish the cis and trans 

forms of dichloroethene? 

Cl 

a) Determine the point groups of the following crystals with the help of Table 8.10 and 

crystal models such as those illustrated in Exercise 4.4. Draw the symmetry 

elements on the stereogram, and give the International symbol for the point group. 

b) Indicate the position of the crystallographic axes on the stereograms and the crystal 

diagrams. 
c) Estimate by eye the positions of the crystal faces, and enter the poles on the 

stereogram, using different colours for different forms. 

d) Index the crystal forms. 
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Exercise 8.16. Which of the crystals in Exercise 8.15 might, on the basis of its crystal 

forms, show the piezo-electric effect? Mark the appropriate diagrams “Piezo-elect.” 

Exercise 8.17. There is a simple relationship between the numbers of faces, edges and 
vertices of a polyhedron. Work out what it is. 

Exercise 8.18. The figure shows the cross-section of a ditetragonal prism on the 

equatorial plane of a stereographic projection, together with the corresponding poles. 

The dashed lines have been added to point out the axial intercepts of the faces. 

b(a2) 

a) Index all the faces of the crystal form {hkO} or {210}. 

b) If the faces of a ditetragonal prism are inclined by a given angle in the direction of 

the positive and negative c-axis, the poles of the faces move a corresponding 

amount away from the periphery in the [001] and [001] directions. What is the 
resulting crystal form? Index all the faces of this form. 



8 Exercises 181 

Exercise 8.19. The figure shows the cross-section of a hexagonal prism on the 

equatorial plane of a stereographic projection, together with the corresponding poles. 

The dashed lines have been added to point out the axial intercepts of the faces. 

b(a2) 

a) Index all the faces of the crystal form {hkiO} or {2130}. 
b) If the faces of a hexgonal prism are inclined by a given angle in the direction of the 

positive and negative c-axis, the poles of the faces move a corresponding amount 

away from the periphery in the [0001] and [0001] directions. What is the resulting 

crystal form? Index all the faces of this form. 

Exercise 8.20. Derive the crystal forms of the following point groups: 

a) Use the characteristic symmetry elements to determine the crystal system (cf. Table 

8.9). 
b) Look up the stereogram of the poles of the forms for the point group of highest 

symmetry in that system: Fig. 8.16 for orthorhombic, Fig. 8.9 for tetragonal, 

Fig. 8.13 for hexagonal or trigonal, and Fig. 8.15 for cubic. 
c) Place a piece of tracing paper over the stereogram, and draw in the symmetry 

elements for the point group, appropriately orientated to the crystallographic axes. 

d) Indicate the asymmetric face unit. 
e) Draw in first the poles for the faces of the general form. What is it called? Index all 

the faces 
f) If the general form has limiting forms, draw these in and name and index them. 

g) Draw in the special forms and their limiting forms (if any). Name and index them 

and give the point symmetry of their faces. 

(It is a good idea to use several pieces of tracing paper!) 

1) 42m 5) 6/mmm 

2) 4 6) 622 

3) mmm 7) 3m 

4) mm2 8) m3m 
9) 43m 



182 8 Point Groups 

Exercise 8.21. In International Tables for Crystallography, Vol. A, for the point group 

4/m 3 2/m, the trapezohedron (or deltoidicositetrahedron), is given as the special form 

{hhl}, |h|<|l| and the trisoctahedron for {hhl}, |h|>|l|. In Table 8.6, however, the 

trapezohedron is given for {hkk} and the trisoctahedron for {hhk}. Explain this 
apparent inconsistency. 

Exercise 8.22. Which special forms in the hexagonal and trigonal systems have limiting 
forms? 



9 Space Groups 

9.1 Glide Planes and Screw Axes 

The 32 point groups are the symmetry groups of many molecules and of all 

crystals, so long as only the morphology is considered. Space groups give the 

symmetry not only of crystal lattices, but also of crystal structures. 
In Table 6.4 are given the space-group symbols for the 14 Bravais lattices; the 

space-group symbol does not in general enumerate all the symmetry elements of 
the space group. In particular, the space groups of centred lattices contain new 
symmetry operations. These are compound symmetry operations which arise 

through reflection and translation (1) and rotation and translation (2) (cf. 

Chap. 5.4 and Table 5.1). 

1. In the orthorhombic C-lattice, reflection through a plane (-) at i,y,z, 

followed by a translation of — moves the lattice point 0,0,0 to \,\,0 

(Fig. 9.1a). This symmetry operation is called a glide reflection, and the 

corresponding element is a glide plane (in this case, a b-glide plane). 

9- T 

o 

6— -0 
a) 

Fig. 9.1. a Location of a b-glide plane in 

an orthorhombic C-lattice. b Position of 

2-fold screw axis in an orthorhombic 

I-lattice. (3 lattice point with z = \) 

2. In the orthorhombic I-lattice, a 180° rotation about an axis (^) at 4,4,z, 

followed by a translation of —, moves the lattice point 0,0,0 to 

(Fig. 9.1b). This symmetry operation is called a screw rotation, and the 

corresponding element is a screw axis (in this case, a 2-fold screw axis). 
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9.1.1 Glide Planes 

The compound symmetry operation “glide reflection” implies: 

A) a reflection and 
B) a translation by the vector g parallel to the plane of glide reflection where | g | 

is called the glide component. 

Figure 9.2 contrasts the operation of a mirror plane with that of a glide plane 
on a point lying off the planes. 

Fig. 9.2 a, b. Operation of a mirror plane m (a) and of a glide plane c (b) on a point shown in 
perspective and as a projection on (001) 

A second application of the glide reflection brings one to a point identical to 
the starting point. 

g is one-half of a lattice translation parallel to the glide plane, |g| = || f\. 

Glide planes are developments of mirror planes, and can only occur in an 
orientation that is possible for a mirror plane. 

For this reason, in the orthorhombic system, glide planes only occur parallel 
to (100), (010) and (001). Compare the space group P2/m 2/m 2/m in Fig. 6.9 d 
with the point group 2/m 2/m 2/m in Fig. 6.9e. Since the glide component |g| 
must be half of a lattice translation parallel to the glide plane, in an ortho¬ 
rhombic space group the only possible glide planes parallel to (100) will have 
glide components \\b\, {\c\, ||b + c| and ||K±c|, and this last type will only 
occur in centred lattices, where \ | b ± c | can be half of a lattice translation. In Fig. 
9.3, these cases are illustrated, together with those parallel to (010) and (001). 
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ail 

Glide planes are designated by symbols indicating the relationship of their 

glide components to lattice vectors a, b and c. Those with axial components: 

i|a|, j|b| or 51c | are given the symbols a, b and c respectively, those with 

diagonal components ||fi + f2| have the symbol n, while those with the 

component \\zi ±f2|, known as diamond glides, have the symbol d. 
Since glide planes play so important a role in space groups, the operation of a 

few examples will be given in an orthorhombic cell projected on x,y,0. In these 
projection diagrams, only a single glide plane is shown - see Chapter 14.2 for an 

explanation of the graphical symbols. 

a) In Fig. 9.4a, an a-glide is shown at x,|,z. Reflection of a point x,y,z in 

this plane gives x,|-y,z, called an “auxiliary” point and the translation |a 

then moves this auxiliary point to | + x,j-y, z. 

b) The b-glide plane at x,y,0 in Fig. 9.4b reflects a point x,y,z to the 

auxiliary point x,y,z, which the translation of |b then moves to x,j + y,z. 

c) The c-glide plane at x, [, z in Fig. 9.4c reflects a point x, y, z to the auxiliary 

point, x, 1 - y,z which the translation of \c then moves to x, 1 -y, \ + z. 

d) The n-glide plane at x,y,{ in Fig. 9.4d is parallel to the a,b-plane, and thus 
has a glide component ||a + b|. It reflects a point x,y,z to the auxiliary point 

x, y, \ - Z, which the translation of |(a + b) then moves to \ + x, \ + y, {- z. 
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a-glide at x,l z 

~0 Kj+y,j+z 

_D 
x,y,z 

d n-glide at x,y,| with glide component e n-glide at 0,y,z with glide component 
||a+6| I|b + c| 

Fig. 9.4a-e. Operation of glide planes on a point. In each case, only a single glide plane 
shown projected on x,y,0 in an orthorhombic cell. 
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e) The n-glide plane at 0,y,z in Fig. 9.4e has a glide component j|b + c|. It 
reflects a point x, y, z to the auxiliary point x,y,z, which the translation of 

^(b + c) then moves to x, \ + y, \ + z. 

9.1.2 Screw Axes 

The compound symmetry operation “screw rotation” implies: 

360° 
A) a rotation of an angle £ = - 

X 
-; (X = 1, 2,3,4, 6) and 

B) a translation by a vector s parallel to the axis, where |s | is called the screw 

component. 

For rotation axes and rotoinversion axes, the direction of rotation was 

unimportant. This is not the case for screw axes; for a right-handed axial system, 

X, Y, Z (Fig. 9.5, see also Chap. 2.3) a rotation about an axis on Z from the X- 
axis toward the Y-axis is linked with a positive translation along Z. This is the 
motion of a right-handed screw, which corresponds to the motion of advancing 
the thumb of the right hand in the direction of the vector s as the fingers of this 

hand point in the sense of rotation. 

Fig. 9.5. The handedness of a screw axis 

Fig. 9.6. Operation of a 6-fold screw axis 

on a point lying off the axis 

Figure 9.6 shows the operation of a 6-fold screw axis (e = 60°) on a point lying 

off the axis. The points 1,2,3 ... are arranged like the treads of a spiral staircase. 
After X rotations (X = 6) through the angle £ (X • £ = 360 °), the point 1 will return 

to its starting point. In this case, however, the rotations have been accompanied 
by a translation of X • s, and the point 1' has been reached, which is identical to 

the starting point. The vector 1-1' is not necessarily a single lattice translation f, 

but may be any integral multiple o of f. 
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Fig. 9.7 a, b. Operation of a 4-fold rotation axis and the three 4-fold screw axes on a point lying 
off the axes, a shows perspective views and b projections on x,y, 0 

X•|s|= o\z| or 

_ er 
s - x m- 

Since |s | < |f|, tr<X and can have the following values: 

ff = 0,1, 2,... X-l 

and |s|=0, — |r|, — |t|,....— 
X X X 

since the screw component 

screw axes are designated Xff = X0, Xu X2, .... Xx_i. 

For X = 4, <7 = 0, 1, 2, 3. The resulting screw axes are 40 (a 4-fold rotation 
axis), 41; 42 and 43, with screw components 0, ||r|, 11r| and ||f|. (Note that 

the screw component is directly derivable from the symbol, by inverting it 

and considering it as a fraction, e.g. 4,-i.) The 4-fold rotation and screw 
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axes are compared in Fig. 9.7. Successive operations of the 4-fold screw axes 

on a point lying off the axis move point 1 to 2, 3 and 4. A lattice translation 

of r generated the points 1', 2', 3' and 4'. The operations of the screw axes 
are also illustrated in Fig. 9.7b by projection of the points within a single 

lattice translation onto the plane normal to the axis. Note that the sets of 
points generates by 4, and 43 are mirror images of one another, i.e. they are a 

pair of enantiomorphs. Since 4X represents a right-handed screw, 43 may be 

described as a left-handed screw with a screw component |s'| = ^|r| also. 
Figure 9.8 shows all of the other screw and rotation axes possible for crystals 

(see also Chap. 14.2). The enantiomorphous pairs are 3! and 32,4j and 43,63 and 

65, and 62 and 64. 
Screw axes can only occur in crystals parallel to those directions which are 

possible for rotation axes in the corresponding point group. 

9.2 The 230 Space Groups 

The 32 crystallographic point groups have been derived from the point groups 

of highest symmetry in each crystal system (see Table 8.2). All of the space 
groups can be derived in a similar manner. Starting from the space groups of 

highest symmetry in each crystal system, i.e. those of the 14 Bravais lattices (see 

Table 6.4), it is possible to derive an analogous scheme for determining all of 

their subgroups. It must, however, be borne in mind that screw axes can replace 

rotation axes, and glide planes mirror planes thus: 

2- 2j 
3- 3l532 
4 <- 4U 42, 43 

6 «- 6[, 62, 63, 64, 65 
m <- a, b, c, n, d. 

The space groups of the monoclinic system will be derived as an example for all 

crystal systems. We start from the two monoclinic space groups of highest 
symmetry; P2/m and C2/m (Fig. 9.9). Additionally, in C2/m, there are a-glide 

planes at x,|,z and x,f,z, and 2paxes at 4,y,0; 4,y>2> 4>y>0 ar*d 4>Y>2- 
The monoclinic subgroups of the point group 2/m are m and 2. The point- 

symmetry elements 2 and m can be replaced by 2, and a glide plane respectively. 

Since m is parallel to (010), only a-, c- and n-glides are possible. However, a 
different choice of the a and c axes will convert either an a- or an n-glide into a 

c-glide (Fig. 9.10). Thus, only the c-glide need be considered. 
Replacement of 2 and m by 2X and c results in the 13 monoclinic space groups 

shown in Table 9.1 as subgroups of P2/m and C2/m. 
The sets of symmetry elements for these space groups are shown in Fig. 9.9, 

in the same order as Table 9.1, as projections on x, y, 0. Additionally, a- and n- 
glide planes occur in C-centred space groups. Thus it can be seen that the pairs 

of symbols C2/m and C2,/m, C2/c and C2,/c, and C2 and C2j represent only a 

single space group each, cf. exercise 9.4. 
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Fig. 9.8. Operation of rotation and screw axes on a point lying off them. The enantiomor- 

phous pairs 3]-32, 6i-65 and 62-64 are given together. 4, 41; 42 and 43 are shown in Fig. 9.7 
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I J_I_j j 

•#6, 
Fig. 9.8 (continued) 

In the same way, inspection of the other crystal systems leads to the entire 

230 space groups. These 230 space groups are listed in Table 9.2, sorted by 
crystal system and point group. Only the standard abbreviated symbols (short 

symbols) are given. 
In every case, the point group is easily derived from the space group symbol. 

The screw axes are replaced by the corresponding rotation axis, the glide planes 
by a mirror plane, and the lattice symbol is omitted, the result being the point 

group to which the space group belongs. 
It would be useful to revise the space groups of the Bravais lattices, which are 

given in Figs. 6.7d-6.13d. 
The International (Hermann-Mauguin) symbols thus indicate the symmetry of 

each space group clearly. Schonflies symbols, on the other hand, merely assign 
an arbitrary number to each space group within a given point group. Thus, for 

point group m(Cs), we have: 

This is the main reason that Schonflies symbols are rarely used in crystallogra¬ 

phy. 

9.3 Properties of Space Groups 

It is certainly not necessary to study each of the 230 space groups individually, 
but a general knowledge of how space groups differ from one another is useful. 

For this reason, the properties of a few space groups will be explored in detail. 

Figure 9.11 gives the symmetry elements for the space group Pmm2. The 

application of the symmetry operations to a point x, y, z will generate the points 
x, y, Z; x,y,z and x,y,z, as well as equivalent points such as x,l-y,z; l-x,y,z 

and 1 —x,l —y, z. 

The number of equivalent points in the unit cell is called its multiplicity. 
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a Space groups of point group 2/m 

Fig. 9.9 a-c. The monoclinic space groups projected on x, y, 0. The c-axis is not normal to the 
plane of projection, but is tilted such that /?>90°. 
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b Space groups of point group m 

c Space groups of point group 2 

Fig. 9.9b,c 
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Table 9.1. The point and space groups of the mo¬ 
noclinic crystal system 

Point groups Space groups 

2/m 

P2/ m C2/m 

P2,/m 

P2/c C2/c 

P2,/c 

m 
Pm Cm 

Pc Cc 

2 
P2 C2 

P2, 

a C21/m*C2/m, b C21/c®C2/c, c C2, = C2 

Table 9.2. The 230 Space groups 

Crystal system 
Point 

group 
Space groups 

triclinic 1 PI 
I PI 

monoclinic 2 P2 P2, C2 
m Pm Pc Cm Cc 
2/m P2/m P2,/m C2/m P2/c 

P2,/c C2/c 

orthorhombic 222 P222 P222, P2,2,2 P2,2,2, 
C222, C222 F222 1222 
12,2,2! 

mm2 Pmm2 Pmc2, Pcc2 Pma2 
Pca2, Pnc2 Pmn2, Pba2 
Pna2, Pnn2 Cmm2 Cmc2, 
Ccc2 Amm2 Abm2 Ama2 
Aba2 Fmm2 Fdd2 Imm2 
Iba2 Ima2 

mmm Pmmm Pnnn Pccm Pban 
Pmma Pnna Pmna Pcca 
Pbam Pccn Pbcm Pnnm 
Pmmn Pbcn Pbca Pnma 
Cmcm Cmca Cmmm Cccm 
Cmma Ccca Fmmm Fddd 
Immm Ibam Ibca Imma 
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tetragonal 4 P4 P4, P42 P43 
14 14, 

4 P4 14 
4/m P4/m P42m P4/n P42/n 

I4/m 14,/a 
422 P422 P42,2 P4,22 P4,2,2 

P4222 P422,2 P4322 P432,2 
1422 14,22 

4mm P4mm P4bm P42cm P42nm 

P4cc P4nc P42mc P42bc 
I4mm I4cm I4,md I4,cd 

42m P42m P42c P42,m P42,c 
P4m2 P4c2 P4b2 P4n2 

I4m2 I4c2 I42m I42d 

4/mmm P4/mmm P4/mcc P4/nbm P4/nnc 

P4/mbm P4/mnc P4/nmm P4/ncc 

P42/ mmc P42/mcm P42/nbc P42/nnm 

P42/mbc P42/mnm P42/nmc P42/ncm 

I4/mmm I4/mcm 14,/amd 14,/acd 

trigonal 3 P3 P3, P32 R3 

3 P3 R3 

32 P312 P321 P3,12 P3,21 

P3212 P3221 R32 

3m P3ml P31m P3cl P31c 

R3m R3c 

3m P31m P31c P3ml P3cl 

R3m R3c 

hexagonal 6 P6 P6, P65 P62 

P64 P63 

6 P6 

6/m P6/m P63/m 

622 P622 P6,22 P6522 P6222 

P6422 P6322 

6mm P6mm P6cc P63cm P63mc 

6m2 P6m2 P6c2 P62m P62c 

6/mmm P6/mmm P6/mcc P63/mcm P63/mmc 

cubic 23 P23 F23 123 P2,3 

12,3 

m3 Pm3 Pn3 Fm3 Fd3 

Im3 Pa 3 Ia3 

432 P432 P4232 F432 F4,32 

1432 P4332 P4,32 14,32 

43m P43m F43m I43m P43n 

F43c I43d 

m3m Pm3m Pn3n Pm3n Pn3m 

Fm3m Fm3c Fd3m Fd3c 

Im3m Ia3d 
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Fig. 9.10a-c. In the monoclinic system, a-, c-, and n-glide planes parallel to (010) are all 

possible. These are shown in a, b and c respectively. Suitable alteration of the choice of axes 
will convert a- and n- into c-glides 

x,yj b 6xjY/z b d 

n— 
9- 1 — 

wp bw xJ-yzp [ P 

b 1 di-wz 

1 

1 1-xJ-yzb d 

p 
r 

iq 
1- 

P q 
a) a 

-Alt- A P~ 

b) c) 

Fig. 9.11 a-c. Symmetry elements of 

space group Pmm2 in projection on 

x, y, 0. a The general position x, y, z. 

b the special position \,y,z. c The 
special position 1,1, z 

._f 
7 

U 2'2'* 

r 1 - 

In Fig. 9.11a, the position is “4-fold”, or said to have a multiplicity of 4. This 
position has no restrictions on its movement; it has three degrees of freedom, 

and, as long as it does not move onto a point symmetry element, it continues to 
have a multiplicity of 4. Such a position is called a general position. 

A general position is a set of equivalent points with point symmetry (site 
symmetry) 1. 

It is asymmetric, and this is indicated in Fig. 9.11 by the tail on the circle. The 

figure is, of course, not really asymmetric, as it is unchanged on reflection in the 
plane of the paper, but it is sufficiently unsymmetrical for our present purpose' 

, If the P°mt in the general site x,y,z is moved on to the mirror plane at 
2, y, z, the point 1 - x, y, z comes into coincidence with it; the two points coalesce 
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Table 9.3. Positions of the space group Pmm2 

Position 

Degrees 

of 

freedom 

Multi¬ 

plicity 

Site 

symmetry 

Coordinates 

of equivalent 

points 

Fig. 

general 3 4 1 
x,y,z; x,y,z; 

x,y,z; x,y,z 
9.11a 

2 m f,y,z; i,y,z 9.11b 

2 m 0,y,z; 0,y,z 

2 
2 m x,i,z; x,l,z 

special 
2 m x,0,z; x,0,z 

1 mm2 I l- z 
V V 

9.11c 

1 mm2 5,0,z 

1 
1 mm2 0,1, Z 

1 mm2 0, 0, z 

at the mirror plane to a single point y, z. At the same time, the points x, 1 y, z 
and 1 - x, 1 - y, z coalesce to the single point \, 1 - y, z (Fig. 9.11a, b). From the 
4-fold general position, we have obtained a 2-fold special position. The 

multiplicity of a special position is always an integral factor of the multiplicity 

1 position. Special positions are not asymmetric; they possess site symmetry 

higher than 1, and in Fig. 9.11b, the site symmetry is m. 

A special position is a set of equivalent points with point symmetry (site 

symmetry) higher than 1. __ 

This particular special position has two degrees of freedom. As long as the 

point remains on the mirror plane, its multiplicity is unchanged. Other similar 

special positions arise from the mirror planes at x,0,z; x,5,z 0,y,z. 

A special position arises from the merging of equivalent positions. 
If a point on |,y,z moves onto the 2-fold axis at z the two points 

-, y, z and \, 1 — y, z coalesce to \, \, z. This special position retains only a single 
degree of freedom. The point symmetry of the position rises to mm2, and the 
multiplicity falls to 1. The positions 0,0, z; j,0,z and 0,j,z are similar to -2,-2,z. 

Some space groups have special positions with no degrees of freedom, an 

important case of this being a point on an inversion centre (see Table 9.4). 
The general and special positions in space group Pmm2 are set out in 

Table 9.3. . . • rr n m tu 
Another space group in point group mm2 is Pna2!, shown in Fig. 9.12. lhe 

space group symbol indicates that the unit cell is orthorhombic, with n-glide 
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Fig. 9.12. Symmetry elements of the space group Pna2t in projection on x,y,0 showing the 

general position x,y,z (1). Even if a point lies on the a-glide plane at x,|,z (1'), this does not 

reduce its multiplicity. Glide planes and screw axes, unlike point-symmetry elements, do not 
reduce the multiplicity of a position which lies on them 

planes normal to the a-axis with a glide component ||b + cj, a-glides normal to 

the b-axis, and 2j-screw axes parallel to the c-axis. The general position, x,y,z, 
as shown in Fig. 9.12, is again 4-fold. When, however, the point moves onto the 

a-glide at x,j, z, the multiplicity is unchanged. A special position does not arise, 
since glide planes and screw axes do not alter the multiplicity of a point. As a 
result, the space group Pna2j has no special positions. 

Figure 9.13 shows the projection of the space group P2/m on x,y,0. In 
addition to the general position, there are special positions with m, 2 and 2/m 
site symmetry. Table 9.4 shows these points, and gives the degrees of freedom, 

the multiplicities, and the site symmetries of each type of position. Note that as 
the site symmetry rises, the multiplicity falls. 

The asymmetric unit of a space group is the smallest part of the unit cell from 
which the whole cell may be filled exactly by the operation of all the symmetry 
operations. Its volume is given by: 

\7 _ Vunitcell 
T asyra. unit ~ ; 7--- 

multiplicity of the general position 

and it has the property that no two points within it are related to one another by 

a symmetry operation, cf. the asymmetric face unit of a point group in Chapter 
8.2.1. 

An asymmetric unit contains all the information necessary for the complete 
description of a crystal structure. 
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Fig. 9.13. Space group P2/m shown in projection on x, y, 0 with the general position x, y, z and 

the special positions on m, 2 and 2/m 

Table 9.4. Positions of the space group P2/m 

Position 
Degrees 

of freedom 

Multi¬ 

plicity 

Site 
symmetry 

Coordinates 

of equivalent 

points 

1 

general C) 

1 

3 4 1 

x,y,z 

x, 1-y, z 

1 x, y, 1-z 

1-x, 1-y, 1-z 

!fi 
2 2 m 

X, J, z 
1-x, 1-z 

special 1 Qj 1 2 2 
i v - 2> 2 

2’ 2 

' H 
1 

0 1 2/m 
1 1 1 
2’ 2’ 2 

An asymmetric unit of the space group P2/m is the volume limited by 
0<x<!;0<y<i;0<z<l. Its volume is one quarter of that of the unit cell, so 

the equation above is fulfilled, as the multiplicity of the general position is 4. 
The tetragonal space group P42/mnm will be described in Section 9.4. The 

general position in the hexagonal space group P6i is illustrated in Fig. 9.14. 

Fig. 9.14a shows the operation of a 6raxis at 0,0, z on an asymmetrical point 
x,y,z. The coordinate for each generated equivalent point are easily deter¬ 

mined. With different z-values, these x- and y-coordinates will also arise from 
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w*} 

Fig. 9.14. a Operation of a 6rscrew axis at 0,0, z on a point in a general site x,y,z. 

b Displacement of the points originated in a by lattice translation into the unit cell (general 
position), c Space group P6| 

6, 6, 62, 63, 64, 65, 3, 3, 3U 32-operations. In Fig. 9.14b, the equivalent points of a 

have been shifted to a single unit cell by lattice translations. From this 

arrangement of the points, the 2, at \,\,z and the 3j at |,i,z and |,f,z are 
clearly shown. The symmetry elements of P61 are given in c. 

We shall now consider, as an example of the cubic system, the space group 
P4/m 3 2/m. This is the space group of the cubic P-lattice, which has already 

been introduced in Fig. 6.13d. That diagram of the space group P4/m 3 2/m 

is incomplete. It was, however, adequate for the introduction of symmetry 

relationships, and is also entirely suitable for the application of this space 

group, as we shall see later. M. J. Buerger [6] developed projections of the 

cubic space groups which have been included in the third edition of the 

International Tables_[\4~\. Figure 9.15 shows such a projection on x,y, 0 of the 

space group P4/m 3 2/m. In order to include those symmetry elements which 

are parallel to (110) and (111) in the diagram, Buerger used an orthographic 
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Fig. 9.15. Space group P4/m 3 2/m [6], [14] projection on x,y,0 

projection1, and representations of the oblique rotation- and screw-axes. In 
order to understand the relationship of the various symmetry elements, it is 

useful to study Fig. 9.15 and Fig. 6.13 d, to see that they are representations of 

the same thing. 
Even for so complex a space group as P4/m 3 2/m, it is relatively easy to 

describe a general position. Figure 9.16a shows a section of a cubic unit cell. A 

3-fold rotation axis lies along the body-diagonal of the unit cell x,x,x, but it is 

not shown here. Starting from a point x,y,z (x = 0.3, y = 0.2, z = 0.1), the 
operation of the 3-fold axis generates the points z,x,y and y,z,x (Fig. 9.16a). 

Figure 9.16b shows the projection of these three points on x,y,0. The 
application of the mirror plane at x,x,z to these points converts them to a set 

of six points in a planar ring (Fig. 9.16c). The further application of the 4-fold 

axis at 0,0, z converts this ring to a set of four rings (Fig. 9.16d). Finally, the 

mirror plane at x, y, 0 reflects these rings downwards and produces the full set of 

points for this 48-fold position. The coordinates of all 48 of these points are 

1 See section 4.8. 
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Fig. 9.16a-d. The 48-fold general position of space group P4/m 3 2/m. 

a Section of a unit cell showing the operation of the 3-fold rotation axis at x,x,x (not drawn) 

on a general point x,y,z with x = 0.3, y = 0.2, z = 0.1. b Projection of the equivalent points in 

a on x,y,0. c The operation of the mirror plane at x,x,z on the points in b generates six 

equivalent points in a planar, 6-membered ring, d The operations of the 4-fold axis at 0,0, z 

and the mirror plane at x,y, 0 on the points in c complete the full set of 48 equivalent points of 

the general position. Only those points lying above the plane of the paper are shown. The rest 

may be generated by giving a minus sign to the third co-ordinate of each triple 
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given in Fig. 9.16d, if each triple is taken to imply one with a minus sign on the 
third co-ordinate as well. These 48 equivalent points are generated entirely by 
the symmetry of 4/m 3 m! 

There is a simple relationship between the number of faces in the general 

form of a crystal of a particular point group and the multiplicity of the general 
position of a space group in that point group (cf. Table 9.2). For space groups 

with a P-lattice, the multiplicity of the general position is equal to the number of 
faces in the general form for the point group. For space groups with C-, A- and 

I-lattices, the multiplicity of the general position is twice as great as the number 
of faces, and for those with an F-lattice four times. The general form of 

the point group mm2 is the rhombic pyramid (cf. Exercise 8.15(5)) with four 
faces. The multiplicity of the general position in Pmm2 (Fig. 9.11a) or Pna2! 
(Fig. 9.12) is 4, while for Cmm2, Aba2, Imm2 or Ima2 it is 8, and for Fmm2, 

it is 16. 
If the point group includes an inversion centre, all the corresponding space 

groups will be centrosymmetric, cf the monoclinic space groups in Fig. 9.9. 

Consider now the space group P42/n 2j/c 2/m. Removing the lattice symbol 
and converting all glide planes and screw axes to the corresponding point 
symmetry elements (42 -*• 4; 2X -*■ 2; n, c -* m) gives the point group of this space 

group: 4/m 2/m 2/m. 

9.4 International Tables for Crystallography 

Many of the most important properties of the 230 space groups are collected in 

International Tables for Crystallography, Vol A. [18], [17], [14], These tables are 
very useful. The information they contain may be illustrated with respect to the 

space group P42/mnm (Fig. 9.17). 

(1) Short space group symbol, Schonflies symbol, point group, crystal system, 

number of the space group, full space group symbol. 
(2) Projection of the symmetry elements of the space group on x,y,0; a points 

down the page, b across to the right, and the origin is in the upper left 

corner. 
(3) Projection of a general position on x, y, 0; the axial directions are as in (2), O 

represents a point, ® a point projecting on top of another, while CD implies 
that one of the points is derived from the other by a reflection or 

rotoinversion operation. The z-coordinate is indicated. 
(4) Information about the choice of origin, here at an inversion centre at the 

intersection of three mutually perpendicular mirror planes. Since this is a 

tetragonal space group, the symbols 2/m 1 2/m imply the symmetry 

directions, c, (a), (110). 

(5) The asymmetric unit: 

y _Vunit cell_ 

asym. unit muitipiicjty Qf the general position 

(6) The symmetry operations of the space group. 
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(i) P 4i/m n m D\t 
No. 136 P42/m2i/«2/m 

4/m m m 

V/ f V,/' f 
© 

'\TT-yiTT/' 
\ : ✓ 4 K ; / 4 \l/ 
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\T 0 
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' 1 \ / 1 4 1 
fc 1 V i \ 

‘ 0 . /V\ i * 
4Ki/ V" 

</ 
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S^\ Jo 

\ \
 

-U|
 \ 

/
 

—
 

/ 

>0- 

© 

>0- 

(2) 

I -©< 

© 
(4) Origin at centre (mmm) at 2/m 1 2/m 

(5) Asymmetric unit O^x^l; O^y^l; O^z^l; x<.y 

(6) Symmetry operations 

(1) 1 
(5) 2(0,1,0) l,y,i 
(9) 1 0,0,0 

(13) *(1,0,1) x,i,z 

(2) 2 0,0,z 
(6) 2(1,0,0) x,i,i 

(10) m x,y,0 
(14) n(0,i,i) i.y.z 

(3) 4*(0,0,i) 0,1,z 
(7) 2 x,x,0 

(11) 4* 1,0,z; 1,0,i 
(15) m x,X,z 

Tetragonal 

© 
-0- 

-©♦ 

© 
+ © 

-4-©i+ 

5+0r, 
i 

© 
i+ 

♦ 

© 

+0- 

-0- 

© 

-0 + 

@ (3) 

(4) 4- (0,0,1) 1,0,z 
(8) 2 x,i,0 

(12)4- 0,l,z; 0,1,1 
(16) m x,x,z 

(7) Positions 

Multiplicity. 
Wyckoff letter. 
Site symmetry 

Coordinates 

16 k 1 (1) Jf.y.z (2) JTJ.z (3) y + i,x + i,z + l (4) y + i.i+l.z + i 
(5) i+i,y + l,?+l (6) x + i,y + l,?+l (7) y,x,? (8) y,Jf,? 
(9) *,hl (10) x,y,? (11) y + l,Jf+l,?+| (12) ?+i,x + l,?+l 

(13) x + lj+l.z + l (14) Jf+l,y + l,z + l (15) y.JT.z (16) y,x,z 

8 i 

x,x,z 
f+l,X + i,?+i 

X,X,z 
x + i,i+l,?+l 

f+l,x+l,z + i 
x,x,? 

* + l,JT+l,Z+l 
X,X,2 

x’y-° xj, o y+i,x+i,i y+i,f+i,i 
•f+l.y + i.l x + l,y+l,l y,x,0 y,i,0 

8 h 2.. 0,1,z 
0,1,? 

0,1,z + 1 
0,1,?+l 

1,0,?+i 
1,0,z + 1 

1,0,? 
1,0,z 

4 8 m . 2m x.i.O f,x,0 x + i,x + l,l f+i,i+l,i 

4 f m . 2m x,x,0 i.i.O i+l.x + 1,1 Jt + l.i+1,1 

4 e 2 mm 0,0,z 1,1,z + 1 1,1,?+i 0,0,? 

4 d 4. . 0,1,1 0,1,1 1,0,1 1,0,1 

4 c 2/m . . 0,1,0 0,1,1 1,0,1 1,0,0 

2 b m .mm 0,0,1 1,1,0 

2 a m mm 0,0,0 1,1,1 

Fig. 9.17. Space group P42/mnm, from International Tables for Crystallography, Vol. A. [14] 
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(7) General and special positions. 

Col. 1: the multiplicity of the position. 

Col. 2: the Wyckoff letter assigned to this position; the letter furthest 

down the alphabet, here k, represents the general position. 
Col. 3: the site symmetry (point symmetry of the position), in the 

order c, (a), (110). 

Col. 4: the coordinates of equivalent points in the position. 

9.5 Space Group and Crystal Structure 

In Chapter 3, we defined a crystal structure as lattice + basis. It is thus possible to 

describe it as a geometrical arrangement of atoms. Table 9.5 A gives the lattice 

and the basis for the rutile (Ti02) structure. The perspective drawing and the 
projection on x, y, 0 in Fig. 9.18 are derived from these data. 

Every crystal structure can be similarly described by its space group and the 

occupation of general or special positions by atoms. The crystal structure of rutile 

Table 9.5. Description of the crystal structure of rutile Ti02 

A B 

Lattice Basis Space group Positions of the atoms 

tetragonal P Ti: 0,0,0 
l i l 

2’2’2 

P 42/mnm a Ti: 0,0,0 
i i i 

V V 2 

a0 = 4.59 A 

c0 = 2.96 A 

O: 0.3, 0.3, 0 

0.8, 0.2,) 

0.2, 0.8, i 

0.7, 0.7, 0 

a0 = 4.59 A 
c0 = 2.96 A 

f O: x,x,0 

1 + x !_v i 
f X’2 X = 0.3 
A — y A 4- y A 
2 2 ~ A’ 2 

x, x, 0 

Fig. 9.18a,b. The crystal structure of rutile, Ti02, shown: a in a perspective drawing, b in 

projection on x, y, 0 
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is in space group P42/mnm. The titanium atoms occupy the position a, and the 

oxygen atoms the position f with x = 0.3 (cf. the page of International Tables 
in Fig.9.17). The special position a is 2-fold, implying 0,0,0 and 

f is 4-fold: x,x,0; i + xj-x,^; \ -x,\ +x,| and x,x,0 (Table 9.5B). 6,0,0 
and x,x,0 (x = 0.3) lie in a single asymmetric unit of space group P42/mnm, 
cf. Fig. 9.17. Substituting 0.3 for x in the coordinates for the O-atoms gives 
the specific coordinates listed for the basis in Table 9.5 A. The description of 

a crystal structure in terms of the space group is much simpler than that 

in terms of the basis when positions of high multiplicity are involved. In 

addition, the space group shows clearly which atoms are related to one another 
by the symmetry elements of the space group. This relationship is particularly 

important for positions with one or more degrees of freedom. Any movement in 
x (cf. position f in Fig. 9.17) alters the relationship of all the related atoms; for 

example, an increase of x results in the movement of the O-atoms indicated by 
the arrows in Fig. 9.18 b. 
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EXERCISES 

Exercise 9.1. For the two-dimensional “Knockel” structures given below, indicate: 

a) The unit mesh. 

b) The symmetry elements, paying particular attention to glide planes. 
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Exercise 9.2. Glide planes and screw axes. In the projections below of a unit cell onto 

x, y, 0, only a single symmetry element is given. Allow this symmetry element to operate 

on an asymmetric point (in a general site) at x,y,z and give the coordinates of the 
equivalent point(s) generated. 

a) b) 

c in n in -r, y , z 
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i) 

0 

k) 

1 
4 

2 in 
1 
4’ 

y,0 

± 
4 

21 in o.y.j 

j) 

i) 

Exercise 9.3. The figures show the operation of a glide plane and a 2raxis on a point. 
The arrangement of the points appears to be the same in the two diagrams. Discuss this 
apparent contradiction. 

1 

P 1 P 
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Exercise 9.4. Show that (a) C2,/csC2/c, (b) C2l/m = C2/m, and (c) C2] =C2. 

Start from the projections of the space groups (a) P2,/c, (b) P2I/m and (c) P2, as 

given in Fig. 9.9. Place a point at x,y,z and another at ? + x,l + y,z (C-centring), and 

allow the symmetry elements to operate on them. This will give the general positions 

for: (a) C2\/c, (b) C2,/m and (c) C2j. Using these general positions, the complete 

symmetry of the space groups can be determined. Using Fig. 9.9, show the corre¬ 

spondence of (a) C2,/c with C2/c, (b) C2,/m with C2/m, and (c) C2, with C2, 
moving the origin of the diagram as necessary. 

Exercise 9.5. Determine the symmetry of the orthorhombic C- and I-lattices. Indicate 

the symmetry elements on a projection of the lattice onto x,y,0, and give the space 
group symbol. 

Exercise 9.6. Draw the symmetry diagram of space group Pmm2 on a piece of graph 

paper. Enter points in the general positions 0.1,0.1,0.1; 0.1,0.4,0.1; 0.25,0.25,0.1; and 

0.4,0.4,0.1 and those points resulting from the operation of the symmetry elements on 
them. 

Exercise 9.7. The symmetry diagrams for seven space groups are given below as 
projections on x,y,0. 

a) Enter on each diagram a point in a general site x,y,z, and allow the symmetry to 
operate on it. 

b) Give the coordinates of the points equivalent to x,y,z. 

c) What is the multiplicity of the general position? 

d) Work out the space group symbol. (The graphical symbols for symmetry elements 
are given in Chap. 14.2). 

e) Indicate a special position - if there are any - and give its multiplicity. 

a 
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Exercise 9.8. Make a tracing of the projection of a hexagonal unit cell on x,y,0 
(Fig. 9.14) and place at 0,0, z (a) a 62-axis, (b) a 63-axis. 

1. Allow the symmetry elements to operate on a point in a general site, and give the 
coordinates of the resulting equivalent points. 

2. Draw in the other symmetry elements of the space group in the unit cell. 

3. Which symmetry elements are contained within 62 and 63? 

Exercise 9.9. Consider the space group P4/m 3 2/m (Figs. 9.15 and 9.16). In a 

projection on x,y,0, draw in the special positions (a) x,x,z, (b) x,x,x, (c) x,0,0. 

Give the coordinates of the equivalent points and the multiplicities and site 
symmetry of the positions. 

Exercise 9.10. Draw a projection of the symmetry diagram for the space groups P2, /c 
Pna21( Pmna, Pbca, and P422. u ’ 

Exercise 9.11. Criticise the symbol Pabc. 



10 The Interrelationship of Point Groups 
and Space Groups 

When point groups and space groups are compared and contrasted with one 
another, various relationships between them become clear. Table 9.2 shows the 
230 space groups arranged according to the corresponding point groups. Table 
10.1 contains a comparative summary of properties of point groups and space 
groups. 

The only forms which can occur on a crystal are those which belong to the 
point group resulting from the space group of the crystal structure. The rutile 
structure, for example (Fig. 9.18) has the space group P42/mnm, and conse¬ 
quently point group 4/mmm. Point group 4/mmm includes only those forms 
given in Fig. 8.7. Of these, the crystal in Table 8.11.15 has developed only {111}, 
{110} and {100}. 

Molecules are also characterised by point groups. What is the role of 
molecular symmetry when equal molecules associate with one another in a 
crystal? Hexamethylenetetramine molecules belong to point group 43m 
(Fig. 10.1 a). These molecules form crystals with space group I43m (Fig. 10.1 b), 
in which the molecules occupy positions with the site symmetry 43m. 
Unfortunately, this correspondence is far from common! 

Ethylene molecules (point group 2/m 2/m 2/m (mmm) Fig. 10.2a), give 
crystals with space group P2i/n 2i/n 2/m (Pnnm) in which they occupy 
positions with site symmetry 2/m only (Fig. 10.2b). 

Similarly, benzene molecules, which have the very high point symmetry of 
6/mmm, give orthorhombic crystals (space group Pbca) in which they occupy 
positions with site symmetry 1 only (Fig. 10.3). Here the symmetry of the free 
molecule is higher than that of the crystal structure. 

Fig. 10.1 a, b. Symmetry of hexamethylenetetramine (C6H|2N4). a molecule: 43m. b crystal 

structure: I43m. (After [2]) 
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Table 10.1. Comparison of point groups and space groups 

Point group Space group 

A group of point symmetry 

operations whose operation leaves at 

least one point unmoved. Any oper¬ 

ation involving lattice translations is 
excluded. 

A group of symmetry operations 

including lattice translations 

1 1 

2 m 

3 3 

4 4 

6 6 

1 I 

2 m 2i; a, b, c, n, d 

33 3j, 32 

4 4 4,,42,43 

6 6 6], 62, 63, 64, 65 

lattice translations 

a, b, c 

a,P, 7 
ao> b0, Co 

a, fi, 7 

Order of the symmetry directions 

e.g. 4/m 2/m 2/m 

1 1 1 

Order of the symmetry directions 

e.g. P42/m 2)/n 2/m 
1 1 1 

c (a) (110) 
1 1 1 
c (a) (110) 

General form 

Set of equivalent faces with 

face symmetry 1 

General position 

Set of equivalent points with 

site symmetry 1 

f 
Aasym. face unit — 

f 
Asurface area of the sphere 

number of faces in the general form 

V • - v asym. unit 

^unit cell 

multiplicity of the general position 

Number of faces in the general form 
of a point group 

Multiplicity of the general position for 

all space groups with P-lattice, 

belonging to the point group 

Special form 

Set of equivalent faces with 

face symmetry > 1 

Special position 

Set of equivalent points with 
site symmetry > 1 

Molecules C60 have the non-crystallographic point group 2/m 35(Fig. 11.6). 
These molecules associate to give cubic crystals, with a ccp structure (space 
group F4/m32/m). 

There is no simple relationship between molecular and crystal symmetry. 

The crystal structure that is adopted depends on many factors, including the 

type of chemical bonding, the shape and the packing possibilities of the 
molecules. 
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Fig. 10.2a, b. Symmetry of ethylene (C2H4). a Molecule: 2/m 2/m 2/m b Crystal structure 
P2t/n 2i/n 2/m 

c 

Fig. 10.3a, b. Symmetry of benzene 

(C6H6). a Molecule: 6/mmm. 

b Crystal structure: Pbca 

EXERCISES 

Exercise 10.1. In each of the space groups Pi (Fig. 6.7d), Pm and P2/m (Fig. 9.9) and 

P2/m 2/m 2/m (Fig. 6.9d), place an atom A at the origin (0,0,0) and a different atom B 

at a general position x,y,z (x,y,z<|). 

a) What is the chemical formula of this structure? 

b) What is the value of Z, the number of formula units per cell? 

c) Describe the shape of the resulting molecule. 

d) Give the point group of the molecule. 

e) What is the site symmetry of the molecule in the crystal structure? 



. 



11 Fundamentals of Crystal Chemistry 

Crystal chemistry is concerned with the crystal structure of the elements and of 

chemical compounds. It attempts to explain why particular types of crystal 
structures arise under specific conditions. It is, however, still only possible to 
understand how relatively simple crystal structures arise from the atoms that 
make them up. 

A fundamental concept in crystal structures is the idea of sphere packing. In 
this approach, the atoms or ions of which the structure is composed are 
regarded as hard spheres which pack with one another. Goldschmidt and Laves 
summarised this approach in three principles: 

1. The Principle of Closest Packing. Atoms in a crystal structure attempt to 
arrange themselves in a manner which fills space most efficiently. 

2. The Symmetry Principle. Atoms in a crystal structure attempt to achieve 

an environment of the highest possible symmetry. 

3. The Interaction Principle. Atoms in a crystal structure attempt to achieve 

the highest coordination (Sect. 11.1), i.e. the maximum possible number of 

nearest neighbours with which they can interact. 

Chemical bonding is a very important factor in crystal chemistry, as it is 

concerned with the forces holding the atoms together in the structure. The 
atoms of a structure are held together in a characteristic order by the chemical 

bonding. This bonding arises from interaction of the electron shells of the 

atoms, and is conventionally divided into: 

a) metallic bonding 

b) van der Waals bonding 
c) ionic or heteropolar bonding and 

d) covalent or homopolar bonding. 

They are illustrated schematically in Fig. 11.1. Actual compounds rarely 
correspond exactly to one of these types. In most cases, the bonding is a mixture 

of two or more types, which should be regarded only as limiting cases. 
It is beyond the scope of this book to discuss the theory of chemical bonding. 

We shall restrict ourselves here, so far as bonding theory is concerned, to a small 

number of principles on which further study may be based. 
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Fig. 11.1 a-d. Schematic summary of bonding types in crystals. 

a Metallic bonding. Valence electrons of the metal atoms are delocalised in an “electron 

cloud”. This negatively charged cloud encloses the positively charged atom cores and holds 
them together. 

b Van der Waals bonding. This arises from random variations in the charge distributions of the 

atoms and is very weak. The atoms and molecules tend toward a closest packing, 

c Ionic bonding. In an ionic crystal, the positively and negatively charged ions are held 
together by electrostatic forces. 

d Covalent bonding. This represents the four sp3-orbitals of a carbon atom in the diamond 
structure 

The principles stated above work well in rationalising the structures of 
metallic and ionic materials. They also have some application to molecular 
crystals, those held together by van der Waals forces. For covalent structures, 

the principles of closest packing and of high coordination are rarely fulfilled. 
This results from the fact that covalent bonding is directional in nature. 

11.1 Coordination 

In crystal chemistry, the immediate neighbourhood of each atom and the forces 

which bind it to its neighbours play a leading role in the explanation of the 
overall geometry of the crystal. 

The number of nearest neighbours of a central atom or ion is called its 
coordination number, and the polyhedron formed when the nearest neighbours 
are connected by lines is called its coordination polyhedron. 

Some important coordination polyhedra are given in Table 11.1 along 
with actual examples. The coordination number, in square brackets, can be 

inserted in the chemical formula as a superscript, and thus add significant 
crystal-chemical information to the formula. 

Ideally, coordination polyhedra have a high point symmetry. However, a 

coordination polyhedron is nothing like so sharply defined as a crystal form 

(Chap. 8.2.1). Even atoms of the same element coordinated to the same central 

atom are not necessarily equivalent. Strictly speaking, cubic (m3m), octahedral 

(m3m) and tetrahedral (43m) symmetries can only arise in the cubic system. 

Coordination polyhedra are often more or less distorted. The cubic coordi- 
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Table 11.1. Important coordination polyhedra 

a The limiting value of the radius ratio RA/RX is that at which spherical coordinating atoms X 

just touch one another, and the central atom A fits precisely into the resultant hole. 

b Cf. exercise 3.2. 
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Fig. 11.2 a-c. Cubic closest packing of spheres (Cu-type). a Coordination polyhedron [12] 

(cuboctahedron) as a perspective representation, using spheres reduced in size, and as a 

projection of the spheres on a close-packed layer, b The crystal structure. One of the layers 

parallel to (111) is shown together with the layer sequence ABCA. c A unit cell (cubic 

F-lattice). The spheres are reduced in size, and their correspondence to the stacked layers is 
indicated. The unit cell is also sketched in b 

nation in cubic Csl (Fig. 3.4) and the octahedral coordination in NaCl 

(Fig. 11.17) are strictly regular, while the octahedral coordination in tetragonal 
rutile (Fig. 9.18) is distorted, cf. Exercise 11.10. 

11.2 Metal Structures 

A simple picture of metallic bonding is that the valence electrons of the metal 

atoms are delocalised in an “electron cloud” (Fig. 11.1 a). This negatively 

charged cloud encloses the positively charged atom cores (not ions) and shields 

them from one another. The bonding forces are not directional; they are equal 
in all directions. 

In a metal, one can consider the atoms as spheres. Each atom attempts to 

associate itself with the maximum number of similar atoms. This can be 

achieved for 12 nearest neighbours in two different arrangements (coordination 

polyhedra), shown in Figs. 11.2a and 11.3a, and also Table 11.1 a and b. Starting 

from these coordination polyhedra as nuclei, crystal growth will result in the 

formation of two distinct crystal structures. These structures can be described as 
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Fig. 11.3a-c. Hexagonal closest packing of spheres (Mg-type). a Coordination polyhedron 

[12] (disheptahedron) as a perspective representation, using spheres reduced in size, and as a 

projection of the spheres on a close-packed layer, b The crystal structure. One of the layers 

parallel to (0001) is shown together with the layer sequence ABA. c A unit cell. The spheres are 

reduced in size, and their correspondence to the stacked layers is indicated. The unit cell is also 

sketched in b 

stackings of closest packed layers of spheres, and they differ in the layer 

squence. 

• • 

A • 

I C II A 
B B 

A A 

Structure I may be described by a cubic unit cell, with a cubic F-lattice, and is 

called the Cu-type, while structure II has a hexagonal unit cell, and is called the 
Mg-type. The two structures are thus called cubic and hexagonal closest packing 
respectively, abbreviated to ccp and hep. Examples of each structure are given 

in Table 11.2. Some metals occur with both structure types, e.g. Ni. 
The atoms of the Cu or ccp structure are all related by simple lattice 

translations, and are thus identical. In the Mg or hep structure, atoms in the 

A-layers are all identical, as are atoms in the B-layers. The A- and B-atoms are, 
however, equivalent but not identical to one another. This is shown by the 

positions given in Table 11.2. 
If the lattice constant is known, the radius of a sphere (the atomic radius) 

may be calculated. Figure 11.2 b, c shows the diagonal of a (100) face of the cubic 
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Table 11.2. Data for the three most important metal structure types, Cu, Mg and W, and 
for a-Po 

Cu 

ccp 
Mg 

hep 
W 

bcc 
a-Po 

sc 

Lattice 
+ 

basis 

Cubic F Hexagonal P Cubic I Cubic P 

0,0,0 0 0 O' - 1 1 
’u,u, 3’3’2 0,0,0 0,0,0 

Space group 
+ 

Positions 

occupied 

F 4/m 3 2/m P 63/m 2/m 2/c I 4/m 3 2/m P 4/m 3 2/m 

(a) 0,0,0 (c) 
0,0,0; f, 1,1 

(a) 0,0,0 (a) 0,0,0 

Coordination 

number 
[12] [8] [6] 

Atomic radii -4 a0 \/2 5 ao j a0 \/3 \ ao 

Packing 

efficiency 
0.74 0.68 0.52 

Further 

examples 

Ag, Au 
Ni, A1 

Pt, Ir 

Pb, Rh 

Mg (1.62) 

Ni (1.63) 

Ti (1.59) 

Zr (1.59) 

Be (1.56) 

Zn (1.86) 

Mo, V 

Ba, Na 

Zr, Fe - 

unit cell of the cep-structure. Its length is equal to four sphere radii 

(B-2C-A). Thus R = |a0\/2. In the hcp-structure, R = ja0 (cf. Fig. 11.3b,c). 
Radii of metal atoms are given in Table 11.3. 

It is possible to fill spaces completely by packing equal cubes, or, indeed, 

equal general parallelepipeds. This is not possible with spheres. In both types of 

closest sphere packings, there are interstices remaining of specific coordination; 

these are usually called “holes”. These may be bounded by four spheres 
(tetrahedral holes) or by six (octahedral holes), (Fig. 11.4) and are examples of 
tetrahedral and octahedral coordination (Table 11.1). 

The packing efficiency is defined as the ratio of the sum of the volumes of the 

spheres making up a unit cell to the volume of the unit cell. If the spheres are equal 
in size, it is given by 

Z-lnR3 

V unit cell 

As we have seen, in the ccp structure, R = |a0V2. Thus a0 = ^~ and 

33/-- N/2 

V = a<j = 16R3 V2. Since Z = 4, the packing efficiency is thus — y/2= 0.74. The 
6 

corresponding calculation for the hep structure gives the same result. 
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Fig. 11.4. a Tetrahedral [4] holes, 

b Octahedral [6] hole in closest 

packed arrays of spheres 

Fig. 11.5 a, b. Crystal structure of tungsten, a With atomic radii shown to scale, b Showing only 

the centres of gravity of the atoms 

For the hep structure, the ideal— ratio may be calculated, since Co is 
a0 

the height of two coordination tetrahedra of edge 2R = a0, sharing a common 

C° of f- V6=1.63. In Table 
a0 

vertex (cf. Fig. 11.3c). This gives a value for 

11.2, the — values for several metals are given; they tend to lie between 
ao 

1.56 and 1.63. The value for Zn is considerably larger. 
In addition to the two types of closest packing, a further structure adopted 

by some metals is the W-type, with a cubic I-lattice, usually simply called body- 
centred cubic, and abbreviated bcc (Fig. 11.5). In this structure, the 

body-diagonal of the unit cell consists of four sphere radii, i.e. R = ja0\/3. 

The packing efficiency of this structure is —\/3=0.68. The coordination 
8 

number is [8], and the coordination polyhedron is a cube. 
An arrangement of metal atoms in a cubic P-lattice occurs only for 

a-polonium (Fig. 2.1, Table 11.2). It has a packing efficiency of 0.52, a 
coordination number of [6] and an octahedron as its coordination polyhedron. 

Considering the above data for the hep and ccp structures, the Goldschmidt 

and Laves principles are very well fulfilled: 

1. The packing efficiency is 0.74, the highest possible for the packing of equal 

spheres. 
2. F4/m 3 2/m is one of the highest symmetry space groups of the cubic system, 

and P63/m 2/m 2/c is one of the highest symmetry space groups of the 

hexagonal system. 
3. [12] is the highest possible coordination number for spheres of equal size. 
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The W-type or bcc structure has a packing efficiency of only 0.68 and its 

coordination number, [8], is smaller than that of the closest packed structures, 
but its symmetry, I4/m 3 2/m is also high. 

The a-Po structure also has a high symmetry (P4/m 3 2/m), but its packing 

efficiency and coordination of 0.52 and [6] respectively are very small. This is 
certainly the reason for a-Po being the sole example of this structure. 

Metals attempt to achieve a high symmetry and a high packing efficiency. 
The great majority of metals crystallise in one of the first three given structure 
types. 

Metals have many characteristic properties which are related to their 
structure and bonding: 

a) Electrical and Thermal Conductivity. Metals are good conductors of both 
heat and electricity. These properties arise from the fact that the electron clouds 
between the atom cores can move freely. 

b) Plastic Deformation. Plastic deformation in a metal is a shearing parallel to 

closest packed layers. This property is most prominent for metals with cubic 
closest packing in which four equivalent (lll)-planes can undergo shear 

efficiently. These metals are generally soft, malleable and ductile. Gold, for 
example, can be beaten to a thin foil that weakly transmits green light. Crystals 

with hexagonal closest packing of the atoms are less malleable, since they have 
only one shear plane, parallel to (0001). Body-centred cubic metals are yet more 
brittle. 

11.3 Structures of Noble Gases and Molecules 

In noble gas and molecular structures, the atoms or molecules are held together 

by van der Waals forces. These forces are very weak. This is apparent from the 
very low melting points of such crystals, e.g. neon: -247.7°C, ethylene: -170°C, 
benzene: 5.5°C and phenyl salicylate 43°C. 

Noble gas atoms can also pack together as spheres, having a noble gas 

electron configuration. The bonding forces, like those in metals are non- 
directional, and the same sphere packings occur: 

a) cubic closest packing (cf. Fig. 11.2): Ne, Ar, Kr, Xe, Rn. 
b) hexagonal closest packing (cf. Fig. 11.3): He. 

Molecular structures are characterised by the fact that the energy holding the 

atoms in the molecules together (covalent bonding) is large, while that holding 
one molecule to another is very weak. Most molecular compounds are organic, 

inorganic examples include sulphur (cf. the S8 molecule in Table 8.11.36) and 
C60, see below. 

Three molecular structures were introduced in Figs. 10.1-10.3 (hexa¬ 
methylenetetramine, ethylene and benzene). As was made clear in Chapter 10, 
there is no simple relationship between crystal symmetry and molecular 

symmetry. Although molecules are not spherical in shape, they do attempt to 
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6 O* 10 A + 15 i * 15 m * l 

Fig. 11.6a,b. The C60-molecule forms an almost spherical cage with 20 six-membered rings 

and 12 five-membered rings (a) ([41]). The non-crystallographic point group 2/m35 (Ih) of the 

molecule (b) ([14]) 

pack as closely as possible in crystals. The hexamethylenetetramine structure 

(Fig. 10.1), for example, has a packing efficiency of 0.72. In the crystal structure 

of C02, the C-atoms occupy the positions of a cubic closest packing, the linear 

molecules being parallel to (111). 
Since the forces holding the molecules together are weak, it follows that 

the lattice energies of organic compounds are, in general, low. Nonetheless, 
the great majority of organic compounds can be crystallised. Even “giant” 

molecules with very large unit cell dimensions have been crystallised, for 

example: 

1. vitamin B12: C63H88Ni4Oi4PCo, P212i21, a0 = 25.33A, b0 = 22.32A, 

c0 = 15.92 A, Z = 4 (cf. Fig. 1.1 b) 
2. pepsin: M ^40000, P6]22, ao = 67 A, co = 154 A, Z = 12. 

A recent discovery is a new series of molecules containing only carbon, the 

main one of which has the molecular formula C60. In this molecule, the atoms 
form an almost spherical cage, made up of 20 six-membered rings and 12 five- 
membered rings. The structure is that of a soccer ball (Fig. 11.6a). The molecule 
has the non-crystallographic symmetry 2/m35(Ih) (Fig. 11.6b), and for this 

reason, all atoms are equivalent. 
C60 molecules have been crystallised with a ccp structure (a0 = 14.17 A). 

11.4 Ionic Structures 

Ionic crystals are built from positively and negatively charged ions, and the 
bonding energy is Coulombic forces, which are non-directional and equal in all 

directions. The strength of a bond is related to the charge on the ions, e, and the 

distance, d, between them: 

Cl ' e2 
Coulomb’s Law: K = ——— 
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Each cation seeks to maximise the number of neighbouring anions, while 

each anion equally seeks to maximise its neighbourhood of cations (Fig. 11.1c). 
The formation of ionic structures is thus another packing problem, but now the 

spheres are ions of opposite charge which generally are also different in size. The 

relative sizes of the radius of the cation, RA, and that of the anion, Rx, the radius 

ratio Ra/Rx, can suggest the appropriate coordination polyhedron and thus the 
crystal structure (Sect. 11.4.2-11.4.4). 

11.4.1 Ionic Radii 

Table 11.3 gives ionic radii as a function of atomic number. 

The size of an ion, considering an ion as a sphere, depends on the charge on 
the nucleus and on the number of electrons. 

a) Within a column of the periodic table, the ionic radius generally rises with 
the increasing nuclear charge. 

Li+ =0.70 A F~ =1.33 A 
Na+ = 0.98 A Cr=1.8lA 
K+ =1.33A Br“ =1.96A 
Rb^ = 1.52 A I" =2.20 A 
Cs+ =1.70 A 

b) For isoelectronic ions, an increase in the nuclear charge results in a lowering 
of the ionic radius. 

Na+ Mg2+ Al3+ Si4+ P5+ S6+ Cl7+ 

0-98 A 0.65 A 0.57 A 0.39A 0.34A 0.29A 0.26A 

c) For a particular element, the ionic radius falls as the positive charge rises: 
Cf. S(16) or Mn(25) in Table 11.3. 

11.4.2 Octahedral Coordination [6] 

The octahedron as a coordination polyhedron is illustrated in Table 11.le. The 
limiting value for the radius ratio RA/RX for this coordination may be 

determined by considering an octahedron composed of spherical anions which 
touch one another, and placing a cation precisely in the hole in its centre. Figure 

11.7 shows a section through such an octahedron. It can be seen that 

Ra + Rx = RxV2, or Ra/Rx = \/2— 1 = 0.41. Octahedral coordination is only 
stable if Ra/Rx is greater than or equal to 0.41 (Fig. 11.8a, b). A section through 
an unstable octahedron is shown in Fig. 11.8 c. 

Octahedral coordination occurs in the Na[6]Cl (Figs. 11.9 and 11.17) 

and rutile Tit6]02 (Fig. 9.18) structure types. The NaCl structure type can be 

considered as a cubic closest packing of anions with cations in the octahedral 

holes. For LiCl (RA/RX = 0.43), the ideal radius ratio for octahedral coordi- 
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Fig. 11.7. Cross-section through a coordination octahedron ([6]) 

a) 0.54 b) 0.41 c) 0.25 

Fig.ll.8a-c. Section through a coordination octahedron, with the corresponding radius 

ratio, Ra/Rx. The arrangements in (a) and (b) are stable; that in (b) shows the limiting case 

with Ra/Rx = 0.41, and that in (c) is unstable 

Fig. 11.9. Na[6]Cl structure, Fm3m 

Lattice: cubic F 
Basis: Na+at 0,0,0; CL at 1,0,0 

nation is almost achieved. By contrast, NaCl itself has a radius ratio of 0.54 

(Fig. 11.8 a). 
The spinel structure Mg[4] A12[6]04 is based on a cubic closest packed array of 

oxide ions. The Mg2+ ions occupy tetrahedral holes and the Al3+ ions octahedral 

holes. Let us consider how many of the octahedral and tetrahedral holes are 

occupied. 
Considering the NaCl structure as a cubic closest packing of Cl" ions 

(Fig. 11.9), it will be noted that all octahedral holes are occupied by Na+ ions. 
In NaCl, the ratio Cl"; Na+ is 1:1, thus each sphere in a ccp array (Cl") 
corresponds to an octahedral hole (Na ). Figure 11.11 shows the antifluorite 

structure. The sulphide ions are in a ccp array (Fig. 11.11a), and the Li+ ions 

occupy all tetrahedral holes. In Li2S, the ratio Li+: S2" = 2:l, so each sphere in a 

ccp array (S2~) corresponds to two tetrahedral holes (Li+). The relation 2[4], 

1[6] per sphere applies equally to both closest packings. 
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Returning now to the spinel structure, Mg[4]Al2[6]04, we can see that | of the 

tetrahedral holes are occupied by Mg2+ and \ of the octahedral holes by Al3+. 

In the Ni[6]As (niccolite) structure (P63/mmc), the As atoms are arranged as 
a hexagonal closest packing and the Ni atoms occupy all of the octahedral holes 

(Ni:As = l:l, Fig. 11.18). The O2 -ions of the corundum, A12[6]03, similarly 

form a hexagonal closest packing. The Al3+ ions are in octahedral holes. From 

the above relationship, \ of the octahedral holes are occupied. In corundum, 
every third octahedral hole is vacant, but in the ideal structure, all holes are 
equivalent. This results in a lowering of the space group symmetry to R3c. Thus, 

corundum is trigonal, while in NiAs, the symmetry of the hexagonal closest 
packing (P63/mmc) is retained. 

The 02-ions in forsterite, Mg2[6]Si[4]04, also are arranged as a hexagonal 
closest packing. The Si4+ ions occupy | of the tetrahedral holes, and the Mg2+ 
ions half of the octahedral holes. The symmetry is lowered to Pnma. 

The atoms or ions in tetrahedral or octahedral holes are not statistically 
disordered. In most cases, they are ordered in the structure. 

11.4.3 Cubic Coordination [8] 

As the radius ratio increases, there should be a range in which the trigonal 

prism, with limiting RA/RX = 0.53, is stable (cf. Table 11.1 d). In fact, for ionic 

structures, the stable structure becomes cubic [8]-coordination, cf. Table 11.1c. 
Making use of Fig. 11.10, which shows a section through a cube parallel to (110) 
(cf. Fig. 3.4), the limiting value for RA/RX for cubic coordination can be 
calculated: RA + Rx = Rx • ^3, so RA/RX = y/J--1 = 0.73. 

This implies that octahedral coordination is stable for the range 

0.41 < Ra/Rx < 0.73, while cubic coordination is preferred for RA/Rx > 0.73. 

Cubic coordination is found in structures of the Cs[8]Cl-type, and for the 
fluorite or Ca[8]F2-type (Fig. 11.11). Cs[8]I (Fig. 3.4) has the Cs^Cl structure 
with an almost ideal radius ratio of 0.75. 

In Fig. 11.11b the CaF2 structure has been drawn with an F -ion at 0,0,0. 
This makes the cubic coordination of the Ca2 more evident. Ca2+ ions occupy 

every second cubic hole. The Cl ions have the same arrangement in the CsCl 
structure, in that case, every cubic hole is occupied by Cs+. The fluorite structure 

is found for SrF2, BaF2, SrCl2, U02 etc., and also for a number of alkali metal 
sulphides, e.g. Li2S, Na2S, K2S etc. As is indicated by the chemical formulae, in 

Fig. 11.10. Section parallel to (110) through a 

coordination cube [8] (cf. Fig. 3.4a) 
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S~ 

O 
F~ 
Li* 

Fig. 11.11a,b. The fluorite or Ca[8]F2 structure, and the “antifluorite” structure (e.g. Li2S), 
space group Fm3m 

Lattice: cubic F 

Basis: Ca2+or S2~ at 0,0,0; 

F~ or Li+ at (a) 

Structure drawn with F at 0,0,0 in order to emphasise the cubic coordination (b) 

Fig. 11.12a, b. Coordination tetra¬ 

hedron A[4]X4, inscribed in a cube (a); 

(llO)-section through a coordination 

tetrahedron derived from sphere pack¬ 

ing (b) 

these sulphides, the positions of the cations and the anions must be reversed, i.e. 
S2~ ions occupy the Ca2+ positions and the alkali metal cations occupy the F 
positions. This structure is called the “antifluorite” structure. In it, the S2 ions 

form a ccp array, and the cations occupy all of the tetrahedral holes. 
In Table 11.4, a number of AX and AX2 compounds are listed, arranged 

according to structure type. The radius ratio values are also given. The 
agreement between theory and experiment is reasonable, considering that the 

use of radius ratios makes the assumption that ions are hard spheres. 

11.4.4 Tetrahedral Coordination [4] 

Table 11.1 g shows the tetrahedron as a coordination polyhedron. A suitable 

radius ratio can also be calculated for tetrahedral [4]-coordination. In 

Fig. 11.12a, a coordination tetrahedron is shown inscribed in a cube. Figure 

11.12b shows a section through the cube and tetrahedron parallel to (110), 

with the radii of ions drawn to scale. Since RA + Rx is half the body 

diagonal of the cube (|V3) and Rx is half of the face diagonal (j\/2), 

(Ra + Rx)/Rx = V3/V2, and RA/Rx = >/§- 1 = 0-225. 
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Fig. 11.13. Zn[4]S-structure (sphalerite 

or zinc blende). Space group F43m 
Lattice: cubic F 

Basis: Sat 0,0,0; Zn at 1 i i 
• 4> 4’ 4 

(wurtzite). Space group P63mc 

Lattice: hexagonal P 

Basis: S at 0,0,0; 

Znat0,0,i + z; |,|,z (z«±) 

This implies that tetrahedral coordination will have a range of stability for 

0.225 < Ra/Rx < 0.41. Important examples of this coordination are the sphaler¬ 
ite or zinc blende (Zn[4]S) structure (Fig. 11.13), the wurtzite (Zn[4]S) structure 

(Fig. 11.14) and all modifications of Si02 except stishovite. Figures 11.15 and 
11.24 show the structures of different modifications of Si[4]02. The Si04 
tetrahedra build a framework structure through the sharing of vertices. The 

radius ratio for Si02 is 0.29. 
The bonding in both Zn[4]S structures is, in fact, largely covalent in nature. 

If, however, the geometry alone is considered, the S-atoms in the sphalerite 

structure occupy the positions of a cubic closest packing, and in the wurtzite 

structure those of a hexagonal closest packing. In both structures, the Zn-atoms 

occupy half of the tetrahedral holes. 
How, then, do the basic principles for the formation of ionic structures work 

out in practice? 

1. In general, ionic structures have space groups of high symmetry, e.g. CsCl: 

P4/m3 2/m; NaCl and CaF2: F4/m3 2/m. Structures based on the closest 

packing of anions retain the space groups of those arrangements when 
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Fig. 11.16a, b. Linking of pairs of tetrahedra (a) and octahedra (b) through a vertex, an edge 
and a face. The numbers give the relative distances apart of the two coordinated cations after 
[35] 

the interstices of a particular type are completely filled, e.g. Na[6]Cl: 
F4/m3 2/m (Fig. 11.9). When the interstices are only partly filled, the 
symmetry may be lowered, e.g. A12[6]03: R3c. 

2. The packing efficiency of ionic structures is usually high: for the ideal CsCl 
type, with Ra/Rx = 0.73, it is 0.73; for the NaCl type with RA/Rx = 0.41, it is 
0.79. As the radius ratio increases for a particular structure type, the packing 
efficiency decreases. For the structure of the NaCl type, for example with 
Ra/Rx = 0.54 (cf. Fig. 11.8a) it is 0.66. 

3. In ionic structures, the commonly occurring coordination numbers, [8], [6], 
and [4], are dependent on radius ratio and are relatively small. A better 
correlation is obtained if only the coordinations of the anions are considered, 
e.g. NaCl and A1203: Coordination number [12], 

Finally, the linking of coordination polyhedra in ionic compounds should 
be considered. Linking by shared vertices is favourable. The sharing of edges, 
and in particular the sharing of faces lowers the stability of a crystal structure' 
This effect is greatest when a cation has a high charge or a low coordination 
number: Pauling’s third rule. In Fig 11.16, the linking of pairs of tetrahedra and 
octahedra through a vertex, an edge and a face is shown. Taking the distance 
between cations in the vertex-sharing polyhedra to be 1, the values in Fig. 11.16 
show the decrease in cation-cation distance in the edge- and face-sharing cases. 
Note that it is more severe for the linked tetrahedra (0.55, 0.38) than for the 
linked octahedra (0.71, 0.58). The closer the cations come to one another, the 
greater is the Coulombic repulsion, and the lower the stability of the structure. 
The effect is greater when the cations have higher charge. 

The Si03“ tetrahedra of numerous silicate structures, and of Si02 struc¬ 
tures, share vertices (cf. the Si[4l02 structures in Figs. 11.15 and 11.24). There 
are a few exceptions; stishovite, Si^02, for example, has the rutile structure. 
In the fluorite structure (Fig. 11.11b), the coordination cubes share edges. 
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Fig. 11.17. The NaCl structure, showing the 

edge-sharing coordination octahedra. Every 

edge is shared by two octahedra 

Fig. 11.18a,b. Ni[6]As structure, P63/mmc 

Lattice: hexagonal P 

Basis: As 0,0,0; 

a Perspective drawing, b As projection on (0001). 

The As-octahedra are face-sharing 

b) 

In the NaCl and NiAs structures, the cations have octahedral coordination. 

This coordination is indicated on the structures in Figs. 11.17 and 11.18. In 

NaCl, the octahedra share edges, in NiAs, they share faces. 
Comparison in this respect of the Na[6]Cl and Cs[8]Cl structures favours the 

NaCl structure, since the Cs+ ions have a cubic coordination in which all cube 

faces are shared. 
The coordination octahedron of the rutile structure (Fig. 9.18) shares two 

edges. This becomes clear when the unit cells above and below that shown are 
considered. Two other forms of Ti02, brookite and anatase, have coordi¬ 

nation octahedra which share three and four edges respectively. The rutile 

structure is thus the most stable form of Ti02, and, unlike brookite and 

anatase, its structure is adopted by many compounds. 
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11.5 Covalent Structures 

Covalent or homopolar bonding, will be illustrated by the diamond structure, 
which consists entirely of carbon atoms. The outer shell of a carbon atom in 

free space is occupied by 2s22p2-electrons. We may consider one electron 

promoted to give 2s'2p3 and the resulting set mixed to form a set of four sp3 

orbitals, pointing to the corners of a tetrahedron (Fig. 11.Id). Each C-atom 
can form bonds with a maximum of four other C-atoms. This results in the 

formation of a crystal structure, based on tetrahedra (Fig. 11.19), which has the 
same overall ordering of atoms as the sphalerite type in Fig. 11.13. Each 
C-atom is surrounded by a tetrahedron of four other C-atoms. 

Fig. 11.19. Diamond structure, Fd3m 
Lattice: cubic F 

Basis: C at 0,0,0 and 1 i i 
4’ 4’ 4 

In this case, the picture of bonding as sphere-packing is inapplicable as the 
main forces are due to the directional bonding of overlapping atomic orbitals. 
The packing efficiency of the C-atoms in diamond is not high. The bonding in 
diamond is exceptionally strong, resulting in its great hardness. 

11.6 Isotypes, Solid Solutions and Isomorphism 

Crystals which have the same crystal structure are said to belong to a structure 

type or to be isotypes. Isotypes are generally characterised by having the same 
space group, analogous chemical formulae, and the same coordination 

polyhedra occupying the same sites. Neither the absolute size of the atoms nor 

the type of chemical bonding is important; ionic NaCl and metallic PbS 
crystals are isotypes, as are metallic Cu and van der Waals Ar crystals. 

The relationship between isotypic structures becomes closer if atoms in one 

structure can replace those in the other. The following experiment will 

illustrate this. Two single crystals of the isotypic structures Au and Ag are 

pressed together as the temperature is raised, but kept below the melting point 

of either crystal. By diffusion, silver atoms pass into the gold crystal and 

occupy the places vacanted by gold atoms, while gold atoms similarly diffuse 

into the silver crystal. This diffusion can proceed to such an extent that 

eventually, in some parts of the mass, an atomic ratio Au: Ag of 1:1 is reached. 
The single crystal nature of the starting materials is apparently lost. In some 
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Ag.Au b) 
Fig. 11.20. a Single crystals of Ag and Au pressed against one another, b The resultant solid 

solution Ag, Au resulting from diffusion of one metal into the other. Only a single layer 

at x,y,0 is shown 

regions, arrangements of atoms like that in Fig. 11.20 will occur. Figure 11.20a 
shows the initial situation, with separate crystals of Ag and Au, while 

Fig 11.20b gives the situation after the diffusion process. The diffusion process 

has distributed the Au and Ag atoms statistically over the sites of the crystal 

structure. 

Crystals in which one or more positions are occupied by a statistical 
distribution of two or more different atom types are called mixed crystals or 

solid solutions. 

The reciprocal exchange of atoms in crystals is referred to as diadochy or 
replacement. Solid solutions in which one atom directly replaces another are 

called substitutional solid solutions. 
The chemical formula is also an indication that a crystal structure is 

actually a solid solution. Interchangeable atoms are written together in a 

chemical formula, separated by a comma. The solid solution described above 
would be written as Ag,Au. K(Cl,Br) describes a solid solution in which Cr 

and Br replace one another. In olivine, (Mg, Fe)2Si04, the oxide ions form an 
hep array. The Mg2+ and Fe2+ ions are statistically distributed over specific 

octahedral holes. 
Solid solutions form most commonly when the replaceable atoms or 

groups of atoms are most similar in chemical properties and size. A rule of 
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Fig. 11.21. a The CuAu structure, b The Cu3Au structure as superstructures of the Cu,Au 
solid solution 

thumb for solid solution formation is that the radii of the interchangeable 

atoms should differ by no more than 15%. Silver and gold are miscible in all 

proportions (RAg = 1.44A, RAu = 1.44A, difference zf~0.0%). Ag, Au solid 
solutions are generally formed by slow cooling of a mixture of melts of the two 
components. 

Copper and gold are only miscible in all proportions at high temperatures 
(Rcu = 1-28A, A = 11%). During slow cooling the (Cu,Au) solid solution is 

converted to ordered structures, called superstructures. The superstructures 
with composition Cu3Au and CuAu are given in Fig. 11.21. Note that CuAu is 
tetragonal, and no longer cubic. 

Gold and nickel A = 14%) are also miscible at high temperature. At lower 
temperature, the solution separates into Ni-rich and Au-rich solid solutions. 
The separation can be essentially complete, so that only pure Ni and Au 
domains remain. 

Plagioclases are solid solutions whose limiting compositions are NaAlSi3Og 

and CaAl2Si208. Here, the formation of a solid solution occurs through the 

simultaneous substitution of Ca for Na and A1 for Si, or vice versa. In order to 
keep the charges balanced Na+ + Si4+ = Ca2+ +Al3+. 

When crystals of the same structure type (isotypic crystals) form solid 
solutions with one another, the structures are said to be isomorphous. As the 

following examples will show, however, solid solution formation is no 
criterion for isotypes. 

Zn[4]S (sphalerite-type, Fig. 11.13) and FeS (Ni[6]As-type, Fig. 11.18) are 
clearly not isotypic. In sphalerite, however, a (Zn,Fe) substitution up to about 
20% js possible. Fe2+ and Zn2+ are bivalent ions with almost equal radii of 

0-24 A. A substitution (Fe,Zn) in FeS does not occur. The occurrence of 

substitution is thus not only dependent on the size of the atoms but also on the 
properties of the crystal structures. 

Ag[6]Br (NaCl-type) and Ag[4]I (sphalerite-type) show limited solid sol¬ 

ution formation. In AgBr, a (Br/I) substitution of up to 70% I- is possible, 
while in Agl, substitution of Br occurs only very slightly. 

Li[6]Cl (NaCl-type) and MgCl2 (CdCl2-type, a layer structure) have not only 

different crystal structures, but also different chemical formulae. In both 
cases, the CF ions form ccp arrays, and Li + and Mg2+ occupy octahedral holes 

in these arrays. All octahedral holes are occupied in LiCl, while in MgCl2, only 
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every second hole is occupied. When solid solutions are formed, a Mg2+ ion 

occupies one Li site in LiCl, and causes another Li+ site to be vacant. 
Similarly, when a Li+ ion occupies a Mg2+ site, another Li+ ion will occupy one 
of the empty octahedral holes in MgCl2. 

11.7 Polymorphism 

Under different conditions, many solid substances can produce different 
crystal structures of the same chemical constitution. This phenomenon is 
known as polymorphism. 

Nickel crystallises in both the Cu[12]-type (cep) and the Mg[12]-type (hep), 
zirconium in both the Mg[12Ltype (hep) and the W[8]-type (bcc), and Zn[4]S in 

both the sphalerite and wurtzite types. CaC03 can give crystals of both the 

calcite-type (Ca[6]C03) and the aragonite-type (Ca[9]C03). These CaC03 
structures naturally produce different morphologies (cf. Table 8.11.8 and 20). 

The interconverison of polymorphs, also called structure transformations, 
can proceed in a variety of ways. Buerger [5] distinguished the following types 
of transformation: 

1. Transformations of First Coordination 

The transformation alters the coordination numbers, and thus the arrange¬ 
ment of nearest neighbours. The new structure thus has new coordination 
numbers. 

a) Dilatational Transformations. Cs[8]Cl is converted, above 445 °C to the 
Na[6]Cl type. The CsCl structure (Fig. 11.22a) is converted to the NaCl 
structure by a dilatation along a body diagonal of the cube (Fig. 11.22b). From 
the cubic arrangement of the Cl ions (a cube is a special rhombohedron with 

a 90° angle) arises a rhombohedral arrangement with a 60° angle. A rhombo- 

18 

b) 

Fig. 11.22a, b. Dilatational transformation in the first coordination. The Cs[8]Cl structure (a) 

is converted by means of a dilitation along the body diagonal of the cube into the Na[6]Cl 

structure (b). (After [5]) 
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Table 11.5. The occurrence of the calcite and aragonite structures as a function of cation 
radius. 

Structure type Formula Cation radius (A) Coordination number 

MgC03 0.66 

FeC03 0.74 

Calcite 
ZnC03 

MnCOj 

0.74 

0.80 [6] 

CdC03 0.97 

CaC03 0.99 

CaC03 0.99 

Aragonite 
SrC03 

PbC03 
1.12 

1.20 [9] 

BaC03 1.34 

hedral P-cell with a = 60° is a cubic F-lattice (cf. Chap. 6.4). The movement of 

the Cr ions causes the Cs+ ions to lose two neighbours, and the cubic 

coordination is transformed to octahedral. Dilatational transformations are 
rapid. 

b) Reconstructive Transformations. Ca[9]C03 (aragonite) is converted about 

400°C to Ca[6]C03 (calcite). The coordination number falls from [9] to [6]. 
The bonds between Ca2" and C032- are broken and reformed. Another 

example of this type of transformation is the conversion of Zr from the Mg[12]- 

type (hep) to the W[8]-type (bcc). Reconstructive transformations are very 
slow. 

In Table 11.5, examples are given of compounds crystallising in the calcite 

and aragonite structure types, with the radii of the cations. RCa2+ = 0.99 A is the 
limiting radius for the two types. Smaller cations fit well into the [6]-holes of 

the calcite structure, while larger ones fit better into the [9]-holes of the 
aragonite structure. Ca2+ ions can form both structures. Raising the tem¬ 

perature favours the conversion of Ca[9]C03 (aragonite) to Ca[6]C03 (calcite), 
while raising the pressure converts calcite to aragonite. These observations 

may be summarised by the rules: higher temperatures favour lower coordination 
numbers; higher pressures favour higher coordination numbers. 

2. Transformations in Secondary Coordination 

In these cases, the arrangement of nearest neighbours, i.e. the coordination, is 

unchanged. The arrangement of next-nearest neighbours is changed. Figure 

11.23 shows such a change diagrammatically. The three structures are all made 

up of planar AB4 “polyhedra” which are interconnected in different ways. 

a) Displacive Transformations. These involve a direct conversion of (a) 
into (b) (Fig. 11.23). The polyhedra undergo rotation only, and no bonds are 

broken. An angle A-B-A which is less than 180° in (a) becomes equal to 180° in 
(b). The density falls and the symmetry rises. 
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T 

Fig. 11.23a-c. Transformations in the sec¬ 

ondary coordination sphere for structures 

based on square AB4 coordination. 

a<-b is displacive, 

b c is reconstructive. (After [5]) 

Low- and high-quartz structures, Si[4]02 are three-dimensional networks of 

Si04 tetrahedra, which share vertices with one another. In right-handed low- 
quartz (P322) (cf. Table 8.11.24), these tetrahedra form a helix about a 

32-screw axis, parallel to the c-axis. In right-handed high-quartz (P62 22), this 
becomes a 62-screw axis. Figure 11.24 gives a projection of both structures 

onto (0001). At 573 °C, a displacive transformation between low- and high- 
quartz occurs. The two structures are very similar; only a small rotation of one 

tetrahedron relative to another has occurred. The conversion of low- to high- 

quartz lowers the density from 2.65 to 2.53gem-3. 

b) Reconstructive Transformations. Consider the conversion of (b) to (c) in 

Fig. 11.23. For this to occur, the bonds in b must be broken, so that the 

4-membered rings of (b) may be rebuilt into the 6-membered rings of (c). 
When high-quartz is heated above 870°C, it undergoes a reconstructive 

transformation to high-tridymite (P63/mmc, Fig. 11.24c). The tridymite struc- 
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Fig. 11.24a-c. Transformations in 

the secondary coordination of 

Si[4]02 structures shown as projec¬ 
tions on (0001). 

a <-> b Displacive: right-handed 

low-quartz (P322) <-> right-handed 
high-quartz (P6222). 

b<->c Reconstructive: right-handed 

high-quartz (P6222) <-> high- 

tridymite (P63/mmc). 
a, b after [39] 
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Fig. 11.25a, b. Polytypes of graphite structure, a 2H; b 3R. After [37] 

ture consists of 6-membered rings of Si04 tetrahedra, which are packed above 
one another, normal to the c-axis. 

The transformation between sphalerite and wurtzite is also reconstruc¬ 

tive. 
Displacive transformations require little energy and are relatively rapid; 

reconstructive ones require more energy and are very slow. 

3. Order-Disorder Transformations 

Copper and gold are miscible in all properties at high temperatures. In the 
(Cu, Au)-solid solution, the Cu and Au atoms are statistically distributed over 
the sites of the ccp crystal structure (disorder). On cooling, there is an ordering 

through the formation of the CuAu and Cu3 Au superstructures (Figs. 11.20 and 

11.21, cf. Sect. 11.6) 

4. Transformations Involving Changes in Type of Bonding 

Carbon occurs as diamond (Fig. 11.19), graphite (Fig. 11.25) and the various 

fullerenes (e.g. C60, Fig. 11.6a). In diamond, the bonding throughout the crystal 
is covalent. In graphite and in the fullerenes, covalent bonds hold the atoms in 
the layers or molecules while van der Waals forces hold layers and molecules 

together. Transformations of this sort are very slow. 
In the graphite structure, the carbon atoms are ordered in 6-membered rings 

in the layers. The coordination “polyhedron” in this case is an equilateral 

triangle [3] (Table 11.1 h). The layer stacking can repeat itself at intervals of 
either two or three layers (Fig. 11.25). Both of these structures have been 
observed. This special form of polymorphism is called polytypism. In these 
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polytypic structures, (a) gives a hexagonal unit cell and (b) a rhombohedral. The 

structures are thus labelled as the 2H- and the 3R-polytypes of graphite, 
respectively. 

11.8 Literature on Crystal Structures 

Further information about specific crystal structures is obtainable from many 
sources. The following references are particularly recommended: [29], [43]— 
[45], [51]. 
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EXERCISES 

Exercise 11.1. Calculate the ideal radius ratio Ra/Rx for the coordination polyhedra: 

trigonal prism [6] and equilateral triangle [3] (cf. Table 11.1). 

Exercise 11.2. Give a description of the following structures in terms of lattice + basis: 

a) a-Polonium (cubic P-lattice), cf. Fig. 2.1. 

b) Tungsten (cubic I-lattice), cf. Fig. 11.5. 

c) Magnesium (hexagonal closest packing) cf. Fig. 11.3. 

d) Copper (cubic closest packing) cf. Fig. 11.2. 

e) Draw four unit cells of the Mg-structure in projection on (0001). Find those 

symmetry elements which characterise the structure as hexagonal. 

Exercise 11.3. Calculate the radii of the atoms in the structures in Exercise 11.2, using 

the following lattice parameters: 

a) a-Po: a0 = 3.35A. 

b) W: a0 = 3.16 A. 

c) Mg: a0 = 3.21 A, c0 = 5.21A. 

d) Cu: a0 = 3.61 A. 

Compare these values with those given in Table 11.3. 

Exercise 11.4. Calculate the ideal c0/a0 ratio for hexagonal closest packing. 

Exercise 11.5. The packing efficiency is the ratio of the sum of the volumes of the atoms 

making up a unit cell to the volume of the cell itself. Calculate the packing efficiencies 

of: 

a) a-Polonium (cubic P-lattice). 

b) Tungsten (cubic I-lattice). 

c) A hexagonal closest packing. 

d) A cubic closest packing. 

Exercise 11.6. The diamond structure has: 

lattice: cubic F, a0 = 3.57 A 

basis: C: 0,0,0; 1,1, 

a) Draw a projection of the structure on x,y,0. Sketch tapered C-C bonds with 

colours indicating the height (use green for 0 < z < 1 and red for 1 < z < 1) 

Atoms with 

O 2 = 0 

(3 Z = T 

3 z = i 

3 Z = T 

b) Calculate the length of a C-C bond. 

c) What is the value of Z? 

d) Describe the structure. 
e) Compare the diamond structure with that of sphalerite (Fig. 11.13). 
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Exercise 11.7. The graphite (2H) structure has 

lattice: hexagonal P: a0 = 2.46 A; c0 = 6.70 A. 

basis: C: 0,0,0; 0,0,1; f, 0; §,|,i. 

a) Draw a projection on four unit cells on x, y, 0. Join each C-atom to its three nearest 

neighbours with the same z-coordinate with coloured lines (z = 0 green, z = | red). 

b) Calculate the length of a C—C bond. 

c) What is the value of Z? 

d) Describe the structure. How large is the inter-layer spacing? 

e) Calculate the densities of diamond and graphite and comment on the difference. 

Exercise 11.8. LiCl (NaCl-type; a0 = 5.13 A) has an arrangement of CD ions which is 

cubic closest packed (Rx/Ra = 0.43). Calculate the ionic radii of CD and Li+ and the 
packing efficiency of the LiCl structure. 

Exercise 11.9. Draw the ions on the x,y,0-plane of the NaCl (a0 = 5.64 A), LiCl 

(a0 = 5.13 A) and RbF (a0 = 5.64 A). The ionic radii can be taken from Table 11.3. 

Exercise 11.10. Calculate the Ti—O distance in the coordination octahedron of the 

rutile structure (cf. Table 9.5). Which distances are equivalent by symmetry, and hence 
required to be equal? 

Exercise 11.11. The pyrites structure (FeS2) has: 

a) Space group Pa3 (P2[/a3) 

Fe: 4 a 3 0,0,0; 0,1,1; 1,1,0; |,0,|. 

S: 8 c 3 x,x,x; i + x,i-x,x; x,i + x,i-x; i-x,x,i + x; 

x,x,x; i-x,f + x,x; x,f-x,f + x; l + x,x,l-x. 

b) Lattice constant: a0 = 5.41 A. 
1. Draw the structure as a projection on x, y, 0 (let a0 = 10 cm). 
2. Describe the structure. 

3. What is the value of Z? 

4. Calculate the shortest Fe-S and S-S distances. 

5. Draw the symmetry elements on the projection. 

(x = 0.386). 
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Exercise 11.12. A compound of NH4/Hg/Cl has: 

a) Space group P4/mmm. 

b) Lattice constants: a0 = 4.19 A, c0 = 7.94 A. 
c) Positions: Hg: 0,0,0 

NFL- ill 4- 2,2,2 

Cl(l): ^,0 
Cl(2): ±(0,0,z) z = 0.3 

1. Draw a projection of the structure on 0, y, z (1A = 1 cm). 

2. Give the chemical formula of the compound, and the value of Z. 

3. Describe the coordination of Hg and NH4, giving the coordination number and the 
coordination polyhedron. 

4. Calculate the shortest Hg-Cl and NH4-C1 distances. 

Exercise 11.13. The crystal structure of BaS04 has: 

a) Space group Pnma with special and general positions: 

(4c) ±(x,|,z; i + x,|,i-z) 

(8d) ±(x,y,z; x,A + y,z; A + x,A-y,A-z; A-x,y,A + z) 

b) Lattice constants: a0 = 8.87 A, b0 = 5.45 A, c0 = 7.15 A. 
c) Occupation of positions: 

Position multiplicity 
and Wyckoff letter 

X y Z 

Ba (4c) 0.18 1 

4 
0.16 

S (4c) 0.06 1 

4 
0.70 

0(1) (4c) -0.09 1 

4 
0.61 

0(2) (4c) 0.19 1 

4 
0.54 

0(3) (8d) 0.08 0.03 0.81 

1. Draw a projection of the structure on x,0,z. 

2. What is the value of Z? 
3. Determine the coordination of O atoms around S. 



■ 



12 Studies of Crystals by X-Ray Diffraction 

Since the wavelengths of X-rays and the lattice parameters of crystals are of the 
same order of magnitude, X-rays are diffracted by crystal lattices. It was from 
the discovery of this effect in 1912 by Max von Laue that we may date the 

beginning of modern crystallography. Only then did it become possible to 
determine the structures of crystals. 

We shall only describe here one X-ray method, the Debye-Scherrer 

technique, in detail, because it is a very important research tool for the 
scientist. Also, a brief description will be given of how a crystal structure may 
be determined. 

For a fuller description of X-rays and their properties, the reader is referred 
to textbooks of physics. 

12.1 The Bragg Equation 

The diffraction of X-rays by crystals can be formally described as a reflection 

of X-rays from sets of lattice planes. Assume that a parallel, monochromatic 
beam of X-rays (i.e. one characterised by a single wavelength 2) falls on a 

set of lattice planes with a spacing of d, making a glancing angle of 6 with 
them (Fig. 12.1). The waves I and II will be reflected at A[ and B, and will 

Fig. 12.1. a Diffraction (“reflection”) of an X-ray beam by a set of lattice planes, b Interference 

of waves reflected by a set of lattice planes {T= IX) 
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thus undergo interference. At the point A1} the waves will have had a path 

difference r= BAt — A]B' = BA3-BC = CA3, since BAj = BA3 and B'Ai = BC. 

Thus, 

An interference maximum will be observed when r is an integral multiple n 

of X, or T = n/l, where n is the order of the interference. This gives rise to the 
Bragg equation: 

nX = 2d sin 9. 

12.2 The Debye-Scherrer Method 

In the Debye-Scherrer method, a fine powder of a crystalline substance is 

irradiated with monochromatic X-rays. According to the Bragg equation, a 
set of parallel planes (hkl) will reflect X-rays with certain characteristic 

glancing angles 6 (Fig. 12.2a). Since the crystallites are randomly arranged 
in a fine powder, there will always be a large number of crystals orientated 

in such a way that a given set of planes (hkl), which make an angle 9 with 

the X-ray beam can cause reflection to occur. These planes are tangent to 
the surface of a cone with a cone-angle of 29. The beams reflected by these 

planes lie on the surface of a cone with a cone angle of 49 (Fig. 12.2b). 
Figure 12.2c shows the reflection cones of a few different sets of planes. 

In the Debye-Scherrer method, a cylindrical camera is used with the 

powdered specimen, contained in a thin tube mounted along the cylinder 

axis. The cones of reflection intersect the film in Debye-Scherrer lines 

(Fig. 12.2c,d). The angle between pairs of lines originating from the same 
cone is 4 9. Thus 

S _ 4 9 

2nR ~ 360° 

where R is the radius of the camera. For R = 28.65 mm (27rR = 180mm), the 

measured value of S in mm is thus equal to the value of 29 in degrees. 

In order to obtain information from X-ray photographs, it is necessary 

to index the reflections, i.e. to determine which set of lattice planes gave rise 

to the observed interference. Since the value of 9 is easy to read from the 

photograph and X is known, the Bragg equation allows d, the spacing of the 
lattice planes, to be calculated. 

How are these d-spacings related to (hkl)? The plane lying next to the one 

which passes through the origin in Fig. 12.3 intercepts the orthorhombic axes 
at the point mOO (a-axis), OnO (b-axis) and 00°° (c-axis), cf. Chapter 2.4.3. 
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Point at which 
X-ray beam enters 
the camera 

Fig. 12.2. a Relationship between the primary beam and a ray diffracted by the lattice planes 
(hkl). b Possible orientations of the set of planes (hkl) in a crystalline powder. The result of the 

random orientation of the planes giving a glancing angle of 6 is a cone with a generating angle 

of 40. c, d The rays diffracted from the various lattice planes lie on concentric cones about the 

primary beam. Their intersections with the film give rise to the lines of the powder diagram. 

(After [11]) 

a 

Fig. 12.3. Relationship between the Miller indices of a 

set of lattice planes and the spacing of the planes d for 

an orthorhombic crystal 
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For a set of planes (hkl): 

d ^ h COS <J9a =-= a- 

m • a0 a0 

d J k 
cos <pb =-= d- 

n • b0 b0 

d u 1 cos (pc =-= d-. 
P • c0 c0 

Squaring these and adding them together gives: 

ao bg c§ 

2 2 2 ,2 ( h2 k2 l2 
cos <pa + cos «pb + cos <pc = d • —r + —-■ 1=1 

dhkl —' 

h2 ^ k2 l2 

ao bo Cq 

this relationship applies to the orthorhombic system. In the cubic system, it 
simplifies to 

IllvA /- . 

Vh2 + k2 + l2 

Substituting this equation for the d-spacing into the Bragg equation and 
squaring gives: 

sin 20 = • (h2 + k2 +12). 
4a5 

The right-hand side of this equation is the product of a constant factor 22/4ao 

and an integer (h2 + k2 + l2). The values of sin2# for individual reflections are 
thus related to one another as integers. 

The powder pattern for tungsten in Fig. 12.4 was taken with CuKa radiation, 

2 = 1.54 A. Table 12.1 shows the calculations for this photograph. Note that this 

table includes the reflections 200, 220 and 400, which contravene the definition 
of Miller indices as they do not represent the smallest integral multiples of the 
reciprocals of intercepts on the axes. In fact, they are Miller indices multiplied 

by the factor n, the order of diffraction. In other words, 200 may be 

Fig. 12.4. Powder diagram of tungsten (reduced to 0.65 of original size) 
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regarded as the second order of diffraction from the (100) planes. These hkl 
triples, written without brackets, are called Laue symbols, and their use makes 
the factor n of the Bragg equation unnecessary. 

From the constant factor A2/4ao = 0.0592, the lattice parameter a0 = 3.16 A 
may be determined. Z, the number of formula units per unit cell, can also be 
determined (cf. Chap. 3) 

z_ p- V-Na 

M 

z_ 19.3 • 3.163 • 1(D24 • 6.023 • 1023 

183.86 

Z~2. 

A cubic structure of an element with Z = 2 can only occur if the substance has a 

cubic I-lattice, cf. Fig. 11.5. 
In Table 12.1, 100, 111 and 210 do not occur. Such absences occur in 

structures which have centred lattices or contain glide planes or screw axes. 
The absent reflections are said to be extinct. Those reflections which do 

occur in Table 12.1 obey the rule h + k + l = 2n, where n is an integer, and this is 

characteristic for all structures with an I-lattice. 
The number of reflections which can be observed on an X-ray photograph 

A A 
is limited. In the Bragg equation sin# =-, —I<sin0< + 1. Thus —— < + l 

A 2d 2d 
and d> —. Diffraction can only arise from those sets of lattice planes for 

2 
A ° 

which d> —. For CuKa radiation, A = 1.54A, the limiting value for d is 

Table 12.1. Interpretation of the powder pattern of tungsten 

No of 

reflection 

S 

mm 

6 

degree 
sin20 = ^^r--(h2 + k2+l2) 

4a0 
hkl dhki A 

1 40.3 20.15 0.1187 = 0.0594-2 110 2.24 

2 58.3 29.15 0.2373 = 0.0593-4 200 1.58 

3 73.2 36.60 0.3555 = 0.0592-6 211 1.29 

4 87.1 43.55 0.4744 = 0.0593-8 220 1.12 

5 100.8 50.40 0.5937 = 0.0594-10 310 1.00 

6 115.0 57.50 0.7113 = 0.0592-12 222 0.91 

7 131.2 65.60 0.8294 = 0.0592-14 321 0.85 

8 154.2 77.10 0.9502 = 0.0592-16 400 0.79 
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4-806 JCPDS-ICDD Copyright © 1991 Quality:* 

W 

Tungsten 

Rad: CuKal Lambda: 1.5405 Filter: Ni 
Cutoff: Int: Diffractometer I/Icor: 18.00 
Ref: Swanson, Tatge, Natl. Bur. Stand. (U.S.), Circ. 539, t 28 (1953) 

dsp: 

Sys: Cubic S.G.: Im3m (229) 
a: 3.1648 b: c: A : C: 
A: 
Ref: Ibid. 
Dx: 19.262 

B: C: Z 

Dm: SS/FOM: F8 = 108 (.009.8) 

2 mp: 

ea: 
Ref: 

nwB: ey: Sign: 2V: 

Color: Steel-gray to tin-white 
Pattern at 26°C. Sample prepared at Westinghouse Electric Corp. CAS no.: 
7440-33-7. Analysis of sample shows Si02 0.04%, K 0.05%, Mo, A120 and 0.01% 
each. Merck Index, 8th Ed., p. 1087. W type. Also called: wolfram. PSC: cIZ. Mwt: 
183.85. Volume [CD]: 31.70. 

d A 

2.238 
1.582 
1.292 
1.1188 
1.0008 

0.9137 
0.8459 
0.7912 

Int. h k 1 

100 
15 
23 

8 
11 

4 
18 
2 

1 1 0 
2 0 0 
2 1 1 
2 2 0 
3 1 0 

2 2 2 
3 2 1 
4 0 0 

l Strong lines: 2.24/X 1.29/2 1.58/2 0.85/2 1.00/1 1.12/1 0.91/1 0.79/1 

Fig. 12.5. PDF (formerly ASTM) index “card” for tungsten, as a computer printout 

o 

thus 0.77 A. The pattern for tungsten contains no reflections with a d-value 
X 

<—= 0.77A. 
~ 2 

The greatest use of the Debye-Scherrer method is in the identification of 
crystalline substances. Every sort of crystal produces a pattern of lines with 
characteristic positions and intensities. The intensity is roughly proportional to 

the blackness of a photograph. The American Society for Testing Materials 

published an index (the ASTM index) containing data for all crystalline 
inorganic and organic substances which have been studied by X-ray diffraction. 

This index is now administered by the Joint Committee for Powder Diffraction 
Standards (JCPDS) at the International Center for Diffraction Data in 

Swarthmore, USA. Every substance has an index card which contains the d- 

values and the relative intensities for individual reflections, as well as many 
other crystallographic data. The PDF-card for tungsten is given in Fig. 12.5. For 

the identification of an unknown substance, use is made of the lines with the 

strongest intensities, which are given in tabular form. Naturally, the file is now 
normally accessed by computer. 

12.3 The Reciprocal Lattice 

Crystals are three-dimensional systems. A stereographic projection, which gives 

a useful summary of the arrangements of the crystal faces with respect to one 
another, can be derived simply from a consideration of the morphology 
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Fig. 12.6. Monoclinic P-lattice as a projection on (010) with the points P0*i and P*o0. Pooo, Po*oi 
and Pfoo define a lattice, the reciprocal lattice 

of a crystal. As described in Chapter 4.4, the normals to the crystal faces are 

used for this purpose. 
An alternative system for representing the lattice planes was proposed by 

P. P. Ewald to discuss the scattering of X-rays by the crystal lattice. Since, as is 

described in section 12.1, the diffraction of X-rays can be interpreted as the 

reflection of the rays by sets of parallel lattice planes, it was important to devise 
an aid to illustrate both the orientations of the lattice planes and their 

diffraction. This aid is the “reciprocal lattice”. Each set of lattice planes in the 
crystal is represented by a point in the reciprocal lattice. The construction of a 

“reciprocal lattice” from the corresponding “direct lattice” may be performed as 

follows: 

For each set of lattice planes (hkl), the normal is drawn from the origin 
C 

with a length d* =-, where d is the lattice spacing and C is a propor- 
dhkl 

tionality constant. 

The construction of the reciprocal lattice corresponding to the projection 

on (010) of a direct monoclinic P-lattice is shown in Fig. 12.6. The normal to 
the set of lattice planes (001) is drawn from the origin and assigned a length 
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Fig. 12.7 Fig. 12.8 

Fig. 12.7. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes (101) 
and the point Pfoj of the reciprocal lattice 

Fig. 12.8. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes (201) 
and the point P*01 of the reciprocal lattice 

Fig. 12.9. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes (102) 
and the point P,*2 of the reciprocal lattice 

Fig. 12.10. Reciprocal lattice (a*c*-plane) corresponding to the monoclinic P-lattice of 
Fig. 12.6 
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c 
d* = ——. The resulting point is called P0*01. A similar construction for the set 

dooi 
of (100) planes gives the point P*00. The points P0*i and Pf0o represent the relative 
orientations of the (001) and (100) lattice planes. 

Making use of the three points P0*oo, Pfoo and P0*01, a two-dimensional 
lattice can be constructed. This reciprocal lattice plane is indicated by dashed 

lines in Fig. 12.6. It must now be shown that the reciprocal lattice points 

corresponding to all sets of lattice planes with indices (hOl) fall on this same 
plane. Figures 12.7-12.9 show the relevant constructions for the sets of (101), 

(201) and (102) planes. When all relevant points are added to the drawing, its 
lattice-like nature is apparent (Fig. 12.10). This construction does not, how¬ 

ever, lead to all of the points required by the reciprocal lattice. For example, 

Po*02> P200 and P202 are missing since lattice planes with indices such as (002), 
(200) and (202) contravene the definition of Miller indices given in Chapter 
2.4.3. It is, of course, possible to define a set of “lattice planes” (002) with 

a spacing d = - ■*001 In these “lattice planes”, only half of the planes inter¬ 

sect points of the direct lattice. Furthermore, the Bragg equation (Sect. 2.1) 

can be written in the form 2 = 2 — sin 6. If this is done, every n-th order 
n 

diffraction with a plane spacing of d can be replaced by a first-order 

diffraction from planes with a spacing of —. P0*2 describes in the same way 
n 

a second-order diffraction from the planes (001), P0*3 a third order, and so 

on. The same sort of reasoning applies to the points P2*o, P2*2, etc. (see also 

Sect. 12.2). 

The rule for constructing the reciprocal lattice given above (p. 255) is thus 
C 

incomplete and should read:... with a length d* =-, and all integral mul- 
dhkl 

tiples thereof, where d is the lattice spacing .... 

The reciprocal lattice, like the direct lattice, is defined by six lattice 

parameters: 

1 b0c0sina 
I a * | = a*=- 

|b*|=b0*= 

|c*|=c0*= 

*(100) 

1 

V 

a0c0 sin /? 

V d(oio) 

1 a0b0siny 

*(001) V 

V = a0b0Co • v/l-cos^-cos2/? - cos2 y + 2 cos a cos/? cos y 

(Volume of the unit cell) 
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a* = b* ac*; 

/?* = a * a c *; 

y* = a * a b*; 

cos a* = 
cos y? cos y — cos a 

sin y? sin y 

cosy?* = 
cos a cos y - cos y? 

sin a sin y 

cosy* = - 
cos a cos P — cos y 

sin a sin/? 

The use of the reciprocal lattice allows an elegant discussion of the appli¬ 

cation of the Bragg equation to the diffraction of X-rays by a lattice. Figure 
12.11 shows a section through a reciprocal lattice. The direction of the 

primary beam is indicated by a straight line through the point P0*0. A sphere 

C 
(which in Fig. 12.11 becomes a circle) with a radius of — and a centre at 

A 
the point M on the line is then constructed so that the surface of the sphere 
intersects the origin of the reciprocal lattice, P0*o0. This sphere is known as the 

sphere of reflection. In general, no point of the reciprocal lattice other than 

Pooo lies on the surface of the sphere. By choosing the direction of the primary 
beam appropriately, however, it may be possible to cause another point Ph*kl 
to lie on the surface of the sphere of reflection, as in Fig. 12.11. In this case, 

the condition for the Bragg equation nA = 2dsin0 is fulfilled precisely for the 

set of planes (hkl). Diffraction occurs, and the diffracted beam has the 

direction MP*kl. The orientation of the planes (hkl) is shown in Fig. 12.11 by a 

dotted line. It is obvious that the diffracted beam with a glancing angle equal 

to 9 can equally well be described as a reflection from the lattice planes (hkl). 

1 

It will be noticed that for the triangle Ph*kiMT, sin 6=**=—, fulfilling 
1 2d 

T 
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Fig. 12.12. Precession photograph of /i-eucryptite, LiAlSi04 (space group P64 22): a*b*- 
plane (Photograph A. Breit) 

Fig. 12.13. a*b*-plane of a hexagonal 
reciprocal lattice, cf. Fig. 12.12 
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the Bragg condition. This geometrical construction is known as the Ewald 
construction. 

If a single crystal is rotated about an axis which is perpendicular both to 
the primary beam and to a selected plane of the reciprocal lattice, then the 
reciprocal lattice itself rotates about an axis through P*00. During this 
rotation, other points of the reciprocal lattice will pass through the surface of 
the sphere of reflection, and the corresponding lattice planes will come into 
the diffracting position. These relationships are the basis of rotating crystal 
methods. 

The precession method of M. Buerger produces an undistorted represen¬ 
tation of the reciprocal lattice. In this technique, an axis of the crystal 
precesses about the primary beam. The resulting picture is of the reciprocal 
lattice plane perpendicular to this axis. A precession photograph of /?-eucryp- 
tite, LiAlSi04 (space group P6422) is shown in Fig. 12.12. It represents the 
a*b*-plane. The reciprocal lattice of a hexagonal lattice is itself hexagonal, as 
is shown in Fig. 12.13 which should be compared with Fig. 12.12. 

12.4 Laue Groups 

In general, the intensity of an X-ray beam diffracted from one side of a set of 
lattice planes is equal to that diffracted from the other. A diffraction pattern 
is thus centrosymmetric. It follows that instead of 32 point groups only the 11 
which contain an inversion centre can characterise a diffraction pattern. 
These 11 point groups are known as Laue groups (cf. Table 8.10). 

As an example, the Laue groups of the tetragonal system will be ex¬ 
plained. An inversion centre is added to each point group: 

Laue group 4/m 

4 + 1^ 4/m (Symmetry rule I) 
4 + 1^4/m (cf. Fig. 5.13) The operation of an inversion centre on the 4 

array in (a) results in the 4/m array in (b). 

Laue group 4/m 2/m 2/m (4/mmm) 

422 +1 — 4/m 2/m 2/m (Symmetry rule I) 
4mm+ 1^ 4/m 2/m 2/m (Symmetry rule I) 
42m +1 —• 4/m 2/m 2/m (4 +1 = 4/m as above and symmetry rule I). 

Consideration of the first Symmetry rule together with the relationships 
3 + 1 = 3 and 6 + 1 = 6/m will allow the Laue groups of the other crystal 
systems to be derived from each point group (cf. Table 8.10). 
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12.5 The Determination of a Crystal Structure 

Powder diffraction patterns allow the determination only of relatively sim¬ 

ple structures. Techniques have been developed which make use of measure¬ 

ments of the intensities of the reflections of sets of lattice planes from single 
crystals. Study of relationships among intensities and “systematic absences” 

in the diffraction pattern can lead to the determination of the space group. 

Measurement of the density of the crystals gives Z (cf. Sect. 12.2), the 
number of formula units in the unit cell. The intensity of the individual 

reflections depends on the extent to which the sets of lattice planes are 
occupied by atoms. Since different sets of lattice planes will vary greatly in 

both the number of atoms occupying them and the “heaviness” (in terms of 

electrons) of those atoms, the intensities of a very large number of reflec¬ 
tions can allow the determination of the arrangement of atoms in the unit 

cell. 

For simple crystal structures, it is possible to make useful structural 

conclusions from only a small amount of data. This may be illustrated by the 
structure of Sn02, cassiterite, for which the following data have been 

determined: 
o o 

1. Lattice constants: a0 = 4.74 A, c0 = 3.19 A. 

2. Space group: P42/mnm 

3. Density: 6.96g cm'3. 

The value of Z (the number of chemical formula units per unit cell) may be 

directly calculated (cf. the formulae on p. 24): 

p-NA-V = 6.96• 6.023• 1023 • 4.742• 3.19• 10'24 = T 99 ^ 2 

M 150.69 

Thus, there must be two formula units of Sn02 or two tin and four oxide ions per 
unit cell. The Sn4+ ions must then occupy a set of 2-fold positions in the unit cell, 

and the O2- ions a set of 4-fold positions, or (less likely) two sets of 2-fold 
positions. The space group, P42/mnm, (Fig. 9.17) has two sets of 2-fold 

positions (a and b), and five sets of 4-fold positions (c to g). Let us see whether 
the ionic radii (R(Sn4+) = 0.71 A, R(02') = 1.32 A) can help to select the sites 

which are actually occupied. In the following illustrations, the lattice constants 

and the ionic radii have been drawn to the same scale. 
First, consider the possible 4-fold positions for the 02“ ions. 

1) Positions (c): These comprise the fixed point 0,|,0 and 0,\,{ (Fig. 9.17). 

These are shown as points on the line 0,|, z in Fig. 12.14c, in which the lattice 

repeat is scaled to the actual length c0. When the O2' ions are then drawn in to 

scale, it is clear that they overlap badly. 

2) Positions (d): These also comprise fixed point OJJ and 0j,| which are 

shown as points on the line 0,\,z in Fig. 12.14d. When the O ions are then 

drawn in to scale, the overlap is the same as in (1). 
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Fig. 12.14c, d, e. Investigation of the structure of Sn02. The O ions cannot lie in the given 

places as required by the positions c to e of space group P42/mnm 

Fig. 12.15a, b, c. Structure of Sn02. Placing the Sn4+ ions on positions a and the 02~ ions on f 

leads to an acceptable arrangement, a) the x, y, 0 plane, b) the x, y, 1 plane, c) the x, x, z plane 
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3) Positions (e): Here, there is one degree of freedom to be considered. A pair of 

points 0,0, z and 0,0, z must both lie within the range of the lattice constant c0 

(Fig. 11.14e). Whatever value is chosen for z, the overlap will be at least as bad as 
that in (1) and (2). 

Clearly, these three sets of positions are not possible for the Sn02 structure. 

4) Positions (f): Again, there is one degree of freedom to be considered. In order 
to limit the possibilities for the 02~ ions somewhat, the Sn4+ ions have been 

inserted at 0,0,0 (positions (a)) in a scale drawing of the x,y, 0-plane 

(Fig. 12.15a). It is then possible to draw in the O2 ions at x, x, 0 and x, x, 0 along 
the diagonal between the Sn4~ ions at 0,0,0 and 1,1,0. In fact, the ions fill the 

gaps precisely! It is possible to estimate a value for x: 

R(Sn4+) + R(02) = 0.71 + 1.32 = 2.03 A; 
2.03 k/y/l= 1.44 A; 1.44 A/c0 - 0.304 = x. 

Substituting the value x = 0.3(04) in the positions (f) gives 0.2,0.8,\ and 

0.8,0.2,| for ions 3 and 4. These are shown along with the Sn4+ ion at5,5,5 in 
Fig. 12.15b. Fig. 12.15c shows the x,x,z section through Figs. 12.15a and b. 
Each Sn4+ ions occupies an octahedral hole formed by six O2 ions. 

The structural results may then be summarised thus: Space group 

P42/mnm (Fig. 9.17). Sn4+ in 2 a m. mm and O2 in 4 f m.2m with x = 0.304. 
The currently accepted value for x is 0.3053. Sn02 has the same structure type as 

rutile (Fig. 9.18). 

5) The positions (g) have not yet been considered. In fact, placing the O2 ions 
in these positions leads to an alternative description of the same structure. 

The following are a few still simpler examples; the calculation of Z will be 

omitted. 

I) Csl: Z = 1. The space group is P4/m 3 2/m, which has only two 1-fold 

positions: 

lbm3m/y and 1 a m3m 0,0,0 

Thus, the Cs+ may be placed at 0,0,0 and the I at 5,5,5 or vice-versa 

(cf. Fig. 3.4). 

Table 12.2. Coordinates for some of the positions of space group F4/m 3 2/m., from [14]. 

(0,0,0) + (o,y)+ (1,0,1)+ (1,1,0)+ 

24 d m. mm Hi H! Ho 

8 c 43m 111 111 
4>4>4 4’ 4’ 4 

4 b m 3 3m 
1 1 1 
V 2’ 2 

4 a m 3m 0,0,0 
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II) NaCl: Z = 4. The space group is F4/m 3 2/m. Table 12.2 gives the 

coordinates of the positions a to d for this space group. There are two 4-fold sets 
of positions, so Na+ may be placed on a and Cl on b or vice-versa, cf. Fig. 11.9. 

In Fig. 11.9, |,0,0 is given instead of the equivalent 

III) CaF2: Z = 4. Space group F 4/m 3 2/m (Table 12.2). The F ions occupy the 
8-fold positions c, while the Ca2+ ions may be placed either on a (0,0,0 etc.) or 

onb^,y etc.). Either choice leads to the same structure. 

EXERCISES 

Exercise 12.1. Draw the (100)- and the (OOl)-lattice planes of the rutile structure (cf. 

Fig. 9.18 and Table 9.5). Using the introduction in Section 12.3, construct the a* c*- and 

the a*b*-planes of the reciprocal lattice. 

Exercise 12.2. For the crystal structure of thallium, the lattice parameters are 

ao = bo = c0 = 3.88 A, a = P = y = 90°, and the density is 11.85gem 3. Determine the 

crystal structure, and draw it, projected on x, y, 0. 

Exercise 12.3. Derive the cubic Laue groups. 

Exercise 12.4. A powder photograph has been taken of the cube-shaped crystals of KI, 

using Cu Ka radiation (A = 1.54 A). The first nine lines, measured from the position of 
the direct beam, give the following 20-values: 

21.80; 25.20; 36.00; 42.50; 44.45; 51.75; 56.80; 58.45; 64.65. 

1. Index these powder lines and calculate their d-values. 
2. Determine the lattice constant a0. 

3. What is the value of Z? (The density of KI is 3.13 gem 3) 

4. Suggest the structure type of KI. 
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A crystal with a volume of 1cm3 will contain about 1023 atoms. Lattice 

theory requires in principle that all of these atoms occupy a regular lattice. 
The array of atoms must conform to one of the 230 space groups. The 

equivalent points of a position of a space group must be fully occupied by 
atoms of the same type. This theoretical model is only achieved conceptually, 

by an ideal crystal. 
The observation of a large number of crystals will show that they in fact have 

cracks and fissures, and that crystal faces are often not really flat. At cleavage 

surfaces, crystalline domains are often displaced with respect to one another. 

Inclusions occur in crystals, which may themselves be crystalline, liquid or gas. 
In practice, a real crystal deviates considerably from the ideal model described 

above. 
All deviations from ideal crystalline behaviour are described as crystal 

defects. Many important properties of crystals derive from defects, including 
luminescence, diffusion, mechanical properties, etc. Nevertheless, the ideal 

crystal structure is the starting point for all studies of crystals. 
Individual defects make themselves apparent in many ways. They can be 

categorised in terms of their dimensionality (Table 13.1). 

Table 13.1. Types of crystal defects 

13.1 Point defects 13.2 Line defects 13.3 Plane defects 

a) Substitution defects 

b) Solid solutions 

c) Schottky and Frenkel 

defects 

a) Edge dislocations 

b) Screw dislocations 

a) Small angle 

grain boundaries 

b) Stacking faults 

c) Twin boundaries 
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13.1 Point Defects 

Point defects are concerned with atomic dislocations. 

a) Substitution Defects. An ideal crystal must consist entirely of the substance 
to which its formula refers, and this situation never occurs. As there are about 

1023 atoms in 1cm3 of a crystal, even a purity of 99.99999% implies the 
presence of some 1016 foreign atoms! These foreign atoms will in general be 

larger or smaller than the atoms they replace. Furthermore, the foreign atoms 
may have different bonding capacities. This can result in the propagation of 

further irregularities in the crystal which may no longer be of the point-defect 
type. 

In some cases, crystals with specific impurities are actually required. It is 
such impurities which control the electrical conductivity of many semiconduc¬ 
tors. 

b) Solid Solutions. The statistical distribution of atoms in solid solutions (cf. 
Chap. 11.6) are also point defects. 

c) Schottky- and Frenkel Defects. Every crystal contains voids. These are 

places in a crystal where the expected atoms do not occur. If these missing 

atoms have “wandered” to a surface of the crystal, the result is called a 
Schottky defect, while if they have moved to places between other atoms 
(interstitial sites), the result is called a Frenkel defect. Both of these types are 

illustrated for an ionic crystal in Fig. 13.1. The concentration of faults in a 
crystal is in thermal equilibrium, and increases with rising temperature. The 
type of fault which occurs depends on the structure itself, its geometry and its 
bonding type. In alkali halides, Schottky defects predominate, while Frenkel 

defects predominate in silver halides. Measurement of the density of a crystal 
gives an indication of the defect type, since Schottky defects decrease the 

density (more volume for the same mass) while Frenkel defects leave the 
volume and hence the density unchanged. 

Wuestite (NaCl-structure type) does not have the ideal stoichiometry FeO, 
because the Fe2 ions in some places are replaced by Fe3+. This unbalanced 

charge results in a corresponding number of cation vacancies, giving a formula 
Fej xO. 

© © © © © © © © 0 © © 0 © © © 

© © © © © 0 © © © © © 
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© 
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© □ © 

0 © □ © © © © © © 0 © © © © © © 

© © © □ 0 © © © © © © © □ © © © 

a) © 0 © © © b) © © © © © c) © 0 
© 

© © © 

Fig. 13.1 a-c. Schottky defects (a) and Frenkel defects (c) in an ionic crystal (□ void)- (b) the 
ideal crystal 
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The occurrence of these faults gives rise to a number of properties. The 

defects make possible the diffusion of ions through the crystal. If a gold crystal 
and a silver crystal are pressed firmly against one another as the temperature is 

raised, Ag-atoms diffuse into the gold crystal, and Au-atoms into the silver, 
forming solid solutions (cf. Fig. 11.20). At sufficiently high temperatures, ionic 

crystals, such as NaCl, show a small electrical conductivity. This does not result 
from electronic conduction, as in metals, but is brought about by ionic 

movement. Without crystal defects, this would not occur. 
Solid-state reactions are almost always propagated by crystal defects. The 

heating of a mixture of finely powdered ZnO and Fe203 crystals to a 
temperature well under their melting points brings about a reaction yielding 

crystals of the spinel zinc ferrite, ZnFe204. The rates of solid-state reactions are 
much less than those taking place in the gas or liquid phase. They do, however, 
rise with temperature as the concentration of crystal faults and the rates of 

diffusion rise. 

13.2 Line Defects 

This type of defect forms along a line, the line of dislocation. 

a) Edge Dislocations. The upper portion of the crystal in Fig. 13.2a has been 

displaced by the vector BC (= B'C') in the plane ABA'B' relative to the lower 
portion in such a way that the line AA' (the line of dislocation) marks the limit 

of the displacement. Figure 13.2b shows the structure of a plane normal to the 
line of dislocation AA'. The displacement vector, which amounts to a 
displacement (= BC) is known as the Burgers vector b, and is normal to the line 

of dislocation AA'. 

b) Screw Dislocations. The crystal in Fig. 13.3 contains a screw dislocation 
which arises from a displacement in the plane ABCD with the line of dislocation 

AD. In the region of the line of dislocation, the crystal does not consist of neatly 
stacked lattice planes, but of an arrangement of atoms which repeat through the 

Fig. 13.2 a, b. Edge dislocation; pictorial (a), structural representation (b) (_L end of the line of 

dislocation) 
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structure in a helical manner (screw dislocation). In this case, the Burgers vector 
b is parallel to the line of dislocation. 

Edge- and screw dislocations, as described here, are only limiting cases; 
intermediates also occur. Dislocations are important in the plastic deformation 
of metals (Chap. 11.2) (movement of dislocations). 

Screw dislocations also play an important role in crystal growth. The 
deposition of atoms on a step of the helix is always energetically favourable, and 
these steps persist during the growth of the crystal, permanently. 

Dislocations are active regions in crystal faces, and etching gives rise there to 
characteristic etch-figures (cf. Table 8.11.21). By etching, the concentration of 
dislocations per cm2 can be estimated. This varies from virtually zero in the 

most perfect single crystals of germanium (semiconductor) to 1012 per cm2 in the 
most strongly deformed metals. 

“Whiskers”, or ultrathin, needle crystals, often form with the screw 

dislocation parallel to the needle axis. They display remarkable mechanical 
properties. For example, the breaking strength of a NaCl-whisker of l^m 
diameter is as much as llOkPmmr2. 

13.3 Plane Defects 

a) Small Angle Grain Boundaries. It frequently occurs that different domains of 
a single crystal are tilted by a small angle with respect to each other. Their 

boundary faces are small angle grain boundaries, and are built up by a series of 

dislocations. A small angle grain boundary, consisting entirely of step 
dislocations, is illustrated in Fig. 13.4. The inclination angle 6 which the crystal 

domains make with each other, may be calculated from the Burgers vector b and 
the separation of the displacements D, since 
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Fig. 13.4. Small angle grain boundary formed from edge 

dislocations (6 = inclination angle) 

b) Stacking Faults. Stacking faults are disturbances of the normal layer 

sequence in the building of a structure. They are most frequently observed in 
metals (ccp and hep, Figs. 11.2 and 11.3) and in some layer structures (e.g. 

graphite, Fig. 11.25). Cobalt crystallises with both cubic and hexagonal closest 
packing, and it also occurs that both stacking sequences (ABCA... and ABA...) 

may alternate irregularly. Such an array is only periodic in two dimensions and 

thus does not qualify to be called a crystal. 

• • • • • 
-(101) 

Fig. 13.5. Twin with twin-plane (101) 
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Fig. 13.6. Plane of a real crystal with mosaic blocks. 
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c) Twin Boundaries. A twin is the regular growing together of crystals of the 

same sort. The crystals lie in a symmetric relationship to one another. The 

commonest twinning symmetry elements are 2 and m. Twins can arise during 

crystal growth (growth twins) or through mechanical stress (deformation 
twins). In Fig. 13.5, the twin element is a mirror plane parallel to (101). 

In general, because of the occurrence of small angle grain boundaries, a 

crystal may be thought of as being built up of small mosaic blocks, which are 
only slightly displaced relative to one another. Figure 13.6 shows such a mosaic 
formation, with the inclination angles grossly exaggerated. 



14 Appendix 

14.1 Symbols for Crystallographic Items 

a, b, c Crystallographic axes 

a1? a2; a[5 a2, a3 Symmetrically equivalent crystallographic axes 

(a) Set of symmetrically equivalent crystallographic axes 

(al» a2i al> a2> a3) 

—: 1 : — 
b b 

a, b, c 

I a | = a0 

| B | = b0 • 
|c| =Co 

a = b ac 

/? = a ac 

y = a a b 

ao . ^ . _Co. 

bo b0 

Morphological axial ratio 

Lattice vectors of the unit cell 

Lengths of vectors 
Lengths of cell edges 

Interaxial angles 

Lattice parameters 

Structural axial ratio 

Crystallographic “triples” 

x,y,z 

uvw 

[uvw] 

(uvw) 

Coordinates of the vector r = xa + yb + zc 
Coordinates of a point in the unit cell, 0 < x, y, z < 1 

Coordinates of the lattice translation vector 

z = ua + vb + wc 
Coordinates of a lattice point, integers and integers + |; \ 

Indices of a set of parallel lattice lines. Indices of a zone axis or 

parallel crystal edges 

Indices of a set of symmetrically equivalent lattice lines or 

directions 
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(hkl) Miller indices: Indices of a crystal face or of a set of parallel 

lattice planes 

(hkil) Bravais-Miller indices: indices of a crystal face, or of a set of 
parallel lattice planes, for the hexagonal axes al5a2,a3,c 

{hkl} Indices of a set of symmetrically equivalent crystal faces 
(crystal form) or lattice planes 

{hkil} Indices of a set of symmetrically equivalent crystal faces 

(crystal form) or lattice planes, for the hexagonal axes 

al> a2> a3,c 

hkl Laue symbol (indices): indices of a X-ray reflection from a set 
of parallel lattice planes (hkl) 

a*, b*, c * Vectors of the unit cell in the reciprocal lattice 

| a * | = a* 

|b*| = b* 

|c*|=c0* 

a* = b* a c* 

/?* = a* ac* 

y*=a*Ab* 

Lengths of vectors 

Parameters of the 
reciprocal lattice 

• Interaxial angles 

14.2 Symmetry Elements 

a) Symmetry elements (planes) 

Symmetry element 
Glide 

component 

Igl 

Symbol 
Graphical symbol 

-L Plane of 

projection 
| Plane of 

projection3 

Mirror plane 

Plane of symmetry 
- m r y 

Glide plane 

with axial 
glide component 

a 

T a — rr 
b 

2 
b n 

c 

~2 
c 

a If the z-coordinate is not 0 or I, its value is given. 

b In tetragonal and cubic systems only. 
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Symmetry element 
Glide 

component 

III 

Symbol 

Graphical symbol 

_L Plane of 

projection 

|| Plane of 

projection2 

Glide plane 

with diagonal 

glide component 

a + b 

2 
F 

a + c 

2 

n 

b + c 

2 
— 

a+b + cb 

2 

“Diamond” 

glide plane 

a + b 

4 

a +c 

4 

b + c 
d -- 

4 

a + b + cb 

4 

b) Symmetry elements (axes) 

Symmetry element 
Screw 
component |s| 

Symbol 
Graphical 

symbol 

Onefold rotation axis = identity - 1 

Inversion centre 

Centre of symmetry 
- 1 oa 

Twofold rotation axis - 2 

♦ 0 
T Plane of 

projection 

|| Plane of 

projection2 
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Symmetry elements (axes) (continued) 

Symmetry element 
Screw 

component |sj 
Symbol 

Graphical 

symbol 

Twofold screw axis I|t| 2, 

s 
_L Plane ol 

projection 

21 1 

|| Plane of 

projection3 

Threefold rotation axis - 3 A A 

Threefold rotoinversion axis - 3 A 

Threefold screw axes 
5^1 3, K 

32 A 
Fourfold rotation axis - 4 ■ □ 

Fourfold rotoinversion axis - 4 / 

4, A 
Fourfold screw axes 42 ■ 

|i?i 4, 

Sixfold rotation axis - 6 • 0 

Sixfold rotoinversion axis - 6 % 

fa 6, # 
fa 62 A 

Sixfold screw axes fa 63 • 

fa 64 A 
fa 65 A 

c) Symmetry directions in the seven crystal systems, cf. Table 7.2. 

d) Characteristic symmetry elements in the seven crystal systems, cf. Table 8.9. 
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14.3 Calculation of Interatomic Distances and Angles 
in Crystal Structures 

Specific interatomic distances (e.g. bond lengths) and the angles between the 

corresponding vectors (bond angles) are often of great interest. 

Interatomic Distances. The distance 1 between atoms A (x,,y,,z,) and B 

(x2,y2,z2) may be calculated by use of the following formulae: 

Crystal system 1 

Triclinic 
{(A x)2ag + (A y)2bg + (A z)2Cq + 2 A xAy a0b0 cos y + 

+ 2dxdza0c0cosyS + 24ydzboCoCOsa}l/2 

Monoclinic {(dx)2aQ + (dy)2bg + (dz)2CQ + 2dxdza0c0 cosy?}1/2 

Orthorhombic 1(4 x)2 a2 + (d y)2 b2 + (d z)2 c2}1/2 

Tetragonal {((A x)2 + (d y)2) a2 + (d z) 2c2}1/2 

Trigonal or hexagonal {((dx)2 + (d y)2-dxdy)ag + (dz)2Co}1/2 

Cubic {((Ax)2 + (Ay)2 + (A z)2)ajj}1/2 

A 

Fig. 14.1. The triangle formed by atoms, A, B and C 

Angles. The angle to, relating the atoms A, B and C (Fig. 14.1) may be readily 
calculated by calculating the lengths of the three edges, 1,, 12 and 13 of the triangle 

ABC and applying the cosine rule: 

cos co = - 
l?-ll + l| 

21,13 
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14.4 Crystal Forms (Table 14.1) 

Table 14.1. The 47 crystal forms 

14.1.1 Triclinic, monoclinic and orthorhombic systems 

1. Pedion 

(Monohedron) 

2. Pinacoid 

(Parallelohedron), Fig. 8.7g 

3. Dihedron 

(Sphenoid (2), Dome (m)) 

4. Rhombic disphenoid 

5. Rhombic pyramid, 

Exercise 8.15(5) 

6. Rhombic prism, 

Exercise 8.15(1) 

7. Rhombic dipyramid, 

Exercise 8.15(9) 

14.1.2 The tetragonal system 

8. Tetragonal pyramid, 

Fig. 8.10b, c 

9. Tetragonal disphenoid 

10. Tetragonal prism, 

Fig. 8.7e, f 

11. Tetragonal 

trapezohedron 

12. Ditetragonal pyramid, 

Fig. 8.10a 

13. Tetragonal 

scalenohedron 

14. Tetragonal dipyramid, 

Fig. 8.7c, d 

15. Ditetragonal prism, 

Fig. 8.7b 

16. Ditetragonal dipyramid, 
Fig. 8.7a 

1 Pedion 

2 Pinacoid Some crystal forms after Niggli [32] 
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14.1.3 The hexagonal (trigonal) system 

17. Trigonal pyramid. 

Exercise 8.15(7) 

18. Trigonal prism. 

Exercise 8.15(3) 

19. Trigonal trapezohedron 

20. Ditrigonal pyramid 

21. Rhombohedron, 

Exercise 8.15(16) 

22. Ditrigonal prism 

23. Hexagonal pyramid, 

Exercise 8.15(8) 

24. Trigonal dipyramid, 

Exercise 8.15(11) 

25. Hexagonal prism, 

Exercise 8.15(4) 

26. Ditrigonal scalenohedron 

27. Hexagonal trapezohedron 

28. Dihexagonal pyramid 

29. Ditrigonal dipyramid 

30. Dihexagonal prism 

31. Hexagonal dipyramid, 

Exercise 8.15(12) 

32. Dihexagonal dipyramid 

1 Pedion 

2 Pinacoid 
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14.1.4 The cubic system 

33. Tetrahedron, 

Exercise 8.15(15) 

34. Hexahedron (cube), 

Exercise 8.15(13) 

35. Octahedron, 

Exercise 8.15(14) 

36. Tetartoid (Tetrahedral 

pentagon-dodecahedron) 

37. Pyritohedron 

(pentagon-dodecahedron) 

38. Deltoid-dodecahedron 
(deltohedron) 

39. Tristetrahedron 

40. Rhomb-dodecahedron, 
Fig. 1.1a 

41. Diploid 

(disdodecahedron) 

42. Trisoctahedron 

43. Trapezohedron 

(deltoid-icositetrahedron) 

44. Gyroid 

45. Hexatetrahedron 

(hexakistetrahedron) 

46. Tetrahexahedron 

(tetrakishexahedron) 

47. Hexaoctahedron 

(hexakisoctahedron) 



15 Solutions to the Exercises 

The solutions to a few exercises are incomplete, as the drawings would require 
too much space. 

Chapter 1 

1.1 22.41 (the molar volume)/6.023xl023 (the Avogadro number, NA) 

= 37191 A3, which corresponds to a cube with an edge of 33.4 A. 

1.2 0.046%. 

1.3 No glass can be a crystal, nor any crystal a glass! 

Chapter 2 

(b) [001]. 
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2.4 (111), (102), (120), (III) 

[111], [101], [210], [012]. 

2.5 a) p = y = 90° 

b) a0 = b0; a = /3 = 90° 

c) a0 = b0 = c0; a=/3 = y 

2.6 (hkl) and (hkl) belong to the same set of parallel planes; [uvw] and [uvw] 
are opposite directions. 

Chapter 3 

3.1 (a) 

3.2 

O-O 

3 
« 0 

o—o 
(b) Cu20,Z = 2, 

O^O^O 
Oai 

Ob (b)2.37A (c)3.20g/cm3 

3.3 All combinations of 0, [, and 1 from 0,0,0, to 1,1,1. Figure 2.5 includes a 
partial solution; see also p. 91 

3.4 x, 0,0; 0,y, 0; 0,0, z 

x, 1,0; 1, y, 0; 1,0, z 
x,0,l; 0,y, 1; 0,1, z 

x, 1,1; 1, y, 1; 1,1, z 

3.5 x, y, 0; x, 0,z; 0, y, z 
x,y, 1; x, 1, z; l,y, z 

3.6 x,y,i; x,[,z; 

Chapter 4 

4.2 (1) + (2) = Fig. 4.11 a (lower part). 

• —. 
\ 

\ 

(3)/- 
/ 

/ \ 
• • O • • 
V / 

V / 
\ 

<V 
/ 

/ 
• 

\ 
\ 
\ / 
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4.3 (1) = Exercise 4.4 (4) (2) = Exercise 4.4 (10). 

1 

/ \ 

( • ) 
\ / 

4 
__—. 

f \ 
• ® • 
\ 1 
\ / 
X 

fx 
X X 

10 

/■c 7*x 
/ \ / \ 

/ V ' 

\ / \ ' 
\ / \ ! 

__ 3./ 

2 

° /' 

v„> 

x\ 
1 • O • j 

\ / 
\ • / 
\_/ 

8 

(# ° / 
\ . / 
X_X 

ii 

/•"x 
1 • o . 
\ / 
\ • • / 

3 

X "X 
/ ® ® \ 

) 
\ ® ® / 
\_/ 

6 

i\ .X l\ 

\ / \l/ t / 

\_J_X 

9 

X' X 
/ ® \ 

/ \ 
® 1 

\ ® J 

12 

X " X 
/ ® ® \ 

/ \ 

;® ®J 

\ ® ® / 
\_ 

4.5 Cf. Exercise 4.4 (6) and (10). 

4.6 1. Trigonal pyramid and pedion. 
2. Tetragonal dipyramid. 
3. Hexahedron, tetragonal prism and pinacoid, rectangular box, orthog¬ 

onal axes. 
4. Hexagonal prism and pinacoid, hexagonal axes. 

4.7 Cf. Fig. 4.18. 

4.9 a) 607229°; 58° 
b) 46°/260°; 30° 

c) 44°/32°; 69° 
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4.10 100°; 44° und 280°; -44°, parallel 

4.11 They lie in a plane, perpendicular to the zone axis. 

4.12 Cf. Fig. 6.13 f (432). 

4.13 Cf. Fig. 4.11. The stereograms in Exercises 4.12 and 4.13 are geometrically 
equivalent. 

4.15 Hexahedron 1 + 0; Hexahedron 2 • O 

4.16 Cf. Orthographic projection in 0,0,0 of Fig. 9.15 

4.17 
'-1' I 10 TIO J20 

\ f / 

120 
/ 

120 
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Chapter 5 

5.1 Cf. pp. 283 and 284. 

5.2 

5.3 Parallel. 

5.4 

6 = 3 JL m, lO = 5 i. m. 

5.6 X (odd): I, 3, 5 .... 

5.7 Trigonal, tetragonal, hexagonal pyramid; trigonal dipyramid. 

5.8 Rhombus ‘, equilateral triangle, square, regular hexagon. 

5.9 Cf. Fig. 4.21. 

Chapter 6 

6.1 Cf. Figs. 6.6 and 5.5b. 

6.2 (1) (2) Cf. Fig. 6.6a, (3) Cf. Fig. 6.6c, 

1 Solids with rectangular or parallelogram cross-sections are not prisms in the crystallogra¬ 

phic sense as their faces are not all equivalent (cf. Chapter 8.2.1). 
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(4) (5) Cf. Fig. 6.6d, (6) Cf. Fig. 5.5b, 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

(9) No symmetry except lattice translation. 

(b) 

(1)2 in x,l,0, (2) m in x, y, 1, 

(3)1 in 1,0,3, (4) m in x, y, 0, 

(5)1 in 1,1,1, (6) 2 in l,y,l, 
(7)2 in 0,1, z. 

(a) Cf. Fig. 6.9f (right) and Fig. 8.11.7 

(b) (1) 2 in x,l,l, (2)minx,y,l, 
(3) 2 in),z, (4) m in x, 0, z. 

(a) cubic P, (b) monoclinic P, (c) triclinic P, (d) orthorhombic P, 
(e) tetragonal P, (f) hexagonal P. 

(a) Cf. Fig. 6.7a-6.12a, 
(b) Cf. Fig. 6.7d-6.12d, 

(c) and (d) Cf. Figs. 6.18-6.23. 

(A), (B), C, I, F. 

I. 
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Chapter 8 

8.1a The directions parallel and antiparallel to a polar axis have distinct 

physical properties. 

8.1b (1) I, (2) mlX, (3)21X [also valid for 4 and 6]. 

8.2 No. Rotoinversion implies rotation through an angle followed by 

inversion. The two ends of the axis remain equivalent. 

8.3 I, 2/m, 3, 4/m, 6/m. 

622 6mm 6m2 6/m 2/m 2/m 

422 4mm 42m 4/m 2/m 2/m 

32 3m 3 2/m 3 2/m 

222 mm2 mm2 2/m 2/m 2/m 

Cf. also Figs. 6.9e,f-6.12e,f. 

23 43m 432 

2/m 3 4/m 3 2/m 4/m 3 2/m 

Cf. also Fig. 6.13 e, f. 

8.6 3m, 32, 3, 3. 

8.7 Cf. Table 8.4. 

8.8 Cf. p. 145. 

8.9 (1) 42m, (2) m, (3) 32, (4) 6mm, (5) mm2, (6) 43m. 

8.10 Cf. Figs. 6.8e,f-6.13e,f. 

8.11 (1) 6/m 2/m 2/m,_(2)-(4) mm2, (5) 2/m 2/m 2/m, (6) mm2, (7) m, 
(8) 6m2, (9) 4/m 3 2/m, (10) 4mm, (11) 4/m 2/m 2/m, (12) mm2, 

(13) 3m, (14) mm2, (15) 43m, (16) 3m, (17) mm2, (18) = (16), 
(19) = (15), (20) 3m, (21)+ (22) 6m2, (23) m, (24) mm2, (25) m, (26) 2, 

(27) 2, (28) 3m, (29) m, (30)+ (31) 1, (32) 3 2/mL(33) mm2, (34) 2, 
(35) mm2, (36) 4/m 2/m 2/m, (37) 4mm, (38) 42m, (39) 2/m 2/m 2/m, 

(40) mm2, (41) 2/m, (42)+ (43) m, (44)+ (45) 2, (46)-(49) 1 

(a) Enantiomers: (26)-(27), (30)-(31), (44)-(45), (46)-(47), (48)-(49). 

(b) Polar molecules: (2)-(4), (7), (8), (10), (12), (14), (16)-(18), (20), 

(23)—(31), (33)—(35), (37), (40), (42)-(49) 

8.12 (1) Bent, (2) pyramidal, (3) Table 8.11.14, (4) Fig. 8.9. 
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8.13 mm2 (0°); 2 (0° <<p < 180°); 

2/m (180°); 2 (180° < <p < 360°). 

8.14 Yes; mm2(+); 2/m(0). 

8.15 (1) 2/m 2/m 2/m, (2) 4/m 2/m 2/m, (3) 6 m2, (4) 6/m 2/m 2/m, 

(5) mm2, (6) 4mm, (7) 3m, (8) 6mm, (9) 2/m 2/m 2/m, 

(10) 4/m 2/m 2/m, (11) 6 m2, (12) 6/m 2/m 2/m, (13)+ (14) 4/m 3 2/m, 
(15) 4 3m, (16) 3 2/m. 

8.16 (3), (5), (6), (7), (8), (11), (15). 

8.17 Faces + vertices = edges + 2 (Euler). 

8.18 a) Cf. Fig. 8.8. 

b) Ditetragonal dipyramid; from (hkO) arise (hkl) and (hkl) etc., or from 
(210) arise, for example, (211) and (211) etc. 

8.19 a) Cf. Fig. 8.12a. 

b) Hexagonal dipyramid; from (hkiO) arise (hkil) and (hkil) etc. or from 
(2130) arise, for example, (2131) and (2131). 

8.20 (1), (2): Table 8.4; (3), (4): Table 8.7; 

(5), (6), (7): Table 8.5; (8), (9): Table 8.6. 

(Part of Fig. 8.15) 

The pole (113) corresponds to the crystal form trapezohedron or deltoid 
icositetrahedron {311} or {hkk}. (311) lies in the asymmetric face unit. 

8.22 6m2: (m..);ditrigonal prism {hkiO}: hexagonal prism {1120} 

3 2/m: (,m.);rhombohedron {hOhl}: hexagonal prism {1010} 

6mm: (.m.);hexagonal pyramid {hOhl}: hexagonal prism {1010} 

(..m; hexagonal pyramid {hh2hl}: hexagonal prism {1120} 
3m: (.m.),trigonal pyramid {hOhl}: trigonal prism {1010}. 
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9.2 

9.3 

(a) x,y, 1-z, (b)x,!-y,z, (c) £ + x,yJ-z, (d) |-x, | + y,z, 

(e) x,i-y,i + z, (f)i-x>| + y,i + z, (g)j + xj + y,z, 
(h) 5 + x,y,| + z, (i) 5 —x, y, z, (j) l-x,yj + z, (k) xj + yj-z, 
(1) ±-x,f-y,z, (m)y,x,| + z;x,y,5 + z;y,x,| + z, (n)y,x-yj+z; 

x + y,x,f + z. 

The difference between the operation of a glide plane and a 2t is only 

evident when a “fully asymmetric point” is considered. An example is the 

asymmetric pyramid in the following figure. 

1 ll 

1 
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t r t r i 
—i—1 

1 
— . -« 

— 1 

0 

i , 
1 

i 
i 

A 

j 
1 

A 

— i 

0 
1 

-1-< 

0 
1 

-1- 

i j i j i 

C 2/m 2/m 2/m 
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(a) (2) x, y, z; x, y, z,2 (3) 2, (4) PI, (5) on all 1, one-fold. 

2 Coordinates are given as in International Tables [18] [17] [14], i.e. instead of 1 - x, 1 - y, 1 - z 
is written x, y, z. 
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1 i 
1 i 

Q 1 Q 
i r 

i i 
i 
i 

i 
i i p 9 1 

_i_ | 

(b) (2) x, y, z; x, y, z; [ + x, \ - y, z; \ + x, \ + y, z, (3) 4, (4) Cm, 
(5) on m, 2-fold. 

(l) 

(c) (2) x, y, z; {+ x, \ - y, z; \ - x, \ + y, z; x, y, z, (3) 4, (4) Pba2, 

(5) on 2, 2-fold. 

(e) 

P 

1 
1 

i t
 
-
 

i 
i i •-HI 

? 

! i
.
J

 

d 

.~W 

(2) x,y,z; x,|-yj + z; xj + y 

(5) on 2, 2-fold. 

1 “°" I 

T 
i 

i _o‘ 
f— 
! 

. i 
i_ i 

—t^> 
i. 

o- I 
;.i 1.. 

i 
i _Q ’ 

f- 1 

(2) x, y,z; xj- -y,z; |-x,y,j- 

(l) 

(l) 

U- 

l + xj + y,| + z;| + x,y,r 

(5) on 2, 4-fold. 

y,i + z; 
z; x,5 + y,z; x,y,z. (3) 8, (4) Ibm2, 
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7 
1 1 I J 

- 4 

1 o~ 
• 
1 
i 

~D 1 
i 7 

< f f f 4 
1 Q_ ! _o 1 

i O- i “O i 
A i 7 
f f 4 

1 Q_ ! o 1 

(1) 

(f) (2) x, y, z; \ — x, {- z; \ + x, y, {- z; x, y, z; x, y, z; \ — x, y, \ + z; 
l+x, y,| + z; x,y, z, (3) 8, (4) P 2/m 2/n 2,/a, (5) on m and 2,4-fold, on 
I, 2-fold. 

(1) 

(g) (2) x, y, z; x, y, z; y, x, {+ z; y, x, \ + z; [ + x, | - y, z; 5 - x, \ + y, z; 

2 ~~y> 2— x, 2 z; 2 + y,2 + x,2 + z. (3) 8, (4) P42bc, (5) on 2, 4-fold. 

a) 1. x,y,z; x,y,z; x-y,x, z + |; x + y,x,z + |; 

y,x-y,z + f;y,x + y,z + f 

2. 2 in |,0,z; 5,5,z; 0,|,z; 32 in f,3,z; |J,z 
3. 32,2 

b) 1. x, y, z; y, x - y, z; x + y, x, z; x -y, x, z + j; 
x,y,z + |;y,x + y,z + | 

2. 2! in 5,0,z; 0,|,z; 3 ini,±,z;y,z 
3. 3,2, 

9.8 
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9.9 
X,X,Z O 

^ > x, X 

x,z,x x,z,x 

O O Ox>x>z 

O z>x>x 

z,x,xO 

x,x,z O o o 
x,z,x x,z,x 

O z,x,x 

O x>x>z 

b 
24 

. .m 

Q a) 

x,x,x O O x,x,x 

b 
8 
. 3m 

X,X,X O O X,X,X 

Q b) 

x,0,0 

o 

0,x,0 0,0,x 0,x,0 , 6 
O 9 ^ D 4m. m 

0 
x,0,0 

Q c) 
Coordinates are not given for those points which are reflected by m to 
locations below the plane x, y, 0. The third coordinate of each triple must 

be taken to have both a plus and a minus sign. 
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9.10 P2j/c (Fig. 9.9a), Pna2, (Fig. 9.12), Pmna (Exercise 9.6f). 

\ t / \ I /» \ t / 
■---■ 

\ 

\ 
— 0 ■ 0 - 

z \ 

\ 
■ ■ 

'I \ l/(\ / 
P422 

9.11 This is absurd: an a-glide plane cannot be normal to the a-axis . 
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Chapter 10 

10.1 Pi: 

-o -o 
•-• 

/ °* 
/ 

O' 

- o / - o / 
(a) AB2, (b) Z = l, (c) linear, 

(d) oo/mm, (e) 1. o+ c + • 2=0 

Pm: 

+ o o* ♦a O' 

(a) AB2, (b) Z = 1, 

*o O'- 'O O' (c) bent, (d) mm2, (e) m. 

P 2/m: 

-o o- -o o- 

*o o- 'O O' 

- o o- -O o- 

(a) AB4, (b) Z = l, (c) planar 
[4]-coordination 
(rectangular), 

+ o o+ 'O O' (d) 2/m 2/m 2/m, (e) 2/m. 

P 2/m 2/m 2/m: 

+o- -O' 'O- 'O- 

♦ o- -O' 'O- '0- 

+o- -O' 'O -O' 

(a) ABg, (b) Z = l, 
(c) [8]-coordination 
(rectangular parallelepiped), 

+o- -O' 'O- -O' (d) and (e) 2/m 2/m 2/m. 
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Chapter 11 

11.1 Cf. Table 11.1 d and h. 

11.2 (a) cub. P; Po: 0,0,0 
(b) cub. I; W: 0,0,0 

(c) hex. P; Mg: 0,0,0; 

(d) cub. F; Cu: 0,0,0 
(e) 63 in 5,1, z; 6 in 0,0, z 

11.3 (a) 1.675 A, (b) 1.37 A, (c) 1.605 A, (d) 1.28 A. 
11.4 1.63. 

11.5 (a) 0.52, (b) 0.68, (c) 0.74, (d) 0.74. 

11.6 (a) Cf. Fig. 11.14 

(b) 1.546 A, (c) 8, (d) each C is tetrahedrally coordinated by 4C. 
(e) The two structures have the same geometry. 

11.7 (a) Cf. 11.15a 

(b) 1.42 A, (c) 4, (d) 3.35 A, (d) pD = 3.50g/cm3; 
Qg-2.21 g/cm3. 

11.8 Li+: 0.76 A; Cl“: 1.81 A; 0.79 
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LiCl 

RbF 

1.95 A (distances indicated by thick lines), 1.97 A (distances indicated by 

thin lines), cf. Fig. 9.18. 
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11.11 

O-61 ] O-11 'I O-61 

(3) 4, (4) Fe-S: 2.27 A; S-S: 2.06 A. 

O ci 

(l) 

(2) HgNH4Cl3, Z = l, (3) Hg[6] (octahedron), NH4[8] (cube), 
(4) Hg—Cl: 2.38 A; 2.96 A, NH4-C1: 3.36 A. 
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11.13 C 

Bq 

5 

0 

Chapter 12 



15 Solutions to the Exercises 

r 1" 

! 1 
!-1- 

r 
1 
1 
i 

i l l 

_
i
_

 -1- 
1 
1 

! - b* 
L a* 

<-Q 

12.2 

12.3 

12.4 

Z = 2, W-type (Fig. 11.5). 

23 
2/m3 
432 

43m 

4/m32/m 

2 + I = 2/m, 3 + 1 = 3 J 2/mj 

4 + 1 = 4/m, 3 + 1 = 3, 2 + I_=2/m 
4 + l = 4/m, 3 + 1 = 3, m + I = 2/m 4/m32/m 

(1) 111 4.077; 200 3.534; 220 2.495; 311 2.127; 222 2.038; 400 1.766; 
331 1.621; 420 1.579; 422 1.442. 

(2) a0 — 7.06 A. (3) Z - 4. (4) Because Z = 4, so KI must have either the rock 

salt or the sphalerite structure. As RA/Rx for KI is 0.61 (see Table 11.3) 
the structure should be the rock salt (NaCl) type. 



References 

This list makes no claim to completeness. It merely provides an indication of some textbooks, 

collections of tables and other publications which treat the subject in greater depth. Particular 

reference is made to those cited in the text. 

1. Azaroff, L. V.: Elements of X-ray crystallography. New York: McGraw-Hill Book 

Company 1968. 

2. Bijvoet, J. M., Kolkmeyer, N. H., Macgillavry, C. H.: X-Ray analysis of crystals. London: 

Butterworths Scientific Publication 1951 

3. Bloss, F. D.: Crystallography and crystal chemistry. New York: Holt, Rinehart and 

Winston 1971. 

4. Borsdorf, R., Dietz, F., Leonhardt, G., Reinhold, J.: Einfiihrung in die Molekiilsymme- 

trie. Weinheim: Chemie Physik 1973. 

5. Buerger, M. J.: Crystallographic aspects of phase transformations; in Smoluchowski, R.: 

Phase transformations in solids. New York: John Wiley; London: Chapman and Hall 

1951. 
6. Buerger, M. J.: Elementary crystallography. New York London Sydney: Wiley 1967. 

7. Buerger, M. J.: Introduction to crystal geometry. New York: McGraw-Hill Book 

Company 1971. 

8. Buerger, M. J.: Contemporary crystallography. New York: McGraw-Hill 1970. 

9. Burzlaff, H., Zimmermann, H.: Kristallsymmetrie - Kristallstruktur. Erlangen: Merkel 

1986. 
10. Chernov, A. A.: Modern crystallography, Vol. Ill (Crystal Growth). Berlin Heidelberg 

New York Tokyo: Springer 1984. 
11. Cullity, B. D.: Elements of X-ray diffraction. Reading Massachusetts London: Addison- 

Wesley Publishing Company Inc. 1956. 
12. Evans, R. C.: Introduction to crystal chemistry. Cambridge: University Press 1964. 

Einfiihrung in die Kristallchemie. Berlin New York: de Gruyter 1976. 

13. Fischer, E.: Einfiihrung in die mathematischen Hilfsmittel der Kristallographie. Freiberg: 

Bergakademie - Fernstudium 1966. 
14. Hahn, T. (Editor): International Tables for Crystallography, Vol. A. Dordrecht Boston: 

Reidel Publishing Company 1992. 
15. Harsch, G., Schmidt, R.: Kristallgeometrie. Frankfurt/M.: Moritz Diesterweg/Otto Salle 

1981. 
16. Haussiihl, S.: Kristallgeometrie. Weinheim: Chemie Physik 1977. 
17. Henry, N. F. M., Lonsdale, K. (Editors): International Tables for X-Ray Crystallography, 

Vol. 1, Birmingham: the Kynoch Press 1952. 
18. Hermann, C. (Herausgeber): Internationale Tabellen zur Bestimmung von Kristallstruk- 

turen, Bd. 1. Berlin: Gebriider Borntraeger 1935. 
19. Jaffe, H. H., Orchin, M.: Symmetry in chemistry. New York: John Wiley 1965. 

20. Jagodzinski, H.: Kristallographie. In: Handbuch der Physik, Bd. VII, Teil 1. Berlin 

Gottingen Heidelberg: Springer 1955. 
21. Johnsen, A.: Uber den Unterschied von Mineralien und Lebewesen. Berlin: Gebriider 

Borntraeger 1930 
22. de Jong, W. F.: Kompendium der Kristallkunde. Wien: Springer 1959. 

23. Kittel, Ch.: Introduction to solid state physics. New York: John Wiley 1986 



302 References 

24. Kirsch, H.: Applied mineralogy. London: Chapman & Hall and Science Paperback 1968. 

25. Kitaigorodskii, A. I: Organic chemical crystallography. New York: Consultants Bureau 
1961. 

26. Kleber, W.: Angewandte Gitterphysik. Berlin: de Gruyter 1960. 

27. Kleber, W. (Bautsch, J., Bohm, J., Kleber, I.): Einfiihrung in die Kristallographie. Berlin: 
Technik 1990. 

28. Krebs, H.: Grundziige der Anorganischen Kristallchemie. Stuttgart: Ferdinand Enke 
1968. 

29. Landolt-Bornstein: Kristallstrukturdaten anorganischer Verbindungen, Bd. 7. Berlin 
Heidelberg New York: Springer 1973-1986 

30. McKie, D., McKie, C.: Essentials of crystallography. Oxford, London, Edinburgh, 

Boston, Melbourne: Blackwell Scientific Publications 1990. 

31. Meyer, K.: Physikalisch-chemische Kristallographie. Leipzig: Deutscher Verlag fur 
Grundstoffindustrie 1977. 

32. Niggli, P.: Lehrbuch der Mineralogie und Kristallchemie. Berlin: Gebrtider Borntraeger 
1941. 

33. Paufler, P., Leuschner, D.: Kristallographische Grundbegriffe der Festkorperphysik. 
Berlin: Akademie 1975. 

34. Paufler, P.: Physikalische Kristallographie. Weinheim: Chemie Physik 1986. 

35. Pauling, L.: The nature of the chemical bond and the structure of molecules and crystals. 
Ithaca, New York: Cornell University Press 1960 

36. Phillips, F. C.: An introduction to crystallography. Edinburgh: Oliver and Boyd 1971 

37. Ramdohr, P., Strunz, H.: Lehrbuch der Mineralogie. Stuttgart: Ferdinand Enke 1978. 

38. Read, W. T.: Dislocations in crystals. New York: McGraw-Hill Book Company 1953. 
39. Schulz, H., Tscherry, V.: Acta Cryst. (1972) B 28, 2168. 

40. Shuvalov, L. A. et al.: Modern crystallography IV (Physical Properties of Crystals). Berlin 
Heidelberg New York Tokyo: Springer 1988. 

41. Stoddart, J. F.: Angew. Chem. (1991) 103, 71. 

42. Stout, G. H., Jensen, L. H.: X-Ray Structure determination. London: The Macmillan 
Company Collier-Macmillan Limited 1989. 

43. Strukturberichte, Leipzig: Akademische Verlagsgesellschaft 1913-1940. 

44. Structure Reports, Utrecht: N. V. A. Oosthoek’s Uitgevers Mij, since 1956. 

45. Strunz, H.: Mineralogische Tabellen. Leipzig: Akademische Verlagsgesellschaft Geest & 
Portis KG 1977. 

46. Vainshtein, B. K.: Modern crystallography, Vol. I (Symmetry of crystals. Methods of 

structural crystallography). Berlin Heidelberg New York Tokyo: Springer 1994. 

47. Vainshtein, B. K., Fridkin, V. M., Indenbom, V. L.: Modern crystallography, Vol. II 

(Structure of crystals). Berlin Heidelberg New York Tokyo: Springer 1995. 

48. Wells, A. F.: Structural inorganic chemistry, Oxford: Clarendon Press 1984. 

49. Wilke, K.-Th., Bohm, J.: Kristallziichtung. Berlin: Deutscher Verlag der Wissenschaften 
1988. 

50. Winkler, H. G. F.: Struktur und Eigenschaften der Kristalle. Berlin Gottingen Heidelberg: 
Springer 1955. 

51. Wyckoff, R. W. G.: Crystal structures. New York London Sydney: John Wiley 1963 (Vol 
1)-1971 (Vol. 6). 

52. Zemann, J.: Kristallchemie. Berlin: de Gruyter (Sammlung Goschen) 1966. 



Subject Index 

A-lattice 100 

Acicular 29 

Ag,Au 237 

Aggregate 33 

Allene 156 

Amorphous 7 

Angle between the normals 33 

Angstrom 6,23 

Anisotropic 4, 5 

Antifluorite structure 227,231 

Apatite 159 

Aragonite 155 

Aragonite structure 240 

Asymmetric 150 

Asymmetric face unit 126-128, 131, 134— 

137, 139, 141, 214 

Asymmetric unit 198, 203, 214 

Atomic radii 228 

Avogadro number 24 

Axial ratio 46,116,117,211 

Axial system 77, 78, 80, 82, 86, 88, 115 

Azimuthal angle 38 

B-lattice 101 

Basis 22 

bcc 223 
Benzene 143, 160, 213, 224 

Bragg equation 249, 250, 253 

Bravais lattice 71,103 

Buerger 239, 260 

Burgers vector 267, 268 

C-lattice 90, 100 

C60 162,214,225 

CaC03 structure 240 

CaF2 161 

CaF2 structure 263 

CaF2-type 230 

Calcite 158 

Calcite structure 240 

ccp 221,223 

Centre of symmetry 58 

Centred lattice 97 

Centrosymmetric 63 

Characteristic symmetry elements 145 

Chemical bonding 217 

Chiral 150 

Cleavage 3 
Combination of symmetry operations 64, 

65, 89 

Complication rule 43, 45 

Compound symmetry operation 64, 65 

Conformation 145 

Continuous 6 
Coordination 218 

Coordination number 218,240 

Coordination polyhedron 218 

Corderite 4 

Coronene 143 
Corundum structure 230 

Coulomb’s law 225 

Coulombic force 225 

Covalent bonding 236 

Cristobalite 233 

Crystal 5, 7, 21, 62 

Crystal aggregate 33 

Crystal chemistry 217 

Crystal data - determination tables 116 

Crystal defects 265 

Crystal edge 28 

Crystal face 28 
Crystal form 28, 127, 133-137, 139, 141 

Crystal growth 30 
Crystal structure 21, 27, 59, 104, 115, 205, 

244 

- Cu-type 220, 222, 224 

- Cubic closest packing 220, 222-224 

- Mg-type 221-224 
- Hexagonal closest packing 221-224 

- W-type 223-224 

- Ag,Au 237,238 

- CuAu 238 

- Cu3Au 238 
- a-Polonium 9, 223, 224 

- Diamond 236, 243, 245, 296 

- Graphite 243, 246, 296 

- CsCl-type 23, 230, 232 
- NaCl-type 223,228,230-236,238,239, 

297 

- LiCl 297 



304 Subject Index 

- RbF 297 

- ZnS 233,238 

- Sphalerite 233, 238 

- Wurtzite 233 

- NiAs-type 230, 235, 238 

- CaF2 230-232,234 

- Fluorite 230-232, 234 

- Antifluorite 231 

- Ti02 205,235,297 

- Rutile 205,235,297 

- Si02 233,234,241,242 

- Quartz (low) 241 

- Quartz (high) 251 

- Tridymite 242 

- Cristobalite 233 

- Cuprite 25, 280 

- Cu20 25,280 

- A1B2 25,280 

- Pyrite 161,246,298 

- Corundum-type 230, 234 

- A1203 234 

- Spinel-type 227, 230 

- Forsterite 230 

- HgNH4Cl, 247,298 
- BaS04 247,299 

- Hexamethylentetramine 213 
- Ethylene 213 

- Benzene 213 

Crystal system 115,147 

Crystallographic axes 11, 271 
CsCl 230 

CsCl structure 239 

CsCl-type 232 

Csl 23 

Csl structure 263 

Cu-type 221 

Cubic 86, 138-140 

Cubic closest packing 221,224 

Cubic coordination 230 

Cuprite structure 25, 280 

Cyclohexane 158 

Debye-Scherrer line 250 

Debye-Scherrer method 250 

Degree of freedom 125-129,196-199 
Deltohedron 278 

Deltoid-dodecahedron 139,278 

Deltoid-icositetrahedron 278 
Density 23 

Determinant 17 

Determination of point groups 145 

Diadochy 237 

Diamond structure 236 

Dihedron 141,276 

Dihexagonal dipyramid 136/137,277 

Dihexagonal prism 136/137,277 

Dihexagonal pyramid 136/137,277 

Dilatational transformation 239 

Diploid 139,278 

Dipole moment 152 

Discontinuous 6 

Disdodecahedron 278 

Displacive transformation 240 

Dissymmetric 150 

Ditetragonal dipyramid 127, 134/135 

Ditetragonal prism 127,134/135 

Ditetragonal pyramid 131,134/135 

Ditrigonal dipyramid 136/137,277 

Ditrigonal prism 136/137,277 

Ditrigonal pyramid 136/137,277 

Ditrigonal scalenohedron 136/137, 277 

Dolomite 157 

Dome 141,276 

Edge dislocation 267 

Eigensymmetry 142 

Electrical conductivity 224 

Enantiomeric 150, 153 

Enantiomorphism 147-150, 189, 190 

Equant 29 

Equivalent 59 

Equivalent by translation 59 

Etch-figure 146,268 

Ethane 144 

Ethylene 213,224 

Ewald 255 

Ewald construction 258 

Extinct 253 

F-lattice 90, 101 

Face symmetry 125-127, 131, 134-137, 
139,141 

Fivefold rotation axis 61 

Fluorite structure 231,234 

Fluorite-type 232 

Forsterite structure 230 

Fourfold rotation axis 61 

Frenkel defect 266 

Full symbol 121 

Galena 27, 33, 48, 50, 55, 124 

Garnet 3 

Gas 5,6 

General form 125,214 

General plane lattice 71,76 

General position 196, 203, 214 

Generating symmetry 142 

Glancing angle 249 

Glass 8 

Glide component 184 

Glide plane 183-187 

Glide reflection 183, 184 

Gnomonic projection 47 

Goldschmidt 43 



Subject Index 305 

Goniometer 37 

Graphite structure 243 

Great circle 33, 40 

Growth rate 31 

Gypsum 4, 57 

Gyroid 139,278 

Habit 29 

Handedness 188 

Hardness 4 

hep 221,223 

Hermann 122 

Hermann-Mauguin symbol 147, 191 

Heteropolar bonding 217 

Hexagonal 86,136-138 

Hexagonal closest packing 221, 224 

Hexagonal dipyramid 53,136/137 

Hexagonal prism 53,136/137 

Hexagonal pyramid 53,136/137 

Hexagonal trapezohedron 136/137, 277 

Hexahedron 139, 179 

Hexakisoctahedron 278 

Hexakistetrahedron 278 

Hexamethylenetetramine 213,224 

Hexaoctahedron 139,278 

Hexatetrahedron 139,278 

(hkil) 133,272 

{hkil} 272 

hkl 253,272 

(hkl) 14, 28, 125, 272 

{hkl} 125,272 

Homogeneous 5-7 

Homopolar bonding 217 

I-lattice 90, 101 

Idea of sphere packing 217 

Ideal crystal 265 

Identical 59 

Identical points 10 

Indexing 41-45 

Interaction principle 217 

International symbol 123, 124, 147, 191 

International tables for crystallography 

133,203 
Interrelationship of point groups and space 

groups 213 

Inversion 58,63 

Inversion centre 58, 63, 66 

Ionic bonding 217 

Ionic radii 226, 228 

Ionic structure 225 

Isometric 29 

Isomorphism 236 

Isotropic 5 

Isotypes 236 

JCPDS 254 

Kyanite 4 

Lattice 9, 21 

Lattice line 12 

Lattice parameter 10, 11, 253 

Lattice plane 13 

Lattice point 11 

Lattice translation 10,71 

Laue 249 

Laue group 260 

Laue symbol 253 

Law constancy of the angle 31 

Limiting form 126 

Line defect 265, 267 

Line lattice 10 

Liquid 5, 7 

Magnesium 146 

Malonic acid 153 

Metal structure 220 

Metallic bonding 217 

Methane 146, 161 

Mg-type 221 

Miller indices 14,42,251 

Mirror plane 58, 62 

Mixed crystals 237 

Molecular dipole moment 152 

Molecular structure 224 

Molecular symmetry 143 

Monochromatic beam 249 

Monoclinic 79, 120 

Morphological axial ratio 46, 117, 271 

Morphology 27, 59, 115, 124 

Mosaic blocks 269 

Multiplicity 191, 197 

NaCl 161,226,3 

NaCl structure 235, 239, 263 

NaCl-type 232,238 

Naphthalene 143 

Nepheline 159 

NiAs structure 230, 235 

NiAs-type 238 

Noble gas structure 224 
Non-crystallographic point group 143, 

162 

Nucleation 30 

Nucleus 30 
Number of chemical formula units per unit 

cell 23, 253, 261 

Octahedral coordination 226 

Octahedral hole 222 

Octahedron 40, 139,179 

Olivine structure 237 
One-circle reflection goniometer 37 

Optical activity 147-150 



306 Subject Index 

Order-disorder transformation 243 

Orthographic projection 47 

Orthorhombic 80, 120, 140, 141 

P-lattice 12, 74, 76-78, 80, 82, 86, 88, 

90-97 

Packing efficiency 222, 223 

Parallelohedron 276 

Pauling’s third rule 234 

PDF index card 254 

Pentagon-dodecahedron 278 

Periodically homogeneous 5 

Phenanthrene 143 

Physical property 4, 71, 150 

Piezoelectricity 147-149, 151 

Pinakoid 28, 35, 127 

Plagioclase 238 

Planar 29 

Plane defect 265, 268 

Plane lattice 10 

Plastic deformation 224 

Pleochroism 3 

Point defect 265, 266 

Point group 77,79,81,83,85,87,89, 119, 

120, 147 

Point lattice 9 

Point symmetry operation 120 

Point symmetry elements 67 

Points equivalent by translation 10 

Polar 146-149 

Polar axis 151 

Pole distance 38 

Pole of the face 33 

a-Polonium 9, 223 

Polymorphism 239 

Polytypism 243 

Powder diagram 251, 252 

Powder pattern 253 

Precession method 260 

Principle of closest packing 217 

Prismatic 29 

Pyrene 143 

Pyrite 161,246,298 

Pyritohedron 139,278 

Pyroelectricity 147-149, 152 

Quartz 31, 151, 158 

Quartz structure 241 

R-lattice 84 

Radius ratio 219,226,227,230-234 

Rate of crystal growth 31 

Real crystal 265 

Reciprocal lattice 255-259 

Reconstructive transformation 240, 241 

Reflection goniometer 36 

Reflection 58, 62 

Repetition operation 10, 57 

Rhomb-dodecahedron 3, 139 

Rhombic dipyramid 52, 141 

Rhombic disphenoid 141, 276 

Rhombic prism 52, 141 

Rhombic pyramid 52,141 

Rhombohedral 84 

Rhombohedron 136/137, 179 

Rotation 58 

Rotation axis 58, 59 

Rotoinversion 65 

Rotoinversion axis 65 

Rotoreflection 67 

Rotoreflection axis 67 

Rutile 157,205,213,226 

Rutile structure 232, 235 

Rutile-type 232 

Schonflies symbol 123, 124, 147, 191 

Schottky defect 266 

Screw axis 183, 187-189 

Screw component 187 

Screw dislocation 267 

Screw rotation 183, 187 

Short symbol 121 

Single crystal 33 

Si02 structure 234 

Site symmetry 196-199, 203 

Sixfold rotation axis 61 

Small angle grain boundaries 268 

Small circle 41 

Sn02 structure 261 

Solid solution 236, 266 

Space group 77, 78, 80, 82, 84, 86, 88, 92, 

183, 189, 194 

- PI 77,92,210,290 

- P2 193 

- P2, 193 

- C2 193 

- Pm 193 

- Pc 193 

- Cm 193,211,291 

- Cc 193 

- P2/m 78,92,192,198,199 

- P2,/m 192 

- C2/m 192 

- P2/c 192 

- P2,/c 192 

- C2/c 192 

- Pmm2 106, 191 

- Pnc2 211,291 

- Pba2 211,291 

- Pna2! 197,198 

- Ibm2 206,211,291 

- P2/m 2/m 2/m 80, 93, 94 

- P2/m2/n2,/a 207,212,292 

- P2!/b 2i/c 2,/a 294 



Subject Index 307 

- C2/m 2/m 2/m 290 

- I2/m 2/m 2/m 290 

- P4/m 2/m 2/m 82,95,96 

- P42/m 2\/x\ 2/m 204 

- P42bc 212,292 
- P422 294 

- R2/m 84, 103 

- P6/m 2/m 2/m 86,95,98 

- P6, 198-200 

- P4/m 2/m 88, 97, 99, 199-202, 293 

- P21/a 246,298 

Space lattice 9, 10 

Special form 126,214 

Special plane lattice 72-76 

Special position 197,203,214 

Sphalerite 161,233 

Sphalerite-type 238 

Sphenoid 141,276 

Spinel structure 227, 230 

Stacking faults 269 

Statistically homogeneous 5 

Steno 32 

Stereographic projection 33-36 

Structural axial ratio 47, 117, 271 

Substitution defect 266 

Substitutional solid solution 237 

Superstructure 238 

Symmetry 89 

Symmetry direction 92-97, 103, 117, 147 

Symmetry element 57, 59, 272-274 

Symmetry operation 57, 214 

Symmetry principle 217 

Symmetry rule 91 

Tabular 29 

Tartaric acid 153 

Tautozonal 29 

Tetartoid 139,278 

Tetragonal 82, 130 

Tetragonal dipyramid 52, 127, 134/135 

Tetragonal disphenoid 131, 134/135,276 

Tetragonal prism 35, 52, 127, 132, 134/ 

135 

Tetragonal pyramid 35, 52, 131, 134/135 

Tetragonal scalenohedron 131, 134/135, 

276 
Tetragonal trapezohedron 131, 134/135, 

276 
Tetrahedral coordination 231 

Tetrahedral hole 222 
Tetrahedral pentagon-dodecahedron 278 

Tetrahedron 139, 179 

Tetrahexahedron 139,278 

Tetrakishexahedron 278 

Thermal conductivity 224 

Threefold rotation axis 60 

Ti02157, 205, 226 

Topaz 42,44 

Tourmaline 152, 158 

Transformation in secondary 

coordination 240 

Transformation involving changes in type 

of bonding 243 

Transformation of first coordination 239 

Trapezohedron 139,278 

Triclinic 77, 120 

Tridymite structure 242 

Trigonal 84 

Trigonal dipyramid 53,136/137 

Trigonal prism 53,136/137 

Trigonal pyramid 53,136/137 

Trigonal trapezohedron 136/137, 277 

Trisoctahedron 139,278 

Tristetrahedron 139,278 

Two-circle reflection goniometer 37 

Twofold rotation axis 59 

Unit cell 11 

Unit length 46 

Unit mesh 10, 76 

uvw 11,271 

[uvw] 12,28,125,271 

(uvw) 93,125,271 

van der Waals bonding 217 

Vitamin B12 3, 225 

W-type 223 
Whisker 268 

Wulfenite 155 

Wulff net 37-41 

Wurtzite structure 233 

x,y,z 21-23, 271 

X-ray 8 

X-ray diffraction 249 

Zinc blende 233 

ZnS 233 

Zonal equation 16-19 

Zone 29, 33, 39 

Zone axis 29, 39 

Zone pole 39 



. 

■ 





Printing: Saladruck, Berlin 
Binding: Buchbinderei Luderitz & Bauer, Berlin 



• LIBRARV 

NIH 
lr Amazing Research. 

Amazing Help. 

http://nihlibrary.nih.gov 

10 Center Drive 
Bethesda, MD 20892-1 ISO 

301-496-1080 



JrlBRABY. 

496 0 67 8236 

Borchardt-Ott CRYSTALLOGRAPHY 

2nd Edition 

As a self-study guide, course primer or teaching 

Ott’s Crystallography is the perfect textbook foi 

teachers alike. In fact, it can be used by crystallogi 

ists, mineralogists, geologists and physicists. Bas 

thor’s more than 25 years of teaching experience 

numerous line drawings designed especially for 

large number of exercises—with solutions—at t 

chapter. 

This second edition is the translation of the 
edition. 

The heart of the book is firmly fixed i 

crystallography. It is from the concept of the sp 

symmetry operations, Bravais lattices, space gro 

groups are all developed. The symmetry of 

described including the resulting non-crystallo 

groups. Crystal forms and the relationship betwee 

and physical properties are treated. Much emphas 

the correspondence between point groups and spa 

sections on crystal chemistry and X-ray diffractio 

as an introduction to these fields. 

ISBN 3-540-59478-7 


