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PREFACE

This book is intended to meet the need for an element-
ary text book on Cry8tallography. It is founded on the
instruction in that subject which has been given for some
years past at Birkbeck College to students preparing for the
Intermediate Examination of the University of London. It
has heen our obhject to make the principles of Crystal-
lography intelligible to those who have only a moderate
mathematical training, and especially to afford such informa-
tion as wil' assist in the recognition of mineral species.
While written primarily for the student of Geology and
Mineraiygy, the book should also prove useful to the
Chemist and Physicist requiring an introduction to the study
of crystals.

It is hoped that the practical exercises appended to cach
chapter will materially assist in familiarising the student
with the subject.

The illustrations, with a few exceptions, have been
specially drawn for this book by Mrs. G. M. Davies. We
are indebted to Mrs. S. I.. Penfield for kind permission to
reproduce Fig. 31, to Messrs. J. H. Steward, Ltd., for the
block of Fig. 3s, and to the Council of the Mineralogical
Scariety for the blocks of Figs. 157 to 175.

The limits assigned to the book did not allow of the
inclusiop of the details of stereographic and gnomonic pro-
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vi PREFACE

jection, or crystallographic calculations. This is the less to
be regretted, as the work by Mr. T. V. Barker on.‘ Graph—
ical and Tabular Methods in Crystallograpby *’ is now .
available. The advanced stuaent is also referred to the
well-known treatises on crystallography by Professor Lewis
and Dr. Tutton.
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EMIMENTARY CRYSTALLOGRAPHY

CHAPTER L.
INTRODUCTION.

To most people a crystal is a solid substance bounded
by plane faces with definite geometrical shapes, such as
triangles, parallelograms or trapezoids. This outer form is
undoubtedly the most striking character of the majority of
crystals, but it is not the essential feature that distinguishec
a crystalline substance from others. An exact model of a
crystal made in glass remains glass, and is not a crystal,
while a crystal of quartz ground down to a spherical form is
still a crystal, although it has no plane faces. The form,
when it appears, is only the external evidence of the internal
molecular structure, and it is the regular arrangement of the
molecules, or rather of the atoms, that is the real criterion
of a crystal. Even liquid crystals are known.

The term crystal is derived from the Greek word for ice.
It was applied originally to the water-clear quartz, or rock-crystal,
of the Alps, in the belief that this was really ice that had been sub-
jected to such intense and long-continued cold that it could not melt.
Afterwards the term was extended to other minerals occurring in
regular forms. Vessels and ornaments were at one time carved out of
rock-crystal, and when glass was substituted the ware was still known
as crystal, although this use of the term is inadmissible from the
scientific point of view, since glass has not a crystalline structure.

By means of #he interference phenomena of X-rays, first
observed by Professor Laue and subsequently studied by Sir
Willigm Bragg, Professor W. L. Bragg, and others, it has
been possible to determine in many cases the exact positions
of the atoms of a crystal relatively to one another, and to
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2 ELEMENTARY CRYSTALLOGRAPHY

show that, as already supposed, they are arrangegl with the
utmost regularity. Just as in wall-paper, wherf the same
design is continually repeated, corresponding poiilts in.tle
pattern can be seen to lie in innumerable parallel rows in
different directions, intersecting one another, so the atoms of
a crystal are arranged in a multitude of straight*¥o w$
which cross onc another in a regular pattern. The rows
themselves may be combined in more ways than one to form
a vast number of atomic planes, or, as they are usually
termed, atomic n ets, and these net$ intersect oge another
in a regular manner in straight lines, which are themselves
rows of atoms. .

The whole assemblage of rows and nets constitutes what

isknownasa space lattice orsimply lattice,
which is in fact another name for the crystal structure as a
whole in three dimensions.
*  The faces of a crystal are, as might be expected, parallel
to nets of atoms in the crystal structure, and so are the
crystal cleavages; that is to say the planes along which
most crystals have a tendency to split if a sufficient shearing
force is applied to them.

In the same manner the edges in which crystal faces
meet are parallel to rows of atoms in which nets of atoms
intersect.

In amorphous or non-crystalline substances, on the
other hand, including all gases, the vast majority of liquids
and certain solids, such as glass, the atoms occur in small
more or less independent groups known as molecules, each
consisting of a very limited number of atoms united by
bonds, but when a substance passes into the crystalline
state the molecules in many cases lose their identity for the
time being. In a solution of sodium chloride each atom of,
sodium is supposed to be united to one of chlorine, but in
crystalline sodium chloride, which can be*formed froms such
a solution by the evaporation of the water, each atorh of
sodium is (except, of course, on the surface of the orystal)
united to six atoms of chlorine, and each atom of chlorine to ,
six of sodium, the whole forming a continuous rectangular
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structure\made up of cubic cells. In this structure each
cube contams four sodiums and four chlorines, arranged so
that adJommg -atoms belong to different elements, while
each diagonal of a cube-face has at its ends atoms of the
Same element. The edges of
%2 ession of. adjoining '
cubic cells constitute an’ L
atomic row of alternate
sodium} «and chlorme atoms
(see Fige 1), whereas a row |
madg up of a succession of
diagonals of the cube-faces - -
will consist entirely of sodium Fie. 1.

atoms or entirely of chlorine atoms.

Most crystal structures consist of six-sided cells like
those of sodium chloride, but they are by no means always
cubes, for in many cases the edges of the cells do not meet
at right angles, and as a rule those parallel to different
directions are unequal in length.

When crystallisation occurs the atoms of the molecules
take up their places in the crystal structure just as soldiers
in small squads may form up in a battalion.

In some cases, however, especially in the simpler
organic compounds, the arrangement of the atoms in a cell
appears to bear a close relation to that in the molecule.

If the process of crystallisation be slow large crystals
are built up, but the more rapidly it fakes place the smaller
are the crystals, as there is no time for the molecules to
gather together to form larger regular structures. If the
transition to the solid state is very rapid, there is frequently
no evidence of the existence of crystalline structure,
and the subsiance is regarded as non-crystalline or
aenorphous,

*The same molten material which would form, if cooled
sufficiently slowly, a granite composed of comparatively

® Na
o(CL

 In some cases, however, the action of some apparently non-crystalline
substances,on the X-rays gives us reason to believe that ultra-microscopic
crystals are present.
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large crystals of quartz, felspar and mica* maygif cooled
rapidly at the earth’s surface or by contactewith ¢old rocks,
solidify as a volcanic glass.

A clear distinction must acgordingly be drawn between
crystallisation and solidification, though the two frequently,
constitute a single operation. A non-csystalline su%gfance
like glue or glass may be regarded as an extremely rigid
liquid, though it is a solid in the ordinary acceptation’of
the term. Such a non-crystalline substance may ult;mately
pass into the crystallme state by a slow read;ustment of the
atoms. This process is known as devitrification.

The same substance may dcvelop different crystal
structures according to the conditions under which
it crystallises. Such a substance is said to be
dimorphic or polymorphic. '

Crystals may even come into existence by a rearrange-
ment of the atoms of matter which is already crystallised
after another fashion.

Substances whose genesis is the result of chemical
reactions will also appear in the crystalline state, provided
the product is formed sufficiently slowly.

If a saturated solution of alum in water is allowed to
evaporate slowly, the alum separates as crystals which have
eight faces. When equally developed these faces are
equilateral triangles, and the form (Fig. 2) is known as an
octahedron. Frequently, however, some of the faces are
larger than the others (Figs. 3 and 4), and the crystal may
also be interfered with by adjacent crystals, and then only
the constancy of the angles between the faces assures us that
these ill-formed crystals are really octahedra.

Crystals formed under human control are often called
artificial crystals to distinguish them from the
natural crystals found in the rocks. The formation eof
these crystals is, however, the natural result of the co'ndl-
tions; we provide suitable conditions, Nature does the rest.

* The presence of a certain amount of the elements of water is
also necessary if a granite is to form.
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If the growing crystals are watched, it will be seen that
matter is COnsta'ntly added to their surface in such a way
that the new surface thus formed is parallel to the old one.
Thus each face of a large erystal of alum is essentially the
samgdgce as when the crystal was minute, and its inclination
to the other faces‘is unaltered. Growth ceases when the
supply of fresh alum ceases, but is renewed when the condi-
tions are again favourable.

Ine ¢rystals it ds .ot the size of the faces that is im-
portant, Since that varies as the crystal grows, nor their
shape,*since that depends on the development of the adjoin-
ing faces. The really essential point is, as we have seen,
the angle hetween the faces. In 1669 Nicolaus
Steno found that the angles between corresponding faces of
quartz crystals are always the same, however irregular the

Fi6. 4.

crystals might be in the development of faces, and a similar
uniformity of angles has since been found to bhe general
among crystals. This law of the constancy of
angles in all crystals of the same mineral or substance is
the fundamental law of crystallography. The eye is far
less able to recognise equality of inclination than similarity
ofeshape; on thig account it is usual in models or drawings
of (.:?ystals to represent similar edges as cqual in length, and
so to make the symmetry of the crystal as obvious as
possible. These models or drawings may be said to repre-
sent the,ideal forms that the crystals would attain if not
prevented by external circumstances, such as irregular
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supply of material for growth or the proximity of ather solid
bodies. When he is familiar with these ‘ideal forms the
student will be able to recognise them even when dimperfectly
developed in actual crystals, and will find that crystallo-
graphy is not a useless branch of mathematics, «byt a
valuable aid in the identification of minérals.



CHAPTER 1II.
SYMMETRY.

PLANES OF SYMMETRY.

Among animals and plants various types of symmetry
are Seen, the most familiar being the bilateral (i.e.,
two-sided) symmetry shown by most vertebrates. Generally
speaking the limbs on the right side correspond in size with
those on the left, and if a bird could be divided in two by a
vertical plane passing through the middle of the beak and
tail, and one half placed against a mirror, the image reflected
in the mirror would appear to replace the missing half. That
isan examjieof symmetry abouta plane, and,
as there is only one way in which a bird could be divided
to give the same result, the bird has only one plane of
symmetry. In perfect crystals, and in crystal models,
the same test may be applied, the mirror-image of one half
in a plane of symmetry coinciding with the other half. To
state this relation in other words, if from any point on the
crystal a perpendicular line, or normal, be drawn to a plane
of symmetry, a similar point will be found on the same line
on the opposite side of the plane and at the same distance
from it.

On account of the imperfection of most natural crystals,
however, it may be better to define a plane of symmetry as
a plane which has on opposite sides of it a similar distribu-
tipn of similar points (and hence of similar edges and faces).

e Thus in Fi8s. 5 and 6, where the lines DB, AC and BD
ar® vertical, DB is horizontal, and caA slopes down from c
to s, there is a plane of symmetry passing through the
points CATA, but the plane that passes through DBDE is
not a plane of symmetry since C is not exactly opposite to A.

7
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In Fig. 7, where the upper and lower faces are squares
and horizontal, there are five planes of symmetry, four
vertical and one horizontal. Two of the vertical planes of
symmetry, shown by interrupted lines - - - except where
they coincide with the edges of the crystal, pass dxagggall).
across the horizontal faces and through opposite vertical
edges; and two, shown by dots......, are parallel to
the vertical faces and midway between them, and therefore
cut the horizontal faces parallel to their edges The hori-
zontal plane of symmetry, also shown by dots, is in like
manner parallel to the horizontal faces and midway bew:cen
them.

c
) ] - z
2
! H
! S 29 I
=l i
—"l\ § g
e N i
8 : H
~~
FiG. 6. Fi6. 7.

In the cube (Fig. 8) there are nine planes of symmetry.
Three of these, shown by dots, are parallel to the faces of
the cube, and six, shown by interrupted lines, pass through
the cube edges and diagonally across the cube faces. These
planes of symmetry are shown more clearly on page 71,
Figs. 94 and o5.

In the octahedron also (Fig. g) there are nine planes of
symmetry. Three of these pass through the crystal edges
and six bisect opposite edges at right angles, and pass
through opposite corners, or coigns as they are usually
called in crystallography from the old spelling of the
French word for a corner.
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LINES OF SYMMETRY.

Crystals may also exhibit symmetry about a
‘line. Inldealcrystalsallne of symmetry is
such that every point on the crystal has a similar point at
the sARE distance on the opposite side of the line of sym-
metry, and lying on “the same normal to it.

‘In Fig 5 the horizontal line YY through the middle
points of BD and DB is a line of symmetry. In Fig. 7
there aré*five and in Pfgs. 8 and g there are nine lines of

sydvgetry.
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Flc. 8. FiG. 9.

CENTRE OF SYMMETRY,

Many crystals have also symmetry about a
'p01nt Such a point,or centre of symmetry,
has the property that all straight lines that can be drawn
through it will pass through a pair of similar points lying
on opposite sides of the centre of symmetry, and at the same
distance from it. It necessarily follows from this that all
faces and edges will occur in parallel pairs on opposite
sides of a ceatre of symmetry; consequently, if a perfectly
Jeveloped crystal having a centre of symmetry is laid on
a horizontal table on any face, there will be a similar hori-
zontab face above.® If, on the other hand, a perfect crystal
or model can be laid with one face flat on the table and no
corresponding horizontal face above, the faces are not all
™ .,in parallel pairs, and there is no centre of symmetry. In
Figs. 5 10°9g there is a centre of symmetry. In Fig. 5 the
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point B corresponds to the point B on the opposite side of
the centre, the edge BC to the edge BC,°the face ABCD to
the face ABCD, and so on. In the tetrahedron {Fig. 10), on
the other hand, there is no cen¢re of symmetry, and if such
a crystal is laid with one face flat on the table, a cgign angd
not a horizontal face will be found uppermost. Some
crystals of quartz have all their faces in parallel pairs (Fig.
156), but others have the faces of the trigonal pyramid and
trapezohedron (Figs. 151-152, p. 10p), which are net paired
in this way. Quartz has therefore no centre of symmetry.

Turning again to Fig. 5 we may compare the r s of
the three kinds of symmetry that it illustrates, due to (1)
the plane of symmetry CACA, (2) the line of symmetry
YY, and (3) the centre of symmetry. These are shown in
the following table :—

Plane of Line of Centre of
symmetry, symmetry, symmetry.
CACA. YY.
B, D Ay A A, A
Pars| 5,8 BD B, B
points c, C c C
D, B D, D
AB, AD AB, AD AB, AB
. BC, CD BC, CD BC, BC
Pairs —_—— = —— —_——
of CD, BC cD, BC cD, CD
edges.| A D, AB DA, AB DA, DA
BD, BD AT, AC AC, AC
BD, BD
Pairs (ABDC, ADEE ABCD, ABCD ABCD, §§EB
f:;s CBDA, CDBA ABDC, CBDA ABDC, ABDC

ADEBC, CDBA « CBDA, CBD4

.
Points on the plane of Points on the line of When there is a centre
symmetry and edgesand symmetry, edgesmeet- of symmetry, all points,
faces at right angles to ing it at right angles, edges and faceseare re-
it are not repeated. and faces at right peated.
angles to it are not re-
peated.
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The human form has usually one plane of approximate
symmetry, but nd line or centre of symmetry. A line of
, symmetry thgough the hips would give a second face where
the heels should be. So alse would a centre of symmetry.
16, hoguewer, the plane of symmetry is wanting, through the
eyes not matching, for example, a line of symmetry would
- reproduce the right eye in the position of the right heel,
while a centre of symmetry would reproduce it in the posi-
tion of the left heel. « But if right and left are indistinguish-
able, we see that a centre of symmetry combined with a

FiG. 5 (vepeated). FiG. 10.

plane of symmetry would involve a line of symmetry also.
This illustrates a rule which should be remembered: that
in all cases where a centre of symmetry is present, there is a
line of symmetry at right angles to every plane of symmetry,
and vice versa, so that the number of planes and lines of
'symmetry is the same.

e Thus, in Fig, 5, where there is a centre of symmetry,
the;e. is one plane of symmetry and one line of symmetry at
right angles to it. In Figs. 7, 8 and 9 there is also a centre
of sythmetry, and in Fig. 7 there are five planes of sym-
metry and five lines of symmetry at right angles to them
respectively, while in Fig. 8 and in Fig. g there are nine
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planes of symmetry and a line of symmetry at right angles
to each of them.

Where there is no centre of symmetry this relation
between the planes and lines of symmetry no longer exists.
In the tetrahedron, Fig. 10, for example, there are si»planes
of symmetry and only three lines of symmetry.

AXES OF SYMMETRY.

If a crystal be rotated through & half turn (18p°) about
a line of symmetry, all the faces and edges will occypy
the same position as the similar but opposnte faves”and
edges did at first.  Thus, if the crystal in Fig. 11 be
rotated through half a circle about the axis Y¥, which is a

< Y

}.
)
¢

¢ 1z
FiGc. 11. Fi1G. 12,

line of symmetry, the whole appearance will be the same as
before. The line zZ, on the other hand, is not a line of
symmetry, and half a rotation about it gives the result in-
dicated in Fig. 12, which is not identical with the original
configuration.

If the half turn is the smallest angle through which a
crystal can be rotated about a line of symmetry and repro-
duce the original configuration, the line of L Symmetry 1s seid
tobea half-turn or digonal axis of sym-
metry, and have a cyclic number ii. This is the case
with the line YY in Figs. 5, 11 and 12, and also the® lines
distinguished by the Roman numeral ii. in Figs. 13, 14, 15
and 16.
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If, however, a quarter turn about a line will be suffi-
cient to produce dhe same result—for instance, a rotation
through 93° on any of the lines marked iv. in Figs. 13 and
v14—such a line is said to, be a quarter-turn or
tetragonal axis of symmetry, with a cyclic number iv.

Ifa sixth of a complete rotation about a line will give a
_like result, for instance, a rotation through 60° about the
line vi. in Fig. 15, that linc is said tobea one-sixth-
turn or, hexagonal axis of symmetry, with a cyclic
number V.

v i W o vi

i 1i i
iii \ll i

1 T w T

i ™ u v [~ v YRE "

i
A i
'] 4' U}
FiG. 13. FiG. 14. FiG. 15. FiG. 16.

It is obvious that not only is every half-turn or digonal
axis of symmetry a line of symmetry, but also every quarter-
turn or tetragonal axis and one-sixth-turn or hexagonal
axis.

Some crystals present an unaliered appearance after a
rotation about a line through a third of a circle—for
example, a rotation through 120° about the lines marked iii.
in Figs. 14 and 16. Suchalineisa one-third-turn
or trigonal axis, and has a cyclic number iii., but it is
not a line of symmetry, as it has not similar faces, edges
and points on opposite sides of it.

. In Fig. 13 there is only one quarter-turn axis, but there
are four half-turn axes, two passing through the middle
points of the two epairs of opposite vertical edges and two
through the middle points of the vertical faces. There are
thus five lines of symmetry, and this number agrees, as

> we have seen, with the number of planes of symmetry in
the same crystal shown in Fig. 7.
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In the cube (Fig. 14) there are three quarter-turn axes,

one passing through the middle points of each of the three
pairs of opposite faces. The half-turn axes “pass each
through the middle points of two of the cube edges, and as
there are twelve of these edges there are six half-furn axes.
The lines of symmetry are thus 3+6=9, correspomﬁng to
the nine planes of symmetry shown in Fig. 8. The trigonal
axes are four in number, each passing through two of the
eight coigns of the cube.
. Fig. 15 has one one-sixth-turn ‘axis and six horizontal
half-turn axes, three passing through the middle points of
the vertical edges and three through the centres of the ver-
tical faces. There are, therefore, seven lines and seven
planes of symmetry.

Fig. 16 has, in addition to the one-third-turn axis, three
half-turn axes and four planes of symmetry. A centre of
symmetry is present in Figs. 13, 14 and 15, and hence these
crystals have as many lines as planes of symmetry in accord-
ance with the rule stated on p. 11, but this is not the case
with Fig. 16, which has no centre of symmetry.

An axis of symmetry with cyclic number v., which is
so common in flowers and echinoderms, is never seen in
crystals. Indeed, the laws of crystallography which can be
proved to be the necessary consequences of the theory, now
completely established, that crystals are built up of atoms
regularly arranged in rows and nets, are inconsistent with
any axial symmetry based on a cyclic number other than
two, three, four or six.

In such a crystal as Fig. 17, which has eight vertical
faces and edges apparently identical with one another, the
vertical axis may at first sight be mistaken for one of one-
eighth-turn symmetry, but closer observation shows that of
the eight vertical edges four are more obfuse than the other
four, which alternate with them. The axis is therefore one
of quarter-turn symmetry only.



SYMMETRY 15

LCLASSES OF SYMMETRY.

It can bg shown that all the possible combinations of
the different types of symmetry occurring in crystals fall into
the thdisty-two classes shown in the table on pp.
126-127. Accordingly every crystal belongs to one or other
of these thirty-two classes of symmetry. Two of them have
not yet been observed in either natural or artificial crystals,
and six gere are not,known to occur among minerals, while
about half the remainder are comparatively rarely seen.
Beginners may ignore all but the eleven classes given in the
table on p. 16.

It will be seen that the classes are arranged under six or

v

N

iv'
Fi1G6. 17.

seven systems. The classes are determined by the sym-
metry, as explained above, but the systems are founded
mainly upon the crystallographic axes in a manner that
will be explained in the next chapter. For the present pur-
, pose, however, two of the systems, the hexagonal and
tngonal are placed together, thus reducing the number of
svsfe;ns to six. ®

*A larger table showing all the thirty-two classes, with
symbgqls and names expressing the symmetry by which they
are distinguished, will be found on pp. 126-127.

The classes shown in the first column of the following
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table are named for the convenience of elementary students
after minerals possessing the symmetry of the different
classes. Common rock-forming minerals have as far as
possible been selected. In the second column' the presence:
of a centre of symmetry is indicated by the letter c. ~The
third column shows the number of planes of symmetfy, and
the remaining columns the number of axes of digonal,
tetragonal, hexagonal and trigonal symmetry. The symbols’
in the first column are explained in Chapter XV,

THE MOST IMPORTANT CLASSES OF SYMMETRY,

Centre of ) Planes of Axes of symmetry.
Systems, Classes and Symbols. symmetry symmetry P e g
CUBIC SYSTEM.
Spinel Class - - CDc C 9 6 3 | —| 4
Tetrahedrite Ciass - CDu — 6 3| =1 =1 4
Pyrite Class - - CMc (o] 3 3 —_ - 4
HEXAGONAL SYSTEM.
Beryl Class - - VIiDc c 7 6 — 1 —
Calcite Class - - IIIDc [of 3 3 —_ | = 1
Tourmaline Class - IIIDu — 3 —_ — ] = 1
Quartz Class - - IIIMh — — 3 | -] =11
TETRAGONAL SYSTEM.
ZirconClass - - IVDc C 5 4 I | -] =
ORTHORHOMBIC SYSTEM.
Olivine Class - - IIDc C 3 3 — | = =
MONOCLINIC SYSTEM. !
Augite Class - - . IIMc (o] 1 1 —_ -] -
TRICLINIC SYSTEM.
Albite Class - - IMc C —_ —_ | = =] =

PRACTICAL, WORK. =

Examine a number of crystal models, ascertam the
symmetry to be found in each, and hence by means of
the foregoing table determine the class to which it belongs.



CHAPTER II1.
CRYSTALLOGRAPHIC AXES.

Thedirection of a®straight line may be defined by
 stating the lengths of the intercepts it makes, that is to say,
the lengths it cuts off or would cut off if produced, on two
intersecting lines or axes in whose plane it lies. Thus in
Fig. 18, x0oX and YOY are two axes intersecting at a point o,
which is called the origin. The line AB has inter-
cepts OA on the axis 0X and OE on the axis oy. These
intercepts measure 1 cm. and 2 cm. respectively, and they

FiG, 18. FiG. 19.

serve to fix the position of AB relative to the axes. If we
are concerned only with the direction of AB and not its actual
position, it will be sufficient to say that its intercepts on ox
and OY are as 1: 2, since all parallel lines will have inter-
cepts.fn the same ratio. Thus, if GF is parallel to AB, then
OA : OE=0G : OF.

Similarly, if we call distances along ox and oy posi-
d¢ive, and those along OX and oY negative, the intercepts
of cp are as (—1}: 2. The minus sign is more con-

17 B
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veniently written above the figure, thus 1: 2. The line cB
is parallel to ox, and therefore only meels it at jnfinity; its °
intercepts are therefore as oco: 1, where @ represents
infinity.

In like manner the inclination of a plane may<ba gefincd
by giving the ratio of its intercepts on three axes, which pass
through the same point, the origin, but do not lie in the same.
plane. Thus, if a drawing-board rests against two walls in
the corner of a room, we can desgribe its slope*hy giving
thre distance from the corner at which its plane would (if
produced) cut the three lines in which the walls “meet the
floor and each other (0A, 0B and oc in Fig. 19). A postcard
placed in the same corner parallel to the drawing-board
would have different intercepts, oa, ob, oc, but they would
be in the same ratio as those of the board ; thatis, 0A: 0B : oC
=o0a: ob: oc. Postcard and drawing-board may be taken
to represent the same face of a crystal at different stages of
its growth.

Although a plane may be defined by referring it to any
three axes, provided they are not all in one plane, there are
in crystals certain directions which yield more simple results
than others when chosen as axes. It is found that this
object is attained if the axes chosen are parallel to edges, or
possible edges* of the crystal. The axial plane in
which any two axes lie will then be parallel to a face, or
a possible face,* of the crystal. Where there are several
sets of edges that would give equally good results, it is cus-
tomary to follow the crystallographer who first described the
mineral and use the axes he selected.

Crystallographic axes are, therefore, to a large extent
conventional, but they probably give the best results when
they correspond to the edges of the ultimate cells of which
the crystal structure is made up, so that the axial ;planes
correspond to the faces of those cells. The axial planes are

# By possible edges and faces are meant those that might exist
consistently with the laws of crystallography in association with the
actual edges and faces observed. See p. 30.
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then, it is believed, parallel to the nets in which the atomic
.densu:y is greatesty that is to say, in which there is the
maximum nux.nber of atoms to the unit area, and such nets
ugain are those which are at the greatest distance from one
rarpther._ #At present, however, these data are still imper-
fectly Bnown.
_ The order in which the axes are taken is also a matter of
convention. It is customary to hold the crystal so that one
axis points,towards tj‘le observer, one is right and left (or
approxlmaiely so), and *the third vertical, and to consider
othem in that order. The axes are conveniently referred to
as 0A, OB and OC, or the axes of a, b and ¢ (Fig. 20).

[+

¢
F1G. 20.

The positive direction of the axis oA is in front,

The positive direction of the axis 0B is to the right,

The positive direction of the axis oc is on top;

The negative direction of the axis oA is at the back,

The negative direction of the axis 0B is to the left,

The negative direction of the axis oc is underneath.

It will be seen that the initials of front, right, top, and
of back, left, underneath, are in alphabetical order, and thus
form a mnemonic for the order of the axes.

Although this sorder was adopted by Weiss, and is
followed by most modern crystallographers, there are
crystals_both at the Natural Hlstory Museum and at the
Museum of Practical Geology in London, the faces of which
are marked in conformity with Mxllers arrangement, in
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which the axes oA and oB are transposed. These may
prove confusing to students who are not 4ware of the change -
of axes.

By their intersection at the point o the axial planes formi
eight corners or trihedral angles, known as octagts (see™
Fig. 43, p. 42). The front, right, tep octant is bounded
by oA, oB and oc; the front, left, top octant by oa, 0B and
oc; the back, right, top octant by oA, 0B and oc; and so on.

In a crystal of olivine the axgs QA, OB and QC are all
at"right angles. Careful measurement of the angles in
olivine shows that some of the faces present meet the axes-
with intercepts in the following ratios (Fig. 21) :—

Axis OA Axis OB Axis OC

Face a,* 1 - I 00
a M, 046575 1 00
nw 0.93150 I 0o
n 1.39725 1 00
» R o 1 1.17302
w 6 0.46575 I : 058651
w O 0.46575 I 0.29325
w 093150 I 1.17302

It is evident that the face a, which meets axes oB and
oc at infinity, must be parallel to these two axes, and that
the faces m, s and r are all parallel to the vertical axis oc
and cut the axes oA and oB at different distances.

It will be seen that the ratios can only be expressed in
numerous decimals. The greater the accuracy of the obser-
vations the greater will be the number of decimals required
to express the result. A careful examination of these ratios
shows, however, that we can avoid thg repetition of {these
cumbersome decimals in expressing the ratios of thé Jnter-

* The letters a, m, s, 1, k, ¢, o, |, etc., are conventionally attached
to faces, in particular minerals, but, as a rule, according to nq
recognised principle,
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cepts by taking a face which meets all three axes as our
standard or, unit face and writing the intercepts of all other
faces as multiples or submultiples of its intercepts. In the
case of ohvme the face e has been selected by custom as this
standasd; it is known as the unit or parametral
plane (Gr. para, beside or along, metron, measure), and
its intercepts, 0.46575: 1: 0.58651, are termed the para-
meters of olivine. They are usually denoted by

FiGc. 21. Fi1G. 22.

a:b:c. Then the intercepts of the eight faces tabulated
on page 20 become :—

Facea, a :b ooc | Face k, oca b : 2¢
s Mm a : b ooc y 6 2 b : ¢
w S 238 : b ooc w 0, @ b 4c
w 7 32 : b : ooc . f, 2a : b : 2

We may avoid the fraction in the intercepts of face o
by writing them 2a: 2b: c, which are in the same ratio as
a:b: 4c. The relation of faces e, o and f to the axes is
shown in Fig. 22.

Parameters then are the units of measurement to be used
on thesdifferent axed. At first sight it may seem unscientific
to efiploy different units for measuring different directions
of the same crystal; but in this we only follow Nature. By
the use of parameters we are able to avoid long series of
decimals and obtain instead simple whole numbers. The
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law of rational intercepts, founded on the
theories of Haiiy and established by observation, states
that any face of a crystal makes intercepts on the axes which,
may be expressed as rational multiples of the parameters.
That is, the multiples are whole numbers, and net suth
quantities as /2, /3, or indeterminite decimals such as
0.75824. . . . In general they are quite low numbers, such
as 1, 2 or 3, and rarely greater than 6, although of course
infinity is quite common, indicating parallelism %o an axis.

SYSTEMS OF CRYSTALS. *

In the last chapter it appeared that all crystals belonged
to one or other of thirty-two classes according to their sym-
metry, and that these classes fell into six or seven
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Cubic. Hexagonal. Tetragonal.

systems, which were based on the crystallographic
axes. We are now able to define those systems.

1. Cubic System. Each of the three axes is at right
angles to the other two, and the parameters are equal on
all three axes.* Fig. 23 shows the cubic axes and a crystal
form (the cube) in which each edge is parallel to one axis
and each face is parallel to two axes. .

2. Hexagonal System. In this system it is most con-
venient to take four axes; three of thése are in one hori-
zontal plane and make angles of 120° with one anbther,
and the fourth is vertical and therefore perpendicular to the

# The statement that a x es are equal or unequal should b¢
avoided. Axes have direction only, and extend to infinity.
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other three. The three horizontal (or lateral) axes have
equal parameters ? the vertical axis has a different para-
meter. See Fig. 24. The special axes sometimes employed
* for the trigonal system or sup-system will be explained later
@ 913+ 4
3. Tetragonal System. The three axes are at right
. angles to one another. The two horizontal (or lateral) axes
havé equal parameters; that of the vertical axis is different.
See Fzg. e5.
4. Orthorhombw g’vstem The three axes are at right
angles ¢o one another, and all three have different para-
meters. See Fig. 26.
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Fi1G. 26. FiG. 27. FiG. 28.
Orthorbombic. Monoclinic. Triclinic.

5. Monoclinic System. One axis is at right angles to
the other two, which are not at right angles to each other.
The parameters are all different. See Fig. 27.

6. Triclinic System. None of the three axes is at right
angles to another. The parameters are all different. See
Fig. 28.

PRACTICAL WORK.

. In topaz a: b: c=0.528542: 1: 0.476976. Express
as multlplcs of the parameters the faces whose intercepts are
0264271 : 1 : 8.238488; 1.057084 : 1 : 0.953952; and
0.528542 : 00: 0.158992.

2, Examine a number of crystal models, find the
system to which each belongs and the position of its
crystallographic axes.



CHAPTER 1V.
INDICES.

In the last chapter it was showp that if the gnjt plane
makes intercepts on the three axes proportlonal to a, b and
¢ (the parameters), then any other face of the crystal will
have intercepts that may be represented by pa, gb and rc,
when p, q and r are whole numbers, usually small, or else
infinity. We might therefore distinguish any face from
the others by giving its intercepts, thus, a: b: ooc, 2a:
b:ooc, or 2a: b:c. This is practically the rotation intro-
duced by C. S. Weiss* in 1818.

A notation which, while not quite so simple at first
sight as that of Weiss, leads to more useful results, is
associated with the name of the late Prof. W. H. Miller, of
Cambridge. He expressed a face by the numbers by which
the parameters must be divided to give the inter-
cepts of that face. The intercepts of a face may be
represented either by pa : gb : rc or by ¥ : l-; : §. For
instance, if 2a: 3b: 4c he the intercepts of a face, they may
be divided by twelve without making any real difference, as
they are only ratios, not absolute amounts. They will
a,b c
6°4°3
called the indices. They are sufficient to identify
the face. They are used without the parameters, thus, 643,
which is, of course, read six four three, not six hundged
and forty-three.

then becomc The numbers in the denominators are

* There is an abbreviated forin of the Weiss notation which was
devised by C. F. Naumann, and another similar notation was enfployed
by Dana, but as neither of these is now in use in this country, further
reference to them is unnecessary.

24
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As may easily be seen, the indices are equal to the
parameters ‘t;livided by the intercepts. Thus, a face with
intercepts a :eb : 2c would have indices 2 : 2_1; : ;Z ,orr:4:4.
.A; indicesy like intercepts, ate ratios, this may be written
2?1 to®dvoid fractions, and 211 is accordingly the Millerian
symbol of a face whose intercepts are a: 2b : 2c.

Similarly a face with intercepts 3a: b:ooc would
have indices 3';- : !B)' W 5—5‘ or $:1:0 or 130, since any
quantity divided by infinity is equal to zero. To take the
general €ase, a face with intercepts pa : gb: rc will have in-
dices ;i; : (—l% tgs OF !—: :i;l':é-' or hkl say. Since p, q and r
are rational, their reciprocals h, k and 1 must also be
rational, and the law of rational intercepts may be restated
asthe law of rational indices in the following
terms : If three axes are chosen parallel to three edges of a
crystal which do not lie in one plane, and if the intercepts
on these axes of the parametral plane are a: b: c, then the
intercepts nf any other face of the crystal can be expressed

as ; : !l; : ;, where h, k and 1 are whole numbers or zero.

Since the indices are the reciprocals of the intercepts
(measured in the respective parametral units), it follows that
the larger the index the smaller is the corresponding inter-
cept. The face 112 has half (not double) the intercept on
the vertical axis that 111 has.

When the intercept on an axis is negative, the cor-
responding index is also negative. The face 111 occupies
the front, right, top octant. The corresponding face in the
front, left, top octant is 171. Those in the back right and
deft top octants are 111 and 111 respectively.  The indices
of the lower taces are similar except that the sign of the third
index®is negative.

The symbol of a face opposite and parallel to a given
face isethe symbol of the given face with all the signs
«hanged. Thus the face opposite 111 is T11.

Like the choice of axes, that of the parametral plane is
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forms. A form which may be of great nmportance in one
may be rare or show only small faces in anoth;r, or may
not occur at all. The character of a crystal in pespect of the
presence and relative size of the faces of different fornfs”
constitutes its habit.

Not only is there marked individuality in the habit of
crystals of different substances, but the same substance
crystallising under changed conditions may show a consider-
able difference of habit.

“In some cases, as explained in the first chapter, different
conditions may cause an entirely different crystalline struc-
ture to be formed, the substance then being said to be
dimorphic or polymorphic according as there
are two or more different crystalline structures with the same
chemical composition.

ISOMORPHS.

If the ultimate cells of two different substances resemble
each other sufficiently in shape and size they may be able to
combine in building up a joint crystal structure, either
simultaneously or by successive accretions. An example of
the former is the association of albite and anorthite, which
form closely similar triclinic crystals and are found mixed
in all proportions in the plagioclase series; while the latter
may be illustrated experimentally by placing a crystal of
common alum in a saturated solution of chrome alum (or
vice versa). The original crystal will then be seen to con-
tinue its growth, but with different material, the presence of
which will be indicated by the change of colour.

Two substances which crystallise in closely similar
forms are said to be isomorphic. If thelr structures are, so
similar that they can form joint crystals in any propomon,
as in the case of albite and anorthite, they are said to’ be
perfectly isomorphic. If one can only crystallise with a
limited amount of the other, as in the case of albite and
orthoclase, they are described as imperfectly isomorphic.
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ZONES.

In Fig? 30 it will be seen that the faces 10Z, 100, 102
~sgd oor all rheet in edges which are parallel to one another.
{hey a're,'{hen, said to be in the same zone, and a
line drawn through ,the intersection of the axes parallel to
the edges in which they meet is called the zone-axis.
'Similarly the faces 210, 100, 210 and o10 all lie in another
zone.

A zdfie-axis may bt'expressed by three indices included
in a square bracket, thus [uvw], or in a particular case
[234]. The latter symbol means that if a distance ou
proportional to 2a be taken along oA, and then a distance
UV proportional to 3b be taken parallel to oB, and finally
a distance vw proportional to 4c be taken parallel to oc,
then the line passing through o and w will be the zone-
axis [234].

To obtain the symbol of the axis of the zone in which
any two faces (not parallel to each other) lie, their indices
hkl and h’k’l’ are written down twice, one below the other,
thus—

h k I h k 1

XXX
h k' I h k' I

The first and last pair of the indices are ignored, and
the other four pairs are cross-multiplied as indicated by the
arrows, descending lines being positive and ascending lines
negative. This gives (klI'=k'l), (Ih'—I'h), (hk'—h'k) as
the zone-symbol. The axis of the zone in which the faces
210 and 112 lie is [231], since cross-multiplication

2 1 0 2 10
XXX
1 1 2 1 I 2
gives [(1x2-1x0), (0x1—2x2), (2x1-1x1)]=[(2-0),

(0=4), (2=1))=[241]. o
A zone-symbel, like the symbol of a face, is a ratio,
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and may be multiplied or divided by any number, positive
or negative, without altering its significance.

The indices of a face common to two zoneg whose zone-
symbols are given may be found by cross-mul{iplying e
zone-symbols in exactly the same way. In Fig. 3o thg faces®
100 and 102 lie in a zone whose symbol is [o10], and the
faces 100 and 210 in a zone whose symbol is [oo1].  The.
face common to the two zones is found, by cross-multiplying
[o10] and [oo1], to be either 100 or, Top according to which
zone-symbol is placed first. These ‘are parallel faces, both
of which are common to the two zones. .

If a face hkl belongs to a zone [uvw], then hu+
kv+lw=0. Thus the face 102 belongs to the zone [241]
since (1x2)+(0x3)+(2x1)=2+0-2=0.

All planes which have rational indices, whether they
have been observed as faces or not, are considered possible
faces. In the same manner all lines which are parallel to
zone axes with rational indices are considered to be possible
edges.

PRACTICAL WORK.

1. Find the Millerian indices of the faces that have the
following intercepts :—
a: b: 2c oca: 3b: c. 3a: 2b: c.
a: b:ooc. a:oob:ooc. 2a:oob:c.
2. What are the intercepts of the following faces?.
110 201 010 001 432
120 120 123 643 12.12.1.
Sketch a set of axes and mark the position of these faces
with reference to them.
3. Find the symbol of the zone in which the faces 102
and 122 lie.

4. Do the faces 110, 201 and 111 helong to the same
zone?



CHAPTER V.

CRYSTAL MEASUREMENT AND
REPRESENTATION.

The"angles of cryftals are measured by means of in-
struments known as goniometers (Gr. gonia,
angle, metron, measure). These are of two types, contact
goniometers and reflecting goniometers.

Contact goniometers are somewhat crude instruments,
useful for measuring the angles of wooden models and large

LI L O RO (L LA L WL

F16."31.—Contact Goniometer,

Crystals, especially those whose faces are too rough to give
‘a good reflection. A convenient type, designed by Pen-
field,,is shown in PFig. 31; it consists of a semicircular pro-
tracbor in cardboard, to the centre of which a celluloid arm
is pivoted. The angle between the arm and the base of the
protractor is read by means of a fine line on the former,
*which passes through the centre of the semicircle.
31
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In using the contact goniometer the edge of the arm
and the base of the protractor are brought into close contact
with two faces of the crystal. The latter is heldl between the
observer and the light, and the two parts or ‘lllmbs of ,the
goniometer are adjusted on the pivot until no lighg [can ha
seen between their edges and the faces, with which they will
then be in contact. Care must be taken that each llmb is
perpendicular to its respective crystal face.

The reflecting goniometer gives far more accurate re-
sults, especially on small crystals ‘with brilliant reflecting

FiG6. 32.—Reflecting Goniometer,

faces. The adjustment, however, of even the simplest type
of reflecting goniometer is a somewhat elaborate process,
and the complete reading of a crystal by its means requires
much time and patience. A simple form of the instrument
is shown in Fig. 32. This consists essenually of a
graduated vertical circle which rotates, carrying with it the
crystal-holder to which the crystal is attached by wax.
There are adjusting screws for bringing the edge to be
measured o the centre of the circle and in line with its
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axis ot rotation; and the circle is provided with a clamp,
- fine-adjustment, and vernier. A black glass mirror fixed
on the base ok the instrument, with its plane parallel to the
axis,of the ciycle, gives an image of a distant signal such as
®™>zgorizpptal window-bar, and an eye placed close to the
crystal sees the same signal reflected in a crystal face. The
two images coincide when the crystal face is parallel to the
mirror. First one face and then the other is brought into
this position, and the diffgrence between the readings on the
graduated circle gives the angle through which the crystal
«has been durned.

In Fig. 33, ABC represents in
section the crystal edge to be
measured, and DEF a ray of light
from the distant signal, reflected
from the face AB to the eye at F,
where it coincides with the ray from
the same sig~al reflected from the
mirror M. The face Bc will give a
similar reflection of the signal when R
BC occupies the position of as, that f{le“ﬁ eggh?g'::f;l;::t;f
is, when the crystal has been turned
through an angle HGK. The angle obtained from the reflect-
ing goniometer therefore is not the solid angle asc, but the
angle between the normals to the faces AB and Bc. This is
evidently the supplement of ABC (i.e., 180°—ABC), or the ex-
ternal angle that AB produced would make with Bc. It is
usual in crystallography to give this inter-normal or external
angle in preference to the solid angle; thus the angle
between two faces of a hexagonal prism (Fig. 24, p. 22) is
given as 60°, not 120°.
¢ In the two-circle goniometers there are two axes of rota-
tion and two gradugted circles, and the readings give not
the angles between the faces but the positions of the normals
to the faces in polar co-ordinates, that is to say, by a system
similar to that by which places on the earth’s surface are
determined by their longitude and latitude, except that the
longitude or azimuih (4) is measured all round in the same

c
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direction from o° to 360°, and, instead of the latitude, its’
complement, the polar distance ( 6) is enlployed. By means .
of the formule of spherlcal trigonometry agld the use of
logarithmic tables it is possible to calculate from the polar
co-ordinates of two faces the angle between them. o

The angles between the crystallographnc axes, and
the parametral ratios, constitute what is known as the
elements of the crystal, and from them ‘it is
possible to calculate the indices of any face whose angular
position is known, or if the indicés of a face be given to
calculate its angular position. Inversely, from the angles
between faces or from their positions as fixed by the two-
circle goniometer, it is possible to determine the elements of
the crystal and the indices of the faces.

PROJECTIONS.

There are several ways in which crystals may be repre-
sented on a plane surface, such as a sheet of paper. An ordi-
nary perspective drawing, in which the actual appearance
seen is projected on a vertical plane, has the objection that
lines and planes which are really parallel appear to converge
to some point behind the crystal. This ** vanishing point ’
becomes more distant the farther the crystal is from the
observer, and if the crystal is imagined to be at an infinite
distance, so that all lines from it to the eye are parallel,
then all parallel lines in the crystal will remain parallel in
the drawing, or projection. The symmetry of the crystal is
thus better indicated than in the ordinary perspective
drawing. Where the line of sight is oblique to the plane of
projection, the projection is said to be clinographic,
and this projection is usually employed in text-books of
crystallography or mineralogy. The point of view chosen
is slightly above the plane of the axe$ oA and 0B, and to
the right of oa.

A clinographic projection of a crystal gives a fa:r idea
of solidity; but to make an accurate projection of ‘this sort
an elaborate construction is required. For this reason a
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simple form of orthographic projection, that is to
. say, a projection in which the plane of projection is at
right angles o the line of sight and the object is supposed
to he seen from an infinite distance, is to be preferred for
‘Ngmentary students. The most convenient method is to
follow the example of architects and make three drawings
of the crystal, front elevation, side elevation and ground
plan. " The first will represent the crystal as seen from an
infinite distance directly in front, the second from the right,
and the third from vertically above. The faces visible in
cach are marked with their indices and a table of the forms
present, with their symbols, is added. Fig. 34 represents a

(] o1 LY~ = iy

{mo} Macropinakoid.
ol 100 o {010} Brachypinakoid.
{oox} Basal pinakoid.

{ uo} Prism.

{'.Lﬂr’_er_'.-_:'_ { 101 } Macrodome.
)
]

{ 1 n} Pyramid.

Fia. 34.—Olivine.

crystal of olivine treated in this way. The three views
should be arranged with the side elevation on a level with
and on the right of the front elevation, and with the view
from above placed below the front elevation, so thai the
relation of corresponding points is clear. Broken lines con-
necting the same points in different views may be used to
show _this. '

In crystals having rectangular axes the front view is
taken Yrom the positive direction of the axis oA, the side
view from the positive direction of the axis oB, and the
view from ahove from the positive direction of the axis oc.
It follows that no face having a negative first index can
appear in the fron: vicw, none with a negative second index
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in the side view, and none with a negative third index in’
the view from above. ’

The front elevation may be regarded as dpro_]ectlon of
the (,rystal on the plane of the axes OB %gd oc. Jf a
crystal is placed on a sheet of paper, with these axeg parallsl
to the paper, and perpendiculars to the paper are droppec
from all points on the crystal, the feet of these perpendiculars
form the front elevation of the crystal. A face perpendicular
to the paper, o10 for example, will appear as a straight line
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Fi6. 35. Fic. 36. Fic. 37.
Octahedron. Rhombic Dodecahedron. Tetrahedron,

in the projection, since the feet of all perpendiculars from
the face will lie on a straight line. A face inclined to the
plane of the paper, such as 110, will be more or less fore-
shortened, and only a face parallel to the paper, 100, will
appear in its true proportions in the brojection.

The front elevations of a few forms in the cubic $ystem
are given in Figs. 35 to 37, with their clinographic pro-
jections above them.

The stereographic pro;ectlon,mtroduced
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by Neumann in 1823, is the most useful projection for
advanced work. It is less suitable for beginners, since it
does not represent the appearance of the crystal but only
the «direction$ of its faces. Theé crystal is supposed to be

uced t the centre of a sphere. Normals to the faces are
drawn from the centte, and the point where each normal
meets the surface of the sphere is known as the pole of
the face through which it is drawn. Each face is thus
represented’by a poinf (its pole) on the surface of the sphere,
B by B/, P by r/, and so on (Fig. 38). To project these
points on’to a plane, it is usual to choose a horizontal plane

V' ool

N

FiG. 38.—Stereographic Projection, Fis. 39.—Stereographic Projection
Vertical Section. of Fig. 30.

of projection passing through the centre ¢ of the sphere,
and cutting the sphere in a horizontal circle known
as the primitive circle. The eye is supposed
to be placed on the surface of the sphere at the lower end of
the vertical, diameter at N'.  The point where the line
joining N’ to the pole of any face cuts the plane of projection
is thE.‘ projection of that pole. Fig. 39 shows a horizontal
sectioms through the Sphere, and the paper is the horizontal
plane®of projection.

For example, P and " are the projections of »' and
Q.', the poles of the faces p and @, and B’ and ¥ are the
poles and also the projections of the faces B and B. If 8
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be the angle between the direction cp of the normal to the
face p and vertical cv, and r be the radius of the sphere,
the distance cp” from c the centre of the h,orlzontal circle
through B8’ will be equal to ¢ tan 4.

It can be shown that all faces in the same zane (%%
p. 29) have their poles on the samt great circle of the
sphere, and every great circle is projected into a, circle
passing through the ends of a diameter of the primitive
circle or into a diameter itself. Thus, in Iig. %g the faces
100, 021 and Too are in one zone, and the faces 100,
102, 001, 102 and 100 are in another zone. It can also be
shown that the angles between the projections of great
circles are the same as those between the great circles them-
selves.

Vg 001 .4
02 021

v

%ao U ¢ l‘ atco

Fic. 40.—Gnomonic Projection; Vertical Section.

It is usually sufficient to show the poles in the upper hemispherc
only. These are marked by dots on the projection. The poles in the
lower hemisphere will appear outside the circumference of the primitive
circle to an cve placed at N/,

This is the procedurc for the purpose of the application of graphic
methods of calculation, but in the case of faces, whose poles or prq-
jections on the sphere are ncar the point N/, the projections on the
plane are at an inconvenient distance. .

If it be desired to show within the circle the poles of faces below
the crystal, this may be done in cither of two ways:

(1) The under face may be indicated by the same pojnt as the
parallel upper face, that is to say the normal is continued through the
centre till it meets the sphere on the opposite upper side, and the
point where it emerges may be regarded as another pole of the face,
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'whicl.l may be projected on to the plane in the manner already
desgnbed. If two opposite parallel faces are present which are
equivalent, that is to say similar in all respects, they are indicated
together by a simple dot; if there is only an upper face it is represented
by - ; if only &n under face by a minus—.

@y (2) The other more usual but'less scientific method is to transfer
the eye to the upper end of the vertical diameter. The poles of the
lower faces will then appear within the circle of the projection, and
may be marked by small circles.
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Fi6. 41.—Gnomonic Projection of Fig. 30.

oTherc is another kind of projection, known as the
gnomonic projection, in which each face is repre-
sentéd by the point in which its normal meets a horizontal
plane through v/, Fig. 38 (Vg, Fig. 40). Opposite faces are
Jepresented by the same point. This projection is illustrated
by Fig. 40, which shows a section through the centre of the
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crystal at right angles to the plane of projection, and by
Fig. 41, which shows the plane of projection itself. In this
projection the distance v p, of the projection P, of a face p
from the centre of projection will be r tAn 6. In, the
gnomonic projection the points representing faces in the
same zone are always in the same straight line.

By means of the stereographic or the gnomonic pro-
jection it is possible to make crystallographic calculatibns by
graphic methods without the use of the formula of spherical
trigonometry and logarithms. The' results are not'so exact,
but are sufficiently accurate to afford a valuable check on the
results obtained by the more elaborate means.

PRACTICAL WORK.

1. Measure the angles of crystal models with a contact
goniometer. As a check, all the angles in a zone shou!d be
measured, when the sum of the inter-normal angles should
be 360°. The sum of the solid angles should be (n—2)180°,
where n is the number of faces in the zone.

2. Practise the measurement of crystals with some form
of reflecting goniometer, and compare the readings with
the angles given in Dana’s ‘‘ System of Mineralogy.”’



CHAPTER VI.

- ORTHORHOMBIC SYSTEM—OLIVINE CLASS
(11Dc, ORTHORHMOMBIC CENTRAL).

In the orthorhombic system thie axes are three in num-
ber; they are all at right angles to one another, and have
dlﬁ‘erent parameters. The ratio of the parameters is
different in different minerals but constant in the same
mineral, and the necessary elements from which the
inclination of any face of a mineral can be calculated are
the two ratios a: b and b: c. The value of b is always
taken as unity, and the elements of an orthorhombic mineral
are succinctly ~tated as a: b: ¢=0.46575: 1 : 0.58051 (in the
case of olivine).

The ratio a: b is always less than unity; that is, the
parametral plane makes a smaller intercept on the front
and rear axis oA (Iig. 42) than on the right and left axis
oB. The former is therefore called the brachy-axis
(Gr. brachys, short) and the latter the macro-axis
(Gr. makros, long). The intercept of the parametral plane
on the vertical axis oc may he greater or less than the
intercept on the other axes. The initials of brachy-axis,
macro-axis and vertical axis, oA, 0B and oc respectively,
are in alphabetical order and serve as a mnemonic.§

In the,olivine class the crystallographic axes are axes
Of half-turn symmetry; they lie in three planes of symmetry

';.This system and class are taken first because they are more
readily understood by the beginner than the others. The symbols and
alternative titles of the classes are explained in Chapter XV.

t Tq avoid any ambiguity as to the position of the axes, some
wnters make use of the short and long sxgns, “ and 7, for the brachy-
and macro-axcs, and ' for the vertical axis, thus, &, B &,

41



42 ELEMENTARY CRYSTALLOGRAPHY

(Fig. 43), and intersect in a centre of symmetry. The three
planes of symmetry intersect in the three crystallographic
axes and partition the space surrounding the crystal into
eight separate compartments or octants. 'V From this
symmetry may be deduced the number of faces presgnt iw
each form.

The parametral plane 111 meets all three axes in their,
positive directions, and occupies the front, right; top
octant, which may be described as the po sitive
octant. Since the vertical plane'aoc is a plane “of sym-
metry, there must be a corresponding face 111 in the front,
left, top octant. The vertical plane Boc is also a plane of

e c

Fi6. 42. — Orthorhombic FiG. 43.—Olivine Class, F1G. 44.—Pyramid.
Axes and Parametral Plane. Symmetry, c, 3P, 3 ii.

symmetry; accordingly these two faces must be accom-
panied by two others, 111 and i1, in the back, top octants;
and similarly the horizontal plane of symmetry AOB necessi-
tates four corresponding faces, 111, 111, I1I and 111 in the
four lower octants. The lines and centre of symmetry do
not give rise to any additional faces, and therefore the,
complete form {111} consists of the eight faces followm{ —
111, 111, 111, 111,
i, 1ii, 1iif, 11i,
the indices of which show all possible variations in sign.
This form (Fig. 44) isknownasa pyramid. When it
exists alone the faces are triangles, and the form differs from
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the octahedron of the cubic system in that the faces are not
equilateral, but scalene triangles.

A pyran‘ﬁd in crystallography resembles two of the
solid bodied generally known as pyramids placed base to
base.e*The term bipyramid is therefore employed for this
form by some writers.

The form {111} is called the unit pyramid to
distinguish it from other pyramids, such as {112}, {123},
{331}. ,So long as+ each face cuts all three axes at finite
distances, consideration of the symmetry of the class shows
that the form will consist of eight faces, each having the
same indices in the same order, but with all possible
changes of sign. Thus the general form {hkl} consists of
the faces

hkl, hkl, hkl, hkl,

hkl, hkl, kI, hkl
Such faces as khl and lhk are not included in the form
{bkl}, for th:y are not similar in position or in physical
characters.

It is evident that the form {113} is a flatter pyramid,
and {331} or {1134} a steeper pyramid than {111}. The
greater the first two indices, as compared with the third, the
steeper will be the pyramid. The limit is reached when the
faces become parallel to the vertical axis. Thus the pyramid
{”::} becomes steeper as n increases, and when n is in-
finite and the faces are parallel to the vertical axis, the
symbol of the form becomes {110}. If the intercepts on

* The faces meet the axial planes in rhombs, that is to say, four-
sided figures whose sides are cqual but whose angles are not right
angles. Hcfice the name orthorhombic. The prefix refers to the fact
that the vertical “axis is at right angles to the rhomb which has the
ma¥o- and hrachy-axes as its diagonals. Hence these axes are some-
tim& termed the mucro- and brachy-diagonals. It is incorrect to
spea‘ﬁ of the rhombic system.

Formerly the lateral axes were taken parallel to the sides of the
rhomb, and had equal parameters, but were not at right angles to
each other. Such axes present advantages where there are strong
prismatic cleavages, as they probably correspond to the primitive cell,
but they arc never vmployed now. See p. 52, note.
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the A and B axes are not in the parametral ratio, the symbol
has the general form {hko}.

The face 110 must be accompanied by a corresponding
face 170 to the left of the symmetry-plane paSsing throygh
the axes 0A and oc, and by thefaces 710 and 170 at thg bacls
of the symmetry-plane passing through.the axes oB and oc.
The horizontal plane of symmetry gives rise to no addi-,
tional face, since there is no difference between 110 and 115,
for zero has no sign, and the m1rror-1mage of a plane per-
pendicular to the mirror is a continuation of the plane.
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F16. 45.—DPrism. FiG. 46.—Two Prisms, part projection

on horizontal plane.

Accordingly the form {110} consists of four faces only
(Fig. 45), and the same is true of the forms {120}, {310},
and in general terms {hko}. These forms, which are
parallel to the vertical axis and cut the other two, are called
prisms.

A prism is an open form and does not entirely enclose
a space, as a pyramid does. It cannot, therefore, exist
alone, but must be terminated by some other forl\'n such as
a pyramid. In Fig. 45 it is terminated by tfie form {o0y}.

If two prisms, such as {110} an{ {210}, exist™to-
gether in the same crystal, they may be distinguished from
each other by considering their intercepts on the A and B
axes. Fig. 46 represents the positive directions of these
axes as seen from above. and 0A: oB the ratio of their
parameters a: h. Then aB is the trace of the face 110.
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The face 210 will have intercepts a and b on the A and B
axes respectively; it will therefore be represented by A,
where 04’ is half 0A. The two faces will not both appear if
ong, is wholly’ within the other, as A’B is within aB; but if
=rom any point C on A’B we draw cD parallel to AB, cp will
still represent the trace of 110, and A/c and cp therefore
represent 210 and 110 respectively. Note that 210, with a
bigger first index than 110, lies nearer the first axis, oa. The
faces 120 swould lie searer the second axis than 110. The
general rule, that the greatier the index, the
nearer the face is to the corresponding
axis, is worth remembering.

. A form with faces parallel to one of the horizontal axes

c C
7-8
]
FiG. 47. F1G 48. FiG. 49.—Macrodome
Macrodome. Brachydome. and Brachydome.

and cutting the other two axes, like a horizontal prism, is,
rather inappropriately, known as a dome, because its
two upper faccs bear some resemblance to the roof of a
house (L. domus). The two domes are distinguished from
each other by the same prefix as the axis to which they are
parallel. The macrodome is parallel to the macro-
axis and cts the axes of A and ¢; the symbol of its general
form is {hol}.~ The brachydome is parallel to the
briehy-axis and cuts the axes of B and ¢; its general form
is {skl}. As in the case of the prism, it will be scen that
eaci dome consists of four faces and that it requires some
other form to complete the crystal. Fig. 47 is a combina-
tion of a macrodome {101} with the form {o10}; Fig. 48 a
brachydome {o11} with {100}; and Fig. 49 a combina-
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tion of macrodome and brachydome. This combination
differs from the pyramid in that the horizontal edges form a
rectangle, whereas those of the orthorhombic pyramid form
a rhomb. Again, the planes of symmetry bistct the faces
of a combination of the two domes; but they pass tkrough
the edges of a pyramid. .

The general form of a prism may be written {h1o} or

{1z o}. If his very large the two front faces will be nearly

at right angles to the hrac hy-axis apd ‘make a very obtuse
angle with each other, and the same will be the case with the
two back faces. If h hecomes infinite they will coincide,
and the form will become {100}, which will consist of two
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F16. 50.—Pinakoids. F1G. 51.—Olivine.

faces, a front face 100 and a back face oo, as required by
the plane of symmetry cos, the digonal axes oB and oc, and
the centre of symmetry.

In like manner, the form {010} consists of the two faces
oro and oilo; and {oo1} consists of the two  faces
oot and ool. These forms, which are parallgl to two of the
crystallographic axes, and therefore consist of two auces

only, are called pinakoids* (Gr. pinax, a plank, etdos.
form).

* Some writers regard any form of two parallel faces as:a pina-
koid, but it is usually restricted to those which are paralle] to two
axes, as is always the case in the olivine class.
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Fig. 50 shows a combination of the three pinakoids.
The one with faces in front and behind, {100}, is called the
macropinakoid; it is parallel to the macro-axis and
the vertical akis. The one at the sides, {010}, parallel to the
brachygaxis 'and the vertical #xis, is called the brachy -
pinakoid. The one at the top and bottom, {oo1},
parallel to both the horizontal axes, is known as the basal
pinakoid.

Summarising, the forms occurring in the olivine class
of the otthorhombic system may be tabulated as follows :—

. General Unit Number

Name of form. symbol, form. of faces.
Pyramid {hk1} {rir} 8
Prism {hko} {110} 4
Macrodome {hol} {101} 4
Brachydome {okl} {o11} 4
Macropinakoid {100} 2
Brachyninakoid {o10} 2
Basal pinakoid {oor1} 2

PRACTICAL WORK.

Make drawings of models showing the simple forms of
the orthorhombic system—pyramid, prism, domes and
pinakoids. Mark each face shown in the drawings with its
symbol, and name the form or forms present, as shown on
page 35-

Crystals or models of the more important orthorhombic
minerals should also be drawn. Some of these are named
below, with their elements and the forms commonly present.

Olivines a : b : c=0.46575 : 1 : 0.58051. Some
grystals have {100} well developed, with {110}, {010}, {001},
{loﬁuand {111} (Figs. 34, 51). Others have a steep brachy-
dome, {021} as a dominant form, with or without {1oo}
(Figs 21). Other forms commonly present include {120},
{121} and {or1}.

Tofaz. a:b:c=0.52854: 1:0.47698. Two prisms
frequently occur, {110} and {120}, sometimes with {o10}.
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These are terminated by numerous small faces, belonging
to forms such as {o21}, {111}, {223}, {221} and {oo1}.
Most specimens show at one end the perfect basal cleavage,
and so have a uniterminal appearance (Fig. 53).
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F1G. 52.—Topaz. FiG. 53.—Hypersthene,

-Hypersthene. a:b:c=0.97133: 1:0.57037. The
pinakoids {100} and {oio} have their vertical edges modi-
fied by the prism {110}, which makes angles of about 44°
and 46° with them. The terminal forms may include {111},
{212}, {232}, etc. (Fig. 53).
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o o Jow,
\J\ 3
FiG. 54.—Andalusite. Fi6. 55.—Stadrolite.

Andalusite. a : b : c=0.98613 : 1 : 0.70245.+ The
prism {110} has an angle of 89° 12/, and is terminated by
{oo1}, sometimes with {o11} or {101} (Fig. 54).

Sillimanite. a: b=0.970: 1. The unit prism has an
angle of 88° 15/, and may be accompanied by {230} with an
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angle of 69°. The crystals are long and slender, and no
measurable terminal faces occur, so that the element ¢ is not
known.

Stauroliles a : b : c¢=0.4734: 1: 0.6828. The prism
ang?é"js only 50° 40/, owing tb the low ratio of a : b. The
forms {o10} and {oa1} are usually present with {110}, and
sometimes {101} also (Fig. s55).

Sl —
N

Fi1G. 56.—Aragonite. Fi1G. 57.—Barytes.

Aragonite. a : b ': c=0.62244: 1: 0.72056. Simple
crystals (Fig. 56) may show {110}, {010} and {o11}, but
this mineral is usually twinned.

Barytes. a : b : c=0.81520 : 1 : 1.31359. This
mineral exhibits a variety of habits, but is usually elongated
on the A or B axis. A common combination is shown in
Fig. 57, with {oor}, {110} and {102}.

Brookite. a : b : c=0.84158 : 1 : 0.94439. The
habit is usually tabular, with {100} dominant, and showing
{210}, {110} and {o10} at the sides and {oo1}, {102}, {122}
and {021} at the ends.



CHAPTER VII.

MONOCLINIC SYSTEM—AUGITE CLASS
(11Mc, MONOCLINIC CENTRAL).

In the monoclinic system two of the axes are not at
right angles to each other, but the third is at right angles
to both. All threc axes have different parameters. The
clements of a monoclinic mineral are therefore a: b: ¢ and
B, the acute angle between the axes of A and ¢, which are
not at right angles. The ratios a: b and b: ¢ may be
greater or less than unity.

(4
Fi16. 58.—Monoclinic Axes.

A monoclinic crystal is held so that the axis which is
perpendicular to both the others is right and lefY, (Fig. 58).
It is known as the ortho-axis (Gr. orthos, straight,.
upright).* The other two axes then lie ig a vertical froff-to-

—e

* It would have been better if the ortho-axis, which is essentially
different from the other two, had been placed in the vertical position;
the other axes would then have been macro- and brachy-axes as in
the orthorhombic and triclinic systems; but it is too late to make a
change.

50
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back plane. They are placed so that one of them is vertical,
and the other slopes down toward the observer. This is
called the cLiino-axis (Gr. klinein, to incline).
Thus oA is the clino-axis,
OB ,, ,, ortho-axis,
and oc ,, ,, vertical axis,
and here again the alphabetical order of the axes is an aid
to the memory.
In t}'le'aug!te class there is a centre of symmetry (see
Fig. 59), one axis of half-turn symmetry, the ortho-axis, and
one plant of symmetry in which the two other axes lie.

O
F16. 50.—Augite Class,
Symmetry, c, b, ii. F16. 6o.—Hemi-pyramids.

The parametral face 111 must be accompanied by the
corresponding face 111 on the other side of the plane of
symmetry A0C. The centre of symmetry requires a face
111 opposite 111 and 117 opposite 1i1. The line of sym-
metry OB also gives the same two faces.  Therefore the
form {111} gonsists of four faces, not cight as in the ortho-
rhombic system., This is because there is only one plane of
Synfngtry.

The face Tr1 must similarly be accompanied by three
other, *faces, ii1, 111 and 111. There are therefore two
ermrely mdependent forms, {111} and { ux}, each consist-

* The signs ', T and ' arc sometimes uaeful to dlstm[,ulsh the
clino-, orthu. and vertical axes, thus i, b, &
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ing of four faces and known as a hemi-pyramid.
Fig. 60 shows these two forms in combination, but it must
be clearly understood that either may be present in a crystal
without the other.* A single hemi-pyramid resemUles a
dome in the orthorhombic system, but each face cut(three
axes, while a dome-face cuts only two. A second form of
some kind is necessary to complete the crystal, for a hemi-
pyramtd is not a closed form. There are indeed no ‘closed
forms in this system, and a monoclmac crystal is always a
combination of forms.

Similar reasoning shows that other forms cutting all
three axes, such as {112}, {321}, and in general {hkl} and
{hkl}, are hemi-pyramids with four faces each. It will be
noticed that all the faces comprised in the form {hkl} occur
in the four octants including the obtuse axial angles Aoc
and AocC, while the faces in {hkl} subtend the acute angles
coA and aoC. The two hemi-pyramids are distinguished as
positive and negative, {hkl} being the negative and {hkl}
the positive hemi-pyramid. The choice is inexplicable and
unfortunate, since the negative hemi-pyramid includes the
face with all positive indices, hkl, and its faces are in general
larger than those of the positive form. It may be noted too
that in the negative forms the product of the first and third
indices is always positive, and in the positive forms it is
always negative. The only consideration that connects a
negative sign with the obtuse octants is that the tangent and
the cosine of an obtuse angle are negative. It would have

* A combination of two corresponding hemi-pyramids meets the
plane aoB in a rhomb, but the vertical axis is incline€ to it. Hence
this system was formerly termed the clinorhombic, as opposed to the
orthorhombic. The ortho- and clino-axes are parallel to the diagsnals
of the rhomb, and are often referred to as the ortho- an¥, clino-
diagonals. The lateral axes were formerly taken paralle]l fo the
sides of the rhomb. They had equal parameters, but were mot at
right angles to each other or to the vertical axis, with which they
made equal angles. As in the orthorhombic system, these rhombic
axes have advantages where there are strong prismatic cleavages;
but they are mot now employed. See p. 43 note.
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been better to use the terms obtuse and acute hemi-
pyramids, but here again it seems too late now to change.

The follpwing are the faces of the hemi-pyramids in
general terms%—

Positive (or acute) Negative (or obtuse).
hemi-pyramdd. hemi-pyramid.
hkl, hkl, hkl, hkl,
hkI, hkl. hkl1, hkl.

The face 110 must be accompanied by 1io, since Aoc
(Fig. 58) is a plane of symmetry, by 110 since BB is a line of
symmetty, and by 1o since o is a centre of symmetry. The
form {110} is therefore a pris m of four faces (Fig. 61), as
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F1G. 61.—Prism, F16. 62.—Clinodome.

in the orthorhombic system. Any other form parallel to the
vertical axis and cutting the other two, such as {210} or
{320}, is also a prism, and in general terms the prism {hko}
consists of the four faces, hko, hko, hko, and hko.

The face or1 must be accompanied by oir, on the oppo-
site side of the plane of symmetry, and the centre and line of
synmetry give iwo more faces, oIT and o1i. The form
{o11? consists therefore of four faces (Fig. 62); it is a dome,
andg since it is parallel to the clino-axis, it is called a
clfnodome. The general form of the clinodome,
{okl}, gonsists of the four faces—

okl, okl,
oklI, oklI.
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The face 101 is perpendicular to the plane of symmetry,
which is therefore inoperative, but either the centre or the
line of symmetry will necessitate the opposite face io1. The
form {101} therefore consists of two faces,* and since they
are parallel to the ortho-axis and not to either of thg other
axes, itistermeda hemi-orthodo me. Another and
independent hemi-orthodome consists of the pair of faces
ior and 10i. The former, opposite the obtuse axial ‘angle,
is the ncgative or obtuse hemi-orthodome, the latter the
positive or acute hemi-orthodomé. Fig. 63 shows a
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F16. 63.—Hemi-orthodomes. F16. 64.—Pinakoids,

combination of two hemi-orthodomes and {o1o}. In
general terms these two forms consist of the following faces :

Positive (or acute) Negative (or obtuse)
hemi-orthodome. hemi-orthodome.
hol, hol,
hol. hol.

Here also the product of the first and thiqd indices is
positive in the negative form and negative in the positive
form.

Each of the forms parallel to two axes*consists ot two
faces only, as in the orthorhombic system. They are distin-
guished as the orthopinakoid, {100}, parallel 1o the ortho-
and vertical axes; the clinopinakoid, {mo}, parallel to the

* It would, therefore, be called a pinakoid by some writers.
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clino- and \ertical axes; and the basal pinakoid, {oo1},
parallel to the ortho- and clino-axes.

Fig. 64 shows a combination of the three pinakoids.
Their compdnent faces are—

Orthopinakoid 100, 700,
Clinopinakoid o10, ofo,
Basal pinakoid oo1, ooi.

The following table is a summary of the forms occurring
in the erthoclase class of the monoclinic system.

° General Unit  Number

Name of form. symbol. form. of faces.
Positive hemi-pyramid {hkl} {11} 4
Negative hemi-pyramid {hkl} {111} 4
Prism {hko} {110} 4
Clinodome {okl} {o11} 4
Positive hemi-orthodome {hol} {To1} 2
Negative hemi-orthodome {hol} {ro1} 2
Orthopinakoid {100} 2
Clinopinakoid {o10} 2
Basal pinakoid {oo1} 2

It should he noticed that all the forms consisting of four
faces are oblique to the plane of symmetry. They are all
essentially similar, and the distinction drawn hetween them
is purely conventional. The forms consisting of two faces
fall into two classes—the clinopinakoid, which is parallel to
the plane of symmetry, and the remainder which are at right
angles to it. These latter again are all essentially similar.

PRACTICAL WORK.

®Ortheclase. a : b : c=0.65851: 1:0.55538; B=063°
56/e46”. Comm8nly tabular parallel to o10, or prismatic
with the prism {110} and clinopinakoid {o1o} well
developed, terminated by the basal pinakoid {oo1r} and one
or both of the positive hemi-orthodomes {ior} and {Zo1}.
The edges may be modified by a clinodome {o11} or a posi-
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tive hemi-pyramid {i11} as in Fig. 65. In adutaria {010} is
absent or small. In the Baveno habit (Fig. 66) the elonga-
tion is along the axis of A, not ¢, and the pinakoids {o10}

FiG. 65.—Orthoclase. Fic. 66.—Orthoclase,

and {oo1} are dominant with a short prism {110} and
usually {Zor}.

Augite. a : b : c=1.0021 : 1 : 0.5893; 8=74° 10.
The orthopinakoid {100} is usually well developed, with the
prism {110} and clinopinakoid {o10}, and terminated by a

©:
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Fi6. 67.—Augite. FiG. 68.——i)iopside.

positive hemi-pyramid {i11}, as in Fig’. 67. In diopside
(Fig. 68), another monoclinic pyroxene, the basal pinakoid
is often present and the pinakoids {100} and {010} are more
equally developed.

It should be noticed that in the pyroxenes the ratioa: b
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is very near wnity (compare hypersthene, an orthorhombic
pyroxene, p. 48). This gives a prism angle of about go°, by
which they may be distinguished from minerals of the
amphibole grodp, in which the prism angle is not quite 60°.

Hernblende. a:b:c=0.55108: 1: 0.29376; B=%3°
58'. In the amphiboles, of which homblende is an example,
a prismatic habit is usual, formed by the prism {110} and
the clinopinakoid {oro}. The orthopinakoid {100} is rarely
seen, and a cross-semon is therefore six-sided, not eight-
sided as'in the pyroxenes. The prism angle is about 56°.
'The confmonest terminations are the clinodome {o11} and
the positive hemi-orthodome {io1}, as in Fig. 6g.
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¥16. 69.—Hornblende. Fia. 70.—Epidote,

Epidote. a : b : c=1.5787: 1:1.8036; B=64° 37'.
Elongation on the B axis is usual, crystals often showing
orthopinakoid {100}, basal pinakoid {oor} and positive
hemi-orthodome {io1} or {201}, perhaps terminated by short
prism faces at.one end only (Fig. 70)

Muscogite. a:b:c=0.57735: 1: 3.3128; g=89° 54'.
The micas exhibit pseudo-hexagonal crystals, formed by
the pnsm {110} and,the clinopinakoid {010}, terminated by
the biisal pinakoid {oo1}, which is the cleavage direction.

Titanite (Sphene). a: b:c=0.75467: 1: 0.85429;
B =60° 17'. Among a variety of types, that shown in
Fig. 71 is one of the simplest. The negative hemi-pyramid
{111} and the orthopinakoid {100} are dominant forms, the



58 ELEMENTARY CRYSTALLOGRAPHY

prism {110} is poorly developed, and the Wasal pinakoid
{oo1} and negative hemi-orthodome {102} are also present.

Gypsum. a : b : c=0.68994: 1: 0.41241 ;3 =80° 42/,
Crystals of gypsum (sclenite) usually show tlie clinopinakoid
{o10}, prism {110} with an angle of 68 30/, and gegative

[

Fi1G. 71.—Titanite. Fic 72.—Gypsum

hemi-pyramid {111} with a more obtuse edge, 36° 12’. This
edge is inclined at 52° 25’ to the vertical; and asg is 80° 42/,
it is evident that the faces meeting in it will cut the A axis
as well as B and c, and are faces of a hemi-pyramid, not a
clinodome as might be supposed, and as it would have been
if the clino-axis had been chosen parallel to this edge
(Fig. 72).

In the monoclinic system the clino- and vertical axes
may be taken parallel to any edges in the plane of symmetry,
and different authors do not always agree as to the choice of
these axes. The ortho-axis, on the other hand, must always
coincide with the line of symmetry.



CHAPTER VIIIL.

TRICLINIC SYSTEM—ALBITE CLASS
(IMc, TRICLINIC CENTRAL).

In the triclinic system none of the three axes is at right
angles to another, and all have different parameters. The
elements of a triclinic mineral are therefore the parametral
ratio a : b : ¢ and the threc angles, «, 8 and y, where
v is the angle between the positive directions of the axes of
B and c, B the angle between the positive directions of
the axes of ¢ and A, and « the angle between the positive
directions of the axes of A and B, as shown in Fig. 73.

D 4}

Fi16. 73.—Triclinic Axes. F1G. 74.—Quarter-Pyramids.

o

The choice of the axial directions is quite conventional,
and referencé must be made to published descriptions in the
casg of each mineral. The crystal is held with the axis of ¢
vertical, the axis of A sloping downward from back to front,
and the axis of B ubually approximately from left to right
and #nclined downward in that dircction.  Usually the para-
meter b is greater than a. The axes are named as in the
orthorhdmbic system, the axis of A being the brachy-axis,
that of B the macro-axis, and that of c the vertical axis.

59
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In the albite class, to which all known triflinic minerals
belong, there is a centre of symmetry buttno planes or
lines of symmetry. The effect of a centre of symmetry is to
duplicate any face by a similar parallel face'in.the opposite
octant. Every form in this class theréfore consists of a pair
of similar opposite parallel faces, and agrees with the
definition of a pinakoid as the term is employed by some
crystallographers. It is convenient, however, to restrict it
to forms parallel to two axes, and not to extend 1t to those
meeting two or all three axes.

A form cutting all three axes is called a* quarter-
pyramid, because it has only a quarter of the eight faces in

. ool
. 100 1o s
A/ S
e— /
F16. 75.—Hemi-macrodomes F1G. 76.—Pinakoids and
and Hemi-brachydomes. Hemi-prism,

a complete pyramid. Thus the form {111} includes the two
opposite faces 111 and IIi only. Fig. 74 shows four
quarter-pyramids in combination; their faces will differ in
size, shape, and physical characters, the largest being
generally opposite the obtuse axial angles.

Forms parallel to one axis and cutting the other two
are known as hemi-brachydomes, hemi-macrodomes, or
heml-prnsms, according as they are parallel to the Era\,hy-
axis, macro-axis, or vertical axis. ‘

Forms parallel to two axes are the macropifiakoid
{100}, brachypinakoid {010}, and basal pinakoid {oo1}.

Fig. 75 shows two hemi-macrodomes and two hemi-
brachydomes, while Fig. 76 shows the three pinakoids in
combination with a hemi-prism.
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The forms occurring in the albite class of the triclinic
system are thefefore as follows :—
General Number
Name of form. symboal. Unit form, of faces.
Four qjartei'-pyramids {hkt}, etc. {111}, etc. 2
Two hemi-brachydomes {okl}, {okl}  {o1r}, {oir}

2
Two hemi-macrodomes {hol}, {hol} {101}, {for} =2
Two hémi-prisms {hko}, {hko} {110}, {170} 2
Macropinakoid . {100} 2
Brachypiakoid *{o10} 2
» Basal pinakoid {oor} 2

oo1 \

0i10
1o | 1o
qu. 77. FiG. 78. FiG. 79
Plagioclase. Plagioclase. Acxinite.

PRACTICAL WORK.

Plagioclase (Albite). a : b : ¢=0.6335 : 1:0.5577;
a=094° 3/, B=116°29", y=88°¢g. In most cases there
is a close resemblance to orthoclase (p. 56), but the inclina-
tion of the axis of B gives a slight slope to the edge between
oo1 and io1 (Fig. 77). In the anorthoclase of the rhomb-
porphyries the pinakoids are wanting and the crystal con-
Sistg of the’two hemi-prisms {110} and {170} and the hemi-
macrodgme {zo1}, as shown in Fig. 78.
xinite. a : b*: c=0.49211: I: 0.47970; &=82° 54/,
B =g1® 52!, y=131° 32'. The hemi-prism {170} and
quarter-pyramid {171} often show the largest faces present,
while {1%0}, {100}, {201} and {111} are less well developed
(Fig. 79).
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Kyanite. a : b : ¢=0.89938: 1: 0.70896; a=90° 5/,
B=101° 2/; y=105° 44'. The long blade' crystals are
rarely terminated. The macropinakoid {100} with its per-
fect cleavage, is the most prominent form, artd one or more
hemi-prisms, {110}, {210}, {110}, may be present, s well
as the brachypinakoid {o10}.



CHAPTER IX.

TETRAGONAL SYSTEM—ZIRCON CLASS
(1V De, DITETRAGONAL CENTRAL).

In the tetragonal system the three axes are all at right
angles, as in the orthorhombic system:, but the two hori-
zontal (or lateral) axes are alike in all respects. They have
the same parameter, a, which is taken as unity, while the
parameter of the vertical (or principal) axis, ¢, may be ecither
greater or less than unity. The only element therefore of a
tetragonal mineral is c, the vertical parameter.

Al

C

F16. 8o.—Tetragonal Axes.

« 1t is uswal tosindicate the lateral axes as 0A, and 0a,,
to show gheir equivalence, the former being the front and
back axis (Fig. 80).

The zircon class of the tetragonal system possesses a
centre of symmetry, one axis of quarter-turn and four of
half-turn symmetry, and five planes of symmetry. In addi-
tion to the three axial planes of symmetry there are two

63
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diagonal planes of symmetry, which bisect the angles
between the vertical axial planes (Fig. 81).

The principal axis is one of quarter-turn jymmetry, and
four half-turn axes lie at the intersections of the four vertical
planes of symmetry with the ‘horizontal one. Two of these.
are parallel to the horizontal crystallqgraphic axes and two
are diagonally placed so as to bisect the angles between the
others. :

The unit pyramid {111} is a form with eight faces as
-in the orthorhombic system, but ‘in this system- they are
isosceles, not scalene triangles (Fig. 82). The diagonal

il
e

. ——

(T AT rTl
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Fic. 81.—Zircon Class. F16. 82.—Pyramid of the
Symmetry, c, 5P, iv., 4ii. First Order.

planes of symmetry are perpendicular to the faces of this
form, and therefore do not give rise to additional faces; nor
do the diagonal lines of symmetry ; and the conditions of the
quarter-turn axis are fulfilled, since the intercepts on the
lateral axes are equal. Other forms, such as {112}, {331}
and {hhl}, which make equal intercepts on the two lateral
axes, also consist of eight faces, which are isosceles
triangles. In all these pyramids the horizontal edges‘form
a square, not a rhomb as in the orthorhombic system. - They
are called pyramids of the first order.
The general form {hhl} consists of the faces—

hhl, Rhl, §KEKl, hEl, -
hhi, Rhi, &RI, hEL
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o

The face 211, however, is inclined to a diagonal plane
of symmetry.. Symmetry therefore requires a correspond-
ing face 121 et]ually inclined to this plane. The axial plane
of symmetry »0C requires two similar faces, 21 and 131
in theqtop, left octant, and in the same way each octant
must be occupied by.two faces. The form {211} or {121}
has therefore sixteen faces; it is known as a di-
tétragonal pyramid (Fig.83). Similarly, {122},
{231}, or any form {h,h,1}, where the two lateral intercepts

4

FiG. 83.—Ditetragonal Fi6. 84.—Pyramid of
Pyramid. the Second Order.

are different, is a ditetragonal pyramid of sixteen faces.
The faces of the general form are

h, h, I, h, h,1, h,h,1, h,h, 1,
h,h, 1, h,h,1, h,h,1, h,h, 1,
h,h, 1, h, h,1, h, h,1, hyh, 1,
h,h,1, h h,T, h, h,1, h,h, 1.

It will be seen that not only is there every possible per-
sutation irf sign®as in the orthorhombic system, but the first
two ipces are interchangeable. They are therefore in-
dicated- by the same letter and distinguished only by a
numBer. .

The face 101, parallel to one lateral axis and cutting
the other two axes, must be accompanied by the three faces
io1, Tof and 101 to satisfy the axial planes of symmetry or

E
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the axial lines of symmetry. But each of these four faces is
inclined to a diagonal plane of symmetry, neressitating the
four additional faces o11, oi1, oii, ori. The quarter-turn
axis or the diagonal half-turn axes would +give the same
result. The form {101} therefore consists of eigh+ faces’
(Fig. 84), which are isosceles triangles and form a square
pyramid differing in slope (for the same parameters) from
the pyramid of the first order, {111}. It is equivalent to the
two domes of the orthorhombic system, and is known as a
.pyramid of the second order. Flatter or
steeper pyramids of the second order are represented by

[4 c
00! 00!

_ Zot|

1o 1o 210 210 120
— A2 — A2

A7 AI/
~1 \
F16. 85.—Prism of the First FiG. 86.—Ditetragonal Prism.
Order.

{102}, {201}, or the general form {hol}. The faces of this
general form are

hol, ohl, hol, ohl,

hol, ohl, hol, ohl

The face 110, parallel to the vertical axis and with equal
intercepts on the lateral axes, is perpendu,ular ‘o a diagonal
plane and line of symmetry, and so is the correspongding
face 170. The only effective symmetry therefore is $he same
as in the orthorhombic system, the quarter-turn axis being
satisfied by the equality of the intercepts on the lateral
crystallographic axes. Hence {110} is a form with four
faces (Fig. 83), as in the orthorhombic system, bur its base
is a square, not a thomb. It is called the prism of



TETRAGONAL SYSTEM 67

the first order,asit corresponds to the pyramid of
the first order, and its faces are—
110, 110, 110, 110.

1f a face, as 210, is parallel to the vertical axis but has
unequfl intercepts on the two lateral axes, a diagonal plane
of symmetry gives fise to 120 also; and these two faces
will be, repeated with all possible changes of sign, and of
position sa far as regards the lateral axes. A form with

eight vertical faces is the, result (Fig. 86). This is known as
C

oor

olo

Al

FiG. 87.—Prism of the Second
Order.

a ditetragonal prism, and the general form
{h, h, o} consists of the eight faces—

h,h,0, h,hy0, h, h,0, hyhyo0,

h,h,0, D h0, h,h,0, h,N,0.

The face 100 must be accompanied by the opposite face
ioo to satisfy the front and back axial plane of symmetry, as
well as the centre of symmetry and two of the axial lines of
symmetry (Fig. 81). The diagonal planes or lines of sym-
petgy, or the quarter-turn axis, will necessitate the faces 010
and olcealso. The form {100} is therefore a square-based
prism:identical with %110} in everything except orientation
with segard to the axes. This is known as the prism o f
the second order. Itisshown in Fig. 87 in com-
bination Wwith {oot}, and its faces are—

100, o1o0, 100, oio.
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The face oor must be accompanied by the opposite face
ooi. This satisfies the centre of symmetry, horizontal
plane of symmetry, and four horizontal lines of symmetry.
The form {oo1} therefore consists of these two. faces only.
It is known as the basal pinakoid, and is teen in
Figs. 85 to 87. ¢

The forms occurring in the zircon class of the tetra-
gonal system may be tabulated as follows :— ‘

3
Gencral Number
Name of form, symbol. Example. of faces.

Ditetragonal pyramid  {h,h,1} {211} * 16

Pyramid of the first order {hhl} {111} 8
Pyramid of the second order {hol} {101} 8
Ditetragonal prism {h, h, o} {210} 8
Prism of the first order {110} 4
Prism of the second order {100} 4
Basal pinakoid {oor} 2

It will be seen from the table that the additional sym-
metry of this class, as compared with the olivine class of the
orthorhombic system, is marked by several forms having
more faces than the corresponding forms in the latter class.
Thus the forms {h,h,1}, {hol}, {h,h, 0} and {100} have
each twice as many faces as the corresponding forms in the
olivine class. The forms that have the same number of
faces in the two classes are those that have equal intercepts
on the two lateral axes, namely, {hhl}, {110} and {oor1}.

The position of the vertical axis in the zircon class is
easily recognised, as it is an axis of quarter-turn symmetry,
and differs in its parameter from the other two, which are
alike; but the question as to which pair of horizontal half-
turn axes is selected as lateral crystallographic axes is perely
arbitrary, so long, of course, as those at right angled to each
other are selected. In general, however, the selection is
made in such a manner that well-developed pyramids and
prisms belong to the first order rather than the second, or,
if a pyramid of one order is combined with a prism of the
other, so that the pyramid is of the first order (Fig. 93).
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PRACTICAL WORK.

Zircon. ¢=0.6404. A long or short prism of the first
order, {110}, terminated by the corresponding pyramid
{111}, is a common type. Sometimes a steeper pyramid
{331)eand a ditetragonal pyr&mid {311} are also present, as

in Fig. 88.
1
Fm lo {4010

FiG. 88.—Zircon. Fic. 89.—Rutile

Rutile. c=0.6442. Rutile closely resembles zircon in
angle and habit, but the prism of the second order, {100}, is
common (Fig. 89), and is sometimes accompanied by the
corresponding pyramid.

0o/
1 M
100} 110 |1~0I0
/
F16. go.—Anatase. Fi16. g1.—Vesuvianite,

Anatase. c=1.7771. As the high value of c¢ indicates,
the unit pyramid {111} is steep. This and the flatter pyia-
mid {118}, with the basal pinakoid {001}, are the commonest
forms, prisms beiry rare (Fig. go).
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Vesuvianite (Idocrase). c=o0.5372. A common type
shows the prism {110} and pyramid {111} of the first order
with the basal pinakoid {oo1}. In some examples the
second-order prism {100} is well developed (Fig. 91).

Melilite.  c=0.4548. Usually shows short prigms of.
the second order {100}, sometimes with first-order and
ditetragonal prisms, {110} and {310}, terminated by the
basal pinakoid {oo1}, and occasionally the pyramid of the
first order {111}. .

Chalcopyrite (Copper Pyrites). c=0.9852- This
mineral crystallises not in the zircon or ditetragonal central
class, but in the ditetragonal inverse class, IV Dv (see

100 110 0I0

Y

F16. 9g2.—Chalcopyrite. F16. 93.—Scapolite.

p- 127). It commonly shows a sphenoidal form closely
approximating to the tetrahedron (Fig. 92). The four faces
of the {111} sphenoid are large, dull and striated, while the
{111} faces, if present, are small, brilliant and not striated.

Scapolite. c=0.4384 (for Wernerite). Prisms of the
second and first order, {100} and {110}, with the pyramid
of the first order, {111} are usually seen. Sometimes the
presence of eight small faces of the {311} form as in Fig. ‘03,
indicates the absence of the vertical planzs of sy mmetry‘, and
therefore a lower symmetry than that of the zircon class,
with only a quarter-turn axis, one plane and a centre of
symmetry. This is the symmetry of the tetragona! central
class, IV Mc (see p. 12%).



CHARTER X.

CUBIC SYSTEM—SPINEL CLASS
(4 111 Dc, TETRA-DITRIGONAL CENTRAL).

The cubic system is characterised by three axes at right
angles ,and with equal parameters. There are no variable
elements, and the angles of one cubic mineral are identical
with those of the corresponding forms of all other cubic
minerals.

The spinel class possesses a high degree of symmetry,
and this gives rise t0 forms with a large number of faces,
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F16. 94.—Spinel Class, Fi16. g5.—Spinel Class,
Showing ¢, 3P, 3 iv, 6ii. Showing 6p, 3 iv, 4 iii.

from six to forty-eight. There are nine planes of sym-
metry, threé axes of quarter-turn, six of half-turn, and four
of one-third-turn symmetry, and a centre of symmetry.
Three, of the planes of symmetry are axial planes (Fig. 94),
and'snx are diagomal planes (Fig. 95). The axial planes
mt(;rsect in three axes of quarter-turn symmetry (iv. in Figs.
04 and g5), which are the crystallographic axes. Two axes
of halfsturn symmetry lie in each of the three axial planes,
making angles of 45° with the crystallographic axes (ii. in
7t
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Fig. 94). One axis of one-third-turn symmetry passes
through the centre of each pair of opposite octants,
equidistant from the three crystallographic axes; it is the
line of intersection of three diagonal planes of symmetry
(iii. in Fig. 95). . ' ;

As a result of the axial planes of symmetry, the face
111 must be accompanied by seven similar faces—Ir1, 111,
171, 117, 117, 111, and 111—and these eight faces ‘satisfy
the conditions of all the axes, the diagonal planes, and the
centre of symmetry. Thus the form {111} consists of eight
“faces, as in the orthorhombic system, but the faces are

F1G. 96.—Octahedron. Fi6. 97.—Trapezohedron.

equilateral triangles and all the edges are alike, measuring
70° 31" 44”. Itis known asthe octahedron (Fig.g6).

The face 211 is inclined to two of the three diagonal
planes of symmetry that cut the positive octant. It must
therefore be accompanied by the faces 121 and 112; and
these three faces are repeated in each of the other octants,
giving a form with twenty-four faces (Fig. 97) whose in-
dices are all the possible permutations of 2, 1, 1, with all
possible changes of sign.  Since the faces are trapezcids
and three of them occur in each octant, in place of one face
of the octahedron, this form is calleda trapezoidal
triakis-octahedron, or more briefly, a tra-
pezohedron.* Any other form with one index

* Also known as a lencitohedron or eikositetrahedron.
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greater than the other two, which are equal, such as {322}
or {h,h,h,} where h, is greater than h,, has also twenty-
four trapezoidal faces, but with different angles, and is a
trapezohedron., The faces of the general form are :—

h,h,h,, h,h,h,, h h h,,
h,h, i, B b,hy, b hh,
thlhl’ Hl—ﬁlhl’ i{1H1h2’
h,B,h,, hH,h, h T h,
hzhlﬁ-l’ .hthHl’ hlhlﬁz’
thlhl’ h_:lhzﬁn h:lllllzi'
Hz_lilﬁn h,h,h,, h b h,
h,f, K, h,h &, hHHk

—
©
.

In the same way, the face 221 is inclined to two of the
three diagonal planes of symmetry in the positive octant,

F16. 98.—Triangular Triakis-
Octahedron.

and must be' accompanied by the faces 212 and 122; and
.these faces repegted in the other octants give another form
with twenty-four faces. These faces are triangles, and the
form, {221} is c#lled a triangular triakis-
octahedron (Fig. ¢8). Any other form with two
equal indices greater than the third, such as {332} or
{h;h,h,4 where h, is greater than h,, will also be a
triangular triakis-octahedron.
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The faces are, for the general form :—

hzhzhn h2h1h2’ hxhzhz'
h,h,h,, B,hh, B h,h,
B,Byh,, B,h b, B Bhy,
thzhu hzﬂlhz! hlﬁﬁhﬂ’
hzhz.ﬁl’ hzthZ’ h.lhzﬁ2’
,h,h, B,hh, " h,A0,
1;25‘2}71’ Hzﬁlﬁzi EIEZH27
h,h,B,, h,h F,,, K 5§,

The face 321 is inclined to all the three diagonal planes
of symmetry in the positive octant. These give rise to the
faces 231, 132, 123, 213 and 312. Each octant therefore has
six faces, and the form {321} has forty-eight faces (Fig. gg).

F1G6. 99.—Hexakis-Octahedron. F1G6. 100.—Rhombic Dodecahedron.

Itiscalleda hexakis-octahedron (Gr. hexakis,
six times). The general form is {hyh,h,}, i.e, all the
indices are different, and the faces are :—

hyh,h,, h,hgh,, h hghy,, h hyhy, h,h hy, hyh, h,
TE, h,h,, h,hyh, hhjh, R hh,, K hh, " hh,
hyh,hy, B,hyh,, A hgh,, B h,h,, Kb h, K A'h,;
hyh,hy, h,hyhy, h hgh,, hhh,, h,h h,, hyh h,
ha hil E\l’ h2 ha Hl’ hl haﬁz’ hl h2 HS’ hz hl H-"’ ha bl Hz’
HS hz-ﬁl’ Hz hSEl’ Hl haHz’ El hz ES’ EZ hl H-‘l’ HS th2’
h,h,h,, h,hh,, K AhKAK, b HE §AAh, bhF,
hyh,h,, h,h;h,, hhh,, hhk, hh kK, hhh,.
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The face 110, which is parallel to one axis and cuts the
other two at equal distances, must be accompanied by the
faces 110, 110 and 110, to satisfy the axial planes of sym-
metry. The djagonal planes of symmetry give rise to the
faces 1 and o11, and each of these must have three similar
faces with indices showing variations of sign. The form
{110} therefore consists of twelve faces, equivalent to a com-
bination of the prism, macrodome and brachydome of the
orthorhombic system (Fig. 100). The faces are rhombs,
and the form is therefore called the rhombic

| A3
! 00!
0I10
100
120 i
Al/
Fi1G6. 101.—Tetrakis-Hexahedron. F16. 102.—Cube.

dodecahedron to distinguish it from other dode-
cahedra (Gr. dodeka, twelve, hedra, seat). The symbols of
its faces are :—
. 110, 110, 110, 110,

101, Iol, Ioi, 10i,

ori, oii, oli, o1l.

The face’ 210 must be accompanied by 120, cqually in-
Clined to opne of the diagonal planes of symmetry, and each
of these faces requires eleven others as shown in the last
paragraph. The forta {210} therefore has twenty-four faces,
as in, Fig. 101. It resembles a cube with a pyramid erected
on each of its faces, and iscalleda four-faced cube
or tetorakis-hexahedron. Any form in this
class with faces parailel to one axis and unequally inclined
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to the other two is a four-faced cube, and the faces of the
general form {h, h, o} are:—

h,h,0, h,h,o, h,h,0, h,h o,

h,h,0, h,h,0, h,h,0, h,ho,

h,oh,, h,oh,, *h,oh,, h,oh,,

h,oh,, h,oh,, h,oh,s h,oh,,

oh,h,, oh,h,, ohh,, oh,h,

oh,h,, ohh,, oh,h,, oh,h,.

The face 100, which is parallel ‘to two axes, must he
accompanied by the faces o010 and oo1 to satisfy the diagonal
planes of symmetry, and these must have their opposite faces
with indices of opposite sign. The form {100} therefore
has six similar faces, and is equivalent to the three pinakoids
of the orthorhombic system. It is known as the cube or
hexahedron (Fig. 102). The faces of the cube are :—

100, 010, 001,
100, olo, ooI.
The forms occurring in the spinel class of the cubic
system may be tabulated as follows :—

General Number
Name of form. symbol. Example. of faces.
Hexakis-octahedron {h,h,h,} {321} 48

Triangular triakis-

octahedron {h,h,h,} (h,>h)) {221} 24
Trapezohedron {h,h,h,} (h,>h)) {211} 24
Octahedron {11} 8
Four-faced cube {b,h,0} (h,>h,) {210} 24
Rhombic dodecahe-

dron {110} . 12
Cube {100} 6

All these are closed forms and may' exist as simple
forms. The octahedron, {111}, has:the same number of
faces as {111} in the olivine class of the orthorhqmbic
system; the other forms have either three or six times as
many faces as the correspending forms in that class.

In drawing crystals of the spinel class one view only is
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sufficient, as the views from the side and from above are
the same as the front view. The front elevation of two of
the forms in this class is shown in Figs. 35 and 36, p. 36.
The following construction will be found useful in
drawing a hexakis-octahedron. Two lines are drawn in-
tersecting at right angles, to represent the axes 0A, and 0a,.
The indices of the form are written in ascending order, and
the second and third are added together The lowest common
multiple of these four figures is found, and four points
are marked on each dirdction of each axis at distances from

F1G. 103.—Part Construction of
Hexakis-Octahedron.

the origin proportional to the reciprocals of these figures.
Thus, in drawing the form {543}, we take the figures 3, 4, 5,
9. Their least common multiple is 180. The point 3 is
taken at % x 180=60 mm. from the origin; the point 4 at
1x180=45 mm.; the point 5 at 1 x 180=36 mm.; and the
point 9 at } x 180=20 mm. from the origin. The point on
one axis correspondmg to the lowest number is joined to
those on the ‘other axis corresponding to the highest number
angl vice persa,ethus 3 to 9 and 9 to 3, and also the inter-
medldte peints in the same manner, 4 to 5 and 5 to 4. The
remaining connectichs are made as in Fig. 103, which shows
onee quarter only of the complete construction. A similar
construction may be used for the triakis-octahedra, bearing
in min@ that two of the four points marked on the axes for
the hexakis-octahedron are in these forms merged into one.
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Figs. 104 and 105 show part of the construction for the forms
{322} and {332}

The distribution of the indices of the faces of these rather -
complicated forms is easily found by the use .of the rule,
“ the nearer the axis, the larger the index ™ (p. 45).r Thus
in the form {543} (Fig. 103) the two faces nearest the front
(closest to the axis 0A,) will have the largest index, s, in the
first place. The face near the plane 0A,A, must be nearer
10 0A, than to 0A,; the second index must therefore be greater
than the third, and the indices of this face will be 543; while ’
the front face above it near the plane oa,A, will be 534
since it is nearer to OA, than to 0A,. Similarly the faces at

A3 A3
223
233
2
322 32 325
A2 33 A2
F1G. 104.—Part Construction of Fi1G. 105.—Part Construction of
Trapezohedron. Triangular Triakis-Octahedron.

the extreme right or left will have the largest index 5 (or §)
in the second place, and those at the top and bottom
will have it in the third place.

It will be noticed that in a hexakis-octahedron each face
is the mirror-image of the adjacent faces, but is superposable
on the alternate faces. In each octant, theretore, there is
a group of three alternate faces which are superposable on
one another, and a second group of three faces which are
the mirror-image of these. The indies of one grodp of
faces are all in descending cyclic order, e.g.. 543, 354, 135-
while those of the second group are in ascending cyclic
order, 345, 534, 453. This affords a means of checking the
symbols.
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In the form {322}, the front face in the positive octant
is nearest to the axis 0A,, and equidistant from 0a, and 0a,.
. Its first index therefore is the larger one, 3, and the second
and third indices are the smaller, 2. Similarly the side face
is 232,@nd the top face 223.

In the form {333} one face in the positive octant is
equally close to axes oA, and 0a,, but more distant from
oA,. Its symbol is therefore 332. The face 233 is that
most distant from 0A,, and 323 is that most distant from
‘OA,.

F1s. 106.—Garnet F1G. 107.—Garnet.

It should be noted that an axial plane of symmetry
connects faces whose indices differ by one change of sign,
and a diagonal plane of symmetry connects those differing
in the order of their indices, with or without two changes of
sign.

PRACTICAL WORK.

Garnet Group. The rhombic dodecahedron {110} and
the trapezohedron {211} are the commonest forms, one or
other being ddminant, as shown in Figs. 106 and 107.

Spinel Groug The dominant form is the octahedron,
{111}, ejther alone, as in magnetite, or modified by {110},
{311}, etc., as in Fig? 108.

Leucite. Though not strictly cubic at ordinary tem-
peratures, leucite usually shows crystals not differing sensi-
bly in angle from the trapezohedron {211}, rarely modified
by any other form.
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Sodalite, Nosean, Haiiyne. The rhombic dodecahedron
is the commonest form in these minerals. Crystals are
sometimes elongated on an axis of threefold symmetry,
simulating rhombohedral crystals.

F1G. 108.—Spinel.
Galena, Fluorspar. The cube is the usual form in

which these minétals occur, but while the cleavage in galena
is parallel to the cube faces, in fluorspar it is octahedral.



CHAPTER XI.
CUBIC SYSTEM (CONTINUED).

TETRAHEDRITE CLASS
(4111 Dc, TETRA-BITRIGONAL UNITERMINAL).

The tetrahedrite class differs from the spinel class in
the absence of a centre of symmetry, the three axial planes
of symmetry, and the six half-turn axes of symmetry of the
spinel class; and in the lower symmetry of the crystallo-
graphic axes, which are axes of half-turn, not quarter-turn

symmetry. It posscsses only the six diagonal planes of
\n n "
i
ii
il
U
,/,, Niii

F1G. 109.—Tetrahedrite Class—
Symmetry, 6p, 3 ii, 4 iii.
symmetry, three axes of half-turn symmetry, and four axes
Of gne-thigd-turne symmetry. The last item is the only
feature g@bminon to all the classes of the cubic system.
Fig. %09 indicates thi$ symmetry.

The face 1171 is at right angles to three of the six planes
of symmetry. The other three planes of symmetry give rise
to the faees 111, 711 and 17I. As there is no centre of
svmmetry, no axial planes of symmetry, and no half-turn

81 F
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axes of symmetry, other than the crystallographic axes, the
remaining faces of the octahedron are not required by the
symmetry of this class, the conditions of which are fulfilled
by the four faces named. These faces, if no other form is
present, are equilateral triangfes meeting in six edge., each

A3 A3
A2 A2
Fi1G. 110.—Positive Fi16. 111.—Negative
Tetrahedron. Tetrahedron.

of which lies in one of the planes of symmetry (Fig. 110).
This form {111} is known as a tetrahedron (Gr.
tetra, four, hedra, a seat). The form {111} is similar but
differently orientated (Fig. 111). It may be called the

,,

V4

F1G. 112,—Positive and
Negative Tetrahedra.

¢ \ ‘ f
negative tetrahedron to distinguish it from {111},swhich is
the positive tetrahedron. The two torms often ocaur to-
gether, as in zinc-blende (Fig. 112). The faces of the two
forms are : —

Positive tetrahedron, 111, 111, 117, 171.*

Negative tetrahedron, 111, 111, 1T, 111,
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It will be noticed that the product of the indices of each
face is positive in the positive tetrahedron, negative in the
negative tetrahedron.

The face 241 must be accompanied by the faces 121 and
112 tonsatlsfy the planes of symmetry which cut the positive
octant. As in the last paragraph, however, the symmetry of
the class only requires that alternate octants shall be simi-
larly occupied. The form {211} therefore has only twelve
faces, not twenty-four as, in the spinel class. It is shown in

' Fig. 113, from which it will be seen that the faces are
risosceles triangles. It is known as a triangular
triakis-tetrahedron. Ingeneral terms {h, h, h,},

A3
IAJ
A2 A;
Fi6. 113.—Triangular Triakis- F1G6. 114.—Trapezoidal Triakis-
Tetrahedron. Tetrahedron.

.where h, is greater than h,, represents the positive triangular
tnakxs-tetrahedron with the faces :—

h,h,h;,  h h,h,, h hh,

. Ez Hl hl’ El Hz hl’ Hl Hl hﬁ'

h,h,h,, R, h,h, Ak b §,,

- h;ﬁlﬁl’ hlﬁzﬁl’ thIHZ’

and {k,h, h,} represents the negative form with the faces : —

h,h,h,, h,hh,, hHh,

Hhh 172 My Hxhlhzt

h,h h,, hnHh, §KAhH5,

h bh,h;, hhh, h hh,.



84 ELEMENTARY CRYSTALLOGRAPHY

The face 221 must be accompanied by the faces 212 and
122 in the positive octant, and these, with similar faces in
the alternate octants, give another form with twelve faces
(Fig. 114). In this form the faces are trapezoids (or deltoids)
and the form {221} is known'as a trapezoidal (or
deltoidal) triakis-tetrahedron. In general
terms {h, h, h,}, where h, is greater than h,, represents the
positive trapezoidal triakis-octahedron, with the faces

h,h,h,, hyh h,, « h, hh,,
.R,h, H,hh, B H,h,
B,h,B,, H,h B, | bR,
h K, bR, h BB,

and {h,h,h,} represents the negative form with the faces

h,h, by, hy,h h,,  hhhy,
E h,h;, hyh h,, h h,h,,
h,h, b, H,Hlﬁz, h, b, h,,
hyh, by, hyhy Ry, h by,

FiG. 115. FiG. 116.

The Triakis-Tetrahedra (solid lines) and Triakis-Octahedra
(broken lines), Projections on 111,

It will be noticed that the form {211} i§ a,
trapezoidal triakis-octahedron in the spinel\glass and
a triangular triakis-tetrahedron in the tetrahedrite
class, and that {221} is a triangular triakis-
octahedron and a trapezoidal triakis-tetrahedron.
The edges in which the three faces in the posittve octant

intersect, however, remain unchanged in the two classes.
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In the {211} forms they resemble the letter Y, or the crest
of the Isle of Man, while in the {221} forms they are more
like the Greek letter A or the crest of the Cyclists’ Touring
Club (see Figs. 115 and 116). The same applies to the
genergl forms {h,h, h,} and *{h, h, h,}.

The face 321 must be accompanied by the faces 231, 132,
123, 213 and 312, and these, with six corresponding faces in
each alternate octant, give a form {321} composed of twenty-
four faces (Fig. 117). It is known as a hexakis-

Fi16. 117.—Hexakis-Tetrahedron.

tetrahedron, and the general form {h,h,h,} repre-
sents the positive hexakis-tetrahedron with the faces

shyy hyhgh, bbb, bbby, hyhih,, hyhyh

R,B,h, B,Hh, B Ah, hhh, hAuh, BAH b,
R, h,h, B,hB, & hH, HhF, Fhh, §hhH,
h,B,B, h,K,K, h,RF, h6,h, hBHE, h§,§,
wisile thynegati\’re form has the faces

hsh,n,, n,ngn,, n hyh,, hB,hy,, h,hhy, hfh,,
hyhgh,, h,hyh;, h hsh,, h h,hy,, h,hk,, BHyh,h,,
hyhyhy, 0 B, Rsh,, B, Bh, K KA, KA ", §hH§,
hyh,B,, h bR, b b, hhh, hhF, hh§,.
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The face 110 is perpendicular to one of the six planes of
symmetry, parallel to another, and inclined to the remaining
four. It must therefore be accompanied by the opposite face
ifo and by 101, 101, 011, 011 and 170, and these, latter must
have their opposite faces Toi, ‘o1, oii, oi1 and 110.4 The"
form {110} has therefore twelve faces, as in the spinel class,
and is the same rhombic dodecadedron (Fig. 100, p. 74).
The faces of this form are perpendicular to the axial planes,
and therefore are not affected by the absence of axial planes
of symmetry.

For the same reason the forms {210} and {100} are un-
changed by the lower symmetry of this class, and remain
the four-faced cube and the cube respectively, as in the
spinel class.

PYRITE CLASS
(4 111 Mc, TETRA-TRIGONAL CENTRAL).

In this class the diagonal planes of symmetry of the
spinel class are wanting, and the crystallographic axes are
lines of half-turn symmetry only. The class possesses

\III

" ij
i, —/
\

ZINY

li

lii Nm
Fi16. 118.—Pyrite Class— Fi16. 179.—Dyakis-Dodeta"
Symmetry, ¢, 3P, 3 ii, 4 iii. hedron. .

therefore a centre of symmetry, three axial planes of sym-
metry, three axes of half-turn and four of one-third-turn
symmetry. In other words, we have here the symmetry of
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the olivine class of the orthorhombic system, plus the four
axes of one-third-turn symmetry, due to the identity in
properties of the three crystallographic axes.

The face 111 is repeated in each of the octants by the
three axial planes of symmetry, and the form {111} is there-
fore the octahedron,.as in the spinel class.

The face 211 must be accompanied by 121 and 112 to
satisfy’ the trigonal axis in the positive octant, and these
faces repeated in the other octants form a trapezohedron,
as in the spinel class.® Similar reasoning shows that the
form {ez1} is a triangular triakis-octahedron. Thus the
general forms {h,h, h;} and {h,h,h,} are the same in the
pyrite class as in the spinel class.

The face 321 must be accompanied by 132 and 213 about
the trigonal axis, but in the absence of the diagonal planes
of symmetry the faces with indices in the reverse order (123,
231, 3}2) are not required. The complete form {321} there-
fore has 8 x ., =24 faces instead of 48, as in the spinel class.
It is known as the dyakis-dodecahedron or
diploid (Gr. diplos, double, eidos, form), since it has
double the number of faces of the pentagonal dodecahedron
(see p. 88). Fig. 119 shows the form {321}.

If the crystal is turned through go® about a crystallo-
graphic axis it will represent the form {123}, but it is cus-
tomary to hold this and the following form so that the
indices are in descending cyclic order. The faces of the
general form {hgh, h} are

hyh,h,, h,hyh,, h,h,hy,
Ryh,h,, B, hyh,, H,h,h,
R,A,h, B Bh, KK h,
h,B,h,, h,Rh, h,h h,
hyh B, h,hyH,, h,hF,
hyh,h,, B, hB, B,h,§,
R,h, B, KA, KA R,
h,h,h,, h,BR, h,F 5.
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The face 210 must be accompanied by o021 and 102 about
the trigonal axis, but the faces 120, 012 and 201 are not
A3 required. The form {210} in

the pyrite class has therefore
orly half the faces of the, four-
faced cube, i.e., twelve. As

shown in Fig. 120, the faces

are pentagons, hut not regular

pentagons, those edges which

are parallel to the crystallo-

ﬁ graphic axes being longer than

the others. This form is

FiG. 120.—Pentagonal Dodeca- known as the pentag-

hedron.

onal dodecahedron,

orthe pyritohedron (Fig. 120), from the frequency

with which it occurs in pyrite. The faces of the general
form {h, h, o} are

h,h,0, h,h,0, h,h,0o, h,ho
oh,h,, oh,h,, oh,h, oh, ﬁ,
h,oh,, hoh,, hoh, h o_2

The face 110 must be accompanied by o1t and 101 about
the trigonal axis, and the axial planes of symmetry bring
in faces having the same symbols, but with all possible
changes of sign. The form {110} is therefore the rhombic
dodecahedron, as in the spinel and tetrahedrite classes.

Similarly the form {100} remains the cube in all three
classes.

The different forms in the three classes of the cubic
system that have been dealt with are shown in the following
table, with the number of faces in each form.

A2

Symbol. Spinel Class. Tetrahedrite Class. Pyrit} Class.
{hyh,h;} Hexakis-octa- Hexakis-tetra- Dyakis-dodeca-
e.g., {32 1} hedron, 48. hedron, 24. hedron, 24.

{h,h,h,} Triangular tri- Trapezcidal tri- Triangular tri-
e.g., {221} akis-octahedron, akis-tetrahedron, akis-octahedron,
24. 12. 24,
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Symbol. Spinel Class. Tetrahedrite Class, Pyrite Class.
{h,h h,} Trapezohedron, Triangular tri- Trapezohedron,
e.g., {211} 24. akis-tetrahedron, 24.
12,

{111} Octahedron, 8. Tetrahedron, 4. Octahedron, 8.
{h,h,0} Four - faced Four - faced Pentagonal do-
€8 {210} cube, 24. cube, 24. decahedron, 12.
{110} Rhombic do- Rhombic do- Rhombic do-
. decahedron, 12. decahedron, 12. decahedron, 12.
*{100} Cube, 6. Cube, 6. Cube, 6.

PRACTICAL WORK.

In the tetrahedrite and pyrite classes three views should
be drawn, since the side elevation and ground plan are not
identical with the front elevation, as they are in the spinel
class.

Zinc-blende. This is the commonest mineral crystallis-
ing in the tetrahedrite class. The two tetrahedra may be

< 00/
102 o2
2fo| 100 210 | 99
- B
102 0
L
F16. 121.—Pyrite. FiG. 122.—Pyrite.

.pregent (Fig. 112), with the faces of {111} smaller and duller
than those of {111}, *which are large, brilliant and striated.
Morg rarely a triakis-tetrahedron occurs.

Diamond also belongs to this class.
Pyrife. The pentagonal dodecahedron {210}, the

striated cuhe {100} and the octahedron {111} are commonlv
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seen, usually as simple forms, sometimes modified (Fig. 121).
The cube shows the low symmetry of the class in the
striations on its faces (Fig. 122), which are parallel to the
three pairs of longer edges in the {210} form, and are due to
an oscillatory combination of {100} and
{210}.

The cobalt minerals, smaltite and cobaltite, also show
beautiful crystals of this class.



‘CHAPTER XII.

HEXAGONAL SYSTEM—BERYL CLASS
(VIDc, DIJEXAGONAL CENTRAL).

Tlc nexagonal system is divided into two by some
writers, only those classes which have an axis of one-sixth-
turn symmetry being placed in the hexagonal, while those
with an axis of one-third-turn symmetry are placed in a
trigonal or rhombohedral system. The distinction is con-
venient for many purposes, but if the same crystallographic
axes ate employed for both groups they may be treated
as one systein.

Miller referred hexagonal crystals to three axes equally
inclined 10 one another, but not at right angles, and having
equal parameters. They are
parallel to the edges of the
negative rhombohedron (Fig.

136), the symbol of which be- c

comes {100}. The correspond- - Ao
»ing positive rhombohedron (Fig. %fﬂz
135) would then be {212}, and A * A3

the hexagonal pyramid (Fig.
127) has faces corresponding to
these two forms alternately.
The confusions arising from FiG. 123.—Hexagonal Axes.
simple forins with two unlike

sets of indices is avbided by the use of the four axes pro-
posed by Bravais. These axes are now more usually
adopted, although many crystallographers still follow
Miller.

Of ‘i;ravais’ axes, three are horizontal and inclined at

9I
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120° to one another, and the fourth is vertical (Fig. 123).
The three horizontal (or lateral) axes have equal parameters,
a, which is taken as unity, while the vertical (or principal)
axis has a different parameter, c. This vertical parameter
is the only variable element in which hexagonal minerals
differ from one another; it may be greater or less than unity.
Symbols of hexagonal crystals consist of four indices, the
first relating to the axis of A,, the second to that of a,,
the third to that of Ay, and the fourth to the vertical axis
of c. ‘

As shown in Fig. 123, the axis of A, is taken as running
right and left, with its positive direction to the right. The
positive direction of the axis of A, is 120° from that of A,
in a clockwise direction and points forward to the left of the
observer, and the positive direction of the axis of a, is at
120° from that of A, in a counter-clockwise direction. The
negative directions of the three axes thus bisect the angles of
120° hetween their positive directions.

Fig. 124 represents the three lateral axes, 0A,;, 0A,, OA;,
with the trace BDC of a plane h, h, h,l that cuts all three of
them. The intercepts of this plane on the axes of A,, A, and
A, are OB, OC and op respectively, and oD is negative. Draw
DE parallel to Bo, making ODE an equilaterial triangle. Then

ocC EC OC — OD
oB ED oD

1
Dividing by oc, OB — oD _ oc

or — + — !
OB ocC oD

But the reciprocals of the intercepts are the indices hlh; h,
of the face h, h, i, 1, whose trace on tht plane of the'lateral
axes is BDC, so that h, +h,=h,. Therefore the third index is
equal to the sum of the uther two, and is of opposite sign.
In other words, the sum of the three lateral indices is always
equal to zero.
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In the beryl class the vertical axis is one of hexagonal
symmetry; the three horizontal axes are lines of digonal
symmetry, and three more such lines lie midway between
them ; there is a centre of symmetry and one horizontal and
six vartical planes of symmetry. This symmetry is repre-
sented in Fig. 125.

A face parallel to all three lateral axes and cutting the
vertical axis above the origin will have the syvmbol ooor.
It is affected by the centre of symmetry, the horizontal plane
of symmetry and the dxes of half-turn symmetry, all of

» which -require a corresponding face oooi below. The
remaining planes and line of symmetry are perpendicular to

vi

A3 Al =
.\ 5
A2 [4) E € A2 li— i
i
if
B D
Al 23
|
F1G. 124. F1G. 125 —Beryl Class—

Symmetry, ¢, 7P, v1, 6ii.

these faces and so inoperative, and the form {ooo1} there-
fore consists of these two faces only. It is known as the
basal pinakoid, and is shown in Figs. 126, 128 and
130.

e A face parallel to the vertical axis and to one of the
lateral axes, such as 1010, must be accompanied by oiio,
i100y Tor0, oi10 anll 1700 to satisfy the axis of hexagonal
symmetry. These six faces satisfy all the other elements of
symmetry of the class, and they therefore constitute the
form {i1pio} shown in Fig. 126. This is known as the

prism\of the first order. It will be noticed
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that the first three indices of the faces are in ascending and
descending cyclic order alternately.

A face parallel to one of the lateral axes but inclined to
the vertical axis, such as 1071, must have five similar faces
disposed around the axis of hexagonal symmetry, and the
horizontal plane of symmetry requires six more faces below.
The form {1011} has therefore twelve faces, as shown in
Fig. 127. It is an example of the pyramid of the
first order, of which the general form {hohl} has
the faces

hohl, ohhl, Rhol, hohl, ohhl, hhdl,
hohl, ohhi, hhol, hohl, ohhl, hhol,

A face making equal intercepts on A, and A, will have
half that intercept on the negative end of A; (p. 92), and if
ic

o001 ! ;
o oifo
A28 10i0 A2
A \X;
F1G. 126.—Prism of the First Fi6. 127.—Pyramid of the
Order. First Order.

it is parallel to the vertical axis its symbol will be 112o0.
The hexagonal axis requires the faces i2io, 2110, iiz20,
1210 and 2110, and these six faces satisfy the remaining
symmetry of the class. The form {1120} therefore consists
of these six faces. It is known as the prism of t he
second order, and is shown in Fyg. 128, which tepre-
sents a similar prism to Fig. 126 rotated 3o° about the
principal axis. ‘

A face with equal intercepts on the axes of A, and a,,
but cutting the vertical axis, such as 1121, must be accom-
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panied by eleven other faces to satisfy the symmetry. The
form {1121} therefore has twelve faces, and is shown in

C

210 | nzo | iaio

442
m N
Al 2
o [ ]
—
F16. 128.—Prism of the FiG. 129.—Pyramid of the
Second Order. Second Order.

Fig. 129. It is an example of the pyramid of the
second order, the general form of which {hh2hl},
consist® of the twelve faces
h n2h |, hzh h |, 2h h hl,
h hah | h2h h 1, 2hh b,
h h2h ], hz2h h ], 2h h h
h hz2h 1, h2hhl, 2h AR L.
A face unequally inclined to all three lateral axes, but
parallel to the vertical axis, such as 1230, must be accom-

C
000!

~1
ebg
o "
2 -2 u?) wm ke
v =] '~ | N )<
LY Bl N
. A2
—
A A
A3
L]
.JJ

®F1G. 130.—Dihexagonal Prism. Fic. 131.—Dihexagonal Pyramid.

panied 2130 to satisfy one of the vertical planes of
symmetrX, These two faces repeated round the hexagonal
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axis give a prism of twelve faces, which satisfies the sym-
metry of the class. This form {1230} is shown in Fig.
130. Itis knownasa dihexagonal prism, and
the general form {h,h,h;0}, where hy=h,+h,, has the
twelve faces

3

h,h,hy0, h h,h,0, h,hyh, o,
h,h,h,0, Hhyh,h,o0, h,h, h;o,
h,h,h;o, h,hy;h,o, h,h h o,
h,h,h, o, h,h,h,0, h,h hjo.

It will be noticed that the first three indices are in
ascending and descending cyclic order, h,, h,, h, and h,,
h,, h,, alternately.

The form {1231} will have double the number of faces
present in the corresponding prism {1230}, i.e., twenty-
four. It is known asa dihexagonal pyramid,
and is shown in Fig. 131. The general form {h, h h, 1},
where hy=h, +h,, has the faces

h,h,R,1, B, h,h,1, F®,h,h,1, T, hh,l,
fi,h,h,1, B,h h,1, H Byhyl, h,h,h,l,
h,R,h,1, h,F,R 1, hyk f,1, hyh h,I,
h,h,K,1, B hK,1, H,hyH,1, H,h,h,],
R,h, h,1, WK, h,1, B,H,h,1, h F,h,I,
h,B,h,1, h,B,B,1, h K K1, hyh},L

The forms occurring in the beryl class of the hexagonal
system may be tabulated as follows :—

General . Number
Name of form. symbol. Example. of faces.

Dihexagona! pyramid {h,h, b1} . {1230} 24
Pyramid of the second order {hh2hl} {1131} 12
Pyramid of the first order  {hohi} {1oi1} .12

Dihexagonal prism {h,h, h,0} {1230} 12
Prism of the second order {1120} 6
Prism of the first order « {oio} 6

Basal pinakoid {ooo1} 2
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In the beryl class the question as to which three half-
turn axes making equal angles with one another are taken
as lateral axes is an arbitrary one, but it is usual to select
them in such a manner that the commoner pyramids and
prismg are of the first order:

In drawing hexagonal crystals it is best to start with
the view from above, which usually includes a regular
hexagon. From this it is easy to obtain construction lines
for the front and side elevations. Fig. 132 shows these con-
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F16. 132.—Orthographic Projection
of Apatite.

struction lines for a combination of {10io}, {roir} and
{ooo1}.

" In allotting the symbols to the faces of the dihexagonal
prism and pyramid, it is well to remember the rule that
the greater the index, whether positive or negative, the
nearer the face is to the corresponding axis in its positive or
negative directiog as the case may be.

PRACTICAL WORK.

‘Beryl. c=0.4989. Bery! usually occurs in long prig-
matic crystals, distinct terminations being exceptional. But
the smal\brilliant crystals from Nerchinsk show the basal
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pinakoid, and often various pyramids in addition, such as
{1011}, {2021}, {1121}, {2131}.

Beryl is one of the comparatively few minerals showing
the complete symmetry of this class.

Nepheline. c=0.8389. The hexagonal prisms {1010}
of nepheline, terminated by {ooo1} and sometimes modified
by {1011}, appear to have the full symmetry of the beryl
class; but when etched with hydrofluoric acid the faces show
asymmetric etching figures, indicating the presence of a
hexagonal axis and no other symmetry. This is the sym-

F1G, 133.—Apatite.

metry of the hexagonal uniterminal class, VI Mu (see
p. 127).

Apatite. ¢=0.7346. This mineral also shows hexa-
gonal prisms {1070}, terminated by {ooo1} and {1011}, as
in Fig. 132, and apparently with the full symmetry of the
heryl class. But the occasional presence of twelve small
faces (instead of twenty-four) of the form {2131}, as in Fig.
133, shows the absence of the vertical planes and horizontal
lines of symmetry and the presence of only a centre,
a horizontal plane, and a vertical axis of hexagonal sym-
metry, which is the symmetry of the hexdgonal central
class, VI Mc (see p. 127).



CHAPTER XIII.

.HEXAGONAL SYSTEM (CONTINUED).
TRIGONAL CLASSES.

CALCITE CLASS
(111 Dc, DITRIGONAL CENTRAL).

In the calcite class the principal axis is one of trigonal
symmetry, iii., there are three horizontal digonal axes, ii.,
a centre of symmetry and three vertical planes of symmetry
(Fig. 134). The lines of symmetry are taken as lateral
crystaMographic axes, and the planes of symmetry are per-

Ar—

FiG. 134.- -Calcite Class—Symmetry,
c, 3p, iii, 3 1.
pendicular to these lines, and therefore parallel to the planes
1130, 1310 and 3110,

The basal pinakoid {ooo1r} consists of two faces as in
the beryl class, since a centre of symmetry requires two
opposite parallel faces.

The prisms of the first and second orders are also un-
changed, The axis of oné-third-turn symmetry requires
three sir\ilar faces, and the centre of symmetry provides

99
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that each of these shall be accompanied by an opposite
parallel face.

The dihexagonal prism also is the same as in the beryl
class, the vertical planes and centre of symmetry (or the
half-turn-axes) requiring the fill twelve faces.

The face 1071 must be accompanied by the faces
T1o1 and ol1r to satisfy the trigonal axis or the three
planes of symmetry. The centre of symmetry and the three
digonal axes are satisfied if to these are added their
opposite faces, Tori, 1ioi afdd o1ii. The form
{1011} therefore consists of six faces only (Fig: 135).

c

A2

F16. 135.—Positive Rhombohedron. FI16. 136.—Negative Rhombohedron.

The faces are rhombs and the form is known as a
rhfombohedron. The first three indices of the upper
faces are in descending cyclic order (1, o, 1) and those of
the lower faces in ascending (i, o, 1). The reverse is the
case in the similar form {o1i1}, shown in Fig. 136, which
is often called a negative rhombohedron, while {1011} is a
positive rhombohedron.*

Rhombohedra may be more acute thap the unit form,
such as {4031}, or more obtuse, as {o1iz}.

In its general form the rhombohedton has the foliqwing
faces :—

* A negative rhombohedron is peferred to by Professor Lewis as
a direct rhombohedron, and a positive rhombohedron as an inverse
rhombohedron.
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Positive rhombohedron.

hohl, hhol, ohhl,
hohl, hhol, ohhl

Negative thombohedron.
ohhl, hohl, hhol,
ohhl, hohl, hhol.

The face 1121 is inclined to two of the planes of
symmetry, which reqpire the corresponding faces 2111
‘and i211. The third plane of symmetry repeats these
faces 'in the corresponding faces 1121, 1211 and 32111,
and the centre of symmetry requires that the six faces
opposite and parallel to these shall also be present. The

FiG. 137.—The Upper Faces of a Scaleno- F1G. 138.—Scaleno-
hedron projected on a horizontal plane. hedron.

form {1121}, or {hh2hl}, is therefore an hexagonal
pyramid of the second order, as in the beryl class.

The face 2131 is inclined to the front and rear plane
of symmetry, a broken line pp in Fig. 137, and must there-
fore be accompanied by 3i21. The other two planes of
symnietry PP repeat this pair of faces in alternate sextants*,
and the six faces shown in Fig. 137 satisfy these planes

* By a sextant is meant one of the six spaces included between

adjoining, lateral crvstallographic axes and meeting in the vertical
axis. ’



102 ELEMENTARY CRYSTALLOGRAPHY

and the trigonal axis. The centre or the axes of half-
turn symmetry require six faces opposite to these, that is,
having their like edges in the three sextants not occupied
by such edges in the upper part of the crystal. Thus
a sharp edge in the lower part will come below a blunt %dge
in the upper, and vice wersa. The result (Fig. 138) is a
form with twelve faces which are scalene triangles. Such a
form is called a scalenohedron. The six lateral
edges of this scalenohedron {2131} are the same as those
of the positive rhombohedron {1011}; it is therefore called
a positive scalenohedron. The form {1231} is a negative
scalenohedron, with the lateral edges coinciding with those
of the negative rhombohedron {o1ir}. The general form
of the positive scalenohedron is {h, h, h,1} and the negative
scalenohedron {h, h,h,1}, where h, is less than h, and
hy=h,+h,. The faces present in these two forms are :—

Positive scalenohedron.

h,h,B,1, T®,h,H1, F,h,h,I,
h,B,h,1, hR,h,1, h,hH,I,
h,h,h,1, h,Rh 1, hHHRI,
h,h,R,1, B hF,1, Hhh,I
Negative scalenohedron.
h,h,R,1, ® h,H,1, F,hh,l,
B, R, b1, h,H,h1, hH,AI,
R,B,h,1, hH,h1, hHhH,I,
h,h, BT, F,h,h 1, B h,h T

In drawing rhombohedra and scalenohedra the ground
plan (as seen from above) should first be drawn. This view
is bounded by a regular hexagon in each case, and it givgs
the vertical construction lines for the front and side views.
The points of a rhombohedron lie on four equidistant
horizontal planes, represented by horizontal lines in the
front and side views; for a scalenohedron the two inner
planes are usually closer to each other than either of them
is to the top or bottom plane. In some crystals, However,



HEXAGONAL SYSTEM 103

they are farther apart. Fig. 139 represents the cleavage
rhombohedron of calcite, and Fig. 140 the scalenohedron
most commonly seen in that mineral.

F16. 139.—Rhombohedron. Fi1G6. 140.—Scalenohedron.

TOURMALINE CLASS
(111 Du, DITRIGONAL UNITERMINAL).

This class has a vertical axis of one-third-turn sym-
metry and three vertical planes of symmetry, but no centre
or half-turn axes of symmetry (Fig. 141). As a consequence
faces occurring at one end of the principal axis are not
repeated at the other, and crystals of this class are uniter-
giinal. The crystallographic axes are placed at right angles
to the planes of symmetry, as in the calcite class, but they
are.not axes of symmetry.

» The basal pinakoid is reduced to one face only, eco1
or 0001, since there is no centre or horizontal line of sym-
metry to necessitate the existence of both faces if one is
present!
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The prism face 10i0 must be accompanied by 100’
and oi10. These three faces satisfy the trigonal axis and
the three planes of symmetry, and therefore the form
{1010} consists of these faces only. It is called a
trigonal prism of the first order,¢ and’
is shown in Fig. 142. The form {0110} is an independent
trigonal prism of the first order.

The prism face 1120 is parallel to a plane of sym-
metry. Consequently the opposite face 1120 must also
be present. The trigonal axis will’add two more faces to

il
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F1G. 141.—Tourmaline Class— FiG. 142.—Trigonal Prism
Symmetry, 3P, tii. of the First Order.

eagh of these, making six in all. The form {1120} there-
fore is the hexagonal prism of the second order, as in the
beryl! class.

The prism face 1230 must be accompanied by
1320, as they adjoin each other on opposite sides of a
plane of symmetry, and these two faces are repeated by the
threefold axis in alternate sextants. Th¢ form {1230}
is therefore a six-faced prism, the edges of which are sharper
and blunter alternately. It is known as’a ditrigonal
prism (Fig. 143), and the general form {h.h.h.ol}.
where hy=h, +h,, has the faces

h,h,h,0, h hyho, h,h h,o,
h,h,h,o, h,hyh,0, hyh,ho0.
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- The trigonal axis requires that the face 1071 must be
accompanied by 1101 and oirr, but these three faces
satisfy all the symmetry of the class. The form {1oi1},
or {hohl}, therefore consists of the three upper faces of a
rhom®ohedron, the lower faces of which would constitute
an entirely independent form, {0111} or {ohhT}.

Similarly the form {rizi}, or {hh2hl}, consists of
the six upper faces of an hexagonal pyramid of the second
order, and {1231}, or {h, b, h, 1}, consists of the six upper
faces of a scalenohedron.

Most of these forms will be seen in Fig. 144, which
represents a crystal of tourmaline. The form {1120}

——

3370 | 1230 1320

4 - ~TA
A N3 ?
F16. 143.—Ditrigonal Prism. F16. 144.—Tourmaline,

alone has the same number of faces in the tourmaline clgss
as in the beryl class. The forms {ooor}, {1oio},
{h,h,h;0} and {hh2h1} have half the number of faces,
and the forms {hohl} and {h,h,h 1} one-fourth the
number of faces of the corresponding forms in the beryl
class,and are sometimes called hemihedral and tetartohedral
fgrms accordingly (Gr. hemi, half, tetartos, fourth).
Crystals of the tourmaline class are often called
hemimorphi ¢, which means the same as uniterminal.
Like most hemimorphic minerals tourmaline is strongly
pyro-electric, the unlike terminations developing opposite
electrical charges during the warming or cooling of the
crystal.  Usually the more obtuse end of a tourmaline
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crystal is the analogous end, i.e., the end at which
addition of heat producesa positive and loss of

heat a negative charge; the other end is said to be
antilogous.

QUARTZ CLASS'
(111 Mu, TRIGONAL HOLOAXIAL).

- In the quartz class the principal axis is one of one-
third-turn symmetry, and the three lateral axes are ljnes of
half-turn symmetry (Fig. 145). There are no planes of
symmetry and no centre of symmetry.

O <o
iii \ ooor
(o
120 .
: Qs "
i " | A2
iii
F1G. 145.—Quartz Class— F16. 146.—Trigonal Prism
Symmetry, iii, 3 ii. of the Second Order.

The basal pinakoid consists of the two faces ooor and
o007, the horizontal lines of symmetry requiring both faces
if one is present.

The prism face 10io must be accompanied by the
opposite face To1o to satnsfy one of the horizontal half-turn
axes. The vertical axis of three-fold symmetry repeats 10jo
in T100 and oiro, and ioio in 1700 and o1To. The form
{1010} is therefore the hexagonal pristh of the first osder,
as in the beryl class.

The trigonal axis requires that the prism face 1120
must be accompanied by 2110 and 1210, and these
three faces satisfy all the symmetry of the class, for the
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three digonal axes of symmetry are at right angles to them
and require the presence of no other faces. The form {1120}
is therefore a three-faced prism, and may be called the
trigonal prism of the second order
(Fig. %46). It is rarely seen’in quartz.

The prism face’ 1230 must be accompanied by five
others giving a ditrigonal prism with sharper
and blunter edges alternately. The general form of this
prism has the faces

h,h,F,0, h,h,h,0, T,h,h,o,

h,hyh,0, h,hyh,0, h,h ho.
These are alternate pairs of faces of the dihexagonal prism
of the beryl class, but it will be seen that the largest index,

(4

F16. 147. F16. 148.
Trigonal Pyramids,

h,, is of the same sign throughout, whereas in the tourmaline
class it is alternately positive and negative in successive
faces. This form is very rare in quartz.

The face 1071 is repeated about the vertical axis in
tge faces 11on and oirr, and the horizontal digonal
axes give three correspondmg faces below, namely,
o1ily ioiiand 1iof. Thus the positive and negative
rhgmbahedra, {hoh1} and {ohhl}, are the same as in the
calcite class.

The face 1131 mus? be accompanied by ZzrIr11
and 1211 around the vertical axis. The horizontal
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lines of symmetry give the lower faces 1121, 2r11i
and 1211, which are not parallel to the upper faces.
These six faces, if occurring alone, would form a trigonal
pyramid with triangular faces. In the. general forms
{hh2hl} and {hzhhl} the greater lateral index is either
positive or negative throughout (Figs. 147, 148).

The face 2131 must have 3211 and 1321 to satisfy
the trigonal axis. These faces are repeated below by the
horizontal lines of symmetry as 3121, 2311 and 1231.
The form {2131} therefore has “six faces, one-half the
faces of the corresponding scalenohedron or one-quarter

C C

A A2

FiG. 149. Fic. 150.
Trigonal Trapezohedra.

those of the dihexagonal pyramid. As usually developed
in quartz, faces of the general forms {h,h h;1} and
{h, hyh,1} are trapezoids, and these forms are therefore
known as trigonal trapezohedra (Figs. 149,
150). . -
The only important forms peculiar to the quartz, class
are {hh2hl} and {h,h, h 1}, and these only occur in eom-
binations, usually with very small faces. The figures show
that each pair of related forms, differing only in the sign of
the greatest lateral index, resembles a pair of gloves, in that
one form is the mirror-image of the other. Such pairs of
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forms are saidtobe enantiomorphic (Gr. enantios,
opposite, morphe, form).

Quartz crystals having, usually, the forms {2711}
and {6131} are said to be left-handed, as the faces of these
formseare arranged in a manner suggesting a left-handed
screw (Fig. 151), while others are right-handed, having
{1121} and {5161}, which resemble a right-handed
screw (Fig. 152). A close connection between crystal form
and molecular structure is suggested by the fact that left-
handed.quartz crystalse®rotate the plane of vibration of
polarised light, propagated parallel to the vertical axis, to

Fi1G. 151. Fi16. 152.
Left-handed Quartz. Right-handed Quartz,

the left, while right-handed crystals rotate it to the right.
In other words, in right-handed crystals the rotation is
clockwise if the light is moving from the back of the clock
to the front.

The symbol of any of the rhomb faces in quartz is
easily obtained by adding the indices of the adjacent
rhombohedron and prism faces, whose edge it truncates,
thus; * 1011 +o110=14121. The trapezoidal face between
this face and the prism face 1010 is found by adding four
tithes the indices of the latter (since the face lies closer to
it) to those of the former, thus 4030+ 1121=5161.

The number of faces present in each form in the various
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classes of the hexagonal system that we have mentioned is
shown in the following table : —

Beryl Class.

Dihexagonal
pyramid, 24.

Pyramid of
the second
order, 12.

Pyramid of
the first order,
12.

Dihexagonal
prism, 12.

Prism of the
second order,
6.

Prism of the
first order, 6.

Basal pina-
koid, 2.

Calcite Class.

Tourmaline Class.

{h,h, B, 1}, e.g., {2131}

Scalenohe-
dron, 12.

Hemi-scaleno-
hedron, 6.

{bh2h1}, e.g., f1121}

Pyramid of
the second
order, 12.

Hemi-pyra-
mid of the
second order,

6.

{hohl}, e.g., {1011}

Rhombohe-
dron, 6,

Hemi-rhomb-
ohedron, 3.

{b, h,h,0}, e.g., {1230}

Dihexagonal Ditrigonal
prism, 12. prism, 6.
{1120}

Prism of the

second order,
6.

Prism of the

second order,
6-

{1010}

Prism of the
first order, 6.

Trigonal
prism of the
first ordey, 3.

{ocor}

Basal pina-
koid, 2.

Basal plane, 1,

Quartz Class,

Trigonal tra-
pezohedron,6.

Trigonal pyr-
amid, 6.

Rhombohe-
dron, 6.

Ditrigonal
prism, 6.

Trigonal
prism of the:
second order

3.

Prism of the
first order, 6.

Basal pina-
koid, 2.
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PRACTICAL WORK.

Calcite. c¢=0.8543. Calcite crystals show a great
variety of habits — acute and obtuse rhombohedra and
scalemohedra, prisms, and thin tabular forms. The com-
monest forms are the scalenohedron {2131} and the cleavage
rhombohedron {1011} (Figs. 138, 135); while a combination
of the prism {10i0o} with the rhombohedron {0112} is
often seen (Fig. 153). Crystals are sometimes highly
modified. ¢

Dvlomite. c=0.8322. This member of the rhombohe-
dral carbonates does not exhibit the same abundance of
forms as calcite. It occurs usuaily as simple rhombohedra,

O
0112 _
1on 22;
»

2241

1070 14.14.283

Fia. 153.—Calcite, F16. 154.—Corundum.

{1011} or {4031}. In some crystals the presence of %ix
faces only of such a form as {3251} (a rhombohedron of
the third order) indicates the lower symmetry of the
phenakite class, with one trigonal axis and a centre of
symmetry only. This is the trigonal central class, IIT Mc
(see p. 127).
* Corundum? c=1.3630. Perhaps the most char-
acteristic habit is the barrel-shaped crystal made up of
second-order pyramids, such as {2233}, {2241} and
{24.14728.3}, with {ooo1} and {1011}, as shown in Fig.154.
Hematite. c¢=1.3656, Crystals are usually tabular
parallel to ooor, with {1071} at the edges.
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Ilmenite. c=1.3846. Resembles hamatite in habit,
but sometimes shows the symmetry of the phenakite class in
the presence of rhombohedra of the second and third orders.

Tourmaline. c=o0.4477. The habit is usually pris-
matic, sometimes flattened, the trigonal cross-section and
the strong vertical striation due to oscillatory combination
of {1oio} and {1120} being characteristicc. The hemi-
morphic character is observable only in complete crystals
(Fig. 155).

Quartz. c=1.09997. Many equartz crystals, such as
Fig. 156, appear o possess the symmetry of the beryt class,
with hexagonal prism (horizontally striated) and pyramid.

VA

Fi1G. 155.—Tourmaline. FiG. 156.—Quartz.

The prism is sometimes wanting. In other specimens the
tws rhombohedra {1071} and {orii} are unequally
developed, simulating calcite-class symmetry.  Compara-
tively rarely are small faces of such forms as {1121} and
{5161} present to show the true symmetry (Figs. 151, 152).

Cinnabar is another mineral crystallising in the quartz
class.



CHAPTER XIV.
TWIN-CRYSTALS.

A twm-crystal consists of two portions (at least), which
have a different orientation, but which are symmetrically
related to each other. Both portions consist of the same
substance with identical or enantiomorphic structure (see
p. 109).

Twinning may be regarded as an unsuccessful attempt
to establish a symmetry higher than that to which the simple
crystal belongs.

In® marv cases the structures of the two parts can be
made to coincide by a rotation of one of them relatively to
the other through a half-turn, about a common axis, thus
simulating a half-turn or digonal axis, which is not pre-
sent. This is line or rotation-twinning.

Frequently, too, coincidence can be obtained by the
reflection of one component on a common plane, as if it
were a plane of symmetry, which it, in fact, is not in the
simple crystal. This is plane or reflection-twinning. »

Less commonly one portion may be considered as repre-
senting the inversion of the other about a point as if there
were a centre of symmetry. Such twinning can, of course,
only occur where the untwinned crystal has no centre of
symmetry. This is point or inversion-twinning.

. If there is. a centre of symmetry in the untwinned
crystal every twin may be regarded either as the result of
the rotation of one component through a half-turn about a
line or,of a reflection about a plane at right angles to +hat
line. Both processes produce the same result. The line is
then termed a twin-axis and the plane a twin-plane.

If there is no centre of symmetry and there is rotation-

113 H
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twinning about a line, that may be regarded as the twin-axis,
and the plane at right angles to it as the twin-plane.

Similarly, if there is only reflection-twinning, the plane
of reflection may be considered as the twin-plane and its
normal as the twin-axis.

In all these cases the twin-axis and twin-plane and
every line in the latter have the same crystallographlc
position in both crystals.

This is true of any line whatever in an inversion-twin,
"so that in such a twin any line might be taken asea twin-
axis and the plane at right angles to it as a twin-plarie.

The components of a twin-crystal are as a rule united
in a plane known as the plane of composition. It is usually
a twin-plane, but occasionally it is another plane passing

FiG. 159.

Fi16. 157. Ve

IMec.

through the twin-axis and having only one or only a limited
number of pairs of lines (at right angles to each other),
which have the same crystallographic position in both
crystals. Such a plane is termed a cross-plane.

Sometimes there is no plane of composition and the
two components mterpenetrate on an irregular surface.

In a twin-crystal there is usually either a twin-plane
parallel to a possible crystal face, or a twin-gxis parallel to a
possible crystal edge, or both.

If the simple crystal possess symmetry 1t wiut usuwaily
be possible to explain a twin-crystal by more than one
mode of twinning, or by the same mode of twinning with
more than one twin-axis.

(1) The commonest and most important case is that
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already alluded to in which the untwinned crystal possesses a
centre of symmetry. As we have seen, the same result is
obtained by reflection on the twin-plane and by rotation on
the twin-axis. This is illustrated by Figs. 157 to 159, which
represent the character of fthe albite twinning of the tri-
clinic mineral albite, in which the brachypinakoid is the
twin-plane.  The first, Fig. 157, represents the supposed
original position of a component of the twin projected on the
brachypinakoid or twin-plane. Fig. 158 shows the result of
a rotatisn about the twirl-axis, which is at right angles to the
twin-plane, the brachypinakoid, and the plane of the paper,
and Fig. 159 that of a reflection on the twin-plane, that is,
on the plane of the paper. It will be seen that the second
and third figures are identical. In the symbols under these
and other twin figures, the numeral and the first two letters
express the symmetry of the twin-axis alone on the
principles explained on pp. 124-125 for the symmetry of the
principal axis of a crystal, and the last letters, L and P,
rotation (line) and reflection (plane) twinning respectively.
In the same manner the letter I indicates inversion twin-
ning. The movements which are supposed to have taken
place are indicated by the indices of the faces shown. The
edges at the back and the indices of the back faces are
dotted. It will be seen that the rotated and reflected com-
ponents have indices of opposite signs. This is always she
, case.

(2) If there be a line of symmetry (see p. 9) in an
untwinned crystal, and if there be an axis of rotation- or of
reﬂectlon-twinnmg or of both at right angles to it, then
there will be another twin-axis of the same type at right
angles both to t}le first twin and to the line of symmetry.

This is illustrated by a twin of quartz, in which there
is a,horizontal axis’of rotation-twinning at right angles to
a digopal axis of symmetry. In such twins there is
anbther axis of rotation-twinning parallel to the vertical axis
(see Figs. 160 and 161). Inethe same manner if there is a
horizontal axis of reflection-twinning at right angles to a
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digonal axis, the vertical axis will also be an axis of reflec-
tion-twinning (see Figs. 160 and 162). As quartz has no
centre of symmetry, these twins will be distinct from one
another. A simple line on the margin of a figure indicates
the direction of an axis of rdtation-twinning, a line with’
another at right angles to it that of an axis of reflection-
twinning.

JAVal AVAYVAYAY
VAVAVAVERVAVAVLY,

Fig, 160. FiG. 161. FiG. 162, FiG. 163.
IIIMh, IIIMh L. 1IIMh P. IIIMh 1.

The case where there is also a centre ¢f symmetry and
each twin-axis is accordingly an axis both of rbtation- and
. . . « . &
reflection-twinning, is illustrated by the Carlsbad-twins of
orthoclase. Here there are two axes of twinning, one the
vertical axis, the other the normal to the orthopinakoid.
Both are at right angles to the ortho-axis, which is here an

ﬁo; ; Hno

lio  iio
ool
oio oio olio oio 010
w Luo‘n o1
o 1o ue 1o lio noYiuo
Fic, 164, FiG. 165. Fi1cG. 166. FiG. 167. FiG. 168.
1Dc. (a) IDc L. (5) 1Dc P. () IDcL., (d) IDcP.

axis of digonal symmetry and therefore a line of symmetry,
and lie in the clinopinakoid, which is a plane of symmetry;
and they are at right angles to each other. .
Orthographic projections of a crystal of orthoglase on
the plane at right angles to the vertical axis are shown'in
Figs. 164 to 168. They demonstrate that the same con-
figuration may be brought about by different operations,
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which can be inferred from the indices of the faces shown.
Fig. 165 shows the positions of the faces after (a) rotation
on the vertical axis; Fig. 166 after (b) reflection on the
horizontal plane to which it is normal; Fig. 167 after (c)
rotat#on on the normal to the orthopinakoid; and Fig. 168
after (d) reflection on the orthopinakoid. All these twin-
ning-operations produce an indistinguishable result.

Figs. 169 to 173 are orthographic projections on the
clinopinakoid corresponding to Figs. 164 to 168.

If ¢as in plagioclasé) there were no symmetry except the
centre* of symmetry, there could be only one iwin-axis in the
same simple twin, corresponding either to (a) and (b) or to
(c) and (d). There are in fact two different kinds of twins
in triclinic felspars corresponding to the Carlshad-twin of
orthoclase. In plagioclase the twin-axis is usually the

oy, o o1 ol 101 l 00!
i ool 101 oo 00 ooy 101

FiG. 170. Fi1G. 171, FIG 172. Fic. 173.
(a) IIMc L. (b) IIMc P. IIMc L. (d) IIMc P.

vertical axis, and in anorthoclase, apparently, the normal to
the macropinakoid.

If the centre of symmetry were absent and only the axis
of digonal symmetry remained, the two twin-axes would
both be either axes of rotation-twinning (@) and (c), or both
axes of reflection-twinning (b) and (d), but not axes of both
kinds of twinning. We shall see later that if only the plane
of symmetry r¢mained, one of the twin-axes would be an
axis of rotation-twinning and the other of reflection-twin-
ning, so that (a) and (d) would be equivalent twinning-opera-
tions and so would (b) and (c), but the two former would
nbt give the same result as the two latter.

(3) If a line of symmetry be an axis of reflection-twin-
ning, the twin-crystal can also be explained by inversion-
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twinning, and, conversely, if a twin-crystal can be explained
by inversion-twinning every line of symmetry is an axis of

reflection-twinning.

There are twins of eulytine, diamond, and tetrahedrite,
which can be described as twirs by reflection on thescube
faces. The crystallographic axes are therefore axes of re-
flection-twinning. As they are at the same time lines of
symmetry, being digonal axes, the twins may also be ex-
plained by inversion-twinning, so that every point of one

-component portion corresponds to an exactly similar point
of the other on the opposite side of the point of inversion.

See Figs. 174 and 17%5.

If one of the digonal axes of quartz be an axis of reflec-
tion-twinning, the twinning may also be regarded as an
inversion-twin. Thus Fig. 163 is an inversion of Fig. 160.

A

b —— -
// .‘\_c
§|J -|a
T e
FIG. 174. FiG. 175.
IVDv. IVDv PI,

A line of symmetry (such as the digonal axes of quartz)
cannot be an axis of rotation-twinning.
« A plane of symmetry will also give rise to equivalent

twin-operations.

(4) If there be an axis of rotation-twinning parallel to a
plane of symmetry, there will be parallel to the same plane
of symmetry an axis of reflection-twinning at right
angles to the axis of rotation-twinning; and, vice wversa,
an axis of reflection-twinning parallele to a plane
of symmetry implies the existence of an axis of, rota-
tion-twinning at right angles to it and parallel to the same
plane of symmetry. Examples may occur in any «<rystal
possessing a plane of symmetry hut no centre of symmetry.

If there be an axis of both Yotation- and reflection-twin-
ning parallel to a plane of symmetry, there will be another
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axis of the same kind of twinning parallel to the same plane
of symmetry and at right angles to the first axis. This case
is, however, the same as the case of a similar axis of twin-
ning at right angles to a line of symmetry, for a centre of
symmetry must be present (See pp. 113, 115), and when that
is the case every plane of symmetry has a line of symmetry
at right angles to it. It has already been illustrated by the
projections of Carlsbad twin-crystals in Figs. 164 to 173. If
the centre of symmetry and line of symmetry did not exist,
but only the plane of sfmmetry, each axis would, as stated
on p.t 117, be an axis of only one mode of twinning, and
while one would be an axis of rotation-twinning, the other
would be an axis of reflection-twinning.

(5) If the normal to a plane of symmetry be an axis of
rotation-twinning, the same twin-crystal can be formed by
inversion-twinning; and if a twin-crystal can be explained
by invgrsion-twinning, the normal to every plane of sym-
metry is an axis of rotation-twinning. Thus the twins of
eulytine, diamond, and tetrahedrite, already referred to
(p. 118, and Figs. 174 and 175), possess axes of rotation-
twinning normal to the six planes of symmetry parallel to
the rhombic-dodecahedron faces.

The normal to a plane of symmetry cannot be an axis of
reflection-twinning. The similarity of the relations between
equivalent twinning-operations due to the presence of a line
or a plane of symmetry, may be seen at a glance in the

'following table, which also shows how closely the normal to
a plane of symmetry is comparable to a line of symmetry.

Line of Symmetry.

If there be an axis of rota-
tdn-, or of refldction-twin-
ning, .qr of beth, at  right
angles to a line of symmetry,
there wi]l be another axis of
rot8tion., or reflection-twin-
ning, respectively, or of both,
at right angles to the line of

The Normal to a Plane of Symmetry.

If there be an axis of rota-
tion-, or of reflection-twin-
ning, or of both, at right
angles to the normal to a
plane of symmetry, there will
be an axis of reflection-, or
rotation-twinning  respective-
Iy, or of both, at right angles
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Line of Symmetry.
symmetry and to the first
axis of twinning.

If a line of symmetry be
an axis of reflection twin-
ning, the twin-crystal is an
inversion-twin.

In an inversion-twin, every
line of symmetry is an axis
of reflection-twinning.

The Normal to a Plane of Symmetry
to the normal to the plane
of symmetry and to the first
axis of twinning. .

These twin-axes will, of
course, be parallel > the
plane ,of symmetry.

If the normal to a plane of
symmetry be an axis,of rota.
tion-twinning, the twin-crys.
tal is an inversion-twin.

«In an inversion-twin, every
normal to a plane of symme.
try is an axis of rotation-

twinning.

A plane of symmetry cannot be a plane of reflection.
twinning.

Axes of symmetry also give rise in many cases to the
multiplication of twin-axes at right angles to them, but it is
unnacessary to continue the subject further here. ¥ull in-
formation on the subject will be found in a paper in the
Mineralogical Magazine, Vol. xviii., 1918, pp. 224-243.

Sometimes the same twin-crystals are composed of a
number of differently orientated portions. If these are
connected by repetitions of the same mode of twinning on
the same axis, as in the albite twins of plagioclase, they
form thin plates or lamelle. This is termed lamellar twin-
niag. In other cases of multiple twinning there are dif-
ferent modes of twinning, or twinning of the same mode on
different axes, for instance, the albite and Carlsbad twins of
plagioclase.

When an orthorhombic crystal is twinned twice in suc-
cession on faces of the same prism or dome, which make
an angle of about 60° with each other, the result is a com-
bination which has approximately trigonal symmetry, and
has been described as a triplet. This is well illus-
trated by the twinning of aragonite.

»

PRACTICAT, WORK.

A series of models of twinned crystals should be drawn.
They should be drawn in such a manner that the twin-plane
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is at right angles to the plane of the paper, and the vertical
axis of one of the components is vertical and in the plane of
the paper. The indices of this component may be marked
as usual. The indices of the other component should be
matked twice over, the first set indicating the faces that

Fi6. 176.—Spinel, twinned Fic. 1¢7.—Rutile, geni- Fic. 178.—Calcite,
on 1IT. culate twin on 101, side twinned on ooo1.
view,

would be brought into the positions shown after a rotation
~through 18q° about the twin-axis, and the second set those
that would be brought there after reflection in the twin-plane.
The two sets may be distinguished by the use of ink of
different colours, or of parentheses, as in Figs. 176 to 181.

T01

(107)
Fi1G. 179.—Staurolite, FiG, 180.—Orthoclase, FiG. 181.—Plagioclase,
twinned on p032. Carlsbad-twinon 100, lamellar albite - twin-
ning on oro,

A list of the most important twins is given below. All
shoyld be drawn. 1t must be understood that where twin-
ning is stated to be on a particular face of a form, twinning
ort any other face of the same form will give an exactly
gimilar result, and in some ofethe drawings of twins in Figs.

I
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176 to 181 it has been found convenient to show the twin-
ning on a face other than that indicated in the list, though
belonging to the same form.

In Fig. 180 the indices of faces in the twinned com-
ponent are those required if 100 is the twin-plane and.-the
twin-axis is horizontal. A bkorizontal twin-plane gnd a’
vertical twin-axis would yield indistinguishable results, but
different faces would be represented, as explained on pp.
116 and 117. .

Twinning  Plane of composi-

lane. tion, if .
Cubic System. P A
Spinel (Fig. 176) 111 Twinning®plane.
Fluor 11X Interpenetrant,
Teiragonal System.
Rutile, geniculate twin (Fzg.177) 101 Twinning Plane.
Rutile, cordate twin 301 » »
Hexagonal System. '
Calcite, twinned on basal plane 0001 ” "
(Fig. 178)
Calcite,twinned on gliding plane o112 » »
Orthorhombic System.
Staurolite, cruciform twin (Fig. 032 » ”
179)
Staurolite 232 » »
Aragonite, pseudo - hexagonal 110 " »
* triplets
Monoclinic System.
Gypsum 100 ” ”
Hornblende 100 » »
Augite 100 ' »
Orthoclase, Carlsbad-twin (Fig. 100 Interpenetrant,
180) . or o10.
Orthoclase, Baveno-twin oz] Twinning, plane.
Orthoclase, Manebach-twin ool o ey,

Triclinic System.
Plagioclase,albite-twin (Fig.184) olo
Kyanite 100



CHAPTER XV.

THE THIRTY-TWO CILASSES OF CRYSTAL
SYMMETRY.

1t, as is now generally recognised to be the fact, a
typical® crystal is madé up of innumerable identical cells
arranged in an orderly structure of rows and nets, it can he
demonstrated that the internal and external symmetry that
it exhibits must belong to one of thirty-two different types,
usually referred to as the classes of crystal symmetry.

Some of these classes involve a form of axial symmetry
which has not been described in earlier chapters. The axes
that show it have been termed rotation-inversion or contra-
directional axes, as opposed to the ordinary simple or co-
directional axes, but for the sake of brevity they will be re-
ferred to hereas inverse axes. Where an inverse
axis of symmetry exists in a crystal, an inversion (that is to
say the reversal of all directions in the crystal) followed by
a rotation through a half, a quarter, or one-sixth of a turn (as
the case may be) about the inverse axis will leave the original
conﬁguratlon of the crystal unchanged. Accordmg as the
minimum rotation required to produoe this result is a Half,
quarter or one-sixth turn, the axis is described as a
digonal, tetragonal, or hexagonal in-
verse axis. There can be no trigonal inverse axes.

It is easily seen that a digonal inverse axis is equivalent
to a plane of s mmetry at right angles to it; that an hexa-
gonal inverse axis is equivalent to a trigonal axis, combined
with' a plane of symmetry at right angles to it; and that a
tetragonal inverse axis necessarily implies the existence of a
dtgonal simple axis. The only one of these inverse axes that
Js of practical importance isghe tetragonal inverse axis that

123



124 ELEMENTARY CRYSTALLOGRAPHY

occurs in chalcopyrite (copper pyrites). Where nothing is
stated as to the character of an axis, a simple axis is of
course to be understood.

In the accompanying table the classes are represented
by symbols consisting of three parts. The first is a capita)
Roman numeral indicating the cyclic number of the“prin-
cipal axis, that is to say of the axis or axes of symmetry
(whether simple or inverse) with the highest symmetry, II
for a digonal axis, IV for a tetragonal axis, VI for an hexa-
gonal axis, and III for a trigonal axis. In the monoclinic
system the ortho-axis is the principal axis. In those ortho-
rhombic classes, in which there are three digonal simple
axes at right angles to one another, it is a matter of in-
difference which of the three digonal axes is taken as the
principal axis. The numeral I signifies that there is no
axial symmetry, and that nothing less than a complete
rotation about any axis will bring the crystal into coinci-
dence with its original configuration, so that any zone-axis
may be regarded as the principal axis. The five tetra-
trigonal or cubic classes characterised by the possession of
four trigonal axes may be indicated by 4III or by a capital
C, the initial letter of cubic. It is true that two of the
cubic classes have three tetragonal simple axes and one
has three tetragonal inverse axes, but the four trigonal axes
are common to all five classes.

The second portion of the class-symbol is a capital
letter, either M for monocyclict or D for dicyclic. In mono-
cyclic classes the principal axis does not lie in a plane of
symmetry. Consequently the succession of faces round it
is different. in opposite directions. In the dicyclic classes
the principal axis has two or more planes of symmetry

* For further information with regard to inverse axes, reference may
be made to the following publications: H. Hilton, Min. qlag-, vol. xiv.,
Fp- 261-263 (1907) ; J. W. Evans, Min. Mag., volexv., pp. 398-400 °(ig10);
Proc. R. S. Ed., vol. xxxii., pp. 418-423 (1912); Zeitschr. f. Kryst., voi.
lii., pp- 332-336 (r913). .

+In former publications the capital letter U was employed for the
monocyclic or * unilateral ** classes, agq B for the dicyclic or  bilateral
classes. Min. Mag., vol. xv., p. 400 (1910).
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passing through it, and the succession of faces round it in
opposite directions is consequently the same.

" The third portion of the class symbol is a small letter
whi€h indicates in what manner the faces of opposite termi-
nations of the prineipal axis are related. If those at one end
are independent of those at the other, the crystal is said to
‘be uniterminal, u, but if the faces at one end are
repeated at the other it is biterminal, and the
-crystals are either ¢entral, c, when the faces at
opplsite ends are connected by a centre of symmetry;
inverse, v,* when their relation is implied by the in-
verse character of the axis; holoaxial or helical,
h, when they are related by two or more digonal axes at
right angles to the principal axis.

The names of the classes are based on the crystallo-
graphig system to which they belong; triclinic, monoclinic,
orthorhombic, tetragonal, hexagonal, trigonal, and tetra-
trigonal or cubic. 'Where the name of the system expresses
the cyclic number of the principal axis, the syllable di- is
prefixed in the dicyclic classes, in accordance with common
usage. In the case of the cubic system it is inserted
between ‘‘ tetra *’ and ‘‘ trigonal.”’ The monocyclic classes
have no corresponding prefix. Then follows one of the
terms already explained—uniterminal, central, inverse, or
holoaxial, which express the relations between the termtina-
tions of the principal axis.

It is, however, frequently convenient to describe a class
by referring to a well-known substance that crystaliises in
it. This course has been followed in the preceding chapters.

In the tablc the classes have been arranged to bring out
tlearly the reldtions between them.

*The p2rticulags relating to each class are given in the
following order :—

(?) The symbol of the class.

(2) Its name.

(3) The name of a supstance (if any) crystallising in it.

* The letter k was formerly employed instead of v.
K
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TABLE SHOWING THE THIRTY-TWO®

Distinctive axial symmetry in the
ifferent classes.

Symbol expressing the cyclic number, %,
of such symmetry.

Classes without

Classes with dj onai

Names of Systems.

axial symmetry, symmetry only.
1 II -
TRICLINIC. MONOCLINIC #p

ORTHORHOMBIC.

MONOCYCLIC, M. No planes of s

ymmetry intersecting

MONOCLINIC.

symmetry connected by their inverse
(contu-directiot':al) character,
n=

Triclinis unsterminal U Mu
UNITERMINAL, Mu, (asymmetric) Monoclinic uniter-
Terminations of the principal axes of c “‘:ﬁ;u CatonuL- minal,
symmetry unlike (hemimorphic). PHATE CANE SuGaR.
n=A, No symme.try ii. axis, o
(1) : (2)
1 Mc 11 Mc
CENTRAL, Mc. Triclinic central, | Monocimic central.
Centre of s*mmetty. ALBITB, .. AUGITE.
n=2k. Centre. ii. axis + plane ot
(2) symmetry +centre.
(4)
II Mv
INVERSE, Mv. Monoclinic inverse.
Terminaticns ot the principal axes of CLINGHEDRITE,

Inverse ii. agis=
plane of symihetry
perpendicular to axis,
2)

CENTRAL, Dc,
(bolohedral).
n=4k.

INVERSE, Dv,
n=zk,

ORTHORHOMBIC
HovroaxiaL or HELicAL, Mh, IT Mh
Terminations of the principal axes of Orthorhombic holo-
symmetry connected by digonal axes axial.
at right angles to them, EPSOMITE.
n-2 3 ii. axes.
)
DICYCLIC, D. Two or more planes of symmetry
II Du
Orthorhombic uni-
UNITERMINAL, Du, termmal.
¢ (hemxmorrhic). HEMIMORPHITE.
n=2k, i1. axis +2 planes

of symmetry.
4)

II De
Orthorhombic central
. Orving.
3 ii. axes + 3 planes of
symmetry + centre.

—_—
.

(Identical with
1I Du)
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Classes with one axis | Classes with an axis | Classes with one axis |Classes with four axes;|
of tetragonal sym-| of hexagonal sym- | of trigonal sy ry.|of trig sy try.
metry. metry.
. v Vi 111 4xIlTor C
THIRAGONAL. HEXAGONAL.» TRIGONAL. TETRA-T‘IJHGONAL
OR .
in the principal axes of symmetry,
' III Mu or C Mu
1V Mu VI Mu - i .
Tetragonal uniter- | Hexagonal uniter-|pc0o, oL Mu .| THTO ‘:’;ﬁm unt-
minas, m Sop1UM PERIODATE. ULLMANNITE,
: WUBFENITE. NEPHELINE, iii. axis, 4 iii. axes + 3 ii.
=, iv. axis, vi. axis, @) axes.
(4 6) (12)
III Mc or C Mc
IV Mc VI Mc 4
Tetragonal central. | Hexagonal central. Trig ,,I,falzng;u val. Tetr “";,‘f::‘:i“’"’“l .
. SCHEELITE, " . A?“'“i‘“ £ PHENAKITE. 4 iii. axes + 3 ii. axes +
iv. axis+plane o Vi axis + prane o iii. axis+ centre, |3 axial planes of sym-
symmetry + centre. symmetry +centre. (6) metry +centre.
(8) (x2) (24)
VI Mv
IV My Hexagonal inverse.

Tetragonal inverse,
No example kffown,
Inverse #v. axi. =ii.

No example known,
Inverse vi. axis = iii,
axis with plane per-

There are no odd inverse axes.
Though VI Mu is apparently trigonal,
it is really hexagonal.

axis. !
pendicular to it,
W ©)

IV Mh VI Mh 111 Mh 4 111 Mh or C Mh
Tetragoral holoaxial| Hexagonal holoaxial,! Trigonal holoaxial. T‘"“";ﬁ';a‘ holo-
STKYCHNINE  SuL- | QUARTZ above 570° C.|QuARrTZ below 570° C. CUPRITE,

PHATE. vi. axis +6 i1, axes, |1il, axis+3 ii. axis, iii. axes +3 iv. axes
iv. axis +4 i1, axes, 4 C46i. asxes..

(C)] (12) (6)  (ag)
intersecting in the principal axes of symmetry,
4 111 buor C bu
1V Du VI Du II1 Du Tetra-ditrigonal unt-
Ditetragonal wniler- | Dihexagonal umiter- | Ditvigonal  uniter- terminal.
minal, minal, minal, TETRAHEDRITE.
SUCCIN-IODIMIDE.. TovyYRITE. TOURMALINE. 4 iu, axes+ 3 nvers
iv, axis +4 planes vi. axis + 6 planes of | iii. ax1s + 3 planes of | 1v, axes=3 1i, axes+
of symmetry. symmetry. symmetry, 6 diagonal planes of
(8) (x2) ) symmetry.
_ (24)
4 11T Dc or C Dc

IV D¢ . VIDc 111 Dec Tetra-dstrigonal cen-
Datetragonal central. | Dihexagonal central, | Ditrigonal central. tral

ZIRCON, Bervr. ALCITE, SPINEL.

iv. axis +? ii. axes+ | vi. axis+6ii, axes+ | iii, axis+3 u. axes+ |4 iii. axes +3 iv, axes
5 planes of symmetry | 7 pl of syl try | 5 pl of sy ry | +6 1, axes+3 axial
+centre. +centre. +centre. and 6diagonal planes
[ (16) » (24) (12) of symrmetry + centre.
(48)
-, ’ oVI Dv.
1V Dv Dihexagonal inverse.
D:’dmgonal inverse, BENITOITE.

CHALCOPYRITE.
nverse iv, axis=ii,
axI:+2 other 1. axes
+ 2 planes of sym-
metry bisecting the
angles between the
latter.
® ,

Inverse vi. axis=iii,
axis with plane of
symmetry perpen-
dicular to it + 3 ii.
axes+ 3 other plane®
of symmetry passing
| through the inverse
1 uxis and the ii. axes.

There are no odd inverse axes.
Though VI Du is apparently trigonal,

it is really

| (12)

exagonal,
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(4) The symmetry of the class.

(5) The number (in parentheses) of faces in the general

form, the ‘' symmetry number ** of Shearer.

In describing the symmetcy the cyclic number of an
axis of symmetry is indicated by small Roman numerals,
it, iv, vi or iii. If it is an inverse axis, this is stated..
An Arabic numeral, placed before the numeral expressing
an axis of symmetry, shows the number of such axes.

All classes the principal axes @f which have the same
cyclic number are placed in the same column, whether the
principal axis be simple or inverse. The last column con-
tains the classes of the tetra-trigonal or cubic system, the dis-
tinctive feature of which is, as has been stated, the presence
of four trigonal axes.

All the classes of the same system are found in the same
column, so that column and system coincide except in the
case of the digonal column, which contains three mdnoclinic
and three orthorhombic classes.

The symmetry number, n, is either equal to the cyclic
number k, or twice or four times its amount. For this pur-
pose, the cyclic number of the cubic system must be taken
as 4 xiii=12.

The classes in the same horizontal row also show close
similarity in their symmetry.

« Those in the monocyclic uniterminal, Mu, row have no
symmetry other than the axial symmetry common to the"
whole column to which they belong. The only exception is
the tetra-trigonal uniterminal class in which the four trigonal
axes are connected by three digonal axes* at right angles to
one another. In the Mu row n=k.

In the classes of the monocyclic central, Mc, row the
central symmetry is added to that of the principal axis, with
the result that where the axis is a line of symmetry, thatsds to
say has a cyclic number 2, 4, or 6, there is a plane of sym-
metry at right angles to it. This is not the case where the
cyclic number is 3; but in tRe tetra-trigonal central clast:
(that of pyrite) there is a plane of symmetry at right angles
to each of the three digonal axes. In the Mc row n=2k.

* These are not tetragonal inverse axes. N
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The monocyclic inverse, Mv, row is of course only re-
presented in the three columns with even cyclic numbers.
Reference has already been made to the symmetry implied
by these axes. In this row n=k.

Phe next is the monocyclic holoaxial, Mh, row. Here
there are as many digonal axes at right angles to the prin-
cipal axis as the cyclic number of the latter. Such a crystal
is said to be holoaxial, because it has as many axes of sym-
metry as any class in the same column, but has no other
symmetry In the tetta-trigonal holoaxial class there are
six digonal axes, and each of the four trigonal axes has
three of these digonal axes at right angles to it. In the Mh
row n=2k.

The dicyclic uniterminal, Du, row has as many planes
of symmetry parallel to the principal axis of symmetry as the
cyclic number of that axis. These and the principal axis of
symmetry 8re the only elements of symmetry, except in the
tetra-trigorial class, where there are also three tetragonal
inverse axes (which are, of course, also digonal simple axes)
at right angles to one another. There are six planes of
symmetry, and each of the four trigonal axes has three of
these passing through it. In the Du row n=2k.

There is a close analogy between the Mh and Du rows.
Every lateral digonal axis in the former is represented in
the latter by the normal to a plane of symmetry, that 15 to
say by a digonal inverse axis.

The dicyclic central, D¢, row combines the symmetry of
the monocyclic holoaxial and the dicyclic uniterminal rows.
As a result of the presence of the centre of symmetry, every
line of symmetry, that is every even axis of symmetry, has a
plane of symmetry at right angles to it. The crystals of the
Blasses in this Yow are sometimes said to be holohedral, as
they* Rave the maximum symmetry and number of faces in
the®general form of any of the classes of the column and

? “1t is sometimes referred to as helical, because, although it has no
lanes of symmetry parallel to it, she terminations, like those of a screw,
can be brought by rotation about a normal to the axis into coincidence with
one another,,

L
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system to which they belong. The name is extended to the
monoclinic central class, as that has the highest symmetry
of the monoclinic system, and to the triclinic central class
for a similar reason. In the Dc row n=4k.

The dicyclic inverse, Dv, row is similar to the ntono-
cyclic inverse row, but it has a number of planes of sym-
metry parallel to the principal axis equal to its cyclic num-
ber, if it be considered as a simple axis (half its cyclic number
as an inverse axis), in addition to the plane of symmetry
at right angles to the principal axis” which is present both
in the hexagonal and dihexagonal inverse classes (ViMv
and VIDv). There are also the same number of digonal
axes at right angles to the principal axis. In the ditetra-
gonal inverse class these bisect the dihedral angles hetween
the planes of symmetry parallel to the principal axis, while
in the dihexagonal inverse class they lie in those planes.
These digonal axes are in addition to the pridtipgl axis,
which in both the tetragonal and ditetragonal inverse classes
(IVMv and IVDv) is a simple digonal axis as well as an
inverse tetragonal axis. In the Dv row n=2k.

‘As the principal axis in the hexagonal inverse (VIMv)
class and the dihexagonal inverse class (VIDv) is a trigonal
simple axis, these classes are usually placed in the trigonal
system, but the principal axis is in fact an hexagonal inverse
axis, and their proper place is in the hexagonal system, as
was' first pointed out by Professor Hilton.*

The absence of crystals that can be referred to the mono-
cyclic classes IVMv and VIMv, and the rarity of crystals
crystallising in the other classes with low symmetry in each
system, are probably not due to the absence of ultimate cells
possessing such reduced symmetry, but to the fact that the
outer characters of such cells are so similar that they can ber
employed indiscriminately in building up a cry$tal, so that
the latter is of a more generalised type, and theérefore
possesses higher symmetry than each individual cell.*

In some cases the outer form appears to indicate a

® Min. Mag., vol. xiv., pp. 261-263 (1907). .
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higher symmetry than that which the structure as a whole
possesses, but evidence of the lower symmetry of the latter
is afforded by the variation in the action of solvents along
different directions, which results in the formation of what
are lgnown as etched figures on the surface of the faces, or
by the phenomena ¢f X-rays reflection, or by other physical
characters mainly optical or electrical.
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