


Fundamentals of 
Crystallography 

C. GIACOVAZZO, H. L. MONACO, D. VITERBO 
F. SCORDARI, G. GILLI, G. ZANOTTI, M. CATTl 

Edited by 

C. GIACOVAZZO 
Dipartimento Geomineralogico, University of Bari, ltaly 

and lstituto di Ricerca per lo Sviluppo delle Metodologie Cristallografiche, 
CNR, Bari, ltaly 

INTERNATIONAL UNION OF CRYSTALLOGRAPHY 
OXFORD UNIVERSITY PRESS 



OXFORD 
UNIVERSITY PRESS 

Great Clarendon Street, Oxford 0x2 6 D P  

Oxford University Press is a department of the University of Oxford. 
It furthers the University's objective of excellence in research, scholarship, 

and education by publishing worldwide in 
Oxford New Yorlz 

Athens Auclzland Bangkok Bogota Buenos Aires Calcutta 
Cape Town Chennai Dares Salaam Delhi Florence Hong Kong Istanbul 

Karachi KualaLumpur Madrid Melbourne MexicoCity Mumbai 
Nairobi Paris S%o Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw 

with associated companies in Berlin Ibadan 

Oxford is a registered trade mark of Oxford University Press 
in the UK and in certain other countries 

Published in the United States 
by Oxford University Press Inc., New York 

O C. Giacovazzo, H. L. Monaco, D. Viterbo, 
F. Scordari, G. Gilli, G. Zanotti, M. Catti, 1992 

The moral rights of the author have been asserted 
Database right Oxford University Press (maker) 

Parts of this work first appeared as Introduzione alla cristallografia moderna by 
M. Bolognesi, A. Coda, C. Giacovazzo, G. Gilli, F. Scordari, and D. Viterbo, edited by 

C. Giacovazzo, and published by Edizioni Fratelli Laterza, O 1985 

First published by Oxford University Press 1992 
Reprinted 1994,1995,1998,2000 

All rights resewed. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, 

without the prior permission in writing of Oxford University Press, 
or as expressly permitted by law, or under terms agreed with the appropriate 

reprographics rights organization. Enquiries concerning reproduction 
outside the scope of the above should be sent to the Rights Department, 

Oxford University Press, at the address above 

You must not circulate this book in any other binding or cover 
and you must impose this same condition on any acquirer 

A catalogue record for this book is available from the British Library 

Library of Congress Cataloging in Publication Data 
Fundamentals of crystallography/C. Giacovazzo . . . [et al.]; edited by C. Giacovazzo. 

(International Union of Crystallography texts on crystallography; 2). Includes bibliographical 
references. 

1. Crystallography. I. Giacovazzo, Carmelo. 11. Series. QD905.2.F86 1992 548- 
dc2O 91-27271 

ISBN 0 19 855578 4 (Pblz.) 

Printed in Great Britain 
on acid-free paper by 
The Bath Press, Bath 



Preface 

Crystallography, the science concerned with the study of crystals, is a very 
old subject. However, only in this century has it developed into a modern 
science, after the discovery of X-rays and their diffraction by crystals. In 
recent years crystallography as assumed an increasingly important role in 
the modern sciences because f o its interdisciplinary nature, which has acted 
as a bridge between, and often as a stimulus for, various rapidly evolving 
disciplines. Indeed, Chemistry, Physics, Earth Sciences, Biology, Mathema- 
tics, and Materials Science have all provided stimuli to the development of 
new crystallographic interests and techniques. In turn, crystallography has 
significantly contributed to the advancement of these sciences. Thus, while 
on the one hand crystallography has been enriched, on the other hand 
writing a textbook describing all of its aspects has been made more difficult. 

Recently, the demand for a compact book that gives a comprehensive 
account of the modern crystallographic subjects has increased. This volume 
should therefore be a useful and handy textbook for university courses that 
cover crystallography, fully or only partially. It should also be useful at the 
more advanced level required for doctorate studies as well as for ex- 
perienced researchers. 

It was with these ideas in mind that I first set out to co-ordinate the 
in 1985, of a textbook in Italian (Introduzione alla cris- 

tallograjia moderna, Edizioni Fratelli Laterza, Bari) of which Fundamentals 
of crystallography is not only an English translation, but a completely 
revised and updated version with a new chapter on crystal physics. It was 
clear to me that (a) the book had to be written by several authors in order 
to take advantage of their specific expertise; (b) the different chapters had 
to be carefully harmonized in order to conform them to a unified plan. 

It seems to me that these two requirements are even more valid today and 
their achievement is entirely due to the creative co-operation of the 
co-authors of this book. 

Two of the co-authors of the Italian textbook, M. Bolognesi and A. 
Coda, were unable to carry out the translation and revision of their 
chapters. I wish to express my thanks for their valuable contribution to the 
previous edition. In this book their topics are treated by G. Zanotti and 
H. L. Monaco. An additional chapter on crystal physics has been written by 
M. Catti. I thank the three new authors for entering our team and all the 
authors for their enthusiastic participation in this project. 

Bari, Italy 
August 1991 

C.G. 
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Symmetry in crystals 
CARMELO GIACOVAZZO 

The crystalline state and isometric operations 

Matter is usually classified into three states: gaseous, liquid, and solid. 
Gases are composed of almost isolated particles, except for occasional 
collisions; they tend to occupy all the available volume, which is subject to 
variation following changes in pressure. In liquids the attraction between 
nearest-neighbour particles is high enough to keep the particles almost in 
contact. As a consequence liquids can only be slightly compressed. The 
thermal motion has sufficient energy to move the molecules away from the 
attractive field of their neighbours; the particles are not linked together 
permanently, thus allowing liquids to flow. 

If we reduce the thermal motion of a liquid, the links between molecules 
will become more stable. The molecules will then cluster together to form 
what is macroscopically observed as a rigid body. They can assume a 
random disposition, but an ordered pattern is more likely because it 
corresponds to a lower energy state. This ordered disposition of molecules is 
called the crystalline state. As a consequence of our increased understand- 
ing of the structure of matter, it has become more convenient to classify 
matter into the three states: gaseous, liquid, and crystalline. 

Can we then conclude that all solid materials are crystalline? For 
instance, can common glass and calcite (calcium carbonate present in 
nature) both be considered as crystalline? Even though both materials have 
high hardness and are transparent to light, glass, but not calcite, breaks in a 
completely irregular way. This is due to the fact that glass is formed by long, 
randomly disposed macromolecules of silicon dioxide. When it is formed 
from the molten state (glass does not possess a definite melting point, but 
becomes progressively less fluid) the thermal energy which remains as the 
material is cooled does not allow the polymers to assume a regular pattern. 
This disordered disposition, characteristic of the liquid state, is therefore 
retained when the cooling is completed. Usually glasses are referred to as 
overcooled liquids, while non-fluid materials with a very high degree of 
disorder are known as amorphous solids. 

A distinctive property of the crystalline state is a regular repetition in the 
three-dimensional space of an object (as postulated as early as the end of 
the eighteenth century by R. J. Haiiy), made of molecules or groups of 
molecules, extending over a distance corresponding to thousands of 
molecular dimensions. However, a crystal necessarily has a number of 
defects at non-zero temperature and/or may contain impurities without 
losing its order. Furthermore: 

1. Some crystals do not show three-dimensional periodicity because the 
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basic crystal periodicity is modulated by periodic distortions incom- 
mensurated with the basic periods (i.e. in incommensurately modulated 
structures, IMS). It has, however, been shown (p. 171 and Appendix 
3.E) that IMSs are periodic in a suitable (3 + d)-dimensional space. 

2. Some polymers only show a bi-dimensional order and most fibrous 
materials are ordered only along the fiber axis. 

3. Some organic crystals, when conveniently heated, assume a state 
intermediate between solid and liquid, which is called the mesomorphic 
or liquid crystal state. 

These examples indicate that periodicity can be observed to a lesser or 
greater extent in crystals, depending on their nature and on the thermo- 
dynamic conditions of their formation. It is therefore useful to introduce the 
concept of a real crystal to stress the differences from an ideal crystal with 
perfect periodicity. Although non-ideality may sometimes be a problem, 
more often it is the cause of favourable properties which are widely used in 
materials science and in solid state physics. 

In this chapter the symmetry rules determining the formation of an ideal 
crystalline state are considered (the reader will find a deeper account in 
some papers devoted to the subject, or some exhaustive or in the 
theoretical sections of the International Tables for Cryst~llography).[~~ 

In order to understand the periodic and ordered nature of crystals it is 
necessary to know the operations by which the repetition of the basic 
molecular motif is obtained. An important step is achieved by answering the 
following question: given two identical objects, placed in random positions 
and orientations, which operations should be performed to superpose one 
object onto the other? 

The well known coexistence of enantiomeric molecules demands a 
second question: given two enantiomorphous (the term enantiomeric will 
only be used for molecules) objects, which are the operations required to 
superpose the two objects? 

An exhaustive answer to the two questions is given by the theory of 
isometric transformations, the basic concepts of which are described in 
Appendix 1.A, while here only its most useful results will be considered. 

Two objects are said to be congruent if to each point of one object 
corresponds a point of the other and if the distance between two points of 
one object is equal to the distance between the corresponding points of the 
other. As a consequence, the corresponding angles will also be equal in 
absolute value. In mathematics such a correspondence is called isometric. 

The congruence may either be direct or opposite, according to whether 
the corresponding angles have the same or opposite signs. If the congruence 
is direct, one object can be brought to coincide with the other by a 
convenient movement during which it behaves as a rigid body. The 
movement may be: 

(1) a translation, when all points of the object undergo an equal 
displacement in the same direction; 

(2) a rotation around an axis; all points on the axis will not change their 
position; 
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(3) a rototranslation or screw movement, which may be considered as the 
combination (product) of a rotation around the axis and a transl-ation 
along the axial direction (the order of the two operations may be 
exchanged). 

If the congruence is opposite, then one object will be said to be 
enantiomorphous with respect to the other. The two objects may be brought 
to coincidence by the following operations: 

(1) a symmetry operation with respect to a point, known as inversion; 

(2) a symmetry operation with respect to a plane, known as reflection; 

(3) the product of a rotation around an axis by an inversion with respect to 
a point on the axis; the operation is called rotoinversion; 

(4) the product of a reflection by a translation parallel to the reflection 
plane; the plane is then called a glide plane. 

(5) the product of a rotation by a reflection with respect to a plane 
perpendicular to the axis; the operation is called rotoreflection. 

Symmetry elements 

Suppose that the isometric operations described in the preceding section, 
not only bring to coincidence a couple of congruent objects, but act on the 
entire space. If all the properties of the space remain unchanged after a 
given operation has been carried out, the operation will be a symmetry 
operation. Symmetry elements are points, axes, or planes with respect to 
which symmetry operations are performed. . 

In the following these elements will be considered in more detail, while 
the description of translation operators will be treated in subsequent 
sections. 

Axes of rotational symmetry 

If all the properties of the space remain unchanged after a rotation of 2nIn 
around an axis, this will be called a symmetry axis of order n ;  its written 
symbol is n. We will be mainly interested (cf. p. 9) in the axes 1, 2, 3, 4, 6. 
Axis 1 is trivial, since, after a rotation of 360" around whatever direction 
the space properties will always remain the same. The graphic symbols for 
the 2, 3, 4, 6 axes (called two-, three-, four-, sixfold axes) are shown in 
Table 1.1. In the first column of Fig. 1.1 their effects on the space are 
illustrated. In keeping with international notation, an object is represented 
by a circle, with a + or - sign next to it indicating whether it is above or 
below the page plane. There is no graphic symbol for the 1 axis. Note that a 
4 axis is at the same time a 2 axis, and a 6 axis is at the same time a 2 and a 
3 axis. 



4 1 Carmelo Giacovazzo 

Fig. 1.1. Arrangements of symmetry-equivalent 
objects as an effect of rotation, inversion, and 
screw axes. 

Table 1.1. Graphical symbols for symmetry elements: (a) axes normal to the pfane of 
projection; (b) axes 2 and 2, ,parallel to the plane of projection; (c) axes parallel or 
inclined to the plane of projection; (d) symmetry pfanes normar to the plane of 
projection; (e) symmetry planes parallel to the plane of projection 
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Axes of rototranslation or screw axes 
A rototranslational symmetry axis will have an order n and a translational 
component t ,  if all the properties of the space remain unchanged after a 
2nln rotation around the axis and the translation by t along the axis. On p. 
10 we will see that in crystals only screw axes of order 1, 2, 3, 4, 6 can exist 
with appropriate translational components. 

Axes of inversion 
An inversion axis of order n is present when all the properties of the space 
remain unchanged after performing the product of a 2nln rotation around 
the axis by an inversion with respect to a point located on the same axis. 
The written symbol is f i  (read 'minus n' or 'bar n'). As we shall see on p. 9 
we will be mainly interested in 1, 2, 3, 4, 6 axes, and their graphic symbols 
are given in Table 1.1, while their effects on the space are represented in the 
second column of Fig. 1.1. According to international notation, if an object 
is represented by a circle, its enantiomorph is depicted by a circle with a 
comma inside. When the two enantiomorphous objects fall one on top of 
the other in the projection plane of the picture, they are represented by a 
single circle divided into two halves, one of which contains a comma. To 
each half the appropriate + or - sign is assigned. 

We may note that: 

(1) the direction of the i axis is irrelevant, since the operation coincides 
with an inversion with respect to a point; 

(2) the 2 axis is equivalent to a reflection plane perpendicular to it; the 
properties of the half-space on one side of the plane are identical to 
those of the other half-space after the reflection operation. The written 
symbol of this plane is m; 

(3) the 3 axis is equivalent to the product of a threefold rotation by an 
inversion: i.e. 3 = 31; 

(4) the 4 axis is also a 2 axis; 

(5) the 6 axis is equivalent to the product of a threefold rotation by a 
reflection with respect to a plane normal to it; this will be indicated by 
6 = 3/m. 

Axes of rotoreflection 
A rotoreflection axis of order n is present when all the properties of the 
space do not change after performing the product of a 2nln rotation around 
an axis by a reflection with respect to a plane normal to it. The written 
symbol of this axis is fi. The effects on the space of the 1, 2, 3 ,  4, 6 axes 
coincide with those caused by an inversion axis (generally of a different 
order). In particular: i = m, 2 = 1, 3 = 6, 4 = 4, 6 = 3. From now on we will 
no longer consider the ii axes but their equivalent inversion axes. 
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/Cl /Cl /Cl ,,Cl /Cl ,,Cl ,Cl 

o , ? ? ? ? ? ?  
H H H H H H H  

/C1 /Cl /Cl /Cl &C1 7 1  /Cl 

H H H H  

Reflection planes with translational component (glide 
planes) 
A glide plane operator is present if the properties of the half-space on one 
side of the plane are identical to those of the other half-space after the 
product of a reflection with respect to the plane by a translation parallel to 
the plane. On p. 11 we shall see which are the glide planes found in crystals. 

Symmetry operations relating objects referred by direct congruence are 
called proper (we will also refer to proper symmetry axes) while those 
relating objects referred by opposite congruence are called improper (we 
will also refer to improper axes). 

Lattices 

Translational periodicity in crystals can be conveniently studied by con- 
sidering the geometry of the repetion rather than the properties of the motif 
which is repeated. If the motif is periodically repeated at intervals a, b, and 
c along three non-coplanar directions, the repetition geometry can be fully 
described by a periodic sequence of points, separated by intervals a, b, c 
along the same three directions. This collection of points will be called a 
lattice. We will speak of line, plane, and space lattices, depending on 
whether the periodicity is observed in one direction, in a plane, or in a 
three-dimensional space. An example is illustrated in Fig. 1.2(a), where 
HOCl is a geometrical motif repeated at intervals a and b. If we replace the 
molecule with a point positioned at its centre of gravity, we obtain the 
lattice of Fig. 1.2(b). Note that, if instead of placing the lattice point at the 
centre of gravity, we locate it on the oxygen atom or on any other point of 
the motif, the lattice does not change. Therefore the position of the lattice 
with respect to the motif is completely arbitrary. 

If any lattice point is chosen as the origin of the lattice, the position of 
any other point in Fig. 1.2(b) is uniquely defined by the vector 

where u and v are positive or negative integers. The vectors a and b define a 
parallelogram which is called the unit cell: a and b are the basis vectors of 
the cell. The choice of the vectors a and b is rather arbitrary. In Fig. 1.2(b) 
four possible choices are shown; they are all characterized by the property 
that each lattice point satisfies relation (1.1) with integer u and v. 

Nevertheless we are allowed to choose different types of unit cells, such 
as those shown in Fig. 1.2(c), having double or triple area with respect to 
those selected in Fig. 1.2(b). In this case each lattice point will still satisfy 
(1.1) but u and v are no longer restricted to integer values. For instance, the 
point P is related to the origin 0 and to the basis vectors a' and b' through 
( 4  v) = (112, 112). 

The different types of unit cells are better characterized by determining 
the number of lattice points belonging to them, taking into account that the 

~ i ~ .  (a) R~~~~~~~~~ of a graphical motif as an points on sides and on corners are only partially shared by the given cell. 
example of a two-dimensional crystal; (b) The cells shown in Fig. 1.2(b) contain only one lattice point, since the 
corresponding lattice with some examples Of four points at the corners of each cell belong to it for only 114. These cells primitive cells; (c) corresponding lattice with 
some examples of multiple cells. are called primitive. The cells in Fig. 1.2(c) contain either two or three 
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points and are called multiple or centred cells. Several kinds of multiple 
cells are possible: i.e. double cells, triple cells, etc., depending on whether 
they contain two, three, etc. lattice points. 

The above considerations can be easily extended to linear and space 
lattices. For the latter in particular, given an origin 0 and three basis 

I I 

vectors a,  b, and c, each node is uniquely defined by the vector 

(1.2) = ua + ub + WC.  

The three basis vectors define a parallelepiped, called again a unit cell. a 
The directions specified by the vectors a,  b,  and c are the X,  Y, Z Fig. Notation for a unit cell. 

crystallographic axes, respectively, while the angles between them are 
indicated by a, 0, and y, with a opposing a,  opposing b,  and y opposing 
c (cf. Fig. 1.3). The volume of the unit cell is given by 

where the symbol '.' indicates the scalar product and the symbol ' A ' the 
vector product. The orientation of the three crystallographic axes is usually 
chosen in such a way that an observer located along the positive direction of 
c sees a moving towards b by an anti-clockwise rotation. The faces of the 
unit cell facing a,  b, and c are indicated by A, B, C, respectively. If the 
chosen cell is primitive, then the values of u, u, w in (1.2) are bound to be 
integer for all the lattice points. If the cell is multiple then u, u, w will have 
rational values. To characterize the cell we must recall that a lattice point at 
vertex belongs to it only for 1/8th, a point on a edge for 114, and one on a 
face for 112. 

The rational properties of lattices 

Since a lattice point can always be characterized by rational numbers, the 
lattice properties related to them are called rational. Directions defined by 
two lattice points will be called rational directions, and planes defined by 
three lattice points rational planes. Directions and planes of this type are 
also called crystallographic directions and planes. 

Crystallographic directions 
Since crystals are anisotropic, it is necessary to specify in a simple way 
directions (or planes) in which specific physical properties are observed. 

Two lattice points define a lattice row. In a lattice there are an infinite 
number of parallel rows (see Fig. 1.4): they are identical under lattice 
translation and in particular they have the same translation period. 

A lattice row defines a crystallographic direction. Suppose we have chosen a 
primitive unit cell. The two lattice vectors Q ,,,, and Q ,,,,,,, ,, with u, u, 
w, and n integer, define two different lattice points, but only one direction. 
This property may be used to characterize a direction in a unique way. For 
instance, the direction associated with the vector Q9,,,, can be uniquely 
defined by the vector Q,,,,, with no common factor among the indices. This 
direction will be indicated by the symbol [3 1 21, to be read as 'three, one, 
two' and not 'three hundred and twelve'. Fig. 1.4. Lattice rows and planes. 
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When the cell is not primitive u, v, w, and n will be rational numbers. 
Thus Q112,312,-113 and Q512,1512,-5,3 define the same direction. The indices of 
the former may therefore be factorized to obtain a common denominator 
and no common factor among the numerators: Q,,,,,,, ,-,, , = Q3,6,,,6,-,,6 + 
[3 9 -21 to be read 'three', nine, minus two'. 

Crystallographic planes 

Three lattice points define a crystallographic plane. Suppose it intersects the 
three crystallographic axes X ,  Y ,  and Z at the three lattice points ( p ,  0,  0 ) )  
(0 ,  q ,  0 )  and (0, 0 ,  r )  with integer p, q, r (see Fig. 1.5). Suppose that m is 
the least common multiple of p, q ,  r. Then the equation of the plane is 

x'lpa + y ' lqb + z ' lrc  = 1. 

If we introduce the fractional coordinates x = x ' la ,  y = y ' lb ,  z = z l / c ,  the 
equation of the plane becomes 

x l p  + y lq  + z l r  = 1. (1.3) 

Multiplying both sides by m we obtain 

hx + ky + lz = m (1.4) 
Fig. 1.5. Some lattice planes of the set (236). 

where h ,  k ,  and 1 are suitable integers, the largest common integer factor of 
which will be 1. 

We can therefore construct a family of planes parallel to the plane (1.4), 
by varying m over all integer numbers from -m to +m. These will also be 
crystallographic planes since each of them is bound to pass through at least 
three lattice points. 

The rational properties of all points being the same, there will be a plane 
of the family passing through each lattice point. For the same reason each 
lattice plane is identical to any other within the family through a lattice 
translation. 

Let us now show that (1.4) represents a plane at a distance from the 
origin m times the distance of the plane 

The intercepts of the plane (1.5) on X, Y ,  Z will be l l h ,  l l k  and 111 
respectively and those of (1.4) m l h ,  m l k ,  ml l .  It is then clear that the 
distance of plane (1.4) from the origin is m times that of plane (1.5). The 
first plane of the family intersecting the axes X ,  Y ,  and Z at three lattice 
points is that characterized by a m value equal to the least common mutiple 
of h ,  k ,  I. We can therefore conclude that eqn (1.4) defines, as m is varied, a 
family of identical and equally spaced crystallographic planes. The three 
indices h ,  k ,  and 1 define the family and are its Miller indices. To indicate 
that a family of lattice planes is defined by a sequence of three integers, 
these are included within braces: ( h  k I ) .  A simple interpretation of the 
three indices h,  k ,  and I can be deduced from (1.4) and (1.5). In fact they 



indicate that the planes of the family divide a in h parts, b in k parts, and c 
in 1 parts. 

Crystallographic planes parallel to one of the three axes X, Y, or Z are 
defined by indices of type (Okl), (hol), or (hkO) respectively. Planes parallel 
to faces A, B, and C of the unit cell are of type (hOO), (OkO), and (001) 
respectively. Some examples of crystallographic planes are illustrated in Fig. 
1.6. 

As a numerical example let us consider the plane 

which can be written as 

The first plane of the family with integer intersections on the three axes will 
be the 30th (30 being the least common multiple of 10, 15, and 6) and all the 
planes of the family can be obtained from the equation lox + 15y + 62 = m, 
by varying m over all integers from -m to +m. We observe that if we divide 
p, q, and r in eqn (1.6) by their common integer factor we obtain 
x/3 + y/2 + z/5 = 1, from which 

Planes (1.7) and (1.8) belong to the same family. We conclude that a 
family of crystallographic planes is always uniquely defined by three indices 
h, k, and 1 having the largest common integer factor equal to unity. 

Symmetry restrictions due to the lattice 
periodicity and vice versa 

Suppose that the disposition of the molecules in a crystal is compatible with 
an n axis. As a consequence the disposition of lattice points must also be 
compatible with the same axis. Without losing generality, we will assume 
that n passes through the origin 0 of the lattice. Since each lattice point has 
identical rational properties, there will be an n axis passing through each 
and every lattice point, parallel to that passing through the origin. In 
particular each symmetry axis will lie along a row and will be perpendicular 
to a crystallographic plane. 

Let T be the period vector of a row passing through 0 and normal to n. 
We will then have lattice points (see Fig. 1.7(a)) at T, -T, T', and T". The 
vector T' - T" must also be a lattice vector and, being parallel to T, we will 
have T'  - T" = mT where m is an integer value: in a scalar form 

2 cos (2nIn) = m (m integer). (1.9) 

Equation (1.9) is only verified for n = 1, 2, 3, 4, 6. It is noteworthy that a 
5 axis is not allowed, this being the reason why it is impossible to pave a 
room only with pentagonal tiles (see Fig. 1.7(b). 

A unit cell, and therefore a lattice, compatible with an n axis will also be 
compatible with an ii axis and vice versa. Thus axes I, 3, 3, 4, 6 will also be 

Symmetry in crystals 1 9 

0 k. (110) (010) 

(zio) 

Fig. 1.6. Miller indices for some crystallographic 
planes parallel to Z ( Z i s  supposed to be normal 
to the page). 

(b) 
Fig. 1.7.(a) Lattice points in a plane normal to the 
symmetry axis n passing through 0. (b) Regular 

allowed. pentagons cannot fill planar space. 
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Let us now consider the restrictions imposed by the periodic nature of 
crystals on the translational components t of a screw axis. Suppose that this 
lies along a row with period vector T. Its rotational component must 
correspond to n = 1, 2, 3, 4, 6. If we apply the translational component n 
times the resulting displacement will be nt. In order to maintain the 
periodicity of the crystal we must have nt =pT,  with integer p ,  or 

For instance, for a screw axis of order 4 the allowed translational 
components will be (0/4)T, (1/4)T, (2/4)T, (3/4)T, (4/4)T, (5/4)T, . . .; of 
these only the first four will be distinct. It follows that: 

(1) in (1.10) p can be restricted within 0 s p  < n ;  

(2) the n-fold axis may be thought as a special screw with t = 0. The nature 

Fig. 1.8. Screw axes: arrangement of symmetry- 
equivalent objects. 

of a screw axis is completely defined by the symbol n,. The graphic 
symbols are shown in Table 1.1: the effects of screw axes on the 
surrounding space are represented in Fig. 1.8. Note that: 

If we draw a helicoidal trajectory joining the centres of all the objects 
related by a 3, and by a 32 axis, we will obtain, in the first case a 
right-handed helix and in the second a left-handed one (the two helices 
are enantiomorphous). The same applies to the pairs 4, and 4,, 61 and 6,, 
and 6, and 6,. 

4, is also a 2 axis, 6, is also a 2 and a 32, 64 is also a 2 and a 3,, and 63 is 
also a 3 and a 2,. 
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We will now consider the restrictions imposed by the periodicity on the 
translation component t  of a glide plane. If we apply this operation twice, 
the resulting movement must correspond to a translation equal to pT, where 
p may be any integer and T any lattice vector on the crystallographic plane 
on which the glide lies. Therefore 2t =pT ,  i.e. t  = ( p / 2 ) T .  As p varies over 
all integer values, the following translations are obtained OT, (1/2)T, 
(2/2)T,  (3/2)T,  . . . of which only the first two are distinct. For p = 0 the 
glide plane reduces to a mirror m. We will indicate by a, b, c axial glides 
with translational components equal to a / 2 ,  b / 2 ,  c / 2  respectively, by n the 
diagonal glides with translational components (a  + b ) / 2  or (a  + c ) /2  or 
( b  + c ) / 2  or ( a  + b + c) /2 .  

In a non-primitive cell the condition 2t = p T  still holds, but now T is a 
lattice vector with rational components indicated by the symbol d. The 
graphic symbols for glide planes are given in Table 1.1. 

Point groups and symmetry  classes 

In crystals more symmetry axes, both proper and improper, with or without 
translational components, may coexist. We will consider here only those 
combinations of operators which do not imply translations, i.e. the 
combinations of proper and improper axes intersecting in a point. These are 
called point groups, since the operators form a mathematical group and 
leave one point fixed. The set of crystals having the same point group is 
called crystal class and its symbol is that of the point group. Often point 
group and crystal class are used as synonyms, even if that is not correct in 
principle. The total number of crystallographic point groups (for three- 
dimensional crystals) is 32, and they were first listed by Hessel in 1830. 

The simplest combinations of symmetry operators are those characterized 
by the presence of only one axis, which can be a proper axis or an inversion 
one. Also, a proper and an inversion axis may be simultaneously present. 
The 13 independent combinations of this type are described in Table 1.2. 
When along the same axis a proper axis and an inversion axis are 
simultaneously present, the symbol n/ri is used. Classes coinciding with 
other classes already quoted in the table are enclosed in brackets. 

The problem of the coexistence of more than one axis all passing by a 
common point was first solved by Euler and is illustrated, with a different 
approach, in Appendix 1.B. Here we only give the essential results. Let us 
suppose that there are two proper axes I ,  and l2 intersecting in 0 (see Fig. 
1.9). The I ,  axis will repeat in Q an object originally in P, while 1 ,  will 

Table 1.2. Single-axis crystallographic point groups 

Proper axis Improper axis Proper and improper 
axis 

1 1 (i[i = i) 
2 = m- 212-= 2jm 
3 3 - 31 (3[3 = 3) 
4 4 414 = 4/m 
6 6 = 3/m 616 = 6/m 

5 + 5 + 3 = 13 
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11 Table 1.3. For each combination of symmetry axes the minimum angles between axes t.' are given. For each angle the types of symmetry axes are quoted in parentheses 

Combination of cu (ded B (ded Y (ded 
symmetry axes . - 

P '. 2 2 2  90 (22)  90 (2 2) 90 (22)  -- - - - 0  
3 2 2 90 (2 3) 90 (2 3) 60 (2 2) 
4 2 2  90 (2 4) 90 (2 4) 45 (2 2) 
6 2 2 90 (2 6) 90 (2 6) 30 (2 2) 

0 2 3 3  54 44'08" (2 3) 54 44'08" (2 3) 70 31 '44" (3 3) 
Fig. 1.9. Arrangement of equivalent objects 4 3 2  35 15'52" (2 3) 45 (2 4) 54 44'08" (4 3) 
around two intersecting symmetry axes. 

repeat in R the object in Q. P and Q are therefore directly congruent and 
this implies the existence of another proper operator which repeats the 
object in P directly in R. The only allowed combinations are n22, 233, 432, 
532 which in crystals reduce to 222, 322, 422, 622, 233, 432. For these 
combinations the smallest angles between the axes are listed in Table 1.3, 
while their disposition in the space is shown in Fig. 1.10. Note that the 
combination 233 is also consistent with a tetrahedral symmetry and 432 with 
a cubic and octahedral symmetry. 

Suppose now that in Fig. 1.9 1, is a proper axis while 1, is an inversion 
one. Then the objects in P and in Q will be directly congruent, while the 
object in R is enantiomorphic with respect to them. Therefore the third 
operator relating R to P will be an inversion axis. We may conclude that if 
one of the three symmetry operators is an inversion axis also another must 
be an inversion one. In Table 1.4 are listed all the point groups 
characterized by combinations of type PPP, PII, IPI, IIP (P=proper, 
I = improper), while in Table 1.5 the classes with axes at the same time 
proper and improper are given. In the two tables the combinations 
coinciding with previously considered ones are closed within brackets. The 

Fig. 1.10. Arrangement of proper symmetry 
axes for six point groups. 
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Table 1.4. Crystallographic point groups with more than one axis 

P P P  P I 1  I P I  I I P 

4 3 2  (43 2  ---- 
r n l m  

Table 1.5. Crystallographic point groups with more than one axis, each axis being 
proper and improper simultaneously 

results so far described can be easily derived by recalling that: 

If two of the three axes are symmetry equivalent, they can not be one 
proper and one improper; for example, the threefold axes in 233 are 
symmetry referred by twofold axes, while binary axes in 422 differing by 
45" are not symmetry equivalent. 

If an even-order axis and a ? axis (or an m plane) coexist, there will also 
be an m plane (or a ? axis) normal to the axis and passing through the 
intersection point. Conversely, if m and ? coexist, there will also be a 2 
axis passing through ? and normal to m. 

In Tables 1.2, 1.4, and 1.5 the symbol of each point group does not reveal 
all the symmetry elements present: for instance, the complete list of 
symmetry elements in the class 2/m33 is 2/m 2/m 2/m?3333. On the other 
hand, the symbol 2/m% is too extensive, since only two symmetry operators 
are independent. In Table 1.6 are listed the conventional symbols used for 
the 32 symmetry classes. It may be noted that crystals with inversion 
symmetry operators have an equal number of 'left' and 'right' moieties; 
these parts, when considered separately, are one the enantiomorph of the 
other. 

The conclusions reached so far do not exclude the possibility of crystal- 
lizing molecules with a molecular symmetry different from that of the 32 
point groups (for instance with a 5 axis). In any case the symmetry of the 
crystal will belong to one of them. To help the reader, some molecules and 
their point symmetry are shown in Fig. 1.11. 

It is very important to understand how the symmetry of the physical 
properties of a crystal relates to its point group (this subject is more 
extensively described in Chapter 9). Of basic relevance to this is a postulate 
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2. The variation of the refractive index of the crystal with the vibration 
direction of a plane-polarized light wave is represented by the optical 
indicatrix (see p. 607). This is in general a three-axis ellipsoid: thus the 
lowest symmetry of the property 'refraction' is 2/m 2lm 2/m, the point 
group of the ellipsoid. In crystal classes belonging to tetragonal, trigonal, or 
hexagonal systems (see Table 1.6) the shape of the indicatrix is a rotational 
ellipsoid (the axis is parallel to the main symmetry axis), and in symmetry 
classes belonging to the cubic system the shape of the indicatrix is a sphere. 
For example, in the case of tourmaline, with point group 3m, the ellipsoid is 
a revolution around the threefold axis, showing a symmetry higher than that 
of the point group. 

We shall now see how it is possible to guess about the point group of a 
crystal through some of its physical properties: 

1. The morphology of a crystal tends to conform to its point group 
symmetry. From a morphological point of view, a crystal is a solid body 
bounded by plane natural surfaces, the faces. The set of symmetry- 
equivalent faces constitutes a form: the form is open if it does not enclose 
space, otherwise it is closed. A crystal form is named according to the 
number of its faces and to their nature. Thus a pedion is a single face, a 
pinacoid is a pair of parallel faces, a sphenoid is a pair of faces related by a 
diad axis, a prism a set of equivalent faces parallel to a common axis, a 
pyramid is a set of planes with equal angles of inclination to a common axis, 
etc. The morphology of different samples of the same compound can show 
different types of face, with different extensions, and different numbers of 
edges, the external form depending not only on the structure but also on the 
chemical and physical properties of the environment. For instance, galena 
crystals (PbS, point group m3m) tend to assume a cubic, cube-octahedral, 
or octahedral habit (Fig. 1.12(a)). Sodium chloride grows as cubic crystals 
from neutral aqueous solution and as octahedral from active solutions (in 
the latter case cations and anions play a different energetic role). But at the 
same temperature crystals will all have constant dihedral angles between 
corresponding faces (J. B. L. Rome' de l'Ile, 1736-1790). This property, the 
observation of which dates back to N. Steno (1669) and D. Guglielmini 
(1688), can be explained easily, following R. J. Haiiy (1743-1822), by 
considering that faces coincide with lattice planes and edges with lattice 
rows. Accordingly, Miller indices can be used as form symbols, enclosed in 
braces: {hkl). The indices of well-developed faces on natural crystals tend 
to have small values of h, k, 1, (integers greater than six are rarely 
involved). Such faces correspond to lattice planes with a high density of 
lattice points per unit area, or equivalently, with large intercepts alh, blk, 
cll on the reference axes (Bravais' law). An important extension of this law 
is obtained if space group symmetry (see p. 22) is taken into account: screw 
axes and glide planes normal to a given crystal face reduce its importance 
(Donnay-Harker principle). 

The origin within the crystal is usually chosen so that faces (hkl) and 
(h i t )  are parallel faces an opposite sides of the crystal. In Fig. 1.13 some 
idealized crystal forms are shown. 

The orientation of the faces is more important than their extension. The 
orientations can be represented by the set of unit vectors normal to them. 
This set will tend to assume the point-group symmetry of the given crystal 

(b) 
Fig. 1.12. (a) Crystals showing cubic or cube- 
octahedral or octahedral habitus, (b) crystal with 
a sixfold symmetry axis. 
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Fig. 1.13. Some simple crystal forms: (a) 
cinnabar, HgS, class 32; (b) arsenopyritf, FeAsS, 
class mmm; (c) ilmenite, FeTiO,, class 3; (d) 
gypsum, CaSO,, class 2/m. 

independently of the morphological aspect of the samples. Thus, each 
sample of Fig. 1.12(a) shows an m3m symmetry, and the sample in Fig. 
1.12(b) shows a sixfold symmetry if the normals to the faces are considered 
instead of their extensions. The morphological analysis of a crystalline 
sample may be used to get some, although not conclusive, indication, of its 
point-group symmetry. 

2. Electrical charges of opposite signs-may appear at the two hands of a 
polar axis of a crystal subject to compression, because of the piezoelectric 
effect (see p. 619). A polar axis is a rational direction which is not symmetry 
equivalent to its opposite direction. It then follows that a polar direction can 
only exist in the 21 non-centrosymmetric point groups (the only exception is 
the 432 class, where piezoelectricity can not occur). In these groups not all 
directions are polar: in particular a direction normal to an even-order axis 
or to a mirror plane will never be polar. For instance, in quartz crystals 
(SOz, class 32), charges of opposite sign may appear at the opposite hands 
of the twofold axes, but not at those of the threefold axis. 

3. A point group is said to be polar if a polar direction, with no other 
symmetry equivalent directions, is allowed. Along this direction a per- 
manent electric dipole may be measured, which varies with temperature 
(pyroelectric effect, see p. 606). The ten polar classes are: 1, 2, m, mm2, 4, 
4mm, 6, 6mm, 3, 3m. Piezo- and pyroelectricity tests are often used to 
exclude the presence of an inversion centre. Nevertheless when these effects 
are not detectable, no definitive conclusion may be drawn. 

4. Ferroelectric crystals show a permanent dipole moment which can be 
changed by application of an electric field. Thus they can only belong to one 
of the ten polar classes. 

5. The symmetry of a crystal containing only one enantiomer of an 
optically active molecule must belong to one of the 11 point groups which 
do not contain inversion axes. 

6. Because of non-linear optical susceptibility, light waves passing 
through non-centrosymmetric crystals induce additional waves of frequency 
twice the incident frequency. This phenomenon is described by a third-rank 
tensor, as the piezoelectric tensor (see p. 608): it occurs in all non- 
centrosymmetric groups except 432, and is very efficientL7] for testing the 
absence of an inversion centre. 

7. Etch figures produced on the crystal faces by chemical attack reveal 
the face symmetry (one of the following 10 two-dimensional point groups). 

Point groups in one and two dimensions 
The derivation of the crystallographic point groups in a two-dimensional 
space is much easier than in three dimensions. In fact the reflection with 
respect to a plane is substituted by a reflection with respect to a line (the 
same letter m will also indicate this operation); and ii axes are not used. The 
total number of point groups in the plane is 10, and these are indicated by 
the symbols: 1, 2, 3, 4, 6, m, 2mm, 3m, 4mm, 6mm. 

The number of crystallographic point groups in one dimension is 2: they 
are 1 and m = (I). 
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The Laue classes 

In agreement with Neumann's principle, physical experiments do not 
normally reveal the true symmetry of the crystal: some of them, for example 
diffraction, show the symmetry one would obtain by adding an inversion 
centre to the symmetry elements actually present. In particular this happens 
when the measured quantities do not depend on the atomic positions, but 
rather on the interatomic vectors, which indeed form a centrosymmetric set. 
Point groups differing only by the presence of an inversion centre will not be 
differentiated by these experiments. When these groups are collected in 
classes they form the 11 Laue classes listed in Table 1.6. 

The seven crystal systems 

If the crystal periodicity is only compatible with rotation or inversion axes of 
order 1, 2, 3, 4, 6, the presence of one of these axes will impose some 
restrictions on the geometry of the lattice. It is therefore convenient to 
group together the symmetry classes with common features in such a way 
that crystals belonging to these classes can be described by unit cells of the 
same type. In turn, the cells will be chosen in the most suitable way to show 
the symmetry actually present. 

Point groups 1 and i have no symmetry axes and therefore no constraint 
axes for the unit cell; the ratios a:b:c and the angles a ,  P, y can assume any 
value. Classes 1 and are said to belong to the triclinic system. 

Groups 2, m, and 2/m all present a 2 axis. If we assume that this axis 
coincides with the b axis of the unit cell, a and c can be chosen on the lattice 
plane normal to b. We will then have a = y = 90" and P unrestricted and the 
ratios a:b:c also unrestricted. Crystals with symmetry 2, m, and 2/m belong 
to the monoclinic system. 

Classes 222, mm2, mmm are characterized by the presence of three 
mutually orthqgonal twofold rotation or inversion axes. If we assume these 
as reference axes, we will obtain a unit cell with angles a = P = y = 90" and 
with unrestricted a:b:c ratios. These classes belong to the orthorhombic 
system. 

For the seven groups with only one fourfold axis 
[4,4,4/m, 422,4mm, 42m, 4/mmm] the c axis is chosen as the direction of 
the fourfold axis and the a and b axes will be symmetry equivalent, on the 
lattice plane normal to c. The cell angles will be a = P = y = 90" and the 
ratios a:b:c = 1:l:c. These crystals belong to the tetragonal system. 

For the crystals with only one threefold or sixfold axis [3, 3, 32, 3m, 3m, 
6, 6, 6/m, 622, 6mm, 62m, 6/mm] the c axis is assumed along the three- or 
sixfold axis, while a and b are symmetry equivalent on the plane 
perpendicular to c. These point groups are collected together in the trigonal 
and hexagonal systems, respectively, both characterized by a unit cell with 
angles a = /3 = 90" and y = 120°, and ratios a:  b :c = 1: 1:c. 

Crystals with four threefold axes [23, m3, 432, 43m, m3m] distributed as 
the diagonals of a cube can be referred to orthogonal unit axes coinciding 
with the cube edges. The presence of the threefold axes ensures that these 
directions are symmetry equivalent. The chosen unit cell will have a = P = 
y = 90' and ratios a :b:c = 1: 1: 1. This is called the cubic system. 
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The Bravais lattices 

In the previous section to each crystal system we have associated a primitive 
cell compatible with the point groups belonging to the system. Each of these 
primitive cells defines a lattice type. There are also other types of lattices, 
based on non-primitive cells, which can not be related to the previous ones. 
In particular we will consider as different two lattice types which can not be 
described by the same unit-cell type. 

In this section we shall describe the five possible plane lattices and 
fourteen possible space lattices based both on primitive and non-primitive 
cells. These are called Bravais lattices, after Auguste Bravais who first listed 
them in 1850. 

Plane lattices 
An oblique cell (see Fig. 1.14(a)) is compatible with the presence of axes 1 
or 2 normal to the cell. This cell is primitive and has point group 2. 

If the row indicated by m in Fig. 1.14(b) is a reflection line, the cell must 
be rectangular. Note that the unit cell is primitive and compatible with the 
point groups m and 2mm. Also the lattice illustrated in Fig. 1.14(c) with 
a = b and y # 90" is compatible with m. This plane lattice has an oblique 
primitive cell. Nevertheless, each of the lattice points has a 2mm symmetry 
and therefore the lattice must be compatible with a rectangular system. This 
can be seen by choosing the rectangular centred cell defined by the unit 
vectors a' and b'. This orthogonal cell is more convenient because a simpler 
coordinate system is allowed. It is worth noting that the two lattices shown 
in Figs. 1.14(b) and 1.14(c) are of different type even though they are 
compatible with the same point groups. 

In Fig. 1.14(d) a plane lattice is represented compatible with the presence 
of a fourfold axis. The cell is primitive and compatible with the point groups 
4 and 4mm. 

In Fig. 1.14(e) a plane lattice compatible with the presence of a three- or 
a sixfold axis is shown. A unit cell with a rhombus shape and angles of 60" 
and 120" (also called hexagonal) may be chosen. A centred rectangular cell 
can also be selected, but such a cell is seldom chosen. 

(b) m;2mm (c) m;2mm 

I I i i I  
Fig. 1.14. The five plane lattices and the 
corresponding two-dimensional point groups. (d) 4;4mm 
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Table 1.7. The five plane lattices 
- 

Cell 
-- 

Type of cell Point group Lattice parameters 
of the net 

Oblique P 2 a, b, y 
Rectangular P, C 2mm a, b, y = 90" 
Square P 4mm a = b, y = 90" 
Hexagonal P 6mm a=b,y=120" 

The basic features of the five lattices are listed in Table 1.7 

Space lattices 
In Table 1.8 the most useful types of cells are described. Their fairly limited 
number can be explained by the following (or similar) observations: 

A cell with two centred faces must be of type F. In fact a cell which is at 
the same time A and B, must have lattice points at (0,1/2,1/2) and 
(1/2,0, 112). When these two lattice translations are applied one after 
the other they will generate a lattice point also at (1/2,1/2,0); 

A cell which is at the same time body and face centred can always be 
reduced to a conventional centred cell. For instance an I and A cell will 
have lattice points at positions (1/2,1/2,1/2) and (0,1/2,1/2): a lattice 
point at (1/2,0,0) will then also be present. The lattice can then be 
described by a new A cell with axes a '  = a/2, b '  = b, and c' = c (Fig. 
1.15). 

It is worth noting that the positions of the additional lattice points in 
Table 1.8 define the minimal translational components which will move an 
object into an equivalent one. For instance, in an A-type cell, an object at 
( x ,  y, z) is repeated by translation into ( x ,  y + m/2, z + n/2) with m and n 
integers: the shortest translation will be (0,1/2,1/2). 

Let us now examine the different types of three-dimensional lattices 
grouped in the appropriate crystal systems. 

Table 1.8. The conventional types of unit cell 

Symbol Type Positions of Number 
additional of lattice 
lattice points points 

per cell 

P primitive - 1 
I body centred (112,1/2, l r 2 )  2 
A A-face centred (0,1/2,1/2) 2 
B B-face centred (1/2,0,1/2) 2 
C C-face centred (1/2,1/2,0) 2 
F All faces centred (112,112, O), (1/2,0,1/2) 2 

~0,112,112~ 4 
R Rhombohedrally (1/3,2/3,2/3), (2/3,1/3,1/3) 3 

centred (de 
scription with 
'hexagonal axes') 

J 
Fig. 1.15. Reduction of an I- and A-centred cell 
to an A-centred cell. 
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Fig. 1.16. Monoclinic lattices: (a) reduction of a 
B-centred cell to  a P cell; (b) reduction of an 
I-centred to an A-centred cell; (c) reduction of an 
F-centred to a C-centred cell; (d) reduction of a 
C-centred to a P non-monoclinic cell. 

Triclinic lattices 
Even though non-primitive cells can always be chosen, the absence of axes 
with order greater than one suggests the choice of a conventional primitive 
cell with unrestricted a,  p, y angles and a:b:c ratios. In fact, any triclinic 
lattice can always be referred to such a cell. 

Monoclinic lattices 
The conventional monoclinic cell has the twofold axis parallel to b, angles 
a = y = 90", unrestricted p and a :b :c ratios. A B-centred monoclinic cell 
with unit vectors a, b, c is shown in Fig. 1.16(a). If we choose a' = a ,  
b' = b, c' = (a  + c) /2  a primitive cell is obtained. Since c' lies on the (a, c)  
plane, the new cell will still be monoclinic. Therefore a lattice with a B-type 
monoclinic cell can always be reduced to a lattice with a P monoclinic cell. 

An I cell with axes a, b, c is illustrated in Fig. 1.16(b). If we choose 
a' = a, b' = b, c' = a + c, the corresponding cell becomes an A monoclinic 
cell. Therefore a lattice with an I monoclinic cell may always be described 
by an A monoclinic cell. Furthermore, since the a and c axes can always be 
interchanged, an A cell can be always reduced to a C cell. 

An F cell with axes a, b, c is shown in Fig. 1.16(c). When choosing 
a' = a, b' = b, c' = (a  + c) /2  a type-C monoclinic cell is obtained. There- 
fore, also, a lattice described by an F monoclinic cell can always be 
described by a C monoclinic cell. 

We will now show that there is a lattice with a C monoclinic cell which is 
not amenable to a lattice having a P monoclinic cell. In Fig. 1.16(d) a C cell 
with axes a, b, c is illustrated. A primitive cell is obtained by assuming 
a' = (a  + b)/2 ,  b' = ( - a  + b)/2 ,  c' = c, but this no longer shows the 
features of a monoclinic cell, since y' # 90°, a' = b' # c' ,  and the 2 axis lies 
along the diagonal of a face. It can then be concluded that there are two 
distinct monoclinic lattices, described by P and C cells, and not amenable 
one to the other. 

Orthorhombic lattices 
In the conventional orthorhombic cell the three proper or inversion axes are 
parallel to the unit vectors a, b, c, with angles a = /3 = y = 90" and general 
a:b:c ratios. With arguments similar to those used for monoclinic lattices, 
the reader can easily verify that there are four types of orthorhombic 
lattices, P, C, I, and F. 

Tetragonal lattices 
In the conventional tetragonal cell the fourfold axis is chosen along c with 
a = p = y = 90°, a = b, and unrestricted c value. It can be easily verified 
that because of the fourfold symmetry an A cell will always be at the same 
time a B cell and therefore an F cell. The latter is then amenable to a 
tetragonal I cell. A C cell is always amenable to another tetragonal P cell. 
Thus only two different tetragonal lattices, P and I ,  are found. 

Cubic lattices 
In the conventional cubic cell the four threefold axes are chosen to be 
parallel to the principal diagonals of a cube, while the unit vectors a, b, c 
are parallel to the cube edges. Because of symmetry a type-A (or B or C) 
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cell is also an F cell. There are three cubic lattices, P, I, and F which are not 
amenable one to the other. 

Hexagonal lattices 
In the conventional hexagonal cell the sixfold axis is parallel to c, with 
a = b, unrestricted c, a = /3 = 90") and y = 120". P is the only type of 
hexagonal Bravais lattice. 

Trigonal lattices 
As for the hexagonal cell, in the conventional trigonal cell the threefold axis 
is chosen parallel to c, with a = b, unrestricted c, a = /3 = 90°, and y = 120". 
Centred cells are easily amenable to the conventional P trigonal cell. 

Because of the presence of a threefold axis some lattices can exist which 
may be described via a P cell of rhombohedral shape, with unit vectors aR,  
bR, CR such that aR = bR = cR, aR = PR = YR, and the threefold axis along 
the UR + bR + CR direction (see Fig. 1.17). Such lattices may also be 
described by three triple hexagonal cells with basis vectors UH, bH, CH 

defined according to[61 

These hexagonal cells are said to be in obverse setting. Three further triple 
hexagonal cells, said to be in reverse setting, can be obtained by changing 
a H  and bH to -aH and -bH. The hexagonal cells in obverse setting have 
centring points (see again Fig. 1.17)) at 

(O,O, O), I ,  I ,  I ,  (113,213,213) 

while for reverse setting centring points are at 

It is worth noting that a rhombohedral description of a hexagonal P lattice 
is always possible. Six triple rhombohedral cells with basis vectors a;, bk, 

Fig. 1.17. Rhombohedra1 lattice. The basis of the 
rhombohedral cell is labelled a,, b,, c,, the 
basis of the hexagonal centred cell is labelled 
a,, b,, c, (numerical fractions are calculated in  
terms of the c, axis). (a) Obverse setting; (b) the 
same figure as in (a) projected along c,. 
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ck can be obtained from aH,  bH, CH by choosing: 

U ~ = U H + C H ,  bk=b,+ cH, c k = - ( a H + b H ) + c H  

ak  = -aH + CH, bk = -bH + CH, ck = a H  + bH + cH 

and cyclic permutations of a;, bk, ck. Each triple rhomobohedral cell will 
have centring points at (O,0, O), (113,1/3,1/3), (213,213,213). 

In conclusion, some trigonal lattices may be described by a hexagonal P 
cell, others by a triple hexagonal cell. In the first case the nodes lying on the 
different planes normal to the threefold axis will lie exactly one on top of 
the other, in the second case lattice planes are translated one with respect to 
the other in such a way that the nth plane will superpose on the (n + 3)th 
plane (this explains why a rhombohedral lattice is not compatible with a 
sixfold axis). 

When, for crystals belonging to the hexagonal or trigonal systems, a 
hexagonal cell is chosen, then on the plane defined by a and b there will be 
a third axis equivalent to them. The family of planes (hkl) (see Fig. 1.18) 
divides the positive side of a in h parts and the positive side of b in k parts. 
If the third axis (say d) on the (a, b) plane is divided in i parts we can 

a introduce an extra index in the symbol of the family, i.e. (hkil). From the 
same figure it can be seen that the negative side of d is divided in h + k 

Fig. 1.18. Intersections of the set of parts, and then i = -(h + k). For instance (1 2 -3 5), (3 -5 2 I), 
crystallographic planes ( h  k l )  with the three 
symmetry-equivalent a, b, daxes in trigonal and 

(-2 0 2 3) represent three plane families in the new notation. The 
hexagonal systems. four-index symbol is useful to display the symmetry, since (hkil), (kihl), and 

(ihkl) are symmetry equivalent planes. 
Also, lattice directions can be indicated by the four-index notation. 

Following pp. 7-8, a direction in the (a, b) plane is defined by a vector 
(P - 0) = ma + nb. If we introduce the third axis d in the plane, we can 
write (P - 0) = ma + nb + Od. Since a decrease (or increase) of the three 
coordinates by the same amount j does not change the point P, this may be 
represented by the coordinates: u = m - j, v = n - j, i = -j. 

If we choose j = (m + n)/3, then u = (2m - n)/3, v = (2n - m)/3, i = 
-(m + n)/3. In conclusion the direction [mnw] may be represented in the 
new notation as [uviw], with i = -(u + v). On the contrary, if a direction is 
already represented in the four-index notation [uviw], to pass to the 
three-index one, -i should be added to the first three indices in order to 
bring to zero the third index, i.e. [u - i v - i w]. 

A last remark concerns the point symmetry of a lattice. There are seven 
three-dimensional lattice point groups, they are called holohedries and are 
listed in Table 1.6 (note that 3m is the point symmetry of the rhombohedral 
lattice). In two dmensions four holohedries exist: 2, 2mm, 4mm, 6mm. 

The 14 Bravais lattices are illustrated in Fig. 1.19 by means of their 
conventional unit cells (see Appendix 1.C for a different type of cell). A 
detailed description of the metric properties of crystal lattices will be given 
in Chapter 2. 

The space groups 

A crystallographic space group is the set of geometrical symmetry opera- 
tions that take a three-dimensional periodic object (say a crystal) into itself. 
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Triclinic 

Cubic 

Trigonal 

Hexagonal 

The total number of crystallographic space groups is 230. They were first 
derived at the end of the last century by the mathematicians Fedorov (1890) 
and Schoenflies (1891) and are listed in Table 1.9. 

In Fedorov's mathematical treatment each space group is represented by 
a set of three equations: such an approach enabled Fedorov to list all the 
space groups (he rejected, however, five space groups as impossible: Fdd2, 
Fddd, 143d, P4,32, P4132). The Schoenflies approach was most practical and 
is described briefly in the following. 

On pp. 11-16 we saw that 32 combinations of either simple rotation or 
inversion axes are compatible with the periodic nature of crystals. By 
combining the 32 point groups with the 14 Bravais lattices (i.e. P, I, F, . . .) 
one obtains only 73 (symmorphic) space groups. The others may be 
obtained by introducing a further variation: the proper or improper 
symmetry axes are replaced by screw axes of the same order and mirror 
planes by glide planes. Note, however, that when such combinations have 
more than one axis, the restriction that all symmetry elements must 
intersect in a point no longer applies (cf. Appendix l.B). As a consequence 
of the presence of symmetry elements, several symmetry-equivalent objects 
will coexist within the unit cell. We will call the smallest part of the unit cell 
which will generate the whole cell when applying to it the symmetry 

Fig. 1.19. The 14 three-dimensional Bravais 
lattices. 
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Table 1.9. The 230 three-dimensional space groups arranged by crystal systems and 
point groups. Space groups (and enantiomorphous pairs) that are uniquely deter- 
minable from the symmetry of the diffraction pattern and from systematic absences (see 
p. 159) are shown in bold-type. Point groups without inversion centres or mirror planes 
are emphasized by boxes 

Crystal Point Space 
system group groups 

Triclinic [i3 p1 
i P 1 

Monoclinic P2, P2,, C2 
m Pm, PC, Cm, Cc 
2/m P2/m, P2,/m, C2/m, P2/c, P2,/c, C2/c 

Orthorhombic 12221 P222, P222,, P2,2,2, P2,2,2,, C222,, C222, F222, 1222, 
12,2121 

mm2 Pmm2, PmcP,, Pcc2, PmaP,, PcaS,, PncZ,, PmnZ,, Pba2, 
Pna2,, Pnn2, Cmm2, Cmc2,, Ccc2, Amm2, Abm2, Ama2, 
Aba2, Fmm2, Fdd2,lmm2, lba2, h a 2  

mmm Pmmm,Pnnn,Pccm,Pban,Pmma,Pnna,Pmna,Pcca,  
Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, 
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, 
Fddd, Immm, Ibam, Ibca, lmma 

Tetragonal p4, p41, p4,, p4,, 14, 14, 
4 P4. 14 

Cubic (231 P23, F23, 123, P2,3,_12,3 - 
~ m 3 ,  ~ d ,  Fm3, F a ,  lm3, ~ a 3 ,  I& 
PG2, Pa&?, F$32, Y.2 ,  1432, P?,32, P4,32, l4?32 
P43-m, F43m, 143m, P43n, F43c, 1Gd 

m3m Pm_3m, Pn3n, PrnBn, Pn3m, Fm3m, Fm&, F b m ,  F&c, 
lm3m, la3d 

operations an asymmetric unit. The asymmetric unit is not usually uniquely 
defined and can be chosen with some degree of freedom. It is nevertheless 
obvious that when rotation or inversion axes are present, they must lie at 
the borders of the asymmetric unit. 
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According to the international (Hermann-Mauguin) notation, the space- 
group symbol consists of a letter indicating the centring type of the 
conventional cell, followed by a set of characters indicating the symmetry 
elements. Such a set is organized according to the following rules: 

1. For triclinic groups: no symmetry directions are needed. Only two space 
groups exist: PI and PI. 

2. For monoclinic groups: only one symbol is needed, giving the nature of 
the unique dyad axis (proper and/or inversion). Two settings are used: 
y-axis unique, z-axis unique. 

3. For orthorhombic groups: dyads (proper and/or of inversion) are given 
along x, y, and z axis in the order. Thus Pca2, means: primitive cell, 
glide plane of type c normal to x-axis, glide plane of type a normal to the 
y-axis, twofold screw axis along z.  

4. For tetragonal groups: first the tetrad (proper and/or of inversion) axis 
along z is specified, then the dyad (proper and/or of inversion) along x is 
given, and after that the dyad along [I101 is specified. For example, 
P4,lnbc denotes a space group with primitive cell, a 4 sub 2 screw axis 
along z to which a diagonal glide plane is perpendicular, an axial glide 
plane b normal to the x axis, an axial glide plane c normal to [110]. 
Because of the tetragonal symmetry, there is no need to specify 
symmetry along the y-axis. 

5. For trigonal and hexagonal groups: the triad or hexad (proper and/or of 
inversion) along the z-axis is first given, then the dyad (proper and/or of 
inversion) along x and after that the dyad (proper and/or of inversion) 
along [1?0] is specified. For example, P6,mc has primitive cell, a sixfold 
screw axis 6 sub 3 along z, a reflection plane normal to x and an axial 
glide plane c normal to [ ~ I o ] .  

6. For cubic groups: dyads or tetrads (proper and/or of inversion) along x ,  
followed by triads (proper and/or of inversion) along [ I l l ]  and dyads 
(proper and/or of inversion) along [110]. 

We note that: 

1. The combination of the Bravais lattices with symmetry elements with no 
translational components yields the 73 so-called symmorphic space 
groups. Examples are: P222, Cmm2, F23, etc. 

2. The 230 space groups include 11 enantiomorphous pairs: P3, (P3,), 
P3,12 (P3212), P3,21 (P3,21), P41 (P43), P4J2 (P4322), P4,&2 (P4&?,2), 
P6i (P65), P6, (P64), P6,22 (P6522), P6222 (P6422), P4,32 (P4,32). The 
( + ) isomer of an optically active molecule crystallizes in one of the two 
enantiomorphous space groups, the ( - )  isomer will crystallize in the 
other. 

3. Biological molecules are enantiomorphous and will then crystallize in 
space groups with no inversion centres or mirror planes; there are 65 
groups of this type (see Table 1.9). 

4. The point group to which the space group belongs is easily obtained from 
the space-group symbol by omitting the lattice symbol and by replacing 



26 1 Carmelo Giacovazzo 

the screw axes and the glide planes with their corresponding symmorphic 
symmetry elements. For instance, the space groups P4Jmmc, P4/ncc, 
14,lacd, all belong to the point group 4lmmm. 

5. The frequency of the different space groups is not uniform. Organic 
compounds tend to crystallize in the space groups that permit close 
packing of triaxial ellipsoids.[81 According to this view, rotation axes and 
reflection planes can be considered as rigid scaffolding which make more 
difficult the comfortable accommodation of molecules, while screw axes 
and glide planes, when present, make it easier because they shift the 
molecules away from each other. 

Mighell and Rodgers [9] examined 21 051 organic compounds of known 
crystal structure; 95% of them had a symmetry not higher than orthorhom- 
bic. In particular 35% belonged to the space group P2,/c, 13.3% to PI, 
12.4% to P2,2,2,, 7.6% to P2, and 6.9% to C21c. A more recent study by 
~ i l s o n , [ ' ~ ]  based on a survey of the 54599 substances stored in the 
Cambridge Structural Database (in January 1987), confirmed Mighell and 
Rodgers' results and suggested a possible model to estimate the number Nsg 
of structures in each space group of a given crystal class: 

Nsg = Acc exp { -BccE21sg - Ccclmls,) 

where A,, is the total number of structures in the crystal class, [2],, is the 
number of twofold axes, [m],, the number of reflexion planes in the cell, B,, 
and Cc, are parameters characteristic of the crystal class in question. The 
same results cannot be applied to inorganic compounds, where ionic bonds 
are usually present. Indeed most of the 11 641 inorganic compounds 
considered by Mighell and Rodgers crystallize in space groups with 
orthorhombic or higher symmetry. In order of decreasing frequency we 
have: Fm3m, Fd3m, P6Jmmc, P2,/c, ~ m 3 m ,  ~ 3 m ,  C2/m, C2/c, . . . . 

The standard compilation of the plane and of the three-dimensional space 
groups is contained in volume A of the International Tables for Crystallog- 
raphy. For each space groups the Tables include (see Figs 1.20 and 1.21). 

1. At  the first line: the short international (Hermann-Mauguin) and the 
Schoenflies symbols for the space groups, the point group symbol, the 
crystal system. 

2. At the second line: the sequential number of the plane or space group, 
the full international (Hermann-Mauguin) symbol, the Patterson symmetry 
(see Chapter 5, p. 327). Short and full symbols differ only for the 
monoclinic space groups and for space groups with point group mmm, 
4/mmm, 3m, 6/mmm, m3, m3m. While in the short symbols symmetry 
planes are suppressed as much as possible, in the full symbols axes and 
planes are listed for each direction. 

3. Two types of space group diagrams (as orthogonal projections along a 
cell axis) are given: one shows the position of a set of symmetrically 
equivalent points, the other illustrates the arrangement of the symmetry 
elements. Close to the graphical symbols of a symmetry plane or axis 
parallel to the projection plane the 'height' h (as a fraction of the shortest 
lattice translation normal to the projection plane) is printed. If h = 0 the 
height is omitted. Symmetry elements at h also occur at height h + 112. 
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4. Information is given about: setting (if necessary), origin, asymmetric 
unit, symmetry operations, symmetry generators (see Appendix l.E) 
selected to generate all symmetrical equivalent points described in block 
'Positions'. The origin of the cell for centrosymmetric space groups is 
usually chosen on an inversion centre. A second description is given if 
points of high site symmetry not coincident with the inversion centre occur. 
For example, for ~ n 3 n  two descriptions are available, the first with origin at 
432, and the second with origin at 3. For non-centrosymmetric space groups 
the origin is chosen at a point of highest symmetry (e.g. the origin for ~ 4 2 c  
is chosen at 4lc) or at a point which is conveniently placed with respect to 
the symmetry elements. For example, on the screw axis in P2,, on the glide 
plane in PC, at la2, in P ~ a 2 ~ ,  at a point which is surrounded symmetrically 
by the three 2, axis in P2,2,2,. 

5. The block positions (called also Wyckoff positions) contains the 
general position (a set of symmetrically equivalent points, each point of 
which is left invariant only by application of an identity operation) and a list 
of special positions (a set of symmetrically equivalent points is in special 
position if each point is left invariant by at least two symmetry operations of 
the space group). The first three block columns give information about 
multiplicity (number of equivalent points per unit cell), Wyckoff letter (a 
code scheme starting with a at the bottom position and continuing upwards 
in alphabetical order), site symmetry (the group of symmetry operations 
which leaves invariant the site). The symbol adoptedr9] for describing the 
site symmetry displays the same sequence of symmetry directions as the 
space group symbol. A dot marks those directions which do not contribute 
any element to the site symmetry. To each Wyckoff position a reflection 
condition, limiting possible reflections, may be associated. The condition 
may be general (it is obeyed irrespective of which Wyckoff positions are 
occupied by atoms (see Chapter 3, p. 159) or special (it limits the 
contribution to the structure factor of the atoms located at that Wyckoff 
position). 

6. Symmetry of special projections. Three orthogonal projections for 
each space group are listed: for each of them the projection direction, the 
Hermann-Mauguin symbol of the resulting plane group, and the relation 
between the basis vectors of the plane group and the basis vectors of the 
space group, are given, together with the location of the plane group with 
respect to the unit cell of the space group. 

7. Information about maximal subgroups and minimal supergroups (see 
Appendix l .E) is given. 

In Figs. 1.20 and 1.21 descriptions of the space groups Pbcn and P4222 are 
respectively given as compiled in the International Tables for Crystallog- 
raphy. In order to obtain space group diagrams the reader should perform 
the following operations: 

1. Some or all the symmetry elements are traced as indicated in the 
space-group symbol. This is often a trivial task, but in certain cases 
special care must be taken. For example, the three twofold screw axes do 
not intersect each other in P2,2,2,, but two of them do in P2,2,2 (see 
Appendix 1. B) . 
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P b c n  
No. 60 P 2,lb 2 / c  2 , / n  

Origin at i on I c 1 

Asymmetric unit OSxli; 0 OlzS: 

Symmetry operations 

Orthorhombic 

Patterson symmetry P m  m m 

Fig. 1.20. Representation of the group Pbcn (as 
inlnternational Tables for Crystallography). 
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No. 60 P b c n  

Generatorsselected ( I ) ;  ( 1 0 0 ) ;  ( 0 1 0 ) ;  t ( 0 . 0 , ) ) ;  ( 2 ) ;  ( 3 ) ;  ( 5 )  

Positions 

Mulliplicity. 
Wyckoff letter. 
Site Spmetry 

Coordinates Reflection conditions 

General : 

8 d 1 (1) x ( 2 )  x + ~ , J + : , z + ~  ( 3 )  f , p , i + i  ( 4 )  x+:,y+i ,r  Okl : k = 2 n  
( 5 )  x ' , j , ~  ( 6 )  x+:,y+;.5+: ( 7 )  x.J' ,z++ (8 )  x'+:,y+i,z h01: 1 = 2 n  

hkO: h  +k = 2n 
hOO: h = 2n 
OkO: k  = 2n 
001: 1 = 2 n  

Special: as above, plus 

Symmetry of special projections 

Along [001] c 2 m m  Along [ 1001 p 2g m  
a l=a  bl= b a l=ib  b ' = c  
Origin at 0,O.z Origin at x.O.0 

Maximal non-isomorphic subgroups 
1 [ 2 ] P 2 , 2 2 , ( P 2 , 2 , 2 )  1 ; 2 ; 3 ; 4  

[ 2 ] P  1 1 2 , / n  ( P 2 , l c )  1; 2; 5 ;  6  
[ 2 ] P 1 2 / c I ( P 2 / c )  1 ; 3 ; 5 ; 7  
[ 2 ] P 2 , / b 1 1 ( P 2 , / c )  1 ; 4 ; 5 ; 8  
[ 2 ] P b c 2 ,  ( P c a  2 , )  1 ;  2;  7 ;  8 
[ 2 ] P b 2 n  ( P n c 2 )  1 ; 3;  6 ;  8  
[ 2 ] P 2 , c n ( P n a 2 , )  1 ; 4 ; 6 ; 7  

IIa none 

IIb none 

Maximal isomorphic subgroups of lowest index 
IIc [ 3 ] P b c n ( a 1 =  3 a ) ;  [ 3 ] P b c n ( b 1 =  3 b ) ; [ 3 ] P b c n ( c 1 =  3c )  

h k l :  h + k = 2 n  

hkl : h+k ,1=2n  

hkl : h + k , l = 2 n  

Along [010] p 2g m  
a'= bl= a  
Origin at O,y,O 

Minimal non-isomorphic supergroups 
I none 

I1 [2 ]Abma(Cmca) ; [2 ]Bbab(Ccca) ; [2 ]Cmcm;[2 ]1bam;[2 ]Pbcb(2a1=  a ) ( P c c a ) ;  
[2 ]Prnca (2b1= b ) ( P b c m ) ;  [ 2 ] P b m  n(2c1= c ) ( P m  n a )  
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No. 93 

Te t rag on al 

P 4 2 2 2  Patterson symmetry P 4/m m m 

Origin at 2 2 2 at 42 2 1 

Asymmetric unit O l x l i ;  O I y S  I ;  0 I z l $  

Symmetry operations 

Fig. 1.21. Representation of the group P4,22 (as 
in International Tables for Crystallography). 2. Once conveniently located, the symmetry operators are applied to a 

point P in order to obtain the symmetry equivalent points P', P", . . . . If 
P',  P ,  . . . , fall outside the unit cell, they should be moved inside by 
means of appropriate lattice translations. The first type of diagram is so 
obtained. 

3. New symmetry elements are then placed in the unit cell so producing the 
second type of diagram. . 

Some space group diagrams are collected in Fig. 1.22. Two simple crystal 
structures are shown in Figs 1.23 and 1.24: symmetry elements are also 
located for convenience. 

The plane and line groups 

There are 17 plane groups, which are listed in Table 1.10. In the symbol g 
stays for a glide plane. Any space group in projection will conform to one of 
these plane groups. There are two line groups: p l  and pm. 

A periodic decoration of the plane according to the 17 plane groups is 
shown in Fig. 1.25. 
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CONTINUED No. 93 

Generators selected ( I ) ;  t (I ,O,O); t (0, I ,0); t (O,O, I); (2); (3); (5) 

Positions 
Mulliplicily. 
Wyckofl kllcr. 
S~ le  symmetry 

Coordinates Reflection conditions 

General: 
001: I  =2n 

Special: as above, plus 

4  o . . 2  x,x,+ f , f , i  f , x , +  x , f , +  Okl: I =2n 

4  n  . . 2  x,x,$ f.1,: f,x,: x . f , ?  Okl: I =2n 

4  1  . 2 .  x,O,+ f,O.f O.x,O O,f,O hhl : I = 2n 

4  h  2 . .  1 , , , , z  L f ,:,z+: +,i,T f , $ , f + f  hkl : 1 =2n 

2  f 2 . 2 2  +,+,+ it+,+ hkl : I =2n 

2  e 2 . 2 2  O,O,+ O,O,+ hkl : I  = 2n 

hkl : h + k + l = 2 n  

2  b 2 2 2 .  f,f,O f , f , i  hkl : I  =2n 

Symmetry of special projections 

Along [OOI] p4mm 
a ' = a  b l = b  
Origin at 0,O.z 

Along [I001 p2n1tn 
a ' = b  b l = c  
Origin at x,O,O 

Maximal non-isomorphic subgroups 

I (2]P4,1  1 ( P 4 2 )  1 ; 2 ; 3 ; 4  
[ 2 ] P 2 2 1 ( P 2 2 2 )  l ; 2 ; 5 ; 6  
[ 2 ] P 2 1 2 ( C 2 2 2 )  1 ; 2 ; 7 ; 8  

IIa none 

IIb [ 2 ] P 4 , 2 2 ( c 1 = 2 c ) ; [ 2 ] P 4 , 2 2 ( c ' =  2 c ) ; ( 2 ] C 4 , 2 2 , ( a 1 =  2 a , b 1 = 2 b ) ( P 4 , 2 , 2 ) ;  
[ 2 ] F 4 , 2 2 ( a 1 =  2a ,b1=  2b , c1=  2 c ) ( 1 4 , 2 2 )  

Maximal isomorphic subgroups of lowest index 

IIc [3]P4,22(c1= 3c) ;  [ 2 ] C 4 , 2 2  (a1= 2a ,  b l =  2 b ) ( P 4 2 2 2 )  

Along [I101 p 2 m m  
a'= + ( - a f b )  b l = c  
Origin at x,x,$ 

Minimal non-isomorphic supergroups 
I  I21P4Jmmc; [2]P4J tncm;  [21P42/nbc;  [21P42/nnm; [31P4232 
I1 ( 2 ] 1 4 2 2 ; [ 2 ] P 4 2 2 ( 2 c 1 =  c)  
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+ + 

Fig. 1.22. Some space group diagrams. 

C 2 P 2/m 
0- 0 - 4 -0 0- -0 0- - 

On the matrix representation of symmetry 
operators 

A symmetry operation acts on the fractional coordinates x,y, z of a point P 
to obtain the coordinates (x', y', 2') of a symmetry-equivalent point P': 

The R matrix is the rotational component (proper or improper) of the 
symmetry operation. As we shall see in Chapter 2 its elements may be 0 ,  
$1, -1 and its determinant is f 1. T is the matrix of the translational 
component of the operation. A list of all the rotation matrices needed to 
conventionally describe the 230 space groups are given in Appendix 1.D. 

0"; - c ------ 0 --- 0 - 
0 + +O o+ +0 o+ -1 1 1- 

10 - - 
- 

O+ :!I - 4 -0 

0 + 

0 - 

0 -  I T I -  
0- 

o+ 

0- 

0- 
o+ 

+0 

-0 
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Fig. 1.23. A P2,2,2, crystal structure (G. Chiari, 
D. Viterbo, A. Gaetani Manfredotti, and C. 
Guastini (1975). Cryst. Struct. Commun., 4,561) 
and its symmetry elements (hydrogen atoms are 
not drawn). 

Fig. 1.24. A P2,/c crystal structure (M. Calleri, G. 
Ferraris, and D. Viterbo (1966). Acta Cryst., 20, 
73) and its symmetry elements (hydrogen atoms 
are not drawn). Glide planes are emphasized by 
the shading. 
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Table 1.10. The 17 plane groups 

Oblique cell P I ,  ~2 
Rectangular cell pm, pg, an ,  ~ 2 m m ,  P ~ V ,  ~ 2 9 9 ,  c2mm 
Square cell p4, p4n-m~ p4gt1-1 
Hexagonal cell p3, p3rn1, p31n-1, p6, p6mrn 

When applying the symmetry operator C1 = (R,, TI) to a point at the end 

Fig. 1.25. A periodic decoration of the plane 
of a vector r, we obtain X' = CIX = RIX + TI. If we then apply to r' the 

according to the 17 crystallographic plane symmetry operator C2, we obtain 
groups (drawing by SYMPATI, a computer 
program by L. Loreto and M.  Tonetti, pixel, 9, X = C2Xf = R2(RlX + TI) + T2 = R2RlX + R2Tl + T2. 
9-20; Nov 1990). 
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Since the symmetry operators form a mathematical group, a third symmetry 
operator must be present (see also pp. 11-12), 

C3 = C2C1= (R2R1, R2T1+ T2), (1.12) 

where R2Rl is the rotational component of C3 and (R2T, +T2) is its 
translational component. In particular the operator C2 = CC will be present 
and in general also the CJ operator. Because of (1.12) 

C1 = [RJ, (RJ-' + . . . + R + I)T]. (1.13) 

Let us now apply this result to the space group P6,. Once we have defined 
the R and T matrices corresponding to an anti-clockwise rototranslation of 
60" around z ,  we obtain all the six points equivalent to a point r by applying 
to it the operators CJ with j going from 1 to 6. Obviously C6= I and 
C6+j = CJ. For this reason we will say that the 6, operator is of order six 
(similarly 2 and m are of order two). 

If r is transferred to r '  by C = (R, T) there will also be an inverse operator 
C-' = (R', TI) which will bring r '  back to r. Since we must have C-'C = I, 
because of (1.12) we will also have R'R = I and R'T + T' = 0, and therefore 

C-1 = (R-1, -R-~T) (1.14) 

where R-l is the inverse matrix of R. In the P6, example, C-l = C5. When 
all the operators of the group can be generated from only one operator 
(indicated as the generator of the group) we will say that the group is 
cyclic. 

All symmetry operators of a group can be generated from at most three 
generators. For instance, the generators of the space group P6,22 are 6, and 
one twofold axis. Each of the 12 different operators of the group may be 
obtained as C',, j = 1, 2, . . . , 6, say the powers of 61, or as C2, the twofold 
axis operator, or as their product. We can then represent the symmetry 
operators of P6'22 as the product {C1){C2), where {C) indicates the set 
of distinct operators obtained as powers of C. Similarly there are two 
generators of the group P222 but three of the group ~ 4 3 m .  In general all the 
operations of a space group may be represented by the product {C1) {C2) {C3). 
If only two generators are sufficient, we will set C3 = I, and if only one is 
sufficient, then C2 = C3 = I .  The list of the generators of all point groups is 
given in Appendix 1 .E. 

So far we have deliberately excluded from our considerations the 
translation operations defined by the Bravais lattice type. When we take 
them into account, all the space-group operations may be written in "a very 
simple way. In fact the set of operations which will transfer a point r in a 
given cell into its equivalent points in any cell are: 

{ c ~ }  {c2} {c3} (1.15) 

where T = mla + m2b + m3c is the set of lattice translations. 
The theory of symmetry groups will be outlined in Appendix 1.E. 

Appendices 

1 .A The isometric transformations 
It is convenient to consider a Cartesian basis (el, e2, e3). Any transforma- 
tion which will keep the distances unchanged will be called an isometry or 
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an isometric mapping or a movement C. It will be a linear transformation, 
in the sense that a point P defined by the positional r x t o r  r = xe, + ye2 + 
ze3 is related to a point P', with positional vector r' = xfel  + y1e2 + zfe3 by 
the relation 

with the extra condition 

R R =  I or R =  R-'. 
R indicates the transpose of the matrix R and I is the identity matrix. 

We note that X and X' are the matrices of the components of the vectors 
r and r' respectively, while T is the matrix of the components of the 
translation vector t = Tlel + T,e2 + T3e3. 

A movement, leaving the distances unchanged, will also maintain the 
angles fixed in absolute value. Since the determinant of the product of two 
matrices is equal to the product of the two determinants, from (1.A.2) we 
have (det R)'= 1, and then det R = f 1. We will refer to direct or opposite 
movements and to direct or opposite congruence relating an object and its 
transform, depending on whether det R is +1 or -1. 

Direct movements 
Let us separate (l.A.l) into two movements: 

X 1 = X 0 + T  

Xo = RX. 

(1.A.3) adds to each position vector a fixed vector and corresponds 
therefore to a translation movement. (1.A.4) leaves the origin point 
invariant. In order to find the other points left invariant we have to set 
Xo = X and obtain 

(1.A.5a) will have solutions for X#O only if det (R - I) = 0. Since det (R - I) = 
det (R - RR) = det [(I - R)RJ = det (I - R) det R = det (I - R) = -det (R - I), 
then this condition is satisfied. Therefore one of the three equations 
represented by (1.A.4) must be a linear combination of the other two. The 
two independent equations will define a line, which is the locus of the 
invariants points; the movement described by (1.A.4) is therefore a 
rotation. In conclusion, a direct movement can be considered as the 
combination (or, more properly, the product) of a translation with a 
rotation around an axis. 

If in eqn (1.A.1) is R = I then the movement is a pure translation, if T = 0 
the movement is a pure rotation. When the translation is parallel to the 
rotation axis the movement will be indicated as rototranslation. An 
example of direct movement is the transformation undergone by the points 
of a rigid body when it is moved. Another example is the anti-clockwise 
rotation around the z axis of an angle 8; this will move r(x, y, z )  into 
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r1(x', y', z') through the transformation 

x l=xcosO-ys inO 

y 1 = x s i n 8 + y c o s 0  

which in matrix notation becomes X' = RX, with 

(l.A.5b) 

R-' can be obtained by substituting 8 with -8 and it can be immediately 
seen that, in agreement with (1.A.2), R = R-l. 

We will now show that any direct movement can be carried out by means 
of a translation or a rotation or a rototranslation. Let us suppose that an 
isometric transformation relates the three non-collinear points A, B, C with 
the points A', B', C' respectively. If a is the translation bringing A on A', 
then, if also B and C superpose on B' and C', the movement is a 
translation; if not, then the complete superposition can be achieved by a 
rotation R around an axis 1 passing through A'. If 1 is perpendicular to a, 
the movement resulting from the combination of the rotation and transla- 
tion operations is still a pure rotation around an axis parallel to 1 (see 
Appendix l.B). If a is not perpendicular to 1, then it can be decomposed 
into two translational components a1 and a2, one perpendicular and the 
other parallel to 1. The product of R times al is a pure rotation around an 
axis parallel to 1, which, when composed with a2, results in a rototranslation 
movement. 

Opposite movements 
An opposite movement can be obtained from a direct one by changing the 
sign to one or three rows of the R matrix. For instance, when changing the 
sign of the third row, we substitute the vector ( x ' ,  y', 2') with (x', y', -zl), 
i.e. the point P' with its symmetry related with respect to a plane at z = 0. 
This operation is called a reflection with respect to the plane at z = 0. 
Changing the signs of all three rows of the R matrix implies the substitution 
of the vector (x', y' ,  z') with (-x', -y ', -2')) i.e. of the point P with its 
symmetry related with respect to the origin of the coordinate system. This 
operation is called inversion with respect to a point. 

We may conclude that each direct movement, followed by a reflection 
with respect to a plane or by an inversion with respect to a point yields an 
opposite movement. On the other hand an opposite movement may be 
obtained as the product of a direct movement by a reflection with respect to 
a plane or by an inversion with respect to a point. 

1 .B. Some combinations of movements 
Only those combinations of movements explicitly mentioned in this book 
will be considered (for further insight, the reader is referred to the splendid 
book by Lockwood and ~acMillan[~I) .  The stated laws may be interpreted 
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Fig. 1.B.1. (a) Composition of two reflections; 
(b) composition of two rotations about parallel 
axes; (c) composition of two rotations, the first 
through cuand the second through -a, about 
parallel axes; (d) composition of two rotations 
about axes passing through a point. 

in terms of combinations of symmetry operations if all the space is invariant 
with respect to the movements. 

1. Composition of two reflections. In Fig. l.B.l(a) the two reflection 
planes m, and m, are at a dihedral angle a and intersect along a line, the 
trace of which is in 0 .  The image of OQ with respect to m, is OQ1 and the 
image of OQ, with respect to m, is OQ,. It is possible to superpose OQ to 
OQ, by a rotation of 2 a  around the axis through 0 .  We may conclude that 
the product of the two reflections is a rotation of 2 a  around 0 ;  in symbols 
mlm2 = R. The product is not commutative (m,m, # m,m,): in fact by first 
reflecting OQ with respect to m, and then reflecting the image with respect 
to m, we obtain a 2 a  rotation in the opposite direction. 

2. The Silvester theorem relative to three parallel rotation axes. The traces 
of the three axes on the plane of Fig. l.B.l(b) are A, B, C. The Silvester 
theorem states that consecutive anti-clockwise rotations of 2a,  2P, 2y 
around A, B, C respectively produce the identity. In fact, because of point 
1, the rotations are equivalent to reflection operations with respect to the 
three pairs of planes AC-AB, BA-BC, CB-CA respectively and all these 
reflections cancel each other out. Since a + P + y = n, two successive 
rotations of 2 a  and 2P around A and B respectively, will be equivalent to a 
rotation of +(2a + 2P) around C. When a = -P, the third axis goes to 
infinity and the resulting movement is a translation. 
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In Fig. l.B.l(c) AC moves to AB by a rotation of a around A; by a -a 
rotation around B BA goes to BD. The resulting movement brings AC to 
BD and can be achieved by a translation of DA = 2AB sin (a12) perpen- 
dicular to the direction of the rotation axes and at an angle of ( n  - a)/2 
with respect to AB. In symbols: R,RI_,=T. We can then deduce the 
following point 3. 

3. A rotation and a translation perpendicular to the rotation axis combine 
in a resulting rotation movement around an axis parallel to the original axis. 

4. The Silvester theorem relative to three rotation axes passing through a 
point. In Fig. l.B.l(d) ABC is a spherical triangle with angles a ,  P, y in A, 
B, C respectively. If A, B, C are in a clockwise order, rotations of 2a, 2P, 
2y around A, B, C leave the figure unchanged. In fact, because of point 1, 
the three rotations correspond to the products of the reflections with respect 
to the pairs of planes AOC-AOB, AOB-BOC, BOC-COA respectively, 
and these reflections cancel each other out. Since a + p + y > n, then 
consecutive rotations of 2 a  around A and of 2P around B are equivalent to 
a rotation of 2y around C, with 2y # (2a + 2P). 

5. Coexistence of rotation axes passing through a point: the Euler 
theorem. We will study this problem using the Silvester theorem treated in 
point 4. In Fig. l.B.l(d) let OA and OB be two symmetry rotation axes of 
order m and n respectively. The angles a and P are chosen in such a way 
that 2 a  = 2n/m and 2P = 2nln. Because of the Silvester theorem, anti- 
clockwise rotations of 2 a  and 2P around OA and OB are equivalent to a 2y 
anti-clockwise rotation around OC. C is therefore a symmetry axis of order 
p = 2nI2y = nly.  The angles of the spherical triangle are then nlm, n ln  
and nlp. Since the sum of the angles must be greater than n, the inequality 
l lm + l l n  + l l p  > 1 follows. The possible solutions of this inequality are: 1, 
2, 2 with 1 integer >1; 2, 3, 3; 4, 3, 2; 5, 3, 2. We can now consider the 
different solutions, keeping in mind that the surface of a sphere of radius r is 
4nr2 and that of a spherical triangle is ( a  + P + y - n)r2: 

(a) Solution 1, 2, 2. a ,  p, and y are equal to n12, n12, n l l  respectively and 
A and B may be chosen on an equatorial circle with C as a pole. The 
binary axes are therefore always at 90' with respect to the 1 axis. Values 
of 1 different from 2, 3, 4, 6 correspond to non-crystallographic groups 
which occur as possible symmetries of molecules or as approximate 
local site symmetries in crystals. 

(b) Solution 2, 3, 3. a ,  p, and y are equal to n12, n13, n13 respectively 
and the area of the spherical triangle is nr2/6. On the sphere there will 
be 24 such triangles. The 24 n / 2  angles meet four at a time at six 
vertices and the 48 n13 angles meet six at a time at eight vertices. This 
implies the presence of three twofold axes and of four threefold axes. 
The three twofold axes will be perpendicular one to the other and can 
be assumed as the axes of a reference system. The four threefold axes 
run from the centre to the points (1,1, I), (1, - 1, -I), (- 1,1,  -I), 
(-1, -1, l) .  The group of rotations is consistent with the symmetry of a 
tetrahedron. 

(c) Solution 4, 3, 2. a ,  p, and y are equal to n/2, n13, n14 respectively 
and the area of the spherical triangle is nr2/12. On the sphere there will 



40 1 Carmelo Giacovazzo 

Fig. 1.8.2. Stereographic projections of the 32 
crystallographic point groups. 

be 48 such triangles. The 48 n/2  angles meet four at a time at twelve 
vertices, the 48 n / 3  angles meet six at a time at eight vertices and the 48 
n /4  angles meet eight at a time at six vertices. A total of six twofold 
axes, of four threefold axes, and of three fourfold axes will be present. 
The three fourfold axes-will be perpendicular one to the other and can 
be assumed as the axes of a reference system. The threefold axes are 
located along the [I,  1,1], [I,  - 1, -11, [-I, 1, -11, [-I, -1, 11 direc- 
tions, while the twofold axes are on the bisecting lines of the angles 
between the fourfold axes. The group of rotations is consistent with the 
symmetry of a cube and of an octahedron (see Fig. 1.10). 

The mutual disposition of the symmetry elements in the 32 crystal- 
lographic point groups is illustrated in Fig. 1.B.2, where the so called 
'stereographic projections' are shown. The c axis is normal to the plane, 
the a axis points down the page, and the b axis runs horizontally in the 
page from left ro right. A stereographic projection is defined as follows 
(see Fig. l.B.3(a)). A unit sphere is described around the crystal in C. 
A point P (terminal of some symmetry axis) in the $2 hemisphere is 
defined in the ( x ,  y )  plane as intersection P' of that plane with the line 
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connecting the point with the south pole of the unit sphere. If the point 
to be projected is in the -2 hemisphere then the north pole is used. 

In Fig. l.B.3(b) parts of the stereographic projections for m3m are 
magnified in order to make clearer the statements made in the text. 

(d) Solution 5, 3, 2. This solution, which is compatible with the symmetry 
of the regular icosahedron (20 faces, 12 vertices) and its dual, the 
regular pentagon-dodecahedron, (12 faces, 20 vertices), but not with 
the periodicity property of crystals, will not be examined. 

It is however of particular importance in Crystallography as sym- 
metry of viruses molecules and in quasi-crystals. 

6.  Composition of two glide planes. In Fig. 1.B.4 let S and S' be the 
traces of two glide planes forming an angle a and 0 be the trace of their 
intersection line. The translational components OA and OB are chosen to 
lie on the plane of the drawing and Q is the meeting point of the axes of the 
OA and OB segments. X, Y, and Q' are the reflection images of Q with 
respect to S, S', and to the point 0, respectively. The product S'S moves Q 
to Q' and then back to Q. Since S'S is a direct movement it leaves Q 
unchanged and corresponds to a rotation around an axis normal to the plane 
of the figure and passing through Q. Since S'S moves first A to 0 and then 
to B, the rotation angle AQB = 2a. Note that the two glides are equivalent 
to a rotation around an axis not passing along the intersection line of S 
and S'. 

7. Composition of two twofold axes, with and without translational 
component. From point 5 we know that the coexistence of two orthogonal 
twofold axes passing by 0 ,  implies a third binary axis perpendicular to them 
and also passing through 0 (see Fig. l.B.5(a)). The reader can easily verify 
the following conclusions: 

(a) if one of the two axes is 2, (Fig. l.BS(b)), then another 2 axis, at 114 
from 0 and intersecting orthogonally the screw axis, will exist; 

(b) if two 21 intersect in 0 (Fig. l.B.5(c)), then another 2 axis perpendicu- 
lar to them and passing at (114,114) from 0 will be present; 

(c) if a pair of mutually perpendicular 2 axes is separated by 114 of a period 
(Fig. l.BS(d)), then a 2, axis orthogonally intersecting both axes will 
exist; 

(d) if a 2 and a 2, axis are separated by 114 of a period (Fig. l.B.5(e)) there 
will then be a new 2, axis normal to both of them and intersecting the 
first 2, axis at 114 froin the 2 axis; 

(e) if two orthogonal screws are separated by 114 of a period (Fig. 
l.B.5(f)), then a third screw axis normal to them and passing at 
(114,114) from them will be present. 

1 .C. Wigner-Seitz cells 
The 14 Bravais lattices are compatible with cells which are different from 
those conventionally associated to them. A conventional cell is a paral- 
lelepiped: as such it may be considered as a particular type of polyhedron. 
There are several families of polyhedra with which we can fill up the space 

poie 

Fig. 1.8.3. (a) Geometry of the stereographic 
projection. (b) Angular values occurring in m3m 
stereographic projection. 

Fig. 1.8.4. Composition of two glide planes. 
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Fig. 1.8.5. Various arrangements of three 
orthogonal binary axes. The length of the 
graphical symbol for screw axes in  the plane of 
the page corresponds to half repetition period. 

by translation. A very important type is the one obtained through the 
Dirichlet construction. Each lattice point is connected with a line to its 
nearest neighbours. We then trace through the mid-points of the segments 
the planes perpendicular to them. These intersecting planes will delimit a 
region of the space which is called called the Dirichlet region or Wigner- 
Seitz cell. An example in two dimensions is given in Fig. l .C.l(a) and two 
three-dimensional examples are illustrated in Fig. 1 .C. l(b, c) . The Wigner- 
Seitz cell is always primitive and coincides with the Bravais cell if this is 
rectangular and primitive. A construction identical to the Wigner-Seitz cell 
delimits in the reciprocal space (cf. Chapters 2 and 3) a cell conventionally 
known as the first Brillouin zone. There will be 14 first Brillouin zones 
corresponding to the 14 Bravais lattices. We recall here that to a lattice I in 
direct space corresponds an F lattice in reciprocal space and vice versa (see 
Appendix 2.D); then, the first Brillouin zone of an I lattice will look like a 
Wigner-Seitz cell of an F lattice and vice versa. The Brillouin zones are 
very important in the study of lattice dynamics and in electronic band 
theory. 

Fig. 1.C.1. Examples of Wigner-Seitz cells. 
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1 .D. The space-group matrices 
All the rotation matrices R needed to conventionally describe all 230 space 
groups will be listed. They operate according to the relation X' = RX. The 
matrices are grouped following the directions along which they operate, and 
for the hexagonal and trigonal systems they are preceded by the letter H. 
They may be constructed using the following practical criterion: in the first, 
second, and third columns are the coordinates of the points symmetry 
related to points (1,0, O), (0,1, O), and (0,0,1) respectively. 

The determinant of a matrix will have a +1 or a -1 value depending on 
whether the represented operation is of rotation or of inversion type. This 
number, together with the trace (sum of the diagonal elements) of a matrix, 
are characteristic of the symmetry element: 

element 1 2 3 4 6 1 2 3 4 6 ,  
trace 3 i 0 1 2 3 1 0 1 2 ,  
determinant l l l l l i i i i i .  

The matrix of the fi operator may be simply obtained from that of the n 
operator by multiplying by the matrix corresponding to the i operator: 

0 
i = ( i  -1 o -1 :). 

This corresponds to changing the sign of all the elements of the original 
matrix. Therefore in the following list we will not give all the 64 matrices 
necessary to describe the space groups, but only the 32 matrices cor- 
responding to proper symmetry elements. 

Direction [0 0 01 

Direction [I 0 01 

( 0 ° )  ( 1 )  ( l o  O ) ;  ( l o  0) 
2 ~ 0 1 0  H 2 = 0 1 0  4 ~ 0 0 1  4 3 = O 0 1 .  

o o i  o o i  o I 0 '  0 1 0  

Direction [0 1 01 

( i o 0 ) ;  O O ) ;  ( O O i ) ;  ( y g ; )  2 = 0 1 O  H 2 = 1 1 O  3 = 0 1 O  4 3 = 0 1 0 .  
o o i  o o i  l o o  

Direction [0 0 11 

i o o  1 1 0  o i o  
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Direction [ l  1 01 

Direction [l 0  11 

0 0 1  

Direction [0 1 11 

Direction [l i 01 

Direction [ i  0  11 

Direction [0 1 I] 

Direction [I 1 11 

0 0 1  0  1 0  

Direction [I 1 11 

o i 0  o o i  

Direction [l i 11 

l o o  o i o 
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Direction [I 1 ?I ( 0); (O  O T )  
3 ~ 0 0 1  3 2 ' 1 0 0 .  

T o o  0 i 0 

Direction [2 1 0] 

Direction [ l  2 01. 

1 .E. Symmetry groups 
A group G is a set of elements g,, g2, . . . g,, . . . for which a combination 
law is defined, with the following four properties: closure, the combination 
of two elements of the group is an element of the group gigj =gk; 
associativity, the associative law (gigj)gk = gi(gjgk) is valid; identity, there 
is only one element e in the group such that eg = ge = g; inversion, each 
element g in the group has one and only one inverse element g-' such that 
g-lg = gg-l = e. 

Examples of groups are: 

(1) the set of all integer numbers (positive, negative, and zero), when the 
combination law is the sum. In this case e = 0, g-' = -g; 

(2) the rational numbers, excluding zero, when the law is the product: 
e = 1, g-l= l/g; 

(3) the set of all n x n son-singular matrices under the product law: e is the 
diagonal matrix with aii = 1; 

(4) the set of all lattice vectors r,,,,, = ua + vb + wc with u, v, w positive, 
negative, or null integers, when the combination law is the vector sum: 
then e = g,,,,, g-l = -g. 

The number of different elements of a group is called the order of the 
group and can be finite or infinite. If a group also possesses the 
commutative property gigj =gigi for any i and j, then G is said to be 
Abelian. With reference to the examples given above, (I), (2), (4) are 
infinite and Abelian groups, (3) is infinite and non-Abelian. 

If g is an element of G, all powers of g must be contained in G. An 
integer n may exist for which 

then gn+' = g, gn+2 = g2, . . , If n is the smallest integer for which (l.E.l) is 
satisfied, there will only be n distinct powers of g. Since gJgn-j = gn-jgi = e, 
then gn-j is the inverse of gi. The element g is then said to be of order n and 
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Table 1.E.1. List of generators for non-cyclic point groups. There are 2 1  proper 
generators in all 

Point group 

2 / m  
2 2 2  
r n r n 2  
rnrnrn 

4 2 2  
4/ rn 
4rn rn 
4 2 r n  
4Jrnrnrn 

3 2  
3 r n  

Generators 

4oro1,  2roio1 
2~1001~ 210101 
2[1001' 210011 

2110011 ~ 1 0 1 0 1 ~  

210011 
~ [ ~ o o I ,  3 1  i o ~  
4100111 ?[0011 

~ [ I O O I ~  2 [ i i o 1  
T r r o o i ~  2 [ i i o 1  
?[looit 4 i i o i  
210011 

3 1 o o i 1 ~  Tr iooi  
310011~ 21ioo~ 

Point group 

Jrn 
6 2 r n  
6 2 2  
6/m 

Generators 

the set of all powers of g is a group of order n:  
2 G I =  (g, g , . . . , gn-l, gn = e). 

A group, such as (1.E.2), in which all the elements are powers of a single 
generating element, is called cyclic. All cyclic groups are Abelian, but the 
converse is not true. An example of cyclic group of order n is the set of 
rotations around a given axis, which are multiple of an angle a = 2nln. 

Any point group can be represented as the product of powers of at most 
three elements, which are the generators of the group. In Table l .E . l  the 
list of the generators of the non-cyclic groups is reported. We also note that 
the definition of the generators is not unique. For instance in the class 222 
we may chose the generators 2[,ool and 2[olo1, or 2,,,] and 2[00,1, or 210101 and 
~[ooI] .  

When the physical properties of the group elements are not specified the 
group is said to be abstract. From a mathematical point of view all its 
properties are determined by its multiplication table. For a group of n 
elements this table has the form: 

We note that 

1. Each element appears once and only once in a given row (or column) of 
the table. In order to demonstrate this statement let us consider the ith 
row of the table and suppose that there are two different elements gj and 
gk, for which gigj = gigk = g,. Then g, would appear twice in the row, but 
by multiplying the two equations by g;' we obtain g, = g,, in contrast 
with the hypothesis. 

2. Each row (column) is different from any other row (column); this 
property follows immediately from property 1. 

3. For abelian groups the table is symmetric with respect to the diagonal. 
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Table 1.E.2. The 18 abstract groups corresponding to the 32 crystallographic point 
groups 

Point group Order of Characteristic 
the group relations 

1 
i, 2, m 
3 
4.4 
2/m, mm2, 222 
6, 6, 3 
32.3m 
mmm 
4/m 
4mm, 422.42m 
g/m 
3m, 62m, 6mm, 622 
23 
4/mmm 
432.43m 
m3 
6/mmm 
m3m 

Groups having the same multiplication table, even though their elements 
might have different physical meaning, are called isomorphous. They must 
have the same order and may be considered as generated from the same 
abstract group. For instance the three point groups 222, 2/m and mm2 are 
isomorphous. To show this let us choose g,, g,, g3, g4 in the following way. 

group 222: 1, 2, 2, 2; 
group 2/m; 1, 2, m, i; 

group mm2; 1, m, m, 2. 

The multiplication table of the abstract group is 

In Table 1.E.2 the 32 crystallographic point groups are grouped into 18 
abstract groups and for each of them the defining relationships are listed. 
We note that all cyclic groups of the same order are isomorphous. 

Subgroups 
A set H of elements of the group G satisfying the group conditions is called 
a subgroup of G. The subgroup H is proper if there are symmetry 
operations of G not contained in H. Examples of subgroups are: 

(1) the set of even integers (including zero) under the sum law is a 
subgroup of the group of all integers; 

(2) the point group 32 has elements g, = 1, g2 = 310011, g3 = 3, = 3-l, 
g4 = 2[1m1, g5 = 2[0101, g6 = 2[iio1; H = (gl, g2, g3) is a subgroup of G; 
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(3) the point groups 1, 2, I, m are subgroups of the point group 2/m; 

(4) 222 is a subgroup of 422; 

(5) the set T of all primitive lattice translations is a subgroup of the space 
group G. 

Conversely G may be considered a supergroup of H. 
Subgroup-group-supergroup relationships are very important in the 

study of phase transitions and of order-disorder problems. 

Cosets 
Let H = (h,, h2, . . .) be a subgroup of G and gi an element of G not 
contained in H. Then the products 

giH = (gihl, g h ,  . . .) and Hgi = (hlgi, h2gi, . . .) 
form a left and a right coset of H respectively. In general they will not be 
identical. 

Furthermore H can not have any common element with giH or Hgi. In 
fact, if for instance, we had gihi = hk, it would follow that gi = hkhjl ,  i.e. 
contradicting the hypothesis, gi would belong to H. 

It can be shown that two right (or left) cosets, either have no common 
element or are identical one to the other. This allows us to decompose G 
with respect to H in the following way: 

It follows that the order of a subgroup is a divisor of the order of the group 
and if this is a prime number, the only subgroup of G is e and G must also 
be cyclic. 

The decomposition of the group 2/m into separate left cosets with respect 
to the subgroup 2 is: 

The number of distinct cosets obtained from the decomposition of a 
group with respect to a subgroup is called index of the subgroup. In the 
previous example, the index of the subgroup 2 of the group 2/m is two. 

A coset is never a group because it does not contain the element e. 

Conjugate classes 
An element gi is said to be conjugate to an element gj of G if G contains an 
element gk such that 

gi = gklgjgk. (1.E.5) 

If g, is fixed and gk varies within G, then the set of elements gi forms a class 
of conjugate elements. 

In agreement with relation (1.E.5) the element e forms a class on its own. 
Since each element of G can not belong to two different classes, it is 
possible to decompose G into the factorized set G = e U T, U T2 U . . . . 

A physical or geometrical meaning may be attributed to the classes. In 
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the transformation (1.E.5), let the element g, be a coordinate transforma- 
tion due to a symmetry operator and the element gj a matrix operator 
related to another symmetry operation. Since g, is transformed by (1.E.5) 
(see eqn (2.E.7)), the operators belonging to the same class are changed 
one onto the other by coordinate transformations represented by the 
elements of the group. For instance, for the point group 32 three classes 
may be set up: 

(el, (3,3-'), (2[iool, ~[oID] ,  2~iiol.I 

As we will see later, the character is identical for the matrix repre- 
sentation of all the elements of the same class. 

The following rules may be useful to set up the point-group classes: 

the classes are formed by one element only for the point groups up to 
orthorhombic; this means that each symmetry operator commutes with 
all the others; 

in an Abelian group the classes are formed by only one element; 

the operators identity, inversion, and reflection with respect to a mirror 
plane perpendicular to the principal symmetry axis (the axis with the 
highest order), are each in a separate class. 

Conjugate subgroups 
Let H be a subgroup of G and g an element of G not in H. Then all the 
elements g - l ~ g ,  form a group. H and g-lHg are conjugate subgroups. 

Normal subgroups and factor groups 
If the right and left cosets of the subgroup H are the same, i.e. Hg, =g,H 
for every i, then g;'Hg, = H. This relation is still valid when g, is in H since 
both g,H and g, belong to H. Conversely, if a subgroup is transformed into 
itself when applying all the elements of the group, the corresponding left 
and right cosets must be equal. 

Subgroups which are transformed into themselves by applying all the 
elements of the group, are called invariant or normal. They must contain 
complete classes. 

For instance the subgroup 2 of the point group 2/m is normal since 
1(1,2) = (1,2)i,  m(1, 2) = (1, 2)m. Furthermore, in the group 32, the 
subgroup (1,3,3-') is normal, while (1,2i1,1) is not; the subgroup T of all 
the primitive lattice translations is an invariant subgroup of the space group 
G. 

Let H be a normal subgroup of G with index p, while n is the order of G. 
Because of (1.E.4) the order of H is n/p. We observe that for H and all its 
distinct cosets, the following multiplication law may be established: 

(g,H&H) = giHHgj = giHgj = g,&H 

Besides, it is: 

(g,H)-'(gi~) = H-'~&H = el 

We can now define a new type of group of order p,  called a factor group 
or quotient group, indicated by the symbol G/H: its elements are cosets of 
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H. The following multiplication table is for the quotient group (we assume 
rr l  = e). 

For instance, for the quotient group (2/m)/2, (1.E.6) becomes 

As a further example let us consider the elements of the point group 
4mm: e, 4, 43, q2 = 2, Z[lool, 2[olol, Z[llol, Z[liol. Five classes may be formed: 
(e), (21, (4, 43) , (Z[iool, Z[oio]), (Z[iio17 2[iiol). The subgroup H = (e, 2) is 
invariant and the factor group with respect to H may be written as: H, 4H, 
Z[100]H7 Z[llop. 

The relat~on between G and G/H is a n / p  + 1 correspondence, i.e. 
G -, H. In detail glH = H -, e, g2H -, f,, . . . , g,H + fp. A correspon- 
dence of this type (many + one) is called homomorphism and G/H is said 
to be homomorphic with G. 

Isomorphism is then a special case of homomorphism for which there is a 
one to one correspondence. A homomorphic correspondence allows us to 
reduce the study of the multiplication laws of the group G to that of the 
multiplication laws of the smaller G/H group. 

To display many of the abstract definitions given so far, we consider as 
major example, the point group G = 23: say 

Readers will find the four classes: 

and the ten subgroups 

of which only {I), (1, 211,1, 2[olo17 2[,11), and G are invariant subgroups. 
Calculate now the factored group of H = (1, 211,1, 210101, 2[ooll): we 

multiply it by an element not in H, say 3[1111, and obtain 

We take now an element not in H or in 3[llllH, say 3flll], and we get 
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The group is now exhausted and we may write 

On assuming g1 = e, then {e, 3[1111H, 3fl11]H) form a group under the 
following multiplication table 

This group is homomorphic with G itself if we associate the elements in H 
to e, the elements in 3[111]H with the 'element' 3[,l11H, the elements in 
3elllH with the 'element' 3t l11]~.  

Maximal subgroups and minimal supergroups 
The number of subgroups of a space group is always infinite. They may bp 
the site-symmetry groups (groups without a lattice), or line groups, ribbon 
groups, rod groups, plane groups, or space groups. For example, the set T 
of all the primitive lattice translations is a subgroup (invariant) of the space 
group. Further subgroups may be found by considering the set of all the 
translations defined by a superlattice. We are here interested only in 
subgroups which are space groups themselves. 

Let us first recall the concept of proper subgroup. A subgroup H is called 
proper subgroup of a group G if there are symmetry operations of G not 
contained in H. Now we define maximal subgroups: a subgroup H of a 
space group G is called a maximal subgroup of G if there is no proper 
subgroup M of G such that H is a proper subgroup of M. For example, 
P112,, P1211, P2,ll are maximal subgroups of P212121, while P1 is not 
maximal. 

For every H, according to (1.E.4), a right coset decomposition of G 
relative to H may be made. The index of the decomposition determines the 
degree of 'dilution' of the symmetry in H with respect to that in G. Such a 
dilution may be obtained in three different ways: 

1. By eliminating some symmetry operators (e.g., from G = P212121 to 
H = P2,ll). Subgroups of this kind, are called Translationengleiche or t 
subgroups. Since the point group P of G is finite, the number of subgroups, 
and therefore, of maximal subgroups, is finite. All the maximal subgroups 
of type t for any given G are listed in the Znternational ~ables  as type I 
maximal non-isomorphous subgroups (see Figs 1.20 and 1.21). 

2. By loss of translational symmetry, i.e. by thipning out the lattice. Such 
subgroups are called Klassengleiche or k subgroups and are classified as 
type 11. A subset of k subgroups are those belonging to the same space 
group G or to its enantiomorphic: their number is infinite and they are 
called maximal isomorphous subgroups. Those of lowest index are listed 
as IIc in the International Tables. For example, if G = (2222, maximal 
isomorphous subgroups of lowest index are C222 with a' = 3a or b' = 3b 
and C222 with c' = 2c. 

Maximal non-isomorphous subgroups of C222 are also P222, P2J12, 
P2,22, P2212, P222,, which have the same conventional cell: for practice1 
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reasons they are labelled as subgroups of type IIa. Space groups with 
primitive cells have no entry in the block IZa. Some further subgroups of 
C222 are C222, (with c' = 2c), I222 (with c' = 2c) and I2,2,2, (with c' = 2c). 
These subgroups have conventional cells larger than that of C222 and are 
denoted as subgroups of type IIb. For k subgroups the point group P of G is 
unchanged. 

3. By combination of 1 and 2. In this case both the translation group T 
and the point group P of G are changed. 

A theorem by Hermann states that a maximal subgroup of G is either a t 
subgroup or a k subgroup. Thus in the International Tables only I, IIa, IIb, 
and IIc subgroups are listed. 

Sometimes we are interested to the possible space groups G' of which a 
given space group G is a subgroup. G' is called a minimal supergroup of the 
group G if G is a maximal subgroup of G'. Of course we will have a 
minimal t, or a minimal non-isomorphous k, or a minimal isomorphous k 
supergroup G'  of G according to whether G is a maximal t, or a maximal 
non-isomorphous k, or a maximal isomorphous k subgroup of G'. The 
minimal non-isomorphous supergroups of C222 are: 

of type t: Cmmm, Cccm, Cmma, Ccca, P422, P42,2, P4,22, P42,2, 
~4rn2 ,  ~ 4 ~ 2 ,  ~ 4 b 2 ,  ~ 4 n 2 ,  P622, P6,22, P6,22, 

of type k: F222, P222 (with a '  = a/2, b' = b/2). 

Maximal subgroups and minimal supergroups for three- 
dimensional crystallographic point groups 
With trivial changes the definitions of maximal subgroup and minimal 
supergroup given above for space groups may be applied to three- 
dimensional crystallographic point groups. For example, it will be easily 
seen that Laue symmetry is always a minimal supergroup of index 2 of a 
non-centrosymmetric point group. 

A scheme showing the subgroup and supergroup relationships for point 
groups is illustrated in Fig. 1.E.1. Maximal invariant subgroups are 
indicated by full lines: if two or three maximal invariant subgroups exist 
with the same symbol then double or triple full lines are used. 

A set of maximal conjugate subgroups is referred to by a broken line. For 
example, from 3m three conjugate subgroups of type m can be formed. 
Thus a dashed line refers 3m to m. Furthermore, from 422 two invariant 
subgroups of type 222 with index 2 can be formed (no symmetry operation 
of 422 refers one subgroup to the other). Thus in Fig. l.E.l a double solid 
line refers 422 to 222. 

Limiting groups in two and three dimensions 
In two dimensions there are two types of point groups: 

For very large values of the order of the rotation axis the two types 
approach w and am respectively. From the geometrical point of view w and 
wm are identical, and our standard notation will be wm (the situation 
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a, # a m  occurs when the rotation direction is taken into account: i.e. for a 
magnetic field round a disc). 

In three dimensions a point group can include continuous rotations about 
one or about all axes (this is a consequence of the Euler theorem applied to 
such a limiting case). In the first case two groups can be identified, wm and 
w 2 -- , according to whether there is or not a mirror perpendicular to a, axis 
m m  
(the symmetry of the two groups can be represented by a circular cone and 

w m 
by a circular cylinder respectively). The symbol -- represents the case in 

m m  
which continuous rotation about any axis is allowed (the symmetry is 
represented by a sphere). 

Representation of a group 
If a square matrix d can be associated to each g E G,  in such a way that 
when gigj =gk also didj = d,, then the matrices form a group D isomor- 
phous with G. These matrices form an isomorphous or exact repre- 
sentation of the group: the order n of the matrices is the dimension of the 
representation. In accordance with this point of view, in Chapter 1 we have 
represented the symmetry groups through square matrices of order 3. 
Different representations of G may be obtained through a transformation of 
the type 

Fig. 1.E.1. Group, subgroup, supergroup 
relationships for point groups (from 
International Tables for Crystallography). 

When condition (1.E.7) is verified for the two representations 
rl(d,, d2 , .  . .) and r2(dI, d;, . . .) then the two representations are said to 
be equivalent, since q can be interpreted as a change of coordinate system. 
It is often possible to find a new coordinate system for which each matrix d 
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is transformed into 

with dl  of order m < n and d2 of order (n - m). If this can not be obtained 
by any transformation, then the representation is called irreducible; 
otherwise it is called reducible. Sometimes dl and d2 can be further 
reduced, and at the end of the process each matrix dj  will be transformed 
into 

q-ld,q = diag [djl), dj2), . . . , d,(")] = d,' 

where dji) are themselves matrices. 
The matrices dl1), dp), dill, . . . all have the same dimension. Similarly 

dl2), di2), di2), . . . have the same dimension. From the rule of the product of 
blocked matrices it follows that (dl1), d$'), dS1), . . .) form a'representation of 
the group, as well as (dl2), ds2), dS2), . . .), etc. 

It can be shown that for finite groups the number of irreducible 
representations is equal to the number of classes. For instance an 
isomorphous (reducible) representation of the point group 32 is 

Also the two-dimensional irreducible representation 

and the one-dimensional non-exact (homomorphic) representations exist: 

Character tables 
The sum of the diagonal elements of a matrix, elsewhere called trace, in 
group theory is called character and is indicated by ~ ( g )  It is obvious that 
~ ( g , )  defines the dimensionality of the representation. The complete set of 
characters for a given representation is called the character of the 
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representation. Since the traces of two matrices related by a coordinate 
transformation are identical, the characters of two equivalent repre- 
sentations will be identical (the converse is also true). Several properties of 
a point group may be deduced from the characters of its irreducible 
representations alone. It is therefore convenient to set them up in tables 
called character tables. Each row of the table refers to a particular 
irreducible representation and each column to a given class. 

1 .F. Symmetry generalization 
Only a few intuitive elements of this subject are given, since a full treatment 
would exceed the limits of the present book. The reader is referred to 
specific texts or 

The symmetry groups G: 
A space may or may not be periodic in all its m dimensions. The 
corresponding symmetry groups are indicated by GT, with m 3 n, where n is 
the number of dimensions of the subspace in which the group is periodic. In 
this space only symmetry operations transforming the space into itself will 
be allowed. For instance in the G: groups, describing objects periodic in one 
direction and finite in the other two, at least one line will remain invariant 
with respect to all symmetry operations. 

The G1 groups 

1. Gh groups. In a one-dimensional space (a line), which is non-periodic, 
only two symmetry operators are conceivable: 1 and ? (which is the 
reflection operator m). The only two (point) groups are therefore 1 
and I. 

2. G: groups. Besides the 1 and ? operators, they contain the translation 
operator. Only two groups of type G: are then possible. 

The G2 groups 

1. G?, groups. In a 'two-dimensional space (a plane), which is non-periodic, 
the only conceivable operators are those of rotation around an axis 
perpendicular to the plane and of reflection with respect to a line on the 
plane. The number of (point) groups is infinite, but there are only ten 
crystallographic groups (see p. 16). 

2. ~f (border) groups. In a two-dimensional space, periodic in one 
dimension, only the symmetry operators (and their combinations), which 
transform that direction into itself, are allowed. We may therefore 
consider reflection planes parallel or perpendicular to the invariant t a---a--t:2 

direction, glides with translational component parallel to it and two-fold 
- - - - - - - - - - - t.a 1- - - + - - - I  at:2,a axes. There are seven Gf groups (the symmetries of linear decorations) 

which are represented in Fig. 1.F.1. t.m +-+-+-+t:zm 

3. G$ groups. There are the 17 plane groups described on the pages 30 and I-It:m 
34. Fig. 1.F.l. The seven border groups 
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The G3 groups 

1. G; groups. There describe non-periodic spaces in three dimensions. The 
number of (point) groups is infinite (see Appendix l.B), but there are 
only 32 crystallographic point groups (see pp. 11-16). 

2. G: (rod) groups. Rod groups may be considered as arising from the 
combination of one-dimensional translation groups with point groups G;. 
They describe three-dimensional objects which are periodic in only one 
direction (say z). This must remain invariant with respect to all 
symmetry operations. The only allowed operations are therefore n and ri 
axes coinciding with z, 2 and 3 axes perpendicular to it, screw axes and 
glide planes with a translational component parallel to the invariant 
direction. 

There are 75 G: crystallographic groups. In Table l .F. l  the rod group 
symbols are shown alongside the point groups from which they are derived. 
The first position in the symbol indicates the axis (n or ri) along z, the 

Table 1.F.1. The 75 rod groups 

Point group Rod groups 

1 
2 
3 
4 
6 
I m 
2mm 
31-17 
4m m 
6mm 
m 
2/m 
4/m 
6/m 
m2m 
2 2 2  --- 
m m m  
4 2 2  --- 
rn rn rn  
6 2 2 --- 
m m m  
12 
222 
32 
422 
622 
1 
3 
4 
6 
- 2 
1 - 

m 
- 2 
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21 
31 
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61 
I c 
2,mc 
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2,/m 
421 m 
6,/m 
m2c 
2, 2 2 --- 
m m c  
4, 2 2 --- 
m m c  
6, 2 2 --- 
m m c  

2,22 
312 
4,22 
6,22 

- 2 
1 - 

C 

- 2 
3 - 

C 

4c2 
6c2 
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second position refers to axes (n or i i )  in the plane (x, y) normal to the 
invariant direction, the third position for axes in the (x, y) plane bisecting 
the previous ones. Glides in the z direction are denoted by c. 

3. G: groups. There are called layer groups and d e s ~ r i b e [ ~ , ~ , ~ ~ , ' ~ ]  the 
symmetries of doubly periodic three-dimensional objects. They are 
useful in describing the patterns of walls, panels, and, at an atomic level, 
in describing structures with layer molecular units. 

Let us denote by z the direction perpendicular to the layer plane. It will 
be the vertical axis from now on: directions in the plane will be called 
horizontal. Rotations can only occur about a vertical axis, and if twofold, 
also about a horizontal one. No more than one horizontal reflection plane 
can exist, otherwise translational symmetry should also occur along the z 
axis. The layer groups can be enumerated according to the five nets quoted 
in Table 1.7 for the plane lattices. In Table 1.F.2 the 80 layer groups are 
divided in blocks, each block divided by the subsequent by a double line: 
each block refers to a specific net (in sequence, parallelogram, rectangular, 
centred rectangular, square, hexagonal) and contains the point groups 
compatible with the net and the corresponding layer groups. 

The number of point groups which can be used is 31: the 32 three- 
dimensional point groups minus the five incompatible groups 23, m3, 432, 
43m, m3m plus four second settings (this time the z axis is distinguishable 
from x and y: so 2 is different from 12, or 2/m from ?2/m, . . .). 

The first position in the layer group symbol gives the type of cell, the 
second refers to the z direction. The third and fourth positions refer: 

(a) for rectangular nets, to x and y respectively; 

(b) for a square net, to x (and therefore to y) and to a diagonal direction; 

(c) for a hexagonal net, to x (and therefore symmetry related axes) and to 
diagonals directions. 

As subgroups of the G; groups we may consider the G: groups, which 
are obtained by projecting the Gq groups along the axis normal to the 
singular plane. 

4. G: groups. These are the 230 space groups (see pp. 22-30). 

The 64, groups 
The three-dimensional Euclidean space may be insufficient to describe the 
symmetries of some physical objects. We can therefore introduce one or 
more additional continuous variables (e.g. the time, the phase of a wave 
function, etc.), thus passing from a three-dimensional space into a space 
with dimensions m > 3. In a four-dimensional Euclidean space the sym- 
metry groups G: may be constructed from their three-dimensional projec- 
tions G:, which are all well known. Thus there are 227 point groups G: and 
4895 groups Gi. 

The groups of colour symmetry 
Groups in which three variables have a geometrical meaning while the 
fourth has a different physical meaning and is not continuous, are 
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Table 1.F.2. The layer groups 

Point group Plane groups 

1 P 1 
2 P2 
rn prn P b 
Tim p2/m p2/b 
1 P 1 

1 rn p l m  p l b  

2rnrn p2rnm p2bm p2ba 

rn2m prn2rn pm2,a pa2,m pa2a 
pn2,m pn2a pb2rn pb2,a 

2 2 2  --- 2 2 2  2 2 2  22,2, P--- P--l 
m r n m  m m m  rnbrn 

2 2 2  22 2 2 2 2  22,2 p--A p - l L  
brnm b m  a P b b i  P b b a -  
22121 22,2 222  P--- p--- P,ba 
n rnm n b m  

1 rn 
2mm 
m2m 
2 2 2 --- 
m m m  
12 
222 
- 2 
1 - 

m 

c l  rn 
c,mrn 
cm2m 

2 2 2  
C--- 

m m m  
c12 
c222 
- 2 

c l -  
rn 

- 

4 P4 
4m rn p4mm p4grn 
41 rn p4m/m p4/n 
4 2 2  --- 4 2  2 4 2  2 4 2 , 2  4 2 2  P--- p-A- 
m m r n  P--- P--- m m m  r n g m  r n g m  n g m  
4 P4 
422 ~ 2 2  ~ 4 2 ~ 2  
4m2 p4m2 p4g2 p42rn p42,rn 
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particularly important in crystallography. For instance: 

1. The position and orientation of the magnetic moments of the cobalt 
atoms in the CoA1204 structure (space group ~ d 3 m )  may be described by 
means of a two-colour group (see Fig. l.F.2(a)) in which each colour 
corresponds to a given polarity of the magnetic moment. Groups of this 
type are also called 'groups with antisymmetry' or 'black-white' sym- 
metry. More complicated cases require more colours, and the term 
colour symmetry is used. Classical groups involve only neutral points. 

As a further example let us consider the case of NiO, a material used 
in the ceramic and electronic industries. At room temperature, NiO is 
rhombohedral with edge length a ,  - 2.952 A and a~ =. 60'4': aR ap- 
proaches 60" with increasing temperature, and, above 250°C, NiO is 
cubic with ac2: 4.177 A. The relation between the two cells is shown in 
Fig. l.F.2(b): the same set of lattice points is described by the primitive 
rhombohedral unit cell and by the face-centred cubic cell provided that 
aR = 60' exactly and aR = a/*. If the cube is compressed (or extended) 
along one of the four threefold axes of the cubic unit cell then symmetry 
reduces from cubic to rhombohedral (the only threefold axis is the 
compression axis). The polymorphism of NiO is due to its magnetic 
properties. Each Ni2+ ion has two unpaired spins (the [Ar]3d8 electronic 
configuration). At room temperature the spins in NiO form an ordered 
antiferromagnetic array: layers of Ni2+ with net spin magnetic moments 
all in the same direction alternate with layers of Ni2+ with magnetic 
moments all in the opposite direction, as in Fig. l.F.2(c). In these 
conditions the threefold axis is unique and the structure is rhom- 
bohedral. Above 250°C the antiferromagneti~ordering is lost: the 
rhombohedral + cubic transition occurs and NiO displays ordinary 
paramagnetism. 

2. If we project a G: group, in which a 6, axis is present, on a plane 
perpendicular to the axis, we obtain a G; group. But, if we assign a 
different colour to each of the six atoms related by the 6, axis, we will 
obtain a colour group G;,@) with a clear meaning of the symbols. 

In the groups with antisymmetry there will be four types of equivalence 
between geometrically related objects: identity, identity after an inversion 
operation, anti-identity (the two objects differ only in the colour), identity 
after both an inversion operation and a change in colour. A general rotation 
matrix may be written in the form 

\ O  0 0 R44/ 
where R4, = -1 or +1 depending on whether or not the operation changes 
the colour. 

For the three-dimensional groups with antisymmetry we observe that, 
because of the existence of the anti-identity operation 1' (only the colour is 
changed), the anti-translation operation t' = t l '  will also exist. New types of 
Bravais lattices, such as those given in Fig. 1.F.3, will come out. As an 
example, in Fig. l.F.2(c) the quasi-cubic magnetic unit cell of NiO has an 

Fig. 1.F.2. Examples of structure described by 
an antisymrnetry group: (a) CoAI,O, magnetic 
structure; (b) geometrical relation between a 
face-centered cubic unit cell and a primitive 
rhombohedral unit cell; (c) antiferromagnetic 
superstructure of NiO (only ~ i ' +  ions are 
shown). 
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edge length twice that of the chemical unit cell. It may be seen[14] that if the 
five Bravais lattices are centred by black and white lattice points (in equal 
percentage) then five new plane lattices are obtained. In three dimensions 
there are 36 black and white Bravais lattices, including the traditional 
uncoloured lattices. 

? 9 References 
1. Shubnikov, A. V. (1960). Krystallografiya, 5, 489. 
2. Shubnikov, A. V. and Belov, N. V. (1964). Coloured symmetry. Pergamon, 

Oxford. fg 3. Bradley, C. J.  and Cracknell, A. P. (1972). The mathematical theory of 
symmetry in solids. Representation theory for point groups and space groups. 
Clarendon Press, Oxford. 

4. Lockwood, E.  H. and MacMillan, R. H .  (1978). Geometric symmetry. 
Cambridge University Press. 

I 
b b----  - 5. Vainshtein, B. K. (1981). Modern crystallography I: Symmetry of crystals, 

, 
/ 

methods of structural crystallography. Springer, Berlin. 

?' 6. (1983). International tables for crystallography, Vol. A, Space group symmetry. 
Reidel, Dordrecht. 

Fig. 1.F.3. Two antisymmetrical Bravais lattices. 7. Dougherty, J .  P. and Kurtz, S. K. (1976). Journal of Applied Crystallography, 9,  
145. 

8. Kitaigorodskij, A. I. (1955). Organic crystallochemistry. Moscow. 
9. Mighell, A. and Rodgers, J. R. (1980). Acta Crystallographica, A36, 321. 

10. Wilson, A. J.  C. (1988). Acta Crystallographica, A44, 715. 
11. Fischer, W., Burzlaff, H, Hellner, E., and Donnay, J. D. M. (1973). Space 

groups and lattice complexes, NBS Monograph 134. National Bureau of 
Standards, Washington, D.C. 

12. Alexander, E.  and Herrmann, K. (1929). Zeitschrift fur Kristallographie, 70, 
328. 

13. Alexander, E. (1929). Zeitschrift fur Kristallographie, 70, 367. 
14. Mackay, A. L. (1957). Acta Cryst., 10, 543. 



CARMELO GIACOVAZZO 

Introduction 

In this chapter elements of crystallographic computing are described. 
Material is treated in order to answer day-to-day questions and to provide a 
basis for reference. Among the various topics, those which are of more 
frequent use have been selected: axis transformations, geometric calcula- 
tions (bond angles and distances, torsion angles, principal axes of the 
quadratic forms, metric considerations on the lattices, structure factors, 
Fourier calculations,. . .). The method of least squares and its main 
crystallographic applications are treated in greater detail. For practical 
reasons some calculations useful in characterization of thermal ellipsoids are 
developed in Appendix 3. B . 

The following notation is adopted: rl. r2 denotes the scalar product 
between the two vectors rl and r2, rl A r2 is their cross product, r will be the 
modulus of r. S1S2 is the (row by columns) product of two matrices S1 and 
S2: S is the transposed matrix of S, and S is the determinant of the square 
matrix S. 

We will also distinguish between coordinate matrices and vectors. For 
example, with respect to a coordinate system [0, a, b, c] the vector r will be 
written as 

where X is the coordinate matrix and A is the matrix which represents the 
basis vectors of the rectilinear coordinate system. 

The metric matrix 

Let [0, a ,  b, c] be our coordinate system. The scalar product of r, and r2 is 

rl . r2 = (xla + ylb + zlc) . (x2a + y2b + z2c) 

=xlx2a2 +yly2b2 + zlz2c2 + (x1y2 + x2y1)ab cos y 

+ ( ~ 1 ~ 2  + X ~ Z ~ ) L I C  cos P + ( Y ~ z ~  + Y ~ z ~ ) ~ c  cos CY 
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or, in matrix notation, 

G is the metric matrix, also called the metric tensor: its elements define both 
the moduli of a, b, c and the angles between them. The value of its 
determinant is 

G = a2b2c2(1 - cos2 a - cos2 j3 - cos2 y + 2 cos a cos P cos y) (2.2) 

which (see Table 2.1 and p. 69) is equal to V2 (square of the volume of the 
unit cell). If r, = r2 = r then (2.1) becomes 

r2 = XGX = x2a2 + y2b2 + z2c2 + 2xyab cos y 

+ 2xzac cos j3 + 2yzbc cos a (2 .3~)  

which gives the modulus square of a vector. We c8n now calculate the 
following: 

1. The interatomic distance d between two atoms positioned in (xl, y,, z,) 
and (x2y2z2) Denoting 

A1 = a(xl - x2), A2 = b(yl - y2), A3 = c(zl - 22) 
gives 

d2 = A: + A; + A$ + 2A1A2 COSY + 2A1A3 cos P + 2A2A3 cos a. (2.3b) 

2. The angle 8 between two vectors 

cos 0 = ~,GX,l(r ,r~).  (2.4) 

3. The cross product r2 A r3: 

4. The scalar triple product rl r2 A r3: 

is the volume of the unit cell 

The following formulae of vector algebra are also recalled for future 
convenience: 

Some properties of the rotation component R of the symmetry operators 
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can now be proved: 

1. If a ,  b, c define a primitive cell, the elements of R are integers. Indeed 
the relation Xr = RX transforms lattice vectors r into lattice vectors r r .  
Both r and rr have integer components, consequently also the elements 
of R must be integers. 

2. A symmetry operator does not change the moduli of the vectors and the 
angles between vectors: i.e. r; ri = r, . r2. Therefore, according to (2.1), 
X;GX; = XlRG~X2 = XlGX2, from which 

Only the matrices R which satisfy (2.9) can be symmetry rotation 
matrices in the coordinates system defined by G. 

3. Multiplying the second eqn (2.9) by R gives GR= W G .  If only 
determinants are taken into consideration then R = f 1 arises. Properties 
1, 2, 3 can be verified for the rotation matrices quoted in Appendix 1.D. 

The reciprocal lattice 

Very useful in metric calculations (as well as in diffraction geometry), the 
reciprocal lattice was introduced by P. Ewald in 1921. Let a,  b, c be the 
elementary translations of a space lattice (called here a direct lattice). A 
second lattice, reciprocal to the first one, is defined by translations a*,  b*, 
c*, which satisfy the following two conditions: 

Equation (2.10a) suggests that a* is normal to the plane (b, c), b* to the 
plane (a, c) and c* to the plane (a, b). The modulus and sense of a*, b*, c* 
are fixed by (2. lob). 

According to (2.10a) a* may be written as 

where p is a constant. The value of p is obtained if the scalar product of 
both the sides of (2.11) by a is taken: 

a * . a = l = p ( b ~ c . a ) = p V  

from which p = 1/V. Equation (2.11) and its analogue may then be written 
as 

or, in terms of moduli, 

Equation (2.10) also suggest that the roles of direct and reciprocal space 
may be interchanged: i.e. the reciprocal of the reciprocal lattice is the direct 
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lattice. Therefore 

1 1 
a = , ( b * ~ c * ) ,  b = - (  

1 
v v* c* A a*) ,  c  =- (a* A b*).  (2.13) v * 

It may be easily verified that the reciprocals of triclinic, monoclinic, . . . 
lattices are triclinic, monoclinic, . . . themselves. However, the reciprocal of 
an F lattice is an I lattice and vice versa (see Appendix 2.D). In detail: 

1 .  In monoclinic lattices b* J J  b while a* and c* are in the plane (a, c):  then 

a* = l / ( a  sin p ) ,  b  = l lb ,  c* = l l (c  sin P ) ,  
a * = y * = n / 2 ,  p * = n - / 3 .  

2. In rhombic, tetragonal, and cubic lattices a* )I a, b* ( 1  b, c* 1 )  c, and 

3. In trigonal and hexagonal lattices c* )I c while a* and b* are in the plane 
(a,  b ) :  

For the rhombohedrical basis 

a* = p* = y* ,  cos a* = -COS @ / ( I  + COS a) .  

Some relations between direct and reciprocal bases are discussed in 
Appendix 2.A: a summary is given in Table 2.1. 

Some important properties of the reciprocal lattice are: 

1 .  The scalar product of two vectors, the first defined with respect to the 
reciprocal basis and the second to the direct basis, assumes a very simple 
expression: 

Table 2.1. Relationships among direct and reciprocal lattice 
parameters. Inverse relationships are obtained by interchang- 
ing t he  starred by unstarred parameters 

a b  sin y a c s i n p  c* - b c s i n a  b * -  . a*=-. 
V '  V '  v 

v * - cos /3 cos y - cos a 
sin a* = cos a - 

abc sin p sin y ' sin p sin y 

* ~ c o s a ~ ~ s y - c o s p  
sin p* = c o s p -  

abc sin a sin y ' sin a sin y 

v * ~ c o s a c o s p - c o s y  
sin y* = c o s y  - 

abc sin a sin p ' sin a sin p 
V = abc(1 - cos2 a - cos2P - cos2 y + 2 cos a cos P cos y)'I2 

= abc sin a sin p sin y* = abc sin a sin p* sin y 

= abc sin a* sin /3 sin y 

v* = 1/v 
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2. The vector r i  = ha* + kb* + lc* is normal to the family of lattice 
planes (hkl). In Fig. 2.1 the plane of the family nearest to the origin is 
drawn. In accordance with p. 8 the vectors (A-0), (B-0) and (C-0) are 
equal to alh,  blk and cll  respectively. Consequently 

(B-A) = blk - alh,  (C-A) = cll - alh ,  (c-B) = cll - blk. 

Therefore 

r i  (B-A) = (ha* + kb* + lc*) . (blk - a lh )  = 0, 

r ; .  (C-A) = r ; .  (C-B) = 0 .  

Since r i  is perpendicular to two lines in the (hkl) plane, it is normal to the 
plane. 

3. If h, k, 1 have no common factor, then Fig. 2.1. The plane of the faniily (hkl) nearest to 
the origin. 

where dH is the spacing of the planes (hkl) in the direct lattice. This may be 
proved by observing that dH is equal to the length of the normal ON to the 
plane ABC from the origin 0. Since r i  has the same direction as ON, 

r  1 
dH= (alh) .-=- 

r; r i a  

4. As well as for direct lattice, a metric matrix G* may be defined for the 
reciprocal lattice: 

It may be easily verified that 

Consequently (see (2.1) and (2.3) for the direct lattice) 

from which 

dH = (h2a*2 + k2b*2 + 1 2 ~ * 2  + 2hka*b* cos y* 

+ 2hla *c* cos /3* + 2klb *c* cos (2.17b) 

is easily obtained. 

Specific expressions of dH for the various crystal systems are given in Table 
2.2. 

Basis transformations 

In three-dimensional space the coordinate system defined by the base 
vectors a ' ,  br ,  c r  may be defined in terms of the base vectors a, b, c by 
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Table 2.2. The algebraic expressions of 4, for the various crystal systems 

Cubic 

Tetragonal 

Orthorhombic 

Hexagonal and 
trigonal ( P )  

Trigonal (R) 

Monoclinic 

Triclinic 

( h2 + k2 + 1') sin2 a + 2( hk + hl + kl)(cos2 a-cos a) 

a2 1 + 2 c o s 3 c u - 3 c o s 2 ~  

h2 I? 1' 2h lcosP 
2 . 2  +7+2.2-- 

a sln f i  b c sin /3 ac sin2P 

(1 - cos2 a - cos2 /3 - cos2 y + 2 cos a cos f i  cos y ) - l ( $  sin2 a 

21h 2hk + - (cos y cos a - cos p )  + - (cos a c0s.p - COS y)  
ca ab 

three equations (suppose the transformation leaves the origin invariant) 

where mi, are any real numbers. In matrix notation (2.18) is written as 

The reverse transformation will be A = M-'A'. The vector r = xa + yb + zc 
may be written in the new coordinate system A' as r' = r = x'a' + y'b' + 
z'c'. Introducing (2.18) into the r' expression leads to 

The reverse transformation is X' = (M)-'X. It should be noted that (2.20) 
provides the transformation rule for the components of the vector r while 
the vector itself is unaffected (r' = r) by a change of axes. 

The metric matrix G' in A' may be calculated by substituting into (2.1) a' ,  
b',  c' for a, b, c and then using (2.18). The result is 

The unit cell volume defined by A' is V' = a' A b' . c' therefore, according 
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to (2.19) and (2.5), V '  = V M .  Thus, for any transformation of axes the unit 
cell volume is multiplied by the determinant of the transformation matrix. 

The set of matrices conventionally used to pass from centred cells to 
primitive ones and vice versa is shown in Table 2.C.1 (however, transfor- 
mation matrices are not unique). 

Let us now apply (2.20) to derive the transformation rules of a quadratic 
form. Let 

be a quadratic form defined in the coordinate system A. In accordance with 
(2.20) XQX = X ' M Q M X '  from which 

Q' = MQM or Q = M - ~ Q ' ( M ) - ~ .  (2.22) 

A special linear transformation is that which relates a' = a * ,  b' = b*, 
c' = c* to a,  b ,  c (in this case A' will be replaced by A*). Let us show that in 
this case M = G-l = G*. Write the vector r = xu + yb + zc as 

(in terms of reciprocal axes 

r' = r* = x'a* + y'b* + z'c* = (r' . a)a* + (r' b)b* + (r' c)c*). (2.24) 

On assuming in (2.23) r = a *, b *, c*, the following relations 

a* = (a* . a*)a + (a* . b*)b + (a* . c*)c 

b* = (b* . a*)a + (b* . b*)b + (b* c*)c 

C* = (c* . a*)a + (c* b*)b + (c* c*)c 

are respectively obtained, which in matrix notation reduce to 

A*=G*A or A=GA*.  (2.25) 

It is easily seen that relations (2.25) are special cases of (2.19). Similarly: 

1. Relations (2.26) are special cases of (2.20) 

X=G*X* or X*=GX. (2.26) 

They transform components defined in direct space into components 
defined in reciprocal space and vice versa. In accordance with (2.1) and 
(2.26) we have 

rl . r2 = XlGX2 = XIX; = Xax;. (2.27) 

In particular r2 = r*2 = X X *  is the square modulus of a vector. 

2. Equations (2.28) are special cases of (2.22): 

Additional transformation rules are given in Appendix 2.E. The reader 
is referred to the splendid book by sandsr1] for further insight. 
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Transformation from triclinic to orthonormal axes 

Geometrical calculations are often more easily made in an orthonormal than 
in a crystallographic frame. 

Let 

A =  (I) and E =  (i) 
be the crystallographic and the orthonormal bases respectively. Then, 
according to (2.18), E  = MA, and inversely A = M-'E. 

If we choose (see Fig. 2.2) el along a,  e2 normal to a in the (a, b) plane, 
e3 normal to el and e2 (and therefore parallel to c*), then the unit vectors 
ala,  blb, clc are referred to el, e2, e, by means of 

/--- a where (I,, I,, I,), (m,, m2, m,), (n,, n2, n,) are direction cosines of the unit 
vectors ala,  blb, clc in E. Therefore 

C l T = C m ? = C n : = l .  
i i i 

C 
From Fig. 2.2 it may be deduced that 

Fig. 2.2. Orthonormalization of crystallographic 
bases. 1, = 1, 12= 0, 1, = 0, ml = cos y, 

m2 = sin y, m3 = 0, nl = cos p. 
Since 

cos a = C mini = cos cos p + sin sin n2 
i 

we obtain 
n2 = (cos a - cos p cos y)/sin y = -sin p cos a*. 

Furthermore, from the relation Ci  n: = 1 

n, = sin p sin a* = l/(cc*) 
is easily obtained. Finally 

0 0 (fI))=(co:y siny 
cos p -sin p cos a* ll(c*c) 

from which 

0 0 
=(bc:s b sin y 0 )(,) = WIJL (2.30) 

c cos p -c sin /3 cos a* l /c*  

The matrix M to use in E  = MA is therefore 

1 /a 0 
-cos y/(a sin y) l / (b sin y) 

a*  cos p* b*cosa* c* 
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A crystallographic frame may be orthonormalized in infinite ways. For 
example, el may be chosen along a* and e2 in the plane (a*, b*): e3 is then 
along c. In this case ("d*~;~* c*cosp* 

M =  0 b*siny* -c*s inp*cosa  

l l c  
and 

l l a *  -cot y*/a* a cos /3 
~ - l =  0 l/(b*siny*) b c o s a  

0 C 

Also, we may choose el along a* and e2 along b (then e3 is in the plane 
(b, c)). We obtain 

l l (a  sy sp*) l l (b  t a  tp*) - l l (b  ty sp*) - l l(c s a  tp*) 
M = (  0 l / b  0 (2.31~) 

0 - l l(b t a )  l l (c sa )  

and 

where sy, cy, ty stand for sin y, cos y, and tan y, etc. . . . 
The family of all the possible transformations M which orthonormalize a 

given frame A according to E = MA may be obtained from the following 
decomposition of the metric matrix G of A: 

Such a relation is obtained by requiring that in (2.21) the condition G' = I is 
satisfied. 

The volume of the unit cell defined by a, b, c may be easily obtained if M 
is known. Indeed, if we express a,  b, c in terms of el, e2, e3 according to 
(2.30), and if (2.5) is then used for calculating a . b A c, then the result 

V = a b A c = det (M-') 

is obtained. Furthermore, since det (M-l M-l) = v2 = G, the assumption 
made on p. 62 according to which G is the square of the volume of the unit 
cell is also proved. 

Rotations in Cartesian systems 

In a right-handed Cartesian coordinate system [0, el, e2, e3] the anti- 
clockwise rotation of a vector r through angle al about el or through a2 
about e2 or through cu3 about e3 produces a vector r' = R,r where s = x ,  y ,  z 
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and 

0 

cos a, 0 sin a, 

-sin a, 0 cos a2 ( c a s i  a 0) 
Rz(a3) = sin a3 cos a3 

Since the matrices are orthogonal, the following relations hold: 

R(a) = R-l(cu) = R-l(-a) = R(-a). 

Corresponding clockwise rotations are obtained by changing a;. into -a;.. 
Matrices corresponding to rotatory-reflection operations about el, e2, e3 
are obtained by replacing in (2.32) the integer 1 by -1. Matrices 
corresponding to rotatory-inversion operations about el, e2, e3 are obtained 
by changing the signs of all the elements. The traces of the matrices that 
represent proper rotations, rotatory-reflection and rotatory-inversion oper- 
ations are 1 + 2 cos a, 2 cos a - 1, -2 cos a - 1 respectively. 

It should be noted that rotating r about el, e2, e3 in anti-clockwise mode 
is equivalent to rotating el, e2, e3 in clockwise mode. For example if the 
framework [0, el, e2, e3] may be superimposed to the new framework 
[0, e;, eh, e;] by a clockwise rotation through a, about e3, then E' = 
R,(a3)E. According to (2.20), X '  = R;l(a3)x = R,(a,)X, which corresponds 
to an anti-clockwise rotation of a vector r in E. 

See now some useful applications: 

1. Rotation about the unitary vector I in a rectilinear coordinate system. 
Given the crystal base A = (a, b, c), an orthonormal base E =  (el, ez, e3) 

may be chosen (E = MA)  such that el coincides with 1. In accordance with 
(2.32) a rotation about 1 in E is represented by R,, and, according to Table 
2.E.1, the same rotation in A is represented by R = MR,(M)-'. As an 
example we calculate in the hexagonal system the matrix corresponding to 
an anti-clockwise rotation through x about a.  According to (2.30) and 
(2.31) the matrices M and M-I are 

from which 

1 (cos - 1)/2 -c sin x / ( a f l )  
R = MR,(M)-~ = cos x -2 c sin Xl(af l)  

0 af ls inX/(2c) cos x 
Incidentally, it may be noted that the ratio a/c is unconstrained. Thus R 
(which is an integer matrix) may correspond to a symmetry axis along a in 
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the hexagonal system only if x =O, n (onefold or twofold proper or 
improper axis). 

The reader will easily find that the general rotation matrix about b in the 
monoclinic system is 

cos x + cot plsin x 0 c sin %/(a sin p) .=( 0 1 0 
-a sin xl(c sin$) 0 cos x - cot /3 sin x 

R will correspond to a symmetry operator if = 0, n. 

2. Explicit expression for the rotation-matrix R about the unit vector I in an 
orthonormal system. Let I,, I,, I, be the direction cosines of 1 in the 
orthogonal system A. A new orthonormal system E = (el, e,, e,) is chosen 
so that 1 coincides with el: then, according to (2.29), 

where mij are suitable parameters. The matrix corresponding to a rotation 
about I in A is then 

where sx and cx stand for sin x and cos X. 

3. Sequence of rotations about the same axis or about different axes. 
The overall effect of a sequence of three successive rotations R,(w), 

Ry(q), Rx(q) on the vector r may be so described: 

from which 
X = RxRyR,X = RX 

where 
cqcw -cqso  

c q s o  + sqsqcw c q c o  - sqsqsw -sqcq 
sqsw - cqsqcw s q c o  + c q s q s o  cqcq  

and c q  stands for cos q ,  s q  for sin I$, etc. . . . 
If the three rotations are made in different order, the overall effect 

changes. As an example, the reader will easily verify that rotating r through 
120" about e3 and then through 90" about el leaves r in r" where 
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Fig. 2.3. (a) Eulerian angles. (b) Spherical polar 
coordinates. 

and 

4. Eulerian angles. In Fig. 2.3(a) two orthonormal frameworks 
[ 0 ,  el, e2, e3] and [O, el, e;, e;] are shown. The axis OK, called the line of 
nodes, is the intersection of the (el, e2) and (e;, e;) planes and is 
perpendicular both to e3 and e;. E may be superimposed to E' by three 
anti-clockwise rotations in the following order: (a) rotate about e3 by the 
angle 81 (OK and el are now identical); (b) rotate through 8, about OK 
which will bring e3 into coincidence with e;; (c) rotate about e; by O3 which 
then brings el to el and e2 to e;. 

Suppose now that r is a vector with coordinates X in the space-fixed 
system and coordinates X' in a body-fixed system: then X and X' are 
connected by 

where cei and soi stand for cos ei and sin Oi respectively. 
The Eulerian angles can also be used in order to calculate, in any 

crystallographic system A, the rotation function corresponding to any 
desired rotation. The simplest procedure could be: 

(a) Transform coordinates in A (say XA) into coordinates in E (say XE). If 
E = MA, then according to (2.20), X, = (M)-lXA. For example, M may 
be (2.31a) or (2.31b) or (2.31~). 

(b) Transform the Cartesian coordinates into a rotated set of axes. Then XE 
transforms in XI, = REuXE. 

(c) Return these coordinates into the system A. Then the inverse operation 
described in (a) has to be made. 

The final coordinates are Xj, = M X ~  = MR,,(M)-'X~ so that the desired 
rotation function is 

the full range of rotation operations is 
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Since Eulerian angles are difficult to visualize it is preferred to specify a 
rotation in terms of spherical polar coordinates (see Fig. 2.3(b)). The 
rotation about a given axis is specified by the angle x and the polar 
coordinates and q, define the direction of the rotation axis. According to 
Fig. 2.3(b) the orthonormal coordinates x ,  y, z are given by 

Since (2.32b) represents the anti-clockwise rotation matrix about the unit 
vector 1 in an orthonormal frame we can replace the direction cosines 
11, 12, l3  of the rotation axis 1 by 

I l  = sin I )  cos q,, l2 = cos q, l3 = -sin q j  sin q, 

and so obtain the expression of the rotation matrix Rsp in terms of the 
rotation angle x and the spherical polar coordinates q, and q:  

( 
CX+ (1 - cx)s2*c2Q) -s*sQ)sx+ (1 -cx)c*s*cQ) -cvsx-- (1 -cx)s2*cQ)sQ) 

R,, = s * s q s ~ +  (1 - c~)cvsvcq ,  cx + (1 - c x ) c 2 ~  S ~ C Q ) S X  - (1 - C X ) C I ~ S ~ S Q )  
c ysx- (1 - cx)s2*cQ)sq, -s*cQ)sx- (1 - cx)c*s*sq, cx + (1  - c~)sz*s2Q) 

Since 

all rotation operations qre included in 

Some simple crystallographic calculations 

The reader is referred to Appendix 2.B for calculations concerning 
crystallographic directions and planes. Here we limit ourselves to the 
description of some calculations which occur very frequently in crystal 
structure analysis. 

Torsion angles 
For a sequence of four atoms A,  B, C, D, the torsion angle o(ABCD) is 
defined as the angle between the normals to the planes ABC and BCD (see 
Fig. 2.4). By conventiod2] w is positive if the sense of rotation from BA to 
CD, viewed down BC, is clockwise, otherwise it is negative. Note that 
w(ABCD) and w(DCBA) have the same sign; furthermore, the sign of a 
torsion angle does not change by rotation or translation, and is reversed by 
reflection or inversion. According to the definition (see again Fig. 2.4) 

(a A b )  . (b A c) b (a A b) A (b A c) 
cos o = -sin w = 

ab2c sin a sin y b ab2c sin a sin y 

which, owing to (2.7) and (2.8), become 

cos a cos y - sin /3 
cos w = , sin o = 

Vb 
sin a sin /3 ab2c sin a sin y ' Fig. 2.4. Definition of the torsion angle w .  
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If the vectors a * ,  b * ,  c* reciprocal to a ,  b ,  c  are considered, it may easily 
be seen from Table 2.1 that w coincides with P * .  

Best plane through a set of points 
Consider a set of p atoms at positions r l ,  r2, . . . , r, where r j  = AX,.. The best 
plane through them is that for which the sum of the squares of the distances 
of the atoms from the plane, multiplied by the weights of 
the atomic positions, is minimum. Such a plane is characterized by the 
minimum of the function (see eqns (2 .B.5)  and (2 .B .7) )  

where d is the distance of the plane from the origin of the coordinate 
system, n = n , a  + n2b + n,c = A N  = nFa* + nib* + ngc* = A*N* is the 
normal to the plane. The weights w, should be taken as being inversely 
proportional to the variances of the atomic positions in the direction normal 
to the desired plane, but they are often assumed to be unitary. 

If the atoms are considered as point masses of weight wj ,  the least squares 
plane coincides with the principal plane of least inertia. 

The minimum of Q will be searched with respect to d and n:, n z ,  n; 
under the condition that n is a unit vector. This kind of problem is best 
solved by the method of Lagrange multipliers. The function to minimize is 
thenL3] 

= C wj(A*xj  - d)2  - A(N*G*N* - 1) .  (2.34) 
i 

The partial derivative of (2.34) with respect to d gives 

from which 

d = N * [ ( F  wjx j ) (?  w,)-'1 = N*Xo. (2.35) 

Equation (2.35) states that the plane passes through the centroid ro = ao. 
Owing to (2.35),  eqn (2.34) becomes 

where r; = r;. - ro and 

Note that N*SN* is the weighted sum of the squares of the distances of the 
atoms from the plane. Setting to zero the derivative of (2.36) with respect to 
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N* (in practice with respect to the components n:, ng, nz) gives 
SN* - AG*N* = 0, which may be also written as 

(A- hl)N = O  (2.37) 

where A = SG and N = G*N* (see Table 2.E. 1). Writing (2.37) as AN = AN 
and multiplying both sides for N* gives 

The eigenvalue A is therefore the weighted sum of the squares of the 
distances of the atoms from the plane, N is the corresponding eigenvector. 
There are three solutions of eqn (2.37), which in general correspond to 
three different A values, say A, >AP 3 A,. Each eigenvalue of A gives a 
stationary value of Q':  the three corresponding eigenvectors N,, NP, N, 
define the principal axis of inertia of the system of atoms when considered 
as points of masses w,, . . . , w,. The best plane corresponds to the 
eigenvalue A, and coincides with the plane passing through ro and normal to 
N, (see eqn (2.B.6)), while A, and N, define the worst plane. Furthermore, 
N,*Xi is the distance of the ith atom from the best plane and Nix;  and N/TXI 
are useful to prepare a diagram of the projection of the system of atoms on 
to the best plane. 

The search of the best plane is remarkably simplified if Cartesian systems 
are used (then G = G* = I). 

Best line through a set of points 
This problem is strictly connected to results described in the above 
subsection. It may be shown that the least squares line passes through the 
centroid ro of the atoms and is normal to the plane corresponding to the 
eigenvalue A,. 

Principal axes of a quadratic form 
Let 

be the quadratic form. Finding its principal axes is equivalent to finding the 
directions n in which q is stationary. As in calculating the best plane through 
a set of points, the problem may be solved via the Lagrange multipliers by 
minimizing 

The derivative of q' with respect to N brings to 

from which 

(A - Al)N* = O  

where A = QG*, and N* = GN is the general eigenvector the components of 
which are referred to the reciprocal axis. The eigenvalue A gives the value of 
q in the n direction. Indeed, if (2.38) is written as AN* = AN* and both sides 
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are multiplied by N we obtain 

Substituting the three eigenvalues A,, A,, A, into (2.38a) provides the three 
eigenvectors N:, N;, N: which represent the principal axes of q. 

If the quadratic form is referred to the reciprocal basis (i.e. q*  = H$H = 
Pllh: + 2P12hk + . . . + P3,12) the problem may be solved in the same way 
on condition that G* and N* replace G and N respectively. As an example 
let us determine the principal axes of an atomic thermal ellipsoid for which 
PI1 = 0.00906, P12 = -0.00049, P13 = -0.00102, PZ2 = 0.00401, P23 = 
0.00038, P3, = 0.01424. Let the orthohombic unit cell parameters be 
a = 8.475, b = 10.742, c = 5.8991$. The function to minimize is 

which, derived with respect to N*, leads to the condition 

Since N = G*N*, that condition may be written 

($G - Al)N =0.  

The corresponding secular equation is 

Expansion of the determinant produces the cubic equation 

which has solutions A, = 0.483, AB = 0.448, A, = 0.677. Using the first root 
gives 

0.1677 -0.0565 -0.0354 
(-0.0352 -0.0203 0.0132) (I::) = (!). 

-0.0733 0.0438 0.0125 n3, 

Since the three equations are linearly dependent n,, and n2, can be found in 
terms of n,,: n,, = +0.2592n3,, n2, = 0.185n3,. The eigenvector N, will 
have unitary modulus (remember that n,,, n,,, n,, are the components of 
N, in A) if n3, = 0.1515. Therefore N, = -[0.0393, 0.0280, 0.15151. In an 
analogous way N~ = [-0.0139, -0.0866, 0.05871 and N, = [-0.1097, 
0.0210, 0.04921. Since 

each eigenvalue A fixes the value of q* along the corresponding eigenvector. 
If this conclusion is referred to the tensor U* = j3/(2n2), (see eqn (3.B.6) 
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the following relations follow: 

A3 ( ~ 2 ) ~  = - 
2n2 ) 

(2.38b) 

along the ith principal axis. where ( u ~ ) ~  is the mean-square displacement 
The reader will easily find, for the example above, that the root-mean- 
square displacements along the principal axes are 0.156& 0.151 A and 
0.185 A respectively. 

It would be worthwhile remembering two basic properties of the 
eigenvectors: 

(1) eigenvectors corresponding to different eigenvalues are orthogonal to 
each other; 

(2) the matrix M = (GV)-l, where V is the eigenvector matrix 

transforms the basis A into a Cartesian coordinate system A' in which the 
axes are the eigenvectors of $. Indeed, according to (2.E.8), $ transforms 
into $' = VG$GV. Because of (2.38b) 

so that 

Metric considerations on  the lattices 

The results obtained so far can be used to characterize lattices and their 
properties. 

Niggli reduced cell 
A unit cell defines the lattice: conversely any lattice may be described by 
means of several types of cell. However, a special cell exists, called ,the 
Niggli reduced cell, which uniquely describes the lattice:[41 it is primitive and 
is built on the shortest three non-coplanar lattice translations (the 
~ e l a u n a ~ [ ~ ]  reduction procedure is also a suitable tool for the identification 
of a crystal lattice: readers will find careful description of it in some recent 
papers["']). 

A unit cell characterized by the three shortest non-coplanar translations is 
called a Buerger cell.[92101 Several algorithms can be used to obtain it. The 
easiest is: lattice vectors of magnitudes r,,,,, are calculated by (2.3) where 
u, v, w vary over the smallest integers set (usually between 3 and -3). The 
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smallest three non-coplanar translations will be the Buerger cell edges. This 
cell is, however, not unique: if it is, then it coincidesiwith the Niggli cell. 
For 7 of the 14 Bravais lattices a unique Buerger cell exists,[''] while in a 
face centred cubic lattice (see later) two Buerger cells can be found. In 
other lattice types up to five types of Buerger cell can be found (the values 4 
and 5 occur only in triclinic lattices) according to whether some conditions 
on the parameters of the conventional cell are satisfied or not. For example, 
the triclinic lattice described by a Buerger cell with 

may be described by means of four other Buerger cells having the same a, 
b, c values, but with 

a = 60°00', P = 86'24', y = 75'31'; 

a = 120"001, P = 93'36', y = 100'48'; 

a = 117'57', /3 = 93'36', y = 104'28'; 

a = 113'58', P = 100°48', y = 104'28'. 

It will be shown later that only the first of the five cells is the Niggli cell. 
If gij are the elements of the metric matrix, the Niggli cell is defined by 

the following conditions:[129131 

1. Positive reduced cell (all the angles <90°). Main conditions: 

Special conditions: 

(b) if gz3 = 1/2gZ2 then g12 6 2g13; if g13 = 1/2gll then g12 s 2gZ3; if g12 = 
1/2gll then g13 s 2g23. 

2. Negative reduced cell (all the angles 290'). Main conditions: 

(b) if k231 = 1/2g22 then g12 = 0; if lg131 = 1/2gll then g12 = 0; if lglzl = 
1/2gii then g13 = 0; if (Ig23l + Ig13l + Ig121) = 1/2(g1, +gZ2) then gll a 
2 18131 + 18121. 

The main conditions define a cell based on the three shortest non- 
coplanar vectors. Conditions (a) break down ambiguity when two cell edges 
are equal, conditions (b) define the Niggli cell when there is more than one 
symmetrically independent Buerger cell. 

As an example of systematic ambiguity let us consider the face-centred 
cubic lattice with cubic edge a. If we move to the primitive unit cell by 
means of the appropriate matrix quoted in Table 2.C.1 we get 

g;1= g h  = gj3 = a2/2; g;, = gi3 = gi3 = a2/4. 

If we move to the primitive cell by means of the transformation matrix 
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1(1/2 112 011 1/2 112 011 0 1/2 11211 then we get 

Both the primitive cells are Buerger cells but the second violates the 
conditions (a): thus the first is the Niggli reduced cell. 

Matrices which derive Niggli cells from Buerger cells are given by Santoro 
and ~ i ~ h e l l . [ ' ~ ~  A very efficient algorithm to derive the Niggli cell from any 
primitive cell is described by Krivy and ~ r u b e r . ~ ' ~ ]  

For any Bravais lattice ~ i g g l i [ ~ ]  defined the algebraic relations that the gijs 
of the reduced cell must satisfy. The type of Bravais lattice may be thus 
derived from the Niggli cell just by comparing the found with the expected 
relations. For example, in a face-centred cubic lattice the gij of the Niggli 
cell must satisfy gll = g22 = g33, gI2 = g13 = g23 = g11/2. 

The use of automatic procedures devoted to identify the Niggli cell may 
yield incorrect conclusions as a consequence of errors in the cell parameters 
or of rounding errors in the calculations. Some auxiliary procedures recently 
suggested by different are less sensitive to these error sources. 

The final steps from the Niggli cell to the conventional cell may be 
performed by means of suitable transformation matrices.["] It would be 
worthwhile recalling that the lattice symmetry determined via the Niggli cell 
is only of metric nature, and that may be equal to or larger than the 
symmetry of the crystal structure. 

Reduced cells may be used: 

As a useful step for the correct definition of the space group (see also 
Chapter 3). An advisable sequence may the following:[181 from the 
conventional cell to a primitive cell, and then to the Niggli cell; analysis 
of the latttice symmetry, analysis of Laue symmetry and of systematic 
extinctions; space group choice. 

As an effective tool for the identification and characterization of 
crystalline materials['91 (as an alternative to powder methods in which the 
identification is based on matching diffraction positions and intensities). 
An advisable sequence may be: a unit cell is determined, the reduced 
cell is derived together with derivative supercells and subcells (derivative 
cells are calculated to overcome possible errors made by the experimen- 
talist). These cells are checked against a suitable file containing as 
complete as possible a file containing crystallographic data (the NBS 
Crystal Data File handles data of more than 60 000 materials). 

It could be asked now if Niggli cell expresses some geometrical property. 
G r ~ b e r [ ~ ~ ]  has shown that a cell is a Niggli cell if and only if the following 
conditions are fulfilled: 

(1) a + b + c is a minimum when calculated for all primitive cells of the 
lattice; 

(2) 1x12 - a1 + 1x12 - PI + 1x12 - yI 
- - max. for the cells 

lcos crl + lcos p1 + lcos yI 
defined in (1). 

lcos cr cos p cos yl 

As an example let us consider the triclinic lattice defined by the primitive 
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cell 

The Niggli cell is obtained from the previous one by application of the 
matrix 001/100/111: 

a = 8.070 A, b = 9.562 A, c = 12.434 A, 

a = 100.97", /3 = lO6.54", y = 110.03". 

This cell satisfies the geometrical properties suggested by Gruber. 

Sublattices and superlattices 
The term superlattice is commonly used for a structure closely related to a 
parent structure and having cell dimensions superior to that of the parent 
structure. The superlattice then belongs to a subgroup of the parent 
structure: indeed increasing cell dimensions causes a loss of translational 
symmetry. Let 

A =  (B) and A' = (f:) 
be two triplets of non-coplanar vectors defining two primitive cells in two 
different lattices L and L' respectively. The cell in L' is related to the cell in 
L by 

A' = MA. (2.39) 

Consider four important cases: 

1. The mii elements are integers and M = 1. Then L and L' will coincide. 

2. The miis are integers and M > 1. Then A' defines a new lattice L' called 
a superlattice of L whose elementary cell is M times larger than the 
primitive cell in L. 

3. M = Q-I where Q is a matrix with integer elements for which Q > 1. In 
this case A = QA' and L is a superlattice of L', or, with equivalent 
terminology, L' is a sublattice of L. It should be noted that if L' is a 
sublattice of L then L'* is a superlattice of L*. 

4. M is a rational matrix. This case is described in the following subsection. 

Super- and sublattices are frequently related to important properties of 
the crystals. For example, 

(1) twinning by merohedry takes place only if a superlattice exists with 
symmetry higher than that of the crystal lattice 

(2) crystallographic phase transitions often take place between the struc- 
tures for which one lattice is a superlattice of the other. The knowledge 
of the possible superlattices of a given lattice limits the set of possible 
structures of a new phase. That is of particular usefulness when the 
phases are simultaneously present in a polycrystalline sample and 
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Table 2.3. 

diffraction peaks having identical positions are generated. In particular, 
if an order-disorder transformation occurs, the ordered phase is 
characterized by a cell larger than that of the disordered phase; 

magnetic structures are based on cells often larger than those of the 
corresponding conventional chemical structure (see Figs. 1.F.2 and 
1.F.3). 

For any value of M there is a finite number of matrices M that produce 
distinct super lattice^.[^^] This number quickly gets large with M: in Table 2.3 
the unique matrices M are given generating superlattices for M = 2, 3. The 
unique matrices generating sublattices for M = 112, 113 are obtained by 
applying the same matrices to the reciprocal lattice and then by calculating 
the lattices that are reciprocal to the resulting superlattices. 

Coincidence-site lattices 
Most materials of technological interest are used in their polycrystalline 
form. Their mechanical and chemical properties are controlled to a large 
extent by the boundary between crystallites. The energy of a polycrystal is 
higher than that of a single crystal with the same mass: the additional energy 
is stored in the grain boundary areas, and depends on the orientations of the 
neighbouring grains. Thus modern treatment of these materials tend to 
optimize the size of the grains and quality of the grain boundaries. 

The mathematical model of the crystalline interfaces is today based on the 
properties of coincidence-site lattice (CSL) and related lattices. Consider 
two lattices L and L' with bases A and A'. Without loss of generality it will 
be assumed that the two lattices have one lattice point in common, taken as 
the origin of the coordinate systems. Let N and N' be two matrices with 
integer elements. The lattices L and L' will have a common superlattice if a 
lattice point of L (defined by NA) can be found which is also a lattice point 
of L' (defined by N'A'): then NA = N'A', or also 

where X, = N'-'N is a matrix with rational elements. In this case the CSL is 
defined as that superlattice (at 1 or 2 or 3 dimensions) of L and L' which 
contains all (and only) the lattice points in-common to L and L'. Note that 
several other lattices could be defined having points in common with L and 
L' but all of them will be superlattices of the CSL. 

To determine the CSL one has to find[22.231 a factorization of Xc of the 



82 1 Carmelo Giacovazzo 

type X, = N'-'N with the smallest possible values of N and N'. If No and NI, 
satisfy this condition then No and NA indicate the reciprocal fraction of 
coincidence points (degree of coincidence) in lattices L and L' respectively, 
and the CSL basis will be NoA = N S ' .  If N or N' are sufficiently small (a 
large fraction of points of one of the two lattices consists of coincidence 
sites) and if the boundary coincides with a dense net plane of CSL, then the 
boundary energy per unit area will be a minimum. 

Analogously, two lattices L and L' will have a common sublattice if two 
matrices N and N' (with integer elements) can be found such that 
N-IA = NI-IAI or also 

A' = XdA, 

where Xd= N'N-I is a matrix with rational elements. In this case the 
displacement-shift-complete lattice (DSC) is defined as the sublattice with 
the largest volume of the primitive cell. All lattices which are sublattices of 
both L and L' will be sublattices of DSC. 

The DSC may be determined by means of a factorization similar to that 
used for X,: again we will look for the smallest possible values of N and N'. 
If No and Nh satisfy such a factorization process then the DSC basis will be 
NilA = NA-'A', which defines a cell with volume l/No times the volumes of 
the cell defined by A and 1/NA times the volume defined by A'. 

It may be also shown that: 

1. The CSL (DSC) of the reciprocal lattices is the reciprocal lattice of the 
DSC (CSL) of the two lattices.[241 

2. The coarsest lattice which contains all vectors of the form u + u', where 
u and u' are vectors of L and L' respectively, is the DSC lattice.[251 With 
respect to the energy of the grain boundaries DSC lattices have the same 
importance as CSL: indeed translations by DSC vectors do not destroy 
the coincidence sites. Such vectors are the geometrically possible Burgers 
vectors (energy considerations will dictate the most probable of them) of 
dislocations in grain boundaries. 

If the two lattices L and L' are congruent then one can be transformed 
into the other by means of a rotation: this is called coincidence rotation if L 
and L' have a CSL in common. The ratio between the volume of the CSL 
unit cell and the volume V of the crystal unit cell is called the multiplicity of 
the CSL and is denoted by Z (the analogous ratio for the DSC cell will be 
1/Z). The determination of all possible coincidence orientations with low 
values of Z is an important premise for the understanding of grain 
boundaries. If A' = XA defines one of the required orientations, then, owing 
to (2.21), 

G' = XGX. (2.40) 

Several attempts have been made to find the general solution of (2.40). 
Special methods for the solution of this problem were developed for 
c u b i ~ , [ ~ ~ , ~ ' ]  h e ~ a ~ o n a l , [ ~ ~ , ~ ~ ]  and rh~mbohedral [~~]  lattices. The problem may 
be so stated: determine all the rotation angles 8 about a given lattice axis 
[UVW] which generate CSLs. It may be shown that in cubic lattices a CSL is 
obtained by a rotation 8 about an axis [uvw] coincident with a lattice 
direction if 

tan (812) = (u2 + v2 + ~ ~ ) l ' ~ / r n  
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where m is an integer. A unitary greatest common divisor among m, u, v, w 
may be chosen withoyf restricting generality. Denoting by N the number of 
odd integers among m, u, v, w, the multiplicity I: is given by 

m 2 + u 2 + v 2 + w 2  
I:= 

a 
where a = 1 if N = 1, 3, a = 2 if N = 2, a = 4 if N = 4. 

An example is illustrated in Fig. 2.5(a). The lattice direction [OOl] has 
been chosen as the rotgion axis: if we choose m = 3 then N = 2, a = 2, 
I: = 5, 8 = 36'52'. It may easily be seen from the figure that the volume of 
the CSL unit cell is f o r m ~ d  by the vectors [210], [120], [OOl]. 

In Fig. 2.5(b) the CSL with I: = 7 is shown for the cubic (111) plane 
(8  = 38.21"). The black and the cross-like points belong to lattices 1 and 2 
respectively. The CSL pgints are those on which cross-like and black points 
overlap. Black and cross-like points are both part of the DSC lattice, whose 
units are evidently smaller than crystal units. If lattice 1 is shifted by a DSC 
unit with respect to latticg 2 the pattern shown in the figure is reproduced in 
another position. 

Twins 
Twins are regular aggregates consisting of individual crystals of the same 
species joined together i i  some definite mutual orientation. There are three 
principal types of twin: growth twins (produced by accident as the crystal 
grows from its initial nucleus), deformation twins (considered as a means 
of relieving the strain in$uced by some applied stress), and transformation 
twins (the product of a polymorphic transformation, i.e., when a higher 
symmetry crystal is cooled and converts to a lower symmetry structure). 

From a geometrical p ~ i n t  of view a twin is characterized by the symmetry 
operations which relate one individual to the other individuals in the 
composite crystal. The operation is very frequently a rotation through n 
about a zone axis (in this case the axis is the twin axis and the twin is a 
rotation twin), or a reflection in a lattice plane called the twin plane (the 
twin is then a reflectipn'twin). -, i * Rotation twins of n/3, n12, 2n/3 also occur 
but are less common. 

Obviously diad, tetrad, or hexad axes cannot be considered twin axes (at 
least for rotation through n).  If a triad is a twin axis the twinning operation 
may be equivalently described as a n/3,  n, or 4n/3 rotation about the axis: 
conventionally the n rotation is preferred. 

A twin is called a contact twin if the two components are joined in a 
plane (known as fhe composition plane). In the case of a rotation twin the 
composition plane is parallel to the twin axis, in reflection twins the 
composition plane is parallel to the twin plane. In interpenetrating twins 
the twin c~mponents intergrow so as to generate an irregular interface 
between components. 

Multiple twins consist of three or more components. If the twinning 
operations relating adjacent components are all identical then the twins are 
known as lamellar or polysynthetic twins (the components have a lamellar 
form parallel to the composition plane). Polysynthetic twins may be on a 
microscopic or macroscopic scale. 

Supplementary information on the most common types of twin and some 

Fig. 2.5. (a): 6SL lattice and CSL unit cell for a 
rotatiop of a ~ ~ b i c  lanice about I0011. (b): CSL 
and ~ s ~ j a t t i c e s  for the cubic (1 11) plane. 
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morphological details are given in Appendix 2.5. Here, we are interested in 
the characterization of the twins in terms of lattice geometry. Twins are 
usually classified in accordance with the (pre-X-ray) theory developed by 
the French crystallographic school (Bravais, Mallard, Friedel). A recent 
classification[319321 divides the twin kingdom into two species, TLQS and 
TLS. TLQS (twin-lattice quasi-symmetry) twins are characterized by two or 
more reciprocal lattices differently oriented, giving rise to double or 
multiple diffraction spots: they are generally recognizable simply by optical 
observations. TLS (twin-lattice symmetry) twins show a single orientation of 
the reciprocal lattice so that they give rise to single diffraction spots: they 
are optically indistinguishable, and their presence may be indicated by a 
high irreducible residual R in the attempted crystal structure determination. 

The twin lattice is the lattice with the smallest cell that is common to both 
(or to all) individuals of the twin. Such a lattice will show perfect continuity 
at the composition surface of the twin in case of TLS, and will suffer some 
deviation for TLQS twins. The slight deviation, expressed in degrees, is 
referred to as the twin obliquity w ,  and is usually less than 6". Occurrence 
of TLQS mostly depends on special relationships between cell parameters 
while the existence of TLS depend on the symmetry properties of the 
lattice. 

A further criterion for subdividing twins is the twin index, n: 

n = (vol. per node in twin lattice)/(vol. per 

node in crystal lattice). 

For n > 1 the twin lattice is a superlattice of the crystal lattice (see CSL in 
previous subsection); for n = 1 the twin lattice coincides with the crystal 
lattice. TLS twins with n > 1 are often found in highly symmetrical lattices, 
for example, in minerals. 

The twin law specifies the mutual orientation of the two twinned crystals: 
it is usually expressed in terms of the rotation necessary to bring one of the 
lattices into coincidence with the other. According to ~ r i e d e l [ ~ ~ ]  twinning 
may occur because of the accidental presence in a lattice of a net and a row, 
sufficiently dense, which are exactly or approximately perpendicular. 

Friedel's necessary (but not sufficient) condition for twinning in triclinic 
lattices (specialized conditions can be found for the other lattice types) is 
that 

g11:g22:g33:g12:g13:g23 

are, or approach rational numbers. Friedel's rule may be obtained by 
requiring G' = G in (2.40), and may be so expressed:[341 'a crystal may twin 
if the condition 

is satisfied where M is a matrix with rational coefficients'. 
Obviously only matrices with M = 1 have to be considered: furthermore 

symmetry operators M must also be excluded since they are trivial solutions 
of (2.41). If M satisfies (2.41) -M = (-1)M also satisfies (2.41): therefore, 
for any twin rotation through a about the direction [uvw] there should exist 
a twin operation which is the combination of M and of the inversion of the 
lattice. For example, if a = 180°, (-1)M will correspond to a reflection in 
the plane (hkl) normal to [uvw]. 
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Twins of special interest are TLS twins with n = 1. They were called by 
Friedel twins by merohedry since the crystal symmetry is merohedry of 
order n (subgroup of order n )  of the symmetry of its lattice. Accordingly, 
merohedrical twins have one or more symmetry operations which are 
present in the lattice and not in the crystal. In order to explain their 
diffraction behaviour, they may be divided into two classes:[35] 

Twins in class I show the same crystal Laue symmetry as the lattice 
symmetry. Then the twin operation belongs to the Laue symmetry of the 
crystal: in these conditions the set of intensities collected from the twin 
coincides, except for anomalous scattering, with that which would be 
measured on a single crystal. Structure determination is therefore not 
hindered but the determination of the absolute configurations (using the 
methods described on p. 97) is impossible. 

Twins in class I1 are characterized from the fact that the Laue symmetry 
of the crystal is lower than the crystal lattice symmetry. Then at least one 
of the twin operations belongs to the lattice symmetry but not to the T W I N S  
Laue symmetry of the crystal. Twins by hemiedry, tetartohedry, and 
ogdohedry can be found: they are made by two, four, and eight crystals 
respectively. 

A scheme for twin classification is drawn in Fig. 2.6. In Fig. 2.7 some ~ ~ s - t w i n s   twins 
examples of twinning are collected.[361 nyy yy 

In Fig. 2.7(a) the projection along the b axis of a monoclinic lattice with 
P = 90" is shown, together with its twinned lattice (the assumed twin 
operation is the mirror plane m perpendicular to a ,  but we could also 
choose the mirror plane perpendicular to c) .  The o misfit is intentionally 

/ \  
class I class II 

exaggerated. 

TLQS, n=l(oiO"), 

TLS, n =l,class II 
Im 

Fig. 2.6. A scheme for the classification o f  twins. 

TLQS, n.1 (w-O") 

Fig. 2.7. Examples of twins (from reference 
1361). 
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In Fig. 2.7(b) the projection along the b axis of the monoclinic lattice of 
1-aspartic acid with a = 7.617, b = 6.982, c = 5.142, /3 = 99.84" is shown: the 
lattice is also shown after a two-fold rotation about the a "  axis. It is easily 
seen that 2a of the original lattice nearly coincides with 2a-c of the rotated 
lattice, while a *  is the common reciprocal lattice of the two lattices. The 
twin lattice unit cell is defined by a '  = 2a, c' = c, b' = b, P '  = /3 (but also a 
B-centred orthohombic cell may be chosen, four times larger than the 
original cell). 

In Fig. 2.7(c) the projection of a hexagonal lattice along the c axis is 
shown. If the space group of the crystal is supposed to be ~ 3 ,  a TLS twin of 
class I1 may be generated by reflection with respect to the plane m drawn in 
the figure. The diffraction pattern will show then R3m symmetry. 

In Fig. 2.7(d) the classical penetration twin of fluorite (CaF,) is described. 
Two cubic lattices, referred by the twin operation (111) mirror plane, are 
viewed along the direction [i10]. The twin lattice has a volume three times 
the volume of the original cell. 

An elegant derivation of twin laws by merohedry has been recently 
proposed.[371 Denote by H and G the point-group symmetry of the crystal 
and the point group of its lattice respectively (G may be obtained by the 
process of cell reduction). Since H is a subgroup of G, the coset 
decomposition of G with respect to H may be made (see Appendix l.E). 
Any system of g, operations (g, E G, g, 4 H) used for the (left) coset 
decomposition will lead to the superposition of the lattice onto itself, and 
therefore will contain the possible merohedral twin laws for a crystal of 
point symmetry H in a lattice of point symmetry G. 

For example, a-quartz crystallizes in P3121 with a = 4.913 and c = 
5.404 A. The crystal point group is 321 and the metric symmetry is 6/mmm: 
thus 

H (1; 2,1101; 2[im]; 2[orol; 3[ooil; 3fhi1) 

G {H; 2pm1; 2[iiol; 2[nol; 2[ziol; 6[m1]; 6foo11; 

1; 40011; z[lio]; 2[1zol; 2[z101: 3pmI; 

3&,; ~[Ool]; ~f0011; 2[110]; 2[100]; 2[010]). 

The coset decomposition is therefore 

G = H U (2[,1]H) U ( W  U (~[001,~) .  

It may be seen that 2,,,], I, and correspond to the classical twin laws 
for DauphinC, Brazil, and combined twinning respectively. The twin-related 
reflections are therefore (hkl), (&El), (&El), (hki). 

The same procedure, applied to a crystal with point group H = 4/m, will 
decompose the metric symmetry group G = 4/mmm into 

G = H U (2[010]H). 

Hence the twin-related reflections are (hkl) and (&kt). 
In the case of hemiedry (twins in class 11, two individuals) two reflections 

which are not equivalent by Laue symmetry contribute to a twin 
reflection:[381 then 

IFtn12 = a IFHl2 + (1 - a) IFKI2 

IFMI' = (1 - a )  lFHI2 + a IFKI2 
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where  IF,^^ and 1FtKI2 are twin reflection intensities, a is the volyme 
fraction of crystal 1, and IFH12# 1FKI2 are the intensities of the two 
overlapping reflections. The algebraic relation between H and K is fixed by 
the twinning law. A trial estimate of a may be obtained via suitable 
statistical tests on diffraction data:[3g-411 a may then be refined as an extra 
parameter in adapted crystallographic least-squares programs. 

An alternative procedure may be that of 'detwinning' reflection data: i.e. 
and IFKI2 can be calculated from observed  IF,^^ and  IF,^^ according to 

Previous knowledge of a is a necessary condition for the application of the 
above formulae: these cannot be applied if a = 0.5. However, alternative 
methods are available for such a specific case (see [36] and references 
quoted therein). 

Calculation of the  structure factor 

Let m be the order (i.e. the total number of symmetry operators) of the 
space group and t the number of symmetry-independent atoms. The 
structure factor may be then written as (see notation on pp. 1.52-4) 

where 
f m f 

AH = x njfoj(H) x exp (-H&,H) cos 2n H(R,X, + Ts) = x A, (2.42a) 
j=1 s = l  j=1 

f m t 

BH= n,foi(H) x exp (-Apis~) sin 2n H(R,X, + T,) = B,. (2.42b) 
j=1 s = l  j= 1 

Aj and Bj are the contributions of the jth atom and of its symmetry 
equivalents to AH and BH respectively, pis is the 3 X 3 temperature factor 
matrix for the atom j in symmetry position s, nj is the occupation number of 
atom j, defined as mjlm, where mi is the number of different atomic 
positions which are symmetry equivalent to the jth atom. Accordingly, 
nj = 1 for an atom in a general position, n, < 1 for atoms in special positions 
(the use of nj allows that summation over s is always extended from 1 to m, 
independently of the atomic site type). If the jth site is only partially 
occupied because of some statistical disorder then nj will be proportionally 
reduced. 

The calculation of (2.42) will be simpler if, for a given H the symmetry 
equivalent indices H, = HR,, s = 1, . . . , m are calculated. In this case (see 
eqn (3.36)) HR,X,. may be replaced by H,x, and (see eqn (2.E.8)) H ~ , , H  by 
As ~ j h .  
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We will then write eqns (2.42) as 
f m 

AH = C [ c njfhi(H) exp (- l i ,p ,~,)  cos 2 n  (HsXj + ATs)] 
j=l s = l  

t m 

BH= C [C nj$(H) exp (-A,~,H,) sin 2n  (H,x, + AT,)] 
j=l s = l  

For each j the maximum number of ujs (and vjs) to calculate is 24. Indeed, if 
the space group is centrosymmetric (origin on a centre of symmetry), s may 
vary only over the symmetry matrices not referred by the inversion centre; 
AH is then multiplied by 2 and BH is settled to zero (origin on a centre of 
symmetry). For space groups with centred unit cell s may vary only over the 
matrices not referred by non-primitive lattice translations: AH and BH are 
then multiplied by the centring order of the cell. 

Scattering factors f,,. have been tabulated[421 for all elements: their 
accuracy depends on the wave functions and on the numerical methods 
used. The values of fg, at the actual sin 8/A value may be obtained from the 
tables by interpolation. A more usual procedure is to approximate 
scattering factors by the sum of one or more Gaussian functions: for 
accurate structure factor calculations four Gaussians are used according 
to 1431 

4 

fo(8) = C a, exp [-b, sin2 8/A2] + C. 
i=l 

It should be noted that only nine parameters have to be stored for each 
element. 

Calculation of the electron density function 

According to (3.46) we have to calculate 

p(x, y ,  r )  = 2/V 2 2' 2' [AH cos 2 n ~ X  + BH sin Z ~ H X ] ,  (2.44) 

where the prime to the summation implies that only half of the reflections 
(0, k, 1) have to be considered. 

The calculations may be performed in a trivial fashion starting from the 
list of symmetry independent Fhkl, generating symmetry equivalents, and 
evaluating the sum in (2.44) for every X. The crystal symmetry may be more 
conveniently exploited by combining in advance the terms containing the 
symmetrical structure factors, thus obtaining an expression valid for that 
given symmetry. The summations in (2.44) are then limited to the set of 
independent Fhkl values. For example, in Pmmm 
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Then 
1 "  

p(x, y) Z) = x [COS 2nhxTl(hkz) + sin 2nhxT2(hyz)] 
Vh=0 

which is again a one-dimensional transform for fixed y and z :  

R(xyz) = x T(hyz) exp (-2nihx). 
h 

Why is this procedure preferable to the direct use of (2.44)? If p is 
calculated directly from (2.44) the work to do is of the order n6 (say 
nhnknlnxnynz, where nh is written for the number of different h values, 
etc. . . .); if the Beevers-Lipson technique is used the work for the three 
transforms is of the order n4  (say nhnknlnz + nhnknynz + nhnxnyrtz). Thus for 
large values of n the Beevers-Lipson technique makes a considerable 
saving. Furthermore, within every transform a single line of Fhk, is involved 
and, after its completion, the line is no longer necessary: thus S(hkz) can 
replace the corresponding set of Fhkl values after the first transform, T(hyz) 
can replace S(hkz) after the second transform, and R(xyz) can replace 
T(hyz) at the end of the process. 

A further reduction in the number of operations is obtained if the fast 
Fourier transform[441 (FFT) algorithm is used. The technique factorizes 
one-dimensional into two-dimensional transforms by a procedure quite 
similar to that of Beevers and Lipson (see Appendix 2.1). The saving of the 
computer time may be so described: a one-dimensional transform with n 
values of h and x requires n2 operations, while the FFT technique reduces 
this to 2n log, n. The saving is not impressive for n < 16 but becomes large 
for larger values of n (as in protein crystallography). 

Electron density maps are usually not printed: frequently peak search 
routines are used to locate electron density maxima and to print their list in 
order of peak intensity. A typical process for locating maxima involves two 
stages: 

1. The p values observed at 19 grid points (see Fig. 2.8), centred on that 
point for which p is largest, are stored. Six of these points are nearest 
neighbours, and twelve are next nearest neighbours. The full peak is 
expected to be Gaussian in shape, so it could be fitted by the function 

p(xyz) = exp (a + bx + cy + dz + ex2 + fy2 + gz2 + hyz + kzx + lxy). 

2. By least squares the ten values a, . . . , 1 are obtained which minimize 
C19 (In p,,, - In p,,,J2 (nine degrees of freedom are retained). Then the 

Fig. 2.8. The 19 grid points used for peak search position of the maximum is obtained from the conditions 6p/6x = 
routines. 6p/6y = 6 p / &  = 0. 

The method of least squares 

Linear least squares 
A very common problem found in physical sciences is the following: given a 
set of experimental observations ( 5 )  and a theoretical model which, from 
trial values of some parameters, generates a set of calculated f values, find 
the values of parameters which give the best fit to the data, estimate their 
accuracy, and comment on the adequacy of the assumed model. There are 
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several approaches for answering this problem. Because of its wide use in 
crystallography we will mostly be interested in the method of least squares. 
Alternative approaches are briefly mentioned on pp. 108-9. 

Suppose that a set of n experimental observations 

F-( f l j f2 , . .  ,fn) 

is available for which: 

(1) h is subjected to some random error e, due to the finite precision of the 
measurement process; 

(2) 4 is known to linearly depend on a set of m S n  parameters 
X' (xl, x2, . . . , X,). 

Then the observational equations may be written[451 as 

where A = {aii) is the n x m design matrix (n rows, m columns) of rank m 
which is assumed to be known, and E = (el, e2, . . . , en). The condition 
n > m  emphasizes the fact that the parameters are overdetermined. Our 
problem is to obtain satisfactory estimates g of the parameters X and, at the 
same time, estimates of the variances of such estimates. We will assume that 
errors e, have joint distributions with zero means and finite second 
moments: i.e., 

(F )  =F"=Ax (2.48) 

where Mf = ((F - F")(F - F")) is the variance-covariance matrix of rank n, 
and 

where pii are the correlation coefficients. 
The case Mf =I  (uncorrelated errors, equal variances) was treated by 

Gauss who showed that, among the various X, the most satisfactory was 
that (say A) for which the residual 

s = x v? = w = minimum 
i = l  

where v - (v,, v2, . . . , vn) is given by 

V=F-AX. 

This result suggests that, when Mf is a diagonal matrix with elements 
(in this case errors on h and f i  are statistically independent and pii = 0 for 
i # j), the most satisfactory estimate 2 is that for which the weighted 
deviance 

n n 

S = 2 wiv? = x wi(A - fy)2 = = VMT'V = minimum (2.51a) 
i = l  i = l  

where wi = 1/o?. 
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If Mf is not diagonal then 

= \iWV = bM; 'V = minimum. (2.51b) 

In most applications Mf is taken to be diagonal. 
Relations (2.51) suggest that, for a general variance-covariance matrix, 

the most satisfactory solution 8 is given by 

S = bMTIV = minimum. (2.52) 

In accordance with Appendix 2.F, the relation (2.52) leads to the so 
called normal equations 

B ~ = D  (2.53) 
where 

B = AM;~A, D = AM;+. (2.54) 

B is a m x m symmetrical (bij = bji) square matrix. From (2.53) the 
least-squares estimate of X is obtained as 

It may be easily seen that 8 is independent of the scale of the covariance 
matrix. Indeed suppose that Mf = K,Nf, where Nf (the working matrix) is 
known and K, unknown. Substituting K,Nf for Mf in (2.55) eliminates K,. 

Reliability of the parameter estimates 
It may be shown (see Appendix 2.G) that the variance-covariance matrix 
M, relative to the unbiased estimate 8 is given by 

M, = ((8 - x ) ( ~ ) X ) )  = B - ~ .  (2.56) 

If Mf is known within the scale factor K, (Mf = K,Nf) then 

where B, is the working matrix calculated via the known Nf matrix. 
According to (2.57) M, is completely determined only if K, is known: 
luckily (see Appendix 2.H) an unbiased estimate of K, is available from the 
least-square treatment: 

so that the unbiased estimate of M, is given by 

k, is often called goodness of fit and denoted by GofF 

Linear least squares with constraints 
Assume that the parameters xi are not independent but are constrained to 
satisfy the set of b linear equations 

OX = Z (2.60) 
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where Q is a b m matrix of rank b, and Z is a column vector with b 
components. In this case the unbiased estimate of X may be obtained by 
considering the variation function 

S, = V M ~ ~ V  - 2X(QX - Z) 

where I is a column vector with b components (the Lagrange multipliers). 
The condition 6s" = 0 brings to 

2 V M 7 ' 6 ~  - 2X(Qx - 2 )  = 2(F - AX)M;'SV - 2XQ6X = 0. 

Since 6V = -A6X, we obtain 

F M ~ A  - X A M ~ ~ A  + XQ = 0. 

Calling the solution X, gives 

which, according to (2.55), may be written as 

Xa = (X,)B. 

The value of I may be obtained by post-multiplying both sides of (2.62) 
by B - l ~  and by requiring that (2.60) is satisfied: 

X = (zKGR)(QB-'Q)-'. 

Eliminating I in (2.62) gives 

X, = 2 + ~ - l Q ( ~ e - l Q ) - l ( z  - 0 2 )  (2.63) 

The variance-covariance matrix for X, is (B-l is the variance-covariance 
for X) 

M, = B-1 - B-~Q(QB-~Q)-~QB-~. (2.64) 

By a procedure analogous to that described in Appendix 2.H it may be 
shown that the expected value of the weighted deviance S, is given by 

(3,) = (VN-~V)/K, = (n - rn + b)lK, 

which is larger (see Appendix 2.H) than the expected value of the 
unconstrained residual 

(3) = (VN-'V) = (n - m)lK,. 

Non-linear (unconstrained) least squares 

Let us suppose that the observations F = (fl, . . . , f,) do not linearly depend 
on the X parameters. Then the residual S will have several local minima 
(see Fig. 2.9) and condition (2.51) will not usually provide a satisfactory 4 
estimate for the parameters, unless a good approximation S 
XO = (x:, xi, . . . , x:) of X is available. To this aim each may be expanded 
in a Taylor series about the point XO: 

parameters 
6" +' 2 (-) 6 . ~ ~ 6 ~ ~  + .  . . . (2.65) Fig. 2.9. Examples of local minima for the 

2j,p=l &j6~p residual S. 
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If X is sufficiently close to X0 second and upper derivatives can be 
dropped in (2.65) (Gauss-Newton approximation) to get 

where derivatives are calculated in XO, and 

In matrix notation 

where 

is the design matrix (compare (2.66) with (2.47)). 
If the Taylor expansion is valid, the problem has been reduced to a linear 

one: thus an estimate for AX, say A% will be obtained in the same way as 
described in the previous paragraphs, from which more satisfactory values 
X = X0 + A% may be derived. Mf can still be considered as the variance- 
covariance matrix of AF if X0 is a good starting model. 

Since in (2.66) second and upper derivatives have been ignored, AA will 
not be an unbiased estimate of AX. Therefore for non-linear problems an 
iterative procedure must be followed, according to which the new para- 
meters X = X0 + A2 are used as a new starting model for the application of 
(2.66): in each cycle the derivatives will have changed so that the design 
matrix has to be recalculated. The iterative process will continue until the 
changes A% are very small or zero: then it may be concluded that the 
least-squares procedure has converged, and that the refinement of the 
parameters has been completed. 

Least-squares refinement of crystal structures 
Least-squares techniques are widely applied in crystallography. Examples 
are: refinement of unit cell parameters from diffraction angles (see p. 300); 
calculation of least squares planes for molecular fragments (p. 74), thermal 
motion analysis (pp. 117-20), calculation of the Wilson plot (p. 322), and 
profile analysis in powder methods (pp. 109-17). In the following we will 
describe the application of least-squares techniques to crystal structure 
refinement, by taking into account two different situations: 

1. The Rietveld technique for the analysis of powder diffraction data. The 
entire diffraction profile is calculated and compared with the observed 
step profile, point by point: the model parameters are then adjusted by 
the least-squares method. We will describe this technique on pp. 109-17. 

2. A large number of moduli JFHJo are measured. Parameters are then 
refined in order to minimize the difference between the IFHl,s (structure 
factors moduli calculated from the structural model) and the IFHlos. This 
technique is of general use for single-crystal data and of remarkable 
usefulness also for powder data; it is described in the following. 

To carry out least-squares refinement of a crystal structure let us associate 
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a weight wH to each IFHI,. Then, in accordance with (2.51), we want to make 
minimum the quantity 

According to the previous subsection if a satisfactory model X0 is 
available, we expand in a Taylor series: then 

which, according to (2.51b), may be written as 

S = (AF - A AX)W(AF - A AX) = W V  = VMY'V. 

We have denoted 

IFH,lc is the modulus of the ith structure factor calculated in XO; its 
derivatives are also calculated in XO. Thus eqn (2.66) is again obtained. 

The normal equations may be obtained by settling to zero the derivatives 
of S with respect to AX: 

a lFHlc -=o for j =  I , .  . . , rn. 
axi 

In matrix form (see eqns (2.53) and (2.54)) 

B A A = D  
or, more explicitly, 

where 

lFHl D =  AM;^ AF = MT'A AF = {d,} = {C wH[1FHIo - lFH;llc] -1. 
H dxi 

Then (compare with (2.55)) 

A% = BW1D 

provides the required solution. 
Parameters usually refined are: are overall scale factor (observed inten- 

sities are usually on an arbitrary scale); a parameter defining chirality in 
non-centrosymmetric space groups; for each atom, up to three coordinates 
(fewer if the atom is on a special position); thermal parameters (1 for 
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isotropic motion, up to 6 for anisotropic); the site occupancy if the atomic 
position is statistically occupied because of some structural disorder. 

Let us now calculate the explicit expressions of the derivatives for the 
various parameters. If xii is the ith parameter of the jth atom (i.e. in 
increasing order of i we will refer to n,, xi, y,, zit B, or n,, xi, yi, z,, p j l l ,  
p j 2 2 ,  pi339 pi129 p j 1 3 )  p j 2 3 ) )  then 

6 A  6 Bi 
=cos g,-+ sin g,- 

axji sxji 

where A ,  and B, are the contributions of the jth atom to A H  and BH 
respectively. 

Consider the various cases: 

1. xji is an atomic coordinate: then 

where hi,, i = 1 , 2 , 3  are the components of H, and u,  v are defined by eqns 
(2.43). 

2 .  xji is the component UGq of the vibrational tensor U; (see eqn (3 .20)) .  
Then 

For isotropic motion (Q denotes here the thermal factor, in order to 
avoid confusion with the normal matrix B) 

3 .  xji is the overall scale factor K .  Even if (FHJc are on the absolute scale 
and (FHIO on a relative one, during a least-squares refinement it is the 
structural model which has to be refined and not vice versa. Therefore 

from which the following estimate for K is obtained 

Then the IFHJ,s will be multiplied by 1 / K  in order to lead them on the 
absolute scale. The IFH(, so rescaled will work as observations in subsequent 
cycles of least squares. 

Since 6 ( K  IFH(,)/6K = IFH(,, the second derivative of S with respect to K 
is zero: therefore K is the parameter which converges faster. It should be 
noted that, if we erroneously had chosen to minimize S' = ,ZH w H ( K  (FHIO - 
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IFH1c)2, the minimum could be found at K = 0 and with an extremely large 
thermal motion. 

4. xji is the atomic occupancy factor. Then 

5. xi, is a parameter defining chirality in non-centrosymmetry space 
groups. An efficient way for determining the absolute configuration is based 
on measurement of the intensities of the Bijvoet pairs of reflections (see pp. 
165-9) when dispersion effects occur. In this case the symmetry of IFIo in 
reciprocal space degrades from Laue to the true point-group symmetry; 
indeed (h k 1) and its - symmetry - -  equivalents have an intensity value 
different from that - of - -  (h k 1) reflection and its equivalents. Thus Bijvoet 
pairs (h k I) and (h  k I) can be used for the assignment of chirality. 

More often only the asymmetric set of reflections is collected: then 
chirality may be fixed by the following procedure: (a) the structure is solved 
and refined by using real atomic scattering factors (and preferably 
absorption-corrected data); (b) the final values of scale factor, coordinates, 
and thermal factors are kept intact to calculate structure factors. By merely 
reversing the signs of all the ifl' two R values are obtained (see eqn (5.88) 
for the meaning of R), say R: and R;; (c) the ratio T = RJR: is used in 
the Hamilton test (the unweighted ratio R-/R+ is usually regarded as an 
acceptable approximation). For a given value of T one looks up Hamilton's 
tables R (1, N, a )  to estimate a, where N is the number of degrees of 
freedom (see p. 103). 

Reasons for considering the ratio test over-optimistic were given by 
~ o , e r s [ ~ ~ ]  who suggested a better procedure: a single least-squares variable 
q is introduced into every dispersion term (iqfy instead of $7) that 
contributes to the structure factor. q is kept zero in the early stages of 
refinement: later it should converge to values close to 1 or -1, with a 
readily computable precision a(q)/q. 

A very efficient alternative procedure[47] considers the crystal as an 
inversion twin: 

I F ~ ( X ) ~ ~  = (1 -x) ( ~ ~ 1 '  + x  IF-^^' 
where (1 - x) and x are the fractions of the structure and its inverse in the 
macroscopic sample. The parameter x is refined: usually it converges in a 
few cycles to the final value. 

6. xii is the secondary extinction parameter g (see p. 164). While primary 
extinction is often negligible in single-crystal studies, the effects of secon- 
stw~- extinction are usually corrected by means of the equation 

(Z0)corr = Zo(1 - gzo1-l. 

Since this equation corrects observed quantities, it cannot be directly used 
in least-squares procedures, where it is replaced by[4s501 

(1c)corr = & ( I +  gZc)-l. 

In this case 
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where L is the Lorentz factor, P a suitable polarization factor, and K the 
scale factor. 

Suppose now that Nf is known instead of Mf (= K,Nf): then A% will be 
insensitive to the scale factor K,, while the matrix M, for the estimated 
parameters will strongly depend on it. According to eqn (2.59) 

3 H mx = &B;'=-B;' = 
($) n - m  

K1> 

where B, = A N ~ ~ A ,  from which variance and covariance values for the 
parameters may be calculated. In particular the variance of the es'timated 
parameters is given by 

C WH(AFH)~ 
oii = (bii)- 1 " 

n - m  

where bcl is the ith diagonal element of B;'. It is easily seen that increasing 
the number of observations reduces the variance of the parameters ((bii)-' 
and n  are mutually related in an inverse fashion so that the standard 
deviation 6 varies as m). If the quality of the data is improved then 
WH = 1/ah will increase: since (bii)-' varies inversely with w it follows that 
standard deviations of the parameters are proportional to a,. 

The standard deviations of the parameters are a useful guide during the 
refinement process. If they are sufficiently small, the refinement process 
may be considered complete if the ratios (calculated shiftslstandard 
deviations) are sufficiently small (e.g. less than 0.2-0.3). 

Correlation coefficients between two parameters are given by 

p .  = b../(b..b..)112. 
'I 'I 11 I1 

pi, can range from 0 to f 1: as a rule, pi, s 0.2-0.3 are frequent, pi, = f 1 
refers to two completely dependent parameters, one of which has to be 
eliminated. 

As already stressed, owing to the presence of systematic errors very often 
the working matrix Nf experimentally available is referred to Mf by an 
unpredictable relation much more complex than a scaling factor. In these 
cases the technique of multiplying the working variance-covariance matrix 
B;' by $I($) in order to obtain M, may be highly questionable. A report[511 
of the International Union of Crystallography Subcommittee suggests that 
besides indices R or R, as given in eqns (5.3) and (5.85) the goodness of fit 
ratio $I($) (see also eqn (5.86)) should be also reported in publications as 
a global measure of fit. 

Practical considerations on crystallographic least squares 
Crystallographic least-squares refinement may not be a trivial task. Suppose 
that, for a structure of modest complexity (40 atoms in the asymmetric 
unit), n  = 4000 reflections have been measured. Generally speaking, an 
overall scale factor, 120 positional, and 240 anisotropic thermal parameters 
should be refined, for a total of 361 parameters. Then a square matrix B of 
order 361, with m  = 361 x 36012 = 64 980 distinct elements will arise, each 
one constituted by a summation on thousants of terms. The computing time 
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(Cpu) and the storage (St) needed for a 'structure factor calculation-least- 
squares refinement' cycle will comply with the following table: 

Step Cpu St 

Calculate structure factors nrn n 
Calculate derivatives nrn rn 
Calculate normal matrix nrn2 rn (m + 1112 

Invert matrix m3 
Calculate shifts AX rn 

In accordance with the above table, computing time and storage rapidly 
increase with the complexity of the structure, so that the task soon becomes 
prohibitive even for large and fast computers when large-scale problems 
(thousands of parameters) are treated. A useful suggestion arises by 
observing that the elements on the principal diagonal of B are sums of 
squares, so that they are always positive and rather large. On the contrary, 
the off-diagonal elements are sums of products which may be positive or 
negative; therefore they are generally expected to be smaller than diagonal 
elements. Accordingly computer storage and computing time may be 
reduced by setting all off-diagonal elements to zero (diagonal-least-squares 
approximation). That is equivalent to assuming a complete statistical 
independence among the parameters, but this is often unrealistic. For 
example: 

(1) errors in the thermal parameters generate a systematic error (larger to 
high sin 8/A)  on IF[,, which on its turn produces a bias into the estimate 
of the scale factor K; 

(2) in oblique coordinate systems, non-negligible correlations between 
some coordinates of the same atom may be found. Indeed an error on a 
coordinate is compensated by errors on some other coordinates (see 
Fig. 2.10); 

(3) a high correlation will be found among the site occupancy and 
temperature factors if they are contemporaneously refined. 

An alternative to the diagonal approximation is the block-diagonal 
approximation; a first block may involve the correlation between the scale 
and the overall thermal parameter; the other blocks, one for each atom, are 
9 x 9 matrices comprising positional and anisotropic temperature factors (a 
4 x 4 matrix for an isotropic atom). The matrix B will then appear as in Fig. 
2.11. Larger blocks are sometimes used; e.g. all the atoms in the same 
molecule could belong to the same block; or, also, a block for all positional 
parameters and a block for all vibrational parameters with the overall scale 
factor; or, . . . . 

The storage requirement for the block diagonal approximation is certainly 
smaller than for full matrix methods. Each refinement cycle is faster, but 
convergence is slower: so the complete refinement process requires more 
cycles and almost the same computing time. Thus the major advantage of 
the method is the lessened storage requirements for problems too large to 
be treated by a full matrix. 

A very large saving of computer time has been recently achieved by 

Fig. 2.10. P(xo, yo) is the true atomic position. If 
an error A, is introduced, the 'best' value for x is  
obtained by minimizing, along the line yo + 
A y  = const, the distance of the atom from the 
true position P. That produces A, = -A, cos y. 

Fig. 2.11. A scheme for block-diagonal 
approximation. 
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application of the fast Fourier transform (FIT) algorithm. FFT based 
programs allow full-matrix refinement of protein structures at a reasonable 
cost (see Appendix 2.1 for some details). 

A critical point in least squares is the occurrence of large correlation 
coefficients among parameters: this can give rise to ill-conditioned (deter- 
minant close to zero) B matrices and therefore to serious problems for the 
calculation of B-' and for the accuracy of AX. That occurs when the 
following conditions hold. 

1. Two atomic sites nearly overlap because of some structure disorder (or 
some error). 

2. The symmetry of the structural model is higher than the space-group 
symmetry in which refinement is made. As an example, let us suppose that 
refinement of two symmetry independent molecules has been unsatisfac- 
torily carried out in P2/m. The question arises as to whether or not the 
space group is really centrosymmetric. Refinement in P2 is then carried out 
on four symmetry independent molecules, the second two obtained from the 
first two by application of the inversion centre. Then the new B matrix will 
be singular: indeed the imaginary parts of the structure factors are 
vanishing, the derivatives of IFI, with respect to pairs of positional 
parameters referred by the inversion centre have equal moduli and opposite 
signs, the derivatives with respect to corresponding pairs of thermal 
parameters have equal moduli and signs. Since the elements of B are sums 
of products of derivatives, pairs of lines will be identical or opposite, so that 
B is singular. To overcome this difficulty small random shifts are applied to 
parameters when refinement moves from the first to the second space 
group. However, the matrix still remains ill-conditioned and further 
unpredictable shifts can be generated. A more efficient procedure is that 
which modifies the normal matrix to limit the parameter shifts (not 
equivalent to dumping shifts after the matrix solution). 

As a further example, a singularity may occur when two atoms with the 
same x and y coordinates but differing by a 50 along the x axis are refined 
without using reflections with h odd. 

3. Symmetry constraints are not introduced. For example if an atom lies 
on 4[rn11, the following constraints will hold: Pll = fizz, PZ3 = P13 = PI, = 0. If 
pll and pzz are erroneously refined as if they were independent, the matrix 
B will have two rows and two columns equal and will be singular. 

4. In some non-centrosymmetric space groups the origin may float in 
some directions. The normal equations matrix will become singular if the 
atomic coordinates of one atom along the free directions are not fixed (e.g. 
z in Pca2,, or x and z in Pm). 

Such a practice was frequently used in the primitive least squares 
programs but provides incorrect estimated standard deviations unless the 
full variance-covariance matrix is used. The problem may be solved by 
constraining (or restraining, see p. 107) the sum of the free coordinates to a 
constant value. 

An efficient least-squares program should: 

1. Provide easy ways for applying symmetry constraints to parameters of 
atoms in special positions. These are handled by not refining some 



Crystallographic computing 1 101 

parameters or by equivalencing atomic parameter shifts. For example, in a 
hexagonal space group for an atom in special position at (x, h, z) the only 
independent positional variables are x and z, so that 

Analogous problems occur for thermal parameters: symmetry constraints 
on them are described in Appendix 3.B. 

2. Allow for a variety of weighting schemes (see p. 369). The weights 
play a critical role in any refinement process. In the initial stages of 
refinement artificial weights may be used to accelerate convergence (e.g. 
w, = 1 for all reflections is commonly used when a partial structure is under 
refinement). In the final stages the weights should reflect the accuracy of the 
individual observations (w, = 1/02(IFIO) should be deduced from an analysis 
of the experiment). Then observations which are believed to be unreliable 
get very small weights. 

Unfortunately it is not trivial to assess the accuracy of observations and 
the correctness of the assumed model. A long list of errors[521 can affect the 
values of the deviates (IFHlo- IFHlc) and therefore the results of a crystal 
structure analysis: experimental accidents (fluctuating power in the incident 
beam, crystals moving on their mounts, etc.); statistical fluctuations in 
quantum counts; crystal damage by the incident beam; errors in corrections 
for absorption, background radiation, thermal diffuse scattering, extinction, 
anomalous dispersion, anisotropic and/or anharmonic vibration, disorder, 
multiple reflections; deviations from the isolated atom approximation; 
incorrect symmetry assignment; correlation among observations. 

Different types of errors can have similar effects and may be compensated 
by others. For example, absorption and extinction corrections tend to 
reduce intensities at low sin 6/A values more than at high values: thus errors 
in correcting these effects produce, as a partial compensation, errors in the 
thermal tensors. 

In most cases the effects of each type of error cannot be estimated: then 
the standard deviation of individual intensity measurements is assumed as 
the standard deviation calculated from counting values plus an additional 
term which allows for errors of an undefined nature. It should be stressed 
that estimated variances of observations, and therefore weights, should not 
be based on counting statistics alone. Indeed variances estimated in this way 
are proportional to the intensities themselves: the consequence is that low 
intensities will systematically have lower variances than high intensities. 
That results in a bias in the estimate variances, and consequently (the 
Gauss-Markov theorem states that only if errors are random and uncorre- 
lated it may be expected that the least-squares methods give the best 
unbiased estimate of the parameters) in a bias in the parameter estimates 
which may be of some relevance in high-precision structure determinations. 
In these cases it is highly recommended that all symmetry equivalent 
reflections are measured, that the averaged intensity is used in least squares, 
and that the variance based on counting statistics is combined with that 
arising from differences among symmetry-equivalent data.[511 

The possible presence of errors may be checked by observing that S is 
expected to be distributed like X2 with n - m degrees of freedom. For large 
n - m values x2/(n - m) is expected to be close to unity: so, if w,, = l/& 
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the expectation (see Appendix 2.H) for 3 is ( 3 )  = n - m. Accordingly the 
set of observations may be divided in large subsets (any significant criterion 
may be used for obtaining subsets: intensity ranges, or intervals of Bragg 
angles, or parity of Miller indices, etc.): then the weighted sum of 
discrepancies for each subset may be analysed. Each jth sum should be 
nearly (n - m)(p,/n), where p j  is the number of terms in the jth subset. If 
some unexpected behaviour appears then one may guess that some source 
of error has not been taken into account, and weight should be suitably 
changed. 

A practical weighting criterion which takes into account all random 
experimental errors for which precise estimates are not available from 
experiment may be so described: the lFlo range is subdivided into a number 
of intervals each containing approximately the same number of reflections. 
For each ith interval the average (IFlo)i and the difference (AF),= 
((IFIo- IFJ,))i are calculated. Plotting (AF), versus (IF,[) (see Fig. 2.12) 
will show a distribution of points which can be approximated by an 
analytical function such as 

p(lFl0) = a0 + a1 IF10 + a2 IFIi + a3 IF[:. 

The weighting scheme will be designed in order to make differences . (A&) constant; thus 

Fig. 2.12. More efficient empirical weights which make ( A F ) ~  constant as a 
function of lFlo can be obtained through truncated Chebyshev 
polinomials.[531 

But the above practices are not able to eliminate systematic errors or 
correlation among errors. If a careful check does not suggest any new 
strategy the only way for lessening the effects of systematic errors is based 
on a weighting scheme based on the deviates (IFo[ - I&[). Wang and 
~ o b e r t s o n [ ~ ~ ]  modified least-squares weights by adding to the calculated 
variance a term which is a fundion of the disagreement between the 
experimental and the expected distribution of the deviates. 

Robust-resistant techniques[551 also use weights based on the deviates. 
Due to some random or systematic errors, or to imperfections in modelling 
parameters, or to many other reasons it may occasionally occur that a small 
number of data, called outliers, show a very large discrepancy with respect 
to the corresponding calculated values. Least squares are very sensitive to 
the presence of large residuals which, having a high leverage, may cause 
non-negligible distorsions in results. A naive approach, often used in 
practice, may be to discard outliers by setting to zero the corresponding 
weights. The robust-resistant techniques decrease weights when disagree- 
ment increases, so avoiding any discontinuity in the process. 

3. Allow for a proper choice of the number of reflections to be included 
in the refinement. In order to save computing time, or to avoid many 
low-quality data reducing the efficiency of the process, reflections for which 
IF1 < qo(lF1) are often excluded from the refinement (q depends also on the 
number of available data: q = 2, 3 is a frequent choice. Higher values of q 
could bring to a unsatisfactory ratio number of observations/number of 
parameters). 
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However, the omission of observations is equivalent to assigning zero 
weights to them. If a((F1) depends on IF1 such a practice preferentially 
discards low-intensity reflections so introducing a bias in the process. Often, 
that has little effect on the results,[56] but sometimes it discards important 
information (very unreliable results can be obtained when a structure with 
superstructure effects is refined without using weak reflections). 

The problem of identifying meaningful changes in R produced when the 
model is altered has been faced by ~ a m i l t o n . [ ~ ~ ~ ~ ~ ]  He considered the 
weighted residual (5.88) instead of the conventional residual (5.85), and 
proposed the test (known now as Hamilton's test) based on the ratio 
T = Rw(1)lRw(2), where Rw(l) and Rw(2) (with Rw(l) > Rw(2)] are obtained 
from the two different models. In the practice T = R(l)/R(2) is often used 
because usually Rw(1)/Rw(2) - R(l)/R(2). The test compares T with the 
function 

If the computed T satisfies T > Rm,,-m,a the hypothesis can be rejected at 
the 100a% significance level (a significance level of a = 0.05 is commonly 
used). Tables for Frn,,-,,, were computed from Hamilton. For large values 
of n - m (very frequent in crystallography). . 

where x2 is the well known chi-square function: in these cases 

As an example, let us suppose that two least-squares refinements based 
on the same number of parameters m and on the same number of 
observations n are carried out by two different investigators. The refine- 
ments resulted in two different R factors, say R(l)  > R(2). The hypothesis 
'the m parameters obtained by investigator 1 are consistent with the 
experimental data' may be rejected at the cu significance level if T > 
Rm,n -m, a. 

Sometimes the two models used for refinement involve a different number 
of parameters. For example one refinement is carried out where b 
parameters are held fixed. Then Hamilton's test may be so modified: the 
value of T given by 

R (b fixed param., m - b varied param.) 
T =  

R (all m param. varied) 

may be tested against values of 

For example, a least-squares refinement was first carried out up to the 
R(l)  value on assuming that all the atoms have isotropic temperature 
factors (ml is the number of parameters). A subsequent refinement was 
carried out up to a residual R(2) < R(l)  on assuming anisotropic atoms 
(m2>m1 is the number of parameters). The hypothesis 'all the atoms 
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vibrate isotropically' may be rejected at the a significance level if 

As a further example, let us suppose that refinement in a centrosymmetric 
space group (say P2/m), stops with the residual R(l), while refinement in a 
non-centrosymmetric space group (say P2 or Pm) results in the residual 
R(2) < R(1). If ml and m2 are the numbers of parameters for the two 
refinements, the hypothesis that the correct space group is centrosymmetric 
may be rejected at the a significance level if 

A last remark on the crystallographic least-squares technique concerns 
which function to minimize. In place of the function S  defined by eqn (2.67) 
the function 

is sometime minimized. The normal equations (2.68) still hold if w, is 
replaced by wk= wH/(4  IF^^!), 6 IFHlc/6~j by 2 IFH[, (6 IFH1,/G~j) and, in D, 
[IFH10 - lFHlcl [IFHI: - IFHI:]. 

There is still a strong disagreement[51] over the question of whether S or 
S t  should be used in refinement. In favour of (FI-refinement it may be 
observed[s8] that 6 IFI2/6xi is small if IFI2 is small: thus weak reflections 
have too weak a leverage in IFI2-refinement. Arguments in favour of 
I F  12-refinement are based on the observation[s93 601 that I FI are obtained 
from intensity data via a square root. This is a non-linear operation which 
may introduce a bias proportional to the variance of IFI2. Furthermore the 
formula a(lF() = a ( l ~ 1 ~ ) / ( 2  IF() so widely used in practice is not appropriate 
for zero or close to zero IF1 values, for which a(lF1) become infinite or 
extremely large (we must, however, mention that methods[613621 for obtain- 
ing more reliable IF1 and a((F1) from 1 ~ 1 ~  and o(lFI2) values are now 
available). 

Constraints and restraints in crystallographic least 
squares 
The accuracy of the derived parameters is generally small (e.g. it would be 
found that C-C distances in a phenyl group were in the range 1.2-1.3 A, 
which is highly improbable) when at least one of the following conditions 
occurs: 

1. Low ratio between the number of the observations and the number of 
parameters to refine. The ratio is particularly unfavourable for biological 
macromolecules. Indeed, owing to their intrinsic flexibility, the ampli- 
tudes of the thermal vibrations from the average positions are rather 
large (usually between 0.2 and 0.7 A), so limiting the diffraction data to 
a resolution of about 2 A. While to a resolution of 0.86 A (typical limit 
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for small molecules) there are about 30 observations for each coordinate 
being refined, at 2.7 A the number of parameters is nearly equal to the 
number of the observations. 

2. Atoms with very large atomic number and very light atoms coexist in the 
unit cell. Then modest errors on the heavy-atom parameters cause strong 
errors on the light-atoms parameters. 

3. Too high thermal motion, presence of structural disorder, etc. Only poor 
and scarce data are then available. 

If, however, some prior stereochemical information is available on parts 
of the structure its use in the least-squares procedures may increase the 
degree of overdetermination of the system and improve the accuracy of the 
results. Three methods will be briefly recalled here. 

Rigid body refinemenP1 
If the structure contains rather rigid molecular fragments of well established 
geometry (e.g. benzene rings), the number of parameters to refine may be 
considerably reduced. The atoms concerned are initially regularized to some 
ideal geometry which is preserved during the refinement. 

For each rigid group of n atoms the number of independent positional 
parameters reduces from 3n to 6 ((xo, yo, zo) parameters defining the 
position of some reference point and w, 3 ,  q5 for the group orientation). 
Thermal parameters are usually considered to be isotropic, and, to keep the 
number of parameters small, a single overall thermal parameter may be 
assumed for the group. 

Least-squares calculations could be performed according to the following 
scheme.[641 For the jth atom of the group let Xi be the coordinates with 
respect to the system A defined by the conventional unit cell, Xi' the 
coordinates (in A) with respect to a set of orthogonal internal axes A', Xi" 
the coordinates with respect to an orthogonal cell of unit dimensions (say 
A )  oriented in some way with respect to A. Assume A" = MA where M is 
given by (2.31~) or a similar matrix. A rotation matrix R may be then 
defined which aligns A = (ey, e;, e;) on to A' (say A' = RA): according to 
the discussion on p. 72 the matrix R may be expressed as the product of 
three successive anti-clockwise rotations, say by about e,, by 3 about the 
new e2, and by q5 about the new el. Then X," = RX; (see Table 2.E.1) and 

The atomic coordinates so obtained may be used in the usual manner for 
calculating structure factors. The problem is now to calculate the appropri- 
ate contribution for the rigid parameters x,, yo, zo, w, v, q5 to the matrix of 
normal equations. 

Derivatives with respect to such parameters are calculated from those for 
the atomic parameters Xi using the chain rule: i.e. 

6 lFHIc - a lFH1c -- 
axo j=1 ax, ' 
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and, for a group temperature factor B,, 

The size of the normal matrix is therefore reduced, convergence is 
accelerated but there is no remarkable saving in computing time (derivatives 
with respect to each atomic parameter have to be calculated for each 
structure factor and chain rule implemented). 

The success of this method relies on the accuracy of the assumed 
geometry: if this is wrong systematic errors on other parameters will be 
introduced (e.g. the symmetry of phenyl groups sometime deviates re- 
markably from the sixfold symmetry[651). 

A technique related to, but not coincident with, rigid body refinement is 
that used for putting hydrogen atoms into structures (X-ray data). Some- 
times H atoms are geometrically positioned at the end of each round of 
LSQ, but more frequently H parameters ride upon those of a reference 
atom (riding refinement). In this last case the normal matrix has to be 
modified in order to take into account all physical parameters (the common 
practice fixes the thermal parameter of H, which is set equal to that of the 
reference atom). At the end of calculations H and the reference atom will 
have the same positional estimated standard deviations, while the bond 
distance between them must have an estimated standard deviation equal to 
zero (if the full variance-covariance matrix is used in the calculation). 

Constraints via Lagrangian multipliers 
In the absence of complete information on a fragment's geometry one may 
wish to fix some molecular parameters (e.g. some bond distances and angles 
are fixed to given values, a group of atoms is held in coplanar arrangement, 
etc.). In such cases Lagrangian multipliers can be used: the function to 
minimize is 

h 

where the (generally non-linear equations) 

represent the fixed constraints. Usually the available model X0 will not 
exactly satisfy (2.69). The problem will be linearized by expanding both the 
IFHIcs and the Gis in Taylor series: 

where G: = G,(XO) and 6 ~ ~ 1 6 ~ ~  is the derivative of G calculated in XO. 
The normal equations can be derived by settling to zero the derivatives 
(with respect to Ax and A) of S: 
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normal equations, expressed in terms of partitioned 

where mjq = i(6G:/6xj). 
Even if a large variety of stereochemical constraints can be taken into 

account by the method, the approach is not very attractive for large-size 
problems: indeed the order of the normal matrix is increased. 

Use of restraints 
Soft, flexible constraints (say restraints) may be imposed to some functions 
of the parameters in order to permit only realistic deviations of their values 
from fixed standard ones. These functions are used as supplementary 
observations, so that the order of the normal equation matrix is neither 
increased nor reduced. In this situation the function to min imi~e[~~ ,~ ' ]  is 

where gq is the function describing the gth restraint, g,, is its standard (or 
optimal) value, w, is the weight to associate to the qth restraint. The normal 
equations are obtained by expanding S in Taylor series and equalling to zero 
its derivatives (with respect to AX): 

The effect of restraints is therefore to add contributions to the elements of 
the normal equation matrix. Thus parameters highly correlated can be 
found, but this is expected since parameters are deliberately correlated by 
restraints. 

For example, a restraint may be to set an interatomic distance d (bonded 
or non-bonded) to a given value taken from the literature. If we recall, 
according to p. 62, that 

where 

and so on. 
Another restraint may be: the sum of all the atomic coordinates along a 

polar direction can be fixed to its current value in order to keep fixed the 
centre of gravity of the molecule and so determine the origin. Several other 
types of restraints can be imposed (see Chapter 8, p. 564) and they concern 
van der Waals distances, planarity of groups, chirality (a restraint on the 
chiral volume about an asymmetric carbon atom may maintain the 
conformation in the correct hand), bond and torsion angles, thermal 
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motion, positional and thermal parameters related by non-crystallographic 
symmetry, potential energy functions, etc. Also, the sum of site occupancies 
of two or more atoms can be restrained to some fixed value when disorder 
problems occur. When the number of restraints is sufficiently large the 
equations are overdetermined and refinement will also converge with 
low-resolution data. 

The approximate nature of the restraints well agrees with our approxi- 
mate knowledge of the chemistry involved. A basic difficulty of their use is 
to assess an optimal weighting scheme: indeed the first component of S is in 
electrons squared while the second may be considered an energy quantity, 
where w, plays the role of an effective force constant. A convenient 
mechanism is to indicate the relative precisions (i.e. the expected standard 
deviations) of the restraints and scale them with respect to the observations. 

As an example, let us suppose that the bond distance dj is to be restrained 
to a set value. If the weights of X-ray observations are (as usually) 
sufficiently accurate but on an arbitrary scale, the normalization factor 
&, = C H  w ~ ( A F ~ ) ~ / ( ~  - m)  may be obtained. Then the restraint equation 
involving di with estimated standard deviation o(dj) is given the weight 

Very small standard deviations make restraints equivalent to constraints. 
If refinement provides a bond distance differing from dj by several times 

a(di) it should be concluded that experimental data are in conflict with the 
fixed restraint. 

Applications of constraints and/or restraints in least-squares processes 
usually lead to larger residuals than by unconstrained refinement. That does 
not necessarily mean that the constrained solution fits less well to the data. 
A sensitive criterion may be to compare estimated standard deviations 
obtained by constrained and unconstrained refinements. When constraints 
are applied both S and n - m increase but oii (see p. 98) may be larger or 
smaller according to circumstances. An alternative criterion may be the use 
of the Hamilton's test (see p. 103). 

Alternatives to the method of least squares 

In the above sections some deficiencies of least squares have emerged, 
deficiencies which invite the application of alternative methods. In statistical 
sciences the main alternative to least squares are maximum-likelihood 
methods. Let us suppose that the errors e defined by (2.47) are distributed 
according to some probability density function P(e). The likelihood function 
L is then given by 

Since P is everywhere greater than or equal to zero, its logarithm is a 
monotomically increasing function of the argument. Thus the maximum of 
L is attained when In L is a maximum. If the error function is Gaussian then 

P(ei) = ( 2 ~ o ? ) - ~ ' ~  exp [-e?/(2o?)] 
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where a is the variance of the ith observation. Then 

Since the second and third terms are constant, In L has its maximum 
when 

where wi = l/a:. We have so shown that, if the distribution of the errors is 
Gaussian, and observations are weighted by the reciprocal of the variance, 
the least-squares and the maximum-likelihood methods provide equivalent 
results. Conversely, if errors are not distributed according to a Gaussian 
model, the method of least squares does not lead to a maximum-likelihood 
estimate. 

The above results also explain why least squares are practiclly the only 
ones used in crystallographic refinement: they only depend on the variance 
of the errors while maximum-likelihood methods require the knowledge of 
the distribution of the errors. When this is available maximum-likelihood 
methods provide better estimates of the parameters, since such methods can 
exploit more information. However, such a situation is very infrequent in 
crystallographic refinement, where only rather imperfect estimates of the 
variances are available. 

Parameters may also be estimated by maximum entropy methods, which, 
based on Jaynes' extension of Shannon's theory, require the maximization 
of the entropy. But such methods, as well as maximum-likelihood methods, 
are far from being competitive with least squares in most of crystallographic 
applications. 

Rietveld refinement 

The basis of the technique 
Powder diffraction patterns (see p. 293) may be collected in a step scan 
mode: intensity is measured for a given interval of time, and the theta and 
two-theta axes are then stepped to the next position. The pattern is then 
indexed: i.e. appropriate Miller indices are associated with observed 
reflections and simultaneously accurate unit-cell dimensions are calculated. 
Because of unavailable experimental errors in the estimates of the 
diffraction angles and because of the frequent overlapping of peak inten- 
sities, indexing is a rather difficult task for relatively large cell volumes 
and/or low-symmetry crystals. Several approaches are today available for 
this aim: implemented in computer programs, they often provide more than 
one solution, so that proper figures of can be used to distinguish 
between bad and good solutions. The reader will find general remarks on 
the various approaches, and tests on their efficiency, in a paper by ~hirley[~'] 
,and in some more recent  paper^.[^"^^] This stage of analysis is followed by 
the examination of possible systematic absences to suggest a space group. 

If a (even imperfect) structural model is available then the intensity yi, 
observed at the ith step may be compared with the corresponding intensity 
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yic calculated via the model. According to ~ i e t v e l d , ~ ~ ~ ]  the model may be 
refined by minimizing by a least-squares process the residual 

S = C Wi I ~ i o  - yic12 
where wi, given by 

(wi)-' = 0; = B:~ + o;~, 

is a suitable weight. oi, is the standard deviation associated with the peak 
(usually based on counting statistics) and a,, is that associated with the 
background intensity yib. 

yic is the sum of the contributions from neighbouring Bragg reflections 
and from the background: 

where s is a scale factor, Lk is the Lorentz-polarization factor for the 
reflection k, Fk is the structure factor, mk is the multiplicity factor, 
Aerk = 28, - 20k where 28, is the calculated positon of the Bragg peak 
corrected for the zero-point shift of the detector, and G(Ae,k) is the 
reflection profile function. 

The parameters to adjust by refinement include unit cell, atomic 
positional and thermal parameters, and parameters defining the functions G 
and yzb* 

The determination of an accurate model for the profile function G(Aock) 
is one of the fundamental problems in both single-peak and in Rietveld 
analysis. This is particularly true today when high-resolution neutron and 
X-ray spectra are available: deficiencies in the profile model are no longer 
lost in relatively large instrumental diffraction profiles. The shape of a 
diffraction peak depends on several parameters: the radiation source, the 
wavelength distribution in the primary beam (e.g. possibly selected by a 
monochromator crystal with its specific mosaic spread), the beam charac- 
teristics (as influenced by slits and collimator arrangements between the 

source and monochromator, between monochromator 
between sample and detector), the detector system. 
are many choices of analytical peak-shape functions. We 

primary radiation 
and sample, and 
Accordingly, there 
quote: 

(Gaussian) ; 

cli2 

2 (1 + CIX;k)-l (Lorentzian); 
nHk 

'L 2 - (1 + c2xfk)-2 (modif. 1 Lorentzian); 
~t Hk 

"' (1 + c3xfk)-1'5 (modif. 2 Lorentzian); 
2Hk 

with 0 s q G 1 (pseudo-Voigt); 
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r(B) 5 2 (1 + 4c4x:,)-p (Pearson VII); 
r ( p  - 0.5) 7tk 

where Co = 4 In 2, C1 = 4, C, = 4 ( ~  - I), C3 = 4 (2213 - I), C4 = 21f8 - 1, 
Xik = AOik/Hk. Hk is the full-width at half-maximum (FWHM) of the kth 
Bragg reflection, and r is the gamma function. 

It is easily seen that the pseudo-Voigt function presents the mixing 
parameter rj which gives the per cent Lorentzian character of the profile. 
When P = 1, 2, m, Person VII becomes a Lorentzian, modified Lorentzian, 
and Gaussian function respectively. Of some use also is the pure Voigt 
function which is the convolution of Gaussian and Lorentzian forms. 

The FWHM is usually considered to vary with scattering angle according 
to 

(FWHM), = (U tan2 8 + V tan 8 - w)'" (2.71) 

for the Gaussian component,[781 according to 

(FWHM), = X tan 8 + Y/cos 8 (2.72) 

for the Lorentzian component.[791 U, V, W, and/or X, Y are variable 
parameters in the profile refinement. 

Besides analytical functions non-analytical functions arising from an 
analysis of resolved peaks may also be usedL8'] to describe peak shape (in 
the Rietveld method the peak shape is not the end but a tool of the 
method). 

There is no well established approach to the background. It is mainly due 
to insufficient shielding, to diffuse scattering, to incoherent scattering 
(rather high for neutrons), to electronic noise of the detector system. The 
background and its variation with angle is usually defined by refinement of 
the coefficients of a power series in 28: 

where the b, terms are refinable parameters. 
All the above described parameters are introduced in the Rietveld 

refinement process according to (2.70). The agreement between the 
observations and the model is estimated by the following indicators:[s11 

(2) The weighted profile R,, = [C wi(yi0 - ~ i c ) ~ / C  ~iy?o]l '~* 

(3) The Bragg RB = C JZko - Ikcll(C Zko). The values I,, are obtained by 
partitioning the row data in accordance with the Ik, values of the 
component peaks. 

(4) The expected RE=[(N - P)/(X where N and P are the 
number of profile points and refined parameters respectively. 

(5) The goodness of fit GofF = C wi(yio - Y , ~ ) ~ / ( N  - P)  = (R,,/R,)~, which 
should approach the ideal value of unity. 

The most meaningful indices for the progress of refinement are R,, and 
GofF since they show in the numerator the quantity being minimized . Also 
RB is of considerable use since it depends on the fit of structural parameters 
more than on the profile parameters. 
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The use of restraints in the Rietveld method has proved to be of 
particular usefulness for complex structures.[80, 82,831 

Some practical aspects of Rietveld refinement 
The generation of instrument profile calibration curves usually precedes 
Rietveld refinement. Such an analysis allows one to set up the angular 
dependence of the peak shape. A peak profile may be expressed as 

where b(28) is the background function, f(28) is a specimen related 
function, and w(28) *g(28) is the so-called instrument function. This may 
be considered as the convolution of the function g(28) representing the 
diffractometer's optics and a second function w(8) representing the wave- 
length distribution of the incident radiation. 

As a first step, diffraction profiles from a standard specimen (e.g. silicon, 
corundum, or quartz standard materials) devoid of crystallite size or strain 
broadening effects are collected: in this case f (28) may be represented by a 
delta function and (2.73) becomes 

If a single wavelength is used (i.e. in synchrotron or neutron experiments) a 
single peak may be represented by one or by a combination of the functions 
described in the previous subsection. If a Cu X-ray source is used and a2 
and a, are not eliminated by some experimental device (i.e. a germanium 
monochromator) a compound profile consisting of three split functions has 
to be chosen, one for each spectral component. The number of variable 
parameters in the profile function may be reduced by fixing a, and a3 
intensities relative to a, intensity via a previous profile-fitting experiment. 
Analogously, the angles for a2 and a3 lines may be fixed according to their 
wavelengths, and their FWHM can be set equal to that of al. 

The correct profile function is in general obtained by trial-and-error 
methods from single well behaved profiles of the standard material. The 
goodness of the profile fit is measured by 

where y,, and y,, are the observed and calculated values at the position 28,. 
For good experimental data the R value is expected to be around one per 
cent. 

The values of the profile parameters may be refined for each single peak 
collected from the standard: each peak is separated and analysed in a region 
with enough points to allow a good sampling of background on each side of 
the peak (a parameter for background may also be refined). In particular, 
the values of FWHM obtained from refinement are used for a first estimate 
of the U ,  V, W values in eqn (2.71) and/or of X,  Y values in eqn (2.72). It 
is worthwhile mentioning that standard specimen data are also used for the 
determination of wavelength A (if necessary) and for the zero-point 
calibration 28, of the detector scale. 

Analysis of the specimen profile f usually follows instrument profile 
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calibration. Specimen broadening of the profiles is often present: it is 
traditionally assumed to be Lorentzian if profile broadening is present. 

The profile analysis of the full diffraction pattern is often used to 
peak positions and peak heights for each reflection: from them 

lattice parameters are calculated and refined in an iterative way. Peaks 
generated by overlapping of more reflections are deconvoluted and integr- 
ated intensities of individual hkl are calculated, together with their standard 
deviations and their correlations (see Appendix 3.A, p. 184). 

A specific feature of Rietveld refinement is that the number ot observa- 
tions N can be chosen arbitrarily large simply by decreasing the step interval 
in 28. The increase of N does not remarkably affect the conventional 
Rietveld agreement but decreases the parameter estimated standard devia- 
tions approximately in proportion to N'". Such an improvement is often 
fictitious. For example, a single Bragg reflection may be measured using 10, 
100, or 1000 steps. The observed intensities are not statistically 
independentFa7] and, for single peaks, yield structural information nearly 
equivalent to a single integrated intensity count (even if the precision 
obtained by 1000 steps count may be higher than by 10 or 100 counts). As a 
consequence the correlation among observations becomes higher with 
N = 10, 100, 1000 and least-squares residuals A, = y,, - y , ,  are correlated 
themselves, i.e. they tend to assume the same sign. In such a situation 
Durbin-Watson d-statisti~s['~I may be used to assess the nature of correla- 
tion. It is based on the parameter 

For no serial correlation a d value close to 2 is expected. For positive 
serial correlations adjacent A tend to have the same sign and d will be 
smaller than 2, whereas for negative serial correlation (alternating signs of 
adjacent A) d is expected to be larger than 2 (and smaller than 4). 

The parameter d may be tested against the 0.1 per cent significance point 
via the formula[891 

where P is the number of least-squares parameters involved in the 
calculations. Q < d < 4 - Q if consecutive terms are uncorrelated, if d < Q 
or d > 4  - Q consecutive terms tend to have positive or negative serial 
correlation. d-statistics suggest that an optimum value of the step width is[901 
between one-fifth and one-half of the minimum FWHM of well resolved 
peaks. 

The success of the Rietveld method is based on some fundamental 
requirements: 

1. A starting model for atomic positional and thermal parameters should 
be available in advance. That can be provided by the following 
procedure:[911 (a) deconvolution techniques and profile-fitting methods are 
used to derive intensities Zk of individual reflections and to resolve 
overlapping peaks; (b) integrated intensities are calculated and structure 
solved by direct or Patterson methods. The same intensities are then used in 
a full-matrix least-squares refinement as for single-crystal structure deter- 
mination. Because of peak overlapping, this time error margins for each 
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observation and correlation among reflections intensities could be processed 
to calculate a non-diagonal matrix Mf (see pp. 91-3). 

2. The crystallites should be randomly distributed. That is not easy to 
achieve in practice.[92,931 Traditionally preferred orientations are minimized 
by loose packing of the powder: however, sufficient compression improves 
homogeneity and reduces surface roughness effects. If a specimen spinner is 
used in the experimental set-up the preferred orientation can be charac- 
terized by a few parameters only, thus it may be introduced in a rather 
simple way in the fitting schemes and in Rietveld refinement. If the 
preferred orientation is not taken into account, errors in the relative 
intensities may occur which limit the accuracy of the refinement process. 
Some geometries are less sensitive to this problem (i.e. Guinier cameras). 
The problem is also minimized in neutron diffraction because of the large 
transmission specimen, but it is severe when synchrotron radiation is used 
because the number of crystallites correctly oriented to reflect the parallel 
beam is much smaller.[941 

The most simple way to correct the intensities calculated from the model 
structure is to use an empirical correction function depending on @, the 
acute angle between the preferred orientation plane and the diffracting 
plane k:, 

Ik(corr) = IkPk(@). 

Pk may be ~ a u s s i a n , [ ~ ~ ~  951 

or of trigonometric type1961 

p is a parameter to refine in the refinement process. 

3. The crystallites should be of equal size. Particles much larger than 
10 pm should be removed from the sample, as well as very small particles 
(<1 pm), which are responsible for profile broadening. Diffraction patterns 
of materials with single composition but two different distinct distributions 
of crystallite size (or of microstrain) could be characterized by profile- 
broadening effects with bimodal distribution.[971 In this case unimodal 
distributions are inadequate to describe profile functions, and unavoidable 
profile misfit errors will still appear at the end of refinement when observed 
and calculated patterns are compared. 

4. Correction for instrumental aberrations[9s1001 should be made. 
The instrument function g in eqn (2.73) may be considered as the result of 

six specific functions: 

The function gl depends on the projected focal spot profile, g2 is due to the 
varying displacements of the various parts of the flat specimen surface from 
the focusing circle, g3 is due to the axial divergence (as regulated by Soller 
slit collimators), g4 arises from specimen transparency (i.e. from the 
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penetration by the beam of a sample with finite absorption), g5 is defined by 
the receiving slit, g6 is due to the possible misalignment of the experimental 
set-up. As may be seen from Fig. 2.13, only gl, g5, and g6 broaden the 
profile symmetrically, while gZ, g3, g4 broaden it asymmetrically and shift 
the peak from the theoretical position. The deleterious effects of the 
aberrations can be minimized by the use of appropriate analytical functions 
in Rietveld refinement or by a careful design and/or alignment of the f~nal prof~le 

instrument. 
5. Resolution of the pattern may be improved by mathematical 

 technique^:[^^^-^^^] i.e. by deconvolution of the pure from the observed 

Appendix 3.A, p. 185). 

N ~ A  
profile, this last containing the effect of instrumental broadening (see Fig. 2.13. Functions defining the instrument 

function g. 

The resolution of the pattern as well as the signal-to-noise ratio can be 
appreciably improved with carefully designed diffraction experiments. When 
a non-conventional diffraction apparatus is used one of the first choices to 
be made is fixing the wavelength. Complex structures will produce peaks 
closely spaced and frequently overlapping: a long wavelength improves 
separation between peaks but reduces the number of accessible reflections 
which cannot then offset the large number of structural parameters to 
refine. A short wavelength increases the number of accessible peaks but 
produces severe overlap of them. Thus a useful compromise has to be 
chosen between the two requirements.[lo4] When higher resolution is needed 
for conventional X-ray sources it is advisable to use the Kg doublet (but the 
total experiment time will increase). 

In order to compare the performances of different experimental arrange- 
ments, in Fig. 2.14 typical FWHM (instrument-only contribution) are 
plotted against the diffraction angle for modern neutron diffractometer (N), 
for a conventional Bragg-Brentano with (XCS) and without (XCW) 
diffracted beam Soller slit (Cu K, radiation and a diffracted-beam curved 
graphite monochromator) limiting vertical beam divergence to less than the 
standard value of 5", and for a synchrotron powder diffractometer (S). The 
use of incident beam monochromators can further improve performances of 
conventional divergent beam diffractometry.[lo5] Indeed, the K,, component 
may be removed, so halving the number of lines in the pattern. As a 
consequence, the resolution of the remaining lines is improved, the 

Fig. 2.14. FWHM for different experimental 
arrangements. 
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background is kept essentially constant (indeed KO lines are removed at 
source, and also structures arising from the filter absorption edge are 
eliminated). 

The best resolution is attained by synchrotron radiation: the probability 
of measuring single peaks is larger than for any other radiation source. It is 
not infrequent[lo6] that synchrotron data present so large a percentage of 
unique I,, values that structure determination may be carried on by 
techniques identical to those used for single-crystal data (for rather large 
structures specialized solution techniques have still to be applied[lo7]). 

Neutrons have smaller resolution, but a better signal-to-noise ratio at high 
sin 8/A values. Because of the narrow range of neutron scattering lengths, 
refinement is facilitated when some heavy atoms are present; however, the 
structure solution may be difficult. This situation is just complementary to 
that occurring for X-ray data, where location of some dominant atoms may 
be easy but subsequent accurate location of very light atoms may be 
difficult. It is therefore not infrequent that the Rietveld method benefits by 
a combined use of neutron and X-ray data. When some heavy atoms are 
present in the structure or high-angle X-ray data are not attainable, 
refinement with neutron data may be used to confirm results obtained with 
X-ray data[79,'08, lo9] (however, improvement in precision may be obtained if 
refinement is carried out on the combined X-ray and neutron data sets[llol). 
As an example in Fig. 2.15(a,b) observed (points), calculated (bold line), 
and difference profiles generated by powder samples of a-CrP04 are 
shown.[79] Synchrotron intensity data show a very good instrumental 
resolution (FWHM = 0.07" at 28 = 50") but a remarkable intensity decay 
with sin BIA: the attained maximum sin BIA value is 0.35 A-', correspond- 
ing to 97 independent reflections. Neutron data have smaller resolution 
(FWHM = 0.6" at 28 = 50") but no serious intensity decay with sin 8/A: the 
maximum sin 8/A value is 0.40 A-l, corresponding to 127 independent 
reflections. Since the neutron scattering amplitudes for Cr, P, and 0 are 
0.352, 0.53, and 0.577 respectively (see Appendix 3B, p. 198) neutron 
refinement is expected to be more sensitive than X-ray to oxygen positions. 

The Rietveld procedure has been applied to a very wide range of 
inorganic and organic materials[llll and scientific interest in this area is 
increasing (the present annual publication rate is approximately 100). The 
limits of the method depend on progress in experimental aspects (sample 
preparation, higher resolution, better treatment of profiles, etc.) and on the 
available prior information which may be introduced into refinement. Such 
information is often generated by complementary experimental techniques. 
For example, intensities of overlapping reflections of LaMo50, were broken 
up by considering electron diffraction patterns:[1091 14 symmetry- 
independent atoms were then positioned and their isotropic thermal motion 
determined. 

As a further example we recall the application of the Rietveld method to 
polymers.[82~112~1'31 El ectron diffraction is a generally applied technique 
when chain-folded crystals are of minimal thickness and crystal deformation 
negligible. If such conditions are not satisfied quantitative kinematic 
treatment leads to models of low accuracy and the Rietveld method may be 
applied in order to discriminate unsatisfactory structural models. Owing to 
the smallness of crystallites and to the greater disorder present in the 
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Fig. 2.15. Powder diffraction profiles for a-CrPO, 

25 50 75 100 125 from: (a) the synchrotron X-ray experiment; (b) 
neutron experiment. Reflection positions are 

28 (deg.) marked. 

polymers the width of peaks is rather large for polymers so that overlapping 
events in their pattern are more frequent. In spite of that, discrimination 
among various structural models may often be accomplished provided prior 
information (size and shape of rigid molecular fragments) is adequately 
introduced into refinement. 

Analysis of thermal motion 

In biological macromolecules the root-mean-square displacements of atoms 
from their mean positions are of the order of tenths of an angstrom. On the 
other hand the allowed variations for covalently bonded distances are no 
greater than some hundredths of an angstrom. The apparent contradiction 
may be overcome by assuming a high correlation among the thermal 
motions of bonded atoms. In other words, if an atom at a certain instant is 
out from its equilibrium position, some other atoms coherently move in 
such a way that bond distances are chemically meaningful. 

The above conclusion is valid also for small molecules. Indeed more or 
less rigid groups of atoms can be found (e.g. rings, condensed rings, etc.) 
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for which the internal molecular motion may be negligible and the thermal 
motion may be described in terms of a rigid body model.[1141161 

In the crystallographic least-squares procedures (see p. 94) any correla- 
tion among fi tensors of different atoms is usually ignored. However, if 
thermal ellipsoids correctly represent the thermal motion some a posteriori 
correlations among them can be found. For example, since bond stretching 
vibrations have a much smaller amplitude than other sources (i.e. bond 
bending or torsional vibrations) the mean square displacement of pairs of 
bonded atoms should be approximately equal in the bond direction. Or 
also, in long-chain molecules the thermal motion normal to the chain should 
be greater than at right angles to it; or, terminal atoms such as the 0 atoms 
in carbonyl groups or H atoms in methyl groups have generally greater 
thermal motion than the atoms to which they are bonded. Thus if the crystal 
contains more-or-less rigid groups of atoms, it makes sense to analyse 
thermal motion in terms of translational and librational oscillatipns of these 
groups. In the following, such an analysis will be described on assuming a 
Cartesian coordinate system. 

In accordance with Appendix l . A  the most general motion of a rigid 
body is a screw rotation. If the axis of rotation is correctly oriented but 
incorrectly positioned, the rotation and the translation component parallel 
to the axis do not vary, but additional translation components perpendicular 
to the rotation axis are introduced. Thus the most general motion of a rigid 
body may be considered as the combination of a rotation with a suitable 
translation. These operations do not commute in general; luckily an 
adequate treatment of anisotropic thermal motion, accurate to the level of 
quadratic approximation, can be used upon infinitesimal rotations which do 
commute. 

To illustrate this representation of rotation, consider an atom at X = 
(xl, x2, x3) in a Cartesian coordinate system E. According to p. 71, in such 
a system, a rotation through x about the unitary vector 1 (I1, I,, 1, will be its 
direction cosines), is represented by relation (2.32b). If x is sufficiently small 
(2.32b) may be written as 

X' = RX, where R =  I + XP and P = ( 2 !;A. (2.75) 

The change of variable q = ~1 brings to 
\-12 11 0 / 

X ' = ( I + K ) X = X + K X = X + A Q  
where 

It may be concluded that the most general infinitesimal displacement of 
an atom in a molecular crystal from its equilibrium position is 

u = t + q / \ r = t + ( r l - r ) = t + A q .  (2.76) 

The variance-covariance matrix for the displacement u is 

u = (UC)  = ( t i )  + ( ~ ( 9 9 ) ~ )  + ( ~ ( q q )  + ((t9)A) 

= T + A ~ + A S + S A  (2.77) 
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S + D provided 

A D + D A = O  

is satisfied. Indeed, if S in (2.77) is replaced by S + D 

is obtained from which (2.79) arises. Since A =  -A we will have D = kl 
where k is an arbitrary constant. It may be concluded that the values of Uij 
calculated from T, L, S do not vary if D is.added to S. Vice versa, only the 
differences SI1 - SZ2, SZ2 - S33, S33 - Sll may be obtained from the observed 
5. Since their sum is zero the number of determinable components of S is 
eight: usually it is preferred to have the trace of S equal to zero. 

Often thermal motion analysis produces an excellent agreement between 
observed and calculated U,? (e.g. ((Au~,)') lJ2 = (1-4) X A'): sometimes 
worse agreement occurs (e.g. of the order of low2 A2 or more). Disagree- 
ment may be due to internal molecular motion of the atoms as well as to 
errors in the observed Uij, or also to the inadequacy of the approximation 
(2.75). 

The effect of thermal motion on bond lengths and 
angles 

From a crystal structure analysis atomic coordinates are obtained which 
represent the centroid of a distribution of electron density arising from the 
combined effect of the atomic structure and of the thermal vibration. 
Usually interatomic distances are calculated as separations between a pair of 
atomic positions (distances from mean positions), but it has become clear 

that, if the thermal motion is not negligible, the most suitable 
measure of an interatomic distance is the mean separation (usually longer 
than inter-mean distances), the average being calculated by taking into 
account the joint distribution of the thermal motion of the two atoms. Such 
complex information is seldom available, but simplified models of the 
vibrating system do provide useful estimates of the mean separation. 

Let do represent the separation of the mean positions of two atoms A and 
B, and d = do + s be the instantaneous separation. For convenience consider 
a cylindrical coordinate system with axis z in the direction of do. If v and w 
are the axial and radial vectorial components of s respectively then 
d = do + v + w from which d = [(do + v)' + ~ ~ 1 " ~ .  

Taylor-Maclaurin expansion of d(v, w) yields 

from which 

Express now the value of (w2) in terms of quantities which are 
experimentally accessible for three simplified models of thermal motion. It 
may be noted that w is the difference between the projected instantaneous 
displacements w6 and wA of the two atoms B and A (w = w~ - wA) so that 

(w2) = (w;) - 2(wgw*) + ( w i ) .  
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We will examine three simplified models: 

1. The motion of the two atoms is not correlated (as a first approxima- 
tion, that occurs for non-bonded atoms). In this case (w2) = ( w i )  + ( w;) ; 
therefore 

( 4  = do + ( ( ~ 3  + ( & ) ) l ( W .  (2.81) 

2. The atom B has all of the translational motion of the atom A plus an 
additional motion uncorrelated with the instantaneous position of A (riding 
motion). Such a model well fits the case in which the riding atom B is 
strongly linked only to the atom A and the mass of B is considerably smaller 
than the mass of A (eventually summed to neighbouring atoms strongly 
linked to A, as occurs for example if A belongs to a rigid group). Then 

( 4  =do + ( ( ~ 3  - (wW(2do) .  (2.82) 

Express now ( w i )  and ( w i )  in terms of the vibrational parameters 
usually obtainable from least-squares refinements: the corresponding ex- 
pressions could be introduced into (2.81) and (2.82) in order to obtain (d).  

If the thermal motion of the atom A is assumed to be isotropic then, 
according to (3.19), (wk) = 2 ~ , / 8 n ~ ,  (w:) = 2 ~ ~ / 8 n ~ ,  where BA and BB 
are the thermal factors estimates arising from least-squares calculations for 
A and B atoms respectively. Then (2.81) and (2.82) become 

and 

respectively. If the thermal motion is assumed to be anisotropic, then a 
suitable coordinate system in the plane normal to do may be chosen, and 
(see eqn (2.38b)) we can write 

(w:) = ( ~ 2 )  + (w?ly) = (A1A+A2A)l(2n2). 

According to (3 .B. 10a) 

where A3,1(2n2) is the mean-square displacement of the atom A along do. 
On introducing (3.B.10~) and (3.B.9a) we obtain 

where Xo represents now the direct lattice components of the vector do. 

3. The rigid body model. Let n be the unit vector about which a group of 
atoms oscillates with mean square amplitude (w2). A small rotation dw 
about n will produce over the interatomic vector d the variation 6d = (n A 

d)  do .  
Since 6d is perpendicular to d, we can write 

(w2) = d2(w2) sin2 3 - dt(w2) sin2 3 

where 3 is the angle between do and n. In accordance with (2.80) 

( d )  =do  + (dow2 sin2 3) /2  = do(l + w2 sin2 312). 
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Shortening of interatomic distances will be more clearly deduced from 
Fig. 2.16. The libration axis n is normal to the page through 0 ,  d is the 
distance from P to the axis. The radial displacement is approximately given 
by d - d cos o - d(1- cos o )  - d((u2/2). 

As an example, a librational mean-square amplitude of 10' may lead to 
Fig. 2.16. Shortening of interatomic distances 
due to libration motion. shortening of interatomic distances of up to 0.025 A. 

Thermal motion is expected to produce distortion also in apparent angles. 
To study this type of effect the joint distribution of three correlated thermal 
motions has to be taken into account.[1161 

About  the accuracy o f  the calculated parameters 

At the end of a structure analysis both positional and vibrational parameters 
are available, together with variances of the parameters and covariances 
among them. This supplementary information is of primary importance in 
assessing the accuracy of the parameters themselves. The variance of the 
parameter f i n  terms of variances of and covariances among other directly 
determined parameters p is 

If the pjs are uncorrelated then (2.83) reduces to 

As an example, let us calculate the standard deviations of the unit cell 
volume V and of the angle a* when the standard deviations of a, b, c, a ,  (p, 
y are known. On applying (2.84) to the expression of V in Table 2.1 we 
obtain 

where 
A, = o(a)/a, B1 = sin a(cos a - cos (p cos y)a(a), 

A, = a(b)/b, B2 = sin (p(cos (p - cos a cos y)a((p), 

A3 = a(c)/c, B3 = sin y(cos y - cos a cos (p)a(y). 

On applying (2.84) to the expression of cos a* in Table 2.1 we obtain 

a2((a) = {a2(a) sin2 a + a2((p)(sin (p cos y + cos a* cos (p sin y)' 

+ 02(y)(cos (p sin y + cos a* sin (p cos ~ ) ~ ) l ( s i n  a* sin (p sin Y ) ~ .  

Apply now (2.84) to the relation (2.3b) in order to derive a2(d2), where d 
is the distance between two uncorrelated atoms positioned in (xl, yl, 2,) and 
(x,, y2, z2) respectively. Then 

1 
a2(d) = 7 {(A1 + A2 cos y + A3 cos ( p ) 2 [ ~ T ~ :  + a2(a2(x1) + a2(x2))] 

d 

+ (A, cos y + A, + A3 cos a ) 2 [ ~ : ~ :  + b2(a2(yl) + 02(y2))] 

+ (A, cos + A, cos a + A3)2[A3: + c2(c?(z1) + a2(z2))] 

+ (AlA2a(y) sin y)' + (AlA3a((p) sin (p)' + (A2A3a(a) sin a)2). 
(2.85a) 
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(2.85a) is simpler if the errors on the unit cell parameters can be neglected. 
An additional simplification is obtained if the errors are isotropic (i.e. 
a2&, = bZa;, = c20:, = a: and a2a;, = b2at2 = c2afZ - a:) and the axes are 
orthogonal. Then (2.85a) reduces to 

For pairs of symmetry-related atoms (2.85a) cannot be applied. Thus, for 
a pair of atoms referred by an inversion centre, any error in one position is 
completely correlated with the error in the other and 

where a is measured in the direction of a line joining the atomic centres. It 
may be observed that 20 (standard deviation for the distance of two 
completely correlated atoms) is larger than (standard deviation for the 
distance of two uncorrelated atoms: see eqn (2.85b) for al = a2). 

In general any pair of atoms in a structure are neither completely 
independent nor completely correlated, and the general expression (2.83) 
has to be invoked. An estimate of the covariance between the positional 
parameters pi and pj is usually obtained from the structure least-squares 
refinement (as the ijth element of the matrix M, defined on p. 92). The 
covariances among the unit cell parameters are usually available from the 
least-squares refinement of the unit cell parameters. 

By an analogous technique the standard  deviation^["^^^^] of bond angles, 
torsion angles, and least-squares planes may be obtained. To assist the 
reader the simplified expressions of the standard deviations for bond angles 
8 and torsion angles o are quoted: 

+ a&BcD) = 2 dAB sin2 (ABC) d& sin2 (BCD) 

- dAB cos (ABC) 
dAB sin (ABC) 

dBc - dAB cos (ABC) 
- 2 cos o cot (BCD)( ,, sin (ABC) 

- dcD cos (BCD) 
cD sin (BCD) 

~ B C  - d~~ cos (BCD))] 
- 2 cos w cot (ABC)( 

cD sin (BCD) 

If in the first expression dAB = dBC and a common a2 is assumed then 

a: = 2a2(2 - cos 8)/d2. 

If in the second expression dAB - dBc - do, equal bond angles (ABC = 
BCD = cp), and a common a2 are assumed then 

4u2 
a2(o)  = [I - cos cp(1- cos cp)(l - cos o)]. 

d2 sin2 cp 
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Two simple examples on the use of the variances of the parameters in 
crystal structure analysis may be described: 

1. It is often required to take a decision whether a bond lengtb or angle 
differ significantly from some others. For example, suppose that two 
independent C-C bonds dl and d2 are found which differ by 0.02A, 
while the isotropic standard deviations for the atomic positions are 
a, = a, = a, = a, = 0.003 A. According to (2.85b) a(d) = 0.0042 A while 
the standard deviaton associated with 6 = dl - d2 is 

It is therefore found that the observed value of 6 is A = 3.39 times larger 
than a,. If 6 is assumed to be distributed around zero according to a 
normal distribution with standard deviation a,, then a statistical criterion 
may be used to decide if d l  and d2 are significantly different. The 
conclusive inference is that the two bonds differ. 

2. We are required to decide if a sample of n observed bond distances di is 
drawn from a common population or not. If the di are assumed to be 
normally distributed about the mean (d), the quantity 

is evaluated and compared with the tables of the xi,, distribution. 

Appendices 

2.A Some metric relations between direct and 
reciprocal lattices 

Let us prove that V* = 1/V. By definition 

Owing to (2.8) 

1 1 
V* =-(b A c ) .  [(c a A b)a] =- v3 v ' 

Derive now the values of a*, p*, y* from direct lattice parameters. 
According to the first eqn (2.13) 

from which, owing to second and third relations (2.12b), 

sin a* = 
v 

abc sin p sin y 

is obtained. Expressions for sin p* and sin y* quoted in Table 2.1 are 
obtained by cyclic permutation of the parameters. Derive now the expres- 
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sion of cos a*. By definition 

b * - c *  1 1 
- cos a* =-- -.- (C A a ) .  (a A b). 

b*c* b*c* V2 

Using (2.7) and the above derived expression of sin a* gives 

cos a* = (cos p cos y - cos a)/(sin p sin y). 

The expressions for cos P* and cos y* quoted in Table 2.1 may be obtained 
by cyclic permutation of the parameters. 

2.B Some geometrical calculations concerning 
directions and planes 

All crystallographic planes parallel to a given direction are said to belong to 
the same zone. According to p. 7 any vector ru = ua + vb + wc defines the 
crystallographic direction [uvw] which is also the symbol of the zone. We 
derive now the following results: 

1. Angle 4 between two planes H, = (hlklll) and H2 = (h2k212): 
* * 

r H l  ' dHldH2r i l  . r i 2  cos 4 =,,. 
r ~ l r ~ 2  

where r:, r i ,  may be calculated by means of eqn (2.17a). 

2. The family of planes H = (hkl) belongs to the zone [uvw] if 

Indeed if (2.B.1) is verified then r i  is normal to r,  so that the planes (hkl) 
are parallel to ru. 

3. Symbol of the zone [uvw] defined by two planes HI and Hz. Because of 
(2.B.1) 

4. The planes HI, H2, H3 shall belong to the same zone if r i , ,  r i , ,  r i ,  are 
coplanar. Then they shall define a cell in the reciprocal lattice whose volume 
is zero: 

5. The condition that the point P(x, y, z) lies in a plane (the nth of the set 
from the origin) of the family (hkl). We require that the projection of 
r  = xu + yb + zc onto the direction of r i  be equal to n times the interplanar 
spacing d H :  

r  - r i / r :  = ndH = n l r i  
from which 

r  . r i  = hx + ky + lz = HX = n. (2.B.2) 
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6. The condition that the point P(h, k, 1) of the reciprocal lattice lies in 
the nth (starting from the origin) plane of the set of planes (uvw) of the 
reciprocal lattice. It is the same problem as in 5 above, but transferred in 
the reciprocal lattice. The required condition is therefore 

Note that the lattice vector ru = ua + vb + wc defines the direction [uvw] 
orthogonal to the planes (uvw) of the reciprocal lattice. Therefore eqn 
(2.B.3) defines the reciprocal lattice points which lie on a plane normal to 
the direction [uvw] defined in the direct space. As it will be seen on p. 247, 
these points give rise to the nth layer line in a rotation photograph when the 
crystal is rotated about the axis [uvw]. 

7. Condition for the existence of a lattice plane perpendicular to the 
direction [uvw]. Such a plane will exist if a triplet of integer numbers h, k, 1 
can be found for which 

r i  A ru=  (ha* + kb* +lc*) A (ua + v b  + wc) =O. 

In cubic lattices h, k, 1 coincide with u, v, w respectively (in other words the 
plane (uvw) is perpendicular to the direction [uvw]. Indeed ru=  0 
owing to the fact that 

a * ~ a = b * ~ b = c * ~ c = O  and u a * ~ v b + v b * ~ u a =  . . . =  0. 

8. Line determined by two points: (r - rl) A (r - r2) = 0, where rl and r2 
are the positional vectors of the two points. 

9. Line parallel to the direction n and going through the point ro:(r - 
ro) A n = 0. 

10. Line through the point Po and perpendicular to two unitary vectors u 
and v:(r - ro) A (u A v) = 0. 

11. Projection of the vector r, on to the unitary vector n (from now on we 
will denote by N and N* the matrices of the components of n with respect to 
direct and reciprocal bases respectively): 

12. Plane determined by the three points Pi, P2, P3 whose positional 
vectors are Pl ,  P2, p3:(r -PI) ' (p2 -pi)  A (p3 -PI) = 0. 

In terms of coordinates ("' Y -Y1  "I) 

X ~ - X I  y2-yl 2 2 - 2 1  = O .  (2.B.4) 

x3 - X1 Y3 - Y l  23 - 21 

Equation (2.B.4) derives from (2.5): indeed the unit cell volume defined by 
the vectors 

i = P i ,  r2=p2  -pl, r3 =P3 
is vanishing. 

13. Plane normal to the unitary vector n:r n = d, where d is the distance 
of the plane from the origin. It may also be written 

r . n = ~ * ~ = d .  (2.B.5) 



Crystallographic computing 1 127 

14. Plane normal to the unitary vector n and through the point defined by 
ro : 

( r - r , )  . n  = N*(x-x,) =o .  (2.B.6) 

15. Distance from P1 to the plane N*X - d = 0: 

D = N*Xl - d. (2.B.7) 

If the plane is defined by means of the equation r rn = d', where rn is a 
general vector, before applying (2.B.7) n = rnln and d = d'lm have to be 
calculated. 

16. Projection of the vector rl on to the plane N*X - d = 0: 

P(rl ( 1  n*) = rl - (N*x , )~*  

17. Principal axes of the symmetry operator R. A vector r along an axis 
of R should satisfy the eigenvalue equation Rr = Ar. 

To give an example, let R =  R, in a Cartesian system. The secular 
equation will be 

cos8-A -sin8 
det (R, - Al) = det sin 8 cos 6' - A ( 0 0 1 - A  

= (1 + - 2~ cos 8)(1 - A) = 0. 

A = 1 is one root. If sin 8 # 0 the other eigenvalues are A, = eie, A3 = e-ie. 
The corresponding eigenvalues are [O, 0,1], [l/fl,  -i/fi,  01, [I/$& 
i l f i ,  01 respectively. 

The above result may be generalized to a rectilinear coordinate system: 
there will always be a real eigenvalue the eigenvector of which corresponds 
to the direction of the symmetry axis. For a proper rotation axis the 
eigenvalue is + 1, for an improper axis it is - 1. If sin 6' = 0 all the 
eigenvalues are real. If two eigenvalues are equal, any linear combination of 
the corresponding eigenvectors is an eigenvector itself. For example, the 
matrix 11 i 010 i 010 0 11 represents the twofold symmetry axis 211001 in a 
hexagonal framework. The eigenvectors corresponding to the doubly 
degenerate eigenvalues -1 are normal to [loo] . Furthermore, the identity 
operator has three eigenvalues 1, 1, 1: the eigenvectors are any three 
unitary vectors orthogonal to each other. 

2.C Some transformation matrices 
Transformation matrices conventionally used to generate primitive from 
centred cells are shown in Table 2.C.1. 

2.D Reciprocity of F and I lattices 
Let AF = (aF, bF, cF), the basis vectors of a face-centred lattice, and 
AP=(aP, bp, cp), the basis vectors of a primitive unit cell for the same 
lattice. Then Ap = MAF, where M is one of matrices shown in Table 2.C.1: 
more explicitly 
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Table 2.C.1. Transformation matrices M conventionally used to generate centered from 
primitive lattices and vice versa, according to the relationships A' = M A  

According to Table 2.E. 1 A: = (M)-IA:, from which 

or, in matrix notation, A: = QA:, where Q coincides (see Table 2.C.1) with 
the matrix which transforms an I cell into a P cell. It may be concluded that 
the reciprocal of an F lattice is an I lattice whose cell is defined by the vector 
2a:, 2b:, 2c:. 

If we index the reciprocal lattice with respect to A,* and A: we obtain 

where all of h, = 2h1, k ,  = 2k1, I ,  = 21, will either assume even values (when 
h,, k,, 1, are integer numbers) or odd values (when hI, k,, 1, are of type m/2, 
n/2, p /2  with integer values of m, n, p). These are just the conditions for 
systematic extinctions in an F lattice. 

2.E Transformations of crystallographic quantities in 
rectilinear spaces 

In this paragraph we describe the transformation properties of crystal- 
lographic quantities not studied on pp. 65-7. 

Let us first prove that the basis vector transformation (2.18) (from A to 
A') transforms the space group symmetry operator C, = (R,, T,) into 
C; = (Rk, T;), where 

R; = (M)-~R,M, T; = (MI-IT,. (2.E.1) 

The relation X, = RpX + T, is transformed, according to (2.20), into 
MX; = R,MX' + T, from which X; = (M)-~R,MX' + (M)-'T, which coin- 
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cides with (2.E.1). Note that the trace of R is invariant under transforma- 
tions such as (2.E.l). 

A particular case of (2.E.1) occurs when A' =A*. Then 

R,*=GR,G*, T,*=GT,. (2.E.2) 

If the second of the equations (2.9) is introduced into the first equation 
(2.E.2) the following result is obtained 

R,* = (R,)-~GR;~R,G-~ = (R,)-l. (2.E.3) 

In conclusion, if the operator R is a symmetry element in the direct space, 
(R)-' is a symmetry element in the reciprocal space. The list of the 
symmetry operators in the reciprocal space may be obtained without 
inverting the various matrices. Indeed, if R is a symmetry element in the 
direct space, group properties guarantee that R-' is also an element of the 
direct space symmetry group: therefore R is a symmetry operator of the 
reciprocal space symmetry group. Consequently, if the set of matrices R 
operate in direct space, the set R operate in reciprocal space (however, R, 
and R, may pertain to different symmetry elements). 

In an orthonormal system a* = a, b* = b, c* = c and G = I. Therefore any 
symmetry operator C = (R, T) will have identical expression both in direct 
and in the reciprocal space. Furthermore R = R-' holds, as already obtained 
in Appendix 1 .A. 

It is often useful to know the transformation rules valid in reciprocal 
space when the basis vector transformation A' = MA is performed in direct 
space. We describe some of them: 

1. A* e A 1 * :  according to (2.25), A' = GIA'* = MGA*. Owing to (2.21), 
that gives 

2. X*@X1*: by analogy to point (1) it may be obtained 

Note that relations (2.E.5) are the transformation rules of the Miller 
indices (hkl).  

3. G * e G 1 * :  let us introduce the first eqn (2.16) in the first eqn (2.21), 
which thus becomes GI*-' = MG*-IM. On post-multiplying both sides of 
this equation by GI* we obtain I = MG*-~MG'* from which 

4. C * e C 1 * :  introduce the first eqn (2.E.2) in the first eqn (2.E.1). We 
obtain G'-'RYG' = (M)-'G-~R,*GM, which, introduced into (2.E.6) 
gives 

RA* = MR,*M-' and TA* = MT,* (2.E.7) 

Note that (2.E.7) represents the transformation rules for the reciprocal 
space symmetry operators generated by a basis vector change in direct 
space. 

5. Q * e Q 1 * .  According to (2.E.5) it will be 

x*Q*x* = x l * ( ~ ) - l Q * ~ - l x ' *  
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Table 2.E.1. Transformation relationships. In the table M is the 
matrix transforming A-  (a, b, c) into A' = ( a ' ,  b ' ,  c'). G and G' 
are the metric matrices of A and A' respectively, G* and GI* are 
the metric matrices of A* = (a* ,  b*, c*) and A'* - ( a r * ,  b ' * ,  c ' * )  
respectively. C - (R, T) is a symmetry operator (R is its rotational 
part, T its translational part): C, C' ,  C*, C'* are symmetry 
operators defined in A, A',  A*, A'* respectively. Q and Q* are 
the quadratic forms of A and A*. 

from which 
Q r *  = (M)-'Q*M-', Q* = MQ'*M. (2.E.8) 

The transformation rules obtained in this paragraph and on pp. 65-7 are 
collected in Table 2.E.1. 

A particular basis transformation is that corresponding to a symmetry 
operation. In accordance with eqns (2.19) and (2.20) a transformation R 
acting on the coordinates is equivalent to the transformation M = (R)-' 
acting on the basis vectors. In this case the metric matrix will not vary: 
indeed, according to (2.21), G' = (R)'GR-~ which is identical (because of 
(2.9)) to G. Find now the relationships existing between the matrices 8' and 
p defining the anisotropic temperature factors of the atoms related by a 
symmetry operator. In accordance with (2.E.8) 

As an example, the reader will easily verify that the relationships existing in 
the cubic system along the components of p of two atoms related by the 
symmetry axis 311111 (see the matrix given in Appendix l .D) are 

P i 1  = P331 P i 2  = P137 P i 3  = P 2 3 )  

2.F Derivation of the normal equations 
Because of (2.50) the parameter S in (2.52) may be written as 

S = V M ~ ' V = F M ~ ' F - X A M ~ ' F - ~ M ~ ' A X + ~ M ~ ' A X .  (2.F.1) 

By _applying to (2.F.1) the differential operator 6 we obtain (note that 
SX = 6X) 
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Since X and 6X are vectors, the first two terms on the right-hand side of 
(2.F.2) are 1 x 1 matrices which are equal (My1 = ~ 7 ' ) .  For the same 
reason the third and the fourth terms are equal too. Therefore 

6s = ~(%)(AM;'AX - AM;~F) = 0 
from which 

(AM,-'A)X = A M ~ ~ F ,  

which coincides with (2.53). 

2.G Derivation of the variance-covariance matrix M x  
Because of (2.55), eqn (2.56) may be written as 

M, = ( ( B - ~ A M ~ ~ F  - A-~F)(B-~AM;~F - A-~F);). (2.G.1) 

According to (2.54) A-' = B-~AM;~ so that (2.G.1) becomes 

M, = B-~AM;~((F - F)(F - F))M;'AB-'= B-~AM;~M~M;~AB-~ = B-'. 

2.H Derivation of the unbiased estimate of M, 
Let us calculate (2.F.1) for X = 2 :  then 

3 = FM;~F - ~ A M F ~ F  - (FM;~A - ~ A M Y ~ A ) ~ .  (2.H.1) 

Because of (2.54) and (2.55) the eqn (2.H.1) reduces to 
Y S = FM,-'F- ~ B X =  (F- F)M,-I(F- F )  - (X - X)B(X-X) 

where X = A-IF. The expected value of 3 will then be 

(9) = ((F - F)Myl(F - F ) )  - ((X - X)B(X - x)). 

(F - F )  and ( 2  - X) are random variables with zero means and finite 
variances, and with variance-covariance matrices of rank n and m 
respectively. In this condition it is possible to show[451 that 

7 

((F - F)M,-'(F - F ) )  = n, ((X - x)M;~(% - X)) = m. 

Therefore 

I f  Mf is known within a scale factor (Mf = K,Nf) then 

which coincides with (2.58). 

2.1 The FFT algorithm and its crystallographic 
applications 

Suppose that we want to calculate the one-dimensional transform 

p(x) = F(h ') exp (2nihrx) (2.1.1) 
h ' 

where -N/2 s h '  < N/2. Subdivide the x axis in N parts so that 
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Denoting h '  = h - N/2 gives 

exp (2nih1x) = exp (2nihjlN) exp (-nij) = (-1y exp (2nihjlN) 

where 0 G h < N. Then (2.A.21) becomes 
N- 1 

p(j)  = (- 1y' 2 F(h) exp (2nihjlN) 
h = O  

where wN = exp (2nilN). 
Because of the transformation h '+  h the negative indices are removed: 

furthermore, the number of Fourier coefficients is chosen equal to the 
number of points in which p has to be calculated (the Fh array may 
eventually be completed with a number of zeros). 

If N is not a prime number, say N = r - s (of particular interest and 
simplicity is the case N = 2")) then the expression hls + ho will generate all 
the integers h in the range [0, (N - I)]: 

Similarly, the expression jlr + jo will generate all the integers j in the range 
[O, (N - 111 

j = j l r + j O  ( = O  1 .  - 1 ;  jo=O, 1 , .  . . , r - 1 ) .  
Then 

W# = W , h o i ~ W f ~ i ~ W h ~ i ~  
N 

and 
s-1 r-1 

p(j) = p(jo, jl) = (-1y 2 2 F(hl, ho)w,hoJ1wfljO W N  h"io 
ho=O h1=0 

where F(hl, ho) represents the Fh factor obtained by combination of hl and 
ho in eqn (2.1.2). 

As in the Beevers-Lipson procedure the expression (2.1.3) may be 
calculated in two 

Step 1: calculate 

for jo = 0, 1, . . . , r - 1 and ho = 0, 1, . . . , s - 1. T(jo, h,) values can 
replace F(hl, ho) values in the memory of a computer since these last are 
no longer necessary, 

Step 2: calculate 

forjo=O, 1 , .  . . , r - 1  and jl=O, 1 , .  . . , s - 1 .  

While the evaluation of (2.1.3) by the classical method requires N2 
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operations, the FFT method involves r(s + r) operations in the first step and 
s(s + r) operation in the second step. If N is sufficiently large that 
corresponds to a large saving of time. 

Besides calculating electron density maps, the FFT method is also used 
for the calculation of the structure factors when the number of atoms is very 
large and computing time has to be saved. Calculations are organized into 
two steps: 

1. Step 1: All the atoms (in the asymmetric unit) which contribute to the 
electron density are selected. For each of them the electron density is 
nothing else but the Fourier transform of the atom scattering curve 
corrected for thermal motion. Usually each atom is represented by a 
single Gaussian function (for low resolution data) or as the sum of two or 
three Gaussian components. The overall model electron density map is 
sampled on a grid not too fine (that would greatly increase cost and 
computer storage) and not too coarse (in order to avoid too rough an 
approximation of the electron density). 

2. Step 2: The fourier inversion of the map is made, which provides 
structure factor magnitudes and phases. 

The speed of steps 1 and 2 depends on the number of grid points in which 
the density has been sampled and on the number of terms in the Gaussian 
approximation to the atomic scattering curve. Too coarse a sampling grid 
would produce structure factors which are the sum of the desired ones and 
those with indices spaced away by multiples of N. Ten ~ i c k [ ' ~ ~ ]  proved that 
the number of grids may be taken small by artificially increasing the B value 
of the atoms. 

Besides structure factor calculations most of the steps involved in LSQ 
structure refinement can be performed by the FFT algorithm:[125~1261 i.e. the 
calculation of the gradient vector D and of the normal matrix B (see p. 92). 
Indeed, in accordance with p. 145, the following properties of the Fourier 
transform hold: 

Real space Reciprocal space 

6 d r )  
6 FT -* ( -2nik)F(H)  

6  Y 
etc. 

These more recent developments have made possible the use of a 
full-matrix least-squares for macromolecule structure at a reasonable cost. 

2.J Examples of twin laws 
Some examples of twin laws are described here, with special references to 
minerals. From the figures the reader will conclude that morphology 
exhibited by twins often shows re-entrant angles, which are not displayed by 
single crystals. 
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A Cubic system 
Twinning according to the spinel law is commonly found in crystals of the 
class 43m, which often exhibit forms (111). Twinning occurs with (111) as 
a twin plane (see Fig. 2.J.l(a)). The same law applies to the penetration 
twin shown in Fig. 2.J.l(b), where the two cubes are rotated about [ I l l ]  
(classical mineral: fluorite). An interpenetrant rotation twin about [ l l i ]  is 

(a) (b) 
shown in Fig. 2.J.l(c). 

Crystals of pyrite, point group m3, frequently obey the iron cross law: 
they twin with (110) as a twin plane. 

In Fig. 2.J.l(d) the classical pentagonal dodecahedron is shown, with 
form e = (210): twinned crystals display the form shown in Fig. 2.J.l(e). 

Tetragonal system 
Cassiterite (SnO,, point group 4/mmm), presents the so called elbow twin, 
twin plane {101), shown in Fig. 2.J.2. The elbow twin is also found in rutile . . 

\ I i i i l  ( ~ i 0 2 )  and zircon (ZrSiO,), which are often polysynthetic. 

(c) / Calcopyrite crystals (CuFeS,, point group 42m) are commonly tetra- 
hedral, with (112) as the dominant form. Twinning occurs on (1121, 

Fig. 2.J.1. Spinel law. (a) Twin plane (1 11); (b) 
penetration twin; (c) interpenetrant rotation 
twin; (d) classical pentagonal dodecahedron of 
pyrite; (e) iron cross law. 

Fig. 2.J.2. Elbow twin. 

contact, lamellar, or penetration. 

Hexagonal and trigonal systems 
Twinning is rare in minerals of the hexagonal system and frequent in 
minerals of the trigonal system. 

The twin plane (and the composition plane) in calcite (CaCO,, point 
group 3m) is often (0001) (see Fig. 2.J.3(a)), more frequently (1102) (see 
Fig. 2.J.3(b)). This last twin is readily provoked by mechanical deformation 
(for example, the pressure of a razor blade on a rhombohedron of calcite). 
The twinning is due to the ability of structural layers parallel to (1102) to 
slide past each other. 

Quartz (SiO,, point group 32) twins in several ways. The most important 
are listed below. 

1. Brazil twins, with (1120) as the twin plane. This combines right- and 
left-handed crystals in a penetration twin (often with plane composition 
surface). A left-handed single crystal is shown in Fig. 2.J.4(a), a 
right-handed crystal is shown in Fig. 2.J.4(b), and the Brazil twin is 
displayed in Fig. 2.J.4(c). Such types of twin are useless for electrical 
work, and may be detected in polarized light (the plane of polarization is 
rotated in opposite directions by the two parts of the twin). 

2. Dauphine twins, with c as twin axis. Two right- or two left-handed 
individuals are combined, separated by a very irregular surface. Then the 
faces (10i1) of one individual and the faces (0111) of the other will 
coincide (see Fig. 2. J.4(d)). 

3. Japan twins, contact twins with (1122) as twin and composition plane 
(see Fig. 2.J.4(e)). The c axes intersect at 84'33', one pair of faces 
(1010) is common to both pairs of twins. 

Orthorhombic system 
Aragonite (CaCO,, point group mmm, polymorphous with calcite) often 
twins on (110) faces. In Fig. 2.J.5(a) a single crystal of aragonite in shown, 
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in Fig. 2.J.5(b) a twinned crystal is displayed, in Fig. 2.J.5(c) the structural 
scheme of the twin is given. 

Twinning is often repeated and produces interpenetrant triplets of 
pseudo-hexagonal shape (Fig. 2. J.5(d)). 

Staurolite (A14FeSi2010(OH),, point group mmm) forms cruciform 
penetration twins: if the twin plane is (032) then the two individuals form a 
nearly right-angled cross (Fig. 2.J.6(a)); an oblique cross (angle =60°) is 
formed by twinning on (232) (see Fig. 2.J.6(b)). 

Monoclinic system 
Orthoclase crystals (KAlSi,08, point group 2/m) often twin according to the 
Carlsbad, Baveno, or Manebach law. 

In the Carlsbad law c is the twin axis and (010) the composition plane 
(see Fig. 2.J.7(a)). The twin and composition plane is (021) in Baveno 
twins (see Fig. 2.J.7(b)), and (001) in Manebach twins (see Fig. 2.J.7(c)). 
While Carlsbad twins are penetrating twins, Baveno and Manebach are 
usually contact twins. 

Triclinic system 
In twins of plagioclase feldspars [(Ca, Na)(Al, Si)A1Si208, point group i] (b) 
the albite law is often satisfied: twin plane (010) , type of twinning usually Fig. 2.5.3. Some examples of calcite twins. (a) 
multiple and polysynthetic (see Fig. 2.J.8(a,b,c)). Also common is the Plane {OOO1); (b) twin plane {lio2). 

Fig. 2.J.4. Quartz twins. (a) Left-handed quartz; 
(b) right-handed quartz; (c) Brazil twin: the 
twinning plane is indicated by a broken line; (d) 
Dauphin6 twin: interpenetration of two left-hand 
crystals. 
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Fig. 2.J.5. Aragonite twinning. (a) Single crystal; 
(b) twinned crystal; (c) structural scheme of the 
twin; (d) triplet. 

Fig. 2.J.6. Staurolite twinning. (a) Twin after 
{032}; (b) twin after {232). 

1- - 1  

(c) (4 
(c) Fig. 2.J.8. Plagioclase feldspars. (a) Single 

Fig. 2.J.7. Orthoclase twins. (a) Carlsbad twin; crystal; (b) twin by Albite law; (c) polysynthetic 
(b) Baveno twin; (c) Manebach twin. albite twin; (d) twin by pericline law. 
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pericline law, with twin axis [OlO]. The composition plane is the so-called 
'rhombic section', a plane parallel to b whose orientation does not 
correspond to rational indices; see Fig. 2.J.8(d). 
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The diffraction of X-rays 
by crystals 
CARMELO GIACOVAZZO 

Introduction 
Crystal structure analysis is usually based on diffraction phenomena caused 
by the interaction of matter with X-rays, electrons, or neutrons. Although 
the theory of diffraction is the same for all types of radiation, we shall 
consider X-ray scattering with particular interest: some references to 
electron and neutron scattering are made in Appendix 3.B pp. 195 and 198. 

The most important properties of X-rays were described by Rontgen in 
1896. However, with equipment in common use in optics at that time he 
could not measure any effect of interference, reflection, or refraction. 
Several years later Sommerfeld measured an X-ray wavelength of about 
0.4 A. In 1912 M. von Laue, starting from an article by Ewald, a student of 
Sommerfeld, suggested the use of crystals as natural lattices for diffraction. 
This experiment was successfully performed by Friedrich and Knipping, 
both students of Rontgen. In 1913 W. L. Bragg and M. von Laue used 
X-ray diffraction patterns for deducing the structure of NaC1, KC1, KBr, 
and KI. In such a way, in only few years, the electromagnetic nature of 
X-rays and their usefulness in the determination of crystal structure was 
indisputably demonstrated. 

Let us recall some properties of electromagnetic radiation: 

1. Electromagnetic radiation propagates in a vacuum with the velocity c 
equal to 300 000 km s-'. 

2. The vectors electric field E and magnetic field H are both orthogonal to 
the direction of wave propagation. In addition, they are mutually 
orthogonal and vary sinusoidally with time. 

3. The range of X-ray wavelengths is placed between the ultraviolet region 
and the region of y-rays emitted by radioactive substances. The interval 
of wavelengths of particular usefulness in crystallography ranges between 
0.4 and 2.5 A. 

4. The refractive index of X-rays is very near to unity: for A = 2 A and for 
high-density substances the difference from unity is of the order lop4, 
being lo-' for most cases. For this reason the X-rays cannot be focused 
by means of suitable lenses like ordinary light or electrons. Thus, if 
X-rays are used, we cannot talk about a direct observation of objects by 
means of instruments equivalent to optical or electron microscopes. 
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The interaction of X-rays with matter essentially occurs by means of two 
processes: 

1. Some photons of the incident beam are deflected without a loss of 
energy. They constitute the scattered radiation with exactly the same 
wavelength as the incident radiation. Other photons are scattered with a 
small loss of energy; they constitute the Compton radiation (see pp. 
185-6) with wavelength slightly greater than the wavelength of the incident 
radiation. 

2. The photons can be absorbed by the atoms of a target and will increase 
its temperature. Discontinuities in curves of absorption are caused by the 
photoelectric effect. In this case the photon energy is used to remove one of 
inner-shell electrons of the absorber element. This atom can come back to 
its minimal energy state by emission of a photon X whose wavelength is 
characteristic of the atom (fluorescent radiation). Absorption phenomena 
will be discussed in Chapter 4. 

The present chapter is mainly devoted to the so-called kinematic theory 
of diffraction (only few brief remarks on some aspects of dynamic theory of 
diffraction are given on pp. 162-5 and Appendix 3.B). Major emphasis is 
given to diffraction by perfect crystals, but basic elements of diffraction by 
gases, liquids, and amorphous solids are described in Appendix 3.C. 

Diffraction theory is described by making use of Fourier transforms. 
Readers not acquainted with such a mathematical concept are urged to 
consult Appendix 3. A. 

,Q 

Thomson scattering 

Fig. 3.1. (a) A free charged particle is in  0: a 
plane monochromatic electromagnetic wave 
propagates along the x axis. (b) Surface element 
at scattering angle 28. 

Let suppose that (see Fig. 3.l(a)) a free material particle with electric 
charge e and mass m is at the origin 0 of our coordinates system and that a 
plane monochromatic electromagnetic wave with frequency v and electric 
vector Ei propagates along the x axis in positive direction. Its electric field is 
described by equation 

Ei = Eoi exp 2niv(t - X/C) 

where EOi is the amplitude of the wave and Ei is the value of the field at 
position x at time t. The field exerts on the particle a periodic force F = eEi 
and therefore the particle will undergo oscillatory motion with acceleration 
a = F l m  = eEi/m and frequency v. In accordance with classical theory of 
electromagnetism a charged particle in accelerated motion is a source of 
electromagnetic radiation: its field at r is proportional to acceleration and 
lies in the plane (Ei, r). Let us orient the axes y and z of our coordinates 
system in such a way that the observation point Q defined by vector r is in 
the plane ( x ,  y). At the point Q we will measure the electric field Ed due to 
scattered radiation 

Ed = EOd exp [2niv(t - rlc) - ia]. 

Thomson showed that (see also pp. 165-6) 

1 
Eod = - Eoi(e2/mc2) sin 9 

r 
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where q, is the angle between the direction of acceleration of electron and 
the direction of our observation. The term sin q, is a polarization term: we 
'see' only the component of vibration parallel to the observer and normal to 
the direction of propagation. a is the phase lag with which the charge 
re-emits the incident radiation. The decrease of Ed with r is caused by the 
scattering of radiation in all directions. 

In terms of intensity eqn (3.1) becomes 

e4 
ZeTh = Zi 7 sin2 q, 

m r c  

where I,,, is the intensity of scattered radiation and Zi is the intensity of 
incident radiation. This simple result excludes neutrons from the category of 
X-ray scatterers because they do not have electric charge, and makes 
negligible the contribution to scattering by protons whose factor (elm)2 is 
about 18372 times less than that of electrons. Therefore, from now on and 
according to tradition, the symbol e will represent the electron charge. 

If the primary beam is completely polarized: (a) with Ei along the z axis, 
2 2 4  then I,,, = 4e4/(m r c ); (b) with Ei along the y axis, then I,,, = 

~~e~ cos2 28/(m2r2c4), where 28 is the angle between the primary beam and 
the direction of observation. In general, the computation can be executed 
by decomposing the primary beam into two beams whose electric vectors 
are perpendicular and parallel respectively to the plane containing the 
primary beam and the scattered radiation being observed. If K1 and K2 are 
parts of these two beams in percentage we obtain 

e4 
ZeTh = 4 (K1 + K2 C O S ~  28). 

m r c  

If the primary beam is not polarized, then K1 = K2 = 112 and 

where P = (1 + cos2 28)/2 is called the polarization factor (see also p. 303). 
It suggests that the radiation scattered in the direction of the incident beam 
is maximum while it is minimum in the direction perpendicular to the 
primary beam. 

Equation (3.3) gives the intensity scattered into a unit solid angle at angle 
28. If we want to obtain the total scattered power P we have to integrate 
(3.3) from 0 to n (see Fig. 3.l(b)). 

2nr2 sin 28 d(28) 

where (2nr sin28) r(d(28)) is the surface element at angle 28. The total 
scattering 'cross-section' PI4 is equal to 6.7 x cm2/electron, which is a 
very small quantity. It may be calculated that the total fraction of incident 
radiation scattered by one 'crystal' composed only of free electrons and 
having dimensions less that 1 mm is less than 2 per cent. 

The scattered radiation will be partially polarized even if the incident 
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radiation is not. Thus, if the beam is scattered first by a crystal (monochro- 
mator) and then by the sample the polarization of the beam will be 
different. The scattering is coherent, according to Thomson, because there 
is a well defined phase relation between the incident radiation and the 
scattered one: for electrons a = n. 

Unfortunately it is very difficult to verify by experiment the Thomson 
formula since it is almost impossible to have a scatterer composed 
exclusively of free electrons. One could suppose that scatterers composed of 
light elements with electrons weakly bound to the nucleus is a good 
approximation to the ideal Thomson scatterer. But experiments with light 
elements have revealed a completely different effect, the Compton effect. 

Compton scattering 

The process can be described in terms of elastic collision between a photon 
and a free electron. The incident photon is deflected by a collision from its 
original direction and transfers a part of its energy to the electron. 
Consequently there is a difference in wavelength between the incident 
radiation and the scattered one which can be calculated by means of the 
relation (see also Appendix 3.B, p. 185) 

Ah (A) = 0.024 (1 - cos 28). (3.4) 

The following properties emerge from eqn (3.4): Ah does not depend on 
the wavelength of incident radiation; the maximum value of AA (Ah = 
0.048) is reached for 28 = n (backscattering) which is small but significant 
for wavelengths of about 1 A. Besides, Ah = 0 for 28 = 0. 

Compton scattering is incoherent; it causes a variation in wavelength but 
does not involve a phase relation between the incident and the scattered 
radiation. It is impossible to calculate interference effects for Compton 
radiation. 

Interference o f  scattered waves 

Here we shall not be interested in wave propagation processes, but only in 
diffraction patterns produced by the interaction between waves and matter. 
These patterns are constant in time since they are produced by the system of 
atoms, which can be considered stationary. This fact permits us to omit the 
time from the wave equations. 

In Fig. 3.2 two scattering centres are at 0 and at 0'. If a plane wave 
excites them they become sources of secondary spherical waves which 
mutually interfere. Let so be the unit vector associated with the direction of 
propagation of the primary X-ray beam. The phase difference between the 
wave scattered by 0' in the direction defined by the unit vector s and that 
scattered by 0 in the same direction is 

Fig. 3.2. Point scatterers are in 0 and O', so and 
s are unit vectors. Therefore A 0  = - r 9  so, BO = where 
r s. 
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If A is much greater than r there will be no phase difference between the 
scattered waves and consequently no appreciable interference phenomena 
will occur. Since interatomic bond distances lie between 1 and 4 A  no 
interference effect could be observed by using visible-light waves. 

The modulus of r* can be easily derived from Fig. 3.2: 

r* = 2 sin e l i l  (3.6) 

where 28 is the angle between the direction of incident X-rays and the 
direction of observation. If we outline two planes normal to r* passing 
through 0 and 0' (OQ in Fig. 3.2 is the trace of the plane passing through 
0 )  we can consider interference as a consequence of specular reflection with 
respect to these planes. 

If A, is the amplitude of the wave scattered by the material point 0 (its 
phase is assumed to be zero) the wave scattered by 0' is described by 
A,, exp (2nir* r). If there are N point scatterers along the path of the 
incident plane wave we have 

N 

F(r*) = x Aj exp (2nir* . I;.) (3.7a) 
j=1 

where Aj is the amplitude of the wave scattered by the jth scatterer. 
The Thomson formula plays an essential role in all calculations to obtain 

the absolute values of scattering. In our case it is more convenient to 
express the intensity I scattered by a given object (for example, an atom) in 
terms of intensity I,,, scattered by a free electron. The ratio I/IeTh is f2, 
where f is the scattering factor of the object. Vice versa, for obtaining the 
observed experimental intensity it is sufficient to multiply f by I,,. To give 
an example, let us imagine a certain number of electrons concentrated at 0' 
which undergo Thomson scattering. In this case for expresses the number of 
electrons. 

According to the convention stated above eqn (3.7a) becomes 
N 

F(r*) = x h  exp (2nir* ' I ; . ) .  (3.7b) 
j=1 

If the scattering centres constitute a continuum, the element of volume dr 
will contain a number of electrons equal to p(r) dr  where p(r) is their 
density. The wave scattered on the element dr is given, in amplitude and 
phase, by p(r) dr exp (2nir* . r) and the total amplitude of the scattered 
wave will be 

F(r*) = 1 p(r) exp (2nir* r)  dr = T[p(r)] 
v 

(3.8) 

where T represents the Fourier transform operator. 
In crystallography the space of the r* vectors is called reciprocal space. 

Equation (3.8) constitutes an important result: the amplitude of the 
scattered wave can be considered as the Fourier transform (see Appendix 
3.A, p. 175) of the density of the elementary scatterers. If these are 
electrons, the amplitude of the scattered wave is the Fourier transform of 
the electron density. From the theory of Fourier transforms we also know 
that 

p(r) = lv% F(r*) exp (-2nir* . r) dr* = T-'[~(r*)]. (3.9) 
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Therefore, knowledge of the amplitudes of the scattered waves (in 
modulus and phase) unequivocally defines p(r). 

Scattering by atomic electrons 

The processes of Thomson and Compton scattering are an example of 
wave-particle duality and they seem to be mutually incompatible. 

In fact both processes are simultaneously present and they are precisely 
described by modern quantum mechanics. In common practice the scat- 
terers are atomic electrons: they can occupy different energetic states 
corresponding to a discontinuous set of negative energies and to a 
continuous band of positive energies. If, after interaction with the radiation, 
the electron conserves its original state the photon conserves entirely its 
proper energy (conditions for coherent scattering). If the electron changes 
its state, a portion of the energy of the incident photon is converted into 
potential energy of an excited atom (conditions for incoherent scattering). 
Quantum-mechanical calculations indicate that the processes of coherent 
and incoherent scattering are simultaneously present and that I,,, + Zincoe = 

The coherent intensity I,,, can be calculated on the basis of the following 
observations. An atomic electron can be represented by its distribution 
function pe(r) = 1v(r)l2, where v(r )  is the wave function which satisfies the 
Schrodinger equation. The volume dv contains p, dv electrons and scatters 
an elementary wave which will interfere with the others emitted from all the 
elements of volume constituting the electron cloud. In accordance with 
p. 145 the electron scattering factor will be 

fe(r*) = pe(r) exp (2nir* r) dr (3.10) 
S 

where S is the region of space in which the probability of finding the 
electron is different from zero. If we assume that p,(r) has spherical 
symmetry (what is in fact justifiable for s electrons, less so for p, d, etc. 
electrons) then eqn (3.10) can be written (see eqn (3.A.33)) as: 

where Ue(r) = 4nr2pe(r) is the radial distribution of the electron and 
r* = 2 sin 8/A. For instance, there are two 1s electrons, two 2s electrons, 
and two 2p electrons in carbon atom. In radial approximation the 2s and 2p 
electrons have an equivalent distribution. For carbon the Slater formulae 
give 

with cl = 10.77 A-l, c2 = 6.15 A-'. Then, eqn (3.11) gives 

respectively. 
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Equation (3.12) are illustrated in Fig. 3.3(a) and eqns (3.13) in Fig. 
3.3(b). In accordance with eqn (3.10) the electron scattering factor is equal 
to 1 when r*  = 0. Moreover, the scattering of 1s electrons, whose 
distribution is very sharp, is more efficient at higher values of r*. If the 
distribution of 1s electrons could really be considered point-like their 
scattering factor would be constant with varying r* (see Appendix 3.A, p. 
177 for the transform of a Dirac delta function). 

Compton 

Compton 
scattered 

According to the premise of this section the intensity of the 
radiation of an atomic electron will be 

lincoe = ZeTh(l -f z )  
where ZeTh is given by eqn (3.2) or eqn (3.3). The intensity of the 
radiation has the same order of magnitude as the radiation 
coherently. 

Scattering by atoms 

Let q,(r), . . . , qz(r) be the wave functions of Z atomic electrons: then 
pejdv = I%(r)12dv is the probability of finding the jth electron in the 
volume dv. If every function qj(r) can be considered independent of the i 1 2 

others, then pa(r) dv = (Cf=, pej) dv is the probability of finding an electron (b) r* t A-'I 
in the volume dv. The Fourier transform of d r )  is called the atomic Fig. 3.3. (a) Radial distribution for I s  and 2s , -, , 
scattering factor and will be denoted by fa. electrons of a C atom as defined by Slater 

functions. (b) ScatteRing factors for 1s and 2s 
Generally the function pa(r) does not have spherical symmetry. In most electrons. 

crystallographic applications the deviations from it, for instance because of 
covalent bonds, are neglected in first approximation. If we assume that pa is 
spherically symmetric and, without loss of generality, that the centre of the 
atom is at the origin, we will have 

" sin (2nrr*) 
fa(r*) = 6 ua 2,* d r = C . t q  

j=1 

where Ua(r) = 4m2pa(r) is the radial distribution function for the atom. The 
pa function is known with considerable accuracy for practically all neutral 
atoms and ions: for lighter atoms via Hartree-Fock methods, and for 
heavier atoms via the Thomas-Fermi approximation. In Fig. 3.4(a) the fa 

functions for some atoms are shown. Each curve reaches its maximum 
value, equal to Z, at sin O / A  = 0 and decreases with increasing sin O I A .  
According to the previous paragraph most of radiation scattered at high 
values of sin O / A  is due to electrons of inner shells of the electron cloud 
(core). Conversely scattering of valence electrons is efficient only at low 
sin O / A  values. f, can thus be considered the sum of core and valence 
electron scattering: 

f a  = fcore + fvalence. 

In Fig. 3.4(b) fCore and fva,e,c, of a nitrogen atom are shown as function of 
sin O / A .  

As a consequence of eqn (3.14) the intensity of the radiation coherently 
scattered from an atom can be obtained by summing the amplitudes relative 
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- h s  to the electrons taken individually: 

\,=I / 

The Compton radiation scattered from an electron is incoherent with 
respect to that scattered from another electron: its intensity is obtained by 
summing the individual intensities relative to every single electron: 

,-- 

sin O/n Since fe = 1 for sin B I A  = 0 there is no Compton radiation in,the direction of 
(4 the primary beam. Nevertheless it is appreciable at high values of sin B I A .  

When we consider the diffraction phenomenon from one crystal the 
intensity coherently diffracted will be proportional to the square of the 
vectorial sum of the amplitudes scattered from the single atoms while the 
intensity of the Compton radiation will be once more the sum of the single 
intensities. As a consequence of the very high number of atoms which 
contribute to diffraction, Compton scattering can generally be ignored: its 
presence is detectable as background radiation, easily recognizable in 
crystals composed of light atoms. 

0 0 5  
(b) The temperature factor 

Fig. 3.4. (a) Scattering factors for S, ~ a + ,  0. (b) 
core and valence scattering for nitrogen atom. 

In a crystal structure an atom is bound to others by bond forces of various 
types. Their arrangement corresponds to an energy minimum. If the atoms 
are disturbed they will tend to return to the positions of minimal energy: 
they will oscillate around such positions gaining thermal energy. 

The oscillations will modify the electron density function of each atom 
and consequently their capacity to scatter. Here we will suppose that the 
thermal motion of an atom is independent of that of the others. This is not 
completely true since the chemical bonds introduce strong correlations 
between the thermal motions of various atoms (see pp. 117-20 and 
Appendix 3.B, p. 186). 

The time-scale of a scattering experiment is much longer than periods of 
thermal vibration of atoms. Therefore the description of thermal motion of 
an atom requires only the knowledge of the time-averged distribution of its 
position with respect to that of equilibrium. If we suppose that the position 
of equilibrium is at the origin, that p(r r )  is the probability of finding the 
centre of one atom at r' ,  and that pa(r - r') is the electron density at r when 
the centre of the atom is at r ' ,  then we can write 

where pat(r) is the electron density corresponding to the thermically 
agitated atom. Notice that the rigid body vibration assumption has been 
made; i.e., the electron density is assumed to accompany the nucleus during 
thermal vibration. 

In accordance with Appendix 3.A, p. 181), pat is the convolution of two 
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functions and its Fourier transform (see eqn (3.A.38)) is 

where 

q(r*) = 1 p(rr )  exp (2nir* . r ') dr' (3.17) 
S'  

the Fourier transform of p(rl) ,  is known as the Debye-Waller factor. 
The function p(r r )  depends on few parameters; it is inversely dependent 

on atomic mass and on chemical bond forces, and directly dependent on 
temperature. p( r l )  is in general anisotropic. If assumed isotropic, the 
thermal motion of the atom will have spherical symmetry and could be 
described by a Gaussian function in any system of reference: 

p(r r )  = p(r l )  - ( ~ J T ) - ~ " u - ~ ' ~  exp [-(rt2/2U)] (3.18) 

where r r  is measured in A and U = (rI2) is the square mean shift of the 
atom with respect to the position of equilibrium. The corresponding Fourier 
transform is (see eqn (3.A.25)) 

q(r*) = exp ( - 2 ~ ~ U r * ~ )  = exp (-8n2u sin2 8/A2) 

= exp (-B sin2 8/A2) (3.19) 

where 

B = 8n2U (A2). 

The factor B is usually known in the literature as the atomic temperature 
factor. 

The dependence of B on the absolute temperature T has been studied by 
Debye who obtained a formula valid for materials composed of only one 
chemical element. From X-ray diffraction structure analysis it is possible to 
conclude schematically that the order of value of fi is in many inorganic 
crystals between 0.05 and 0.20 A (B lying between 0.20 and 3.16 A2) but 
can also reach 0.5 81 (B - 20 A2) for some organic crystals. The conse- 
quence of this is to make the electron density of the atom more diffuse and 
therefore to reduce the capacity for scattering with increasing values of 
sin 8/A. 

In general an atom will not be free to vibrate equally in all directions. If 
we assume that the probability p(r r )  has a three-dimensional Gaussian 
distribution the surfaces of equal probability will be ellipsoids called 
vibrational or thermal, centred on the mean position occupied by the atom. 

Now eqn (3.19) will be substituted (see Appendix 3.B, pp. 186 and 188) 
by the anisotropic temperature factor (3.20) which represents a vibrational 
ellipsoid in reciprocal space defined by six parameters UTl, U12, Uz3, UF2, 
uT3, ul3: 

q(r*) = exp [-2n2(UT1x*' + Ug2y*2 + U3*3~*2 + 2UT2x*y* 

+ 2UT3x*z* + 2Uz3y*z*)]. (3.20) 

The six parameters UG (five more than the unique parameter U necessary 
to characterize the isotropic thermal motion) define the orientation of the 
thermal ellipsoid with respect to the crystallographic axes and the lengths of 
the three ellipsoid axes. In order to describe graphically a crystal molecule 
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and its thermal motion each atom is usually represented by an ellipsoid, 
centred on the mean position of the atom, and surrounding the space within 
which the atomic displacement falls within the given ellipsoid with a 
probability of 0.5 (see Fig. 3.5). 

Scattering by a molecule or by a unit cell 
Fig. 3.5. Let pj(r) be the electron density of the jth atom when it is thermically 

agitated, isolated, and localized at the origin. If the atom is at position q its 
electron density will be pj(r - 9) .  If we neglect the effects of redistribution 
of the outer electrons because of chemical bonds, the electron density 
relative to an N-atom molecule or to one unit cell containing N atoms is 

N 

P M ~ >  = C pj(r - 5). (3.21) 
j = 1  

The amplitude of the scattered wave is 
N 

FM(r*) = I 2 pj(r - q) exp (2nir* r) dr 
S j=1 

= 2 1 pj(Rj) exp [2nir* (q + R,)] d ~ ,  
j=l S 

N 
= J;(r*) exp (2nir* . q), 

j = l  

where J;(r*) is the atomic scattering factor of the jth atom (thermal motion 
included; in the previous section indicated by fa,). The fact that in eqn (3.21) 
we have neglected the redistribution of the outer electrons leads to 
negligible errors for FM(r*), except in case of small r* and for light atoms, 
where the number of outer electrons represents a consistent fraction of Z. 

p,(r), as defined by (3.21), is the electron density of a promolecule, or, 
in other words, of an assembly of spherically averaged free atoms 
thermically agitated and superimposed on the molecular geometry. Such a 
model is unsatisfactory if one is interested in the deformation of the electron 
density consequent to bond formation. In a real molecule the electron 
density is generated by superposition of molecular space orbitals Vi with 
occupation ni: 

Since pmolecule can be decomposed into atomic fragments, a finite set of 
appropriately chosen basis functions can be used to represent each jth 
atomic fragment (see Appendix 3.D). Then 

where Ap models the effects of bonding and of molecular environment (in 
particular, pseudoatoms may become aspherical and carry a net charge). 

By Fourier transform of Ap the deformation scattering is obtained: 
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Since the core deformation scattering is negligible AF practically coin- 
cides with deformation scattering of the valence shells. 

Diffraction by  a crystal 

One three-dimensional infinite lattice can be represented (see Appendix 
3.A, p. 174) by the lattice function 

where 6 is the Dirac delta function and r,,,,, = ua + vb + wc (with u, v, w 
being integers) is the generic lattice vector. Let us suppose that p,(r) 
describes the electron density in the unit cell of an infinite three-dimensional 
crystal. The electron density function for the whole crystal (see Appendix 
3.A, p. 183) is the convolution of the L(r) function with pM(r): 

As a consequence of eqns (3.A.35), (3.A.30), and (3.22) the amplitude of 
the wave scattered by the whole crystal is 

where V is the volume of the unit cell and r i  = ha* + kb* + Ic* is the 
generic lattice vector of the reciprocal lattice (see pp. 63-5). 

If the scatterer object is non-periodic (atom, molecule, etc.) the ampli- 
tude of the scattered wave FM(r*) can be non-zero for any value of r*. On 
the contrary, if the scatterer object is periodic (crystal) we observe a 
non-zero amplitude only when r* coincides with a reciprocal lattice point: 

The function F,(r*) can be represented by means of a pseudo-lattice: each 
of its points has the position coinciding with the corresponding point of the 
reciprocal lattice but has a specific 'weight' FM(H)/V. For a given node the 
diffraction intensity I,, will be' function of the square of its weight. 

Let us multiply eqn (3.25) scalarly by a ,  b, c and introduce the definition 
(3.5) of r*: we obtain 

The directions s which satisfy eqns (3.26) are called diffraction directions 
and relations (3.26) are the Laue conditions. 

Finiteness of the crystal may be taken into account by introducing the 
form function @(r): @(r) = 1 inside the crystal, @(r) = 0 outside the crystal. 
In this case we can write 
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and, because of eqn (3.A.35), the amplitude of the diffracted wave is 

where 

D(r*) = O(r) exp (2nir* r) dr = exp (2nir' . r) dr 
S 

and 52 is the volume of the crystal. Because of eqn (3.A.40) the relation 
(3.27) becomes 

1 + 53 

= , FM(H) x D (r* - r i ) .  

If we compare eqns (3.28) and (3.24) we notice that, going from an 
infinite crystal to a finite one, the point-like function corresponding to each 
node of the reciprocal lattice is substituted by the distribution function D 
which is non-zero in a domain whose form and dimensions depend on the 
form and dimensions of the crystal. The distribution D is identical for all 
nodes. 

For example, let suppose that the crystal is a parallelepiped with faces Al, 
A,, A,: then 

D(r * - - ,-Ad2 ,-Ad2 ,-A312 

exp [2ni(x * x  + y *y + z *z)] dx dy dz. 
-A1/2 -A2/2 -A3/, 

If we integrate this function over separate variables, it becomes, in 
accordance with Appendix 3.A, p. 174 

sin (nAlx*) sin (nA,y *) sin (nA3z *) 
D(r*) = (3.29) 

nx * JCY * nz * 

Each of the factors in eqn (3.29) is studied in Appendix 3.A and shown in 
Fig. 3.A.1 (p. 174). We deduce: 

1. The maximum value of D(r*) is equal to A,A,A,, i.e. to the volume S2 
of the crystal; 

2. The width of a principal maximum in a certain direction is inversely 
proportional to the dimension of the crystal in that direction. Thus, 
because of the finiteness of the crystals each node of the reciprocal lattice 
is in practice a spatial domain with dimensions equal to A;'. In Fig. 3.6 
some examples of finite lattices with the corresponding reciprocal lattices 
are shown. 

When we consider the diffraction by a crystal the function FM(H) bears the 
name of structure factor of vectorial index H (or indexes h, k, 1 if we make 
reference to the components of r;) and it is indicated as: 

N 

FH = x f i  exp (2nirG . q)  
j=l 

where N is the number of atoms in the unit cell. In accordance with 
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p. 64 we write 
N 

FH = x f j  exp (2niAxj) =AH + iBH (3.30a) 
j=1 

where 
N N 

AH = x f j  cos ~ J G H X ~ ,  BH = f i  sin 2nHXj. (3.30b) 
j=1 j=1 

According to the notation introduced in Chapter 2, we have indicated the 
vector as rlT, and the transpose matrix of its components with respect to the 
reciprocal coordinates system as H = (hkl). In the same way I;. is the jth 
positional vector and the transpose matrix of its components with respect to 
the direct coordinates system is xi = [xi yj zj]. In a more explicit form (3.30a) 
may be written 

Fhkl = x f j  exp 2ni(hxj + kyj + lzj). 
j=1 

In different notation (see Fig. 3.7) 

FH = IFH( exp (iq,) where qH = arctan (BH/A 

Fig. 3.6. Direct and reciprocal lattices for: (a) a 
one-dimensional lattice; (b) a two-dimensional 
lattice in the form of a rectangle; (c) a two- 
dimensional lattice in the form of a circle; (d) a 
cubic crystal in the form of a sphere; (e) a cubic 
crystal in the form of a cube; (f) a crystal in  the 
form of a parallelepiped (from Kitaigorodskii, A. 
1. (1951 ). The theory o f  crystal structure analysis, 
Consultants Bureau, New York). 

imag. axis 
I 

(3.31) ' .HI. 
qH is the phase of the structure factor FH. 

If we want to point out in eqn (3.30a) the effect of thermal agitation of 
the atoms we write, in accordance with p. 149 and Appendix 3.B 

N real axis 

FH = fOj exp (2niHxj - 8 n 2 4  sin2 8/A2) Fig. 3.7. F, is represented in  the Gauss pla_ne for 

j=1 a crystal structure with N = 5. It is cui = 2zHX,. 
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N 

FH = &, exp (2niAXj - 2n2AU?H) 
j = l  

depending on the type of the thermal motion (isotropic or anisotropic) of 
the atoms. f,, is the scattering factor of the jth atom considered at rest. Let 
us note explicitly that the value of FH, in modulus and phase, depends on 
the atomic positions i.e. on the crystal structure. 

Details of the structure factors calculation from a known structural model 
are given on pp. 87-8 and Appendix 2.1. 

Bragg's l aw  

A qualitatively simple method for obtaining the conditions for diffraction 
was described in 1912 by W. L. Bragg who considered the diffraction as the 
consequence of contemporaneous reflections of the X-ray beam by various 
lattice planes belonging to the same family (physically, from the atoms lying 
on these planes). Let 8 be (see Fig. 3.8) the angle between the primary 
beam and the family of lattice planes with indices h, k, 1 (having no integer 
common factor larger than unity). The difference in 'path' between the 
waves scattered in D and B is equal to AB + BC = 2d sin 6. If it is multiple 
of A then the two waves combine themselves with maximum positive 
interference: 

Fig. 3.8. Reflection of X-rays from two lattice 
planes belonging to the family H = (h, k, I). dis 
the interplanar spacing. 

2dH sin 8 = nA, 

Since the X-rays penetrate deeply in the crystal a large number of lattice 
planes will reflect the primary beam: the reflected waves will interfere 
destructively if eqn (3.32) is not verified. Equation (3.32) is the Bragg 
equation and the angle for which it is verified is the Bragg angle: for 
n = 1, 2, . . . we obtain reflections (or diffraction effects) of first order, 
second order, etc., relative to the same family of lattice planes H. 

The point of view can be further simplified by observing that the family of 
fictitious lattice planes with indices h '  = nh, k '  = nk, I' = nl has interplanar 
spacing dHj  = dHIn. NOW eqn (3.32) can be written as 

/ 2(dH/n) Sin 6 = 2dH, sin 8 = (3.33) 

where h',  k', I '  are no longer obliged to have only the unitary factor in 
common. 

In practice, an effect of diffraction of nth order due to a reflection from 
lattice planes H can be interpreted as reflection of first order from the family 
of fictitious lattice planes H '  = n H. 

It is easy to see now that eqn (3.33) is equivalent to eqn (3.25). Indeed, if 
I 0 we consider only the moduli of eqn (3.25) we will have, because of eqns 

(2.14) and (3.6), 
r* = 2 sin 8/A = lld,. 

/- The reflection and the l imit ing spheres 

Let us outline (see Fig. 3.9) a sphere of radius l/A in such a way that the 
Fig. 3.9. Reflection and limiting spheres. primary beam passes along the diameter 10. Put the origin of the reciprocal . 
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lattice at 0. When the vector rtT, is on the surface of the sphere then the 
corresponding direct lattice planes will lie parallely to IP and will make an 
angle 6 with the primary beam. The relation 

O P = r ~ = l / d H = I O s i n 6 = 2 s i n B / A  

holds, which coincides with Bragg's equation. Therefore: the necessary and 
sufficient condition for the Bragg equation to be verified for the family of 
planes (hkl) is that the lattice point defined by the vector r i  lies on the 
surface of the sphere called the reflection or Ewald sphere. AP is the 
direction of diffracted waves (it makes an angle of 28 with the primary 
beam): therefore we can suppose that the crystal is at A. 

For X-rays and neutrons A -  (0.5-2) A, which is comparable with the 
dimensions of the unit cell (-10A): the sphere then has appreciable 
curvature with respect to the planes of the reciprocal lattice. If the primary 
beam is monochromatic and the crystal casually oriented, no point of the 
reciprocal lattice should be in contact with the surface of the Ewald sphere 
except the (000) point which represents scattering in the direction of the 
primary beam. It will be seen in Chapter 4 that the experimental techniques 
aim to bring as many nodes of the reciprocal lattice as possible into contact 
with the surface of the reflection sphere. 

In electron diffraction A - 0.05 A: therefore the curvature of the Ewald 
sphere is small with respect to the planes of the reciprocal lattice. A very 
high number of lattice points can simultaneously be in contact with the 
surface of the sphere: for instance, all the points belonging to a plane of the 
reciprocal lattice passing through 0. 

If r i  > 2/A (then dH < A/2) we will not be able to observe the reflection H. 
This condition defines the so-called limiting sphere, with centre 0 and 
radius 2/A: only the lattice points inside the limiting sphere will be able to 
diffract. Vice versa if A >  2a,,,, where a,,, is the largest period of the unit 
cell, then the diameter of the Ewald sphere will be smaller than rg,, (the 
smallest period of the reciprocal lattice). Under these conditions no node 
could intercept the surface of the reflection sphere. That is the reason why 
we can never obtain diffraction of visible light (wavelength -5000 A) from 
crystals. 

The wavelength determines the amount of information available from an 
experiment. In ideal conditions the wavelength should be short enough to 
leave out of the limiting sphere only the lattice points with diffraction 
intensities close to zero due to the decrease of atomic scattering factors. 

Symmetry in reciprocal space 

There are some relationships among structure factors relative to different 
indexes H which are originated either from the physics of diffraction and 
from the crystal symmetry. Let us give the relevant rules. 

Friedel law 
In accordance with eqn (3.30) we write FH = A H  + iBH. Then it will also be: 
F-, = AH - iBH and consequently 

Q)-H = -Q)n (3.34) 
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The value of V - H  is opposite to the value of rpH. Since the intensities IH and 
I-, depend on and  IF-^^^ respectively, we have 

From that the Friedel law is deduced, according to which the diffraction 
intensities associated to the vectors H and -H of the reciprocal space are 
equal. Since these intensities appear to be related by a centre of symmetry, 
usually, although imperfectly, it is said that the diffraction by itself 
introduces a centre of symmetry. 

Effects of symmetry operators in the reciprocal space 
Let us suppose that the symmetry operator C = (R, T) exists in direct space. 
Then the points r;. and r,! whose coordinates are related by X,! = RXj + T are 
symmetry equivalent. We wonder which kind of relationships brings in the 
reciprocal space the presence of the operator C. Since 

N 

F"R exp ( ~ J T ~ H T )  = x f i  exp (~JT~HRX;)  . exp (2niHT) 
;=l 

N 

= x f i  exp ~ J T ~ H ( R X ;  + T) = FH 
j=1 

we can write 
F", = FH exp ( - ~ J T ~ H T ) .  (3.35) 

Sometimes it is convenient to split eqn (3.35) into two relations: 

From (3.36) it is concluded that intensities ZH and I,qR are equal while their 
phases are related by eqn (3.37). The most relevant consequences of eqn 
(3.35) are described in the following. 

Determination of the Laue class 
The Laue class of a crystal (see p. 17) may be determined by means of the 
qualitative examination of the diffraction intensities. 

Let Pl[(x, y, z)] be the space group (symmetry equivalent positions are 
shown in square brackets). The only symmetry operator is the identity, and 
its use in eqn (3.36) does not give us any useful result. Anyhow, because of 
the Friedel law = IFHI holds. If the space group is PI 
[(x, y, z), (2, jj, Z)] we can use R2 in eqn (3.36) and consequently obtain 
F-, = FH. In this case the Friedel law does not add any additional 
observable relationship. In conclusion, the diffraction intensities from 
crystals with symmetry P1 and PI will both show a centre of symmetry or, in 
other words, they will show the symmetry of the Laue class I. 

As a further example let P2 [(x, y, z), (x, y, 2)] be the space group. By 
introducing R, in eqn (3.36) and by applying the Friedel law we obtain the 
following relationship (symmetry equivalent reflections): 
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If the space group was Pm [(x, y, z), (x, y, z)], by using R2 and by 
applying the Friedel law we would obtain eqn (3.38) again. If the space 
group was P2/m eqn (3.38) would be obtained again only by using matrices 
R2, R3, and R, in eqn (3.36). This time the Friedel law does not add any 
additional relationship to those obtained from eqn (3.36). We can conclude 
that the symmetry of the diffraction intensities from crystals belonging to 
space groups P2, Pm and P2/m is that of the Laue class 2/m. 

The reader will easily verify that the crystals belonging to groups P222, 
Pmm2, and P2/m 2/m 2/m show intensity symmetry of the 2/m 2/m 2/m 
Laue class: 

IFhkrl = I F h d  = = IFiid 

=IF---l=IF- hkl hkll - - IFhill  = IFhkil 

and those belonging to space groups P4, ~ 4 ,  P4/m show the intensity 
symmetry 

of the Laue class 411x1. 

Determination of reflections with restricted phase values 
Let us suppose that for a given set of reflections the relationship HR = -H is 
satisfied. If we apply (3.37) to this set we will obtain 2qH = 2nHT + 2nn 
from which 

qH = XHT + nn. (3.39) 

Equation (3.39) restricts the phase qH to two values, XHT or X(HT+ 1). 
These reflections are called reflections with restricted phase values, or less 
properly, 'centrosymmetric' . 

If the space group is centrosymmetric the inversion operator 

will exist. In this case every reflection is a restricted phase reflection and will 
assume the values XHT or ~ ( H T  + 1). If the origin is assumed on the centre 
of symmetry then T = 0 and the permitted phase values are 0 and n. Then 
according to eqn (3.30b), FH will be a real positive number for q, equal to 
0, and a negative one for qH equal to n. For this reason we usually talk in 
centrosymmetric space groups about the sign of the structure factor instead 
of about the phase. 

In Fig. 3.10 FH is represented in the complex plane for a centrosymmetric 
structure of six atoms. Since for each atom at q another symmetry 
equivalent atom exists at -q, the contribution of every couple to FH will 
have to be real. 

As an example of a non-centrosymmetric space group let us examine 
P2A2,, [(x, y,  z), (i -x, J ,  4 + z), ( i  + x, 4 - y, 2), (i, i + y, - z)] where 
the reflections (hkO), (Okl), (h01) satisfy the relation HR = -H for R = R2, 
R3, R4 respectively. By introducing T = T2 in eqn (3.39) we obtain 
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imag. axis 

Fig. 3.10. F, is represented in the Gauss plane 
for a centrosymmeJric crystal structure with 
N = 6. It is q = ZRHX,. 

qhko = (nh l2 )  + nn. Thus qhko will have phase 0 or n if h is even, phase 
f n12 if h is odd. By introducing T = T3 in eqn (3.39) we obtain 
qok[  = (nk12) + n n :  i.e. q o k l  will have phase 0 or n if k is even, f A12 if k is 
odd. In the same way, by introducing T = T, in eqn (3.39) we obtain 
qhol = (n112) +nn:  i.e. qh0i  will have phase 0 or n if 1 is even, f n12 if 1 is 
odd. 

Phase restrictions to ( ~ ~ 1 4 ,  5 ~ ~ 1 4 )  or to (3x14, 7 ~ 1 4 )  or to ( n / 6 , 7 n / 6 )  or 
. . . , can be found for some space groups. The allowed phase values depend 

Table 3.1. Restricted phase reflections for the 32 crystal classes 

Point group Sets of restricted phase reflections 

1 
1 
m 
2 
2/m 
mm2 
222 
mmm 
4 
4 
4/ m 
422 
42m 

p p p p  

None 
All 
(0, k, 0 )  
(h,O, I )  
All 
[ (h ,  k, 0 )  masks (h, 0, O) ,  (0, k, 0) l  
Three principal zones only 
All 
(h, k,O) 
(h, k, 0) ;  (0,0, I )  
All 
(h, k,O); {h,O, I ) ;  {h ,  h, I )  
[ (h,  k, 01, {h ,  h, 011; [ { h ,  0, I ) ,  
(O,O, 111 
[ (h,  k, 01, {h ,  0,0), {h ,  h, O)] 
All 
None 
All 
{ h, O,fi,O) 
{h ,  0, h, I )  
All 
(h ,  k,O) 
(O,O, 1 )  
All 
[ { h ,  h, I ) ,  {h ,  h, 0 ) ,  (O,O, / ) I  
[ (h,  k, 01, {h ,  h, 0),  {h ,  0, O)] 
(h,k,O); (h,O,I); (h ,h , I )  
All 
{ h, k, 0 )  
All 
( { h ,  k. O), {h, h, 011 
{h ,  k,O}; {h ,  h, I }  
All 
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on the translational component of the symmetry element and on its location 
with respect to the cell origin. 

A different point of view may also be used: the existence of reflections 
with restricted phase is due to the presence of symmetry elements which at 
least in projection simulate the centre of inversion. For instance, the 
projection of a structure in P2,2,2, along the c  axis is centrosymmetric: 
correspondingly, the reflections belonging to the zone (hkO), being insensi- 
tive to the z coordinate, have restricted phase values. The reader will easily 
verify that zones orthogonal to axes 2 ,  4 ,  4, and 6 (and, of course, to the 
corresponding screw axis) have symmetry restricted phases, as well as zones 
parallel to the axes 2 ,  4, 6. In Table 3.1 the sets of restricted phase 
reflections are given for the 32 crystal classes. 

Systematic absences 
Let us look for the class of reflections for which HR = H and let us apply eqn 
(3 .35) .  This relation would be violated for those reflections for which AT is 
not an integer number unless IFHI = 0 .  From this fact the rule follows: 
reflections for which HR = H and AT is not integer will have diffraction 
intensity zero or, as usually said, will be systematically absent or extinct. Let 
us give a few examples. 

In the space group P2, [ (x ,  y ,  z ) ,  (3 ,  y  + 1,  Z ) ]  the reflections (OkO) satisfy 
the condition HR, = H. If k is odd, HT, is semi-integer. Thus, the reflections 
(OkO) with k # 2n are systematically absent. 

In the space group P4, [ (x ,  y ,  z ) ,  (2, P, 1 + z ) ,  (JJ, x, + z ) ,  ( y ,  3 ,  2 + z ) ]  
only the reflections (001) satisfy the condition HR, = H for j = 2,  3,  4 .  Since 
HT, = 112, AT3 = 114, HT4 = 3114, the only condition for systematic absence 
is I # 4n, with n integer. 

In the space group PC [ (x ,  y ,  z ) ,  (x ,  j ,  z + +)I the reflections (h01) satisfy 
the condition HR, = H. Since HT, = 112 the reflections (h01) with 1 # 2n will 
be systematically absent. 

Note that the presence of a glide plane imposes conditions for systematic 
absences to bidimensional reflections. In particular, glide planes opposite to 
a, b, and c impose conditions on classes (Okl), (hol ) ,  and (hkO) respec- 
tively. The conditions will be h = 2n, k  = 2n, 1 = 2n for glide planes of type 
a, b, or c  respectively. The reader can easily check the data listed in Table 
3.2 .  

Let us apply now the same considerations to the symmetry operators 
centring the cell. If the cell is of type A, B, C, I, symmetry operators will 
exist whose rotational matrix is always the identity while the translational 
matrix is: 

respectively. If we use these operators in eqn (3.35) we obtain: the relation 
HR = H is satisfied for any reflection; the systematic absences, of three- 
dimensional type, are those described in Table 3.2.  

A cell of type F is simultaneously A-, B-, and C-centred, so the respective 
conditions for systematic absences must be simultaneously valid. Conse- 
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Table 3.2. Systematic absences 

Symmetry elements Set of reflections Conditions 

Lattice 

hkl 

none 
h + k + l = 2 n  

h +  k = 2 n  
k + l = 2 n  
h + l = 2 n  

i h +  k = 2 n  
k + l = 2 n  
h + l = 2 n  

- h +  k + I = 3 n  
h - k + I = 3 n  

a 
Glide-plane 11 (001)  b hku 

n  
d 

Glide-plane 1 1  (100)  b 
c Okl 
n  
d 

C 

Glide-plane 11 (1 1 0 )  b hhl 
n  
d 

Screw-axis 1 1  b 2 1 ~ 4 ~  
4 1 ~ 4 ~  Oku 

quently only the reflections for which h, k, and 1 are all even or all odd will 
be present. 

The same criteria lead us to establish the conditions for systematic 
absences (-h + k + 1 # 3n for obverse setting and h - k + 1 # 3n for reverse 
setting) for a hexagonal cell with rhombohedra1 lattice. 

Rules for systematic absences may be also derived by using the explicit 
algebraic form of the structure factor. Suppose, for example, that the space 
group contains a c-glide plane perpendicular to the b axis (then ( x ,  y, z) and 
(x, j ,  z + 4) will be symmetry equivalent points). The structure factor is 
then 

Nl2 

Fhkl = f j  exp 2ni(hx, + kyj + lz,) 
j=1 

NI2 

+ f j  exp 2ni[hxj - ky, + l(z, + ;)I. 
,=I 
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For 1 even ~ 1 2  

Fhkl = 2 x  f i  exp [2ni(hxj + lz,)] cos 2nkyj; 
j=1 

for 1 odd 
Ni2 

Fhkl = 2 x  f i  exp [2ni(hxj + lz,)] sin 2nky,. 
j = l  

It is easily seen that Fhol = 0 for 1 odd, in accordance with our previous 
results. 

Unequivocal determination of the space group 
Determination of the space group is an important first step in any crystal 
structure analysis. From the qualitative examination of the diffraction 
intensities (which leads to the identification of the Laue class) and from the 
analysis of the systematic extinctions 58 space groups are unequivocally 
determinable (without making any distinction between enantiomorph 
couples). The symbols of these groups are printed in bold character in Table 
1.9. As an example, suppose that relations (3.38) and systematic absences 
(OkO) for k = odd and (h01) for I = odd are observed. Then the space group 
P2Jc is unequivocally deduced since: 

(1) the cell has to be primitive (no systematic absences involving three- 
dimensional reflections are observed); 

(2) the Laue-class is 2/m (from (3.38)); 

(3) a twofold screw axis along b and a c-glide plane normal to b do exist 
according to systematic absences. 

Sometimes the identification of space group extinctions is disturbed by the 
presence of one or a few reflections seemingly violating one of the 
extinction rules (e.g. only one (hkO) reflection with h + k =odd has a 
meaningful non-zero intensity). One way to produce such forbidden 
reflections is the Renninger effect, described in Appendix 3.B, p. 191, which 
occurs when two or more reciprocal lattice points happen to intersect the 
reflection sphere simultaneously. One way to avoid the Renninger effect is 
to rotate the crystal about the reflecting plane's normal and repeat 
measurements. 

Space groups which are not unequivocally determined could, with few 
exceptions, be unambiguously identified if their point group is known. The 
methods which can give us information about point groups have been 
schematically described in Chapter 1 (p. 15) (crystal habit, piezoelectricity, 
pyroelectricity, etc.). Let us add to them the anomalous dispersion effects 
(see p. 165) and the statistical methods (see Chapter 5, p. 322) based on the 
expectation that the distribution of the intensities is influenced by the 
presence of symmetry elements and, in particular, it is different for 
centrosymmetric and non-centrosymmetric space groups. 

Diffraction intensities 

The theory so far described is called kinematic: basically it calculates 
interference effects between the elementary waves scattered inside the 
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volume of the crystal. However, it neglects two important phenomena: 
when the incident wave propagates inside the crystal its intensity decreases 
gradually because a part of its energy is transferred to the scattered beam or 
it is absorbed; the diffracted waves interfere with each other and with the 
incident beam. 

The theory which takes into account all these phenomena and analyses 
the wave field set up as a whole is called the dynamic theory of diffraction. 
It was initiated by ~wald:[ '] later on Laue showed that Ewald's theory is 
equivalent to analysing the propagation of any electromagnetic field through 
a medium having a periodically varying complex dielectric constant. The 
description of the dynamical theory is out of the scope of this book. The 
reader is referred to specialist books or review articles[2331 for exhaustive 
information. Only a dynamical effect of particular importance for crystal 
structure analysis, the Renninger effect, will be here described (in Appendix 
3.B, p. 191) in any detail. Other dynamical interactions will be described on 
the basis of the kinematical theory properly modified by Darwin and other 
authors. 

Dynamic effects develop gradually in a crystal: it may be shown that for 
sufficiently small thicknesses the incident beam is not weakened con- 
siderably, the diffracted waves are not yet so strong as to give rise to 
remarkable interference effects with the incident beam and the effects of 
absorption are negligible. Under these conditions (theoretically, thicknesses 
<10-~-10-~ cm) the kinematic theory is a fairly accurate approximation to 
dynamic theory. However, in practice, corresponding equations proved to 
be valid even for crystals having dimensions of several tenths of a 
millimetre. This is due to the real crystal structures. 

A simplified model of real crystal was proposed by Darwin: [4,51 it can be 
ideally schematized like a mosaic of crystalline blocks with dimensions of 
about 10-'cm, tilted very slightly to each other for angles of the order of 
fractions of one minute of arc: each block is separated by faults and cracks 
from other blocks. The interference between the waves only occurs inside 
every single block, whose dimensions satisfy the theoretical conditions of 
applicability of the kinematic theory. Because of the loss of coherence 
between the waves diffracted from different blocks, the diffracted intensity 
from the whole crystal is equal to the sum over the intensities diffracted 
from every single block. 

Real crystals, however, differ by ideal ones also because they may contain 
a large variety of defects, which are convenient to classify into the following 
groups (see Chapter 9): transient defects, having lifetimes measured in 
microseconds (e.g. phonons, which are elastic waves propagating through 
the crystal and inducing atomic displacements); point defects, which can be 
missing (called vacancies), interstitial, or vicarious atoms; line defects, 
extending along straight or curved lines (e.g. dislocations); plane defects, 
extending along planes or curved surfaces (e.g. small angle boundaries, 
stacking faults); volume defects, extending throughout small volumes in the 
crystal (e.g. inclusions, precipitates, voids). 

The importance of defects with respect to diffraction intensities depend 
on their nature and on their density. For example, a single point defect does 
not produce detectable effects on diffraction maxima but a large number of 
them, as in the case of order-disorder transitions, strongly affects 
diffraction. When agglomerated they can form voids or cracks in a crystal, 
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or, clustering along certain planes, they form two-dimensional precipitates. 
Furthermore, individual dislocations have little effect on diffraction but they 
may array themselves to form small-angle boundaries separating two 
relatively perfect regions tilted relative to each other by about one minute 
of arc (mosaic blocks). 

We can therefore expect that any type of defect which disturbs the crystal 
periodicity by lattice distortion or substitution or shift of atoms from the 
equilibrium position will produce some effect on diffracted intensities: 
among others, it will cause a more rapid statistical decrease of diffraction 
intensities with sin BIA.  In particular, the lattice distortions cause variations 
in the unit cell dimensions and therefore modify the form and volume of the 
reciprocal lattice points (variations of the spacing dH bring variations in the 
modulus r i ,  variations in the orientation of the planes H cause modifications 
in the orientation of r:).  

On the basis of these premises it is nonsense to affirm that a crystal is in 
the 'exact' Bragg position for a given family of lattice planes. Indeed, 
because of the finite size of the crystal, its mosaic structure, defects, and 
lattice distortions, etc., each node of the reciprocal lattice will have a finite 
volume and will be in contact with the surface of the reflection sphere for a 
finite angle interval. In addition the surface of the reflection sphere itself has 
in practice to be substituted by a solid domain. Indeed, the incident X-ray 
beam does have an inevitable divergence and an imperfect monochromati- 
city. As a consequence (see Fig. 3.11) the spherical surface of radius 1/31 is 
replaced by a family of spherical surfaces whose efficiency relative to 
diffraction depends on the distribution of the intensities as a function of the 
angle divergence and of the wavelength of the incident beam. 

According to the above remarks quantity of practical interest is the 
integrated intensity and not the maximum intensity of the diffraction peak. 
Experimental arrangements normally used to measure diffraction intensities 
change the orientation of the crystal (see Chapter 4) so as to compel 
reciprocal lattice points to cross progressively the Ewald sphere while 
continuously recording the intensity of the diffracted beam. Thus the total 
diffracted energy during a fixed time is measured. Equivalently, the same 
total energy may be measured by integrating the diffracted intensity over a 
suitable angular range around the ideal Bragg angle. According to eqns 
(3.3) and (3.28) the integrated intensity is given by 

IH = klk210LPTE (3.41) 

where I, is the intensity of the incident beam, k1 = e4/(m2c4) takes into 
account the universal constants existing in eqn (3.3). k2 = 3 1 3 S 2 / ~ 2  is a 

Fig. 3.11. (a) Incident radiation with non- 
vanishing divergence. ( b )  Non-monochromatic 
incident radiation. 
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constant for a given diffraction experiment (Q is the volume of the crystal, 
V is the volume of the unit cell), P is the polarization factor, defined on 
p. 143, T is the transmission factor and depends on the capacity of the 
crystal to absorb the X-rays (see Chapter 4, p. 304), L is the Lorentz factor 
and depends on the diffraction technique (Chapter 4, p. 301). E is the 
extinction coefficient. It depends on the mosaic structure of the crystal and 
has two components. The most important one, called secondary extinction, 
takes into account the fact that the lattice planes first encountered by the 
primary beam will reflect a significant fraction of the primary intensity so 
that deeper planes receive less primary radiation. That causes a weakening 
of the diffracted intensity, mainly observable for high-intensity reflections at 
low sin O/h values in sufficiently perfect crystals. If the mosaic blocks are 
misoriented (as they usually are) then they do not diffract together and 
shielding of deeper planes is consequently reduced. Secondary extinction is 
equivalent to an increase of the linear absorption coefficient: thus it is 
negligible for sufficiently small crystals. Reflections affected by secondary 
extinction can be recognized in the final stages of the crystal structure 
refinement when for some high-intensity reflection JF,,,J < 1 F J .  A method 
for inclusion of secondary extinction in least-squares methods is recalled in 
Chapter 2, p. 97. 

The second component of the extinction coefficient, called primary 
extinction, takes into account the loss of intensity due to dynamic effects 
inside every single block. This phenomenon can be understood intuitively 
by means of Fig. 3.12. At the Bragg angle every incident wave can suffer 
multiple reflections from different lattice planes: after an odd number of 
reflections the direction will be the same as the diffracted beam: after an 
even number of reflections the direction will be the same as the primary 
beam. Each scattering causes a phase lag of h/4. Thus, the unscattered 
radiation having direction So in Fig. 3.12 is joined by doubly scattered 

Fig. 3.12. Multiple reflections from a family of 
lattice planes. radiation (with much smaller intensity) with a phase lag of n: consequently 

destructive interference will result. The same consideration holds for waves 
propagating along the direction of the diffracted beam: the result is that 
both primary and diffracted beams are weakened because of dynamical 
effects. 

A theory describing the mutual transfer of intensity between incident and 
diffracted beams was proposed by zachariasen.[(jl If absorption is neglected 
the intensity I, of the beam in the incident direction and the intensity I of 
the beam in the diffracted direction should be related by: 

where t, and t are lengths in the direction of the primary and diffracted 
beams respectively, a is the diffracted power per unit distance and intensity. 
The equations have to be solved subject to the boundary conditions: I, 
should be equal to the intensity of the primary beam when to = 0 and I = 0 
when t = 0. The sum of the two equations is zero, which is the condition for 
the conservation of energy. Zachariasen's theory has been modified by 
other  author^:[^-^] the introduction of an extinction correction parameter in 
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least-squares analysis may or may not have, according to circumstances, an 
appreciable influence on the accuracy of the structural parameters included 
in the refinement. Indeed prior information on the mosaic structure is not 
usually available and therefore the corrections which have to be made are 
not easy to calculate a priori. An experimental (often efficient) way to 
reduce extinction consists of rapid cooling of the crystal by means of 
immersion in liquid air: this reduces the dimensions of the mosaic grains. 

Anomalous dispersion 

It is well known that electrons are bound to the nucleus by forces which 
depend on the atomic field strength and on the quantum state of the 
electron. Therefore they have to be considered as oscillators with natural 
frequencies. If the frequency of the primary beam is near to some of these 
natural frequencies resonance will take place. The scattering under these 
conditions is called anomalous and can be analytically expressed by 
substitution of the atomic scattering factor fa defined earlier by a complex 
quantity 

Af' and f" are called the real and imaginary dispersion corrections. In order 
to have a simple insight into the problem (a rigorous quantum-mechanical 
treatment was carried out by Honl) we recall that the classical differential 
equation describing the motion of a particle of mass m and charge e in an 
alternating field intensity Eoi exp (iwt) is 

where 0 / 2 n  is the frequency of the incident wave, wo is the natural angular 
frequency of the vibrating particle, g dxldt expresses a damping force 
proportional to the velocity. The steady-state solution of the above 
equations is 

x(t) = Xo exp (iwt) 

where 

If the displacement x(t) is multiplied by e the polarizability moment [ex(t)] 
of each dipole is obtained; the electrical susceptibility of a collection of Z 
uncoupled dipoles is then 

ZeXo 2e2 1 
x = = -  

Eoi m wi - w2 + igo 

which is a complex function of the frequency of the incident radiation. The 
electric field produced by the dipole oscillator at a distance r >>Xo has a 
magnitude (we neglect the polarization factor and the phase shift due to the 
travelling in r of the scattered wave) which is w2/(rc2) times its dipole 
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moment: 

02ex (t) w2e2 exp (iwt) 
Ed = EOd exp (iot) = - = - Eoi rc2 mrc2 08 - o2 + igw' 

If the electron is unrestrained and undamped then g = wo = 0 and 

-eL 
Ed = (E&h = 7 EOi exp (iot) 

mrc 

= Eoi exp [i(ot + n)] mrc2 

which well agrees with eqn (3.1) suggested by Thomson: n is the phase lag 
between the scattered and the incident radiation. 

Since g << o ,  when o >> o, the expression of Ed is not very different from 
that of a free electron. Therefore Thomson scattering is only applicable 
when o >> w,. 

We define now the scattering factor for an electron as the ratio 

While the imaginary term is always positive, the real term is negative when 
o < wo and positive when o > 01,. From the quantum-theory point of view, 
the frequency wo coincides with that of a photon with just sufficient energy 
to eject the electron from the atom. Such an energy corresponds to the 
wavelength A, = 2nc/wo corresponding to the absorption edge. Thus it may 
be expected that a remarkable deviation from Thomson scattering will arise 
when the primary beam wavelength is close to an absorption edge of the 
atom being considered. 

An important question is whether Af' and f "  vary with diffraction angle. 
Existing theoretical treatments suggest changes of some per cent with 
sin e/A but no rigorous experimental checks have been made so far: 
therefore in most of the routine applications Af' and f "  are considered to be 
constant. 

For most substances at most X-ray wavelengths from conventional 
sources dispersion corrections are rather small. Calculated values for CrK, 
(A = 2.291 A), CuK, (A = 1.542 A), and MoK, (A = 0.7107 A) are listed in 
the International tables for x-ray crystallography, Vol. 111. In some special 
cases ordinary X-ray sources can also generate relevant dispersion effects. 
For example, holmium has the L3 absorption edge (-1.5368A) very close 
to CuK, radiation: in this case the holmium scattering factor is not the same 
for K,, and K,, wavelengths. The following dispersion corrections are 
cal~ulated:[~~1 

CuK,,(A= 1.5406 A): Af = -15.41 fl '- 3.70 

CuK,,(A = 1.5444 A): Aft = - 14.09 f u  - 3.72 

Furthermore, the holmium L2 absorption edge (211.3905 A) is very close to 
the CuKB wavelength (A = 1.3922 A), so giving rise to 

Af '= -11.88, f " ~ 8 . 7 5 .  
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If synchrotron radiation is used, its intense continuous spectrum may be 
chosen to high precision in order to provoke exceptionally large anomalous 
scattering. Very large effects have been measured["] for rare-earth elements 
in the trivalent state near L3 absorption edges (corresponding wavelengths 
are of crystallographic interest because edges span from 2.26A for 
lanthanum to 1.34 A for lutetium). In Fig. 3.13 we show the anomalous 
scattering terms Af' and f" for gadolinium and samarium near the L3 
absorption edge: spectacular effects as large as -30 electrons/atom could be 
measured. 

Since anomalous dispersion may induce substantial variation of the 
diffracted intensities depending on the wavelength used, anomalous scatter- 
ing is an important tool for solving crystal structures (see Chapter 8). 
Several recent works suggest an important role for multiple-wavelength 
methods: the power of such methods depends on the distances between the 
working points representing f i n  the complex plane.[l21 As an example, we 
plot in Figs. 3.14 (a) and (b) the complex scattering factor Af' + if" near the 
L3 edge for gadolinium and samarium respectively. 

Now we will give only a few elementary ideas about the effects of 
anomalous dispersion: we postpone the methodological aspects for crystal 
structure analysis until Chapter 8. Let suppose that a non-centrosymmetric 
crystal contains N atoms in the unit cell from which P are anomalous 
scatterers and the remaining Q = N - P atoms are normal scatterers. Then 

Fig. 3.13. Anomalous scattering terms A f '  and 
P'for: (a) gadolinium near the L3 edge; (b) 
samarium near the L, edge. 

where + and - indicate that the magnitudes are calculated for the vectors 
(b) 

H and -H respectively. The subscripts P and Q indicate that the structure ~ ~ ; ~ ; ~ ~ L ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ ~ f ~ ~ ~ ~ e i [ ~  
factors are calculated only with the contribution of P or Q atoms edge; (b)samarium nearthe ne edge. 
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imag 
axis 

Fig. 3.15. (a) Relation between F, and F-, when 
anomalous dispersion is present; (b) relation 
between F, and F!, when anomalous 
dispersion is present. 

imag. 
axis 

1 real axis 

respectively: 
P 

Fb+ = x f,! exp 2niHXj; 
j=1 

The vectors F+ and F- are described in Fig. 3.15(a). In Fig. 3.15(b) F +  
and (F-)* are shown: the latter is the complex conjugate of F- and they are 
symmetric with respect to the real axis: 

The difference AZ = J F + ~ ~  -  IF-(^ is known as the Bijvoet difference[13] 
and can be easily calculated by means of Fig. 3.15(b): 

from which 

AZ = 4 (F'J IF:( cos q. 

Furthermore 

In general, as we can see, IFHI = I F-,1 is no longer valid, i.e. the Friedel 
law is not satisfied in the presence of anomalous dispersion. The value of AZ 
depends on the collinearity of F; and F&. If they are collinear then 
(F+I = IF-1: but this happens by mere chance. AZ is a maximum when Fp 
and FQ are approximately at the right angles. 

The Friedel law is satisfied if: the structure is centrosymmetric-in this 
case IF+[ and IF-I are always equal; the reflection is centrosymmetric even 
if the structure is non-centrosymmetric; the crystal is constituted of only one 
chemical element which is the anomalous scatterer. 

As a last observation it should be mentioned that besides X-ray, neutron 
and gamma-ray anomalous dispersion are also very useful in crystal 
structure analysis. Neutron anomalous dispersion techniques employ 
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nuclear isotopes with resonances in the range of thermal-neutron energies 
(see p. 198 for further details). 

Gamma-rays are elastically scattered by the electrons of the atoms in the 
crystal. An elastic resonant scattering by the nucleus (Mossbauer effect) also 
occurs-the transition involves energies comparable with those employed in 
conventional X-ray diffraction. Since both the processes are coherent, 
scattering by resonant nuclei (there are no other nuclear scattering 
contributions) and by electrons can occur simultaneously and interfere with 
each other. 

An ideal nucleus for gamma-ray resonance is j7Fe; its 14.4 keV resonance 
corresponds to a wavelength of 0.86 A. A widely used experimental set-up 
includes a radioactive source which emits the 14.4 keV radiation in the 
decay of the parent isotope j7Co. This produces a resonance effect in 57Fe 
(this atom may naturally be present in the crystal or implanted by 
techniques such as those used for isomorphous replacement) which is 
superimposed on the various Bragg reflections upon the gamma radiation 
elastically scattered by all the atoms in the crystal, iron atoms included. 
Since 5 7 ~ e  has a natural abundance of about 2.2 per cent, isotopic 
enrichment techniques must be applied in order to provide a sufficiently 
large resonant scattering. 

The frequency of the incident radiation may be modified by moving the 
radiation source, at low velocity (some mm s-l), towards or away from the 
crystal (linear Doppler effect). 

The anomalous scattering amplitudes increase dramatically in going from 
X-ray to neutron to gamma-ray. Conversely, the intensities of the radiation 
sources decrease dramatically. This is the most severe drawback for the use 
of gamma rays: relatively large signals are produced by relatively very weak 
radiation sources. 

The Fourier synthesis and the phase problem 

If the structure factors are known in modulus and phase the atomic 
positions are unequivocally determinable. Indeed, according to eqn 
(3.A.16) the electron density is the inverse Fourier transform of F(r*): 

p(r) = F(r*) exp (-2nir* r)  dr* 

1 
= - Fhkl exp [-2ni(hx + ky + lz)]. (3.45) 

V h , k , l = - 2  

x = [x, y, z] are the fractional coordinates of the point defined by the vector 
r. The atomic positions will correspond to the maxima of p(r). 

If in eqn (3.45) we sum up the contributions of H and -H we will have 

FH exp (-2niHX) + F - H  exp ( 2 n i ~ x )  

= (AH + iBH) eXp ( - ~ J G ~ H X )  + (AH - iBH) eXp ( ~ G ~ H X )  

= 2[AH cos 2 n ~ x  + BH sin 2nHXI 
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from which 

Fig. 3.16. (a) Electron density p ( r ) ;  (b) electron 
density obtained via a Fourier synthesis with 
series termination errors. 

x [A,,, cos 2n(hx + ky + l z )  + Bhkl sin 2n(hx + ky + lz)] (3.46) 

is obtained. The right-hand side of (3.46) is explicitly real and is a sum over 
a half of the available reflections. 

The mathematical operation represented by the synthesis (3.46) can be 
interpreted as the second step in the process of formation of an image in 
optics. The first step consists of the scattering of the incident radiation 
which gives rise to the diffracted rays with amplitudes FH. In the second step 
the diffracted beams are focused by means of lenses, and by interfering with 
each other they create the image of the object. There. are no physical 
focusing lenses for X-rays but they can be substituted by a mathematical 
lens (exactly, by Fourier synthesis (3.46)). 

Because of the decrease of the atomic scattering factors the diffraction 
intensities (and consequently IFH\) weaken 'on average' with the increase of 
sin B/A, and can be considered zero for values above a given (sin B/A),,, = 
1/(2dmin). Since the reflections at high values of sin B/A, give the fine details 
of the structure (small variations of the atomic coordinates can produce big 
changes in high-angle structure factors) the quantity dm, is adopted as a 
measure of the natural resolution of the diffraction experiment. dmin 
depends on different factors such as: the chemical composition of the crystal 
(heavy atoms are good scatterers even at high values of sin B/A), the 
chemical stability under the experimental conditions of temperature and 
pressure, the radiation used (the resolution improves when we pass from 
electrons to X-rays and neutrons), the temperature of the experiment. 
Roughly speaking, for X-rays dm,, can reach the limit of 0.5 A in inorganic 
crystals, 0.7-1.5 A in organic crystals, and 1.0-3 A in protein crystals. 

Because of the limit of natural resolution or of an artificially introduced 
limit (for instance in order to save time and calculations) the electron 
density function will be affected by errors of termination of series. The 
effect can be mathematically evaluated by calculating the function pr(r) 
available via the function 

@(r*) is the form function: @(r*) = 1 inside the available reflection sphere, 
@(r*) = 0 outside this sphere. According to eqn (3.A.35) we have 

If r*  is the radius of the available reflection sphere, according to 
Appendix 3.A, p. 181, T[@(r*)] is a function with a maximum at r = 0 and 
the subsidiary maxima of weight decreasing with l /rL.  The effect of the 
convolution (3.47) is qualitatively represented in Fig. 3.16. In particular, 
even if p(r) is positive everywhere, pl(r)  can be negative in more or less 
extended regions: the atomic peaks can be broad and surrounded by a series 
of negative and positive ripples of gradually decreasing amplitude. 

The number of reflections used in practice in eqn (3.46) varies from 
several tens or hundreds, for unit cells of small dimensions, to several tens 
of thousands for macromolecules. 



The diffraction of X-rays by crystals 1 171 

In order to reveal the atomic positions, pr(r) is sampled upon a 
three-dimensional grid whose spacings along each of the unit-cell axes have 
to be fixed with some care. If the grid is too coarse the interpolation 
between grid points to find the maximum of the electron density may be 
uncertain, if the grid is too fine a great deal of computing may be 
unnecessary. In absence of symmetry, at a resolution dm,, there are 

measurable (only N,/2 independent) reflections and the number of grid 
points is Np = v / h 3  where A is the grid spacing (say 0.2-0.4 A in the three 
directions). In practical cases N, and N, are rather large: for instance, for 
V = 1000 A3, dmin = 0.8 A,  A = 0.25 A, we have N, - 8180 and Np - 64 000. 

If symmetry is present the amount of calculation is smaller. The number 
of independent reflections to be measured is roughly N,/(tm) where z is the 
centring order of the cell and m the multiplicity factor of the Laue class (this 
is not strictly exact as the multiplicity factor refers to general reflections of 
type (hkl) and may be different and less than m for certain zones of 
reflections). Furthermore, it will be sufficient to sample p upon the grid 
points lying inside the asymmetric unit for reconstructing the whole content 
of the cell. 

For instance, let P2/m be the space group with a = 7.8 A, b = 16.2 A and 
c = 8.1 A and /3 = 93'. If we divide a and c into 33 and b into 66 intervals 
the grid spacing will have a sufficient and almost identical resolution in all 
three directions. The number of grid points lying inside the asymmetric unit 
(114 of the unit cell) is now 33 x 33 x 17 = 18 513. 

Very often the volume of the unit cell is much larger than 103A3 
(V > lo6 hi3 is not infrequent for macromolecules). Thus even with the use 
of high-speed computers, the calculation of p is a fairly arduous task 
involving time-consuming procedures. Different algorithms are used to 
make calculations faster. The most convenient are the Beevers-Lipson 
technique and the fast Fourier transform algorithm by Cooley and Tookey 
(see Chapter 2, pp. 88-90, and Appendix 2.1). 

Unfortunately, it is not possible to apply eqn (3.47) only on the basis of 
information obtained directly from X-ray diffraction. Indeed, according to 
eqn (3.41), only the moduli IFHI can be obtained from diffraction intensities 
because the corresponding phase information is lost. This is the so-called 
crystallographic phase problem: how to identify the atomic positions 
starting only from the moduli IFH(. A general solution to the problem has 
not been found, but there are methods we can successfully apply (see 
Chapters 5 and 8). 

Modulated crystal structures 

So far our attention has been devoted to condensed-matter systems with 
perfect three-dimensional space group symmetry. In recent years numerous 
systems have been found which can be considered as perfect crystals with 
periodic distortion (from some basic structure) of the atomic positions 
(displacive modulation) and/or of the occupation probability of atoms 
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(density modulation). The presence of periodic distortions is revealed from 
the existence of the so-called satellite reflections, generally weak, which are 
regularly distributed around the so-called main reflections. If satellite 
reflections can be labelled by rational indices in terms of the reciprocal 
lattice L* of the basic structure, then the distortion periods are commensur- 
ate with the translation periods of the basic structure and a new lattice Lr* 
can be introduced which contains L*. In such a case the main and the 
satellite reflections are called substructure and superstructure reflections 
respectively (see page 80). 

For some crystals the positions of the satellite reflections vary con- 
tinuously with respect to L*, depending on the temperature. In these cases 
we have to admit that satellite reflections can assume non-rational indices, 
or also, that the periodic distortions are incommensurable with the 
translation periods of the basic lattice. The result is the so-called 
incommensurately modulated structure (IMS). 

In order to prove the existence of satellite reflections we briefly examine 
the simple case of a one-dimensionally displacively modulated structure 
when the displacement vector field is a harmonic function.[76] 

In a perfect crystal the jth atom in the unit cell defined by the lattice 
vector r,, = ua + vb + wc is located at r,,, = ry + ru. In a harmonically 
modulated crystal it will be 

r U ,  = ry + ru + g, sin [2nK . (ry + ru) - @,I, 

where ry is now the average position of the jth atom, and gj and 4, are its 
displacement wave amplitude and phase respectively. K is the modulation 
vector, which may be expressed in the reciprocal space by K = k,a* + 
k2b* + k,c*. The contribution of the jth atom to the structure factor is now 
given by 

fi(r*)C exp 2nir* {ry + ru + g, sin [2nK . (r? + ru) - @,I) 
U 

=fi(r*) exp (2nir* r ? ) x  exp (2nir* . r,,) 
u 

x exp {2nir* . g, sin [2nK (r? + ru) - @,I) (3.48) 

where fi(r*) is the usual atomic scattering factor. To the last exponential 
term in (3.48) the Jacobi expansion 

+m 

exp (iz sin a )  = x exp (-ima)J-,(z) 
m = - m  

may be applied. Jm (see Fig. 3.17) is the Bessel function of the first kind of 
order m, satisfying J-,(z) = (-l)"Jm(z). Then (3.48) reduces to 

fi(r*) exp (2nir* . ry )x  exp (2nir* . ru) 
u 

x x exp {im[@, - 2nK (r; + r,)]}J-,(2nr* . g,) 
m 

=fi(r*) exp (2nir* ry)x  J_,(2nr* . g,) 
m 

Fig. 3.17. The Bessel functions J,,(z), n = 
0,1,2,3. 

x exp {im(@, - 2nK.  ry)}x exp [2niru . (r* - mK)]. 
u 
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Provided the number of cells in the crystal is large enough the sum over u 
leads to (1/V) 6 (H - r* + mK) where H = ha* + kb* + lc*. Consequently 
the reflections occur for r* = H' = H + mK: for m = O  we have main 
reflections (H' = H), for m # 0 satellites are defined. We also see that four 
indices are now needed for the identification of a diffraction effect. The 
structure factor of the reflections H' = (h, k, 1, n)  may then be written as 

N 
= A(H1) exp (2nir* r y ) ~ , ( 2 n ~ '  . gj)(-l)m 

j=l 

X exp (-2niK r;) exp (im@j). (3.49). 

According to Fig. 3.17 the average intensity of satellite reflections rapidly 
decreases with m. 

The above formalism may be extended to one-dimensionally density 
modulated structures and also to multi-dimensional (harmonic or not) 
modulations. The above results also suggest that the reciprocal lattice of an 
IMS is aperiodic in the three-dimensional space, and that the symmetry 
group of an IMS cannot be a three-dimensional space group. We will show 
in Appendix 3.E (main references will also be given) that such a reciprocal 
lattice may be transformed into a periodic lattice provided a higher- 
dimensional space is taken into consideration. Thus the symmetry in the 
three-dimensional space can also be a poor residue of the full symmetry in 
the higher-dimensional space. 

Appendices 

3.A Mathematical background 

The Dirac delta function 
In a three-dimensional space the Dirac delta function 6(r - ro) has the 
following properties 

6 = 0  for r f  ro, 6 = w  for r = r o ,  6(r-ro) d r =  1 (3.A.1) 

where S indicates the integration space. Thus the delta function corresponds 
to an infinitely sharp line of unit weight located at ro. It is easily seen that, if 
ro = xoa + yob + zoc, then 

6 (r - rO) = 6 (X - x0) 6 ( y - yo) 6 (2 - 20). (3.A.2) 

6(x -xo) may be considered as the limit of different analytical functions. 
For example, as the limit for a + 0 of the Gaussian function 

Of particular usefulness will be the relation 

where x* is a real variable. It easily seen that (3.A.4) satisfies the properties 
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Fig. 3.A.l. The function Y  = (sin 2 n g x ) / ( n x )  is 
plotted for g = 1,3. Clearly Y ( - x )  = Y ( x ) .  

(3.A.1): indeed its right-hand side may be written as 

sin [2ng(x - xO)] 
exp [2nix * ( x  - xo)] dx * = lim 

n ( x - x o )  ' 

The function sin [2ng(x - xO)]I[n(x - xO)] takes the maximum value 2g at 
x =xo  (see Fig. 3.A.1), oscillates with period l / g ,  and has decreasing 
subsidiary maxima with increasing x:  the value of its integral from -w to 
+w is unitary for any value of g. Therefore the limit for g+ w of 
sin [2ng(x - xO)] / [n (x  - xO)] satisfies all the properties of a delta function. 
Consequently we can also write: 

sin [2ng(x - xo)] 
6 (x  - xo) = lim 

g-.. n ( x - x 0 )  . 
In a three-dimensional space (3.A.4) becomes 

d(r - 4) = I,* exp [2nirS ( r  - ro)] dr* (3.A.6) 

where S* indicates the r* space. Two important properties of the delta 
function are: 

6(r  - ro) = 6(ro - r )  

f ( r )  - ro) =f (r0) - ro). 

Indeed, for r # ro, left- and right-hand members 
vanishing, for r = ro both are infinite. From (3.A.7) 

(3.A.7) 

of (3.A.7) are both 

is derived. Consequently 

The lattice function L 
Delta functions can be used to represent lattice functions. For example, in a 
one-dimensional space a lattice with period a may be represented by 

+m 

L(x) = 6(x  - x,) 
,=-o(r 

where x, = nu and n is an integer value. L ( x )  vanishes everywhere except at 
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the points nu. Analogously a three-dimensional lattice defined by unit 
vectors a, b, c may be represented by 

where r,,,,, = ua + ub + wc and u, v, w are integer values. 
Accordingly, in a three-dimensional space: 

(1) a periodic array of points along the z axis with positions z, = nc may be 
represented as 

+ = 

f'~(r> = w )  ~ ( Y I  C - 2,); (3.A.12) 
n=-m 

(2) a series of lines in the (x, z) plane, parallel to x and separated by c may 
be represented by 

(3) a series of planes parallel to the (x, y) plane and separated by c is 
represented by 

+m 

P3(r) = C S(z - z,). (3.A.14) 
,=-m 

The Fourier transform 
The Fourier transform of the function p(r) is given (for practical reasons we 
follow the convention of including 2n in the exponent) by 

r 
p(r) exp (2nir* r) dr. (3.A.15) 

The vector r* may be considered as a vector in 'Fourier transform space', 
while we could conventionally say that r is a vector in 'direct space'. 

We show now that 

p(r) = i* F(r*) exp (-2nir' . r) dr*. (3.A.16) 

Because of (3.A.15) the right-hand side of (3.A.16) becomes 

p(r') (l* exp [2dr* . (r' - r)] dr*) dr', 

which, in turn, because of (3.A.6), reduces to 

h p(r') d(rf  - r) dr' = p(r). 

Relations (3.A.15) and (3.A.16) may be written as 

F(r*) = T[P(~)], (3.A.17) 
p(r) = T-'[F(r*)] (3.A.18) 

respectively: we will also say that p is the inverse transform of F. Obviously 

T-lT[p(r)l= p(r) 
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but 
?T[p(r)l = T[F(r*)I = ~ ( - 4  

F(r*) is a complex function: by denoting 

A(r*) = 1 p(r) cos (2nir* . r) dr 
S 

B(r*) = 1 p(r) sin (2nir* r) dr 
S 

then 

We calculate now the Fourier transform of p(-r). Since 

I, P(-r) exp (2nir' r) dr = p(r) exp [2ni(-r* . r)] dr = A(r*) - iB(r*), I, 
it may be concluded that 

where F-(r*) is the complex conjugate of F(r*). 
If p(r) is symmetric with respect to the origin, say p(r) = p(-r), because 

of (3.A. 17) and (3.A.21) it will result F(r*) = FV(r*), or, in other words, 
F(r*) will be a real function (B(r*) = 0). Vice versa, if F(r*) = F-(r*) then 
p(r) is symmetric with respect to the origin. 

If p(r) = -p(-r) then F(r*) = - FW(r*), so that F(r*) is pure imaginary 
(then A(r*) = 0). 

Some examples of Fourier transform 
In a one-dimensional space (3.A.15) becomes 

Let us consider some examples for p(x). 

1. Gaussian function : 

Since 
+m 

exp [-$hu2 + itu] du = 

then 

T[p(x)] = F(x*) = exp ( - 2 ~ c ~ a ~ x * ~ ) .  (3.A.25) 

It should be noted that the larger the 'width' of p(x), the smaller is that of 
F(x*) (see Fig. 3.A.2(a)) 

2. Exponential function : p(x) = exp (-g Ix 1). Its Fourier transform is the 
Cauchy function (see Fig. 3.A.2(b)) 
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Fig. 3.A.2. Examples of Fourier transform. 

3. Rectangular aperture: 

p(x) = c for -g < x < g, otherwise p(x) = 0. 

Then 

sin (2ngx *) 
~ ( x * )  = cl-y exp (2nix*x) dx = c 

nx * 

which is plotted in Fig. 3.A.1. 

4. Dirac delta function: p(x) = 6(x). Then (see Fig. 3.A.2(c)) 
+m 

F(x*) = 6(x) exp (2nix*x) dx = 1. 
- CD 

If p(x) = 6(x - a)  then F(x*) = exp (2niax*). 

5. One-dimensional finite lattice: pp = C;E-, 6(x - nu), where pp 
represents a set of N = 2p + 1 equally spaced delta functions. Then 

P P 

T[pp(x)] = x exp (2ninax*) = cos (2nnax*) 
n=-p n=-p  

l - - 2 2 cos (2nnax *) sin (nax *) 
2 sin (nax *) .=-, 

- - 1 
sin [n(2n + l)ax*] - sin [n(2n - l)ax*] 

2 sin (nax *) = -, 
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The function 

- - 1 
{sin [n(2p + l )ax*] - sin [n(2p  - l )ax*] 

2  sin (nax *) 

+ sin [n(2p - l )ax*] - sin [n(2p - 3)ax*] 

+ sin [n(-2p + l )ax*] - sin [n(-2p - l ) ax*] )  

- - sin [(2p + 1)nax * I  - sin Nnax * - 
sin nu* sin m x *  ' 

sin Nny 
f(y)== 

is plotted in Fig. 3.A.3 for N = 6,  7. When y  = h ( h  is an integer value) 
numerator and denominator of the right-hand member of (3.A.27) both 
vanish. Then the value of f  ( y )  (as determined from its limit for y  + h )  is 
equal to N if N is odd; if N is even, then f ( y )  is equal to N if h is even, to 
-N if h is odd. Between each pair of main maxima there are N - 2 
subsidiary peaks. Each main peak has width equal to 2 /N  (1 /N  is that of the 
subsidiary peaks), therefore it becomes sharper as N increases. Furthermore 
the ratio between the amplitude of a main peak with respect that of a 
subsidiary one increases with N. 

What we noted for f ( y )  may be easily applied to (3.A.26), whose 
principal maxima are at x* = hla. 

6. One-dimensional infinite lattice : 

According to 5 above the Fourier transform of p will be 

sin Nnax * 
F(x*)  = lim 

N-= sin nax* ' 

The function F(x*)  will present infinitely sharp lines at x* = hla  of weight 
l la .  Indeed 

+& sin N m x  * 1 +'sin Nny I& & * = - l i m  - 
sin nax * a I& sin n y  dye 

Whichever the value of E ' ,  when N+m the value of the integral is unity. 

Fig. 3.A.3. The funct ion f (  y )  = s i n  N n y l s i n  n y  for 
N = 6,7. 
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Consequently we could write 

or, in words, the Fourier transform of a one-dimensional lattice with period 
a is a one-dimensional lattice with period l l a  represented by delta functions 
with weight l /a.  

7. Three-dimensional finite lattice: 

Its Fourier transform is 

P1 P2 P3 

F(r*) = x x x exp (2nir* . ru,u,w) 
u=-p1 u=-p2 w=-p3 

P2 P3 

= 9 exp (2niur' . a )  . x exp (2nivr' . b) 2 exp (2niwr* . e)  

- - sin Nina . r* sin N2nb r* sin N3nc. r* 
sin n a  . r* sin n b  r* sin JGC r* ' 

where Nl = (2p1 + 1), N2 = (2p2 + I), N3 = (2p3 + 1). In accordance with 
point 5, each of the terms in the right-hand side of (3.A.29) is maximum 
when r* satisfies 

with integer values of h, k, 1. It is easily seen that the solution of the above 
three equations is given by 

r: = h a *  + kb* + lc*, 

where 

and V = a b A c. The vectors a*, b*, c* are nothing else but the basic 
vectors of the reciprocal lattice defined in 3 2.3. When Nl, N2, N3 are 
sufficiently large then F(r*) has appreciable values only in the reciprocal 
lattice points defined by the triple of integers H = (h, k, 1). 

8. Three-dimensional infinite lattice: 

Its Fourier transform is the limit of (3.A.29) for Nl, N2, N3 tending to 
infinity: 

sinNlna . r *  sinN2nb . r *  sinN3ncar* 
F(r*) = lim 

N,,N~, N+- sin n a  . r* sin nb . r* sin JGC r* ' 

According to points 6 and 7 F(r*) represents a three-dimensional lattice by 
an array of delta functions the weight of which may be calculated by 
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integrating F(r*) on a domain dV* about a specific lattice point H. Since 

dV* = d h a * .  dkb* ~ d l c *  = V* dhdkdl  

because of the point 6 
'l sin N,nh 

~ ( r * )  d v *  = V* lim 
N , . N ~ . N P =  I--', sin nh 

x d h l  
E2 sin N2nk E3 sin N,nl 1 d l = V * = -  
-,, sin nk dkkl_3 sin n~ v 

arises. In conclusion, the Fourier transform of a lattice in direct space 
(represented by the function L(r)) is the function L(r*)IV: 

which represents a lattice again (called the reciprocal lattice) in the Fourier 
transform space. 

9. Fourier transform of a one-dimensional periodic array of points along 
the z axis, as defined by (3.A.12). Then 

10. Fourier transform of a lattice plane lying on the plane z = 0 and with 
translation constants a and b. Then 

p(r) = b(x - nu) 6(y - nb) S(z) 
and 

Fourier transform of spherically symmmetric functions 
If p(r) is spherically symmetric we can represent r and r* in spherical polar 
coordinates (r, 0, cp) and (r*, %*, cp*) defined by (see Fig. 3.A.4) 

.I, x = r sin p, cos 8 y = r sin g, sin 8 z = r cos p, 

. . 
/ '  

with r > 0, 0 < cp 6 n, 0 s 8 < 2n. Analogous transformations could be 
written for r*. Without loss of generality we can choose z along the r* 
direction: then r r* = rr* cos cp. Furthermore, for each point with coordin- 
ates (r, 8, cp) another point will exist, equivalent to the first, with 

y* coordinates (r, n + 8, n - cp). The contribution of both the points to the 
integral (3.A.15) will be exp (2nirr* cos cp) + exp [2nirr* cos ( n  - p,)] = 
2 cos (2nrr * cos 9).  Thus (3 .A. 15) reduces to 

Fig. 3.A.4. Polar and Cartesian coordinates. 

3~ n 2n 

F r )  p(r)cos(2nrr*coscp)r2sincpdrdp,d% 
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where r2 sin rp is the Jacobian of the transformation (from Cartesian to polar 
coordinates) Integration over rp and 8 gives 

m sin 2nrr * 
dr = Q U(r) 

sin 2nrr* 
F(r*) = 1 4nr2p(r) dr (3.A.33) 

0 2nrr * 2nrr * 
where U(r) = 4nr2p(r) is the radial distribution function. Thus F(r*) is also 
spherically symmetric and its value at r* = 0 is given by 

F(0) = U(r) dr. 
0 

As an example, let p(r) be a spherically symmetric function equal to 1 for 
r S R and vanishing elsewhere. Its Fourier transform 

sin 2nrr* 
F(r*) = 6 4 s 2  

2nrr * 
2 

r sin 2nrr* dr = $ n ~ ~ r p ( y )  

where rp(y) = 3(sin y - y cos y)Iy3 and y = 2nr*R. The function q(y)  is 
plotted in Fig. 3.A.5. The main maximum occurs at y = 0. Intensities of the 

consecutive maxima is inversely related to R. 

+ 
subsidiary maxima decrease when y increases. The distance between Fig.3.A.5. Thefunction p,y ,=B( sin y -  

ycos y ) / y 3  is plotted as a function of y = 2nr'R. 

Convolutions 
The convolution (or folding) of two functions p(r) and g(r) (it will be 
denoted by p(r) *g(r)) is defined by the integral 

where S is the r space. Note that in (3.A.34) the integrand is a function of 
both u and r while the integral is only a function of u. The relation between 
p(r) and g(r) is symmetrical in forming their convolution. That may be 
proved first by replacing in (3.A.34) r by R = u - r and after R by r: then 

Convoluting two functions very often has the effect of 'broadening' the 
one by the other. As an example, the convolution of two Gaussian functions 
N(a,, al) and N(a,, a;?) is the Gaussian function N((a: + 0;)ll2, a ,  + a,). 

The convolution operation appears in many scientific areas, and is 
involved in the interpretation of most experimental measurements. For 
example, when the intensity of a spectral line is measured by scanning it 
with a detector having a finite slit as input aperture, or when a beam of light 
passes through a ground-glass screen and is broadened out into a diffuse 
beam. Suppose in the second example that p(8) is the angular distribution 
of the incident beam and g(B) is the angular distribution which could be 
obtained if the incident beam was perfectly collimated. For any given p(8) 
the angular distribution of the transmitted beam is given by: 
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That may be explained by observing that the component of the 
transmitted beam emerging at angle 0 due to the light component incident 
at angle 8 '  (and therefore deviated through the angle 8 - 8')  has intensity 
p(01)g(8 - 0'). If interference effects are absent the total intensity in the 
direction 0 is the integral of p(O1)g(8 - 8')  over all values of 0'. 

A very important theorem for crystallographers is the following: 

T [ P ( ~ )  * g(r)l = T[p(r)l T[g(r)l. (3.A.35) 

The left-hand side of (3.A.35) may be written 

p(r)g(u - r)  exp [2ni(u r*)] dr du (3.A.36) 

where r and u vary in S and S" respectively. Denoting u = r + r '  gives 

T[p(r) * g(r)] = 1 1 p(r)g(rt) exp [2ni(r + r') . r*] dr dr' 
S' S 

= I, p(r) exp [2ni(r. r*)] d r l  g(rt)  exp [2ni(rt . r)] dr' 
S' 

In an analogous way the reader will prove that 

If g(r) = p(-r) (3. A.34) will represent the autoconvolution of p(r) with 
itself inverted with respect to the origin: in crystallography it has a special 
significance, the 'Patterson function', and will be denoted by P(u). It is 

the transform of which, according to (3.A.3.9, is given by 

T[P(u)] = [A(r*) + iB(r*)][A(r*) - iB(r*)] = (F(r*)I2. (3.A.39) 

It is now easily seen that the Fourier transform of an autoconvolution is 
always a real function: therefore, in accordance with the conclusions of 
p. 176, P(u) will always be centrosymmetric even if p(r) is not. 

Convolutions involving delta functions 
Because of (3.A.8) and (3 .A.34) 

If r and u are assumed to belong to the same space, choosing the same 
coordinate system transforms the above relation onto 

6 (r - ro) * p (r) = p (r - ro) . (3.A.40) 

We see that the convolution of p(r) with 6(r  - r,) is equivalent to a shift 
of the origin by r ,  (see Fig. 3.A.6(a)). 

Suppose now that f (x) is a function defined between 0 and a. Because of 
(3.A.10) 
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~(x ,Y)  0 0 0 
Fig. 3.A.6. Convolutions of the function fwith: 

w 0 0 0 
(a) the Dirac 6(x - a )  delta function; (b) a one- 
dimensional lattice. In (c) the convolution of the 
function f(x, y )  with a two-dimensional lattice is 
shown. 

where p(x) is a periodic function defined between -a and +w, equal to 
f(x) for 0 s x  s a and with period a. Indeed each term in the summation 
corresponds to a function equal to f(x) but shifted by na (see Fig. 
3.A.6(b)). It may be concluded that each function p(x), periodic with 
period a, may be considered as the convolution of the function f (x) = p(x) 
defined between 0 and a, with an array of delta functions located at the 
lattice point positions. 

This result may be generalized to a three-dimensional space. Indeed 

where: f (r) is a function defined for 0 s ' x  s a, 0 s y s b, 0 s z s c; p(r) is a 
function defined for x, y, z between -w and +w, periodic with periods a, b, 
c, and equal to f ( r )  when O s x s a ,  O S y s b ,  O s z s c .  

In conclusion, a three-dimensional periodic function p(r) may be con- 
sidered as the convolution of a function defined in an elementary cell with a 
three-dimensional lattice, this last represented by the lattice function L. 

Some properties of convolutions 
Let p(x) and g(x) be two one-dimensional distributions defined in the 
interval (-a, +w) and C(u) their convolution. Consider the characteristic 
equation of C(u): 

+= +m +m 

C(U) exp (itu) du = L (L p(x)g(u - x) exp (itu) dx du. ) 
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Table 3.A.1. Properties of distributions under the 
convolution operation 

Changing the variable u into q = u - x gives 
+ rn + " 

C(u) exp (iru) du = p(x) exp (itx) dxl-m g(q) exp (itq) dq 

(3.A.42) 

which implies that the characteristic function of a distribution obtained by 
convolution is equal to the product of the characteristic functions of the 
constituent distributions. From (3.A.42) several properties of great import 
follow. 

Setting t = 0 in (3.A.42) gives 

where A represents the area under the distribution. 
Taking the derivative of (3.A.42) with respect to t and setting t = 0 yields 

Thus, the mean of the convolution is equal to the sum of the means of the 
constituent distributions. 

By extending the procedure Table 3.A.1 may be obtained. The following 
notation has been used: 

are the central moments of order p for the convolution distribution (similar 
expression can be derived for the constituent distributions). Accordingly 
po= 1, 1-11 = 0, p, coincides with the variance a', while yl = p3/a3 and 
y,= [(p4/a4) - 31 are the skewness and the excess parameters for any 
distribution. 

Deconvolution of spectra 
Often it occurs that an experimentally measured function C may be 
considered as the convolution of the functions p and g. If p is known in 
advance then it may be of some interest to obtain g. That frequently occurs 
in spectroscopy or in powder diffraction, where a spectrum is often 
constituted by overlapping peaks and it is wanted to deconvolute from such 
a spectrum a given lineshape function. Effects of such self-deconvolution 
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are:['"16] the component lines are more clearly distinguished, their location, 
area, etc. are more correctly defined, the signal to noise ratio is increased. 

Let us consider C as the convolution of the lineshape function p and of 
the ideal spectrum g. Then p may be decon~oluted[l~~ from C by taking the 
Fourier transform of 

and by calculating 

g is finally obtained 
(3.A.43): 

T k l  = T[C]/Tbl. (3.A.43) 

as inverse Fourier transform of the right-hand side of 

An example of what can be achieved is shown in Fig. 3.A.7. In (a) a 
diffractogram of quartz measured between 67" and 69" is shown, in (b) a 
possible Fourier self-deconvoluted spectrum is drawn. The widths of 
deconvoluted lines are narrower, peak centroids shift as a result of changes 
in degree of overlap: since integrated intensities of peaks are retained (see 
p. 184) more careful estimates of integrated intensities of single peaks may 
now be accomplished. 

The practical use of (3.A.44) is not always straightforward.[183191 The 
limited instrumental resolution and the random errors 'associated with 
experimental data are a difficult problem. In particular, random errors are 
usually amplified by the process so that the right-hand side of (3.A.44) 
could coincide with a function g'  substantially different from g.  Filtering 
operations or supplementary considerations are then introduced to reduce 
spurious features. 

3.B Scattering and related topics 

Compton scattering 
A photon of energy hv (v = CIA) moving along the direction so is scattered 
by a completely free electron located in 0, initially at rest. Let s be the 
direction of the scattered photon, 28 the scattering angle, hv' = hc/(A + dA) 
its energy and mv2/2 the recoil electron energy. Conservation of energy 
(neglecting any relativistic effect) requires 

which may be approximated to 

hc 
- dA = $mu2 
A2 

Conservation of momentum requires 

28 
Fig. 3.A.7. 
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which, on assuming A + dA = A, may be reduced to 

h 
imv = - sin 8. (3.B.3) 

A 

Finally, v may be eliminated from (3.B.1) and (3.B.3) so as to obtain 

The anisotropic temperature factor 
Thermal agitation will cause the atoms to fluctuate about their equilibrium 
positions. Let us suppose that the force field around an atom located at the 
origin of the coordinate system (its equilibrium position) is anisotropic and 
harmonic. Then the mean-square vibrational amplitude is different for 
different directions and equal in the two ways of the same direction. In any 
rectilinear coordinate system defined by A = [a, b, c] let p( r l )  be the 
probability of finding the atomic centre moved in r t  = x t a  + y l b  + z'c = 
X'A. In general 

p(xl, y' ,  z t )  = ( 2 ~ r ) - ~ / ~ ( d e t  U)-1'2 exp [-~(X'U-'x')], (3.B.5) 

where U is the variance-covariance matrix (it represents a symmetrical 
tensor) 

i (x'" (x tyt )  ( x t z t )  
u =  (x'y') (yf2)  (y 'z ' )  = ( x t X ' ) .  

( x t z t )  (y tz ' )  ( z t2 )  1 
The Fourier transform of p(X1) gives 

q(X*) = exp (-2n2X*u*x*) = exp [ - ~ ? G ~ ( U T ~ X * ~  + 2U&.x*y* + . . .)I 
= exp (-X*/3X*) = exp - ( p , , ~ * ~  + 2P12x*y* + . . .)I 

where U* is the variance-covariance matrix expressed in reciprocal coordi- 
nates and 

Usually crystallographic least-squares calculations (see p. 94) provide estim- 
ates of the tensor fi from which U* is easily derived via eqn (3.8.6). Then 
the atomic scattering factor, calculated for r* =r& and corrected for 
thermal motion is (see p. 153) 

fo exp (-HPH) = fo exp [-2n2(Au*H)] 

where fo refers to the atom at rest. 
In order to obtain U from U* we only need to apply eqn (2.28). We 

obtain U = GU*G from which 

In accordance with a well known property of tensors, the mean-squares 
vibrational amplitude (u2) in the direction defined by the unit vector 
n = NA = N*A*, is given by 

(u2)(,) = NUN = N*u*N*. (3.B.8) 
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Let us now express n as a ratio between a vector r = XA = X*A* parallel 
to n and its modulus: n = rlr. Then eqn (3.B.8) may be written as 

or also 

From (3.B.9) the following relations arise: 

The following exercises may be useful to clarify some aspects of the 
subject: 

Calculate the Pijs corresponding to the isotropic temperature factor Biso 
defined by (3.19). 

If in (3.19) sin2 8/A2 = r*'/4 = 1/(4dh) is replaced by (2.17b) then 

$ = BisoG * /4 
is obtained. 

If $ is the anisotropic tensor in the coordinate system A, calculate its 
expression in A' = MA. 

According to (2.A. 15) $' = (M)-~$M-,. 

If $ is the thermal tensor of a given atom, calculate the tensor $' of the 
atom referred to the first one by the symmetry operation C = (R, T). 

In accordance with (2.A. 16) $' = R$R. 

Calculate the principal axes of the ellipsoid describing the anisotropic 
temperature factor $ and their orientations with respect to the crystal- 
lographic axes. 

See p. 76. 

Calculate the isotropic temperature factor equivalent[201 to a given 
anisotropic temperature factor (often the anisotropic parameters are 
deposited and equivalent isotropic are published). The equivalent 
isotropic motion is defined as that one which gives rise to the same value 
of (u2):  in our case ( u ~ ) ~ ~ ~ ~ ~  = ( u ' ) ~ ~ ~ .  

Let us suppose that eigenvalues A,, A,, and A3 of the anisotropic tensor 
$ have been calculated. Then, according to (2.38b) we can write 

1 
(u2)aniso = $(A1 + A2 + A3) (3.B.lOa) 

while, for an isotropic motion (see eqn (3.19)) 
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Isotropic and anisotropic motion will be then equivalent if 

Let us now observe that, under a transformation of axes, the matrix 
$G transforms, because of eqns (2.E.8) and (2.21), according to 

in other words, PG transforms in the same way as a rotation matrix of a 
symmetry operator (see eqn (2.E.1)). Therefore the trace of $G is 
invariant under the transformation and, according to p. 75, it is 
constantly equal to A, + A, + A,. 

At the end we can replace eqn (3.B.lOb) by the most simple equation 

1 1 
(u2) equiv = 2 Tr (PO) = 

6~ i,j 

The reader will easily derive from (3.B.lOd) specific formulae for 
specific crystallographic systems: e.g. for cubic, tetragonal, and ortho- 
rhombic systems 

(u2)equiv = (Plla2 + P22b2 + P33~~)1(6~d~) ,  

for hexagonal and trigonal systems (hexagonal setting) 

etc. Readers are referred to Schomaker and ~ a r s h [ ~ l ]  for the estimated 
standard deviation of (u2) 
In reports of crystal structure determination thermal motion is usually 

presented in direct space by means of a probability ellipsoid. Each ellipsoid 
is centred on the mean position of the atom: the surface has constant 
probability density obtained, in accordance with eqn (3.B.9, on assuming 

jpu-lx'= ~2 

where C is a chosen constant. The probability P that a thermal displacement 
falls within the ellipsoids may be calculated as 

P ( c ) = ~  p(X')dXr. 
ellipsoid 

The most often used value is C = 1.5282: then[''] the ellipsoid encloses 50 
per cent of the trivariate Gaussian probability density. 

Symmetry restrictions on the anisotropic temperature factors 
Coefficients Pii as provided by crystallographic least-squares procedures (see 
p. 94) are affected by various error sources: for example, experimental 
errors on diffraction intensity measurements, inadequacy of the atomic 
scattering model, wrong or unapplied absorption correction (see Chapter 4), 
existence of non-harmonic force fields around the atoms, etc. Thus the 
thermal parameters estimated by least squares could be physically unrealis- 
tic; for example the variance-covariance matrix U should not result 
positive-definite. Necessary and sufficient conditions for positiveness are 

(det U) > 0; Uii > 0; and UiiUi, > 0 for i, j = 1, 2, 3. 
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If the above conditions are violated then atomic vibrations could be 
described by imaginary ellipsoids or by paraboloids or by hyperboloids, with 
the obvious meaning that experimental data are not of sufficient accuracy to 
justify the use of anisotropic temperature factors. 

If an atom lies on a special site of a space group the components of the 
thermal tensor are restricted according to the site symmetry. Indeed the 
thermal ellipsoids must remain invariant after application of the n symmetry 
operations which leave invariant the site. In accordance with point 3 in the 
previous section the relations 

arise, from which the $ restrictions can be derived. Such restrictions can 
also be obtained in an easier way by using Wigner's theorem according to 
which the symmetry of the $ restrictions is displayed by the matrix 

Since no atomic position is left invariant after the application of glide 
planes or screw axes, only point symmetries have to be taken into account. 
Furthermore, ellipsoids are centrosymmetric, thus no additional $ 
restriction arises if an inversion centre is added to the site symmetry, or if a 
mirror plane is replaced by a twofold axis perpendicular to the plane. Thus 
it is not difficult to understand that ellipsoid symmetry is one of the 
following three cases: 

(1) spherical symmetry, for atomic sites with symmetry 23 and its 
supergroups; 

(2) ellipsoid of revolution, for site symmetries 3, 4, 4, and 'non-cubic' 
supergroups; 

(3) general ellipsoid. For site symmetry 222 and its orthorhombic super- 
groups the orientations of the ellipsoid axes is fixed by symmetry; for 
site symmetry 2, m, or 2/m only the orientation of one ellipsoid axis is 
fixed by symmetry. 

In Table 3.B.1 all the conventional special positions are collected in seven 
b l o ~ k s . [ ~ ~ , ~ ~ ]  Each block shows the possible point groups to which each site 
may belong, the 'minimal' site symmetry characterizing each position and a 
cross-reference number identifying the type of $ restrictions described in 
Table 3.B.2. The letter h, when present, warns that an hexagonal setting is 
involved and the letter w suggests that the rule holds for hexagonal and 
non-hexagonal settings. To make Table 3.B.1 clearer we note that all the 
special positions in the first block belong to one of the point groups m3m, 
43m, 432, m3, 23. According to previous observations, we now neglect 
whether symmetry axes are proper or improper; thus the 'minimal' 
symmetry 311111 210011 is associated with the sites. Conversely, under the same 
convention, all sites with symmetry 2[,,] 211001 i or 2[rn11 Z[lool or 2[ooll 2 k 0 ~ ~ l  
or ?[,ll 211001 or 2[,,] 2[loo1 are all represented in block five of Table 3.B.1 by 
the site with 'minimal' symmetry 2[,,] 2[1001 

To make Table 3.B.2 clearer we observe that case No. 23 may be 
rewritten as: 

P11, P33 = P22' P121 P13 = -P121 P23. 
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Table 3.B.1. Site symmetry table giving key for the 29 types 
of symmetry p-restrictions 

m3m, 43m, 432, rn3,23 
3[1111 2 [ ~ ~ 1 1  

6/mmm, 6m2, 6mm, 622, 6/m, 
6, 6, 3m, 32, 3, 3 

h 310011 9 

4/mmrn, 42m, 4mm, 422 
4ff-r~ 4,4 
4l001 1 2 

4 [ ~ 1 ~ 1  3 

4 1 1 ~ ~ 1  4 

3rn, 3m, 32, 3, 3 
%iil 5 
3[ i i i1  6 
3[1i11 7 
3[i i i1 8 

rnrnrn, rnm2, 222 
2[00,1 2[1001 10 

w 2[001, 2[1101 11 
210101 2[1011 12 
2~001 ~[OIII 13 

h 210011 211001 14 
h ~ [ O O ~ I  210101 15 

1 A A A O  0 0 
2 A A C O  0 0 
3 A B A O  0 0 
4 A B B O  0 0 
5 A A A D  D D 
6 A A A D - D - D  
7 A A A D  -D D 
8 A A A D  D -D 
9 A A C A / 2  0 0 

10 A B C O  0 0 
11 A A C D  0 0 
12 A B A O  E 0 
13 A B B O  0 F 
14 A B C B/2 0 0 
15 A B C A/2 0 0 

2/m, m, 2 
l W  2001] I 6  

0 1 0 1  17 
1 0 0 1  18 

W 0 1  19 
w 21iio1 20 

1 0 1 ,  21 
I 22 
20111 23 
2 0  24 

h 1 0 0 1  25 
Il 2210]  26 
h 1 2 0 1  27 
tl 0 1 0 1  28 

i, 1 
1 29 

Table 3.B.2. Symmetry fi-restrictions. 

16 A B C D  0 0 
17 A B C O  E 0 
18 A B C O  0 F 
19 A A C D  E -E 
20 A A C D  E E 
2 1 A B A D  E -D 
22 A B A D  E D 

2 3  A B B D -D F 
24 A B B D  D F 
25 A B C B/2 F/2 F 
26 A B C A/2 0 F 
27 A B C B/2 E 0 
28 A B C A/2 E E/2 
29 A B C D  E F 

Cross- Pi1 P22 P33 P i 2  Pi3 P23 
refer- 
ence 
No. 

Cross- Pi1 Pz, P33 P i 2  Pi3 P2, 
refer- 
ence 
No. 
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The Renninger effect and experimental phase determination 
by means of multiple diffraction experiments 
Let us suppose that the two nodes HI and Hz are simultaneously at the 
surface of the reflection sphere: according to eqn (3.25) it will have to be 

By subtracting the second equation from the first we obtain 

(sl - s2)lA = r& - r& = r&-H2. (3.B.12) 

Equation (3.B.12) sets up that the diffracted beam Hz can act as an 
incident beam for the reflection H1 - HZ which is thus in the diffraction 
position (see Fig. 3.B.l(a)). Therefore, to the beam diffracted in direction 
sl by lattice planes H1 a twice-reflected beam overlaps, first from the planes 
Hz and then from the planes HI - Hz (see Fig. 3.B.l(b)). In the same way 
the beam diffracted in direction s2 from the planes Hz will overlap with a 
twice-reflected beam, first from the planes H1 and then from the planes 
Hz - HI. 

In general, when diffraction data are collected for crystal structure 
solution, the multiple diffraction (Renninger) effect can be considered as a 
disturbance. As already noted, it can be the reason for apparent violation of 
the systematic extinctions (but the shape of their diffraction peaks is 
different from that of the normal reflections and therefore easily recog- 
nizable). On the other hand, the three-beam diffraction effect can be treated 
in accordance with dynamic diffraction theory and used for the experimental 
solution of the phase problem. This point of view is extremely promising, 
and a short account is given here. 

First ~ i p s c o m b [ ~ ~ ]  investigated the possibility of using multiple diffraction 
intensities for phase determination, but conclusive results were not ob- 
tained. In spite of many subsequent investigations, only in more recent 
years[2s301 has it become clear that dynamical theory applied to three-beam 
diffraction is a powerful tool for the experimental solution of the phase 
problem even for common (say imperfect) crystals. General solutions for 
the three-beam case are now available which provide a satisfactory 
interpretation of experimental results. The reader is referred to a recent 
book[311 for a review of the various contributions and a description of the 

Fig. 3.8.1. Renninger effect described in: (a) 
reciprocal space; (b) direct space. 
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Detector 

I - scan 

Fig. 3.8.2. *-scan experiment described in: (a) 
direct space; (b) reciprocal space. (b) Ewald sphere 

theoretical background: here a short account of the results is given in 
accordance with Hummer and  ill^.[^^] 

The interference between the wave directly diffracted from H1 planes 
(primary reflection) and the 'Renninger Umweg wave' generated from Hz 
and HI - H, scatterings produces a wave whose intensity depends on the 
triplet invariant phase 

Without anomalous dispersion effects it is equal to 

Such an intensity can be measured by a q-scan experiment (see Fig. 3.B.2): 
the integrated intensity IH,(3) is monitored while the crystal is rotated about 
the vector r:, and scanned through the three-beam position. The integrated 
3-scan profile may be approximately calculated (except for a range very 
close to the three-beam setting) according to (see Fig. 3.B.3) 

where the Ds are the amplitudes of the excited wavefields in the crystal (the 
intensities are given by 1 = 1 D 12). In eqn (3.B. 13) DL, is the two-beam 
amplitude of the reflection HI, D, is the amplitude of the Umweg wave 
defined by 

Du = RW)FH~FH,-H~.  

Ci are suitable parameters. 
the complex resonance[331 
the amplitude and the 

lR(+)l and A(3) are the modulus and phase of 
term R ( q )  = )R (q)l exp (iA(+)] which governs 
resonance phase shift of the Umweg wave. Typical resonance curves for 
IR(q)1 and A(q) are given in Fig. 3.B.4. IR(q)I is highest near the 
three-beam position. A(q) varies from zero to n when 3 is scanned through 
the three-beam position: it is less than n/2 when H, is inside the Ewald 
sphere; it is between n/2 and n when it is outside. 

Equation (3.B.13) and (3.B.14) may be used to interpret the main 

Fig. 3.8.3. Diagram of the interference between 
the unperturbed two-beam amplitude Do and 

features of typical q-scan profiles (we assume that r;, crosses the Ewald 
sphere from inside ( 3  < 0) to outside (3  > 0)). . . 

the Umweg resonance term D,. Suppose Q, - 0: for 6 <<O it is @j+ A($) = 0, interfering waves are 
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essentially in phase, but R ( 3 )  = 0. Then IH1(3) =I&. When we get near the 
three-beam position ID,(qj)l rapidly increases while A(3) approaches 7612: 
then the intensity ZHl(3) >GI. Just after scanning through the three-beam 
position IR(q)( is still large but cos ( a ,  + A3)  is negative: then ZH1(3) drops 
below the two-beam value G I .  For larger values of 3 ZH1(3) will approach 
I$. The type of asymmetry is reversed for triplet phase a3 = 180". 

It is easy now to foresee that for triplet phases with a, - 7612 the q-scan 
profile will show a nearly symmetrical decrease of the intensity about I$ - 0, 
where cos ( a ,  + A(3)) = -1. If a, = -n/2 an increase in intensity will 
occur about 3 - 0, where cos ( a ,  + A(3)) - 1. According to this method, 
expected profiles for a, - +45" (or Q3 = -45') should present characteris- 
tics between those for a, = 0 and for Q3 = 90" (or a3 - -90"). Ideal q-scan 
profiles for a, - 0, n, f 7612, kn14, have been recently secured[341 and are 
shown in Fig. 3.B.5. Profiles for other quadrants can be obtained by 
observing that, according to (3.B.14), IHl(v) for a given a3 is equal to 
IH1(-3) for the phase (180 - Q3). Therefore 3-scan profiles for Q3 and 
(180 - a , )  are related by a mirror line through 3 = 0. 

Therefore one is able to define ideal profiles that satisfy the condition 

AI(3) = Gl 
where AI(3) is defined as 

AI(3) = m i 1 ( 3 )  + G1(-3)). 

I&(3)  and I&(+) are the q-scan profiles for the positive (+a3)  and the 
negative triplet phase (-a3) respectively. Thus the ideal profiles shown in 
Fig. 3.B.5 are marked by the condition AZ(tp)lG1 = 1. 

Ideal 3-scan profiles can only be obtained if the dominant process in he 
three-beam interaction is due to the interference effect. That occurs when 
IFH21 and IFHl-H21 are about twice as strong as IFHl/. If IFH2[ is small and 
IFHZ-HII is large enough (or vice versa as the influence of (FH21 and IFH2-H11 is 
symmetric) then intensity is removed from the H1 reflection and coupled 
into the H, reflection via the coupling Hz - HI. This loss of intensity is not 
compensated by the scattering power from H2 into H1 reflection. The result 
is the so-called aufhellung effect, that is a strong depletion of the HI 
intensity. If IFH,I is very small and IFH,( is large then the intensity of HI is 
increased at the cost of the H2 reflection intensity. This effect is called 
umweganregung by ~ e n n i n g e r . [ ~ ~ ]  

Unweganregung and aufhellung effects can be evaluated[361 by comparing 
the 3-scan profiles for 0, and -a3 .  Then profiles can be separated into two 
parts: the symmetric AI curve, which represents the phase-independent 
umweganregung or aufhellung effect; the ideal 3-scan profiles, which 
contain the phase information. 

Some concluding remarks may be useful: 

1. Exact 3-scan can be difficult for conventional four-circle 
diffra~tometers.[~~] A special six-circle d i f f ra~tometer~~~]  proved to be useful: 
two circles (8, Y) for the detector and four circles for the crystal motion (see 
Fig. 3.B.6). When the vector H1 is aligned into the T) axis, the 3 scan is 
performed by rotating only about the axis: the detector circles (8, Y) may 
be moved to observe the reflections H1 or H2. 

in - 0 - out 
v 

in -- 0 - out 

v 
Fig. 3.8.4. Schematic drawings for the 
amplitude of the resonance term Rand for its 
phase factor in function of tp. tp is assumed to be 
zero at the ideal three-beam position. 

2. Since dynamical three-beam interaction has a very small angular 
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range, both the divergence and the spectral width of the primary beam 
should be small enough. Synchrotron radiation seems therefore the most 
suitable source for q-scan experiments. But also properly modified X-ray 
equipments based on rotating-anode generators can play an important role. 

3. Measuring with the necessary statistical accuracy a single 3-scan 
profile is a time-consuming process (say, half an hour when synchrotron 
radiation is used, some hours for less intense sources). In order to avoid the 
influence of long-range intensity variations, the q-scan profile is usually 
obtained as the sum of many fast scans. 

4. Finding three beam points is not very easy for large structures (more 
than three reciprocal lattice points can simultaneously lie on the Ewald 
sphere). It is safe to calculate in advance the most suitable 11, angles for each 
reflection HI and choose for measurements three-beam cases which are 
separated from all the others by an angular distance greater than 0.1". 

Fig. 3.8.6. Non-conventional six-circle 
5. As a rule, more reliable phase estimates can be obtained if FH,, FH2, diffractometer, 

FH1-H2 have comparable magnitudes. If polarized radiation is used, the 
polarization factor may be exploited to attain such a rule. 

6. The absolute configuration of a non-centrosymmetric structure may be 
determined by accurately measuring one (or more) triplet phase, having a 
value near f nI2. 

Electron diffraction 
The diffraction of electrons (e-diffraction) was demonstrated by Davisson 
and Germer in 1927. The electron beam is produced in an electron gun by a 
'hair-pin' filament with diameter of about 10 pm, or in a heated pointed 
filament of 1-2 pm size (see Chapter 9). Electromagnetic lenses restrict 
divergence to or lop4 rad, but also divergence of 10-6rad may be 
achieved for special purposes. Electrons are accelerated through a potential 
difference of V volts. The following relation is valid: 

Two energetical intervals are commonly used: we will talk about high- 
energy diffraction (HEED) when V -50-120kV (with the advent of 
high-voltage electron microscopes this range needs to be extended to 
1 MeV) and A =0.05 A, and low-energy diffraction (LEED) when V = 10- 
300V and A=4-1 A. Electrons are strongly absorbed by matter and 
therefore e-diffraction in transmission is applicable to very thin layers of 
matter (10p7-10-5 cm). The scattering is caused by the interaction of the 
electrons with the electrostatic field q(r)  of the atoms. q(r)  is the sum of 
the field caused by the nucleus and the field caused by the electron cloud. 
Thus the interaction of electrons with matter may be divided into three 
processes: (a) no interaction-the electron passes straight through the 
specimen; (b) elastic scattering-the electrons are scattered by the Coulom- 
bic potential due to the nucleus. Since the proton mass is much larger than 
that of electron, no loss of energy occurs: such a scattering is the most 
important in electron microscopy. (c) Inelastic scattering-electrons of the 
primary beam interact with atomic electrons, and are scattered having 
suffered a loss of energy. In a microscope such electrons are focused at 
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sin @/A 
Fig. 3.8.7. Typical scattering curves for: ( I )  
electrons; (2) X-rays; (3) neutrons. 

different positions and produce an effect called chromatic aberration 
(causing blurring of the image). 

q(r)  is related to the electron density by Poisson's equation 

V"@) = -4nbn(r)  - p e w )  

where p,(r) is the charge density due to the atomic nucleus and p, is the 
electron density function (as defined for X-ray scattering). While the 
nucleus with the charge Ze can be considered as a point, the electrons 
occupy a finite volume: therefore, as for X-rays (see p. 146), the e-scattering 
will have a geometric component which will take into account the 
distribution of the electrons around the nucleus. By supposing a spherical 
symmetry a simple relation may be obtained between the atomic scattering 
factor for X-rays, f,,, and that for electrons, fa,. Let us introduce into 
Poisson's equation the inverse Fourier transform 

v2(] fae(r*) exp (-2nir* . r) dr*) 

= 4n fax(r*) exp (-2niP . r)  dr* I 
- 4n Z exp (-2nir* . r) dr* I 

Since the left-hand side is equal to 

I I -2nir*12fae(r*) exp (-2nir' r) dr*, 

we obtain the Mott formula 

fae(r*) = n-l(Z - fax(r*))lr*'. 

For sin 8 / A  + 0 the value of fa, is indeterminate, but a sensible value may be 
obtained by the boundary condition 

It is still preferred to tabulate (see International tables for x-ray 
crystallography, Vols. 3 and 4) 

where fa, is in electrons and f:, in (fte occurs in the first Born 
approximation for electron scattering by atoms). 

If we compare numerically eqn (3.B.15) with the atomic scattering factor 
for the X-rays, we observe that: 

1. e-scattering is much more efficient than X-scattering (see Fig. 3.B.7). 
Consequently diffraction effects are easily detected even from volumes 
much smaller than those required for X-rays (in practice, starting from 
thicknesses of 100 A for simple structures constituted of heavy atoms). 

2. The curves fa, are less sensitive (see Table 3.B.3) to the atomic number 
Z than fa, (on the average fae(0) ~ 2 " ~ ) .  Therefore the positions of the 
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Table 3.B.3. Some atomic scattering amplitudes for electrons 
at sin 811 = 0 based on the rest mass of the electron (for 
electrons of velocity v, multiply fa, by [ I  - ( v / c ) ~ ] - " ~ )  and 
nuclear scattering for neutrons for specific nuclei 

Element fte(0) (lo-' cm) Specific b (lo-'' cm) 

light atoms in presence of heavy atoms (e.g. hydrogen atoms in an 
organic compound) may be more easily determined by e-diffraction. 

3. As for X-rays, the atomic positions can be fixed by means of the 
three-dimensional Fourier synthesis whose maxima correspond to the 
positions of the atomic nuclei. 

4. The electrons can exist in two spin states and therefore can be polarized. 
Usually internal fields of crystal structures are not strong enough to do 
that. 

In HEED techniques diffraction angles are very small. There are a lot of 
reflections having 20 between 0" and 2". Under these conditions sin 8 in the 
Bragg law can be approximated by 0. Besides, the radius of the Ewald 
sphere is very large and its surface is in practice reduced to a plane: thus, all 
the nodes of a reciprocal plane can simultaneously be in Bragg position. 
Tens or hundreds diffracted beams can be simultaneously observed on a 
fluorescent screen, or collected on a photographic plate for measuring the 
intensities, or transformed into images by means of adequate electronic 
optics. 

With A =  0.05 A, one might think it would be easy to obtain resolved 
images of the atoms (in some cases they have been effectively obtained). 
The aberrations of magnetic lenses, particularly the spherical aberration are 
the principal obstacle: electrons widely scattered are focused at positions 
different from those to which are focused electrons travelling close to the 
lens axis. The result is that a point object is spread over a length Ar in the 
image plane. The theoretical resolution of an electron microscope is 
approximately 2 A at 100 kV and less than 2 at higher potentials. Because 
of these characteristics, HEED microscopy is particularly favourable for 
studying superstructures, order-disorder phenomena, grain boundaries, and 
generally the real structure of crystals. 

LEED techniques are commonly used for studying crystal surfaces 
(electrons can penetrate into a crystal only for a very small thickness), in 
order to study processes of electronic and ionic emission, catalysis, 
nucleation of new phases, oxidation, etc. The function q ( r )  terminates at 
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Fig. 3.0.8. (a) Spectrum from a nuclear reactor. 
The shaded wavelengths are selected by a 
monochromator. (b) A schematic time- 
dependence of two pulses of neutrons leaving 
the moderator with different energies (A, > A,). A 
next pulse starts when the number of neutrons 
(N,) is small enough. (c) Neutron flux 
distribution on a pulsed neutron machine. 

the crystal surface: thus in principle the structure of outer layers can be 
different from that of internal layers. Interpretation of the spectra is not 
easy because of multiple scattering of the electrons. Additional information 
is provided by means of Auger spectroscopy of scattered electrons. 

Neutron scattering 
A neutron is a heavy particle with spin 4 and magnetic moment of 1.9132 
nuclear magnetons. Its wave properties were shown in 1936 by Halban and 
Preiswerk and by Mitchell and Powers. Neutron diffraction experiments 
(n-diffraction) require high fluxes provided nowadays by modern reactors. 
They produce fast neutrons whose energy is reduced by collisions in a 
moderator of heavy water or graphite. So retarded neutrons are called 
thermal and their speed obeys a Maxwell distribution: the corresponding 
spectrum is white (see Fig. 3.B.8(a)). A monochromator (usually single 
crystals of Ge, Cu, Zn, Pb) selects the desired wavelength A. 

Neutrons can also be produced in a pulsed manner by spallation, at a 
repetition rate between 24 Hz and 50 Hz. High-energy protons (-1 GeV), 
in short pulses at the appropriate pulse frequency, strike a target such as 
uranium or tungsten releasing several tens of neutrons per proton (-25 
neutrons for 238U). The pulsed neutron flux is only present for a very short 
time (the burst lasts around 0.4 ys): heat-removal is then easy and high 
fluxes are allowed (higher than those produced by reactors). 

High-energy neutrons are slowed down to thermal energies by appropri- 
ate moderators. Water, polyethylene, liquid hydrogen, or liquid methane 
are frequently used: the choice is determined by the scattering experiment. 
During the thermalization process neutrons undergo a large number of 
collisions which cause pulse broadening. The width of the pulse leaving the 
moderator is roughly proportional to the wavelength (see Fig. 3.B.8(b)) so 
that the fractional wavelength resolution is nearly constant. A characteristic 
neutron spectrum is shown in Fig. 3.B.8(c): high intensities at short 
wavelength (A < 1 A) is a very significant characteristic of pulsed neutron 
sources. 

The neutron-atom interaction comprises interaction with the nucleus and 
interaction of the magnetic momentum associated with the spin of the 
neutron with the magnetic momentum of the atom. This effect mainly 
occurs for atoms with incompletely occupied outer electron shells (for 
instance, transition elements). 

The neutron-nucleus interaction is governed by very short range nuclear 
forces (-10-l3 cm). Since the nuclear radius is of the order 10-l5 cm, i.e. of 
several orders of magnitude less than the wavelength associated with the 
incident neutrons, the nucleus will behave like a point and its scattering 
factor bo will be isotropic and not dependent on sin B/A (see Fig. 3.B.7). By 
convention, the scattering amplitude is assumed positive where there is a 
phase change of 180" between incident and scattered waves: it has the 
dimension of length and is measured in units of 10-12 cm. When the neutron 
is very close to the nucleus a metastable system, nucleus + neutron, is 
created which decays by re-emitting the neutron. For appropriate energy a 
resonance effect can occur: then the scattering factor assumes the form 
b = bo - Ab'. Since Ab' can be greater than b, it is possible to have 
negative scattering factors for some nuclei (for instance, 'H, 48Ti, 62Ni, 
5 5 ~ n ) :  for them the scattering is out of phase by 180" with respect to the 
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nuclei with b > 0. A few nuclei also present an imaginary wavelength- 
dependent term Ab" (see pp. 165-9 for a more extensive treatment of 
anomalous scattering). 

The angular momentum of the nucleus is another factor which influences 
the capacity of scattering. If I is the angular momentum, then it can be 
combined with the neutron spin in a parallel or in an antiparallel fashion 
yielding the total spin of either J = I + 4 or J = I - 4, and corresponding 
scattering factors b+ and b-. According to quantum mechanics, there are 
2J + 1 orientations in space compatible with one spin of value J. The 
compound nucleus will then have [2(I+ 4) + 11 + [2(I - i) + 11 = 2(2I+ 1) 
possible states. One fraction of these, w+ = [2(I + 4) + 1]/[2(2I+ I)] = (I  + 
1)/(2I + 1) corresponds to states of parallel spins while the other one, 
w- = I/(2I + I), corresponds to states of antiparallel spins. In conclusion, a 
single isotope with I > 0 can be described as a random mixture of nuclei 
with atomic fractions w+ and w- and scattering amplitudes b+ and b-. Then 
b = w+b+ + w-b- will be the coherent scattered amplitude. Incoherent 
scattering will also occur, with square amplitude given by [(w+b: + 
W-b:) - (w+b+ + W-b-)'I which contributes to a uniform background with 
no diffraction effects. This is particularly important for hydrogen, for which 
I = 4, b+ - 1.04 x 10-l2 cm, b- - -4.7 x 10-l2 cm. Then w+ = 0.75, w- = 
0.25, b - -0.39, and most of the scattering is incoherent background. 

In general, one chemical element exists in a crystal structure in different 
isotopic forms which are randomly distributed over all sites occupied by the 
element. The scattering factor of the element will be a weighted average 
over various states of spin of every isotope and over various isotopes. This 
disorder generates a pervasive coherent and incoherent background in the 
diffraction spectrum. If wn is the relative abundance of the nth isotope then 
the effective scattering factor will be b = C wnbn and the total diffuse 
background scattered intensity will be 1, wnbE - b2. 

Atoms which possess a magnetic momentum because of the presence of 
unpaired electrons interact with the magnetic momentum of the neutron 
giving additional neutron scattering. Interaction occurs in a finite domain 
around the nucleus: therefore, as for X-rays and electrons, magnetic 
scattering will decline with sin6lA. 

Let us consider the case of identical atoms with all spins parallel 
(ferromagnetic materials) and spins alternating parallel and antiparallel 
(antiferromagnetic materials). The magnetic scattering amplitude of each 
atom is given by 

p = (e2ySfmaglmc2) - 0. 54Sfmag (10-l2 cm) 

where y is the neutron magnetic moment in nuclear magnetons, e and m are 
the charge and the mass of the electron, c the velocity of light, S the 
electron spin quantum of the scattering atom, fmag the atomic scattering 
form factor given by the Fourier transform of the distribution of electrons 
having unpaired spin and normalized so as to be fmag = 1 for 6 = 0. p is of 
the same order as nuclear scattering. 

Nuclear and magnetic scattering are additive for unpolarized neutron 
beams: then 

IF 1' = IF 1:,,, + sin2 cv I FmagI2 

where a is the angle between the unit vector in the direction of the spin 
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orientation in the sample and the vector r* .  For a sample containing a single 
magnetic domain sin2 a is equal for all atoms. For the multi-domain samples 
it will be necessary to average over the various spin orientations. For 
ferromagnetic and ferrimagnetic samples external fields for orienting the 
spins can be applied so as to obtain sin2 a = 0 or sin2 a = 1. Measurements 
of IFI2 for both cases separate magnetic from nuclear scattering and allow 
the study of magnetic structures. Sometimes the magnetic cell coincides with 
the 'chemical' cell so that the magnetic contribution to the intensities is 
added to nuclear contribution. In other cases the magnetic structure has a 
cell which is a multiple of the chemical cell causing additional purely 
magnetic reflections. Magnetic symmetry can be described by means of 
space groups of antisymmetry or by means of colour groups (see Appendix 
l .F  and Fig. 1.F.2(b)) associated with classical three-dimensional space 
groups. 

Monochromatic beams of polarized neutrons are easily obtained from 
unpolarized beams by using suitable single-crystal monochromators (for 
example, a Co-Fe alloy). For a given polarization, either constructive or 
destructive interference between nuclear and magnetic scattering amplitudes 
can occur. Thus the technique may detect a weak magnetic scattering even 
when it is accompanied by a strong nuclear scattering. 

Among the most important characteristics and applications of neutron 
diffraction we quote: 

1. The interaction of neutrons with the matter is weaker than that of 
X-rays or electrons (see Table 3.B.3). Generally speaking, scattering 
amplitudes are fa, - (10-12-10-11) cm for X-rays, fa, - lo-' cm for electrons, 
f, - 10-l2 cm for neutrons. Therefore high neutron fluxes and crystals with 
dimensions of several millimetres are needed for measuring appreciable 
scattered intensities. 

2. The b values vary non-monotonically with the atomic numbe; Z: 
isotopes of the same element can have very different values of b. This allows 
us to distinguish between atoms having very close values of Z (but very 
different values of b:  e.g. b,, = -0.36, b,, = 0.96, b,, = 0.25) and to 
localize the positions of light atoms in the presence of heavy atoms. 
Neutrons are particularly useful for localizing hydrogen atoms. Usually they 
are partially or completely substituted by deuterium with a value b > 0 and 
with negligible incoherent scattering. 

3. The three-dimensional Fourier synthesis with coefficients F,,,, gives the 
positions of the nuclei (they do not necessarily coincide with the atomic 
positions found by X-ray diffraction). The peak heights are proportional to 
the b values of the corresponding nuclei: if b is negative, the peak is 
negative too. Fourier syntheses with coefficients F,,, give the spin density 
distribution of the magnetic atoms. 

4. Since b does not depend on sin 8/A nuclear scattering decreases only 
because of the temperature effect. Thus reflections with high values of 
sin 8lA can be collected giving atomic positions and thermal parameters 
with accuracy higher than from X-rays. In many cases X- and n-diffraction 
experiments are both performed in such a way that accurate maps of the 
electron density can be obtained. 
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5. The energy of a neutron with wavelength of 1 A is of the order of 
0.1 eV, which is comparable with the energy of the modes of thermal 
vibration of the crystal. This causes inelastic scattering but also allows for 
the possibility of studying energy changes with good accuracy. 

6. Some additional information about neutron diffraction experiments 
with pulsed neutron sources should be useful. In diffraction techniques using 
monochromatic radiation, intensities are measured by moving a detector to 
different scattering angles OH chosen according to Bragg's law A. = 
2dHsin OH. At spallation neutron sources, where the neutron beam is 
pulsed, the discrimination among neutrons with different wavelengths may 
be accomplished by their time of arrival at the detector (time of flight): thus 
diffraction effects can be measured at a fixed scattering angle $0: 

AH = 2dH sin OO. 

From de Broglie's relation mu = h/A (m and v are mass and velocity of the 
neutron respectively) the following relation arises: 

mv = m(Llt) = hlA, 

where L = L, + L,. Here L, is the flight path from moderator to sample and 
L2 is that from sample to detector. Then 

tH = 505.555LdH sin O0 

where L is measured in meters, A and dH in A, t in ys. Thus time of flight 
depends linearly on both the flight path and on the wavelength. In addition 
the equations suggest that resolution improves with increasing flight path. 

Area detectors (see Chapter 4) are the best choice for time-of-flight 
techniques. Indeed, even if the source is on for brief pulses the full 
spectrum may be used (in monochromatic techniques coupled with a reactor 
the source is on all the time but a small portion of the spectrum is used). 

3.C Scattering of X-ray by gases, liquids, and 
amorphous solids 

Introduction 
In this appendix we will describe the scattering of X-rays from gases, 
Iiquids, and amorphous solids. No attempt will be made to deal exhaustively 
with the great amount of work made in the field: only the basic principles of 
the phenomena will be described. For further information the reader is 
referred to specialist papers on the subject or to some enlightening 
books.[3w1] 

First ~ e b y e [ ~ ' ]  (but see also ~ h r e n f e s t ~ ~ ~ ] )  realized that no arrangement of 
molecules of finite size could be considered completely random. The most 
random array which can be imagined is that of a monoatomic gas: but even 
in this case the finite size of the atoms prevents their approaching one 
another within a distance smaller than a given threshold. According to 
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Debye, two types of effects could be found on the diffraction patterns: 

(1) the effects due to the more or less fixed spatial arrangements of the 
atoms in the molecules (even if molecules have random positions and 
orientations), called 'internal interference effects'; 

(2) the effects due to the mutual configuration of the molecules, which may 
be not arbitrary since it is conditioned by their dimensions and their 
packing, called 'external interference effects'. 

The relative importance of the two types of effects is a matter of degree. 
Indeed, for monoatomic gases external interference effects are dominant, 
while for polyatomic gases internal interference effects are not negligible. 
Again in liquids (or amorphous solids) the existence of average interatomic 
distances produces well marked external interference effects: if the liquid is 
composed of groups of atoms the internal interference effects are again not 
neglibible. 

In the following sections some formulae will be developed which refer to 
the coherent scattered radiation. However, in experiments the total, say 
both coherent and incoherent radiation, is usually collected; in the case of 
amorphous bodies the incoherent radiation may be an important fraction of 
the total radiation. According to the discussion on p. 147, the incoherent 
intensity relative to one atom is given by 

k 

where k varies over the individual electrons of the atom. If we sum (3.C.1) 
over all the atoms in the assemblage the total incoherent scattering is 
obtained, which is a smooth function slowly increasing with sin B l A .  Such a 
function has to be subtracted from the total scattering pattern: only after 
that can the coherently scattered intensity be used to deduce structural 
parameters. 

Diffraction from a finite statistically homogeneous object 
Usually the motion of atoms or molecules in gases and liquids is extremely 
rapid compared with the duration of a diffraction experiment. In these 
conditions the phase value of F(r*)  has no practical interest while its 
modulus can provide useful information on the statistical distribution of the 
atoms. Indeed the measured diffraction intensity is the weighted sum of 
contributions arising from the various configurations of the atoms. A similar 
conclusion holds for amorphous materials, for which trying to calculate the 
atomic positions has no practical meaning while it is possible to estimate 
interatomic distances (on which diffraction intensities depend). 

Suppose that the object we want to investigate is finite and statistically 
homogeneous, of volume a.  In accordance with eqn (3.27) 

and the Patterson function becomes 

P(u)  = I p d r ) p d r  + u)@(r)@(r + u) dr. (3.C.2) 
R 

The product @(r) @(r + u) is always vanishing except when both the points 
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r and r + u are inside the object: in this case @(r)@(r + u) = 1. The space \ 

domain in which this condition is verified is a function of u and will be \ 
\ 

denoted by Qv(u), where 0 6  v(u) 6 1. It is readily seen from Fig. 3.C.1, \ 

that Rv(u) is the volume which belongs to the object and to the object 

' I 

shifted by u. Furthermore, v(u) is centrosymmetric (v(u) = v(-u)), it I +& , I 
decreases with increasing u and takes its maximum for u = 0 (v(0) = 1). 1 

I 
Accordingly I 

where 

RY(U) = @(r)@(r + u) dr  = @(r) * @(-r). I" (3.C.4) Fig. 3.C.1. The dashed area has volume Rv(u) 

For homogeneous objects (3.C.3) may be written as 

where P,(u) is the Patterson function for the unit volume. 
According to (3.A.37) 

The Fourier transform of Qv(u), according to eqns (3.C.4), (3.A.37), and 
(3.A.21) is 

T[Qv(u)] = j Qv(u) exp (2nir" u) du = ID(r*)12 (3.C.6) 

so that 

Since @(r) is real, 1D(r*)l2 is centrosymmetric: its maximum value is 
1 D (0) 1'. According to (3.27) D (0) = 52 so that 

Furthermore, according to (3.C.6) 

Q* ID(r*)l2dr* = L Pv(u) d u b *  exp (2nir* . u) dr* 

From (3.C.8) and (3.C.9) it is easily deduced that 1D(r*)12 rapidly decreases 
with (r*l, and is appreciably different from zero in a domain near the origin NU - 
of the reciprocal space (when the diffracting object is a crystal, (D(r*)I2 - f 
repeats itself around each lattice point: the larger is 52, the smaller the A 
domain). 

Replace in (3.C.9) the decreasing function I D(r*)I2 by a constant which is 
equal to its maximum value 52' in a volume w defined by S2'w = 52 (see Fig. 
3.C.2 for a one-dimensional example). Then an approximate estimate of the 
domain volume is obtained, say w = 1/52, together with its approximate r * 
dimension rz - ( 1 / ~ ) ~ ' ~  = l/ro, where ro is the average dimension of the Fig,3.C.2. Thetypicalform of , D ( r X , , ~  as a 
diffracting object. function of r*. 
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In terms of diffraction angles the width of the diffraction peak near the 
origin of the reciprocal space may be obtained from the Bragg relation 
(2/r,*) sin 8, - (2Ir:) 8, - 2roeo = A from which 

For Cu K, radiation and an object with ro = 0.1 pm it is 8, = 4.4 x On 
assuming that diffraction around the central peak may be observed down to 
8 = low3, 0.1 pm constitutes the upper limit for the dimension of the object. 

Diffraction from a finite statistically homogeneous object with 
equal atoms 
Suppose that the object is composed of N atoms of a single type, and Nl is 
the number of atoms contained in the unit volume (of course fluctuations 
from this value are possible due to thermal motion or to structural features 
of amorphous solids). Then v, = l /Nl is the average volume available for 
each atom. Equations (3.C.5) and (3.C.7) may be written in terms of 
autocorrelation functions of atomic density rather than of electron density. 
Let us define 

P(r) = Pa(r) * qa(r) 

where pa(r) is the electron density relative to one atom and qa(r) is the 
probability of finding an atom in r. Then 

P(u) = Pa(r) * Pa(-r) * qa(r) * qa(-r) 

and 

IF(r*)I" T[P(u)] = f '(r*) . T[Pa(u)] (3.C.11) 

where P,(u) is just the autocorrelation function of the atomic density. 
Let Pal(u) be the function Pa(u) calculated for the unit volume. Then, 

according to (3.C.5) 

Pa(u) = Qv(u)Pal(u) 

and (3. C. 11) becomes 

Let us now express Pal(u) in a more convenient form. On assuming the 
origin on an atomic site, the probability of finding a second atom in the 
volume dv at the extremity of the vector u is dp(u) = dvlv, only for a 
completely random atomic distribution. In general we could write 

where p(u) is a distribution function defining the configuration of the atoms. 
In general p(u) is not easily found. A very simple model for which p(u) may 
be rigorously calculated was proposed by Zernicke and ~ r i n s : [ ~ ~ ]  it concerns 
the one-dimensional arrangement on a segment of length L of N rigid 
spherical particles of diameter d. Figure 3.C.3 shows p(u) as a function of 
four values of the particle concentration dll, where 1 = LIN is the average 
length allotted to each particle. It is easily seen that always p(u) = 0 when 
u < d (the spheres are impenetrable). At very small concentrations (quasi- 
zero volume particles which do not exert any influence on each other) p(u) 
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- 
v--=- 

Fig. 3.C.3. The distribution p ( u )  for one- 
dimensional arrangements of objects of length d 

(d) as a function of the compactness. 

is similar to the atomic distribution of the perfect gas. For higher 
concentrations the model represents distributions similar to those found in 
real gases, liquids, and amorphous solids. p(u) will oscillate about unity at 
short distances from the origin, while p(u) - 1 at long distances. Oscillations 
of p(u) are larger for higher concentrations. When dl1 becomes maximum 
the close packing of the particles gives rise to a perfect lattice of period d: 
then very sharp maxima of p(u) will occur at u = nd (full short-range and 
long-range order). 

Let us now denote by z(u) the probability of finding an atom in the 
element of volume dv located at the extremity of the vector u from an atom 
located at the origin. Then 

It may be noted that l /v l  is not only the asymptotic value of z(u) but also 
its mean value. Indeed, integrating z(u) on the unit volume gives 

from (3.C. 12) the relation 

follows. Write now (3.C.14) by emphasizing the oscillating part of p(u): 



206 1 Carmelo Giacovazzo 

Then the Fourier transform of z(u) is 

and (3.C. 16) becomes (Nl = NlQ) 

N N 1 
F(r*)12= f2(r*)60* ~ ( r * ) ~ ' +  f2(r*)(l + -T[p(u) - l]) * lD(r*)12. 

v1 Vl 

The function ID(r*)I2 can be considered very broad with' respect to the 
Dirac delta function but very sharp with respect to T[p(u) - 1] (which in 
disorder structures is a function slowly varying with r*). According to 
(3.C.9) the integral of the ID(r*)I2 peak is Q: therefore 

In terms of the normalized intensity I~(r*) l '  eqn (3.C.18) becomes 

[p(u) - 11 exp (2niu r*) du 

The first term in (3.C.19) corresponds to the peak at the origin of the 
reciprocal space. It is detectable only at very small angles and it is 
distinguishable from the primary beam (see the previous section) provided 
the diffracting object is very small (say, <l pm). It does not depend on the 
internal structure of the object but only on its external shape. We will 
discuss such a peak on p. 213. 

The second term depends exclusively on the statistical distribution of the 
atoms: if this is perfectly uniform p(u) = 1 and I E ( ~ * ) [ ~ =  1. Thus the 
variations of IE(r*)I2 about its average contain information about the atomic 
distribution in the object. Such a distribution may be determined by 
inversion of (3. C. 19) : 

which is the most general formula describing the diffraction from a 
statistically homogeneous object composed of atoms of one kind. 

Diffraction from an isotropic statistically homogeneous object 
If the diffracting object is statistically homogeneous and isotropic (that 
occurs, for example, in gases, most liquids, and in finely dispersed crystal 
powders) the function I E ( ~ * ) [ ~  and p(u) will also be isotropic. Then using 
results in Appendix 3.A, p. 181, and neglecting the first term on the 
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right-hand side of eqn (3.C.19) give 

sin 2nr * u 
du 

2nr*u 

where 4nu2(p(u) - 1) is the radial atomic distribution function: the 
product of such a distribution for du gives the number of atoms situated at a 
distance between u and u + du from the atom assumed to be at the origin. 

Inverting (3 .C.21) gives 

r*(I~(r*)l '- l)(sin 2nr*u) dr*. (3.C.22) 
U 

Equation (3.C.22) shows that from diffraction experiments the average 
number of neighbouring atoms can be deduced as a function of the distance 
from a given atom chosen to be at the origin. 

Equations (3.C.21) and (3.C.22) also hold when the object is made by 
particles constituted by groups of atoms: then v, is the average volume 
available for each particle. 

The Debye formula 
A simple way to describe diffraction from an isotropic statistically homoge- 
neous object composed by a collection of N identical groups of atoms with 
known geometry but random orientation and position was proposed by 
Debye. Let 

P 

4 (r*) = C J(r*) exp (2zir* 5 )  
]=I 

be the structure factor of the nth group of atoms (each group composed of p 
atoms). Then 

N 

and 

Since the observed intensity will be the average with respect to all the 
possible mutual configurations of the atomic groups 

where u ~ , , ~ ,  = ql - q,. In accordance with p. 180 we obtain 

sin 2nr * uii 

sin 2nr*uii 
2nr*uij 

) (3.C.23) 
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In terms of normalized intensity (3.C.23) becomes 

sin 2nr * uij 
(1E(r*)I2) = 1 + 5 YiY, 

i+j=l 2xr*uij 

where Y = f /N(Cf=l (f?)"'. In order to give some examples, for a molecule 
composed of two atoms at distance 1 (3.C.23) becomes 

For a tetrahedral molecule (i.e. SiC1,) (3.C.23) becomes 

where 1 is the edge of the tetrahedron and d its radius. 
In favourable conditions estimates for interatomic distances can be readily 

obtained from the intensity diffraction pattern.[433451 According to p. 174, the 
value of the interference term sin2nr*x/(2nr*x) is unity for r* = 0 and 
becomes zero for r*x = n/2: subsidiary maxima occur when 

or, in other terms, when 

The position of the mth maximum for large values of m will approach more 
and more closely to 

x sin B/A = (0.125 + 0.5m) 

but maxima will become weak and ill defined. 
It is easily seen that the maxima in the IE(r*)I2 curve will coincide with 

those given by (3.C.27). In particular, from the first maximum located in 
(sin O/A), the interatomic distance 

x = 0.615/(sin (3.C.28) 
is obtained. 

It is easily seen that Debye maxima will correspond to those provided by 
(3.C.21). 

Diffraction by gases 
For a perfect gas (consisting of identical atoms with negligible volume and 
exercising no action on each other) any atom can occupy any position with 
the same probability. Therefore p(u) = 1, (3.C.14) reduces to 

and (3.C.21) reduces to 

I~(r*) l '=  1 

or, in terms of IF(r*)I2, to 

IF(r*)12 = ~f ' ( r* ) .  
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If the central peak is also taken into consideration, the observed intensity is 
of type described in Fig. 3.C.4. For r* = 0 the value of ( ~ ( r * ) l ~  is ~~f 
(replace JD(r*)I2 by 1D(0)1' = Q2 and v, by S2/N in (3.C.18)). As soon as r* 
is out of the peak at the origin the value of IF(r*)I2 is equal to ~ f ' .  

If the gas is a mixture of perfect monoatomic gases the scattering is 
practically given by 

If the gas is composed of identical molecules formed by atoms with 
negligible volume and arranged as in a perfect gas then features will appear 
in the scattering curve which are influenced by the molecular structure. A 
typical diffraction pattern provided by chlorine diatomic molecules is shown 
in Fig. 3.C.5 (curve (a)). The maxima in the experimental curve are not well 
defined (they are represented by roughly horizontal portions of the curve) 
because of the continuous decay off  with sin @/A. The maxima should be 
better emphasized by plotting JE(r*)I2 (curve (b)). 

For real gases the intrinsic volume of the atoms is no longer negligible. 
Since atoms are impenetrable, an atomic distribution function p(u) such as 
that described in Fig. 3.C.3(a) may be chosen, where d is the atomic 
diameter. Then (3.C.21) becomes 

where vo = 4 ~ ~ ( d / 2 ) ~ / 3  is the volume of one atom, C is the concentration 
factor (ratio between the effective volume occupied by the atoms and the 
gas volume) and (see p. 181) q (y )  = 3 (sin y - y cos y)ly3, where y = 2nr*d. 

Since q(0) = 1 it is IE(0)I2 = 1 - 8C: thus the asymptotic value of JE(r*)I2 
for r*  + 0 is smaller than unity by a quantity proportional to C. For C > 118 
(e.g. for high-pressure gases) IE(O)(' < 0, which is not acceptable: for such 
cases the diffraction by gases closely resembles that by liquids or amorphous 
solids, for which supplementary considerations are needed (see p. 212). 

Since electron scattering is much more intense than X-ray scattering (see 
p. 195) electron diffraction is preferable for gases. Very small quantities of 
gas can be used with shorter exposure times, and peaks can be measured at 
greater values of sin 81A. 

Gas electron diffraction a p p a r a t ~ s [ ~ ~ , ~ ~ ]  usually consists of an electron gun, 
a sample injection system, and the detector: the last is often a photographic 
plate. Typical electron accelerating voltages, highly stabilized, are between 
30 and 80 kV, with exposure times of a few minutes. In order to compensate 
the fast decay of the scattered intensity with sin @/A a rotating sector is 
introduced into the path of the scattered electrons: it is a metallic disc 
designed in such a way that the intensity reaching the photographic plate is 
larger at larger scattering angles. In these conditions the diffraction pattern 

I 

sin 011 
Fig. 3.C.4. Schematic diagram of the scattered 
intensity from a monoatomic gas. 

Fig. 3.C.5. Schematic diagram of the diffraction 
pattern for the diatomic molecule CI,. 

will emphasize high-angle interference effects, whose intensity will now be 
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Fig. 3.C.6. Electron diffraction patterns from 
C,H,-NO, gas (working temperature about 
353 K, two camera di~tances).'~'' 

sufficient to be measured by a microphotometer. After the background 
elimination, the scattering optical density distribution is converted into 
electron distribution. 

In Fig. 3.C.6 two gas-phase electron diffraction patterns[481 of nitroben- 
zene C6H,-NO2 are shown (corresponding to two different positions of the 
plate). The experiment was made in order to determine, in combination 
with ab initio molecular orbital calculations and X-ray single-crystal 
structure analysis of several derivatives, the molecular structure of C6H5- 
NO2 in the planar and orthogonal conformation. From data in Fig. 3.C.6 
the one-dimensional spectrum in Fig. 3.C.7 may be derived. In the figure 
the curve sM(s) is given where M(s) = (I, - Ib)lZb, s = 4n sin 8/A, I, is the 
total observed radiation, Zb is the background intensity. The corresponding 
radial distribution curve p ( u )  is shown in Fig. 3.C.8: the positions of the 
most important distances are marked by vertical bars whose height is 
proportional to the weight of the distances. The geometrical parameters of 
the theoretical model (the molecule as a whole was supposed to have a 
binary symmetry, while a local mm2 symmetry was assumed for the benzene 
ring and the nitro group), together with vibration amplitudes, were refined 
by a least-squares process applied to molecular intensities: the good final 
agreement may be deduced from the small differences between the E and T 
curves. 
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Fig. 3.C.7. Molecular intensity curves (E, 
I I I I I ! I I 

20 25 30 35 experimental; T, theoretical) for C,H,-NO, (gas 
0 5 10 fb electron diffraction, two camera distances). Also 

s (Am' shown are the difference 

3 A - - 
v - -  - V V V  

- - - A n -  v -  - 
v -  -- 

I I I I I I I I 
Fig. 3.C.8. Radial distribution curves for C,H,- 

0 1 2 4 r ( A )  
5 6 7 NO, (E, experimental; T, theoretical). Also 

shown is the difference curve (E-T). '~'  
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1 /d r * 
(b) 

Fig. 3.12.9. (a) Distribution functions P(u)  for 
hard spheres of diameter dfor two values of the 
concentration parameter C. (b) I E ( ~ * ) I ~  curves 
corresponding to the two distribution shown in 
(a). 

- 
0.5 1 2 r *  

Fig. 3.C.10. IE(~*) / '  curves for liquid mercury. 

Diffraction by liquids and amorphous bodies 
In liquids or amorphous bodies each molecule may be considered in contact 
with a certain number of neighbours. Thus both internal and external 
interference effects will dominate the diffraction pattern. Let us first 
consider an atomic liquid: if atoms are assumed to be hard spheres which do 
not exert any force on each other the distribution p(u)  may be cal~ulated.[~~1 
In Fig. 3.C.9(a) p(u) is plotted for two values of the concentration 
parameter C (ratio between the effective volume occupied by the spheres 
and the total volume of the liquid). The corresponding I E(r*)I2 functions 
may be derived by application of (3.C.21) and are shown in Fig. 3.C.9(b). 
Their main features are: 

(1) for small values of r* it is 1 E(r*)I2 < 1;  

(2) a large maximum occurs at about r* =0.95/d. Its intensity increases 
with C while its position does not vary; 

(3) for lage values of r* 1E(r*)I2 tends to unity as for perfect gases. 

In spite of the purely geometrical nature of the model the diffraction pattern 
of monoatomic liquids closely satisfies the model predictions. In Fig. 3.C.10 
the IE(r*)I2 curve of liquid mercury is shown: its Fourier transform (eqn 
(3.C.22)) shows a maximum a little over 3 A. 

A further example concerns the diffraction pattern of water. As it is well 
known, the molecules are strongly polar and V-shaped with 0 - H  distances 
of about 1 A, and nearly tetrahedral HOH angles (109"). For our purposes, 
they may be geometrically represented by spheres of about 2.8 A diameter. 
The water scattering curves[s01 at 1.5 "C and 83 "C are shown in Fig. 
3.C.ll(a);  the corresponding radial distribution curves are given in Fig. 
3.C.ll(b).  The main maximum for the radial distribution occurs at a radius 
of about 2.8 A while a second broader maximum occurs at about 4.5 A, 
nearly vanishing at high temperature. Such results suggested to Bernal and 
~ o w l e r [ ~ l ]  that the arrangement of H 2 0  molecules in water may be 
described as a broken-down ice structure in which each molecule tries to 
bind four neighbours: since bonds are continually breaking and re-forming 
at any instant each molecule is bonded to fewer than four neighbours. 

As a last example, examine now Fig. 3.C.12, where the diffraction 
patterns by vitreous silica, a cristobalite crystal powder, and silica gel are 
shown. The main maxima of all the three curves nearly overlap: but 
cristobalite shows numerous sharp maxima while only one maximum occurs 
in vitreous silica. Furthermore, vitreous silica intensity decreases with 
sin 8/A as we have just seen for liquids, while silica gel shows increasing 
intensity toward small sin OlA. The radial distribution function for vitreous 

shows a first peak at r = 1.62 A and a second one, at 2.65 A: that 
indicates that the tetrahedral coordination in the crystalline state persists in 
the vitreous state (but here the orientations of the tetrahedral groups are 
randomly distributed). The vitreous state is essentially homogeneous 
(diffraction intensity decreases at small sin $/A as for liquids) while silica gel 
is made from very small discrete particles (10-100 A) with voids among 
them (diffraction intensity increases at small scattering angles: see the next 
section). 
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Small-angle scattering 
Small-angle scattering is a technique for studying structural features or 
inhomogeneities of colloidal dimensions.[401 For wavelengths of about 1 A 
the typical angular domain of the technique ranges up to one or two 
degrees. 

We have already seen (p. 204) that when diffraction occurs from a finite 
statistically homogeneous object of volume S2 a central peak in the intensity 
curve may be measured which becomes broader as the object size decreases, 
and does not depend on the internal structure of the object. Its intensity 
distribution varies according to (3.C.18): 

Since diffraction is considered at very small angles f (r*) will coincide with 
the number of electrons per atom. Thus the above equation reduces to 

We consider now a system constituted by N particles with electron density p 
randomly dispersed in a homogeneous medium of electron density po 
(solvent). Particles are supposed to be separated from each other widely 
enough, thus they will generate independent contributions to the diffracted 
intensity. The system may also be thought of as a medium of constant p, 
and macroscopic volume S2 to which N particles are summed with density 
Ap = p - p,. If S2 is sufficiently large the central peak due to the 
homogeneous medium is totally unobservable, while the observed intensity 
distribution may be ascribed to electron inhomogeneties only. In this case 
the mean scattering power for particle is 

where IDP(r*)l2 is the average value of )DP(r*)l2 over all the possible particle 
orientations. Different shapes of particles will give rise to different shapes of 
the scattering function in reciprocal space: ideal scattering intensities can 
therefore be calculated for spherical, cylindrical, flat, ellipsoidal, etc., 
particles. The results are all rather similar, particularly in the central range, 
but remarkable differences occur at larger angles. It may then be expected 
that in the central part a universal approximation for all particle shapes 
must exist 

Let us assume the origin 0 in the centre of gravity of a particle of volume 

Si l~ca Gel 

I .  .. .. ..- .. .. Vit. SIO, - # - - '  . . . :: . : :  .; . . :  : :  . . . . . .  .. . . . .  . . , : : ,  . .  :. 
. . . .  . . . . . . .  . . . . . . . . . . .  ....... 

Fig. 3.C.11. (a) 1f ( r * ) l2  water scattering curves at 
1 .5 "C and 83 "C; (b) the corresponding 
distributions 4nu2p(u). 

Fig. 3.C.12. Diffraction patterns for silica gel, 
vitreous SiO,, and for cristobalite. 
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up and let us estimate 

Dp(r*) = l exp (2nir* r) dv. (3.C.32) 

At very small angles we can expand the exponential function in (3.C.32) in 
power series: it will suffice to expand cos 2nr* . r according to cos 0 - 
1 - 0'12. In Cartesian coordinates 

cos 2nr* . r = 1 - + y2P2 + z2y2)2, 

where a; p, y stand for the cosines between r* and Cartesian axes. When 
integration is performed the contribution of mixed products vanishes by 
hypothesis (the centre of gravity has been located at the origin) and we have 

Dp(r*) = v, - 2n2r*2 ((u21 x2 dx + 82j y2 dy + y21 z2 dr). 

Since we are interested to calculate IDP(r*)l2, say the average of IDP(r*)l2 
over all particle orientations, we have to rotate Cartesian axes about the 
origin. We can then replace (u2, P2, y2 by ( a 2 )  = (p2)  = (y2) = 5 SO as to 
obtain 

where r2 stands for (x2 + y2 + z2) and 

R = ( l v ) (  r2 du) 
UP 

is the radius of gyration (= the mean square distance) of the particle with 
respect to its centre of gravity. 

According to (3.C.31) the scattering power per particle will be 

where n,  = (p  - p,)vp. By taking the logarithm to the base 10 

is obtained. If lg ~~,( r*) l '  is plotted against ( 2 0 ) ~  a curve will be obtained 
which, at small values of 0, is close to a straight line with slope 
(u = -5.715R;lA2, from which the gyration radius R, = 0.418~- is 
obtained. 
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In Fig. 3.C.13 the Guinier plot for a low-concentration solution of 
haemocyanin from Astacus leptodactylus is shown.[54] The reader will easily 
derive from the figure (CuK, radiation used) a gyration radius of % 
R,= 62 A. 

The radius of gyration is connected to the geometrical parameters of , 
some simple homogeneous bodies in the following way:[s5] I 
sphere of radius r: 

Ri = 3r2/5; 1 2 3 4 5 6  

10512tv2 
hollow sphere (limiting radii r, and r2): 

Fig. 3.C.13. A Guinier plot. 

ellipsoid (semi-axes a, b, c): 

~ 2 ,  = (a2 + b2 + c2)/5; 

prism with edge lengths a, b, c: 

R: = (a2 + b2 + c2)/12; 

elliptic cylinder (height h ;  .semi-axes a, b): 

hollow cylinder (height h, radii r,, r2): 

Other important parameters can be evaluated directly from the scattering 
data: among others the molecular weight (from the scattering intensity at 
zero anglesrs6]), the total surface of the particles for unit mass (from the 
region where the small-angle scattering tends to zero[s73s8]), and the volume 
of the particle. This latter may be obtained by integrating (3.C.31) over all 
the reciprocal space (by extrapolation of r*2 ~ ~ , ( r * ) l ~  at very small r*): 

According to (3.C.9) the above relation reduces to 

from which up may be derived. 
So far we have considered particles dispersed in a homogeneous solvent 

and widely separated from each other. If the concentration of the particles 
increases the mutual interference will enter into play and the scattered 
intensity is no longer the sum of the individual particle scatterings. As 
described in on p. 206 a probability function p(u) can be introduced: then 
4m2p(u) du will represent the number of particles with distance u lying in 
the interval (u, u + du) from a particle at the origin. Then the scattering 
power per particle will be (see eqn (3.C.21)) 

2 " 

( r * )  = ( ~ ~ ( r * ) ~ ) ( l +  - u[p(u) - 11 sin (2nr*u) du 
r*v1 0 

where (IFp(r*)12) is the squared modulus of the structure factor of a particle 
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averaged over all orientations. From the above equation the function p ( u )  
may be derived by inverse Fourier transform. 

3.D About electron density mapping 
The accurate determination of charge density distribution is of basic 
importance in several scientific areas. For example, for the study of 

(1) electronic structure of metals and alloys; 

(2) metal-ligand interaction; 

(3) variation of solid state properties (i.e. conductivity) with temperature. 

Spatial partitioning of charge density can also answer some specific 
questions, such as the location of lone-pair maxima, the net charge of a 
particular atom, the excess charge accumulated in a covalent bond, and so 
on. 

Such results can be attained only if the selection of the compounds, the 
process of measuring diffraction data, and their subsequent treatment is 
carried out with great care. Among the various desiderata we mention the 
following. 

1. Compounds with a small valence-to-core ratio are less suitable to charge 
density studies. If we assume that the number of valence electrons per 
unit volume is approximately constant for different compounds, the 
valence-to-core ratio is fixed by the number of core electrons per unit 
volume. Stevens and ~ o ~ ~ e n s [ ~ ~ ]  introduced the criterion 

1 core 

as a possible criterion to estimate the suitability of a system for charge 
density studies (V is the volume of the unit cell). S varies from 3-5 for 
the first-row-atom organic crystals to 0.1-0.3 for metals and alloys. 
Crystals with S < 1 require extremely precise diffraction data and careful 
work. 

2. Centrosymmetrical crystals are often preferred (in acentric crystals the 
phases of the structure factors cannot be uniquely determined). 

3. Collection of diffraction data has to be carried out at low temperature. 
Then thermal diffuse scattering can be neglected (a posteriori corrections 
are seldom accurate), high resolution data become available (then 
accurate structural parameters can be calculated), and electron charge 
density can be easily deconvoluted from the atomic thermal vibrations. 

4. Sophisticated measuring programmes should be used, in order to 
perform optimal scanning mode and profile analysis, decide 
differentiated measuring times (in order to obtain a set of structure 
factors with equal variance), prevent multiple scattering, and perform 
careful correction for extinction, absorption, anomalous dispersion, etc. 

5. When possible, neutron data should also be collected in order to obtain 
nuclear positional and thermal parameters which are unbiased by 
asphericity in the atomic charge density. 
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Yq,, = 3 sin2 6 cos 241 = 3(s: - s:) 

Y;,, = 6 sin2 6 sin @ cos @ = 6sxsy 

Yq,, = 3 sin 6 cos 6 cos 4 = 3sxs, quadrupoles. 

Y;,, = 3 sin 6 cos 6 sin 4 = 3sys, 

Y;,, = 6 cos2 6 - 2 = 6s; - 2 

Y',,, = 15 sin3 6 cos 341 = 15(s: - 3s,2)sx 

Y;,, = 15 sin3 6 sin 341 = (45s: - 1 5 s ; ) ~ ~  

1 
Y;,, = 15 sin2 6 cos 6 cos 241 = 15($ - s;)s, 

Y:,, = 30 sin2 6 cos 8 sin $J cos @ = 30s,sys, I octapoles. 

Yg,,= 1.5 sin 6(5cos2 6 - 1)cos @ = 1.5(5s;- l)s, 

Y:,, = 1.5 sin 6(5 cos2 6 - 1) sin @ = 1.5(5s: - l)sy 

Y;,, = 10 cos3 6 - 6 cos 6 = (10s; - 6)s, 

In Fig. 3.D.1 some electron density plots in special sections of direct 
space are shown.[611 

In most organic molecules the expansion (3.D.2) may be stopped at 
octapoles: then the deformation charge density is described by a linear 
combination of 16 terms, for which 16 population parameters have to be 
estimated. 

In some formulations[621 the free-atom valence shell is modified by an 
expansion-contraction radial parametrization in order to take into account 
the fact that an atom will expand or contract when it becomes more 
negative or more positive. Such a feature may be incorporated into a 
perturbed valence density p:,,ence(r) given by 

where pvaIence is, as in eqn (3.D.1), the free-atom ground state density, 
PValenc, is the valence shell population, and k3 is a normalization factor. If 
k > 1 the atom is contracted relative to the free one [indeed p l ( r )  is 
proportional to p(kr) with kr > r]. 

The atomic scattering amplitude has the same type of multipole expansion 
as the atomic charge density. By Fourier transformation of (3.D.2) one 
obtains 

where 6*,  #* are angular components of the Bragg vector, 

and ji(x) is the spherical Bessel function of order 1. 
From (3.D.3) the calculated structure factors Fcalc are easily obtained. 

Then (full or block-diagonal) least-squares refinement can be carried out: as 
well as the usual positional and thermal parameters for each atom, the 
population parameters of the deformation terms may also be refined. Such a 
formalism should improve (with respect to traditional crystallographic 
refinements) the agreement between observed and calculated structure 
factors. 
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Suitable Fourier syntheses can be calculated and analysed in order to 
reveal the effects of interatomic bonding on the charge clouds. Fourier maps 
of large usefulness are 

1 
Ap(r) = y x (4 (H)  - F2(H)) exp (-2niH. r) 

H 

where 

6 = Fca~c ,  multipole, F2 = Fca~c ,  free atoms. AP is then the deformation map, 
i.e. the difference between the atomic densities represented by spherical 
harmonics and those represented by free atoms; 

F' = Fobs, F2 = Fcalc, rnultipole Ap is then the residual density, e.g. the part 
of electron density not accounted for by the multipole model; 

4 = Fobs, F2 = Fcalc, free atoms, under the condition that F2 is calculated 
with parameters from high-order (HO) refinement (high-order reflec- 
tions are unaffected by chemical deformation of valence orbitals and 
locate atoms carefully). Ap is then denoted as a (X - XHO) deforma- 
tion map; 

Fl = Fobs, F2 = Fcalc, free atoms, with f i  calculated as in (3) but for core 
electrons only. Ap is the (X - X,,) valence map; 

4 = Fobs, F2 = Fcalc, free atoms, with F2 calculated with parameters from 
neutrons or a joint high-order X-ray and neutron data. Then Ap is the 
X - N or X - (XHO + N) deformation map; 

4 = Fobs, = Fca~c,~reeatorns, with F2 calculated as in (5) from core 
electrons only. Ap is then a X - (XHO + N) valence map. 

The estimation of the charge density model obtained at the end of 
calculations is different according to whether least squares or Fourier 
methods have been used[671. However, direct and reciprocal fitting are 
nearly equivalent: indeed, if we assume in (3.D.4) that Fl = Fobs, F2 = Fcalc, 
AF = Fobs(H) - Fcalc(H), and we calchlated the difference Patterson 

1 I Ap(r)Ap(r + u) dr = - x I A F ~ ~  cos 2nH u, 
V H  

then for u = 0 we obtained 

Thus least-squares parameters which give the best fit between observed 
and calculated structure factors are expected to give rise to the lowest 
variance in Ap. 

Direct evaluation of atomic or molecular charges, of dipoles and higher 
moments, etc, can be obtained from the estimated population parameters or 
directly from the electron d e n ~ i t y . [ ~ ~ , ~ ~ ]  For example, the net charge on atom 
j is 
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when the integration is made over the (not always easily defined) atomic 
volume. Also, the dipole moment of a molecule may be calculated as 

where the integration is over the molecular volume. 

3.E Modulated structures and quasicrystals 

Embedding of modulated structures in higher-dimensional 
space 
In Chapter 3, pp. 171-3, it has been suggested that incommensurately 
modulated structures (IMS) can be better described in higher-dimensional 
spaces. From now on S, and L, will denote n-dimensional space and lattice 
respectively, while SX and L,* will be their reciprocals. We will show that 
the reciprocal lattice L: of an IMS, even if aperiodic in ST, may be 
transformed into a (3 + d)-dimensional periodic lattice (say LT+d) by 
embedding the IMS in a metrical (3 + d)-dimensional space S3+,. 

Let us suppose that the reciprocal vector H of a main or of a satellite 
reflection may be written in S: as 

where 

and kf,  k:, k: are the a* ,  b*, c* components of Ki. One of them should be 
irrational for incommensurate modulation. Since (3 + d) indices hi are 
necessary to label a single diffraction effect, we will speak of d-dimensional 
periodic modulation or of d-dimensional modulated structure. In Fig. 3.E.1 
a section of the three-dimensional diffraction pattern of a one-dimensional 
modulated structure is sketched. The main reflections are marked by the 
largest spots. 

A L:+d lattice may now be with basis vectors 

bl = a* ,  b2 = b*, b3 = c*, b3+i = Ki + ei (i = 1, . . . , d) (3.E.2) 

where the eis are unit vectors perpendicular to S g  Then in S:+, a reciprocal 
vector may be written as 

According to hypotheses, H is the projection of H' in ST. Consequently 
the whole three-dimensional diffraction pattern LT is the projection in ST of 
a (3 + d)-dimensional reciprocal lattice L,*+,. In Fig. 3.E.2 such a projection 
is shown schematically for a one-dimensional modulation: Sz is represented 
by a horizontal line, el is a unit vector perpendicular to ST, main and 
satellite reflections are labelled by M and W respectively. 

In S3+d the (3 + d)-dimensional direct lattice L3+d is defined by the set of 

Fig. 3.E.l. One-dimensional modulated 
structure: sketch of a section of the three- 
dimensional diffraction pattern, showing main 
and satellite reflections. 

0- a* -Q 

W W  M W W  
ns a 
v w L, 

el 
0 0 

Fig. 3.E.2. From SX to S:. Main and satellite 
reflections are denoted by M and W 
respectively. 
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vectors ai reciprocal to bi according to the conditions ai . bj = 4,. We have 

where a, b,  c are reciprocal to a*,  b*,  c* .  The reciprocity condition is easily 
verified: for example, 

If a position is defined in S3 by 

it will be defined in S3+, by 

where 

Indeed, the first three coordinates in S3 and in S3+d coincide, owing to the 
fact that L3 is the projection of L3+, along ei; any point r in S3 satisfies the 
relations 

In accordance with (3.E.3) 

so that 

x3+, = k{xl + k h 2  + k&x3 

is obtained, which coincides with (3.E.4). 
If in S3+, the new coordinates 
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are introduced, it may be concluded that S3 is defined by 

tj=O for j = l ,  . . . ,  d. 

The electron density p '  in S3+d is periodic in (3 + d)-dimensions and may 
be calculated in the usual way: 

1 
p(xl, . . . , ~3+d)  = - 2 FH, exp 

hl,...,h~+,~ j=1 

where V is the volume of the unit cell in S3. 
According to reciprocity rule (the Fourier transform of a projection 

corresponds to a section and vice versa) the electron density distribution p 
in S3 is the section of p '  with S3. Therefore in S3+d the shape of the atoms is 
a hypersurface which extends in the extra dimensions. In Fig. 3.E.3, a 
schematic representation of p '  for a one-dimensional modulation is 
described. 

A scattering formalism for a large variety of modulated structures is now 
a ~ a i l a b l e : [ ~ ~ - ~ ~ I  substitutional and/or displacive modulations of each of the 
atoms in the crystal may be taken into account, together with the 
translational or rotational displacement of a molecule or one of its segments 
in molecular crystals. 

Quasicrystals 
In a famous paper by Shechtman, Blech, Gratias, and cahn17'] electron 
diffraction patterns of a rapidly solidified A1-Mn alloy were shown which 
suprisingly displayed five-fold symmetry. Sharpness of the spots suggested 
long-range translational order, but the presence of the five-fold symmetry 
violated the sacred rules of crystallography. In particular, by rotation of the 
specimen, five-fold axes (in six directions), three-fold axes (in 10 directions) 
and two-fold axes (in 15 directions) could be revealed: the subsequent 
ascertainment of the existence of an inversion centre fixed, for this Al-Mn 
phase, the icosahedral point group m55. Somewhat later a large number of 
alloys with 'forbidden' symmetries were found: such kinds of materials 
(providing electron diffraction patterns displaying sharp peaks and forbid- 
den symmetry such as icosahedral, octogonal, decagonal, dodecagonal, etc.) 
are called quasicrystals. A huge amount of theoretical and experimental 
publications are now available: for a more comprehensive treatment of the 
subject and for relevant literature the reader is referred to three excellent 
review~.[~+'~] 

A useful premise to quasicrystals (as well as to the IMSs) is the definition 
of quasiperiodic functions. It is well known that a periodic function 
f (x) = f (x + 1) may be uniformly approximated by finite sums of functions 
exp (2ninx). Accordingly, in a p -dimensional space 

f '(XI, . . . , x,) = q(nl, . . . , n,) exp (2ni(nlxl + . . . + n,x,) 
n l ,  ..., np 

is a periodic function. However, its 'projection' on one-dimensional space 

f (x) = C q h ,  . . . , n,) exp (2ni(nlv1 + . . . + npvP)x) (3.E.6) 
n l ,  ..., np 

Fig. 3.E.3. Schematic representation of the 
density p' in  S,. S, is the horizontal line: its 
bulging parts represent real atoms. (a) Perfect 
crystal; (b) density modulation; (c) displacive 
modulation. 

obtained by fixing in f '  xj to v,x is not periodic if some of the vjs are 
irrational. Functions which may be uniformly approximated by finite sums 



224 1 Carmelo Giacovazzo 

of functions exp [2ni(n,v1x + n,v2x2 + . . . + n,v,x)] are quasiperiodic func- 
tions. We take three simple examples. 

1. Let f '(x,, x,) =A1 sin 2nx1 +A2 sin 2nx2. 
If we assume X, = ax1 where cu is an irrational number then 

f (x) = A, sin 2nx1 + A2 sin 2ncux, 

is not periodic. 

2, f (x) is the superposition of a periodic sequence of large open circles, 
schematically represented by C, 6(x -nu), and a periodic sequence of 
small solid circles represented by C, G(x - rnaz12). Here, z = 
2 cos (1615) = (1 + f i ) / 2  = 1.618034. . . is the golden mean, n and m are 
any integers. Since a and az/2 are incommensurate numbers the 
structure is not periodic (see Fig. 3.E.4, first line) but the diffraction 
pattern will display delta peaks owing to the fact that the order is 
perfectly maintained at long distances. The existence of delta peaks may 
be demonstrated by examining periodic approximations off  (x). Since 

successive approximations to t are 

to which periodic structures of increasing periods a12, a, 3a, 5a can be 
associated. It is easily seen from Fig. 3.E.4 that better periodic 
approximations of the aperiodic sequence can be obtained by higher 
order approximants. 

3. In Fig. 3.E.5(a), a square lattice with a unit cell with edge length 
(1 + z2)'I2 is drawn. An irrational direction is drawn, at an angle of 
arctan(l1z) with the cell edge. All the lattice points contained in a band 
parallel to such a direction and with width (1 + z) are projected on it 
(strip-projection method), giving rise to a non-periodic pattern (the 
numerical sequence is 0, 1, 2.618, 3.618, 5.236, 6.854, 7.854, 9.472, 
10.472, etc.). All intervals in the projection will have length either 1 or z 
(L and S respectively), in the sequence SLSLLSLSLLSLLSLS.. . 
(Fibonacci sequence). The chain may also be written 

x, =n(3 - z) - (z -  1) frac(nz), 

Fig. 3.E.4. An aperiodic long-range ordered 0 0 * o  o *  0. 0 0 * o  * o *  '63 

structure and its periodic approximants. I 5 a I 
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where frac (x) is the fractional part of x. Since there is a weighted 
average lattice with constant a = (3 - z) the sequence may be considered 
as a modulated structure with modulation factor g(x) = ( t  - 1) frac (x), 
which may be embedded in a two-dimensional space. 

The above three examples suggest that aperiodic sequences in one 
dimension can be obtained by projection of periodic sequences in two 
dimensions. The procedure for embedding a one-dimensional aperiodic 
sequence in a two-dimensional space may be performed in accordance with 
the previous section. For the last example we can choose al .= (z, -1) and 
az = (1, z) (see Fig. 3.ES(b)): then the reciprocal average lattice is also 
square with basis vectors 

Fig. 3.E.5. (a) Projection of a band in a two- 
dimensional lattice to obtain a non-periodic 
ordered sequence (Fibonacci sequence). (b) The 
Fibonacci sequence results from a cut of the 
disconnected 'line atoms' of the two- 
dimensional crystal with the real space S,. 

In order to obtain the quasiperiodic one-dimensional sequence on S1 (see 
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Fig. 3.E.6. (a) A two-dimensional quasilattice 
showing one five-fold rotation point (plane 
symmetry 5mm). Basic oblate and prolate 
rhombi with their matching rules are shown: 
similarly arrowed edges must fit. (b) Penrose 
tiling with kites and darts (it does not show 
five-fold symmetry). 

again Fig. 3.E.5(b)) one has to attach parallel line elements in the lattice 
vertices. Thus the real one-dimensional quasicrystal results from a cut of the 
disconnected 'line atoms' of the two-dimensional crystal with the physical 
space S,. 

The procedure may be generalized to the n-dimensional case: the 
dimension of the space S,, in which a lattice with translational periodicity is 
obtained is determined by the number of n rationally independent recipro- 
cal basis vectors which are necessary to index the diffraction pattern. The 
real aperiodic crystal is again the cut (in the direct space) of the 
n-dimensional crystal with the physical space. 

Well known two-dimensional examples of quasiperiodic structures are 
Penrose ti ling^.[^^,^^] TWO examples are shown in Fig. 3.E.6: in (a) tiling of 
the plane is achieved by putting together two rhombic units in accordance 
with some matching rules (without them the plane should be covered in a 
periodic way). The pattern shows a five-fold rotation point. In (b) 'kites' 
and 'darts' are used: no pentagonal symmetry is shown. ~ a c k a y [ ~ ~ ]  first 
showed that their Fourier transform satisfies a five-fold symmetry. 

Octagonal, decagonal, and dodecagonal two-dimensional quasicrystals are 
also known; all of them can be embedded in a periodic five-dimensional 
space. The three-dimensional icosahedral lattice mentioned at the beginning 
of this section may be embedded in a six-dimensional space. 

The characteristics of the quasicrystals do not coincide with those of the 
incommensurately modulated structures. While the latter show main and 
satellite reflections, an average structure, and crystallographic point sym- 
metry, the quasicrystals show one kind of reflection only, no average 
structure, and non-crystallographic point symmetry. 
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Experimental methods 
in X-ray crystallography 
HUGO L.  M O N A C O  

Introduction 

This chapter discusses the experimental methods used to study the 
diffraction of X-rays by crystalline materials. Although, as seen in Appendix 
3.B (pp. 195 and 198), electrons and neutrons are also diffracted by crystals, 
we will concentrate our attention on X-ray diffraction. We begin discussing 
how X-rays are produced and how one can define the beam of radiation that 
will interact with the crystalline sample. The specimens that will receive our 
attention are single crystals and polycrystalline materials, that is aggregates 
of a very large number of very small crystals. We discuss the methods used 
to record the diffraction pattern and to measure the intensities of the X-rays 
scattered by these two types of specimen in separate sections. The ultimate 
goal of extracting structure factor amplitudes from diffracted intensities 
requires the application of a series of correction factors. This process, called 
data reduction, is discussed in the final section of the chapter. 

X-ray sources 

Conventional generators 
All the standard laboratory sources normally used for X-ray diffraction 
experiments generate radiation using the same physical principles but can 
vary substantially in their construction details. The two types of conven- 
tional generators that are used in conjunction with the data recording 
devices discussed on pp. 245 and 287 are sealed-tube and rotating-anode 
generators. Most of the techniques used for diffraction data collection 
require monochromatic radiation. Due to the way in which radiation is 
produced in the conventional generators, only a discrete number of possible 
wavelengths can be selected for experimental use. This limited choice and 
the difference in intensity are two of the major differences between this type 
of radiation and that generated by synchrotrons. 

The origin of X-rays in the conventional sources 
X-rays are produced when a beam of electrons, accelerated by a high 
voltage, strikes a metal target and is therefore rapidly decelerated by 
collision with the metal atoms. Most of the electrons do not lose their 
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Fig. 4.1. X-ray white radiation spectra as a 
function of the accelerating voltage. 
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Fig. 4.2. Characteristic spectrum of copper 
superimposed on the white radiation spectrum. 
Notice the ratio of the relative intensities of the 
K, and Kg lines. 

energy in a single collision but do it gradually through multiple events. The 
result is the production of a continuous spectrum of X-rays called white 
radiation. If all of the energy carried by an electron is transformed into 
radiation, the energy of an X-ray photon is 

Emax = hvma, = eV 

where h is Planck's constant, vmax the photon frequency and the subscript 
max indicates that this is the maximum possible energy, e is the charge of 
the electron, and V the accelerating potential. 

If we substitute the frequency in terms of the wavelength 

and 

where the potential V has to be measured in volts and the minimum 
wavelength is obtained in angstroms. This equation shows that there is a 
minimum value for the wavelength of the X-rays that can be obtained by 
this process which is a function of the voltage accelerating the electrons. 

Total conversion of the electron energy into radiation is not a highly 
probable event and therefore the radiation of the highest intensity is 
obtained at a somewhat longer wavelength. Figure 4.1 shows some 
continuous X-ray spectra as a function of the accelerating voltage. Notice 
that as the voltage is increased both the minimum wavelength and the 
position of the intensity maximum shift to the left. The intensity maximum 
is found at a wavelength which is approximately 1.5 times Amin. 

The total X-ray intensity generated per second in this way, a quantity 
which is proportional to the areas under the curves, can be calculated using 
the equation 

where A is a proportionality constant, i the electrical current, a measure of 
the number of electrons which are generating X-rays, Z is the atomic 
number of the target, V the accelerating potential, and n a constant with a 
value of about 2. 

When the energy of the electrons striking the target is higher than a 
certain threshold value, a second type of spectrum, discontinuous and with 
very sharp lines, appears superimposed on the white radiation curves just 
described. This second spectrum is called the characteristic spectrum 
because its peaks are found at precisely defined wavelengths which depend 
on the material constituting the target. The characteristic spectrum of 
copper is shown in Fig. 4.2. The electrons with an energy above the 
threshold potential are capable of ionizing the target atoms by ejecting an 
electron from one of the inner shells. When that happens another electron 
from a higher atomic energy level can move in to fill the vacancy created 
and, since the new level has a lower energy, emit the energy difference as a 
characteristic X-ray photon whose wavelength depends on the difference in 
energy between the two levels involved. 

The characteristic lines of this type of spectrum are called K, L, and M 
and correspond to transitions from higher energy orbitals to the K, L, and 
M orbitals, that is to the orbitals of principal quantum numbers n = 1, 2, 
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and 3. When the two orbitals involved in the transition are adjacent the line 
is called a, if they are separated by another shell, the line is called P. Thus, 
the Cu K, line is produced by a copper target in which the atoms lost an 
electron in the orbital of n = 1 and the vacancy was filled by an electron of 
the orbital n = 2. The X-ray photon energy is the difference between these 
two energy levels. Since for every principal quantum number n there are n 
energy levels corresponding to the possible values of the quantum number 1 
(from 0 to n - I), the a and /3 lines are actually split into multiple lines that 
are very close to one another because the difference between these energy 
levels is small. Still, X-ray radiation corresponding to all the possible energy 
differences is not observed because some energy transitions are forbidden 
by the selection rules. Thus, although Fig. 4.2 has a scale on the abscissa 
which cannot show it, the Cu K, line is actually split into a doublet, the Km1 
and K,, lines, of very similar wavelengths and which are, for this reason, 
not easily separable. 

The frequency of the characteristic line corresponding to a given 
transition is related to the atomic number of the element that gave rise to it, 
Z, by Moseley's law 

Y = C(Z - a)2 (4.3) 

where the constant C depends on the atomic energy levels involved in the 
transition and the constant a takes into account the interactions with other 
electrons. Thus, in a plot of Y " ~  as a function of 2 for a given transition the 
points corresponding to different target elements lie in a straight line and 
different lines are obtained for the K,,, K,,, KB1, etc., transitions. The 
characteristic frequency is higher the higher the atomic number and so the 
Mo K, line ( 2  = 42) has a higher frequency and therefore a higher energy 
than the Cu K, line ( 2  = 29). A full list of the wavelengths of the 
characteristic lines of the elements which are used in X-ray diffraction 
studies can be found in the International tables for x-ray crystallography.['1 
Here, we will just point out that the two most frequently used lines are the 
Cu K, line, 12 = 1.5418 A and the Mo K, line, 12 = 0.7107 A. Both are 
doublets of slightly different wavelengths as pointed out before. 

The intensity of a characteristic K line can be calculated using the 
equation: 

ZK = Bi(V - VK)'.' (4.4) 

where B is a constant, i the electrical current, and VK the excitation 
potential of the K series, a quantity which is proportional to the energy 
required to remove a K electron from the target atom. It can be shown[21 
that the ratio zK/zw is a maximum if the accelerating potential is chosen to 
be V = 4VK. If this condition is fulfilled, the K, line is about 90 times more 
intense than the white radiation of equal wavelength (I,). The K,, line is 
approximately twice as intense as the K,, line and the ratio K,/KB depends 
on Z but it averages 5 (see ~ieck' ']).  The data collection methods that use 
monochromatic radiation discussed later all use K, radiation and therefore 
require the elimination of the Kg component of the spectrum which is 
always present. The methods used to achieve this are discussed on p. 241. 

Sealed-tube and rotating-anode generators 
A conventional generator consists of a high-voltage power supply with 
electronic controls, connected to either a sealed tube or to the cathode of a 
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Fig. 4.3. (a) A sealed X-ray tube. (b) Sketch of a 
rotating-anode chamber. The path followed by 
the water that cools the anode is not shown in 
the figure. The anode is cylindrical and rotates 
about the axis shown. 

rotating-anode generator. In the second case there must also be a way of 
making, keeping, and monitoring the high vacuum required for X-ray 
generation. Just how high the voltage to be applied must be, can be 
estimated from the considerations of the previous paragraphs and taking an 
excitation voltage given by ~ ieck . ' ' ]  This value for the copper K energy 
level is 8.981 kV so if one wishes to apply a voltage of 4 times V, about 
36 kV have to be applied. For molybdenum even higher voltages are 
required. 

The sketch of a sealed X-ray tube is shown in Fig. 4.3(a). It consists of a 
cathode with a filament that emits the electrons that are accelerated under 
vacuum by the high voltage applied and hit the fixed anode made of the 
metal whose characteristic spectrum has a K, line of a wavelength which is 
adequate for the diffraction experiment to be performed. The high vacuum 
is necessary because the presence of gas molecules in the tube decreases the 
efficiency of the X-ray generating process by collisions with the electrons in 
the beam. 

The process of X-ray production discussed in the previous section is 
highly inefficient: only about 0.1 per cent of the power applied is 
transformed into X-rays, the rest being dissipated as heat. In order to avoid 
melting of the target, it therefore becomes necessary to cool it, which is 
done by circulating cold water as shown in the figure. It is the efficiency of 
the cooling system that ultimately determines the maximum power that can 
be applied to the tube. The problem of heat dissipation also dictates the 
choice of the focal area of the beam of electrons on the anode. This area is 
always chosen to be rectangular with the sides in a ratio of at least six to 
one. In this way, when one looks at the focused electron beam on the 
target, which determines the surface that produces X-rays, in the direction 
of the longest side of the rectangle one can see, by choosing the appropriate 
angle, a small square focus with a side equal to the smallest rectangle side. 
At the same time, the real area that dissipates heat is several times that of a 
square of that size. The X-rays generated come out of the tube through four 
beryllium windows: the two that are shown in the figure, that are found in 
the direction of the longest axis of the rectangular focus, and another two in 
a direction perpendicular to it. The first two windows are used for 
single-crystal work, the others may be used when a linear focus is needed. 

In rotating-anode generators, the target area seen by the electron beam is 
continuously renovated because the anode is rotated. In this way, much 
higher powers per unit of focal area can be applied to the unit and 
consequently higher X-ray intensities can be produced. Figure 4.3(b) is a 
sketch of a rotating anode chamber showing the two X-ray windows used 
for single-crystal work, the filament, placed with its longest axis parallel to 
the direction of the windows, the focusing cup, used to focus the electron 
beam on the target, and the anode which rotates about an axis parallel to 
the direction of the windows. 

In a rotating-anode generator, the chamber has to be kept under vacuum 
for the reasons stated before, water has to be circulated to cool the anode as 
is done in the case of a sealed tube, and of course the anode has to be 
rotated at a certain speed. The system is therefore mechanically much more 
complicated than a tube and it requires a fairly frequent and demanding 
maintenance work. Figure 4.4 is a photograph of a modern rotating anode 
X-ray generator. ~hi l l ips '~]  gives a detailed discussion of the advantages of 
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Fig. 4.4. A rotating-anode X-ray generator. 
(Photograph courtesy of Enraf Nonius.) 

rotating-anode generators together with an exhaustive description of the 
practical problems encountered in their operation. 

Choice of the type of radiation 
As discussed above, the K, lines are those of highest intensity and therefore 
they are the ones that are normally used for standard X-ray diffraction 
work. Thus, in practice, the choice of the wavelength of the X-rays 
generated by conventional equipment is limited to the values of the 
characteristic K, lines of the metals commonly used as targets. Two of these 
metals are most frequently used: copper and molybdenum; their K, 
transitions generate radiation with a wavelength of about 1.5 and 0.7A 
respectively. As will be seen later, for a given crystal-to-detector distance 
and unit cell, the diffracted beams will be more separated on the detector if 
a longer wavelength is used. Thus, copper is used for macromolecular work 
in which one usually was large unit cell parameters and for the structure 
determination of organic molecules, which do not contain atoms that absorb 
this radiation strongly. Absorption of the radiation by the sample is 
therefore also a primary consideration in the selection of the wavelength to 
be used. 

Another consideration is the maximum resolution of the reflections that 
will be recorded. We saw on p. 155 that there is a limiting sphere of radius 
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Fig. 4.5. Outline of a typical synchrotron 
radiation facility. The electrons or positrons are 
accelerated in the linear accelerator (linac) and 
then in the booster to  be finally injected into the 
storage ring where they are kept circulating for 
periods of several hours. The beam lines, not 
shown in the figure, are tangential to  the particle 
trajectory. Notice the scale at the bottom of the 
picture corresponding to 0-50 m. 

2 / A  that limits the volume of reciprocal space accessible to diffraction 
experiments. This sphere obviously has a different size for the two types of 
radiation discussed and therefore molybdenum radiation may be required to 
record data to a resolution not accessible to copper radiation. 

Finally we mention the detection efficiency of the method that will be 
used to record the diffracted intensities. Film is a better detector for copper 
than for molybdenum radiation and some area detectors have been 
optimized for use with copper radiation. On the other hand, diffractometer 
counters have a very high counting efficiency for the Mo K, radiation which 
explains why this type of radiation is so widely used for small-molecule 
single-crystal X-ray diffraction work. 

Synchrotron radiation 
X-rays, as well as other types of electromagnetic radiation, can also be 
generated by sources known as synchrotron radiation facilities. In these 
installations either electrons or positrons are accelerated at relativistic 
velocities along orbits of very large radii, several metres or even hundreds 
of metres. These sources are, by necessity, very complex and those that 
produce suitable X-rays are limited, located mainly in the United States and 
Europe. However, since, as we will see, the X-rays they produce are in 
many ways much better than those generated by conventional sources, their 
use has grown steadily in the crystallographic community. As a result, more 
beam time has been made available to crystallographers and more syn- 
chrotron sources are planned for construction in different countries. Among 
those, the 6 GeV storage ring to be built in the USA[~] and the European 
Synchrotron Radiation ~ a c i l i t ~ , [ ~ ]  designed specifically to produce the best 
possible X-rays, promise to be of special importance is the development of 
this field. 

From the extensive literature that exists in this ever expanding field we 
recommend two very elementary  description^,[^^'] an introductory 
textbook,['] and a more advanced treatise in several volumes.[g] In this last 
treatise chapters 1, 2, and 11 of volume 1 are specially relevant to our 
discussion; volume 3 of the series is totally devoted to X-ray methods. 

Generation of X-rays in a synchrotron radiation source 
It is well known that charged particles moving under the influence of an 
accelerating field emit electromagnetic radiation. The energy of this 
radiation is dependent on the velocity of the particle. If the velocity is like 
that of the electrons moving in an antenna, emission takes place in the 
radio-frequency range but when the charged particles, electrons, or posi- 
trons, move with a speed approaching that of light, the spectrum extends 
into higher energy regions covering the X-ray range. An additional 
consequence of relativistic effects is a distortion of the angular distribution 
of the radiation. When the charged particles move at velocities approaching 
that of light, radiation is emitted in a very narrow cone parallel to the 
instantaneous velocity. In a synchrotron source the charged particles are 
made to move in closed trajectories, often circular or elliptical, and so the 
radiation is generated in cones tangent to the path followed by the particles 
(see for example chapter 1 of ~ o c h [ ~ ] ) .  

Figure 4.5 shows the essential elements of a synchrotron radiation source. 
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Notice the scale at the bottom which gives an idea of the size of this type of 
facility. The basic element of the installation from which radiation is 
generated is the storage ring, a toroidal cavity in which the charged particles 
are kept circulating under vacuum. An extremely high vacuum is required 
or else the particles are lost by collision with the atoms present in the cavity. 
Prior to injection into the storage ring, the particles must be accelerated, for 
example, first by a linear accelerator and then by a booster as shown in the 
figure. The other two elements that are essential to the operation of the ring 
are the so-called lattice, that is the set of magnets which force the particles 
to follow a closed trajectory as well as performing other functions, and the 
radio-frequency cavity system which restores to the particles the energy they 
lose as synchrotron radiation. The beam lines, not shown in the figure, are 
tangential to the storage ring. 

It can be shown that a charged particle moving along a circular orbit emits 
as electromagnetic radiation the following power[8*9] 

where P is the energy emitted per unit time, e is the particle charge, c the 
speed of light, E  the energy of the particle, mo its mass at rest, and R the 
bending radius of the orbit. This equation explains why high-energy 
particles are required and also why only electrons or positrons are used. The 
power emitted by heavier particles such as protons is too low to be of 
significant importance. 

The quantity y, the ratio of the total energy to the rest energy of the 
particle, is of considerable importance since it is approximately related to 
the opening angle of the cone of radiation by 

where AI+!J is the emission angle in radians. A more exact relationship 
between these two parameters is given in reference [lo]. 

The total power emitted by the ring is the power emitted by a particle in 
one revolution multiplied by the number of particles and divided by the 
time it takes them to complete a revolution. 

The total power can be shown to be equal to[8391 

P,,, = 2 6 . 6 ~ ~ ~ i  (4.7) 

where the energy of the particles is measured in GeV, the magnetic field B  
in tesla, the current i in amperes and the power is obtained in kW. The 
power is thus seen to be directly proportional to the current in the storage 
ring. 

The radiation emitted at a modern storage ring comes from two sources: 
the bending magnets and the insertion devices. The first is the radiation we 
have discussed so far, the second is generated by special devices called 
wigglers and undulators which are briefly discussed below. 

An important property of the radiation generated by bending magnets is 
its wide spectral distribution which can be described quantitatively in terms 
of the spectral flux N which is the number of photons emitted per unit time 
interval into a relative band width AA/A into an angle element d e  in the 
plane of the electron orbit and integrated in the vertical plane. It can be 
shown that the flux of radiation normalized to the ring current generated by 
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bending magnets is equal toLs1 

Fig. 4.6. Spectral distribution of several storage 
rings; a =ADONE (Frascati. Italy) (1.5 GeV, 
105 mA); b = DCI (Orsay, France) (1.8 GeV, 
250 mA); c = SRS (Daresbury, UK) (2.0 GeV, 
685 mA); d = NSLS (Brookhaven, USA) (2.5 GeV, 
500 mA); e = DORIS (Hamburg, Germany) 
(5.0 Gev, 100 mA); f = ESRF (Grenoble, France) 
(5.0 GeV, 565 mA). The critical wavelengths are 
indicated by arrows, notice their position 
relative to the maxima. Recall that the photon 
energy of the Cu K, line corresponds to about 
8 keV and that of the Mo K, line to about 17 keV. 
HOR = horizontal plane. (Figure taken from 
~aterl ik."") 

N(hv) = 1.256 x lo7 y Gl(y) photons s-' mrad-I m ~ - '  

(0.1% band width) (4.8) 

where the factor Gl(y) is an energy-dependent function that can be found 
tabulated for example in the book by ~ a r ~ a r i t o n d o . [ ~ ]  The variable y is 
defined as follows 

where E, is the critical energy associated with a magnetic field B which in 
keV is given by 

where E is measured in GeV and R, the radius of the bending magnet in 
metres. An alternative expression for E,  is 

with B measured in tesla. 
A widely used parameter related to the critical photon energy is the 

critical wavelength A, 

E, = hv, = he/& = 12.4/Ac (4.11) 

where E, is measured in keV and A, in A. 
The spectra of total emitted flux for several synchrotron radiation sources 

is shown in Fig. 4.6 taken from ~aterlik.["] The critical wavelength, A,, is 
useful as an indicator of the suitability of a source for X-ray experiments. 
As can be seen in the figure although it does not correspond to the 
maximum flux it is close enough to give a good idea of the position of this 
maximum. It can be shown that ideally the wavelength used at a 
synchrotron source should fall in the range 0.25AC to 4.0Ac. Table 4.1, taken 
from the literature,15] gives E,, A,, and other relevant parameters for the 
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Table 4.1. Relevant parameters of the Synchrotron Radiation Sources in  operation in 1987 (taken from reference 5) 

Name Location E(GeV) R(m) i(mA) EAkeV) 1,I.J.) Emittance Insertion 
( x 10' m rad) (devices) 

Group I, E, s 0.06 keV 

N-100 Karkhov, USSR 
Surf II Washington, USA 
Tantalus I Wisconsin, USA 

Group II, E, 0.06-2 keV 

Sor ring Tokyo, Japan 
Siberia I Moscow, USSR 
Max Lund, Sweden 
COSY Berlin, Germany 
Teras Tsukuba, Japan 
ACO Orsay, France 
NSLS Brookhaven, USA 
UV SOR Okazaki, Japan 
Fian C-60 Moscow, USSR 
Vepp-2M Novosibirsk, USSR 
Hesyrl Hefei, China 
Superaco Orsay, France 
SPRL Stanford, USA 
Bessy Berlin, Germany 
Aladdin Wisconsin, USA 
INS-ES Tokyo, Japan 
Pakhara Moscow, USSR 
Sirius Tomsk, USSR 
Adone Frascati, Italy 

Group Ill, E, 2-30 keV 

DCI 
SRS 
Vepp-3 
Photon Factory 
NSLS 
Bonn 
Siberia II 
BEPC 
Elsa 
Arus 
Spear 
Doris II 
Tristan ACC 

Orsay, France 
Daresbury, UK 
Novosibirsk, USSR 
Tsukuba, Japan 
Brookhaven, USA 
Bonn, Germany 
Moscow, USSR 
Beijing, China 
Bonn, Germany 
Erevan, USSR 
Stanford, USA 
Hamburg, Germany 
Tsukuba, Japan 

Group IV, E, :, 30 keV 

CESR Ithaca, USA 
Vepp-4 Novosibirsk, USSR 
Petra Hamburg, Germany 
PEP Stanford, USA 
Tristan Tsukuba, Japan 

synchrotron sources in operation in 1987. If the spectral flux is transformed 
into power, i.e. the number of photons is multiplied by the energy of a 
photon hv, it can be shown that half the total power is irradiated below and 
half above the critical value A,. 

Other parameters of interest are the source size and the divergence of the 
irradiated beam. The charged particle beam in the storage ring has a 
Gaussian profile characterized by the parameter ox, in the horizontal and o, 
in the vertical plane. The full width at half maximum of the beam can then 
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be calculated as 2.350 and the source area F is estimated as 

Similarly the angular distribution is characterized by the parameters ox, 
and a,, and the solid angle of emission is then estimated as 

Although a,, a,. and a,, a,, vary along the orbit their variations are 
correlated and it is thus useful to define another parameter, the emittance, 
which at special symmetry positions is found to be 

The emittance is instead a constant along the charged particle path and it is 
thus another important parameter characteristic of an installation. The 
emittances of the synchrotron sources in operation in 1987 are also shown in 
Table 4.1. 

Another useful function, which is often used to compare the potential 
performance of two sources, is the spectral brightness, also called spectral 
brillian~e,'~] defined as the number of photons emitted per unit area of the 
source at point x, z over a 0.1 per cent relative band width per unit solid 
angle dS2 and unit time in the direction defined by the angles 3 (defined by 
the instantaneous velocity of the charged particle and the projection of the 
direction of observation onto the vertical plane) and 19 (defined by the 
projection onto the horizontal plane instead). It can be shown that 
the spectral brightness b is equal to (see ~ a r ~ a r i t o n d o [ ~ ]  chapter 2) 

where N is the spectral flux. If one defines the central brightness b, which is 
the brightness for x = z = q = 0 it is obvious that 

From this equation it can be seen that the brightness can be increased by 
increasing the flux or by decreasing the as. Decreasing the as  can be 
accomplished by reducing the emittance of the storage ring (eqn (4.12)). 
The emittance of a ring is thus a fundamental parameter to be taken into 
account in comparing the expected performance from two different sources. 

A radiation spectrum quite different from that produced by bending 
magnets can be obtained by the use of insertion devices. These are a series 
of periodically spaced magnets of alternating polarity which are inserted in a 
straight region of the ring and which do not alter the ideal closed orbit of 
the particles in the storage ring. Most insertion devices create a sinusoidal 
magnetic field which forces the charged particles to oscillate around the 
mean orbit. According to their characteristics they are called wigglers or 
undulators. 

The parameter that has to be examined to determine whether an insertion 
device is a wiggler or an undulator is the K parameter 
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where a is the maximum deflection angle of the electron or positron 
trajectory, Bo is the oscillating magnetic field measured in tesla and A, is the 
period of the magnetic array measured in centimetres. Recalling that l l y  is 
approximately equal to the natural opening angle AI), K becomes the ratio 
between the maximum deflection angle of the electron trajectory along the 
insertion device, a ,  and AI). 

When the parameter K >> 1 the device is called a wiggler. The effect of a 
wiggler on the emitted spectrum is to shift the critical energy E, to higher 
values and to increase the intensity of the radiation by a factor proportional 
to the number of periods of the magnetic array. No interference effects are 
observed and so the emitted spectrum is qualitatively very similar to that 
obtained from bending magnets. 

If the parameter K << 1 the device is called an undulator and interference 
occurs between radiation which is emitted by the same electron at different 
points in its path through the device. As a result, radiation is emitted as a 
series of relatively sharp peaks whose wavelengths are given by the 
equation[l01 

where 8 is the angle at which radiation is emitted and j is the harmonic 
number. As is evident from this equation, the wavelength of the peaks can 
be shifted by changing the parameters that appear in parentheses, 8 the 
angle of observation and a which, as we have seen, is related to the 
magnetic field of the device Bo. The intensity which is produced by an 
undulator with N poles at 8 = 0 is amplified by a factor proportional 
to N2. [lo] 

Comparison of synchrotron and conventionally generated 
X-rays 
We have seen on p. 233 that in practice only the characteristic lines of 
copper and molybdenum are sufficiently intense for use in crystallographic 
X-ray work and thus with conventional sources one is limited to only a 
discrete number of possible wavelengths. Synchrotron radiation does not 
have this limitation as should be clear from Fig. 4.6. The spectrum emitted 
is very wide and in fact extends in both directions far beyond the range 
spanned by the Cu K, and Mo K, lines. The possibility of selecting the 
wavelength for X-ray diffraction work has not been fully exploited although 
it is clear that it has far-reaching consequences. It can be used for example 
to solve the phase problem in macromolecular work (see Chapter 8, p. 544) 
by measuring anomalous dispersion effects (see for example Hendrikson et 
al.[ll]). Furthermore, crystal absorption and radiation damage (see pp. 304 
and 308) are wavelength dependent and thus can be minimized by 
optimixing the X-ray wavelength used.[12] 

Probably the best known property of synchrotron radiation is its high 
brightness, resulting from the small cross-section of the charged particle 
beam and the high degree of collimation of the radiation. 

A detailed comparison of the brightness and other properties of X-rays 
produced by synchrotron sources and sealed-tube and rotating-anode 
generators can be found in ~ o n s e . [ ' ~ ]  In Fig. 4.7, taken from ~ i senberger ,~~]  
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Fig. 4.7. The brightness of x-ray sources as a 
function of the year in which they became 
available. The points correspond to the 
following sources: A = X-ray tube; B = rotating. 
anode generator; C = Stanford Synchrotron 
Radiation Laboratory (SSRL) bending magnet; 
D = Brookhaven National Synchrotron Light 
Source (NSLS) bending magnet; E = SSRL 54 
pole wiggler; F = 6 GeV source with undulator. 
(Figure taken from ~ i s e n b e r ~ e r . ' ~ ' )  

1900 1940 1980 

Year 

the brightness of X-ray sources is plotted as a function of the year in which 
they became available. In the figure one can see that radiation from bending 
magnets, which, as we have seen, are the least intense of the possible 
synchrotron sources, can be lo5 times more intense than that from a 
rotating-anode generator. As a result, data collection at a synchrotron 
source is faster, produces higher-resolution data, and permits single-crystal 
work with specimens that can be only a few pm3 in volume.[141 A sample of 
such a small size can only be treated as a polycrystalline material with a 
conventional source. 

An important property of synchrotron radiation is that it is completely 
linearly polarized in the plane of the orbit of the charged particles and 
elliptically above and below this plane.[g1 X-rays generated from conven- 
tional sources are totally non-polarized. As a result diffracted intensities 
have to be corrected for this polarization effect in different ways as we will 
see later (p. 303). 

We mentioned before that the energy emitted by the moving charged 
particles is replenished by a radio-frequency cavity. Only the particles with 
an adequate phase relation with respect to the radio-frequency field can 
keep a stable orbit and they end up gathered in bunches which have a length 
that is dependent on the radio frequency used. The number of bunches of 
charged particles circulating around the orbit is an integer and can be 
regulated by varying the parameters of operation. Thus, synchrotron 
radiation is, in fact, produced at a given point in the orbit as a flash when a 
bunch passes through that point. As a result, synchrotron radiation has a 
well defined time structure, that is, pulses of radiation are emitted at 
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perfectly defined time intervals. For example the European Synchrotron 
Radiation Facility is planned to produce pulses lasting from 65 to 140 ps and 
the pulses will be separated by a minimum of 3 ns.['] This property of 
synchrotron radiation, of clear importance in time-resolved studies, has 
received so far very little attention in X-ray diffraction work. 

Monochromatization, collimation, and focusing of X-rays 
We have seen that conventional X-ray sources generate the discrete lines of 
the characteristic spectrum of the anode superimposed on the white 
radiation continuum and that radiation is emitted in every possible 
direction, and that although synchrotron sources emit a spatially confined 
narrow beam, the wavelength of this radiation spans a very wide continuous 
spectrum. All of the data collection methods discussed later require that a 
narrow pencil of X-rays strike the specimen under examination and, in 
addition, most of them also require that the energy of the radiation be 
limited to a wavelength band as narrow as possible. Ideally the radiation 
should consist of photons of only a single wavelength. Here we discuss the 
methods used to select a narrow wavelength out of the spectrum generated 
by the source and how to define a narrow parallel beam of X-rays to be used 
for diffraction experiments in conjunction with the data collection devices 
discussed later. 

Filters 
One way to select a wavelength interval out of the spectrum generated by 
the source is by filtering the radiation through a material that selectively 
absorbs the unwanted radiation while letting through most of the photons of 
the wavelength that will be used for the diffraction experiment. The 
absorption of X-rays by a material follows Beer's law: 

where I is the transmitted intensity, I,, the incident intensity, x the distance 
travelled by the X-rays in the material, i.e. the thickness of the filter, and p 
is the linear absorption coefficient which depends on the substance, its 
density, and the wavelength of the X-rays. Since p depends on the density 
of the material, the quantity that is usually tabulated is pm = p l p ,  the mass 
absorption coefficient, a characteristic of the substance that depends only on 
the wavelength considered. Complete tables of p ,  as a function of the 
wavelength for different materials used as filters can be found in Koch and 
~ a c ~ i l l a v r ~ , [ ~ ' ~  and a plot of pm versus A, for nickel is shown in Fig. 4.8 
along with the radiation spectrum generated by a copper anode. In the 
figure it can be seen that the curve of pm versus A, shows two continuous 
branches separated by a sharp discontinuity, called the absorption edge. If 
the filter is a pure element, the continuous parts of the curve follow 
approximately the equation 

pm = kz3A3 (4.17) 

where k is a constant with different values for the two branches of the curve 
and Z is the atomic number of the element. This equation shows why harder 
X-rays, i.e. X-rays with a shorter wavelength, are absorbed less than those 
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Fig. 4.8. The broken line represents the variation 
of the mass absorption coefficient p, as a 
function of the wavelength for nickel. The 
continuous line is the X-ray spectrum generated 
by a copper anode. Notice that the absorption 
edge of nickel falls in between the K, and the KB 
characteristic lines of copper. 

WHITE RADIATION 

with a longer wavelength. The presence of the absorption edge in the curve 
is explained by the fact that the photons at the edge have the wavelength 
corresponding to the energy necessary to eject an electron from the K 
orbital of the atoms of the filter. Thus, when this energy is reached massive 
absorption of radiation occurs with photoionization of the filter and 
production of fluorescent radiation. 

Similarly to the displacement of the position of the characteristic lines 
with Z, absorption edges move to shorter wavelength as the atomic number 
of the element increases. A common single filter is chosen so that its 
absorption edge falls in between the K, and the Kg peaks of the anode that 
has been used to generate the X-rays. In this way, the unwanted radiation 
of highest intensity, i.e. the unavoidable Kg peak, can be greatly attenuated 
without reducing too much the intensity of the K, peak that will be used for 
the experiment. Figure 4.8 shows that a nickel filter has its absorption edge 
at the wavelength necessary to very strongly absorb the copper Kg peak. 
Since copper has Z = 29 and nickel Z = 28 there is a difference of one 
between the atomic numbers of the target anode used to generate the 
X-rays and the filter with an absorption edge falling in between its K, and 
Kg peaks. This is generally true for every element with Z s 70 and for the 
elements of the second long row of the periodic table it is also true that both 
the elements of Z - 1 and Z - 2 can be used to absorb the Kg peak of the 
anode with atomic number Z. Thus both Nb (Z = 41) and Zr (2 = 40) can 
be used as filters for Mo (2 = 42) radiation. 

The relative intensities of the K, and the Kg peaks depend not only on 
the absorption coefficient of the filter but also on its thickness. Roberts and 
parrish[16' give a table of the appropriate filter thicknesses necessary to 
produce K,/KB ratios of 100 and 500 for different elements used as targets 
and filters. The same table gives also the percentage of K, peak lost by 
filtering which can vary between about 40 and 70 per cent. 

A variation of the simple filter technique is the Ross balanced-filter 
method.[16] In this method two filters are used: one with its absorption edge 
at slightly shorter and the other at slightly longer wavelength than the K, 
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peak selected. The thickness of the filters is chosen so that the radiation is 
absorbed to the same extent except in the interval in between the two 
absorption edges. With this technique two measurements are made with 
either one of the two filters in position and the measured intensity is then 
taken to be the difference between the two values obtained. 

Crystal monochromators 
An alternative and more selective way to produce a beam of X-rays with a 
narrow wavelength distribution is by using a single-crystal monochromator. 

Bragg's equation (3.32) shows that when radiation of different wave- 
lengths impinges upon a crystal, diffracted beams are observed at scattering 
angles 13 that depend on the wavelength of the radiation A. Thus, selecting a 
given diffraction angle 8 is equivalent to choosing a particular wavelength 
out of the spectrum incident on the crystal. 

The simplest type of crystal monochromator consists of a single crystal 
with one face parallel to a major set of crystal planes mounted so that its 
orientation with respect to the X-ray beam can be properly adjusted. The 
most important properties of a crystal monochromator are: 

(1) the crystal used must be mechanically strong and should be stable in the 
X-ray beam; 

(2) the interplanar distance should be in the appropriate range to allow the 
selection of the desired wavelength at a reasonable scattering angle; 

(3) the presence of one or more strong diffracted intensities that can be 
chosen so that the intensity loss of the beam, which is always 
appreciable, may be reduced as much as possible; and 

(4) the mosaicity of the crystal, which determines the divergence of the 
diffracted beam and the resolution of the crystal, should be  mall.['^,^^] 

The reflection chosen should also have a scattering angle as small as possible 
in order to minimize the loss of intensity due to the polarization factor (see 
p. 303). Roberts and parrish[16] give a table with the important properties of 
crystals commonly used as monochromators. 

In a variation of this simple type of flat monochromator, the crystal 
surface is cut so that it forms an angle with the set of planes that diffract the 
radiation. In this way, the diffracted beam has a smaller width and as a 
result more photons are concentrated in a smaller cross section of the 
bearn.[l6] By properly curving their surface, crystal monochromators can be 
used to focus the X-ray beam in a very small area.[lgl The curvature of the 
surface can be produced by simply bending the crystal, in which case the 
diffracting planes should ideally be tangential to the curved surface. If the 
monochromator is bent in the shape of a cylinder of elliptical section with 
the source in one of the foci, the reflected radiation will concentrate on the 
other focus of the ellipse. A further variation consists of not only bending 
the crystal but also in grinding its surface so that the radius of curvature of 
the diffracting planes of the crystal is different from that of its surface. The 
advantage of this type of monochromator is that it does not suffer from 
some optical aberrations present in singly bent crystals.[161 Curved crystal 
monochromators are frequently used to select the wavelength of syn- 
chrotron radiation. In addition to the requirements stated before, the 
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crystals should have in this case a very small thermal expansion and a large 
thermal conductivity because the power applied is much larger than in the 
case of conventional sources.[lsl 

Another type of monochromator of wide application in synchrotron 
sources is the double-crystal monochromator in which the incident X-ray 
beam is diffracted twice by two similar crystals. This type of monochromator 
can be constructed with different geometries designed to improve the 
resolution and/or to keep the X-ray beam in the original direction. A 
discussion of this type of crystal monochromator can be found in 
~ a r ~ a r i t o n d o . L ' ~ ]  Crystal monochromators are more selective than filters 
and, in the case of conventional generators, are capable of resolving the Kal 
and K,, doublet which cannot be separated by any filtering method. 

Collimators 
The function of collimators is to define a narrow cylindrical beam of X-rays 
that ideally should be as parallel as possible. 

A simple pinhole collimator is shown sketched in Fig. 4.9. It consists of a 
cylinder with two apertures defining the beam and a third guard aperture 
which does not affect the beam size defined by the other two but eliminates 
the radiation scattered by the defining aperture furthest from the X-ray 
source. These apertures are commonly circular, although slits can be used 
instead in which case square or rectangular beams can be defined. 
Cylindrical beam pinhole collimators are typically used with conventional 
sources to define a beam of radiation that is monochromatized by either a 
filter or a crystal monochromator. Such collimators never produce an ideally 
parallel X-ray beam but, in addition to the parallel X-rays, they also 
produce convergent and divergent X-rays as shown in the figure. A 
conventional X-ray source, when viewed at the appropriate take-off angle is 
seen as a square. If 1 is the distance between the two defining apertures S1 
and S2 and d is the diameter of the collimator the maximum angle of 
divergence of the beam, y, can be calculated as shown in the figure as 

d l2  
tan y/2 = - = dl1 

112 

and since the angle is very small 

where y is calculated in radians. 
If we substitute in this equation d and 1 for two reasonable values: 50 and 

0.5 mm we can get an estimate for the maximum divergence y 

y = 2 x 0.5150 = 2 x lop2 radians. 

~ u x l e ~ [ ~ ~ ]  and more recently Arndt and sweet[l7I have extensively discussed 
the conditions that can be varied in order to optimize collimation. The 

I I 
Fig. 4.9. Pinhole collimator showing the angle of 
greatest divergence y, S, and S, are the two Id 
apertures defining the beam which are I I 
separated by the distance I, and have a diameter 
of d; S, is the guard aperture. - 
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variables that can be adjusted are the crystal and X-ray focus size, the 
crystal to focus distance, and the crystal to detector distance. Depending 
also on the reflection to reflection resolution necessary for the experiment, 
different conditions are found which maximize the signal to noise ratio given 
the restrictions imposed by the experiment. 

Mirrors 
X-rays can be reflected by mirrors when the angle of incidence is smaller 
than a certain critical angle 8, which is a function of the wavelength A and 
can be calculated by the equation[17,191 

where Z is the atomic number, p the density, and A the atomic weight of 
the reflecting material. If the angle of incidence is chosen to be within ten 
per cent of 8, for the Cu K, radiation, the X-rays having a wavelength 
shorter than the corresponding A, in particular the fairly intense Kp peak, 
will not be reflected and therefore they will be eliminated from the beam. 
Thus, by properiy choosing the glancing angle of the X-rays on the mirror 
the radiation can be partially monochromatized. The values of the critical 
angles 8, depend on the reflecting material as shown by the equation given 
above and they are, in general, very small: 14' for glass and 23' for nickel 
mirrors, calculated for a wavelength corresponding to the Cu K, radiation. 
A table of this property and other parameters of interest of mirrors can be 
found in witz.[lgl 

If the reflecting surface of the mirror is curved, ideally in the shape of an 
elliptical cylinder with the source in one focus, the reflected radiation will 
converge to the other focus of the ellipse and a very intense X-ray beam will 
be obtained at that point. 

This principle is used in the design of a very powerful device that is used 
to focus and partially monochromatize an X-ray beam and which uses two 
curved mirrors with perpendicular axes of curvature.[211 This double-mirror 
system has been used for X-ray diffraction work on virus crystals which, 
having very large unit cell parameters, pose particularly serious problems 
for the spatial separation of the very close diffracted beams.[221 Mirrors are 
also very extensively used in the beamlines of synchrotrons. In addition to 
focusing and partial monochromatization they perform several other func- 
tions: splitting of a beam into two, magnification or demagnification of the 
source, and change in the polarization of the radiation.[l8I The function to 
be performed determines their geometry and so their surface can be flat or 
curved and the mirror can be bent or segmented, that is constituted by 
several small flat pieces which are easier to produce than large curved single 
mirrors. 

Data collection techniques for single crystals 

We saw in Chapter 3 (p. 155) that the condition for X-ray diffraction to 
occur in a crystal is that the scattering vector r* should coincide with a node 
of the reciprocal lattice associated to the crystalline lattice defined in 
Chapter 2 (p. 63). The sphere of reflection, also called Ewald sphere, was 
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defined (on p. 155) and it was shown that diffraction is observed whenever a 
reciprocal lattice node lies on this sphere. The direction of the diffracted 
beam is determined by the vector joining the centre of the Ewald sphere 
and the reciprocal lattice node lying on its surface. We saw that the 
characteristics of the crystal and the conditions of the experiment cause 
these nodes of reciprocal space to have a volume. We will make use of all 
these concepts in our discussion of the data collection devices that will 
follow. 

If the scattering experiment is performed with radiation of a single 
wavelength there will be a single Ewald sphere of radius 1/A and the 
probability that a stationary reciprocal lattice node may by chance be on its 
surface will be fairly low. Furthermore, and as pointed out on p. 163, 
diffraction from only a cross-section of the node is not acceptable since it is 
the entire volume that should give rise to the diffracted intensity from which 
the structure factor amplitude is to be derived. In addition, in order to solve 
a structure, one needs all of the diffracted intensities that can be measured 
corresponding to the nodes found within a sphere of radius D* = l/R,,,, 
the inverse of the resolution of the structure. Broadly speaking there are 
two ways to tackle these problems: the first is to use polychromatic 
radiation, i.e. to have a series of Ewald spheres corresponding to different 
wavelengths; the second method is to move thc reciprocal lattice nodes, i.e. 
the crystal, so that all the nodes from which one wishes to measure the 
diffraction cross the Ewald sphere completely. The first method is histori- 
cally the oldest, it is called the Laue method, and it was with it that 
diffraction from crystals was discovered.[23] 

In Fig. 4.10, the shaded area represents the volume of reciprocal space 
containing all the nodes that will produce diffraction when the stationary 
specimen is hit with radiation of a wavelength in the interval between A,,, 
and A,;,. In the Laue method, different cross-sections of a node are excited 
by radiation of slightly different wavelengths and the result is an intensity 
integrated over the wavelength rather than over the volume sweeping 
through a single Ewald sphere. If the white radiation spectrum resulting 
from a conventional generator is used to produce Laue diffraction, the 
practical applications of the method are rather limited.[24,251 It is for this 
reason, and also because the diffraction pattern produced is rather difficult 

Fig. 4.10. The Laue method. A stationary 
specimen is irradiated with X-rays covering the 
wavelength interval A,,, - A,,,. The shaded 
area represents the volume of reciprocal space 
that produces diffraction. 
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to interpret, that the method fell into disuse until the advent of synchrotron 
radiation and the development of very powerful computers. The use of the 
Laue method with synchrotron radiati~n"~] provides an extremely fast and 
efficient method to record diffraction data. The applications are already 
important in the field of small-molecule~27~281 as well as macromolecular 
crystallography[29~301 where it has opened up the possibility of performing 
time-resolved studies in the crystalline state.L3'] 

All the other data collection methods discussed in this chapter use 
monochromatic radiation and therefore require a more or less complicated 
mechanism to move the crystal as the diffracted radiation is measured. 

The Weissenberg camera 
Although the Weissenberg  ame era,[^'-^^] introduced in 1924, has nowadays 
been largely superseded by other data collection methods, historically it has 
played a central role, since for many years it was the standard instrument 
used to quantitatively measure diffracted intensities. Currently, it is still 
used for space-group and unit cell determination of small-molecule crystals, 
that is for the preliminary characterization of crystals whose diffracted 
intensities are then measured with the diffractometer. 

The cylindrical film rotation camera 
The simplest way to produce a regular motion of the reciprocal lattice is to 
rotate the crystal about a direct lattice axis oriented normal to the incident 
beam direction: then, as seen on p. 126, there is a family of equidistant 
reciprocal lattice planes perpendicular to this axis of rotation. Whenever a 
reciprocal lattice point intersects the Ewald sphere a diffracted beam passes 
through the point as shown in Figs. 4.11(a) and (b). Such points all lie on 
equidistant circles of decreasing radii as we move away from the centre of 
the Ewald sphere. If a cylindrical cassette containing a piece of film is 
placed so that the cylinder axis coincides with the crystal rotation axis, as 
shown in Fig. 4.11(c), the circles will project undistorted onto the film and 
when the film is unrolled they will appear as straight lines (layer lines) that 
contain the diffraction spots. 

Figure 4.12 shows a rotating-crystal photograph. From it one can 
calculate quite easily the spacing between the equidistant planes of 
reciprocal space and then use this value to compute one of the unit cell 
parameters of the crystal. 

If the distance on the film between the layer line corresponding to the nth 
reciprocal lattice plane and the 0 layer line is df, r, is the radius of the 
cylindrical cassette and dH is the constant distance between two consecutive 
reciprocal lattice planes in the family then 

tan an = df/rf 

and 

ndH sin an = 7 
A - 

as shown in Fig. 4.11(c). Recall that the radius of the Ewald sphere is A-'. 
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Fig. 4.11. The cylindrical film rotation method. 
(a) The intersection of a family of equidistant 
reciprocal lattice planes and the Ewald sphere. 
The points lying on the circles represented will 
produce diffraction. (b) Projection in  the 
direction of the incident X-ray beam. The 
rotation axis is horizontal and is found i n  the 
plane of the figure. The circles shown in (a) are 
now projected as parallel vertical lines. (c) A 
cylindrical film is placed with its axis coincident 
with the rotation axis. The intersections of the 
reciprocal lattice planes and the Ewald sphere 
produce on the film a series of parallel lines. 

rotation 
- 

axis 

Thus the interplanar spacing in reciprocal space is 

sin a;, 1 d f 
dH=-=-sintanP1-. 

nh nh rf 

Using this value, the unit cell parameter corresponding to the real axis 
coincident with the rotation axis can be calculated. 

Incidentally, notice that because of this relationship equally spaced planes 
in reciprocal space do not produce equally spaced layer lines on the film. 

Zero-level Weissenberg photographs 
Although in a rotation photograph the index corresponding to each layer 
line is trivial to assign, the method cannot be used to easily map the 
reciprocal lattice. This is because all the reciprocal lattice points present in 
one plane are projected by this geometry on to one layer line and thus the 
information concerning the other two indices is not easy to extract. 

This difficulty can be overcome by the use of the Weissenberg camera, 
which is essentially a cylindrical film rotation camera with two differences. 
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Fig. 4.12. A typical rotation photograph showing 
a family of parallel lines due to the set of parallel 
reciprocal lattice planes. Notice that the lines are 
not equally spaced. 

The first is the use of a layer line screen that blocks all the diffracted 
radiation with the exception of that due to one selected reciprocal lattice 
plane at a time. The second difference is the coupling of the rotation motion 
to a displacement of the film along the cylinder axis. In this way, spots 
belonging to the same reciprocal lattice plane that cross the Ewald sphere at 
different times and which would end up recorded on the same layer line are 
recorded instead in different positions on the film. Thus, a single reciprocal 
lattice plane is mapped on to the film plane. 

Figure 4.13(a) shows the Ewald sphere projected on to a reciprocal lattice 
plane that would produce one layer line in a normal cylindrical film rotation 
camera. The view is in the direction of the rotation axis and each of the 
lines represented corresponds to a reciprocal lattice row of a given index. In 
this representation the origin of reciprocal space is found at point 0, the 
intersection of the incident X-ray beam with the Ewald sphere. The line 
tangent to this point has one index equal to zero and corresponds to one of 
the reciprocal lattice axes. In Fig. 4.13(b) the reciprocal lattice point P is 
crossing the Ewald sphere and therefore it is in diffracting position. Its 
coordinates, shown on the unrolled film on the right, are x and z ;  the first is 
proportional to the angle 28 as can be seen in the same figure, the second is 
proportional to the rotation angle o since, as already pointed out, crystal 
rotation and film translation along the cylinder axis are coupled, 

If r, is again the cylindrical cassette radius one can write 
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Fig. 4.13. Zero-level Weissenberg method. (a) 
When a layer line screen selects the zero-level 
plane, a series of equidistant lines will contain 
all the reciprocal lattice nodes that can produce 
diffraction on the film. (b) When the crystal is 
rotated an angle w = Othe point P belonging to 
one of the reciprocal lattice axes is in diffracting 
position. Its coordinates on the film are xand z. 

and 

film 

f i lm 

fi lm 

Normally rf is chosen so that C1 has the value of 2" mm-l. Thus measuring 
the x coordinate of a reflection in millimetres one can automatically 
calculate the corresponding value of 20. 

The coupling parameters of the film movement to the crystal rotation are 
chosen so that the constant C2 in 

is also made equal to 2 and thus, the two angles w and 20 can be measured 
on the film on the same scale. 

Figure 4.13(b) shows that a normal to the zero-level reciprocal lattice row 
passing through A bisects the angle 28. Thus, for this particular level, 8 is 
equal to w because the sides of the two angles are perpendicular and one 
can write 
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and 

x = 2C2zlC, 

which is the equation of a straight line of slope 2 if the two constants C ,  and 
CZ are chosen to be equal. Thus the reciprocal lattice axis passing through 0 
will produce on the film a series of spots that will be found on a straight line 
which will normally have a slope of 2. 

When the angle o reaches the value of 90" the zero-level line will be 
found in the direction of the X-ray beam and the line traced by the spots 
will have reached the point where the film is cut to let the X-rays through. 
Immediately thereafter the spots will be recorded on the other side of the 
film interruption, that is they will begin to be recorded on the bottom half of 
the film. When w equals 180" the zero-level line is found again tangent to 
the Ewald sphere but it has been flipped over. The spots recorded after that 
will change the sign of the only index which is varying along the line. Figure 
4.14 shows the Ewald construction and the film appearance at the beginning 
of the rotation cycle and after a rotation angle of slightly more than 180". 

Fig. 4.14. (a) Five reciprocal lattice nodes have 
crossed the Ewald sphere and produced the five 
spots lying on a straight line on the film. (b) 
After a rotation of 180" plus the w of (a) the film 
shows this pattern. Notice that after a 180" 
rotation the pattern is perfectly symmetrical 
about the point where w = 90" on the projection 
of the rotation axis onto the film plane. 
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Fig. 4.15. For non-central reciprocal lattice lines 
28 is not equal to 2w and the plot of xversus zis 
not a straight line but the curve shown in the 
figure. 

If the second reciprocal lattice axis, which has to be found in the plane 
selected for recording, forms with this axis an angle of a*, when o equals 
a* this second axis will be found tangent to the sphere of reflection and 
after that will begin to produce a second straight line parallel to that traced 
by the first axis and separated from it a distance w = a*. Thus, reciprocal 
lattice axes are identified in the photograph by the straight lines they 
produce and the angle between them is simply the o value that separates 
the lines on the film. 

Figure 4.15 shows that for reciprocal lattice lines not passing through the 
origin of reciprocal space, 8 is not equal to o and therefore the relationship 
between x and z is no longer the equation of a straight line. It is instead a 
curve of the type shown on the right-hand side of Fig. 4.15. Each of the 
layer lines that do not pass through 0 will produce a curve similar to the 
one shown in the figure and therefore the film will show a family of 
non-intersecting curves or festoons that will be found on both sides of the 
line crossing the centre of the film, at increasing distances from the centre. 
Each festoon corresponds to one reciprocal space line and therefore the 
reflections found on it will have one index in common. On every film there 
will be two festoon families, one for each of the two reciprocal lattice axes 
found in the plane that is being examined. All non-central reflections are 
found at the intersections of two festoons, one from each of the two families 
found on the film. 

Figure 4.16 is a picture of the camera and Fig. 4.17 is a typical zero-level 
Weissenberg photograph. After the plane axes and the festoons have been 
identified, it is not difficult to index a photograph like this by inspection. 

Upper-level Weissenberg photographs 
Figure 4.18(a), a projection of the Ewald sphere on to the plane defined by 
the incident X-ray beam and a normal rotation axis, shows that for a 
non-zero-level photograph there is an area of the reciprocal lattice plane 
that cannot cross the Ewald sphere. This area becomes larger the further 
the plane is from the zero level. 

Figure 4.18(b) shows the solution which is adopted to circumvent this 
problem. The rotation axis is no longer chosen to be normal to the X-ray 

f i lm 
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Fig. 4.16. A modern Weissenberg camera. 
(Photograph courtesy of Enraf Nonius.) 

Fig. 4.17. Zero-level Weissenberg photograph. 
Notice the straight lines of points produced by 
the zero-level lines and the festoons due to the 
non-zero-level lines. 
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Fig. 4.18. Upper-level Weissenberg 
photographs. (a) If the incident X-ray beam is 
normal to the rotation axis, there will be a blind 
area for upper-level planes. (b) The equi- 
inclination method. 

beam, it is instead tilted so that its intersection with the reciprocal lattice 
plane falls on the Ewald sphere. As a consequence, the angle made by the 
incident and diffracted X-rays with a normal to the rotation axis going 
through the centre of the Ewald sphere are equal (see Fig. 4.18(b)) and the 
method is called the equi-inclination method. A detailed description of this 
method is found in ~ u e r ~ e r . ' ~ ~ ]  

Since the main uses of the Weissenberg camera are nowadays space-group 
and unit cell parameter determination and no longer quantitative intensity 
measurements, upper-level Weissenberg photographs are seldom recorded. 

The precession camera 
The precession camera, introduced by Martin Buerger in 1942, is still a very 
popular instrument, especially among macromolecular crystallographers, 
because it produces an undistorted picture of a reciprocal lattice plane.[35] A 
precession photograph is quite easily indexed by inspection, it shows very 
clearly the reciprocal lattice plane symmetry, and can be used to quickly and 
easily calculate the unit cell parameters. This is so because the distance 
between the spots on the film is simply a reciprocal lattice distance scaled by 
the X-ray wavelength and the crystal to film distance. 

The precession motion 
In the precession method a crystal is first oriented with one of its axes 
parallel to the X-ray beam, that is to say with a family of reciprocal lattice 
planes perpendicular to the beam as shown in Fig. 4.19(a). This figure 
shows the zero-level reciprocal lattice plane tangent to the Ewald sphere at 
the point 0. In the precession camera the crystal is rotated in such a way 
that the normal to the plane family precesses about the X-ray beam, in 
other words it revolves about the beam keeping a constant angle p, the 
precession angle. During this revolution the normal to the planes describes 
a cone whose axis is the X-ray beam. At the same time the film that will 
collect the reflections is made to move in the same way so that it is always 
parallel to the reciprocal lattice plane that will be photographed and keeps 
with it a constant distance. 

When the precession angle p is different from 0 ,  the zero-level reciprocal 
lattice plane is no longer tangent to the Ewald sphere; it intersects the 
sphere defining with it a circle. All the reciprocal lattice points which fall on 
this circle produce a diffracted beam that will be recorded on the film. This 
situation is represented in Fig. 4.19(b) which shows on the right-hand side 
the projection of this circle onto the film. This projection is also a circle 
because the film is always parallel to the reciprocal lattice plane and the 
distance between the two planes is constant. 

When the normal to the reciprocal lattice planes has described half of its 
revolution movement about the X-ray beam we find the situation shown in 
Fig. 4.19(c). 

After a full cycle has been completed we are back to the situation 
represented in Fig. 4.19(b). Figure 4.20 shows the film with the projections 
of the intersection of the reciprocal lattice plane and the Ewald sphere in 
four situations; two are those shown in Figs. 4.19(b) and (c), the other two 
correspond to the positions in which the projection of the normal on to the 
plane of the figure coincides with the X-ray beam. These situations are 
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FILM 

I I 
Ewald sphere F I  LM 

(b) 

Fig. 4.19. Precession motion. (a) The crystal is 
first or~ented with a family of reciprocal lattice 

X-rays planes perpendicular to the X-ray beam. On the 
right-hand side we view the f ~ l m  in the direction 
of the normal to the planes. (b) The normal to 
the reciprocal lattice planes forms an angle y 
with the X-ray beam. The intersection of the 
zero-level plane with the Ewald sphere projects 

Ewald sphere onto the parallel film as a circle centred on N, 
FILM and tangent to the film centere 0,. (c) After half 

a precession cycle we find the situation shown 
here. The circle on the film has now moved from 

(c ) above to below the film origin. 

described by the same Figs 4.19(b) and (c) if we imagine that we are viewing 
the Ewald sphere not from a side but from the top or the bottom. 

When a full revolution has been completed the intersection of the 
reciprocal lattice plane and the Ewald sphere has described a circle whose 
radius is the diameter of the intersection and equal to 

2 sin plA. (4.22) 

All the points in the reciprocal lattice plane which are found within this 
radius have passed through the Ewald sphere and therefore have produced 
a diffracted beam which has been recorded on the film. Since the precession 
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Fig. 4.20. Movement of the projection of the 
intersection of the reciprocal lattice plane and 
the Ewald sphere onto the film as one 
precession cycle is completed. Only four 
extreme situations are represented. The circle 
defined by the projection wil l  contain all the 
reflections collected by the camera. 

Fig. 4.21. Diffraction cones generated by the 
zero and first reciprocal lanice planes. The 
screen is set at a distance from the crystal s so 
that only the diffracted beams originated from 
the zero level are let through and therefore 
produce a signal on the film. 

angle is usually not larger than 30°, the maximum radius of this circle is 
normally A-'. 

In Fig. 4.19(b) the reciprocal lattice point R is inside the Ewald sphere, in 
Fig. 4.19(c) it is outside. When a full cycle has been completed and we are 
back to the situation shown in Fig. 4.19(b), the point is again inside the 
Ewald sphere. Thus in a full precession cycle, every reciprocal lattice point 
that will produce a signal crosses the Ewald sphere twice, moving each time 
in opposite directions. 

Isolating a zero-level reciprocal lattice plane 
In Figs. 4.19(b) and (c) we have shown the precession motion indicating 
only a zero-level reciprocal lattice plane. In fact, as can be easily understood 
reconsidering Fig. 4.19(a), it is a family of reciprocal lattice planes that 
always intersects the Ewald sphere generating a set of concentric circles of 
variable radii. In order to record only the zero-level plane, the diffracted 
beams originating from all the other planes have to be stopped using a layer 
line screen. 

Figure 4.21 shows the cones generated by the zero- and first-level 
reciprocal lattice planes and the screen used to stop the beams diffracted 
from the first level. The screen is simply a metal plate with an annular 
aperture that will let through only the diffracted radiation coming from the 
selected reciprocal lattice plane. As the crystal and the film move, the 
screen also moves in such a way that it is always parallel to the film and 
therefore parallel to the reciprocal lattice planes. In the precession camera, 
the movement of crystal, film and screen are always coupled to satisfy this 
condition. 

The position of the screen, that is the crystal to screen distance, depends 
on the radius of the annulus. If s is the crystal to screen distance and r, the 
annular radius 

s c r e e n  

\ 
\ 
\ 
\ 
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and 

as shown in Fig. 4.21. 

Upper-level precession photographs 
Let us consider an upper-level reciprocal lattice plane whose normal forms a 
precession angle p with the direction of the X-ray beam as shown in Fig. 
4.22. 

The upper level origin 0, represented in the figure lies a distance nd* 
from the intersection of the X-ray beam with the Ewald sphere. In order to 
produce an undistorted photograph of the reciprocal lattice plane, the film 
centre has to be' moved forward from 0: to 0:. 

From the construction in Fig. 4.22 we can write 

Dlnd* = flA-' 

where D is the distance the film has to be moved forward, nd* the distance 
between the upper-level plane and the zero-level plane, f is the crystal to 
film distance, and A - l  the radius of the Ewald sphere. 

Thus we can calculate D 

for any upper-level plane and crystal to film distance. 
Figure 4.23 is the construction used to calculate the crystal to screen 

distance for an upper-level precession photograph. 
In this case we can write 

cot v=s / rS  

Also the distance between the upper-level layer and the zero-level plane is 

nd* = l/A(cos p - cos v). 

Fig. 4.22. Upper-level precession geometry. 0; 
is the new centre of the film that will permit the 
collection of an undistorted upper level; nd* is 
the distance between the upper and the zero- 
level plane, f is  the crystal to film distance. 
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Thus 

cos v = cos p - nd*A 

and finally 

s = r, cot cos-'(cos p - nd*A) (4.25) 

which can be used to calculate the crystal to screen distance for any 
upper-level precession photograph. Incidentally, we notice that if n is made 
equal to 0 this equation reduces to (4.23), the expression derived for a 
zero-level precession photograph. 

Re-examining Fig. 4.22, we notice that there is an area of the reciprocal 
lattice plane that will never pass through the Ewald sphere. The projection 
of this area onto the plane of the figure is the line that goes from the point 
0, to Q,. The blind region circle has a radius, rb, that can be calculated 
from Fig. 4.22 

rb = l/A(sin v - sin p). 

On the film the radius of the blind region, rB, is 

rBla = f /Ap1 

from which 

rB = f (sin v - sin p) (4.26) 

where f is the crystal to film distance. 
We can use Fig. 4.23 to calculate the radius of the limiting circle for any 

upper level. If r, is the maximum radius and f the crystal to film distance 

rM/f = (sin v + sin p)(l/A)/A-I 

r, = f (sin v + sin p). (4.27) 

Fig. 4.23. Setting the layer line screen to select 
an upper-level plane. 
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Calculating unit cell parameters from a precession 
photograph 
Figure 4.24 is a picture of a precession camera and Fig. 4.25 a zero-level 
precession photograph of a protein crystal that belongs to the space group 
P3221. Figure 4.25 is an h01 zone, i.e. the axes shown are a* and c* .  In 
order to determine the unit cell parameters one has to know the wavelength 
of the X-ray radiation, the crystal to film distance, and the distance between 
two consecutive reflections along the two axes. The precision of the 
parameter determination, can be increased if a larger distance is measured, 
i.e. the distance between several spots, if possible using one of the many 
optical devices available to improve the quality of the measurement. If df is 
the distance between two spots on the film, as shown in Fig. 4.26 

and 

a* = df lhf (4.28) 

where f is the crystal to film distance and a* the reciprocal lattice parameter 
from which the unit cell parameter can be easily calculated. 

The rotation (oscillation) method in macromolecular 
crystallography 
In our discussion of the Weissenberg and precession cameras we have seen 
that in both methods only one reciprocal lattice plane is recorded per film. 
As a result, indexing of the photographs is easy but the drawback in both 
cases is that most of the diffracted radiation is not recorded and therefore it 

Fig. 4.24. The precession camera. (Photog1 
courtesy of Huber Diffraktionstechnik.) 
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Fig. 4.25. Zero-level precession photograph of a 
protein crystal showing the two reciprocal lattice 
axes. From this picture i t  is quite easy to 
calculate the two unit cell parameters as 
described in  the text. Notice the holes punched 
on the picture used to roughly define its centre 
during densitometry. 

is wasted. If the crystals do not decay in time, that is if the intensity of the 
reflections does not change as the crystal is exposed to the X-ray, this is not 
too a serious a problem; with sufficient time available all the reciprocal 
lattice region of interest can, in theory, be explored one layer at a time. But 
if radiation damage is a problem, as is the case of macromolecular crystals, 
both the precession and Weissenberg methods are extremely inefficient. For 

I 

Fig. 4.26. Determining the unit cell parameters 
from a precession photograph. 
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example, the recording of a complete data set of a protein crystal with the 
precession camera usually requires one crystal per photograph, i.e. one 
crystal per reciprocal lattice plane. Although in the early days of protein 
crystallography this was the way that data were collected, the search for a 
more efficient way to record diffracted intensities led in the early 1970s to 
the reintroduction of the screenless flat-film rotation (oscillation) method 
for macromolecular data collection. The flat-film rotation method had been 
used since the very beginning of X-ray crystallography[36] but it had been 
abandoned due to the difficulties in indexing and quantitatively measuring 
the reflection intensities on the film. This situation was changed by the 
introduction of computer-controlled microdensitometers which assured that 
films could be conveniently scanned and reliable intensities could be 
extracted from them. A new type of flat-film rotation camera with eight 
cassettes that are used for successive exposures, the Arndt-Wonacott 
 ame era,[^',^*] was built, and in a relatively short time the rotation method 
became one of the major, if not the major, method for macromolecular 
crystal data collection. 

Geometry of the rotation method 
In the rotation method a crystal is made to rotate or oscillate, that is it is 
moved back and forth, through a small angle about one axis perpendicular 
to the X-ray beam and the diffracted intensities are recorded on a flat film 
(that can also be V-shaped) contained in a casette perpendicular to the 
incident X-rays (see Fig. 4.27). Small rotation angles are required to avoid 
reflection overlap on the film. An asymmetric unit of reciprocal space is 
covered by successively exposing different cassettes. 

When we discussed the Weissenberg camera, we saw that reciprocal 
lattice planes perpendicular to the rotation axis generate a series of layer 
lines on a cylindrical film. Let us now see what happens if we have a flat film 
perpendicular to the X-ray beam as shown in Fig. 4.27. In describing a 
crystal rotation, it is easier, and therefore often preferred, to leave the 
reciprocal lattice fixed and move instead the Ewald sphere. When the 
crystal is rotated a small angle A@, the two circles that result from the 
intersection of the Ewald sphere at the beginning and end of the rotation 
range and each reciprocal lattice plane, define two crescent-shaped lunes 

Fig. 4.27. The rotation motion. The motion is 
shown leaving the reciprocal lattice planes fixed 
and rotating the Ewald sphere about the point 0. 
After the spindle has rotated an angle A@, the 
intersections of the Ewald sphere with each 
reciprocal lattice plane define two lunes per 
plane. A pair of lunes is shown on the right-hand 
side. The film is placed flat and normal to the 
X-ray beam. During the rotation of the crystal it 
is kept stationary. 
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r o t  at  ion 
ax is  

Fig. 4.28. Projection of the intersections of the 
Ewald sphere and three reciprocal lattice planes 
on the film. The innermost pair of lunes 
corresponds to the plane with index one 
because the plane with index zero is tangential 
to the Ewald sphere. 

I I range allowed without having reflection overlap from different reciprocal 
Fig. 4.29. The idealized shape of partially 
recorded reflections. The spots labelled A are 

lattice planes on the film. The expression for the maximum rotation range 

that contain all the reciprocal lattice points that will produce diffraction on 
the flat film perpendicular to the X-ray beam. Thus a rotation photograph 
contains reflections coming from all the reciprocal layers that intersect the 
Ewald sphere as shown in Fig. 4.28. The reflections contained in each of the 
lune pairs come from the same reciprocal lattice plane and therefore have 
one index in common. 

Since nodes in reciprocal space have a volume, a reflection is not 
completely recorded on the film until the entire volume has passed through 
the Ewald sphere. Any reflection whose reciprocal lattice node has not 
completely passed through the Ewald sphere is called a partially recorded 
reflection or, more improperly, half spot, regardless of the percentage of the 
volume that has passed through the sphere of reflection. Since the rotation 
range in macromolecular crystallography is usually quite small, as we will 
see, a substantial number of reflections on a rotation film are partially 
recorded reflections. These have to be properly identified and dealt with 

recorded at one end of the rotation range and 1s: 
those labelled B at the other end. The missing 
parts of reflections A will be found on the A@rnax Ir*IIR&,x - A (4.29) 
previous rotation photograph and those of spots 
B on the following one. where A@,,, is the maximum allowed rotation range in radians, R:,, the 

f ~ l m  
during film processing. One of the reasons why the rotation methud has 
been so successful is that it has been found that reflections partially 
recorded on different films can be added together[381 to yield a reliable value 
for the total diffracted intensity. 

Figure 4.29 shows the idealized shape of the partially recorded reflections, 
which is different if they are recorded at the beginning or the end of the 
rotation range. In one case the missing part of the reflection has been 
recorded in the previous film, in the other it will be recorded on the next. 
Re-examining Fig. 4.28 we notice that the area of reciprocal space that 
crosses the Ewald sphere becomes a series of points along the projection of 
the rotation axis. Thus, no matter how small their reflecting range, 
reflections found along this line will always be partially recorded. 

~ o n a c o t t [ ~ ~ ]  has examined the factors that limit the maximum rotation 
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maximum resolution in reciprocal space of the data that will be collected, r* 
is the pertinent reciprocal lattice vector, and A is the reflecting range of the 
crystal. 

As an example let us calculate A@,,, for a maximum resolution of 2.5 A 
when the relevant reciprocal lattice vector is 1/100 A and A is 0.4" 

A@,, 6 2.51100 x 57.3 - 0.4 = 1" 

where we have multiplied by 57.3 to convert radians into degrees. 
In Fig. 4.30 the Ewald sphere is represented projected onto the plane 

determined by the X-ray beam and the crystal rotation axis. A limiting 
sphere of smaller radius represents the maximum resolution of the data that 
will be collected in the rotation experiment. The maximum rotation range of 
the crystal, represented by a 360" rotation of the Ewald sphere about the 
rotation axis, will cover the volume of reciprocal space limited by the toroid 
generated by the rotation of the sphere but will leave out the shaded volume 
shown projected onto the plane of the figure, a blind zone inaccessible to 
the rotation geometry. From the figure it should be apparent that the 
volume of the blind region increases with the resolution of the data to be 
collected. A plot of the percentage of reciprocal space which cannot be 
measured in a rotation experiment as a function of the resolution desired 
has been calculated by ~ o n a c o t t . [ ~ ~ I  For data of up to 5 A resolution, it is 
only 0.72 per cent but it increases to 4.58 per cent for 2.0 A resolution. In 
order to record the data generated by the reciprocal lattice nodes present in 
the blind region, the crystal has to be rotated about a different axis. 

Figure 4.31 shows the total volume of reciprocal space swept out as the 
crystal is rotated a total angle of 30°, 90°, and 180". From the figure it should 
be evident that even if the rotation axis has no symmetry it is never 
necessary to rotate a crystal much more than 180" in order to collect all of 
reciprocal space with the exception of the blind region, not represented in 
the figure. The volume which has not been covered by a 180" rotation has 
been dotted in Fig. 4.31(c) and its size depends on the resolution desired as 
shown in the same figure. From the figure it should also be clear that, in 

rotation 
axis 

Fig. 4.30. Rotation geometry showing the Ewald 
sphere projected on to the plane defined by the 
X-ray beam and the rotation axis. A limiting 
sphere centred on 0 shows the resolution 
desired or attainable. The shaded reaion 

film / - 
represents the volume of reciprocal space 
inaccessible to the rotation movement. 
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Fig. 4.31. Volume of reciprocal space explored 
by a total rotation range of 30" (a), 90" (b), and 
180" (c). In each case a limiting sphere 
corresponding to a chosen resolution defines 
the volume of reciprocal space of interest. 

order to minimize the total rotation range, it is desirable to rotate the 
crystal about the crystallographic axis of highest symmetry. Thus if a 
hexagonal crystal is rotated about the c axis, a 30" total rotation range will 
suffice to cover a reciprocal space asymmetric unit in which the only missing 
volume will be the blind region. 

Symmetry is, however, not the only consideration in the choice of the 
rotation axis. Another factor, which is equally important, is the size of the 
unit cell parameters. We have seen that the maximum rotation interval per 
photograph is dependent on the unit cell parameters. Ideally, one would 
like to rotate about the axis with the largest unit cell parameter, which in 
this way does not become a limiting factor in the choice of the maximum 
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rotation range per photograph. Still, there may be practical reasons that 
partially or totally limit the freedom of choice of the rotation axis. An 
example is crystal morphology. A crystal shaped as a very thin plate with its 
highest symmetry axis perpendicular to the plate cannot be easily mounted 
with that axis parallel to the spindle. 

Calculation of the film coordinates for a reflection 
In order to calculate the film coordinates for a reflection, four different sets 
of coordinate systems have to be introduced. The first is the crystallographic 
reciprocal lattice with its unit vectors a* ,  b*, and c* and the angles a*, P * ,  
and y*. In this coordinate system, a reciprocal lattice point is specified by 
the vector r* (see p. 65). 

r* = ha* + kb* + L C * .  

The second coordinate system in an orthogonal system called the crystal 
coordinate system which is linked to the crystal, that is it rotates just as a*,  
b*, and c* and differs from it in that it is always orthogonal (see Fig. 4.32). 

In this new coordinate system, the coordinates of a reciprocal lattice 
point, (x,, yo, 2,) can be calculated as follows 

xo = ha: + kb: + lc: 
yo = ha: + kb: + LC,* 

z0 = ha: + kb: + LC; 

where a% is the projection of a* onto the xo axis, etc. 
The third coordinate system is the laboratory orthogonal coordinate 

system which remains fixed as the crystal is rotated. This system is defined 
so that z is parallel to the rotation axis and x is parallel to the X-ray beam 
but points in the opposite direction. If at the beginning of the rotation 
experiment the crystal and laboratory coordinate systems coincide, after the 
crystal has rotated a certain angle @, the coordinates of a point in the 

Fig. 4.32. The crystal, laboratory, and film 
coordinate systems. The origin of crystal and 
laboratory systems is at the intersection of the 
X-ray beam with the Ewald sphere. The origin of 
the film system at the intersection of the X-ray 
beam with the film. 
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laboratory system will be 

as can be seen in Fig. 4.32. If the angle @ at which a given reciprocal lattice 
point crosses the Ewald sphere is known, since xo, yo, and 2, are only 
functions of the reflection indices and the unit cell parameters, x, y, and z, 
the reflection coordinates in the laboratory system, can be calculated. 

The fourth coordinate system is the projection of the laboratory coordin- 
ate system on to the film plane. In order to convert from the laboratory to 
the film coordinate system we only need to know the crystal to film distance. 
Figure 4.32 shows the relationship between the crystal, laboratory, and film 
coordinate systems. 

Thus we can calculate the film coordinates for a reflection if we know the 
angle Q, at which this reflection crossed the Ewald sphere. 

Let us consider the reciprocal lattice point P which crosses the Ewald 
sphere at a rotation angle @. Figure 4.33 shows that P is on the Ewald 
sphere when the centre of the sphere has moved from A to A' that is from 
(Ap', 0, 0) to (A-' cos @, A-' sin @, 0). 

Since P lies on the Ewald sphere, its coordinates must satisfy the equation 
of a sphere 

(xo - A p l  cos @)2 + (yo - A-I sin + 2; = A-2 
and 

xo cos @ +yo sin cP = ~A(x: + y: + 2;) (4.32) 

which can be solved to find the value of @.1391 
Once @ for a reflection is known its coordinates in the laboratory system 

and its position on the film can be calculated in the way that has been 
outlined. 

Fig. 4.33. When the crystal rotates an angle Q, 
point P lies on the surface of the Ewald sphere 
and the centre of the sphere has moved from A 
to A'. The crystal coordinate system is only 
shown before the rotation, that is when it is 
coincident with the laboratory system. 

X-rays - 

film 
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Indexing a rotation photograph 
Figure 4.34 is a photograph of an Arndt-Wonacott rotation camera.[371 
There are other commercial versions of rotation cameras, some of which, 
with the possibility to expose only one cassette at a time, which are very 
demanding on the operator unless very long exposure times per film are 
used. Figure 4.35 is a rotation photograph of a protein crystal. When data 
collection with the rotation method is started on a protein crystal, the space 
group has already been determined using the precession method and the 
unit cell parameters are known. Also precession photographs of the 
zero-level projections and some upper levels are usually available. The 
crystal that produced Fig. 4.35 is orthorhombic, space group P212121, and it 
was mounted with the c* axis on the spindle. Although a knowledge of the 
crystal setting and indexing of one or more rotation pictures is not essential 
to process the data,[401 we will briefly discuss how Fig. 4.35 can be indexed. 
The picture is the second of a series collected with the c* axis mounted on 
the spindle. It was exposed at a crystal to film distance of 7.5 cm and A@ is 
in this case 3", the unit cell parameters are a = 46.1, b = 49.1, and 
c = 76.1 A. Since in this case there is no higher symmetry axis, the choice of 
the rotation axis was dictated only by the size of the unit cell parameters. 
Partially recorded reflections can be identified by examining the spot shape 
(see Fig. 4.29) or, more easily when the spot shape is not very regular as in 
this case, by placing the photograph on top of the previous and the 
following one. Partially recorded reflections are those that appear recorded 
on more than one film. 

Fig. 4.34. The Arndt-Wonacott rotation camera. 
(Photograph courtesy of Enraf Nonius.) 
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Fig. 4.35. Rotation photograph of a protein 
crystal. Notice the fiducial marks that are used to 
determine the centre of the film during 
densitometry. For a discussion of the indexing 
procedure see text. 

The rotation picture recorded before the one shown in Fig. 4.35 was 
exposed with the X-rays in approximately the direction of the b axis. In fact 
in Fig. 4.35 we can see the small circle closer to the beam stop that 
corresponds to the h01 plane. 

The k index of the reflections is the easiest to identify; for the smallest 
circle it is 0 and for the concentric lunes it is successively 1, 2, 3, etc. 
(compare with Fig. 4.28). In order to find h and I we have to find the c* and 
a*  axes on the film, then indexing is done simply by counting spots. The c* 
axis is horizontal because it coincides with the rotation axis, its intersection 
with a *  can be found by locating a * ,  here we are aided by systematic 
extinctions. The first index h is the most difficult to determine but the 
position of the c* axis, which corresponds to h = 0 can be found looking at 
the picture exposed before Fig. 4.35 which shows symmetry about the 
rotation axis. The axis of symmetry is the c* axis. 

~ e r n a l ' ~ ~ ]  proposed the use of specially designed charts to more easily 
index rotation photographs. These charts are nowadays not very widely 
used. 

Densitometry 
The data collection cameras that we have seen in this chapter normally use 
film as a detector for the radiation diffracted by the crystals. In Chapter 3 
(p. 161) we have seen that the quantity that is proportional to the structure 
factor amplitude is the integrated intensity of the diffracted X-rays. 
Therefore, in order to be able to quantitatively use the data recorded with 
these methods, the first step is the extraction of the relative integrated 
intensities from the film. This is currently done using an instrument called a 
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densitometer or film scanner, hence the name densitometry applied to the 
procedure followed to measure the relative diffracted intensities on film. 

Optical density and integrated intensity 
The quantity that is measured by the densitometer is the optical density of 
the spots produced by the diffracted beams on the film. There is a 
relationship between optical density and number of X-ray photons striking 
the film that we will explore more carefully in the next section but which can 
be assumed, for the time being, to be linear up to X-ray optical densities of 
at least 1.0. The optical density of the spots is determined by shining visible 
light on the film and measuring the ratio of the intensity transmitted to that 
of incident light and it is defined as 

D = log I,,/I, (4.33) 

where I, is the incident light intensity, I, the transmitted light intensity, and 
D is the optical density. 

Modern instruments are capable of measuring optical densities of very 
small areas, as small as 12.5 x 12.5 ,um2 and are therefore called 
microdensitometers. 

The total optical density of a spot on a film is the sum of the optical 
density of a certain number of squares, called pixels, covering the spot area 
minus the same number of terms with an optical density equal to that of the 
film background. 

D = C D ~ - C  DB. 
spot 
area 

Figure 4.36 shows the computer output from a scanning program with a 

Fig. 4.36. Computer output showing a reflection 
recorded on film and scanned with a 25 pm 
raster. The optical densities from 0 to 2 
correspond to numbers that range from 0 to 9 in 
the figure. 
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diffraction spot in which the optical densities from 0 to 2 correspond to 
numbers that range from 0 to 9. This last interval was chosen to make the 
spot representation clearer, although normally these numbers do not range 
from 0 to 9 but from 0 to 255. 

The sampling area has to be chosen bearing in mind that because of film 
graininess statistically more significant results are obtained with larger areas. 
On the other hand, the optical density should not vary significantly within 
the sampling area; otherwise one is averaging transmitted light rather than 
optical density and the final optical density will be in error because of the 
logarithmic relationship between the two quantities. This last effect is called 
the Wooster effect.[411 

Film as an X-ray detector 
When an X-ray photon strikes a film, it excites a silver halide particle which, 
when the film is developed, will produce a black silver grain on the film. 
Here we will follow Vonk and Pijpers in their derivation of a relationship 
between the number of photons striking the film and the optical density they 
produce. [421 

If the film contains a number of excitable particles no per unit area and n 
have been excited by the X-rays, as dE photons strike the film, the number 
of excited particles will increase by dn and 

where (no - n)ln, is the fraction of particles that have not been excited, a is 
the fraction of radiation absorbed by excited and unexcited particles, and rn 
is the number of particles excited per photon, normally taken to be equal to 
1. Solving the differential equation 

n = no[l - exp (-maElno)] 

using as boundary conditions n = 0 for E = 0 and n = no for very large 
values of E. 

As more and more particles are excited on the film, the fraction of light 
transmitted, when the optical density is measured, will decrease. Assuming 
that the fraction of light transmitted by the film is proportional to the area 
that has not been excited one can obtain 

dIt/Io = -fIt dnlIoK 

where It/Io is proportional to the unexcited area, K is the proportionality 
constant, f is the surface covered by a grain, and dn the increment in excited 
particles as before. 

Solving the differential equation we obtain 

ItlIo = exp (-fnlK), 

2.3 log ItlIo = -fnlK, 

and 

D = fn12.3K. 

The maximum optical density that can be measured, Dm,,, will cor- 
respond to n = n,. If, in the expression of n as a function of E, we substitute 
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n and no in terms of D and Dm,, we obtain 

where So = maf I2.3K. 
This equation can be simplified[421 by two successive series expansions to 

DIE = So(1- D /2Dmax). (4.35) 

From this equation we see that for large values of Dm,, and small optical 
densities the relationship between optical density and exposure is linear. 
The exposure E, that is the number of photons exciting the film, is 
proportional to exposure time when a film is exposed to successively higher 
X-ray doses by increasing the time that it is hit by a constant X-ray beam. 
The parameter Dm,, is characteristic of the film and can be determined 
plotting D I E  as a function of D. Some typical values have been determined 
by Vonk and ~ i j ~ e r s [ ~ ~ ]  and more recently by ~ l d e r [ ~ ~ ]  for very widely used 
types of X-ray film. The value of Dm,,, representing the optical density of 
the film when all the silver halide granules on it have been excited, is usually 
well beyond the optical density range that can be measured with the 
densitometer . 

The ratio DIE is called the film speed at density D, So is the initial speed, 
and the function in parentheses shows how this value decreases as exposure 
progresses. 

Arndt et have derived a simple approximate expression for the 
fractional standard deviation of an optical density measurement on film. If 
aD is the standard deviation 

where ND is the total number of quanta producing the optical density D. 
This equation shows that the fractional standard deviation is not dependent 
on the film speed. 

All radiation counters are assumed to be approximately Poissonian 
detectors, i.e. the statistics of counting rates can be analysed theoretically 
by a Poisson distribution. If film were an ideal Poisson detector the factor 
1.35 would have to be 1.0 instead. Thus the fractional standard deviation of 
film is higher by a factor of 1.35 than the equivalent parameter in more ideal 
Poisson detectors, like for example those used for diffractometers. 

Microdensitometers 
There are currently three different types of microdensitometers in use: the 
rotating-drum, cathode ray tube and flat-bed microden~itometer.[~~~ The 
first kind is by far the most widely used by X-rays crystallographers and it is 
for that reason that it will be briefly described here. 

Rotating-drum densitometers have been described by  brah hams son[^^] 
and ~ u o n g [ ~ ' ]  and their performance in the scanning of precession photo- 
graphs has been analysed by Nockolds and ~ r e t s i n g e r [ ~ ~ ]  and by Matthews 
et a1. [491 

In a rotating-drum scanner, the film is mounted on a cylindrical drum that 
has a rectangular aperture for the film and which rotates about the cylinder 
axis. The rotation speed is variable, and depending on the instrument can 
be as high as 12 revolutions per second. A beam of visible light is passed 
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through the film and its intensity is measured by a detector. Source and 
detector are stationary during one revolution of the drum and are 
automatically stepped along the cylinder axis until the entire film is covered. 
The incident light intensity I,, is measured as the beam goes through air. 

The raster size is variable, it can be 12.5, 25, 50, 100, or 200 ym or more 
and the transmitted light is measured at intervals equal to these values. 
Thus if a raster size of say 100 ym has been chosen a strip 100 ym wide will 
be read in one revolution at 100pm intervals. After that, source and 
detector will be advanced 100 ym and another strip will be read until the 
entire film is covered by 100 x 100 ym pixels. The instrument is interfaced 
to a computer and the process is totally computer controlled. 

When the light beam goes through air, the instrument gives an optical 
density of 0. The maximum integer reading of 255(2'- 1) can be made to 
correspond to an optical density of either 2 or 3. The optical density values 
thus measured can be stored on magnetic tape or directly in the computer 
connected to the densitometer. There are two strategies used by computer 
programs in processing densitometer data.[48,491 In the first, the entire film is 
read as described above and the data are stored for subsequent computer 
processing to obtain the integrated intensities. In the second approach, 
integrated intensities are obtained on-line as scanning of the film proceeds. 
Both strategies have their advantages and disadvantages and have been used 
extensively to scan all types of diffraction films. 

The equations relating optical density on the film to the total number of 
photons that have caused it ((4.34) and (4.35)) show that there is a 
maximum value of optical density that can be measured for a given type of 
film and that the optical density is a linear function of the exposure only for 
relatively low values of D. We will briefly discuss how these two limitations 
are handled experimentally. 

The problem of a limited dynamic range of the film, i.e. of a limited 
optical density range that can be measured, can be solved by placing more 
than one film in the cassette that records the X-ray diffraction pattern. Since 
a substantial fraction of the radiation is absorbed by the X-ray film, those 
reflections which are too strong to be measured on the first film will 
normally fall within measuring range on the second or third. After the 
integrated intensities have been calculated, all the films in the pack can be 
scaled together. 

The non-linearity of the film response can be handled by constructing 
experimentally a table that relates an optical density produced by the 
scanner to a given exposure. Since one is interested in relative integrated 
intensities, the table can be constructed by exposing the film to the same 
X-ray beam during different times and measuring the optical density of the 
spots under the conditions that will be used for data scanning. In this 
experiment the exposure times are proportional to the number of photons 
hitting the X-ray film. 

An alternative approach proposed by Matthews et a1.[49] is to assume a 
parabolic relationship between integrated intensity and optical density. 

where A and B are two constants; A is arbitrarily set to one and B is 
determined from the scaling factor between successive films in the pack. In 
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this second approach the non-linearity of the film response is handled in the 
film scaling procedure. 

Although the simplest approach to determine the integrated intensity is to 
simply subtract the background from the area covering the spot, using the 
technique called profile fitting, smaller estimated standard deviations can be 
~ b t a i n e d . ~ ~ ~ ]  In this method, a model profile for the reflection is constructed, 
that is a model intensity distribution in two dimensions is determined by 
averaging the measured profiles of a certain number of reflections on the 
film. It is then assumed that all the reflections have this standard profile and 
the measured data are fitted to it. 

The single-crystal diffractometer 
An alternative to the data collection methods using film that we have 
described so far is the single-crystal d i f f rac t~mete r . [~~ ,~~]  Nowadays, it is with 
this instrument, that almost all of the data required to solve small molecule 
structures are collected and the diffractometer can also be used in 
macromolecular crystallography. Its most important advantage is better 
precision since film has a much higher level of background. Its only 
disadvantage is that it measures one reflection at a time, a limitation that is 
not very important for non-demanding crystals but can become very severe 
if radiation damage of the sample is a problem. 

DWractometer geometry 
A single-crystal diffractometer consists of an X-ray source, an X-ray 
detector, a goniostat that orients the crystal so that a chosen X-ray 
diffracted beam can be received by the detector, and a computer that 
controls goniostat and detector movements and performs the mathematical 
operations required to position the crystal and detector in the desired 
orientations. 

The detector is usually of the scintillation counter type in which X-rays 
excite a fluorescent material and thus generate visible light which is 
measured in an appropriate way. Xenon filled proportional counter detec- 
tors are also used, particularly with Cu K, radiation. This type of X-ray 
detector will be further discussed on p. 281. 

Both the molecular excitation of the fluorescent material and the gas 
ionization in the counter detector are events that can be triggered by the 
arrival of only one photon. It can be shown experimentally[s3] that if an 
X-ray beam is measured several times with a diffractometer detector, the 
different intensity values obtained follow a Poisson distribution. For such a 
distribution, the estimated standard deviation is 

0 = ~ 1 ' 2  

where N is the number of counts. The fractional standard deviation is thus 

= ~ 1 / 2 / ~  = N-1'2. 

We saw on p. 271 that for film methods the fractional standard deviation 
is larger by a factor of 1.35. Thus, diffractometer measurements can be said 
to be intrinsically more precise than those obtained from film methods. 
Modern diffractometers use the equatorial geometry in which the diffracted 
beams are always measured in a horizontal plane defined by the incident 
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Fig. 4.37. The diffractometer equatorial 
geometry. The detector, rotating about the 
instrument main axis, defines a plane that 
contains the incident beam. Reflections will 
always be measured on this plane. 

X-rays and the rotation of the detector about an axis passing through the 
crystal. The detector can only move on this plane and it forms an angle 28 
with the incident beam as shown in Fig. 4.37. In the figure, point P is in 
diffracting position because it is on the Ewald sphere and produces a 
scattered beam that can be detected because it is on the equatorial plane. In 
order to observe diffraction, all the reciprocal lattice nodes are brought in 
turn to some point on the circle defined by the intersection of the sphere of 
reflection and the equatorial plane. At the same time, the detector is moved 
to the appropriate 28 angle so that it can receive the diffracted beam. 

The most widely used type of goniostat uses the Eulerian cradle which 
gives rise to the four-circle diffractometer shown schematically in Fig. 4.38. 
The cradle is constituted by the x circle which carries the goniometer head 
with the crystal. The instrument has a main axis that is normal to the 
equatorial plane and therefore to the incident and diffracted X-ray beams 
and passes through the crystal. Rotation of the cradle about the main axis 
defines the angle o, rotation about the spindle axis of the goniometer head 
defines the angle Q, in exactly the same way as in the rotation camera. The 
angle x is defined by the spindle of the goniometer head and the main 
instrument axis. The four circles of the diffractometer are thus the Q, and x 
circles about which the crystal can be rotated, the o circle, defined by the 
rotation of the cradle, and the 28 circle described by the rotation of the 
detector about the main axis. 

Both the 28 and o rotations are about the main axis but the first moves 
the detector and the second the cradle. In a three-circle diffractometer the 
degree of freedom that is missing is the rotation o, in other words the 
cradle is fixed with its x plane perpendicular to the incident X-ray beam. 
The angle 28 is 0 when the detector is positioned in the direction of the 
incident X-ray beam, x is 0 if the spindle axis is parallel to the main axis, w 
is 0 when the x circle is perpendicular to the incident X-ray beam, and the 
zero position of Q, is arbitrary and can be defined with respect to the crystal 
orientation. If the angle x is 0 the o and Q, rotations coincide. 

In general, only two rotations are required to bring a reciprocal lattice 
node to the intersection of the Ewald sphere and the equatorial plane. If we 

tor 

Fig. 4.38. The four-circle diffractometer. The x 
circle carries the goniometer head with the 
crystal and together with it constitutes the 
Eulerian cradle. The cradle can rotate about the 
main instrument axis describing the angle w.  
The detector moves independently and forms an 
angle 20 with the incident X-ray beam. 
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start with x = 0, a rotation about @ or w can bring the reciprocal lattice 
node on the Ewald sphere as shown in Fig. 4.39(a) which is a projection 
looking down the instrument main axis. Then, it can be brought to the 
equatorial plane by a rotation about the x axis as shown in Fig. 4.39(b). 
Measurement of the scattered beam can then be accomplished by placing 
the detector at the appropriate 28 angle. However, the direction of the 
scattered beam thus defined may be such that detection may be difficult or 
even impossible because of the interference of the x circle, collimator, efc. 
It is for this reason that, although in principle rotation of the crystal about 
two axes plus the detector movement are sufficient to satisfy the diffraction 
condition, the extra degree of freedom provided by the w circle can prove 
very valuable. 

Quite often, the so-called bisecting geometry arrangement is chosen in 
which the x plane is moved so that it is made to contain the vector r*. 
Under these conditions, the x axis, perpendicular to the x plane, bisects the 
angle formed by the incident and scattered X-rays as shown in Fig. 4.40. 

An alternative to the Eulerian cradle, that is used in a widely diffused 
instrument, is the kappa goniostat. In this type of geometry the x circle does 
not exist and the goniometer head carrying the crystal is mounted on an arm 
that can rotate about an axis, the K axis, which forms an angle of 50" with 
the main instrument axis as shown in Fig. 4.41. The advantage of this 
system is that it is less cumbersome than the Eulerian cradle and thus 

Fig. 4.39. Bringing a reciprocal lattice node to 
the intersection of the Ewald sphere and the 
equatorial plane. (a) The crystal can be first 
rotated about @ until the node lies on the 
sphere. (b) A x rotation brings the point on the 
sphere of reflection to the equatorial plane 
where it can be measured. 

Fig. 4.40. The bisecting geometry arrangement. 
The reciprocal lattice vector r* lies in the x plane 
and the x axis bisects the angle formed by the 
incident and diffracted beam. 
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9 

Fig. 4.41. The K geometry goniostat. 

n p  

be the coordinate 
coordinate system 

rotations that would cause collisions or would produce diffracted 
would be blocked by the x circle in the conventional 
diffractometer are still practicable. 

beams that 
four-circle 

Determination of the crystal orientation and unit cell 
parameters: the orientation matrix 
Before one can predict the values of the angles cP, X ,  w, and 28 for which 
scattering will be observed for a given reflection of a crystal, it is necessary 
to determine the crystal orientation with respect to the Eulerian cradle. In 
this section we follow the International tables for x-ray crystallography,[54] 
and define several coordinate systems similarly to what was done on p. 265 
for the rotation method. 

Let us define the diffraction orthonormal coordinate system, AD, with 
basis vectors aD,  bD, cD such that a, and bD are both in the equatorial 
plane; a, points towards the X-ray source for 28 = 0, bD is parallel to the 
diffraction vector for positive values of 28 and cD is parallel to the 
instrument main axis and has a direction such that the three unitary vectors 
aD,  b,, and cD form a right-handed system. Accordingly, in Fig. 4.42, the 
vector cD is normal to the figure plane and points away from the observer. 
A second orthonormal coordinate system, A,, the crystal coordinate 
system, is defined. with respect to the goniometer head and therefore 
relative to the crystal. Its basis uectors are called aG, bG, and CG and it is 
coincident with the diffraction system when all the diffractometer angles are 
equal to 0. When one or more of the diffractometer angles differ from 0 the 
two coordinate systems are related by a rotation matrix F such that 

where (see p. 72) 

cos cD cos co - sin cD sin w cos x 
-sin cD cos w - cos cD sin w cos x 

sin x sin w 

-sin x cos w cos x 
Let 

matrix of the vector r* with respect to the reciprocal 

Fig. 4.42. The diffraction orthonormal system as 
seen in the projection on to the equatorial plane. 
a, and b, are the two basis vectors that are 
found onth is  plane. 
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and let 

be the coordinate matrices of r* with respect to the systems AG and AD 
respectively. Then, according to p. 66 and since (F)-' = F 

XG = FXD. 

If the angles w, X, and Q, are such that the diffraction condition is 
satisfied, remembering the way in which the diffraction coordinate system 
AD was defined (see Fig. 4.42), then the vector coordinates in the diffraction 
system are 

and its coordinates in the crystal system AG 

cos @ sin o + sin Q, cos o cos x 
-sin Q, sin o + cos Q, cos o cos x (4.37) 

-sin x cos o 

If the bisecting geometry arrangement was chosen, then as was pointed 
out the diffraction vector r* is in the x plane; in other words w is 0 and the 
vector coordinates in the crystal fixed system are: 

sin Q, cos x 
XG= lr*J cosQ,cosx . ( -sinx ) (4.38) 

Thus if we know the coordinates of a reciprocal lattice node in the fixed 
crystal system we can determine without any ambiguity from eqn (4.38) the 
values of the angles Q,, X, and o that will bring the node to a position that 
satisfies the diffraction condition. How do we then calculate the coordinates 
of a reciprocal lattice node in the fixed crystal system? In order to do this we 
need to introduce the orientation matrix U defined by 

and (see. p. 66) 

XG = UH or H = (u)-'x, (4.40) 

where U is the transposed orientation matrix. 
Thus if we know the orientation matrix we can calculate the fixed crystal 

coordinates of any reciprocal lattice node and therefore we can determine 
the Q,, X, and w values for which diffraction will be observed for the node. 
Let us now see how the orientation matrix can be determined in the general 
case in which the crystal unit cell parameters are unknown. If the angles X ,  
Q,, and w corresponding to the diffraction condition of three general 
reflections, HI, Hz, and HJ, are measured, the coordinates of the three 
reciprocal lattice points in the fixed crystal system, XG1, XG2, and XG3 can 
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be calculated since they depend only on the angles and the magnitude of the 
vectors Ir*l (eqn (4.38)). 

Multiplying both sides of the first eqn (4.39) by H and introducing the 
second eqn (4.40) we obtain 

HA* = W A G  = X ~ U - ~ U A ~  = XGAG. (4.41) 

Now we can write for the three reflections, 1, 2, and 3 

HIA* = X G l ~ G  

If one defines the matrices 

Equation (4.42) can be written in the more compact form 

Recalling eqn (4.39) 

and finally, 

U = H ~ l x ~ .  . 

Since HM and XM are known, one can calculate U, the orientation matrix 
from (4.43). 

If the unit cell parameters are known the angles corresponding to only 
two reflections are sufficient to calculate u.['~] 

In the more general case we have discussed, the orientation matrix yields 
also the unit cell parameters of the crystal 

A* = UAG 

and 

since AG is orthonormal (see Chapter 2, p. 68). 
Now the matrix A*A* is nothing else than the metric matrix G* of the 

reciprocal lattice defined by (2.15) and from it one can determine the unit 
cell parameters of the crystal. 

Measurement of the integrated intensities 
In order to obtain the integrated intensity of a reflection, the entire volume 
of the node must be made to sweep through the Ewald sphere while the 
detector counts the diffracted photons. 

There are basically two scanning modes that are very widely used (but see 
also ~ ~ c k o f f [ ~ ~ ] )  and they are called the o scan and the 28 or o - 28 scan. 
In the o scan the detector is left stationary while the crystal and thus the 
chosen reciprocal lattice node is made to cross the Ewald sphere by a 
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rotation of Ao about the main axis. This type of scanning mode is 
illustrated in Fig. 4.43(a). From the figure it can be seen that the section of 
the reciprocal lattice node sampled lies on an arc passing through the node 
and centred at the origin of the reciprocal lattice. In the 26 or 0 - 26 
scanning mode the crystal is moved in the same way but the detector follows 
the o rotation at twice the angular speed of the crystal so that in the end 
A26 = 2Ao. This scanning mode is illustrated in Fig. 4.43(b). In this case, 
the section of the node sampled lies in the direction of the vector r*. The 
advantages and disadvantages of these two scanning modes are extensively 
discussed by ~ y c k o f f  .["I 

The simplest way to obtain the net integrated intensity is by using the 

Fig. 4.43. Diffractometer scanning modes. (a) 
The w scanning mode. (b) The w-2% scanning 
mode. 
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so-called background-peak-background (BPB) method in which the inte- 
grated intensity of the reflection is calculated by simply subtracting the 
background resulting from the average of measurements to the left and to 
the right of the peak from the total peak counts. This method requires an 
accurate definition of the scanning width Am. In this simple case, the 
standard deviation of the measured intensity can be estimated by 

where I, is the intensity of the peak and IB that of the background. 
The recording of the complete reflection profile by carrying out step scans 

is clearly a more sophisticated alternative but it is much more demanding in 
terms of data storage space. If step scans are made, profile analysis of the 
peaks further improves the quality of the data.[551 In this method peak 
profiles are fitted to a shape that was previously determined and is 
periodically updated as data collection proceeds. 

The problem of defining the peak width in a step-scan-measured 
reflection is discussed by Lehmann and ~ a r s e n . [ ~ ~ ]  The criterion used is the 
function a l l ,  calculated for all possible peak widths, which becomes a 
minimum when the appropriate width is found. 

Figure 4.44 is a photograph of a modern four-circle-diffractometer. 
Once the appropriate A and X-ray source operating conditions have been 

chosen, the main steps that have to be taken in order to record a data set 
Fig. 4.44. A modern four-circle diffractometer. 

1 

(Photograph courtesy of Siemens Analytical X- 
ray Instruments.) 
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from a crystal with a diffractometer can be summarized by the following 
check-list: 

1. Mount the goniometer head with the specimen and centre the crystal 
optically. 

2. Search for the reflections that will be used to determine the orientation 
matrix and unit cell parameters of the crystal. At this stage it is easier to 
look for reflections at fairly low 28 values. 

3. Control the quality of the crystal by examining the profile of some 
reflections. If at this point one suspects that a better crystal is available, 
it is wise to select it and repeat steps (1) through (3). 

4. Once a satisfactory number of reflections has been found, determine a 
preliminary orientation matrix and the unit cell parameters. 

5. Using the results of (4) find reflections at high 20 values that will yield a 
better orientation matrix and more precise unit cell parameters. If 
required, at this point one is in a position to determine very accurate unit 
cell parameters by using an adequate number of Friedel pairs (see p. 
155) at high 28 values and least-square refinement methods (p. 90). 

6. If possible, transform the unit cell that has been found into another of 
higher symmetry. Check for systematic absences. 

7. Choose the scan mode, range, and speed by examining an adequate * 
number of reflections carefully. 

8. Select a subset of the reflections to periodically check the orientation of 
the crystal and another to monitor radiation damage (see p. 308). 

9. Decide which reflections will be collected (one or more asymmetric 
units), in which order and 20 range. 

10. Start data collection. 

11.When data collection is finished, before removing the crystal, remember 
that an absorption correction is essential, and most probably record the 
data necessary for an empirical absorption correction (see p. 306). 

Area detectors 
Due to its high precision, the diffractometer is the ideal data collection 
instrument for small-molecule crystals but it suffers, as we said in the 
previous section, from the drawback that it collects only one reflection at a 
time. When data have to be collected from macromolecular crystals which 
have very large unit cells and which therefore require the recording of many 
reflections and which in addition have, in general, a more or less serious 
radiation decay problem, the diffractometer is an inadequate data collection 
device. On the other hand, the rotation method described earlier (p. 259), 
that is with the reflections recorded on film and with a choice of the rotation 
range A@ made in order to minimize the number of films exposed and the 
fraction of partially recorded reflections, has an intrinsically lower precision. 
This is due to two main reasons; the first is that, as we have seen, film is a 
poorer detector than diffractometer counters, the second is that during the 
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film exposure the signal is recorded by the film only during a fraction of the 
total exposure time. If the reflecting range of a reflection of the crystal is A 
and the rotation range selected A@ this fraction is A/A@. Typically A is no 
more than a few tenths of a degree whereas A@ can be one degree or more. 
In other words, in the rotation method the signal is recorded on the film 
during a time equal to tAlA@ where t is the total exposure time whereas the 
background is recorded instead during the total time t.[579581 One could, in 
principle, improve this situation by simply reducing A@, so that A is 
spanned by several rotation photographs, and then measure the integrated 
intensities only on those films in which the reflection is found. There are 
many reasons why this is not done when working with film but this is instead 
perfectly feasible when the detection is done by the devices called area 
detectors or X-ray position-sensitive detectors.[591 

Area detectors were designed to combine the photon counting efficiency 
of the diffractometer with the ability to record a large fraction of the 
reflections which simultaneously cross the Ewald sphere, which is the main 
advantage of the rotation method. Area detectors are thus probably the best 
choice for the data collection of macromolecules, and although they have 
not yet found many important applications in small-molecule crystal- 
lography they will probably turn out to be very useful in cases when 
radiation damage is a problem. However, it should be pointed out that the 
devices that are currently available commercially have been optimized for 
the detection of copper radiation 2nd are, in most cases, less efficient in the 
detection of the higher-energy molybdenum radiation which is very often 
used in small-molecule work.[601 

Principles of operation of area detectors 
The most common area detectors types that are currently used in macro- 
molecular work and that include the current commercially available 
instruments belong to two groups: multiwire proportional counters and 
television area detectors. To these two groups there has been a recent 
addition: the imaging plate, which is based on entirely different physical 
principles and, because it is more recent, has not yet been as thoroughly 
tested as the other two groups. We will briefly discuss the X-ray detection 
mechanisms of these three types of detector. 

Multiwire proportional counters are gas filled chambers that contain three 
parallel planar electrodes; an anode sandwiched in between two cathodes. 
The anode and at least one of the cathodes are arrays of parallel wires 
which are perpendicular among them.[61,621 The gas filling the chamber is 
usually a xenon-carbon dioxide mixture (see also Mokulskaya et u I . ~ ~ ~ ] ) .  
When an X-ray photon is absorbed by a Xe molecule an inner shell electron 
is emitted with a kinetic energy that is most of the energy of the absorbed 
photon and which is sufficient to produce the ionization of many more 
molecules. It has been calculatedf621 that an X-ray photon of the Cu K, 
wavelength has enough energy to induce on average the formation of 320 
ion pairs. The free electrons and the positive ions move in opposite 
directions, the former in the direction of the anode where they produce an 
ionization avalanche with the formation of several orders of magnitude of 
new ion pairs.[621 These ion pairs move again in opposite directions under 
the influence of the electric field and in so doing generate the electrical 
signal which is measured in the detector and which is localized in the region 
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where the initial photon hit the counter. The function of the carbon dioxide 
molecules is to absorb the ultraviolet photons which are generated in the 
avalanche process and which could produce the photoemission of electrons 
and thus start the whole process in another region of the counter. 

In television area detectors the X-ray radiation is converted into visible 
light by a fluorescent phosphor. These visible photons, after suitable 
intensification, are detected by the photocathode of a standard high- 
sensitivity television camera tube which is linked to a computer.[-71 The 
area detector phosphor, that is the fluorescent material that transforms 
X-rays into visible light, is either polycrystalline gadolinium oxysulphide or 
zinc sulphide and it produces between 250 and 500 visible photons per X-ray 
photon.[661 In spite of this gain in photon numbers, the sensitivity of the 
camera is not enough to measure them and so an increase in the signal is 
required to make it detectable. This enhancement is achieved by an image 
intensifier in which the photons produced by the first phosphor generate a 
certain number of electrons from a photocathode which are then accelerated 
and strike a second phosphor that is optically coupled to the camera. The 
photon gain of these intensifiers is of the order of either 100 or 1000.[~~] The 
television camera tube consists of a photoemissive cathode with an 
intensifier that accelerates the electrons generated by the light producing a 
charge image which is scanned by an electron beam used to measure the 
signal. Since the photons arriving in 40 ms, which is the period necessary to 
scan the image, are not enough to give good counting statistics, a certain 
number of these images have to be added before the statistics become 
satisfactory. 

The imaging plate is essentially a storage phosphor. This means that the 
X-ray photons produce on the plate a latent image that is then excited by 
stimulation with a He-Ne laser producing light at 633 nm. The light thus 
generated has a wavelength of 390 nm and is irradiated from the plate areas 
which were previously hit by the X-ray photons. This phenomenon is called 
photostimulated luminescence.[681 The radiation energy of the X-ray pho- 
tons can be stored by the phosphor for fairly long periods; it has been found 
that the photostimulated luminescence is reduced to one half of its initial 
value after approximately ten hours. The photostimulable material covering 
the plate is Ba F Br:Eu2+ crystals. When the plate is hit by X-ray photons 
some of the Eu2+ ions are ionized to Eu3+ ions and the electrons that are 
freed are trapped in Br vacancies introduced in the crystal that are called F 
centres. Subsequent excitation of these centres by the laser liberates again 
these electrons that return to the Eu3+ ions which thus become excited Eu2+ 
ions. An electronic transition in these ions generates the luminescence with 
an intensity proportional to that of the original The storage 
phosphor is read by an image reader which releases the stored information 
by means of the laser and collects the emitted radiation and channels it into 
a photomultiplier tube which converts the radiation into an electrical signal. 
The plate can be used repeatedly, since exposure to visible radiation 
restores it to its initial condition. The two other elements of the detection 
system are an image processor and an image writer that can be used to 
imprint the plate image onto photographic film to produce a permanent 

The characteristics of the image reader turn out to be crucial for 
the performance of the entire system and the best precision could not be 
obtained until an adequate read-out instrument was built.[''] 
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The performance of the three types of detector mentioned here has been 
analysed in several of the references given in this section and in particular 
by ~ r n d t . [ ~ ~ ]  Multiwire proportional counters and television detectors are 
already fairly widely spread in many laboratories and the data they have 
produced have been used to solve several new protein  structure^.^^^-^^] The 
special characteristic of the imaging plate is its very wide dynamic range 
which appears to make it the ideal detector to be used with the very intense 
synchrotron radiation. 

Data collection with an area detector 
In addition to the area detector, the data collection system requires some 
means of orienting and moving the crystal. Multiwire proportional counters 
and television detectors use either a modified rotation (oscillation) camera 
with a vertical spindle, a Eulerian cradle, or another type of three-circle 
diffractometer or a K goniostat. Figure 4.45 is a photograph of a television 
area detector which uses a K goniostat. The detector is mounted on a 
horizontal arm and can be moved about an axis passing through the crystal 
in a way totally analogous to a standard diffractometer counter and, in 
addition, it can be moved back and forth providing another degree of 
freedom-the crystal to detector distance D. The angle formed by the X-ray 
beam and a normal to the centre of the detector is called 8, and, as shown 
in Fig. 4.46, limits the resolution of the data to be collected. Following 
Xuong et a1.[741 we can write Bragg's "aw as follows: 

R,,, = A12 sin 8,,, 

R,, = A/2 sin Om,, 

A television area detector with a K 

. (Photograph courtesy of Enraf 
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detector 

Fig. 4.46. Projection of the Ewald sphere and the 
area detector on to the plane defined by the 
incident X-ray beam and a normal to the 
detector passing through the crystal. The 
volume of reciprocal space accessible is limited 
by the two spheres of radii l/R,,, and l/Rmi, 
which in turn are a function of Dand 8,. 

where R,,, is the maximum and R,, the minimum resolution of the 
reflections that can be measured by the detector in the position correspond- 
ing to the selected values of 8, and D. The angles &,, and emin are defined 
in the figure and are a function of the detector size, the angle 8, and the 
crystal to detector distance D. From the figure it can be seen that 

28,,, = 8, + tan-' (a/2D) 

28,, = 8, - tan-'(a12D) 

where a is the detector width. 
Equations (4.45) can be used to calculate the value of 8, to be selected 

for data collection to a particular resolution once that D, the crystal to 
detector distance, has been chosen. 

D must be selected according to the characteristics of the detector, the 
wavelength of the radiation, and the unit cell parameters of the crystal. The 
first two parameters do not normally change for different experiments 
performed at a given installation and therefore D can usually be calculated 
with a very simple formula in which the only variable is the maximum unit 
cell parameter of the crystal. For example in Howard et a1. ,[73] the crystal to 
detector distance for one type of multiwire proportional counter is 
calculated in centimetres, for Cu K, radiation by the following equation: 

where a,,, is the longest unit cell parameter of the crystal measured in 
ingstroms. The equivalent equation for another type of multiwire propor- 
tional counter[741 is: 

Thus, data from the same crystal would have to be collected at very 
different Ds by the two detectors which, although based on the same 
general principles, differ in their construction details. Once D has been 
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determined, knowing the detector width a, one can calculate the 8, required 
to collect data to the resolution desired. 

Each of the electronic pictures generated by the detector is called a frame 
and the individual elements of the picture are called pixels. The reflection 
size on the picture, the space between reflections, and, in general, the 
spatial resolution of the detector are expressed by the number and size of 
the pixels. 

The camera or the goniostat and the detector are controlled by a 
computer which is, in general, connected to another computer which 
receives from it the frames that are then used to calculate the integrated 
intensities (see for example Blum et u Z . [ ~ ~ ~ ) .  

Two methods have been proposed to make the reciprocal lattice nodes of 
the crystal cross the Ewald sphere: the rotation (oscillation) method and the 
stationary picture method. In both cases the detector does not move while 
data collection proceeds. In the first method the crystal is rotated about an 
axis which is often the vertical axis in pretty much the same way as when 
film is used. Many of the considerations discussed earlier (p. 259) are thus 
applicable to this technique in which data are collected in a series of 
consecutive rotation (oscillation) frames. In addition to the detection 
method there are basically two fundamental differences between the two 
techniques. The first is that the detector is not always perpendicular to the 
X-ray beam but can form with it an angle 8, as pointed out before. 
Obviously this fact has to be taken into account in the prediction of the 
detector coordinates of the reflections collected. The second major 
difference is in the choice of A@, the rotation range, which in this case is 
selected so that each reflection appears in several frames.[733751 AS pointed 
out before this strategy improves the signal to noise ratio since reflections 
are integrated only in the frames in which they appear. 

In the electronic stationary picture method,[762771 the crystal is also rotated 
about an axis but the frame is recorded with the crystal held stationary. The 
reflection intensity is thus extracted from a series of still electronic pictures 
at slightly different values of a. The A@ between frames is of the order of 
0.06" and subframes are sampled at distances of 0.01" in order to better scan 
reflections that in some cases can be very sharp.[771 This second data 
collection strategy is less widely used than the rotation (oscillation) method. 

It is worth noticing that these strategies of data collection are the only 
ones described so far that truly sample the entire volume of a reciprocal 
lattice node. With film methods what one sees is a projection of the entire 
volume on to the film plane, whereas with the diffractometer one looks at a 
reflection profile on a single plane that can be chosen to cut the node 
volume in different ways as seen earlier (p. 278). Thus, area detector data 
are the only ones that can be profile fitted in three dimensions, a possibility 
that ought to further improve their quality. 

In most cases the crystal is more or less accurately aligned before data 
collection can begin so that x,, and y,, the coordinates of a reflection on the 
detector, and @, the rotation angle at which the node crosses the Ewald 
sphere for all the reflections to be collected can be predicted[761 (see also p. 
265). However, a full data set collected with an area detector contains a 
very large fraction, if not all, of the reciprocal lattice nodes to a given 
resolution and, since the crystal orientation can be obtained automatically 
by efficient computer programs,[78] it is also possible not to orient the crystal 
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before data collection begins and find the orientation afterwards, during 
frame processing.[731 A strategy that can be used to cover a section of 
reciprocal space with an area detector, which is obviously applicable when 
the crystal orientation is known before data collection begins, is discussed 
by Xuong et al. [741 

Data collection techniques for polycrystalline 
materials 

X-ray diffraction of polycrystalline materials 
An ideal polycrystalline material or powder is an ensemble of a very large 
number of randomly oriented crystallites. Figure 4.47 shows the effect that 
this random orientation has on the diffraction of a specimen assumed to 
contain only one reciprocal lattice node. The most remarkable difference 
with the single-crystal case is that we must now think of the scattering 
vectors not as lying on discrete nodes of reciprocal space but on the surfaces 
of spheres whose radii are the reciprocal lattice vectors r&, the distances 
from the single-crystal reciprocal lattice nodes to the origin of reciprocal 
space. Thus, with these specimens, diffraction is observed when the 
scattering vectors lie at the intersection of the Ewald sphere and a series of 
concentric spheres centred at the reciprocal lattice origin. So, rather than 
having one point on the Ewald sphere, which together with the position of 
the sample A fixes the direction of the diffracted beam, we now have a 
series of circles. In strict analogy with the single-crystal case, these circles 
and the sample define a series of concentric cones with apex in A. The 
entire surface of these cones gives rise to diffraction. 

A simple way to record the diffraction pattern of a polycrystalline 
material is by placing a film perpendicular to the incident X-ray beam. The 
diffraction cones will, in this case, give rise to a series of concentric rings. 
Alternatively, a narrow strip of film can be placed on a cylinder centred at 
the sample. In this case, the cones will generate concentric arcs, which are 
segments of the rings, on the strip. A final possibility is to reduce the strip 
to a line, that is to simply record the position and the intensity of the 
diffracted radiation on any plane that contains the incident X-ray beam. In 
this last case one only measures the radius of the cone and the diffracted 
intensity at a single position. If the sample can be considered perfectly 
isotropic this single measurement is sufficient to completely characterize the 
diffraction pattern. The parameters reported are 28, that is the angle made 
by any vector with origin in A and lying on the diffraction cone surface and 
the incident X-ray beam, and the relative intensity of the radiation along 
any direction on the cone. If the orientation of the crystallite in the 
specimen is not perfectly random, the pattern obtained will not be isotropic. 
It may even present spots corresponding to single reciprocal lattice nodes. 
In that case the powder sample can be appropriately rotated so that each 
crystallite adopts many different orientations in the course of data collec- 
tion, thus generating a more homogeneous diffraction pattern. The result is 
equivalent to having a sample with many more possible crystallite orienta- 
tions and therefore closer to isotropy. Rotation of the specimen is a 
standard practice in data recording of polycrystalline materials. Exceptions 

Fig. 4.47. fa) If the specimen is an aggregate of 
randomly oriented crystallites, the vector r* is 
found in all the possible orientations with 
respect to the X-ray beam. These orientations 
define a sphere of radius r*.  (b) The intersection 
of the sphere of radius r* with the Ewald sphere 
is a clrcle that together w ~ t h  point A defines a 
diffraction cone of all the possible directions in 
which diffraction is observed. 
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Fig. 4.48. The four reciprocal lattice nodes 
represented in the figure are found at the same 
distance from the origin of reciprocal space 0 
and therefore they wil l  all contribute to the 
intensity of the line of the cone corresponding to 
the distance r r .  

are the cases in which the preferred orientations and other properties of the 
crystallites need to be studied. 

Another important feature which distinguishes powder diffraction is that 
the intensity of the diffracted radiation on the cone surfaces can arise from 
the contributions of more than one single-crystal reciprocal lattice node. 
Figure 4.48 shows in projection that this can happen both as a result of 
chance and crystal symmetry. A powder diffraction maximum, measured 
along any direction on the cone surface, is thus said to have a certain 
multiplicity that will be higher the higher the symmetry of the crystallites 
under examination. 

When the diffraction experiment is performed with monochromatic 
radiation, that is when there only a single Ewald sphere, there is only one 
diffraction cone corresponding to each sphere of a given radius rT in 
reciprocal space. In other words, the angle 201 corresponds unambiguously 
to the sphere of radius rT, 28, to that of radius r t ,  etc., and we have only 
one possibility if we want to measure the diffraction that arises from the 
sphere of radius r:: to have some means of detecting radiation at an angle 
28, with the incident X-ray beam. It is, however, possible to shine on the 
specimen X-rays with a wavelength variable within a certain range. The 
experiment is exactly equivalent to the Laue method used for single crystals. 
In this case, there will be many Ewald spheres, one for each wavelength, 
and each will generate a diffraction cone with a given sphere of radius rT. 
Figure 4.49 shows the Ewald spheres corresponding to the two values 
limiting the wavelength interval of the radiation used. In the figure it can be 
seen that the diffraction due to the sphere of radius rT can be measured at 
many different values of the angle 28,. For different acceptable choices of 
28, there will be diffraction produced by radiation of different wavelengths. 
The methods which use polychromatic incident radiation and analyse the 
energy or wavelength of the scattered radiation at a fixed scattering angle 
are called energy dispersive methods in powder diffraction. They obviously 
require a detector that will discriminate the energy of the arriving scattered 
radiation and have some advantages that make them the best choice in 
certain situations.[791 Just like the Laue method they are best practised with 
a synchrotron source which can furnish, as we have seen, radiation of 
adequate intensity in a rather extended energy interval. For the remainder 
of this chapter we will assume that we are dealing with monochromatic 
X-rays. The methods which use them are the most widely diffused in 
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standard laboratories. From the rich literature that covers the diffraction of 
polycrystalline materials in depth we recommend two books.[s0,811 

Cameras used for polycrystalline materials 
We have already mentioned that a very simple way to record the diffraction 
pattern generated by a powder is by simply placing a film perpendicular to 
the X-ray beam, tacitly assuming that the specimen was positioned in 
between the source and the film. The cameras that use this geometry are 
called transmission cameras and in them the film is usually kept stationary 
during data collection. Although these cameras offer the advantage of 
recording the entire circle resulting from the projection of the diffraction 
cone onto the film plane, they suffer from a serious disadvantage: they are 
limited to maximum 28 values which for the standard specimen to film 
distances and film sizes are about 45". 

If the powder diffraction at very high 28 angles needs to be studied, the 
flat film can still be placed perpendicular to the X-ray beam but in between 
the source and the specimen instead. The cameras that use this geometry 
are called back-reflection cameras. In this case the problem is the opposite, 
i.e. only the diffraction at 28, higher than a minimum value can be 
recorded. 

Figure 4.50 shows the sample and X-ray beam and the position of the film 
in the transmission and back-reflection cameras. It should be clear from our 
discussion that they are useful only in those cases in which the diffraction 
pattern of the polycrystalline material needs to be recorded at fairly low or 
rather high 28 values. 

A geometry which allows the recording of the diffraction pattern of a 
polycrystalline material at both high and low 28 values is that used by the 
Debye-Scherrer camera,[82] probably the most popular diffraction camera 
for powders. In the Debye-Scherrer camera, the recording film is a strip 
which is placed on a cylindrical drum centred on the sample. Figure 4.51(a) 
is a photograph of the camera and Fig. 4.51(b) shows the appearance of the 
strip after recording a typical diffraction pattern. As seen in the figure, the 

Fig. 4.49. The two Ewald spheres limiting the 
wavelength range of the polychromatic radiation 
used define with the sphere of radius r:  two 
limiting diffraction cones. All the cones in 
between correspond to r: for different 
wavelengths. The shaded region in the figure 
shows the range of 0 values that can be used to 
measure the diffraction in an energy dispersive 
experiment. 



290 1 Hugo L. Monaco 

Fig. 4.50. Position of the specimen and the film 
in transmission (T) and back reflection (BR) 
cameras. 

Fig. 4.51. (a) The Debye-Scherrer camera. (b) 
Sketch of a diffraction pattern recorded with the 
Debye-Scherrer camera using the Straumanis 
method of film mounting. Notice the doublets at 8 = o0 @=90° 
high diffraction angles. (b) 
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pattern shows a series of arches resulting from the projection of the '\ 
diffraction cones on to the cylindrical surface. The big advantage of the 
camera is that it records the entire pattern generated at all possible values of 
28; its main disadvantage is that it does not record the entire projection of 
the diffraction cone but only a segment. Since, as we have seen, in most 
cases the diffraction pattern is isotropic, and one is therefore only interested 
in the position of the arches and their relative intensities, this limitation is 
not very severe. 

In addition to the cylinder that holds the film strip in place, the main body 
of the camera has a collimator that serves to define the incident X-ray beam 
and a beam trap that stops it after it has travelled through the specimen. 
Although one can place the film so that the cut in the cylindrical surface is 
made to coincide with the collimator or beam trap, punching a hole for the 
other, and both ways of mounting the film have been used, a third 
alternative is usually preferred. In the so-called Straumanis method of film 
mounting two holes are punched in the film strip positioned at about one 
quarter and three quarters of the total film length. One of the two holes is 
then used for the collimator and the other for the beam trap. The advantage 
of the Straumanis method of film mounting is that it provides accurate 
measurements for the positions of the arches that will then be translated 
into Bragg spacings, dH, for both high and low values of 28. As seen in Fig. 
4.51(b), the arches centred on one of the two holes punched are present as 
doublets. They correspond to the K,, and K,, lines of conventional 
generators which are normally not resolved by X-ray filters but are clearly 
separated after diffraction by powder samples at high 28 values. That the 
doublets correspond to high 28 values can be seen by differentiating Bragg's 
law: 

2d, sin 8 = A, 

2dH cos 8 d 8  = dil, il(sin cos 8 A8 = Ail, 
and 

A8 = A-I tan 8 Ail. (4.46) 

In the case of Cu K, radiation, the doublet is separated by 0.0038 A, if we 
take il = 1.5418, A8 = 0.0240" for 8 = 10" and A8 = 0.8009" for 8 = 80" 
instead. Thus, the presence of double lines centred on one of the punched 
holes serves to unambiguously identify it as that corresponding to the 
collimator making it unnecessary to mark the strip. It is the diffraction 
pattern recorded that tells us which hole corresponds to 8 =90°. An 
important advantage of this method of film mounting is that the positions 
8 = 0" and 8 = 90" can be very precisely determined by taking the averages 

S ' of the arch positions corresponding to several diffraction cones on the film. 
From the position of the symmetrical arches, one can easily calculate the X - R A Y S  - 

corresponding 8 values since as seen in Fig. 4.52, if S is the distance 
between the arches due to a diffraction cone and R is the radius of the 
cylinder 

SI2nR = 48/360° 

for the arches centred on the beam trap ( 8  = 0") and 

S1/2nR = (360" - 48)/360° 

Fig. 4.52. Projection of the drum of the Debye- 
Scherrer camera on to its axis. The specimen is 
in the centre of the circle, Sand S' are the 
distances between the symmetrical arches 

for those centred on the collimator ( 8  = 90"). 
corresponding to one diffraction cone, and Ris 
the radius of the camera. 
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From the first equation we find that 

If the radius of the camera is chosen so that its value in millimetres is an 
exact multiple of l80/1d, a simple relationship will exist between the distance 
S measured in millimeters and the scattering angle 8 measured in degrees. 
Two values of R that have been very extensively used are 57.26mm and 
114.6mm. A camera that has a larger cylindrical radius will resolve the 
diffraction lines better since for a given A 0  there will be a larger 
corresponding AS. The price to be paid is longer exposure times and higher 
levels of background, since the diffracted X-rays must travel a longer path 
which is normally through air which with its scattering raises the background 
level. 

After the 0 values of a given diffraction cone have been determined, the 
corresponding interplanar spacings, d H ,  can be easily calculated by simple 
application of Bragg's law. In the Debye-Scherrer camera the sample is 
usually present in the form of a small cylinder placed in coincidence with the 
camera axis and it is slowly rotated about this axis during data collection in 
order to minimize the effect of the possible preferred orientation of the 
crystallites. 

The Debye-Scherrer camera produces rather broad diffraction lines 
which for some applications may be a serious drawback since some of the 
lines on the pattern may be found overlapping on the film. If one attempts 
to separate the lines by using a collimator of smaller diameter or a camera 
of larger radius the exposure time may become unacceptably long. It is for 
those cases that the focusing or parafocusing cameras have been devised. 
Parafocusing cameras, of which there are many variants used for different 
applications, can be broadly classified into two groups: the Seemann- 

and the ~uinier[ '~]  types. 
The principle on which parafocusing cameras is based is shown in Fig. 

4.53(a) for the Seemann-Bohlin and in Fig. 4.53(b) for the Guinier 
geometry. In both cases the sample is ideally an arc of a circle which is 
irradiated by reflection by a divergent beam in the case of the Seemann- 
Bohlin camera and by transmission by a convergent beam in the case of the 
Guinier camera. Since an arc of a circle subtends equal angles at every point 
on the circle, the diffracted radiation will converge in both cases on the 
parafocusing circle of the camera thus producing a very narrow line on the 
film. 

The convergent beam necessary for the Guinier camera can be produced 
by a bent or bent and ground crystal monochromator of the type we have 
discussed on p. 243. 

As seen in the figure, both cameras restrict the range of 26 that can be 
recorded. This range depends on the details of camera construction but one 
can roughly say, and from the figure it should be appreciated, that 
Seeman-Bohlin cameras record the diffraction lines only above a certain 
minimum value of 26 whereas Guinier cameras do it up to a certain 
maximum value. 

Parafocusing cameras offer the advantage of producing very sharp 
diffraction lines in times comparable with those required for standard 
exposures in the Debye-Scherrer camera. 
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Fig. 4.53. (a) The Seeman-Bohlin parafocusing 
geometry. (b) The Guinier parafocusing 

B E A M  
geometry. Notice the different way in which the 
two geometries restrict the 20 range available 
for measurements. 

The final type of camera that we wish to mention here is a modification of 
the Debye-Scherrer camera that can be used to produce a powder pattern 
when the specimen is a single crystal. In the Gandolfi camera[861 the crystal 
is mounted on a spindle inclined at 45' with respect to the camera axis and is 
rotated about both this and the camera axis. If after a complete revolution 
about one of the axes there has not been an integral number of rotations 
about the other, the effect of the crystal motion will be that of randomizing 
its orientation as exposure proceeds. If necessary the crystal can be 
mounted in more than one orientation during a single exposure. The final 
result is a diffraction pattern that closely resembles that produced by a true 
polycrystalline material. 

Diffractometers used for polycrystalline materials 
The powder cameras described in the previous section all use film to record 
the intensity of the diffracted X-rays. Just as in the case of single crystals, an 
alternative to this measuring method is offered by quantum counter 
detectors. The instruments that use this type of detector to measure the 
position, that is Bragg angle, and relative intensity of the diffraction pattern 
produced by a polycrystalline material are called powder diffractometers. 
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Powder diffractometers are thus characterized by a counter which is no 
different from those used for single-crystal work: it is normally of the 
scintillation type, although gas ionization counters are also used. Whatever 
the detector, the measuring strategy is the same as that of the single-crystal 
diffractorneter: the relative intensity and 26 angle of each diffraction cone 
generated by the polycrystalline material are measured one at a time. As we 
have seen before, in this way of recording the data lies the only weakness of 
the diffractometer when compared with the diffraction cameras that 
simultaneously record all the reflections in the accessible 26 range. For most 
applications, this limitation is not very severe in the case of polycrystalline 
materials and is more than counterbalanced by the greater precision offered 
by these instruments. 

Since the 26 angle and relative intensity of an isotropic diffraction cone 
can be measured in any plane that passes through the cone apex and bisects 
a projection of the cone, the powder diffractometer is simpler than the 
single-crystal diffractometers we have described. The detector simply 
moves, tracing a circle centred on the specimen, in a plane that contains the 
incident X-ray beam, and which is normally in the vertical position, to 
increasingly higher values of 26. When a diffraction line is found by the 
detector, its relative intensity is recorded as a function of 28, as measured in 
the plane on which the detector is moving. There is, in other words, only 
one way of scanning a reflection-by varying the angle 28 that the detector 
makes with the incident X-ray beam. As in the case of the other recording 
methods described, the sample may also be rotated about an axis which is 
found in the plane in which the detector moves in those cases in which the 
preferred orientation of the crystallites in the specimen is a problem. Figure 
4.54 is a photograph of a powder diffractometer and Fig. 4.55 shows a 
typical output record of a powder diffractometer in which the variable in 
ordinates is the number of counts measured plotted by the diffractometer as 
a function of the scattering angle 26. Each of the peaks in the figure fully 
describes one of the diffraction cones of the specimen. 

Fig. 4.54. A 
courtesy of 

, powder diffractorneter. 
Philips Analytical.) 
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c o u n t s  

Fig. 4.55. Diffraction pattern of a polycrystalline 
material recorded with a diffractometer. Notice 
at higher 2Bvalues the separation of the peaks 
into doublets corresponding to the K,, and K,, 

0 2 0  lines. 

A characteristic that distinguishels the modern powder diffractometer is 
the use of a parafocusing arrangement that improves the intensity and 
resolution of the diffraction maxima. The most widely used parafocusing 
geometry is that found in the instrument called the Bragg-Brentano powder 
diffra~tometer.[~'] In the Bragg-Brentano diffractometer the specimen, 
which is flat, is irradiated by a divergent beam and so in a sense this 
geometry can be considered a modified version of the Seemann-Bohlin 
arrangement discussed before. As we have seen, if the source is at a 
distance r from the specimen, the parafocusing effect is produced on a circle 
of radius r to which the specimen is tangent (in the Seemann-Bohlin 
arrangement the specimen is an arc of the circle). Since in the Bragg- 
Brentano diffractometer we have the additional constraint that the detector 
moves around the sample keeping a constant distance R,  it is obviously 
necessary to ensure that the parafocusing effect is also produced at a 
constant distance from the sample. This goal is achieved by moving the flat 
specimen so that it is tangent to focusing circles of variable radii for 
different values of 26 but which produce the focusing effect at the constant 
distance from the specimen R. 

Figure 4.56 shows the parafocusing geometry of the Bragg-Brentano 
diffractorneter. As seen in the figure the triangle SOD is isosceles since two 
of its sides are the distance r. A normal drawn from 0 to the other side R 
defines with each of the sides r an angle equal to 6 and we can then write 

sin 6 = $R l r  and r = R 12 sin 6. 

This equation shows why if R ,  the radius of the goniometer circle, is a 
constant, r, the radius of the focusing circle must vary with the scattering 
angle of the diffracted radiation 26. In practice, the parafocusing geometry 
of the Bragg-Brentano diffractometer can be maintained by rotating the 
sample S in a range spanning from a few degrees to about 160°, the useful 
interval in which the instrument can be used. 
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Fig. 4.56. Parafocusing geometry of the Bragg- 
Brentano diffractometer. 

DETECTOR 

In our discussion of the parafocusing geometry, it has been tacitly 
assumed that divergence of the X-ray beam can only take place in the plane 
of the figures. In order to ensure that this is truly so and that no important 
divergence occurs out of that plane, X-rays are made to travel both before 
reaching the sample and after diffraction through a series of metal plates 
parallel to the plane where divergence is allowed. These plates are called 
Soller slits and they are an essential part of the optics of the powder 
diffractometer. 

Although less widespread than the Bragg-Brentano diffractometers, 
instruments that use the Seemann-Bohlin parafocusing geometry have also 
been designed and marketed.[889891 Their main advantage stems from the fact 
that in this arrangement all the reflections focus on a circle of fixed radius. 
This makes it possible to use more than one detector (or a curved 
position-sensitive detector) to simultaneously record several diffraction 
maxima. With this geometry the specimen does not have to be moved since 
it is assumed to be constantly an arc of the focusing circle but the specimen 
to detector distance requires adjusting as the scattering angle 28 varies. 
Probably the most serious limitation of this geometry is that it excludes the 
value of 28 = 0" and so the instrument requires calibration using the known 
28 position of the maxima of samples used as standards. 

Modern powder diffractometers can be used with equal ease in both the 
continuous and step-scanning modes. The first mode of operation is faster 
and, in general, adequate for most standard applications. In the step- 
scanning mode, the angle 28 made by the detector and the incident X-ray 
beam is slowly incremented by small A28 and the number of counts is 
measured and recorded. Although this operation mode requires more time 
and computer memory, it results, in the end, in a much more accurate 
diffraction line profile, which may be an essential requirement in some types 
of application, like for example in crystallite size or and strain measure- 
ments or if the data are going to be used for Rietveld refinement. 
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Fig. 4.57. A C U N ~ ~  position-sensitive detector 
used for powder diffraction work. (Photograph 
courtesy of INEL.) 

Curved position-sensitive detectors based on the same principles dis- 
cussed on p. 282 have also been devised for use in powder diffraction 
~ o r k . ~ ~ ~ ' ~  They offer the advantage of combining the high precision of the 
diffractometer with the possibility of simultaneously recording the entire 
diffraction pattern generated by a polycrystalline material. 

These type of detector are curved gas filled chambers with a metal grid in 
the position of the cathode and either a curved wire or a blade which 
functions as the anode, in other words they are curved linear detectors. 
Thus, in a sense curved position-sensitive detectors are the equivalent of the 
area detectors used in single-crystal work adapted for use with polycry- 
stalline materials. Figure 4.57 is a photograph of a curved position-sensitive 
detector used for powder diffraction work. The simultaneous recording of 
the entire diffraction pattern offers the possibility of following processes in 
which the relative intensities of the Bragg peaks varies in time as the 
experiment proceeds. 

Uses of powder diffraction 
Probably the best known and most widely used application of powder 
diffraction is as an analytical tool for both qualitative and quantitative 
analysis of crystalline materials. From our discussion it should be evident 
that the Bragg spacings dH and relative intensities of the diffraction cones 
generated by a given polycrystalline material are a function not only of the 
substance under investigation but also of its crystalline form, which may be 
one of the several in which the material may crystallize. 

Powder diffraction became a widely used technique for the identification 
of polycrystalline unknowns in the 1930s as a result of both the clear 
definition of the minimum number of parameters required to preliminarily 
identify a specimen as a member of a more or less restricted group of 
substances, and also of the compilation of a file containing the diffraction 
patterns of a number of known crystalline materials sufficiently large to give 
a reasonable probability that an unknown would be found among the 
standards present in the This original file has since been expanded to 
such an extent that in 1986 it included data for more than 44 000 crystalline 
phases.[941 The file is currently known as the Powder Diffraction File (PDF) 
and it is updated and distributed by an international organization called the 
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Fig. 4.58. Re~roduction of a card of the 
J.C.P.D.S. p&der diffraction data file. Joint Committee for Powder Diffraction Standards (JCPDS), International 

Centre for Diffraction Data. 
Figure 4.58 is a reproduction of a card in the PDF. The information 

contained in the card should be readily interpretable. Notice that the 
relative intensities are expressed as percentages of the strongest line which 
is arbitrarily assigned an intensity equal to 100. Not all of the cards contain 
all of the information shown in the figure. In particular it may not always be 
possible to unambiguously index the lines present in a pattern and therefore 
the Miller indices corresponding to a given Bragg spacing may not be 
available in the file. 

Using the information contained in the PDF it is often possible to match 
the diffraction pattern of an unknown to that of one of the known 
substances present in the file. This task can be accomplished using both 
manual[951 and computer  method^[^^,^^] with a current tendency in favour of 
the latter. 

The simultaneous identification of more than one component in a sample 
is also possible using the method described above but clearly with a degree 
of difficulty that increases with the complexity of the diffraction pattern 
generated. 

The quantitative analysis of the different crystalline phases present in an 
unknown is another important application of powder diffraction. Due to 
absorption effects of these specimens the assumption of a direct propor- 
tionality between the intensities measured and the amount of a given 
crystalline phase present in the sample is not possible. Alexander and 
K l ~ g [ ~ ~ ]  have derived the equation that relates the intensity of a given 
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diffraction line due to a component to its weight fraction in the sample for 
the case of a flat polycrystalline specimen. If the sample is a uniform 
mixture of n components and extinction and microabsorption effects can be 
neglected, it can be shown thatrg8] 

where IH, is the intensity of a given diffraction maximum H due to 
component i, KH, is a proportionality constant which depends on the 
component and the diffraction line, xi is the weight fraction of component i 
in the sample, pi its density, pi is its mass absorption coefficient (defined on 
p. 241), and pM the mass absorption coefficient of the matrix, that is of all 
the other components in the sample with the exclusion of component i. This 
equation can be specifically applied to three different cases. 

In the first case the mass absorption coefficient of component i is identical 
to that of the matrix. This not very frequent case arises when the specimen 
is a mixture of different crystalline forms of the same compound. In this 
case eqn (4.48) reduces to 

that is there is a direct proportionality between the intensity of a line H due 
to component i and the weight fraction of i in the unknown. 

In the second case, pi is not equal to pM but there are only two 
components in the sample, 1 and 2, whose identity (and therefore their mass 
absorption coefficients) is known. In this case the intensity of line H due to 
component 1 is 

If I:, is the intensity of the same line for the pure component 1 

and 

so in this case I,, is not a linear function of x l .  Plots of the ratio IHI/fi1 as a 
function of x 1  can then be either calculated using the tabulated values of ,ul 
and p2 or determined experimentally from the intensities measured from 
samples of known composition. These curves can then be used to determine 
x l  for an unknown specimen. 

In the general case in which pi is not equal to ,uM and there are more than 
two components, the determination of x l  requires the addition of an 
internal standard. For this case it can be shown that1''] 
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The linear plots, experimentally determined, of the ratio IH,/IKS as a 
function of xi  can then be used to determine xi for an unknown. 

Alternative equations can be derived when the quantitative analysis is 
done in the presence of a so-called 'flushing which can be any pure 
crystalline compound added to the specimen. It can be shown that 

where xi and x f  are the weight fractions of the i component and the flushing 
agent, Ii and If their diffracted intensities and the two constants ki and kf 
their intensities relative to that of a reference substance, normally corun- 
dum (a-A1,03). If the flushing agent is chosen to be corundum, this 
equation reduces to 

where the constant ki is readily available for many substances. 
Many other theoretical methods that try to avoid the use of an internal 

standard have been proposed and have had a more or less limited amount of 
success .[loo] 

Another common application of powder diffraction is in the determina- 
tion of the unit cell parameters of a crystalline phase that can only be. 
obtained as microcrystals. In this case the precision of the measurement 
depends on the 8 angle of the diffraction maximum used in the determina- 
tion as can be seen rewriting Bragg7s law 

and differentiating 

2ddH = -A csc 8 cot 8 d 8  

whence 

Therefore for a given precision in the angular measurement 8 the relative 
error in the measurement of d, decreases for larger values of 8. 

A careful analysis of the profiles of the diffraction maxima of a 
polycrystalline material can give information on the distribution of sizes of 
the crystallites and on the presence of lattice strains. In order to carry out 
such an analysis, it is essential to previously extract the pure diffraction 
profile from the experimentally determined profiles that are influenced by 
the instrument used (see p. 112) and the experimental conditions selected 
for the experiment. 

If the polycrystalline material has texture, that is if its crystallites do not 
easily adopt a random orientation, the intensity of a ring corresponding to a 
given diffraction cone will not be homogeneous. In this case, information 
about the preferred orientation of the sample constituents can be obtained 
by studying the entire diffraction ring in two dimensions. 

The final application of powder diffraction that will be mentioned here is 
the Rietveld method used for the solution of a crystal structure with a 
limited number of  parameter^['^^-^^^] and for quantitative phase analysis.[104] 
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We have already seen in Chapter 2 that in the Rietveld method of 
refinement the entire diffraction profile of a peak is calculated using a 
starting model for the unit cell content and the model is then refined by 
comparing point by point the calculated and measured diffraction profiles. 
This method of crystal structure determination has already permitted the 
solution of structures of moderate complexity and which could not be solved 
before by the conventional single-crystal methods because the substances 
yielded crystals of inadequate size. 

Data reduction 

In Chapter 3 we saw that in the relationship between integrated intensity 
and the square of the structure factor amplitude there are several factors 
that vary from reflection to reflection. In order to calculate the relative 
structure factor amplitudes to be used in the solution of the crystal 
structures as described in Chapter 5 one needs first to take these effects into 
account. The procedure followed to extract relative structure factor 
amplitudes from raw integrated intensities is called data reduction. In data 
reduction the different reflection dependent parameters present in eqn 
(3.41) are taken into account by multiplying the relative intensities by 
suitable correction factors. Here we will neglect E, the extinction coefficient 
which was discussed on pp. 97 and 164 and will concentrate on L, P, and T, 
the other three factors. The corrections applied are called, as we have seen, 
Lorentz, polarization, and absorption corrections respectively. In addition, 
we will also discuss the problem of radiation damage of the crystals which is 
usually handled before the other corrections are applied. Another problem 
that is often encountered, especially in the case of macromolecular crystal 
data sets, is that of scaling partial data sets originating from different 
crystals which when merged will produce the final total set of relative 
integrated intensities. We discuss this problem briefly at the end of the 
chapter. 

Lorentz correction 
We have seen that diffraction arises whenever reciprocal lattice nodes, that 
always have a non-negligible volume, cross the sphere of reflection. If a 
node is in diffracting position for a longer time, the intensity of the 
corresponding reflection will be proportionally higher. This factor would not 
be important if the method used to record the integrated intensities ensured 
that every reciprocal lattice node were in a diffracting position for exactly 
the same time, as it would affect every reflection in the same way and in the 
end it would simply scale all the intensities by the same factor. This, 
however, is not the case. Depending on the method used to record the 
reflection intensity and on the position of the reciprocal lattice node, the 
times required for different nodes to cross the Ewald sphere are different. 
The Lorentz correction simply takes this factor into account. 

The time a node is in diffracting position is dependent on two factors: the 
position of the node and the velocity with which it sweeps through the 
sphere of reflection. We will derive the form of the Lorentz factor in a very 
simple case and then show the form it takes in a more complicated situation. 
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A X I S  

Fig. 4.59. Lorentz correction for a crystal rotated 
about an axis normal to the plane defined by the 
incident and scattered X-ray beams. 

Figure 4.59 shows the Ewald sphere for a diffraction experiment in which 
the crystal is rotated about an axis which is normal to the plane defined by 
the incident and the diffracted beams. This is for example the case of a 
zero-level rotation or Weissenberg photograph or of the equatorial reflec- 
tions measured with a diffractometer. 

The crystal, and therefore the reciprocal lattice, is assumed to be rotated 
at a constant angular velocity o; if Vn is the linear velocity component of the 
reciprocal lattice node along the radius of the sphere of reflection, the 
Lorentz factor can be defined as follows 

which is indeed proportional to the time during which diffraction takes place 
for a given reciprocal lattice node. 

The linear velocity of the point P is 

and its component along the radius of the Ewald sphere 

Vn= Ir*l w cos 8 

since 8 is the angle formed by the linear velocity V and the radius of the 
sphere of reflection passing through the point P as shown in Fig. 4.59. 

Substituting Ir*l in terms of Bragg's law 

Ir*l = l l d  = 2 sin BlA, 

Vn = (wlA)2 sin 8 cos 8, 

and 

L = (2 sin 8 cos 8)-' = (sin 28)-'. (4.51) 

which is the simplest possible form that can be taken by the Lorentz factor. 
In a more general case one has to compute Vn according to the geometry 

'of the diffraction experiment and then apply the standard equation we have 
seen. 

If the axis of rotation makes an angle 90"-p with the incident X-ray beam 
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and the point P is not on a zero-level layer but rather on the nth layer with a 
diffraction cone with a semiangle equal to 90-Y it can be shown that[10s21061 

L = (cos p cos Y sin y)-l (4.52) 

where y is the projection on to the zero layer of the angle 28 between the 
incident and the diffracted beam. 

If the rotation axis is normal to the X-ray beam and the reflection is on a 
zero-level p = 0 and Y = 0. In this situation the projection onto the zero 
level of 28, i.e. y, is identical to 28 and the expression for L given by eqn 
(4.52) reduces to eqn (4.51). 

~ i ~ s o n [ ~ ~ ~ ~  discusses the form of the L factor for the different experimen- 
tal arrangements which are used in data collection and gives tables of the 
values of L as a function of the parameters which can be selected. 

Polarization correction 
The polarization correction depends on the state of polarization of the 
incident X-ray beam and on the scattering angle of the diffracted beam. In 
Chapter 3 we have seen that when a totally non-polarized beam is diffracted 
by a crystal, the diffracted intensity is affected by a factor, called the 
polarization factor, which in this simple case was shown to be equal to 

where 6 is the Bragg angle of the reflection considered and the diffracting 
crystal was tacitly assumed to be ideally mosaic. This simple expression for 
the polarization correction can be applied whenever the incident X-rays are 
not polarized, that is when the radiation is produced by a conventional 
source and monochromatized using an appropriate filter. Notice that in 
theory this factor can have values ranging between 1.0 and 0.5 depending on 
the scattering angle, although in practice this variation is less substantial. 
For a data set collected with CuK, radiation between 508, and 28, 
resolution it varies between Pso = 0.9995 and P2 = 0.7470. 

The more general form of the polarization correction for an incident 
beam monochromatized with a crystal is[17,1081 

where 8 is the Bragg angle of the reflection produced by the specimen and 
6; the angle of the reflection of the monochromator crystal which was used 
to select the wavelength. The angle p is the angle between the projection of 
the normal to the reflecting plane on to a plane perpendicular to the 
incident monochromatized X-rays and the plane of incidence.[lo8] When the 
original X-ray beam, the monochromated beam, and the scattered beam all 
lie in the same plane this angle is equal to 0 and the polarization factor takes 
the simpler form 

The exponent n depends on the characteristics of the monochromating 
crystal. If the crystal is assumed to be a perfectly mosaic crystal it is equal to 
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Fig. 4.60. For a given scattering angle 29, the 
path of the incident and scattered beams in the 
crystal depends on the position of the scattering 
point within the crystal. 

2, whereas if it is assumed to be an ideal crystal it is equal to 1. Real 
monochromator crystals are usually an intermediate between these two 
extreme cases and one should ideally examine the monochromator used to 
decide the appropriate form of the polarization correction that should be 
used in the specific case.[105"111] 

If the radiation striking the crystal monochromator is the totally polarized 
synchrotron radiation, the form of the polarization correction changes 
again. An expression for the polarizaton correction to be used with 
synchrotron radiation has been derived by Kahn et a1.[112] 

where the angle p is defined as above and 

Here EL is the amplitude of the optical field in the plane of incidence of the 
X-rays and Ek is the component perpendicular to it. In this expression for 
the polarization correction, the problem is to obtain an accurate value for 
the parameter c' which depends on the set-up of the facility used. This can 
be done in two ways; one is by measuring the polalrization ratio of the beam 
that will strike the specimen. The second method is by calculating it 
theoretically on the basis of the characteristics of the source and of the 
crystal used to monochromatize the radiation. 

The polarization correction is frequently grouped with the Lorentz 
correction in a single factor, the LP correction. 

Absorption corrections 
As pointed out in Chapter 3, the transmission factor T is related to the 
absorption of the incident and diffracted X-ray beams by the crystal. We 
have briefly discussed the absorption of X-rays on p. 241 where it was 
pointed out that according to Beer's law, absorption reduces the intensity of 
an X-ray beam travelling through a given material by an amount which 
depends on the material and the length of the path travelled by the 
radiation in it. Figure 4.60 shows that, for a given scattered beam, this path 
can be very different for different points in the crystal. The path lengths are 
dependent, as can be seen in the picture for points 0, R, and T, on the 
location of the point scattering the X-rays, and on the incident and 
scattering angle, that is on the reflection considered. 

The intensity of the diffracted X-rays is thus reduced, with respect to what 
it would be without absorption by the factor 

which is valid for every point in the crystal. Here x is the total path length 
and y is, as we have seen, the linear absorption coefficient, in this case, of 
the crystal. 

Equation (4.55) can be used to calculate a very rough estimate of the 
optimum crystal size for a given compound of linear absorption coefficient 
y. In eqn (3.41), the constant K2 included 8, the crystal volume, that we 
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will take to be proportional to x3. Hence 

Ioax3  and I m x 3 e - ~ .  

Since we want to maximize I, the diffracted intensity after absorption 

and x = 3 / p .  
In order to get T, the transmission factor for an entire crystal, one simply 

has to integrate eqn (4.55) over the total crystal volume. If instead of 
writing x we decompose the path into p the incident or primary beam path 
and q the diffracted or secondary beam path the transmission factor T can 
be written as follows: 

where the integration is over the entire crystal volume V. 
The linear absorption coefficient for the crystal can be calculated from the 

mass absorption coefficients of the atoms present in the unit cell. No 
structural knowledge is required, only the values of the mass absorption 
coefficients of the elements which, as we have seen, can be found in the 
International tables for x-ray crystallography. From the values of p ,  for a 
given wavelength, p  can be calculated by the following equation: 

where gi is the mass fraction of element i present in the unit cell, p; is its 
mass absorption coefficient, and p is the crystal density. Recall that p i  is a 
function of the atomic number of the element and of the wavelength of the 
radiation used: it is smaller for lower atomic numbers and for shorter 
wavelengths. This explains why absorption corrections become more 
important for heavy-element crystals and for radiation of longer wave- 
lengths. Sometimes all it takes is a change from copper to molybdenum 
radiation to sufficiently reduce the absorption problem in a given crystal 
structure determination. In any case it is always instructive to calculate the 
value of p  for the crystal being examined in order to get an indication of the 
severity of the absorption problem. 

An analytical evaluation of T according to eqn (4.56) would be, in theory, 
the ideal method to use in order to take care of the absorption correction. 
The result would depend on the beam path in the crystal which is a function 
of the reflection considered, i.e. one would get a different value of T for 
every reflection measured. The problem is that the integral in eqn (4.56) 
cannot be calculated analytically even in the case of the simplest crystal 
shapes. Numerical evaluations have been obtained in the case of spheres or 
cylinders, they can be found in ~ ipson["~]  where T is given as a function of 
pR and 8, R  being the sphere or cylinder radius and 8 the scattering angle. 
Spheres or cylinders are, however, not very good approximations for the 
shape of most real crystals so that if one wants to assume that the specimen 
under study is a cylinder or a sphere, it is usually necessary to grind it into 
that shape. Mechanical devices exist that can be used to accomplish this.[l14] 
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This approach is, however, not always possible since there are many crystals 
that will not survive the very harsh treatment required to shape them into 
an ideal form. 

An analytical method that can be used to calculate T for any polyhedral 
crystal was proposed by de Meulenaer and ~ o m ~ a . [ " ~ ~  This method divides 
an arbitrary crystal volume into smaller polyhedra that are ultimately 
subdivided into tetrahedra. The total transmission factor is then calculated 
as 

where AT is the contribution to the transmission factor of each tetrahedron 
and VT its volume. The contribution AT can be calculated analytically and it 
depends on the values of px at each vertex of the tetrahedron and on v=. In 
this method, the calculations are performed by a computer program which 
requires a precise knowledge of the crystal shape which is input as the 
equations of the planes defining the faces of the crystal. 

In many cases, an accurate description of the crystal shape and size is very 
difficult, if not impossible, to obtain. Furthermore, if one is dealing with a 
protein crystal, it must be mounted inside a capillary and bathed in its 
mother liquor, both of which absorb the X-rays differently from the crystal. 
Thus, there are many cases in which analytical methods cannot be applied; 
it is for these situations that empirical absorption correction methods have 
been proposed. These methods, which attempt to measure T experimentally 
are currently the most widely used, mainly because they are quite easy to 
implement. The experimental absorption correction methods are reviewed 
by ~ar te ls . ["~]  Here we will only briefly discuss one of them, the very widely 
used method of North et a1.[1171 

The method is designed to correct intensities measured with the 
diffractometer and the crystal is therefore assumed to be totally bathed by 
the incident X-ray beam. In Fig. 4.40 for example we have point P in the 
diffracting position, that is the point is in the equatorial plane and on the 
Ewald sphere. If the crystal is rotated about the vector r* the point P will 
still remain in the diffracting position and the variations in intensity 
observed may be attributed to absorption effects. Such a rotation is called 
an azimuthal or q-scan. In practice what is done is to bring the @ rotation 
axis to a direction coincident with that of vector r* which requires the 
choice of a reflection with a x value of 90" (see p. 274). Then the azimuthal 
angle I# is equivalent to the diffractometer angle @ and a @-scan produces a 
curve similar to that shown in Fig. 4.61. 

The relative transmission factor for a given value of @ is then given by 

T = I(@)IZrnax(@) 

where I,,,(@) is the maximum intensity observed as @ is varied over the 
360" range. Clearly, in this method, and as seen in Fig. 4.61, the 
transmission factor T at @ and 4, + 180" must be identical since the only 
difference between these two positions is that the crystal has been flipped 
over. In the method of North et al. the transmission factor for a given 
reflection is given by the mean 

T(H) = t (T(@inc)  + T(@reJ) (4.58) 
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Fig. 4.61. Relative transmission factor plotted as 
a function of the scanning angle @ = y, for a 

0.90 reflection chosen with a x value close to 90". The 
0.00 40.00 80.00 I20.00 160.00 200.00 240.00 280.00 320.00 plot can be used to apply an empirical 

A N G L E  @ Z Y  absorption correction as described in the text. 

where Q,, and define the orientations of the crystal in which the 
incident and reflected beams for the H reflection coincide with or lie in the 
same plane as the incident X-ray beam. 

An underlying assumption of this method is that the total transmission is 
the product of the transmission of the primary and the secondary beams. A 
discussion of the applicability of this assumption can be found in Kopfmann 
and ~ u b e r . [ " ~ ]  If the transmission curves are measured for symmetry- 
equivalent reflections this assumption is not necessary.[1191 Other methods 
that calculate transmission curves based on the differences observed in 
symmetry-equivalent reflections have been proposed.[120,1211 They have the 
disadvantage that they require several q-scans, i.e. much more experimen- 
tal work to obtain a result that does not always justify it. An example of the 
way in which absorption correction effects can be taken into account, 
together with other factors, by examining the differences in intensity 
observed for symmetry equivalent reflections is presented by Takusa- 
ga~a[1221 who discusses together absorption and radiation damage correc- 
tions for data collected with an area detector. A final possibility is to take 
care of the absorption effects after a preliminary structure has been solved 
using the uncorrected data. From the differences between the calculated and 
measured structure factors it is then possible to calculate correction curves 
that can be applied to the raw data.[lZ3] Whatever the absorption correction 
used, the redundancy in the data set can be used to check whether the 
correction has improved the data or not. This is normally done by 
calculating an R factor (see eqn (4.70)) that should obviously decrease after 
the absorption correction is applied. 

Although, as we have seen, the theory of X-ray absorption by crystals is 
very well established, and in spite of the fact that so many different methods 
to determine T have been proposed, absorption still remains one of the 
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Fig. 4.62. Typical behaviour of the relative 
intensities of three reflections of a protein 
crystal monitored with a diffractometer at 
different times after exposure begins. 

most serious, if not the most serious, source of error in the experimental 
determination of relative integrated intensities. 

Radiation damage corrections 
So far we have tacitly assumed that as data collection proceeds the 
integrated intensities measured do not change with time, or at least that 
they do not change significantly. Unfortunately, this is very seldom the case 
since crystal decomposition triggered by exposure to X-rays is not at all an 
uncommon occurrence. Radiation damage can vary remarkably with the 
specimen considered, it is known to be substantial in the case of macro- 
molecular crystals, but it is also present in many small-molecule crystals as a 
survey conducted in 1971 has shown.[1241 

The causes that lead to the changes in intensity as a crystal is exposed to 
higher and higher X-ray doses have been listed by ~ b r a h a r n s . [ ' ~ ~ ]  If the 
specimen can be considered to be close to an ideal crystal, exposure to 
radiation can increase its mosaicity thereby reducing extinction effects. The 
result will be that, after exposure, some integrated intensities will be higher. 
More often, there is in real crystals a loss of short- and long-range order 
that produces instead a decrease in the measured intensities. Another effect 
is chemical damage, for example due to free radicals generated by the 
radiation, which can either increase or decrease the intensities. A combina- 
tion of these factors is, of course, possible, which explains the difficulties 
encountered in proposing a satisfactory model for this phenomenon and the 
scarcity of research papers dealing with this subject. 

Radiation damage is evidenced by monitoring the intensity, as a function 
of data collection time, of a certain number of reflections, ideally sampling 
as large as possible a region of reciprocal space. Figure 4.62 is a plot of the 
values measured for three reflections of a protein crystal that decayed, on 
the average, about 20 per cent during an exposure time of less than two 
days. This type of monitoring is usually done when data are collected with 
the diffractometer, although it is also possible for the rotation and the 
area-detector methods as well. 

E X P O S U R E  I H R S I  
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The radiation damage correction factor, R(t, 6), is defined as follows 

that is it is the inverse of the factor by which the intensity measured at time t 
has to be multiplied to yield the intensity corrected at time zero, the value 
that should be used to extract the relative structure factor amplitudes. This 
correction factor is a function, not only of the time after data collection 
started but also of the scattering angle of the reflection 6. 

The value of R can be estimated without resorting to any particular model 
for the radiation damage process, for example by fitting the intensities of 
each monitored reflection to a polynomial of the form[125] 

where t is the exposure time and n is a number that ranges from 1 to 7. The 
discrepancy index 

is then calculated for each standard reflection as a function of n and used to 
decide the best form of the polynomial to be used, i.e. the value of n that 
best fits the data measured. If a general trend for the different standard 
reflections is identified, then the same form of the polynominal can be 
adopted and a weighted average of the coefficients A, of the monitored 
reflections can be used to correct all the data collected. In the simple case in 
which the decay is found to be linear, i.e. if the best n turns out to be equal 
to 1, anisotropy can be readily taken into account.[1251 

Sometimes, a correction based on just a few monitored reflections may 
not be acceptable. A scheme that attempts to overcome this difficulty has 
been proposed by 1bers.[lZ6] If, after the structure has been solved, Sn is the 
scale factor for the nth reflection measured at time t that brings the 
calculated structure factor amplitude IF,] (see Chapter 5) in scale with the 
observed amplitude (FoI, one can define Sn as the following function of 
exposure time: 

and then determine the constants a, and a, by least-squares refinement 
along with the other structural parameters (see Chapter 5). 

The problem of intensity variations due to radiation damage was 
perceived quite early on in protein crystallography. The first model that 
attempted to explain them in the case of myoglobin was proposed by Blake 
and Phillips in 1962.[12'] The model describes the diffraction pattern from 
the irradiated crystal as due to three different components: an undamaged 
fraction A,, a disordered fraction A2 that scatters predominantly at low 
values of 6, and a totally amorphous fraction A3 that no longer scatters 
coherently. The variation of the intensities as a function of time is then 
governed by the equation 

where D is a disorder parameter, S = sin 6/12, and the quantities Al(t) and 
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A2(t) can be calculated by making different simplifying assumptions for the 
rate processes involved. Hendricks~n[ '~~] has proposed a general method 
that considers all the possible paths between A,, A,, and A,, and has also 
tested the validity of the different possible assumptions in the case of 
myoglobin. His conclusion is that for moderate radiation damage all the rate 
models work satisfactorily whereas for severe cases none do. 

A refinement of the Blake and Phillips model has been recently proposed 
by Sygusch and ~ l l a i r e . [ ' ~ ~ ]  In their model another state, A;, with a 
dose-dependent rate of formation is introduced. The molecules in this state 
are thought to be only superficially perturbed. In addition, anisotropy is also 
taken into account. 

The usefulness of all the models proposed is that they furnish a form for 
the variation of R(t, 8) as a function of a certain number of parameters that 
can be determined from the variation of I ( t )  as a function of t for the 
monitored reflections. The parameters so determined can then be used to 
calculate a correction factor for each reflection present in the data set 
collected. 

An efficient way to minimize radiation damage and therefore to make the 
application of a correction less significant is by collecting the data at low 
temperature. Even a modest decrease to say 4 "C has already important 
beneficial effects on most crystals but the best results are obtained when 
working at liquid nitrogen or, even better, liquid helium temperatures. 
Although the experimental problems posed in this case are more difficult to 
solve, low temperature data collection is a well established technique for 
small molecule crystals['301 and shows great promise in macromolecular 
work as we11.[131,1321 In addition to greatly reducing radiation damage, 
working at low temperature decreases the intensity losses due to thermal 
vibrations and thereby improves the resolution of the diffraction pattern 
and, by reducing the thermal diffuse scattering, that is the background 
radiation resulting from the correlated atomic displacements in the lattice, it 
improves the signal-to-noise ratio of the diffracted peaks. In Appendix 3.D 
we have already seen that precise electron density determinations of small 
molecule crystals require that the data be collected at low temperature. 

Relative scaling 
If the final total data set of relative integrated intensities has not been 
collected under strictly constant conditions but results from merging a 
certain number of subsets, each measured under more or less different 
conditions, before these sets can be merged together into a single one it is' 
necessary to scale them by applying the appropriate relative scale factors. 
The subsets may be derived from different crystals, if radiation damage has 
made it necessary to stop data collection at a certain stage before the set 
was completed, or they may also come from the same crystal. For example 
data collection on films with the rotation method requires scaling as there is 
no way to ensure that all the data collection parameters, take for example 
film developing and fixing times, will be held strictly constant throughout 
the data collection process. 

Relative scaling of partial data subsets is done on the basis of the 
reflections which these subsets have in common. In order to determine the 
relative scale factors to be applied to the subsets, it is first necessary to 
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define the conditions on the data that the scale factors ought to satisfy. 
Among the different criteria proposed, that of Hamilton et a1.[1331 is 
currently the most widely used. In this method one defines 

where IH, is the ith observation of reflection H, 1 is the subset in which the 
ith reflection is present, Ki the relative scale factor to be applied and VH, the 
weight of the ith observation of reflection H. 

It can be shown that this condition can be stated in the equivalent 

Now if one defines 

the relative scale factors are chosen so that the quantity I/J is a minimum and 
therefore the condition from which the best value for the intensity of 
reflection H, I,, is found is 

and IH is 

Since in this formulation the residual is not linear in the Gis, the best values 
for these parameters are determined using the iterative non-linear least- 
squares procedure described in Chapter 2 (p. 94), that is for each iteration 
qH, is approximated by 

Given that the AGl(i)s are not independent, one of them is arbitrarily set 
equal to zero, that is one GI is made constant, and then the other Gls are 
corrected until convergence is achieved. 

An alternative way of solving the equations of Hamilton et al. was 
proposed by Fox and ~ o l m e s . [ ' ~ ~ ]  In their formulation one sets in turn all 
the derivatives of q with respect to the Gis to zero, i.e. 

6q/6G1 = 0 for 1 = 1. . . L 

and then approximates q by the Taylor expansion: 

In the special simple case in which the weights can be written as the product 
of a term which depends on the reflection and another which depends on 
the subset an exact solution for this problem has been found.[1341 It is useful 
in scaling the different films present in a pack which have in common many 
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reflections and differ only in those which are outside the dynamic range of 
each film. 

Another alternative procedure that avoids the use of iterations to 
determine the scale factors has been proposed by ~ a e [ ~ ~ ~ ~  who defines the 
residual 

A",, = log KIIH, - log K,!IH, (4.68) 

and minimizes the quantity 

where the subscripts i and j refer to different subsets. 
If the number of data points is large there is very little difference in the 

relative scale factors found by this method and the classical solution of 
Hamilton et al. 

When merging together different subsets of data into a final data set, it is 
customary to calculate a reliability index for the set that can be defined 
either in terms of the structure factor amplitudes or of the intensities. A 
very widely used definition for this parameter in terms of the intensities is 
that given by eqn (4.61) 

N 

where I(H)i is the ith measurement of reflection H, 

(4.70) 

(Z(H)) is its mean value 
and the summation extends over all the reflections measured more than 
once in the set. 

In the cases in which R is calculated using independent reflections which 
ought to have equal intensities for symmetry reasons, the notation R,,, is 
used. 

Appendix 

4.A Determination of the number of molecules in the 
unit cell of a crystal 

One of the first fundamental parameters required in a crystal structure 
determination is the number of molecules present in the unit cell of the 
crystal. 

Small-molecule crystals do not usually contain important amounts of 
solvent and/or other substances whereas in macromolecular crystals a 
substantial fraction of the unit cell volume is occupied by solvent (see 
Chapter 8, p. 538). In both cases the number of molecules present in the 
unit cell is a function of the crystal density, the molecular weight of the 
substance under investigation, and the unit cell volume. 

If we can assume that the only species present in the crystal is the 
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compound under investigation, its mass in the unit cell is 

where n is the number of molecules in the unit cell, M, the molecular weight 
of the substance, and N is Avogadro's number. 

The density of the crystal is 

Equation (4.A.1) can also be written 

where the unit cell volume has to be measured in A3 and the density in 
g cmP3. 

Measuring the density of a small-molecule crystal usually poses no serious 
problem. There are several methods available and the measurements can be 
done with high precision.[136] 

If the molecular weight of the compound is known, then, using (4.A.2), 
the number of molecules in the unit cell, n, can be easily calculated. Since n 
has to be an integer, if the density measurement is very reliable and the 
molecular weight is not, eqn (4.A.2) can be used to calculate a more 
accurate molecular weight. Alternatively, a precise molecular weight can be 
used to yield an accurate density for the crystal using the integer closest to 
the n determined experimentally. 

In the case of protein crystals, the situation is not so simple and there are 
several alternative equations that are equivalent to (4.A.2) We will briefly 
discuss one of them.[1371 

In a macromolecular crystal (see Chapter 8, p. 536) there is water which 
is eliminated when the crystal is dried and water which remains bound to 
the macromolecule and there is also salt dissolved in the solvent. If d is the 
fractional loss of mass when the crystal is dried, u is the fraction of liquid 
which remains in the crystal, s is the mass of salt per unit mass of solvent, 
and w is the solvent not accessible to the salt because it is strongly bound to 
the macromolecule, the total mass of the unit cell of the crystal is 

m = m, + dm + um, + s(m - m, - wm,), 

where m is the total mass of the unit cell and m, the mass of the protein in 
the unit cell. 

From this equation we can obtain 

The mass of the unit cell is 

where V is the unit cell volume and p, is the crystal density. 
The mass of the protein in the unit cell is 

where n is the number of molecules in the unit cell, M, the molecular weight 
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of the protein, and N is Avogadro's number. Thus 

NVp, 1 - d - s  n=- 
Mp l + u - s - s w  

Vp,  1 - d - s  
n = 0.602 - (4.A.3) 

M p  1 + u - s - S W '  

Equation (4.A.3) can be used in much the same way as eqn (4.A.2) but in 
this case determining the crystal density is a much more serious experimen- 
tal problern.[l3'] In addition, one needs to know u,  w,  s, and d ;  the first two 
parameters are usually not determined, they are instead estimated from the 
average of known protein crystals; s  is the quantity most easily measured 
and d  is quite difficult to determine and requires the use of several crystals 
for better precission. 

An alternative to eqn (4.A.3) has been derived by ~ a t t h e w s . " ~ ~ ]  Another 
approach to determine n for macromolecular crystals is discussed in Chapter 
8 (p. 538). 
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Solution and refinement 
of crystal structures 

Introduction 

The goal of a structural analysis is to obtain the distribution of atomic 
electron density in the unit cell (in practice the atomic positions) starting 
from the diffraction data. As already observed in Chapter 3 (p. 169) it is not 
possible to reach this goal in a unique and automatic way, because from the 
experimental data only the magnitudes, but not the phases, of the structure 
factors may be obtained. Therefore, in order to compute the electron 
density by means of eqn (3.45), we must somehow derive the missing 
information. In this chapter we shall analyse the most important methods 
commonly used to solve the phase problem. 

The problem must in principle have a solution (even if not necessarily 
unique), since the measured intensities are proportional to the squares of 
the structure factors, which may be expressed as? 

In these relationships, the number of which is equal to the number of 
observed reflections, the terms f and h are known quantities, while the 
atomic position vectors r are unknown. Unfortunately these unknowns 
appear as argument of trigonometric functions and the solution of systems 
of non-linear equations can not be obtained in any analytical way, even 
though the number of relationships greatly exceeds the number of un- 
knowns (there may be up to 100 reflections per atom). 

It is noteworthy that, as in the case of other physical experiments (cf. 
Chapter 1, p. 17), the intensities only depend on the interatomic vectors, 
which are independent of the arbitrarily chosen reference system. 

It is theoretically possible that the solution of equations such as (5.1) is 
not unique. Indeed, more than one set of positional vectors r may 
correspond to the same set of intensities; these are called homometric 

t Throughout this chapter the convention of using capital letters for the I x 3 matrix of the 
reciprocal lattice indices will not be followed, in order to conform with the notation generally 
used in the literature on Patterson and direct methods, where generally lower case letters 
indicate the general reciprocal vectors as well as the matrix of their components. With this 
notation no ambiguity should arise between, for instance, the scalar product of the reciprocal 
vectors h by the direct position vector r, indicated by h . r, and the product of the indices 
matrix h by the rotation matrix R of a symmetry operator, indicated by hR (the transpose sign 
is usually omitted). 



320 ( Davide Viterbo 

sets.['] Nevertheless, in practice the constraint that the solution must obey 
stereochemical rules makes it extremely unlikely that more than one 
homometric set is chemically acceptable. 

The possibility of solving a system of non-linear equations relies on that 
of obtaining a first approximate solution, constituting the so called initial 
structural model. This can then be refined until the best agreement with the 
experimental data is achieved. 

Before considering the different methods employed to define an initial 
model, it is therefore necessary to establish the criteria which allow us to 
assess its correctness. From the M positional vectors of the model the 
structure factors 

may be computed. A good agreement between the IFils and the observed 
moduli IF,"(, obtained directly from the intensities, will indicate a correct 
model. The most common parameter used to express this agreement is the R 
index (also called agreement index or residual) 

where K is a scale factor bringing IF;] on the same scale of IF:[, obtained as 
K = C h  JF,"J/C, IF;/. 

In the case of equal atom structures, the R value for totally random 
atomic positions has been statistically evaluated to be 0.83 for centrosym- 
metric structures and 0.59 for non-centrosymmetric structures.[21 Structural 
models yielding values of the R index lower than these extreme values may 
be considered as plausible initial guesses to start the refinement process. In 
general a model with RG0.5  if centrosymmetric or 0.4 if non- 
centrosymmetric will be a good starting point. It may also happen that the 
postulated model contains errors which can not be corrected by the 
following refinement, and therefore it does not converge to the correct 
solution. A quite frequent case is represented by crystals containing one or 
more solvent molecules; if the presence of these molecules in the cell is 
overlooked, then the initial model will be incomplete and the index R will 
not decrease below 0.15-0.25, unless the positions of the solvent molecules 
are taken into account. We will consider the behaviour of the R index in 
some more detail in the paragraph on structure refinement. 

Historically, the first crystal structures were solved by trial and error 
methods, consisting in a systematic trial of all structural hypotheses 
compatible with the known physical and chemical properties of the 
considered crystal. These methods require a great effort, ingenuity, and skill 
and can only be used with simple structures. They are seldom used today 
and for this reason they will not be treated (for a comprehensive account 
the reader is referred to Lipson and ~ochran[~I) .  Only the methods based on 
the use of the Patterson function and the so-called direct methods will be 
considered here, while those using isomorphous replacement and anoma- 
lous dispersion, mainly used in solving biological macromolecular struc- 
tures, will be dealt with in Chapter 8. 
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Before entering into the discussion of these methods, a short digression 
will be necessary to describe some important results derivable from a 
statistical analysis of the observed intensities. 

Statistical analysis of structure factor amplitudes 

The statistical analysis of the observed structure factor moduli gives very 
useful indications on the presence or not of those symmetry elements which 
do not give rise to systematic absences. It also allows us to obtain an 
estimate both of the scale factor by which one has to multiply the measured 
data to scale them to their absolute value, and of the temperature factor. 
Finally it is a basic step in the calculation of unitary and normalized 
structure factors, which will be seen to be useful quantities, especially in 
connection with the use of direct methods. 

The derivation of the theoretical probability distributions of structure 
factor amplitudes is given in Appendix 5.A. They are derived[4351 under the 
hypothesis that the atomic positions are random variables with uniform 
distribution throughout the unit cell (i.e. all points in the cell have the same 
probability of hosting an atom). 

Their form depends on whether or not the crystal possesses an inversion 
center (centric distribution or acentric distribution respectively). For the 
two cases we have 

fi 
Pi(lF1) = exp(- IFI2/2I) (centric), 

JGZ (5.4) 

2 IF1 
PI([ FI) = - exp(-I FI2/2) (acentric), 

E (5.5) 
where 

and E is a factor (defined in Appendix 5.A) depending on the specific 
symmetry of the weighted reciprocal lattice. 2, being a function of the 
atomic scattering factors, will not have a constant value in all the reciprocal 
space, but it will decrease for increasing values of sin 8/A. This is a problem 
in the practical use of distributions (5.4) and (5.5). In order to overcome 
this problem the unitary structure factors 

and the normalized structure factors 

are introduced. In the same way by which (IF[') was defined, we have 
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Fig. 5.1. Probability distributions of a 
normalized structure amplitude for 
centrosymmetric (centric) and for non- 
centrosymmetric (acentric) structures. 

and in the case of all equal atoms Z, = 1/N. From (5.7) we can immediately 
derive 

Both U and E are independent of the scattering angle 8 and correspond 
to idealized point atom structures. 

The centric and acentric distributions, when expressed in terms of 
normalized structure factors, become 

which are completely independent of the structure complexity. They are 
represented in the curves of Fig. 5.1. The two curves are quite different; the 
centric distribution foresees a higher percentage of reflections with extreme 
intensity (weak and strong reflections), with respect to the acentric one, 
showing a maximum corresponding to intermediate values of the intensities. 
The comparison of the distribution of the observed amplitudes with the 
theoretical distributions of Fig. 5.1 will allow us to establish the presence or 
not of the inversion centre in the crystal under consideration. 

From the distributions it is possible to derive the theoretical mean values 
of several functions of I El or the theoretical percentage of I El > t. Some of 

- these values are reported in Table 5.1 and may be compared with the 
l E i  corresponding experimental values to verify whether the structure is 

centrosymmetric or not. 
So far we have implicitly assumed that the observed structure factor 

moduli are on an absolute scale, but in general the values of IFhI:,,, 
obtained from the intensities Ih through eqn (3.41), are on a relative scale. 
Assuming that the thermal motion is isotropic and equal for all the atoms, 
we may write 

(Fhl:bs = K t  I O F ~ ~ '  exp (-2~s ')  (5.12) 

where K'  (reciprocal of the scale factor used in eqn (5.3)) is the scale factor, 
I°Fhl is the structure amplitude in absolute scale for atoms at rest, B is the 
overall isotropic temperature factor, and s = sin OIL. 

Table 5.1. Theoretical values of some functions of \El  obtained from the centric (5.10) 
and acentric (5.11) distributions and their comparison with the corresponding ex- 
perimental values for the AZOS structure 

Theoretical 

Centrosymmetric Non- Experimental 
centrosymmetric for AZOS 
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Using the results of the statistical analysis of the intensities, ~ i l s o n [ ~ ]  
proposed a method to derive the values of K'  and B. 

Let us consider a set of observed intensities falling within a restricted 
range of s, such that within this range the decrease of the f s with s may be 
neglected. The average value of both sides of (5.12) will be 

(JFobsJ2)s = K ' ( I o F J ~ ) ~  exp ( - 2 ~  (s2)) = K' C, exp ( - 2 ~  (s2)) (5.13) 

from which 

where (s2) is the mean value of sin2 O/A2 in the considered interval and 

is computed using the tabulated values of the atomic scattering factors for 
atoms at rest for s = m. Dividing the reciprocal lattice into several 
intervals of s, (5.14) tells us that a linear relation will exist between 
In ( ( I F ~ ~ J ~ ) ~ / & )  and (s2) and that a plot of these values obtained from the 
experimental data can be interpolated by the best straight line passing 
through them. The intercept of the line on the vertical axis will give us In K' 
and its slope the value of 2B. 

Figure 5.2 is an example of such Wilson plot for a typical small organic 
structure (p-carboxyphenylazoxycyanide-dimethyl su~phoxide,[~~ AZOS 
hereinafter); the numerical values of the terms appearing in eqn (5.14), 
obtained from 1908 observed reflections, are given in Table 5.2. The main 
reason for the deviations of the experimental points from the straight line is 
the breakdown of the condition of equiprobability of all atomic positions, 
assumed in deriving (5.4) and (5.5); in fact, the presence of structural 

Fig. 5.2. Wilson plot of AZOS together with the 
formula of the compound. 
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Table 5.2. Numerical values of the different terms in eqn (5.14) employed to obtain the 
Wilson plot of AZOS shown in Fig. 5.2 

Inter- ~imitss' Reflect- (s2) (lF21), Xs ( I F I ~ ) . / ~ .  In [(IFI):/~,I 
val [on no. 

1 0.0000-0.0655 82 0.0327 3736.8 2199.9 1.6986 0.5298 
2 0.0327-0.0982 124 0.0655 1359.5 1322.9 1.0277 0.0273 
3 0.0655-0.1309 156 0.0982 821.2 1020.9 0.8044 -0.2177 
4 0.0982-0.1637 182 0.1309 420.2 791.3 0.5310 -0.6329 
5 0.1309-0.1964 210 0.1637 292.8 646.5 0.4529 -0.7922 
6 0.1637-0.2292 231 0.1964 234.4 562.7 0.4166 -0.8756 
7 0.1964-0.2619 248 0.2292 146.2 507.8 0.2879 - 1.2451 
8 0.2292-0.2946 269 0.2619 73.0 450.9 0.1619 -1.8209 
9 0.2619-0.3274 272 0.2946 52.0 410.4 0.1 267 -2.0663 
10 0.2946-0.3274 134 0.3110 46.3 392.7 0.1 179 -2.1378 

regularities, such as the phenyl hexagon in AZOS, is in contrast with this 
assumption. The broken line in Fig. 5.2, obtained by least-square fitting, has 
a slope of -9.20 and an intercept of 0.72. From these values we can derive 
that B = 4.60 A2 and K' = 2.05. The normalized structure factors can then 
be calculated by means of the relation 

\ K' exp (-2Bs2)s Of? 

The last column in Table 5.1 gives the experimental values of several 
statistical indicators based on the IEl values of AZOS (space group P2,/a), 
which confirm the presence of an inversion centre. 

The Patterson function and its use 

In Appendix 3.A (p. 182) the Patterson function was defined as the 
self-convolution of the electron density p(r). According to (3.A.38) we have 

P(u) = p(r) * p(-r) = j p(r)p(r + u) d r  (5.16) 
V 

We have shown (see (3.A.39)) that the Fourier transform of P(u) is IF(r*)I2 
(in symbols I ~ ( r * ) l ~  = T[P(u)]) and vice versa 

P(u) = ~ - ~ [ l ~ ( r * ) l ~ ]  = IF( r * )I exp (-2nir* . U) dr* 
v *  

1 
= -  IF,)^ exp (-2nih ' u). 

V h 

Since IFh/ = lFphl, we may write 

1 
P(u) = - cos 2nh u 

V h 

and then P(u) = P(-u), i.e. the Patterson function is always centrosym- 
metric even when p(r) is not. This is in agreement with the deductions of p. 
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176 concerning the centrosymmetric nature of all functions with real Fourier 
transform. Since 1 ~ ~ 1 '  depend on the interatomic vectors [cf. eqn (5.1)] we 
may expect that also P(u) will contain information on these quantities. This 
can be verified starting from the definition (5.16). Let us, for simplicity, 
suppose we have an idealized structure made up of n point atoms with an 
associated weight equal to their atomic number (Fig. 5.3). The integral in 
(5.16) then becomes a summation over the n points, and 

In order to derive P(u), all the atoms of the original structure p(r,) are 
shifted by a fixed vector u to obtain the corresponding p(r, + u), then the 
products p(r,)p(r, + u) are performed and finally all these contributions are 
summed; the products will be non-zero only when p(r, + u) #O, that is 
when a point in the translated structure (broken lines in Fig. 5.3) coincides 
with an atom of the original structure. This condition is verified only when 
the vector u coincides with an interatomic vector (in Fig. 5.3(a) u coincides 
with the vector 2-4), while for a general u (Fig. 5.3(b)) all point of the 
translated image fall into regions where p(r) is zero. In the first case the 
value of P(u) will be proportional to the product of the weights of the two 
superposed atoms, in the second P(u) = 0. In Fig. 5.3 a higher weight has 
been given to atom 1 (heavier atom) and in 5.3(c) the case of a vector u 
coinciding with the distance 1-4 is represented; it will be P(u , ,~ )  > P(uZ,~)) 
both being single Patterson peaks, as each corresponds to only one 
interatomic vector. Finally in 5.3(d) the case of a vector u coinciding with 
two parallel interatomic vectors of equal length is illustrated; two terms will 
contribute to the summation in (5.18) and P(u) becomes twice as large as 
P(u',~) and it is said to have a multiplicity of two. Let us, for instance, 
suppose that atom 1 is a sulphur and the others are carbons; we will then 
have: P(u2,4) = 6 x 6 = 36, P ( q 4 )  = 6 x 16 = 96 and, with reference to Fig. 
5.3(d), P(u) = 2 x  ( 6 ~  6)=72. 

From what we have seen so far it follows that the Patterson function will 
have maxima corresponding to all possible interatomic vectors within the 
unit cell; the height of each peak will be proportional to the product of the 
atomic numbers of the atoms connected by the vector u, multiplied by the 
multiplicity of the same vector. 

This concept can be further clarified by considering Fig. 5.4, where in 
5.4(a) a set of N = 5 points is represented, while in 5.4(b) the corresponding 
distribution of interatomic vectors, and in 5.4(c) the same set of vectors, 
after they have been translated to a common origin, are shown; the last 
corresponds to the distribution of peaks in the Patterson function. 

The Patterson function will have the same periodicity as the electron 
density and therefore the size of the unit cell will be identical. On the other 
hand, the number of peaks in the Patterson function is much greater than 
that in p(r); given N atoms in the cell they will give rise to N' peaks in 
P(u), N of which will superpose on a single peak at the origin (they 
correspond to the N zero distances of each atom with itself), while the 
remaining N(N - 1) are distributed over the cell. This higher density of 
peaks becomes a more serious problem for real structures with non-point- 
like atoms. In fact the Patterson peaks are wider than the maxima in an 
electron density map. As illustrated in the one-dimensional example of Fig. 
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Fig. 5.3. Schemes for the construction of the 
Patterson function of a point-atom structure, in 
which each atom has a weight equal to its 
atomic number: (a) two images separated by a 
vector coinciding with the interatomic vector 
between atoms 2 and 4 of equal weight; (b) two 
images separated by a vector not coinciding 
with any interatomic vector; (c) two images 
separated by a vector coinciding with the 
interatomic vector between atoms 1 and 4 of 
different weight; (d) two images separated by a 
vector coinciding with the two parallel 
interatomic vectors of equal length between 
atoms 4. 8 and 6. 7. 

(c) 
Fig. 5.4. (a) Scheme of a molecule formed by 
five point atoms; (b) corresponding 
representation of all possible interatomic 
vectors; (c) Patterson function obtained by 
translating all vectors in (b) to a common origin. 

5.5, because of the non-zero width of the peaks in p(x) ,  the Patterson peaks 
will have a width twice as large. 

For these reasons the Patterson map of a structure, with even a moderate 
number of atoms, may appear as an almost featureless distribution of vector 
density. To overcome this problem it is convenient to employ a sharpening 
procedure, consisting in computing the Patterson function with coefficients 
IEhI2 or better IFhEh(. In fact the normalized structure factors correspond to 
a point-atom structure with no decrease of the atomic scattering factor with 
increasing sin 8/A. The (l$EhI coefficients are more convenient, because 
over-sharpening is sensitive to the series truncation errors (cf. Fig. 3.16) and 
may produce spurious peaks or a down-scaling of correct peaks in the map. 

It is also possible to eliminate the origin peak, which may obscure some 
short vectors, by subtracting from the coefficients the terms corresponding 
to the interaction of each atom with itself (i.e. the first term in the 
right-hand side of (5.1)); the coefficient in the series (5.17) will be 
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where, of course, the 1 ~ ~ 1 ~ s  must be in an absolute scale. Figure 5.6 shows 
the comparison between a normal and a sharpened Patterson section. 

From the previous considerations about the height of the Patterson peaks, 
we can infer that the map will have prominent maxima when: 

1. The structure contains a limited number of heavy atoms (i.e. with an 
atomic number Z, significantly higher than that of the other lighter 
atoms, ZI), giving rise to three types of peaks: 

-- 

Vectors Height 

heavy atom-heavy atom ZpZp very high 
heavy atom-light atom Z ~ Z ~  intermediate 
light atom-light atom ZIZI very low 

2. The molecular geometry is such that it will give rise to several 
interatomic vectors with almost the same length and direction (e.g. 
systems with condensed aromatic rings); these will correspond to 
multiple peaks. 

Before illustrating the methods for interpreting the Patterson function, let 
us first analyse how the symmetry of the crystal is reflected into the vector 
map. The following considerations apply: 

1. Since all vectors are translated to a common origin, the symmetry 
elements in the crystal will be translated in the Patterson function so that 
they will all pass through the origin and at the same time they will lose 
their translational components. By applying these rules it can be seen 
that, of the 230 space groups, only 24 have a symmetry compatible with 

Fig. 5.5. Illustration of the widening of a 
Patterson maximum with respect to the electron 
density maxima contributing to it. 
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the Patterson function. Thus, for instance, we have: 

Fig. 5.7. Argand diagram in which two heavy 
atoms (with atomic scattering factors f, and f,) 
and six light atoms contribute to the structure 
factor F; the resultant of the contributions of the 
two heavy atoms is quite close to F. 

Crystal space group Patterson group 

Triclinic (PI, p i )  p i  
Primitive monoclinic (P2, P2,, . . . , P2,/c) P2/m 
Centred monoclinic (C2, Cc, . . . , C2/c) C2/m 
Primitive orthorhombic (P2,2,2,, . . . , . 

Pna2,, . . . , Pbca . . .) Pmmm 

2. The symmetry operators present in the crystal leave a trace in the 
Patterson function, consisting of particular clusterings of vector maxima 
on specific lines or planes of the map, called ~ a r k e r [ ~ ]  lines and sections. 
These are produced by vectors, with one or two constant components, 
between equivalent atoms related by symmetry elements other than the 
inversion centre. Thus, for instance, the space group P2,, with equivalent 
positions: x, y, 2; 2,y + 4, Z, will have vectors between equivalent atoms 
located on a Harker section with coordinates (2x, 4, 22). In fact 

In the space group P2, the equivalent positions x, y, z and 2, y, Z give 
rise to maxima on the Harker section at (2x, 0, 22). 

In a similar way it can be seen that the space groups Pm and PC give 
rise to Harker lines with coordinates (O,2y, 0) and (0,2y, 4) respectively. 
The Harker lines and sections corresponding to some of the most 
common symmetry elements are listed in Table 5.3. The presence or lack 
of Harker lines or sections may also give valuable indications on the 
space group symmetry when this is not uniquely defined. 

The heavy atom method 
The procedures for the interpretation of the Patterson function are greatly 
simplified when the structure contains a limited number of heavy atoms. 
The peaks due to the vectors between these atoms will dominate the map 
and it is therefore usually quite an easy task to derive the positions of the 
heavy atoms. Then, if the atoms have a sufficiently high atomic number, the 
information about their coordinates represents a good initial model; in fact, 
the term F i  computed by relation (5.2) with the contribution of the M 
heavy atoms in the unit cell, generally represents the predominant contribu- 
tion to the structure factor, as illustrated in Fig. 5.7. 

One may then assume that the phase @i of lFtl is a good approximation 
of the true phase of Fh and compute an electron density map using as 

Table 5.3. Harker lines and sections relative to the most 
common symmetry elements 

2 axis 1 )  to a, b, c 0, v, w ;  u, 0, w ;  u, v, 0 
2, axis 1 1  to a, b, c i, v, w ;  u, 4, w ;  u, v, 4 
mmirror I . toa,b,c u,O,0;O,v,O;O,O,w 
a glide I to b, c 4 ,  v, 0;  4, 0, w 
b glide I to a, c u, 4, 0;  0, $, w 
c glide 1. to a, b u, 0, $; 0, v, 4 
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coefficients the observed amplitudes (to which all atoms in the structure will 
contribute) with the corresponding calculated phases $I;. The map will not 
only reveal the heavy atoms but also other atoms of the structure. In the 
most favourable cases the structure may be completed from the first 
electron density map, but in general it is necessary to operate in more than 
one cycle by the so-called method of Fourier synthesis recycling. Each 
cycle requires the calculation of the structure factors from the coordinates of 
the known atoms; their phases will then be used to compute a new electron 
density map. If the initial model is correct, each cycle will reveal new atoms 
until the structure is completed. 

From the previous considerations one may get the impression that it 
would be advantageous to have compounds containing atoms of high atomic 
number, but one has also to consider that their contribution to the diffracted 
amplitudes may became so dominant that the observed data will be almost 
unaffected by the contribution of the remaining light atoms. The definition 
of the final structure will then be rather inaccurate. It has been dem- 
onstrated empirically that the best ratio between heavy and light atoms is 
that for which 

As the values of the ratio (5.20) become less than 1.0, then the 
interpretation of the Patterson function and the process of completing the 
structure become more and more difficult, but at the same time the accuracy 
of the refined positions of the light atoms will increase. As an example let us 
consider a hypothetical organic compound of formula C3,H3,04X, where X 
is a halogen considered as a heavy atom; then, supposing that there are 
two molecules in the cell, C 2: = 2708 and C 2; = 578, 2450, 5618 for 
X = C1, Br, I respectively and the ratios (5.20) will be 0.21, 0.90, 2.07 
respectively. Supposing that the data measured for the three derivatives are 
equally good, the chlorine compound will be difficult to solve, but the 
refined structure will be quite accurate; with bromine the solution should be 
quite easy with still a reasonable accuracy of the final structure, while with 
iodine it will be very easy to solve the structure but its accuracy will be 
further reduced. 

In order to find the positions of the heavy atoms it is necessary to locate 
them with respect to the symmetry elements and to the conventional origin 
of the unit cell. Let as now consider some examples, assuming for the 
moment that the asymmetric unit only contains one heavy atom. 

1. Space group PI. The vector between equivalent atoms related by the 
inversion centre, has component u = 2x, v = 2y, w = 22; once it has been 
localized on the map it will immediately give the heavy atom coordinates 
with respect to the origin chosen on the inversion centre. 

2. Space group P2, (twofold screw axis parallel to b). As we have seen, 
the vector between equivalent heavy atoms gives rise to a peak on the 
Harker section at 2x,  i, 22. From its position one may easily derive the x 
and z coordinates of the heavy atom; the y coordinate may be arbitrarily 
assigned in order to fix the origin along the twofold screw axis.? Let us 

t This is correct in the process of finding a starting model formed by a heavy atom, but 
during the refinement a more robust way of fixing the origin should be used, as described in 
Chapter 2, p. 107. 
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assume y = i; we will then have two equivalent heavy atoms at positions x, 
$, z and R, a, 2, which are related by an inversion centre (this is true for any 
value of y, but the choice y = a  makes it more obvious). The structure 
factors computed with the contribution of the heavy atoms only will then be 
real quantities and the map obtained with the corresponding phases will be 
centrosymmetric, showing both the true structure and its mirror image 
(enantiomorph). It may be quite difficult to unravel one image from the 
other; a sufficient number of light atoms, all belonging to the same image, 
should be localized in order to break down the centrosymmetric nature of 
the subsequent Fourier syntheses. This may become easier when atomic 
groups of known stereochemistry or one or more atoms of intermediate 
atomic number (from Na to Cl) are present. 

3. Space group P2Jc. This very common space group will be illustrated 
by means of the structure of the lower-melting isomer of methyl- 
(phenylsulphonyl)furoxan, C 9 H s ~ 2 0 4 ~ [ s 1  

The heavy atom is the sulphur and the 
The general equivalent positions are: 

value of the ratio (5.20) is 0.37. 

The twofold screw axis gives rise to a Harker section of type %, 4, 4 - 22 
(Fig. 5.8(a)), while the glide plane generates a Harker line at 0,4 - 2y,i 
(Fig. 5.8(b)). Finally the inversion centre will produce a vector between 
equivalent heavy atoms of components 2x, 2y, 22. In Fig. 5.8(a) the highest 
peak is at u = -2x = 62.21100, w = 4 - 22 = 26.91100 and then: x = 0.189, 
2 = 0.115. In Fig. 5.8(b) there is a large peak centred at v = 4 - 2y = 
25.2/100 and therefore y = 0.124. The coordinates of the S atom found in 
this way are confirmed by the presence of a fairly large peak at position 
u = 2x = 0.384, v = 2y = 0.245, w = 22 = 0.230. Despite the low value of the 
ratio (5.20), the electron density map, computed with the signs derived from 
the contribution of the S atoms only, allowed the localization of all the 
other non-hydrogen atoms. The final coordinates of the sulphur in the 
refined structure are: x = 0.2880, y = 0.1249, z = 0.1143 (shifted by only 
0.097 A from the original position). 

4. Space group P212121. The higher-melting isomer of methyl(pheny1- 
sulphonyl)furoxan[81 

crystallizes in this common non-centrosymmetric space group. 
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Fig. 5.8. Methyl(phenylsulphonyl)furoxan LMI: 
(a) Harker section u, $, w; (b) Harker line 0, v, i. 
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(b) 
Fig. 5.9. Methyl~phenylsulphonyl)furoxan HMI:  
(a) Harker section i, v, w; (b) Harker section u, v, 
f ;  (c) Harker section u, :, w. 

The general equivalent positions are 

The three mutually perpendicular twofold screw axes give rise to three 
Harker sections of the type 4, - 2y, 22; 4 - 2x, 2y, 4; 2x, 4, 4 - 22 (Fig. 
5.9(a, b, c)). In the first the highest peak is positioned at v = $ - 2y = 
501100, w = 22 = 6.61100, giving y = 0.0 and 2 = 0.033. In the second the 
highest peak is at u = - 2x = 38.2/100, v = 2y = 0/100 (in agreement with 
the first section) and then x = 0.059 and y = 0.0. In the third section the 
peak at u = 2x = 11.81100 and w = 4 - 22 = 43.2/100, confirming the coord- 
inates derived from the first two sections, is not the highest peak but the 
fourth highest. The largest peak at 50 and 6.6 is in common with the first 
section, because of the special value of y = 0; the second and third peaks are 
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(d Fig. 5.9. (Continued) 

probably due to an accidental superposition of several vectors connecting 
lighter atoms. Also in this case the Fourier map, computed with the phases 
due to the contribution of the S atoms only, revealed the whole molecule 
(excluding hydrogens) and the coordinates of the S in the final refined 
structure are x = 0.0589, y = 0.0094, z = 0.0343 (shifted by 0.0162 A from 
the original position). 

Let us now consider the case of a compound with more than one heavy 
atom, such as the complex F~,(co),,(Noc~H~)(Nc~H,),[~~ crystallizing in 
the space group pi  with Z = 2. In Table 5.4 the coordinates of the highest 
peaks in the Patterson map are listed in decreasing order of height. The 
values of the function are on an arbitrary scale and can be scaled to their 
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absolute value by multiplying by the ratio C j  Z?/P(O 0 0) = 82401364 = 
22.6; the height of a single Fe-Fe peak is Z;, = 676 in absolute scale and 
about 30 in the relative scale. The vectors between equivalent atoms linked 
by an inversion centre have components 2x, 2y, 22 and correspond to single 
peaks; we may therefore assume that maxima 10, 11, 12, and 13 are of this 
type. If we choose peak 10 as Fe(1) - Fe(1) the coordinates of Fe(1) are 
simply obtained by dividing its components by two. Once this has been 
done, we are not allowed to simply divide by two the components of peaks 
11, 12, 13 to obtain the coordinates of the other Fe atoms. In fact in this 
way we wouldn't be sure that the other three Fe atoms are referred to the 
same origin as the first. Indeed in the space group PI there are eight 
different positions of the inversion centre where the origin may be chosen. 
In order to resolve this ambiguity the peaks corresponding to vectors 
between non-equivalent Fe atoms should be used, also taking into account 
the periodic nature of the Patterson function. For instance, for peak 11, we 
must consider the eight combinations: 

giving for Fe(2) the coordinates referred to the eight possible origins: 

Only one of these positions will account for the vectors Fe(1) - Fe(2) and 
Fe(1) + Fe(2) in the Patterson. In our case it will be the last position; in fact 
u2 = 1.380, v2  = 1.300, w2 = 1.645 will give x2 = 0.690, y2 = 0.650, z2 = 0.822. 
Peak 3 and peak 5 may then be interpreted as Fe(1) - Fe(2) and 
Fe(1) + Fe(2) respectively, after these Fe(2) coordinates have been transl- 
ated by -1.0 along the three axes to obtain the values listed in the bottom 

Table 5.4.List of the highest Patterson peaks of the complex 
Fe,(CO)11(NOC2H,)(NC2H5) and their interpretation in terms of vectors between Fe 
atoms; Fe coordmates obtained from this interpretation 

Peak u v w H Interpretation 

Origin 0 0 0 364 
1 0.080 0.260 0.1 10 144 
2 0.020 0.000 0.710 138 
3 0.490 0.560 0.470 120 
4 0.070 0.275 0.400 72 
5 0.1 10 0.245 0.820 65 
6 0.485 0.455 0.810 65 
7 0.420 0.180 0.420 63 
8 0.405 0.290 0.360 59 
9 0.480 0.570 0.760 55 

10 0.400 0.195 0.700 38 
11 0.380 0.300 0.645 33 
12 0.430 0.285 0.075 30 
13 0.450 0.165 0.135 27 
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part of Table 5.4. With a similar procedure we may deduce the coordinates 
of the remaining two Fe atoms listed in the table. 

Advanced Patterson methods 
Procedures for the automatic determination of positions of heavy atoms 
from the Patterson function, have been developed both for small 
 molecule^[^^^^] and for biological macromolecules.~1~161 The procedure 
implemented within the SHELXS-86 computer program[lOl will be briefly 
described. The list of the highest peaks in the Patterson map is analysed in 
terms of Harker and cross peaks. Several possible solutions are given and 
the selection of the 'best' solution to be further processed (by the methods 
described on pp. 365-75) is done by means of two reliability indices (or 
figures of merit): an R-factor based on E values (RE) and R(Patt) which 
measures the agreement between the observed and predicted (from the 
atomic numbers) Patterson values. 

We finally mention that there are other methods for interpreting the 
Patterson function, which may be applied also in the absence of heavy 
atoms. They are the so called vector and superposition methods which are 
described in some detail in Appendix 5.B. 

Direct methods 

Introduction 
With the term direct methods are indicated those methods which try to 
derive the structure factor phases directly from the observed amplitudes 
through mathematical relationships. In general the phase and the amplitude 
of a wave are independent quantities and in order to understand how, in the 
case of X-ray diffraction, it is possible to relate these two quantities, two 
important properties of the electron density function should be considered: 

(1) it is everywhere positive, i.e, p(r) 3 0 (positivity); 

(2) it is composed of discrete atoms (atomicity). 

The relation between positivity and phase values may be simply under- 
stood by just imagining the computation of p(r) of a centrosymmetric 
structure as a Fourier series, first with all signs correct and then with all 
signs reversed: the first map will be everywhere positive or zero, while the 
second wiIl be negative or zero and therefore physically unacceptable. Two 
pictorial examples of how positivity restricts the possible values of the 
phases are described in the Appendix 5.C, while a more formal explanation 
will be given later. 

Historically, the first mathematical relationships capable of giving phase 
information were obtained, in the form of inequalities, by Harker and 
  as per['^] in 1948 and then further developed by Karle and ~auptman[ '~l  
and by other authors. Because of their limited practical interest, they will 
not be treated here and the reader is referred to more specialized 
textbooks.[191 In 1953 Hauptman and Karle['O1 established the basic concepts 
and the probabilistic foundations of direct methods; the great power of 
these methods in solving complex crystal structures had its highest recogni- 
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Fig. 5.10. Comparison between p ( x )  and p 2 ( x )  
for a one-dimensional structure with equal and 
well resolved atoms. 

tion in the Nobel Prize for Chemistry conferred in 1985 on the mathe- 
matician H. Hauptman and the physicist J. Karle. 

Also in 1953 ~ayre,[ '~]  using the atomicity condition, was able to derive a 
very important relation. He considered that for a structure formed by well 
resolved and almost equal atoms, the two functions p(r )  and p2(r) are quite 
similar and show maxima at the same positions. A one-dimensional example 
is illustrated in Fig. 5.10. 

We have seen that the Fourier transform of p ( r )  is ( 1 I V ) f i  and for the 
case of all equal atoms 

N 

Fh = fh exp ( 2 n i h  . q ) .  (5.21) 
j=1 

We can also define the structure factor corresponding to p2(r) 
N 

Gh = gh exp (2n ih  q )  (5.22) 
j=1 

where gh is the scattering factor of the 'squared' atom. 
The Fourier transform of p2(r) is ( l / V ) G h  and, because of the convolu- 

tion theorem, it will correspond to the convolution product ( l / V ) F h *  
( l / V ) F h .  Since Fh is a discrete function defined only at the nodes of the 
reciprocal lattice, the convolution integral (3.A.34) becomes a summation 

From the ratio of (5.21) and (5.22) we also have 

Fh = (fhlgh)Gh = OhGh, 

and (5.23) becomes 
Oh 

Fh = y c  FkFh-k, 
k 

which is Sayre's equation, valid for both centrosymmetric and non- 
centrosymmetric structures. Multiplying both sides of (5.24) by F-,, we 
obtain 
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For large values of IFhJ the left-hand side will be large, real, and positive. It 
is therefore likely that the largest terms in the sum on the right will also be 
real and positive. It follows that, if IFkl and IFh-kl also have large values, it 
will be 

@ h k =  9 ) - h +  9 ) k +  9 ) h - k z O  (5.26) 

which for centrosymmetric structures becomes 

where S(h) stands for the sign of reflection h and the symbol = stays for 
'probably equal'. We note that (5.27) coincides with the indication obtained 
in Appendix 5.C. 

Relations (5.26) and (5.27) are expressed in a probabilistic form and 
indicate the necessity of applying probability methods to estimate their 
reliability. On the whole, the use of probability techniques to obtain 
relationships between phases and magnitudes, has proved to be the most 
important approach for the practical use of direct methods. We will 
therefore describe in more detail these methods and the procedures 
employed for their practical applications. 

Structure invariants and semi-invariants 
As already mentioned, the goal of direct methods is that of obtaining the 
phases directly from the observed amplitudes. These last quantities are 
independent of the chosen reference system, while in general the phases 
depend on it. From the observed amplitudes we can only obtain informa- 
tions on single phases or linear combinations of phases which are independ- 
ent of the choice of origin (the other features of the reference system being 
already defined by the choice of the space group). Since their value depends 
only on the structure, they are called structure invariants (s.i.).[203221 

The most general s.i. is represented by the product 

when 

Let us show that its value does not change when the origin is moved by a 
general vector ro. The structure factor of index h, referred to the new 
origin, will be 

N ', 

FA = x f i  exp (2nih . (5 - rO)) 

= Fh exp {-2nih rO) 

= 141 exp [i(qh - 2nh ro]; 

the modulus remains unchanged while the phase changes by Aq, = 2nh . ro. 
The variation of the phase of the product (5.28), due to the same origin 

shift, will be 

which is zero because of condition (5.29). 
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The simplest structure invariants are: 

N 
1. Fooo = C Zi giving the number of electrons in the unit cell; its phase is 

j=1 

always zero. 

2. F h R h  = IFhI2, which does not contain any phase information. 

3. F-,FkFh-, with phase q-h + qk + called triplet invariant; we shall 
see that these invariants play a primary role in the procedures which will 
be described later. 

4 .  F-hFkF,Fh-k-l with phase g,-h + qk + g,, + Vh-k-l called quartet 
invariant; its importance has been recognized in recent years. 

5. With a simple extension it is possible to define quintet, sextet, etc., 
invariants. Considering that the practical use of these relations is still 
under discussion, we will just mention here that complex probabilistic 
formulae have been derived to allow the estimation of these higher 
invariants. 

Structure semi-invariants ( S . S . ) [ ~ ~ , ~ ~ ]  are single phases or linear 
combinations of phases which are invariant with respect to a shift of 
origin, provided that the position of the origin is restricted to those 
points in the cell which possess the same point symmetry (the so-called 
'permissible origins'). A basic property of a S.S. is its capability of being 
transformed into a s.i. by adding one or more pairs of symmetry- 
equivalent phases. For instance, in a given space group possessing the 
symmetry operator C = (R, T), the phase qH is a S.S. if it is possible to 
find a reflection h such that 

V = T H - Q ) ~ + Q ~  (5.32) 

is a s.i., i.e. H - h + hR = 0. 
Because of (3.37), relation (5.32) may be written as 

q is independent of any choice of origin, while (p, and T will depend on 
it; however, the dependence is such that (5.33) holds and therefore the 
value of yH will not change if we move the origin within those points 
which maintain the vectors T unchanged (identical point symmetry). For 
instance in P?, g,,, is a S.S. since 

is a s.i. The origin is conveniently chosen on the inversion centres and 
then T  = (0,0,0). The permissible origins are on the eight inversion 
centres present in the cell; any one of them, chosen as origin, will always 
give T =  (O,O, 0). 

Alternatively, by applying (5.31) we can derive that the phase of g,,, 
changes by Ag, = 2n2h . ro when the origin is shifted of a vector ro. It is 
easy to see that Ag, = 0 (or 2nm) when the components of ro are 0 or 1 as 
happens for the eight inversion centres in (cf. Fig. 5.17). The 
qualitative example relative to the sign of F,,, described in Appendix 
5.C, can now be related to a S.S. 
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As another example, let us consider, in space group P2,, the phase 
q2h,0,21, which is a s.s., because 

is a s.i. for any value of k. When the origin is chosen on a twofold screw 
axis, then q = Q)2h,0,21 - nk. The permissible origins are located on any of 
the fqur screw axes present in the unit cell (cf. Fig. 5.18). 

The two examples given above refer to single phases and are therefore 
one-phase semi-invariants. We can generalize what we have seen so far 
to the case of the linear combinations of more phases. Thus, the 
combination C $h is a S.S. in PI if C h = 2H (i.e. if the three components 
of the sum vector are all even); in P2, it is a s.s. if C h = (2H, 0, 2L). A 
compact way to indicate these two conditions is: Ch = 0 mod(2,2,2) 
(meaning that each of the three components of the vector Ch gives a 
zero rest when divided by 2), and Ch = 0 mod (2,0,2) (with the same 
meaning as before for the first and third components, while the second 
must be zero). In general we may write C h = 0 mod o,, where o, is a 
vector, called semi-invariant modulus, with integer components; the 
vector C h is called the semj-invariant vector. 

In order to identify which phases or combinations of phases are s.s. one 
can refer to special tables (see, for example, ~ iacovazzo[~~] )  in which the 
space groups are classified in such a way that those belonging to the same 
class have the same permissible origins. The same process may be carried 
out automatically on a computer following an algebraic approach.[23] 

Before considering probability methods, let us use the positivity property 
of the electron density function to obtain an indication on the value of 
triplet invariants. The development of the product F-hFkFh-k gives 

F-hFkFh-k = z fjl exp [-2nih . q,] x fj, exp [-2nik q,] 
i l  i2 

x fi, exp [-2ni(h - k) . q,] 
i 3  

For simplicity let us assume that reflections h, k, and h - k have similar 
sip B I A  values and therefore the variation of the atomic scattering factors 
with the indices can be overlooked. In (5.36) we can separate the terms: 

2 )  I I 2 fifj, exp {2ni[(h - k) . (q, - ql)l>, 
i lh  

which is proportional to (cf. (5.1)) IFh-,I2 - C, f;; 
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which is proportional to IFk12 - f;; 
i 

which is proportional to  IF,)^ - 2 f;; 
i 

+ [k . (q, - q,)]} = R. 

If the electron density is positive, the atomic scattering factors, which are 
the Fourier transform of the electron density around each atom, will also be 
positive and the summation in (1) will then be positive. Recalling equation 
(5.A.9) the terms (2), (3), and (4) are proportional to lFh12 - (lF12)) 
IFkI2 - ( 1 ~ 1 ~ ) )  and - ( 1 ~ ) ~ )  respectively and for large values of IF1 
they will be large and positive. The last term R is the only complex term, 
but being a sum of positive and negative quantities, it will on average be 
small; R may be considered as a 'noise' term. For large values of the 
structure amplitudes we can then write 

F-hFkFh-k= C fj + K{JF~~ '  +  IF^^^+ IFh-k12 - ~ ( I F I ~ ) }  + R 3 0 .  (5.37) 
i 

In the case of a centrosymmetric structure this relation implies that, when 
IFh/, IFk[, and IFh-kl are large, then the product of the three signs of the 
structure factors, S(h)Sfk)S(h - k) = + . This deduction is in agreement 
with (5.27), derived from Sayre's equation, and with the pictorial derivation 
given in Appendix 5.C. 

Probability methods 
For the same reasons considered on pp. 321-2, from now on we will use 
the normalized structure factors. The use of normalized amplitudes is also 
suggested by (5.37), which shows that the value of the triplet does not 
depend on the diffraction angle. Indeed we may note that at low sin 8/A, 
where the scattering power is higher, both the positive terms and the noise 
term R are larger, and that they decrease by comparable amounts as the 
diffraction angle increases. It is also important to point out that the use of 
normalized structure factors, corresponding to a point-atom structure, 
implicitly corresponds to a sharpening of the atomicity assumption for the 
electron density. 

In Appendix 5.D the probability formulae for triplet invariants are 
derived, here we will just consider the main results. For a non- 
centrosymmetric structure the distribution associated to (5.26), derived by 
~ o c h r a n , ' ~ ~ ]  is given by (cf. (5.D.17)) 

where: 

(1) for equal atoms 
Ghk = ( 2 / @ )  IEhEkEh-kl; 
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(2) for non-equal atoms 

Ghk = 2 0 ~ 0 2 ~ ' ~  IEhEkEh-kl; (5.39b) 
N 

with on = C 27, 2, being the atomic number of the jth atom. In (5.38) L is 
j=1 

a normalization term depending on Ghk only. P(Qhk) is a so-called von 
Mises distribution[251 and Ghk is its concentration parameter; its trend is 
very similar to that of a Gaussian, as it is shown in Fig. 5.11 for different 
values of Ghk. All curves have a maximum at Qhk = 0, i.e, qh = qk + qh-, 
and their width around the most probable value narrows as Ghk increases. 
The variance of the relation 

will therefore decrease as Ghk increases. 
If more than one pair of phases qkj, qhpk1 are known (with associated 

amplitudes I Ekjl and I Eh-,]I ,), with j = 1, 2, . . . , r ,  all defining the same 
phase qh through triplet relations such as (5.40), then the total probability 
distribution for qh is given by the product of the r distributions of the form 
(5.38), which are assumed to be independent of one another; i.e. 

where A is a normalization factor. The exponent of (5.41) may be 
developed as 

where 

ah = [(i G, cos oj 
j=1 TI1" 

Fig. 5.11. Trends of the probability distributions 
(5.38) for different values of the parameter G,,, 
given by (5.39). 
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t and 

(i G, sin c+) 
tan ph = '=I 

(C G, cos 
j=1 

with G, = Ghk, and mi = qk, + qh+. Equations (5.42) to (5.44) are easily 

I understood when the r relationships of type (5.40) are plotted on an Argand 

1 diagram as vectors of modulus Gi and phase mi; the angle between each 
vector and the real axis is an indication of a probable value of qh. In Fig. 
5.12 the case with r = 5 is illustrated; it can be seen that 

r r 

H AH = a,, sin Ph = C G, sin m,, OH = ah cos Ph = 2 G, cos LC)~ 

Fig. 5.12. Vector representation, in the complex 
plane, of the combination of five triplets of type 
(5.40) involving the same reflection h. 

t 
0 4 8 12 16 20 

Gora  

Fig. 5.13. Trend of the standard deviation, o, of 
the distribution (5.45) as a function of n,, 
defined by (5.43). 

and relations (5.42), (5.43), (5.44) become immediately clear. 
Finally eqn (5.41) becomes 

which still is a von Mises distribution with a maximum for qh = Ph and a 
variance[261 depending on ah as shown in Fig. 5.13. For instance we may 
deduce that for ah = 2, (9,) = Ph f 50", while for a,, = 10, ( q h )  = Ph It 19". 
Equation (5.44) gives the most probable value of qh and is known as the 
tangent formula;[271 as we shall see later, this formula plays an important 
role in the phase determination process. 

In the case of centrosymmetric structures the probability that the sign 
relationship (5.27) is true, is given byCz8] (Appendix 5.D) 

P' = 4 + $ tanh[(~,a;~" IEhEkEh-kl)]. (5.46) 

When several relations for the same S(h) exist 

the product of the different probabilities P(Eh) (given by (5.D.19)) should 
be considered. With a procedure similar to that described in Appendix 5.D, 
we obtain 

Figure 5.14 shows the trend of (5.48); it can be seen that, when several 
terms, all with the same sign, contribute to the summation, then the 
absolute value of the tanh argument may become rather large and P f  
approaches the extreme values 1 or 0. 

In the past 10-15 years probability methods have seen new important 
developments. Not only it has been possible to improve the estimate of 
triplets, but also to derive reliable estimates of other phase relationships, 
both s.i. and s.s. 

At the basis of the new approaches stands the following principle: ' I t  is 
possible to obtain a good estimate of s.i. or s.s. given "appropriate" sets of 
normalized structure factor moduli, which are statistically the most effective 
in determining the value of the given s. i ,  or s.s. ' 
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Fig. 5.14. Trend of P+ = $ + f tanh ( x )  (cf. (5.48)) 
as a function of x. 

The first task will then be to identify these moduli, indicated as the 
phasing magnitudes, and rank them according to their effectiveness in 
estimating s.i. or s.s.. Given their set {JEl), the second task will be to derive 
the probability distribution 

P(@ I {IEI)) (5.49) 

where @ is any phase relationship we want to estimate and the vertical bar 
after it stands for: 'given all magnitudes in {\El)'. 

Cochran's formula[24] for triplets, derived in Appendix 5.D, is a trivial 
example of such conditional distribution; in fact it may be seen as 
P(@hk I IEhl, IEkl, IEh-kl). 

~ c h e n k [ ~ ~ , ~ ~ ]  extended this principle to the case of four-phase s.i. 
(quartets): 

Q = Q7h + Q7k + TI + Q7-h-k-P (5.50) 

Their distribution, given the four associated magnitudes, derived by 
~ i m e r s k a , [ ~ ~ ]  indicates that Q = 0, with a variance depending on 

= (2/N) IEhEkElEh+k+lI . (5.51) 

Because of the 1/N factor any reasonably sized structure will have very 
small B values, and for this reason quartets estimated in this way can not be 
used in practice. Schenk pointed out that quartet (5.50) could be considered 
as the sum of two triplets, such as TI = ~ 7 ,  + ~ 7 ,  - qh+, and = ql + 

+ qh+&. Then, if also I Eh+,I is large, we will have TI - 0 and G = 0 
and therefore Q = TI + T, - 0 with a strengthened reliability with respect to 
that indicated by (5.51). In a similar way we can see that the same quartet 
can be written as the sum of two other pairs of triplets, and that Q also 
depends on JE,+,I and IEk+,(. We can then say that the quartet not only 
depends on the four basis magnitudes IEhI, \E,I, (Ell, IE,+,+,I, but also on 
the three cross magnitudes (Eh+,I, IEh+lI, JEk+ll. If the last three moduli 
are also large, then the indication Q = 0 is strengthened. Empirically it was 
also found that, when the cross magnitudes have very small values, then 
Q - n (since cos Q = -1, these are called negative quartets). 

Later ~auptrnan[~']  derived the probability distribution of Q, given the 
seven basis and cross magnitudes, and confirmed Schenk's empirical 
findings. He then formulated the neighbourhood principle,[331 the concept 
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of neighbourhoods being very close to that of phasing magnitudes. ~ a t e r [ ~ ~ ]  
he also gave rules for deriving the neighbourhoods of the main s.i. and of 
some S.S. in the most common space groups. 

The representation theory proposed by Giacovazzo[35~361 is a generaliza- 
tion and a systematization of the previous ideas, as it gives precise general 
rules for identifying the phasing magnitudes, allowing, at the same time, a 
completely general use of the space-group symmetry. 

The first representation of a s.i. is formed by the invariant itself plus 
all symmetry equivalent s.i. differing from by a constant angle, which is a 
function only of the symmetry operators. The set of all basis and cross 
magnitudes which appear in the first representation forms the first shell of 
phasing magnitudes (first phasing shell). 

This definition will be clarified through some examples. The importance 
of taking the space-group symmetry into account is first illustrated by the 
case of a special triplet in the space group P2,2,2,: 

if the first reflection has kl even and I ,  odd and restricted phase 0, n ,  the 
second has h2 even and phase 0, n ,  and the third has consequently phase 
f n/2, then T = f n/2,  in contrast with the indication T - 0 given by (5.38) 
when the three normalized amplitudes are large. The symmetry operators in 
P212121 are: R, = I, T, = (0,0,0);  R2 = (7 ,  I ,  1) (only the diagonal elements 
are indicated, all the others being zero), T, = (1,0, 1); R, = (1, i ,  i ) ,  
T3 = (4, 4,O); R, = ( T ,  1, i ) ,  T, = (0, 4, 4); and a triplet equivalent to T may 
be written as 

because 1, is odd and k, even. T and T' ,  forming the first representation of 
the triplet, have the same G but opposite phase and their combination in a 
phase diagram (similar to that of Fig. 5.12) will give a null vector, which 
does not contradict the expected restricted value T = f n / 2 .  The general 
use of the space-group symmetry in estimating triplets has been described 
by ~ i acovazzo , [~ '~  who also showed that for non-primitive cells the l l f i  
factor in (5.39a) should be replaced by l / m P ,  where N, is the number of 
atoms in the primitive cell. 

Let us now consider the example of a quartet such as (5.50). As we have 
seen, Q in general depends on seven magnitudes, and when no special 
symmetry conditions exist, the first representation is formed just by Q and 
the seven magnitudes form the first phasing shell. On the other hand, if, 
besides the identity, there is an other symmetry operator C, = (R,, T,), 
which leaves some special reflections unchanged ( H  = HR,) and if one of the 
cross reflection (e.g. h + k) is of this special type, then the quartet 

is equivalent to Q [Q' - Q = 2n(h + k)T,], but with two new cross terms 
IEhR,+rl and IEkRS+,I. In this case the first representation is formed by Q and 
Q '  and the first phasing shell contains nine magnitudes. Since the larger the 
number of phasing magnitudes the better the estimate of the s.i., a 
significant advantage is obtained by considering also Q'. 
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A numerical example will further clarify the above ideas; let us consider 
the quartet 

Q = q153 + 4)&1 + (PzI2 + Q)ji6 (C~OSS: 504, 365, 643) 

in the space group P2,/c, for which R, = I ,  R, = ( I ,  1, ?), R3 = (I,  ?, I), 
R4 = (1, ?, 1). The first cross reflection is such that (504)R4 = (504), and an 
equivalent quartet may be set up 

with two new cross terms. 
As an example of second representation of a s.i. let us consider the case 

of a triplet T. Its second representation is defined as the set of all special 
quintets of type 

where H is any reciprocal lattice vector for which IEHI is large. Since the 
term added to T is null, then C = T, but the quintet will depend on four 
basis magnitudes JE,I, IEkl, IEh+kl, (EHl and on six cross terms IEh*Hl, 
IEk+nl, IEh+kfHI. If M vectors H are selected (80-100 reflections with 
largest IEHI), then the second representation will be formed by M quintets 
and the second phasing shell will contain 10 x M magnitudes. 

Let us now consider a general n-phase s.s. 

In general (the few exceptions are beyond our scope) it is possible to find a 
phase qH and two symmetry operators Ci and Cj such that 

is a structure invariant; hr  indicates a reflection equivalent to h. Since q1 
differs from @ by a constant term depending only on the symmetry 
operators, the estimate of q, gives at the same time the value of @. The 
collection of all s.i. q , ,  obtained by varying H,  Ci and Cj forms the first 
representation of @ and the first phasing shell will contain all the associated 
basis and cross magnitudes. 

Let us now consider a few examples regarding one-phase s.s., for which 
(5.55) reduces to (5.32). As we have seen, in P?, the S.S. q2, may be 
represented by the triplet (5.34), which alone will form its first repre- 
sentation with the corresponding phasing shell including the two magnitudes 
lEzhl and IEhl. The probability that EZh is positive was derived by Cochran 
and ~ o o l f s o n [ ~ ~ ~  and is given by 

which is greater than 4 when (EhI > 1 and approaches 1 as IEZhJ and lEhl 
increase. 

Similarly in the space group P2, the first representation of the s.s. q2h,0,21 
is given by the set of triplets (5.35) and the probability formula will be a 
function of all the magnitudes in the first phasing shell: IE2h,0,211 and 
{IEh,j,l() with j assuming all possible values of the index k within the set of 
measured reflections. In P2, one-phase s.s. are special reflections with phase 
restricted to 0 or ;rt and the probability formula will be of the tanh type; we 
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then have 

P+(EZh,O,U) = 1 + : tanh :030;312 IE2h,0,21\ C (-l)*(IEhk,I2 - I)) (5.57) ( k 

where the sum is over all values of k. The term (-l)k=exp(nk) 
corresponds to the constant angle nk and is obtained by applying (3.37) to 
express the phase relation between qhkl and qgki in (5.35). When all major 
terms in the sum have k even, then P+(E2h,o,21) > $ and S(2h, 0, 21) = +, 
when they have k odd, then P+(E2h,o,21) < $ and S(2h, 0,21) .= +. 

Formulae (5.56) and (5.57) and those for some other space groups were 
derived long before the concept of representation was introduced, and they 
were known as the C formulae[201. 

The second representation of a S.S. will also be illustrated by means of an 
example. In space group P212121 let us consider the s.s. @ = q 4 O 6 )  for which 
the first representation (5.55) reduces to the set of triplets 

with variable k index. With an extension similar to that used to derive 
(5.53), the second representation is defined as the set of quintets 

with q varying over all reflections with IE,I large. The second phasing shell 
will include IEHI = IE4,,I, a term IEhI = IE2,,I for each triplet (5.58) and, for 
each quintet, lEql and the four cross terms IEH+,I, IEhRfql. 

Once the phasing magnitudes have been identified it becomes possible to 
derive the appropriate probability distribution (5.49). So far formulae have 
been derived for estimating: 

(1) one-phase s.s, by the second representation;[3w11 

(2) two-phase S.S. by the first 

(3) triplets by the second representation (PI0 

(4) quartets by the first r e p r e s e n t a t i ~ n . [ ~ ~ , ~ ~ I  

In most cases, the derived probability distributions for non- 
centrosymmetric structures have the form of a von Mises function as (5.38) 
and for centrosymmetric structures the tanh form of (5.48); the concentra- 
tion parameter G or the tanh argument are now substituted by more 
complex functions of the considered phasing magnitudes, which will not be 
reported. Only their practical use will be illustrated in the following 
sections. 

Fixing the origin and the enantiomorph 
In the previous sections we have seen how it is possible to derive the values 
of s.i. and s.s. from the observed magnitudes. In order to pass from these 
values to those of the individual phases it will be necessary to fix the 
origin, and, in non-centrosymmetric space groups, it will be necessary to 
choose between the two enantiomorphic forms compatible with the ob- 
served amplitudes; in fact, since all the phases change their sign in going 
from one form to the other, the same will apply to s.i. and S.S. For this 
reason all probability formulae, such as (5.38), only define the cosine (i.e. 
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the absolute value) of the s.i. and S.S. In order to obtain all phases referred 
to one form it will be necessary to fix the enantiomorph. The phase 
determination process can then be summarized as shown in the flow- 
diagram of Fig. 5 .l5. 

The choice of the space group with the corresponding set of symmetry 
operators already imposes some restrictions on the points where the origin 
may be localized. Indeed, only the sites with the same point symmetry will 
be suitable and represent the so-called permissible origins. 

We will then have to choose the origin among the permissible ones and 
this may be performed by fixing the value of a limited number of suitable 
phases. In order to show how this is possible, let us first consider a 
one-dimensional structure (Fig. 5.16(a)) formed by three atoms of different 
atomic numbers (2 ,  = 3, Z2 = 2, Z3 = 1 and C 2, = 6). The unitary structure 
factor for this structure, referred to an origin at Xo, will be 

/ Estimate i s .  and s,s!s I 

I Or ig in  (and enan t iomorph)  I 
I d e f i n i t i o n  I 

Fig. 5.15. Flow diagram of the phase 
determination process by direct methods. 

3 

(i/6) Z, sin 2nh(x, - Xo). (5.60) 
j=1 

When the origin is shifted so that Xo varies from zero to the identity period 
a, the trigonometric terms in (5.60) will change and Ah, Bh, and therefore 
Uh, will follow these changes. The modulus JUhl does not depend on the 
position of the origin, and only the phase qh will depend on X,. Figure 
5.16(b) illustrates this variation in the case h = 1: we can see that at Xo = 0, 
q1 = 109", while at Xo = 0.7, ql = 0". A change of enantiomorph is achieved 
by inverting the direction of the x axis; again 1 Uhl will not change, while all 
phases will change their sign ( q +  360 - q).  

Since there is only one value of Xo for which q1 = 0°, then the origin is 
uniquely defined by fixing q, = 0". In Fig. 5.16(c) the variation of q2 with 
X, is also shown: it can be seen that q2 goes to zero at two points, Xo = 0.26 

170 292 374 85 177 299 92 , Xo h.2 Fig. 5.16. (a) One-dimensional structure made of 

2i6 3 b 8 t 4 0  1 3 1  223 3 k 5  it 4658' I U s 0 . 4 4  
three non-equal atoms; (b) values of the phase 
ra. for different origin positions; (c) 

I I - . 8 

(c) corresponding values of the phase p,. 
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and Xo = 0.76, at a distance a12 from each other. Fixing q, = O" does not 
define the origin uniquely, but only restricts its possible position to two 
points; in general, by fixing qh = 0°, the origin is restricted to h possible 
positions. It should finally be observed that at Xo  = 0.7 (position for which 
q1 = 0") q2 = 315", and a change of enantiomorph will give q2 = 45". It can 
then be seen that the enantiomorph can be chosen by restricting the value of 
q, (or in general of another phase qh )  within the interval 0-n (or, as in our 
case, n-2n). 

Let us now generalize to three dimensions the procedure just described to 
fix the origin in one dimension. We will first consider the space group PI, in 
which any point of the unit cell is a permissible origin and therefore no 
semi-invariants which are not at the same time invariants exist. In analogy 
with the one-dimensional case, we can uniquely fix the origin along the x 
axis by fixing the phase of the (100) reflection and thus restricting the 
possible origins to lie on planes parallel to (100). Similarly the origin may be 
fixed in the other two directions by fixing the phases q,,, and q,,. The 
three reflections (loo), (OlO), and (001) define a primitive cell in the 
reciprocal lattice, but in a triclinic lattice there are infinite ways in which a 
primitive cell may be chosen. Indeed, any three non-coplanar vectors 

will define a primitive cell if 

HI . Hz A H3 = V* = a* . b* A c* = volume of the reciprocal cell. 

Using (5.61) and developing the mixed product we can easily obtain 

? Z  The three vectors will then form a primitive cell if 

A =  h2 k2 12 = f l .  (1 1: ::I (5.63) 

By fixing q,, = 0" we will restrict the possible origins to lie on planes 
parallel to the crystallographic planes of indices HI. If we also fix q,,, = 0°, 
the possible origins will be at the same time restricted to lie on planes 
parallel to the planes Hz, i.e. they will lie on the intersection lines between 
the two sets of planes. Finally, by fixing q,, = O" (with H, # mH, + nH2, m, 
n positive or negative integers) the origin will be further restricted to be at 
the intersection points of the above lines with the planes parallel to the H, 
crystallographic planes. The number of such points within the unit cell is 
given by the value of A  and only when the primitivity condition (5.63) is 

Fig. 5.17. Position of the eight distinct inversion obeyed, the three phases will fix the origin in a unique way. 
centres in a PI  unit cell, corresponding to the 
positions of the permissible origins, numbered In the space group PI the permissible origins lie on the eight distinct 
as in  Table 5.5. inversion centres in the unit cell (Fig. 5.17). When the origin is shifted, for 
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Table 5.5. Sign variations for the reflections divided into parity groups, when the origin 
is placed at the different inversion centers in the P1 cell of Fig. 5.17 

Origin Parity 

instance, from (O,O, 0) to (i, 0, O), the phase cpH of the reflection H = (hkl) 
will change by -nh;  this is equivalent to saying that the sign of the 
reflection will change or not depending on whether h is odd (u for ungerade 
in German) or even (g for gerade). Any change of origin among the eight 
permissible ones will have an effect on the sign of a reflection H which will 
depend on the parity of the three components h, k, or 1 (cf. Table 5.5). 
Reflections of type ggg are structure semi-invariants and may not be used to 
distinguish among the possible origins. If we consider a reflection of 
different parity, e.g. ggu, by imposing that its sign must be + , we restrict 
the possible origins to lie on four points (in Table 5.5 these are the origins 1, 
3, 5, 7). In order to further reduce the ambiguity we will have to fix the sign 
of a reflection of different parity (not ggg), e.g. ugg; with reference to Table 
5.5, by fixing the sign to be + , the possible origins are restricted to points 1 
and 3. In order to fix uniquely the origin, we will have to fix the sign of a 
third different reflection. Its parity should not only be different from that of 
the two already chosen, but it must also be different from ugu (for which 
both origins 1 and 3 have a + sign); in fact the combination ggu + ugg + 
ugu = ggg is a s.s. We will, for instance, choose uug. 

The above rules given for PI are also valid for all primitive centrosym- 
metric space groups with symmetry not higher than orthorhombic. 

Similar procedures may be devised for the other space groups. If along a 
given direction the origin is restricted on points separated by 4, then it can 
be fixed by fixing the phase of a reflection with an appropriate parity. When 
the origin can be shifted in a continuous way along an axis, it is possible to 
fix it by using a reflection the phase of which only takes unique values within 
the corresponding unit period. 

Thus, in space group P2, (Fig. 5.18), with the b axis parallel to the 
twofold screw axis, the permissible origins are all the points on the four 21 
axes at (0, y, 0), ($, y, 0), (0, y, i), (4, y, 4). The choice of the twofold screw 
axis corresponds to that of one of the four inversion centers on the 
projection along y ;  the projection reflections h01 have restricted phases 0, 
n .  The phases q,,,, are S.S. and indeed the (gOg) crystallographic planes pass 
through all permissible origins. On the other hand, a phase quo, will have, 
for instance, a zero value if the origin is chosen at (0, y, 0) or (0, y, i), and a 
n value if the origin is on the other two screw axes. By fixing quo, = 0" the 

Fig. 5.18. Projection along the y axis of a P2, cell 
with the twofold screw axis parallel to  b. 
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origins are restricted on the first two 2, axes. A second phase of type qgoU 
(or q~,,,) will assume a zero value at (0, y, 0) and a n value at (0, y, i), and 
by fixing qgoU = 0" the origins are restricted to lie on the first screw axis. In 
order to fix uniquely the origin along the y axis, we will have to fix a phase 
of type q,,,, because the (hl l )  planes intersect the y axis only once within 
the period b. 

Let us finally consider the very common space group P2,2,2,, in which the 
permissible origins are located at the eight points midway between the three 
orthogonal, non-intersecting 21 axes. The origin may be fixed in a simple 
way by using reflections belonging to the three principal zones (Okl), (hol), 
and (hkO). These reflections have phases restricted to two values: 0, n or 
k n / 2  depending on whether the index following the zero, in a cyclic way, is 
even or odd (cf. Chapter 3 ,  pp. 157-8). It is therefore possible to apply 
the rules derived for the space group PI: the origin may be fixed by fixing 
the phases of three zone reflections belonging to three linearly independent 
parity groups (not ggg). 

In the examples considered so far, we have always used three phases to 
fix the origin, and this is true for all primitive space groups up to the 
orthorhombic system. In the centred space groups some of the permissible 
origins are related by translational symmetry and are indistinguishable. For 
this reason the number of phases needed to fix the origin is reduced, as, at 
the same time, is reduced the number of allowed parity groups. Thus, for 
instance, in a C-centred lattice all ugg, ugu, gug, and guu reflections are 
systematically absent and the origin is fixed by fixing the phases or the signs 
of two reflections belonging to the other four parity groups. 

Going from one enantiomorph form to the other will change the sign of 
all individual phases and, as a consequence, the sign of all linear 
combinations of phases. Therefore, the most general way of fixing the 
enantiomorph will be that of restricting a suitable s.i. or S.S. within the 
interval 0-n. 

Let us for instance, consider the space group P21. Suppose that the two 
phases q,, and qZl3 have been assigned zero value to fix the origin; they 
form a triplet invariant with qjil 

By restricting 0 S vji1 G n also 0 G Q, S n and, if its value is sufficiently far 
from the extreme values zero or n, this choice will fix the enantiomorph. 
Unfortunately the most probable value of Q, is zero and in this space group 
it may be difficult to properly fix the enantiomorph by restricting the phase 
of one reflection. This problem does not arise in the space group P2,2,2, as 
will be shown by the following example. Suppose that the origin has been 
fixed using reflections of type: uOg (with phase 0, n ) ,  guO (0, n )  and Ouu 
( f  n/2). Since all linear combinations of phases for which the sum of the 
indices is ggg, are S.S. in this space group, it is possible to set up S.S. with 
value restricted to f n/2;  the choice of one of the two values allows an 
unambiguous choice of the enantiomorph. For instance 

Vuo, + Vu,o = f n / 2  

is a two-phase s.s.; if quo, is fixed to be zero, then the sign of the s.s. will 
depend on the value chosen for q,,,. By choosing q,,, = n / 2  we fix the 
enantiomorph. 
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For a complete and general theoretical treatment of the procedures for 
fixing the origin and the enantiomorph in all space groups, the reader is 
addressed to more specialized  textbook^.['^,^^] 

A very effective way of defining the enantiomorph, and at the same time 
the absolute configuration (see later), is represented by the experimental 
measurement of some triplet phases with value close to f n/2, by multiple 
diffraction experiments (cf. Chapter 3, p. 191). In general the availability of 
a certain number of experimental triplet-phase values, which unfortunately 
are not easy to obtain, would be of great help in solving a structure by direct 
methods. 

Phase determination procedures 
We will first describe some of the steps which are common to all direct 
methods practical procedures. 

Normalization 
By the method described on p. 323-4 and using equation (5.15), the values of 
the normalized structure factors are first calculated. Most computer 
programs will supply a list of reflections sorted in decreasing order of JEl 
and perform a statistical analysis of the normalized amplitudes as shown 
earlier. In some cases a more detailed statistical analysis is carried out in 
order to reveal the presence of pseudo-translational symmetry (cf. Appen- 
dix 5. E) . [4s521 

Some of the most recent programs allow one to introduce the available a 
priori information, such as the existence of pseudo-translational symmetry 
or the coordinates of a previously located fragment;[53,541 examples of the 
use of this information will be given later. 

Setting up phase relationships 
We will focus our attention on triplets, the procedures for setting up other 
s.i. or S.S. being similar. 

Since the most important relations are those estimated with the highest 
reliability, we will only set up triplets relating reflections with large JEl. The 
minimum IEI value is chosen in such a way that the number of reflections 
employed is approximately equal to ten times the number of atoms in the 
asymmetric unit and usually lies between 1.2 and 1.6. 

For each reflection h all pairs of reflections k and R-k with large IEl must 
be found; the set of all relationships obtained in this way is often called the 
CP listing. The triplet search must take into account the reciprocal lattice 
symmetry and the relations between the phases of equivalent reflections. 

If all the indices are reconducted within the same independent portion of 
the reciprocal lattice, each reflection h will have to be combined with all 
vectors f kRi, obtained by varying R, over all rotation matrices of the space 
group not related by an inversion centre; if also the JEl value of reflection 
h f kR, is large then the triplet is retained. In general this third reflection 
will not be in the considered independent portion of reciprocal lattice, and it 
can be expressed as f HR,. The phase relationship will then become 
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Most computer programs store triplet relations in the form 

where n h ,  nk,  n, represent the sequential numbers of the corresponding 
reflections in the sorted list, with the sign indicated by (5.64), A 9  = 
2n(kTi + HT,) and G is either defined by (5.39) or it is the parameter 
obtained by means of the second representation. For centrosymmetric 
structures (5.64) reduces to 

and in (5.65) the signs are of no use, while G represents the tanh argument 
in (5.46) or the corresponding value from the second representation. 

Definition of an optimum starting set of phases 
From (5.64) or (5.66), given the two phases or signs in the right-hand side 
we can derive an estimate of the left-hand side phase, the accuracy of which 
will increase with increasing G. We have seen that the origin may be fixed 
by assigning an arbitrary value to up to three phases. Even if these are 
chosen among the reflections involved in large numbers of triplets, in 
general they will not be sufficient to start up the phase determination 
process. It is necessary to start with a larger number of phases, and the 
problem is not overcome even when a limited number of reliably estimated 
one-phase S.S. (usually fewer than five) is available. Two methods are used 
to define the values of the extra unknown phases necessary to start up the 
process. With the symbolic addition[ss2261 method these phases are assigned 
a symbolic value and all other phases are determined as combinations of 
these symbols; it is more suitable for centrosymmetric structures as we shall 
see later through an example. With the m ~ l t i s o l u t i o n [ ~ ~ ~ ~ ~ ~  method, the 
unknown starting phases are directly assigned permuted numerical values. 
This method is easier to automate and can more readily incorporate some of 
the most recent developments in direct methods; for this reason it is more 
widely used and will be described in more detail. 

Given the phases in the starting set, all other phases are determined one 
after the other in a chain process. The choice of the reflections in the 
starting set is therefore very important and the best starting set will be that 
allowing one to eliminate, as much as possible, the weak links in the chain, 
i.e. the poor determination of some phases by few low-reliability relation- 
ships. An optimal starting set of phases can be defined by means of the 
convergence procedure.[s71 We have seen that a,, as defined by (5.43) is a 
measure of the reliability with which a phase cph may be determined 
combining several phase relations. If the vector representing ah in Fig. 5.12 
is rotated by an angle Ph = ( G h )  in such a way that it falls on the real axis, 
Fig. 5.19 is obtained; it can be seen that 

where Qz, = ( q h )  - qkl - qhpklZ Qhk1. Since at the beginning the phases are 
not known, a,, can not be computed, but it can be estimated a priori by 
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Fig. 5.19. Figure 5.12 rotated by an angle Ph = 
(v,) in order to  bring the vector ah on to the 

I real axis. 

substituting each cos Qj in (5.67) with its expected value, defined as 

1 2" 
(COS 6, )  = Il(Gj) - cos 6, exp (G, cos 9) d6, =--- - Dl(Gj) (5.68) 

Io(G,) 

where Io(x) and Il(x) are modified Bessel functions of zero and first order. 
These functions and their ratio are readily available[581 and Fig. 5.20 
illustrates the trend of (5.68) as a function of G;  it may be seen that the 
ratio tends asymptotically to 1.0 as G increases. 

The estimated value (cu,) is then given by 

and it can be computed for each reflection, before any phase information 
has been obtained, using the G values only. 

The convergence process is a step process in which, at each step, the 
reflection with minimum (a,,) is (temporarily) eliminated, provided it is not 
an accepted one-phase S.S. or another reflection already included in the 
starting set. When a reflection is eliminated, at the same time, all phase 
relationships contributing to it are eliminated and the (a,,) values of the 
other reflections involved in these relations are updated. Since, at each step, 
the reflection which is less related to the remaining reflections is eliminated, 
the process must converge towards the group of reflections which are most 
strongly interrelated and are therefore the most effective in starting the 
phase determination process. 

Fig. 5.20. Trend of the ratio, I , (G ) / I , (G ) ,  of the 
modified Bessel functions of first and zero order, 
as a function of G. 
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Fig. 5.21. Flow diagram of the convergence 
procedure. 

Before eliminating a reflection, the remaining ones are analysed to check 
if it is still possible to fix the origin; if not, the reflection is not removed but 
kept in the starting set as an origin-fixing reflection. If, in the final steps, a 
reflection is eliminated with an (a,,), which, at the elimination moment, is 
reduced to zero (or to a very low value), than this reflection is not (or is 
only poorly) connected with the remaining few reflections; on the other 
hand it is an essential link between these last reflections and those 
previously eliminated. By putting this reflection into the starting set, we 
assign a value to its phase and in this way we insert the missing link (or 
replace the weak link) in the chain process. The convergence process is 
repeated several times, each time adding a new reflection into the starting 
set, until the desired number of starting-set reflections has been reached. 
The flow diagram of Fig. 5.21 illustrates the convergence procedure. The 
procedure may be further improved by assigning to each contributor to the 
summation in (5.69) a weight depending on (ct.,) and (a,-,) . [ 591  

Calculate <a) for all reflections A - 

Find reflect~on, not already in the  
start ina set ,w i th  smallest <d> 

Yes [ /canorigin\ 

N7 
t + be defined without 

\ t h i s  reflect ion?/ 

data, update all c d  s fo r  origin de f in i t ion .  

ref Iections 

A / reflection wi th small~st I 
Yes 
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c d >  at t ime  of elimination 

goes into starting set, t- 



Solution and refinement of crystal structures 1 355 

Figures of merit 
As we shall see, the phase determination process usually leads to more than 
one solution. Given several sets of phases it would be rather time 
consuming to compute and interpret all the corresponding electron density 
maps to see which yield the correct structure. It is instead easier to compute 
some appropriate functions, called figures of merit (fom), which allow an a 
priori estimate of the goodness of each phase set. Several functions have 
been proposed[60] and we will analyse those most commonly used. 

MABS (absolute fom) represents a measure of the internal consistency of 
the employed triplet relationships in estimating the phases. It is defined 
as 

for a correct structure A should be close to the theoretically estimated A, 
and MABS = 1.0. In practice it has been found that often for the correct 
set of phases A > A ,  and MABS values between 0.9 and 1.3 indicate a 
promising phase set. 

R, fom: this is a measure of how much triplets deviate from their 
expected statistical behavior and is defined as 

~ c e  = lo0(z h - ( a h ) ~ ) b e ;  (5.71) 

it should be minimum for the correct set of phases. 

tpo fom: this is defined as 

where the outer summations are over a certain number (50-150) of 
reflections with lowest lEll value. The triplet-generating routine will have to 
set up also the relationships ( q O  triplets) linking each of these 1 reflections 
with pairs of reflections k and 1 - k with large (El, the phases of which have 
been determined. The inner summation at the numerator corresponds to 
Sayre's equation (5.24) (written here in terms of normalized structure 
factors) relative to each reflection 1. Since [Ell = 0, the large terms in the 
summation must tend to cancel each other out and the correct set of phases 
will correspond to a minimum vo value. This function differs from the 
previous foms because it is not a self-consistency figure among the 
determined reflections only, but it establishes the coherence of the obtained 
phases with some weak reflections not used for their determination. 

4.SSlFOM, SS2FOM, NTREST, NQUEST: these four functions have 
the same functional form: 
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with j = 1 for one-phase s.s., j = 2 for two-phase s.s., j = 3 for negative 
triplets, j = 4 for negative quartets respectively, and r running over all 
estimated relationships of each type; as shown in (5.68), D,(lGjrl) is the 
expected value of cosQjr. For instance in the case of negative quartets 
(5.73) becomes 

where the summation is extended to all quartets estimated to be negative 
(G, < 0.0) by means of their first representation and Q, are the values of the 
individual quartets computed with the determined phases. The correct set of 
phases should give rise to the largest number of negative cos Q, values, thus 
maximizing NQUEST. Similarly for the other three functions, a good 
agreement between the estimated (through the Gj values) and the calculated 
cos Qj values, maximizes their values. The four foms based on phase 
relationships, are finally combined to give 

TI + T2 + T3 + T4 
CPHASE = 

B l + B Z + B 3 + B 4 '  

A better understanding of the statistical meaning of the MABS, R, and 
qo foms was recently achieved by a more rigorous probabilistic approach,[60] 
which also allowed the derivation of some new effective functions. At the 
basis of this approach is the use of the probability distributions P(ah) of ah 
defined in (5.43) and P(a;) of a; defined in (5.72), derived by Cascarano et 
a1.[611 On p. 322 we saw how the expectation values in Table 5.1 could be 
obtained from the distributions (5.10) and (5.11). By a similar method, from 
P(ah) and P(a;) it is possible to derive various theoretical moments, which 
may then be compared with the corresponding 'experimental' values 
computed using the different sets of phases; MABS and R, are related to 
moments of P(ah), while qo is related to a moment of P(a;), but the 
expected values of other appropriate functions of a,, and a; may also be 
derived and used as foms. 

Once the different foms have been calculated for each phase set it is 
useful to derive a combined figure of merit, CFOM; its capability of 
discriminating the correct set of phases will in general be higher than that of 
the individual functions. Different ways of combining the individual foms 
have been used; a more objective procedure is described by Cascarano et 
a1.[601 in which each function is introduced with a properly estimated weight 
and the resulting combined fom is normalized to fall between -1.0 and 1.0. 
A correct set of phases should lead to CFOM== 1.0, while CFOM << 1.0 
should indicate a wrong solutioa. 

The electron density map(s) corresponding to the most promising phase 
set(s) (with highest CFOM) will be calculated first. 

Electron density maps (E-maps) 
In the calculation of the electron density maps it is more convenient to use 
as coefficients of the Fourier series, E rather than F. In fact the reflections 
with large (El ,  for which phases are determined, are mainly of two types 
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Table 5.6. AZOS: list of the 50 reflections with largest IEl value 

No. h k I E No. h k I E 

(this may be verified in Table 5.6): some low-angle reflections (small 
indices) with very large IF( and several high-angle (large indices) ones with 
relatively small (F1. The contribution of these small IF( to the electron 
density would be obscured by that of the low-angle reflections, and by using 
the (El  this problem is overcome and the resolution of the maps is 
improved. On the other hand, also for the limited number of terms in the 
Fourier summations, the E-maps often show spurious peaks. 

The programs for the calculation of the electron density maps usually also 
perform an automatic peak search and supply a list of maxima sorted in 
decreasing order of height. This list may then be analysed in terms of 
distances and angles among the peaks; peaks related by a sensible chemical 
geometry may be selected and labelled as a possible molecular fragment. 
The peaks of each fragment, labelled by their sequential numbers, may then 
be represented in projection directly on the line-printer output, where it will 
be easy to reconstruct the image of the molecular fragment by connecting 
the peaks related by possible chemical bonds (cf. Figs. 5.22 and 5.23). 
Recently an automatic link between the E-map output and a structure 
refinement program has been established;[621 to this aim the map inter- 
pretation procedure has been improved and the peaks are assigned an 
atomic symbol. For most structures it then becomes possible to go from the 
diffraction intensities to the refined molecular picture without human 
intervention. 

Unfortunately the phase set with the highest CFOM does not always yield 
an E-map interpretable in terms of a chemically plausible structure. In these 
cases it will be necessary to compute some other E-maps, with the hope that 
another statistically less favoured phase set will yield the correct structure. 
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Besides, in the case of complex structures, the E-maps often only show a 
partial image of the structure, which will then have to be completed. 

We may now illustrate the most common phase determination 
procedures. 

Symbolic addition method 
This method will be illustrated through an example. We will use the same 
AZOS structure employed earlier (p. 323); the 50 reflections with largest 
IEJ value are listed in Table 5.6. When using all sign relations of type (5.47) 
relating these reflections, the convergence procedure defines the following 
starting set of signs: 

No. h k 1 Sign Parity 

Origin-fixing 
reflections 

3 0 1  2 + gug 
8 1 1  2 + uug 

16 10 4 1 + ggu 

Other reflections 1 4 0  2 a 
with symbolic 2 1 6 0  4 b 
sign 12 8 6  4 c 

In the unit cell there are four molecules of row formula C10HllN304S and 
o~o;~" = 0.141. The probability with which a sign is determined is given by 
(5.46) or (5.48) and it can be seen that it is never less than 0.95, the 
minimum tanh argument being 0.141 x ( 2 . 2 1 ) ~  = 1.522. 

The sign expansion procedure may be followed in detail in Table 5.7. At 
step (17) a new symbol d must be introduced in order to define new signs; at 
step (20) we have two different, but not contradictory, symbolic indications 
for the sign of the same reflection and their comparison suggests that 
symbols b and c correspond to the same sign. Similarly at step (22) we have 
the indication that a and b represent opposite signs. Not all the signs of the 
first 50 reflections are determined; 10 signs are not defined with only four 
symbols. At this point it is not convenient to introduce new symbols, but 
rather to use other reflections with smaller [El .  The probability of the 
individual sign relations will decrease, but, with 40 signs already defined, we 
will have several multiple indications. For AZOS 200 reflections with 
(El Z- 1.61 were used. As the sign determination is carried out, several other 
indications about the values of the symbols are obtained: the indications 
b = c and a = -6  are confirmed several times and new indications that 
a = - and b = + (in agreement with a = -b )  are obtained. No indication is 
obtained about symbol d. Out of the 24 = 16 possible sign combinations, 
only two are consistent with the previous indications: - + + + and 
- + + - . Also some contradictory indications are obtained; for instance, 
S(165) has seven contributions: - , ab, ab, ab, - , - , + . The first six 
indications confirm the relation a = -6, while the seventh, with very low 
probability, is clearly contradictory with respect to the others and it will be 
neglected. If the determination of one or more signs turns out to have 
several contradictory indications of similar probability, it should be sup- 
posed that a wrong choice has been made at some previous step and the 
procedure should be reconsidered from the beginning. In our case this did 
not happen and it has been possible to define the signs of all reflections 
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Table 5.7. Step by step illustration of the symbolic addition procedure for the 50 
of Table 5.6 

Step Relation Sign Comments and indications 

a b c  
a b c  

symbol a cancels out 

a b c  
a b c  
a b c  

introduced because fewer 
than half the signs have been 
determined 

a d 
a b c d  
a b c d  

Two different indications 
implying that bc = + or 
b = c; abcd is chosen 

- b c d  
- b c d  
- d 

Confirm b = c 

Indication that ab = - 
or a = - b  
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Table 5.7. (Continued) 

Step Relation Sign Comments and indications 

Fig. 5.22. AZOS: representation and 
interpretation of the E-map computed with the 
best sign set obtained by application of the 
symbolic addition procedure. 

- a b c d  
-a  b c d  
- a b c d  
- a  b c  
-a  b c  
-a  b c  
+ 
+ 
+ 
+ 
+ 
+ 

a 
a  
a 

- b c  
- Again b  = c  confirmed 

- a b c d  
- a b c d  

- b c d  
- b c d  

a b  
a b  

using four symbols. When the most probable values are substituted for the 
symbols, two sets of signs are obtained for AZOS and the corresponding 
electron density maps may be computed. The values of the MABS, R,, and 
I/JO foms indicate that the set with d = - is more reliable and, indeed, the 
corresponding E-map shows the two fragments interpreted in Fig. 5.22 in 
terms of a p-carboxyphenylazoxycyano group (5.22(a)) and a dimethylsul- 
phoxide group (5.22(b)). The structure obtained in this way will then be 
refined with the procedures described in the next paragraph. 

The symbolic addition method, both for centrosymmetric and for 
non-centrosymmetric structures, has also been automated into a number of 
computer programs, the most general of which is SIMP EL;[^^@] but, SO far, 
the most striking results[651 have been obtained by I. and J. Karle using a 
careful manual procedure proposed in 1966 .~ '~~  

Multisolution methods 
The basic idea of these methods is that of assigning approximate numerical 
values to the starting phases, instead of using symbols. It has been found 
empirically that initial errors of 40-50" usually do not spoil structure 
solutions. The starting set, defined by the convergence procedure, will 
include, besides the origin and, when needed, enantiomorph fixing reflec- 
tions, also a limited number of other phases necessary to initiate the phase 
expansion process by means of the tangent formula (5.44). If these are 
general phases with values anywhere between 0 and 2n, we may tentatively 
give them the four quadrant values: f n/4,  f 37~14. One of these will be 
correct within 45". All restricted phases are assigned the values defined by 
the space-group symmetry; e.g. 0, n ,  or f n/2. 
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If ng and ns are the numbers of general and special reflections in the 
starting set, the total number of combinations of numerical values to be 
developed by the tangent formula, will be 

This number grows very rapidly with increasing ng and ns and only by 
limiting the number of starting-set reflections it is possible to maintain the 
computing time within reasonable limits. This limit can be greatly reduced 
by using the so called magic integers (described in the Appendix 5.F), 
which allow a considerable reduction of the number of combinations with a 
minimum increase in the phase error. 

Most multisolution computer programs, such as MULTAN,[~~] are mainly 
based on the use of triplets estimated by Cochran's formula, to which a few 
one-phase s.s. estimated by the El  formulae may be added. With these 
programs it is possible to solve structures with up to 60-70 atoms in the 
asymmetric unit. Although more complex structures have also been solved, 
it may also happen that simpler structures can not be solved. In fact, 
because of the rather crude probabilistic estimate of triplets, it may happen 
that at some stage of the 'chain' phase-expansion process, some triplets with 
an actual value quite far from zero are used; as a result the determined 
phases are completely wrong. In the recent years several new developments 
have been proposed in order to overcome these problems and to make 
direct methods capable of solving increasingly more complex structures. In 
Appendix 5.G the most promising developments of the multisolution 
techniques are outlined, while in the following we will describe, through a 
practical example, the use of the SIR (semi-invariant representation) 
program;[671 this program is based on the multisolution strategy strength- 
ened by the use of all phase relationships for which a reliable estimate may 
be obtained by means of the representation method. 

We will follow in detail the solution of the structure of the antibiotic 
21-acetoxy-11-(R)-rifamicinol (RIFOL),[~~] C39H49N013.CH30H.H20, 
which crystallizes in the space group P2, with Z = 2. Its structural formula is 

Normalized structure factors are computed by the normalization routine 
and 362 reflections with JE1 > 1.723 selected for phase determination; the 
non-centrosymmetric space group is confirmed by the statistical analysis and 
no pseudo-translational symmetry (cf. Appendix 5.E) is detected. 

None of the 17 one-phase s.s. estimated by means of the second 
representation has a sufficiently high tanh argument to be accepted and 
these indications are only used to compute SSlFOM. 326 two-phase s.s. are 
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estimated using their first representation; all of them are used to compute 
SS2FOM, while 129 with J G J  >0.6 are actively used in the phase 
determination procedure. 

Triplet invariants relating the 362 strongest reflections are set up and 
estimated by means of their second representation (PI0 formula).[4s1 The 
concentration parameter of the von Mises distribution is given by 

where G is the Cochran parameter defined by (5.39) and R is a function of 
all the magnitudes in the second phasing shell. R may also be negative and 
for some triplets a negative G' value may be obtained, indicating that their 
expected value is n. The reliability of the negative estimates is in general 
too small for an active use of negative triplets in the phase determination 
process, but a passive use to compute an effective fom proved to be very 
useful. Besides, the capability of the PI0 formula of sampling out most 
triplets with a value far from zero, allows their elimination from the phase 
determination process, which then becomes more stable. For RIFOL 2280 
positive triplets estimated with G'  a 0.6 are actively used, while 141 
negatively estimated triplets are employed to compute the NTREST fom. 
At the same time 1399 I#, triplets relating the 100 weakest reflections with 
the considered 362 strongest reflections are generated, to be used in the 
calculation of the corresponding fom. Finally also 1009 negative quartets are 
estimated by their first representation and the most reliable 500 are used to 
compute NQUEST. 

The convergence procedure is carried out using positive triplets and 
two-phase S.S. When also some one-phase s.s. are accepted, these are 
treated as known phases and directly included in the starting set. Two-phase 
s.s. are treated in the same way as triplets. In fact for each reflection h 
forming a S.S. with k, we have 

where S2 is the value of the S.S. estimated with a reliability depending on 
the concentration parameter G. The contribution of (5.77) to (a,) will be 
given by G .  D,(G). For RIFOL the convergence procedure defines the 
starting set reported in Table 5.8. It may be noticed that the origin is fixed 
following the rules given earlier (p. 349) for the space group P2,. All 
permuted phases are general and are expressed in terms of magic integers, 
giving rise to 24 phase permutations (cf. Appendix 5.F, enantiomorph fixed 
by the magic integer procedure). 

Table 5.8. RIFOL: starting set of phases defined by the convergence procedure 

Type Code h k 

Origin 5 5 0 
15 2 0 
4 6 1 

Permuted 18 6 4 
72 10 4 

149 3 1 
25 1 2 
17 8 4 

Total number of permutations 24 

Phase 
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In the SIR program a weighted tangent formula is used, i.e. 

C Gtw sin ( ~ k ,  + ~7h-k,) + C Gs% sin ( ~ k *  + S2s) 
S 

tan qh = -- - Th (5.78) 
C Gtwcos(qk,+qh-k,)+C G s ~ C O S ( Q ) ~ , + S ~ ~ )  Bh 

S 

where the summations over t extend to all triplets linking qh to two other 
known or previously determined phases, while the sums over s refer to 
two-phase S.S. The weight attributed to each relation is calculated from the 
a = ( T ~  + B')"~ values of the reflections contributing to At the 
beginning the origin-fixing reflections and the restricted permuted phases 
are given a = 100, one-phase S.S. (if any) are assigned their G values, while 
the general phases represented by magic integers are given an a value which 
depends on the root mean square deviation of the representation. Starting 
from the eight reflections in the starting set, the phase extension is carried 
out following the order indicated by the convergence procedure. As we 
have seen, the reflections eliminated at the end are those best related to the 
starting set; the phase determination process should therefore be carried out 
in an order inverse to that of elimination. In Table 5.9 the final part of the 
inverted convergence map (divergence map) of RIFOL is reported and 
with its aid we can follow the phase determination process. 

Reflection 24 is the first to be determined by a single triplet relation 
(written in the form of (5.65)); it will be used to define the following 
reflections with its corresponding a value. The second reflection no. 99 
forms a two-phase S.S. with 24 (written as a triplet but with an asterisk 
instead of the third code number) and is related by a triplet to the starting 
set; each summation in (5.78) will have one term. The remaining reflections 
are then determined by a similar chain process. 

When a sufficiently large number (60-100) of phases has been deter- 
mined, one should proceed to their refinement. It is in fact possible to 
redetermine the initial phases with a greater number of contributors to the 
sums in (5.78); for instance the phase of reflection 24 can now be 
determined using all relations involving 24 and two other reflections among 
the 60-100 determined ones. The tangent refinement process is repeated 
until self-consistency and then the remaining phases are determined and 
refined. At this point different foms are computed. 

Table 5.9. RIFOL: divergence map illustrating the phase determination path starting 
from the set of reflections in Table 5.8 

Code h k I (a )  Contributors 

24 4 1 -17 8.41 4 -15 0 8.94 
99 8 1 -19 11.01 24 * 0 6.00 4 15 0 6.09 
40 2 5 14 9.50 4 17 x 8.10 72 99 x 5.72 

188 4 5 13 13.75 4 72 x 6.35 17 24 x 6.15 
15 40 0 5.78 

31 3 1 -1 7.80 -24 25 x 6.69 -5 99 0 3.71 
13 3 2 -17 10.46 15 25 0 7.29 4 31 x 6.02 

135 7 6 12 8.60 13 72 0 4.88 17 25 0 4.42 
31 188 0 3.92 

7 7 0 -19 6.72 5 15 0 7.26 
44 9 5 -5  11.47 7 40 0 7.26 5 188 0 5.28 
37 3 4 14 10.22 -5 17 0 8.37 -7 72 0 6.40 
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Table 5.10. RIFOL: list of the ten best sets of phases with their relative figures of merit 

Set Figures of merit 

MABS ALCOMB PSCOMB CPHASE CFOM 

1 1.093 0.920 0.925 0.885 0.91 1 
2 1.090 0.843 0.921 0.878 0.885 
3 1.016 0.388 0.683 0.479 0.554 
4 1.056 0.457 0.624 0.440 0.539 
5 1.032 , 0.348 0.601 0.495 0.517 
6 1.052 0.422 0.554 0.431 0.502 
7 1 .051 0.432 0.538 0.435 0.501 
8 1.049 0.401 0.566 0.431 0.500 
9 1 .044 0.383 0.567 0.431 0.496 

10 1.054 0.429 0.533 0.426 0.495 

The complete tangent procedure is repeated for each of the 24 permuta- 
tions of the phases in the starting set. This step may become quite 
demanding of computer time when the number of phase permutations is 
increased. Table 5.10 gives the list of the 10 best sets output by SIR in 

Fig. 5.23. RIFOL: representation and decreasing order of c F ~ M .  ALCOMB and PSCOMB are combinkions of 
interpretation of the E-map computed with the 
first and best set of phases in  Table 5.10; only functions based on a and qo respectively. The first set with the highest 
part of the molecule can be located. 
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CFOM yields the E-map shown in Fig. 5.23, which may be interpreted in 
terms of the RIFOL structure as indicated by the connected circled maxima. 
Not all atoms are found in the map (solvent molecules plus eight atoms are 
missing, two to close the macrocycle and the others in the side chains), but 
the structure can be easily completed by the methods described in the next 
paragraph. The final refined structure is shown in Fig. 5.24. 

Partial structure recycling 
It may happen that in the best E-map only a small molecular fragment can 
be recognized and in this case direct methods can be used to complete the 
structure. The first and simplest procedure was proposed by ~ a r l e [ ~ ~ ]  and is 
known as Karle recycling. With the coordinates of the fragment the / Carbon 0 

corresponding structure factors are computed in modulus IF;( and phase qi, 
using (5.2). The most accurate phases, defined according to the criteria Oxygen 0 

Fig. 5.24. RIFOL: final structure, without solvent 
E l  a p  1G1 and I J % ~  1.5 ( p  = Ern Zrn/C, 2,) molecules; the fragment outlined by the broken 

line can yield the complete molecule when input 
are then used as starting set in a tangent-formula extension and refinement as a partial structure. 

process. p represents the fraction of scattering matter in the fragment and is 
forced within the interval 0.25-0.65. If the fragment is a sufficiently good 
initial model the procedure should yield an E-map showing a larger 
fragment and further recycling should lead to the complete structure. 

Other procedures for completing a partial structure have been proposed 
and among them we recall the DIRDIF procedure,[70] which is based on 
difference structure factors, i.e. structure factors corresponding to the 
unknown part of the structure; with initial phases obtained from the partial 
structure, the difference structure factors are used in a weighted tangent- 
formula procedure. In SIR a new probabilistic meth~d[ '~, '~]  has been 
implemented. The structure factors for the known fragment are calculated 
and appropriate pseudo-normalized structure factors for the known and 
unknown part of the structure are obtained. These are then used in the new 
probabilistic formulae for the estimation of s.i.; on the basis of the 
estimated a s  computed by these formulae, a convergence procedure will 
define the best starting set of phases, which will include both permuted 
phases and phases calculated from the partial structure. Phase expansion 
and refinement is performed by means of a new weighted tangent formula, 
and two specific foms, related to R, and qO,  but computed with the 
pseudo-normalized structure factors, are used to select the correct solution. 
The procedure was also tested on the RIFOL structure; starting from the 
eight-atom fragment (11 per cent of the total number of electrons) 
surrounded by a broken line in Fig. 5.24 the complete structure was 
recovered. 

Completing and refining the structure 

The structural models obtained both by Patterson and direct methods are 
often incomplete (in the sense that not all atoms have been localized) and in 
all cases they only represent a crude first approximation of the real 
structure. 

The method of Fourier recycling was outlined earlier (p. 329) in 
connection with the problem of locating the light atoms when the initial 
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model is formed by one or more heavy atoms. The same method can be 
used to complete a molecular fragment when all atoms have approximately 
the same weight. If 50-60 per cent of the electron density has been located 
with sufficient accuracy it is quite easy to complete the structure. If the 
initial model only contains a smaller percentage of the electron density, the 
method can still be applied but the Fourier coefficients should be corrected 
by appropriate statistical weights, such as those proposed by ~ i m [ ' l , ~ ~ ] ,  
taking into account the different contribution of the known atoms to the 
different structure factors. The derivation of these weights is given in 
Appendix 5.H, where some other procedures for completing a partial model 
will also be described. The Fourier cycles not only allow the location of the 
new atoms but also the improvement of the positions of the model atoms. 
For very small fragments the direct method procedures mentioned at the 
end of the last paragraph are usually easier to apply. 

Difference Fourier method 
Another convenient way of completing and refining a structural model is the 
difference Fourier synthesis method. A Fourier series having as coefficients 
the (Fas  computed using eqn (5.2) 

1 
pc(r) = - F i  exp (-2nih r) 

V h 

will show maxima at the positions of the atoms of the given model, while a 
series with coefficients Fz = IFzI exp (icp,,,,) 

1 
p,,(r) = - Fi exp (-2nih . r) 

V h 

represents the true structure. In order to see how much the initial model 
deviates from the real structure, the difference series 

1 
Ap(r) = p,(r) - pc(r) = ; (F i  - Fi)  exp (-2nih . r) (5.81) 

should be computed. Unfortunately the values of cp,,,, are not known and 
we have to assume cp,,,, = cpi; this approximation, illustrated in the Argand 
diagram of Fig. 5.25, will hold better the better is the initial model. 
Equation (5.81) then becomes 

1 
Ap(r) = (IFgI - IFiI) exp (-2nih . r + icpi). " h 

If in the model an atom is missing, then p,(r) will be zero at the 
corresponding position, while p,(r) will show a maximum. The difference 
synthesis will also show a peak at the same position but it will be almost 

D 
zero at the positions of the model atoms (if these are correct) where 
PO@> = pc(r). 

An important property of the difference syntheses is that they are almost 
unaffected by series truncation errors. Indeed, because of the limited 
number of observations, the Fourier maps computed by means of (5.79) and 
(5.80) will show some ripples around each peak (see Fig. 3.16), the size of 

Fig. 5.25. Mustration of the approximation which inci-eases with increasing peak height. As a consequence a light atom 
C 

%truez vh. close to a heavy atom may be obscured by its ripples. Since the number of 
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terms in the two series (5.79) and (5.80) is the same, the truncation errors 
will also be approximately the same and will cancel out in the difference 
(5.82). 

Let us now see how the different types of errors in the model are reflected 
in a difference synthesis. 

1. Missing atoms. We have already seen that they appear as positive 
maxima, but, because of the approximation made for the phases, their 
height is usually smaller than that corresponding to the atomic number of 
the missing atom. 

The lack of truncation errors allows the correct localization of light atoms 
even when the model contains much heavier atoms. For this reason, 
difference Fourier series, computed when the model has been corrected for 
most other important errors, allow the localization of hydrogen atoms (with 
only one electron they contribute very little to the X-ray diffraction) even in 
the presence of medium size atoms (cf. Fig. 5.28). 

2. Position errors. Their effect is shown in Fig. 5.26. If p, gives the 
correct position of the atom and p, its wrong position in the model, in the 
Ap map the latter will be close to a negative minimum, while the correct 
position will be towards the neighbouring positive maximum along the 
maximum gradient line. It is possible to have a quantitative estimate of the 
shifts to be applied, but in general, when the errors are not too large, it is 
easier to correct the position errors by the least-squares methods (cf. 
Chapter 2, pp. 90-108, and later in this section). 

3. Errors in the thermal parameters. As we have seen in Chapter 3 (p. 
148), because of the thermal motion the electron density function around 
each atomic nucleus becomes wider. In Fig. 5.27(a) the case in which the 
thermal motion has been neglected or underestimated in the model is 
represented. The p, density will therefore have a smaller and wider peak 
with respect to p,, and in the difference synthesis a negative depression, 
surrounded by a positive ring, will appear. If, on the other hand, too high a 
thermal motion has been assumed for one atom of the model, then Ap will 
show a small positive maximum surrounded by a negative ring. 

Finally, the case in which an isotropic thermal motion has been assumed 
in the model (the p, maximum has a spherical distribution) while the real 
motion is anisotropic (the p, maximum has an ellipsoidal distribution), is 
illustrated in Fig. 5.27(b) together with the corresponding difference 
synthesis showing two positive maxima and two negative minima; the line 
joining the two positive lobes represents the direction of largest thermal 
motion. The qualitative indications obtained in this .way allow one to 
recognize those atoms for which it is more important to carry out the 
least-squares refinement varying the six parameters of the anisotropic 
thermal motion (cf. Appendix 3.B). 

Least-squares method 
By far the most widely used method of structure refinement is the 
least-squares method. The theory and the computing procedures have been 
described in Chapter 2, pp. 90-108. Several computer programs have been 
implemented to carry out the crystallographic least-squares refinement; 
usually they are integrated within complete crystallographic packages such 

Fig. 5.26. Position error of a model atom (top) 
and corresponding difference synthesis 
(bottom). 

Fig. 5.27. Thermal parameter errors and their 
effect on the difference syntheses; for the atom 
of the model it is assumed: (a) too small an 
isotropic motion; (b) an isotropic motion when 
an anisotropic model should be assumed. 
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Fig. 5.28. AZOP: structural formula and 
projection on the mean plane of the molecule of 
the difference map computed when R = 0.078 
(the scheme of the molecule is added to the map 
for reference). 

as SHELX,['~] XTAL, [~~]  N R C V A X , ~ ~ ~ ]  CRYSTALS[~'] and those commer- 
cially available together with most single-crystal diffractometers. Here we 
will illustrate the practical application to the refinement of the fairly small 
structure of 2-a~oxycyanopyridine[~~] (AZOP, C6H4N40, space group PI, 
Z = 2). The structure was solved using the SIR program;[67] from the best 
E-map the coordinates of all the 11 non-hydrogen atoms of the molecule 
(cf. Fig. 5.28) were obtained. The structure factors computed with this 
model, assuming an isotropic temperature factor equal for all atoms 
( U  = 0.05 A'), yield a residual R = 0.34, a sufficiently low value to indicate 
the correctness of the model. As we have seen in Chapter 2 (p. 94) the 
refinement must be repeated in several cycles until convergence. For AZOP 
the refinement was performed using 1176 observed reflections by means of 
the system of programs SHELX;['O1 the first four cycles were carried out 
varying the overall scale factor and the three coordinates plus the isotropic 
thermal parameter of each atom; the total number of varied parameters is 
1 + 4 x 11 = 45 and the R factor reduces to 0.148. In the next step the 
refinement is carried out varying for each atom the six components of the 
anisotropic thermal parameter as described on pp. 186-8. Four anisotropic 
refinement cycles were performed with 1 + 9 x 11 = 100 varied parameters 
and at convergence R = 0.078. 

At this point we may assume that the model formed by the heavier atoms 
is sufficiently well refined and we can compute a difference Fourier synthesis 
in order to localize the hydrogen atoms. Figure 5.28 shows a projection of 
the map onto the mean plane of the AZOP molecule; the known atomic 
positions are also shown linked by their chemical bonds, and the hydrogen 
atoms are clearly seen as maxima in the map. The coordinates of the four 
hydrogen atoms derived from the map are then introduced in the refinement 
process with appropriate isotropic temperature factors, but this usually can 
not be done in a straightforward way. In fact the contribution of the 
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hydrogen atoms to the observed amplitudes is very small and rapidly 
decreasing with increasing sin 8/12; the accuracy of their localization is 
therefore quite low and often, because of the errors in the experimental 
data, the refinement shifts them into stereochemically incompatible posi- 
tions (e.g. bond distances which are too short or too long) with abnormal 
temperature factors (e.g. values which are too high and tend to cancel out 
the H atoms or too small for H linked to atom with significant thermal 
motion). As we have seen in Chapter 2 (p. 106) it is possible to impose 
some geometrical restraints during the least-squares refinement; in our 
example we have imposed that the C-H distances should remain within 
0.98f 0.02A. In addition a common isotropic thermal parameter was 
assumed for all four H atoms, which was varied as a single parameter. Four 
cycles of refinement varying 100 + 3 x 4 + 1 = 113 parameters converged to 
R = 0.055. A frequently used alternative procedure for locating the H atoms 
consists in calculating their positions on the basis of the most common 
stereochemical rules. It is recommended that these positions are checked 
against those obtained from a difference Fourier synthesis. Their refinement 
may then be carried out as described above. 

Up to this step all observations were given the same unitary weight, but 
following the indications of Chapter 2 (p. 101-2), in order to get meaningful 
values of the estimated standard deviations of the varied parameters, the 
observational equations should be properly weighted. In Chapter 2 we also 
saw how it is possible to express the weights in terms of a polynomial in IFo[. 
Several weighting functions have been proposed and the first scheme 
suggested by ~ u g h e s [ ~ ~ ]  was 

w = constant = 1/16Fk,, for 1 Fol G 4Fmin 

w = 1 6 ~ i ~ ~ / l ~ ~ 1 ~  for IFo[ > 4Fmi, 

where Fmin is close to the minimum observed amplitude. Later 
Cruick~hank[~*I proposed the scheme 

with a, = 2Fmin and a, = 2/Fm,, as initial guesses. 
For AZOP the intensities were measured with an automatic 

diffractometer using a scintillation counter; for each IFol the corresponding 
estimated standard deviation a(Fo) due to counting errors may be derived 
(cf. Chapter 4, pp. 271 and 280). Since this is not the only error affecting 
our observations, it is necessary to modify the weights introducing an 
empirical dependence on IFoI itself. The weighting function available in the 
SHELX program is 

1 

where q is an adjustable parameter chosen in such a way that the (w AF,) 
values remain constant when the reflections are grouped in different ways 
(e.g. in lFol or sin 6/12 intervals). The last four cycles with the weighting 
function (5.84) afforded a final R value of 0.052 with q = 0.0007. The 
weighted R factor 

C wiA4 
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and the goodness-of-fit measure (also called standard deviation of an 
observation of unit weight) 

GofF = 
n - m  

are also computed. Equation (5.86) is nothing but the quantity defined in 
(2.58) and GofF should be close to unity if the weights of the observations 
have been correctly assessed, the errors in the model are negligible in 
comparison with the errors in the data and there are no significant 
systematic errors. For AZOP R, = 0.054 and Go= = 1.504. 

In the final stages of the refinement one should check whether some 
intense low-angle reflections are affected by secondary extinction (cf. p. 
97) and have JF,J systematically smaller than IF,(; some least-squares 
programs allow an empirical correction of this effect but it is common 
practice to simply discard these few reflections from the refinement. In the 
case of AZOP three such reflections were eliminated. 

It is also important to check for possible correlations between parameters 
during the least-squares refinement. In Chapter 2 we saw that the 
least-squares procedure gives the variance-covariance matrix of the derived 
parameters (eqn (2.56)). It is therefore straightforward to calculate, for 
each term in the matrix, the correlation coefficient 

Pij = 
COV (PiPj) 

~ ' ( ~ i ) ~ ~ ( ~ j >  

which is close to zero if the correlation is negligible and close to 1 for large 
correlation. Most programs compute the correlation matrix and output the 
off-diagonal elements which are greater than 0.5. No such correlation was 
found for AZOP. 

How low should the final R factor be in order to have good confidence in 
the quality of the refined model? The answer to this question is not 
straightforward, because it depends on the type and complexity of the 
structure and on the quality of the experimental data. Nevertheless, for 
small or medium size structures giving good quality crystals (as it is usually 
the case for most organic or organometallic compounds), with intensities 
collected at room temperature on a diffractometer, we should expect R 
values in the range 0.03-0.07. For very accurate low-temperature measure- 
ments these values may be further reduced. The quality of the model should 
then also be assessed by looking at the standard deviations of the atomic 
parameters or at those of the derived geometrical quantities, such as bond 
distances, which should be less than 0.006A for non-hydrogen atoms. 
Usually as the complexity of the structure increases the quality af the 
crystals and of the diffraction data decreases, and, at convergence the R 
value may be in the range 0.08-0.15 for large molecules and up to 0.25-0.30 
for macromolecules solved at low or medium resolution. In these cases the 
final model may still contain some fairly large errors, which may often be 
corrected by applying stereochemical or energy constraints (cf. Chapter 8, 
p. 568). 

The final R value will also depend on the selection of reflections used 
during the refinement. It is in fact common practice to discard the very 
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weak reflections, the intensities, I, of which are measured by diffractometer 
with large estimated standard deviations, ~ ( 1 ) ;  reflections with I s  na(Z), 
usually with 2 G n G 3 (for AZOP n = 2 was used to select the 'observed' 

are omitted. Of course the higher is n the lower will be R, but 
too high a cut-off value will considerably reduce the number of observations 
and the least-squares refinement will yield higher standard deviations (cf. 
Chapter 2, pp. 102-4). There is no theoretical justification for discarding 
weak reflections, and a more rigorous procedure requires the use of all data 
with proper weights["] and a prior statistical treatment of weak reflections 
to account also for negative measurements.[80] On the other hand, in most 
cases, only for very accurate structural analyses would the latter procedure 
reveal significant changes in the final model. When the choice between a 
centrosymmetric and a non-centrosymmetric space group is ambiguous or 
when the structure shows pseudotranslational symmetry, the inclusion of 
weak reflections becomes essential.[811 

In following the convergence of our refinement we have mainly used the 
R factor defined in (5.3); other agreement indices have been proposed, 
some of which are statistically more appropriate to assess the significance of 
small changes in the final refinement stages. Among them we recall the 
weighted residual proposed by ~ a m i l t o n [ ~ ~ ~  

already considered in Chapter 2 (p. 103), where it was shown that the ratio 
of the residuals R;(l)lR&(2) obtained from two refinements of different 
models may be used for testing the significance of the difference between 
the two models. For instance this test may be used for determining the 
absolute configuration of optically active molecules from the effect of 
anomalous dispersion,[831 although, as pointed out by ~ o g e r s , @ ~ I  some 
caution is necessary. 

Although the R index is the most widely used criterion to assess the 
goodness of a structural model, its indications should be regarded with some 
caution. As an example of the weakness of the R index, let US consider the 
case of a structure containing one heavy atom, such as Pt, Ir, Os, or Cd, 
and a certain number of lighter atoms (C, N, 0 ) .  Since the I$ value is less 
sensitive to the position of the light atoms, a model with the heavy atom 
correctly placed and the light atoms quite inaccurately localized will give a 
lower R value than a model with a small error in the position of the heavy 
atom and an almost correct position of the light atoms. Nevertheless the 
second model, with a smaller average position error and a uniform 
distribution of errors over all atoms, is certainly a better one. 

When the model is an incomplete representation of the molecule, R 
becomes a rather weak guide, as it measures the agreement between 
quantities which depend on largely different numbers of parameters (IF:] 
depends on all atomic parameters, while IFiI only depends on the limited 
number of parameters defining the incomplete model). The only valid check 
of the indication given by the R value is the convergence of the svbsequent 
Process of completing and refining the model. 

As mentioned in the introduction of this chapter, the refinement of a 
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structural model will not converge if the model is affected by large errors. 
This is a direct consequence of the non-linear nature of the problem, which, 
as observed in Chapter 2 (p. 93), implies the presence of several local 
minima in the function to be minimized. Two types of errors, which occur 
quite often, are particularly disturbing. 

1. Incorrectly positioned molecule. It may happen that the structural 
model obtained by direct or Patterson methods is constituted by a correctly 
oriented molecule, but its position with respect to the symmetry elements is 
incorrect. In most cases the entire molecule is shifted by a vector 
corresponding to a large Patterson peak due to several superposing 
interatomic vectors. An example is given by the AZOP structure; the initial 
attempts at solving the structure by direct methods gave correctly oriented 
molecules, shifted from the correct position and their refinement would not 
converge to an R value lower than 0.25. The correct solution was only 
obtained after estimating the triplet invariants by their second repre- 
sentation. An alternative way, which is often successful when applied to 
structures belonging to the space group PI ,  would be to try to solve the 
structure in the lower symmetry group PI .  The solution will give two 
molecules related by an inversion centre in a general position; this can be 
located by inspection and then, after translating one of the two molecules in 
such a way that it is referred to the inversion centre at the origin (i.e, the 
general coordinates of the inversion centre are subtracted from all atomic 
coordinates), the structure can be refined in PI. When these methods fail 
one can try to find the correct position by the Patterson method described in 
Appendix 5. B . 

2. Wrong space group. As explained in Chapter 3 (p. 161), the deter- 
mination of the space group from the diffraction data is not unique, and a 
wrong choice is more frequent than one might think. An interesting analysis 
of such errors is given by Marsh and ~ e r b s t e i n [ ~ ~ ~ ~ ~ ]  who noted that a 
relatively large number of structures has been reported with space group of 
unnecessarily low symmetry. Two types of structures can be considered: (i) 
those for which the reported space group has a lower Laue symmetry than 
that of the actual structure; and (ii) those for which the reported space 
group lacks a centre of symmetry, which is instead present. For the first type 
the correct space group may often be found using geometrical 
 consideration^[^^^^^^ such as those implemented in the computer programs 
NEWLAT['~] or LEPAGE.[~'] For the second type, the refinement by 
least-squares should in theory yield a singular matrix (cf. Chapter 2, p. 100), 
as half of the refined parameters have a linear relation (the overlooked 
inversion operation) with the other half; in practice this relation may not be 
exact, but in any case the solution of the normal equations will be very 
unstable with large errors in the atomic parameters and large values of their 
estimated standard deviations. The most common errors occur for the 
following space groups: P1 instead of PI ,  PC instead of P2,/c, C2 or Cm 
instead of C2/m, Cc instead of C2/c, Pna2, instead of Pnam, Cmc2, instead 
of Cmcm (several examples are given by Marsh and ~ e r b s t e i n [ ' ~ ~ ' ~ ~ ) .  They 
may be recognized because they usually lead to abnormal values of some 
bond distances and angles or of the thermal parameters, which are adjusted 
when the refinement is carried out in the correct space group. 
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A critical view (possibly a bit too pessimistic) of the accuracy of the 
reported structure determinations has been presented by  ones[^'] and the 
reading of his paper is highly recommended. 

Two important effects may cause a lack of convergence in the refinement 
process: twinning and disorder. As we saw on p. 83-7, the diffraction 
intensities of a twinned crystal must be carefully analysed in order to 
separate the contributions from the different individuals forming the twin. 
This will be more difficult when all reflections from the two individuals 
superpose exactly (merohedral twins, cf. p. 85). Often merohedral twinning 
is not recognized and then in most cases the structure fails to be solved; 
even when a solution is found, it is impossible to refine the model to an 
acceptable R value because of the systematic errors on the observed 
amplitudes. 

Real crystals deviate from the ideal picture of a periodical perfect 
repetition of a unit cell. We saw on p. 148 that, because of the thermal 
motion, atoms oscillate around an equilibrium position and we may say that 
they are affected by a small dynamic disorder. But larger movements are 
sometimes possible in crystals, giving rise to a real dynamic disorder. 
Diffraction experiments will just show a time-averaged situation and if the 
movement is continuous the electron density will be smeared out. On the 
other hand if the movement is stepwise between two or more energy 
minima, the total electron density will be divided between the positions of 
the minima. An example of such dynamic disorder in the cis form of the 
complex [ ( q 5 C 5 ~ 5 ) 2 ~ e 2 ( C 0 ) 2 ( ~ 2 - C 0 ) 2 ]  has been recently described;[921 the 
two independent cyclopentadienyl rings show different thermal motions, 
which may be interpreted in terms of different rates of stepwise rotation 
around their fivefold axes. This hypothesis was confirmed by a recent 
solid-state NMR 

Another type of disorder may occur in crystals; it is referred to as static 
disorder and in this case the average contents of the unit cell is obtained by 
averaging over the space, i.e. over the different unit cells. An important 
example of this type of disorder, which is common in minerals and alloys, is 
the substitutional disorder where the same site is occupied by different 
types of atoms in different cells. 

The structure factors depend only on the time- and space-averaged 
contents of the unit cell and the result of a diffraction analysis is this 
averaged contents. No distinction can be made between dynamic and static 
disorder and the case of a molecular fragment oscillating between two 
positions in all unit cells is indistinguishable from that in which half of the 
cells have the fragment in one position and half in the other. 

If a disordered structure is refined without taking into account the 
disorder, then only an average structure is obtained with abnormal thermal 
motion and the refinement will not converge. In the case of substitutional 
disorder the different atomic species are introduced with the same coordin- 
ates but with different occupation factors (cf. p. 87), depending on the 
fraction of each species. When the disorder is between, say, two positions in 
the cell, then the same atomic species are located in both possible positions 
with an occupation factor depending on the 'population' of each position 
(the term population will be associated with the fraction of time spent in the 
given position in the case of dynamic disorder and with the fraction of cells 
having atoms in that position in the case of static disorder); if this is not 
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known one may initially assume an occupation factor of 0.5 and than refine 
the factor to convergence (the occupation factor is highly correlated to the 
temperature factor and some caution should be used in the least-squares 
refinement). Only when disorder is treated in a proper way will the 
refinement converge to an acceptably low R value. 

Absolute configuration 
In Chapter 3 (p. 168) it was shown that, when the anomalous dispersion 
effect is present, Friedel's law is no longer satisfied. We shall see in Chapter 
7 (p. 489) that for compounds containing asymmetric carbon atoms, isomers 
of opposite chirality (enantiomers) are possible and that their solutions 
rotate the plane of polarized light in opposite directions. By simple chemical 
methods it is not possible to decide which of the two configurations 
corresponds to the isomer rotating the plane of the light to the right 
(( + )-rotamer). Fisher proposed to assume as reference that ( + )- 
glyceraldehyde corresponds to the configuration 5a shown in the table on p. 
487 and to establish the configuration of all other chiral molecules in a 
relative way with respect to this convention; thus (+)-tartaric acid 
corresponds to 7a. Since this is an arbitrary assumption there was only a 50 
per cent chance of it being correct. Fortunately the first determination of 
the absolute configuration of NaRb-(+)-tartrate[941 by the method de- 
scribed below (using the anomalous scattering of the Zr K, radiation by 
Rb), proved that the assumption was correct. Since then the anomalous 
dispersion method has been used to determine the absolute configuration of 
a large number of molecules and it will be shown in Chapter 8 (p. 545) that 
the method is also applied in macromolecular crystallography. 

The two optical isomers differ in hand and may be related either by an 
inversion or by a reflection operation (inverse congruence). t 

In a normal X-ray experiment, with no anomalous dispersion, because of 
Friedel's law, the two enantiomers are indistinguishable, as they give rise to 
the same diffraction pattern. When one or more anomalous scatterers are 
present, then both IFhI and IF-,I should be measured and compared with the 
computed values. Since the Bijvoet["] differences 1 ~ ~ 1 ~ -  IF-,I2 are rather 
small, and anomalous dispersion is only large for heavier atoms near their 
absorption edges, it is essential to apply a proper absorption correction to 
the diffraction data. 

In order to illustrate how the absolute configuration may be determined it 
is instructive to consider the procedure originally used by Bijvoet, Peerder- 
man, and van ~ o m r n e l , ~ ~ ~ ~  which gives reliable results only when the 
anomalous dispersion effect is sufficiently large and for this reason it is no 
longer used. The ratios IF", /IF?,,\ and IF;J/JF?,1 are tabulated for a limited 
number of reflections with large Bijvoet differences; a one-by-one com- 
parison of the two ratios indicates that the wrong configuration has been 
chosen if, when the first ratio is greater than 1, the second is less than 1 and 

i We should note that the term 'absolute configuration' is not always correct in describing 
crystal structures, as it does not apply to the case of non-centrosymmetric but achiral space 
groups (polar groups with reflection symmetry operations, such as Pna2,) or  to that of achiral 
molecules (without asymmetric centres) crystallizing in non-centrosymmetric space roups, 
such as quar tz  The term 'absolute structure' has been recently proposed and discussed$'~" 
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vice versa. If this is the case, then the correct enantiomer is obtained by 
&anging the sign of all atomic coordinates. 

When the anomalous dispersion effect is small all the reflections should be 
used and efficient methods have been proposed by and 

in the latter an absolute-structure or chirality parameter x is 
refined in a least-squares process (cf. p. 97) in which the structure factor is 
written as 

IF(h, x)I2 = (1 - x) IFhI2 + x IF-,I2 (5.89) 

where x is close to zero when the model and the crystal are in the same 
chirality, and approaches 1 if they are inverted one with respect to another. 

Appendices 

5.A Structure factor probability distributions 
We will use the central limit theorem stating that, given N independent 
random variables x, ( j  = 1, N), each with mean value (xi) and variance (ui2, 

N 

their sum X = C xj has a mean value equal to the sum of the individual 
i = l  

mean values and a variance equal to the sum of the variances, provided that 
N is sufficiently large, i.e. 

N N 

(x) = x (xi) and a2 = x 4. (5.A.1) 
j=1 j=1 

Whatever the distributions of the variables xj are (they may be all 
different), the sum X will have a normal probability distribution 

For a centrosymmetric structure the structure factor may be written as 

where the sum is extended to the independent atoms only so that Fh can be 
considered as the sum of N/2 independent random variables xj = 
2fi cos 2nh q with mean value 

(xi) = 24 (cos 2nh q ) .  (5.A.4) 

Assuming a random distribution of the atomic coordinates, all q values 
will be equally probable and (cos 2nh q )  = 0; hence 

The variance of xj is defined as 

a; = (x;) - (xj)2. 
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Because of (5.A.5) the second term is zero and 

cy7 = 4f7(cos22xh . I;.) = 2f7 (5.A.7) 

given that, for a randomly variable angle 8, (cos28) = 4. 
Because of the central limit theorem, the mean value of Fh will be 

and its variance 

Finally the distribution function of F is given by 

Pi(F) = -L VzZ exp (- F2/2X). 

F has the same probability of being positive or negative and the probability 
Pi(lF() that its modulus has a given value is given by Pi(l FI) = 2Pi(F); 
substitution of (5.A.10) gives eqn (5.4). 

The approximate character of (5.4) is clearly indicated by the observation 
N 

that the maximum value of IF1 is C f ,  while Pi(lFI) has a Gaussian shape 
and goes to zero only at k ~ .  1 = 1  

For a non-centrosymmetric structure Fh = A h  + iBh and, in analogy with 
the derivation of (5.A.8) to (5.A.10), we have 

( A )  = 0, 0; = 4X ( B )  = 0, 02, = 4X (5.A.11) 

and 

1 1 
P(A) = - exp ( -A~/x) ,  P(B) = -exp (- B2/Z). (5.A.12) m m 

The joint probability that A lies between A and A + dA and at the same 
time B lies between B and B + d B  is given by the product of the two 
distributions (5.A. 12) 

1 
P(A, B) dA dB = P(A)P(B) dA dB = - exp ( - ( A ~  + B2)/z) dA dB. 

Jcx 
(5. A. 13) 

Equation (5.A.13) represents the probability that the structure factor F lies 
within a region of the complex plane of area dS = dA dB. If the structure 
factor is expressed in polar coordinates (i.e. in modulus and phase), then 
dS = IF1 dlFJ dg, and 

The distribution of the amplitude IF1 alone is obtained by integrating 
(5.A.14) over g, and thus (5.5) is immediately derived. From (5.A.11) we 
can see that also for non-centrosymmetric structures Z = ((FI2) .  In deriving 
the value of (1~1') we did not consider the effects due to the presence of 
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Fig. 5.A.1. Space group Pm: in the projection on 
the plane rn the two related molecules 

I " 
superpose. 

other symmetry elements besides the inversion centre. Let us, for instance, 
consider the effects due to the presence of a mirror plane, by considering 
the space group Pm (m perpendicular to the b axis). In Fig. 5.A.1 we can 
see that on the projection along the b axis, all atoms related by the m plane 
are superimposed; the projection of the electron density on the ac plane will 
only contain half of the peaks, each with double weight. The Fourier 
coefficients FhOI relative to this projection will have a distribution cor- 
responding to a structure of N / 2  atoms with scattering power 26 and then 

The mean intensity of the h01 reflections will be twice that of the general 
reflections hkl. In order to take into account the symmetry element effects, 
(5.A.9) is generalized to 

where E will be equal to 1 for the general reflections and greater than 1 for 
certain classes of reflections which are influenced by the presence of 
symmetry elements; thus in Pm E = 2 for the h01 reflections. The values of E 

and the relative reflection classes for the different symmetry elements are 
tabulated in the International Tables.[991 

We note that the calculation of the ratio of the average observed intensity 
for specific classes of reflections over that of the general reflections, can be 
used as an indicator of the presence of some symmetry elements. For 
instance we can distinguish between the space groups Pm and P2 by 
computing the ratio ( I FhOl1') / ( I  ~ ~ ~ ~ 1 ~ ) ,  which will be close to 2 for Pm and 
close to 1 for P2. 

5.B. Patterson vector methods 
We will consider here the so-called vector methods[1001 which allow a 
systematic use of the information contained in the Patterson function also 
when no heavy atoms are present. 

The Patterson function can be considered as formed by the superposition 
of N images of the crystal structure displaced one with respect to the other 
by the amount required to bring to the origin each atom in the unit cell. 
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Each image represents the ends of all the vectors from the atom at the 
origin to all the others. Figure 5.B.l(b) illustrates how the Patterson map oj 
Fig. 5.4(c) can be interpreted in terms of five displaced images of the 
five-atom structure of Fig. 5.4(a), repeated in Fig. 5.B.l(a). It can be easilj 
seen that the same map can also be interpreted in terms of five displaced 
images of the enantiomeric structure. 

It is in theory rather simple[1011 to extract one image of the structure from 
the overlapping set, but, as we shall see, the proposed methods may be 
difficult to apply in practice; these are the so-called superposition methods. 

Let us first consider the vector superposition in which one Patterson mar 
is superposed on an other in such a way that the origin of the seconc 
coincides with a given vector of the first; the two maps are thus separated b) 
an interatomic vector. The set of coincident peaks will reveal one or more 

Fig. 5.8.1. (a) Four unit cells of the five-atom 
structure of Fig. 5.4(a); (b) four cells of the 
Patterson map in which the peaks indicated by 
r e f e r  to the central origin and those indicated 
by 0 to  the other origins; the peaks referred t o  
the central origin are interpreted as the 
superposition of five images and the peak 
numbers refer to the atoms linked by the 
corresponding vector. 
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Fig. 5.8.2. Patterson superpositions: are the 
Patterson peaks as in Fig. 5.8.1; O are the 
coinciding peaks when the origin of the identical 
map of Fig. 5.8.1 is superposed on peak 12 of 

0 the present map, indicated by the first arrow @\, (two enantiomorphic images of the molecule are 
\ shown); +are the coinciding peaks after a 

0 \ second superposition on peak 13, indicated by 
the second arrow (only one image is shown). 
The reader is advised to reproduce on 
transparent sheets three copies of Fig. 5.8.1 and 
then perform the above superpositions. 

images of the structure. In particular, if the superposition is on a single 
peak, the structure plus its inverse are obtained for a non-centrosymmetric 
structure (Fig. 5.B.2); for a centrosymmetric structure only one image is 
obtained. If the superposition is on a multiple peak the number of images 
obtained is multiplied by the multiplicity of the peak (Fig. 5.B.4(c)). When 
more than one image is revealed, iteration of the superposition process on 
different peaks will eventually yield a single image. This is illustrated in Fig. 
5.B.2, where superposition of the double image on a new peak reveals one 
image only. 

The basic principle of the method may be understood by considering that, 
if the structure contains atoms 1 ,2 ,3 ,  . . . , N in the unit cell, the Patterson 
map P will be the superposition of the images I(l), I(2), I(3), . . . , I(N) 
obtained by placing atoms 1 ,2 ,3 ,  . . . , N in turn at the origin, i.e. 

After translation by a vector 1-2 the new function will be 

where the different images are obtained by placing atoms 1 ,2 ,3 ,  . . . , N in 
turn, not at the origin, but at the end of the vector 1-2. In general I1(n) will 
not coincide with any image I(1), I(2), I(3), . . . , I(N) unless n = 1 or 2. In 
fact, because of the choice of the translation 1-2, 11(1) = 1(2) and 
-Ir(2) = -I(l) (-I(n) is the enantiomer of I(n)) as illustrated in Fig. 5.B.3; 
the two images left in Fig. 5.B.2 after the first superposition are indeed 
-I(l) and I(2). 

Unfortunately, this simple method is only applicable in the ideal case of a 
Patterson function corresponding to a point atom structure. In practice we 
have a continuous Patterson function in which the peaks of finite width 
overlap; for reasonably sized molecules with no heavy atoms, also in a 
sharpened map, only the peaks with high multiplicity appear, while single 
peaks are not resolved from the background. Thus superposition on any 
recognizable peak will give multiple images and several superpositions will 
be necessary to reveal a single image of the structure. A further problem 
arising with vector superpositions is that the obtained image is not referred 
to the true origin of the cell as it is apparent from Fig. 5.B.2; the correct 
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Fig. 5.8.3. (a) Image l(1) and its enantiomorph 
-1(1) with their atom 1 at the origin; (b) image 
l(2) and its enantiomorph -1(2) with their atom 2 
at the origin; (c) image - I ' ( l )  with its atom 1 on 
peak 12 (Fig. 5.B.l(b)), DIUS the imaae ~'(i) with 10~ation of the structure with respect to the symmetry elements can be 
its atom 1 i n  peak 21 (enantiomorph); (d) image obtained by the described later. 
l'(2) with its atom 2 on peak 12, plus the image 

with its atom on peak 21 (enantiomorph), Despite these problems, superposition methods can still be applied in 
The shadowed images -1U) in (a) and 1(2) in (b) practice, especially when some structural information is available. This can 
are found in the superposition on peak 12 of Fig. 
5.8.2; they are identical to -11(2) in (d) and l'(1) be of three types: 
in (c) respectively. ( 1 )  the stereochemistry of one or more rigid molecular fragments is known, 

but not their orientation and position; 

(2) the orientation is also known, but not the position; 

(3) both orientation and position are known. 

Information of the first type is often available from known bond lengths and 
angles or from the Cambridge Structural ~atabase,[ ' '~] and we shall see how 
it can be exploited. 

In order to carry out any superposition process it is necessary to evaluate 
the degree of coincidence between the peaks of the superposing maps. This 
is done by means of the so-called image-seeking functions;[100] three such 
functions have been proposed: 

1. The product function 

( r )  = P ( r )  X P ( r  - u )  (5 .B .1 )  
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which takes very high values when coincidences occur, but is subject to 
considerable background noise and is very sensitive to small errors in the 
value of the vector u used for the superposition. 

2. The sum function 

E (r) = P(r) + P(r  - u) (5.B.2) 

which is less sensitive to the errors on u, but can often produce spurious 
peaks and in general a high background noise. 

3. The minimum function 

M(r) = min {P(r), P(r  - u)} (5.B.3) 

which is also sensitive to the errors on u but has the advantage of a low 
background noise. 

Let us first consider how the superposition method can be conveniently 
applied when the location of one or more atoms (both independent and 
related by symmetry) in the cell is known. In this case Patterson maps with 
their origin at the sites of the known atoms are superposed. An example of 
this atomic superposition is shown in Fig. 5.B.4(d) in which two maps, with 
their origin at the position of atoms 1 and 1' (related by an inversion centre) 
respectively, are superposed. Images 1(1) and I(1') coincide and reveal the 
structure properly placed with respect to the origin. Atomic superposition 
can be used when the crystal contains a heavy atom, the position of which 
has been determined by the method described on p. 328. Atomic superposi- 
tion in this case is facilitated by the fact that the coinciding images are made 
up of vectors between heavy and light atoms which are well resolved over 
the background of vectors among light atoms. If the ratio (5.20) is very low, 
the straightforward application of the Fourier recycling procedure may be 
inefficient and atomic superposition may be a convenient alternative. 

We can now describe one of the procedures[10~106] proposed to solve the 
Patterson function when the stereochemistry of part of the molecule is 
known. It is convenient to divide the process of locating a fragment of 
known stereochemistry into two steps: determination of the orientation and 
determination of the position with respect to the symmetry elements. 

1. Determination of the orientation. Starting from the known molecular 
fragment (atomic model) it is possible to build up the corresponding vector 
map (vector model). This model map is superposed on the Patterson 
function with its origin coinciding with that of the Patterson function and 
then rotated in all possible orientations. For each orientation the match 
between the ends of the m vectors of the model and the Patterson peaks is 
evaluated by means of functions similar to those considered above. Their 
form is now: 

(a) product function 

where P(uj) are the values of the Patterson function at the ends of the 
vectors; 
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Fig. 5.8.4. (a) Centrosymmetric three-atom 
structure; (b) corresponding Patterson map; (c) 
vector superposition on the double peak 23 + 45 
gives the two images in full and broken lines, 
while superposition on  the single peak 25 gives 
the full-line image only, shifted from the correct 
origin at the inversion centre; (d) Atomic 
superposition: are the known positions of the 
related atoms 1 and 1'; x , C3 are single and 
double peaks of the Patterson function with its 
origin on atom 1; 0, O are single and double 
peaks of the Patterson function with its origin on 
atom 1'; 9 are the overlapping peaks showing 
the structure referred to the correct origin. 
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(b) sum function 

(c) minimum function 

M = min {P(ul), P(uJ . . . P(u,)). 

This function is the most sensitive and is usually preferred, but, when the 
absolute minimum is assumed, small errors in the model may produce 
small values of M even for a correct orientation. To overcame this 
problem it is preferable to use the mean of the n smallest values ( M ) , ,  
where n is usually equal to 10-20 per cent of the total number of 
vectors. [lo'] 

The orientation of the model can be varied following the same Eulerian 
scheme (a detailed description is given by Stout and ~ensen[ '~~] )  used in 
most diffractometers to define the position of the reciprocal lattice vectors in 
terms of the three angles 8, q, and x (cf. pp. 72 and 274-6). The number of 
orientations to be examined can be quite large and the symmetry of the 
Patterson function and that of the vector model can reduce the range of the 
rotational search. 

The correct orientation will correspond to large values of the functions 
(5.B.4), (5.B.5), and (5.B .6). 

2. Determination of the position with respect to the symmetry 
elements. Once a likely orientation has been defined, the location of the 
fragment can be determined by systematically translating it in all possible 
positions within the asymmetric part of the unit cell and then by generating, 
for each position, all the vectors between the atoms of the fragment and 
those of the symmetry-related fragments. Each vector set obtained in this 
way is compared with the Patterson function and the fit is evaluated by 
means of one of the functions used in the orientational search. Normally the 
search of the position of a fragment with respect to the different symmetry 
elements is carried out separately for each symmetry element, considering 
that: 

(a) when the symmetry element is a plane the search is performed only 
along the direction orthogonal to the plane; 

(b) when the symmetry element is an axis the search is a two-dimensional 
one on the plane orthogonal to the axis; 

(c) when the symmetry element is an inversion centre the search is three 
dimensional. 

Because of the errors in the model the orientation and position are 
determined by the above method only in an approximate way. They can be 
further improved by shifting the atoms of the model in such a way that a 
better fit of the set of interatomic vectors on the maxima in the Patterson 
function is obtained. 

The described procedure operates in the Patterson space, but other 
methods, usually operating in the reciprocal space, such as the rotation 
function,[1091 have been proposed[110-1131 and successfully applied, especially 
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Fig. 5.C.1. One-dimensional centrosymmetric 
structure with IFh/ and lFZhl large: curve 1 shows 
the trend of IFh[ cos Pnhx, curve 2 that of 
-IFh/ cos Pnhx, and curve 3 that of 
IF,,I cos 2 ~ 2 h x ;  the hatched regions A and B are 
those in which a high value of the electron 
density is indicated. 

k 
h-k 1 1 1 I 

Fig. 5.C.2. Three-dimensional centrosymmetric 
structure with IFhl, IFk!, and IFh-*/ large: the full 
lines represent the maxima of lFhl cos 2nh. r, 
IFkIcos2nk.rand IFh_klcos2n(h- k).r,the 
broken lines the corresponding minima; the 
hatched regions A, B, C, D are those in which 
high values of the electron density are more 
likely. 

in protein crystallography (cf. Chapter 8, p. 553). They are at the basis of 
the so-called molecular replacement methods.[l14] For each orientation or 
position of the model fragment, instead of fitting the vector model, a fit is 
searched for between the structure amplitudes calculated for the model and 
the observed ones. A procedure combining direct and reciprocal space 
searches has been recently described by Rius and ~iravitlles.["~] 

Recently, Patterson orientation search routines have been incorporated 
into direct methods programs. A highly automated routine has been built 
into the DIRDIF system.[701 Another example is the PATSEE routine[116] 
incorporated into the SHELXS-86 system.[lol In both these cases the correct 
position of the oriented fragment is found by direct methods. 

5.C Two examples of deriving phase information from 
positivity 
Let us first consider a centrosymmetric one-dimensional structure for which 
the amplitudes IFhJ and IF2hl are large. Their contributions to the electron 
density function 

p(x) = ( l la)  Fh cos 2nhx 
h 

will be large and are illustrated in Fig. 5.C.1, where curve 1 shows the term 
+ 14 1 cos 2nhx (Fh positive), curve 2 the term - I Fh I cos 2nhx ( F ,  negative), 
and curve 3 the term +IF,,\ cos2n2hx (4 ,  positive). Fh would then 
contribute to the electron density in the region indicated by the letter A, if 
positive, and in the region B, if negative; in both cases F,, will contribute to 
both regions only with a positive sign. It follows that, with p(x) everywhere 
positive, if 1 Fhl and IF,, I are large, whatever the sign of I Fh 1, the sign of IF,, 1 
is more likely positive. This argument can be generalized to three 
dimensions. 

As a second example we shall consider the projection of a centrosym- 
metric structure for which the amplitudes I FhI, I FkI, and IFh-,[ are large. In 
Fig. 5.C.2 the traces of the three families of planes h, k, and h - k are 
shown as full lines, while the dotted lines are located half way. If we 
associate to the full lines the maxima of the terms IFhl cos2nh - r, 
lFkl cos 2nk . r, IFh-,I cos 2n(h - k) . r contributing to the electron density 
function p(r), then the dotted lines will represent the corresponding 
minima. If I Fhl, IFkl, I Fh-kl are large, the corresponding terms must add up 
to give a preponderant contribution to p( r ) .  This will happen when 
cos 2nh - r = +1, if Fh is positive, and cos 2nh . r = -1 if it is negative; the 
same applies to the other two terms. It follows that the possible maxima of 
the electron density will be restricted to the regions indicated by A, B, C, 
and D in Fig. 5.C.2, where the above conditions are satisfied for all three 
terms at the same time. For each region the signs S(h), S(k), S(h - k) of 
the three structure factors are 

Region S(h) S(k) S(h - k) 
A + - - 
B + + + 
C - - + 
D - + - 

In all cases the product S(h)S(k)S(h - k) is always positive. 
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5.D Probability formulae for triplet invariants 
For a structure with N equal atoms in a PI  unit cell, the normalized 
structure factor of index h can be written as the sum of N independent terms 

1 1 
Eh = - x exp (2nih q) = - x exp (2nik - 5 )  exp [2ni(h - k) . q] 

f i , = l  mi4 

Under the assumption that all points in the unit cell have equal 
probability of housing an atom, the atomic position vectors q will form a set 
of independent random variables. Thus also the terms g,, which are 
functions of q, will be random variables. Then, because of the central limit 
theorem, Eh will have a normal distribution with mean 

and variance 
1 

4=- N ,=I 2 ( ( E )  - (4) ' ) .  (5.D.3) 

Supposing that the two exponential terms in the middle formula in 
(5 .D . l )  are independent, we have 

(5,) = (exp (2nik q)) (exp [2ni(h - k) q]). (5.D.4) 

Under the assumption that Ek has a fixed value (i.e. both its modulus and 
phase are known), we can write[ll'] 

With the same assumption for Eh-,, (5.D.4) becomes 

and substituting in (5 .D .2) 

For the real and imaginary components of Eh = A h  + iBh we have 

Similarly to (5.D. I), we can derive 

1 
Ah = - 2 cos 2n(h - k + k) . q = [C,(k)C,(h - k) - S,(k)S,(h - k)] m,=1 mi=l 
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where C,(k) = cos 2nk q and S,(k) = sin 2nk 5. Similarly 

1 1 
Bh =- x [S,(k)Cj(h - k) + Cj(k)Sj(h - k)] = - x Pi. (5.D.10) fl ,=I  fl ,= I  

where the terms (Ah)2/N and ( B h ) 2 / ~  have been neglected, as they are of 
order 1/N2 [cf. eqns (5.D.8)] and become very small for any reasonable N. 

The conditional probability density function P(Ah, Bhl Ek, EhPk) can be 
expressed as the product of the separate distributions of Ah and Bh. The 
probability that Ah lies in the interval between Ah and Ah + dAh and at the 
same time Bh lies in the interval between Bh and Bh + dBh, is therefore 
given by 

1 
P(Ah, Bh I Eh, Eh-,) = -exp {-[(Ah - (Ah))2 + (Bh - (Bh))2]) (5.D.13) n 

which gives the probability that Eh lies within an area of surface dS = 
dAh dBh in the complex plane. When expressing Eh in polar coordinates 
(modulus and phase), then dS = IEhI dlEhl dqh and 

As lEhl is known, we are interested in the conditional probability 
P(qh I IEhI, Ek, Eh-,), simply indicated as P(qh), which can be obtained by 
dividing (5.D.14) by its integral with respect to qh[118] 

where 

and 

Qhk = Q)h - q k  - Th-k. 

Since qk and qh-, are known dQhk = dqh and the distribution of qh is 
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equivalent to that of Qhk. The value of the integral at the denominator of 
(5.D.15) isr5'] L = 2n&(Ghk), where &(x) is the modified Bessel function of 
zero order. We can finally writeLz4] 

which is equal to the Cochran distribution (5.38). 
In a similar way it is possible to derive the probability formulae for 

centrosymmetric structures.[281 By applying the central-limit theorem to 

we obtain 

1 exp [ - 2 1 (E, - -)'I. ~ k ~ h - k  

m (5.D.19) 

Indicating by P+ or P- respectively, the probability that E, has a positive 
or negative sign, we have 

and 

p+ = 
1 - exp x 

= tanh x + exp (-x) 
1 + exp (-2x) - exp x + exp (-x) exp x + exp (-x) 

= tanh (x) + 1 - P +  

and finally 

1 
P+ = 4 + f tanh (* EhI EkEh-,) . (5. D.22) 

The function (5.D.22) is illustrated in Fig. 5.14; P+ > 4 if S(k)S(h - k) = 
+ and P+ < i (and P- > 1) if S(k)S(h - k) = - . If in (5.D.19) we consider 
the two cases S(h) = S(k)S(h - k) (with probability P+)  and S(h) = - 
S(k)S(h - k) (with probability P-) we obtain eqn (5.46), where P+ is 
always greater than i .  

5.E Pseudotranslational symmetry 
We will say that a structure possesses pseudosymmetry when a non- 
negligible part of the atoms approximately satisfy a higher symmetry than 
that of the whole structure. It can be noted that, in the special case in which 
these atoms exactly satisfy a higher symmetry, they will identify a 
supergroup (see Appendix l .E) of the space group to which the whole 
structure belongs. 

An important type of pseudosymmetry is the pseudotranslational 
symmetry occurring when a non-negligible amount of the electron density, 
say p,(r) is repeated by a pseudotranslation (in the sense that it does not 
necessarily correspond to a crystallographic translation) u, i.e. p,(r) = 
p,(r + u). ~ u e r g e r [ ' ~ ~ , ~ ' ~ ~  suggested that such structures should be treated as 
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the sum of a substructure, p,(r) and the complement structure, p,(r) = 

P(F) - P P W .  
A two-dimensional example of pseudotranslational symmetry is shown in 

Fig. 5.E.l(a), where the two heavy atoms 1 and 1' are related by a centring 
translation, u = a12 + b/2, while the light atoms occupy general unrelated 
positions: the heavy atoms form the substructure and the light atoms the 
complement structure. If the structure only contained the heavy atoms, the 
unit cell would be centred and, according to p. 160, the reflections with 
h + k = 2n + 1 would be systematically absent. For the structure of Fig. 
5.E.l(a), only the light atoms will contribute to these reflections 
(superstructure reflections), which will therefore be systematically weaker 
than the reflections with h + k = 2n (substructure reflections) to which 
both heavy and light atoms contribute. 

Because of the presence of pseudotranslational symmetry, imposing 
certain relations between subsets of atomic positions, the assumption that 
the atomic coordinates are independent random variables is violated. In the 
reciprocal space this is revealed by a non-uniform value of the averaged 
normalized intensity, ( I  E, 12), when the reflections are grouped in different 
ways. As we have seen, the reflections have to be divided into the set of 
substructure reflections with high mean intensity and the set of superstruc- 
ture reflections with low mean intensity. 

In Fig. 5.E.l(b) the case in which the pseudotranslation is only 
approximately obeyed, is shown. Finally, in Fig. 5.E.l(c) another example 
of pseudotranslational symmetry is shown, in which two similar but not 
equal atoms are related by a vector u = a /3 ;  the substructure reflections will 
have h = 3n. 

Statistical methods for ideiltifying the type of pseudotranslational sym- 
metry and the related sub- and superstructure reflections have been recently 
proposed. [49,51,1201 

5.F Magic integers 
I (c) Magic integers were first introduced by White and W o o l f s ~ n [ ~ ~ ~ ~  and allow 

Fig. 5.E.1. (a) Heavy atoms exactly related by a one to represent several phases in terms of only one variable, through 
pseudotranslation vector u = a/2 + b/2; (b) of the type heavy atoms approximately related by a 
~seudotranslation vector u = a12 + b12: Id cpi = mix (5.F.1) . , - , . ~ .  
slightly different heavy atoms related by a 
pseudotranslation vector u = e/3. where the mi are the magic integers. Let us consider the example given by 

~ o o l f s o n . [ l ~ ~ ~  Three phases, expressed for convenience in cycles (0 6 cp < 1) 
instead of degrees, are considered; by using the three integers 3, 4, 5 in 
(5.F.1), we will have 

91 = 3x mod (11, cp2 = 4x mod (I),  cp, = 5x mod (1), (5.F.2) 

where mod(1) indicates that the phases are always taken within the interval 
0-1 cycles (i.e. 0-360"). We will now see that, whatever the value of the 
three phases, it is always possible to find a value of x (0 < x  < 1) for which 
the three equations (5.F.2) are approximately satisfied. For instance, if 
cpl = 0.3, 147, = 0.2, cp, = 0.7, the value x = 0.766 (Fig. 5.F.1) will give: 

cp, = 2.298 mod (1) = 0.298 with an error of 0.002 cycles (lo), 

cp2 = 3.064 mod (1) = 0.064 with an error of 0.136 cycles (49"), 

cp, = 3.830mod (1) = 0.830 with an error of 0.130 cycles (47"). 
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The reader may assign any three values to the phases and find by trial and o 766 
error, with the help of Fig. 5.F.1, the value of x which best satisfies (5.F.2). p, 

So far we have used the sequence of three magic integers 3, 4, 5, but 
other longer or shorter sequences of different integers may be used. The 
accuracy with which phases can be represented by magic integers depends 
on the values of the integers and on the length of the sequence. ~ a i n [ ~ ~ ~ , ~ ~ ~ ~  
described the theory of magic integers and gave some rules for selecting 
those sequences which minimize the mean square deviations (Aq2) of the 
represented phases. It turns out that the optimal sequences m,, m2, . . . , m, 
are those for which 2m1 = m, + 1 and the differences m, - m,-l, mnPl - 
mn-2, . . . , m3 - m2, m2 - m1 form a geometric progression of integer 2 

numbers with common ratio r 3 1. For r = 2 the progression 1, 2, 4, 8, 
16, . . . will give rise to the magic integers listed in the top part of Table 
5.F.1. An integer progression with common ratio less than 2 is the so-called 
Fibonacci series 1, 1, 2, 3, 5, 8, 13, . . . , where each term is defined as the Fig. 5.F.1. Representaton o f the  three phases In 

sum of the two preceding ones (F, = Fn-l + Fn-2) and r tends to the golden eqns (5.F.2) as a function x. 

number 1.618. The corresponding magic-integer sequences are listed in the 
bottom part of Table 5.F.1, where the column headed (Aq), , , gives the 
root mean square error of the phases represented with the different 
magic-integer sequences. The optimal sequences also have the advantage 
that the errors are equally distributed among the represented phases. From 
Table 5.F.1 it may be seen that (Aq), , , increases as n increases and, for a 
given n it is lower when the integers are larger (r = 2). 

In several multisolution programs the general phases in the starting set 
are expressed in the form (5.F.1) and x is explored at regular intervals in the 
range 0-1 (if the enantiomorph has to be fixed, only the interval 0-0.5 
should be explored). The value of the interval Ax is chosen in such a way 
that the mean variation of the phases from one value of x to the other is of 
the same order of magnitude of the corresponding (Aq),,, . Ax is 
therefore a function of n and of the m, values and it is smaller the larger are 
the integers. In order to keep the number of explored x values (each value 
corresponding to a trial starting set of phases) within reasonable limits, it is 
preferable to use magic integers based on Fibonacci series, at the cost of 
slightly higher (Aq), , , . A comparison between the use of quadrant 
permutations and that of magic-integer permutations is shown in Table 
5.F.2. This comparison may be better illustrated by considering the case 
n = 2, for which it is possible to draw in the plane (ql ,  q2), the lines 
q ,  = 2x mod (1) and q2 = 3x mod (1) (Fig. 5.F.2(a)). The choice of regular 

Table 5.F.1. Magic integer sequences based on the geometric progression with 
common ratio r = 2 (top) and on the Fibonacci series (bottom); (Aq),,,,,, is the root 
mean square error of the phases represented by each sequence 

n Sequence ( A Q J ) ~ . ~ . ~ .  
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Fig. 5.F.2. Illustration of two phases in the plane 
(q,, q2): (a) Lines q, = 2xand rp, = 3x: the 
triangles indicate the 12 regularly spaced points, 
with intervals of the order of (Aq),,,,,,, giving 
rise to the same number of phase permutations; 
(b) The triangles indicate the 16 points 
corresponding to quadrant permutation. 

Table 5.F.2. Comparison between quadrant permutations (f n/4, f 3n/4) and the per- 
mutations obtained with magic integers based on the Fibonacci series. 

Quadrant Magic integers 

No. permutations No. permutations (AV)~."I.S. 

intervals along x, i.e. along these lines, gives rise to a close-packed 
hexagonal disposition of points in the phase space. This corresponds to a 
more efficient way of sampling the phase space than that shown in Fig. 
5.F.2(b), obtained by quadrant permutation. 

This is also true for n > 2 and it may be concluded that the use of magic 
integers allows a considerable reduction in the number of trial permuta- 
tions, while the accuracy of phase representation is kept within acceptable 
limits. 

5.G New multisolution techniques 
In the multisolution process described on p. 360 there are two main 
limitations: the restricted number of starting-set phases and the 'chain' 
character of the phase expansion process by means of the tangent formula. 
The first factor will make the initial steps of phase expansion very critical, as 
the first phases will be determined by few relationships, while the second 
factor will amplify the first effect in the following steps. 

As we have seen, the use of magic integers allows an increase in the 
starting set of phases without a great decrease in accuracy. At the basis of 
all recent developments of the multisolution techniques lies the empirical 
observation that it is possible to solve structures, starting with a fairly large 
set of phases (more than 40-50 phases), even though these might be very 
inaccurate. The different methods proposed differ in the way in which the 
large initial set of phases is set up. 

Those using magic integers are at the basis of the computer programs 
 MAGIC['^^] and MAG EX.["^] A limited number of phases (normally 
10-15), called primary phases, are expressed as qpi = mix. If two of these 
phases enter in a triplet with sufficiently large G, it will be possible to 
express also the phase of the third reflection as a combination of magic 
integers. For instance, if 

then qs= (ml + m,)x + n. The new phases obtained in this way are called 
secondary phases. The starting set of phases will therefore include the 
origin-fixing phases, the primary and secondary phases, and their number 
can be up to 60-70. 

The selection of the x values to be tried is done by means of the q-map. 
This is set up using all triplets relating the phases in the starting set. With a 
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procedure similar to that used in deriving relation (5.64), a triplet may be 
written in terms of independent reflections as 

where b is a constant angle depending only on the symmetry operators of 
the space group. If in (5.G.2) we substitute the primary and secondary 
phases expressed in terms of magic integers, we will obtain 

where M is a combination of integers and B = b +other constant terms 
appearing in the definition of secondary phases. The condition that all NR 
relationships of type (5.G.3) among the starting-set phases should be as 
close to zero as possible (or cos CD = +1) may be expressed as 

N R  

@(x) = G, cos (M,x + B,) = max. (5.G.4) 
r = l  

@ ( x )  is a one-dimensional Fourier series and can be easily calculated at 
regular intervals of x of the order of 1/(4Mm,,). The @-map is thus obtained 
and its maxima indicate the best values of x. Some 100 x values, correspond- 
ing to the highest values of @@), are selected to obtain the same number of 
sets of numerical values of the phases, which are then further refined and 
expanded. 

An extreme radicalization of the basic idea of enlarging the starting set by 
allowing larger phase errors, is the random approach to the phase 
problem.[1271 The starting phases are now assigned random values between 0 
and 360" and then refined with different techniques. 

The first proposed random procedure is at the basis of the 
program. Some 100 best interrelated phases (selected by means of the 
convergence procedure) form the starting set and are assigned several sets 
of random values. Each set is then refined by a least-squares procedure 
assuming as observational equations all triplet relations of type (5.G.2). The 
use of a least-squares procedure in the case of cyclic variables defined 
modulo 2n, needs an important warning. To obtain the correct phase values 
it is necessary to know the values of the right-hand terms of relations such 
as (5.G.2) not reduced modulo 2n; or, in another way, we must know n in 
the equation CD = 2nn (n positive, zero, or negative integer). It may be 
interesting to note that this is another way in which the 'phase problem' 
shows up: it is generally possible to solve an overdetermined system of some 
thousands linear equations in terms of some hundreds of unknowns, but in 
our case, the cyclic nature of the variables introduces the new unknowns n, 
the number of which is equal to the number of observational equations. We 
must have some prior estimate of the n values, and this may be obtained 
from the starting random values of the phases; the values obtained in this 
way will in general not be integer and will be approximated to the nearest 
integer. The least-squares procedure may now be carried out and new 
values of the phases obtained; these in turn will yield new estimates of the 
ns and the process is repeated until convergence. The advantage of this 
refinement procedure, with respect to the tangent formula, is that all phases 
are refined at the same time; the cost is a longer computing time. Each 
phase set, after this refinement, is expanded by the tangent formula and 
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tested by some figures of merit. Applications of this method have shown 
that it is possible to hit the correct solution starting with a limited number 
(around 100) of random phase sets; the probability of getting the correct 
solution decreases as the structural complexity increases. 

The success of this and other random methods implies that, if N (=loo) is 
the number of starting phases, then the N-dimensional space, in which the 
refinement is carried out, only shows a limited number of minima; it will be 
sufficient'to start from a limited number of random points in this space to 
converge to the minimum corresponding to the correct solution. 

A more straightforward procedure is applied in the RANT AN['^^] 
program in which the random starting sets of phases, including all 
reflections with large (El values, are directly refined by a carefully weighted 
tangent formula. The initial random phases are assigned a weight w = 0.25 
and at each cycle only the phases determined with a sufficiently high ah 
value, so that wh =: min (0. 2ah,  1) > 0.25, are accepted. Also in this case a 
limited number of trials (50-200, depending on the structural complexity) is 
capable of yielding the correct structure. A similar random start procedure, 
but with a different strategy, has been implemented within the SHELXS- 
86['01 program. 

More recently two new random procedures have been incorporated into 
the computer programs X M Y [ ~ ~ ~ , ~ ~ ~ ~  and SAY TAN.['^'] 

In the first the initial random phases are refined by parameter shift.[1331 
By this method all parameters are supposed independent so that each of 
them can be varied systematically from uy - nAuj to u9 + nAu, in 2n steps of 
Aui; the value which maximizes (or minimizes) a selected function of the 
parameters is taken as a better value for this parameter and is used in the 
subsequent calculations with the next parameters. The process is continued 
until self-consistency. The advantage of the parameter-shift method is its 
ability to jump away from a local extremum. In the XMY procedure the 
function which is maximized is 

where 

Xh = C IEhEkEh-kl COS (9)-h + 9)k + qh-k) 
k 

and (5.G.6) 

A large value of F is in agreement with the most probable value of the 
triplets. 

In SAYTAN random phases are refined by means of a modified tangent 
formula derived from Sayre's equation (5.24) expressed in terms of 
normalized structure factors. Its derivation is too long to be reported here 
and we will just mention that it also includes quartet invariants. 

All the described random procedures have proved very successful in 
solving rather complex crystal structures. 

Finally we mention an alternative random procedure[1341 which has 
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recently been incorporated in the SIR program[671 and is indicated with the 
name MESS. When phases are generated at random they are in general 
inconsistent with positivity and atomicity of the electron density, and only 
the refinement process will make them comply with these conditions; on the 
other hand, we have seen that these two conditions are at the basis of the 
probability formulae for triplets or other i.s. or s.s.. In the MESS approach, 
the starting phases are derived from triplets perturbed by random shifts A@ 
obeying a von Mises distribution; these phases will then comply with 
positivity and atomicity. Also in this case the number of trials necessary to 
get the solution is comparatively small and the procedure proved successful 
in solving several complex structures. 

5.H Procedures for completing a partial model 

Weights for Fourier syntheses 
Given the positions of some atoms, what weights should be given to the 
coefficients in order to obtain the 'best' Fourier map revealing the 
remainder of the structure? This problem was first tackled by ~ i m [ ~ ' , ' ~ ] .  
With reference to Fig. 5.H. 1, let 

where FN is the structure factor of the complete structure, Fp is the 
contribution of the P known atoms, and FQ is the contribution of the Q 
unknown atoms. 

Ideally we should compute a Fourier synthesis with FQ as coefficients, i.e. 

where a = qN - 9,; but in the right-hand side of (5.H.2) a is unknown and 
the best estimate of FQ is obtained by replacing exp (ia) by its expected 
value 

(exp (ia)) = (cos a )  + i(sin a )  = (COS a ) ;  
, 

since a can equally have positive and negative values, then (sin a )  = 0 and 
(5. H. 2) becomes 

indicating that the 'best' Fourier synthesis is obtained by weighting the IFNI 
factors by w = (cos a ) .  In order to derive (cos a )  we must first know the 
probability distribution of c?.. 

For FQ = AQ + iBQ the probability distribution (5.A.13) becomes 

1 
P(AQ, BQ) = -exp [ - (A; + B2Q)lCQ] (5.H.4) 

JGCQ 
where CQ = C, f: is a summation over the unknown atoms. From the 
triangle in Fig. 5 . ~ .  1 we have 

Fig. 5.H.1. Vector representation in  the complex 
plane of the structure factor as a sum of two 

A$ + B ~ Q  = IFQI2 = IFNI2 + - 2 lFNl IFPI cos a (5. H.5) components. 
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The only unknown term is a and (5.H.6) is essentially a probability 
distribution of a ,  i.e. 

P (a )  = (1/K) exp (X cos a ) ,  (5.H.7) 

where X = 2 lFN( IFpIICQ and K is a normalizing constant given by (see eqns 
(5.D.15) and (5.D.17)) 

K = $ exp (X cos a )  da = 2nIo(X). (5.H.8) 

Finally 

exp (X cos a) 
P(a )  = 

2"Io(X) . 

Recalling eqn (5.68), we may now derive 

w = (cos a )  = dm=- "(X) (5. H. 10) 
Io(X) ' 

and (5 .H.3) becomes 

When this weight is used in Fourier recycling, then IFN( = (Fobs( and the 
employed coefficients are 

Similarly ~ o o l f s o n [ ' ~ ~ ~  derived that for centrosymmetric structures 

FP + (FQ) = IFobsl tanh (X12)Sp (5.H.13) 

where Sp is the sign of Fp. 

Syntheses for completing a partial model 
We have seen that often only part of the structure (e.g. positions of heavy 
atoms) can be initially determined; this information can then be combined 
with the Patterson function to define the rest of the structure. For this 
purpose Ramachandran and Raman[136] proposed several types of Fourier 
syntheses[13721381 with different coefficients. Among them we will recall the a 
and the /3 syntheses, with coefficients 

a synthesis I F ~ ( ~ F ~  
/3 synthesis 1 ~ ~ 1 ~ 1 ~ ;  (F; complex conjugate of Fp) 

where the terms have the same meaning as in (5.H.1) 
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Considering (5.H.1), the Patterson coefficients IFNI2 become 

and those of the a synthesis 

where 4 and F, contribute to the background and the P peaks, F, 
contributes to the background and the desired Q peaks, and 4 contributes 
mainly to the background. 

A similar development for the coefficients of the /3 synthesis yields to 

I F ~ ( ~ / F ~  = Fp -I- FQ + F$ exp 2iqp + I F Q ~ ~ / F ~  (5.H.16) 

where the first two terms contribute, with equal weight, to reveal the known 
P atoms and the unknown Q atoms respectively, while the last two terms 
contribute mainly to the background. An advantage of the /3 over the a 
synthesis is that it gives the electron density map when Fp = FN. 

~ a i n [ l ~ ~ ]  compared the P synthesis with the synthesis computed with 
coefficients (5.H.12) (also called weighted y' synthesis). From (5.H.5) the 
expected value 

may be derived and, considering that 

I F ~ 1 2  = ((FP + F~)(F; + F;) (5.H.18) 

the coefficients (5.H.12) are obtained as 

where the last two terms mainly contribute to the background, the first term 
contributes to the known part of the structure, and the second to the desired 
unknown part, but only with half weight. In order to give the P and the Q 
peaks the same weight, as in the case of the /3 synthesis, the coefficients of 
the y' synthesis should be altered to 

(2 IFNl (cos a) - IFPI) exp (iq,) = Fp + FQ + FT, exp (2iqp) 

+ {JFQ12 - (lFQ12))lFg. (5.H.20) 

The new synthesis is referred to as the 2F, - F, synthesis; it has been shown 
that, for non-centrosymmetric structures, it contains fewer background 
peaks than the /3 synthesis and is more effective in suppressing the peaks 
corresponding to wrong atoms in the initial model. 

Let us conclude this paragraph with a comparison, proposed by Tollin et 
between the a synthesis and the optical image synthesis by 

holography (see any optics textbook such as ~ e y e r - ~ r e n d t [ ' ~ l ] ) .  The 
principle of holography is illustrated in Fig. 5.H.2. The waves scattered by 
the object Q interfere with those from a coherent point source P and the 
fringe pattern is recorded on a photographic plate to form a hologram (H). 
The intensity pattern on the hologram will depend on the phase relation- 
ships between the interfering waves from P and Q. By illuminating the 
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laser 
n 

Fig. 5.H.2. Scheme of the formation of a 
hologram. 

(a) RECORDING 

'reference beam 
mirror 

5' 
laser 

image 

/-- 

(b) IMAGE RECONSTRUCT ION 

hologram with light identical to that from P, the image of the object Q may 
be reconstructed. If t,(x) and tQ(x)  are the functions describing the source P 
and the object Q, the corresponding scattered amplitudes will be their 
Fourier transforms TP(s) and TQ(s). The amplitude at a point s on the 
hologram will be 

A ( s )  = Tp(s) + TQ(s) exp (2nias) (5.H.21) 

where a is the separation between t,(x) and tQ(x). The intensity at s on H 
will then be 

where the s dependence has been omitted. When the hologram is 
illuminated by a light from the source P, the resulting modulated function 
will be 

IT, = T, 1 T , [~ + T,  IT,(^ + T$T;  exp (-2xias) + 1 T ,~~TQ exp ( h i a s ) .  

(5.H.23) 

Its Fourier transform will be the combination of the transforms of the four 
different terms and will show the image of the object Q. Comparison with 
(5.H.15) shows that the four terms of the a synthesis coefficients are 
formally similar to those in (5.H.23). In the case of a partially known 
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structure we observe the interference effects between the known (source) 
and the unknown (object) parts of the structure. In 1950 ~ r a ~ ~ [ ~ ~ ~ ~  had 
already qualitatively indicated the analogy between the heavy-atom tech- 
nique and holography. 

References 

1. Patterson, A. L. (1944). Physics Review, 65, 195. 
2. Wilson, A. J. C. (1950). Acta Crystallographica, 3, 397. 
3. Lipson, H. and Cochran, W. (1953). The crystalline state. vol. I I I :  The 

determination of crystal structures. G. Bell, London. 
4. Wilson, A. J. C. (1949). Acta Crystallographica, 2, 318. 
5. Wilson, A. J. C. (1942). Nature, 150, 151. 
6. Viterbo, D., Gasco, A.,  Serafino, A. and Mortarini, V. (1975). Acta 

Crystallographica, B31, 2151. 
7. Harker, D. (1936). Journal of Chemical Physics, 4, 381. 
8. Calleri, M., Chiari, G. ,  Chiesi Villa, A., Gaetani Manfredotti, A., Guastini, 

C. and Viterbo, D. (1976). Acta Crystallographica, B32, 1032. 
9. Gervasio, G., Rossetti, R. and Stanghellini, P. L. (1979). Journal of Chemical 

Research (S) 334, (M)3943. 
10. Sheldrick, G. M. (1985). In Crystallographic computing 3 (ed. G. M. Sheldrick, 

C. Kriiger and R. Goddard), pp. 184-9. Oxford University Press; Robinson, 
W. and Sheldrick, G. M. (1988). In Crystallographic Computing 4 (ed. N. W. 
Isaacs and R. M. Taylor), pp. 366-77. Oxford University Press. 

11. Luger, P. and Fuchs, J. (1986). Acta Crystallographica, A42, 380. 
12. Lenstra, A. T. H.  and Schoone, J. C. (1973). Acta Crystallographica, -429, 

419. 
13. PavelEik, F. (1989). Journal o f  Applied Crystallography, 22, 181. 
14. Argos, P. and Rossmann, M. G. (1976). Acta Crystallographica, B32, 2975. 
15. Rossmann, M. G., Arnold, E. and Vriend, G. (1986). Acta Crystallographica, 

A42, 325. 
16. Terwilliger, T. C., Sung-Hou Kim and Eisenberg, D. (1987). Acta 

Crystallographica, A43, 1. 
17. Harker, D. and Kasper, J. S. (1948). Acta Crystallographica, 1, 70. 
18. Karle, J. and Hauptman, H.  (1950). Acta Crystallographica, 3, 181. 
19. Giacovazzo, C. (1980). Direct methods in  crystallography. Academic, London. 
20. Hauptman, H.  and Karle, J. (1953). The solution of the phase problem. I. The 

centrosymmetric crystal, ACA Monograph, No. 3. Polycrystal Book Service, 
New York. 

21. Sayre, D. (1952). Acta Crystallographica, 5, 60. 
22. Hauptman, H.  and Karle, J. (1956). Acta Crystallographica, 9, 45. 
23. Cascarano, G. and Giacovazzo, C. (1983). Zeitschrift fur Kristallographie, 165, 

169. 
24. Cochran, W. (19%). Acta Crystallographica, 8, 473. 
25. von Mises, R. (1918). Physikalisches Zeitschrift, 19, 490. 
26. Karle, J. and Karle, I. L. (1966). Acta Crystallographica, 21, 849. 
27. Karle, J. and Hauptman, H.  (1956). Acta Crystallographica, 9, 635. 
28. Cochran, W. and Woolfson, M. M. (1955). Acta Crystallographica, 8, 1. 
29. Schenk, H. (1973). Acta Crystallographica, A29, 77. 
30. Schenk, H.  (1973). Acta Crystallographica, A29, 480. 
31. Simerska, M. (1965). Czechoslovakian Journal of Physics, 6, 1. 
32. Hauptman, H. (1975). Acta Crystallographica, A31, 671. 
33. Hauptman, H. (1975). Acta Crystallographica, A31, 680. 
34. Hauptman, H. (1976). Acta Crystallographica, A32, 934. 



398 1 Davide Viterbo 

35. Giacovazzo, C. (1977). Acta Crystallographica, A33, 933. 
36. Giacovazzo, C. (1980). Acta Crystallographica, A36, 362. 
37. Giacovazzo, C. (1974). Acta Crystallographica, A30, 626, 631. 
38. Giacovazzo, C. (1978). Acta Crystallographica, A34, 562. 
39. Burla, M. C., Nunzi, A.,  Polidori, G., Busetta, B. and Giacovazzo, C. (1980). 

Acta Crystallographica, A36, 573. 
40. Burla, M. C., Nunzi, A., Giacovazzo, C. and Polidori, G. (1981). Acta 

Crystallographica, A37, 677. 
41. Cascarano, G.,  Giacovazzo, C., Calabrese, G. ,  Burla, M. C., Nunzi, 

A, ,  Polidori, G. and Viterbo, D. (1984). Zeitschrift fur Kristallographie, 167, 
34. 

42. Giacovazzo, C., Spagna, R., VickoviC, I. and Viterbo, D. (1979). Acta 
Crystallographica, A35, 401. 

43. Cascarano, G., Giacovazzo, C., Polidori, G. ,  Spagna, R., and Viterbo, D. 
(1982). Acta Crystallographica, A38, 663. 

44. Burla, M. C., Giacovazzo, C., and Polidori, G. (1989). Acta Crystallographica, 
A45, 99. 

45. Cascarano, G., Giacovazzo, C., Camalli, M., Spagna, R., Burla, M. C., 
Nunzi, A., and Polidori, G. (1984). Acta Crystallographica, A40, 278. 

46. Giacovazzo, C. (1976). Acta Crystallographica, A32, 958. 
47. Busetta, B., Giacovazzo, C., Burla, M. C., Nunzi, A., Polidori, G., and 

Viterbo, D. (1980). Acta Crystallographica, A36, 68. 
48. Ladd, M. F. C. and Palmer, R. A. (ed.) (1980). Theory and practice of direct 

methods in crystallography. Plenum, New York. 
49. Cascarano, G., Giacovazzo, C., and LuiC, M. (1985). Acta Crystallographica, 

A41, 544. 
50. Cascarano, G., Giacovazzo, C., and LuiC, M. (1987). Acta Crystallographica, 

A43, 14. 
51. Cascarano, G., Giacovazzo, C., and LuiC, M. (1988). Acta Crystallographica, 

A44 176. 
52. Cascarano, G., Giacovazzo, C., and LuiC, M. (1988). Acta Crystallographica, 

A44, 183. 
53. Camalli, M., Giacovazzo, C., and Spagna, R. (1985). Acta Crystallographica, 

A41, 605. 
54. Burla, M. C., Cascarano, G., Fares, E., Giacovazzo, C., Polidori, G., and 

Spagna, R. (1989). Acta Crystallographica, A45, 781. 
55. Zachariasen, W. H. (1952). Acta Crystallographica, 5, 68. 
56. Germain, G. and Woolfson, M. M. (1968). Acta Crystallographica, B24, 91. 
57. Germain, G., Main, P., and Woolfson, M. M. (1970). Acta Crystallographica, 

B26, 274. 
58. Abramowitz, M. and Stegun, I. A. (1964). Handbook of mathematical 

functions. National Bureau of Standards, Washington, D.C. 
59. Burla, M. C., Cascarano, G., Giacovazzo, C., Nunzi, A, ,  and Polidori, G. 

(1987). Acta Crystallographica, A43, 370. 
60. Cascarano, G., Giacovazzo, C.,  and Viterbo, D. (1987). Acta Crystal- 

lographica, A43, 22. 
61. Cascarano, G., Giacovazzo, C., Burla, M. C., Nunzi, A., and Polidori, G. 

(1984). Acta Crystallographica, A40, 389. 
62. Cascarano, G. (1990). Doctorate thesis. University of Bari; Cascarano, G., 

Giacovazzo, C., Camalli, M., Spagna, R., and Watkin J .  D. (1991). Acta 
Crystallographica, A47, 373. (And references therein.) Altomare, A., Cas- 
carano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G., and 
Camalli, M. (1994). Journal of Applied Crystallography, 27, (in press). 

63. Schenk, H. and Kiers, C. T. (1985). In Crystallographic computing 3 (ed. G. 
M. Sheldrick, C. Kriiger, and R. Goddard), pp. 200-5. Oxford University 
Press. 



Solution and refinement of crystal structures 1 399 

64. Peschar, R. and Schenk, H. (1987). Acta Crystallographica, A43, 751. 
65. Karle, I. L., Karle, J., Mastropaolo, D., Camerman, A., and Camerman, N. 

(1983). Acta Crystallographica, B39, 625. 
66. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.  

P., and Woolfson, M. M. (1980). MULTAN80: A system of computer 
programs for the automatic solution of crystal structures from x-ray diffraction 
data. Universities of York and Louvain. 

67. Burla, M. C., Camalli, M., Cascarano, G. ,  Giacovazzo, C., Polidori, G., 
Spagna, R., and Viterbo, D. (1989). Journal of Applied Crystallography, 22, 
389. 

68. Cerrini, S., Lamba, D., Burla, M. C., Polidori, G., and Nunzi, A. (1988). Acta 
Crystallographica, C44, 489. 

69. Karle, J. (1968). Acta Crystallographica, B24, 182. 
70. Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., Van den 

Hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, G., Par- 
thasarathi, V., Bruins Slott, H. J., and Haltiwanger, R. C. (1985). Program 
system DZRDZF, Technical Report, Crystallography Laboratory, University of 
Nijmegen. 

71. Sim, G. A. (1959). Acta Crystallographica, 12, 813. 
72. Sim, G. A. (1960). Acta Crystallographica, 13, 511. 
73. Stewart, J. M. and Hall, S. R. XTAL user's manual, Technical Report 

TR1364.2. Computer Science Center, University of Maryland; Skelton, B., 
Hall, S. R., and Stewart, J. M. (1988). In Crystallographic computing 4, (ed. 
N .  W. Isaacs and M. R. Taylor), pp. 325-53. Oxford University Press. 

74. Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L., and White, P. S. (1989). 
Journal of Applied Crystallography, 22, 384. 

75. Betteridge, P. V., Prout, C. K., and Watkin, D. J. (1984). CRYSTALS. 
University of Oxford; Watkin, D. J. (1988). In Crystallographic computing 4, 
(ed. N .  W. Isaacs and M. R. Taylor), pp. 354-65. Oxford University Press. 

76. Viterbo, D., Calleri, M., Calvino, R., and Fruttero, R. (1984). Acta 
Crystallographica, C40, 1728. 

77. Hughes, E. W. (1941). Journal of the American Chemical Society, 63, 1737. 
78. Cruickshank, D. W. J. (1970). In Crystallographic computing (ed. F. R. 

Ahmed), pp. 187-97. Munksgaard, Copenhagen. 
79. Hirshfeld, F. L. and Rabinovich, D. (1973). Acta Crystallographica, A29, 510. 
80. French, S. and Wilson, K. (1978). Acta Crystallographica, A34, 517. 
81. Schwarzenbach, D. (1989). Acta Crystallographica, A45, 63. 
82. Hamilton, W. C. (1964). Statistics in physical science, pp. 157-162. Ronald, 

New York; (1965). Acta Crystallographica, 18, 502. 
83. Bijvoet, J. M. (1949). Proceedings of the Koninklijke Nederlandse Akademie 

van Wetenschap, B52, 313. 
84. Rogers, D. (1981). Acta Crystallographica, A37, 734. 
85. Marsh, R. E. and Herbstein, F. H. (1983). Acta Crystallographica, B39, 280. 
86. Marsh, R. E. and Herbstein, F. H. (1988). Acta Crystallographica, B44, 77. 
87. Santoro, A., Mighell, A. D., and Rodgers, J. R. (1980). Acta Crystal- 

lographica, A36, 796. 
88. Le Page, Y. (1982). Journal of Applied Crystallography, 15, 255. 
89. Mugnoli, A. (1985). Journal of Applied Crystallography, 18, 183. 
90. Spek, A. L. (1988). Journal of Applied Crystallography, 21, 578. 
91. Jones, P. G. (1984). Chemical Society Reviews, 13, 157. 
92. Braga, D., Gradella, C. and Grepioni, F. (1989). Journal of the Chemical 

Society, Dalton Transactions, 1721. 
93. Aime, S., Botta, M., Gobetto, R.,  and Orlandi, A. (1990). Magnetic Reson- 

ance in Chemistry, 28, 552. 
94. Bijvoet, J. M., Peerdeman, A. F., and van Bommel, A. J. (1951). Nature, 168, 

271. 



400 ( Davide Viterbo 

95. Jones, P. G. (1984). Acta Crystallographica, A40, 660. 
96. Glazer, A. M. and Stadnicka, K. (1989). Acta Crystallographica, A45, 234. 
97. Flack, H. D. (1983). Acta Crystallographica, A39, 876. 
98. Bernardinelli, G. and Flack, H .  D. (1985). Acta Crystallographica, A41, 500; 

(1987). Acta Crystallographica, A43, 75. 
99. (1959). International tables for x-ray crystallography, Vol. 11, pp. 355-7. 

Kynoch, Birmingham. 
100. Buerger, M. J. (1959). Vector space and its application in crystal structure 

investigation. Wiley, New York. 
101. Wrinch, D .  M. (1939). Philosophical Magazine, 27, 98. 
102. Allen, F. H., Bellard, S. A.,  Brice, M. D.,  Cartwright, B. A , ,  Doubleday, A. ,  

Higgs, H. ,  Hummelink, T. ,  Hummelink-Peters, B. G., Kennard, O., Mother- 
well, W. D. s . ,  Rodgers, J. R. ,  and Watson, D. G.  (1979). Acta 
Crystallographica, B35, 2331. 

103. Nordman, C. E. and Nakatsu, K. (1963). Journal of the American Chemical 
Society, 85, 353. 

104. Nordman, C. E. and Kumra, S. K. (1965). Journal of the American Chemical 
Society, 87, 2059. 

105. Nordman, C. E. (1985). In Crystallographic computing 3 (ed. G. M. Sheldrick, 
C. Kriiger, and R. Goddard), pp. 232-9. Oxford University Press. 

106. Nordman, C. E. and Hsu, L. Y. R. (1982). In Computational crystallography 
(ed. D. Sayre), pp. 141-9. Oxford University Press. 

107. High, D. H .  and Krout, J. (1966). Acta Crystallographica, 21, 88. 
108. Stout, G. H. and Jensen, L. H .  (1989). X-ray structure determination, pp. 

312-5. Wiley, New York. 
109. Rossmann, M. G. and Blow, D. M. (1962). Acta Crystallographica, 15, 24. 
110. Tollin, P. (1966). Acta Crystallographica, 21, 613. 
111. Tollin, P. (1976). In Crystallographic computing techniques (ed. F. R. Ahmed), 

pp. 212-21. Munksgaard, Copenhagen. 
112. Wilson, C. C. and Tollin, P. (1986). Journal of Applied Crystallography, 19, 

411. 
113. Wilson, C. C. (1989). Acta Crystallographica, A45, 833. 
114. Rossmann, M. G. (ed.) (1972). The molecular replacement method. Gordon 

and Breach, New York. 
115. Rius, J. and Miravitlles, C .  (1987). Journal of Applied Crystallography, 20, 

261. 
116. Egert, E. and Sheldrick, G. M. (1985). Acta Crystallographica, A41, 262. 
117. Woolfson, M. M. (1954). Acta Crystallographica, 7, 61. 
118. Hamilton, W. C. (1964). Statistics in physical science, pp. 17-18. Ronald, New 

York. 
119. Buerger, M. J .  (1956), Proceedings of the National Academy of Sciences of the 

U S A ,  42, 776. 
120. Fan Hai-Fu, Yao Jia-Xing, and Qian Jin-Zi, (1988). Acta Crystallographica, 

A44, 688. 
121. White, P. S. and Woolfson, M. M. (1975). Acta Crystallographica, A31, 53. 
122. Woolfson, M. M. (1976). In Crystallographic computing techniques (ed. F .  R. 

Ahmed), pp. 106-14. Munksgaard, Copenhagen. 
123. Main, P. (1977). Acta Crystallographica, A33, 750. 
124. Main, P. (1978). Acta Crystallographica, A34, 31. 
125. Declercq, J. P., Germain, G. ,  and Woolfson, M. M. (1975). Acta Crystal- 

lographica, A31, 367. 
126. Hull, S. E., Viterbo, D. ,  Woolfson, M. M., and Zhang Shao-Hui, (1981). Acta 

Crystallographica, A37, 566. 
127. Baggio, R.,  Woolfson, M. M., Declercq, J. P., and Germain, G. (1978). Acta 

Crystallographica, A34, 883. 



Solution and refinement of crystal structures 1 401 

128. Declercq, J .  P., Germain, G. ,  and Woolfson, M. M. (1979). Acta Crystal- 
lographic~, A35, 622. 

129. Yao Jia-Xing, (1981). Acta Crystallographica, A37, 642. 
130. Debaerdemaeker, T. and Woolfson, M. M. (1983). Acta Crystallographica, 

A39, 193. 
131. Debaerdemaeker, T. and Woolfson, M. M. (1989). Acta Crystallographica, 

A45, 349. 
132. Debaerdemaeker, T., Tate, C., and Woolfson, M. M. (1985). Acta Crystal- 

lographica, A41, 286. 
133. Bhuiya, A. K. and Stanley, E. (1963). Acta Crystallographica, 16, 981. 
134. Burla, M. C., Giacovazzo, C., and Polidori, G. (1987). Acta Crystallographica, 

A43, 797. 
135. Woolfson, M. M. (1956). Acta Crystallographica, 9, 804. 
136. Ramachandran, G. N. and Raman, S. (1959). Acta Crystallographica, 12, 957. 
137. Srinivasan, R. (1961). Acta Crystallographica, 14, 607. 
138. Ramachandran, G. N. and Srinivasan, R. (1970). Fourier methods in crystal- 

lography. Wiley-Interscience, London. 
139. Main, P. (1979). Acta Crystallographica, A35, 779. 
140. Tollin, P., Main, P., Rossmann, M. G., Stroke, G. W. and Restrick, R. C. 

(1966). Nature, 209, 603. 
141. Meyer-Arendt, J. R. (1972). Introduction to classical and modern optics, pp. 

413-27, Prentice-Hall, Englewood Cliffs, N.J. 
142. Bragg, W. L. (1950). Nature, 166, 399. 





Ionic crystals 
FERNANDO SCORDARI 

Introduction 

This chapter deals with a class of natural and synthetic compounds that, at 
least to a first approximation, can be treated as being composed of 
oppositely charged spheres. We start by illustrating some important 
chemical and physical concepts that are later on applied to the organization 
of ionic crystals. For instance, we shall see how it is possible to rationalize 
some atomic structures in terms of the energetics of crystal formation. To 
this end, the ionic model, attractive for its simplicity, will be used even if 
departure from the predictions are common particularly when bonds have 
quite prevalent covalent character. The close-packing model of spheres is 
examined closely and used as a helpful tool to describe many structures. 
Finally we see how the concepts and principles illustrated previously are 
very useful for the systemization of several ionic structures with different 
degrees of complexity. 

The structure of the atom 

Atoms with a single electron 
We know from quantum that the motion of the electro~ (e-) 
in a hydrogen atom can be described by means of the wave function 
Y(x, y, z), or orbital, and that IY(x, y, z)I2 dv expresses the probabjlity of 
finding the electron in a given element of volume, dv. 

The electron can assume different states of energy, each distinguished by 
four quantum numbers n, 1, m, s:  

(1) n, the principal quantum number, is related to the energy of thg 
electron, and can have any positive integral value from 1 to w; 

(2) 1, the azimuthal quantum number, expresses the angular momentum 
module (= v m  h/2n) (where h is Plank's constant) of the path ~f 
the electron and determines the form of its orbital: orbitals are 
indicated by the letters s, p, d, f, g . . . . and correspond respectively to 
1=0,  1, 2, 3, 4 . .  . n - 1 ;  

(3) m, the magnetic quantum number, (-1 s m  S +1) represents the 
angular momentum component in the direction of the magnetic field 
and characterizes the orientation of the orbital; 

(4) s, (s = f i), the spin quantum number, determines the way in which 
the electron spins. 
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Using the spherical coordinates r, 6 ,  q (see Fig. 6.1) Y(x, y, z )  can be 
resolved into the products of three functions with separate variables: 

Y(r, 6, q) =Rn, l ( r )e1 ,~(6)@rn(~) .  (6.1) 

While R;,,(r) gives the probability of finding the electron at a certain 
distance from the nucleus, the form and the orientation of its orbital are 
determined by 8 and @. 

The functions R, 8 and @ take different algebraic forms according to the 
quantum numbers with which they are associated. 

\ 
The probability of finding the electron in a spherical shell of volume 

4nr2 dr, at a distance of r from the nucleus, is 4nr2R;,,(r) dr. The function 
X Dnal(r) = 4 ? ~ r ~ R ; , ~ ( r )  is known as the radial probability function. It is 
Fig. 6.1. Relationship between the orthogonal 
coordinates x y, zand the spherical coordinates 

represented in Fig. 6.2 for orbitals Is, 2s, 2p, 3s, 3p, and 3d. 
r, 8, v. The presence of secondary maxima, occurring before the main maximum, 

produces some important effects. For example when the electron is located 
in the 3s orbital it is more penetrating than that when it is in the 3p, (as 
shown in Fig. 6.2) whereby we can deduce that the ionization energy 
required by the 3s electron is greater than that required by the 3p electron. 

Let us examine now the angular part of Y(r,  6 ,  q ) .  The spatial shapes of 
the angular probability functions are illustrated in Fig. 6.3. These configura- 
tions allow us to estimate the magnitude of the v vector that is proportional 
to the probability (summed over all distances) that the electron will be 
found in that direction. 

Atoms with more than one electron 
The basic configuration of the electrons of an atom can easily be deduced by 
means of the aufbau principle, or gradual building up of atoms. This 
exploits the Pauli principle and a scale of the relative energy of the orbitals. 
The Pauli principle can be synthesized as follows: in an atom no two 
electrons exist which have all four quantum numbers, n, 1, m, and s, the 
same. Therefore two electrons belonging to the same orbital, as defined by 
the first three quantum numbers, must spin in opposite ways. 

Fig. 6.2. Radial probability functions for orbitals 
&&% 

1s: 2% 2p. 3% 3p, and 3d for the hydrogen atom. r (4) 
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dXby2 d ~2 d x ~  ~ X Z  d y z  Fig. 6.3. Angular probability functions for: (a) s; 

(b) P,, P,, P,; and (c) dx2-,,2, dr2, dVr dxrl dyz 
I---- (d orbitals. 

The energy of the orbitals for various neutral atoms increases in the 
following order: 

This experimental scale, though not always reliable (see Fig. 6.4), 

Fig. 6.4. Relative energy of various orbitals 
versus the atomic number Z. 
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nevertheless constitutes a good guide for the building up of atomic 
structures and especially for the location of valence electrons. For example 
the outermost electrons of Rb and Sr occupy the 5s orbital rather than the 
4d, exactly as predicted by the energy scale. The relative energy of the 
orbitals versus Z is shown in Fig. 6.4. 

Following the aufbau principle the orbitals are filled gradually as shown 
below: 

Chemical Orbital n I m s Electrons 
element 

On the same principle, the entire periodic table can be obtained in the 
same way, as illustrated in Table 6.1. 

Elements whose valence electrons are in the s orbitals belong to groups 
IA or IIA: alkaline metals have only one valence electron in their s orbital, 
while alkaline-earth metals have two. The elements in groups from IB to 
VIIIB, known as transition metals, have their external electrons in orbitals 
(n - l )d which immediately precede the last orbital ns. 

Those elements whose valence electrons are in the p orbitals belong to 
groups I11 to VIIIA. Such elements are known as post-transition metals and 
non-metals, and are separated roughly in the Table 6.1 by a broken line. 

Helium (in the hatched square) can be placed either in group IIA, taking 
into account its electron configuration, or in group VIIIA, taking into 
account its chemical behaviour similar to that of the other noble gases. 
Finally there are the lanthanides and actinides which are characterized by a 
gradual filling of the f orbitals preceding by two places (n - 2) the last 
orbital s(n). 

Interactions between ions 

Notes on chemical bonds 
A knowledge of the structure of an atom allows reasonable predictions to be 
made about interactions between adjacent atoms. At this point it will be 
useful to recall certain general concepts of chemistry. 

The influence which the nuclear charge has on the external electrons 
varies according to which orbitals they occupy and to what degree they are 
shielded by the electrons closer to the nucleus (see p. 419). Such variations 
in electrons attraction can be evaluated by means of: ionization energy 
(IE); electronic affinity (EA); electronegativity (EN). 

IE  is the energy needed to remove an electron from the orbital of an 
atom to an infinite distance. The closer the electron is to the nucleus the 
greater the energy required. First, second energy of ionization, and so on, 
indicate the increasing quantities of energy necessary to free electrons 1, 2, 
etc. In accordance with recent thermodynamic conventions endothermic 
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Table 6.2. Partial series of the electronegativity of elements in  accordance with 
Sander~on [~ '  

Element EN Element EN Element EN Element EN 

H 2.31 V2 + 1.24 Rh 1.47 DY 0.94 
He - Cr2+ 1.35 Pb 1.57 H o 0.96 
Li 0.86 Mn2+ 1.44 Ag 1.72 E r 0.96 
Be 1.61 Fe 1.47 Cd 1.73 Trn 0.96 
B 1.88 Co2+ 1.70 In 1.88 Y b 0.96 
C 2.47 Ni2+ 1.75 Sn2+ 1.58 Lu 0.96 
N 2.93 Cu 1.14 Sn4+ 2.02 Hf 0.98 
0 3.46 Zn2+ 1.86 Sb 2.19 Ta 1.04 
F 3.92 Ga3+ 2.10 Te 2.34 W 1.13 
N e 4.38 Ge4+ 2.31 I 2.50 Re 1.19 
N a 0.85 As3+ 2.53 Xe 2.63 0 s  1.26 
M g  1.42 Se 2.76 Cs 0.69 Ir 1.33 
Al 1.54 Br 2.96 Ba 0.93 Pt 1.36 
S i 1.74 Kr 3.17 La 0.92 Au 1.72 
P 2.16 Rb 0.70 Ce 0.92 Hg 1 .92 
S 2.66 S r 0.96 Pr 0.92 TI+ 1.36 
CI 3.28 Y 0.98 N d 0.93  TI^+ 1.96 
Ar 3.92 zr2+ 1 .OO Prn 0.94 Pb2+ 1.61 
K 0.74 Nb 1.12 Sm 0.94 Pb4+ 2.01 
Ca 1.06 M o  1.24 Eu 0.94 
Sc 1.09 Tc 1.33 G d 0.94 
~ i ' +  1.13 Ru 1.40 Tb 0.94 

energy (absorbed by the atom) is marked positive, while exothermic energy 
(given off by the atom) is marked negative. 

E A  is the energy given off when an electron is added to the valence shell 
of an atom. The acquisition of a first electron by non-metallic atoms 
involves the giving off of energy. However, the acquisition of a further 
electron is an endothermic process, as the addition of the first electron has 
brought the atom to a sort of 'saturation' level. 

EN expresses the property of an atom to attract electrons to itself when it 
combines. It is difficult to evaluate this property, since, unlike IE and EA, it 
depends also on the nature and number of the atoms with which it bonds. 
Since the vast majority of elements can form large numbers of combina- 
tions, the EN cannot be an invariable value for each element. The various 
methods u ~ e d [ ~ , ~ ]  to define EN have led to various electronegativity series. 
The semi-empirical series adopted here is that of ~ande r son , [~ ]  illustrated in 
Table 6.2. 

Two atoms or ions are influenced by two forces: attraction (Fa) and 
repulsion ( F , ) .  The algebraic sum of their relative energies, E, and E,, is 
indicated by E. The minimum of this function, E,, in correspondence to 
R = R e ,  represents the energy gain of a couple of ions in 'contact', as 
opposed to the energy they would possess at an infinite distance. R, is the 
bond length in correspondence with which the forces of attraction and 
repulsion are balanced. 

The bonds can be divided orientationally into two categories: 

(1) strong bonds with energy E, > 90 kcal mol-l; 

(2) weak bonds with energy E, < 35 kcal mol-'. 

Type (1) bonds are due to direct interaction between the outermost 
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orbital electrons. If the bond electrons tend to be concentrated in the region 
between the atoms, then the bond is termed covalent (e.g. an H, molecule). 
If, instead, the outermost electrons tend to be transferred from one atom to 
the other, giving origin to high concentrations and impoverishments in 
comparison with the original electronic densities, then the bond is referred 
to as an ionic bond (e.g. an NaCl crystal). Finally, if the bond electrons 
belong to the whole crystal, then the bond is known as metallic (e.g. 
crystalline Na). Most compounds are characterized by bonds of an 
intermediate nature which are referred to as heteropolar covalent bonds. 
The degree of ionicity of a bond (ID) can be evaluated if the difference in 
electronegativity between two atoms involves (X and Y) is known, 
(AENxy = ENx - ENy). If the bond between them is simple, then, in 
accordance with ~ a u l i n ~ , [ ~ ]  ID can be estimated by means of the following 
equation: 

ID = 1 - exp [-O.~~(AEN,,)~]. (6.2) 

Using Table 6.2 for NaC1, KC1, and LiF the following values for ID can 
be obtained: 0.77, 0.80, 0.90. 

Type (2) bonds are due to weaker, essentially electrostatic, forces like van 
der Waals forces or hydrogen bond.['] Van der Waals forces are present in 
all compounds: together with hydrogen bonds they play a primary role in 
molecular crystal structure (see Chapter 7). Hydrogen bonds are fundamen- 
tal for the cohesion of many compounds like proteins, molecular crystals, 
hydrated salts, etc. 

lonic crystals 
The periodic table (Table 6.1) and Table 6.2 show that the EN of elements 
varies with a certain regularity. In fact it increases much more from left to 
right (along the periods) than from bottom to top (along the groups). The 
further apart two elements are in a given period, the greater is the 
difference in electronegativity between them, and the more markedly ionic 
are the bonds of the compounds they form together. The various types of 
bonds which form between the atoms play an important role in determining 
geometrically the structural pattern and the physico-chemical properties 
which characterize a crystalline substance. 

In molecular crystals, more or less complex, finite, atomic aggregates can 
be found, i.e. molecules, within which considerably stronger covalent bonds 
are formed than the van der Waals bonds which are formed between the 
molecules (see Chapter 7). In non-molecular crystals the protagonists are 
atoms or ions (simple or complex) which are held together by more or less 
localized bonds, and in limited cases of maximum polarization, by Coulomb 
interactions. 

This chapter will deal with non-molecular crystals, in particular ionic 
crystals. The following questions will be considered: 

1. What conditions must be satisfied in order that a combination of ions 
may be considered stable? 

2. What are the configurations that such combinations give rise to? 

The energy associated with a given ions' disposition will be analysed 
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briefly in order to answer the first question, while the atomic building of 
some typical structures will be analysed in order to answer the second. 

Gibb's free energy, G = E - TS + PV, indicates the stability of a crystal- 
line structure. The term PV (pressure x volume) can be omitted if the 
pressure is not high, thus free energy takes the form: 

where F is Helmholtz's free energy, E is the internal energy of the crystal, 
T is the absolute temperature, and S is the entropy. E, known also as 
cohesion energy, is the sum of two terms: 

E = UL + Ev. (6.4) 

UL is the static term, also known as lattice energy, (see p. 411), and 
expresses the potential energy of the immobile ions in the equilibrium 
positions. Ev is the dynamic term which expresses the vibration energy of 
the mobile ions oscillating around the equilibrium positions. If the tempera- 
ture is not very high and the structure is well ordered, i.e. if for Ev and 
TS << UL, F = UL results, then the stability of a structure can be calculated 
by means of UL, which, as we shall see, can be estimated experimentally 
using the Born-Haber cycle. 

UL can be calculated not only for ionic crystals but also for partially ionic 
crystals (crystals in which there are prevalently covalent bonds as well as 
prevalently ionic bonds), provided that the groups of atoms associated 
mainly by covalent bonds are considered as single ions, having a charge 
equal to that of the whole group. 

U, is the sum of various values: electrostatic attraction energy E,, due to 
the prevailing long radius forces; repulsion energy, E,, due to the prevailing 
short radius forces (such forces depend both on the repulsion of the charges 
(e--e-, p+-p+) and on the repulsion between fully occupied orbitals at any 
attempt to superimpose them (Pauli's principle)); energy due to crystal field 
stabilization, E,; energy due to covalent bonds; energy due to van der Waals 
forces, etc. 

E,  is definitely the dominant term, being about 80 per cent of the entire 
potential energy, while E ,  is about 10-15 per cent. E,  is not negligible when 
transition metals are present in the structure. The lower the AEN between 
the ions combined, the more substantial is the percentage of energy due to 
covalent bonds. Finally, the percentage of energy due to van der Waals 
forces depends on momentary interactions between induced dipoles. This 
type of force is always present, since the barycentre of the positive nucleus 
does not correspond to the barycentre of the negative charges, due to 
thermal agitation. Thus momentary dipoles are formed which interact 
electrostatically with other induced dipoles. This section will deal only with 
the first three contributions: E,, E,, E,. Chapter 7 should be consulted for 
an analysis of the other terms of particular importance for molecular 
crystals. 

Lattice energy: the contributions of attractive and 
repulsive terms 
With reference to Table 6.1, compounds with prevalently ionic bonds are to 
be found amongst combinations of alkaline metals, alkaline-earth metals 
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(groups I, IIA), part of group IIIA, transition metals with low oxidation 
numbers, and non-metals (groups VI and VIIA). Lattice energy, or rather 
the U, energy of a crystal, can be defined as the energy necessary at 
absolute zero to break down a mol of crystal into its ionic components, 
carrying them to an infinite distance. The formation of an ionic bond can be 
considered as having two distinct phases in origin: 

(1) a positive ion or cation forms in the following way: 

(2) a negative ion or anion forms in the following way: 

If ionization takes place by means of the taking off of more than one 
electron, then the total IE is the sum of the partial I E S . [ ~ , ~ ]  

For example, let us consider two opposite charges supposedly concen- 
trated in a single point, +zle, -z2e (e being the charge or an electron). At a 
distance of R from each other, they are mutually attracted by a force 

from which the potential electrostatic energy of the charges can be derived: 

In accordance with Born, the repulsion energy is given by: 

where B is a constant of proportionality; n, Born's exponent, is a value 
linked to the type of ions which form the crystal and variesM from 5 to 12. 

Alternatively the repulsion energy can be expressed as follows: 

E, = b exp (-RIP) (6.8) 

where b and p are empirical parameters, which can be determined, like n, 
by means of compressibility measures. 

The total potential energy E for a couple of ions is given by: 

The minimum of the function E, is obtained as follows: 

hence: 

Re is the equilibrium distance between two ions. Substituting (6.11) in (6.9) 
gives: 
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Let us calculate the potential energy in the case of a row of N couples of 
ions of opposite charges, positioned as illustrated in Fig. 6.5. 

For the two anions on either side of the reference cation (heavily marked 
circle) and for the two cations immediately outside them, the potential 
energy will be respectively: 

E, = -2z1z2e2/R and E ,  = +2zlz2e2/(2~). 

Fig. 6.5. 'Touching' cations and anions 
alternating in  a row. 

Taking into account all the ions around the marked cation the total E,  is 
given by: 

1% .... @ @ @ @ @ @ @ @ @ ... 
- 

Using the same procedure we will also obtain: 

E,  = 2B/Rn + 2B/(2R)" + 2B/(3R)" + . . . -2B/Rn. (6.14) 

Thence in the case of a row of ions (6.9) takes the form: 

Following the same procedure used in (6.10) we found B = 1.39 
z , ~ ~ e ~ ~ " - ~ / 2 n .  Replacing B in (6.15) and observing that the electrostatic 
interactions between each ion and all the others are N,  just equal to the 
couples of opposite charged ions, (6.15) will be: 

Equation (6.16) differs from (6.12) not only in the number of the 
interactions N, but also in the constant 1.39. This constant derives from the 
positions of the ions considered in Fig. 6.5: more generally it depends on 
the type of three-dimensional lattice which the ions form. ~ a d e l u n g ' s [ ~ ~ ~ ]  
constant expresses the geometric characteristics of the lattice, and will be 
indicated here as AM. If No (Avogadro's number) is the number of couples 
of ions contained in a mol, (6.16) becomes: 

AM values for some important lattice types are given in Table 6.3. 
Since a crystal is the content, in terms of atoms, of a cell which is 

repeated many times in space, its potential energy can be calculated as 
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Table 6.3. Madelung constants, AM, for some 
compounds 

Structure Coordination A, 
number 

CsCl 
Halite (NaCI) 
Zinc blende (ZnS) 
Wurtzite (ZnS) 
Fluorite (CaF,) 
Cuprite (Cu,O) 
Rutile (TiO,) 
Anatase (TiO,) 

follows: 

(if i = j ,  I #  0). (6.18) 

EL is the potential energy of an elementary cell, the coefficient ; derives 
from the fact that every couple of ions is included twice in the calculation of 
(6.18), N is the number of ions contained in the cell, zl and z2 are the 
number of their charges expressed in terms of electrons, x ,  = x, - x, are the 
interatomic vectors between the i and j ions of the cell, 1 is a generic lattice 
vector, b, is the repulsion coefficient between the i and j ions, and p is the 
hardness parameter due to its repulsive forces. The electrostatic potential, 
represented by the first term of (6.18), diminishes gradually over long 
distances. This term is in practice evaluated by means of particular series, 
such as an optimized Ewald's series,[71 which accelerate their convergence. 

The Born-Haber cycle allows the enthalpy or heat of formation AHf of 
an ionic crystal to be measured, starting from the elements. A scheme of the 
cycle is shown in Fig. 6.6. 

Born and Haber applied the Hess' law to ionic crystals. Interpreting the 
principle of conservation of energy in thermodynamic terms, the Hess' law 
states that AH, depends on the point of arrival and of departure, but not on 
the number or nature of the intermediate stages of the reaction, that is to 
say: 

AHf = AHM + AHx + AHIE + AHEA + UL AHM+AHx 

- 
where AHM and AHx are respectively the sublimation energy of a metallic M(g)+X(g) 
crystal (M(,,) and the dissociation energy of the molecule X2 in its gaseous 
state (X2(,J. AHIE and AHEA are respectively the ionization energies of the q E l  F H E I  

metal in its gaseous state and the electronic affinity. For example, for NaCl M?g)+x(,) 
an enthalpy equal to = -98.2 kcal mol-' has been determined, using - 
the Born-Haber cycle. Knowing that AHM = 24, AHx = 29, AHIE = 118.5, 
AHEA = -83.3 kcal mol-' then UL = - 186.4 kcal mol-'. If in (6.17) we 
insert the values A ,  = 1.74745, Re = 2.814 X lop8 cm, n = 9, and introduce Fig. 6.6. Sketch of the Born-Haber cycle. 
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the conversion factor ergs -, kcal, we obtain: 

= - 183.3 kcal mol-I, 

which is very close to the value obtained from experimental data. 
The agreement between experimental data and the results of the 

calculations is particularly good in this case, although the method tends 
generally to underestimate the value of UL: in particular the estimate is at 
least 10 kcal mol-' below the experimental value for halogen compounds. 

Lattice energy: CFSE contribution 
The Born theory often gives UL values for transition metals, and in 
particular those having incomplete d orbitals, which are too low compared 
with observed values. In order to explain this discrepancy, Bethe and Vleck 
formulated a theory known as the crystal field theory (cFT).['-'~] 

This theory manages to interpret qualitatively, with conceptual simplicity, 
a series of experimental data. The limitations of the CFT are in its 
presuppositions, since it presupposes that between metal ions and ligands 
interactions of an electrostatic nature only develop, while the ligands are 
considered as point charges. To understand the type of action that the 
ligands have on the d orbitals of the metal ions, their spatial geometry must 
be borne in mind (see Fig. 6.3). 

The five d orbitals can be divided into two distinct subgroups on the basis 
of their orientation. The first encompasses the three orbitals, d,, d,,, and 
d,,, whose lobes are orientated along the diagonals of their Cartesian axes. 
The second group encompasses the two orbitals, dX2-,2 and d,2, whose lobes 
are orientated along their Cartesian axes. 

Let us analyse two cases: 

(1) a transition metal in an octahedral coordination; 

(2) a transition metal in a tetrahedral coordination. 

For case (1) we will consider a cation which has all five d orbitals empty. 
If the cation is isolated, the d orbitals all have the same energy (degenerate 
orbitals). Let us now suppose that the cation is surrounded by point-like 
negative charges q-, distributed symmetrically at equal distances from the d 
orbitals (spherical field conditions). They will have the effect of increasing 
the energy of the d orbitals, which will remain degenerate (Fig. 6.7(b)). 

If, however, we imagine that six q- charges surround the cation, 
positioned at the vertices of an octahedron and orientated in relation to the 
orbitals as shown in Fig. 6.8(a), then the two subgroups of the d orbitals, 
eg(dX2-,2, dZ2) and t2,(dxy, dxz, dyz), will have different energy values. 

The e, orbitals (shaded) point towards the ligands and are nearer to them 
than are the t2, orbitals (white), which are in an intermediate position. As a 
result, the e, orbitals have a higher energy value than the t,,, and for this 
reason the electrons prefer the latter. The difference in energy between the 
e, and t,, orbitals, known as crystal field splitting, is indicated by A,, 
(Fig. 6.7(c)). It follows the barycentre principle: the algebraic sum of the 
energies of the d orbital electrons, when all the d orbitals are filled, is equal 
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to that obtained when the cation is in spherical field conditions. Let us 
indicate Ei the absolute energy of a d orbital of the cation when isolated and 
E,, the absolute energy of a d orbital of the cation in spherical field 
condition. When the cation is in an octahedral field the energies are 
indicated respectively by X and Y for a t2, and an e, orbital. 

In order that the d configuration in an octahedral field should have the 
same energy as that in a spherical field, it is necessary that: 

6(Es, - Y) + 4(Esf + X) = lOE,, and X + Y = A,. (6.20) 

The solution which satisfies (6.20) is: X = 0.6Ao, LY = 0.4Ao. It might seem, 
judging by Fig. 6.7, that the free cation is energetically more stable than the 
complex, since E,, > Ei. In reality the bond energy (disassociation energy of 
a pair of touching ions separated into two atoms) is more than enough to 
compensate for the increase in the energy of the d orbitals. Moreover, an 
electron which occupies a t2, orbital has an energy value which is 0.4Ao less 
than E,,. Thus, every electron which occupies one of the t,, orbitals 
stabilizes the metal by 0.4Ao, while every one that fills an e, orbital reduces 
the metal's stability by 0.6Ao. 

The value obtained from the algebraic sum C i  (f xi)Ao of all the electrons 
of d orbitals (x = -0.4Ao if the electron belongs to a t2, orbital, or +0.6A0 if 
it belongs to an e, orbital) is known as the crystal field stabilization energy 
(CFSE) . 

A, ranges between 20 and 90 kcal mol-' and depends: 

on the cation charge (it increases as the charge does); 

on the type of d orbital involved (it increases substantially from the 3d 
orbitals to the 5d orbitals); 

on the symmetry of the metal ion-ligands; 

on the distance (R) between the metal ion and ligands, or to be more 
precise, on 1/~;[ '1 

on the nature of the ligands (some of which in order of increasing 
stabilization are: I- < Br- < s-' < C1- < NO; < F- < OH- < H 2 0  < 
NO;, spectrochemical series). 

Fig. 6.7. Energy levels relative to the d orbitals 
in spherical, tetrahedral, and octahedral fields. 

(b) 
Fig. 6.8. Orientation of the orbitals e, and t,, of 
a transition metal in  (a) an octahedral crystal 
field, and (b) a tetrahedral crystal field. For 
clarity's sake two of the three orbitals, t,, and t,, 
in the planes xy and xz respectively, are not 
shown. They are oriented at an angle of 45" to  
the x axis. 
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Let us now analyse how the electrons are positioned in the d orbitals. The 
first three electrons occupy the three t,, orbitals. 

The fourth electron has two possibilities: it may occupy an e, orbital, in 
accordance with the Hund's first rule, or maximum multiplicity principle 
(an atom, in its fundamental state, follows the maximum multiplicity 
principle: in a partially filled orbital the number of electrons having the 
same spin orbital is maximum), or it may associate with another electron 
already in a t2, orbital, which spins in the opposite direction, thus further 
stabilizing the complex. 

Two factors influence the fourth electron and decide which tendency will 
prevail: the A, and the pairing energy, P. The latter can be defined as the 
energy necessary: 

(1) to overcome the repulsion which exists between two electrons which 
occupy the same orbital; 

(2) to compensate the exchange energy which is lost when Hund's first rule 
is violated. 

If the A, > P, then the fourth electron will go to fill a t2, orbital, forming a 
low-spin complex (two electrons which spin in opposite direction plus two 
electrons which spin in the same way give a compound which is not very 
paramagnetic). If the A, < P, then the fourth electron will go to fill an e, 
orbital, forming a high-spin complex (four electrons which spin in the same 
way give a very paramagnetic compound). 

Table 6.4 shows the CFSE relative to high- and low-spin configurations, 
for octahedral sites. 

We will now examine the case of a transition metal in a tetrahedral 
configuration. Figure 6.8(b) shows four ligands at the vertices of a 
tetrahedron. The three d orbitals, which we shall call tZ, are nearer to the 
ligand than are the other two e orbitals. This implies that, unlike an 
octahedral coordination, in a tetrahedral coordination the three t2 orbitals 
have more energy than the two e orbitals (Fig. 6.7(a)). 

The crystal field separation value is indicated by A, and is inferior to the 
Ao(A,lA, = 419) for two reasons: 

(1) because there is no direct interaction between the ligands and the d 

Table 6.4. CFSE for transition metals of the first series in  octahedral configurations 

Number of Ion High-spin configuration Low-spin configuration 
d electrons 

t,, e, CFSE (A,) t,, e, CFSE(A,) 

0 ca2+sc3+Ti4+ 0 0.0 0  0.0 
1  1  -0.4 1 -0.4 
2  -,-i2+v3+ 2 -0.8 2  -0.8 
3  v2+cr3+Mn4+ 3 -1.2 3  -1.2 
4  c r 2 + ~ n 3 +  3 1  -0.6 4  -1.6+ P 
5 ~ n ' + F e ~ '  3 2  0.0 5  -2.0 + 2P 
6  ~ e ' + ~ o ~ + N i ~ +  4 2 - 0 . 4 + P  6  -2.4 + 3P  
7 co2+Ni3+ 5 2  -0 .8+2P  6  1  -1 .8+3P 
8  Ni2+ 6 2  -1 .2+3P 6  2  -1 .2+3P 
9 cu2+ 6 3 - 0 .6+4P  6  3  -0.6+4P 

10 2n2+~a3+Ge4+ 6 4  0.0+ 5P 6  4  O.O+5P 
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orbitals of the metal ion; 

(2) because there are four ligands instead of six. 

This explains why, as experience has demonstrated, tetrahedral complexes 
have only high-spin configurations. 

Table 4.5 shows the CFSE relative to high-spin configurations for 
tetrahedral sites. 

At this point it will be useful to list the factors, which are at times 
mutually opposed, which govern cation coordination: 

voluminous ligands favour tetrahedral coordination (see p. 425); 

the position of the ligand in the spectrochemical series (see p. 415) 
favours tetrahedral coordination if on the left, octahedral if on the 
right: 

a high ligand charge favours octahedral coordination, because it 
increases Ao, which in turn favours the formation of low-spin com- 
plexes, increasing the number of electrons in tZg orbitals; 

the CFSE favours octahedral complexes, both because A. = (9/4)A,, 
and because the CFSE of tetrahedral complexes is generally less than 
those of octahedral complexes (cf. Tables 6.4 and 6.5). 

If the CFSEs of Table 6.5 are multiplied by the scale factor 419, they can 
be compared with the CFSE of Table 6.4, and the octahedral site 
stabilization energy, OSSE (i.e. the difference between the CFSEs con- 
cerning octahedral and tetrahedral sites), can be calculated in A. units (see 
Table 6.6). 

Applications of lattice energy calculations 
Lattice energy calculations make it possible not only to rationalize a series 
of observations arising from structural analyses, but also to resolve certain 
problems without recourse to X-ray techniques. Amongst the numerous 
applications of lattice energy calculations, easily computed with the aid of 

Table 6.6. OSSE for transition metals of the first series. For the ions involved 
see Table 6.4 

Number of CFSE, CFSE, OSSE CFSE, OSSE 
d electrons A, unit high spin high spin low spin low spin 

Table 6.5. CFSE for transition metals of the 
first series in tetrahedral configurations. For 
the ions involved see Table 6.4 

Number of High-spin configuration 
d electrons 

e t, CFSE(A,) 
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various automatic programmes,[72132141 are the following: 

(1) the distribution of cations in different sites; 

(2) the effect of the distribution of certain cations in certain sites on the 
position of others; 

(3) structural predictions; 

(4) solutions to structural problems; 

(5) the determination of charge distribution in complex ions; 

(6) the estimation of the elastic constants of stable minerals subjected to 
very high pressures; 

(7) the effects of temperature and pressure on structures 

Let us examine some examples in more detail. U, was calculated for 16 
isostructural compounds with olivine, including certain berylites, borates, 
phosphates, and silicates.[1s1 

The structure of olivine, space group (s.g.) Pbnm, can be described as a 
distorted hexagonal closest-packed system of oxygen atoms (see p. 444). 
The six coordinated cations occupy two sites which are not crystal- 
lographically equivalent, M(1) and M(2) respectively, at the centre 
(0.0,0.0,0.0) and on the mirror plane. In silicates with an olivine-type 
structure these cations may be monovalent, bivalent, or trivalent (Li+, Na+, 
M ~ ' + ,  Fez+, ca2+,  Fe3+, etc.). 

Potential energy calculations indicate that if the ionic radii of the cations 
are comparable, then the cations with smaller charges will prefer the M(l) 
site. If, instead, the ionic radii are of quite different sizes, then the cation 
with the greater volume will prefer the M(2) site. In accordance with the 
calculation, where re(Li+) = 0.76 = re(Sc3+) = 0,745 A, the compound 
Li+Sc3+[Si04] is found to have Li+ in M(l)  and Sc3+ in M(2). Moreover, 
where r e ( ~ g 2 + )  = 0.72 # re(Ca2+) = 1.00 A, the compound MgCa[Si04], 
monticellite, has Mg2+ in M(l)  and Ca2+ in M(2). 

Another example is the influence of the Al/Si distribution on the sites 
occupied by Na+ in albite (AlSi,O,) at high temperatures.[161 Here too the 
calculations agree with the experimental data, that is to say, the concentra- 
tion of A13+ in a particular tetrahedral site determines the site which the 
Na+ will occupy. 

The determination of the structure of an inorganic crystal by means only 
of calculations of potential energy has serious practical drawbacks if suitable 
crystallo-chemical information is lacking initially. It would be necessary to 
do an enormous number of trials, moving the atoms in all possible 
directions, if their precise positions are not known initially. ~ e c e n t l ~ , [ ' ~ ]  
starting from the ideal structure of olivine, it has been noticed that the 
compact regular layers of oxygen atoms used as input in the calculations are 
deformed in the process of potential energy minimization, just as the actual 
structure shows them to be. 

Ionic radius 
An important factor which influences the geometry of the structure of ionic 
compounds is the so-called ionic radius. It expresses the 'dimensions' of an 
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ion considered as a rigid sphere. Since a finite value of r, when D,,[(r) = 0 
(Fig. 6.2), does not exist, 'atomic radius', and thus also 'ionic radius', are 
merely conventional terms. Nevertheless, data derived from structural 
determination by means of X-ray techniques suggest that dMx (the interionic 
distance between a cation M and an anion X) is the sum of the two 'radii' 
characteristic of the two adjacent ions. 

The problem which needs solving is how to divide dMx between the anion 
and the cation. With this aim, ~ a u l i n g [ ~ ]  considered certain alkaline halides, 
characterized by pairs of isoelectronic ions such as NaF, KC1, RbBr, CsI, 
and calculated their effective charge Z,, = Z - S. Z expresses the formal 
charge, while S indicates a screening effect which depends on the distance 
of the electrons from the nucleus and on which orbital they occupy. This 
effect can be explained on the basis of the radial distribution curves (Fig. 
6.2), which show how s orbital electrons provide better shielding for 
electrons of other orbitals than they, in turn, receive from them. For 
example, 2p orbital electrons are better shielded than the 2s orbital 
electrons, because the latter are nearer to the nucleus. In order to evaluate 
S, certain principles suggested by Slater are followed: 

1. Group the electrons as follows: 

2. Use the multiplication coefficients 0.35 and 0.85 for electrons belonging 
to the groups (ns, np) and ((n - l)s, (n - 1)p) respectively and 1 for 
those belonging to the group ((n - 2)s, (n - 2)p) or to any preceding 
group. It is preferable to use 0.30 to 0.35 in the case of groups (Is). 

3. If the electrons belong to groups (nd) or (nf), use the coefficients 0.35 
and 1, respectively, for electrons which belong to the same group, or for 
those which belong to the next group to the left. 

For example, for the compound NaF: 

and, in accordance with ~ a u l i n ~ , [ ~ ]  since the ionic radius is inversely 
proportional to Z,,, and it is known that dMx = 2.32 A, we can obtain: 

By resolving the system (6.21), re(Na+) = 0.95 and re(F-) = 1.36 A can be 
obtained, which agree perfectly with the ionic radii quoted by ~auling.[~I 
This procedure can be extended to analogous isoelectronic compounds. 
Various ionic radius systems have been proposed, amongst the most 
accurate, thanks to the large number of structures examined, are those 
which have appeared Effective ionic radii extracted from 
Shannon's original work[lgl are given in Table 6.7. These systems show that: 

1, Cations are generally smaller than anions. The average radius of the 
outermost occupied orbital varies considerably from the least electronega- 
tive atom to the cation, but very little from the most electronegative atom to 
the anion, e.g. ro(Li) = 1.586, ro(Li+) = 0.186 A and r,(K) = 2.162, ro(K+) = 
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Table 6.7. Effective ionic radii ( r e )  versus coordination number (CN) according to Shannon[lgl 

Ion CN Spin re Ion CN Spin re Ion CN Spin re 
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Table 6.7. (Continued) 

Ion CN Spin re 

Na' 

Na' 
N b3+ 
N b4+ 

N b5+ 

~ d ~ +  

Nd3+ 

Ni2+ 

Ni3+ 

Ni4+ 
yo2+ 
Np2+ 
NP3+ 
NP4+ 

Np5+ 
NP6+ 
Np7' 
o2- 

OH- 

os4+ 
os5+ 
os6+ 
os6+ 
os7+ 
os8+ 
p3 + 

p5+ 

pa3+ 
pa4+ 

pa5+ 

pb2+ 

Ion CN Spin re Ion CN Spin re Ion CN Spin re 
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0.592 A. In the anions the added electron increases the radius by a few per 
cent, e.g. ro(C1) = 0.725 A, ro(C1-) = 0.742 A and ro(Br) = 0.851, r,(Br-) = 
0.869 A. 

2. The dimensions of the atoms decrease along the period (with n a 
constant), the alkaline metals having the largest dimensions, and increases 
sharply along the group from top to bottom (with n a variable). This occurs 
because the dimensions of an atom depend both on n and on Zeff, which act 
on the atomic radius producing contrasting effects. Thus an increase in n 
tends to increase the atomic volume (the most probable radius increases 
with n, see Fig. 6.2), while an increase in Z,, tends to contract orbitals. For 
example, the Z,, calculated with Slater's principles for Na and C1 are 
respectively 2.20 and 6.10, while for Li and Cs they are 1.3 and 2.2. In the 
first case the sharp increase in Z,,, which is not countered by n (which is 
constant), induces a decrease in the dimensions from Na to C1. In the 
second case the regular increase in n, hardly countered at all by the effects 
of Z,,, induces a notable increase in the atomic volumes from Li to Cs. 
Obviously this also follows for the ionic radius. 

3. The ionic radius varies with the coordination number (CN). Note that 
the repulsion forces increases with the CN, which in turn increases the 
effective ionic radius re of the ion of the opposite charge (the cation). The 
lattice energy allows this trend to be quantified approximately. (6.15) can be 
rewritten as: 

E = -  AMzlz2e2 CNB 
R 

+- 
R" 

where AM is Madelung's constant (which has taken the place of 1.39) and 
CN, which is defined below, is the coordination number (which has taken 
the place of the number 2, that is the two anions coordinated by the cation, 
see Fig. 6.5 and eqn (6.13)). 

For R = Re, dEldR = 0, from which we can work out: 

Let us suppose that ions of opposite charges can crystallize just as well 
into a CsCl type structure as an NaCl (halite) or ZnS (wurtzite) one. 
Assuming that the intermediate value n = 9, we obtain: 

The result of (6.24) indicates that the inter-ionic distances of a CsCl type 
lattice (R,) are 2.3 per cent greater than those of an NaCl type lattice (R2), 
while (6.25) shows that those of a ZnS type lattice (R3) are smaller than it 
by =4 per cent. Since the anion radii remain more or less the same, the 
variations occur almost entirely in the cation radius. 

4. The ionic radius depends on the electronic spin state. There is a close 
relationship between ionic radius and spin state in transition metals. In fact, 
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as explained on p. 415, A. and A, depend on the type of ligands, and the 
coordination polyhedra which the ligands form around the transition metal. 
If, for example, A. is high, then the first six electrons tend to occupy the 
lower energy level orbitals, while if A. is low they occupy both energy levels 
(Fig. 6.7). These differences in turn affect the ionic radii of the transition 
metals which have from four to seven electrons in their d orbitals. To be 
more precise, electrons with high spin have a larger radius than those with 
low spin (Fig. 6.9). 

5. The ionic radius is influenced by polarization. Two ions of opposite 
charges, if they are far enough apart, have coinciding barycentres of their 
positive and negative charges. When the ions are brought together a 
distortion of the electronic charge known as polarization, takes place, which 
is greater in the anion. Combination requires a sort of participation on the 
part of the electronic charge, and therefore a certain degree of polarization, 
or covalent bonding. 

In accordance with ~ajan,['O] the polarization depends on: 

(a) the dimensions of the cation and its charge; 

(b) the dimensions of the anion and its charge; 

(c) the deviation of the electronic configuration from that of a noble gas. 

Fig. 6.9. Dependence of the effective ionic radii 
on the spin state in transition metals of the 1st 
series: (a) = bivalent; (b) =trivalent. The full 
circles refer to  low-spin configuration, the open 
circles refer to  high-spin configuration. 
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This means, for example, that for alkaline metals the polarization power 
increases according to the following scale: Li+ > Nai > K+ > Rbf > Cs+ 
(ionic potential, 0 = Z / r ,  increases from right to left). 

Regarding the anions, the greater the dimensions of their outermost 
electrons, the weaker are their bonds, due both to the greater distance from 
the nucleus and to the increasing shield effect. It follows that the 
polarizability of halogens varies according to the scale: I- > Br- > C1- > F-, 
analogously with that of haicogens. Anions with a high negative charge, 
such as As3- and p3-, are particularly easily polarized. Moreover, it has 
been shown above how the different peripheral electrons are shielded by the 
s, p, and d type electrons. Therefore, although ~ i ' +  has approximately the 
same ionic radius as Mg,'+ it polarizes more than Mg2+ one extra 
contiguous anion: this effect is even more noticeable between Cu+ and Naf.  

Maximum filling principle 

The lattice energy of No pairs of ions can be expressed as the sum of the 
potential energy contributions (uij) relative to all the possible pairs whose 
components are distant rij: 

1 'No 

U L = -  2 uij(ri,) (with i # j). (6.26) 
2 i.j=1 

The lattice energy is minimal if the total potential energy is minimal, this 
occurs when: 

(1) the interatomic distances are as close as possible to the equilibrium 
distances (R,); 

(2) the number of ions at, or very nearly at, the equilibrium distance is as 
high as possible. 

These conditions are general and apply to crystals having simple structural 
units, or complex units connected to similar units by central or near central 
forces of attraction. 

The maximum filling principle can be expressed as follows: 'Simple 
(atoms or ions) or complex (groups of atoms or ions) structural units on 
which central or near central attractive forces act tend to increase contact 
with each other to the maximum, whilst reducing their distances to a 
minimum'. 

By supposing that the ions behave as if they were rigid spheres on which 
central, or almost central, forces are acting, we can hope to: 

(1) predict the most probable arrangement of the anions which surround 
the cation (coordination polyhedra), by means of a simple geometric 
rule (radius ratio rule); 

(2) describe certain atomic building by means of dense mechanical models 
based on rigid spheres of equal radius (closest packings). 
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Coordination polyhedra 

It is sometimes convenient to illustrate crystal structures by means of 
coordination polyhedra, in order to underline the geometrical relationships 
which characterize structural frameworks. Often such polyhedra continue to 
exist beyond the crystal state as definite physico-chemical realities, e.g. 
[siO4I4- tetrahedra in silicate melts, or Fe(H20),.-,(SO4), octahedra where 
1 < n < 1.3, in aqueous solution of iron s ~ l ~ h a t e . [ ~ ~ ]  

The term coordination is used to refer to the atoms or ions which 
surround a central atom or ion. If it is not otherwise specified below, it may 
be assumed that the central ion is the cation (M) surrounded by the anions 
(XI. 

The Xs at a tangent to M are known as the first nearest neighbours of M 
and constitute the first coordination shell. The coordination number (CN) 
is equal to the number of the first nearest neighbours, i.e. to the number of 
bonds formed by an atom. The next Xs, at a tangent to the first nearest 
neighbours, are known as the second nearest neighbours of M, and form the 
second coordination shell, and so on. Sometimes the first coordination 
shell is not easily distinguished from the second. In such cases the 
uncertainty is expressed by attributing two numbers to the CN, e.g. 6 + 2. 
The distances dMx are all equal when M occupies certain symmetrical 
positions, e.g. M in 3, with CN = 6; otherwise the dMx vary, if only a little, 
from their average. 

The coordination polyhedron of M can be obtained by 'joining the dots', 
i.e. all the centres of X. Some of the possible coordination polyhedra are 
shown in Figs. 6.10 and 6.11. They can be found in structures as isolated 
polyhedra, and/or connected to polyhedra of the same or another type. 

Radius ratio rule 

If the ions are considered as behaving like rigid spheres, an attempt can be 
made to predict by geometrical means which coordinations will be pre- 
ferred. The parameter used for this purpose is p, = (r,/r,). 

Figure 6.11 shows some of the most common regular geometrical 
dispositions and their relative p, ratios. The p, values for a given anion 
increases as rM, and thus the number of contacts also increase. From Fig. 
6.11 it can be deduced, for example, that within the range 0.155 S p, < 
0.225 a triangular coordination is stable, since for p, < 0.225 cations and 
anions are no longer adjacent in tetrahedral coordination; thus it is no 
longer possible. However, the results obtained by geometrical methods 
must be integrated with further energetic considerations. 

Figure 6.12 shows the trend of U, versus p, for CsCl, NaC1, and ZnS type 
structures having the following ratios: 

This formalism not only indicates the coordination number around each 
ion, but also allows their stoichiometry to be deduced, which for the three 

Fig. 6.10. Some coordination polyhedra. (1) 
tetragonal pyramid, (2) trigonal bipyramid, (3) 
trigonal prism, (4) one-cap trigonal prism, (5) 
seven-vertex polyhedron, (6) pentagonal 
bipyramid, (7) trigonal dodecahedron, (8) two- 
cap trigonal prism, (9) three-cap trigonal prism, 
(10) icosahedron, (11) truncated tetrahedron, 
(12) rhombododecahedron, (13) 
pentagonododecahedron, (14) truncated 
octahedron. The coordination number of each 
polyhedron is indicated below it. 
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Anions 

A 
B H C  

B 

-. D ~ A  

/ C  B  

Polyhedron 

Dumb-bell 

Triangle 

Tetrahedron 

Square 

Octahedron 

Square antiprism 
or 

Thomson's cube 

Cube 

Hexagonal cuboc. 

Cuboctahedron 

Relationships between rM and rx 

A B = 2 r x , A O =  r M +  r X , m 1  = (AD - F G ) / 2  
AH' = r X g ,  AH = r x m ,  00' = = / 2 ,  O'C = r X G  
(00')' + (m)' = ( A O ) 2 ,  (rM/rX)' + 2rM/rx - ( G +  2 ) / 2  = 0 

Fig. 6.11. Other very common coordination 
polyhedra. At the side of each polyhedron there 
is its coordination number, name, and the 
procedure followed to calculate and p,. 
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compounds in question is M:X = 1: 1. From Fig: 6.12 it results that: 

(1) the UL trends are characterized by three discontinuity points in 
correspondence to the values p, = 0.732, 0.414, 0.225; 

(2) the UL trends favour a CsCl type structure when p, > 0.71, and an NaCl 
type when 0.71 > p, > 0.32; 

(3) the UL(NaCl) curve is closer to that of the UL(CsC1) than to that of the 
UL(ZnS). 

Fig. 6.12. U, pattern versus p,. From the point 
of view of the energy, the minimum p, values 
for CsCI, NaCI, and ZnS type structures are 
lower than those predicted by geometrical 
means. The difference is most accentuated in  
the range between an NaCl and a ZnS type 
structure (0.32 instead of 0.41). 

The reasons why these discontinuities exist become clearer on observing 
Fig. 6.13. In (b) an octahedron of M(X), composition is shown, while in (a) 
and in (c) the same polyhedron for a larger cation (M' > M) and for a 
smaller one ( M  < M) are illustrated respectively. In accordance with (6.17), 
the value of UL(NaC1) decreases gradually from configuration (a) to 
configuration (b), since Re < R:. However, UL does not vary in the range 
0.32 < p, < 0.414, that is to say, between configurations (b) and (c), since 
the anions already adjacent in (b) cannot come any closer together. Thus Re 
has the same value in both configurations (b) and (c). Configuration (d) is 
preferred to (c) if, in accordance with the UL(NaC1) trend of Fig. 6.12, there 
is another cation M"' < M so that p, < 0.32. In the same way, an NaCl type 
structure is likely to be preferred to a CsCl type when p, < 0.71, i.e., for p, PO @ 

L- --3 
. -, 

values a little below the discontinuity point (p, = 0.732). 

(4 (b) 

Applications of the concept of ionic radius 

To assume that an atom is rigid, and also spherical, is obviously a gross 
simplification of the physical reality. Accurate studies[221 to determine p(r) 
have shown, for example, that in MgO the electronic cloud of the oxygen 
only partially wraps the cation: therefore the terms sphere and ionic radius 
lose any meaning. Despite this, however, the concept of ionic radius often 
produces satisfactory results. Alkaline halides and, to a lesser extent, 
alkaline-earth metal oxides are the compounds to which a mechanical 
atomic model is most easily applied. Such compounds with an MX 
stoichiometry should have structures with a CN = 8, if the ionic radii r,(M) 

Fig. 6.13. (a), (b), and (c) illustrate the changing 
relationships between equal anions (white 
circles) in an octahedron, as the cations vary in  
size (broken circles). Configuration (c) becomes 
unstable and could evolve into configuration (d) 
if pe < 0.32. 



428 1 Fernando Scordari 

L I  + Na" K+ RbiCs' 

Fig. 6.14. Three fields are shown (T, 0, C),  
delimited by two unbroken lines (p, = 
0.73,0.41). In accordance with geometrical 
criteria, they represent stability areas for the 
alkaline halides. The broken line (p, = 0.32) 
shows the reduced T field according to the 
energy indications of Fig. 6.12. The diamonds 
and squares show the type of coordination 
polyhedron on which the real halide structures 
are based: octahedra and cubes respectively. 

Fig. 6.15. Taking into account ionic radii r,(A) 
and r,(B) the stability fields for A2B04 structures 
are shown. These fields conform to the 
following structure types: (a) 0-K2S04, (b) 
Na2S04 (thenardite), (c) (Mg, Fe), SiO, (olivine), 
(d) Be2Si04 (phenakite), (e) A12Mg0, (spinel), (f) 
Sr2Pb04, (g) K2NiF4, (h) FeJaO,, (i) A12Ba04. 

and r,(X) are more or less the same. Otherwise, such compounds are 
governed by the cation coordination number (since the cation is generally 
smaller than the anion) and the stoichiometry. The dimensions of the cation 
depend on the CN (see p. 422). Therefore ambiguity remains as to the ionic 
radius dimensions when the structure (and thus the CN) is not known. Let 
us compare the theoretical data with the experimental data for the halides. 
'Average' ionic radii for a CN = 6 are used, for example, CsBr (r, = 1.67, 
rx = 1.96 A) forms a compound Cs': Br- = 8:8, in accordance with both the 
radii ratio: (p, = 0.85) and the stoichiometry (M:X = 1:l). Also for NaCl 
both the p, = 0.53 and the stoichiometry indicate a compound Na+:Cl- = 
6:6, in accordance with the results of structural analysis. 

The rule of the radius ratio predicts M:X = 4:4 structures in the higher 
field T (p, < 0.41), M:X = 6:6 in the intermediate field 0 (0.41 G p, < 0.73), 
and M:X = 8:8 in the lower field C (p, > 0.73). Experimental data, on the 
other hand, shows that almost all the structures are of M:X = 6:6 type, two 
are of M:X = 8:8 type (CsI, CsBr), and one, CsC1, can crystallize in either 
type of coordination. 

In Fig. 6.14 a broken line is shown for p, = 0.32, which corresponds to 
the point of intersection of the NaCl and ZnS curves in Fig. 6.12. The first 
anomaly involves the T field. The incongruence between the observed 
structure M:X = 6:6 and the predicted structure M:X = 4:4 by the radius 
ratio rule is only apparent. Considering Fig. 6.12, NaCl type configurations 
are stable for 0.32 < p, < 0.41, i.e. the values observed. The other anomaly 
involving the lower field, C, is constituted by M:X = 6:6 structures and can 
be explained by considering not only the interactions between ions of 
opposite charge, but also those between ions of similar charge in the CN 
function, and the geometric relationships between the coordination poly- 
hedra (see p. 435). 

However, if re(IVLi+) were used for LiI, p, = 0.27 would be found to be 
the right value. The configuration Li+:I- = 4:4 would gain potential energy 
and would therefore seem likely to be preferred, which is contrary to the 
experimental data. 

Another example can be illustrated by means of Fig. 6.15, as deduced by 
~h i l l ips . [~~I  The 'fields of stability' for the most important structures of 
A2B04 composition are shown. The diagram was obtained empirically on 
the basis of about 130 structures using the effective radii of the cations in 
octahedra1 (r,) and tetrahedral (r,) coordinations. Such a diagram makes it 
possible to work out the field in which a certain A,BO, structure prevails, 
even if some borderline cases may be contrary to the general trend. 
Improvements in structural predictions can be obtained by considering not 
only geometrical factors but also chemical factors, such as polarization. 

Graphs for compositions of M,X, type have been obtained by plotting 
the average quantum number n (which indicates roughly the dimensions of 
the ions) on the y axis and the electronegativity difference, AEN (which 
indicates the degree of polarization of the bond),[241 on the x axis. The 
prediction is improved if p,AEN is used instead of AEN. 

Finally using effective mean ionic radii, several have found 
quantitative relations between crystallographic and compositional para- 
meters in garnets. So according to   as so,[^^] it is possible to calculate the 
oxygen fractional coordinates, the metal-oxygen distances, and the cell 
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edge of oxide garnets and hydrogarnets as follows: 

where r(X), r(Y), and r(Z) are the mean ionic radii respectively of cations 
8, 6, and 4 coordinated, and (OH) are the number of OH groups present in 
the formula unit (f.u.) of garnets: 

Closest packings 
Most metals, some compounds of the type MX, MX, etc., and others with a 
more complex stoichiometry, take on structures which can be described by 
means of closest packings of rigid spheres of equal radius. Let us denote by 
packing coefficient (ci) the ratio: 

ci = C (VaIVc) (6.27) 

where C Va is the volume of the atoms or anions contained in the 
elementary cell of volume Vc. For discussion of the concept of ci see 
Appendix 6.A. According to the maximum filling principle, ci + max. 
Hexagonal closest packing (HCP) and cubic closest packing (CCP) satisfy 
this requirement. When analysing their characteristics, it should be borne in 
mind that in the common structures, ions, atoms, or groups of either, 
replace rigid spheres forming the so-called closest-packing structures. The 
basis of the HCP and CCP dispositions is a layer of spheres (layer A) 
packed as closely as possible similar to that illustrated in Fig. 6.16. 

This layer has the following characteristics: every sphere is in contact with 
another six spheres; between every three spheres there is a space, known as 
a hole, every sphere is surrounded by six holes, one third of each of which 
belongs to it, so a total of two holes can be associated with each sphere. 
Such holes, which are all alike from a physical point of view, are indicated 
by b (white) and c (black). Spheres belonging to the next layer may 
correspond to the b or the c holes of layer A, and are thus said to belong to 
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Fig. 6.16. A compact layer of spheres 
characterized by triangular cavities indicated by 
white spaces (b) and black spaces (c). At the top 
of the sketch on the left is shown the symmetry 
of the layer A (6m), while on the right is shown 
the symmetry of a pair of layers AB (3m). 

Fig. 6.17. An ABAB.. . sequence of layers 
determines a compact hexagonal cell (top), 
while an ABCABC . . . sequence determines a 
compact cubic cell (bottom). 

layer B or layer C. With reference to a hexagonal mesh of sides a, and a2, 
in general a sphere may correspond to any of three possible holes: a (for 
layer A) belonging to site (Oa, + Oa2 + nh) b to site ((2/3)a, + (1/3)a2 + 
nh), and c to site ((1/3)al + (2/3)a2 + nh), where n is a whole positive 
number including zero and h is a vector perpendicular to the compact layer 
of a module h (which is equal to the distance between two successive 
compact layers). HCP is characterized by an ABAB . . . type sequence, 
while CCP is characterized by an ABCABC . . . type sequence. 

The two characteristic sequences which represent HCP and CCP and their 
orientation with respect to the compact layers, are illustrated in Fig. 6.17. 

The HCP cell is projected in the direction [OOl] 1 1  h, while the CCP cell is 
projected in the direction [ I l l ]  1 1  h. An HCP cell contans two spheres (that 
of a simple hexagonal cell contains one); a CCP cell contains four, as does a 
face-centred cubic (FCC) lattice (for this reason it is possible to use FCC or 
CCP with the same meaning). It is possible to identify four types of 
polyhedra in both packings: cuboctahedra, octahedra, tetrahedra, and 
triangles. The first, illustrated in Fig. 6.11, can be traced by joining the 
centres of the 12 spheres around a central sphere of equal radius. The other 
three can be traced by joining the centres of the spheres which correspond 
to the three possible holes of the closest packings: octahedral, tetrahedral, 
and triangular. 
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Many cations have a radius of just the right size, compared with that of 
the oxygen atoms, that they can occupy tetrahedral or octahedral holes. Let 
us examine, therefore, these two types of holes more closely in order to find 
out what is their quantitative ratio to the spheres. In Fig. 6.18 a layer A 
(black spheres) and a layer B (white spheres) are shown. 

Supposing that the sequence is an ABAB . . . type, a sphere marked S 
(belonging to layer A and not visible in the figure) is surrounded by a total 
of 12 spheres (six of A and six of two B layers, above and below A). It 
contributes to the formation of: 

(1) six octahedral holes ( 0 )  three of which are shown in the figure; the -. -. 
other three can be obtained by a symmetry plane m which passes 
through A; Fig. 6.18. Octahedral, 0, (top right) and 

tetrahedral. T. (bottom right) holes with relative 
coordination polyhedra &a& out from two 

(2) eight tetrahedral holes, three of which, shown in the figure, are in f o ~ ~ o ~ i n ~ c o m p a c t ~ a ~ e ~ ~ .  
correspondence with the three spheres marked with a thick T and one 
of which is in correspondence with the sphere marked S and three of 
the spheres marked with the same T; the other four can be obtained by 
a symmetry plane m which passes through A. 

Since six spheres are needed to form an octahedral hole and every sphere 
helps to form six holes, obviously there is a ratio of one hole to each sphere. 
Four spheres are needed to form each tetrahedral hole, while each sphere 
helps to form eight tetrahedral holes, so there is a ratio of two tetrahedral 
holes to each sphere. 

A layer of octahedral holes (OL) is enclosed by two layers of spheres, as 
are two layers of tetrahedral holes (TL), through they are orientated in 
different directions (see Fig. 6.32). This situation is common both to HCP 
and CCP, consequently a double layer of spheres has the following 
characteristics in both HCP and CCP: 

1. Octahedra which share edges. 

2. Tetrahedra which, differently orientated (TL, and TL,), share edges. 

3. Octahedra and tetrahedra which share faces. 

The differences between HCP and CCP are in the geometric elements 
shared by the polyhedra in the direction perpendicular to the layers; these 
are the differences which concern us most here. HCP has all the octahedra 
and half of the tetrahedra sharing faces with polyhedra of the same type, the 
other half of the tetrahedra sharing vertices, and finally the octahedra and 
tetrahedra sharing vertices and edges. Instead, CCP has (Fig. 6.19) all the 
octahedra sharing faces with half of the tetrahedra, the other half of the 
tetrahedra sharing vertices, and finally the octahedra which share edges, as 
do half of the tetrahedra. 

It follows that, for example, while in HCP the octahedra share faces in 
the direction perpendicular to the OL and edges parallel to the OL, in CCP 
the octahedra share edges only. Such differences are very important for 
certain ~toichiometries[~~] as we shall see below, since they affect the 

Fig. 6.19. An FCC cell. The tetrahedral (black 
stability of the structure and thus which type of packing is preferred. triangles) and octahedral (white diamonds) 

There are two coefficients which characterize closest packings. The first is holes of a CCP are shown. Note that the number 

q (6.27), which has a value of 0.74 both for HCP and CCP. It is easily ~ ~ ~ ~ ~ [ ~ ~ j : ~ : " , " ~ " , : ~ ~ ~ ~ ~ $ ~ ~ ~ , " ~ ~ I l  
found, remembering that an elementary HCP cell contains two spheres of that of the tetrahedral holes. 
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Fig. 6.20. The centres of the three spheres 
marked A and the centre of the sphere marked B 
together form a tr igonalpyamid. It canbe 
deduced from this t h a ~ :  BH' = DV3/2,  HH' = 
l /3 (BH1)  = DV3/6, h = ~ 9 6 1 3 ,  h / D  = q 6 / 3  = 
0.8165. 

Fig. 6.21. A BCC cell. The central sphere is 
surrounded by eight spheres at a distance of D 
and six more distant spheres at 1.150 ( 2 0  = 1V3, 
where / i s  the side of the cell). 

while a CCP one contains four (Fig. 6.17). For example, the side of an 
elementary CCP cell will be a,, = ~ j 6 ,  where D is the diameter of a sphere. 
The volume of a sphere is V, = 4.189(D/2)3 from which c, = 4v,/a3 = 0.74. 

The other parameter is the ratio hlD. Since h = [ ( ~ V ' 3 / 2 ) ~ -  
( ~ f i / 6 ) ~ ] " ~  (see Fig. 6.20) it follows that h lD = 0.8165. For example, in 
HCP, co = 2h, therefore colD = 1.63. 

Combinations of HCP and CCP can create an indefinite number of 
closest-packing structures. The repetition period, nh, will be in the range 
2h S nh ~ p , ,  where p ,  is the maximum dimension of the crystal perpen- 
dicular to the closest-packed layers which the sequence can reach when the 
structure is completely disordered. 

As n increases, the number of possible sequence combinations grows very 
rapidly. For example, there is only one possible packing for n =4: 
ABACA; for n = 6 there are two: ABCACBA and ABABACA; but for 
n = 20 the number of possible packing rises to 4625. One of the following 
ways can be chosen to derive the possible packings: the first is to count all 
the possible sequences once having generated them;[301 the second is to 
obtain them by means of combinatorial analysis.[311 Figure 6.16 shows the 
symmetry of a closest-packed layer (6mm) and of a pair of such layers (3m). 
The minimum symmetry content common to all closest packings is P3ml. 
Other symmetries are represented by all those space groups which can have 
as a subgroup P3ml (see also Fig. 1.E.1), i.e. ~ 3 m 1 ,  ~ 6 m 2 ,  Pb3mc, 
P6,/mmc, R3m, ~ g m ,  ~ m 3 m .  For HCP and CCP the space groups are 
respectively: P63/mmc and ~ m 3 m .  

When real structures are considered the symmetry may be reduced, due 
not only to the arrangement of the cations which occupy the various holes, 
but also to the distortions which the cations produce in the lattice. 
Therefore, some structures belonging to systems different from those just 
examined can be described as closest packings, distorted to a greater or 
lesser degree. 

There are other close packings characterized by spheres with fewer next 
neighbours. These are the PTP (primitive tetragonal packed), the BCT 
(body-centred tetragonal), and the BCC (body-centred cubic). The first has 
c, = 0.72 and CN = 11, the second (not found in the known structures) has 
c, = 0.70 and CN = 10, the third (taken on by several structures) has 
c, = 0.68 and 8 + 6 spheres of the same type coordinated around a central 
sphere, eight at a distance of D and six at a distance of 1.150 (Fig. 6.21). 
HCP and CCP, on the other hand, have 12 spheres all at the same distance 
from the central sphere. 
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Pauling's rules 

Ionic bonds play an important role in the building up of structures for the 
vast majority of minerals. In fact, even the groups (Si04)4-, (SO4)'-, 
(C0,)'-, which have prevalently covalent bonds internally, can be seen as 
large negative ions bonded to the cations by essentially ionic interactions. 
The general principle of the minimization of potential energy can be applied 
to such compounds. The Pauling rules are derived from this principle. 

Pauling's first rule 
This rule synthesises the geometric relationships which tend to be estab- 
lished between cations and anions in a stable structure, introducing the 
concept of the ionic radius. 

A coordination polyhedron is formed around each cation. The distance 
between the cation and the anion is determined by the sum of the radii, 
while the coordination number of the cation is determined by the radius 
ratio. 

The maximum number of anions, compatible with the equilibrium 
conditions imposed by the minimum potential energy, surround the cation. 
Too many anions would increase the cation-anion distance, thus making the 
structure less stable than if the distances are very close to Re. The optimum 
distance is the sum of the ionic radii: rM + r,. However, the cation-anion 
distances do not depend only on the ionic radii of the cation and anion 
involved, but also on the average radius of each of the other cations.[321 In 
structures of a certain complexity, it can happen that not all the cations have 
optimum CN and dMx distances. In such cases some cations, above all the 
largest ones with the lowest valence (formal charge), are the first to take on 
higher-energy coordinations, followed by smaller higher-valence cations 
which tend to form more rigid coordinations. 

It follows that the lowest coordination expected for Na+ (which taking 
into account the oxygen has p,=0.71) is 6, but in sodalite, 
Na8C12[Si6A16024], it has CN = 4 (302- + ICl-), while Si4+, half of which is 
substituted by AP+, has its usual CN, i.e. 4. 

Pauling's second rule 
Known as the valence sum rule, this rule analyses the electrostatic balance: 

The valence of an anion in a stable ionic structure tends to compensate 
the strengths of the electrostatic bonds which reach it from the cations 
situated at the centres of the polyhedra of which the anion is a vertice, 
and vice versa. 

In practice, this rule means that the electrostatic balance is satisfied by the 
cations belonging to the primary coordination. 

If -V is the valence of an anion, vi and (CN,), are respectively the 
valence and the coordination number of the ith cation, then we can define 
the electrostatic bond strength as si = V~/(CN,)~. The rule can be sum- 
marized as: 

v = &  (6.28) 
i 

where i is extended to all the cations coordinated by the anion in question. 
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For high-symmetry, simple ionic structures it is possible to give a single 
value to the bond strengths and to find the valence of a given ion by 
multiplying the bond strength i times. For example, for NaCl (space group 
~ m 3 m ) ,  the bond strength which reaches a given C1- from a given Na+ is 
116. Since there are 6 Na+ surrounding each C1-, all equidistant from it 
follows: 

The same procedure can be applied as a rough guide to rutile, Ti02 
(space group P42mnm) whose structure is based on slightly distorted Ti06 
octahedra. Each ~ i ~ +  cation coordinates six 02- and around each oxygen 
there are three Ti4+, This means that each oxygen receives 416 of the 
valence of titanium. Since very 0'- is surrounded by three ~ i ~ + ,  then: 

which is exactly the opposite of the oxygen valence. 
In structures with irregular polyhedra, like brookite (a polymorph of the 

compound TiO,) which is characterized by strongly distorted Ti06 oc- 
tahedra, this simple model needs to be modified slightly. In order to 
calculate the strength of each electrostatic bond, or more correctly the bond 
valence (s), Brown and ~ h a n n o n [ ~ ~ ]  proposed the following equation: 

where so, Ro, and N are empirical constants. For so = 1, Ro = R,, the 
parameter R1 represents the expected bond length when the valence is 
assumed to be one. In such as a case (6.29) becomes: 

By inserting the correct values for R, and N for each cation[341 and the 
bond distance R, which can be deduced from the structure, s can be 
determined. For example Na+, Mg2+, A13+, Si4+, P5+, and s6+ have values 
of R1 = 1.622 A and N = 4.290. The experimental bond valence can be 
obtained by applying (6.30). The agreement between the experimental and 
the theoretical valence is very good, generally the difference does not 
exceed 5 per cent. If the agreement is not satisfactory for an ionic structure 
it can be ascribed to the following: 

(1) the structure has not been correctly determined; 

(2) the structure has not been interpreted properly, or certain bonds have 
been overlooked, or the wrong atoms have been ascribed to certain 
sites (e.g. Si4+ in place of A13+ or vice versa). 

(3) The cations have stereochemically active lone-pair electrons (e.g. sb3+). 

Amongst the various applications of this method[351 it is often used by 
crystallographers to distinguish 0'- from (OH)- and H 2 0  in some complex 
mineral structures.[361 Calculated bond valences can be used through (6.28) 
to calculate experimental atomic valence and so the oxidation state of an 
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Pauling's third rule 
This summarizes, from a qualitative point of view, the influence that the fact 
that the coordination polyhedra share geometric elements has on the 
potential energy and thus on the stability of the structure: 

The sharing of sides and, in particular, of faces between coordination 
polyhedra reduces the stability of a structure. This effect is accentuated 
where there are cations with high valence and low coordination number. 

In order for the potential energy to be minimal it is necessary that: 

(1) the distances between the cations should be as great as possible, 
compatible with the existence of the structure itself, 

(2) the cations should be shielded as much as possible from each other. 

Figure 6.22 illustrates the distances between cations for certain regular 
polyhedra. As can be seen, the fulfilment of conditions (1) and (2) are less 
likely, for any given pair of polyhedra, when they share an edge than when 
they share only a vertice, and least likely when a face is shared. The least 
probable of all the configurations are two tetrahedra which share an edge, 
and above all two tetrahedra which share a face. This explains why in 
silicates the tetrahedra [SiO4I4- are found either isolated or sharing vertices; 
they hardly ever share edges and never share faces. For tetrahedra 
containing cations with a higher charge, like [PO4I3-, even the likelihood 

Fig. 6.22. Geometrical relationships between 
some regular polyhedra. Considering the 
oxygens as touching rigid spheres with a radius 
of re = 1.40 A, the following inter-cation 
distances can be calculated: = 3.43, 4, = 
1.98, 0(,=1.14, do,=3.96, %,=2.80, d,,=2.29, 
4,=4.85,  dc, =3.96, d,, = 2.80A. The sketch at 
the bottom shows the different shielding effects 
produced by three or four anions together on 
the underlying cation. 
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that they will share vertices is reduced, so much so that in the case of group 
having yet higher cation charges, like [S0,I2-, that it is almost nil. 

Figure 6.22 shows that do, = dCf. However, in octahedral coordinations 
the shielding of the two cations is more accentuated. This explains why 
numerous halites tend to keep the NaCl structure rather than that of the 
CsCl, favoured by p,. Structures like CsCl are only possible if the anions 
are large enough to keep the cations far enough apart, as can be observed in 
the case of CsC1, CsBr, CsI (in the NaCl structure type, the distance 
between two cations for CsF is 4.24 A and 4.92 A for CsCl). It should be 
remembered here that, in accordance with the indications of Fig. 6.22, ionic 
compounds with an MX stoichiometry (see p. 437) crystallize not with an 
HCP lattice, but with a CCP lattice (e.g. NaC1, MgO, CaO, etc.). This is 
because the energy levels involved in the formation of the two packings seen 
along h is different: in the case of CCP the octahedra MX6 share edges, 
while in the case of HCP they share faces. 

On the basis of what has been said, the question of how to realize the 
relative stability of certain ~ i 0 ~ [ ~ ~ ~  polymorphs can be understood. This 
compound has three polymorphic modifications: rutile, brookite, and 
anatase. The structural differences concern mainly the way in which the 
TiO, octahedra are linked to one another. In rutile, brookite, and anatase, 
each octahedron shares respectively two, three, and four edges with a 
similar number of other octahedra. The structural stability of brookite is less 
than that of rutile, while anatase is the least stable, as predicted by the third 
Pauling rule. 

Pauling's fourth rule 
The fourth rule is an obvious corollary of the third, and so no further 
comment is necessary: 

In a crystal containing various cations, those with high valence and a 
low coordination number tend not to allow the coordination polyhedra 
which they form to share any features. 

Pauling's fifth rule 
The fifth rule, known also as the parsimony principle, states that: 

The number of essentially different constituents in a crystal tends to be 
small. 

This rule summarizes the common observation that most of the non-fluid 
substances that surround us are crystalline and not amorphous. This means 
that the number of structural units, having considerable differences for 
instance with regard to volume and chemical properties, tends to be low for 
any given substances. 

Source applications of these rules together with symmetry and other 
crystallochemica1 parameters are given in Appendix 6.B. 

Ideal and defect structures 

The preceding paragraphs have dealt mainly with the principles which 
underlie the structural building of ionic compounds. 



Ionic crystals 1 437 

Some simple, or at least not very complex, atomic configurations, 
characterized at most by few dozen atoms per elementary cell, will now be 
examined. Particular attention will be given to ideal structures, i.e. those 
structures in which it is possible to single out an elementary cell 100 per cent 
representative of all the cells that make up the crystal. In such cases all the 
crystallographic sites which are symmetrically equivalent (including the 
translation) must be occupied by the same chemical species and the 
resulting compound is defined as an ideal chemical formula. 

In defect structures the relative positions of the atoms are not regular 
throughout the crystal. Thus the representative cell is a statistical cell which 
expresses the probability that a certain site will be occupied by a given 
atom. In such cases the compound is better defined by a crystallochemical 
formula, which, apart from taking into account the stoichiometry, considers 
also the percentage of presences (occupancy) of a certain chemical element 
in a given crystallographic site. For example, the compound MgA1204 
(spinel) parent of the spinels, is a normal spinel (see p. 442) and adopts the 
following ideal structure: Mg2+ occupies only the tetrahedral sites, while 
A13+ occupies the octahedral ones. The compound Fe304 (magnetite) is 
instead an inverse spinel (see p. 442) in which Fe2+ occupies only 
octahedral sites, while Fe3+ occupies half tetrahedral sites and half 
octahedral ones. 

Therefore the structure of magnetite can be represented by a particular 
cell of statistical significance having its tetrahedral sites occupied by Fe3+ 
and its octahedral sites occupied by 0.5 Fe2+ and 0.5 Fe3+. This structural 
peculiarity is evident from the crystallochemical formula Fe3+ (Fe::, 
Fe;:),O4 which substitutes the less explanatory stoichiometric formula 
Fe304. Moreover, the composition of a non-stoichiometric magnetite 
Fe,,O,, can be rationalized from its crystallochemical formula in the 
following way: ~ e ~ + ( ~ e & ,  Fe::, 00.0,)204. In fact the reason why it is not 
stoichiometric becomes clear immediately: it is due to the substitution of 
Fe2+ by Fe3+, with the necessary abandoning of 5 per cent of the octahedral 
sites and the formation of gaps (represented by the square). 

From the point of view of symmetry, the space group ~ d 3 m  adopted both 
by the spinel and by the magnetite, represents in the first case true 
symmetry and in the second statistical symmetry. 

IG the next section some classes of simple structures, defined on the basis 
of their stoichiometry, will be analysed briefly. The silicates, included 
amongst the ionic compounds by tradition, will be considered briefly from 
the point of view of their classification. 

MX structures 
As predicted by the third Pauling rule, the packing definitely preferred by 
MX compounds is CCP, while BCC is rare, and HCP is never adopted. It 
can be seen from the stoichiometry of these compounds that all the 
octahedra are occupied and that therefore an HCP-based structure is 
decidedly less probable than a CCP-based structure. In the first case, in fact, 
the octahedra share edges and faces, while in the second the octahedra only 
share edges. The non-existence of hexaognal packing in the structures of 
MX compounds can be best explained with help of Fig. 6.23. 



438 1 Fernando Scordari 

Fig. 6.23. In (a) an unstable layer of cations 
(white spheres) and anions (black spheres) of 
equal radius R / 2 ,  is illustrated. By moving 
alternate rows in the direction of the arrows a 
distance of R / 2 ,  the stable layer illustrated in (b) 
is obtained. In (c) the structure of NaCI, or halite 
is shown. 

C a 2 +  O F -  
Fig. 6.24. A representation of the structure of 
fluorite, CaF,. In the figure the cubic 
coordination polyhedra of the ca2+ (black 
circles) are outlined, together with the 
geometrical relationships between them. The 
elementary cell (dotted lines) consists of four 
such polyhedra occupied by calcium and four 
similar empty polyhedra. 

A compact layer like that shown in Fig. 6.23(a) is not stable due to the 
strength with which like charges repel each other. Such effects are 
considerably attenuated if alternate rows are translated a distance of R/2 in 
the direction of the arrows (Fig. 6.23(a)) to give a regular one positive-one 
negative ion pattern (Fig. 6.23(b)). In order that a succession of layers of 
the same type (along the perpendicular to the layer examined) should be 
stable it is necessary that a second layer be translated by R. The successive 
translation (equal to R) of a third layer brings us back to the initial 
configuration. Such a succession of layers gives rise to a cubic structure like 
that of NaCl, space group Fm3m, or in other words, a CCP of C1- ions with 
all the octahedral sites filled by Na+. 

This tendency is strengthened if the cations are bivalent, which is why 
MX compounds almost always adopt CCP type packings. Apart from the 
halides previously mentioned (see p. 427), other examples are: periclase 
(MgO), wustite (FeO), bunsenite (NiO), manganosite (MnO), and lime 
(CaO). Some alkaline halides also crystallize naturally: villiaumite (NaF), 
halite (NaCl), sylvine (KCl), and carobbite (KF). 

MX2 and M,X structures 
Such compounds present a wide range of structures, of which only a few are 
illustated here. 

Fluorite (CaF,), cubic, space group Fm3m, is shown in Fig. 6.24. Each 
cation Ca2+ is surrounded by eight F- positioned at the vertices of a cube, 
while each anion F- is surrounded by four Ca2+ positioned at the vertices of 
a tdtrahedron (Ca2+:F- = 8:4). The structure adopts a quasi-closest packing 
of F- similar to BCC, with half of the sites at the centre of the cube empty 
and half occupied by Ca2+ alternately, in substitution of F- (p, > 0.73) at 
112, 112, 112. Due to the alternate filling of these sites the cubes share edges 
instead of faces, and consequently the cations are further apart and better 
shielded (see Fig. 6.22). Various compounds such as SrCl,, BaCl,, and 
others with more complex formulae in which some cations are substituted 
by other cations e.g. 2Ca2+ -t K+ + ~ a ~ + ,  3Ca2+ + 2K+ + U4+ (for + 
read 'are substituted by'), etc. have a CaF, type structure. 

The ratio M:X = 6:3 is favoured when p, < 0.73 allowing the formation of 
structures similar to that of rutile (TiO,). The tetragonal structure of rutile, 
space group P4,/mnm, can be described as HCP. Figure 6.25 illustrates a 
layer of octahedra (OL) seen (a) perpendicular to and (b) parallel to its 
extension, while Fig. 6.26(a) shows a packing of OL layers of the type 
shown in Fig. 6.25(b). The black octahedral are occupied, the white are 
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empty. Figure 6.26(b) shows a structure of rutile obtained by the distortion 
of the ideal HCP as seen in Fig. 6.26(a). This is in agreemwnt with p, and 
with the stoichiometry of rutile which predicts that half of the octahedral 
holes will be occupied. The occupation of the holes occurs in such a way 
that the octahedra share edges and vertices, never faces, as is illustrated in 
Fig. 6.26(c). 

This feature means that HCP is preferred to CCP, in which the octahedra 
share edges only. Minerals with a structure like that of rutile include: 
sellaite (MgF,), pyrolusite (MnO,), cassiterite (SnO,), stishovite (SiO,) a 
high-pressure compound, with Si4+ hexacoordinated. A TiO, type structure 
is certainly one of the most common among strongly ionic binary com- 
pounds such as fluorides and oxides. It is also common amongst more 
complex compounds in which the Ti4+ is substituted by cations with a 
similar radius: e.g. if 3 ~ i ~ +  -, ~ e , +  + 2 ~ a ~ +  then tapiolite (FeTa206) is 
formed, or if instead 3Ti4+ + ~ g , +  +2Sb5+ bystromite (MgSb206) is 
formed. 

Another structure typical of compounds with a ratio of M:X = 6:3 is that 
of brucite (Mg(OH),): trigonal with space group ~ 3 m l .  It has a layered 
structure which can be described by means of HCP. There are two possible 
ways for half of the octahedral HCP holes to be occupied without the 
octahedra sharing faces: the first has already been illustrated for rutile; the 
second involves all the octahedra of alternate octahedral layers being 
occupied (e.g. OLA occupied entirely and OLB left completely free in Fig. 
6.26(a)). Brucite is an example of the second type. It is more advantageous 
from the point of view of energy to fill every other octahedron of each row, 
as happens in rutile, rather than to occupy all the octahedra of OLA and 
none of OLB. This is because in the first case the octahedra are linked by 
(six) vertices and (two) edges, but in the second by (six) edges only. The 
layered structure of rutile is due to the permanent OH- dipoles which link 
together the fully occupied octahedral layer;@] they are known as 'brucitic 
layers'. Minerals with a brucite type structure include: portlandite 
(Ca(OH),), pyrochroite (Mn(OH),), nibrucite (Mg4NiO(OH),). Another 
group of minerals with brucitic layers, space group ~ 3 m ,  which conform to 
CCP is: chlormagnesite (MgCl,), lawrencite (FeCl,), scacchite (MnCI,). 

If the cation-anion positions of fluorite are inverted, an anti-fluorite 

- A  
O L B  

- B  
O L A  - A  
O L B  

- B  
O L A  

- A  

Fig. 6.25. An octahedral layer (OL) obtained by 
combining two compact layers of spheres of 
equal radius. In (a) i t  is seen perpendicular to  its 
extension, in (b) parallel to  its extension. 

Fig. 6.26. In (a) (on the right) a sequence of ideal 
compact layers ABAB.. . with the corresponding 
sequence of octahedral layers OLA-OLB-OLA- 
OLB.. . (on the left), seen parallel to  their 
extension. The rows of black octahedra 
(perpendicular to the sheet) are occupied, while 
the white ones are empty. In (b) the distorted 
closest packing is shown, while in (c) the rows of 
occupied octahedra are outlined, and their 
extension along the axis c, in  the structure of 
rutile TiO,. 
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structure is formed with a ratio of M:X = 4:8, as seen in the compounds 
Li20, Na20, K20,  Rb20. Such a structure can be described as a CCP 
having all its tetrahedral holes occupied by monovalent cations. Note that in 
this case an HCP would be impossible, since the tretahedra would have to 
share faces, thus bringing the alkaline cations into close contact. 

MX3 and M2X3 structures 
Bayerite and gibbsite, two polymorphic modifications of the compound 
Al(OH),, have MX, stoichiometry: they are both monoclinic with space 
groups C2/m and P2,ln respectively. Their structure (M:X = 6:2) is based 
on a layer similar to that of brucite. As can be seen from their 
stoichiometry, only one third of their octahedral holes are occupied, while 
the presence of OH- groups indicates that their structure is layered like that 
of brucite. It is useful to double the stoichiometric formula: A12(OH),, and 
then to divide it into (OH); and Al2(OH);+. This expedient makes it easy 
to illustrate that there is a layer of unoccupied octahedra, which overlies 
another layer of octahedra two-thirds occupied (Fig. 6.27(a)). An HCP type 
packing, with partially occupied, similarly orientated octahedral layers, 
alternating with empty octahedral layers results[391 (bayerite, Fig. 6.27(b)). 

Leaving the relative positions of the cations out of consideration, in 
gibbsite, two occupied octahedral layers, like that shown in Fig. 6.27(a), are 
related by a plane of symmetry m which passes through the empty layer, so 
the same orientation of the layers recurs every other full layer (Fig. 
6.27(c)). In actual fact the arrangement of A13+ cations does not allow for 
the plane m. Moreover, the substitution of 3 ~ g ~ +  4 2A13+ + 0, reduces 
the symmetry from trigonal (brucite) to monoclinic (bayerite and gibbsite). 

Both corundum (a-A1203) and haematite (a-Fe203) have an M:X = 6:4 
ratio, are rhombohedra1 with space group R ~ C .  Their structures are 
characterized by a bayerite-type layer (Fig. 6.27(a)). It can be deduced from 
their stoichiometry that the octahedral holes are two thirds occupied. The 
structure of corundum can be obtained translating the bayerite layers by 113 
(-01 + a,). 

Perpendicularly to the bayerite-type layers the octahedral holes are 
ordered so that one empty octahedron is followed by two occupied 
octahedra which share a face. This explains not only the type of lattice, R, 
but also why the structure is stable. In fact the translation has the same 
effect as a rotation of the bayerite type layer through 120" would have with 
the consequent turning of the empty octahedral holes around a threefold 

Fig. 6.27. (a) The layer characteristic of bayerite, 
AI(OH),; 1 indicates the mesh of bayerite, 2 that 
of corundum, a-Al,O, whose structure is based 
on the same type of layer; (b) shows the 
structure of bayerite seen in the direction (010) 
as a sequence of alternately empty and occupied 
OL; (c) shows the sequence of OL typical of 
gibbsite, ANOH),. 

O L B  1 - I 

O L A  C - I 

O L B  I 
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screw axis. As far as stability is concerned, it is indeed the presence of the 
two empty octahedra, above and below the two occupied octahedra, that 
allows the two cations which populate them to move as far apart as possible. 
This improves the shielding, since the three oxygens shared are brought 
closer together, and thus reduces the electrostatic repulsion. The octahedra 
occupied by ~ l ~ +  and Fe3+ are, in fact, rather distorted, having three longer 
distances and three shorter ones (Al-0 = 1.86(x3) and 1.97 A(x3); 
Fe-0 = 1.95(x3) and 2.21 A(x3)). 

A,B,X, structures 
A very large number of compounds of great geological, crystallochemical, 
and applicative interest belong to this class. Some structures are illustrated 
below in which A and B represent monovalent to pentavalent metals and X 
is generally oxygen. 

llmenite (FeTiO,) and perovskite (CaTiO,) have ABX, stoichiometry. 
Ilmenite is isostructural with corundum, in which the cations are substituted 
according to the following scheme: 2A13+ (Fez+, ~ g ' + )  + ~ i ~ + .  Such 
cations are ordered so that the octahedra of one layer are occupied by Fez+ 
and those of the next layer are occupied by Ti4+. It follows that two 
contiguous octahedra belonging to two adjacent layers are occupied by ~ e ' +  
and by ~ i ~ + ,  so that the average valence (+3) of the two cations remains the 
same as that of the two corresponding cations in corundum. The specializa- 
tion of the octahedral sites, half occupied only by Fez+ and half only by 
Ti4+, determines the disappearance of the glide c. Thus the space group R ~ C  
(corundum) becomes R3. A number of structures with various valences 
(shown in brackets) have a similar structure to ilmenite, including 
LiNbO,(+ 1, +5); MgTiO,, FeTi03(+2, $4); Mn(Fe, Sb)03, a-AlZO3, a- 
Fez03 (the last two can be considered as particular cases of the structure of 
ilmenite) and Ti203, V203(+3, +3). In these compounds A and B have 
similar ionic radii ( ( r e )  = 0.65 A), therefore they occupy two octahedral 
holes of a CCP type packing. 

If, however, the cation is too large to fit into the octahedral holes, 
another type of structure with the same stoichiometry is formed (perovskite 
type). Thus, as Na+, K+,  Ca2+, Sr2+, Ba2+, pb2+, etc., cations have an ionic 
radius equal to that of the anions when have CN = 12, they can substitute an 
X (0'-, F-) anion. If one quarter of the X anions are substituted by such 
cations, then a particular type of CCP is obtained, a representative cell of 
which is illustrated in Fig. 6.28. 

Fig. 6.28. Contents of an elementary cell of 
perovskite, CaTiO,. Note the coordination 12 of 
the ca2+ (hatched circles). The octahedral holes 
not occupied by caZ+ are marked X. 
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Fig. 8.29. (a) A projection, parallel to a,, of the 
elementary cell of spinel (MgAI,O,). The number 
next to the circles indicate the heights ( ~ 1 1 8 )  
respectively of M ~ ~ +  (odd) AI,+ (even, above the 
circles) and 0'- (even pairs, below the circles). 
In (b) the contents of two subcells T and 0, 
which alternate regularly along, a,, a,, and a, 
giving rise to the spinel cell (illustrated in (c)), 
are outlined. 

Ti4+ occupies one quarter of the octahedral holes available, i.e. only of 
those which have no direct contact with the larger cations. Compounds with 
a similar structure to that of perovskite include: NaNb03(+l, + S ) ;  
BaZr03(+2, +4); LaA103, LaFe03(+3, +3). 

The term spinels is used to indicate a considerable group of compounds 
with a similar structure, having the general formula AB2X4. This term is the 
extension to the group of the name of spinel (MgA120,), a mineral 
characterized by a slightly distorted CCP type structure. In normal spinels 
the cations marked A occupy tetrahedral holes (t), while those marked B 
occupy octahedral holes (0). The range of their radii depends not only on 
the tolerance of the structure, but also on the type of anion: X = 0'-, s*-, 
se2-, Te2-, F-, CN-. 

According to the stoichiometry of spinels one eighth of the tetrahedral 
and half of the octahedral holes of an FCC cell should be occupied. In 
actual fact, such an arrangement would result in an unstable structure 
because of the need for occupied tetrahedral and octahedral holes to share 
faces. However, the structure becomes stable if two FCC subcells share, so 
to speak, their work: essentially one gives space to cations in coordination 
of 4(T), while the other only gives space to those in coordinations of 6(0)  
(see Fig. 6.29). 

In this case, in fact, the occupied tetrahedra and octahedra share vertices. 
This leads to the succession of cells TOT . . . along a l ,  a2, and a3, which in 
turn leads to a cell consisting of eight subcells with a total atomic content of 
A,B1,X3,. In this section only spinels with AB204 will be considered. Type 
B cations can have a charge of +1, +2, or +3, while type A cations can 
have a corresponding charge of +6, +4, or $2 V.U. (valence unit). Thus 
from the point of view of valence, there are three possible types of spinel: 
(+6, +I),  (+4, +2), (+2, +3). 

In inverse or anti-spinels, the type A cations occupy octahedral sites, 
whereas the type B cations are equally divided between octahedral and 
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tetrahedral sites. Consequently, the formula that describes normal spinels is 
(A),(B2),04 while that of inverse spinels is (B),(AB),O,. 

The two formulae represent extreme cases, since spinels of various 
degrees of inversion commonly exist. The following general formula for 
spinels can be given (A,-,B,),(A,B2-,),04, where i (inversion parameter) 
represents the fraction of A cations which are hexacoordinated. 

The choice of configuration, inverse or normal, and the degree of 
inversion depend on a delicate network of factors[61 which can be sum- 
marized as follows: (1) temperature; (2) Madelung's constant and u 
parameter; (3) order-disorder phenomena; (4) ionic radius; (5) charge; (6) 
CFSE; (7) polarization. 

If we establish the origin of the cell of spinels (space group ~ d 3 m )  at 43m, 
the equivalent 32 positions of the anions in an ideal packing, can be 
generated, starting with the atomic coordinates u, u, u (u = 318). Therefore 
the distortion of the actual packing can be measured by means of the u 
parameter. In order to illustrate better the structure of spinels, Fig. 6.29 was 
obtained by translating the origin of the cell by 118, 118, 118. Only (+2, +3) 
spinels will be analysed here. 

Factor (1). Recently, by means of neutron and X-ray diffraction, the 
range (750-850 "C according to some authors,[401 600-700 "C according to 
others[411) within which transition of the order-disorder type occurs in the 
spinel MgA1204 has been specified. Figure 6.30(a) shows the effect of 
temperatureL411 on the u parameter. u falls rapidly in the area within the 
broken lines, which corresponds to the transition normal + inverse spinel. 
However, it would seem that this transition is not complete, since it stops at 
1200 "C, when i = 0.30. 

Factors (2) and (3) can be examined together. It has already been shown 
the Madelung's constant, AM, depends on the lattice geometry. The 
distortion of the lattice, which can be measured by means of u, influences 
the value of AM; moreover, since AM and U, are in direct proportion (see 
eqn (6.17)), the configuration with the highest AM value is favoured. The 
trend of AM plotted against u is illustrated in Fig. 6.30(b) for normal spinels 
(ns) , ordered inverse spinels (ois) , and disordered inverse spinels (dis) . 
From the figure it can be seen that for u > 0.379, AM(ns) > A,(dis) and that 
for u >0.381, AM(ns) >AM(ois). This is the main reason why almost all 
($2, $3) spinels with u > 0.381 are normal. 

Factors (4) and (5) counteract one another. Factor (4) indicates that the 
smallest cations ought to occupy the tetrahedral sites, while the largest 
ought to occupy the octahedral sites. Since B ~ +  type cations are very often 
smaller than type cations, this means that (+2, +3) spinels should be 
prevalently inverse. Experience, however, shows that exactly the opposite is 
true. Factor (5) takes into account the Pauling7s second rule, according to 
which the charge of the cation is more or less neutralized by the anions of 
the first coordination shell. Consequently, the cations with the highest 
charges (B3+) would tend to occupy the sites with the highest coordination 
number (in this case octahedral sites), thus favouring normal (+2, +3) 
spinels. 

Factor (6) considers the effects of the crystal field on transition metals. 
The latter, due to the weak crystal field of the oxygens, almost all adopt 
high-spin configurations in spinels. It should be remembered that cations 
with a do or d5 electronic configuration (spherosymmetrical) include: Mn2+, 

.375  - 3 8 0  . 3 8 5  
U 

(b) 
Fig. 6.30. Shows the trend of the distortion 
parameter, u, versus the ternDerature ("C) for 
MgAI,O,. Note the rapid fall bf u (at - 650 "C) 
which indicates the rapid inversion of the spinel. 
(b) Illustrates the trend of the Madelung 
constant A, versus u. The abbreviations ns, ois, 
and dis indicate normal spinel, ordered inverse 
spinel, and disordered inverse spinel. 
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~ e ~ + ,  Zn2+, Ga3+. It is possible to predict accurately which type of spinel 
will occur, if the AM and the OSSE indications agree. If, on the other hand, 
they do not agree, one or other type of spinel may prevail, depending on 
the balance of all the factors involved. For example, (+2, +3) type spinels 
such as MgV204, MgCr204, MgMn204, are normal, since they have 
u = 0.385 (and thus AM favours ns); moreover, Mg2+ is spherosymmetrical 
and the OSSE definitely suggests that octahedral sites will be preferred by 
v3+ ,  Cr3+, ~ n ~ + .  

Now let us consider the spinels NiMn204, NiFe204. They have respec- 
tively u = 0.383, 0.381, therefore there is a slight AM bias towards ns. On 
the other hand, the OSSE favours Ni2+ rather than Mn3+ while for Fe3+ it is 
nil. Hence spinels with highest degree of inversion are the result. 

Finally the minerals magnesioferrite (MgFe204), magnetite (FeFe204), 
and trevorite (NiFe204) have respectively i = 0.90, 1.0, 1.0. In the first 
compound the OSSE of Fe3+ is zero and AM = 0.382, so there is no clear 
indication. However, Fe3+ tends to prefer tetrahedral sites, owing not only 
to the polarization (factor (7)), but also to its relatively small ionic radius 
(re(Fe3+) = 0.645, rc(Mg2+) = 0.72 A). In the other two compounds AM does 
not give clear indications, while the OSSE of Fe2+ and Ni2+ decidedly 
favour these two cations for octahedral sites, therefore the degree of 
inversion is maximum. t 

Factor (7) can play a decisive role when the other factors counteract each 
other. Therefore, if AM does not clearly favour either of the two 
configurations, polarization can play an important part either strengthening, 
or even overturning the A, indications. 

The effects of polarization are particularly noticeable where ~ e ~ + ,  Ga3+, 
and 1n3+ are concerned. For example, in jakobsite (MnFe204) the AM 
favours a normal configuration (u = 0.385)) the OSSE = 0 both for 
and ~ e ~ + .  The effect of polarization is to partially invert the AM indications, 
giving rise to a spinel with i = 0.20. For other interesting aspects concerning 
the question of spinels see, for example, Greenwood,[6] ~ u r n s , [ ' ~ ]  ~ v a n s , [ ~ ~ ]  
and ~ t t o n e l l o . [ ~ ~ ]  

Olivines are minerals with a general formula M2[Si04] where M repre- 
sents various cations, which are essentially bivalent and hexacoordinated. 
Belonging to the olivine group are: forsterite Mg2[Si04], fayalite Fe2[Si04], 
tephroite Mn2[Si04], monticellite CaMg[SiO,], kirschsteinite CaFe[SiO,], 
glaucochroite CaMn[SiO,], knebelite MnFe[Si04]. In particular, olivine is 
a solid solution of forsterite and fayalite (Mg,, Fe,-,) [SiO,], while in the 
Ca-olivines pairs of cations such as Ca2+ and Mg2+, Ca2+ and Fe2+, Ca2+ 
and Mn2+ occupy quite distinct sites. Referring to the two minerals 
forsterite and fayalite, the composition given above can also be given as 
Fo,Fal-,, or simply Fox. Olivine is found in large quantities in the earth's 
lower crust, and it is generally supposed to be particularly abundant in the 
earth's upper mantle. 

The ideal structure of a-olivine can be described as HCP with (according 

t Incidentally, the inversion and the complete disorder between Fez' and Fe3+ in octahedral 
sites make magnetite an excellent conductor of electricity. This is due to the ease with which 
~ e ' +  and ~e~~ exchange electrons. Below -153 "C the Fez+ cations become ordered, reducing 
noticeably the capacity of magnetite to conduct electricity. 
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to its stoichiometry) half of its octahedral holes occupied by Fe2+ or Mg2+ 
and one eighth of its tetrahedral sites occupied by Si4+. The closest packed 
layers are parallel to (100) and the octahedral holes are occupied in such a 
way that chains of occupied and empty octahedra form zig-zags along the c 
axis (Fig. 6.31). 

Two layers similar to that shown in Fig. 6.31, at a distance of a12 are 
translated by b/2, so that occupied octahedra overlie empty octahedra. In 
this way, in fact, as the Pauling's third rule predicts, it is not possible for the 
occupied octahedra to share faces. As pressure increases forsterite["I ,,, s,,l, a ,aver of distoned octahedra tyflcal 
becomes unstable and transforms itself giving rise first to a spinel type of the structure of olivine, (Mg, Fe),[SiO I. The 

structure (/3 and y), then to an ilmenite type structure and finally, when f d  by ~ g "  Or Fez+ 

P > 200 kbar, to two structures: a perovskite type structure, and periclase as 
follows: 2Mg2Si04 -, 2MgSi03 + 2Mg0. 

O n  the classification of silicates 

First of all, can the structures of silicates be described by means of closest 
packings? The answer to this is not always affirmative: let us examine why 
this is so. If AEN(Si-0) = 1.72, then eqn (6.2) predicts that between the 
silicon and the oxygen interactions will be established, with a percentage of 
covalent bonds more or less equal to that of the ionic bonds. As far as the 
coordination of the Si4+ is concerned, the covalent bond necessitates the 
formation of four hybrid sp3 orbitals, or in other words, the angular 
probability of finding an electron is greatest in the direction which connects 
the centre of a regular tetrahedron to its vertices (these directions form 
angles of 109'28' between each other). On the other hand, the rule of radius 
ratio predicts a CN = 4 for the ionic bond. Experimentally Si4+ is nearly 
always found to be tetracoordinated, but occasionally hexacoordinated Si4+ 
has also been observed. 

The cations which most frequently occur in the structures of silicates are: 
A13+, Fe3+, ~ e ~ + ,  Mg2+, Mn2+, Ca2+, Nai, K+.  Some of these, positioned 
around the theoretical limit of two possible coordinations, can form various 
polyhedra with the anions: e.g. for ~ 1 ~ '  p, = 0.38, therefore CN = 4, 6. 
Other cations are of a size to prefer coordinations of 4, 6, 8, or even 12. 

It has already been mentioned that the structure of olivine can be 
described as HCP, even if a rather distorted one (c, = 0.60). The distortion 
is due to the fact that octahedra and tetrahedra share edges. In fact the 
distortion depends both on the difference in length between the 0-0 
distances of the tetrahedron [SiO4I4- (-2.6A) compared to that of the 
octahedron(z2.8 A), and on the electrostatic repulsion. 

Other structures with characteristics less similar to those of closest 
packings are also possible in silicates. Figure 6.32 illustrates an octahedral 
layer (OL) and two diversely orientated tetrahedral layers (TL, and TL,), 
which are fitted one into another to form a double layer of spheres (anions), 
typical of closest packing. This complex layer will be referred to as OTL. 

There are several ways of filling the holes of a close-packed structure. Let 
us consider two border-line events. Firstly, both the tetrahedral and 
octahedral holes of the layer OTL shown in Fig. 6.32 could be filled, and of 
each successive layer. Secondly, the octahedra of one layer (OTL,) and the 
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Fig. 6.32. A layer of octahedra (OL) and two 
diversely orientated layers of tetrahedra (TL, 
and TL,), whose polyhedra form the holes 
characteristic of a double compact layer of equal 
spheres. 

tetrahedra of the overlying layer (OTL,) could be filled alternately, in 
accordance with the stoichiometric constraints. 

The configurations relative to the first hypothesis imply structures of 
higher potential energy generally, due either to the more frequent sharing 
of geometric elements, or to other factors. For example, if there is not 
sufficient oxygen to form isolated [si0,I4- groups the tetrahedra would tend 
to condense. The ideal closest packing would require an ~ i - 0 - ~ i  angle of 
109" 28', but, owing to the considerable percentage of ionic bond between 
silicon and oxygen, the two Si4+ atoms tend to move away from each other 
(thus improving the shielding) forming angles which on average are of 140". 
If, however, one of the two Si4+ is substituted by A13+, then ~ 1 - 0 - s i  
angles well below 140" (-118") can be formed. 

Intermediate figures (e.g. fully filled octahedral and partly filled tetra- 
hedral holes) lead to structures with potential energy half way between 
those of the two configurations hypothesized above. Bearing in mind what 
has been said, the structure of phlogopite, KMg,[AlSi3O,,](OH), will now 
be analysed. Supposing that it conformed to closest packing (c, = 0.56) its 
stoichiometry would indicate that one quarter of the octahedral holes are 
occupied by Mg2+ and one sixth of the tetrahedral holes are occupied by 
A13+ or Si4+. In actual fact, of four successive OTL, one is completely filled 
by Mg2+ (octahedral holes), two immediately above and below each have 
one third of the tetrahedral holes filled, while the last layer contains K+ 
cations (CN = 12) equal in number to the A13+ which substitute Si4+. To 
summarize, in phlogopite a layer of tetrahedra TL, is followed by a layer of 
octahedra OL, which is followed by another tetrahedral layer TL,, and 
finally there is a layer of K+ ions which connects two tetrahedral layers TL1 
and TL,. 

Figure 6.33(a) represents one of the two tetrahedral layers (TL,). Every 

Fig. 6.33. A layer of tetrahedra is represented in 
(a) (TL,). The black tetrahedra are occupied by 
si4+, while the white ones are empty. This 
determines, as can be seen in (b), the 
reorganization of the layer in rings with an OH- 
group at the centre, and also, as shown in (c), 
the relationship between the ring of tetrahedra 
and a group of octahedra of an OL typical of 
phlogopite, KM,,[AISi,O,,I(OH),. 
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tetrahedron shares three vertices with similar tetrahedra, as shown in the 
figure, so that every vertex is shared by three tetrahedra. If three of the 
contiguous tetrahedra (e.g. 5, 6, 7 of Fig. 6.33(a)) were occupied by cations 
with average valence >3, the Pauling's second rule would be infringed. In 
fact, supposing that they are occupied by either 3Si4+, or 2si4+ + AP+, or 
even Si4+ + 2A13+, the shared oxygen still received respectively 3, 2.75, 2.50 
v.u., far higher than the necessary value of 2. 

Therefore, with respect to closest packing, there are two important 
differences. The first is that the group of seven tetrahedra, shown in Fig. 
6.33(a), gives rise to a ring of six tetrahedra (Fig. 6.33(b)), leaving an OH- 
group in the centre instead of the oxygen which acted as the vertex of the 
empty tetrahedron (7 of Fig. 6.33(a)). 

This pseudo-hexagonal ring fits well into the overlying octahedral layer 
(Fig. 6.33(c)), and allows a ~ i - 0 - ~ i  angle of about 140". The layer of 
oxygens which constitutes the base of the ring-forming tetrahedra has 
c, =0.76, while the layer of oxygens to which the vertices of the tetrahedra 
and the OH- group contribute has c, = 0.88. The latter of these two values 
is nearer to the theoretical value, c, = 0.91. 

The other difference is represented by the anions around K f .  This cation, 
unlike the Ca2+ of perovskite, is not surrounded by six anions in the plane 
(OOl), which is characterized by K+ cations; instead the twelve coordination 
is achieved by six oxygens belonging to the ring of tetrahedra of the 
overlying layer (TL,) and six belonging to that of the underlying layer 
(TL) .  

The examples examined above refer to silicates with hexacoordinated 
cations which are relatively small, such as A13+, M ~ ' + ,  Fez+, Fe3+. 

For such cations the edge of the octahedron (-2.8 A) is similar in length 
to that of the tetrahedron (-2.6 A), as the structure of olivine demons- 
trates, in which they are shared. If larger cations are present, such as Na+ 
and Ca2+, they adopt coordinations with CN 3 6. If CN > 6, then the holes 
made available by closest packing do not fit the requirements of the cation. 
If CN = 6, octahedra with edges >3.8 A are formed, edges considerably 
longer than the edges of the tetrahedra. In this case a pair of tetrahedra 
inscribing a trigonal prism of side 4.1 A is often necessary. Such a prism is 
incongruous with the polyhedra of a closest packed OTL. 

As a result, in order to describe in rational terms the structures of 
silicates, it is necessary to abandon the mechanical model used so far. It is 
helpful to make use of particular coordination polyhedra, the type of links 
which are established between them, and other parameters. 

Liebau's crystallochemical classification 
The simplicity of a classification system depends basically on the number of 
parameters on which it is based. For the silicates this number was originally 
low (Bragg 1930) and has gradually increased as our knowledge of atomic 
structures has grown ( ~ o l t a i , [ ~ ~ ]  ~ i e b a u [ * , ~ ~ ~ ) .  

The crystallochemical classification proposed by takes into 
account the close relationships which exist between structure, chemical 
composition, thermodynamic stability, and reactivity in silicates. Given the 
strong prevalence of structures with Si4+ in tetrahedral coordinations over 
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Si4+ in octahedral coordinations, attention will be given here only to the 
former, while Liebau considers both. Since the silicon can be substituted by 
other cations such as A13+ and to a lesser extent by p5+, Ge4+, Fe3+, Be2+, 
the tetrahedron [ ~ i 0 ~ ] - ~  will be represented more generally as [TO4] below. 

The first problem to be solved is that of establishing which tetrahedra can 
reasonably be considered as part of the silicate anion. Liebau proposes the 
following criterion: 'If, under certain thermodynamic conditions, an element 
replaces some of the silicon atoms in a given silicate crystal structure so that 
the crystallographic positions are statistically occupied by silicon and the 
other cation, then this cation is recognized as part of the silicate ion7. 

For example, two phases of potassium feldspar, KAlSi308, known as 
sanidine hT (high temperature) and microcline 1T (low temperature) are 
similar since they have A13+ and Si4+ in tetrahedral coordination, but differ 
in that the two cations show different degrees of disorder. This disorder is 
maximum in the first phase, K[(A1Si,)08] while it is minimum in the second, 
KAl[Si308], since here the tetrahedral sites tend to be completely occupied 
by either A13+ or si4+. These two phases are the end members of a series 
characterized by different degrees of ~ l ~ + / ~ i ~ +  disorder and they are an 
example of the phenomenon known in thermodynamics as second-order 
phase transition. As the temperature rises the feldspar passes from one 
phase to the other as the degree of Al/Si disorder varies, without the first 
phase being destroyed (in this case it would be a first-order phase 
transition). For this reason, in accordance with Liebau, the formula for fully 
ordered microcline 1T is not KAl[Si308], but is similar to that of sanidine 
hT, i.e. K[A1Si,08]. It follows that, assuming [A1Si308] is the building unit, 
both phases belong to so-called framework silicates. 

Noting that Si-0 bonds are generally stronger than M-0 bonds (where 
M is a cation other than silicon) the crystallochemical classification of 
silicates takes into account the various possible modes of condensation of 
the tetrahedra [TO,]. 

First of all, the number of polyhedra which are linked to a given 
polyhedron by vertices, edges, or faces is defined as s (connectedness). 
When these polyhedra are tetrahedra [TO,] vertices are shared, and since 
each tetrahedron has four vertices, s = 0, 1, 2, 3, 4. If the tetrahedron is 
isolated it is called singular (QO), if it shares one vertice it is called primary 
(Q1), two secondary (Q2), three tertiary (Q3), and four quaternary (Q4); 
concisely QS = QO, Q1, Q2, Q3, Q4. 

The parameters on which the crystallochemical classification of silicates is 
based are: 

1. Nan = number of anion types in a silicate. Nan = 1, uniform-anion 
silicates; Nan > 1, mixed-anion silicates. 

2. CN = coordination number. In naturally occurring compounds only 
tetrahedra [TO,] and exceptionally octahedra [TO6], are present. 

3. L = linkedness, type of link. L = 0, 1, 2, 3: for L = 0 the tetrahedron is 
isolated, for L = 1, 2, 3 the tetrahedron shares respectively one vertex, 
one edge, one face with a similar tetrahedron. In Fig. 6.22 (first row) the 
relationships between two tetrahedra for L = 1, 2, 3 are shown. 

4. B = branchedness, type of ramification. The tetrahedra [TO,] can be 
condensed linearly (see Fig. 6.34), giving rise to limited groups, single 
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.b Fig. 6.34. Some unbranched fundamental 
anions (u6f.a.); (a) a pair of tetrahedra, (b) an 
unbranched group of three tetrahedra, (c) a 
single unbranched chain, (d) a single 

(4 (b) (c) (d) unbranched ring. 

chains and rings. They are characterized by tetrahedra with s G 2 and 
constitute the so-called unbranched fundamental anions (uBf.a.1. 

Complex anions of the same type (uBc.a.) can result from the 
condensation of uBf.a. Branched fundamental anions (brf.a.) can also 
be obtained by condensing tetrahedra. They include tetrahedra with 
l S s 6 4  (Fig. 6.35). By condensing brf.a., brc.a. can be obtained. 
Branched anions can be divided into open-branched (oB) or loop- 
branched (1B) ones. In the first case, one or more tetrahedra constitute a 
sort of 'branch' which is joined to the non-branched anions by means of 
a single geometric element (vertex, edge, or face). In the second case, 
more than one element is shared, e.g. two vertices (see Fig. 6.35). The 
condensation of more than one fundamental anion generates the 
following types of anions (see Fig. 6.36): 

uB f.a. + o B  f.a. = hB c.a. (h =hybrid branched c.a.) 

oB f.a. + IB f.a. = olB c.a. (mixed-branched c.a. 
combination of open + loop-branched anions) 

In conclusion the branchedness (B) of silicates can be uB or br 
(unbranched or branched); while branching can be of various type: oB, 
IB, olB, hB. 

5. M = multiplicity, i.e. the finite number of tetrahedra that are linearly 
linked in a 'short chain' of tetrahedra, or the number of rings, single 

Fig. 6.35. Some branched fundamental anions 
(6rf.a.). The branches can consist of one or more 
tetrahedra (dotted). The figure illustrates: (a) oB 
triple tetahedron; (b) and (c) oBsingle rings; (d) 
oBsingle chain; (e) IBsingle chain; (f) olBsingle 
chain. 
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Fig. 6.36. Fundamental anions (f .a.)  and 
complex anions (c.a.1: ( a )  uBf.a., (b) 0Bf.a.. (c )  
1Bf.a.. ( d )  uBc.a., ( e )  0Bc.a.. (f) IBc.a., (g) hB 
c.a., (h) 0Bc.a..  ( i )  IBc.a., (j) hBc.a., (k) 01Bc.a.. 
(I) h6c.a. ( i )  

chains, or single layers linked to a complex ring, chain, or layer 
respectively; rarely is M 5. The condensation of groups of connected 
tetrahedra (i.e. multiple tetrehedra), rings, single chains, or single layers 
does not alter the dimensions of the fundamental silicate anions which 
are involved in the condensation. 

6. D =dimensionality. The silicate anions can have the following exten- 
sions: finite (D = 0), infinite in one (D = I), two (D = 2), or three 
(D = 3) directions. 

When D = 0, the symbols t and r are used respectively to indicate 
groups of tetrahedra (terminated anions), and cyclic anions (rings). 

7. P or Pr = periodicity of the chain (P) or ring (P'). Silicate anions with 
D = 1, 2, 3 are based on fundamental chains of tetrahedra. The 
parameter P expresses the number of tetrahedra which determines the 
repetition period of an unbranched chain (if a branched chain is 
considered the tetrahedra which constitute the branches should be left 
out). Figure 6.37 illustrates some fundamental chains of different 
periodicity. If the anions are cyclic the symbol Pr,  which expresses the 
periodicity of a ring (i.e. the number of tetrahedra within a single ring) is 
used, excluding, therefore any branches. In order to avoid confusion, 
when choosing which fundamental chain is characteristic to a silicate with 
D = 1, 2, 3, it is necessary to take into account certain rules: 

(a) Fundamental chains with lowest periodicity running parallel to the 



Ionic crystals 1 451 

direction of the shortest identity period within the silicate anion are 
chosen. 
If rule (a) is satisfied by more than one chain, the fundamental 
chains are chosen such that their number is lowest. 
Once rules (a) and (b) have been satisfied, the third rule indicates 
the following order of preference (for fundamental chains): un- 
branched > loop-branched > open-branched > mixed-branched > 
hybrid (for > read 'is preferred to'). 

order in which the various parameters have been presented repre- 
sents the classification hierarchy: superclass (N,,), classes (CN), sub- 
classes (L ) ,  branches ( B ) ,  orders ( M ) ,  groups (D), sub-groups (r or t), 
families (P, Pr). 

If there are a number of silicates with the same type of silicate anion, i.e. 
silicates belonging to the same family further subdivisions can be made. The 
following criteria are particularly important: 

(1) the Si:O atomic ratio of the silicate anions; 

(2) the degree of stretching of a chain. 

As far as criterion (1) is concerned, it should be noted that two or more 
rings, or two or more single chains having P > 1, can join together via all or 

Fig. 6.37. (a), (c), and (el illustrate unbranched 
chains, while (b), (d), (f), (g), and (h)  illustrate 
branched chains. The following pairs have the 
same periodicity: for (a) and (b) P =  2, for (c) and 
(d) P  = 3, for (e) and (f) P  = 4, for (g) and (h) 
P = 5 .  
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only part of their tetrahedra. As a result, complex anions with various Si:O 
ratios are generated, depending on the portion of the tetrahedra involved. 

As far as criterion (2) is concerned, Liebau proposes that the degree of 
stretching should be measured by means of the stretching factor (A), which 
can be obtained as follows: 

where I, is the identity period of the chain, 1, is the length of the edge of the 
tetrahedron, both in A, and P is the periodicity of the chain (the number of 
tetrahedra needed to identify the period). 

Since amongst all the silicates so far discovered shattuckite, 
C U ~ [ S ~ , ~ ~ ] ( ~ H ) , ,  has the most stretched chain, it is taken here as a point of 
reference. From it the value 1, = 2.7 A can be obtained (equal to half of the 
repetition period of the chain, which is two tetrahedra [Si04]-4). Thus for 
shattuckite f, = 5.40 A12 X 2.70 A = 1.00 while for enstatite, Mg2[Si206], 
(I, = 5.21 A, P = 2) f, = 0.956 and for alamosite, Pb,,[Si,20,6], (I, = 
19.63 A, P = 12) f, = 0.606. 

The crystallochemical classification presents the same periodicity charac- 
teristics as the periodic system of the elements, so that, for example, by 
gradual condensation of [TO4] tetrahedra in a linear way, uB anions can be 
generated that are linked only by means of vertices in the following way: 

(1) for D = 0 the number of tetrahedra that can be condensed linearly 
increases as M increases, so that for M -, w, D i. 1; in which case a 
single uB chain will result; 

(2) for D = 1 the number of chains increases with M, and for M w, 
D + 2, thus forming a single uB layer; 

(3) when single layers are condensed and for M -, w, D + 3, a three- 
dimensional building of tetrahedra, i.e. uB framework is obtained. 

By varying M and D the whole of Table 6.8 can be obtained, which lists 

( D = 1 Polysilicates ( Monopolysilicates ( Dipolysilicates ( Tripolysilicates I . . . ' 1 

Table 6.8. Chemical and mineralogical (in round brackets) nomenclature of silicates 

I (-1 I (Inosilicates) I 

D = 0 Oligosilicates 

(-1  

D = 0 Cyclosilicates 

D = 3 Tectosilicates Tectosilicates 
(Tectosilicates) I 

M=2 

Disilicates 

M = l  

Monosilicates 

(Nesosilicates) 

Monocyclosilicates 

D = 2 Phyllosilicates 

( - 1  (Cyclosilicates) 

M=3 

Trisilicates 

Monophyllosilicates 

... 

. . . 
(Sorosilicates) 

Dicyclosilicates 

(Phyllosilicates) 

Diphyllosilicates 

Tricyclosilicates 

Triphyllosilicates 

. . .  

. . .  
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the chemical and mineralogical (in round brackets) nomenclature of 
silicates. 

Structural formulae 
A structural formula should contain the largest possible amount of 
information and therefore should include the parameters used in crystal- 
lochemical classification. Some of the parameters CN and P are best used 
only when there is some perplexity: the first is written in square brackets as 
a right-handed superscript to the cation, while the second is written without 
brackets as left-handed supercrript to the cation. Other parameters, Nan and 
L, can be deduced directly from the structural formula. Therefore a 
structural formula containing the essential parameters is as follows: 

M, indicates cations which do not belong to the silicate anion; the 
meaning of the other symbols has already been given. For D = 0  the 
interpretation of the symbol is not unequivocal and can therefore be 
substituted by r or t, depending on whether the silicate anion is cyclic or 
not. For D = 1, 2, 3 the symbols L, 2 ,  2 indicate clearly that the silicate 
anions are respectively chains, layers, and three-dimensional framework of 
tetrahedra. Sometimes it is useful to complement the formula by the 
following suffixes: (IT), (mT), (hT), (lP), (mP), (hP). They indicate that the 
phase described by the formula is of low (l), medium (m), or high (h) 
temperature (T) and/or pressure (P). 

Some examples: 

A @ A ~ [ ~ ]  {OB, 3t) [Si50,,](OH, F),,04Cl zunyite 

The bracketed right-hand superscripts to A13+, indicate the two coordina- 
tions of the A13+ in the structure of zunyite. 

Since there are no indications for Si4+, it is implicit that CN = 4. The 
symbols in curly brackets indicate that the silicate anion consists of a group 
of open-branched tetrahedra {oB), three of which determine the multi- 
plicity M = 3 (see Fig. 6.3.5(a)). The content of the square brackets indicates 
that the group consists of five tetrahedra and that therefore the 'branches' of 
the silicate anion are the remaining two tetrahedra [SiO4I4-. 

Ca2A12Sn{oB, l r ) [4S i601 , ] (O~)2 .2~20  eakerite 

The structural formula informs us that the silicate anion is open-branched 
{oB) and that it is a single ring {lr) .  The content of the square brackets 
indicates that the unbranched part consists of four tetrahedra [SiO4I4- and 
that the 'branches' consist of two tetrahedra [SiO4I4- (see Fig. 6.35(b)). 

For other structural formulae and for illustrations of the silicate anions 
described therein, see Figs. 6.38-6.42. 

Relationship between classification parameters and properties 
of the cations 
The properties of non-tetrahedral cations, in particular, electronegativity 
and valence, have a strong influence on the structure of silicate anions.[451 
Here, the direct influence of the non-tetrahedral cations on the parameters 
which govern crystallochemical classification will be examined. 
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Fig. 6.38. Ideal configurations of certain silicate 
anions and structural formulae: (a) olivine 
(Mg, Fe), {US, lt}[SiO,]; (b) ilvaite 
CaFe,(Fe, Mn){uB, 2t}[Si,O,IO(OH); (c) benitoite 
BaTi{uB, lr)lSi3091; (d) taramellite 
Ba,(Fe3+, Ti),B,{uB, 1 r}[Si4O,,I,O,CIX; (e) 
tourmaline XY Z B {US, 1 r} [Si,0,9~0,(~,+0H, F), 
where x = ~ a f  ;a2+; Y = ~ i + ,  Mg , Fe , 
~ n ' + ,  ~ e ~ ' ,  A13+; Z = A13+, M~ '+ ;  (f) steacyite 
K,-,(Na. Ca),-,Th,-,{uB,2r}[ Si,O,,I, the 
fundamental anion is dotted. 

Fig. 6.39. Single chains with different periodicity 
(P), structural formulae and stretching factors 
(f,) for the following minerals: (a) a hypothetical 
mineral, M(uB,I L}[s~o,I, f, = 1; (b) enstatite, 
Mg,{uB, 1 ,}[S1,0,1, f, = 0.965; (c) wollastonite, 

I 0 I, f, = 0.904; (d) krauskopfiie, ca,{u~, 1 L)[s., 
H,Ba,{uB, ,}[Si4O,,I~4H,O, fs=0.783; (e) 
rhodonite, (Mn, Ca),{uB, 1 ~}[s,~,o,,], f, = 0.906; 
(f) stokesite, Ca,Sn,{uB, 1 ,)[S1,0,,1~4H,0. 
f, = 0.718; (g) pyroxmangite, 
(Fe,Ca, Mn),{uB, 1 ~}[S~,O,,I, f,= 0.923; (h) 
alarnosite, Pb,,{uB, 1 ~}[s~,,o,,], f, = 0.606. The 
periodicity (P) is as the silicon stoichiometric 
coefficient. 

1. CN: the coordination number of silicon depends in particular on the 
EN of the anions (X) of the first coordination shell. If the anions are 
strongly electronegative, as is fluorine (see Table 6.2), the tendency CN > 4 
is increased (SiF,), if weakly electronegative tetrahedral groups are formed. 

In the case of oxygen, the EN is lower than that of fluorine, but is still 
high. Therefore the silicon of both natural and artificial compounds is found 
both in tetrahedral or octahedral (a few cases) coordinations. The Si-0 
type of bond is influenced by the cations (M) belonging to the second 
coordination shell of the silicon: the highly electronegative M cations give a 
more ionic character to the Si-0 bond. This, obviously, affects the CN 
(CN > 4 is slightly favoured), the effective charge of the silicon (positive), 
and, when CN = 4 the overall charge of the tetrahedra (negative). 

The effects of repulsion between the silicate anions can be evaluated by 
means of the distortions which can be seen above all in the S i -o -~ i  bond 
angles, but also to a lesser extent in other parameters. 

2. L: the stability of a silicate anion decreases as L increases, an inverse 
tendency would violate Pauling's third rule. This explains why no silicate 
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anions with CN = 4 are found with L > 1 (at present only one case has been 
found with L = 2). Highly electsonegative cations favour a higher degree of 
linkedness because the [SiOJ effective charge tends to be reduced. 

3. B: branched silicate anions, in particular branched ring anions, are less 
stable than unbranched varieties, due Do the shwter average Si-Si distances. 
If, however, cations with high EN are present, then the stability of such 
silicate anions is increased, since they attenuate the effective negative 
charge thus reducing the repulsion between the tetrahedra. The stabilizing 
effect of such cations decreases as  D increases, because in such cases the 
effective charge of the tetrahedra [TO,] ako decreases. 

4. M: the number of structures with increasing M falls drastically both in 
the oligosilicates and in the cyclosilicates, and in polysilicates and phyllosili- 
cates. This is due to the decided increase in the potential energy of 
structures as M increases. To examine this phenomenon the differences in 
energy between linear groups of tetrahedra will be analysed. It should be 
borne in mind that the greater their distance from the tetrahedron which 
terminates the group, the less tmo contiguous tetrahedra will vary from the 
point of view of energy. For example two Q1 tetrahedra are similar from the 
point of view of energy because they each start and terminate a group. Two 
Q1 tetrahedra and one Q2, belonging to a group of three tetrahedra are very 
different from the point of view of energy, because the distance that 
separates Q2 from the external tetrahedron Q1 is only that of one 
tetrahedron. Finally, in a single unbranched chain every tetrahedron has 
practically the same energy as that next to it, since both are more or less at 
the same distance from the end tetrahedron. In contrast a linear group of 
tetrahedra could, from an energetic point of view, be regarded as being 
constituted by different structural units. 

To this the principle of parsimony is applied (see p. 436, Pauling's fifth 
rule), according to which the smaller the number of structural units a 

Fig. 6.40. Double chains in which the 
fundamental anion is hatched, and the structural 
formulae of: (a) sillimanite, 
Alie'{u~, 2 ~}['(AIs~o,)I(~T); (b) tremolite, 
Mg,Ca,{uB, 2 ~ } 1 2 ~ i 4 ~ l , 1 2 ( ~ ~ ) 2 ;  (c) xonotlite, 
Ca,{uB, 2 l}13si 0 (d) narsarsukite, 
Na,Ti,{uB, 2 ~ } ? ~ / ~ h , ~ ] 0 , ;  (d) can also be 
obtained by condensating the unbranched rings 
{US, lr}[Si,O,,l (dotted in figure) and the latter 
formula has to-be changed into Na,Ti,{uB, mr) 
I~S~,O,~IO,. 

Fig. 6.41. Single and double layers (the 
fundamental chain is hatched) and the structural 
formulae of: (a) muscovite, 
KAI,{uB, 1 ~ ) [ 2 ( ~ ~ ~ i , ) ~ l , l ( ~ ~ ) ,  and talc, 

i 0 NOH),; (b) apophyllite, MgAuB, 1 _.l2s , 
KCa,{uB, 1 , } ~ ~ i , 0 , , l & ~ ~ 0 ~ ) ~ 8 ~ ~ 0 ;  (c) 
hexacelsian, Ba{uB, 2 ,}I (AISi)O,],(hT). 
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(c )  
Fig. 6.41. (Continued) 

Fig. 6.42. Three-dimensional buildings of [TO,] 
tetrahedra, and the structural formulae of: (a) 
trid mite, {US, ~}[2~i,041; (b) cristobalite, {uB, J' :}[ Si,04] (note the thickened fundamental 
chain and how in cristobalite the layers 
perpendicular to [ l l l ]  are all orientated the 
same way, while in tridymite the same layers 
perpendicular to [00011 are turned through 180" 
compared to one another); (c) orthoclase, 
K{IB ~ } [ 3 ( ~ ~ ~ i 3 ) ~ , l ( m ~ ) .  The structure of 
orthoclase is represented schematically. The 
letters U and D indicate the position of the [TO,] 
tetrahedra with one vertex pointing either up (U) 
or down (D); (d) the fundamental chain IS, on 
which the structure of orthoclase is based (the 
'branch' consists of the dotted tetrahedra). 

structure is composed of, the more stable it is. This explains the uniform 
number reduction of the groups as M increases. 

What has been said above regarding linear groups can be extended to 
chains or layers, by considering the whole chain or the whole layer as a 
structural unit, instead of a tetrahedron. 

5 .  D: the general rule is that where there is a fixed Si-0 ratio, the silicate 
anions tend to join together, in accordance with D+max. Though there 
are exceptions to this rule, it can be justified by the fact that condensation 
of the [siO4I4- tetrahedron results in a better local electrostatic valence 
balance, in accordance with Pauling7s second rule. 

6: t, r: multiple tetrahedron silicate anions are more stable than cyclic 
ones. In fact, since the average Si4+-Si4+ distances are greater for the 
former, the force of repulsion between Si4+ and Si4+ is less. 

7: P: the periodicity of a chain can be evaluated, in general, by means of 
the stretching factor f,. The higher this factor, the more the chain is 
stretched, and the lower is P. There are, however, important exceptions 
where P increases with f, (pyroxenoids and pyroxenes). 

8. f,: this factor depends, in particular, on EN and on the average valence 
( v )  of the cations. Strongly electropositive cations tend to increase the 
negative charge of the [TO4] groups; therefore the repulsive forces which 
act between these groups are greater and as a result f, + 1. Vice versa, 
strongly electronegative cations, by reducing the charge of the [TO4] 
groups, reduce f, and so P tends to increase. 

An increase in the ( v )  of the cations has a similar effect. In fact, when 
( v )  is high, a greater number of oxygens of the chain must be involved in 
cation-oxygen bonds. As a consequence f, is reduced and P increases. 

The ionic radius of the cation has more effect on the distortion of the 
polyhedra than on the periodicity P. The greater the difference between the 
silicon radius and that of the other cations, the greater this effect will be. 

9. Nan: bearing in mind still the principle of parsimony, it can be stated 
that the number of the structural units, distinguished either chemically or 
geometrically, must be as small as possible. This explains why the vast 
majority of silicates have Nan = 1; only a few structures have Nan = 2 (e.g. 
okenite, Ca,,{uB, 2 ~)[3Si6016]{~B, 1 ~)[3Si6015]2.18H20) and there are no 
known crystal structures at present with Nan > 2; however in glasses, melts, 
etc. Nan > 2 is common. Silicates with mixed anions are favoured by cations 
with high EN. 

10. s: for a given Si:O ratio of the silicate anion, high EN cations favour 
a high s value. 

Appendices 

6.A Application of the concept of the packing coefficient 
(ci) 

In general, calculated packing coefficients almost never match the expected 
value (0.74). It is sometimes found that structures with lower c: ( ~ 0 . 6 0 )  
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conform to closest packing models whereas others with ci ( ~ 0 . 7 0 )  depart 
from them. The main reason is that in fact ions are not hard spheres but 
charged, elastic, and polarizable entities. In addition the atoms are 
sometimes too bulky to be included in the octahedral holes of a closest 
packing scheme; in such cases the structure would not have the greatest 
economy of space, i.e. it would not be the closest-packed structure. Thus 
the ideal conditions demanded by the mechanical atomic model are in 
practice never achieved. 

In spite of this, the packing coefficient provides useful information, 
mostly for structures with a high degree of ionic bonding. Assuming, for 
oxygen, re = 1.40 A, packing coefficients are calculated for some compounds 
belonging to several classes of minerals with different ionic bond-character. 
The abbreviation c.p. shows those compounds which adopt a close-packed 
arrangement of anions, while 6 represents density. 

Oxides 
Periclase [MgO] 
Rutile [TiOz] 
P-Tridymite [SiO,] 
Coesite [Si02] 
Stishovite [SiO,] 
Brucite [Mg(OH)2] 
Gibbsite [A1(OH)3] 
Ilmenite [FeTi03] 
Spinel [MgA120,] 

Carbonates 
Aragonite [CaCO,] ci = 0.61 (6 = 2.93) 
Calcite [CaC03] ci = 0.56, c.p. (6 = 2.71) 
Alstonite [BaCa(CO,),] ci = 0.51 
Ewaldite [Ba3Ca2(C03)5] ci = 0.55 
Shortite [Na2Caz(C03)3] ci = 0.53 
Tychite [NazMgz(C03)4(S04)] ci = 0.55 
Gaylussite [Na2Ca(H20)5(C03)z] ci = 0.51 

Borates 
Kotoite [Mg3(B03),] ci = 0.67, C.P. 
Tincalconite [NazB405(OH)4.3H20] ci = 0.55 
Kernite [NazB406(OH)2~3H20] ci = 0.53 
Borax [Na2B405(OH)4.8Hz0] ci = 0.53 
Sinhalite [MgAl(BO,)] ci = 0.76, c.p. 
Aksaite [Mg(B304(0H)2)2.3H20] ci = 0.44 
Gowerite [Ca(B304(OH)z)z~3H20] ci = 0.42 

Sulphates 
Baryte [BaSO,] ci = 0.53 
Chlorothionite [K2Cu(S04)C12] ci = 0.50 
Fibroferrite [Fe(OH)S04.5H20] ci = 0.53 
Parabutlerite [Fe(OH)S04-2H20] ci = 0.60 
Hohmannite [Fe(Hz0)4[(S04)20]~4HzO] ci = 0.58 
Coquimbite [Fez(S04)]-9H20 ci = 0.55 

(a 
Fig. 6.42. (Continued) 
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Phosphates 
Triphylite [ ~ i ( ~ e ' + ,  Mn2+)P04] 
Heterosite [(Mn, Fe)P04] 
Hydroxylapatite [Ca,(OH)(PO,),] 
Brushite [CaHP04.2H20] 
Moraesite [Be2(OH)P04.4H20] 
Struvite [NH4MgP04.6H20] 

Silicates 
Forsterite [Mg2Si04] 
Larsenite [PbZnSiO,] 
Monticellite [CaMgSiO,] 
Humite [Mg7(0H, F)&304),] 
Zircon [ZrSiO,] 
Grossular [Ca3Al2Si3OI2] 
Enstatite [Mg2Si206] 
Anthophyllite [Mg7Six022(OH)2] 
Pyrophyllite [A12Si40,,(OH)2] 
Orthoclase [KAISi,Ox] 

Some remarks concerning the relationships between the anion arrange- 
ment and the packing coefficient are helpful. 

The compound CaCO, crystallizes in two structures (polymorphs): calcite 
(c, = 0.56) and aragonite (c, = 0.61). Calcite can be described by means of a 
close-packed oxygen arrangement with & triangular and 4 octahedral sites 
filled respectively by C4+ and Ca2+. This packing is not the closest possible 
for CaC0, because Ca2+ is surrounded by six oxygens, i.e. in this structure, 
calcium shows the lowest CN among those adopted (see Table 6.7). If 
pressure increases, a more compact structure (aragonite in which Ca2+ has 
CN = 9) originates; this structure no longer conforms td the closest packing 
model. 

The compound SiO, gives rise to several phases. Some of them are 
considered here, they are: (1) P-tridymite, stable between 870 and 1470 "C; 
(2) coesite, roughly stable from 30 to 100 kbar; and (3) stishovite, a very 
high-pressure phase, stable above 100 kbar. P-tridymite structure (c, = 0.50, 
6 = 2.22) is an infinite three-dimensional framework of [SiO4I4- tetrahedra. 
It can be sliced into sheets of tetrahedra like muscovite (Fig. 6.41(a)) but 
arranged in such way that the tetrahedra vertices alternate up and down. 
The structure of coesite (c, = 0.67, 6 = 2.91) is quite dense and somewhat 
more complex compared with that of P-tridymite. The main difference 
between them concerns the second and following Si4+ coordinations that, of 
course, are greater for coesite. This explains the different packing 
coefficients, though none of them (see p. 429 and following) conforms to the 
closest packing. Stishovite has an exceptionally high packing coefficient 
(c, = 0.99) and a density (6 = 4.29) much greater than that of /3-tridymite or 
coesite. The structure is rutile type, TiO,, (Fig. 6.26, (c)), so it conforms to 
the closest packing model. The very high pressure under which stishovite 
crystallizes forces Si4+ to renounce its habitual four for an unusual six 
coordination. 

According to the mechanical closest packing model it is impossible to 
have c, = 1, unless we suppose that the available space of the structure is 
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almost completely filled by oxygens having an approximate volume of a ball 
with re = 1.40 A but geometrical form by no means spherical. 

The compound grossular, Ca3Al2Si3OI2, belongs to an important group of 
minerals known as garnets. In spite of the high packing coefficient 
(ci = 0.66), grossular does not have a close packed structure (see Appendix 
6.B). Here we note that Ca2+ cannot replace 0'- as occurs in perovskite. 
Let us consider the structure of perovskite (Fig. 6.28) and its chemical 
formula in the form Ca4Ti4 hIz4Ol2 (El represents the empty tetrahedral 
site). 

Figures 6.19 and 6.28 show that if grossular were to adopt a perovskite- 
type structure in half of the cells shown in Fig. 6.28, si4+ in tetrahedral 
holes would be in contact with Ca2+. After all, according to the examples 
quoted, the packing coefficient is trustworthy only in a few cases, i.e. for 
those structures having suitable cations and a high degree of ionic bonding 
(as happens in several oxides). Its value can give little information on the 
real atomic packing, which can sometimes be enhanced only by further 
crystallochemical parameters (see Appendix 6.B). 

6.B Structural inferences from crystallochemical 
parameters 

The effective ionic radius re, the packing coefficient (ci) and the valence 
electrostatic rule (V = 2,) can sometimes be profitably used to foresee some 
important structural features particularly when simple crystal structures are 
considered. First of all one should extract all the possible information from 
the chemical formula. On p. 437 we have seen that for the compounds of 
MX type, the coordination numbers of M and X can vary provided that the 
ratio 1:l is preserved; for instance in NaC1, M:X= 6:6 and in CsBr 
M:X = 8:8. Again, in the MX2 compounds the coordination number of M 
and X can change, the ratio M:X = 2:l being equal. So, salts like SO2,  Ti02 
and CaF2 have the ratio M:X = 2:l and respectively the following coordina- 
tion numbers: 4:2, 6:3 and 8:4. 

From these remarks the following rule can be derived: in a given 
structure, if no bond between identical atoms forms, M and X coordination 
numbers of compounds M,Xp, are in the ratio p:m. 

This rule can also be applied to more complex structures like A,B,Xp. 
First let us define the average cation coordination number (m, ) :  

where CNA and CNB are respectively the coordination numbers of cations A 
and B. 

The relationship between m, and the average anion coordination 
number ( m , )  is expressed by 

-- 
CN,/CN, = p l(m + n). 64.2) 

Replacing A. l  in A.2, the latter can be written as 

Some examples are given, in order of increasing structural complication, 
to understand the relationships between chemical formula, crystallochemical 
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parameters, and symmetry, showing how they can sometimes have predic- 
tive value. 

At first, we will assume tentatively that the ionic structures having 
ci > 0.60 can be described in terms of a close-packed anion arrangement 
with cations filling the holes, even if in some cases this hypothesis does not 
hold (as some of the following examples will prove). 

1. Periclase, MgO, Fm3m, and Z = 4, has a packing coefficient ci = 0.62. 
According to the accredited Mg2+ CN, 4, 5, 6, 8 (see Table 6.7) this cation 
can fill the tetrahedral (half) or the octahedral site of a structure based on a 
close-packing model. Moreover the space group Fm3m and the number of 
formula units Z = 4 informs us that Mg2+ and 02- lie at 4, i, 4 and 0 ,  0 ,  0 
or vice versa, from which m, = CN, follows. Using (A.3) in the more 
simple form mCN, =pCN, we reach an obvious conclusion, i.e. Mg2+ and 
02- have the same CN, (4 or 6) and of course for both coordinations the 
electrostatic-valence principle is satisfied. To solve the CN dilemma, we 
observe that periclase is isotype with lime, CaO, and that accredited CN, for 
Ca2+ are 6, 7, 8, 9, 10, 12 (Table 6.7). Only 6 and 8 belong both to Mg2+ 
and Ca2+ CN, sets, consequently only the octahedral sites of a closed- 
packed anion arrangement can be filled. 

2. Rutile, Ti02, P4,/mnm, and Z = 2, has a packing coefficient c, = 0.74. 
The accredited CN, of Ti4+ are 4, 5, 6, 8 (Table 6.7). Therefore, according 
to the close packing and valence requirements, Ti4+ can fill tetrahedral or 
octahedral sites. The octahedral site stabilization energy (OSSE = 0) cannot 
remove the uncertainty regarding the site, even if the high electrical charge 
informs us that Ti4+ prefers the octahedral site. El. can be observed that, 
according to the space group, Ti4+ can be placed at 0, 0, 4 or 0, 0, 0 and that 
02- can lie on 2/m or 4 or mm (from 4e to 4g according to International 
Tables of X-ray Crystallography Vol. A) in this case m, = CN,. No 
profitable information can be drawn from isotype structures, but we know 
that Nb4+ and ~ a ~ +  can replace Ti4+ in very high percentage ( ~ 0 . 4 0 ) .  The 
common CN for these two cations, i.e. 6, indicates that very probably, Ti4+ 
prefers the octahedral site. 

From (A.3) the calculated oxygen coordination number is m, = 3, i.e. 
three Ti4+ surround one 02- whereas, as shown above, Ti4+ seems linked to 
six oxygens. 

3. Ilmenite, FeTiO,, ~ 3 ,  and Z = 2, has a packing coefficient c, = 0.66. 
According to the space group, two ~ e ~ +  and two Ti4+ can lie on a three-fold 
axis or one of them on a three-fold axis and the other on the two 
independent 3 (la, lb). As for the oxygen atoms, they can be situated on 
the two independent i (3e, 3d) or in the general position 1 (6f); in both 
cases (i or 1) CN, must be an integer. The accredited CN, for Fe2+ and ~ i ~ +  
are respectively 4, 6, 8 and 4, 5, 6, 8 (Table 6.7), so either Fe2+ or ~ i ~ +  may 
fill tetrahedral and/or octahedral sites. From (A.3) three different m, can 
be calculated for ilmenite: 

- - 
1.4 + 1-4 = 3CNx; - CN, - = 813 
1.4 + 1-6 = 3CNx; - - CN, = 1013 
1.6 + 1.6 = 3CNx; CN, - 4. 

Only the third result agrees with the statement that m, must be an 
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integer and precisely it tells us that four cations are linked to each oxygen 
without specifying their nature. Applying the electrostatic-valence rule to 
the three possible combinations 1Fe2+ + 3Ti4+, 2Fe2+ + 2 ~ i ~ + ,  3Fe2+ + 
lTi4+, we found respectively 2.33, 2, 1.67 V.U. (valence units). So 2Fe2+ and 
2Ti4+ are the cations coordinated by one oxygen atom, in agreement with 
the stoichiometry. 

4. Perovskite, CaTiO,, ~ m j m ,  and Z = 1, has a packing coefficient 
c, = 0.62. The space group and Z inform us that Ca2+ and Ti4+ are in m3m 
(la, lb) and that oxygen lies on 4/mmm (3c or 3d), i.e. the number of 
cations arotlnd it is an integer and, what is more, even. The accredited CN, 
for Ca2+ are 6, 7, 8, 9, 10, 12 and for ~ i ~ '  they are 4, 5, 6, 8. So according 
to c, and CN, Ca2+ and Ti4+ should fill, like ilmenite, octahedral sites. This 
eventuality would require that 5 of the octahedral si;es be filled by Cd2+ and 
Ti4+ and that consequently several edges (three are in the sheet) be shared 
between Ca2+ and Ti4+ octahedra. Now we observe that for CN = 6, 
different from ilmenite (re = 0.61 (Fe2' low spin) and re = 0.605 A (Ti4+), 
the Ca2+ and Ti4+ effective ionic radii are quite different: re = 1.00 (Ca2+) 
and re = 0.605 A (Ti4+). This strong difference is reflected on the octahedral 
edges that, if shared, would involve a strong strain in the structure and 
consequently the increase of its potential energy. Moreover for CN = 12, 
the Ca2+ effective ionic radius (re = 1.34 A) matches well with the 02- one, 
so we have a special close packing form in which a of oxygens are replaced 
by Ca2+. For Ti4+ in tetrahedral or octahedral sites and Ca2' 12- 
coordinated, (A.3) gives respectively m, = or m, = 6, supporting the 
hypothesis that Ti4+ is six-coordinated like the oxygen. As far as the nature 
of the cations around the oxygen is concerned, the valence sum principle 
indicates that around the oxygen atom there are two Ti4+ and four Ca2+. 

5. Zircon, ZrSi04, I4,/amd, and Z = 4, has a packing coefficient c, = 
0.70. In accordance with the space group and the number of formula unit Z, 
zirconium and silicium are located at 42m (4a and 4b). In theory, oxygen 
can be placed at 2/m (8c and 8d) or at 2mm (8e x 2), but it can easily be 
shown that starting from the unit cell parameters, a = 6.60 and c = 5.98 A, 
the calculated interatomic distances zr4+-0;- and Si4+-02- do not match 
well with those obtained from the effective ionic radii (Table 6.7). For 
instance, supposing the cation (M4+), i.e. zr4+ or Si4+, at 0, 0, 0 (4,) and 
02- at 0, $, (8c), then the M4+-02- calculated distance is 1.81 A # 1.66 
(Si4+-0'-) and 2.12 (zr4+-02-). On the other hand the situation does not 
improve if 02- is located at 0, 0, z because the calculated Zr4+-0 and 
Si4+-0 distance sums are: 2.99 A (5.9812 A) # 3.78 A (1.66 + 2.12 A). 
These kinds of argument support the hypothesis that 0'- is situated on 2 or 
m (16f or 16g or 16h), so m, = CN,. 

The packing coefficient would suggest that zircon adopts a close-packing 
structure. However, if Si4+ cations are located at the habitual tetrahedral 
holes, m, assumes integer values (A.3) when zr4' fill tetrahedral sites or 
when it is 8- or 12-coordinated. Let us now consider, besides ZrSiO,, the 
zircon isotype structures: coffinite, USi04; thorite, ThSi04; Hafnon, 
HfSiO,. The accredited CN, (Table 6.7) of the bigger cations are: 4, 5, 6, 7, 
8, 9 (zr4+); 6, 7, 8, 9, 12 (u4+);  6, 8, 9, 10, 11, 12 (Th4+); 4, 6, 7, 8 (HP+). 
They show that some CN, (6 and 8) are present in all the four cations. This 
peculiarity together with the results of (A.3) suggest that a packing, 
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different from the close packing, in which Zr4+ is 8-coordinated, charac- 
terizes the crystal structure of zircon. In addition we note that the 
electrostatic valence balance is not compatible with a structure having Zr4+ 
in octahedral sites. In fact, since the oxygen atom is shared by Si4+ and 
Zr4+, the bond strengths coming from Si4+ (+1 v.u.) and from zr4+ (+4/6 
or +8/6v.u.) do not balance 02- valence. By means of (A.3), we can 
conclude that around 02- there are three cations, the nature of which can 
be specified by means of the electrostatic-valence rule: two zr4+ and one 
Si4+. 

6. Spinel, MgA1,04, ~ d g m ,  Z = 8 has a packing coefficient ci = 0.70. In 
the unit cell there are 8Mg2+, 16A13+, and 320'-. Magnesium lie on 43m 
(8a or 8b), aluminium on 3m (16c or 16d), and consequently oxygen is on 
3m (32e), so m, = CN, is an integer. If the ci value and the accredited CN, 
for Mg2+ (4, 5, 6, 8) and for A13+ (4, 5, 6) are taken into account, then the 
spinel structure would seem to conform to a close-packing one with 
tetrahedral and/or octahedral sites partiallyfilled. On the other hand, (A.3) 
leads to three possible configurations for CN, integer: (1) Mg2+ and ~ l ~ +  in 
tetrahedral; (2) Mg2+ in tetrahedral and A13+ in octahedral sites; and (3) 
half ~ l ~ +  in tetrahedral and half in octahedral together with Mg2+. The 
calculated m, of oxygen is three for the first and four for the other two 
configurations. As concerns other factors influencing crystal structures, the 
effective ionic radius seems to favour A13+ in tetrahedral and Mg2+ in 
octahedral sites, whereas the formal charge indicates that cations follow the 
opposite behaviour pattern. The quoted ambiguity allows us to understand 
why direct and inverse spinel structure exists, as is better explained in a 
more general way at p. 443. 

Finally, for cations located in tetrahedral sites, both the chemical formula 
and the valence balance require two ~1~~ and one Mg2+ around 0'- 
whereas when Mg2+ and ~ l ~ +  are respectively in tetrahedral and octahedral 
holes the chemical formula indicates that oxygen is surrounded by one Mg2+ 
and three ~ f + .  

7. Pyrope, Mg3Al2Si3O1,, 1a3d, Z = 8, has packing coefficient 0.73. The 
number of formula units Z and the space group suggest that A13+ lies on 32 
or 3 (16b or 16a) and that Mg2+ and Si4+ are on 222 and 4 or vice versa. As 
regards the oxygen atoms these can be located on 3 (32e), 2 (48f and 48g), 
or 1 (96h) axes. The shortest inter-ionic distances between cations, lying on 
222 (24c) and 4 (24d), and oxygen lying on 3 (32e) or on 2 axes (48f and 48g) 
have the following values: 3.09 and 2.865 A, far from those inferred from 
Table 6.7, i.e. Mg2+-0 = 2.29 A or Si4+-0 = 1.66 A. Besides symmetry, 
valence balance and chemical formula requirements would seem to exclude 
the location of an oxygen atom on the quoted special positions, so the most 
reliable point symmetry for oxygen atom seems 1. The CN, used for Mg2+ in 
the latter analysis were limited to 6 and 8 because pyrope is an isotype with 
grossular, Ca3A12Si3012 and the common CN, between Mg2+ and Ca2+ are 6 
and 8. 

The modified form of equation (A.3) applicable to pyrope is 

It can be easy verified that only when Ca2+ has CN = 8, m, become a 
whole number, i.e. m, = 4. 
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Finally by means of the chemical formula and the application of the 
electrostatic-valence rule it is possible to characterize the oxygen coordina- 
tion, i.e. two Mg2+, one A13+, and one Si4+. 

Generally speaking it is difficult to imagine making a correct inference on 
the atomic organization of a complex structure without having some 
preliminary information or without any assumption concerning it. For 
instance, coquimbite has (Fe3+, A1),(S0,),.9H20, ~ 3 1 c ,  2 = 4, V = 
1760.5 A3 and ci = 0.55. If the usual CN, 6 and 4 for this kind of structures 
are respectively assumed for Fe3+ and S6+ and if it is supposed that Hf 
forms no bifurcated hydrogen bonds in coquimbite, then the CN, of oxygen 
can be inferred. In fact using (A.4) we have 2.6 + 3-4 + 2.18 = 21CN,, from 
which m, = 2.86 can be estimated. The structure informs us that: O(1) and 
O(2) are shared by one ~ e ~ +  (or A13+) and one S6+; O(3) and O(4) are 
shared by one S6+ and two H + ;  0,(1) and 0,(2) are shared by one ~ e ~ +  (or 
A13+) and two H + ;  0,(3) is shared by four HC. This configuration leads to 
the quoted m, = 2.86. 
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Molecules and molecular 
crystals 
GASTONE GILL1 

Chemistry and X-ray crystallography 

Crystal and molecular structure 
X-ray diffraction from crystals was discovered at the beginning of this 
century and it soon became evident that it was suited to the investigation of 
the structure of matter at atomic resolution level. Diffraction applications of 
X-rays and, later on, of other radiations of comparable wave length, such as 
electrons or thermal neutrons, developed rapidly allowing the scientific 
world to obtain, for the first time, a detailed knowledge of the intimate 
atomic distribution in elements, organic and inorganic substances, natural 
and synthetic fibres, and even liquids. It became clear, however, over the 
years, that the level of image resolution achievable was strongly dependent 
on the aggregation state of matter. Currently we know that a resolution of a 
few thousandths of an angstrom is actually obtainable only by diffraction 
experiments carried out on relatively perfect single crystals, both organic 
and inorganic, while macromolecular crystals of proteins (haemoglobin, 
myoglobin, and enzymes) cannot give an accuracy better than, say, 0.5 A 
and fibres or liquids produce poorly resolved images, which can be 
considered barely giving much more than a hint of the true molecular 
structure. 

The experimental resolution achievable is to be compared with the 
natural resolution needed by classical chemistry. For example, carbon- 
carbon distances are typically 1.54 for single bond, 1.39 for aromatic 
compounds, and 1.33 and 1.20 A for double and triple bonds, respectively; 
thus a total range of 0.034 A covers the fantastic change of properties and 
reactivities between alkynes and alkanes and the much smaller range of 
0.006 A separates aromatic from alkene chemistry. Taking into account that 
two bond distances cannot be reasonably compared at less than four e.s.d. 
(estimated standard deviations), we must conclude that no valuable 
chemical information is contained in C-C distances known with an e.s.d. 
greater than 0.01 A and, therefore, in crystal structures where the e.s.d.s on 
atomic positional coordinates are greater than about 0.007 A. This value 
sets a clear limit on diffraction experiments. Only elements, minerals, and 
small molecules easily develop into long-range ordered three-dimensional 
arrays of perfect or ideally imperfect crystals, and only diffraction experi- 
ments on such crystals can provide independent experimental evidence of 
direct relevance to chemistry. Conversely, synthetic or natural macro- 
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Table 7.1. Atomic van der Waals radii 
(A). H in aromatic rings 1.00 A; C perpen- 
dicularly to the benzene ring 1.77 A. Data 
according to ~ o n d i [ ~ l  

H 1.20 
C1.70 N 1 . 5 5  0 1 . 5 2  F 1 . 4 7  
Si 2.10 P 1.80 S 1.80 CI 1.75 

As 1.85 Se 1 .go Br 1.85 
1 1.98 

molecules, which crystallize as highly defective hydrated monocrystals in the 
most favourable case of globular proteins, but often as fibrous materials 
having simple one-dimensional order, cannot give much more than the 
overall shape of the diffracting molecule and their study is to be considered 
more a branch of high-resolution microscopy than a part of the structural 
chemistry in a strict sense. 

The expression structural crystallography is often used for identifying 
the branch of sciences producing direct knowledge of the structure of matter 
by diffraction methods. Within structural crystallography there are divisions 
which have become traditional: crystal chemistry of metals and alloys, 
minerals, molecular and macromolecular crystals are usually taught in 
different courses, and their scientific achievements published in different 
journals. This is a kind of functional partitioning, different parts of 
crystallography being dealt with according to their usefulness to other 
disciplines. 

There are, however, more scientifically founded reasons for a subdivision, 
which originate from the differences that the knowledge of the crystal 
structure may have for different classes of chemical substances. This 
knowledge is of primary value when the atomic binding forces within the 
crystal can be classified as true chemical bonds, as is the case for covalent, 
metallic, or ionic crystals, where the nature of the bond can be understood 
only on the basis of the knowledge of the crystal itself. For instance Na,, G, 
and Si, molecules are well known in the gas phase but their properties 
cannot explain why metallic sodium, diamond or graphite, and silicon may 
be electronic conductors or insulators or semiconductors. In the same way 
the reason for the stability of ionic substances is found in the ordered 
arrangement of alternating anions and cations within crystals where any 
simple relationship between chemical formula and crystal structure is 
completely lost. A good example, taken from wells,[ll may be that of the 
series of AX iodides: HI, AuI, CuI, NaI, and CsI; only the first term gives 
biatomic molecules at room temperature, while the others are solids where 
A is surrounded, in order, by 2, 4, 6, and 8 atoms of X. 

The other extreme is represented by the class of molecular crystals where 
chemical substances, typically organic and organometallic compounds, exist 
as discrete molecular entities packed together by weak dispersion or dipolar 
forces. Interatomic distances within the crystal can be generally grouped in 
two clearly distinct distributions, a first of bond distances within the 
molecule and a second one of the much longer contact or van der Waals 
distances among atoms of different molecules. Non-bonded atoms on 
different molecules tend to behave much like non-interacting hard spheres 
that cannot approach at a distance shorter than the sum of their en- 
cumbrance radii, called van der Waals radii, rvdW, and reported in Table 
7.1. If the crystal is fused or vapourized by heating or dissolved by a solvent 
the crystalline order is destroyed, but the geometry and pattern of 
interatomic connections within the molecules, apart from possible partial 
rotations around single bonds, remain unchanged. 

In this case the crystal structure (intended as crystal packing) is less 
important, the chemical information being mainly concentrated in the 
molecular structure which, in principle, could be determined in any other 
state of aggregation of matter. In fact, methods for accurate determination 
of structure in liquids or in solutions are not actually available and gas phase 



Molecules and molecular crystals 1 467 

methods (microwave spectroscopy and gas electron diffraction) allow us to 
study only small and preferably symmetrical molecules, so that crystal 
structure determination often remains the only practicable way in which to 
obtain detailed information on the molecular structure of chemical com- 
pounds. Taking into account the importance of the knowledge of the 
molecular structure of both synthetic and natural substances, it is not 
surprising that X-ray structure determination of molecular crystals has so far 
been used as a simple tool for determining molecular configurations and 
conformations and that crystal packing has mostly been seen either as an 
irrelevant factor or as an unwanted cause of perturbation of the free- 
molecule geometry. Only recently has the idea that crystal packing could be 
important in itself in the study of molecular interactions been widely, if not 
generally, accepted. 

The growth of structural information 
X-ray crystallography of molecular crystals has been so successful in 
chemistry that the last three decades have registered an almost exponential 
growth of the number of structures published per year. Structural data had 
to be collected in computerized databases, and the Cambridge Structural 
Database (csD),[~] as at April 1990, contained bibliographic, chemical, and 
numerical results for some 84 464 organic and organometallic compounds. 
Figure 7.1 show a histogram of the new entries in the CSD in the period 
1965-86.13] The number of complete structural analyses published up to 
1960 was only 579 (45 from 1935-45, 212 from 1945-55, and 322 from 
1955-60) and this number is now exceeded tenfold by the structures 
determined per year. 

The factors which have determined such a rapid evolution in the field are 
scientific (development of direct methods theory), technological (improve- 
ment in automatic single-crystal diffractometers), and organizational (dis- 
tribution of complete systems of crystallographic computer programs). All 
these factors must also be considered with the parallel evolution of fast 
electronic computers, without which X-ray crystallography would have 
remained that slow and patient skilled work well known to the scientific 
world until the end of the 1950s. 

The effects produced in chemistry by this extraordinary wealth of 
structural information are enormous, and for a vivid analysis of this 

1965  1970 1975 1980 1985 
Year 

Fig. 7.1. Number of new crystal structures 
registered each ear in the Cambridge Structural 81 Database (CSD) from 1965 to 1986. Structures 
containing d- or f-block metals are indicated by 
shading. (Reproduced by permission from 
Orpen eta/.[ ''I) 
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phenomenon the reader is referred to the second part of the Dunitz's book 
X-ray analysis and the structure of organic molecules.[41 The attempts aimed 
to interpret, rationalize, and understand this continuously growing mass of 
data give rise to problems far beyond the limits of a single chapter, being 
dealt with by the scientific discipline of structural chemistry, initiated more 
than 50 years ago by Linus ~ a u l i n g ' ~ ]  in his famous book The nature of the 
chemical bond and the structure of molecules and crystals. An  introduction to 
modern structural chemistry. 

The present chapter is intended to summarize the structural chemistry of 
molecular crystals. As regards its content, it has been necessary to be 
severely selective of topics. The discussion is strictly confined to the nature 
of molecular crystals and to the stereochemical aspects of molecules which 
are directly derived from the results of structural investigation. Final 
applications, such as structure-property studies in chemistry and molecular 
biology or pharmacology have been completely excluded. The topics have 
been divided in two parts, according to whether they refer to single 
molecules or molecular crystals as a whole and can be so summarized: 

(1) molecular crystals: molecular interactions, their nature and effect on the 
crystal packing; elements of crystal thermodynamics and polymorphism; 

(2) single molecules: classical stereochemistry; molecular geometry and 
chemical bond; molecular mechanics; interpretation of molecular struc- 
tures and the structure correlation method. 

The nature o f  molecular crystals 

Generalities 
Molecular crystals are ordered packings of discrete physical entities, i.e. 
molecules. Most of them consist of neutral molecules, and it is those which 
are mainly discussed here, though some may sometimes contain ions (e.g. 
organic carboxylates, alkylammonium halides) as well. The energy of 
formation of the crystal from the isolated (gas phase) molecules is called 
lattice energy, U; typical values of -U for molecular crystals are 0.5- 
4 kcal mol-' for noble gases, 10-20 kcal mol-' for most neutral organic 
compounds and up to 40-50 kcal mol-' for neutral molecules of relevant 
complexity. By comparison with some typical - U values for ionic (e.g. 188 
in NaC1, 629 in CaF,, 3804 in A1203 and 3137 kcal mol-' in Si0,) or 
covalent crystals (some 171 and 283 kcal mol-' for diamond and Sic, 
respectively) it can be seen that the forces determining the packing in 
molecular crystals are much weaker than those of ionic or covalent chemical 
bonds. suchweaker intermolecular forces can be approximately classified as 
follows. 

Repulsion or exchange forces 
Most stable molecules have closed electron shells, that is all their molecular 
orbitals are doubly occupied and cannot accept other electrons without 
violating the Pauli principle. Accordingly, they repel other molecules trying 
to come too close. Repulsive forces exert their effects at very short range, 
decrease with the ninth to twelfth power of the interatomic distance and 
grow quite rapidly only when two non-bonded atoms try to get closer than 
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C-H 

_--- C---- ,.--- Fig. 7.2. Curves of non-bonded energy as a 
1 . function of internuclear distance, E,,(r) versus r, \-.' 

for the C-C, C-H, and H-H interactions 
calculated by using the atom-atom potentials 

3 4 k given by ~ i g l i o [ ' ~ ]  (full curves) and ~ l l i n ~ e r [ ' ~ '  
r (A) (broken curves). 

their proper contact distance, given by the sum of their van der Waals radii 
(Table 7.1). 

Dispersion or London force~[~l l ]  
These are weak short-range attractive forces which decrease with the sixth 
power of the intermolecular distance and are caused by the mutual 
attraction of the small transient dipoles that molecules can induce in each 
other. They give the greatest contribution to the lattice energy in crystals of 
neutral molecules even if the energy of any single interaction is very small. 
Dispersion energy between two molecules is usually expressed as the sum of 
the crossed interactions between all pairs of atoms on the two molecules and 
the sum of repulsion and dispersion energies is named non-bonded energy, 
En,. When plotted versus the interatomic distance, r ,  the non-bonded 
energy displays a typical minimum at a distance nearly equal to the sum of 
van der Waals radii of the two atoms (Fig. 7.2). Such a minimum is quite 
shallow, being of the order of a few tenths of a kcal mol-l. 

Dipolar forces 
Molecules having permanent dipole moments experience electrostatic at- 
traction when properly oriented (orientation forces). According to 
~ i t a i~orodsk i , [~ I  such attraction forces must cancel out in crystals having 
only translational symmetry operations (space group PI); for other space 
groups it has been estimated that the dipole-dipole interactions may 
contribute one tenth of the lattice energy for molecules having dipole 
moment of 3-4 D, while their contribution becomes negligible when the 
dipole moment is less than 1 D. 

Monopolar forces 
Monopoles are associated with ions, a situation which is not very common 
in molecular crystals and is not discussed here in detail. Two main points, 
however, deserve particular attention: ionic interactions are known to cause 
a quite relevant increase in lattice energies as can be shown, for example, by 
the comparison of these energies for acetic acid and sodium acetate, 
respectively 17.4 and 182 kcal mol-l; monopole-monopole interactions are 
long-range forces whose energy decrease only with the first power of the 
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interionic distance (Coulomb law) and in this respect differ from all other 
short- or very-short-range intermolecular forces. 

Hydrogen bonding[l"lsl 
With the exception of monopolar forces, H-bonds are the highest-energy 
interactions in molecular crystals. They greatly affect the way in which 
molecules are packed, in the sense that the observed packing is almost 
inevitably that allowing the maximum number of such bonds to be made. 
Moreover, H-bonding is, by itself, the most relevant non-bonded interaction 
in nature, being the main factor determining the structure of water, the 
folding of proteins, and the pairing of bases in DNA. For this reason most 
crystal packing studies are essentially attempts to understand the laws 
governing the intermolecular H-bonding in an easily reproducible ex- 
perimental environment, that given by the molecular crystal. 

H-bonding occurs when a hydrogen atom is bonded to two (or sometimes 
more) other atoms. This situation may be depicted schematically as 
D-H--A, where D is the H-bonding donor and A the acceptor. In 
principle all atoms more electronegative then hydrogen (C, N, 0 ,  F, S, C1, 
Se, Br, I) can play the role of A and D ,  though stronger hydrogen bonds 
are necessarily associated with the most electronegative ones (N, 0, F, Cl). 

Several theoretical studies have been devoted to clarifying the nature of 
the bond in H-bonding complexes and in particular the relative contribu- 
tions of different terms to its total energy. Probably the most popular and 
quoted partitioning scheme is that developed by Umeyama and 
~ o r o k u m a [ l ~ ~  for the treatment of (H20), and (HF), dimers. It makes use 
of the energy decomposition analysis developed within the ab initio 
SCF-MO theory[203211 where the total H-bonding energy is partitioned in 
four terms: the repulsion or exchange energy and the electrostatic, 
polarization, and charge transfer attraction energies. The authors were able 
to conclude that the main attractive term is electrostatic and that the 
contribution of charge transfer is small, so that H-bonding can be 
qualitatively defined as an electrostatic more than charge transfer or simply 
electrostatic interaction. 

H-bonds can be classified (Fig. 7.3) according to their topology as 
intramolecular, intermolecular, or bifurcated and, according to their 
energy, as going from weak to very strong. 

1. Weak H-bonding can be observed for any couple of donor and 
acceptor atoms whenever the two groups cannot achieve the correct 
approach for some sterical reason. The main factor is usually the D-H--A 
angle which, for maximizing the electrostatic interaction between the D-H 
dipole and the negatively charged acceptor, must be in the range of some 
160-180". A good example comes from the intramolecular H-bonds closing 
five-, six-, or seven-membered rings; the H-bond closing a five-membered 
ring is always weak (and so weak that the hydrogen of its D-H group forms, 
whenever possible, a second bifurcated hydrogen bond with another 
acceptor (Fig. 7.3(g1)). A second reason why a H-bond is to be classified as 
weak comes from the small intrinsic electronegativities of the H-bonded 
partners, the most classical case being that of the C-H--A interactions.[221 

2. Medium H-bonding is typical of water, alcohols, amines, amides, and 
carboxylic acids. Its geometry is rather well defined: the 0-H--0 group 
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---$ //O---H-0 

R-C 'C-R 
\ \OAH - - -0 4 

tends to be linear; the D-H distance is not significantly lengthened with 
respect to that observed in the absence of H-bond; the D---A contact 
distance is practically identical to the sum of the van der Waals radii of A 
and D, that is the van der Waals radius of the interleaving H atom is almost 
zero. A wealth of thermodynamical data['*] shows that its formation 
enthalpy is in the range 2-8 kcalmol-'. In more detail, it is some 
4.8 kcal moly' for the water dimer and 4.7, 5.4, 5.8, 8.6 kcal mol-I, 
respectively, for the H-bonds formed by carbonyl, amide, ether, and amine 
acceptors with the phenol as donor.[151 

3. Medium-strong H-bonding can be thought to derive from medium 
H-bonding strengthened by the presence of positive and/or negative 
charges. A possible range of energies is 6-20 kcal mol-'. It seems 
reasonable to distinguish two different cases: (a) charge assisted and (b) 
resonance assisted H-bonding. 

(a) Charge assisted H-bonding (CAHB) arises from net ionic charges on 
the donor and/or the acceptor groups. The effect of charge in 
strengthening the H-bond is documented by the data collected[231 on the 
H-bonds formed between the intrachain or terminal groups of oligo- 
peptides and aminoacids: the average N---0 contact distance is 
2.840, 2.908, 2.912, and 2.929 A, respectively, for the H-bonds 
-COOe---H3N+-, ) C=O---H,N+-, -COO----H-N ( and 
) C=O---H-N ( . 

Fig. 7.3. Different types of H-bonds. 
Intermolecular H-bonds forming three- 
dimensional nets in water (a), dimers in 
carboxylic acids (b), chains in hydrofluoric acid 
(c), and bicyclic dimers between guanine and 
cytosine in DNA Id), Intramolecular H-bonds 
closing six-membered rings (e) are stronger 
than those closing five-membered rings (f). Two 
examples of intermolecular bifurcated H-bonds 
(g, g'). Charge assisted H-bonds (CAHB) (h) and 
resonance assisted H-bonds (RAHB) (i) are 
stronger than the usual H-bonds between 
neutral groups. An example of a very strong 
H-bond, the difluoride ion (j). 
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(b) Resonance assisted H-bonding (RAHB) is similar to CAHB but with 
the difference that the strengthening charges arise from polar resonance 
 form^;[^^,^'] the only system extensively studied is that of P-diketone 
enols where the resonance O=C-C=C-OH(---)-0-C=C-C==OH+ 
strengthens the intramolecular 0-H---0 bond in such a way that the 
0---0 distance can become 2.417 A and the calculated H-bond energy 
12.7-19.7 kcal mol-' (values to be compared with those for the water 
dimer: d,-, = 2.74 A,  -AH = 4.8 kcal mol-'). In these compounds an 
appreciable lengthening of the 0 - H  bond with consequent shift of the 
proton towards the central interoxygen position is also observed. 

4. Very strong H-bonding appears to be inevitably associated with ions. 
It is characterized by relevant lengthening of the D-H distance, nearly 
central position of the proton, D---A distances definitely shorter than 
the sum of van der Waals radii, and bond energies intermediate between 
true H-bonding and covalent bonding. Complexes like [F--H--F]- or 
[H,O--H--H,O]+ have H-bond enthalpies of 150-250 and 130- 
150 kcal mol-I and must be considered true chemical species where the 
charge transfer (covalent bonding) is relevant and we may speak of 
H-bonding only in a formal sense. 

Charge transfer[2G291 
Intermolecular charge transfer or donor-acceptor interactions occur be- 
tween electron donors (Lewis' bases) and acceptors (Lewis' acids). They 
establish an at least partially covalent bond between highly polarizable 
groups, which is often described as the formation of a molecular orbital by 
electron donation from the highest occupied molecular orbital (HOMO) of 
the donor to the lowest unoccupied molecular orbital (LUMO) of the 
acceptor. Classical examples are the molecular complexes NH, + BF3 = 
H3N-BF,, I, + I- = [I-I-I]-, or the molecular crystal of iodine, where the 
I, molecule is both an acceptor along the interatomic axis and a donor 
perpendicular to it. Such a type of interaction occurs in crystals only in the 
presence of large and easily polarizable (soft) atoms. Another type of 
donor-acceptor interaction which has been actively studied in the recent 
past is that present in metallic or semiconducting organic crystals, a class of 
mixed crystals which contain planar donor and acceptor molecules packed in 
separated (segregated) infinite stacks and have given rise to great interest 
for their potential applications in electronics. For a recent review on their 
structural aspects see references.[301 

Intermolecular forces and crystal packing 
We may wonder whether a generic knowledge of intermolecular forces 

can give us some general insight into the way in which molecular crystals are 
packed. It is not difficult to show that the relative molecular positions are 
mainly determined by short-range forces. Calling r the interatomic distance, 
the repulsion energy drops nearly with r-12, the attractive dispersion energy 
tends to zero with r-6, and the attractive electrostatic energy decreases with 
r-'. These facts have important implications, because the electrostatic 
energy changes so slowly within the lattice that it is practically unable to 
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displace the molecules from their sharp minima, already determined by the 
short-range balance of repulsion and van der Waals interactions of the outer 
atoms of the molecule, so that these latter remain the true controlling factor 
of the packing arrangement. The only exception to this rule is represented 
by the hydrogen bond, which is electrostatic in nature but requires a quite 
specific geometry in the donor-acceptor D-H--A interaction and, more- 
over, involves energies much greater than dispersion interactions do. 

The relevant role played by short-range van der Waals forces in the 
crystal packing helps us to understand the apparently paradoxical fact that 
the large majority of molecular crystals belong to a few space groups having 
second-order symmetry elements. Since van der Waals forces are both 
adirectional and additive, the energy of any single atom is lower the higher 
the number of atoms of other molecules surrounding it at contact distances 
is or, in other words, the most stable crystal is that in which molecules pack 
themselves with the highest coordination number. A simple geometrical 
analysis of the problem has been carried out by ~ i t a i ~ o r o d s k ~ [ ~ '  who has 
shown that rows of molecules staggered by a glide lattice operation can 
produce a very efficient close packing (coordination of twelve) by repeating 
a molecule of arbitrary form in the space groups PI,  P2,, P2,/c, Pca2,) 
Pna2, and P2,2,2, or a centrosymmetric ~ilolecule in the space groups PI,  
P2,/c, C2/c or Pbca. These space groups are actually those most frequently 
observed for molecular crystals. 

A more detailed analysis of intermolecular forces 

Dispersion energy 
The first theoretical treatment of dipersion forces is due to  ond don[^] (so 
that they are often called London forces), who used the perturbation theory 
to obtain the following simplified equation for the dispersion energy E(r) of 
two molecules whose centres are separated by the distance r 

E(r) = -(3/2)a;a;1,1,r-~/(1, + I,) (7. la) 

where a; and a; are the molecular polarizability volumes and I, and I2 their 
first ionization potentials. For identical molecules it becomes 

E(r) = -(3/4)a'21r-6 (7. lb) 

showing that the attraction energy increases for molecules having high 
polarizability and ionization potential values and is of the general form 
- ~ r - ~ ,  where c is a constant mainly determined by the value of a'. E(r) is 
the only attractive energy among neutral molecules without permanent 
dipole moment and determines all phase transition temperatures of the 
substance. Polarizabilities are known to increase with the molecular volume 
and with the number of n bonds (particularly extended systems of 
conjugated bonds) and are essentially a measure of how much electron 
clouds can be displaced from their equilibrium positions around the nuclei; 
higher polarizabilities imply stronger intermolecular attractions and this is 
the reason why, at room temperature, larger molecules give crystals, smaller 
ones give liquids, and only very small ones are gaseous. It may be said that 
dispersion forces (or more basically polarizabilities) are the true reason why 
molecular crystals can exist. 
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Units for dipole moments and polarizabilities 
Magnitudes of dipole moments are generally quoted in debyes (D), where 
1 D = 3.336 x I O - ~ O C ~ .  A dipole consists of two charges +q and -q 
separated by a distance R is calculated as p = qR and is directed from the 
negative to the positive charge. Taking as unit of charge the electron 
(le = 1.602 x 10-19C) and of length the angstrom (1 A = 10-'Om) or the 
bohr (1 bohr = 0.529177 A = a" = radius of the first hydrogen orbit) the 
following equivalences hold: l e  A = 4.800 D and l e  Bohr = 2.542 D. 

A moderate electric field E induces in a molecule a dipole moment p 
according to p = a E ,  where a is called molecular polarizability; p and E 
being vectors, a is a second rank tensor but usually only its scalar value 
a = (Ci ai)1'2/3 is given as polarizability volume a' = a/4ne0, whose units 
are simply A3 = lopz4 cm3. Typical values of a' are 0.82, 2.63, 1.48, and 
10.5 .A3 for Hz, C12, H20 ,  and CCl,, respectively. 

Repulsion (or exchange) energy and total non-bonded energy 
The repulsion forces two molecules experience when their outer atoms 
come into contact are of quantum nature and derive from the Pauli 
principle; they register the impossibility for closed-shell molecules to accept 
other electrons in their doubly occupied molecular orbitals. Unfortunately 
no theoretical treatment for the calculations of repulsion energies is known, 
so that they must be evaluated empirically and this is done according to two 
different approximations. In the first, the repulsion energy is expressed as 
a exp (-br), where a and b are constants to be determined; the total 
non-bonded energy assumes the so-called 6:exp or Buckingham's form["] 

Enb(r) = a exp (-br) - ~ r - ~ .  (7.2) 

In the second approximation the repulsion energy is of the type ar-" 
where a is a constant to be determined and n an integer in the range 8-15 
(usually 12); in such a case the non-bonded energy is in the so-called 6:n or 
Lennard-Jones' form[lol 

Atom-atom potentials 
When the interacting bodies are atoms (e.g. noble gases) the distance r can 
be taken as the internuclear distance. In the case of molecules some 
complications arise and the atom-atom approximation is most commonly 
used: the total interaction energy between two molecules is expressed as the 
sum of those among the constituent atoms. The two-atom potentials in the 
generalized form 

Enb(r) = A exp (-Br)r-D - Cr-6 (7.4) 

are often named atom-atom potentials. Values for the A, B, C, and D 
parameters are not derived from theory but determined by experiment, such 
as gas deviations from ideality, compressibility of liquids and solids, and 
neutron scattering by liquids. Otherwise, the parameters minimizing the 
difference between observed and calculated values of some physical quantity 
(typically lattice energies and cell parameters for crystals; bond distances, 
bond angles, and torsion angles for molecules) are used. 

Equation (7.4) requires four constants for any pair of atoms, which can be 
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a problem when the number of different atoms increases. For this reason 
other forms of (7.4) are used, such as 

which corresponds to (7.4) with B = 0, D = 12, A = &*r*12, and C = 2 ~ * r * ~  
or 

E,,(r) = ~ * [ k ,  exp (-k,r/r*) - k , ( ~ * l r ) ~ ]  (7.5b) 

which is identical to (7.4) by putting D = 0, A = kle*, B = k,lr*, and 
C = ~ * k , r * ~  and where k,, k,, and k, are simple rescaling constants. For 
any atom i only two values are tabulated: its van der Waals radius rl and an Enb 
energy parameter E,, which are used to calculate the parameters of any i-j 
interaction as r* = rl + r, and E" = (E,E,)'/~. The quantities r* and E* assume 
the meaning of position and depth of the potential well of the curve En, 
versus r (Fig. 7.4). This formula greatly simplifies data tabulation because it 
requires only two values per atom instead of three or four for each pair of E* --- 
atoms. 

Several tabulations of atom-atom potentials are available and an exhaus- Fig. 7.4. Meaning of the parameters eI and rl in 
tive literature is reported in the recent book by Pertsin and ~itai~orodski.['] eqns (7.5a, b). 

Generally speaking, potentials are not transferable from one application to 
another, being more suited to fit phenomena they are derived from. Tables 
7.2 and 7.3 report typical potentials used for crystal packing studies[12] and 
for molecular mechanics and conformational analysis calculations.[131 As an 
example, Fig. 7.2 compares the curves calculated for the C-C, C-H, and 
H-H interactions by means of the two different potentials; although the 
general shape and the position of the minima are similar, the agreement is 
rather poor. This is typical of semi-empirical quantities since they do not 
derive from a unique theoretical fundamental but are just a set of 
parameters which only need to be internally consistent in such a way as to 
reproduce a given physical quantity; what really matters is that they work, 
which they usually do if used within their own range of applicability. 

Electrostatic energies 
The study of interactions among permanent molecular multipoles is 
simplified by the fact that the energy involved rapidly decreases with the 
order of the multipole itself and it is generally admitted that the role played 
by quadrupoles is negligible. Even considering only the first two terms of 
multipolar expansion the number of terms remains relevant, that is 
monopole with monopole, dipole, and induced dipole together with dipole 
with dipole and induced dipole. However, a great simplification can be 
reached in some cases because interactions with induced dipoles can be 
usually neglected in lattice energy calculations and crystals of neutral 
molecules (practically the only case so far studied) do not need monopoles 
to be taken into account. 

A point of general interest concerns the value of the electric permittivity 
E (normally expressed as the product of the dielectric constant E, and of 
the vacuum permittivity E,, so that E = E,EJ which is included in all of the 
following equations. In interactions decreasing rapidly (e.g, with rP6 in the 
dispersive or dipole-dipole interactions) E, is assumed to be unitary as in a 
vacuum because the space around the atom considered can be taken as 
empty within the short distance (usually 15 A) to which the calculations are 
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Table 7.2. Atom-atom potential parameters ac- 
cording to ~ i ~ l i o [ ' ~ '  to be used in crystal pack- 
ing calculations. Units of kcal mol-'. Q repre- 
sents CI or S and Me the methyl group. Poten- 
tials are of the form given in eqn (7.4) 

Pair A B x ~ o - ~  C D 

Table 7.3. Atom-atom potential parameters 
according to ~ l l i n g e r [ ' ~ '  for molecular 
mechanics calculations in kcal mol-'. 
Potentials are of the form given in eqn 
(7.5b) with k, = 8.28 x lo5, k2 = 13.59, and 
k3 = 2.25 

Atom r* E* 
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extended. When monopoles are involved the energy decreases only with the 
first or second power of distance; calculations must be extended to a wide 
range and the value of E, to be used becomes a complex and barely known 
function of the distance in consequence of the shielding effects produced 
around the ion by the interleaving atoms. 

1. Monopole-monopole interactions occur in crystals containing ions. 
The interaction energy of ions i and j having formal charges qi and qj located 
at a distance rij is 

where E = E,EO is the electric permittivity. The constant (1/4neO) depends on 
the units used and is 332.145 kcal mol-' A e-2 or 1389.70 kJ mol-' A e-'; it 
has a value of one when atomic units are used, that is energies are in 
hartrees (1 hartree = 627.7 kcal mol-I) and distances in bohr (1 bohr = 
0.529177 A). 

2. Monopole-dipole interaction energy is calculated according to 

where r is the distance between the charge q and the central point of the 
dipole p, and @ the angle between r and the direction of the dipole. 

3. The case of dipole-dipole interactions is of great interest as most 
neutral molecules have small dipole moments associated with chemical 
bonds between atoms of different electronegativities, whose vector sum 
produces, unless it does not vanish because of symmetry, the overall 
molecular dipole moment. The interaction energy is calculated according to 
two main models. 

In the dipolar model the bond dipole moments are tabulated for all bonds 
of interest or directly calculated from the known values of atom 
electronegativities. The interaction energy between two dipoles pi and pj 
whose centres are separated by the vector q is 

and the total dipole-dipole energy, ED,, in the crystal is one half of the 
sum of all the intermolecular terms A slightly different way could be 
that of summing up all the small bond dipoles into the overall molecular 
dipole moment and of computing the total energy over all molecules. 

In the monopolar model the total energy is calculated as the sum of all 
atomic partial charges qi according to 

where atoms i and j are on different molecules. Partial charges can be 
obtained from standard semi-empirical or ab initio quantum mechanical 
calculations, approximate semiempirical m ~ d e l s [ ~ ~ ~ ~ ' ]  or, more recently, as 
deformation densities[331 experimentally determined by X-ray diffraction. 

4. Hydrogen bonding has already been treated and only potential fields 
for the calculation of its energy remain to be discussed. Since the H-bond is 
essentially ionic in nature, the total interaction energy of the fragment 
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D-H--A (D = donor, A = acceptor) can be divided in two terms: the usual 
non-bonded energy, Enb, and an electrostatic (or dipolar) term that takes 
into account the partial charges on the donor and acceptor groups. Starting 
from the empirical observation that the D . . . A contact distance is 
practically equal to the sum of the van der Waals radii of D and A as though 
the H atom does not exist, it seems clear that any potential assuming a van 
der Waals radius of zero for the hydrogen (see eqn (7.5)) and localizing 
suitable partial charges (or dipoles) on D-H and A will describe reasonably 
well the H-bonding energy, the preference for a linear D-H--A arrange- 
ment included, as this optimizes both the van der Waals repulsion and 
electrostatic attraction between A and D. This is essentially the strategy 
used by the potential energy fields more recently proposed for describing 
the  bond,[^*^^] though other approaches are also 

Thermodynamics of molecular crystals 
It is of relevant interest to obtain even an approximate evaluation of the 
different terms contributing to the total free energy of a molecular crystal. 
The discussion essentially follows the lines of the treatment given by 
~ i t a i ~ o r o d s k i [ ~ ]  and is restricted to the simple case of a crystal constituted 
by rigid molecules at atmospheric pressure. These conditions allow some 
simplifications. As regards the effect of pressure, the Gibbs free energy 
function G = H - TS differs from the Helmholtz function F = U - TS for 
the term pV = G - F = H - U, which is the work done by the system 
against the external pressure. As the coefficient of thermal expansion is very 
small in crystals, the expansion work is irrelevant at atmospheric pressure 
and we can put G = F. Moreover, if the molecule is conformationally rigid, 
intermolecular forces are unable to modify the internal molecular geometry 
and the following partitioning of the free energy is acceptable 

where F,, and Fmo, are the inter- and intramolecular contributions to the 
total crystal free energy. In this approximation Fmo, could be separately 
calculated at any temperature from the frequencies of the internal vibra- 
tional modes of the rigid molecule by the usual methods of statistical 
thermodynamics; the same methods allow us to calculate another molecular 
quantity which will be shown to be necessary, the contribution of internal 
vibrational modes to the molar heat capacity, Cmo,. 

Within our approximations the molar free energy of the crystal can be 
written as 

U is the lattice energy or total potential energy of the intermolecular 
interactions. Even if the interatomic forces are temperature independent, U 
is temperature dependent as a consequence of the slight increase of the cell 
parameters with temperature, so that it must be written U(T) = Uo+ 
AU(T), where Uo is the lattice energy at absolute zero (a term large and 
negative) and AU a small positive term increasing with the temperature and 
equal to zero for T = 0, representing the expansion work against the 
internal cohesion forces. It causes a difference between the molar heat 
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capacities at constant pressure and volume and from this difference can be 
actually calculated as A U(T) = J": (C, - C,) dT. 

KO is the zero-point energy, that is the crystal vibrational energy at zero 
kelvin; it is known that it may have some relevance only for molecules of 
extremely small moment of inertia (N2, 0 2 ,  CO) and strongly directional 
bonds (H20). In common crystals it is very small (<0.2 kcal mol-') and can 
be neglected. It cannot be dissociated from the lattice energy and the global 
term U + KO can easily be obtained from the experimental molar subEima- 
tion enthalpy at the temperature T according to 

where 2RT is a small correction term (some 1.2 kcalmol-' at room 
temperature) due to the differences of molar heat capacities between solid 
(6R) and gas (3R) and to the expansion work of a mole of gas (pV = RT for 
an ideal gas). Of particular interest is the molar sublimation enthalpy 
extrapolated to absolute zero, which has the meaning of lattice energy at 
this temperature, that is 

E,,, is the vibrational part of the internal energy. At not too low 
temperatures an oscillator gives a contribution of kT to the internal energy 
(equipartition principle). The Avogadro number N of molecules having six 
degrees of freedom (three rotational and three translational) accumulate, at 
the temperature T in gaseous phase, a kinetic energy of 6NkT/2 = 3RT; in 
the solid state translations and rotations are hindered and become oscilla- 
tions and librations around the equilibrium positions which, having both 
kinetic and potential components, can accumulate an energy E,,, = 6NkT = 
6RT and the crystal should have a molar heat capacity C, = 6R. In practice 
C, tends to zero for T tending to zero because an ever decreasing number 
of vibrational levels is accessible and E,,, = $:CV d T  becomes increasingly 
smaller than 6R. 

Svib is the vibrational entropy. Clearly lim Svib = SO for any crystal of a 
T-0 

pure substance without static disorder, where So is the residual entropy at 
absolute zero. So, a quantity strictly related to KO, is very small and it 
is assumed to be zero when the entropies are measured according to 
the third law of thermodynamics. This can be calculated as Svib = Scr = 
SF (Cp - CmoJ d(ln T). 

The thermodynamic equations needed to evaluate the different terms in 
(7.11) and an actual calculation concerning naphthalene at two different 
temperatures are summarized in Table 7.4. The experimental data necessary 
are not easily found, being the molar heat capacity at constant pressure, C,, 
the isobaric thermal expansivity, a = (l/V)(6V/6T),, the isothermal com- 
pressibility, b = -(l/V)(6V/6p),, and the volume of the unit cell, V) from 
zero to the temperature of interest. Two other quantities are needed, Uo, 
obtained from the molar sublimation enthalpy according to (7.12), and the 
contribution of internal vibration modes to the molar heat capacity, Cmo,, as 
a function of T, which has already been shown to be obtainable without 
great difficulty from spectroscopic data in the case that there is no mixing of 
internal modes (intramolecular vibrations) and external modes (vibrations 
and librations of the molecules as a rigid body). Figure 7.5 reports the plot 
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Fig. 7.5. Plot of the molar vibrational free 
energy, F,,,, and of its components as a function 
of the temperature for the crystal of 
naphthalene. Data from ~ i t a i ~ o r o d s k i . ' ~ ]  

Table 7.4. Quantitative evaluation of the free energy of the crystal of 
naphthalene at two different temperatures according to ~itaigorodski['' (the 
zero-point energy KO has been neglected) 

Isobaric thermal expansivity Isothermal compressibility 
a=  (11 V)(6V/6T), B = -(1 I V)(6 V/6p), 

Calculated values (cal mol-') 
Quantity Way of calculus T=140K T=300K 

uo lim  AH""^) -16700 -16700 
T-0 

of the calculated values of molar vibrational free energy for the crystal of 
naphthalene over a much wider range of temperatures. 

From these data it is possible to obtain some rules regarding crystals in 
general and molecular crystals in particular. The lattice energy constitutes 
by far the greatest part of crystal free energy, F,,; at low temperature and 
even at higher temperatures it is the prevailing part. The general effect of 
the vibrational part is that of causing a continuous decrease of F,, because 
ITSvibl increases more rapidly than E,,, with temperature. In other words 
the crystal is increasingly stabilized by higher temperatures; this, of course, 
is not accidental but the expression of a fundamental physical law as 
differentiation of the free energy expression dG = V dp - S dT implies that 
(6G/6T), = - S  and that, S being always positive, the free energy decreases 
with increasing T. A last point can be that the work done against the 
internal cohesion forces of the crystal, AU, is small up to room temperature 
and can be neglected in a first approximation. 

Free and lattice energy of a crystal from atom-atom 
potentials 
Knowing all the individual intermolecular energy terms, the lattice energy 
of a crystal built up of rigid molecules can be calculated according to 

where the first term is the non-bonded energy (eqn (7.4) or (7.5)), the 
second the electrostatic energy (7.9) and the last one the H-bonding energy. 
The index i runs over all atoms of a reference molecule and the index j over 
those of all the surrounding molecules. The summation can be truncated at 
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some 15 A in computing En, because dispersive forces decay rapidly with 
distance. This is not true for electrostatic forces and special mathematical 
techniques have to be used to increase series convergence. 

In the crystal a rigid molecule has six degrees of freedom, three 
translational and three rotational (or librational); if x, y, and z are the 
coordinates of its centre of gravity and 8,  QI and 3 the Eulerian angles 
describing its orientation (Fig. 7.6), U is a function of these six variables and 
of the cell parameters, ai (i = 1, 3), that is 

The number of parameters for the unit cell goes from one for the cubic 
system to six for the triclinic system. Moreover, the molecule may have 
fewer degrees of freedom as it is in a special position; for example it has 
only three rotational degrees of freedom if located on a symmetry centre. 
So, the lattice energy of naphthalene (P21/a, Z = 2) depends on only seven 
degrees of freedom (a, b, c, P, 8, QI, 3) .  

If n is the total number of parameters, it is useful to think of U as a 
hypersurface in an (n + 1)-dimensional space where the geometrical para- 
meters are the abscissae and the energy the ordinate: the different minima 
on this surface correspond to all possible crystal structures in the space 
group chosen. The relevant number of calculations done on different 
crystals indicate that the experimental structure usually corresponds to the 
deepest minimum or, at least, to one of the deepest minima of the potential 
surface and that the calculated and experimental values of U compare 
within a few kcal mol-l. This seems to indicate that the structure can be 
predicted from the simple evaluation of lattice energy, independently of the 
vibrational part of the free energy. 

The reasons for this fact will be discussed in the next section. What is 
important here is that it allows us to obtain the best potential energy 
parameters (globally called a force field) to be used in (7.14) by a 
least-squares procedure on a minimum number of known crystal structures 
where the quantities to be reproduced are the lattice energy, the unit cell 
parameters, and the positional parameters of the molecule. This method has 
been applied to several classes of chemical compounds and is reported to 
give far better results than the use of potentials derived from other 
molecular properties. Unfortunately it has been impossible to find a force 
field able to give a very accurate reproduction of the crystal properties that 
is valid for all chemical compounds. For instance, the calculations can be 
very good for a class (e.g. hydrocarbons) but any attempt to extend the 
force field to molecules containing heteroatoms causes a worsening of the 
final results. Moreover, very few cases of intermolecular H-bonding have 
been studied so far[823s351 and no general evaluation of the term EHB in 
(7.14) is therefore possible. 

Another point concerns molecular flexibility. In theory, lattice energy 
calculations can be extended to the case in which the molecule has internal 
degrees of freedom caused by rotation around single bonds. If t, are the j 
torsion angles of interest, (7.15) can be rewritten as 

U = U a , ,  8,  QI, V ,  x ,  Y ,  x ,  z,) (7.16) 

Fig. 7.6. Eulerian angles 0, q, and yt defining the 
orientation of the (x', y', 2') orthogonal base of 
the rigid molecule with respect to the 
orthogonal base of the crystal, (a, b, c) .  The 
broken line OA is the intersection of planes 
(x 'y ' )  and (ab). 

where 8, QI, v,  x,  y, z concern a reference fragment of the molecule and z, 
are the torsion angles defining the orientation of the other fragments with 



482 1 Gastone Gilli 

Fig. 7.7. Free energies of two hypothetical 
polymorphic phases of the same substance as a 
function of temperature. The crossing of the two 
curves before the melting point defines the 
transition from form 1 to form 2 at temperature 
T. 

respect to the first one. To a first approximation the conformational energy 
can be calculated as the non-bonded interaction energy among the atoms 
belonging to the different molecular fragments by means of the same 
potentials used for intermolecular interactions. To obtain more accurate 
results, however, it will be necessary to use a specific intramolecular force 
field such as that described on p. 509. 

The calculation of the crystal free energy turns out to be much more 
complicated problem because it requires evaluating, besides the lattice 
energy, the term Kib = Evib - TSvib, that is all the possible vibrational modes 
of the molecules around their equilibrium positions within the crystal. This 
can be done by the methods of lattice dynamics within the Born-von 
Karman but the topic is too long and difficult to be 
treated here. Several general treatments of the method and a recent review 
on the results of the calculations carried out on molecular crystals['] are 
available and the interested reader is referred to them. 

Polymorphism and the prediction of crystal structures 
Polymorphism is an important aspect of the thermodynamics of molecular 
crystals, even if little attention has been devoted to this specific problem so 
far. However, it frequently happens that different polymorphic forms are 
obtained by crystallization from different solvents (in particular when the 
molecule has different possible conformers) and the number of polymorphs 
would certainly increase steadily if a larger number of solvents and a wider 
range of tempertures and pressures were investigated. 

The basic reason for the phenomenon lies in the fact that the hypersur- 
face of the lattice energy U has many minima in the twelve-dimensional 
space of (7.15) (six cell parameters and six positional values defining the 
molecule position) and their number is even larger in the (12Sn)-  
dimensional space of (7.16), where n is the number of possible torsions. The 
deepest minimum corresponds to the structure with the closest packing, 
which has the minimum enthalpy because it can establish the most profitable 
pattern of intermolecular interactions. It represents the most stable struc- 
ture in the absence of the vibrational contributions, i.e. at absolute zero. 
When the crystal is heated, however, the total free energy changes from Uo 
to F,, = Uo + AU + Evib - TSvib, which is smaller than Uo (it has already been 
shown that Fvih = Evib - TS,, is always negative and AU is negligible). 
Comparing two hypothetical polymorphic forms of a same substance having 
energies of (Uo), and (U0)2 at absolute zero (Fig. 7.7), the higher-energy 
form is less efficiently packed and will have a greater vibrational entropy 
and therefore a faster decrease of the free energy when the temperature 
increases. From this point of view, the hypothetical molecular arrangement 
having the average structure of the liquid at zero kelvin can be considered 
as the polymorph of highest enthalpy and having the steepest possible 
decrease of free energy with T. With reference to Fig. 7.7, the polymorphic 
transition 1+ 2 is possible whenever the corresponding energy curves cross 
at temperature T, lower than the melting point. At the transformation point 
(Uo + AU + Evib - TSVib), is equal to (Uo + AU + Evib - TSvib)Z and a very 
small increase of temperature will cause a sudden phase transition by 
absorbing the quantity of heat AH, = A(Uo + AU + Evib)2-l which is easily 
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measured experimentally and must be numerically equal to A(TSvib)2-l = 

TASv,b. 
We may wonder what is the energy range of the minima on the 

hypersurface of U, which could give rise, at higher temperatures, to phase 
transitions or, in other words, whether polymorphism could be predicted 
from simple lattice energy calculations. This seems unlikely, at first sight, 
since it has been already shown that the vibrational part of free energy may 
amount to a large percentage (22 per cent for naphthalene at room 
temperature; Table 7.4) of the total free energy. Let us reconsider, 
however, the expression for the transition enthalpy in the form AH,= 
AU, + A(AU) + AEvi,; AH, is known from experience to rarely exceed 
I kcal mol-' in molecular crystals, A(AU) is a small variation in an already 
small term and can be neglected and AE,,, = T(ACV),-, (see p. 479) is a 
small term which is necessarily positive because the heat capacity of a less 
packed crystal must be slightly larger. Therefore, the total lattice energy 
variation energy variation, AU, = 1 kcal mol-' - AE,,,, observable in a 
polymorphic transition should be less than 1 kcal mol-', which seems to 
imply that the number of possible polymorphs can actually be determined 
from lattice energy calculations because no polymorphism will be observed 
at ordinary pressures when the second deepest minimum differs from the 
absolute one by more, say, than 1-2 kcal mol-l. 

Effect of crystal forces on molecular geometry 
A subject often discussed in structural literature is whether the crystal field 
of van der Waals crystals can modify molecular geometries. Following 
~ i t a i ~ o r o d s k ~ , [ ~ ~ ~ ~ I  two cases can be distinguished: deviations from the 
minimum-energy (or equilibrium) geometry and different choices among 
possible geometries. 

As regards the first case and calling AE the hypothetical molecular energy 
variation caused by a displacement from the equilibrium geometry and AU 
the concomitant change of lattice energy, the deformation will be possible 
only when I AE I < I A UI . For dispersive interactions, /A UI has been 
estimated[441 from the changes of lattice energy consequent upon small 
displacements of C and H atoms in the structure of benzene: it amounts to 
less than 0.01 kcal mol-I for an atom shift of 0.03 A. Values for lAEl can be 
easily calculated by the methods of molecular mechanics (see p. 506). A 
shift of 0.03 A in the stretching or compression of a C-C or C-H single 
bond requires an energy of some 0.30 kcal mol-' which is much larger than 
IAUI: therefore, crystal forces cannot affect bond distances. Moreover, a 
shift of 0.03 A corresponds to a bond angle change of 1.2-1.6" in common 
organic compounds. The energy necessary to change by this amount a 
C-C-C or C-C-H angle in benzene is about 0.03 kcal mol-' which is still 
three times larger than IAUI; accordingly, it seems unlikely that relevant 
(say, greater than 1-2") changes of bond angles can be produced by the 
crystal field. 

More complex is the case of rotations around single bonds, where the 
same shift of 0.03 A can be produced by rotation around a C-C-C-C 
torsion angle by expending only 0.0012 kcal mol-' as far as the simple 
torsional potential is concerned. Here the controlling factor is represented 
by the intramolecular contacts of the atoms, or groups of atoms, which are 
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moved by the rotation around the single bond. Let us assume that, when the 
molecule is in its conformational minimum, all contact distances of interest 
are not far from the minimum of their atom-atom potentials (Fig. 7.2): the 
global conformational energy minimum will inevitably be shallow and the 
crystal field might even produce relevant changes of the torsion angle. A 
classical example is diphenyl, which is not planar by itself but becomes 
planar under the slight compression of the crystal field. Conversely, crystal 
forces will weakly affect the value of the torsion angle when the walls of the 
potential well are steep, a situation occurring when the molecule is in 
tension (or rigid) because, in the conformational minimum, the atomic 
contact distances are in part shorter and in part longer than the optimal 
contact distances. From this point of view it can be stated that overcrowded 
molecules are the least affected by the weak crystal forces. 

It remains for us to consider the case of molecules having different 
possible conformations which crystallize in a conformation which is not that 
of minimum energy for the free molecule. This is quite possible and, in fact, 
many conformationaly flexible molecules are found to crystallize in different 
space groups with different conformations (conformational polymorphism). 
It has already been remarked that the enthalpy of polymorphic transitions 
seldom exceeds 1 kcal mol-' in molecular crystals and this makes it possible 
that a molecule, whose second most stable conformation differs from the 
first one by not more than 1-2 kcal mol-l, may gain from a more efficient 
crystal packing that energy (or even more) which has been lost in 
consequence of the choice of an unpreferred conformation. 

Elements o f  classical stereochemistry 

Structure: constitution, configuration, and conformation 
X-ray crystallography produces a quite detailed description of the spatial 
arrangement of atoms in molecules, a description indicated by the generic 
term of structure. However, a rigorous definition of what is structure is not 
a trivial problem and modern s t e r e o c h e r n i ~ t r y [ ~ ~ - ~ ~ ~  tries to give an answer 
by means of the more basic concepts of constitution, configuration, and 
conformation. 

Molecular constitution indicates the way in which atoms are intercon- 
nected, making due distinction between single and multiple bonds. It is 
therefore a topological concept which can be reconnected to that of 
graph.[551 

The configurations of a molecule of given constitution indicate all 
possible spatial arrangements of its atoms, ignoring those derived from 
rotation around single bonds. In carbon chemistry different configurations 
are mainly caused by the presence of double bonds or asymmetric carbon 
atoms. A change of configuration requires, as a rule, the breaking and 
remaking of a chemical bond and is a high-energy process. 

The word conformation refers to the different spatial arrangements of a 
molecule of given configuration produced by rotation (torsion) around 
single bonds. The concept of conformation and the relative nomenclature 
are more easily illustrated by an example. Figure 7.8 reports the potential 
energy curve of 1,2-dichloroethane as a function of the Cl-C-C-Cl torsion 
angle as calculated by the methods of molecular mechanics (p. 506-11). The 
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The term structure includes the constitutional, configurational, and 
conformational aspects of the molecule. The same three aspects do not 
always need to be considered. For CH,, CHCl,, and CH2C12 the structure is 
defined by the simple constitution, for CHClBrI (asymmetric carbon) and 
ClHC==CHCl (cis or trans configurations) by constitution and configuration, 
and for H,C-CH,, H2BrC-CBrH2 and cyclohexane by constitution and 
conformation; finally, the structure of HRC=CH-CH=CHR1 needs the 
definition of constitution, configuration, and conformation, having four 
possible cis-trans configurations around the two double bonds besides the 
conformations produced by rotation around the central single bond. 

It is important to remark that, while the crystal structure is always 
univocally defined by atomic coordinates, cell parameters, and symmetry 
operations, molecular structure is a concept which can be given a precise 
meaning only within the frame of the valence bond theory (p. 502-6) since 
all classical stereochemistry is centred on the idea of simple and multiple 
localized bond. 

Isomerism 
Molecules having the same formula but different structures are called 
isomers and are said to display isomerism. There are three different types of 
isomerism: constitutional, configurational, and conformational, and the 
two last are grouped under the common term of stereoisomerism. 

Constitutional (or bond or topological) isomerism 
Constitutional isomers represent the different modes of connecting the same 
set of atoms. Accordingly, 1-butene, 2-butene, and iso-butene (la, lb ,  Ic), 
the three o-, m- and p-disubstituted benzene derivatives (2a, 2b, 2c), and 
the two nitro- or nitrito-complexes (3a, 3b) are constitutional isomers. 
Usually isomers of this sort cannot interconvert and are to be considered as 
distinct chemical compounds. In case an interconversion equilibrium can be 
established the expressions tautomers, tautomerism, and tautomerie 
equilibrium are employed; tautomerism is normally associated with the 
migration of a hydrogen atom and a typical example is that of the 
acetylacetone keto-en01 tautomerism (4a, 4b). It should be remarked that 
less recently constitutional isomers were termed structural isomers; it is 
clear that such an expression has to be avoided. 

Configurational isomerism 
Molecules having the same constitution but different configurations are 
called configurational isomers. Two main cases are to be distinguished: 
when the two stereoisomers can be related by a symmetry operation of 
reflection they are enantiomers and when this is not possible they are called 
diastereoisomers or, sometimes, diastereomers. The distinction has a 
precise physical meaning. Both enantiomers and diastereoisomers are 
identical as far as their chemical bonds are concerned. Only the former, 
however, have indistinguishable non-bonded interactions; they have the 
same physico-chemical properties in all respects except for their optical 
properties and reactivity towards other enantiomeric species. In particular, 
enantiomers rotate the plane of polarized light by the same angle but in 
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opposite directions, a property by which they can be identified and which 
explains their older name of optical isomers. 

Molecules having an internal symmetry plane cannot have enantiomers 
because they are their own enantiomer. In such molecules the possible 
diastereoisomers are often and traditionally called geometrical isomers. 
Common cases are planar molecules (ethylene derivatives, planar rings, and 
square-planar complexes). However, geometrical isomerism is not another 
type of isomerism but just a particular name given to diastereoisomerism in 
a specific situation. 

The condition for a molecule to show enantiomerism (i.e. to exist as a 
couple of enantiomers) is that it cannot be superimposed on to its mirror 
image in any of its possible conformations. Such a molecule is said to be 
dissymmetrical or chiral. Since rotations are allowed operations in trying to 
superimpose the molecule with its mirror image, the most general condition 
for chirality is the lack of molecular rotary-reflection axes, a condition which 
excludes the presence of both internal symmetry centres (S2 = 1) and planes 
(Sl = m) . 

The most frequent cause of chirality is the presence of an asymmetric 
carbon atom, that is a tetrahedral carbon bonded to four different atoms or 
atomic groups as, for instance, in glyceraldehyde (5a, 5b). The number of 
possible isomers increases with the number of asymmetric atoms. The 
cr,P-dibromocinnamic acid, having two asymmetric carbons, produces four 
different stereoisomers (6a-6d); the pairs (6a, 6b) and (6c, 6d) are enan- 
tiomers while all other pairs are diastereoisomers. Tartaric acid (7a-7c) 
illustrates the case where one of the two enantiomeric pairs vanishes 
because the parent diastereoisomer has an internal symmetry plane (7c: a 
meso form). This last example elucidates another interesting aspect of 
enantiomerism. The meso form depicted in (7c) cannot exist in practice 
because it is a high-energy eclipsed conformation. However, any pair of 
right- and left-handed torsions of the same entity will generate a pair of 
enantiomers which are isoenergetic, independently of the shape of the 
potential energy curve; being isoenergetic, they will be present in the pure 
liquid or in solution with exactly the same populations causing the 
compound to be optically inactive. 

Chirality can be associated with a variety of other bond situations which 
can produce tetrahedral arrangements, as in allenes (Sa, Sb), spiro- 
compounds, quaternary ammonium salts, or bis(benzoy1acetonato)- 
beryllium (9a: one enantiomer shown). It can be also associated with non- 
aromatic cyclic systems: for example, all rings with an odd number of 
terms and two different non-geminal substituents have two asymmetric 
carbons producing two diastereoisomeric pairs of enantiomers, as shown 
by the cyclopropane derivative (10a-10d). An example of chirality in 
coordination chemistry is given by the chelate octahedral complexes of the 
type [ C ~ ( e n ) ~ ] ~ +  ( l l a ,  l l b )  or [cis-CoC12(en),]+, where en stands for 
ethylenediamine. 

Of particular interest are pyramidal atoms, i.e. those having tetrahedral 
hybridization but a hybrid orbital occupied by a non-bonding pair. It was 
suggested many years ago that molecules similar to the amines NHR,R2 and 
NR,R,R, should exist in two enantiomeric forms which, however, have 
never been observed. The reason is that the two enantiomers (12a) and 
(12b) exchange rapidly in solution by pyramidal inversion through a planar 
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transition state having an energy higher only by a few kcal mol-l. Further 
investigations have shown than other potentially chiral compounds of 
trivalent phosphorus and arsenic have higher interconversion barriers and 
that their enantiomers may be actually resolvable, at least at low 
temperature. 

The absolute configuration of an enantiomer (i.e. its actual atomic 
disposition in space) is a problem which cannot be tackled by chemical 
methods. All attempts to obtain it from the sign of optical activity in 
solution, the property which is more strictly related to enantiomerism, have 
failed. The first absolute configuration of an enantiomer was only accom- 
plished in 1951 by Bijvoet and c o - ~ o r k e r s [ ~ ~ ]  on (+)-tartrate of sodium and 
rubidium by anomalous scattering methods, as discussed in Chapter 5. Since 
then absolute configuration determination has become routine. 

The nomenclature for identifying enantiomers has changed over the years 
and reflects the discovery of new techniques for their study. The oldest one 
simply reports the sign of the optical activity (+ or -); later on Fisher, in 
his fundamental studies on carbohydrates, discovered the stereochemical 
series and enantiomers were named after the series they belonged to (D or 
L). More recently Cahn, Ingold, and i re lo^[^^] introduced the R-S 
nomenclature which describes exactly the spatial arrangement of groups or 
atoms as obtainable from X-ray diffraction studies. 

In this context it is worthwhile to remark that chemical nomenclature has 
been developed for solutions and not for the crystal state, so that some 
misunderstandings can sometimes occur. As far as enantiomers are con- 
cerned, it is known that the usual chemical synthesis can only produce a 1:l 
mixture of the two enantiomers which is called racemic mixture; it can be 
separated (resolved) by reacting it with other chiral molecules by which the 
two enantiomers are transformed into diastereoisomers; only the more 
recent asymmetric synthesis can produce single R or S enantiomers. When 
a pure enantiomer crystallizes, it can only adopt a polar space group (i.e. 
without S,, rotary-reflection axes), otherwise the symmetry element would 
generate the other enantiomer; this is the case, for instance, for all natural 
aminoacids or proteins. The crystallization of the racemic mixture may be a 
more complex problem. Usually the mixture is thermodynamically more 
stable and crystallizes as a homogeneous solid containing equimolecular 
amounts of both enantiomeric molecules which is termed racemate. The 
crystal obtained is usually centrosymmetric with the two enantiomers 
related by a symmetry centre, though sometimes it happens to be polar with 
a double (or of higher even multiplicity) asymmetric unit allocated to both 
enantiomers. In the rare case that the racemate is less stable than its 
components, the racemic mixture crystallizes in a polar space group with 
spontaneous resolution of the enantiomers, that is it produces two types of 
enantiomeric crystals, each one containing just one enantiomer (which is, 
incidentally, the way Louis Pasteur discovered enantiomers for the first 
time). This fact is the origin of a not uncommon error in structural 
determination, that of determining the absolute molecular configuration 
without taking into account the fact that the bottle from which the crystal 
was taken contains one half of crystals of the opposite configuration. The 
subject of chiral crystals can become quite difficult to understand in its 
generality because there are also space groups which are chiral by 
themselves and not because they have to allocate chiral objects (e.g. P31 



490 1 Gastone Gilli 

and P3J. Moreover, what has been said for configurational enantiomerism 
has to be extended to conformational enantiomerism because conformations 
become fixed within the crystals. For more details the reader is referred to a 
more specialized treatment.[571 

Going back to the other isomers, it has already been remarked that 
geometrical isomerism is the traditional way of indicating diastereoisomer- 
ism in molecules having an internal S,. Classical examples are cis-trans 
isomers in ethylene derivatives (13a, 13b), syn-anti isomers in oximes 
(14a, 14b) or azocompounds (15a, 15b), cis-trans isomers in square planar 
(16a, 16b) or octahedral (17a, 17b) complexes, and mer-fac (meridional- 
facial) octahedral complexes (18a, 18b). Geometrical isomerism is also 
observed in saturated cyclic compounds where the substituents can be over 
or under the ring plane. For instance, four-membered rings substituted as in 
(19) can only show geometrical isomerism in consequence of their internal 
mirror plane; accordingly (19a) and (19b) are cis-trans isomers. Complete 
nomenclature rules for geometrical isomers are a ~ a i l a b l e . [ ~ ~ > ~ ~ ]  

Conformational isomerism 
Conformational isomers (rotational isomers, rotamers, conformers) are 
the molecular states corresponding to minima of the potential energy curve 
expressed as a function of the torsion angle around a single bond. With 
reference to Fig. 7.8, states b, d, and f are conformers while a, c, and e are 
transition states; all are possible conformations. As is the case for all 
stereoisomers, conformers can have mutual relationships of enantiomerism 
or diastereoisomerism; so conformers b and f are enantiomers while b and c 
(or c and f) are diastereoisomers. 

The energy barrier protecting conformers is usually rather small (5- 
15 kcal mol-l) and much smaller than that protecting configurational iso- 
mers. For reference, the thermal activation barrier for cis-trans 
isomerization around a double C-C bond (13a, 13b) is some 40 kcal mol-l. 
However, it is not the height of the barrier that can distinguish between 
conformational and configurational isomers but the fact that conformers 
differ in a rotation around what is a single bond (even if with partial 
double-bond character) in the ground state of the molecule. This rule allows 
us to classify as conformers the enantiomers produced by hindered rotation 
in o, or-disubstituted diphenyls (20a, 20b), although the interconversion 
barrier is so high that they can be resolved at room temperature. Such 
resolvable conformers are sometimes reported as atropoisomers. 

Ring conformations 
It seems reasonable to assume that a ring containing single bonds, e.g. 
cyclohexane, could have different conformations describable by a potential 
energy curve of the type shown in Fig. 7.8, having minima and maxima 
corresponding to ring conformers and transition states. The difficulties arise 
when trying to define the independent variables that the potential energy is 
a function of, and this for the evident reason that the torsion angles fixing 
the conformation are not mutually independent but related by the condition 
of ring closure. The problem is not easy to solve and only some basic 
concepts will be discussed here; the mathematical complications will be 
discussed in the next section. 
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Let us focus our attention on the origins of the energy barrier which 
separates the different conformers. As it will be discussed in more detail 
later (p. 507), the deformation of a molecule can be conceived of in terms of 
displacements of its bond distances, bond angles, and torsion angles from 
their optimal equilibrium values. The deformation energy needed rapidly 
decreases in the order bond stretching or compression, bond angle bending, 
and torsion around single bonds, while the torsion around double bonds 
requires energies in between stretching and bending. Since energies of 
single bond torsions are very small, transitions between conformations 
which can occur without angle bending will have an almost null activation 
barrier. In this case the ring is flexible because many different combinations 
of the two isoenergetic (degenerate) conformations become possible. The 
pathway interconverting isoenergetic conformations is called, for reasons to 
be discussed later, a pseudorotation path. Classical examples of degenerate 
conformations are the envelope (E) and twisted (T) conformations of 
cyclopenthane (Fig. 7.9) and the boat (B) and twist-boat or twisted (T) 
conformations of cyclohexane (Fig. 7.10). The opposite occurs when it is 
impossible for the molecule to change conformation without bond angle 
deformation (or, in general, bond stretching or rotation around double 
bonds). In this case the molecule is rigid and its actual conformation is 
protected by a barrier which can be of the order of magnitude of 
10 kcal mol-' for saturated rings and somewhat greater if there are double 
bonds stiffening the ring. Figure 7.10 shows the somewhat idealized shape of 
the potential energy curve of cyclohexane as a function of a generalized 
coordinate of conformational interconversion as could be obtained by the 
molecular mechanics methods. The rigid conformation of cyclohexane is the 
chair (C), which is the most stable and is transformed into the T form 
through a transition state called half-chair (H) which is some 11 kcal mol-' 
higher in energy. T and B are almost isoenergetic and can be interconverted 
practically without any activation barrier (pseudorotation). C, B, and T are 
the three low-energy conformations of cyclohexane and therefore its three 
conformers according to the definitions given in the previous section. 

The number of possible independent conformers of a ring can be 
determined by the use of simple considerations. A planar ring of N atoms 
has 2N degrees of freedom, out of which two are of translation, one of 
rotation, and 2N - 3 of in-plane vibration. Allowing the atoms to vibrate 
out of plane, that is the ring to become puckered, the number of vibrational 

Fig. 7.9. The two degenerate conformers of 
cyclopenthane (E =envelope, T = twisted) and 
their symmetries. The ring conformation is 
flexible because the two conformers can 
interconvert with zero activation energy along a 
pseudorotation path. Any observed 
conformation can be described as a linear 
combination of E and T. 

Fig. 7.10. Idealized potential energy profile of 
cyclohexane as a function of a generalized 
coordinate of conformational interconversion as 
could be obtained by the methods of molecular 
mechanics. C = chair, B = boat, T = twist-boat or 
twisted, H = half-chair. B and Tare degenerate 
and ~ r o d u c e  flexible ring conformations; C is 

C O N F O R M A T I O N A L  C O O R D I N A T E  the rigid low-energy conformer. 
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Fig. 7.11. A system of coordinates for describing 
the out-of-plane vibrations of a six-membered 
ring. 

degrees of freedom becomes 3N - 6 with an increment of (3N - 6) - (2N - 3) 
= N - 3, which is just the number of out-of-plane independent vibrations or 
independent puckering conformers. So three- four- five- six- and seven- 
membered rings should have, respectively, zero, one, two, three, and four 
puckering conformers. This kind of reasoning allows us to know the total 
number of possible conformers but not their nature, a much more difficult 
task to be discussed in the next section. Another qualitative consideration 
can be derived from the examples already given. For cyclopentane there are 
5 - 3 = 2 conformers (E and T), which are isoenergetic or degenerate and 
flexible because they can interconvert along a pseudorotation path. For 
cyclohexane the conformers are 6 - 3 = 3, out of which two (B and T) are 
degenerate and flexible while the other one (C) is single and gives the 
lowest-energy rigid conformation. By generalization: a N-membered ring 
has N - 3 possible conformers which are arranged two by two in flexible 
mutually interconverting degenerate pairs; if N - 3 is odd, the last single 
conformer is rigid and has the lowest possible energy. Accordingly, 
cycloheptane will have four possible conformers arranged in two flexible 
pairs while cyclooctane will have one more rigid low-energy conformation, 
which is the ground state of the ring. 

Ring conformation and group theory 
The problem of determining the N - 3 independent low-energy conforma- 
tions (conformers) of a N-membered ring is reducible to that of finding the 
normal out-of-plane vibrational modes of the ring, which can be easily 
solved by applying group theory[581 to equilateral polygons. The method will 
be illustrated for five- and six-membered rings and its understanding 
requires some previous knowledge of group theory. From a formal point of 
view the problem is the same as that of finding the molecular orbitals of 
planar rings within the Hiickel theory. 

Let us consider the regular hexagon of Fig. 7.11, where the out-of-plane 
displacements are represented by the small vertical arrows. The hexagon 
belongs to the point group D,,, whose character table is reported in Table 
7.5. The reducible representation for out-of-plane vibrations is obtained by 
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Table 7.5. Character table for the point group D,, 

Dgh E 2C6 2C3 Cz 3C; 3C; i 2S3 2S6 ah 3ad 3av 

A l , l l l l l l  1 1 1 1 1 1  xZ + y2, z2 

A,, 1 1 1 1 -1 -1 1 1 1 1 - 1  -1 R, 
B,, 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
B,, 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 

El, 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (R,, R,,) (x:, yz), 
E,, 2 -1 -1 2 0 0 2 -1 -1 2 0 0 (X - Y r x ~ )  
A,, 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 
A,, 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z 
El, 1 - 1  1 -1 1 -1 -1 1 -1 1 - 1  1 
B," 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 
El, 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y) 
E," 2 -1 -1 2 0 0 -2 1 1 -2 0 0 

applying all the group symmetry operations to the six small vertical vectors 
of Fig. 7.11; the character for any class of symmetry operations (or column 
of the character table) is given by the number of small vectors not moved by 
the symmetry operation. It is easily seen that the characters of such 
representation, r6 ,  are 

which can be resolved by standard methods"rn a combination of the four 
irreducible representations (i.r.) 

according to the equation r6 = A,, + El, + B,, + EZu. 
The normal modes of out-of-plane vibration (or modes of puckering) are 

now to be found and, for the sake of clarity, let us make reference to the 
final results shown graphically in Fig. 7.12. The modes transforming as AZu 
and El, are immediately found from Table 7.5 to correspond to rigid body 
motions (respectively translation along z and rotation around x and y). 

A base for B,, (i.e. a representation transforming under the group 
operations as B,,) is easily found because it has to be symmetrical with 
respect to C, and antisymmetrical with respect to C6 and therefore 
corresponds to alternate positive and negative out-of-plane displacements 
(conformation C in Fig. 7.10); calling zi one of such displacements, the 
vibration is described by the function 

where 6-'I2 is a simple normalization factor granting that C i  z: = 1. A base 

t The number of times ni that the i.r. Ti appears in the reducible representation T' is given by 

where h is the order of the group (in the present case 24) and x,(R) and x ' (R )  are the 
characters of the symmetry operations Ti and T', respectively. 
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Fig. 7.12. Normal modes of out-of-plane 
vibration (ring puckering) of a six-membered 
ring and their symmetries. Any mode belongs to 
an irreducible representation of the point group 
D,, and is therefore orthogonal to the others. 

for E2, is not intuitive and must be found by ordinary group theory 
methods. A first base can be obtained by associating the out-of-plane 
displacement to atom 1 of the ring and operating on it by all symmetry 
operations multiplied by their characters. The required base is the sum of all 
the terms obtained, that is 

which is a base for (or is transformed as) the boat conformation B and can 
be written in normalized form as 

As E2, is two-dimensional, the degenerate partner of 4, remains to be 
found; it can be done by the same technique operating on z2 instead of zl 
and obtaining the normalized function 

which, however, is not orthogonal to @, because S = $ @,$J dv = -112. To 
make the two functions orthogonal the Schmidt orthogonalization proce- 
dure is used,? obtaining the orthogonal function required in normalized 
form 

GT = 4-112(-~2 + 23 - z5 + z6) (7.19) 

which is the base for describing the puckering of the twisted conformation 
T. GB and GT belong to the same i.r. and are degenerate, at least for 
infinitesimal zi displacements, and all their linear combinations are allowed 

t If the two already normalized functions 4, and 4, are not orthogonal, i.e. [ 4,4, du = S # 
0, the new function 4' = 4, - SG, is orthogonal to +,, as can be shown by simple substitution. 
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solutions; this means that any linear combination of T and B conformers is 
an allowed conformation of the ring or, in other words, that the two 
conformers T and B can interconvert with zero activation energy along a 
pseudorotation path. 

It is now useful to find an analytical expression for describing the 
displacements z, of a ring whose puckering amplitude is (C, zf)'I2 = q. It is 
convenient to define the z, values with reference to the mean ring plane, 
which is fixed by the condition of non-translation (C, z, = 0) and by those of 
non-rotation around the x and y axes; these last conditions can be obtained 
by equating to zero the sum of the vertical displacements weighted by the 
functions representing the two components of the rotational i.r. El, of Fig. 
7.12, that is 

2 zi sin [2x(i - 1)/6] = 0 
i 

where i can assume the integer values from one to six. Moreover, it can be 
verified by simple computation that the following functions give the same 
displacements as 4, in (7.17) and 4, and 4, in (7.18) and (7.19), and 
therefore are transformed by the operations of the point group D6,, as the 
i.r. BZg and E2, of Fig. 7.12 

E;,: @,(i) = zi = 3-'I2q2 cos [4n(i - 1)/6] 

El,: @,(i) = zi = 3-112q2 sin [4n(i - 1)/6] (7.23) 

where 6-'I2 and 3-'12 are normalization factors and q3 and q2 the mean 
puckering amplitudes of the two vibration modes. 

The function describes the out-of-plane displacements of the C 
conformer while any linear combination k,& + k2GT describes those of the 
degenerate B and T conformers. For the properties of trigonometric 
functions, such combinations can be written as 

where 42 is a phase angle having values of 0, 60, 120, 180, 240, or 300" for 
the pure B conformations and 30, 90, 150, 210, 270, or 330" for the pure T 
conformations. 

Equations (7.21) and (7.24) describe analytically the conformations of a 
six-membered ring in terms of the three parameters q3, 9,) and G2 and the 
N - 3 possible conformations remain characterized as the three C, B, and T 
conformers. The characterizing parameters (9,) q2, G2) are more generally 
identified as the N - 3 generalized puckering coordinates, that is the N - 3 
variables necessary and sufficient to define any out-of-plane deformation of 
the ring. q3 and q2 are called puckering amplitudes and G2 the phase angle 
and any possible conformation of the six-membered ring corresponds to a 
point in the three-dimensional space spanned by the orthogonal base 
( q 2 ,  $ 2 )  q3). 
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For example 'C4t corresponds to 9, = q, q2 = 0, and @, undefined, while 
4C1 differs only for having 9, = -9. Moreover, 1 , 4 ~ ,  B2,s, 3 , 6 ~ ,  B4,', 2,5B, 
and B3,6 have all 9, = 0, q2 = q, and @, = 0, 60, . . . , 300°, respectively, 
while 4T2, 6 ~ 2 ,  3 ~ 1 ,  'T4, 'T~,  and 'T, still have 9, = 0 and 9, = q but 
$J2 = 30, 90, . . . , 330") respectively. The actual value of q = (C, z?)li2 is 
determined by the equilibrium value of the bond angle, a ,  defined by the 
ring atoms. It is self-evident that q will be zero for an equilateral hexagonal 
ring having a = 120" and it can be shown that 9, is equal to 6 6 ' " ~  for an 
equilateral C ring of side R and tetrahedral internal ring angles (e.g. 
cyclohexane) . 

It has already been remarked that any possible ring conformation is 
defined by the triplet of values (q,, $J2, 9,) in a Cartesian system of axes; 
otherwise these coordinates can be expressed as polar coordinates 
(Q, 0, $1, where Q is the total puckering amplitude defined as 

and = @2, while 0 is an angle in the range 0 - ?G such that 

q2 = Q sin 0 and 9, = Q cos 0. (7.26) 

In this way any conformation is represented by a point on a sphere of 
radius Q, 'C4 being at the north pole (0  = 0", $J undefined) and its 
enantiomer 4C1 at the south pole, while B and T interconvert along a 
pseudorotation path which is on the equator (6 = 90") in correspondence to 
all possible values of @. 

The previous discussion was mainly concerned with the low-energy 
conformers C, B, and T. The ring, however, also has high-energy transition 
states and there is general agreementUs9] that these are the envelope (E), 300 half-chair (H), and screw-boat (S) conformations of C,, C2, and C2 
symmetry, respectively, as shown in Fig. 7.13. Cremer and ~ o p l e [ ~ ~ ]  have 
shown that the E and H forms are located at tan 0 = f v(3/2) and f v 2 ,  

- -  - -  
- - - - respectively, and ~oeyens [~ ' ]  that the S form occurs for tan 8 = f (1 + v2). 
5 2 This last author has reported a complete map of the six conformations, 

usually called canonical, in polar coordinates, which is reported in Fig. 7.14 
('l) (") with some modifications. The figure has the further meaning that all 

Fig. 7.13. The three activated states of puckering 
of a six-membered ring and their symmetries 
(E = envelope, H = half-chair, S = screw-boat). 

maximum circles indicated are possible interconversion among 
conformations. The T-B pseudorotation circle is the equator, while along 
the meridians the C conformation is converted to B through E or to T 
through H and S. 

The problem of the conformations of a five-membered ring can be solved 
by the same methods. The ring has only two puckering coordinates because 
N - 3 = 2; it belongs to the point group D,,, whose character table can be 
obtained from any group theory text. The reducible representation for the 
out-of-plane vibrations is 

t According to the nomenclature usually employed, the conformations chair, boat, and 
twisted (or twist-boat) are called C, B, and T and the atoms which are over or under the mean 
plane of the ring are indicated by upper left or lower right indices. So, 2 3 5 ~  is a boat ring having 
the atoms number two and five directed upwards and B,,, its enantiomer while *T, is a twisted 
ring with the second atom pointing up and the fifth one pointing down. 
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which can be decomposed as T, = A'! + E'; + Ei, where A; and E;' cor- 
respond to translation and rigid body rotations, respectively. The puckering 
modes belong to the two-dimensional i.r. E; and a base for them, found by 
the usual methods, is shown in Fig. 7.15. The two conformers found, 
envelope (E) and twisted (T), are degenerate and all their linear combina- 
tions are possible conformations on a pseudorotation pathway. By analogy 
with (7.20-7.24) the non-translation and non-rotation conditions are 

zi cos [2n(i - 1)/5] = 0,  
i 

zi sin [2n(i - 1)/5] = 0,  
i 

and the functions describing the puckering displacements are 

@=(i) = zi = (2/5)lIzq2 sin [4n(i - 1) /5] ,  (7.29) 

where i can assume all integer values from one to five and (2/5)'12 is a 
normalization factor providing that C i  z? = q:, q2 being the puckering 
amplitude. Since E' is two-dimensional, any linear combination k1GE + 
k2GT belongs to Ei and can be written as 

Fig. 7.14. Polar projection of the northern part of 
the sphere reporting, for an arbitrary value of Q,  
the positions Band C$ of the canonical 
conformations of a six-membered ring. The 
southern hemisphere contains the enantiomeric 
conformations in centrosymmetric positions. 

Fig. 7.15. Normal modes of out-of-plane 
vibration (ring puckering) of a five-membered 
ring and their symmetries. E =envelope, T = 
twisted. 
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1~ 'T, 
where 4, is a phase angle having values of 0, 36, 72, 108, 144, 180, 216, 252, 4,C;3E 288, and 324" for the ten E conformations and 18, 54,90, 126, 162, 198, 234, 
270, 306, and 342" for the other ten T conformations, intermediate values of 
@, corresponding to mixtures of the two along the pseudorotation path. The 

30 complete pathway is shown in Fig. 7.16. 
E $2 "v 

A 
*, 

4 ~ 3  FE YJT4 Computation of puckering coordinates 

d : 4  

The theory given in the previous section concerns equilateral and isogonal 
rings. However, the equations obtained can also be used for irregular rings 
without loss of generality, at least as regards the Cremer and Pople 
treatment,[601 which makes use of the displacements zi from the ring mean 

T~ 
plane. Other methods using the values of the endocyclic torsion angles (e.g. 

EI that proposed by Altona et al.[621 for five-membered rings) may not have the 
Fig. 7.16. Pseudorotation wheel describing the Same degree of generality. 
conformations which can be assumed by a 
five-membered ring during the changes of the Several Computer programs[63264] are available for the computation of the 
phase angle $,. puckering parameters according to Cremer and ~ople.[~ ']  The procedure 

usually includes: transformation from crystal to orthogonal coordinates; 
passage to the system of coordinates defined by (7.20) or (7.27), having 
their origin at the centre of gravity of the ring, the z axis perpendicular to 
the mean ring plane and the y axis passing through the first ring atom; 
determination of the parameters q and $J (or Q, 8, and $) satisfying eqns 
(7.21) and (7.24) or (7.30). 

An example of application to the fructose and glucose rings of the 
molecule of sucrose is reported in Table 7.6. The five-membered fructose 
ring has q2 = 0.353 A and G, = 265.1". By comparing the calculated value of 
Gz with those of Fig. 7.16, it is found that the ring conformation is very near 
4 ~ 3  with a small component of E3. The six-membered ring has a Q value of 
0.556& i.e. it is more puckered than the five-membered ring. The 
calculated values of 8 = 5.2" and $ = 183.7" indicate, when compared with 

Table 7.6. Atomic coordinates and puckering parameters for fructose and glucose rings 
of the molecule of sucrose (coordinates from Brown and Levy, Acta Crystallographica, 
839, 790 (1973)) 

Atom N Orthogonal coordinates Puckering coordinates 

Puckering parameters: q, = 0.353 A, +, = 265.1" 

Puckering parameters: q, = 0.050 A, 4, = 183.7" 
q, = 0.554 A 
0 = 0.556 A, 8 = 5.2", @I = 183.7" 
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those of Fig. 7.14, that the ring conformation is an almost perfect 'C,  with a 
very small distortion towards 5H4 and E,. 

Molecular geometry and the chemical bond 

An overview of bond theories 
One of the central topics of structural chemistry concerns the interpretation 
of the observed molecular geometries in terms of the existing theories of 
chemical bonding. Theories derived from the fundamentals of quantum 
chemistry include ab initio[65,661 and ~ e m i e m p i r i c a l [ ~ ~ - ~ ~ ]  methods. In 
principle both classes of methods (in particular the first ones) are able to 
reproduce all the details of the experimental geometries with the great 
additional advantage of giving them a theoretical justification in terms of 
molecular orbital energies, shape, and symmetry. The main difficulties arise 
from the great complexity of the calculations involved even for molecules of 
relatively small dimensions. The situation is not so different from that 
discussed in connection with the problem of molecular structure determina- 
tion by microwave spectroscopy or gas electron diffraction. Great accuracy 
can be achieved at a reasonable cost of both human effort and computer 
time only for molecules of very small dimensions in comparison with those 
X-ray crystallography is used to deal with. Another important aspect 
concerns the objective difficulties many crystallographers may have in 
understanding the fundamentals of quantum chemistry needed for a not 
completely acritical use even of the most known and generally available 
compter programs (e.g. GAUSSIAN[~~] for the ab initio programs or 
MIND013, MNDO[~" and  AM^[^'] for the semiempirical ones). 

It is then not surprising that, in spite of the fact that quantum-mechanical 
calculation programs have been implemented in most molecular graphics 
systems commercially available, the most popular bond theories used in 
interpreting molecular geometries remain the qualitative or 
semiquantitative theories, that is those always based on quantum chem- 
istry but with the different aim to produce concepts of easier application for 
practical scientists. It is these theories which will be briefly reviewed here. 

1. Valence bond (VB) In VB theory the molecular 
geometry is interpreted in terms of the concepts of hybridization and 
separability of localized a bonds and localized or delocalized n bonds. The 
x bond delocalization is treated by means of the concept of resonance 
between canonical forms, through, more recently, the Huckel molecular 
orbital method limited to the n electrons (Pi H M O ) [ ~ ~ ]  has been frequently 
employed. The idea of localized bonds is the logical foundation of 
molecular mechanics (see p. 506-ll), which gives an interpretation of the 
molecular geometry in terms of balls (atoms) connected by springs (the 
chemical bonds), and, as previously discussed (see p. 486), is the basis of all 
definitions of classical stereochemistry. 

2. Valence shell electron pair repulsion (VSEPR) theory.[763771 This is 
probably the most used qualitative tool for the interpretation of the shapes 
of molecules containing main-group elements, while its applicability to 
compounds of transition elements is rather limited. The VSEPR model has 
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been considered destitute of theoretical background for a long time and 
only recently has it been interpreted in terms of basic quantum chemistry.[781 

3. Transition metal-ligand bond theories. The VB and crystal field 
(CFT)[~~-~'] theories were the first ones to try an interpretation of structure 
and bonding in coordination compounds. The introduction of molecular 
orbital methods in coordination and organometallic chemistry has given 
origin to the ligand field theory ( L F T ) , [ ~ ~ , ~ ~ ]  which is of great value for the 
understanding of the energetics and geometry of these compounds. A 
specific semiquantitative tool developed in the frame of LFT for calculations 
concerning electronic spectra, magnetic properties, and equilibrium 
geometries has been the so called angular overlap model ( A O M ) , [ ~ ~ ~ ~ ]  
whose application has been successively extended to the study of the 
molecular geometry of compounds of main-group 

4. Qualitative molecular orbital theories (QMOT). The first attempts to 
interpret geometries of simple compounds of the AB2 type in terms of 
molecular orbitals were made by ~ a l s h . [ ~ ~ ]  His method was successively 
extended to a series of small molecular systems, such as AB3, AB4, A2B4, 
A2B6, functional groups, e t ~ . [ ~ ~ , ~ ~ , ~ ~ ~ ~ ~ ]  ~h e development of QMOTs in 
interpreting molecular shapes has been paralleled by the great impact these 
theories have had in the field of organic chemical kinetics (frontier orbitals 

Moreover, QMOTs are having increasing applications in the 
interpretation of the geometry of organometalic compounds by the methods 
developed by ~ o f f m a n n , [ ~ ~ - ~ ~ ]  which are based on the partitioning of the 
molecule into fragments and which are of semiquantitative nature as 
molecular orbitals are evaluated by EHT (extended Huckel theory),[951 an 
extension of the classical Hiickel method taking into account also o 
electrons. 

5 .  Perturbative methods. These are based on the first-order (FOJTE) 
and second-order (SOJTE) Jahn-Teller effects. FOJTE[~~] is of great 
importance in understanding the geometrical distortions which lower the 
molecular energy by removing the orbital degeneration[971 and has found its 
most typical applications in the study of the coordination polyhedra of d9 
c ~ m ~ l e x e s . [ ~ ~ , ~ ~ ~  The SOJTE has similar applications but in closed-shell 
molecules. It has been mainly developed by  earso on['^^] extending a first 
paper by  arte ell;['^'^ it has been extensively used for predicting geometries 
of compounds of main-group elements.[862871 

6. Other qualitative theories. A rather simple model which has provided 
remarkable agreement between experimental and predicted structures is the 
hard sphere model proposed by ~ a r t e l l [ l ~ ' ]  and developed by ~ l i d e w e l l . [ ' ~ ~ ]  
It makes the hypothesis that molecular geometry is mainly determined by 
the repulsions among first non-bonded neighbours, each having an in- 
dividual non-bonded radius. Other theories having a more limited range of 
application have been proposed, such as the three centres-two electrons 
bond in boron chemistry, the trans influence in square planar complexes or 
the theories based on the acid-base concept, which have proved to be of 
great utility in interpreting charge transfer effects in molecular crystals and 
have been reviewed by several 

In view of the concise character of the present exposition, it has been 
decided to limit the discussion to the VSEPR and VB theories, which are 
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certainly the most popular models used in structural crystallography. 
Moreover, only compounds of main-group elements will be taken into 
account. 

The VSEPR 
The VSEPR theory assumes that the relative ligand arrangement around a 
central atom is determined by the mutual repulsions of bonding or 
non-bonding (lone) pairs of electrons. Bonding and non-bonding pairs are 
identified from the Lewis-type electronic structure of the molecule. The 
method can be summed up in the following few rules: Rule 1. Electron pairs 
repel each other and adopt the geometrical disposition which minimizes 
mutual repulsions; Rule 2. Lone pairs take more room than bonding pairs; 
Rule 3: The space occupied by a bonding pair decreases with the increasing 
electronegativity of the substituent; Rule 4. The two bonding pairs of a 
double bond (and, more so, the three bonding pairs of a triple bond) occupy 
more space than a single bond does. 

Calling A the central atom, X the bonding pair (or the generic ligand 
connected by it) and E the non-bonding pair, Rule 1 can be used to predict 
the geometry of a large number of compounds (Fig. 7.17). BeCl,, BF,, and 
CF, are AX,, AX,, and AX, molecules and will have linear, trigonal, and 
tetrahedral geometries, respectively. Molecules of type AX3E (NH,, pH3, 
NF,, PF,, or AsC1,) are pyramidal and those of type AX,E, (H20, H2S, 
H,Se, or OF,) are bent (angular). Molecules of the type AX, may be either 
trigonal bipyramidal, or square pyramidal. According to VSEPR calcula- 
tions, the first geometry is slightly more stable and, in fact, AX, molecules 
(PF,, AsF,, and PCl,) are usually trigonal bipyramidal. Finally, molecules 
belonging to the types AX, (e.g. SF6) and AX,E (e.g. IF5) display the 
expected octahedral and square pyramidal geometries. 

For AX4E (TeCI,, SF,), AX3E2 (ClF,, BrF,), and AX2E3 (XeF,, IC1;) it 
is necessary to establish whether the non-bonding pairs are in the axial or 
equatorial positions of the trigonal bipyramid. According to rule 2 the 
non-bonding pair takes more room and should prefer the equatorial position 
where it makes angles of 120, 120, and 90" with the vicinal electron pairs 
(the three angles would be 90" for the axial position). Similar considerations 
predict that AX,E, molecules (e.g. [ICl;]) are square planar with the 

AX, AX3E AX2E2 

AX, AX,E AX3E, AX2E31 

AX, AX,E AX,E2 

non-bonding pairs in trans positions. L 
An interesting feature of VSEPR is its ability to interpret fine structural Fig. 7.17. Prediction of the shape of simple 

details. For example, Rule 2 predicts that increasing substitution of X by E ~ ~ ~ ~ ~ e R ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , " , " . ~ ~ ~ ~ ~ ~  :Ectron 
will cause a narrowing of the remaining X-A-X angles because of the pairs (lone pairs), TP =total number of electron 
greater space taken by the lone pairs. The effect is generally observed, as pairs(bondingandnon-bonding); HYB=typeof 

VB hybridization. 
exemplified by the series CH, (AX,), NH3 (AX,E), and H 2 0  (AX2E2) 
where the X-A-X angle decreases in the order 109.5, 107.3, and 104.5". 

Rule 2 can be considered a particular case of Rule 3 since the 
non-existent substituent E can be thought of as the least electronegative of 
all the possible X ligands. This last rule is thus the most suited for 
understanding the angular changes caused by substitution and predicts that 
the X-A-X angle decreases while the electronegativity of X increases. 
Although a few exceptions are known, the effect is correctly observed in a 
variety of cases. For example, the X-A-X angle is 103.8 in OF, and 104.9 
in H,O, 102.1 in NF, and 106.6" in NH,. In the halides of the main-group 
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elements of the type AX2E2 or AX3E the bond angles are known to increase 
in the order F < Cl < Br = I. Another well documented[1061 series of 
electronegativity-dependent angular variations concerns the monosubsti- 
tuted benzenes. The endocyclic C-C-C angles in ipso (that is that carrying 
the substituent) changes with the substituent itself, being 117.2 for N(Me),, 
118.1 for CH,, 120.00 for H (unsubstituted benzene), 121.4 for C1, 121.8 for 
-CN, and 123.4" for F. It is evident that the angle is wider the greater is the 
electronegativity of the substituent group. 

Rule 4 explains why the bond angles trans to a multiple bond are smaller 
than usual, as can be illustrated by some examples in the X2A=Y system. 
The X-A-X angle should be 120" in the absence of perturbing effects but 
becomes respectively 108 and 111" in F2C=0 and C12C=0, where both the 
double-bond repulsion and the high electronegativity of the substituents 
contribute to the squeezing of the angle. The effect of the double bond is 
better seen when the X substituent is less electronegative, for example in 
H2C=0 and (NHJ2C=O, where the X-C-X angle is 108" in both 
compounds. 

Valence bond (VB) theory[5,73,741 
The VB theory is too well known to require a detailed exposition and only 
some aspects concerning the interpretation of molecular geometries will be 
discussed here. 

The mutual orientation of the bonds departing from a central atom is 
interpreted in terms of hybrid orbitals (HO), which are linear combinations 
of the atomic orbitals (AO) of such an atom; typical sp, sp2, sp3, sp3d, and 
sp3d2 HOS assume relative orientations which are respectively linear, 
trigonal, tetrahedral, trigonal, bipyramidal, and octahedral (Fig. 7.17) and 
the overlapping of the HOs with the correct AOs of the bonded atoms 
generates the frame of the a bonds within the molecule. 

After the formation of all the a bonds between the central atom and its 
surrounding ligands, the generic set s'pmdn of hybrid orbitals can allocate 
only (1 + m + n )  bonding or non-bonding (lone) pairs, which require twice 
as many valence electrons. The hybridization state of the central atom 
remains determined by the total number of valance pairs available, while its 
connectivity is also affected by the number of non-bonding pairs which 
occupy an HO without adding any bonded atom. Moreover, electron pairs 
implied in n bonding are irrelevant for determining the hybridization state. 
So, CH,, NH,, and H 2 0  have all eight valence electrons (sp3 hybridization) 
but only CH, is tetrahedral while NH3 is pyramidal (one non-bonding pair) 
and H 2 0  is bent (two non-bonding pairs). Application of these rules to the 
examples of the previous section shows that VB gives exactly the same 
results obtainable by the use of VSEPR theory (see Fig. 7.17). 

In VB theory the double bonds do not affect the shape of the molecule, 
which is strictly determined by the net of its a bonds. Double and triple 
bonds are conceived of as a bonds to which one or two further n bonds are 
added and the only effect of such an addition is to shorten the bond 
distances. The idea of single or multiple localized bonds between two given 
atoms is clearly an oversimplification of thexomplex many-body interactions 
between nuclei and electrons within the molecule. However, it has proved 
to be accurate enough to allow tabulations of characteristic bond 
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Table 7.7. A selection o f  characteristic bond distances i n  organic 
molecules ( in  A); R = alkyl, A r  = aryl, ar = aromatic 

C-C 

C-C 
r - C  

C- N 
r - N  
r=N 
C-0 

C-0 
r-0 

C-S 

r - S  
C-Si 

sp3-sp3 1.54 
sp3-sp2 1.51 
sp3-sp 1.46 
aromatic 1.39 
)*c( 1.33 
)C=C=C( 1.31 
)C==C=C=C( 1.28 

1.20 
sp3-sp3 1.47 

1.27 
1.16 

R-0-R 1.43 
RCO-OR 1.34 
RCO-OH 1.31 
RCOO-R 1.44 
C(ar)-OR 1.36 
RCOO- 1.25 
)c=O 1.20 
=C=O 1.16 
C(sp3)-S- 1.82 
C(sp2)-S- 1.76 

1 .7l 
c ( s p 3 ) - ~ i -  1.87 

C-P 
C-H 

C- F 

C-CI 

C-Br 

C- l 

N-H 
0- H 
S-S 
0-0 
N-N 
N=N 
N - 0  

N=O 

c(sp3)-P 
C(sp3)-H 
C(ar)-H 
c(sp3)-F 
C(sp2)-F 
C(sp3)-CI 
c(spZ)-CI 
C(sp)-CI 
c ( s p 3 ) - ~ r  
C(sp2)-Br 
C(sp)-Br 
C(sp3)-l 
C(sp2)-l 

RS-SR 
RO-OR 
) N-N ( 
-N=N- 
) N-O- 
)N+O 
-NO2 
-N=O 

 distance^[^^'-^^^] which are reasonbly reproducible from molecule to mole- 
cule. Table 7.7 reports a selection of characteristic bond distances observed 
in organic molecules. 

Bonds of intermediate multiplicity are interpreted within the VB theory 
in terms of resonance, as shown for the simple cases of benzene (7.1) and 
carbonate ion (7.11). The structure of the molecule is represented as a 
resonance hybrid between different limit forms, called canonical. The 
hybrid justifies the fractional bond order, for instance 1.5 in benzene (7.1) 
and 1.33 in the C-0 bond of the carbonate ion (7.11). Such a fractional 
number has been called bond number, n, by pauling,['I who has proposed 
different formulae for its evaluation. The most used is 

Ad = d(n) - d(1) = -c  log,, n (7.31) 

where d(1) and d(n) are the distances of a single and n-ple bond, 
respectively, and c is a constant to be determined. Some applications of this 
equation will be discussed in the last part of this chapter. 

VB is particularly suited for rationalizing small changes of bond distances 
and angles in terms of substituent electronegativities. The discussion follows 
the treatment given by ~ e n t [ " l ~  and starts from the elementary considera- 
tion that sp, sp2, and sp3 hybrids have decreasing s character (50, 33, and 25 
per cent, respectively). This leads to important consequences: 

1. Since the s A 0  is at a lower energy than the p orbital, the 
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electronegativity of an atomic valence increases with the s character of the 
valence itself, that is an atom binding by one of its sp HO is more 
electronegative than when it binds by an sp2 HO or by an sp3 HO. If the 
HO in question allocates a non-bonding pair (NB), the basicity of the atom 
will be affected according to the rule that the greater is the s character of the 
HO donating the lone pair, the worse will be the atom as a donor. 
Accordingly ketones, where the lone pair is on an sp2 HO, are weaker bases 
than ethers, where it is on an sp3 HO. Likewise nitriles R-C=N are weaker 
bases than pyridine C,H,N, that, in turn, is weaker than ammonia NH3, in 
agreement with the fact that nitrogen hybridization changes from sp to sp2 
to sp3. 

2. The best superposition of two ns AOs occurs at a smaller internuclear 
distance than that between np AOs and then bond distances become shorter 
with the increasing s character of the HOs involved. In fact the C-H bond is 
1.09 in methane, 1 .O7 in ethylene, and 1 .O6 A in acetylene, the single bonds 
C(sp3)-C(sp3), C(sp3)-C(sp2), and C(sp3)-C(sp) have decreasing bond 
lengths of 1.54, 1.51, and 1.46 A and, finally, double-bond distances 
decrease along the series ) C=C( , ) C=C==C( , and ) C=C=C==C( in the 
order 1.33, 1.31, and 1.28 A. It may be remarked that this contraction is not 
a constant for all the elements but seems to increase with the electronegati- 
vity of the atom, as shown by the series carbon-halogen in Table 7.7. 

3. The bond angles steadily increase with the increasing s character of the 
HOs, the angle between sp3, sp2, and sp HOs being respectively 109.47, 
120, and 180". Smaller changes caused by electronegativity differences are 
rationalized by the so-called Bent's rule:11111 The p character of an atom 
tends to concentrate in its HOs pointing towards more electronegative 
substituents, the effect being stronger the less electronegative the atom itself is. 
All the substituents can be arranged, starting from the lone pair, in order of 
increasing group electronegativity and the narrowest bond angles will be 
those implying the most electronegative ligands. The effect is well docu- 
mented. The X-0-X angle is 111, 109, 104.9, and 103.8" in (CH3)20, 
CH30H, H20 ,  and F20,  but only 100 and 92" in CH3SH and H2S in view of 
the smaller electronegativity of sulphur. In the AX3 series the X-A-X angle 
is 109, 106.6, and 102.1" in N(CH3)3, NH3, and NF,, 100 and 93.3" in 
P(CH3)3 and pH3, 96 and 91.5" in As(CH,)~ and ASH,. Bent's rule is the 
VB equivalent of Rules 2 and 3 in the VSEPR theory and it can be shown to 
include even Rule 4. In the Y=AX2 fragment the n bond contributes to 
shorten the X=Y bond length, causing a parallel increase of s character in 
the a bond and, in turn, an increase of the p character of the HOs pointing 
to the X substituents so that the X-A-X bond angle is narrowed. 

Hybridization. The machinery 
A generic HO is a linear combination of AOs, 4, 

and the problem consists of finding the set of aij values matching the 
required molecular fragment geometry. A few rules allow us to set up a 



Molecules and molecular crystals 1 505 

system of linear equations: 

1. The coefficients must be such that any HO is transformed into one of its 
equivalent orbitals by all the symmetry operations of the fragment. 

2. The HOi must be orthonormal, that is 

3. Since the atomic orbitals @ j  are orthonormal the sum over all HOs of the 
squares of the coofficients of any @ must be unitary, that is 

C a; = 1 for any j. 
i 

As an example, let us build up the three trigonal HOs in the plane (xy). 
The axes are chosen in such a way that HO, points along x and H 0 2  and 
HO, are in the (-x, y) and (-x, -y) quadrants, respectively. Let us write 
the HOs as 

The s orbital has spherical symmetry and must be equally shared by the 
three HOs; since C i  a: = 1 for condition (3), it must be that a, = a, = a, = 
11Y3. c, is zero because p, is orthogonal to HO, in view of the axes chosen 
and therefore a: + b:= 1 for (2), so that b1 = 21v6. Since H 0 2  and H 0 3  are 
symmetrical with respect to the a, containing x and c: + c: = 1, it results 
that c2 = -c3 = 1/v2.  Likewise b2 = b, = -1Iv6 because of condition (2). 
The final HOs are 

HO, = 1/Y3 s + 21v6 p,, 

H 0 2  = 11Y3 s - 1 l v 6  p, + 1 / v 2  p,, (7.36) 

H 0 3  = 1 / v 3  s - l / v 6  - 1/Y2 p,. 

It is easy to check that condition (1) is fulfilled for all the symmetry 
operations of the point group D,, that the trigonal AX, fragment belongs 
to. The hybridization index n of each HO is defined as the ratio between 
the sum of the squares of the p A 0  coefficients and the square of the s 
coefficient. In this case n1 = n2 = n, = 2 and the hybridization is termed sp2. 
Alternatively, the s and p characters (S and P, respectively) of the HO can 
be used, as defined by the conditions n = PIS = Pl(1-  P)  = (1 - S)/S and 
S + P = 1 and by the inverse relationships S = l l (n + I), P = nl(n + 1). In 
the present case S = 0.33, and P = 0.666. 

By the same methods it can be calculated that the two spHOs 
(n, = n2 = 1) oriented along x have equations HO1 = (s + p,)/v2 and 
H 0 2  = (s - p,)/v2 and that four equivalent sp3 HOs (n, = n2 = n, = n4 = 3), 
oriented in such a way that each HO makes the same angles with the 
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Cartesian axes, have equations 

Both HO coefficients ail and hybridization indices n have been worked out 
starting from symmetry considerations. If the HO geometry is not exactly 
linear, trigonal, or tetrahedral the n values are no longer integer but 
become fractional numbers and not necessarily equal. Equations for the 
calculus of the ail and n values have been reported[11231131 for some particular 
geometries, that is the quasi-tetrahedral systems AX2Y2 of symmetry C2, 
and AX2YZ of symmetry C, and the planar quasi-trigonal AX2Y system of 
symmetry C,,. 

For the AX2Y2 system of C2, symmetry (left side of Fig. 7.18) it has been T/ *p;, shown that n, = n2 = -sec a ,  n3 = n, = -sec /3 and that the angles a and /3 
are related by the equation cot2 (a/2) + cot2 (/3/2) = 1. By putting a = 
109.47" we obtain nl = n2 = n3 = n4 = 3, /3 = 109.47", S = 0.25, and P = 0.75 

X 
/ 4 Ir 

, , a , HO, I a I' for any HO, in agreement with the theory. In the water molecule 
0 - -  - -  , HO, - - -  --  "02 ( a =  104.9") the two HOs pointing to the hydrogens have n =3.89, 

1 
Y I /  Y 

I I 

1' 
S = 0.20, and P = 0.80 and the angle between the lone pairs is calculated to 

Fig. ,.,*. Definition of the coordinate system be /3 = 114.8", in agreement with Bent's rule because the p character is 
and labelling of the relevant angles between found to concentrate on the HOs pointing to the more electronegative 
hybrid orbitals in the AX2Y2 (left) and AX2Y 
(right) systems discussed in the text. 

substituents, that is the hydrogens. The opposite case occurs in (CH3)20, 
where the methyl is an electron donating group; the observed angle a is 
111°, allowing us to calculate that n = 2.79, S = 0.26, and P = 0.74 for the 
HOs directed towards the CH, groups and /3 = 108". 

In the planar system AX2Y (Fig. 7.18, right side) the important 
relationships become nl = n2 = -sec cu and n, = tan2 (ct.12) - 1. Only if 
cu = 120" it will be that nl = n2 = n, = 2, while n1 = n2 > n3 for a < 120" and 
nl = n2 < n, for a > 120". Since a is smaller or greater than 120" when H 0 3  
is directed towards substituents less or more electronegative, Bent's rule is 
obeyed. 

These few examples can help to illustrate some interesting and not always 
well understood aspects of VB theory that can be summarized as follows: 

(1) The hybridization indices are, in general, fractional numbers which 
become integers only for a few very special geometries; 

(2) the hybridization indices and the p and s characters of the HOs are 
straightforwardly calculable from the bond angles and vice versa; 

(3) Bent's rule is not a simple qualitative rule but can be quantified, at least 
in a number of simple cases. 

Molecular mechanics 
Molecular mechanics is a method for calculating the equilibrium geometries 
and other properties of ground state molecules on the basis of a purely 
classical mechanical model. The molecule is considered to be a set of atoms 
connected by elastic springs, and to any internal molecular coordinate (bond 
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distances and angles, torsion angles, distances between non-bonded atoms, 
etc.) is assigned a natural equilibrium value. To any displacement Ax from 
the natural value is associated a restoring force proportional to the 
displacement itself, F = -k AX, and an energy proportional to its square, 
E = k(Ax)'/2. Molecular mechanics is essentially an attempt to assign 
parametric values to all natural equilibrium values and force constants k, 
whose complete set is called a force field and whose knowledge will allow us 
to calculate the potential energy hypersurface for the movement of the 
atoms within the molecule. The energy calculated assumes the meaning of 
the deformation or steric energy of a particular geometry of the molecule 
with respect to its equilibrium geometry. 

The values of the parameters defining the force field are obtained 
empirically by comparison of observed and calculated molecular geometries. 
Other properties can be optimized as well, most frequently the formation 
enthalpies and the vibrational frequencies. In particular a force field able to 
calculate both geometries and frequencies is called a consistent field. The 
central point remains that of being able to calculate the properties of the 
maximum number of different molecules using the minimum number of 
constants transferable from one molecule to another. 

The present discussion is necessarily concise and more details can be 
obtained from r e ~ i e w s [ ~ ~ ~ ' ' ~ ]  and books['23,1241 available on the subject. 
Several molecular mechanics computer programs are distributed by QCPE 
(Quantum Chemistry Program ~ x c h a n ~ e ) . [ ~ ' ~ ]  

The total energy, E, is considered to be the sum of different contributions 

which are, in the order, the stretching, bending, stretching-bending, 
out-of-plane bending, torsion, non-bonded, and electrostatic energies and 
have the following meaning: 

1. Bond stretching. The total energy of stretching or compression of all 
chemical bonds of the molecule is of the form 

N 

Es = (112) C ks,i(Al,)' (7.38) 
i = l  

where the sum is extended to all the N bonds within the molecule, ks,i are 
their stretching force constants and Ali = li - the differences between the 
actual and equilibrium bond lengths. This model tends to overestimate the 
energy needed to produce very large lengthenings because, in such a case, 
the bond becomes increasingly yielding in consequence of the decreased 
overlapping of orbitals. It is common practice to add a small cubic term of 
the type k , , , ; ( ~ l ~ ) ~ ,  where kScji is a small negative constant taking into 
account this last effect. 

2. Bond angle bending. Its total energy is expressed as 

where the sum is extended to all the M bond angles, AOi = Oi - Oo,; are the 
differences between the actual and equilibrium bond angles, and kb,i the 
bending force constants. Bending energies are smaller than stretching 
energies by an order of magnitude because angles are much more yielding 
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than distances. Also in this case a cubic term can be added, which is of the 
type kb,,i(h8i)3 and where kbc,i is a small negative constant. 

3. Stretching-bending terms. An improved force field is obtained if 
proper allowance is made for the fact that the narrowing of a bond angle is 
paralleled by the legthening of the two encompassing bonds and vice versa. 
If 8i,ABc is the angle delimited by the bonds li,AB and li,BC connecting the 
three atoms A, B, and C, the stretching-bending energy is defined as 

where ksb,i are the corresponding force constants and Ali and AOi have the 
usual meaning. The term Esb is small in comparison with the previous terms 
and is neglected in some force fields. A field containing it is called a valence 
force field; this differs from the Urey-Bradley force field which presents a 
different treatment of the A .  . . C geminal interactions and is not discussed 
here. 

~ c > o  4. Out-of-plane bending. In the deformations concerning trigonal sp2 
A C H O  - 
/ 

A - - - - -  P atoms it is useful to distinguish between in-plane and out-of-plane deforma- 
B B tions (Fig. 7.19). The in-plane deformations concern the angles A-P-B, 

Fig. 7.19. in-plane and out-of-plane A-P-0, and B-P-0 and are dealt with by eqn (7.39), while the 
deformations of a trigonal sp2 atom. out-of-plane deformations are the displacements from zero (A8) of the 

angles C-A-P, C-B-P, and C-0-P. The associated energy is 

for any single sp2 atom of the molecule. 

5 .  Torsions. All force fields include energy terms accounting for the 
rotations around bonds. The corresponding force constant is relatively large 
for rotations around double bonds but very small for rotations around single 
bonds. A common expression for the torsional energy is 

E,  = C [Vl(l + cos @)I2 + V2(1 - cos 2@)/2 + V3(1 + cos 3@)/2] (7.42) 

where @ is the torsion angle (-180" s @ s 180°), V,, V2, and V3 are the 
force constants, and the sum is extended to all sequences 1-2-3-4 of 
bonded atoms in the molecule. The second term has the value zero for 
@ = 0 and f 180" and maxima for @ = f 90; it is used to describe the rotation 
around double bonds and in this case V1 = V3 = 0. The third term is equal to 
zero for @ = f 60°, f 180" and has maxima for @ = 0, f 120"; it describes the 
rotation around single bonds connecting sp3 atoms. The first term is zero for 
@ = 180°, has a maximum for @ = 0°, is used as a small corrective term in 
special cases, and is often neglected. 

6. Non-bonded interactions. The corresponding energy, Enb, can be 
expressed by the atom-atom potentials discussed on p. 474. The interac- 
tions among all the atoms of the molecule are taken into account, with the 
exclusion of those between first neighbours (1-2 or bonded atoms) and 
second neighbours (1-3 or vicinal atoms). Third-neighbour (or 1-4) 
interactions are considered in both the Enb and E,  terms. Special treatment 
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has sometimes been reserved for the lone pairs on etheric oxygens or aminic 
nitrogens by considering them as pseudo-atoms localized at about 1 A from 
the atom and having their own atom-atom potentials. 

7. Electrostatic interactions. It has already been shown on p. 477 that 
electrostatic interactions can be evaluated as interactions among partial 
charges localized on the atoms or among small dipoles associated with each 
chemical bond. Both methods are used in molecular mechanics. 

A relevant number of different force fields proposed by different 
a ~ t h o r s ' ' ~ ~ ]  are currently available and Table 7.8 reports, as an example, the 

Table 7.8. Force field parameters for alkanes and non-conjugated alkenes according to 
M M ~ / M M P ~ . [ ' ~ , ' ~ ~ * ' ~ ~ ~  Force constants in  kcal mol-' A-2 or in  kcal mol- '  deg-'; bond 
moments (b.m.) in D. In the symbol (e,),, n indicates the number of additional hydrogen 
atoms bonded to the central atom. I = C(sp3), 2 = C(sp2), 3 =H. Final energies in  
kcal mol-' 

'Stretching' (k,, = -k,) 
Atoms k,/2 lo b.m. 

1-1-1 0.0083 109.47 110.51 110.20 
1-1-3 0.0053 108.50 108.51 107.90 
3-1-3 0.0042 112.80 111.10 109.47 
1-1-2 0.0083 109.47 110.51 110.20 
2-1-2 0.0083 109.47 110.51 110.20 
2-1-3 0.0053 108.50 108.51 107.90 
1-2-1 0.0083 116.60 
1-2-2 0.0083 121.70 120.50 
2-2-2 0.0131 120.00 
1-2-3 0.0053 119.50 
2-2-3 0.0053 120.00 1 18.80 
3-2-3 0.0042 122.40 

'Stretching-bending' 'Out-of-plane bending' 
Atoms k,, Atoms ko0& 

'Torsions' 'Non-bonded interactions' 
Atoms 4 & 5 Atom ri Ei 
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parameters used by the program M M ~ / M M P ~ [ ~ ~ ]  for hydrocarbons. The 
parameters of any force field are optimized to reproduce the experimental 
geometries of some reference molecules and used for predicting those of 
other chemically similar molecules. A force field developed for the alkanes 
will reproduce their observed geometries with a precision comparable with 
the experimental e.s.d. For other classes of molecules, such as alkenes, 
alcohols, ethers, thioles, esters, carboxylic acids, etc., the agreement 
between observed and calculated quantities is definitely worse in view of 
complications arising from the treatment of n-delocalized systems, partial 
double bonds, lone pairs, intramolecular hydrogen bonding, or highly polar 
groups. The discrepancies increase again when attempting to develop a 
force field able to deal with several functional groups at the same time and 
its seems unlikely that a universal field of sufficient accuracy will ever be 
obtained. 

Let us now consider a few practical aspects of molecular mechanics 
calculations. Conformations undergo by far the greatest changes in a 
molecule, bond distances and angles being inevitably constrained to the 
proximity of their equilibrium values. It is therefore useful to conceive of 
the total potential energy as a hypersurface in a space where it is the 
ordinate, while the torsion angles are the abscissae. On this hypersurface 
there are as many minima as there are possible conformers (i.e. conforma- 
tions of relative minimum energy; see pp. 484 and 490-2) of the molecule. 
Such minima are separated by regions of higher energy, where it will be 
possible to identify passages of relative minimum mapping the pathways of 
interconversion from one conformer to another. A typical molecular 
mechanics calculation starts from a given geometry, either obtained from 
the crystal structure or built up from standard values of distances and 
angles, and optimizes all the parameters in such a way as to reach, in a 
minimum number of program cycles, the molecular geometry corresponding 
to the nearest energy minimum. This is not necessarily the absolute 
minimum; that can be identified with certainty only by repeating the 
calculations starting from as many initial geometries as are necessary to 
systematically map the energy hypersurface. When the main minima have 
been found, the surrounding region can be scanned to evaluate the shape 
and the height of the energy barriers which separate one minimum from 
another. The energy profiles for 1,2-dichloroethane of Fig. 7.8 and for 
cyclohexane of Fig. 7.10 are typical results of molecular mechanics 
calculations. 

A great number of organic molecules have been studied by the methods 
of molecular mechanics, whose success and popularity are due to the fact 
that it is a theoretical method which is very fast and extremely easy to 
understand. It does not require experimentation because the initial model 
can be obtained from tabulations of characteristic distances and angles. The 
computing time is very short with respect to the time needed by quantum- 
mechanical calculations. A benchmark carried out on propane[651 has shown 
that the full geometry optimization requires times in the ratios 
1:12: l3:662:5665 when accomplished, in order, by MM2, MIND0/3, 
MNDO, and GAUSSIAN82 with 3-21G and 6.31G* basis sets. Since 
molecular mechanics is so fast that it can optimize the geometry of 
molecules having the complexity of cholesterol in a few minutes of 
computer time, it has the additional advantage that large parts of a potential 
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hypersurface can be calculated at a reasonable cost, giving information not 
only on the geometry of the different conformers but also a general view of 
the molecular motions and interconversion pathways. 

This is not to say that molecular mechanics can give the best solution to 
all problems of conformational analysis. It presents several pitfalls, some of 
which have already been discussed, and all of which are essentially related 
to the lack of transferability of the force field parameters among different 
chemical classes. However, it cannot be denied that its use gives to the 
crystallographer the possibility of understanding aspects of the molecular 
geometry (particularly its dynamics) which are not accessible through crystal 
structure determination. 

Molecular hermeneutics: the interpretation of 
molecular structures 

Correlative methods in structural analysis 
The mass of structural data obtained by X-ray crystallography of molecular 
crystals has been the object of many attempts at systematization and 
rationalization. Altogether they define a wide borderline area of interest 
which does not really belong to any traditional chemical discipline and is 
developing by itself along often not well defined tracks and with purposes 
which can appear somewhat confused, though all are essentially aimed at 
understanding the relationships between the experimentally determined 
molecular structure and the properties the molecule will display in gases, 
liquids, solutions, and in chemical and biochemical reaction environments. 
Though we may suppose it is a branch of structural chemistry, such an area, 
for the moment, does not even have a precise name, so that we are left free 
to use the name of our choice. Structure-property relationships has often 
been used though interpretation of molecular structures is certainly much 
more correct. To pay homage to the scholarly tradition of translating 
scientific sentences into ancient Greek, I would suggest the name molecular 
hermeneutics which has the meaning of the science, or the art, of molecular 
interpretation. 

Irrespective of the name we choose, all attempts at systematic inter- 
pretation of molecular structures have one point in common: they make use 
of correlative methods, being based on the comparison of extended sets of 
structural parameters (distances, angles, geometries of specific molecular 
fragments, inter- or intramolecular contact distances, etc.) which are 
correlated among themselves or with other physical properties. The simplest 
of these attempts are intended to produce tables of standard bond distances 
and angles, but most of them are devoted to clarify the systematic aspects of 
a variety of chemical situations such as the characteristics of the inter- and 
intramolecular hydrogen bonding in crystals and molecules, the typical 
geometries of organic functional groups, the trans influence in coordination 
compounds, the role of n back-bonding in organometallic compounds, the 
structural requirements which organic metals or semiconductors must fulfill, 
or, as extensively discussed in connection with the VSEPR and VB theories, 
the effects that electronegativity and hybridization changes produce on the 
geometries of simple molecules. 
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As it is impossible to give even a summary of these systematic studies, it 
has been chosen to discuss in some detail a single method of systematic 
investigation of molecular geometries, the so-called structure correlation 
m e t h ~ d [ ~ , " " ~ ~ ~ ] ,  which can be considered to be an attempt to obtain 
information on the dynamic behaviour of molecules from the inevitably 
rather static crystal data. The basic idea of the method is as follows. 
Usually, internuclear distances found in molecular crystals fall into the two 
distinct fields of bonding and non-bonding distances, which are separated by 
a forbidden gap going from the longest bond to the shortest contact 
distance. For instance, this gap is extended from 1.48 (single-bond distance) 
to 3.25 A (sum of van der Waals radii) in the case of the C-N distances. In 
real crystals, however, several interatomic C-N distances have been found 
to fall in this interval, a fact that seems interesting because any situation 
intermediate between bonding and non-bonding is typical of chemical 
reactions. 

As early as 1931 Eyring and ~ o l a n y i [ l ~ ~ ]  suggested that any chemical 
reaction could be described as a low-energy path on a potential energy 
hypersurface (or surface) of the reaction itself, which is the function giving 
(within the Born-Oppenheimer approximation) the total potential energy 
of the system as a function of the relative positions of all the atomic nuclei. 
The reaction pathway is that trajectory (reaction coordinate) which 
connects the points of relative minimum on the surface and leads from the 
reagents to the products through the higher energy transition or activated 
state. For the scope of this account it is sufficient to make reference to the 
classical examples reported in all books on physical chemistry, such as the 
reactions H + Hz Hz + H or Hz + D H + HD, or to the elementary 
accounts on the subject which are a ~ a i l a b l e . [ ~ ~ ~ - ~ ~ ~ ]  

If it were possible to take snapshots of the molecules taking part in the 
reaction at different points of the reaction pathway, the relative positions of 
the atomic nuclei along the course of the reaction would become known. 
The basic idea of the structure correlation method consists in assuming that 
the instantaneous displacements of the nuclei during a reaction can be 
represented by the images of the reaction centre obtainable from a great 
number of crystal structures where the centre itself happens to be deformed 
by local inter- and intramolecular perturbations; in this hypothesis, the 
different images need only to be ordered in a rational sequence to give the 
progressive deformations of the reaction centre along the reaction 
coordinate. 

This picture of a chemical reaction is directly and even more naturally 
applicable to a particular class of chemical transformations, the 
conformational interconversions, for which it has already been shown that 
the relative conformers' populations are determined by the depth of the 
minima on the potential energy hypersurface (the enthalpic term) and by 
their shape (the entropic term), while activation barriers for interconver- 
sion of conformers are straightforwardly interpretable as heights of the 
saddle points on the lowest-energy routes (conformational interconversion 
pathways) connecting different conformers on the hypersurface itself. 

Some three-centre-four-electron linear systemsr126~128~1341 
It is well known that the solubility of iodine in water is increased by the 
presence of iodide ions, a fact explained by the formation of polyiodide I; 
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ions by a charge transfer reaction where the Lewis base I- donates to the 
empty n* orbital of I,. Several crystal structures containing the I; ion are 
known: the anion is nearly linear with an I,-I, I, angle of 175-180". The 
bond distance in the I, molecule is 2.67 A and the sum of the van der Waals 
radii is 4.30 A. Actual structures show many interleaving distances, the 
shortening of the I, . I, distance being always associated with a lengthen- 
ing of the I,-I, one, and vice versa. In general the anion is strongly 
asymmetric in presence of small cations and tends to become symmetrical 
with larger cations. A plot of the I,-I, versus I, - I, distances is shown in 
Fig. 7.20(a). The experimental points are clearly arranged on an equilateral 
hyperboloid whose analytic form can be derived from Pauling's formula 
(7.31) 

Ad = d(n) - d(1) = -c log,, n 

where n is the bond number, d(n) and d(1) the bond distances for the bond 
numbers n and 1, respectively, and c a constant easily determined as 
c = Ad'llog 2,  being Ad' the bond length increment for the symmetrical 
anion having n = 112 (currently c = 0.85 for a Ad' of 0.26 A). Assuming that 
the single bond is shared among the three atoms, it can be written 

and the resulting function for c = 0.85 is drawn as a continuous curve in Fig. 
7.20(a); only one branch of the hyperboloid is shown since the second one, 
obtainable by interchanging I, with 13, is identical because of ion symmetry. 
The points on the curve may be supposed to represent the geometrical 
changes occurring along the reaction coordinate of the process 

Fig. 7.20. Correlation diagrams of the 
interatomic distances (in A) for three linear 
three-centre-four-electron systems: (a) tri- 
iodide anions, (b) thiathiophthenes, and (c) 
linear 0-H . . .  0 hydrogen bonds. (Reproduced 
by permission from ~ u r ~ i . ' ' ~ ~ ' )  

The shape of the upper part of the curve indicates that the approach of the 
I; ion to the iodine molecule is much more rapid than the lengthening of 
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Fig. 7.21. Coordinate system used for cadmium 
complexes. Ax and Ay are the differences 
between the actual Cd-X and Cd-Y distances 
and the corresponding single bond standard 
values. Azis the vertical displacement of the Cd 
atom from the S,S,S, plane. 

Fig. 7.22. Correlation diagram for the bond 
length increments Axand Ay in cadmium 
complexes. (Reproduced by permission from 
B"rgi,[1351 ) 

the I,-I, distance up to the point of formation of the activated complex, 
whose dissociation will quickly occur along the lower branch of the curve. 
From a slightly different point of view, all the curve can be considered to 
map the deformations along the antisymmetric stretching vibration of the 
activated complex up to its complete dissociation. 

Similar correlations have been reported for the groups S-S . . . S (Fig. 
7.20(b)) and 0 - H  - 0 (Fig. 7.20(c)), respectively found in thiathio- 
phthenes (7.111) and in different structures containing nearly linear hydro- 
gen bonds. The rule of bond number conservation expressed by (7.43) is 
found to hold also in these two cases with parameters d(1) =2.02, 
Ad1= 0.31, and c = 1.03 A for (7.111) and 0.96, 0.26, and 0.85 A for the 
hydrogen bond. The curves calculated in this assumption are indicated by 
the continuous lines and are seen to approximate well the experimental 
data. 

Nucleophilic addition to organometallic compounds 
Cadmium complexes have been studied by Biirgi in 1973 in the earliest 
application of the structure correlation method.[1351 These compounds are 
normally tetrahedral but can assume quasi-trigonal bipyramidal five coor- 
dination by adding a further ligand at a distance greater than that of the 
other four ligands (Fig. 7.21). Eleven crystal structures were found having 
three sulphur atoms as equatorial ligands and a fifth ligand Y at different 
approaching distances on the normal to the triangular face of the tetra- 
hedron and lying on the same line containing the Cd atom and the trans 
ligand X. X and Y happen to be iodine, sulphur, or oxygen atoms. The 
system of coordinates used is described in the caption of Fig. 7.21. 

By plotting the experimental values of Ax versus Ay (Fig. 7.22) it is found 
that the points are arranged on a curve which can be interpreted in terms of 
bond number conservation (eqn (7.43)) with Ad' = 0.32 and c = 1.05 A. 
Another correlation is obtained by plotting Az as a function of Ay (upper 
part of Fig. 7.23) and Ax (lower part). Each structure is represented by two 
points having coordinates (Ax, Az) and (Ay, Az); Ax = 0 corresponds to 
the fragment CdS3X of tetrahedral geometry, which is represented at the 
same time by the point in the left lower corner and by another point at 
Ay = a  outside the upper right corner. The leaving of X caused by the 
approaching of Y moves the two representative points towards the centre, 
where they collide at the point Ax = Ay = 0.32 and Az = 0 corresponding to 
the trigonal bipyramidal structure. 

Figures 7.22 and 7.23 may be interpreted as the geometrical changes 
occurring along the reaction of nucleophilic substitution S,2 

Y+CdS3XS[Y...CdS3..*X]SYCdS3+X . 

The reaction starts with CdS3X tetrahedral and Y at infinite distance. The 
approach of Y causes an increasing lengthening of the trans Cd-X bond and 
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a flattening of the CdS3 pyramid until trigonal bipyramidal transition state 
formation. Afterwards X starts leaving and finally the new tetrahedral 
species YCdS3 is formed. 

The continuous curve of Fig. 7.23 is calculated by the equations 

Ax = -c log [(0.84 + Az)/1.68], 

Ay = -c log [(O.84 - Az)/1.68], 

making use of the already known value of c = 1.05 A. The two equations 
are derived from the usual bond number conservation rule n, + n, = 1, 
where n, is the bond number of Cd-X and n, that of Cd-Y, but expressed 
as a function of the angle 8, the average X-Cd-S angle. The two relations 
n, = (1 - 3 cos 8)/2 and n, = (1 + 3 cos 8)/2 satisfy the rule because for 
8 = 90" (trigonal bipyramidal geometry) nx = n, = 0.5 and for 8 = 109.47" 
(tetrahedral geometry) nx = 1 and ny  = 0. Pauling's formula (7.31) becomes 

Ax = -clogn,= -clog [(I -3cos 8)/2], 
(7.45) 

Ay = -c log n y  = -c log [(I + 3 cos 8)/2], 

and, since the equatorial Cd-S bond has a nearly constant value of 2.52 A, 
we can put Az = -2.52 cos 8, which gives eqns (7.44) when substituted in 
(7.45). 

Another case studied is that of the organometallic compounds of 
s ~ ( I v ) . [ ' ~ ~ ]  Similar methods give a convincing mapping of what could be the 
reaction pathway for the S,2 nucleophilic reaction with configuration 
inversion 

It is interesting to remark, however, that the same paper reports the 
mapping of the reaction pathway of the S,3 process 

SnR2X2 + 2Y * [SnR2X2Y2] G SnR2Y2 + 2X, 

a trimolecular reaction which cannot realistically occur according to the 
principles of chemical kinetics. This seems to suggest that structure 
correlations do not simply map possible reaction pathways but, more 
generally, the lower regions of the potential energy hypersurface for the 
relative movements of the nuclei irrespective of the fact that they 
correspond or not to real chemical reactions or conformational 
rearrangements. 

Nucleophilic addition to the carbonyl group 
Nucleophilic addition of aminic nitrogen to carbonyl is one of the first and 
more studied examples of structure  correlation^,['^^^'^^] though the analo- 
gous addition of oxygen has been also reported.['39] Molecules where the 
nitrogen is forced near the carbonyl carbon at a distance shorter than the 
sum of the van der Waals radii are mainly rings of the type (7.IV) and (7.V) 
or 1,8-disubstituted naphthalenes (7.VI). In the original paper 14 structures 
having the required characteristic were reported and the coordinate system 
for their analysis is shown in Fig. 7.24. Final results are summarized in Fig. 
7.25, which describes the course of the geometrical deformations of the 
carbonyl group caused by the approaching of the nucleophile. As this 

Fig. 7.23. Correlation diagram for the bond 
length increments Axand A y  against the vertical 
displacement Az. (Reproduced by permission 
from ~ i i r g i . " ~ ~ ' )  

Fig. 7.24. Coordinate system used for describing 
the approaching of the aminic nitrogen to the 
carbonyl. dl and 4 are the N . . . C and C==O 
distances, respectively: the distance of the 
carbon atom from the (RR'O) plane is a measure 
of carbonyl pyrarnidalization and is termed A. 
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Fig. 7.25. The coordinate system is that of Fig. 
7.24 projected on the (NCO) plane. The open 
circles indicate the positions of the nitrogen 
atoms (top), of the bisector of RCR' (bottom left) 
and of the carbonyl oxygen (bottom right) i n  the 
14 (A-L) structures considered. (Adapted from 
Bijrgi and ~ u n i t z . ' ' ~ ~ ' )  

approaches the carbon (i.e. d l  decreases), the plane containing the carbon 
and the two R and R' substituents bends away causing an increasing 
pyramidalization of the carbon which rehybridizes from sp2 to sp3, while the 
C=O distance is slightly increased. It seems of interest that the nucleophile 
does not approach the carbonyl plane perpendicularly but makes an almost 
constant N . C==O angle of 110°, which has been interpreted in terms of 
elementary banana bond considerations but also shown to match the results 
of ab initio quantum-mechanical calculations.[41 The constraint arising from 
the fixed 110" angle is more clearly seen in (7.VI). The two -NR2 and 
-COR groups would both be expected to be splayed outwards in order to 
reduce their van der Waals repulsions but the C-N bond is actually found to 
be splayed inwards by the need to maintain the correct approach angle to 
the carbonyl C=O bond. 

When looking at the dependence (Fig. 7.24) between A (carbonyl group 
pyramidaiity) and d l  (N . C distance) it is found that they are correlated 
according to the regression line 

a function which gives the maximum pyramidal character of the carbon 
atom, A,,, = 0.437 A, for d l  = 1.479 A (taken as standard distance for the 
C-N single bond). By assuming that the C-N bond number can be 
expressed as n = (A/A,,,)~ the above equation changes into 

d l  = -0.85 log n + 1.479 (7.47) 

which is nothing more than the usual Pauling equation (7.31). 

A case of conformational rearrangementr140,1411 
The fragment c ( s p 2 ) - ~ ( s p ~ )  (7.VII) is contained in a variety of organic 
molecules, such as anilines (7.VIIIA) and naphthylamines (7.VIIIB), 
amides (7.VIII 0 )  and thioamides (7.VIII S) (X = 0 ,  S), amidines 
(7.VIII N) (X = NR), and enamines (7.VIII D) (X = CR,). It displays a 
definite tendency to be planar, which can be accounted for by the 
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contribution of the polar form (7.VIIa) to its ground state. The cis-trans 
isomerization barrier has been measured by a number of dynamic NMR 
experiments to be in the range 5-22 kcalmol-' (on average, 20.7, 18.1, 
12.8, 9.0, and 5.1 kcal mol-' for thioamides, amides, amidines, enamines, 

)--Jx c 

and anilines respectively, in agreement with the fact that the contribution of + + 
the polar form decreases with the decrease of electronegativity of X). In 
spite of the general tendency to planarity, there are many crystal structures Z X c X N  
where the group is deformed by rotation around the C-N bond or by - -  nitrogen pyramidalization, or by both, mainly in consequence of in- 
tramolecular steric hindrance. The structure correlation method was used 
with the aim of mapping the coordinate of cis-trans isomerization of the Fig. 7.26. lnternalcoordinatesystem describing 

the out-of-plane deformation of the c ( s p 2 ) - ~ ( s p ~ )  group. fragment. (Reproduced by permission from Gilli 
A coordinate system for the out-of-plane deformation can be obtained by et al.[14") 

the usual methods of group theory; the resulting orthogonal coordinates are 
the angle of twisting around the C-N bond, t ( t  = 0 and 180" for the planar 
cis and trans geometries, t = f 90" when the two halves of the group are 
perpendicular) and the two out-of-plane bendings of nitrogen, x,, and 
carbon, x,, ranging from zero (sp2 atom) to 60' (sp3 atom). Calling $,, 4,) 
$31 and $, (Fig. 7.26) the four torsion angles 1-2-3-4, 5-2-3-6, 5-2-3-4, 
and 1-2-3-6, it is found that[142,143] 

A total of 90 fragments belonging to 68 crystal structures were found from 
CSD.[~] The xc values are always very small (on average 1.7"), indicating 
that the carbon sp2 has greater resistance to out-of-plane bending and that 
this motion can be neglected. Conversely X, shows a wide variation 
assuming values up to f 55". Figure 7.27 shows the correlation diagrams of 

Fig. 7.27. Correlation diagram of X ,  versus r for 
anilines (A), naphthylamines (B), enamines (D), 
and amidines (N). Data for amides and 
thioamides (not shown in the figure) would 
cluster in the lower left corner with r s 15" and 
,yN S 27'. (Reproduced by permission from Gilli 
et 
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Fig. 7.28. Correlation diagram between the &-, 
bond distances and the x, values for all 
fragments studied (A = anilines, B = 
naphthylarnines, D = enarnines, N = arnidines, 
0 = amides, and S = thioamides). (Reproduced 
by permission from Gilli et 

xN against z for all the chemical classes except amides and thioamides. 
These latter cluster in the lower left corner with t c 1.Y and X, S 27", 
showing the greater resistance to out-of-plane deformation of these com- 
pounds in agreement with the larger electronegativities of the oxygen and 
sulphur atoms. 

Compounds of the other classes undergo more severe distortions which 
appear to be of two different types. The first, producing simple nitrogen 
pyramidalization, occurs for t nearly equal to zero and for increasing values 
of xN and can be called a butterfly deformation. The second, which could 
be called combined, associates nitrogen pyramidalization (increasing xN) 
with a rotation around the C-N bond (increasing z). The diagonal straight 
line of Fig. 7.27 ideally separates mostly butterfly (on the left) from mostly 
combined (on the right) distortions. 

The combined motion admits a simple interpretation. In the planar 
fragment the nitrogen is sp2 hybridized and its p, A 0  is implies in a n bond 
with the p, A 0  on the carbon. The rotation around the C-N bond causes a 
decoupling of the n system while the nitrogen rehybridizes engaging its p, 
A 0  into an sp3 HO carrying the lone pair. The opposite mechanism ia also 
possible: the planar nitrogen undergoes an out-of-plane vibration (butterfly 
motion) which causes the rehybridization of the atom from sp2 to sp3. The 
sp3 HO on nitrogen is essentially decoupled from the p, A 0  on carbon, the 
double bond fades, and the rotation around C-N becomes possible. This 
second mechanism seems to be preferred because Fig. 7.28 shows that XN (a 
measure of the nitrogen rehybridization) is strongly correlated with a 
lengthening of the C-N distance which almost encompasses the full 
variation range of dC-N (from 1.27 to 1.44 A going from double to single 
C(sp2)-N(sp3) bond), while no similar correlation can be established with z, 
the rotation angle around the C-N bond.[1411 

From the point of view of the structure correlation method the butterfly 
motion corresponds to a simple out-of-plane vibration and does not produce 
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any chemical change. Conversely, the combined motion can be considered 
to be representative of the geometrical changes experienced by the fragment 
along the pathway of a cis-trans isomerization reaction. The broken curve 
of Fig. 7.27 maps the most probable pathway leading from the planar 
ground state To, having t = X, = 0°, to the transiton state located at 
( t ,  x,) = (90, 4 0 " ) ;  since the rotation can occur in two opposite directions, 
two enantiomeric TI and T2 transition states will be equally possible and 
Fig. 7.29 shows the geometrical changes the fragment is undergoing along 
the two enantiomeric pathways indicated by the broken curve. It is seen that 
the atom movements start with an out-of-plane deformation of the nitrogen 
and are followed by the rotation around the C-N bond. 

It seems of great interest to show whether the proposed reaction pathway 
does actually map a relative minimum path on the potential energy 
hypersurface. What is needed is an energy model for the out-of-plane 
motion of the c(sp2)-N(SP~) fragment. A rather simple molecular mechani- 
cal model has been proposed11411 by modification of a first model given by 
Winkler and ~ u n i t z , [ l ~ ~ ]  that is 

V ( T ' ,  xN) = (CTIB + IB)(l- cos t r ) /2  

4- QP(1-I- COS tr)&/2 d- IB(1- COS Z')(COS 3xN - 1)/4, (7.49) 

where the total potential energy expressed as a function of t' = 22 and X, is 
assumed to depend on three predetermined parameters, CTIB = cis-trans 
isomerization barrier, ZB =inversion barrier of the pyramidal sp3 nitrogen, 
and QP = force constant for the out-of-plane bending of the sp2 nitrogen. 
The energy is zero at the origin in correspondence to the planar geometry 
and increases with X& for t' = 0" along the out-of-plane vibration of the 
planar nitrogen; for x,=O and 2' = 180" the function has the value 
CTIB + IB, differing from CTIB for the energy needed to make planar the 
sp3 nitrogen, while it assumes the exact value of CTIB only for the 
hypothetical transition state geometry ( t '  = 180" and X,  = 60"). The two 
expressions (1 + cos t ' )  and (1 - cos t ' )  are introduced in order to progres- 
sivelv cancel the second term of (7.49) re~lacine it bv the third term, while 

Fig. 7.29. The relative movements of the 
fragment atoms along the reaction pathway 
identified by the broken curve of Fig. 7.27, 
showing the steps leading from the planar 
.ground state To to the two enantiomeric 
transit~on states T, and TZ. Further rotation 
around the C-N bond would transform the cis 
isomer on the lee into the trans isomer on the 
right (not shown). (Reproduced by permission 
from Gilli et at.[14") 



520 1 Gastone Gilli 

Fig. 7.30. Total potential energy (kcal mol-') 
surface as calculated from eqn (7.50) as a 
function o f t  = t1/2 and x,. Experimental points 
include all compounds except amides and 
thioamides. (Reproduced by permission from 
Gilli et 

z' changes from zero to 180' and, accordingly, the nitrogen hybridization 
from sp2 to sp3. 

The values of the constants have been chosen as average values from 
those of the different classes of compounds. The CTIB value is in the range 
5-22 kcal mol-', QP is evaluated from vibrational spectroscopy and mole- 
cular mechanics to be some 5-10 kcal mol-' radP2, and IB can be assimi- 
lated to the inversion barrier of ammonia, usually reported as =6 
kcal mol-l. Values chosen were CTIB = 14, IB = 8 kcal mol-', and QP = 
8 kcal mol-I rad-2. Equation (7.49), however, evaluates the position of the 
transition state at t' = 180' and xN = 60", which does not correspond to that 
found from Fig. 7.27 as far as xN is concerned. The reason is that some 
allowance must also be made for the 1-4 non-bonded interactions, that is 

where En,, can be obtained by the methods of molecular mechanics. Here it 
has been calculated assuming R, = R, = R, = methyl and X equal to a 
nonexistent atom intermediate between oxygen and methyl group. The final 
V' function calculated in such a way is shown in Fig. 7.30 and represents the 
potential energy hypersurface for an imaginary molecule which is the 
average of all different compounds of all chemical classes investigated. In 
spite of the approximations made, it has the correct shape and the 
agreement with experiment becomes more convincing when the experimen- 
tal points are plotted on it. They appear to be nicely located along the 
energy valley leading from the planar ground state to the transition state, 
which is now more correctly located at t' = 180" and X, = 50". 
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Resonance assisted hydrogen bonding (RAHB) 
6-diketones are known to undergo easy enolization and in two recent 

structure correlation methods have been applied to the 
P-diketone fragment in its en01 form (7.IXa,b) in order to understand what 
happens to the fragment geometry when perturbed by intramolecular, 
(7.X), or intermolecular, (7.XI), hydrogen bonding. The reason why this 

particular system was studied originates from the empirical observation that the 
n-conjugated system present in the 6-diketone en01 HOCR=CR-CR=O 
fragment undergoes greater delocalization when it forms either intra- 
molecular or infinite chain intermolecular hydrogen bonding. The nature 
and the entity of this effect is shown in Table 7.9. Here the standard 
distances are those tabulated['091 for pure single and double bonds, the 
unperturbed ones are an average of nine fragments that cannot make 
H-bonds (having OR instead of OH). The unperturbed geometry is a 87:13 
mixture of the resonance forms (7.IXa) and (7.IXb) according to Pauling's 
formula (7.31). However, when the fragments form H-bonds all distances 
undergo changes consistent with an increased contribution of the polar form 
(7.IXb), which becomes respectively 29 per cent for the intermolecular and 
48 per cent for the intramolecular cases reported in the table; at the same 
time the contract 0--0 distance, which is typically 2.74 A in the 0-H . 0 
bond in ice, becomes much shorter, being respectively 2.575 and 2.485 A in 

Table 7.9. Selected bond distances (A) for the P-diketone enol fragment. %(7.IXb) = per 
cent contribution of the polar form (7.IXb) according to Pauling's formula (7.31); the 
standard 0--0 contact distance in parentheses is that observed in ice 

Perturbed by: 
Intermolecular 
H-bond (7.XIIa 1.316 1.372 1.431 1.238 2.575 29 

Intramolecular 
H-bond (7.X)b 1.281 1.398 1.410 1.279 2.485 48 

a Neutron data from Jones, R .  D .  G. (1976). Acta Crystallographica, 8,32, 2133. 
bSernrningsen, D.  (1977). Acta Chem. Scand. Sect. 8, 31, 114. 
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Fig. 7.31. Scatter plot of q, versus q, (in A)  for 
the 25 fragments studied. The plot is 
centrosymmetric as any point can be plotted 
twice in view of the equivalence of the enol- 
ketonic (EK) and keto-enolic (KE) isomers. The 
full squares and stars refer to  the standard and 
unperturbed geometries of Table 7.9, 
respective1 . (Reproduced by permission from 
Gilli et al!2'1) 

the two cases, while the 0 - H  bond distance (0.95 A in the absence of 
H-bonding and according to Table 7.7) is lengthened up to 1.24 A in the last 
compound of Table 7.9. 

In a first 25 X-ray or neutron structures of p-diketones and 
P-ketoesters were studied, 22 of type (7.X) and 3 of type (7.XI), and the 
discussion reported here concerns this first analysis. Later on[2591491 the 
investigation was extended to a much larger set of fragments (81 and 37 for 
(7X) and (7.XI), respectively) but without obtaining significant differences 
in the final results. In summary, all the following phenomena are observed 
to occur together: 

(1) increased delocalization of the n-conjugated system; 

(2) strengthening of the 0 - H  - . 0 bond as indicated by the shortening of 
do--, and the lengthening of d,, distances; 

(3) shift of the proton position towards the middle point of the 0 . . . 0 
contact. 

The three effects may occur with different intensities but maintain the 
same intercorrelation for both intramolecularly (7.X) or intermolecularly 
(7.XI) bonded fragments (the intramolecular H-bond is usually stronger and 
causes greater n delocalization) and even for different classes of compounds 
(e.g. P-diketone enols form stronger H-bonds and are more delocalized 
than the enols of P-ketoesters or /3-ketoamides). 

While the H-bond strengthening is easily measured by both d o - - ,  and 
dSH changes, a specific geometric parameter is needed in order to describe 
the n system delocalization. The simplest way consists in using symmetry 
coordinates for the in-plane antisymmetric vibration of the group (7.X) or 
(7.XI), that is q ,  = d4 - d l  and q ,  = d ,  - d, .  Clearly q ,  = q ,  = 0 for the 
totally delocalized structure, while the greatest values will occur for the 
standard bond distances of Table 7.9. Figure 7.31 reports the scatter plot of 
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q2 versus ql for the 25 compounds studied. The plot is centrosymmetric as 
any point can be plotted twice in view of the equivalence of the enol-ketonic 
(EK) and keto-enolic (KE) isomers, and its centre identifies the fully 
delocalized structure. The full squares and stars refer to the standard and 
unperturbed geometries of Table 7.9, respectively. The broken line con- 
necting EK and KE is calculated from the condition of bond number 
conservation (p. 513). Since q1 and q2 are linearly dependent, a single 
coordinate Q = q1 + q2 can be used, which has values of 0.0, -0.320, and 
+0.320 A for the fully n-delocalized and the fully n-localized EK and KE 
structures, respectively. Alternatively the fragment geometry can be de- 
scribed by a coupling parameter, A, according to which the state of any 
fragment is a mixture A(EK) + (1 - A)(KE); it assumes the values of 1.0 for 
EK, 0.0 for KE, and 0.5 for the fully delocalized form. 

The scatterplot of do--o  against Q = ql + q2 for the 25 fragments 
considered is reported in Fig. 7.32. The plot displays m symmetry with 
respect to the delocalized structure having Q = 0 or A = 0.5 owing to the 
equivalence of the EK and KE structures. Very short 0 . . - 0 distances are 
seen to be associated with small values of lQl, that is with relevant 
delocalization of the n-conjugated system. The plot of the variations of the 
dSH and of the contact do,-, distances against ds-o is shown in Fig. 
7.33. Although data are necessarily more disperse owing to the known 
difficulties in locating protons by X-ray diffraction (only three were neutron 
structures), the plot clearly indicates that the shortening of the 0 . . . 0 
distance below 2.5 A causes the two bond (0-H) and contact (OH . . . 0 )  
distances to become progressively equal, though a perfectly centred 
positioning of the proton is never achieved. 

The observed correlations are in agreement with the model which, in its 
qualitative aspects, is illustrated in Fig. 7.34. Let us assume firstly that the 
double C=C is substituted by a single C-C bond; the 0-H . . 0 bond 
established will be the balance between two different factors: the energy of 

H-bonds, respectively. (Reproduced by 
permission from Gilli et 

2.4- Fig. 7.32. Scatter plot of do--, versus Q. The 
plot has rn symmetry because of the 

t I I b equivalence of EK and KE structures. Full and 
-.32 -.20 -.lo 0 .lo .20 -32 open circles indicate intra- and intermolecular 
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Fig. 7.33. Scatter plot of &, and do,-- ,  
distances against the contact do--,  distance. 

Fig. 7.34. A graphical representation of the 
resonance assisted hydrogen bonding (RAHB) 
model. (Reproduced by permission from Gilli e t  

the H-bond itself (EHB) and the van der Waals energy originated from the 
attractive and repulsive terms of the 1-4 interactions (Evdw). Re- 
establishing now the double C=C bond, the resonance (7.IXa) tt (7.IXb) 
will cause a neat shift of electrons from left to right (Fig. 7.34), which will 
stop when the minimum of ERES + EBP is attained, where the first term is 
the resonance energy gain and the second the energy needed to dissociate 
the opposite partial charges on the terminal oxygens. The charges have the 
correct sign for strengthening the H-bond with consequent shortening of 
do- - ,  and lengthening of d,,. The movement of the proton to the right is 
equivalent to a negative charge going to the left and the global effect is the 
annihilation of the partial charges initially set up by resonance, so allowing 
an increased contribution of the polar forrn (7.IXb) and a further 
strengthening of the H-bond, an imaginary process going on until the 
minimum of the function 

E = E H B  + E v m  + ERES + EBP (7.51) 

is attained. The H-bond formed has quite specific features and, in view of 
the strict interplay of n delocalization and H-bond strengthening which 
causes it, has been called[241 resonance assisted hydr~gen bonding 
(RAHB). It is essentially a charge assisted H-bond where, however, the 
charges do not arise from the presence of ions but from the resonance in a 
heteroconjugated system. 

The RAHB model is supported by a wealth of spectroscopic data and 
theoretical calculations for which the reader is addressed to the original 
paper. What is more important here is to discuss whether the correlation 
among geometrical parameters can be interpreted in terms of the potential 
energy hypersurface of the fragment. The approximate energy partitioning 
used in (7.51) can be evaluated quantitatively since semi-empirical equa- 
tions are available for all the four terms. E H B  is the total energy, including 
both attraction and repulsion terms, of the 0 - H  . . . 0 bond as a function of 
d,H = r and d o _ - ,  = R. It can be written as E d r ,  R )  and has been 

\ . 
calculated by the equation proposed by Lippincott and ~ c h r o e d e r [ ~ ~ , ~ * ]  for 
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all the desired values of r at the R value for which the energy was a relative 
minimum. In such a way R turns out to be a function of r and is known for 
any value of r. ERE, can be calculated by the method proposed by 
Krigowski et a1.[1441 which is known to give the resonance energy of a 
n-conjugated system from its bond distances with fairly good accuracy. EBp 
is the energy required to create the opposite fractional charges f q on the 
two terminal oxygens and can be easily evaluated by means of the 
coefficients of the atomic ionization energy versus electron affinity curves 
tabulated by Hinze and ~ a f f 2 [ ~ ~ ~ ~ ~ ~ ~ ~  for the main elements. Finally, EVdw 
can be calculated by the methods and equations already discussed in the 
section on molecular mechanics. 

The final potential energy map calculated according to (7.51) for 
acetylacetone (R, = R, = CH,, R, = H) is shown in Fig. 7.35 as a function of 
two coordinates: the bond number of the 0 - H  bond, n(0-H) (which is 1.0 
in the absence of H-bonding when d,, assumes the value of 0.97 hl, and 
0.5 when the hydrogen is equally shared by the two oxygens and 
d,, = do,-, = 1.25 hl), and the coupling parameter A (which assumes the 
values of A = 0, 0.5, and 1 for n-localized EK, fully n-delocalized, and 
n-localized KE fragment structures, respectively) or its related quantity Q. 
Figure 7.36 illustrates the physical meaning that can be given to the four 
corners and the central point of the plot of Fig. 7.35 while Fig. 7.37 shows a 
three-dimensional representation of the potential energy map in the same 
coordinate system. 

The potential energy map is centrosymmetric in consequence of the 
fragment symmetry and displays a diagonal valley of lower energy which can 

PROTON TRANSFER 

Fig. 7.35. Total potential energy map (kJ mol- ')  
calculated according to eqn (7.51) for 
acetylacetone ( R ,  = R, = CH,, R, = H) as a 
function of the coupling parameter A and the 
n(0-H) bond number. The physical meaning of 
the four corners and of the cental point of the 
plot are illustrated in  Fig. 7.36. The star indicates 
the gas electron diffraction structure of 
acety~acetone['~" and the full points the X-ray or 
neutron structures analysed. (Heproduced by 
permission from Gilli et 
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Fig. 7.36. Geometries assumed by the fragment 
in the five positions of the energy map of Fig. 
7.35 corresponding to the four corners and to 
the central point. The diagonal line is a zero- 
charge line for the fragment because it is the 
locusof points for which the partial charges 
generated by resonance are exactly 
compensated by the shift of the proton. 

be considered as the path of the reaction of proton transfer transforming the 
EK form into its KE isomer. Figure 7.38 shows the geometrical changes 
which the fragment undergoes along the reaction pathway and Fig. 7.39 
reports the energy profiles along the same path. The curve A' has been 
calculated without taking into account the two terms related to resonance 
(ERE, and EBp); it is essentially representative of H-bonding in water and, 
in fact, it reproduces quite well the water distance values (r = 1.01 A, 
R = 2.74 A) and of the proton transfer barrier (some 40 kJ mol-l). The 
curve A is calculated for acetylacetone by the use of all terms of (7.51) 
(Figs. 7.35 and 7.37); the introduction of the resonance term lowers the 
total energy by 42.5 kJmol-l, increasing the H-bond energy (already 
20 kJ mol-' in water) to the relevant value of 62.5 k3 mol-l; at the same 
time the proton transfer barrier is reduced to 34.8 kJ mol-' and the 0-H 
distance is lengthened until r = 1.08 A (associated R = 2.50 A). 

The structure of acetylacetone has been recently determined by gas 
electron diffra~tion"~'' and the corresponding geometry, marked by a star in 
Fig. 7.35, is seen to be very close to the calculated energy minimum. In the 
same figure are reported as full points the geometries of all the 25 fragments 
investigated. It seems interesting that all of them are correctly located inside 
the diagonal energy valley though, of course, not in the minimum, which 
has been specifically calculated for acetylacetone. As far as their exact 
position is concerned two main factors can be discerned. The first is 
electronic, and we have already remarked that P-diketone enols form much 
stronger H-bonds than the enols of P-ketoesters or P-ketoamides. The 

Fig. 7.37. Three-dimensional representation of second is steric in nature, the strongest H-bonds being associated with bulky 
the potential energy map of Fig. 7.35 in the 
same coordinate system. The path for the 

R, and R, substituents. For example, strictly similar calculations carried out 
reaction of proton transfer transforming the EK On hexamethylacetylacetone by the use of (7.51) show that the energy 
into the KE isomer is clearly shown as an energy minimum is shifted to r = 1.11 and R = 2.48 A, while the H-bond energy 
valley whose saddle point corresponds to the 
fully n-delocalized form having the proton in the increases to 82.5 kJ mold' and the proton transfer barrier decreases to 
middle of the two oxygens. 27.5 kJ m0l-I. 
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Resonance assisted hydrogen bonding (RAHB) is therefore a mechanism H 

of synergistic interplay of resonance and H-bond formation. It can be 
generalized by calling it a mechanism of interplay between H-bond and 
resonance in heterodienes or,  more generally, heteroconjugated systems: 

7. Xll 7.Xlll 

From this point of view, the P-diketone enols so far discussed correspond to 
the heterodienic scheme (7.52) (X = Y = O), but the RAHB mechanism is 
supposed to operate independently of the number of interleaving carbon 
atoms provided the conjugation between the lone pair on X and the C=Y 
double bond is maintained. In the X =  Y = 0 series the scheme (7.55) 
represents carboxylic acids which, in fact, are well known to give strongly 
H-bonded dimers (Fig. 7.3, scheme b), though a more convincing proof of 
RAHB could come from the observation of strongly delocalized and 
H-bonded heterotrienes (7.53) and heterotetraenes (7.54). Structures cor- 
responding to these fragments have been recently analysed[251 and found to 
display the expected behaviour. Compounds (7.XII) behave as totally 

Fig. 7.38. Geometrical deformations 
experienced by the fragment along the pathway 
of the proton transfer transforming the EK into 
the KE isomer. 

Fig. 7.39. Energy profile along the reaction 
coordinate of proton transfer transforming EK 
into KE as mapped along the mainly diagonal 
pathway of lowest relative energy of the map of 
Fig. 7.35 (curve A). Curve A' is the same curve 
but calculated omitting the ERE, and E,, terms 
in eqn (7.51); i t  can be considered t o  represent 
the proton transfer in water. The horizontal lines 
mark the zero-point energies which are slightly 
different in  water and acetylacetone. 
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n-delocalized heterotetraenes with bond 5 not participating to the conjuga- 
tion; the opposite bonds n and n '  (n = l, 2, 3, and 4) are nearly equal and 
the 0 - H  . . 0 is extremely short (on average, do-- ,  = 2.47 and 
do-- ,  = 1.18 A). In a strictly similar way compounds (7.XIII) show total 
delocalization of the heterotrienic system and display one of the shortest 
do- - ,  distances ever observed, i.e. 2.425 A. 

Up to now we have proved that RAHB is active in the enolone fragment 
(7.XIV) (or in other diketone enols with longer conjugated systems) 
forming intramolecular or, sometimes, intermolecular H-bonds. All these 
compounds have the oxygen as the only heteroatom. However, other 
heteroconjugated systems having different heteroatoms are putatively im- 
plied in this phenomenon via intramolecular or intermolecular (including 
dimerization) H-bond formation, such as enaminones (7.XV), enaminoim- 
ines (7 .XVI) , enolimines (7 .XVII) , amide-amidine complexes (7 .XVIII) 
and amide dimers (7.XIX). Preliminary data confirming the strong n 
delocalization of H-bonded enaminones (7.XV) and enolimines (7.XVII) 
have already been reported,[1481 and the formation of amide dimers (7.XIX) 
has been discussed by several a ~ t h o r s . [ ~ ~ , ~ ~ ]  
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Possible biochemical and biological implications originate from the fact 
that the amide-amidine complex (7.XVIII) is present in both thymine- 
adenine (7.XX) and cytosine-guanine (7.XXI) PI-bonded couples deter- 
mining the double-helix structure of DNA; in addition, cytosine-guanine 
coupling (7.XXI) implies another much wider cycle of H-bonds and 
mconjugated double bonds. Strictly similar considerations can be made in 
connection with the H-bonds determining the secondary structure of 
proteins: both a-helices (7.XXII) and 0-pleated sheets (7.XXIII) contain 
long chains of n-heteroconjugated systems connected by H-bonds and differ 
only because each a-helix contains three of such chains which are nearly 
parallel and isoriented, while in 0-pleated sheets the arrangement of the 
chains is antiparallel. 

References 

1. Wells, A. F. (1975). Structural inorganic chemistry (4th edn). Clarendon, 
Oxford. 

2. Bondi, A. (1964). Journal of Physical Chemistry, 68, 441. 
3. Allen, F. H. ,  Bellard, S., Brice, M. D. ,  Cartwright, B. A.,  Doubleday, A., 

Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Mother- 
well, W. D. s . ,  Rodgers, J. R. ,  and Watson, D. G. (1979). Acta 
Crystallographica, B35, 2331. 

4. Dunitz, J .  D. (1979). X-ray analysis and the structure of organic molecules. 
Cornell University Press, Ithaca, N.Y. 

5. Pauling, L. (1960). The nature of the chemical bond and the structure of 
molecules and crystals. An  introduction to modern structural chemistry (3rd 
edn). Cornell University Press, Ithaca, N.Y. 

6. Kitaigorodski, A. I. (1973). Molecular crystals and molecules. Academic, New 
York. 

7. Kaplan, 1. G. (1986). Theory of molecular interactions. Elsevier, Amsterdam. 
8. Pertsin, A. J . ,  and Kitaigorodski, A. I. (1987). The atom-atom potential 

method. Springer, Berlin. 
9. London, F. (1930). Zeitschrift fur Physikalische Chemie, B11, 222, 236; (1930). 

Zeitschrift fur Physik, 63, 245. 
10. Lennard-Jones, J. E. (1931). Proceedings of the Physical Society, 43, 461. 
11. Buckingham, R. A. (1938). Proceedings of the Royal Society of London, A168, 

264. 
12. Giglio, E.  (1969). Nature, 222, 339. 
13. Allinger, N. L. (1975). MMlIMMP1, QCPE No. 318. Indiana University. 
14. Hamilton, W. C.,  and Ibers, J. A. (1968). Hydrogen bonding in solids. 

Benjamin, New York. 
15. Pimentel, G.  C.,  and McClellan, A. L. (1960). The hydrogen bond. Freeman, 

San Francisco; Pimentel, G. C., and McClellan, A. L. (1971). Annual Reviews 
of Physical Chemistry, 22, 347. 

16. Kollman, P. A , ,  and Allen, L. C. (1972). Chemical Reviews, 72,283; Kollman, 
P. A. and Joesten, M. D. (1982). Journal of Chemical Education, 59, 362. 

17. Schuster, P., Zundel, G., and Sandorfy, C. (ed.) (1976). The hydrogen bond, 
Vols. I, 11, and 111. North-Holland, Amsterdam. 

18. Emsley, J .  (1980). Chemical Society Review, 9, 91. 
19. Umeyama, H., and Morokuma, K. (1977). Journal of the American Chemical 

Society, 99, 1316. 
20. Morokuma, K. (1971). Journal of Chemical Physics, 55, 1236. 



530 1 Gastone Gilli 

21. Kitaura, K., and Morokuma, K. (1976). International Journal of Quantum 
Chemistry, 10, 325. 

22. Taylor, R. ,  and Kennard, 0. (1982). Journal of the American Chemical 
Society, 104, 5063. 

23. Gorbitz, C. H .  (1989). Acta Crystallographica, B45, 390. 
24. Gilli, G., Bellucci, F., Ferretti, V., and Bertolasi, V. (1989). Journal of the 

American Chemical Society, 111, 203. 
25. Gilli, G., and Bertolasi, V. (1990). In The chemistry of enols (ed. Z.  

Rappoport). Wiley, New York. p. 713. 
26. Bent, H. A. (1968). Chemical Reviews, 68, 587. 
27. Gutmann, V. (1978). The donor-acceptor approach to molecular interactions. 

Plenum, New York. 
28. Kitaigorodski, A. I. (1984). Mixed crystals. Springer, Berlin. 
29. Huheey, J. E. (1983). Inorganic chemistry (3rd edn). Harper and Row, New 

York. 
30. Ibers, J. A., Pace, L. J., Martinsen, J . ,  and Hoffman, B. M. (1982). Structure 

and Bonding, 50, 1. 
31. Del Re, G. (1958). Journal of the Chemical Society, 4031. 
32. Gasteiger, J . ,  and Marsili, M. (1980). Tetrahedron, 36, 3219. 
33. Berkovitch-Yellin, Z., and Leiserowitz, L. (1982). Journal of the American 

Chemical Society, 104, 4052. 
34. Lifson, S., Hagler, A. T., and Dauber, P. (1979). Journal of the American 

Chemical Society, 101, 5111. 
35. Dauber, P., and Hagler, A. T. (1980). Accounts of Chemical Research, 13, 

105. 
36. Spackman, M. A. (1986). Journal of Chemical Physics, 85, 6579, 6587. 
37. Lippincott, E. R., and Schroeder, R.  (1955). Journal of Chemical Physics, 23, 

1099. 
38. Schroeder, R., and Lippincott, E .  R. (1957). Journal of Physical Chemistry, 

61, 921. 
39. Born, M., and von Karman, T. (1912). Physikalische Zeitschrift, 13, 297. 
40. Born, M., and Huang, K. (1954). Dynamical theory of crystal lattices. 

Clarendon, Oxford. 
41. Willis, B. T.  M., and Pryor, A. W. (1975). Thermal vibrations in crystal- 

lography. Cambridge University Press. 
42. Califano, S., Schettino, V., and Neto, N. (1981). Lattice dynamics of molecular 

crystals, Lecture Notes in Chemistry, Vol. 26. Springer, Berlin. 
43. Pawley, G. S. (1970). In Crystallographic computing (ed. F .  R. Ahmed). 

Munksgaard, Copenhagen. p. 243. 
44. Kitaigorodski, A.  I. (1970). In Advances in structure research by diffraction 

methods, Vol. 3, (ed. R. Brill and R. Mason). Pergamon, Oxford. p. 173. 
45. Cahn, R. S., and Ingold, C. K., (1951). Journal of the Chemical Society, 612. 
46. Cahn, R. S., Ingold, C. K., and Prelog, V. (1956). Experientia, 12, 81. 
47. Klyne, W., and Prelog, V. (1960). Experientia, 16, 521. 
48. Mislow, K. (1965). Introduction to stereochemistry. Benjamin, New York. 
49. Hallas, G. (1965). Organic stereochemistry. McGraw-Hill, New York. 
50. Cahn, R. S., Ingold, C. K., and Prelog, V. (1966). Angewandte Chemie 

International Edition in English, 5, 385. 
51. Eliel, E. L., Allinger, N. L., Angyal, S. J., and Morrison, G. A. (1966). 

Conformational analysis. Wiley, New York. 
52. Natta, G., and Farina, M. (1968). Stereochimica. Mondadori, Milan. 
53. IUPAC 1968 Tentative rules, section E,  fundamental stereochemistry, 

Information Bulletin No. 35; (1970). Journal of Organic Chemistry, 35, 2849. 
54. Stoddard, J. F. (1971). Stereochemistry of carbohydrates. Wiley, New York. 
55. Balaban, A. T. (ed.) (1976). Chemical applications of graph theory. Academic, 

New York. 



Molecules and rnolecular crystals 1 531 

Bijvoet, J. M., Peerdeman, A. F., and van Bommel, A. J. (1951). Nature, 168, 
271. 
Rogers, D. (1975). In Anomalous scattering (ed. S. Ramaseshan and S. C. 
Abrahams). Munksgaard, Copenhagen. p. 231. 
Cotton, F. A. (1971). Chemical applications of group theory (2nd edn). Wiley, 
New York. 
Cano, F. H.,  Foces-Foces, C., and Garcla-Blanco, S. (1977). Tetrahedron, 33, 
797. 
Cremer, D. and Pople, J. A. (1975). Journal of the American Chemical Society, 
97, 1354. 
Boeyens, J .  C. A. (1978). Journal of Crystal and Molecular Structure, 8, 317. 
Altona, C., Geise, H. J., and Romers, C. (1968). Tetrahedron, 24, 13. 
Parkanyi, L. (1980). RING. Hungarian Academy of Sciences, Budapest. 
Nardelli, M. (1982). PARST. University of Parma, Italy. 
Clark, T. (1985). A handbook of computational chemistry. Wiley, New York. 
Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople, J. A., (1985). Ab 
initio molecular orbital theory. Wiley, New York. 
Pople, J. A., and Beveridge, D. L. (1970). Approximate molecular orbital 
theory. McGraw-Hill, New York. 
Dewar, M. J. S. (1969). The molecular orbital theory of organic chemistry. 
McGraw-Hill, New York. 
Murrell, J. N., and Harget, A. J. (1972). Semiempirical self-consistent-jield 
molecular orbital theory of molecules. Wiley, London. 
Frisch, M. J., Head-Gordon, M., Schlegel, H. B., Raghavachari, K., Binkley, 
J. S., Gonzalez, C., et al. (1988). GAUSSIAN 88. Gaussian Inc., ~ittsburgh, 
PA. 
Bingham, R. C., Dewar, M. J. S., and Lo, D. H. (1975). Journal of the 
American Chemical Society, 97, 1285, 1294, 1302, 1307, 1311; Dewar, M. J. S.,  
and Thiel, W. (1977). Journal of the American Chemical Society, 99, 4899, 
4907. 
Dewar, M. J. S., Zoebisch, E. G. ,  Healy, E. F., and Stewart, J. J. P. (1985). 
Journal of the American Chemical Society, 107, 3902. 
Coulson, C. A., (1961). Valence. Oxford University Press, London. 
McWeeny, R. (1979). Coulson's valence. Oxford University Press, London. 

75. Streitwieser, A. Jr. (1961). Molecular orbital theory for organic chemists. 
Wiley, New York. 

76. Gillespie, R. J. (1972). Molecular geometry. Van Nostrand-Reinhold, London. 
77. Gillespie, R. J. (1963). Journal of Chemical Education, 40,295; (1970). 47,18. 
78. Bader, R. F. W., Gillespie, R. J., and MacDougall, P. J. (1988). Journal of the 

American Chemical Society, 110, 7329. 
79. Orgel, L. E., (1966). An introduction to transition-metal chemistry (2nd edn). 

Wiley, New York. 
80. Bethe, H. (1929). Annalen der Physik, 3, 135. 
81. Van Vleck, J. H. (1932). Physical Review, 41,208; (1935). Journal of Chemical 

Physics, 3, 803, 807. 
82. Ballhausen, C. J., (1962). Introduction to ligand field theory. McGraw-Hill, 

New York. 
83. Dunn, T. M., McClure, D. S., and Pearson, R. G. (1965). Some aspects of 

crystalfield theory. Harper and Row, New York. 
84. Schaffer, C. E., and J@rgensen, C. K. (1965). Molecular Physics, 9, 401. 
85. Schaffer, C. E. (1973). Structure and Bonding, 14, 69. 
86. Burdett, J .  K. (1978). Chemical Society Review, 7, 507. 
87. Burdett, J. K., (1980). Molecular shapes. Theoretical models of inorganic 

stereochemistry, p. 23. Wiley, New York. 
88. Walsh, A. D. (1953). Journal of the Chemical Society, 2260, 2266, 2288, 2296, 

2301, 2306. 



532 1 Gastone Gilli 

89. Gimark, B. M. (1979). Molecular structure and bonding. Academic, New 
York. 

90. Lowe, J .  P. (1978). Quantum chemistry. Academic, New York. 
91. Woodward, R. B., and Hoffmann, R. (1970). The conservation of orbital 

symmetry. Academic, New York. 
92. Fujimoto, H., and Fukui, K. (1974). In Chemical reactivity and reaction paths 

(ed. G. K. Klopman). Wiley, New York. 
93. Elian, M., and Hoffmann, R. (1975). Inorganic Chemistry, 14, 1058. 
94. Hoffmann, R. (1981). Science, 211, 995. 
95. Hoffmann, R. (1963). Journal of Chemical Physics, 39, 1397. 
96. Jahn, H. A.,  and Teller, E .  (1937). Proceedings of the Royal Society of 

London, A161, 220. 
97. Jotham, R. W., and Kettle, S. F. A. (1971). Inorganic Chimica Acta, 5, 183. 
98. Gaio, J . ,  Bersuker, I. B., Garay, J., Kabesova, M., Kohout, J . ,  Langfel- 

derova, H. ,  Melnik, M., Serator, M., and Valach, F. (1976). Coordination 
Chemistry Reviews, 19, 253. 

99. Hathaway, B., Duggan, M., Murphy, A., Mullane, J.,  Power, C., Walsh, A., 
and Walsh, B. (1981). Coordination Chemistry Reviews, 36, 267. 

100. Pearson, R. G. (1969). Journal of the American Chemical Society, 91, 1252, 
4947; (1970) Journal of Chemical Physics, 52, 2167; 53, 2986. 

101. Bartell, L. S. (1960). Journal of Chemical Physics, 32, 827; (1968). Journal of 
Chemical Education, 45, 754. 

102. Glidewell, C. (1975). Inorganic Chimica Acta, 12, 219; (1976). Inorganic 
Chimica Acta, 20, 113. 

103. Cotton, F. A.,  and Wilkinson, G. (1980). Advanced inorganic chemistry (4th 
edn). Wiley, New York. 

104. Pimentel, G. C., and Spratley, R. D. (1969). Chemical bonding clarified 
through quantum mechanics, Holden-Day, San Francisco. 

105. Purcell, K. F., and Kotz, J. C. (1977). Inorganic chemistry. Saunders, 
Philadelphia. 

106. Domenicano, A., Mazzeo, P., and Vaciago, A. (1976). Tetrahedron Letters, 
13, 1029. 

107. Sutton, L. E.  (1958). Tables of interatomic distances and configuration in 
molecules and ions, Special Publication, No. 11. The Chemical Society, 
London. 

108. Sutton, L. E. (1965). Tables of interatomic distances and configuration in 
molecules and ions, Special Publication, No. 18. The Chemical Society, 
London. 

109. Allen, F. H . ,  Kennard, O . ,  Watson, D. G., Brammer, L., Orpen, A. G.,  and 
Taylor, R. (1987). Journal of the Chemical Society Perkin Transactions 11, S1. 

110. Orpen, A. G., Brammer, L., Allen, F. H. ,  Kennard, O. ,  Watson, D. G., and 
Taylor, R. (1989). Journal of the Chemical Society Dalton Transaction, S1. 

111. Bent, H .  A. (1960). Journal of Chemical Education, 37, 616; (1961). Chemical 
Review, 61, 275. 

112. Dewar, J. S., Kollmar, H. ,  and Li, W. K. (1975). Journal of Chemical 
Education, 52, 305. 

113. Gilli, G. and Bertolasi, V. (1983). Journal of Chemical Education, 60, 638. 
114. Allinger, N. L. (1976). Advances in Physical Organic Chemistry, 13, 1. 
115. Altona, C., and Faber, D. H.  (1974). Topics in Current Chemistry, 45, 1. 
116. Engler, E. M., Andose, J. D. ,  and Schleyer, P. v. R. (1973). Journal of the 

American Chemical Society, 95, 8005. 
117. Ermer, 0. (1976). Structure and Bonding, 27, 161. 
118. Hursthouse, M. B., Moss, G. P., and Sales, K. D. (1978). Annual Reports of 

The Chemical Society. Section B: Organic Chemistry, 75, 23. 



Molecules and molecular crystals 1 533 

119. Kitaigorodski, A. I . ,  (1978). Chemical Society Review, 7, 133. 
120. White, D. N. J. (1978). In Molecular structure by diffraction methods, Vol. 6, 

(ed. L. E. Sutton and M. R. Truter). The Chemical Society, London. p. 38. 
121. Osawa, E., and Musso, H .  (1982). Topics in Stereochemistry, 13, 117. 
122. Boyd, D. B., and Lipkowitz, K. B. (1982). Journal of Chemical Education, 59, 

269. 
123. Ermer, 0 .  (1981). Aspekte won Kraftfeldrechnungen Volfgang Bauer, Munich. 
124. Burkert, U. and Allinger, N. L. (1982). Molecular mechanics. American 

Chemical Society, Washington, D.C. 
125. Allinger, N. L., et al., MMlIMMPl,  QCPE 318; Allinger, N. L., and Yu, Y. 

H. MM2, QCPE 325; Warshel, A. and Levitt, M. QCFFIPI, QCPE 247; 
Huler, E. ,  Sharon, R., and Warshel, A. MCA, QCPE 325; Andose, J. D., 
Engler, E. M., Collins, H. B.,  Hummel, J. P., Mislow, K., and Schleyer, P. v. 
R. BIGSTRN, QCPE 348; Iverson, J. D., and Mislow, K. BIGSTRN2, QCPE 
410; Browman, M. J., Carruthers, L. M., Kashuba, K. L., Momany, F. A., 
Pottle, M. S., Posen, S. P., et al. UNICEPP, QCPE 361. 

126. Biirgi, H. B. (1975). Angewandte Chemie, International Edition in English, 14, 
460. 

127. Murray-Rust, P. (1978). In Molecular structure by diffraction methods, Vol. 
6, (ed. L. E.  Sutton and M. R. Truter). The Chemical Society, London. 
p. 154. 

128. Biirgi, H. B., and Dunitz, J. D. (1983). Accounts of Chemical Research, 16, 
153. 

129. Biirgi, H. B., (1985). In Static and dynamic implications of precise structural 
information, Reports of the 11th International School of Crystallography, 
Erice, Italy. p. 245. 

130. Eyring, H., and Polanyi, M. (1931). Zeitschrift fur Physikalische Chemie, B12, 
279. 

131. Atkins, P. W. (1986). Physical chemistry (3rd edn). Oxford University Press. 
132. Sathyamurthy, N. and Joseph, T.  (1984). Journal of Chemical Education, 11, 

968. 
133. Miiller, K. (1980). Angewandte Chemie, International Edition in English, 19, 1. 
134. Biirgi, H. B. (1975). Angewandte Chemie, International Edition in English, 87, 

461. 
135. Biirgi, H. B. (1973). Inorganic Chemistry, 12, 2321. 
136. Britton, D. ,  and Dunitz, J. D. (1981). Journal of the American Chemical 

Society, 103, 2971. 
137. Biirgi, H. B., Dunitz, J. D., and Schefter, E .  (1973). Journal of the American 

Chemical Society, 95, 5065. 
138. Biirgi, H. B., Dunitz, J. D . ,  Lehn, J. M., and Wipff, G. (1974). Tetrahedron, 

30, 1563. 
139. Biirgi, H. B., Dunitz, J. D., and Shefter, E .  (1974). Acta Crystallographica, 

B30, 1517. 
140. Gilli, G. ,  and Bertolasi, V. (1979). Journal of the American Chemical Soceity, 

101, 7704. 
141. Gilli, G. ,  Bertolasi, V., Bellucci, F., and Ferretti, V. (1986). Journal of the 

American Chemical Society, 108, 2420. 
142. Winkler, F. K., and Dunitz, J. D. (1971). Journal of Molecular Biology, 59, 

169. 
143. Biirgi, H. B., and Shefter, E., (1975). Tetrahedron, 31, 2976. 
144. Krygowski, T.  M., Anulewicz, R. ,  and Kruszewski, J .  (1983). Acta 

Crystallographica , B39, 732. 
145. Hinze, J. and Jaffk, H .  H. (1962). Journal of the American Chemical Society, 

84, 540; (1963). Journal of Physical Chemistry, 67, 1501. 



534 1 Gastone Gilli 

146. Hinze, J . ,  Whitehead, M. A., and Jaffk, H. H., (1963). Journal of the 
American Chemical Soceity, 85, 148. 

147. Iijima, K., Ohnogi, A., and Shibata, S. (1987). Journal of Molecular Structure, 
156, 111. 

148. Ferretti, V., Bellucci, F., Bertolasi, V., and Gilli, G. (1985). Proceedings of the 
IX European Crystallographic Meeting, Torino, p. 337. 

149. Bertolasi, V., Gilli, P., Ferretti, V., and Gilli, G. (1991) Journal of the 
American Chemical Society, 113, 4917. 



Protein crystallography 

Introduction 

Protein crystallography, the subject of this chapter, is a specialized branch 
of crystallography that investigates, by using diffraction techniques on single 
crystals, the three-dimensional structure of biological macromolecules.[l-sl 
For a long time, good quality single crystals were obtainable only for 
globular proteins. Nowadays, other biological macromolecules, like t-RNA, 
polysaccharides, and polynucleotides, give crystals suitable for X-ray 
analysis. Therefore, the techniques for structure solution and refinement 
described in this chapter apply to all cases where crystals with a high portion 
of unordered solvent can be grown. 

Despite the fact that crystals of proteins have been known since the 
beginning of the century, only around 1960 were the first structures, 
myoglobin and haemoglobin, e l~c ida ted .~~]  Their resolution was made 
possible mainly by the development of the isomorphous replacement 
technique. Since then, a lot of theoretical and technical advances have been 
made: among them, the use of anomalous dispersion, molecular replace- 
ment, and the development of oscillation techniques in data collection of 
crystals with large cell dimensions. At the end of the 1970s the growth of 
computing power made possible the refinement in reciprocal space. In the 
meantime, the introduction of powerful and affordable graphic stations 
brought the development of interactive graphic software, allowing faster 
interpretation of electron density maps and model building. Only in very 
recent years has the availability of synchrotron radiation and two- 
dimensional detectors made data collection a routine procedure. 

An idea of the 'state of the art' of protein crystallography is given by the 
Brookhaven Protein Data Bank (thereafter called PDB),[~] which collects 
coordinates of the macromolecular structures solved, mainly by X-rays. 
Looking at the January 1989 release, one finds, perhaps with some surprise, 
that only 413 sets of coordinates are available (plus 86 bibliographic entries, 
that is structures solved but not yet deposited).? They include 10 polysac- 
charides, 26 DNA fragments, 6 t-RNA, and 18 model structures. The 
remaining 353 are protein structures, including 14 virus coat proteins: taking 
into account the fact that most of them are related proteins or variants of 
the same molecule (there are for example 34 lysozyme variants or mutants, 
12 haemoglobins, and 8 myoglobins), this number must be considered quite 
small and demonstrates that solving the structure of a new macromolecule 

? I t  must be remembered that the Protein Data Bank cannot be considered fully 
representative of the macromolecular structures so far solved, since not all of them are quickly 
deposited. 
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still remains a long and demanding job. But possibly the reason for the 
relatively low number of new structures published every year is the 
crystallization process, a field in which technical (and theoretical) advances 
have proceeded very slowly and which remains the more uncertain step in 
protein structure determination. 

Protein crystals 

It is the solvent content that makes the difference between a classical 
molecular crystal and a protein crystal: in the former, all the atoms can be 
described in terms of a regular lattice, whilst in the latter a crystalline array 
coexists with a high portion of material in the liquid state. The mother 
liquid, whose content can range approximately from 30 to 75 per cent or 
more, has a strong influence on the behaviour of this kind of crystal, making 
them very peculiar and creating some advantages along with some obvious 
disadvantages. Among the latter, the major one is that protein crystals are 
much less ordered than classical crystals, not only for the large amount of 
unordered material present in the crystal itself, but also because surface 
groups of the macromolecule in contact with the solvent can show a great 
mobility. As a consequence, diffraction data cannot be measured to the 
resolution normally attainable with 'small' molecules. On the other hand, 
among the advantages, the environment of the macromolecule in the crystal 
is not too different from that of the solution from which the crystal was 
obtained (the influence of the solvent on the conformation of the protein 
cannot be underestimated) and we can profit from the solvent in the 
preparation of heavy-atom derivatives, as will be described in the next 
paragraph. 

A last important point must be remembered about protein crystals: since 
inversion symmetry elements are not allowed, the number of possible space 
groups is reduced from the original number of 230 to 65 (see Chapter 1, 
p. 24). 

Principles of protein crystallization 
The process of crystallization of a macromolecule is very complex and 
poorly understood. A theoretical treatment of it, despite recent progress,[s1 
is at present impossible. Nevertheless, a lot of experience has been 
accumulated on the crystallization of water-soluble p r ~ t e i n s , [ ~ , ~ , ~ ~ J ~ ]  and a 
crystallographer starting with enough pure material has a reasonable chance 
of succeeding in obtaining X-ray quality crystals. The same does not yet 
apply to membrane proteins, the crystals of which have been very seldom 
obtained.[12,13] 

Growth of a protein crystal starts from a supersaturated solution of the 
macromolecule, and evolves towards a thermodynamically stable state in 
which the protein is partitioned between a solid phase and the solution. The 
time necessary before the equilibrium is reached has a great influence on the 
final result, that can go from an amorphous or microcrystalline precipitate 
to large single crystals. The supersaturation conditions can be obtained by 
the addition of precipitating agents and/or by modifying some of the 
internal parameters of the solution, like pH and temperature. Since a 
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Table 8.1. Precipitating agents commonly used for growing 
protein crystals suitable for X-ray analysis. The list is not 
intended to be exhaustive 

Class Examples 

Inorganic salts (NH4),S04, Na,SO,, NaCI, KCI, 
NH4CI, MgSO,, CaCI,, NH,NO,, LiCl 

Organic salts Citrate, acetate, formate 
cetyltrimethyl ammonium salts 

Organic solvents Ethanol, isopropanol, acetone, 
dioxane, 2-methyl-2,4-pentanediol(MPD) 

protein is a labile molecule, all the extreme conditions of precipitation, pH, 
and temperature should be avoided. And indeed, the understanding of the 
biological and physiological properties of the macromolecule via the 
determination of the three-dimensional structure is much easier if crystals 
are grown in conditions not too far from the physiological environment in 
which the molecule operates. 

The precipitants frequently used can be divided into three categories: 
salts, organic solvents, and polyethylene glycols (PEG). A list of the more 
common among them is reported in Table 8.1. 

1. pH. The pH value has a strong influence on the solubility, which has a 
minimum at a pH close to the isoelectric point of the macromolecule. 

2. Salt concentration. Ionic strength can have opposite effects on protein 
solubility, i.e. solubility decreases exponentially with increasing ionic 
strength, a phenomenon known as salting-out, but it also has a minimum at 
very low ionic strength, the salting-in effect. In practice, precipitation can 
be achieved by increasing the salt concentration or by dialysing the solution 
of protein against water. 

3. Organic solvents. Precipitation properties of organic solvents can be 
ascribed to the double effect of subtracting water molecules from the 
solution and to decreasing the dielectric constant of the medium. They can 
sometimes have effects on the protein conformation too, and for this reason 
they should be used with caution. 

4. PEG. PEG is a precipitating agent with peculiar properties: it is a 
polymer, available in molecular weights ranging from about 200 to 
20 000 Da;t its effect on solubility, along with some properties in common 
with salts and organic solvents, is due to volume exclusion property: the 
solvent is restructured and phase separation is consequently promoted. PEG 
is of wide applicability, and has been demonstrated to work with proteins 
that were crystallized with other precipitating agents.[lO] 

Several others parameters and factors can influence the crystallization 
process: among them, the protein concentration, the temperature, the 
presence of cations that sometimes stabilize the conformation of the 
protein, and the purity of the sample. The presence of contaminants can be 
extremely important in preventing the formation of crystals suitable for 
X-ray analysis. 

t The molecular weight is expressed in Dalton, I Da = 1.6604 X g. 
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The solvent content of protein crystals 
The amount of the solvent contained in a protein crystal has been discussed 
by ~ a t t h e w s , [ ' ~ ]  who analysed data from 116 distinct crystal forms. He 
defined the quantity VM, given by the ratio of the volume of the unit cell 
divided by the total molecular weight of the protein in the cell. Therefore, 
V, represents the crystal volume per unit of protein molecular mass: it is 
practically independent from the volume of the asymmetric unit and mostly 
depends on the solvent content. In the crystals examined, V, has a value 
ranging from 1.6 A3 ~ a - '  to about 3.5 A3 Da-l, but more extreme values 
have been found. A special trend can be observed if the molecular weight of 
the proteins is taken into account: small proteins tend to have small V, and 
big proteins a large one, which is understandable, since a low V, means a 
low solvent content. Calling V,,,, the crystal volume occupied by the 
protein, V; its fraction with respect to the total crystal volume V and M,,,, 
the mass of protein in the cell: 

since the first term in parentheses represents the specific volume of the 
protein and the second the reciprocal of VM, and remembering that 
molecular weight is expressed in Da: 

If we assume a value of about 1.35 g cmP3 for the protein density, as a first 
approximation: 

V; - 1.23/VM (8.3) 

v:,," = 1 - v;. (8.4) 

The most important information contained in VM is not the solvent 
content, but the molecular mass of macromolecule in the crystal cell. Very 
often the number of molecules per asymmetric unit can be determined 
unambiguously, when the molecular weight of the protein is known, at least 
approximately. For monomeric proteins, or for those without the possibility 
of internal symmetry, the number of molecules in the cell is relevant only 
for the subsequent steps in structure determination. For multimeric pro- 
teins, composed of identical subunits, this number may be of relevant 
biological consequence: in fact, if some of the internal symmetry elements 
are coincident with the crystallographic ones, the relative arrangement of 
such subunits in the molecule is immediately available.[151 

The experimental determination of the density of the protein crystal, 
along with that of the dried content of the crystal itself, can allow a quite 
accurate determination of the molecular mass of the protein contained in 
the asymmetric unit, and consequently the molecular weight of the protein. 
These techniques have been reviewed by ~a t thews , [ '~ ]  but the reader must 
be warned that the experimental measurement of the density of such kinds 
of crystals is difficult and the results very often uncertain. 

Preparation of isomorphous heavy-atom derivatives 
Isomorphous heavy-atom derivatives are of paramount importance for the 
solution of the phase problem in protein Their prepara- 
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Table 8.2. Representatives of heavy-atom compounds used 
in  protein crystallography for preparation of  derivative^[^,^' 
(Ac = acetate) 

Classes Examples 

Platinum compounds K,PtCI,, K,Pt(CN),, K,Pt(NO,),, 
Pt(NH,),CI, or -Br,, PtCI,, 
PtCI,, Pt(ethylenediamine)CI, 

Mercury compounds HgCI,, HgAc,, mersalyl acid, 
p-chloromercuribenzoic acid, 
methylmercury acetate, 
ethylmercury chloride 

Uranyl salts UO,(NO3), 

Rare earths SmAc,, EuCI, 

Others KAuCI,, KAu(CN),, 
PbAc,, PbCI,, (CH,),PbAc 
ASNO, 
K,lrCI, 

tion is made possible by their quite high solvent content: the presence of 
channels of disordered or only partially ordered liquid allows the diffusion 
of relatively small compounds into the crystal. Reactions among the diffused 
compounds and eventual accessible reactive sites of the protein can take 
place. In some special cases, protein molecules are derivatized in solution 
and subsequently crystallized, but the former procedure is simpler and it is 
advisable to try it first. In practice, the crystal is soaked in a solution of its 
mother liquid in which the heavy-atom compound has been dissolved. A list 
of the more commonly used heavy-atom derivatives is given in Table 8.2. 
Concentration of heavy atoms and time of soaking are the most relevant 
variables: they can range from 0.001 M to 0.1 M and from a few hours to 
several days (these numbers must be considered only a rough indication, 
since extreme cases have been reported). These conditions strongly depend 
on the protein under study, on the precipitating agents, on the pH used, and 
on the temperature. 

1. pH. At high pH (greater than 9) the acidic groups of the protein are 
mostly negatively charged, and potentially they can react with cations. At 
the same time, many heavy atoms form insoluble hydroxides. At low pH, 
on the other hand, potentially reactive groups will be protonated and 
prevented from reacting. 

2. Precipitating agents. High salt concentration is not the ideal medium 
for heavy-atom reaction with proteins, not only because the solubilization of 
the compound can be prevented by a very high salt concentration, but also 
because ions in the solution will compete with the protein. Polyethylene 
glycol solutions on the contrary provide favourable conditions for heavy- 
atom reactions, since PEG does not react with most of the compounds 
commonly used. 

3. Temperature. There is an obvious kinetic effect of temperature on 
heavy-atom reactions, which are slower at 4 "C than at room temperature. 

Very often preparation of heavy-atom derivatives is a trial and error 
technique, unless some special features of the macromolecule are known a 
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priori. When the three-dimensional structure has been solved, a rationale 
for the behaviour of the specific system can be inferred: unfortunately, at 
that time it becomes useless. 

How isomorphous are isomorphous derivatives? 
The term 'isomorphous derivative' ideally indicates a crystal where some 
solvent molecules have been replaced by some group of atoms with more 
electrons, without any alteration of the structure of the protein or of the 
crystal lattice itself. In practice, this never happens: the introduction of a 
bulky compound which interacts with some of the atoms on the surface of 
the protein will give rise to local movements and displacements of atomic 
groups, at least in the close vicinity of the binding site. 

To check if some reaction has taken place after the soaking of a crystal in 
the heavy-atom solution, diffraction data have to be collected. To avoid 
wasting time, a visual inspection of a single precession photograph, 
compared with the same zone of the native protein, is often enough to judge 
about the quality of the derivative. A more quantitative test is given by the 
comparison of structure factor data: an agreement index, R (see pp. 309 and 
312), between native and derivative data can be calculated and the entity of 
the substitution can be roughly evaluated from it; experience indicates that 
a value from 0.15 to 0.25 can be considered a reasonable agreement factor. 
A smaller value is an index of little substitution, too high a one must be 
regarded suspiciously, as a clue to non-isomorphism. 

Lack of isomorphism can be confirmed by other parameters: a change in 
cell length of less than about 1.5 per cent can be tolerated to a resolution of 
about 3 A ,  but it could be deleterious at 2 A .  Furthermore, the mean 
difference among structure factors amplitudes must be practically constant 
over the entire range of 8 used: quite large differences at low resolution and 
very low at high resolution indicate disordered heavy-atom binding, whilst 
an increase of the differences with d spacing is an index of non- 
isomorphism.['l 

The solution of the phase problem 

The following section is entirely concerned with primary phasing, that is the 
determination of approximate phase angles of protein structure factors. 
First the two main methods used to solve the phase problem in protein 
crystallography, isomorphous replacement and anomalous scattering, are 
described, without taking into account the experimental errors. Their 
treatment is introduced later, along with the techniques of phase refine- 
ment. Methods to improve the electron density maps and rotation and 
translation functions, that in some cases can help to solve the phase 
problem, have been left for the end of the chapter. A brief mention of the 
application of direct methods to macromolecular crystallography is given in 
the last subsection. 

The isomorphous replacement method 
The method of isomorphous replacement is a corner-stone in protein 
crystallography: not only has it been used to solve the phase problem for the 
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first protein structures, but it remains, with few exceptions, the only 
procedure available to solve the structure of completely new proteins.[''] 

Let Fp be the structure factor of the native protein, Fp its magnitude and 
rpP its phase. FpH, FpH, and rppH are the corresponding quantities of the .% 

2 
heavy-atom derivative. If we assume a perfect, 'ideal' isomorphism, the d, 
relationships between Fp and FpH is illustrated in Fig. 8.1 and can be 2 - 
written: 

I Real axis 
where FH is a vector representing the contribution of the heavy atom 
'alone'. Fig. 8.1. Representation in the Argand plane of 

Our final goal is to derive the value of pp, but the only quantities in the ~ ~ i ~ ' ~ ~ ~ ~ ~ ~ i ~ ( ~ ~ ~ ~ ~ h ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ y -  

figure that can be measured are Fp and FpH. On the contrary, FH cannot be atom derivative (F,,), assuming a perfect 

measured, but since it represents the contribution of few atoms, it can be i~omorphismofthetwocrystals. 

calculated if their atomic coordinates and thermal parameters are known. 
Let us first describe a way to determine the positions of heavy atoms and, 
from them, to calculate FH and derive an estimate for rpp. 

The determination of heavy-atom positions 
For a small molecule, the heavy-atom positions can be determined via a 
Patterson map calculated using measured amplitudes (see p. 328). The same 
map is not useful for a macromolecular crystal: even for a small protein, the 
ratio among the number of electrons of the heavy atoms and those of the 
macromolecule is so low, that a Patterson map calculated with the 
coefficients of the protein derivative will look absolutely meaningless. But if 
the structure factor amplitudes of two isomorphous crystals are known, 
various kinds of difference-Patterson syntheses can be calculated. 

The 'true' difference-~atterson[l'] synthesis would be that calculated using 
as coefficients IF;, - F;\. This map represents the difference between the 
Patterson of the derivative minus the Patterson of the native protein. In 
fact, remembering (8.5): 

The right-hand side of eqn (8.6) shows that the Patterson map calculated 
with these coefficients will contain peaks corresponding to heavy-atom 
heavy-atom vectors, FL, and to heavy-atom protein-atom vectors, the 
mixed terms. 

A more common choice among protein crystallographers is to calculate a 
Patterson synthesis using coefficients (FpH - F,)'. This was originally called 
modulus difference squared synthesis, but is commonly known as 
isomorphous difference-~atterson.['~] The resultant map has several inter- 
esting features, but the main reason for its success is that it is more 
representative of the heavy-atom situation. In particular, in the centrosym- 
metric case (that is for centric? projections in a non-centrosymmetric space 
group), since FpH and Fp are collinear, these coefficients represent a true 
estimate of the value of FH. In fact: 

t The word centric is used here in a general sense, indicating that phases are restricted to two 
values, not necessarily 0 or x. 
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Fig. 8.2. Graphic construction of S.I.R. method, 
showing the two possible values for the phase 
angle of the native structure factor F,. The 
structure factor of the protein is a vector lying 
on a circle of radius Fp and centre 0. If a circle of 
radius F,,, the modulus of the structure factor of 
the heavy-atom derivative, is drawn with centre 
in the end of the vector -F,, the intersection of 
the two circles represents the two possible 
solutions of (8.13). 

Since FH is usually small if compared with the modulus of the structure 
factors of protein and derivative, in general the relationship 

FH = IFPH - FPI (8.8) 

will be satisfied. In few cases, when FpH and Fp are both very small, it may 
happen that FH= FPH + FP This is called a cross-over, and it can be 
removed from the calculation. For a centric projection a Patterson synthesis 
calculated with coefficients (8.8) will correspond to the Patterson map of the 
heavy atoms alone, that is it will contain peaks corresponding only to the 
vectors relating heavy-atom positions. Methods to derive the atomic 
coordinates from a Patterson map are described on pp. 328 to 335. In 
favourable cases, i.e. when more than one centric projection is available, 
the three coordinates of the heavy atoms can be obtained. 

For general reflections, IFpH - FPI will not be a correct estimate for FH. 
From Fig. 8.1: 

F& = Fc + FEH - 2FPH FP COS (qp  - qPH). (8.9) 

If the phase angles of protein and derivative structure factors are very 
similar, that is if the two vectors FpH and Fp are nearly collinear, the cosine 
term is close to 1 and:[17] 

F& = F: + F : ~  - 2FPHFP = (FPH - FP)~.  (8.10) 

The probability distribution of the values of q, - qpH has been analysed by 
~ i m [ ~ ~ , ~ ~ 1  (see also p. 393): the larger the value of the product FpHFp, the 
more likely the difference Iqp - qPHI is to be small, an vice versa. Equation 
(8.10) does not represent a good approximation for small structure factors, 
but the latter will give a small contribution to the Fourier transform. In 
practice, a Patterson map calculated with coefficients (8.8) will tend to the 
Patterson-difference of the heavy atoms alone in the non-centrosymmetric 
case too (for a general discussion of the features of difference-Patterson 
maps, see Ramachandran and ~rinivasan['~]). 

The single isomorphous replacement (SIR) method 
Once the position of heavy atoms is more or less accurately known, the 
calculated value of I;;I can be used to estimate the phase angle of the 
structure factor of the native protein. From Fig. 8.1, using simple 
trigonometric considerations,? we can write: 

Fc, = F$ + F ~ H  + 2FpFH COS 6, (8.11) 

cos 6 = (F;, - Fc - F & ) / ~ F ~ F ~ ;  (8.12) 

8 corresponds to qp - qH,  and since qH is known, q,, the phase angle of 
Fp, can be derived: 

Equation (8.13) contains a cosine term, consequently two solutions exist for 
qp. This ambiguity is illustrated in Fig. 8.2, where two circles of radius Fp 
and FpH are drawn with centre respectively in 0 and at the end of vector 
-FH: the intersections of the two circles represent the two possible solutions 

t An alternative way of deriving eqn (8.11) is given in Appendix 8.A 
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for cpp. It is important to notice that this problem is immediately solved for F, 
A 

FP 
restricted phase reflections, for which eqn (8.12) becomes: * - 

Since the value of FH is known from calculation and the values of FpH and Fp 
from observation, the relative sign of Fp with respect to FH can be 
determined unambiguously from the comparison of the magnitude of the 
three vectors (Fig. 8.3). For general reflections this is unfortunately not 
true, and the ambiguity between the two possible values for the phase angle 
must be solved with other techniques. 

In principle, a three-dimensional electron density map could be calcu- 
lated, using the two possible phase values: this kind of synthesis is called an 
SIR map and it will contain information about the true structure plus 
noise.['lI In fact, if we call cp, the correct phase value of cpp and cppw the 
wrong one, looking at Fig. 8.4 we can write: 

- --- - 
FP H F P 

(c) 
Fig. 8.3. The sign of reflections of centric zones 
can be fully determined using only one heav 16 atom derivative (after Blundell and Johnson ). 
When F, is small compared with F, and F,,, 

WSIR = FP exp (i~,) + FP exp (~vPw).  (8.16) case (a) and (b) apply: if F,< F,,, the sign of F, 
is equal to  that of F,; if F,> F,, the sign of F, is 

Since cp, = 1/2(cppT + cppw), then: reversed. The so-called 'cross over', represented 
in (c), may occur when F ,  is larae and F. is 

(8.17) small: despite the condiiibn F,; F,,, thk sign of 
F, is reversed with respect t o  F,. 

From (8.17) it is evident that FsIR will approach the correct value of Fp if 
cpH .= cp,,. But since we have no reason to believe the numerical values of 
cpH and vPT are correlated, the first term of (8.17) will give the correct 
electron density, while the second one will only contribute to noise. In 
practice the level of noise in this kind of map is so high that its 
interpretation is extremely difficult. 

A 

The classical solution of the problem of phase ambiguity: the Real. 

MIR technique \- 
The multiple isomorphous replacement technique, MIR, has been the first 
method used to solve this phase ambiguity, and it remains the more 
common and is widely adopted. It is based on the preparation of a second 
heavy-atom derivative having heavy atoms bound to the protein in 
position(s) different from those of the first one. Let us assume we have 
measured coefficients from two derivatives, called FpHl and FPH2, and in 
some way we have calculated FHl and FH2 (that means we know the 
positions of the heavy atoms of the two derivatives, relative to the same 
origin). The complete solution of the phase problem can be illustrated using 
a diagram due to ~ a r k e r , [ ~ ~ ]  illustrated in Fig. 8.5: a circle of radius Fp 
centred on the origin 0 of an Argand plane is drawn, and from 0 the two 
vectors -FHl and -FH2; they are in turn the centres of two circles of radii 
FpHl and FPHZ respectively. Since the two derivatives are assumed perfectly 
isomorphous, the three circles must intersect in one point (B in Fig. 8.5): 
the vector OB will coincide with the structure factor of the protein. The 
graphical construction just described is equivalent to solving a pair of 

Fig. 8.4. The same diagram shown in Fig. 8.2, 
except that now the 'true' and the 'wrong' value 
for the native structure factors are explicitly 
indicated as F,, and Fpw respectively. It can be 
seen that the further the two vectors are from 
each other, the more the S.I.R. phase 
(corresponding to rp,) is different from rp,. 
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- 
Real 
axis 

Fig. 8.5. Harker construction illustrating the 
M.I.R. method. A second circle of radius F,,, 
and centred at the end of vector -F,, has been 
added to the construction of Fig. 8.2. The three 
circles have only one common intersection, 
representing the solution of the two equations 
(8.18). 

I Real axis 

Fig. 8.6. Vector diagram showing F& and F& 
(superscripts + and - indicate_t_he two terms of 
the Bijvoet pairs, i.e, hkland hkl; the 
components are drawn reflected across the real 
axis). The two vectors have different 
magnitudes, due to the anomalous contribution 
of the heavy atoms. F,!, is the real and FA the 
imaginary component of F,. 

I Real axis 

Fig. 8.7. For restricted-phase reflections, if only 
one type of anomalous scatterer is present, F:, 
and F& have the same magnitude, independent 
of the size of the imaginary component. 

simultaneous equations like (8.13): 

In principle, two different heavy-atom derivatives supply a unique, unam- 
biguous value for the phase angle of the native protein. In practice, errors 
from various sources prevent system (8.18) from having an exact solution. 

Anomalous scattering: a complementary (or alternative) 
approach to the solution of the phase problem 
According to Chapter 3 (p. 167), the structure factor may be rewritten as 
the sum of two parts: 

where the real part of anomalous scattering (the so-called anomalous 
dispersion) is included in F1(hkl). If F"(hk1) is not zero, the practical result 
is the breakdown of Friedel's law: F(hk1) is no longer equal to ~ ( i i i )  and 
the Friedel pairs are more correctly called Bijvoet pairs. Anomalous 
scattering is negligible for light atoms like carbon, nitrogen, or oxygen (that 
is, nearly all the atoms of a protein) and can be of practical use for a native 
protein molecule only in special cases, when heavy ions are bound to it. 
Even if for a very small protein the sulphur's anomalous scattering has been 
used to solve a structure ab i n i t i ~ , [ ~ ~ ]  in general the anomalous scattering 
phenomenon becomes relevant for heavy-atom derivatives. Equation (8.5) 
must be in fact modified, as shown in Fig. 3.15 and Fig. 8.6: 

where superscripts + and - stands for (hkl) and (iRi), respectively. If the 
heavy-atom derivative contains only one kind of anomalous scatterer, 
vectors F h  and Ffl, are mutually perpendicular, and if we call QI, the phase 
angle of vector F h ,  QI, f n/2  will be that of Ffl,. This fact can be considered 
practically always true for protein derivatives, and has the important 
consequence that anomalous effect cannot be observed if the vectors Fp and 
FH are collinear, for example for all the centric reflections (see Fig. 8.7). 

An accurate measurement of the Bijvoet pairs allows the calculation of an 
anomalous-difference Patterson synthesis, with coefficients: 

Notice that we do not need native coefficients for the calculation, so (8.21) 
is also useful when an anomalous scatterer is present in the native protein 
crystal. A map calculated with coefficients (8.21), supposing the anomalous 
contribution Ffl, is small compared with Fp, which is very often true in our 
case, will contain maxima corresponding to vectors relating the positions of 
anomalous scatterers. This synthesis was for example used by ~ o s m a n n [ ~ ~ ]  
to determine the Hg position in two derivatives of horse haemoglobin. 
Other kind of anomalous Patterson maps with coefficients different from 
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(8.21) can be produced, like the a-anomalous or the P-anomalous 
synthesis .[Is1 

The most important application of anomalous scattering in protein 
crystallography remains the possibility of solving the phase ambiguity 
discussed in the previous ~ a r a g r a p h . [ ~ ~ - ~ ~ ]  Let us assume we have only one 
heavy-atom derivative, and we have measured F;,, FFH, and FP.T 
Moreover, the position of the heavy atom(s) are known. Looking at Fig. 
8.6, an expression for the phase angle of the derivative, whose complete 
derivation is given in Appendix 8.A, can be written: 

F;, - FFH = 2FA sin (qpH - qH) (8.22) 

qPH = qH f sin-' [(F:, - F&)/2FA]. (8.23) 

Equation (8.23) gives again two possible solutions for qp,, but since it 
contains a sine term, its information is complementary to that of (8.13): the 
phase angle can now be fully determined. Information from both sources, 
isomorphous replacement and anomalous scattering, is used in Fig. 8.8, 
where the role of the second derivative of Fig. 8.5 is played by anomalous 
scattering. 

The use of anomalous scattering in the determination of 
the absolute configuration of the macromolecule 
Two isomorphous derivatives are, in principle, enough to determine the 
correct value of the phase angle qp of the structure factor, but the M.I.R. 
method alone does not allow us to select the correct enantiomorph for the 
protein. Once a right-handed system has been chosen in indexing the 
reciprocal lattice, the initial arrangement of the heavy atoms for the first 
derivative is arbitrary. In other words, the phase of FH can be q,, as in Fig. 
8.2, or -qH. Once a hand has been arbitrarily selected for a heavy-atom 
derivative, all the others must simply be consistent with it, but they can all 
be relative to the wrong enantiomorph. If this is the case, the electron 
density map will represent the mirror image of the correct structure, that is 
all the amino acids will have D configuration. When a medium (or high) 
resolution electron density map can be produced, some overall features may 
indicate that the wrong enantiomorph has been chosen (for example, 
a-helices will appear left-handed instead of right-handed-the amino acid 
configuration and a-helices are described on p. 574). Then the problem can 
be immediately corrected by recalculating the phases with the heavy atoms 
arranged in the other way. 

However, anomalous scattering differences can be used to identify from 
the beginning the correct enantiomorph, using an extension of the method 
proposed for small molecules by B i j v ~ e t . [ ~ ~ ]  We have seen in the previous 
subsection that, at least in principle, structure factors for one single 
heavy-atom derivative along with its anomalous differences can solve the 
phase ambiguity of the protein. This is no longer valid if two possibilities are 
taken into account for the value of q,, since now there are two possible 

t Readers must be warned that measurement of Bijvoet pairs requires very accurate data 
collection, since anomalous differences are very often of the same order of magnitude as the 
experimental errors on intensities. Synchrotron radiation is extremely helpful in this respect: 

- 
Real 
axis 

Fig. 8.8. A graphical representation of the 
solution of the phase problem using one heavy- 
atom derivative and its anomalous absorption 
component. Two circles of radius F+,, and F, P are drawn at the end of vectors -F, and -F,  
respectively. OA is the native protein structure 
factor, whose phase angle is uniquely 
determined by the intersection of the three 
circles. 

thd appropriate wavelengths that optimize the anomalous effect can be selected (see p. 239). 
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Real axis 

Fig. 8.9. Graphical illustration of the ambiguity 
in the choice of enantiomorph. This figure is 
equivalent to Fig. 8.2, except that now two 
possible arrangements of the heavy atoms for 
the same derivative are shown. Vectors OA and 
OB are the two possible structure factor values 
for the native protein if v, is selected as the 
phase of the heavy-atom derivative; vectors OA' 
and OB' those corresponding to -q,, that is to 
the enantiomorph. 

Real 
axis 

Fig. 8.10. Harker construction analogous to Fig. 
8.5. where, due to lack of isomorphism and 
errors in the data, the three circles of radius F,, 
F,,,, and F,,, do not intersect at the same point. 

value of q, associated with every qH. Let us assume the solution for the 
phase angle of the derivative structure factor, from (8.A.7) and (8.A.15), is 
qpH = qH + 6. We are left with another ambiguity, since the original choice 
of q H  was arbitrary: the two possibilities are in fact qpH = qH -t 6 or 
qpH = - qH - 6, and they determine the selection of the enantiomorph 
(Fig. 8.9). 

At least two heavy-atom derivatives and anomalous differences for one of 
them are necessary to select the correct hand of the molecule: using phases 
from one derivative along with anomalous contribution and the heavy atoms 
in the two possible arrangements, two difference-Fourier of a second one 
are calculated. Peaks in the difference map calculated with atoms in the 
correct hand will be reinforced, those with the wrong one lowered.['] 

The treatment of errors 
In the previous paragraphs, we assumed that all the measurements were 
error-free and that a perfect isomorphism existed among crystals of the 
native protein and derivatives. This is obviously not realistic, since Fp and 
FPH are experimentally measured quantities and FH is calculated from 
approximate heavy-atom positions. Experimental errors can be considered 
to arise from three different sources: 

(1) errors in intensities, mainly attributable to inaccuracy in measurements, 
scaling etc. ; 

(2) errors in position, occupancy, and temperature factor of heavy-atoms; 

(3) lack of isomorphism, due to displacement of protein atoms and of 
solvent molecules close to the heavy-atom binding site, etc. 

As a consequence, the circles of Fig. 8.5 are not expected to intersect at the 
same point and the system of equations (8.18) will not have an exact 
solution (Fig. 8.10). Following Terwilliger and ~ i s e n b e r g , [ ~ ~ ]  let us denote 
the different contributions to the total error deriving from points (I), (2), 
and (3) as a, q, and p, respectively. It must be noticed that, whereas a, and 
apH, the standard deviations for Fp and FpH, are routinely evaluated (see pp. 
271 and 280) an a priori estimate of q and p is impossible. 

The systematic treatment of errors in the isomorphous replacement was 
pioneered by Blow and Crick.[301 They made two basic assumptions: all the 
errors reside in the calculated structure factor of the derivative, FpH(c,Ic); 
errors follow a Gaussian distribution. Consequently, a phase probability 
distribution for derivative j is given by: 

The difference FPH(obs) - FPH(calc) in (8.24) is called lack of closure and is 
usually denoted by E,; its physical meaning is illustrated in Fig. 8.11, which 
is a realistic picture of what was idealized in Fig. 8.1: now the triangle 
formed by the three vectors F,, FPH, and FH does not close. The lack of 
closure depends from the phase of the protein, since: 

ni in (8.24) is a normalizing factor and Ei is a measure of the total error. The 
choice of .E, is crucial and not obvious. In practice, the value commonly 
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I (a) 
Real axis 

V) .- Fig. 8.11. (a) Representation of the lack of 

i3 closure E, following the Blow and Crick 
assumption that all the errors reside in  the F,, 

9 amplitude. As a consequence of it, F,,(,,,,, is 
E - equal to  Fp,~,,,, + E .  (b) components of the error 

described in (a) are now explicitly shown: ,u is 
the lack of isomorphism and q the difference 
between the true and the estimated value of F,. - The third source of error, the inaccuracy i n  the 

Real axis measurement of Fp and F,,, prevents the 
(b) closure of the polygon. 

used is:[311 

The right-hand side of (8.26) represents the mean square value of the lack 
of closure residual. Since it depends from the resolution, it is evaluated in 
ranges of sin 8/A. 

An a priori derivation of (8.24) along with that of E; for centric and 
acentric reflections has been obtained by Terwilliger and ~ i s e n b e r ~ l ~ ~ ]  as a 
function of all the different sources of errors: 

Equations (8.27a) and (8.27b) are not of direct use, since we lack a value 
for q and p, but from them a theoretical justification of (8.26) can be 
obtained.[291 

If more than one derivative is present, (8.24) can be modified to give the 
total probability distribution of the phase of a reflection: 

The sum is extended to all the j derivatives used in calculating the phases. A 
diagram showing P,(q,) for the hypothetical derivatives of Fig. 8.10 is 
reported in Figs. 8.12(a) and (b), and the total probability in Fig. 8.12(c). 

The lack of closure for anomalous scattering measurements assumes a 
different form:[25,26,291 

but the probability for the phase of the structure factor due to the 
anomalous scattering is analogous to (8.24): 

E,,, is usually smaller than Eiso and can be estimated for example from the 
agreement among centric reflections.[251 If isomorphous and anomalous 
information are available for the derivative j, they can be combined to give 
a total probability: 

P,('?'P) = ( q ( i s o , ( q ~ > ) ( P , ( a n 0 1 ( 9 ~ ) ) .  (8.31) 

On the basis of a different formulation of the error model. Hendrickson and 
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Fig. 8.12. (a) Lack of closure, cj, for the two 
derivatives shown in Fig. 8.10. c, assumes the 
value 0 at the intersections of the circles of 
radius Fp and FpHj. Since the three circles do not 
intersect at the same point, this happens for 
values of @,different for each derivative. (b) 
q(qp), calculated on an arbitrary scale using 
(8.24), for the two derivatives: q(p,) has a 
maximum every time cj = 0. (c) Combined 
probability for the two derivatives. p, 
represents the most probable phase, p, the Best 
phase, that is the centroid of the probability (see 
text for more details). 

~atmann[~']  proposed a different representation of the phase probability 
distribution: 

~ ( v P )  = exp (K + A  cos qp + B sin qp + C cos 2qp + D sin 2qp). (8.32) 

Equation (8.32) has the advantage of being completely general and that new 
information can easily be included. Moreover, the old probability can be 
expressed using coefficients A, B, C, and D through a least-squares 
fitting.[331 Since the overall probability distribution is given by the product of 
individual probabilities: 

if every one is cast in the form (8.32), Ptot(qp) can be obtained by the sum 
of the individual coefficients: 

+ C. Ci cos 2qp + C D~ sin 2qp 
i i 

From (8.33) or (8.34) we can calculate the probability distribution of the 
phase angle for every structure factor and use the most probable phase in 
the calculation of an electron density map. This is called the most probable 
Fourier, and in principle it would be a good approximation. Unfortunately, 
P(qp) tends to be bimodal, and the use of the most probable phase can 
introduce large errors (see Fig. 8.12(c)). According to Blow and Crick,[301 
the Fourier which is expected to have the minimum mean square difference 
from the 'true' Fourier is that obtained using the centroid of the probability 
distribution of Fp, that is: 

2n 

F ~ , ~ ~ ~ )  = NFP ~ ( 9 ~ )  exp (MP) dqP  (8.35) 

where N is a normalization factor: 

Equation (8.35) is equivalent to: 

where m is a weighting function called the figure of merit: 

(8.38) 

qP(best) can be calculated easily by developing (8.38) and observing that 
P(qp) can be sampled and the integral substituted by a sum: 
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The sum is estimated for the i values of qp at which the probability is 
evaluated, usually at intervals of 10 or 20 degrees. The figure of merit is a 
value ranging from 0 to 1 and is a measure of the reliability of the phase qp:  
in principle, m = 1 means an error of O" in the phase angle, m = 0.5 means 
an error of 60". 

The refinement of heavy-atom parameters 
Once an approximate position of one or more heavy atoms has been found, 
the problem immediately arising is the refinement of their coordinates, 
thermal parameters, and occupancy. Refinement is made difficult by the 
lack of a correct value of FH(obs): we can only have estimates of it. 

Historically, the first method of refinement of heavy-atom parameters was 
proposed by ~ossmann,["] who suggested minimization, using classical 
least-squares methods: 

FH(calc) can be calculated in the usual way from the known heavy-atom 
parameters, but a correct estimate of FH(,bs) is available only for centric 
reflections (see p. 541), so (8.41) should in principle be employed to refine 
that class of reflections and the refined parameters used to calculate all the 
phases. Nevertheless, since (8.8) can be considered an approximate estimate 
of FH(obs), expression (8.41) has sometimes been used to refine acentric 
data.$ 

Possibly the most used and most popular refinement scheme among 
protein crystallographers is the so-called phase refinement, introduced for 
the first time in the refinement of myoglobin.[341 The quantity minimized is: 

which represents the least-squares minimization of the lack of closure, 
where: 

F ~ ~ ( c a l c )  = IFp(obs) exp ( ~ v P )  + FH(calc)l. (8.43) 

In general w is chosen as the reciprocal of the total error E, calculated from 
(8.26) for the derivative being refined.§ 

t In the rest of the chapter, unless otherwise specified, the sums are extended to the 
appropriate set of reflections. 

$If anomalous scattering data are available, a more accurate approximation of FH (see 
Blundell and ~ohnson[']) is represented by 

The - and + values are called lower (F,,,) and upper (F,,,) estimates, respectively. It has 
been shown that the lower estimate would represent the correct value of FH for the large 
majority of the reflections. It must be considered, in any case, that when anomalous differences 
are low or the measurements are affected by large errors, coefficients (8.8) can be more safely 
used. 

5 A modification of the phase refinement scheme, called MVFC (minimum variance Fourier 
coefficients) has been proposed by ~ ~ ~ u s c h . [ ~ ~ ]  The expression minimized is again (8.42), but 
the sine and cosine of the phase are considered as variables. The values of the trigonometric 
functions estimated in the refinement are used directly for the electron density calculation, 
without the need to postulate a probability distribution for the phase error. 
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Whatever refinement scheme is selected, different procedures can be 
followed: refining only centric reflections is quite safe, if reflections with 
restricted phase represent a good portion of the total. The number of 
variables is also important in this respect: in general, three positional 
parameters, the occupancy, and an isotropic temperature factor are varied 
for every atom, but since the last two parameters are highly correlated, they 
must be refined separately. If general reflections are used, in order to avoid 
bias it is advisable to refine the parameters of one derivative omitting it 
from the phase calculation, that is refine one derivative and calculate the 
phases with all the others.[361 This can obviously be done if several different 
derivatives are available. 

One of the difficulties in heavy-atom refinement is the check of the 
correctness of the parameters used: this is particularly true at the beginning 
of the refinement, where it is sometimes difficult even to decide if the 
solution found is correct or not. Many quantities can be used to monitor the 
progress of refinement: none of them taken alone gives an absolute 
indication, but together they can be considered a reliable check. Different 
kinds of R factors have been defined: 

The Cullis R factor, Rc (8.442, is calculated only for centric reflections. A 
value between 0.40 and 0.60 is generally considered reasonable, the only 
drawback being the low number of reflections used in the calculation. For 
general reflections, the Kraut R factor (8.45) is used instead. Since its 
numerator is the quantity being minimized in phase refinement, RK can be 
considered a good parameter to monitor the course of refinement. Unfortu- 
nately, a high degree of substitution of the derivative implies a statistically 
large RK, and a very low substitution a small one, so the Kraut R factor 
cannot be considered an indication of the correctness of the variables being 
refined. i 

An idea of the relative importance of a single derivative in the phase 
calculation is given by the R(modulus), defined by (8.46), which is the lack 
of closure divided by the modulus of the heavy-atom structure factor. If its 
value is greater than one, the circles of Fig. 8.8 will never intersect and 
(8.18) will not have any solution at all. R(modulus), if calculated in shells of 
resolution, gives an index of the utility of that derivative at different 
resolutions. Often the reciprocal of R(modulus), which is called the phasing 
power, is quoted. Its value must be bigger than one. 

The last important quantity used in refinement is the figure of merit, 
defined in (8.38). The figure of merit gives a direct estimate of the errors in 

t In the first refinement scheme, R,,, can also be used: R,,,, = C (IF,,, - 
F,(,,,,,I)/C F,,,,, the disadvantage of it being that it is possible to obtain a completely 
incorrect structure with a value of R,,,, ranging from 0.40 to 0.60. 
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phases, but it is strongly dependent on the value of the total error E:  an 
overestimate of E will give an over-optimistic figure of merit. 

Picking up minor heavy-atom sites: the difference- 
Fourier synthesis 
When the positions of heavy-atoms have been identified and some refine- 
ment has been carried out, the next step is to check the correctness of the 
heavy atoms identified and the localization of other minor sites that may be 
present. This can be accomplished in principle by using difference-Fourier 
techniques (see p. 366): the map that better represents the differences 
between observed and calculated positions of heavy atoms should be that 
with  coefficient^:[^'] 

dF = F~(obs)  - FH(calc). (8.47) 

Since FH(obs) is not directly measurable, (8.47) can be approximated only if 
anomalous differences are available. 

Often a map with coefficients: 

AF = m(FpH - Fp) exp (iq,) (8.48) 

is calculated. Unfortunately, FpH- Fp does not correspond to FH, and 
moreover qp is not the phase of FH. Furthermore, since Fourier maps are 
strongly dominated by phases, a difference-Fourier map calculated with 
coefficients (8.48) will tend to reproduce the peaks of the heavy atoms used 
in calculating the phases. A difference-Fourier map of a derivative 
calculated with phases obtained from that derivative is normally useless, and 
the technique of cross-difference Fourier, that is the Fourier difference of a 
derivative calculated using phases for the protein obtained from all the 
others, is highly recommended. Unfortunately this is not always possible, 
since it requires at least three different derivatives. 

A synthesis, proven useful in picking up minor sites, is the derivative 
difference-map, calculated using coefficients: 

dF = rn(F~~(obs) - F~H(calc)) exp ( i ~ P ~ ( ~ ~ l ~ ) ) .  (8.49) 

If the position of all the major heavy atom peaks has been determined 
correctly, coefficients (8.49) allow the localization of low-occupancy sites. 
Figure 8.13 shows the coefficients used in (8.48) and (8.49) compared with 
the 'true' ones.[381 

A third approach to the solution of the phase 
ambiguity: real-space filtering 
We have already seen in Chapter 4 that the positivity of the electron density 
can be used to obtain phase information. The same principle may be used to 
improve electron density maps of  protein^.[^^-^^] 

This method is called real-space filtering and can produce correct phases 
when good SIR data are available. Phase information can be extracted by 
an electron density map by a simple back-Fourier transform: if a suitable 
modification has been introduced in the map, the phases obtained by the 
back-transformation will be more correct than those used in calculating the 

I Real axis 

Fig. 8.13. Argand diagram of the quantities used 
in a Fourier-difference calculation. AFis the 
magnitude of the coefficient used instead of F, if 
coefficients (8.48) are used. GFis used in  the 
Fp ,,,,,, - Fp ,,,,,,, synthesis. (Adapted from 
Henderson and  offa an.'^'') 
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map and so the new phases can be used to modify the original ones. The 
procedure described here, suggested by ~ a n g , [ ~ ]  is based on the same basic 
principle. 

We have seen on p. 543 that an electron density map calculated using SIR 
phases will contain the correct density of the molecule, covered by an 
enormous amount of noise. Information about the correct phases can be 
obtained via the following automated procedure. 

1. After calculating an electron density SIR (or single anomalous scatter- 
ing, SAS) map, errors are removed in direct space by evaluating for 
every point an average value p, from the formula: 

where S is a constant estimated from previously solved protein 
structures. 

2. The value of p, estimated from (8.50) is added to any point in the map. 
Any negative density remaining is considered an error and set to zero. 
The density in solvent region is substituted with the value p, + (p,,,,). 

3. Structure factors are calculated by Fourier inversion. Now new phases 
are available, and they can be combined with the old ones, using one of 
the well known phase combination procedures.[19~20] 

4. Combined phases will produce new maps, that will undergo the 
procedure again, until convergence is reached. 

An important feature of the Wang procedure is that an automatic method 
has been devised to decide what is solvent and what is protein, based on the 
practical assumption that solvent regions, like protein regions, are con- 
tiguous to some extent. The value of electron density at point j is substituted 
by a new value which depends from the points surrounding it, within a 
sphere of radius R,? according to the criteria: 

where 

wi = 1 - rijlR if pi > 0 and R > rij (8.52) 

Since the resulting map has large homogeneous connected regions, the 
molecular boundary can be revealed by a threshold density level appropri- 
ately selected. Real-space filtering methods can also be used to extend the 
resolution of the electron density map. 

Rotation and translation functions and the molecular 
replacement method 
Sometimes it may happen that we know the three-dimensional structure of a 
molecule and we are interested in solving the same structure in a different 

t The optimum value of radius R depends mainly on the resolution: a value between 8 and 
10 8, is often used to average a 3 8, resolution isomorphous replacement map. 
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Fig. 8.14. A simplified two-dimensional 
\ illustration of (8.53). In (a) and (b) the same 
\ 'molecule' is represented in different positions \. with res~ect to the same reference svstem. Bv a ' 

rotation'of an angle @and a translation of t, the 
(c) object in (a) can be superimposed to that in (b). 

space group. At other times we have reasons to believe that the conforma- 
tion of a protein is quite similar to that of another that has been previously 
solved, which is often the case for the same protein from different species. 
In all the cases mentioned above, six variables, three rotational and three 
translational, will approximately describe the transformation from one set of 
coordinates to the other. In fact, if we call X the set of vectorst representing 
the atoms of the original molecule and X' the transformed ones, the 
transformation is simply described by: 

where [C] is a matrix that rotates the coordinates X into the new orientation 
and t  is a translation vector. Equation (8.53) is illustrated for a two- 
dimensional situation in Fig. 8.14, where a 'molecule' formed by three point 
atoms can be superimposed to an identical molecule in a different 
orientation by the translation of a vector t ,  after the rotation of an angle cu. 

As mentioned in Appendix 5.B (p. 383), the technique of positioning a 
molecule or a fragment of known structure in a crystal cell is called 
molecular replacement. In principle it is possible to simultaneously search 
for the six variables which minimize the difference between Fobs and F,,,,, 
but in practice this is a very hard task, even for the fastest computer.$ The 
solution of the problem was pioneered by Rossmann and v low,[^^] who 
explored the possibility of finding the orientation of similar subunits in a 
crystal cell without any knowledge about the translation t ,  making use of the 
Patterson function. After the correct orientation has been found, a search 
for the translation vector can be carried out (a collection of papers on 
molecular replacement is found in the book by ~ossmann) . [~I  Let us first 
describe the methodology and the problems connected with the rotation 
function. 

The first step in molecular replacement: the rotation function 
The idea of the rotation function can be easily understood by a simple 
two-dimensional example. In Fig. 8.15(a) a 'molecule' of three idealized 

t In the following discussion all the rotations will be performed in a Cartesian reference 
system. It is assumed that, if required, an appropriate orthogonalization is applied before a 
rotation is performed. 

$This statement is becoming untrue, due to growing availability of computing power. 
Subbiah and ~ a r r i s o n [ ~ ~ ~  have shown, in the test case of the human histocompatibility antigen, 
that an exhaustive three-dimensional search at low resolution can be performed. The correct 
solution can also be obtained, starting from a random position, using the simulated annealing 
approach (see p. 569). 
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Fig. 8.15. An isolated, simplified 'molecule' of 
three atoms. Its self-convolution is shown in (b): 
since atoms are considered as points, i t  is 
everywhere 0, except when two points 
superimpose exactly. 

point atoms is represented isolated, in a orthogonal reference system. Let us 
imagine a two-dimensional lattice of similar 'molecules' in a different 
orientation. In the lattice of Fig. 8.16(a) the unit cell is made by two oLsuch 
molecules, related by a twofold axis, denoted by 1 and 2. Maxima of its 
idealized Patterson function, shown in Fig. 8.16(b), can be divided in two 
categories: those arising from intramolecular vectors, or self-vectors, and 
those from intermolecular or cross-vectors. Maxima belonging to the first 
class are indicated in the figure by circled points and are confined to a short 
distance from the origin. It is easy to see that by a simple rotation of 112" 
anti-clockwise the isolated molecule can be superimposed to molecule 1 of 
Fig. 8.16(a), after an appropriate translation, or, by a rotation of 292", to 
molecule 2. The self-convolution function of the isolated molecule (Fig. 
8.15(b)) can also be superimposed to the Patterson of the crystal if we 
perform the same rotation. Let us define a function R(C): 

where C is a matrix that rotates the coordinates of the model molecule with 
respect to the reference system of the crystal, P,,,,,(u) is the Patterson 

Fig. 8.16. (a) A portion of a two-dimensional 
lattice of a molecule identical to  that of Fig. 8.15 l - - - - - -  
(the unit cell is dashed). (b) Its corresponding 
Patterson map. Circled points indicate self- 
vectors. Squared points are cross-vectors close 
to the origin: some of the points of Fig. 8.15(b) 
accidentally superimpose to them during 
rotation, giving rise to false maxima in the 
rotation function. 

w .IIIIJ 
(4 
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function of the crystal and Pmol(Cu) is the self-convolution function of the 
isolated molecule, rotated by C. The function R(C) will have a maximum 
when the peaks of the two functions superimpose, at least partially. The 
calculation of function R(C) for all the possible values of the rotational 
variables will allow us to determine the orientation of the known molecule 
in the reference system of our crystal. 

The right-hand side of (8.54) can be Fourier t r a n ~ f o r m e d [ ~ ~ ' ~ ~ ]  and 
reduced, neglecting a constant, to: 

F(h) are the Fourier coefficients of the crystal and Fmol(p) the coefficients of 
the Fourier transform of the isolated molecule, rotated by C (h, h '  are used 
here to indicate different terms of (hkl) values, p represents a point in 
reciprocal space of a continuous transform). Gh,h, is an interference function 
whose magnitude depends on h, h', and the volume used in the integration 
of (8.54). 

The function R(C) can be evaluated in real space using (8.54) or in 
reciprocal space, using (8.55). In both cases the computing time is strongly 
dependent on the sampling chosen, which in turn is related to resolution. In 
real space PC,,,, and Pmo, must be sampled finely enough for the resolution 
selected (generally this means a value around 112 or 113 the d spacing). The 
volume of integration is a sphere whose radius depends on the size of the 
isolated molecule, and this value determines the steps of the angular 
variables used in evaluating R(C). In reciprocal space problems are quite 
similar, since Fmol(p) is a continuous function, defined over all the 
reciprocal space. The isolated molecule can be put in an artificial cell, 
generally a cube whose edges can be about two to thiee times the size of the 
molecule, and the continuous function evaluated with a sampling appropri- 
ate to the resolution used. In practice, since (8.55) is dominated by large 
Fourier coefficients, it is possible to limit the numbers of F(p)  used. 

A faster but more complex approach in evaluating the rotation function, 
the so-called fast-rotation function, has been devised by ~ r o w t h e r . ~ ~ ~ ]  If we 
express the Patterson function in terms of spherical polar coordinates, 
(r, 0, q) ,  for a rotation C, corresponding to the three angles cq, a2,  ag, the 
rotation function can be written: 

R(C) = 1 PwSt(r, 8, q)RPmol(r, 8, q)r2  sin 0 dr do  d q  (8.56) 

where RPmol is Pmol after a rotation C. Equation (8.56) can be expanded 
using Bessel functions, more appropriate to a rotation group than a Fourier 
series, well suited for translation operations. The use of Bessel functions 
requires a lot of difficult mathematics, outside the scope of this book, but 
the final result is that R(C) can be evaluated as a summation of two terms, 
one of them independent of the rotation itself. The computation time is 
consequently greatly reduced with respect to the use of (8.54) or (8.55). 

The rotation matrix C and the choice of variables 
Rotation is usually performed with respect to an orthogonal system, making 
use of different rotational variables. Quite common are the Eulerian 
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rotation angles e l ,  02,  and 83, illustrated in Fig. 2.3(a): O 1  is the rotation 
angle about the z axis and is positive when the rotation is clockwise looking 
from the origin; O2 is a rotation about the new x axis and 83 a rotation about 
the new z axis. The matrix C describing such a rotation is given in (2.32b).t 
An appropriate rotation for the three angles will cover all the space (see p. 
72), but if the Patterson map presents some rotational symmetry, the 
rotation function will also have symmetry and a partial rotation will be 
sufficient. 

The symmetry of the rotation function is a combination of the symmetries 
of the two Patterson functions, PC,,,, and P,,,.[~~] The Eulerian angles make 
easy to describe the symmetry of the rotation function.[491 Any triplets of 
angles 0 , )  82, and 8, can be considered as a point of a three-dimensional 
system, whose unit cell has dimensions 2n in all directions: a rotation a is in 
fact equivalent to a + 2n. The resulting rotation space groups are some of 
those described in the International tables for x-ray crystallography. $ 

A disadvantage in using 8 angles is that when O2 is small, 8, and O3 
represent a rotation about nearly the same axis, and maxima will resemble 
strips rather than maxima. The distortion effect can be avoided if a 
combination of Eulerian angles is used instead:[''] 

A different possibility is the use of spherical polar angles, (p, I/J, and x 
(Fig. 2.3(b)). Angles (p and I/J define a spin axis, and a rotation of x around 
this axis is performed. Polar angles are very useful when a particular 
direction has to be exploited or when a defined rotation has to take place, as 
is sometimes the case for self-rotation (see p. 558). 

Translation functions 
Once the orientation of a known molecule in an unknown cell has been 
found, the next step is the determination of its absolute position. Only when 
one molecule is present in space group PI is this problem non-existent, since 
in this case the origin of the crystal cell can be chosen arbitrarily with 
respect to all three axes. In all the other cases, when the reference 
molecule, exactly oriented, is translated in the unknown cell, symmetry- 
related molecules move accordingly and all the intermolecular vectors 
change: only when all the molecules in the crystal cell are in the correct 
position, the calculated Patterson cross-vectors superimpose to those of the 
observed Patterson (intramolecular vectors are insensitive to translation). 
Figure 8.17 illustrates the method. Molecule 1 is positioned in the crystal 
cell of the unknown structure in the correct orientation: s1 is the vector 
defining its position with respect to the origin. Since we do not know yet the 
correct position of the molecule in the cell, s1 is arbitrarily chosen. Molecule 
2 is generated by the twofold axis, and its position is defined by vector s2. 
The correct solution is shown in Fig. 8.17(a), where the correct origin of 
molecule 1 is indicated by sy. As vector sl varies, all the intermolecular 
vectors among symmetry-related atoms will change: they will coincide with 

t In Chapter 2 the rotation matrix C is called RE, for Eulerian angles and R,, for spherical 
polar angles. 

$The reader must be warned that the Eulerian rotation matrix is not Hermitian, that is 
reversing the order of the Patterson functions does not produce the same rotation-equivalent 
positions. 
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those of Fig. 8.17(a) only when s, = s:, that is when the local origin is 
correctly defined with respect to the symmetry element. The determination 
of the translation vector is performed by comparing two Patterson maps, 
just as before in the rotation case, except that now we are interested in 
maximizing the superposition of a different class of peaks. The problem 
described above is in practice quite difficult, since the function representing 
the superposition is generally very noisy and with many small maxima. 
Several translation functions have been proposed, and some of them are 
briefly summarized in Appendix 8.B. To illustrate the principles of 
translational search, only the T function of Crowther and   low['^] will be 
described here, following the treatment of  atm man.['^] In the case illustrated 
in Fig. 8.17, the set of cross-vectors of the calculated Patterson from 
molecule 1 to molecule 2 can be written as: 

where p ,  and p, represent the electron density of the two molecules. If 
molecule 1 is now translated, a new vector s, will define its origin. At the 
same time molecule 2 will move into the cell, and a new function P12 can be 
calculated for every value of s,. Since we are looking at intermolecular 
vectors, it is more useful to define the translation as a function of vector 
t = s2 - s l ,  which defines a local origin with respect to a symmetry element. 
If Pohs(u) is the value of the observed Patterson at point u, the T translation 
function is defined as: 

Function Twill have a maximum when the two Pattersons superimpose. In 
reciprocal space, (8.59) can be written:[511 

T(t) = lohs(h)Fl(h)F~(hA) exp (-2niht) (8.60) 
h 

where F,(h) is the Fourier transform of the model molecule 1 and Fl(hA) 

Fig. 8.17. (a) 'Molecules' 1 and 2 correctly 
oriented and positioned with respect to  a 
symmetry element. s: is the vector from the 
origin to an arbitrary point of molecule 1, and sz 
the corresponding one for molecule 2, which is 
generated from 1 by twofold rotation, to = sz - 
sy is the translation vector from molecule 1 to 2. 
(b) Molecule 1 has been translated (but not 
rotated, so that orientation is unchanged). 
Molecule 2 has moved accordingly, and now all 
vectors defining the molecular positions in the 
cell are changed. Only when t = to the two 
models, and consequently cross-vectors of 
Patterson maps, superimpose. Determination of 
sy from to is straightforward. 

.\ / 
the calculated structure factor of molecule 1 after application of symmetry 
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operation A. Looking at Fig. 8.17, since t = s, - s,: 

T(t) = I,,,(h)F,(h)FT(hA) exp [-2nih(s2 - sl)]. (8.61) 
h 

0 0 The T function will have a peak at position s2 - s1 = t o e s 2  - s1 (or 
s l  - s2 = -to). The determination of sy from function T is equivalent to 
solving a Patterson map with only two atoms in the crystal cell. In general 
the T function does not need to be evaluated for the entire cell: if for 
example two molecules are related by a screw axis along 2, the maximum to 
will have coordinates (2x, 2y, 1/2), that is it will be confined only to section 
2 = 112. 

Other types of translation functions have been developed, and some of 
the more commonly used in protein crystallography are summarized in 
Appendix 8.B. A general review on translation functions is reported by 
Beurskens et al. [531 

Self-rotation and self-translation functions: improving the 
electron density maps 
Sometimes more than one molecule is present in the crystallographic 
asymmetric unit. If we assume that they are identical, or at least very 
similar, we can take advantage of the independent information present in 
the structure factors. In fact, if we are able to identify the non- 
crystallographic symmetry elements relating the independent molecules, the 
electron density map can be averaged and substantially improved. The 
presence of three molecules in the asymmetric unit has allowed the solution 
of the structure of the haemaglutinin of the influenza virus using only SIR 
phases 

The self-rotation function is very similar to the general rotation function 
defined in (8.54): 

where P,(Cu) is the Pl(u) Patterson function rotated by matrix C, and U(u) 
is a function which is 1 inside a sphere and 0 elsewhere. The function U is 
necessary since both Patterson maps extend to all space, but we are 
interested only in the superposition of self-vectors, confined to a region 
around the origin of the cell. The sphere defined by U generally has a 
diameter slightly larger than the maximum supposed molecular dimension. 

The choice of polar rotation angles is quite common for self-rotation and 
deserves a brief comment. Quite often the non-crystallographic symmetry is 
represented by a rotation axis, in a direction different from the crystal- 
lographic ones. In that event, the use of polar angles reduces the search for 
the position of the axis from a three-dimensional problem to a two- 
dimensional one: a twofold axis, for example, will correspond to a rotation 
of 180" around the polar axis X, and a two-dimensional map (calculated for 
q from 0" to 360°, Il, from 0" to 360", and x = 180") will show the presence of 
the axis. A clear example of that is presented by Evans et a1.[551 

The definition of the translational component of the non-crystallographic 
symmetry represents the last and possibly the more difficult step. Let us for 
example assume that the direction of a twofold non-crystallographic axis is 
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known. It has been shown[561 that only the component of the translation 
vector t in the direction of the axis can be determined precisely. The other 
component of vector t, that is that perpendicular to the axis, is intrinsically 
an imprecise parameter, unless the molecular structure is perfectly known, 
which is not the case. In general, the self-translation function (analogous to 
the T function previously described) is used to detect the existence of a 
translational component of a rotational symmetry. 

The steps and the possible different pathways described in the previous 
paragraphs for the solution of a crystal structure of a macromolecule are 
summarized in the scheme reported in Fig. 8.18. 

I Crystallization I 

I Space group determination I 

Isomorpous derivative 
preparation and 
data collection replacement 

Difference- 
Patterson map * 

1 1 Phase refinement 1- - 1 Difference- 
Fourier maps 

measurements 

Real space 

Yd, srd etc. 

derivative 

I Electron density I : 
map calculation and Refinement 
model building (see Fig. 8.23) 

Fig. 8.18. Simplified scheme summarizing some 
of the possible steps in the determination of the 
structure of a macromolecule. Some of them 
can be used alternatively or combined, 
depending on the specific problem, that is size 
of the protein, previous knowledge of the 
structure, number of molecules in the 
asymmetric unit, and so on. 
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Direct methods and the maximum-entropy principle in 
macromolecular crystallography 
Direct methods, extensively described in Chapter 5 ,  are not yet applicable 
in the present form to the ab initio structural determination of a macro- 
molecule. The main reason for that resides in the very large number of 
atoms to locate: additional information is needed in order to increase the 
reliability of the phase indication. Isomorphous replacement and 
anomalous-dispersion data can be classified in this category, and indeed 
they have been often used to locate the positions of heavy atoms. For 
example coefficients (8.8) can be used with conventional direct methods 
programs and they can be very helpful in the case of a very large number of 
sites.LS7] Furthermore, classical direct methods have allowed, using 
coefficients ( F L  - F,), the localization of the positions of anomalous 
scatterers in m e t a l l ~ ~ r o t e i n s . [ ~ ~ ~  

Quite promising, but not yet fully exploited, is the use of direct methods 
for the determination of the phase of the protein structure factor taking 
advantage of isomorphous replacement and anomalous-dispersion data (for 
a review see ~ iacovazzo) [~~] .  Let us call @,(h) and @,(k) the phases of 
reflections h and k, respectively, for the native data set. @pH(h) and @pH(k) 
are the phases of the corresponding reflections of the derivative. In addition 
to the classical triplet invariants introduced on p. 338: 

we can make use of triplets containing mixed terms, that is relationships 
between phases of the two crystals: 

The eight different combinations of the six phases give rise to eight 
conditional probability distribution for Qj, whose formulation is not 
discussed here. An important point, however, must be stressed: the 
probability distributions do not depend only on the total number of atoms 
present in the crystal cell (see Appendix 5.C), but also on the difference 
between native and derivative data. The reliability factor for a triplet phase, 
G, defined in (5.37) and (5.C.16), in the presence of isomorphous data must 
be rewritten:[60] 

where Np and NH are the number of protein atoms and heavy atoms in the 
unit cell, respectively, and Ah represents the normalized difference for 
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reflection h. The second term of (8.63) may substantially increase the value 
of the reliability factor G. A relevant application of (8.62) is that one single 
derivative allows in principle the determination of the phase of the protein 
structure factor. 

A similar approach can also be used in presence of anomalous dispersion 
data, where in addition to the classical triplet invariants: 

six other equations containing mixed terms, analogous to (8.62b), can be 
introduced. The only limitation in the previous treatment is represented by 
the very high degree of accuracy necessary in the measurement of the 
intensities, particularly in the case of anomalous scattering data. Neverthe- 
less, anomalous dispersion techniques are becoming more relevant, due to 
the possibility of performing multi-wavelength experiments with syn- 
chrotron radiation. 

An apparently different approach to the solution of the phase problem is 
based on the maximum-entropy principle, the application of which to 
crystallography was proposed by Collins[61] and that has been shown to be 
virtually equivalent to direct methods by ~ r i c o ~ n e . ' ~ ~ ]  If p(r) is a density 
distribution, its entropy is defined as: 

H = - \ p (r) ln p (r) dr. (8.65) 
J V 

The concept of entropy is borrowed from information theory, where H 
measures the expected value of the total information. The 'better' distribu- 
tion is that which maximizes H and which is at the same time consistent with 
other observations: in our case, obvious conditions are that the electron 
density over the entire cell is equal to F(000) and the Fourier transform of 
p(r) is in agreement with the diffraction data. Equation (8.65) can 
consequently be modified to include constraints. If some sort of previous 
density distribution is available, the relative entropy can be defined:[631 

where q(r) is a distribution inferred by a priori information: in the absence 
of other information, that is if q is constant, (8.66) reduces to (8.65). The 
maximum-entropy method has been used to expand a set of initial phases, 
in conjunction with other t e ~ h n i ~ u e s . [ ~ ~ , ~ ~ I  Besides, the structure of 15 base 
pair of DNA (a structure of about 600 atoms) has been recently solved ab 
initi0:[~~1 starting phases were determined by conventional direct methods 
and expanded using the maximum-entropy algorithm. Although this ap- 
proach has been demonstrated to fail in other simpler test cases, promising 
applications of direct methods to macromolecular crystallography are 
expected in the near future. 
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The interpretation of electron density maps and 
the refinement of the model 

The interpretation of electron density maps 
Once a phase angle estimate for the protein structure factors is available, 
the calculation of an electron density map is straightforward, using (see p. 
170): 

p(r) = Fp(h) exp (-iq,) exp [-2ni(h r)] (8.67) 
h 

where the Fourier coefficients are usually weighted by their figure of merit. 
The initial interpretation of the map is in general not easy, unless very good 
phases at high resolution are available, which is seldom the case. Therefore, 
the strategy generally adopted is to calculate first an electron density map at 
low resolution, say 5-6 A: these maps allow us to identify the contours of 
the molecules in the crystal cell, and to distinguish between solvent regions 
and protein. Eventually, some elements of secondary structure can be 
identified: a-helices will appear as cylindrical rods of diameter of about 
4-6A. 0-sheets are more difficult to distinguish, and in any case single 
0-strands are not visible. 

When the position of the molecule has been located in the unit cell, a 
map at medium resolution, say 3.5-2.5 A resolution, is calculated and an 
attempt to trace the polypeptide chain is made. Chain trace at this 
resolution is made easier, and sometimes possible, if the amino acid 
sequence is known. Mistakes are quite common in the interpretation at 
medium resolution: the connections among secondary structure elements 
are often difficult to recognize and amino acids can be positioned along the 
chain shifted from their correct position by one or more residues. 

Higher-resolution phases, say 2 A or more, allow us to correct for this 
kind of mistake and to locate more accurately the amino acid side chains. 
Unfortunately, MIR phases very seldom extend to that resolution, and 
high-resolution maps can be obtained using calculated or combined phases, 
as will be discussed later. 

Interactive computer graphics and model building 
Low-resolution maps are traditionally drawn on a small scale on transparent 
sheets and are known among protein crystallographers as 'minimaps': they 
are very useful in giving a global view of the electron density of the unit cell. 
Such maps can also be used at medium resolution, since they allow a 
preliminary, approximate tracing of the polypeptide chain. 

The complete building of the molecular model in the old days was 
performed using an apparatus, generally home-made, called an optical 
comparator or 'Richard's box', from the name of its inventor.[661 Nowadays, 
the interpretation of the electron density can be entirely performed on a 
graphic display: the map is shown on a video and the operator is allowed to 
fit a piece of chain into the density. For this purpose, the modelling software 
most popular among protein crystallographers is FRO DO.[^^,^^] The prin- 
ciple of the program is that objects displayed on the screen are divided in 
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Fig. 8.19. 'Chicken wire' representation of the 
electron density of a side chain of a histidine 
residue. Maps are calculated at a resolution of 
2.5 A, with coefficients 2F0,, - F ,,,, and 
calculated phases. Drawing produced by an 
Evans and Sutherland PS330 graphic station, 
using program FRO DO.'^" 

two categories: those that can be manipulated, called 'foreground objects', 
and those that cannot be modified interactively, defined 'background 
objects'. Background and foreground models can be seen superimposed on 
each other. Program FRODO contains a dictionary of stereochemical 
information on natural amino acids and groups often occurring in protein 
molecules or nucleic acids. From this dictionary, building of a part of a 
polypeptide chain or a portion of a macromolecule in the preferred 
conformation is straightforward. The electron density, which does not need 
to be modified, is displayed as a background in a 'chicken wire' repre- 
sentation or similar, and the atomic model, or a part of it, as a foreground 
object. Figure 8.19 illustrates a simple model as it appears on a calligraphic 
screen. Atoms can be easily manipulated, by a simple rotation of a dial or 
movement of a light pen: they can be moved, alone or in groups, rotation 
around dihedral angles performed, or bonds stretched. The fitting of the 
built model into the electron density can be fast, if the starting phases are 
good enough; otherwise, a lot of time can be spent in trials. A convenient 
method to build the initial model of a protein has been devised by Jones and 
~ h i r u ~ , [ ~ ~ ]  based on the idea that short elements of secondary structure can 
be taken from a data base consisting of coordinates of a restricted set of well 
refined protein structures: once some a-carbons (say 10-15) are roughly 
positioned into the density, the piece of model from the data base that 
better fits these atoms is searched for and used. 

The only disadvantage in the use of a graphic system during electron 
density map interpretation is that a global view of the molecular model is 
practically impossible, since a drawing of all the atoms of a protein gives 
results which are quite confusing. Nevertheless, people who built protpjy 
models using a 'Richard's box' are strongly in favour of interactive graphic 
systems. 

The refinement of the structure 
The refinement of protein structures, with very few exceptions,[701 cannot be 
carried out using the classical least-squares methods. This is not due to the 
size of the problem, since nowadays computers are powerful enough to 
handle systems of equations containing thousands of variables, but to the 
limited number of X-ray data. It has been shown in fact on p. 98 and 104 
that, for an accurate definition of the parameters, the system must be 
largely overdetermined, that is the ratio of observations to variables (atomic 
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Table 8.3. Number of theoretical independent reflections at 
different resolutions for a protein crystal with one molecule of 182 
amino acids in the asymmetric unit. The solvent content is 40 per 
cent. The number of parameters is 4408 (1469 atoms times 3) if an 
overall B factor is considered, or 5876 if an individual isotropic B 
thermal parameter is assigned to each atom 

Resolution Independent Ratio obs./var. Ratio obs./var. 
range (A) reflections (x, y, z )  (x, Y, 2, 6) 

coordinates, thermal factors, and sometimes occupancy) must be of the 
order of 10 or so, and this is indeed the case for small molecules, where 
diffraction data can be collected to a spacing of 0.7 8, or even more. Protein 
crystals are intrinsically less ordered: diffraction data are often measured to 
a resolution of 3.0-2.5 8,, sometimes 2.0 8,. A resolution of 1.5 8, can be 
considered quite good, and only in exceptional cases have 1.0 A data been 
collected.[231 A typical situation is illustrated in Table 8.3, where the number 
of independent reflections for a medium-size protein (182 amino acids) with 
a solvent content of 40 per cent are calculated at different ranges of 
resolution. For a ratio of observations to parameters of 10 it would be 
necessary to collect all possible diffraction data to a spacing of 1.28,, a 
resolution never attainable for such a type of crystal. For the above- 
mentioned reasons, the first attempts to refine a protein structure were 
performed in real space.[711 The method seeks to minimize the difference 
between the observed electron density, p,,,, computed by (8.67), and a 
calculated model density, peal,, obtained by assuming a Gaussian distribu- 
tion of the electron densities centred at the atomic positions of the current 
model: 

This technique suffers from all the drawbacks of a real-space refinement 
procedure, the most relevant being that if poor phases are available, p,,, 
will be quite incorrect and the convergence of the method very slow, or it 
will not converge at all. There are many reasons to favour the reciprocal 
space refinement methods and different solutions have been proposed to 
overcome the problem of the underdetermination of the system: in fact, 
improvement of the ratio of observations to parameters can be achieved by 
decreasing the number of variables or by artificially increasing the number 
of observations. The former is called constrained least squares and the 
latter restrained least squares. 

Constrained versus restrained least squares 
Constrained or rigid-body refinement? is a well-known and widely used 
technique in crystallography (see p. 105): when the geometry of a group of 

t Despite the distinction between them described on p. 105, rigid-body and constrained 
refinement are taken as synonyms i n  this chapter. 
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atoms is accurately known and there are reasons to believe that it will not 
be significantly modified by the environment, the entire group can be 
treated as a rigid entity. In the classical case of a phenyl ring, the eighteen 
positional variables can be reduced to only three translational and three 
rotational. 

Bond length and valence angles in amino acids are very well known from 
the structures of hundreds of small peptides. In a protein, they can be held 
fixed to their theoretical values and only torsion angles around single bonds 
allowed to vary. This approach was used by ~ i a m o n d [ ~ ' ]  in real-space 
refinement, but it can be used in reciprocal space as well. Taking into 
account the fact that the peptide bond can be considered planar, only two 
torsion angles, called g, and I) (see Appendix 8.D), need to be varied for 
the backbone chain of every amino acid: for a protein of n residues, the 
parameters are reduced to about 2n for backbone plus the torsion angles of 
side chains. An illustration of a possible choice of constrained parameters is 
reported in Fig. 8.20 for a simple dipeptide. This solves the problem of 
underdetermination, but the model becomes in some way too rigid and the 
radius of convergence, that is the maximum displacement allowed for an 
atom in a wrong position to be corrected, becomes quite small. 

Constrained least squares can be applied to very different extent: the 
definition of rigid body can be applied to only some group of atoms or to 
the entire molecule. If, for example, an approximate solution of the 
structure has been found using the molecular replacement technique, a first 
refinement can be performed by considering the entire protein (or a 
subunit) as a rigid group and the best position in the new crystal cell can be 
searched for using only three translational and three rotational variables. In 
that event, there is the supplementary advantage that, since the number of 
variables is very limited, only low-resolution data need to be included in 
refinement, greatly increasing the radius of convergence of the method. 

Increasing the number of observations is another possible solution of the 
underdetermination problem in macromolecular refinement (see p. 107). 
Information from other sources can, in fact, be introduced and treated in a 
way similar to that used for observations coming from X-ray diffraction. The 
use of geometrical restraints has been proposed by Konnert and 
  end ricks on,[^^'^^] following a procedure devised by ~ a s e r [ ~ ~ ]  for small 

Fig. 8.20. Schematic drawing of the dipeptide 
phenylalanine-alanine, used to illustrate the 
constrained least-squares technique. Arrows 
indicate free rotation about the bond. All the 
bond lengths and valence angles are held fixed, 
and the peptide group and the phenyl ring 
planar. The total number of variables amount to  
eleven: three rotation and three translations (not 
indicated in figure) plus five internal torsion 
angles. (Some of the hydrogen atoms are 
indicated in figure only for clarity, but they are 
usually not taken into account in  the 
refinement.) 
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Fig. 8.21. The same dipeptide as in Fig. 8.20 
illustrates the restrained least-squares 
technique. The coordinates of any atom are 
allowed to vary, but the stereochemistry is 
preserved by applying restraints on bond 
distances (full lines), bond angles (broken lines), 
torsion angles (dotted lines), and planarity. Non- 
bonded contacts are not shown in the figure. 
(Adapted from Sussman, ref. [3], Vol. 115, p. 
274). 

molecules. In addition to the classical quantity minimized in crystallographic 
least squares: 

where the summation is extended to all the i reflections, other observational 
functions can be added. Since distances and valence angles of amino acids 
are well kitown and they are not expected to deviate significantly from the 
ideal value, instead of considering them as fixed, we can also minimize: 

d,(ideal, is the ideal value for the specific distance we are considering, d,(,,,,) is 
that calculated from our present model and wi is usually chosen as the 
reciprocal of the standard deviation of the distribution expected for the 
distances of type j. Notice that since di(calc) is a function of the atomic 
coordinates, (8.70) does not increases the number of variables. The total 
number of equations like (8.70) is equal to the distances that are restrained: 
bond lengths, the distances between one atom and the next-nearest- 
neighbour (which is equivalent to restraining valence angles), and the 
first-to-fourth atom distances, where the dihedral angle described by the 
four atoms is in some way fixed (this is for example the case of the planar 
peptide bonds). An example of the number of distances that can be 
restrained for a simple dipeptide is illustrated in Fig. 8.21. Other possible 
restraints in the Hendrickson and Konnert formulation are: 

S3 represents the sum of the deviations of the atoms i from the plane k, 
which is defined by its unit normal mk and by the origin to plane distance 
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dk;  ri is the vector that defines a point i whose distance from plane k has to 
be minimized.[751 S, restrains the volume of chiral atoms, defined for an 
a-carbon by the product of the interatomic vectors of the three atoms 
bound to it: 

Since the sign of Vc, depends upon the handedness, S4 restrains chiral 
centres to their correct configuration (Fig. 8.22).  S, is applied to all 
non-bonded atoms (except those taken into account in S2) and avoids too 
close contacts. Other kinds of restraints can be considered, i.e. on isotropic 
thermal parameters, occupancy, and non-crystallographic symmetry. It may 
sometimes happen, particularly during the first stages of refinement, that 
some part of the structure is poorly determined and the model 'blows up'. 
In that event, a restrain on the excessive shifts can be applied: 

where rk and ro are the atomic vectors of the target and the initial model 
respectively. Using eqns (8.70)-(8.74), the number of observational func- 
tions is now greatly increased from the original number, represented by eqn 
(8.69). Equation (8.75) has effect only on the diagonal terms of the normal 
matrix. The number of restrained parameters for the example described in 
Table 8.3 is shown in Table 8.4. 

Fig. 8.22. The chiral volume for an cu-carbon 
atom. The central atom is chosen as the origin 
of the coordinate system, and vectors (r, - r,,), 
(rc8 - r,,), and (r, - r,,) (8.74) are denoted s,, 
sc8, and s, respectively. The cross product 
s, X sC8 is a vector perpendicular to the plane 
CC,C8. If i t  is on the same side of vectors,, as 
in the figure, that is if angle 0 is less than 90". 
the dot product between the two vectors is 
positive. If s, and sq are reversed, that is if the 
wrong configuration IS chosen for the cu-carbon, 
the vectors, x sc8 points in  the opposite 
direction and the value of V,, becomes 
negative. 

It must be remembered that in protein crystallography 'experimental' 
phases are very often available. They can be included in least-squares as an Table 8.4. Number of restraints, following 
additional information that imposes another Hendrickson and ~ o n n e r t , ~ ' ~ '  for a protein 

molecule of 1469 atoms (excludina H) in the 
2 (8.76) asymmetric unit. The example is Ye~ative to 

'97 = C wp(qi(obs) - Q)i(calc)) . 
i 

the case of Table 8.3 

qobs is the estimate of phase angle from isomorphous and anomalous data 
and qolC is the phase calculated from the model. Weights for (8.76) must 
take into account the cyclic nature of phase angles. 

Phase information is also used by Lunin and ~ r z h u m t s e v . [ ~ ~ ]  They suggest 
that only differences among crystallographic quantities be minimized, that is 
structure factor amplitudes and phases. Since phase probability distribution 
may be represented by (8.34),  they assume an analogous probabilistic 
distribution for the module of the structure factor F for reflection i of the 
form: 

P(F;) = exp [ - (F :  - F ~ ( , , , , ) ~ / ~ u ~ ] ,  (8.77) 

and if structure factors moduli and phases are assumed to be mutually 
independent, the joint probability distribution will be given by the product 
of (8.34) and (8.77).  The most probable model will consequently be that 
which minimizes: 

S = { ( 1 / 2 a 2 ) [ ~ f  - F:(ob,,]2 - [ A  cos qi + B sin qi 
i 

+ C cos 2qi  + D sin 2 q i ] ) .  (8.78) 

Number of distances: 

bond distances 
angle distances 
planar 1-4 distances 

Planes 

Chiral centres 

Torsion angles 

Possible contacts: 

contacts due to  single torsion 
contacts due to multiple torsion 
possible H-bonds 

Using (8.78) the multimodality of the phase distribution is taken into 
account. 
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A different approach to using restraints has been proposed by Jack and 
~ e v i t t : ' ~ ~ ]  instead of restraining stereochemistry, they minimize: 

where D represents the difference among observed and calculated structure 
factor amplitudes given by (8.69) and E is a potential-energy function:[801 

+ C k,{l + cos (me, + 6)) + C (Ar-'' + BrP6). (8.80) 

The four terms on the right-hand side describe bond, valence angle, 
dihedral torsion angle, and non-bonded interactions, respectively. Kb is the 
bond stretching constant and K, the bond angle bending force constant; k, 
is the torsional barrier and m and 6 the periodicity and the phase of the 
barrier. A and B the repulsive and the long-range non-bonded parameters. 
The summation extends to the j bonds, the I valence angles, the 8 torsion 
angles, and the n non-bonded interactions between all pairs of atoms 
separated by at least three bonds. Despite the apparently very different 
approach, the energy minimization and the geometrically restrained least- 
squares are not too different in practice, since the final effect of (8.80) is to 
impose restraints on the model. 

Whatever method is used, special care is needed about the weights 
applied to the different functions. We are in fact dealing with non-, 
homogeneous quantities, like structure factor amplitudes and interatomic 
distances, so the weights of the relative observational functions must be 
chosen in such a way that everything is put on the same scale: an 
overestimate of geometric restraints will in fact produce a stereochemically 
perfect model associated with a very high crystallographic R factor; on the 
contrary, an underestimate of the same weight will result in a good R factor 
with unreasonable bond lengths and angles. 

Restrained and constrained least squares 
The two methods described above, restrained and constrained least 
squares, can be combined:[s11 the molecule(s) is(are) considered as made up 
of rigid groups, and restraints are applied to distances among such groups. 
The quantity minimized, S, is the sum of three terms: 

where DF is (8.69), DD restrains the stereochemistry, analogously to eqns 
(8.70)-(8.73), and DT restrains the structure from moving away from the 
starting set of coordinates, (8.75). All of the terms of (8.81) are functions of 
the atomic coordinates, generally referred to an orthogonal reference 
system. If a subset of these atoms is considered as a rigid group, S can be 
expressed, for that particular group of atoms, as a function of six rigid-body 
parameters, three rotational and three translational, and an arbitrary 
number of torsion angles, that is: 

where ti and R, are the translation vector and the rotation matrix of the 
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entire group i, Yi,, . . . , Vim are the m torsion angles and B,, ,  . . . , Bin the 
n temperature factors of group i. 

Since the definition of rigid group is left to the user, the entire molecule 
or a portion of it can be constrained, or eventually some subunits. The 
restrained-constrained approach was originally devised for nucleic-acid 
refinement, but it has been successfully used in refinement of protein 
structures too.[822831 A computationally quite efficient method of combining 
sterical restraints and rigid-body refinement has also been recently 
proposed. [s41 

Crystallographic refinement by molecular dynamics 
The development of vectorial and parallel computers offers nowadays the 
possibility of performing molecular dynamics calculations on complex 
systems, including proteins in the crystal state. The application of molecular 
dynamics calculations to macromolecules is a quite widespread technique 
(for a review, see Karplus and ~ c ~ a r n m o n [ ~ ~ ] ) ,  but its introduction in the 
crystallographic refinement of protein structures had been proposed only 
r e ~ e n t l y . [ ~ ~ , ~ ~ ]  

Molecular dynamics of free atoms consists in solving the classical Newton 
equation of motion: 

To take into account the effect of the medium and the approximations used 
to calculate the total energy, dynamical effects can be better represented by 
a set of Langevin equations: 

where bi is a frictional coefficient, used to prevent atoms from moving away 
too much from their original positions, kB is Boltzmann's constant, To the 
temperature, and i ( t )  a random force with Gaussian distribution and 
properties: 

The simulation starts from an initial set of coordinates. To each atom is 
assigned a velocity, usually at random from a Maxwellian distribution 
corresponding to the temperature selected, and eqn (8.83) or (8.84) is 
integrated at a given temperature for a given time.? New velocities are then 
assigned, eventually at a new temperature, and the calculation continued. 
The simulation is normally performed for a short period of time, usually of 
the order of few picoseconds. 

In the crystallographic refinement of macromolecules by molecular 
dynamics, the X-ray information is used to restrain the energy of the 
system. The total potential energy is, in fact, considered as the sum of two 

E,,, represents an empirical potential energy, analogous to that defined by 
(8.80), E,, is a sort of 'experimental' potential energy, and is considered as 

t Numerical integration can be performed using for example the Verlet algorithm. 
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the sum of three terms: 

Exray in (8.87) describes the difference between observed and calculated 
structure factor amplitudes: 

w, is a factor which puts Exray on the same scale as the empirical potential 
energy term and NA is given by C w,(F,,,)~, to ensure that wA is 
independent of the resolution range used. The terms E p  and ENB can be 
included to take into account experimental information about MIR phases 
and crystal packing respectively. 

Molecular dynamics simulations can be performed at ambient 
temperature,[871 or at higher temperature, as in the version called simulated 
annealing.[s69881 The latter consists in starting the simulation at room 
temperature, say 300 K, and heating up the system (for example at 
2000-4000 K) and subsequently cooling down at the initial value. The 
advantage of going to high temperatures, unreasonable from the biological 
point of view, is that model can come out of local minima, and the ratio of 
convergence of the method is increased with respect to classical least 
squares. t 

The result of molecular dynamics calculations is a family of conforma- 
tions, but the constraints imposed by X-ray data restrict these conforma- 
tions to all those with the lower crystallographic R factor. 

The strategy of the refinement of protein structures 
The initial model of a protein structure is, very often, not good enough to 
allow for a fully automated refinement. Indeed, if some serious errors are 
present in the model, for example the polypeptide chain is positioned more 
or less correctly but the amino acids are shifted one residue or more along 
the chain, an automatic procedure will hardly recover from that error. 
Besides, the radius of convergence of constrained or restrained least-squares 
methods can be evaluated to be around a half the resolution of the data 
used, that is not more than 1-1.5 A. At the beginning of the refinement, to 
speed up convergence, medium-resolution data (3.0-2.5A) can be 
employed. Since the number of observations at that resolution is quite low, 
an overall temperature factor for all the atoms is used. Afterwards, the 
resolution is gradually extended, solvent molecules included, and isotropic 
individual B factors applied. 

The same seems not to be true using the simulated annealing technique, 
which allows a more rapid and automatic convergence: the heating makes it 
easier to get out of the false minima without manual intervention. Some 
more experience nevertheless must be accumulated. A fully automated 
refinement was possible in the test case of the enzyme aspartate aminotran- 
sferase, refined with data at 2.8 A resolution starting from MIR 

t T h e  term temperature must be regarded cautiously here: it does not indicate a physical 
temperature, but rather a parameter controlling the refinement. The simulated annealing is in 
fact virtually equivalent to the Metropolis algorithm (Metropolis, N., Rosenbluth, M., 
Rosenbluth, A,,  Teller, A. and Teller, E. (1953). Journal of Chemical Physics, 21, 1087-92). 
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coordinates.[89] A careful comparison between the model of myo- 
haemerytrin refined, starting from the same model, in one case with several 
cycles of restrained least-squares and manual rebuilding and in the other 
case with the 'simulated annealing' technique without manual intervention 
has been reported.[901 The two structures compare quite well, but molecular 
dynamics procedure could not bring the refinement to completion in a fully 
automated way: manual intervention is still necessary to correct for gross 
errors (say more than 3-5 A in the main chain) and to include solvent 
molecules. Nevertheless, simulated annealing can save a lot of human 
effort, at the expense of quite a long computational time. 

For the above mentioned reasons, some cycles of automatic minimization 
are usually followed by recalculation of the electron density maps and 
manual adjustment or rebuilding of the model. 

In recalculating electron density maps, a major problem is the choice of 
the phases and the coefficients to be used. MIR phases suffer from all the 
errors described on p. 546, and the isomorphism of heavy-atom derivatives 
does not extend generally beyond 3.A or so: high-resolution electron density 
maps are seldom achieved with MIR phases. On the other hand, calculated 
phases tend to reproduce the model used in calculating them, and an 
electron density map obtained wih calculated phases may be strongly 
biased. For these reasons, phases coming from independent sources, e.g. 
the phases from isomorphous derivatives data and those calculated from the 
model, can be combined to produce an improved electron density 
The probability distribution of calculated phases, Pcalc(q), can be evaluated 
by using a procedure due to ~ i m [ ~ ~ ~  (see Appendix 5.H, p. 393) and can be 
used, along with the 'experimental' probability Ptot(q), to obtain a 
combined probability distribution: 

Pcomb(c~> = Ptot(~)Pca~c(q). (8.89) 

The new figure of merit, mcomb, obtained by (8.38) can be used to calculate 
a best combined electron density map. If only calculated phases are 
available, the Sim formula can be used to weight the Fourier coefficients. A 
scheme of the possible refinement procedure is illustrated in Fig. 8.23. 

The coefficients and phases more commonly used for Fourier syntheses 
are listed below, but other combinations of them are possible: 

mF0bs exP ( i q ~ ~ ~ )  (8.90) 

W C O ~ ~  Fobs exP ( i q c ~ ~ b )  (8.91) 

W S ~  IFobs - &a~cI exp (iqca~c), (8.92) 

~cornb(~~obs - & a d  exP (i~comb), (8.93) 

~ ~ l r n ( ~ ~ o b s  - & a d  exp (i~calc). (8.94) 

Equation (8.90) gives the coefficients of a classical observed Fourier 
synthesis. In principle, they could be used during all the stages of the 
refinement, but MIR phases can be improved by phase combination. 
Furthermore, very often they do not extend to high resolution, and 
calculated phases must be used instead, when a reasonable atomic model is 
available. To reduce bias, a Fourier map with combined phases can be 
calculated. Coefficients (8.92) correspond to Fourier-difference maps with 
calculated phases. If they are calculated from a partial model, they are 
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Starting model 
(see Fig. 8.18) 

Fig. 8.23. Block diagram summarizing the 
phases of structural refinement. The starting 
model is obtained by one of the procedures 
schematized in Fig. 8.18. The numbers of 
iterating cycles necessary to reach convergence 
can be quite variable, depending on  the quality 
of the initial model. If M.I.R. phases are not 
available (i.e. the structure has been solved by 
molecular replacement techniques), only maps 
with calculated phases can be used. Some of the 
coefficients used in electron density map 
calculation are described on p. 571. 

Some cycles of least- 
squares refinement 

Calculation of new 
electron density maps 

with new phases 

--. 
Structure factor 

I calculation 

I End of refinement I 

known as omit maps and can be useful in positioning portions of the 
molecule that did not appear clearly in the M.I.R. maps. Coefficients (8.93) 
and (8.94) correspond to a combination of a Fourier electron density map 
and a difference-Fourier: if Fobs and F,,,, are very similar, the magnitude of 
the coefficients approaches to (8.91); otherwise, terms with Fobs greater than 
F,,,, will have a higher weight. The practical result is an enhancement of the 
regions of density where severe errors are present in the model. The weight 
used for map calculation can be a modification of the Sim scheme or the 
weight obtained by the combination procedure. 

It must be finally remembered that the crystallographic R factor of a 
refined protein structure is not comparable with that of a small-molecule 
crystal. Besides, owing to the low ratio between observations and variables, 
the R factor alone does not represent an index of the reliability of the 
model: molecular stereochemistry must be correct also. For example, 
deviations from the ideality of bond lengths, valence angles, and restricted 
torsion angles of about 0.01 A, 2", and lo ,  respectively, are considered 
reasonable. The crystallographic R factor of a crystal structure refined with 
these restraints at 2 A  resolution can be reduced to a value between 0.15 
and 0.20. 

Protein structure 

The three-dimensional structure of a globular protein is the resultant of a 
very large number of interactions. This makes it at the same time stable and 
flexible: a modification in a specific site can, in fact, be assimilated by small 
local adjustments, without altering the overall conformation. In other cases, 
modifications taking place in a region of the macromolecule can be 
transmitted and influence the conformation in zones far apart from where 
the movement originated, a phenomenon called cooperative or allosteric 
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effect.? It must also be remembered that the medium may have a relevant 
influence on the conformation of the macromolecule, that in vivo operates 
in a non-homogeneous environment, like for example the cell cytoplasm or 
the cellular membrane. Flexibility can consequently be useful, or even 
necessary, to the protein to fulfil its biological functions. On the contrary, 
the picture of a molecular model resulting from the X-ray structure 
determination is, at least apparently, a static one, the only 'dynamic' 
information residing in the atomic temperature factors. Nevertheless, this 
must not be considered in contrast with reality, since the X-ray structure 
represents an average, over time and space, of single structures around a 
conformational minimum, which is representative of the conformation of 
the protein molecule in a solution of the same medium. On the other hand, 
a description of a dynamic situation is quite difficult, particularly for a 
complex molecule: the sort of static image that will turn out from the 
following discusion must be considered a necessary simplification as well as 
the starting point for the comprehension, at the molecular level, of the 
behaviour of biological systems. 

General aspects 
Proteins are polymers of the 20 natural aminoacids (some symbols and 
conventions relative to amino acids are reported in Appendix 8.D). They 
may contain other groups, often relevant for the conformation of the 
molecule, like haems, prosthetic groups, carbohydrates, and so on, or they 
can coordinate cations (see p. 582). Nevertheless, the building blocks of 
proteins are the amino acids, and the protein fold* is the first and perhaps 
more general aspect of its structure. 

A polypetide chain of a given sequence, in the appropriate conditions, 
can refold spontaneously into its final three-dimensional structure:[931 all the 
necessary structural information must be contained in the amino acid 
sequences. It should therefore be possible, at least in principle, to predict 
from it the structure of a protein. Unfortunately, despite several efforts, this 
remains a hope for the future. Moreover, some simple, schematic rules 
relative to the forces that contribute to stabilize a structure can be 
summarized: they are, however, only indications and exceptions are quite 
c o m m ~ n . [ ~ ' ~ ~ ]  

1. Groups potentially able to form hydrogen bonds will be positioned 
accordingly: or at the surface of the molecule, where they can be 
hydrogen bonded with the solvent, or, when in the interior, a hydrogen- 
bond donor will be close to an acceptor. Not necessarily all the possible 
interactions of this kind will be realized, but most of them usually are. 

2. Polar residues in a water-soluble protein will preferably be located on 
the surface of the macromolecule and the hydrophobic ones in the 
interior (the contrary apply for lipid-interacting proteins). 

3. Charged groups will be close to the surface, where they can be 

t Cooperativity and allostery are not exactly synonymous, but in this context no distinction is 
made about them. 

I The term 'fold' is not used here to indicate a process, but simply the way in which the main 
chain is wrapped on itself. 
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neutralized by solvent ions. When forced to be inside, they will be 
stabilized by a proper counter-ion. 

As a corollary of the previous rules, particularly rule (2), the three- 
dimensional structure of the proteins will be as compact as possible. For 
example, the packing density of ribonuclease S, calculated approximating 
the atoms to spheres of van der Waals radius, is about 0.75,[951 approxi- 
mately the same value found for close-packed spheres. 

Levels of organization of proteins: secondary structure 
The concepts illustrated before, despite generalities, refer to single interac- 
tions and in practice they are not well suited to describe overall features or 
general aspects of the structure. A different, and perhaps more useful, 
approach to understanding the structure of a protein is the identification, 
under the apparent complexity, of regular schemes and motifs. Looking at 
the structure under this aspect, a hierarchical organization becomes 
apparent and several levels of organization, of different complexity, can be 
distinguished. The first local order is imposed by the hydrogen bonds 
formed between the N-H and the carbonyl oxygen of the polypeptide 
chain: the regular structure generated by these quite strong interactions is 
called secondary structure? and results in a limited number of possible 
conformations, briefly described below. 

1. Helices. The more common among the repetitive motifs found in 
polypeptide chains is the a-helix. The theoretical a-helix, predicted by 
Pauling et al. in 1951, is characterized by 3.6 residues per turn and a pitch of 
5.4 A. A hydrogen bond is formed between the carbonyl oxygen of residue 
n and the N-H of residue n + 4. The number of atoms covalently bound in 
the ring closed by the hydrogen bond is 13 (Fig. 8.24). Along with the 
number of residues per turn, this number is sufficient to characterize the 
secondary structure: the a-helix is consequently called a 3.613-helix. Other 
less common helical structures are the 310-helix and the n- or 416-helix, 
characterized by an exact repetition after three and four residues respec- 
tively and a hydrogen bond between residues n and n + 3 or n + 5. A special 
case is represented by the a,,-helix, which is a sort of mixture between the 
a- and the 3,0-helix. 

Every type of helix can also be defined by its g, and q torsion angles: 
their indicative values for the most common repetitive structures are 
reported in Table 8.5. Of course, real helices present backbone torsion 
angles that deviate from the ideal ones and, in addition, bending and local 
irregularities are observed.[961 Nevertheless, they are the most regular 
structures found in proteins. Since natural amino acids, except glycine, are 
chirals, right-handed and left-handed helices are energetically not equiv- 
alent: helices found in proteins are in practice always right handed. Amino 
acids assuming the torsion angles characteristics of a left-handed helix, when 
found, are confined to very short pieces of chain (one or two residues), 
often at the end of a right-handed helix connecting a P-strand. 

t For historical reasons, the amino acid sequence is called primary structure. 



Table 8.5. Approximate torsion angles for some 
common regular structures (from IUPAC-IUB 
commission on biochemical nomenclature, 
Journal o f  Molecular Biology, 52, 1-17 (1970)). 
(References about the sources of the reported 
values can be found in the reference; w is as- 
sumed to be 180") 

Right-handed a-helix 
Left-handed a-helix 
3,,-helix 
Parallel-chain plated sheet 
Anti-parallel-chain pleated 
sheet 
Polyglycine 
Polyproline II 

Fig. 8.24. (a) Stereo view of two a-helices of 
m y ~ ~ l o b i n [ ~ ~ ]  (data from PDB), connected by a 
short piece of chain (to simplify the 
representation, for every side chain only the 
@-carbon is drawn). Helix 7 goes from residue 0 C 100 to 118 and hel ix8f rom 125 to 148. Residues 
from 116 to 119 participate also in  a type I 
@-turn. From I19  to 124 the structure is less 0 N regular. The two helices are not exactly aligned, 
but their axes are slightly bent, a classical 
situation of the packing of helices, (b) Scheme of 0 0 the hydrogen bond pattern for the most 
common types of helices: in the a-helix, 13 
atoms are included in the ideal ring from the 

O H carbonil oxygen to the N-H. Only 10 atoms in 
the 3,,-helix. 
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Fig. 8.25. (a) Schematic drawing of the 
hydrogen bond pattern for different types of 
6-sheets. The first two O-strands run antioarallel. 

One of the reasons that helices are quite common is the possibility to 
accommodate in a very short length a large number of residues: all side 
chains in fact point away from the helical axis, giving rise to quite an 
efficient packing of bulky groups, one on the top of the other.C9'] The only 
residue that cannot be accommodated in a whelix is proline, due to the 
steric hindrance of its side chain and to the fact that its nitrogen is lacking 
the hydrogen necessary to form the hydrogen bond. Proline can be fitted 
properly only in the first turn of a helix, but will interrupt it, or introduce a 
bend, if present in any other place. A special kind of secondary structure, 
called polyproline helix, has sometimes been observed. 

Another important peculiarity of helical structures is represented by their 
electrostatic properties: since all the dipoles of the peptides are pointing in 
the same direction, the result is a net total dipole for the helix[981 that may 
contribute, for example, in stabilizing the binding of charged species. 

2. ,&structures. A 0-strand is a portion of polypeptide chain in a nearly 
extended, pleated conformation. It is less regular than helices and its torsion 
angle values reported in Table 8.5 must be considered only indicative, since 
large variations are observed in practice. A P-strand is normally not stable 
in itself, but it is stabilized by the contact with another P-strand, with which 
it forms hydrogen bonds. According to the relative direction of the two 
chains? 0-strands can be parallel or antiparallel (Fig. 8.25): they differ in 
the way the hydrogen bonds are formed, making the latter slightly more 
stable[1011 and more commonly observed in proteins. Since P-chains are 
quite flexible, this kind of structure can present irregularities and defects: a 
jump of one residue in a strand is for example called a P-bulge. 

Several parallel or antiparallel P-strands form a so called P-sheet. Since in 
a 0-strand amino acid side chains point alternatively in opposite directions, 
a P-sheet has the possibility of having a polar surface and an apolar one. 
Finally, strands in a sheet are not exactly aligned, but are twisted with 
respect to each other.[lo2] 

ihe third is parallel to  the second one (diiections 
of strands are indicated by arrows). Hydrogen 
bonds are differently oriented in  the two cases, 
the antiparallel being more favoured and more 
commonly found in proteins. A plus sign on the 
cu-carbon indicates the side chain coming up 
from the sheet, and a minus a side chain going 
away from the reader. (b) Stereo view of three 
P-strands of r i b o n ~ c l e a s e [ ' ~ ~ '  (data from PDB, 
only Cg is drawn for every side chain). The three 
strands 71-75.105-1 10, and 120-124 run 
antiparallel each other. Notice that residues 121 
and 122 have the side chains pointing in  the 
same direction, an irregularity called a P-bulge. 

t The chain is considered to run from the N to the C terminus. 
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3. Others. Short tight loops connecting two strands are called p-turns, or 
hairpins, or reverse turns. Different kinds of classifications have been 
attempted: one of them, based on the hydrogen bond patterns, is that of 
Milner-White and ~ o e t . [ ' ~ ~ ]  The more classical p-turns are called type I, 11, 
and I11 (and type I t ,  11', and 111' those with g, and q~ torsion angles 
reversed). A schematic pattern of two turns is illustrated in Fig. 8.26. 

In real structures, short pieces of polypetide chains not falling in one of 
the previous categories are normally found. In general their g, and 1C, torsion 
angles correspond to those of one of the structures discussed above, but 
nevertheless that portion of the molecule cannot be classified as one of the 
previous categories. 

A last important feature strongly influencing the polypeptide chain 
conformation is the presence of a disulphide bridge: the sulphur atoms of 
two cysteines form a covalent bond, connecting two pieces of polypeptide 
chain or even two different chains. This results in a strong stabilization of 
the three-dimensional structure, at the expense of some local irregularities. 

Polypeptide chain description 
In describing a polypeptide chain, the only relevant variables are in practice 
the two dihedral torsion angles around the N-C, and C,-C bonds, called cp 
and v :  the torsion angle w is very close to 180°, owing to its partial 
double-bond character. Therefore, only 2n - 1 numbers are enough to 
describe the fold of a protein composed by n amino acids. 

One convenient way of representing the main chain dihedral angles is the 
so-called Ramachandran plot,[1041 where every amino acid is represented by 
a point of coordinates g, and q. In such a plot, regions forbidden for sterical 
reasons can be individuated and they represent a large portion of the total 
area: the backbone torsion angles of all the amino acids, with the exception 

Fig. 8.25. (Continued). 

Fig. 8.26. Schematic representation of the 
hydrogen bonds pattern for a y-turn (upper) and 
a fi-turn (lower). Symbols for atoms are as in 
Fig. 8.25. (Adapted from Milner-White and 
~ o e t . " ~ ~ ' )  
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Fig. 8.27. Ramachandran plot for the model of 
bovine P-trypsin, orthorhombic form, refined to 
a crystallographic Rfactor of 0.18 up to a 
resolution of 1.8 A['051 (data from PDB). Small 
squares represent glycine residues, crosses all 
the others. The origin of the diagram is in the 
centre. Contour lines correspond roughly to fully 
allowed and outer limit regions. 

of glycine which has much more conformational freedom owing to the 
absence of substituents at the a-carbon, should not fall into those areas. 
Ramachandran plots can be used during the refinement to check for the 
quality of the structure: amino acids falling into forbidden regions must be 
corrected, and values at the border or in unfavourable zones considered 
suspiciously. An example of such a plot is given in Fig. 8.27. Since every 
type of secondary structure described in the previous subsection is charac- 
terized by its own pair of theoretical g, and q values, it corresponds to a 
point on the plot. From the diagram it is consequently possible to 
individuate immediately the amount of a-helix, P-sheet, and so on, present 
in the structure. Any information about the connectivity among residues is, 
on the contrary, lost. 

A possibly more informative, but less used, method of mapping the 
folding of the main chain is the diagonal plot.[106] It is a matrix with the 
amino acid numbers along both axes: if the distance between two residues is 
less than a predefined amount, the corresponding matrix element is 
darkened. In this kind of graphic, the major structural elements are easily 
visualized: an a-helix will produce a thickening along the diagonal and two 
antiparallel P-strands a narrow line perpendicular to it; domains can be 
recognized too, and structural homologies among proteins individuated. 
Furthermore, the information of a diagonal plot is in a form that can easily 
be stored in a computer. An example of a diagonal plot is reported in Fig. 
8.28. 

Higher levels of organization: tertiary and quaternary 
structure, domains, and subunits 
We have previously seen that, despite the apparently very large degree of 
freedom of a polypeptide chain, proteins can be considered as made up by a 
very limited number of secondary structure elements, that is a-helices, 
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/3-strands and turns, plus some pieces of chain in conformations more 
difficult to classify. The three-dimensional relationships among secondary 
structure elements is called tertiary structure or, preferably, super- 
secondary structure. A careful examination of the structures solved to the 
present has allowed us to identify some macroscopic concepts that simplify 
the description of the way in which the secondary elements are held 
together. Of course these rules are not necessarily general, since they are 
based on quite a limited set of structures. 

Fig. 8.28. (a) The bovine pancreatic trypsin 
Inhibitor, a small protein (58 amino acids) 
refined to an Rfactor of 0.16 at 1.5 8, 
resolution['07' (data from PDB). The backbone 
only, that is the atoms C,, C, N, and 0 of the 
main chain, are shown. (b) @-carbon chain trace 
of the same structure. It is composed by one 
turn of helix, two long bent P-strands and a 
final a-helix from residues 47 to 56. All these 
elements are disposed in a quite complex way, 
difficult to  describe. (c) Diagonal plot for the 
same protein. The plot was produced using the 
program DGPLOT (Swanson and Bernstein, 
distributed with PDB). Amino acid numbers are 
reported on both axes, and numbers inside the 
diagram correspond to the distance in  A, 
rounded to the next integer, between the two 
cu-carbons. Distances above 9 A are represented 
by letters. In the diagram the a-helix close to the 
C terminus of the molecule is represented by the 
thickening along the diagonal (A in figure) and 
the strands from 29 to 43 and from 6 to 25, close 
to each other, by a line perpendicular to  the 
diagonal (B in figure). Other spatial relationships 
are immediately evident from the diagram: 
region 43-48 is close in  space to 20-33 (marked 
C in figure). 
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Fig. 8.28. (Continued). 
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One example is given by packing of a-helices: it has been shown that 
helices tend to pack not parallel to each other, but with the axes forming 
specific angles: according to the way they are disposed, they can be grouped 
in only three classes, each of them characterized by a specific angle.[loS1 

Connections between strands in a sheet too follow quite strict rules, 
thoroughly described by ~ ichardson . [ '~~]  The topology of the sheet can be 
illustrated by simplified diagrams, like those reported in Fig. 8.29. The 
physical meaning of such a diagram is discussed on p. 585. 

Every polypeptide chain does not necessarily fold into one single unit: a 
portion of it can be structurally independent and is called a domain. 
Although the concept is not unequivocal, its existence is widely recognized. 
The most simple definition of domain is that given by ~ i c h a r d s o n : [ ~ ~ ~ ]  a 
domain is a contiguous portion of polypeptide chain folded into a compact, 
local, independent unit. Domains are sometimes easy to recognize, as in the 
case of immunoglobulins, or obvious, as for calmodulin (Fig. 8.30). 
Sometimes they are not simple to individuate, or are even questionable. 
Whether a domain must be thought of as a potentially independent, stable 
unit or only as a compact globular region contiguous in space, is matter of 
discussion. The domain concept is in any case justified by the classification 
given on p. 585. 

Proteins may eventually be made up by more than one polypeptide chain: 
often several of them, equivalent or different, interact to form a protein 
molecule. The assembly of such subunits is called quaternary structure and 
is in general essential for function: dissociation of a multimeric enzyme may 
result for example in a change or loss of activity. Nevertheless, subunits can 

q It- 
(i) 

Fig. 8.29. Topology of the proteins classified as 
'Greek key p - b a r r e l ~ " ' ~ ~ '  (see p. 585 for more 
details about the classification). Barrels are - 

be considered a as independent structural eldments: they can often be ~ ~ ~ ~ ~ ~ n ~ ; 9 ~ s ~ ~ ~ d ~ ~ d t ~ ~ z f ~ e r ~ ~ b ~ ~ ~ ~ ~ n s  
separated and crystallized and their overall conformation is in general not among them. Dashes indicate that the first 

too different from that of the subunit in the macromolecular complex from ~ ~ ~ ~ ~ ~ ~ ~ ~ f ~ ~ ~ a ~ ~ $ ~ ~ ~ ~ ~ ~ ~ c ~ ~ ~ " ~ ~ ~ ~ ~ ~ e ; )  

which they originate. A relative reorientation of subunits has been pyruvate kinase domain 2; (c) trypsin 

associated with allosteric properties. A classical example of it is mammalian and 2; (d) immunoglobulin C; ( 4  Cu, Zn 
superoxide dimutase; (f) prealbumin; (g) haemoglobin, a tetramer formed by two distinct chains, denoted a and P .  plastocyanin; (h) plasma retinol-binding protein; 

Two a$ dimers are related by an exact twofold axis, which in some crystal (i) immunoglobulin V; (I) fattyacid-binding 

form corresponds to a crystallographic one: from the oxygenated to ~ ~ ~ ~ ~ ~ ~ ~ ; ~ ~ r ~ ~ ~ ~ ~ ~ ~ h ~ ~ r ~ ~ o ~ ~ ~ ~ ~ ~ ~  

deoxygenated state the molecule undergoes a substantial change in the B - I ~ C ~ O ~ I O ~ U I ~ ~  and bi~in-bindins protein. 

quaternary (and also tertiary) structure, paired with a variation of affinity 
for oxygen.['l11 

Fig. 8.30. C, tracing of calmodulin, a small 
protein that binds calcium in four different 
binding sites["0' (coordinates from PDB). Two 
'globular' domains, composed of about 60-70 
amino acids each, are completely separated in 
space, connected only by a long a-helix. 
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When a macromolecule is made up by equivalent subunits, a relevant 
aspect is represented by its internal symmetry. The simplest case is 
represented by a rotation axis: very often, in a dimeric protein the two 
subunits are related by a twofold axis. Multimeric proteins may present 
threefold and also five- or sixfold axes. A combination of rotation axes can 
give rise to higher point symmetries, like 222 or 32. Possibly the most 
complex internal symmetry is represented by the coat of spherical viruses, 
composed by hundreds of copies of the same protein arranged in a 
icosahedral symmetry.[1121 It must be remembered that some or all of the 
internal symmetry elements may or may not correspond to those of the 
crystal (see p. 538). 

Groups other than amino acids 
The product of biosynthesis is a molecule containing only the 20 natural 
amino acids. To fulfil their function, proteins may need the presence of 
other groups: therefore, they can undergo post-translational modifications 
or interact with other molecules. These modifications may have a strong 
influence on their structure. 

A post-translational modification is a chemical reaction generally involv- 
ing the side chain of some amino acid.? The functional groups bound are 
called prosthetic groups and may have the function to assist enzymes in 
chemical reactions, or to add to natural amino acids properties they lack, 
for example photochemical ones. A quite common modification is phos- 
phorylation, largely used in nature to control enzymatic activity.[1131 

Glycoproteins are the result of binding of polysaccharides. They may be 
bound through the oxygen of hydroxylated residues, like serine or thre- 
onine, or through the nitrogen of asparagine. Carbohydrates are quite 
hydrophilic and their content can reach a high percentage of the total mass 
of the protein molecule: glycoproteins consequently present peculiar pro- 
perties and their function is matter of discussion.["41 Very few of them have 
been crystallized, and in general the polysaccharide moiety has been found 
disordered in the crystal. 

Cations bound to a protein can be divided in two categories: those which 
simply neutralize charged groups at the surface of the molecule and depend 
on the ionization conditions of these groups (and ultimately on pH), and 
those strongly coordinated, required for the stability of the conformation. 
The latter can influence protein activity by stabilizing one particular 
conformational state. The more common bound cation is ca2+, which is 
very abundant in cytoplasm. Among proteins that bind it, the most peculiar 
is calmodulin (Fig. 8.30), which has four calcium binding sites: the level of 
calcium bound to the protein modulates its function. Other bivalent cations 
commonly interacting are Zn2+, Cu2+, and ~ e ~ + ,  but many other metals 
present in nature can be found, in different oxidation states. As an example, 
the iron-sulphur binding site in ferredoxin is shown in Fig. 8.31. 

A last important case is represented by the small, generally organic, 
compounds non-covalently bound to proteins. The macromolecule in this 
case may have the function of carrier or of storage site. 

t Other possibilities are: a modification of the N or the C terminal part of the molecule, or a 
proteolytic cleavage of a peptide bond. 
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Fig. 8.31. The two sulphur-iron clusters in 
Peptococcus aerogenes ferredoxin are shown, 
along with the polypeptide chain trace of the 

(coordinates from PDB). Fe and S 
atoms are disposed alternated at the vertices of 
a distorted cube: each Fe atom is surrounded by 
four S atoms, the fourth being that of a cysteine 
residue. 

Thermal parameters and disordered structures 
Special care must be used in evaluating temperature factors obtained from 
the refinement of a protein crystal structure. Experimental B factors 
include, besides thermal vibrations, the static disorder, which in such kind 
of crystal is particularly relevant. Owing to the high content of solvent, 
superficial groups of the macromolecule have the effect of partially ordering 
the solvent, but at the same time, as a consequence of this contact, they 
become very mobile. It has been shown[115] that it is possible, for very well 
refined structures, to distinguish the contribution to B factors of real 
thermal vibration from the static disorder. Moreover, during the refinement 
procedure thermal parameters are usually restrained, that is their variation 
is in some way smoothed down. In any case, the comparison of temperature 
factors for the same structure, ribonuclease A, independently refined by two 
different groups using different data[l16] shows a quantitative agreement in 
the trends, that is regions with an high B factor roughly correspond in both 
structures. As a general rule, in well refined structures main chain atoms 
present lower thermal motion than side chains, or in any case less disorder. 

In looking at crystallographic results, it must be kept in mind that a very 
high B factor for some residues could be either due to an intrinsic disorder 
of that part of the molecule, or an indication of a misinterpretation of the 
electron density. In some cases, small parts of the structure, often at the 
beginning or at the end of the polypeptide chain, or some loops protruding 
towards the solvent regions, are very mobile and cannot be seen at all in the 
map. In exceptional situations, two conformations could be differentiated 
for some residues.[231 

The disorder can also have some functional role, as is sometimes the case 
for allosteric proteins, where two conformational states are present, one of 
them characterized by a portion of a disordered chain that becomes ordered 
in the other state.[117,1181 In any case, as has been pointed out by 
~ ichardson , [ '~~]  this is a case in which the crystallization process introduces 
a bias in the results, since less ordered or disordered proteins are likely to 
be more difficult or even impossible to crystallize. 

Solvent structure 
A high portion of the solvent contained into a crystal cell can be considered 
not to be relevant for the macromolecule; it is simply there to fill the 
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channels produced by molecular contacts in the crystal. And indeed, this 
unordered solvent cannot be seen in an X-ray diffraction experiment. Water 
molecules closely bound to the protein, on the contrary, can be considered 
as part of the structure of the macromolecule itself: a protein cannot be 
completely dehydrated without a complete crash of the architecture of its 
three-dimensional structure. Tightly bound solvent molecules in the crystal 
are identified during the process of refinement, and can be distinguished in 
three groups: 

1. Water molecules making hydrogen bonds with hydrophilic side chains on 
the surface of the protein, where often they take part in a tetrahedral or 
trigonal network of hydrogen bonds. Ordered waters are substantially on 
the first shell of coordination around the protein, or eventually in the 
second shell, bound to the water molecules of the first one. 

2. Water molecules that serve as a bridge among parts of the main chain or 
other structural elements that are too far apart to form hydrogen bonds: 
for example, if two strands of a P-sheet diverge slightly, a water 
molecule can make an H-bond in the middle, filling the gap. This kind of 
solvent molecule is essential in stabilizing the protein structure. 

3. Solvent molecules located in the internal cavities of the protein, where 
they sometimes do not form very stable interactions but simply fill a 
vacuum. 

It should be noted that the arrangement of the solvent structure around a 
protein determined by X-ray analysis is strongly influenced not only by the 
crystal packing, but also by the pH and the solvent used in the crystal- 
lization, and it cannot be considered fully representative of the situation in 
vivo. 

The influence of crystal packing 
The question possibly most often asked since the beginning of protein 
crystallography can be summarized as follows: how is the structure in the 
crystal representative of the 'real' in vivo structure? Proteins are quite 
stable but largely flexible molecules: comparison of the same protein 
obtained in different crystal forms, and consequently subjected to com- 
pletely different packing forces, present in general the same fold, with some 
differences, usually small, in the regions of contact among molecules in the 
crystal. Figure 8.32 shows the a-carbon chain trace of TRP aporepressor 

Fig. 8.32. a-carbon chain trace of TRP- 
aporepressori'20' (data from PDB). Thick and 
light lines stands for the orthorhombic and the 
trigonal crystal forms respectively. The two 
models superimpose quite well, except for the 
first five residues and for the region around 
67-80. 
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from two crystal forms, trigonal and o r thorh~mbic . [ '~~~  The fact that 
molecules crystallized in different conditions of pH and precipitants keep 
the same overall conformation is indirect evidence of the stability of protein 
conformation, and of the validity of the structure obtained using the 
crystallographic technique. On the other hand, the local variations easily 
observed suggest that great care has to be taken in drawing specific 
conclusions on functional aspects from details of the structure. 

Protein classification 
The secondary structural elements of a protein could be combined, at least 
in principle, in a nearly infinite number of ways to produce the three- 
dimensional structure. An examination of the structures solved till now has 
on the contrary shown that these elements are put together in quite a 
limited number of ways, giving rise to a small set of possible patterns. The 
previous statement must nevertheless be regarded cautiously: it could be 
partially ascribed to the limited size of the data base available (as explained 
in the introduction, in the Brookhaven Protein Data Bank only 353 sets of 
protein coordinates are reported, most of them relative to parent mole- 
cules); in addition, a bias could be introduced by the fact that only some 
classes of molecules have so far been crystallized. In any case, regularities 
and similarities in tertiary structures can be observed: a distribution of 
proteins or domains into classes and subclasses has been attempted. 
According to ~ i c h a r d s o n , [ ' ~ ~ ~  protein molecules solved up to the present 
belong to one of the following classes: 

up-and-down helix bundle 
(1) antiparallel a structures Greek key helix bundle 

miscellaneous 

up-and-down P barrels 

Greek key /3 barrels 

(2) antiparallel /3 structures 

open-face P sandwiches 

miscellaneous 

singly wound parallel P-barrels 
(3) parallel a lp  structures doubly wound parallel P-sheets 

miscellaneous 

(4) small irregular proteins. 

Set (4) is a very small one, and nearly all the domains of solved structures 
belong to one of the first three sets. A first classification in three main 
groups is quite obvious: domains may be composed mainly by helices, by 
P-strands differently arranged, or by a combination of both elements. What 
is more puzzling is that, inside each main group, strict rules are observed: 
for example, all the a-helices belonging to class (1) are arranged in an 
antiparallel way, that is nearby helices are pointing in opposite directions. 
Two structures belonging to the first two subclasses, the up-and-down and 
Greek key antiparallel a, are shown in Figs 8.33(a) and (b), respectively. 



586 1 Giuseppe Zanotti 

Fig. 8.33. Sketches of protein models produced 
following the directives of Richardson, usin 8 
program  RIBBON.['^" (a) myohernerythrin' " 
and (b) m y ~ ~ l o b i n , [ ~ ~ '  representatives of the 
antiparallel a-structures; (c) p rea~bumin , [ '~~ '  a 
Greek key P-barrel, a subclass of antiparallel P 
structures; (d) triose phosphate isomerase 
  TIM),"^^' one of the more elegant examples of 
a parallel CYIP protein. All coordinates were 
taken from PDB. 

The same holds for class (2), the all-p domains: the strands in this group are 
antiparallel to each other (only if more than seven strands are present, can a 
parallel chain be observed). Figure 8.33(c) shows a picture of prealbumin, 
an example of a protein of the subclass called greek key $ barrel, and Fig. 
8.29 illustrates all the topologies found in that class, which does not mean 
all the possible, but simply those found in the structures solved till now. 
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In proteins containing both structural elements, classified a l p ,  a-helices 
are arranged parallel to each other and so are P-strands. There is not a 
rational explanation for that, since they could be antiparallel as well. An 
example of this last class, the enzyme triose phosphate isomerase, classified 
in the subclass called singly wound parallel p-barrel, is shown in Fig. 
8.33(d). 

It is difficult to judge the real biological meaning of the previous 
classification, since oversimplification could have a part in it. Nevertheless, 
it remains surprising that molecules which are so complex give rise to such a 
limited number of three-dimensional patterns. 

Appendices 

Appendix 8.A Some formulae for isomorphous 
replacement and anomalous dispersion 
In this appendix, formulae (8.13) and (8.23), relative to isomorphous 
replacement and anomalous scattering, will be derived in a general way. 
Equation (8.13) can also be obtained from Fig. 8.1, using simple trigono- 
metric considerations. It will be derived to illustrate the formalism used in 
the rest of the appendix. Let us call: 

FPH = FPH exp G ~ P H )  
FH = FH exp (iq,). 

From (8.5): 
FPHF:H = (FP + FH)(Fc + Fh).  (8.A.1) 

By substituting in (8.A.1): 

FPH exP ( ~ ~ P H ) F P H  exp (-~vPH) 

= {FP exp (MP) + FH exp ( ~ ~ H ) ) { F P  exp (-iqP) + FH exp (-iqH)), (8.A.2) 

F$, = F$ + F& + FHFp exp [i(qp - qH)] + FpFH exp [-i(qp - q,)], (8.A.3) 

F;, = F$ + F& + 2FPFH COS (qp - qH). (8.A.4) 

Equation (8.A.4) is equivalent to (8.11). An analogous expression can be 
derived for qp,. Since, from (8.5): 

FP = FPH - FH 

we can derive as before: 

F$ = F$H + F& - 2FpHFH cos (qpH - qH), (8.A.6) 
hence: 

Q l p ~  = qH + COS-I [(F$H + F& - F$)/2FpHFH]. (8.A.7) 

Equations (8.A.4) and (8.A.6) are, in fact, the same equation and both give 
two possible solutions for the phase of the protein (or of the derivative). 
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For anomalous dispersion measurements, let us define: 

Subtracting the two: 

F;;-F-~ PH - - 4FP~F& cos (qPH - qH - n/2) = 4FpHFk sin (qpH - qH). 

(8.A.10) 

We can also write: 

and, since the anomalous contribution to the structure factor of a protein is 
small if compared with the non-anomalous part: 

F;H + FFH -'. 2FPH. 

Substitution of (8.A. 12) in (8.A. 11) gives: 

~ p ' ;  - FG -'. 2FPH(F;~ - FFH), (8.A.13) 

and comparison of (8.A. 13) and (8.A. 10): 

F:H - F& = 2F; sin (qpH - 9,) (8.A.14) 
Finally: 

qPH = plH + sinP1[(F& - F,)/2F;]. (8.A.15) 

The combination of (8.A.15) and (8.A.7) allows a unique determination 
of YPH. 

Appendix 8.B Translation functions 
Several types of translation functions have been defined and most of them 
are quite similar and sometimes virtually equivalent (for a general review, 
see ~eurskens['~]). In the following, the more common among those used in 
protein crystallography are described. 

1. The Q function ( ~ o l l i n [ ' ~ ~ ] ) .  The Q function was devised by Tollin to 
determine the position I;. of a known group of atoms in a crystallographic 
cell, with respect to an arbitrarily chosen origin. Let us consider only two 
molecules, related by the symmetry operator A. If one of them (that we will 
call reference molecule) is correctly oriented in the cell of the unknown 
crystal, the problem of positioning it with resp,ect to translation reduces to 
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finding the correct origin with respect to the symmetry operator A. In the 
case of a superposition of m maps translated by vectors 5, the sum function 
defined in (5 .B .5) ( ~ u e r ~ e r ; [ " ~ I  see Appendix 5 .B) becomes: 

S(u) = 2 Z(h) C cos [2nh(u - q)]. (8.B.1) 
h i 

Equation (8.B.1) will present a maximum in position 5 = A(X + t) - t, 
that is when the translation t will be the vector defining the position of the 
absolute origin with respect to the symmetry operator under consideration. 
Substituting in (8.B. 1): 

Q(t) = C I(h) C cos 2nh[Xj + t - A(X,, + t)]. (8.B.2) 
h i,i' 

From the maximum of (8.B.2) it is straightforward to obtain X,. 
The Q function will show several false peaks, whenever two atoms have 

coordinates XI and X2 such that the relationships: 

is satisfied, and these peaks will have the same magnitude as those defining 
the correct origin. However, the position of false peaks can be predicted, or 
they can be removed by modifying the Z(h) value. 

2. The T function (Crowther and  low['^]). The function for two 
molecules related by symmetry operator A is given by (8.60). It has been 

that the T function is virtually equivalent to the Q function, 
except that the origin is looked at in a different way. 

Modified T functions have also been defined. If more than one symmetry 
operation is considered, (A,, . . . , A,), the T function becomes: 

Tl(t) = C (bbs(h) - C F,(~A~))F,(~)F:(~A,) exp (-2nih . t) (8.B.4) 
h i 

h ( t )  = 2 z O b s ( h ) ( ~  C F,(~A,)F:(~A,)) exp (-2nih . t) (8.B.5) 
h i I 

3. The TH function (Harada et UL. [~~~] ) .  TH represents an improvement of 
the T function, since it takes into account the interpenetration of molecules 
in the crystal cell. TH is defined as the ratio of two functions: 

Vector t here does not have the same meaning as in Fig. 8.17: function TH 
gives in fact the absolute value of the translation that has to be applied to 
the model in order to position it correctly in the crystal cell. Equation 
(8.B.7) is similar to the Crowther T function, but O(t) is a new term, taking 
into account the interpenetration among molecules. TH will present a 
maximum when cross-vectors of Patterson maps superimpose and molecules 
do not overlap each other. 
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Appendix 8.C Macromolecular least-squares refinement 
and the conjugate-gradient algorithm 
The normal matrix used in restrained least-squares deserves a special 
comment. If the molecule under refinement is composed of N atoms, and 
we are refining atomic coordinates and individual isotropic thermal para- 
meters, the normal matrix will be a square matrix of dimension 4N. Even 
employing rigid-body constraints whenever possible, the use of classical 
full-matrix methods may be still prohibitive. To speed up calculations, 
different algorithms have been devised. The fast calculation of gradients,[1291 
and the use of the fast Fourier transform (FFT, see p. 131) in calculating 
structure factors.[1301 

For matrix inversion, any algorithm able to handle system of equations 
with thousands of variables can be used, like the ~ a u s s - ~ i e d e l . [ ~ ~ ]  Since in 
most of the restrained least-squares programs a 'sparse matrix' is used, the 
algorithm of conjugate gradients appears well suited for solving a system of 
linear equations of this kind. The only drawback of it is that it does not 
directly provide the diagonal elements of the inverted matrix, from which 
the standard deviations of the parameters can be obtained. However, 
approximate values for them can be calculated. A brief description of the 
conjugate gradients algorithm is given here, taken from ~ o l l e t [ ' ~ ~ ]  and 
~ o n n e r t  .[721 

Let us have a system of n simultaneous equations in n unknowns: 

In the case of crystallographic least squares, the vector of unknowns X 
represents the shifts to be applied to the parameters. Classical inversion of 
matrix A for a very large number of parameters, as is the case of 
macromolecules, can be very inefficient or even impossible. Gradient 
methods are based on the iterative process that consists in obtaining, 
starting from an approximate solution Xk, a new one from: 

where rk is the vector of residuals, defined by: 

and ak is an appropriate constant. 
The conjugate gradients method, discovered by Hasteness and stiefel,[1311 

is an iterative process that gives the solution for an n-dimensional problem 
in approximately n steps (but generally much fewer than that). The method 
starts with an arbitrary value for vector X: let us call it X, (usually zero). 
The vector of residuals, ro, is given by: 

r o = p o =  b -AXo. 

Let us also define: 

~t;. = (rT~i)~/(pTApi) 

Pi = -(rT+~Api)~/(pTApi). 
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Using (8.C.4) and (8.C.5), a new value of X ,  called X I ,  will be given by: 

X 1  = Xo + mopo. (8.C.7) 

Now a new residual and a new value for pi can be calculated: 

From p l  we can now evaluate a new vector X and a new residual vector: 

By analogy with (8.C.9) a new value of p can be calculated, and so on. The 
method can proceed until convergence, that is when the vector of residuals 
r;: is less than a predefined amount. The advantages of the method are that 
every estimate of X improves the previous one and that the elements of the 
matrix A are not moved from their positions: the non-zero elements of A 
can be stored contiguously, taking advantage of a scarcely populated 
matrix. 

Appendix 8.D Conventions and symbols for amino acids 
and peptides 

Fig. 8.D.1. Schematic representation of a 
peptide unit, with symbols according the 
recomendations of the IUPAC-IUB Commission 
on Biochemical Nomenclature, Journal o f  
Molecular Biology, 52, 1-17 (1970). Each 
repetitive unit, delimited in the figure by broken 
lines, has general formula -NH-CHR-CO-, 
where R is one of the 20 side chains illustrated 
in Fig. 8.D.3. Amino acids are connected by a 
peptide bond CO-NH. In all the protein 
structures known, the peptide torsion angle, w, 
assumes a value of about 180°, that is the 
carbonyl oxygen and the H of nitrogen assume a 
trans planar conformation. The only exception is 
represented by proline, that in few cases has 
been found to be cis. Amino acids in  a 
polypeptide chain are numbered from the N to  
the carboxyl terminal. 

Fig. 8.D.2. A mnemonic rule for remembering 
the L- configuration of an amino acid: looking 
down from the H atom toward the C,, the 
substituents (CO, R, and N) must form the word 
CORN if read in clockwise sense. 
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Fig. 8.D.3. The side chains of the 20 natural 
amino acids. 
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Ala, A -CB 
- 

Leu. L 

CG1 
Val, V - C B '  - C B  - CG - SD - CE Met, M 

\ C G Z  

, CD1-CEl, 
Phe, P - C B - C G  cz - C B -  OG Ser, S 

OG1 
Thr, T -cs '  

\ CG2  

CD1 - CE1 , I OD1 

Tyr,Y - C B - C G :  cz  - OH - C B  - C G  Asn, N 
CD2-CE2 ' ' ND2 

OEl  
G1n.Q - C B - C G - C D '  

ND1 -CE1 
- C B - C G '  I His, H 

OD1 OEl 
ASP, D -CB - CG : - C B - C G - C D  G ~ u ,  E 

OD2 ' OE2 
Fig. 8.0.4. Symbols used in  Protein Data Bank 
for the atoms of the 20 side chains of Fig. 8.D.3. 

NH1 The same nomenclature is also used, with some 
small modifications, in most of the refinement 

Arg, R C B - C G - C D - N E - C Z :  -CB - C G -  CD - CE - NZ L ~ s ,  programs. The three-letter and the one-letter 
NH2 code for the amino acids are used. 
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Phvsical ~ r o ~ e r t i e s  of 
crystals 
MICHELE C A T T l  

Introduction 

The discipline named crystal physics has been associated traditionally with 
two topics: 

1. The study of phenomenological and macroscopic properties of crystals, 
concerning mainly the effects of crystal anisotropy and symmetry on the 
physical properties of matter. 

2. The microscopic investigation of crystal defects, i.e. deviations from the 
ideal periodicity of the crystal structure, and of their influence on the 
macroscopic physical properties. 

Both subjects are closely related to crystallographic results: in particular, 
the first one relies upon consideration of symmetry, while the second one is 
founded on the structural analysis of crystals. 

Crystal physics is not only a discipline of great fundamental interest, but it 
also has important technological applications. Crystals are used in industry 
because of their useful physical (optical, electrical, magnetic, etc.) pro- 
perties, which are studied by crystal physics. It suffices to mention 
piezoelectric transducers, magnetic oxides for tapes for recorders and 
computers, crystals for non-linear optics of laser technology, and many 
other examples. Analogously, defects have large effects on the crystal 
properties, such as mechanical strength, electrical and thermal conductivity, 
etc., so as to play an outstanding role in several branches of technology. It is 
also worthwhile to point out the close relations between crystal physics and 
solid state physics. The latter discipline, in a restricted meaning, emphasizes 
such topics as the quantum study of electronic and vibrational energy levels, 
the interaction of radiation with matter, and related items, both in ideally 
periodic and in defective solids. All these subjects try to explain on a 
microscopic basis the phenomenological properties which are dealt with by 
crystal physics; on the other hand, their treatment relies heavily upon the 
geometrical features of solids studied by crystallography. Thus crystal 
physics can be considered to be a bridging discipline between crystal- 
lography and solid state physics, partially overlapping in some areas with 
both of them. 
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Crystal anisotropy and tensors 

The behaviour of crystals is characterized typically by anisotropy: a physical 
agent associated with a given space orientation usually causes effects with 
different orientations with respect to the crystal lattice. A central role is thus 
played by the geometrical aspect of the problem, particularly in relation to 
the choice and transformations of reference frames, and taking into account 
the need to comply with symmetry constraints of the crystal. 

As shown in Chapter 2, most crystallographic issues are treated in a 
lattice reference frame, where the basis vectors are three non-coplanar 
translations associated with the periodic symmetry of the crystal structure. 
However, orthonormal (Cartesian) reference frames were also introduced 
(p. 68), and the transformation properties between lattice A and Cartesian 
E bases were analysed, according to the relation E = MA involving the 
orthonormalization matrix M. Both types of reference frames can be used in 
the study of physical properties of crystals; yet treatments relying upon 
lattice bases need a particular formalism (covariant-contravariant subscripts 
and superscripts) which is often awkward to use. So orthonormal frames are 
generally preferred, and the relations of transformations turn out to be 
much simpler. This method will be followed in the present book. 

By working with Cartesian frames, a conventional orientation with 
respect to the lattice frame must be defined. In the general triclinic case, the 
most widely accepted convention involves: e3 = clc, e2 = b*/bq ,  el = e2 x e3. 
This implies that, for the monoclinic system, e2 = blb;  for the trigonal and 
hexagonal cases, el = ala. In the latter systems, the crystallographic basis 
vectors a and b are chosen parallel to the twofold axes (when they are 
present) which are normal to the three- or sixfold unique direction. For 
orthorhombic, tetragonal, and cubic systems, the Cartesian basis vectors are 
parallel to the corresponding lattice basis vectors. The orthonormalization 
matrices can be found by the methods of p. 68. It should be stressed that 
other types of conventions are possible (for instance: e3 = c/c,  el = a*la*, 
e2 = e3 x el ,  leading to e2 = blb in the trigonal and hexagonal systems). 
Since numerical values of the physical properties are strictly dependent on 
the choice of reference frame, it is necessary to know whether a different 
convention from the standard one is associated with tabulated physical data. 

Tensorial quantities 
Let us consider a functional relationship between two vectorial physical 
quantities, X and Y. If they have a common direction, the functional 
relation between their moduli is dealt with by writing a Taylor expansion 
about X = 0: 

In a crystal, where anisotropy is present, the Y vector generally has a 
different direction from X, so that each of the three Cartesian components 
Y ,  of Y has to be considered as a function of all three Cartesian components 
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In the Taylor expansion (9.1) a single coefficient (Yo, y', y", etc.) is required 
for each term. On the other hand, according to (9.2) the constant part of 
the Y(X) dependence is expressed by 3 quantities Yo,,, the linear part by 9 
coefficients y,,, the quadratic part by 27 coefficients y,,,, and so on. In 
general, for a term of nth order in the Taylor expansion a number of 3"+' 
coefficients is necessary to define the Y(X) dependence. 

We now want to examine how the different coefficients appearing in the 
expansion (9.2) are transformed, when the orthonormal reference basis E is 
changed into another one E'. Let T be the transformation matrix (cf. p. 65) 
relating the two Cartesian bases: E' = TE. The metric matrices of both bases 
are equal to the identity matrix I, so that G' = G = I; by substituting into 
G' = TGT, equivalent to (2.21), the result fi = I is obtained. This condition 
is equivalent to 

and characterizes T as an orthogonal matrix, representing an isometric 
rotation in a Cartesian basis (cf. p. 36). Taking into account (2.20) and 
(9.3), the X, Y, and Y,  vector representations whose components appear in 
(9.2) are transformed as X'  = TX, Y' = TY and Y,  = TY, when the E basis is 
changed into E'. The explicit relation for the Yoxi components is: 

As for the nine coefficients yih expressing the linear part of the Y(X) 
dependence, they can be considered to be components of a 3 x 3 square 
matrix y, so that the first-order term in (9.2) is written in matrix form as: 

Y = yx. (9.5) 

By substituting Y = T-'Y' and X = T-'x' into (9 .9 ,  and taking into account 
(9.3), one obtains: Y' = T ~ T X ' .  Thus the transformation law for the y 
matrix is found to be: y' =TyT. The explicit expression involving com- 
ponents is: 

An entity represented by nine components y,, with respect to a given 
Cartesian basis, which obey the (9.6) law of transformation, is defined to be 
a tensor of second rank. Analogously, a vector whose three components 
follow the transformation rule (9.4) is a tensor of first rank, while a scalar is 
a zero-rank tensor. It should be emphasized that a tensor as such, being a 
generalization of the vector concept, is independent of the reference basis; 
its components, instead, are transformed when the basis changes. 

The transformation properties of coefficients y,,, in the expression (9.2) 
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can be found by similar methods, and turn out to be: 

An entity represented by 27 quantities yillk as components with respect to a 
given Cartesian basis, which obey the transformation law (9.7), is a 
third-rank tensor. In a general way, a tensor of rank n is defined as a set of 
3" coefficients with n subscripts, associated with a given Cartesian basis, 
which transform according to the formula: 

where T is the matrix relating the new basis to the old one. It should be 
noticed that the general rule (9.8) is equivalent to rule (9.4) multiplied by n 
times: thus we can also say that a tensor of rank n transforms in the same 
way as a product of n coordinates (or vector components). It is important to 
point out that any set of 3" coefficients with n subscripts does not necessarily 
obey the (9.8) transformation rule, and so need not represent a tensor of 
rank n. Take for instance the 32 components of the matrix T, or those of the 
orthonormalization matrix M relating the Cartesian basis E to the lattice 
basis A: in no way can an expression of type (9.6) be applied to them, so 
that they are not components of second-rank tensors. Tensors of rank 
higher than two could be represented by matrices with more than two 
dimensions, but this is usually avoided for simplicity and the matrix 
formalism is limited to tensors of first and second rank. Further, in tensor 
calculus the Einstein convention is commonly adopted, according to which 
summation symbols are omitted and understood; however, for the sake of 
clarity this convention is not followed in this text. Because of the particular 
importance of second-rank tensors in representing the physical properties of 
crystals, their features are analysed in detail in Appendix 9.A. 

Tensors of rank n have been introduced as coefficients of terms of order 
n - 1 in the Taylor expansion (9.2) expressing a functional dependence 
between two vectors. However, tensors can represent a physical property 
relating not only vectors, but also other tensors. Let us consider a linear 
dependence only, for the sake of simplicity. Then the coefficients expressing 
such a dependence between vector components and second-rank tensor 
components are clearly themselves components of a third-rank tensor: 

Analogously, a linear dependence between two second-rank tensors is 
represented by the components of a fourth-rank tensor: 

The following general rule can be formulated: the coefficients of a linear 
dependence of the components of an nth-rank tensor on the products of the 
components of n,, . . . , nm-rank tensors are themselves the components of a 
tensor of rank n + nl + . . . + n,. 

From the physical point of view, tensors can represent either an intrinsic 
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property of the crystalline medium, or an external field applied to the 
crystal with an arbitrary orientation. In the first case they are called matter 
tensors, in the second one field tensors. Several examples of both kinds of 
tensors will be given in the following sections. 

Symmetry of tensorial properties 
The symmetry constraints which must be satisfied by the physical properties 
of crystals are expressed in a very general form by Neumann's principle (see 
p. 14), which states that a crystal point group must be either the same or a 
subgroup of the symmetry group inherent to the physical property 
considered. 

A useful way of applying Neumann's principle is to constrain the tensor 
representing the required physical property to be invariant with respect to 
any symmetry operation of the crystal point group. Of course it suffices to 
check the invariance with respect to the group generators only. For 
instance, in the case of a physical quantity expressed by a second-rank 
tensor y, the invariance relationship is 

this equation has to be satisfied for all symmetry matrices R corresponding 
to point-group generators. By solving the equation for all independent 
symmetry operations of a given crystal point group, the corresponding 
symmetry constraints on the y,, components can be derived. In particular, 
all ylh components would turn out to be zero for a point group more 
symmetrical than the tensor itself, thus violating Neumann's principle. This 
algebraic procedure has been already applied in Appendix 3.B (p. 185) for 
deriving restrictions on the thermal factor, and will be used in subsequent 
sections to obtain the symmetry conditions for a number of tensorial 
physical properties in all 32 crystal point groups. 

Neumann's principle can also be interpreted from a geometrical point of 
view, by considering the symmetry of the geometrical representation of the 
tensorial property and comparing it straightforwardly with the crystal point 
symmetry. This is certainly feasible for first- and second-rank tensors, while 
for higher-rank tensors the method would become quite complicated. A 
first-rank tensorial property is represented by a vector, which may be polar 
(segment with arrow) or axial (segment with direction of rotation) 
(Fig. 9.1). For instance: velocity, force, electric field intensity are repre- 
sented by polar vectors, while angular velocity, moment of force, magnetic 
field intensity are represented by axial vectors. 

Polar and axial vectors differ by their groups of symmetry, as they belong 
to the mm and m/m limit groups, respectively. Limit groups of symmetry 
(also called Curie groups) are point groups including the infinite symmetry 
axes, i.e. rotations of any angles. The mm group of polar vectors (for 
instance, a moment of electric dipole) is not centrosymmetric, whereas the 
m/m group of axial vectors (e.g. a moment of magnetic dipole) is. Thus 
Neumann's principle states that a spontaneous electric polarization, typical 
of pyroelectric and ferroelectric crystals, can be observed only for the 
so-called polar point groups, which are subgroups of the limit group mm: 1, 
2, 3, 4, 6, m, mm2, 3m, 4mm, 6m. The polar vector must be parallel to the 
symmetry axis (polar axis), when this is present; in point group m, the Fig. 9.1. Polar and axial vectors. 
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vector may have any direction lying in the mirror plane, while in group 1 its 
orientation is unrestricted. On the other hand, a spontaneous moment of 
magnetic dipole (ferromagnetism) is consistent only with crystal symmetry 
represented by subgroups of the limit group w/m: 1, 2, 3, 4, 6, m, 2/m, 6, 
4/m, 6/m, 1, 3, 4. The axial vector may have any orientation in point groups 
1 and T ,  it must be normal to the mirror plane in group m, and its direction 
has to be parallel to the symmetry axis in all other cases. 

A symmetric second-rank tensorial property is represented geometrically 
by a second-order surface (quadric), which may be an ellipsoid or a 
hyperboloid of one or two sheets (cf. Appendix 9.A). In general, such a 
surface has mmm symmetry, but in special cases higher symmetries can be 
displayed. When two tensor eigenvalues are equal but different from the 
third one, then the quadric becomes a revolution ellipsoid or hyperboloid 
with symmetry a/mm. Because of Neumann's principle, this must occur for 
all crystal point groups belonging to the tetragonal, trigonal, and hexagonal 
systems, which are subgroups of the limit group w/mm, but not of the group 
mmm. Besides, the principal direction of the tensor corresponding to the 
unique eigenvalue must be parallel to the symmetry axis 4, 3, or 6. When all 
three eigenvalues are equal, the quadric is a sphere with symmetry m/m; 
such a situation is required for all cubic point groups (subgroups of w/m), 
as both mmm and w/mm symmetries are lower than those consistent with 
the cubic system. For the orthorhombic, monoclinic, and triclinic systems, 
the second-rank tensor can be represented by a general mmm quadric with 
all three eigenvalues different, but with a constrained orientation in the 
orthorhombic and monoclinic cases. In the former instance, the principal 
directions are to be parallel to the crystallographic axes, while in the latter 
case one of the principal directions must be parallel to the unique 
monoclinic axis. 

The forms shown by first- and symmetric second-rank tensors as imposed 
by symmetry are given in Table 9.1. Of course if the symmetric second-rank 

Table 9.1. Forms displayed by first- and symmetric second-rank tensors 
referred to Cartesian axes 

(a) Polar vector p (b) Axial vector a 

1 (PI PZ ~ 3 )  1, i (a, a, a,) 
m (P, 0 p3) 2, m. 21-m (0 a, 0) 
2 (0 P, 0) 3, 3, 4, 4, 6, 
3, 4, 6, mm2, 6, 4/m, 6/m (0 0 a,) 
3m, 4mm, 6mm (0 0 p3) 

(c) Symmetric second-rank tensor y 

Triclinic Monoclinic ("I " 
Y33 

Orthorhombic iYl1 i2 .) Tetragonal, 
hexagonal 

Y33 

" .) 
Y33 

Cubic 

("l " Yl . 1 ) 
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tensor is referred to a lattice basis A rather than to the Cartesian basis E, 
unlike the convention followed until now, then the symmetry constraints on 
its components may be different from those of Table 9.1. This is true in 
particular for the hexagonal system, where non-zero off-diagonal com- 
ponents may appear (see also Tables 3.B .1 and 3.B.2). 

Overview of physical properties 

A number of important tensorial properties of crystals will now be 
examined, using the results of tensor theory previously discussed. The 
whole subject would include all topics of classical phenomenology applied to 
the behaviour of matter: mechanical, thermal, electrical, magnetic, optical 
properties. However, only some of them are considered here, because of 
limited space. First, the dielectric behaviour of crystals will be illustrated, as 
it is particularly suitable for a simple application of the tensorial concepts 
just developed. This topic is closely linked to that of optical properties, 
because of the relation between refraction index n and relative permittivity 
E,  (n = VE,  in isotropic bodies); yet only a short overview will be given of 
that subject. Then mechanical properties (stress-strain relations, crystal 
elasticity), which require use of the highest (fourth) rank tensors presented 
in this book, will be considered in some detail. Thermal behaviour is 
included in that section through examination of the thermal expansion 
phenomenon. Eventually the piezoelectric properties, bridging electrical 
and mechanical behaviour of crystals, and providing an example of 
third-rank tensors, are analysed. 

Electrical properties of  crystals 

Dielectric media are insulators, they ideally do not allow the transport of 
free charges, but only the presence of static polarization charges. Polariza- 
tion of atoms is due to electrostatic induction operated by an applied 
electric field E .  The electronic component of polarization is a separation of 
the centre of negative from the centre of positive atomic charges, giving rise 
to a moment of atomic electric dipole. If atoms are ionized, then they are 
slightly displaced by the electric field from their equilibrium positions, and 
contribute to polarization by an additional ionic component. In Fig. 9.2 an 
unpolarized pair of ions is shown, where the positions of nuclei A and B 
coincide with the centres of negative (electronic) charge distributions X and 
Y, respectively. Under the action of an electric field E, A' separates from 
X' and B' separates from Y', so as to give rise to an electric dipole within 
each ion (electronic polarization). Besides, the relative position A'B' 
changes as well with respect to AB, modifying the natural electric dipole of 
the ionic pair (ionic polarization). 

An example of the order of magnitude of the effect can be given for NaCl 
crystals. The C1- ion displays an electronic polarizability (=ratio between 
induced electric dipole moment and electric field) of 3.3 x C m2 V-', 
while the Naf contribution is an order of magnitude smaller. This means 
that a potential difference of 1000 V applied to a NaCl crystal plate 1 mm 
thick would induce a dipole moment of about 3 X C m on each C1- 

Fig. 9.2. Above: unpolarized pair of ions. Below: 
electronic and ionic polarization induced by the 
electric field E. 
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ion, corresponding to a separation of centres of positive (nucleus-core 
electrons) and negative (valence electrons) charges of -3 x 10-6A. The 
contribution of ionic polarizability (=6  x C m2 V-' for the pair Na+ 
C1-) would cause the Na+-C1- separation to change by about 4 x lo-' A. 

The overall effect is measured by the P vector, the intensity of 
polarization, which is equal to the induced moment of electric dipole per 
unit volume. For an isotropic body, the first-order approximation gives a 
relationship of proportionality: 

E~ is the vacuum permittivity (or dielectric constant), and x is a dimension- 
less proportionality constant, called dielectric susceptibility, which actually 
expresses the magnitude of the polarization phenomenon. The material 
response is fully incorporated in Maxwell equations, which for a static 
problem take the form: div D = p, curl E = 0, where p is the volume 
density of free electric charges. The electric displacement (or electric 
induction) vector D is related to the intensity of polarization P according to: 
D = eOE + P. By substituting (9.11) for P ,  the dependence of D on E for an 
isotropic body is found: 

where the relative permittivity E ,  is defined as E,  = 1 + X ,  and the product 
E , E ~  = E is the permittivity (or dielectric constant) of the isotropic dielectric 
medium. When the electric field depends sinusoidally on time (e.g. in an 
electromagnetic wave), then E and the related quantities are functions of the 
corresponding frequency. 

Equation (9.12) relating D to E holds for an isotropic body and within a 
linear approximation is valid when the electric field E is not very large. A 
generalized equation extended to anisotropic media and to any field 
intensity takes the form of a Taylor expansion of type (cf. eqn (9.2)): 

Of course a similar expansion could also be written to express the P(E) 
dependence, replacing equation (9.11). The coefficients E~~ appearing in 

- (9.13) are components of the second-rank permittivity tensor E; on the basis 
of thermodynamic arguments, this can be proved to be symmetrical 
(chi = E ~ ~ )  with positive eigenvalues. Related tensorial quantities are the 
relative permittivity E, = and the dielectric susceptibility x = E, - I. 

According to (9.13), now D and E are no longer parallel vectors; within a 
linear approximation corresponding to (9.12), they are related by the 

L 
tensorial equation D = EE. However, the Maxwell equations given above 
and the relation D = E ~ E  + P still hold also for anisotropic crystals. A 

Fig. 9.3. between electric electric picture of the three vectors E,  D, P in a crystalline slab between the plates displacement, and electric polarization vectors in  
a plane condenser with crystalline dielectric. of a condenser is given in Fig. 9.3. 

Pyroelectricity 
The presence of the zeroth-order term Dopi in the expansion (9.13) implies 
that, in an anisotropic crystal, a spontaneous polarization given by the 
vector Po = Do is possible when E = 0. This adds to the normal induced 
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polarization depending on E and expressed by higher-order terms. When a 
crystal shows a spontaneous electric dipole moment Po, it is said to be 
pyroelectric; thus pyroelectricity is a property associated with the first-rank 
tensor Po,, or Do,,. As Po and Do are polar vectors, all the symmetry 
considerations of p. 603 relative to that case hold: therefore pyroelectric 
crystals can only belong to point groups which are subgroups of w m (cf. 
Table 9.1). Of course an isotropic medium has symmetry higher than ~0 m, 
so by Neumann's principle it can not display pyroelectricity. 

It should be noticed that, from a practical point of view, the spontaneous 
polarization of a pyroelectric crystal has a very short life. Indeed, the 
combined effects of a very small crystal conductivity due to defects and of 
ionized particles in the air contribute to 'discharge' the condenser cancelling 
the electric dipole moment of the crystal. However, a quick temperature 
change causes a variation of Po which makes the spontaneous polarization 
detectable as an electric signal. Thus pyroelectricity is properly revealed as a 
change of Po with temperature, and the three pyroelectric coefficients are 
the derivatives dPo,,/dT. 

A particular type of pyroelectricity is that of ferroelectric crystals; for 
these, the vector Po of spontaneous polarization can be inverted by applying 
an electric field in the opposite direction. 

An example of a pyroelectric and ferroelectric crystal of technological 
importance (used for infrared detectors) is that of LiTa03 (symmetry group 
3m). Its spontaneous electric dipole moment is aligned with the threefold 
axis, and the corresponding pyroelectric coefficient has value of 1.9 X 

Cm-2 K-'. Thus a temperature change of 1 K, brought about for 
instance by infrared radiation, causes a dipole moment per unit volume of 
1.9 x C m-2 to arise. Taking into account that the principal value of 
relative permittivity along the 3 axis is E,,, = 46, we can compute the electric 
field which would be necessary to produce the same polarization: E = 

- 1) = 4.77 x lo5 V m-'. This is a large field, showing that the 
magnitude of the pyroelectric effect for LiTaO, is noteworthy. 

Dielectric impermeability and optical properties 
When the first-order term in the expansion (9.13) is sufficient to account for 
optical behaviour of the crystal, we speak of linear optical properties. The 
dielectric impermeability tensor is defined as b = E-', so that E = bD; the 
relative impermeability is B = E;' = &,b, and its positive principal values are 
Bi = The representation surface of tensor B (cf. Appendix 9.A) is an 
ellipsoid of equations 

according to whether the reference is a general Cartesian basis or the basis 
of eigenvectors. This ellipsoid is called the optical indicatrix, and has the 
important property that its semi-axes have lengths equal to B;'I2 = E:!; = Iti, 
i.e. to the principal refraction indices of the crystal. Thus the optical 
indicatrix is simply the representation quadric of the tensor of relative 
dielectric impermeability. 

The peculiar optical properties of crystals can be derived by use of this 
ellipsoid. Let us consider a propagation direction OP of an electromagnetic 
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wave, drawn through the centre of the optical indicatrix (Fig. 9.4). The 
central section of the ellipsoid normal to OP is an ellipse with semi-axes OM 
and ON. It can be shown that not just one but two wave fronts propagate 
through the crystal normally to OP with different velocities v, = cln, and 
v2= cln, (c is the velocity of light in a vacuum); the corresponding 
refractive indices nl and n2 are equal to the lengths of semi-axes OM and N 
ON. The two waves are plane polarized with directions of vibration of the D 
vectors parallel to OM and ON, respectively. The whole subject of optical 
crystallography, which will not be dealt with here in detail, is based on the 
study of properties of the optical indicatrix and other related surfaces. We 
would just point out that the orientation and symmetry behaviour of the 
optical indicatrix in the different crystal point groups follows all results 
derived from Neumann's principle for symmetrical second-rank tensors on 
p. 604 and in Table 9.1. 

Thus in the cubic system all three principal refraction indices are equal, 
the optical indicatrix is a sphere, and the crystal is optically isotropic in all 
directions. In the tetragonal, trigonal, and hexagonal systems two principal Fig.9.4. The Optical 

indices are equal but different from the third one, whose corresponding 
principal axis (called optic axis) is parallel to the high-symmetry direction. 
The indicatrix is an ellipsoid of revolution about the optic axis. The two 
wave normals propagating along that direction have equal refractive indices, 
and therefore coincide; no double refraction is observed, and the optic axis 
is a direction of optical isotropy. Crystals belonging to these symmetry 
systems are called uniaxial. For the orthorhombic, monoclinic, and triclinic 
systems, the indicatrix is a general ellipsoid with two circular central 
sections; the corresponding normal directions, lying on the plane of the 
longest and shortest semi-axes, are the optic axes and the crystals are said to 
be biaxial. The two optic axes are directions of optical isotropy, just as in 
the uniaxial case. 

In some crystalline materials the optical behaviour depends significantly 
on terms of order higher than one (typically, second-order terms) in the 
D(E) expansion (9.13). This subject is called non-linear optics, and is 
associated with important technological applications. Optical non-linearity is 
also known as the electro-optical effect, and the electro-optical coefficients 
eZhk are evidently the components of a third-rank tensor. The (9.13) 
expansion truncated to second order can be rewritten as: 

so that the eihk coefficients may be interpreted as derivatives of permittivity 
components dependent on the field E with respect to the field 
components themselves; from this comes the name of electro-optical effect. 

Elastic properties of crystals 

The mechanical behaviour of solid bodies is characterized by a change of 
geometrical shape (deformation) as a response to applied forces, apart from 
rigid translations and rotations. When the mechanical stress is small enough, 
then the corresponding strain is reversible and follows Hooke's law, being 
simply proportional to the stress itself: this is the regime of elastic 
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deformation, well known for isotropic bodies from texts of elementary 
mechanics. In the case of crystals, the force field acting on the body and the 
ensuing deformation field have to be specified in three dimensions with 
respect to the crystal Cartesian reference basis. Hooke's law is generalized 
by linear relationships between all stress and strain components, leading in a 
natural way to the tensor formalism for anisotropic elastic behaviour. 

The study of the mechanical properties of crystals is a valuable subject for 
at least two reasons. First, because of technological applications: whatever 
use is made of a crystal in applied science or in industry, its response to 
mechanical agents is of primary importance and has to be known in detail. 
Second, there are important fundamental implications of the elastic 
behaviour of crystals, which concern the nature of interatomic forces giving 
rise to cohesion and geometrical features of the crystal structure. 

Crystal strain 
In a general way, the state of strain of the crystal is defined by the vector 
field u = x'  - x, which gives for every point the change between equilibrium 
x and strained x '  position vectors. As usual, the dependence u(x) of the 
vector field can be expanded in a power series of type (9.2) (we assume that 
the displacement of the point at the origin is vanishing): 

Elastic phenomena involve small deformations, for which terms of order 
higher than one may be neglected. In this case the strain is said to be 
homogeneous, and the ui components are linear transformations of the 
position vector components xh of a general crystal point: 

The coefficients eih are dimensionless components of a second-rank tensor e 
which is generally non-symmetrical. 

To understand the geometrical meaning of eih quantities, a two- 
dimensional case is illustrated in Fig. 9.5. A square is drawn with sides OA 
and OB parallel to the Cartesian xl and x2 directions; then points A and B 
have coordinates [xl(A), 01 and [O, x2(B)], respectively. After deformation, 
A and B change into A' and B'; according to (9.16), the displacement 
vectors u(A) = AA' and u(B) = BB' have the following components: 

ul(A) = e11~1(A), u2(A) = e2ixi(A), 

ul(B) = e12x2(B), u2(B) = e22~2(B). 

The meaning of ell and ez2 components follows immediately: ell = 
ul(A)/xl(A), e2,= u2(B)/x2(B). Further, the sides OA' and OB' are 
rotated by the angles cpl and 9, with respect to the original directions OA 
and OB, and evidently: 

n u. w I 

e21 u2(A) 4 3 )  - e 12 tan ql = tan cp2 = Fig. 9.5. Homogeneous deformation of a square 
x2(B) + uz(B) 1 + e22' into a parallelogram. 
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Fig. 9.6. Decomposition of the strain of Fig. 9.5 
into a symmetrical strain plus a rigid rotation. X1 

__C 

Taking into account that, for small strains, ell << 1, e,, << 1, tan q1 = q,, 
tan q2 = q,, we obtain: q, = ezl, q2 = el,. 

If ell = e,, = 0 and el, = -eZ1, then the strain reduces to an anti-clockwise 
rigid rotation by the angle q = ezl; in this case e is antisymmetrical 
(eij = -eji). Generally, the strain tensor e can always be written as the sum 
of a symmetrical E = i ( e  + e) plus an antisymmetrical w = i ( e  - e) com- 
ponent: cij + wij = i(eij + eji) + i(eij - eji) = eij. As o is antisymmetrical, it 
represents a rigid rotation; therefore E = e - o corresponds to the physically 
relevant part of the strain. A geometrical picture of the decomposition 
e = E + o for the planar deformation of Fig. 9.5 is shown in Fig. 9.6. 

The Lagrangian strain tensor E is called infinitesimal, because it is suitable 
to represent small deformations only; the use of the same symbol as that for 
dielectric permittivity may sometimes be confusing. Another tensor which is 
more convenient to express larger deformations is the finite Lagrangian 
strain tensor: 

q = i ( e  + e +  ee). (9.17) 

For small strains, the difference q - E = 1/2ee is vanishing, so that use of q 
or E tensors is quite equivalent. Let us look now for a relation between the 
previous macroscopic representation of strain and the lattice microscopic 
nature of the crystal. M is the orthonormalization matrix of the undeformed 
lattice basis (E = MA),  and M' that of the deformed basis (E = MIA'); as 
fractional coordinates of points are not changed by a homogeneous 
deformation, then M'x '  = &. From (9.16), x '  - x  = ex; by substituting 
X'  = MI-'&, one obtains: 

Substitution into E = $(e + e) and into (9.17) yields the required expressions 
for the E and q tensors: 

Using the property of orthonormalization matrices ( M - ~ M - ~  = G, cf. p. 69), 
one has that M'-'M'-l = G'  and M G M  = I, so that: 

By comparing (9.20) with (9.19), an important difference appears between 
the two strain tensors E and q: the former depends on M' and then on the 
relative orientation of the deformed and undeformed lattices, while the 
latter does not. The q tensor, unlike E, depends only on the metrics of 
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the deformed lattice, and is simply the transformation in a Cartesian basis of 
the change of metric tensor G' - G induced by the crystal deformation. 

The q tensor is symmetrical, and can be diagonalized by determining its 
principal strains ql ,  q2, q3 and principal directions; these are the only 
directions in the crystal which are not changed by the deformation. The 
relative change of volume due to strain is given by the expression 
AVIV = q1 + q 2 +  q 3 =  t r q .  

The crystal deformation is usually caused by an applied stress arbitrarily 
chosen, so that the tensor is a field tensor: it does not depend on intrinsic 
properties of the crystalline medium, but rather on an external field, being 
thus unconstrained by crystal symmetry. The symmetry, as well as the 
crystal system, may be altered by deformation. The same holds, for 
instance, for the vector of induced polarization P,  which is a field tensor of 
first-rank as it depends on the applied electric field E. On the other hand, 
another important kind of crystal strain is that caused by temperature 
changes AT; the effect is represented by the tensor of thermal expansion, 
defined as: 

Its eigenvalues cui are always positive, so that the representation quadric of 
equation 

is an ellipsoid, whose radius vector has a length equal to the inverse square 
root of the coefficient of thermal expansion along its direction. The 
corresponding volume thermal expansion is 

1 dV --=C cuii=tra. 
V d T  i = l  

The tensor of thermal expansion a is independent of any external vector 
field, but is related to the inner properties of a given crystal. It is thus a 
matter tensor, just as tensors of dielectric permittivity or impermeability; its 
symmetry properties and orientation must be consistent with the point 
group of the crystal, according to Neumann's principle and the discussion of 
p. 604. An example of first-rank matter tensor is the vector of spontaneous 
polarization Po of pyroelectric and ferroelectric crystals. 

Inner deformation 
The strain tensor q was related by (9.20) to a change of metric tensor 
G' - G, i.e. of unit-cell geometry. This corresponds to a purely homoge- 
neous deformation of the crystal structure, leaving the atomic fractional 
coordinates constant (lattice strain). If, on the other hand, such coordinates 
vary, then in addition to the lattice deformation, an inner strain arises, 
which is just defined by the coordinate changes Axi for all atoms in the 
asymmetric unit. The inner strain generally occurs as a relaxation of atomic 
positions to minimize the energy of the deformed lattice, so it is a function 
of the lattice strain. The overall deformation of the atomic arrangement is 
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the sum of these two effects. Changes of interatomic distances due to the 
total strain can be decomposed into the separate effects, according to 

where d ,  and d(, are the distances between atoms i and j before and after 
deformation, respectively. The first term is due to lattice strain only, while 
the second one (in square brackets) is mainly ascribed to inner strain 
contribution. 

Let us consider an application of these concepts to the strain induced by 
thermal expansion in mica muscovite. Two crystal-structure refinements at 
25 and 700 "C allowed us to determine the changes of unit-cell constants and 
of atomic fractional coordinates for the corresponding temperature range 
(Table 9.2). By calculating the metric tensor change G' - G and applying 
equation (9.20), the strain tensor q can be obtained; dividing it by the 
temperature difference A T  yields the tensor of thermal expansion a, which 
represents the lattice component of thermal strain: a,, = 1.12, a22 = 1.18, 
a33 = 1.89 x lo-' K-l. The inner component of thermal strain is given by 
the changes of atomic fractional coordinates divided by AT. It appears that 
the largest contribution to inner deformation is related to basal oxygen 
atoms 0(1),  0(2),  0(3),  while the effect is very small in all other cases. This 
corresponds to a substantial decrease of the ditrigonal distortion of the (001) 
layer of (Si, Al)O, tetrahedra sharing corners, which approaches a more 
symmetrical hexagonal configuration (cf. Fig. 6.41). The contributions of 
lattice and internal deformations to changes of interatomic distances can be 
analysed in the case of K-0  bond lengths; in Table 9.3 the two components 

Table 9.2. Lattice constants and atomic fractional coordinates of muscovite 
KAI,~Si,AIO,,I(OH), (space group C2/c), at 25°C (above) and 700°C (below) 
(Catt~ et a/. 1989) 
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Table 9.3. K-0 distances (in A) in muscovite at 25°C (q j )  and 700°C 
(dij),  and differences between squared distances and corresponding 
lattice and inner components (in A2) 

of quantities (d,;)2- d$ are reported. A positive inner strain contribution 
indicates that the bond expands more than expected from unit-cell dilatation 
alone, whereas the opposite is implied by a negative value. Thus, in the K 
coordination sphere a very large effect of inner thermal strain is observed, 
with a positive sign for the six short bonds and a negative (even the absolute 
bond-distance changes are negative) for the six long contacts. 

Stress tensor 
The other field tensor which is necessary to define the elastic properties of 
crystals is the stress tensor. The mechanical forces applied externally to the 
crystal are 'contact forces' or 'surface forces' acting on the external surface 
of every volume element, and not 'body forces' acting on every point of the 
body (like the force of gravity). Therefore the force field is represented by 
the vector p (force per unit area) as a function of the unit vector n normal to 
the surface element dS. For a homogeneous stress, p depends not on the 
absolute position of dS but only on its orientation, so that p =p(n); 
furthermore, the dependence is simply linear, being expressed by a tensorial 
relationship: 

The ti, coefficients are components of the second-rank tensor of stress z. A 
general tij component has the physical meaning of oriented pressure along 
the ith direction acting on to the dS surface normal to the jth Cartesian 
direction. The simple case of surface forces acting onto the three faces of a 
cube is sketched in Fig. 9.7. The unit vector n normal to the (100) face has 
components [1 0 01, so that using (9.22) the components of the force per unit 
area acting on to (1 0 0) turn out to be p1 = z l l ,  p2 = t21, p3 = tgl;  similarly 
for the (0 10)  and (0 0 1) faces. The diagonal values tii are called normal 
components, and the off-diagonal ones ti, (i # j )  are the shear components 
of stress. Analogously to what is true for the strain tensor e, it can be easily 
proved that if no rigid rotation of the volume element is produced by the 
applied stress, then the z tensor is symmetrical: tji = tij. Therefore, 

/ 
according to the analysis in Appendix 9.A, the stress tensor has real / 

eigenvalues and can be diagonalized; along its principal directions, the 
/ 

applied pressure is normal to the surface element. Important particular 4 
cases of stress are that of isotropic (hydrostatic) pressure, occurring when all 9.7. Stress field on (1 0), (0 1 01, and 
three eigenvalues are equal: tij = -p ajj (the minus sign corresponds to the (o o 1) faces of a crystal cube. 
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convention of considering negative a compressive stress, and positive a 
tensile one); and that of uniaxial pressure, when two eigenvalues are zero 
(or, in a more general case, different from zero but equal). 

Elasticity tensor 
A solid is said to be elastic when the dependence of strain on the applied 
stress is linear (Hooke's law). If the solid is anisotropic, as is the case for 
crystals, then Hooke's law is expressed in tensorial form. The coefficients of 
the linear dependence must be characterized by four subscripts, as they 
relate the qij and rhk components of two second-rank tensors (cf. eqn 
(9.10)): 

3 

Til = C h , k ~ l j h k ~ h k t  (9.23) 
1 

and, inversely: 
1 

The quantity cijhk has the physical meaning of stress component zij which 
must be applied to the crystal so as to achieve a deformation state 
characterized by a qhk component of unit value. Similarly, syhk is the qij 
strain component resulting from application of a unit stress rhk to the 
crystal. As the q components are dimensionless, and those of z have the 
dimension of pressure, it follows that the quantities cijhk and sijhk have 
the dimensions of pressure and of pressure-', respectively. 

The coefficients cijhk and sijhk obey the transformation rule (9.8), and then 
are components of the fourth-rank tensors c and s ,  respectively; c is called 
tensor of elastic constants or stiffness coefficients, while s is the tensor of 
elastic moduli or compliance coefficients. The two tensors are related by the 
generalized inversion relationship: 

Unlike q and z, which are field tensors, c and s are matter tensors, that is 
they characterize an intrinsic property of the crystalline medium and are 
independent of the applied force field. On the basis of the symmetry 
relations qii = qji and rij = rji for the strain and stress tensors, and of the 
condition that the total moment of force applied to the crystal be zero 
(otherwise the whole crystal would rotate rigidly), a number of symmetry 
relations can be derived for the subscripts of cijhk and sijhk components. 
These are: 

and similarly for sijhk. Thus of the 81 components of each tensor only 21 are 
actually independent. 

The mechanical work per unit volume of an infinitesimal elastic deforma- 
tion of the crystal is given by 
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by substituting the expression (9.23) for zij, one obtains: 

and integrating with respect to dqii the work per unit volume necessary to 
produce the finite strain q is derived: 

The linear compressibility PI of the crystal is the relative change of length 
along a given direction 1 when the crystal is subjected to a unit isotropic 
pressure. By the general properties of second-rank tensors (cf. Appendix 
9.A and eqn (9.A.8)), the linear strain along the unit vector 1 is 

by substitution of (9.24) for qij, and remembering that z~~ = -pShk for 
isotropic pressure, one obtains: 

Analogously, for the volume compressibility P = -(dVldp)lV; the defor- 
mation corresponding to a volume change is AVIV = ELl  qii, and sub- 
stituting (9.24) for qii gives: 

The expression for the reciprocal of volume compressibility, the elastic bulk 
modulus K, is obtained accordingly: 

K = 110. (9.30) 

A simplified convention, based on a condensation of subscripts, is often 
used to express components of stress, strain, and elasticity tensors (Voigt's 
notation). The symmetrical pair of indices ij (i, j = 1, 2, 3) is substituted by a 
single subscript p (p  = 1, 2, 3, 4, 5, 6)) according to the rule: 11 -t 1, 
22 -, 2, 33 + 3, 23 + 4, 13 + 5, 12 + 6. Then rp = tii and cpq = cijhk, 
with the above correspondence law for subscripts implied. The tensor z is 
now represented by a 6 x 1 linear matrix, instead of a 3 X 3 symmetrical 
square matrix: 

Similarly, in Voigt's notation the elastic stiffness tensor c is represented by 
a 6 x 6 symmetrical square matrix (cpq = c,). Things are slightly more 
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complicated for the q and s tensors. In fact, in order to have relations (9.23) 
and (9.24) transformed into the corresponding ones 

the qp and spq components have to be defined in the following way: qp = qii 
(P = 1, 2, 3), =2qij (P =4,  5, 6); spq =siihh (P, q = 1, 2, 3), Spq = B i i h k  

(p  = 1, 2, 3; q = 4, 5, 6), spq = 4sijhk (p, q = 4, 5, 6). For example, q1 = qll, 
q4 = 2qZ3, S13 = S1133, S26 = 2s2212, s 4 ~  = 4 ~ ~ ~ ~ ~ .  If the coefficients 2 and 4 were 
omitted in the definition of quantities qp and s,,, they would appear 
explicitly in the linear forms (9.31) and (9.32). Furthermore, with the 
chosen convention the relation of matrix inversion 

holds for the two 6 x 6 square matrices representing the elasticity tensors. 
Thus the relations (9.31) and (9.32) can be rewritten in matrix form as: 

t =  cq, (9.34) 

By use of Voigt's notation the expressions (9.27), (9.29), and (9.30) for 
the energy of elastic deformation, volume compressibility, and elasticity 
bulk modulus become, respectively: 

As matter tensors, the stiffness and compliance tensors c and s have to 
comply with the requirements of the crystal point symmetry, according to 
Neumann's principle. On the basis of p. 603, the simplest method to derive 
the symmetry constraints on cpq and spq components is as follows. The 
symmetry operations R which are generators of the crystal point group are 
considered. For each of them, the Cartesian basis E is transformed into 
E' = RE, and correspondingly the transformation of cpq components into c;, 
is obtained; by symmetry, the conditions cbq = cpq must be satisfied leading 
to the wanted relations. This procedure will be illustrated by some simple 
examples. 

A twofold symmetry axis parallel to the e2 Cartesian vector transforms 
the indices of Cartesian coordinates as follows: 1 + -1, 2 4 2, 3 4 -3. 
As the components of a second-rank tensor transform as products of two 
coordinates, the corresponding transformation rule for the pair ij of indices 
is: 11 + 11, 22 + 22, 33 + 33, 23 4 -23, 13 4 13, 12 -, -12; in Voigt's 
notation: 1 -, 1, 2 + 2, 3 4 3, 4 4 -4, 5 5, 6 + -6. Therefore, a 
rotation by 180" of the crystal about e2 causes the elastic constants with only 
one subscript equal to 4 or 6 to change sign: but, because of symmetry 



Physical properties of crystals 1 617 

invariance, such components can only have zero values. Thus in the 
monoclinic system, where a twofold axis parallel to e2 is present, the elastic 
constants c14, C24) c ~ ~ ,  C ~ S ,  C16, C261 C36, C56 are always equal to zero. It is 
easy to show that no further constraints are imposed on the cp, components 
by the other symmetry operations in monoclinic point groups. In fact, by 
the same procedure as above the c tensor can be proved to be invariant to 
action of the inversion centre. Thus elasticity is a centrosymmetrical 
property, and in order to derive the symmetry constraints on the cpq 
components only the generators of the point group not containing the 
inversion centre need be taken into account. For instance, a mirror plane 
normal to e2 is the product of a twofold axis parallel to e2 and of the 
inversion centre, so that it is completely equivalent to the twofold axis as far 
as the elastic behaviour is concerned. 

In the orthorhombic system, two twofold axes parallel to e2 and e3 can be 
considered as generators for the 222 and mmm point groups (excluding the 
inversion centre). Thus in this case the symmetry constraints on the elastic 
constants are the sum of those already found for the monoclinic system, plus 
those due to the twofold axis parallel to e3. Such a rotation transforms the 
indices of vectors ei according to: 1 + -1, 2 + -2, 3 + 3, and the Voigt 
condensed subscripts according to: 1 + 1, 2 + 2, 3 -, 3, 4 + -4, 5 + 
-5, 6 + 6. Following the same reasoning as before, this implies that all cpq 
components with only one index equal to either 4 or 5 must have zero value. 
By combining that result with the conditions found previously for invariance 
to a rotation parallel to e2, one obtains that the elastic constants which may 
differ from zero are only ell, cz2, c ~ ~ ,  c12, C13, C23, c,,, c ~ ~ ,  C6+ This can be 
easily shown to be true for point group mm2 as well, and then holds for the 
whole orthorhombic system. 

The symmetry restrictions on the components of the elasticity tensor c 
(Voigt's notation) are summarized in Table 9.4 for all crystal point groups. 

Examples and applications 
A list of experimental values of elastic constants is given for some inorganic 
and organic crystals in Table 9.5. As an example of numerical application, 
let us consider the case of anhydrite, CaSO,. For orthorhombic symmetry 
the orthonormalization matrix has the diagonal form 

Then by means of (9.20), and using the Voigt notation, the following 
expressions are obtained for the strain components related to changes of 
lattice constants: 

ql = $ [ ( ~ ' / a ) ~  - 11, q2 = $[(brlb)2 - 11, q3 = $[(C'/C)~ - 11, 

77, = $(bllb)(c'lc) cos a ' ,  qs = 4(a1/a)(c1/c) cos p' ,  
q6 = $(alla)(b'lb) cos y'. 

We want to apply, for instance, a uniaxial compression of 1 GPa 
(= lo9 N mT2) to a crystal of CaSO, along the x crystallographic direction, 
and to determine the corresponding deformation. The stress tensor takes 
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Table 9.4. Elastic constants and crystal symmetry 

Table 9.5, Independent values of elastic stiffnesses c,, (GPa) and compliances s,, 
(TP~C') of some crystals (Landolt-Bornstein Tables, 1983) 

MgO CaCO, CaSO, (C&.)&O CaS0,.2H20 C,,H, 
periclase calcite anhydrite benzophenone gypsum naphahalene 
cubic trigonal orthorhom. orthorhom. monoclinic monoclinic 

p q c  s c s C S C S C S C S 
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the form z = [-1 0 0 0 0 0] GPa, and, by using (9.32) or (9.35), the strain 
components are obtained: q = [-0.011 0.00076 0.00128 0 0 01. Taking 
into account the above relations between q components and lattice 
constants, the unit-cell edges of anhydrite undergo changes of -1.10 per 
cent (a), +0.08 per cent (b), +0.13 per cent (c). The mechanical work per 
unit volume required to perform this deformation can be calculated by 
(9.36), yielding a value of 5.5 MJ m-3. Let us consider now an isotropic 
compression of 1 GPa of the same crystal, corresponding to the stress 
z = [-1 -1 -1 0 0 0] GPa. Again, by (9.35) we obtain the resulting 
deformation: q = [-0.00896 -0.00344 -0.00675 0 0 01, corresponding to 
relative decreases of the a, b, c cell edges by -0.90 per cent, -0.34 per 
cent, and -0.68 per cent, respectively. The energy per unit volume amounts 
to 9 . 6 ~ ~ m - ~ ,  and the relative volume decrease is -1.9 per cent 

qq = -0.0192). This value could also have been computed by deriving 
the volume compressibility /3 = 0.01915 ( G ~ a ) - l  by (9.37), which gives for a 
pressure of 1 GPa the same volume contraction as that calculated 
previously. 

Piezoelectricity 

Some physical properties of crystals are expressed by a relation between a 
vector and a second-rank tensor, rather than between two vectors or 
between two second-rank tensors, as have been considered until now. If the 
dependence between the components is linear, the relative coefficients 
represent a third-rank tensor. This type of third-rank tensor is different 
from that examined previously (cf. the electro-optical effect), which 
expresses a second-order dependence between the components of two 
vectors. 

In piezoelectric crystals, by applying a mechanical stress z an electric 
dipole moment (per unit volume) P arises, whose components P;: are related 
linearly to the stress components: 

The dihk coefficients are called piezoelectric constants (or moduli), and, as 
they obey the transformation rule (9.7), represent the third-rank tensor of 
piezoelectricity d.  On the basis of simple thermodynamic arguments, and 
taking into account the symmetry of the z tensor, the piezoelectric constants 
dihk can be proved to be invariant with respect to an exchange of h and k 
subscripts: dihk = dikh. Thus only 18 out of 27 components of tensor d are 
independent. 

From a microscopic point of view, piezoelectricity is a polarization of the 
crystalline medium due to displacements of ions from their equilibrium 
positions, by action of an external stress field. In this case the P vector is 
associated with an ionic polarization produced by the second-rank tensor z, 
while in pyroelectric or ferroelectric crystals P is due to a quite spontaneous 
ionic polarization, and in normal dielectrics to a mainly electronic polariza- 
tion induced by the electric field vector E. Besides the direct piezoelectric 
effect (9.39), also the inverse effect is observed: this arises when an electric 
field E applied to the crystal produces a deformation represented by the 
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second-rank strain tensor q .  Thermodynamics demonstrates that the inverse 
piezoelectric effect is a necessary consequence of the direct effect, and that 
the coefficients relating linearly the q and E components are the same 
piezoelectric moduli dihk which appear in (9.39): 

As in the cases of second- (z, q) and fourth- (c, s) rank tensors, also for 
the third-rank tensor d the number of subscripts can be reduced using the 
contracted notation of Voigt. Of course only the second and third subscripts 
of dihk components, i.e. the pair of indices referring to the c or q 
components, are affected by contraction; the first subscript, relative to 
components of vector P or E ,  is not involved. Similarly to what is done for 
the strain tensor q ,  coefficients equal to 2 have to be introduced in the shear 
components in order to have the relations 

6 3 

P, = C diptp and rl, = C dipEi 
p = l  i = l  

satisfied: dil = dill, di2 = di2,, di3 = di33, di4 = 2diZ3, di5 = 2di13, di6 = 2diI2. 
According to Voigt's notation, the piezoelectric tensor d is represented 
simply by a 3 x 6 rectangular matrix with two-subscript components dip 
( i = l , . .  . ,  3 ; p  = 1 , .  . . ,  6). 

Symmetry properties of the piezoelectric tensor 
As the piezoelectric tensor is a matter tensor, it must be invariant with 
respect to symmetry operations of the crystal point group. Restrictions on 
the values of d, components according to the crystal symmetry can be 
derived by a method similar to that used in the case of elastic constants. 
First, it can be shown that centrosymmetric crystals are never piezoelectric. 
The action of the inversion centre operation leaves the centrosymmetric 
crystals and the stress tensor c unchanged: on the other hand, the vector P 
is reversed, changing its sign. Of course the same inversion operation can 
produce either a vector P or a vector -P only if P = 0. The same situation 
was found for any property relating a polar vector to an even-rank tensor, 
which can thus be observed only in non-centrosymmetric crystals. 

Let us now consider a twofold axis parallel to the e2 vector of the 
Cartesian basis: this corresponds to the point group 2 of the monoclinic 
system, in the standard orientation. The symmetry operation causes the 
indices of vectors el, and also of Cartesian coordinates, to transform 
according to: 1 + -1, 2 + 2, 3 + -3. In Voigt's notation, the contracted 
subscript changes as: 1 -+ 1, 2 + 2, 3 + 3, 4 + -4, 5 + 5, 6 + -6. As 
the components of the third-rank tensor d transform as products of three 
coordinates with corresponding indices, using Voigt's convention we obtain 
that the quantities d, change sign for a rotation of 180" about e2 in the case 
of dll,  dl,, dl37 d15) d24) d26, d31, d32) d33, d3* But, since by symmetry the 
same components cannot change, they must necessarily be equal to zero. 
The form taken by tensor d in point group m is different from that shown in 
point group 2, otherwise than the tensor c of elasticity which had a unique 
form for all monoclinic point groups. A mirror plane perpendicular to e, 
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transforms the i index of d ,  as 1 += 1, 2 + -2, 3 + 3, and the contracted 
p index as 1 +- 1, 2 +- 2, 3 -+ 3, 4 + -4, 5 + 5, 6 +- -6. Therefore, 
repeating the previous reasoning shows that the components dl4)  dl6 ,  dZ1 ,  
dZ2,  d23j dZs,  d34, d36 must be zero. 

When the generators of the point group are more than one, the 
constraints on the dip components imposed by all the corresponding 
symmetry operations must be satisfied at the same time. In the orthorhom- 
bic system, the non-centrosymmetric point groups are 222 and mm2. The 
former group has two twofold axes, parallel to e2 and to e3 for instance, as 
generators; by the previous methods the axis parallel to e3 can be shown to 
require that the components d l , ,  d I 2 ,  d l3 ,  d l6 ,  d21, dZ2,  d Z 3 ,  dZ6)  d34, d35 be 
zero. Thus by combining these restrictions with those imposed by the 
symmetry axis parallel to e2, we find that in point group 222 only the 
piezoelectric components dl4 ,  dZs ,  and d3, can differ from zero. Analog- 
ously, in point group mm2 the symmetry constraints of the twofold axis 
parallel to e3 can be combined with those of the mirror plane normal to e2,  

Table 9.6. Piezoelectric tensor and crystal symmetry 
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yielding the result that the only components of tensor d which have 
non-zero values are dI5) dZ4) d31, d3Z) d33. By similar reasoning the 
conditions imposed by symmetry on the piezoelectric moduli can be derived 
for all other non-centrosymmetric point groups. In particular, it should be 
remarked that in the cubic point group 432 all dip values turn out to be zero: 
so this crystal symmetry, though lacking the inversion centre, is forbidden 
for piezoelectric crystals. The forms taken by the d tensor in all permitted 
point groups are shown in Table 9.6. 

Crystal defects 

In previous chapters, some properties of the crystalline state were presented 
and discussed on the basis of a simplified model, the ideal crystal, relying 
upon the fundamental assumption of an atomic structure with perfect 
translational periodicity. A large number of very important crystal pro- 
perties can be accounted for in such a way: for example, the diffraction of 
X-rays, electrons, and neutrons, the main aspects of dielectric and optical 
behaviour, and most features of electronic and thermodynamic properties. 

However, some crucial phenomena of crystalline solids can not be 
explained at all by the perfect crystal model. First, the mechanical 
behaviour in non-elastic conditions. The force per unit surface required to 
break brittle crystals (break modulus), and the energy necessary to produce 
a plastic deformation in ductile crystals have experimental values lower by 
several orders of magnitude with respect to theoretical values calculated on 
the basis of the perfect crystal model. The maximum shear stress which an 
ideal crystal can withstand in elastic conditions is estimated to be about 
K1100, where K is the elastic bulk modulus: on the other hand, in real 
crystals stresses of K/105 are sufficient to start plastic slip processes. Second, 
all transport phenomena in crystals can not be understood by a perfectly 
ordered lattice model, where all atomic sites are occupied. This includes 
very important processes such as diffusion, which is involved in all chemical 
or phase transformations in crystalline solids, and the electrical conductivity 
due to ionic motion within the crystal structure. Furthermore, several 
particular features of electronic, spectroscopic, and thermal behaviour of 
real crystals are not accounted for by the perfect crystal model. 

Thus the deviations from ideality, or defects, have to be examined in 
detail in order to build up a more general model: the real or defective 
crystal. Two classes can be distinguished, point defects and extended 
defects. The former ones are a violation of translational symmetry in a 
single lattice site: for instance, the absence of an atom from its expected 
position (vacancy), or the presence of an atom in an unexpected position 
(interstitial). Extended defects, on the other hand, break the lattice 
periodicity by relating two portions of the crystal, each of which is perfect in 
its interior, in a 'wrong' way. The misfit may involve an extended part of a 
plane, and in this case we have a planar defect (e.g. stacking faults in layer 
structures); or it may involve just a region closely surrounding a line, so that 
we speak of a linear defect or dislocation. Extended defects are weak points 
of the crystal, from a mechanical point of view, and are then responsible for 
plastic behaviour and for the lower observed strength with respect to 
theoretical values. Point defects, on the other hand, provide vacant lattice 
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sites which make atomic motion possible in crystals, and consequently 
diffusion and ionic conduction phenomena. The two kinds of defects are not 
quite independent of each other: it will be shown below that extended and 
point defects may interact strongly, so that the defective behaviour of 
crystals is actually a single field of investigation. 

Experimental methods 

Methods for direct observation (e.g. microscopy techniques) can be applied 
to extended but generally not to point defects, as these usually have 
dimensions smaller than the limit of resolution of the best instruments. 
Transmission electron microscopy (TEM) is the experimental technique best 
suited to observation of extended defects; in the case of high-resolution 
instruments, the resolution power can reach 2-3 A (HRTEM). An electron 
beam accelerated by a potential of 100 kV is associated with a de Broglie 
wave of wavelength A = h l p  = 0.037 A, where h  is the Planck constant and p  
is the linear momentum of electrons (cf. p. 185). Such a small wavelength is 
consistent with a much higher resolution than can be attained by conven- 
tional optical microscopy (not better than lo4 A for monochromatic green 
light). A system of electromagnetic lenses allows the electron beam to be 
focused on to the sample and on to the fluorescent observation screen, 
analogously to what happens with light in an optical microscope. The 
regions of the crystal which contain extended defects give rise to changes of 
intensity of the transmitted beam (effect of 'contrast'), so as to visualize the 
defects themselves. 

A scheme of the optical path of a TEM is shown in Fig. 9.8. The beams 
which are scattered by the sample at small angles (1 to 2') to the transmitted 
beam are focused by the objective lens to form a diffraction pattern at its 
back focal plane. By properly focusing the intermediate and projector lens = 
system, a magnified image of the back focal plane of the objective lens is 
projected on the viewing screen. The intermediate aperture can limit the 
sample area from which the diffraction pattern is obtained, so as to explore 
very small portions of the specimen (selected area diffraction mode). In the 
imaging mode, the aperture at the back focal plane of the objective lens is 
inserted in order to block all diffracted beams and let out the transmitted 
beam only (bright-field technique); alternatively, all but a single diffracted I 
beam are blocked by the aperture (dark-field technique). Intermediate 
methods are based on selection of a number of diffracted beams, which 
recombine at the image plane giving a contrast contributed only by the 
corresponding diffracting directions. 

Important sources of errors in operating conditions are due to the 
spherical aberration of the objective lens and to an incorrect focusing of the 
objective lens. The spherical aberration error causes a slight displacement 
A = C,a3 of points on the image plane. cx (rad) is the maximum angle of 
electron scattering which can pass through the objective lens (effective 
aperture of the lens); C, is the coefficient of spherical aberration (==focal 

(a) (b) 
Fig. 9.8. Optical path of a transmission electron 

length, of order 1-3 mm). Taking into account the Rayleigh formula for the microscope: (a) selected area diffraction mode; 
resolution of the instrument (R is the size of the resolved object): (b) imaging mode. (1) Specimen; (2) objective 

lens; (3) back focal plane of objective lens; (4) 

0.61A first intermediate image plane; (5) intermediate 
R =-- lens; (6) second intermediate image plane; (7) 

0 projector lens; (8) viewing screen. 
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Fig. 9.9. Lang method for X-ray topography: (a) 
transmission mode; (b) back-reflection mode. S, 
shield; P, photographic plate; C, crystal. 

it appears that as a  increases the resolution improves, but the aberration 
error A becomes larger. Thus an optimum intermediate lens aperture a  
would minimize both R and A, and this corresponds to aop,x ( A ~ c ~ ) " ~ ,  

314 114 
AoptxA Cs . 

The only drawback of the very powerful TEM method is the need for a 
very thin sample (not thicker than about 2000 A), because of the low 
penetration of the electron beam into matter. Clearly such thin crystals or 
regions of crystals may only have a very small area, so that defects can not 
be observed on a large scale. A different technique which is not affected by 
this disadvantage is X-ray topography. The diffracted intensity of a very 
strong reflection varies locally in crystal regions where extended defects are 
present; thus a direct image of the defect structure of the crystal can be 
obtained, similarly to what occurs in electron microscopy. However, in 
X-ray topography the resolution is much smaller, so that the density of 
defects can not be very high. On the other hand, the sample is a large single 
crystal and then an extended area of the sample can be investigated. Thus 
the two techniques of X-ray topography and electron microscopy appear to 
be quite complementary. 

The most widely used topographic technique is the transmission Lang 
method (Fig. 9.9). A collimated X-ray beam is allowed to pass through a 
portion of the crystal, which is oriented for Bragg reflection from a 
particular set of planes. The directly transmitted beam is blocked by a 
shield, and the diffracted beam is recorded on a photographic plate. The 
whole crystal is either immobile (section topograph), or is scanned by 
translating it slowly together with the plate (traverse topograph). Very thick 
samples should be avoided, to prevent too large an absorption; otherwise, a 
back-reflection instead of transmission technique can be used, so that only 
the surface crystal area contributes to diffraction. Dislocations and other 
extended defects are revealed by diffraction contrast, which is caused by 
differences of intensity of the diffracted beam from perfect and from 
distorted portions of the crystal. A more detailed discussion of applications 
of the Lang method to the study of crystal defects is presented after 
introducing dislocations on p. 630. 

An older experimental method, which, however, can be very useful and 
informative, applies particularly to the study of line defects and is based on 
etching of the crystal surface by chemical or electrolytic methods. At the 
site where a dislocation meets the surface an etch pit is formed, revealing a 
number of details about the nature of the defect. 

Indirect experimental techniques have usually to be used to investigate 
point defects. For instance, simple (but accurate) measurements of the 
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unit-cell volume and of the crystal density may give important indications 
about the number and nature of point defects present in the crystal. 
Another physical quantity which is closely related to such defects is the 
electrical resistivity, particularly in ionic crystals where the very small 
conductivity observed is entirely due to the thermally activated motion of 
ions through the crystal. Ionic transport is made possible by vacancies, so 
that resistivity measurements as a function of temperature are able to 
characterize many features of point defects in the crystal. Other very 
important techniques are based on resonance phenomena (e.g. electron spin 
resonance or ESR) which may be particularly sensitive to impurities present 
at the concentration level of point defects. These topics will be considered 
in more detail in the following sections. 

Planar defects 

The most important planar defects are observed in layer structures and are 
called stacking faults. Let us examine the simplest case of layer structures, 
already mentioned on p. 429: the cubic and hexagonal close-packed 
arrangements. A single close-packed layer is shown in Figs. 9.10 and 9.11; it 
corresponds to a (111) or a (001) crystallographic plane in the cubic or 
hexagonal case, respectively. Vectors are shown along the important lattice 
directions lying on the plane; for example, in the cubic case (Fig. 9.10) the 
arrow along [I121 means the vector a + b - 2c, and is denoted by the 
conventional notation a[llZ]. The stacking sequences of layers 
ABCABC. . . (cubic) and ABAB. . . (hexagonal) are projected on to the 
plane (110) (cubic) or (130) (hexagonal) normal to the close-packed layers 
and containing the [112] (cubic) or [210] (hexagonal) direction (Fig. 9.12). 
The three positions A, B, C of a general layer are related to one another by 
translation vectors equal to a[113]/6 (cubic) or a[210]/3 (hexagonal). Full 
circles represent atoms belonging to different layers, linked by thick lines to 
emphasize the stacking sequence. 

A stacking fault occurs when a single layer takes a different position with 
respect to that required by the periodic sequence. This corresponds to a 

Fig. 9.10. Closed-packed (1 11) atomic layer of an 
FCC structure. The cubic cell and the significant 
lattice directions on the plane are outlined. 
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Fig. 9.11. Closed-packed (001) atomic layer of an 
HCP structure. The hexagonal cell and the 
significant lattice directions are outlined. 

Fig. 9.12. Stacking sequences of perfect FCC 
(left) and HCP (right) closeIpacked structures 
shown on the (110) and (120) planes, 
respectively. 

rigid translation of a crystal portion by the a[112]/6 vector (FCCcase) on 
the closed-packed plane of the fault (Fig. 9.13(a)): the stacking sequence 
becomes ABCAICABC. . . . A physical process which can produce such a 
defect is a plastic glide caused by a shear stress applied to the crystal; hence 
the name of deformation stacking fault given in this case. Another process, 
however, can give rise to the same type of fault: the removal of a single 
layer from the stacking sequence (a layer of type B in Fig. 9.13(a)), caused 
by a condensation of vacancies on the corresponding plane. This is a first 
example of correlation between extended and point defects. An example of 
a deformation stacking fault for the hexagonal close-packed structure is 
shown in Fig. 9.13(b). In this case, by removing, say, an A-type layer the 
sequence ABABIBABAB. . . would be obtained, with an unstable con- 
figuration due to two equal B planes facing each other. Then the upper B 
layer shifts by the vector a[210]/3 so as to take the C position, attaining the 
stacking sequence ABABICBCB. . . . 

It may also happen that layers following the fault plane are stacked in a 
symmetry-related way to those preceding the fault: we then have the 
sequence ABCABIACBA. . . (Fig. 9.14(a)), and the fault (corresponding to 
a twin boundary) is called a growth stacking fault, because it occurs typically 
during the process of crystal growth. 

1 r l l l l  rllolJ 

C  

B  

A  

C  

B  

A  
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A B C A B C A B C  [1121 



Physical properties of crystals 1 627 

A B C A B C A B C  A B C A B C A B C  Fig. 9.13. Deformation stacking faults in  FCC (a) 

(a) (b) and HCP (b) close-packed structures. 

Other kinds of stacking faults in closed-packed structures are generated 
by a condensation of interstitial point defects, rather than vacancies as 
considered before. This corresponds to inserting an additional layer in the 
stack. An example for the FCC lattice is shown in Fig. 9.14(b), with the 
stacking sequence ABCAICIBCAB. In this case the fault is referred to as 
an extrinsic fault, characterized by two breaks in the stacking sequence and 
by an extra plane not belonging to either of the lattice patterns on both 
sides of the fault. On the other hand, the deformation stacking fault (Figs. 
9.13(a) and (b)) is also called an intrinsic fault, with just a single break in 
the continuing pattern of the stacking sequence. 

All the examples of stacking faults discussed above refer to the simplest 
cases of layer structures, the FCC and HCP lattices. However, similar 
defects are also observed in more complicated structures built up by parallel 
layers related by a finite number of possible translations or rotations (cf. 
micas, clays, etc.). When the periodic order of the stacking sequence is 
violated by just a single layer, then a planar defect occurs. The basic 
processes are always the following: removal of a layer (condensation of 
vacancies), insertion of a layer (condensation of interstitials), plastic 
deformation by glide of atomic planes by a fraction of lattice vector. In Figs. 
9.15 and 9.16 the images of extrinsic stacking faults in muscovite mica 
KA12(Si,A1010)(OH)2 are shown, obtained by high-resolution transmission 
electron microscopy. The structure of micas (cf. p. 455) displays 10A thick 
(001) composite layers stacked in a variety of ways. A single layer is built up 

Fig. 9.14. Growth stacking fault (twin boundary) 
(a) and extrinsic stacking fault (b) in  an FCC 
close-packed structure. 
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Fig. 9.15. An image of an extrinsic stacking fault 
in mica muscovite, by high-resolution electron 
microscopy. (Courtesy of M. Amouric.) 

by two (Si, Al)04 tetrahedral sheets sandwiching cations (typically A13+ or 
~ g ~ + )  in octahedral coordination. Adjacent layers are separated by sheets 
of alkali cations. The unit cell of ordinary monoclinic muscovite contains 
two layers, so that the d(ool, spacing amounts to 20 A. However, varieties of 
muscovite are known with one (d,,,, = 10 A) and three (d(,,, = 30 A) layers 
per unit cell. Figure 9.15 shows a single three-layer slab in a matrix of 
two-layer structure, giving rise to a fault in the regular stacking sequence. In 
Fig. 9.16 all slabs are one-layer (10 A), but the layer corresponding to F is 
rotated by 120" around c* with respect to the normal orientation, so that a 
fault again occurs. 

Line defects: dislocations 

A slip process, induced by shear stress, can give rise not only to stacking 
faults in layer structures, but also to line defects in any type of crystal. We 
want to consider a particular crystallographic plane, usually characterized by 
high atomic density, as a slip plane. Now let a portion of the crystal glide 
over the other one by a lattice vector, so that the two portions superpose 
perfectly after slipping. This differs from the process generating a planar 

Fig. 9.16. HRTEM image of stacking fault in 10 A 
muscovite. (Courtesy of M. Amouric.) 
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Fig. 9.17. Perfect crystal (left) and crystal with a 
, slip plane but with perfect lattice continuity , 

,' (right). 

Fig. 9.18. Edge dislocation (left) and screw 
dislocation (right). The Burgers vector b a n d  the 
dislocation line At3 of length la re  emphasized. 

fault, where glide occurs by a fraction of lattice vector breaking the lattice 
continuity over the whole slip plane. In the present instance if the slip plane 
cuts the whole crystal, no defect is created (Fig. 9.17). On the other hand, if 
only a part of the slip plane, limited by a boundary line, is involved in the 
glide, then that line separating the slipped from the unslipped portion of the 
crystal is a defective region: a dislocation. 

Thus a dislocation is a linear defect defined completely by the cor- 
responding curve (which is a planar line of length 1 and then determines the 
slip plane as well), and by the lattice vector coplanar with it which measures 
the magnitude and direction of slip (Burgers vector b). A perfect superposi- 
tion of lattice points of the two slipped portions of the crystal is observed far 
from the dislocation line, while close to it the lattice periodicity fails. It is 
important to examine the orientation of the Burgers vector with respect to 
the dislocation line. Two limit cases are observed for a straight line: the 
edge dislocation, with b normal to the line, and the screw dislocation, with b , 
parallel to the line (Fig. 9.18). If the dislocation line is a general curve , 
(Fig. 9.19), then the dislocation character (edge or screw) changes from 

' 
C 

point to point, according to whether the unit vector 1 tangent to the line in a b 
given point is normal or parallel to the Burgers vector; for an intermediate Fig. 9.19. Genera, dislocation with mixed edge- 
angle, the dislocation is said to have a mixed character. screw character. 

The Burgers circuit 
Let us now try to give a more precise definition of the Burgers vector, 
which, as was shown before, is unique and constant for a given dislocation, 
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Fig. 9.20. Burgers circuits for an edge 
dislocation (left), and for the corresponding 
perfect crystal (right). 

Fig. 9.21. Burgers circuits for a screw dislocation 
(left), and for the corresponding perfect crystal 
(right). 

independent of the position along the dislocation line. A Burgers circuit is 
defined as a closed path that starts from a lattice point and comes back to 
the same point by encircling the dislocation line without crossing it. Now if 
the defect is removed, the previous Burgers circuit is modified so that it is 
no longer a closed line: the part exceeding or missing with respect to a loop 
is a lattice translation called the Burgers vector b of the dislocation. In Figs. 
9.20 and 9.21 the Burgers circuits relative to an edge and a screw 
dislocation, respectively, are shown. 

It was stressed on p. 626 that planar defects can arise not only by a slip 
process, but also by a condensation of point defects (vacancies or 
interstitials). This is true for dislocations as well. A condensation of 
vacancies corresponds to removing a lattice half-plane, while in the case of 
interstitials a new half-plane is inserted. Both processes lead to the 
formation of an edge dislocation. 

X-ray topography of dislocations 
An example of dislocations detected by X-ray topography in quartz is shown 
in Fig. 9.22. The nature of contrast caused by line defects in X-ray 
topographs is generally quite complex, as can be seen in the magnified 
images of two dislocations in a silicon crystal (Fig. 9.23). The contrast is 
contributed by three different superposing effects: 

1. A direct image, due to diffraction of the X-ray beam by the defective 
crystal region close to the dislocation line; it is accounted for by the 
simple kinematical (or geometrical) theory of diffraction. 

2. A dynamic image, related to the coupling of the reflected and incident 
waves into wave fields with directions comprised between those of the 
primary and diffracted beams (Borrmann fan), as required by the 
dynamical theory of diffraction. The dynamic image is the shadow cast 
by the dislocation line in the fan of these wavefields. 
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Fig. 9.22. X-ray topograph of quartz 
reflection), showing a great number 
dislocations. (Courtesy of A. Zarka.) 

3. An intermediary image, consisting of fringes due to new wave fields 
which are created by interaction of the dynamical wave fields with the 
defective region. When the crystal and photographic plate are translated 
(traverse topograph), the direct images form projections of the disloca- 
tions in the reflected direction (black lines). 

In the section topograph of Fig. 9.23, the direct images are simply black 
points; the dynamic images are thick white lines, and the intermediary 
images a series of black fringes. Knowing both the direct and dynamic 
images, it is possible in most cases to reconstruct the position of the 
dislocation line within the crystal. 

Moreover, X-ray topography is very useful for determining the direction 
of the Burgers vector of the line defect. Generally speaking, any crystal 
defect is invisible in a given Bragg reflection if its displacement field has no 
component parallel to the Bragg vector rH. Let u be the vector field of 
displacement from regular lattice periodicity caused by a dislocation of the 
Burgers vector b and line vector 1 ;  the invisibility condition is then 
u r, = 0. It can be shown that, in a general case and under the 
approximation of isotropic elasticity, there are non-zero displacement 
components of the defect parallel to b, to 1 X b and to 1 X b X 1, 
respectively. For a pure screw dislocation, where b is parallel to 1, we have 
that 1 X b = 0 and 1 X b X 1 = 0, and thus there is a single invisibility 
condition b . rH = 0; this corresponds to complete invisibility of the disloca- 
tion for the zone of all Bragg planes which contain 1. In the case of a pure 
edge dislocation, b is normal to 1 and then is parallel to 1 X b X 1:  therefore 
we have two invisibility conditions, b . rH = 0 and 1 X b . r~ = 0, 
corresponding to the single Bragg plane orthogonal to the line vector 1. 

In principle, mixed dislocations always have a u component parallel to rH 
and then are never invisible. However, the displacement component parallel 
to b is dominant in causing diffraction contrast, at least when the absorption 
is low, so that in these conditions all dislocations are hardly visible if 
b . r, = 0. Besides, it can be shown that the width and the integrated excess ~ ~ ; ~ ~ ~ ; ~ \ ~ v s i ; f ~ ~ ~ , n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  ,,stal 
density of the dislocation image on the topograph are approximately face( l l 1 ) .  (cour tesyof~.Auth ier . )  
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proportional to b rH and (b . rH)2, respectively. The Burgers vector 
direction of a given dislocation can thus be determined unambiguously by 
choosing properly the diffraction conditions in the X-ray topograph. By 
using a number of Bragg reflections, the differences in diffraction contrast of 
the dislocation image allow us to detect the Bragg vectors r, for which 
b . rH = 0, and then the direction of b. From measurements of the image 
width it is also possible to derive or to estimate the magnitude, b, of the 
Burgers vector, obtaining a complete characterization of the line defect. 

Energy of a dislocation 
I 

Dislocations form, move, and interact with one another in a crystal 
according to the energy of elastic distortion of the lattice associated with 
them. It is thus important to analyse the elastic strain around line defects 
using the basic ideas of crystal elasticity developed on p. 614, and to find out 
which factors control the dislocation energy. The simplest case is that of a 
pure screw dislocation, which can be represented for convenience as a shear 
deformation of a cylindrical ring of isotropic material (Fig. 9.24). A radial 
slit LMNO is cut parallel to the z axis, and the free surfaces are displaced 
rigidly with respect to each other by the distance b in the z direction (cf. 
Fig. 9.18(b)). Owing to the symmetry of the problem, cylindrical r, q, z 
rather than Cartesian coordinates are best suited to represent the strain and 
stress field in the ring. The only non-zero strain component turns out to be 
the shear term e,, = b/2nr. The corresponding stress is z,, = G E ~ ,  = 
Gb/2nr, where G is the shear modulus (the equivalent of a shear 
component of the elasticity tensor). 

It is easy to calculate the strain energy per unit volume W of the 

Fig. 9.24. Elastic strain of a cylindrical ring 
deformed ring as half the product of stress x strain: 

simulating the lattice distortion of a screw 
dislocation. w = ~t,,~,, = $ G ( b / 2 n ~ ) ~ .  (9.41) 

As the radius r of the cylindrical ring varies between the inner r, and the 
outer rl values, it is necessary to integrate the above expression in order to 
obtain the total deformation energy per unit length of the ring. For a section 
of thickness dr and unit length, the volume is 2nr dr; thus the overall energy 
is given by: 

1 '-1 
G (b / 2 n ~ ) ~ 2 n r  dr = - Gb2 log - . 

4n ro 

This formula represents the elastic energy per unit length of a screw 
dislocation, neglecting the contribution of the dislocation core (r < ro) where 
strains are very large and the elasticity theory fails. However, estimates 
suggest that the core energy is only a small fraction of the elastic energy, 
owing to the much smaller crystal volume involved in the core distortion. 
The ro length is of the order of 10-~m,  rl is of the order of the crystal 
dimensions, and a typical value of the shear modulus G is 4 x 10lON m-2; 
for a Burgers vector of, say, 2.5 x 10-lo m, and a crystal of 0.01 m the 
energy of a single screw dislocation amounts to 3.2 x lop9 J m-'. 

The energy per unit length of an edge dislocation is given by expression 
(9.42) divided by 1 - v, where v = (3K - 2G)l[2(3K + G)] is Poisson's ratio 
( ~ 0 . 3 ) .  This is related to the fact that not only shear but also compressive 
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stresses are involved in edge dislocations; thus the bulk elastic modulus K in 
addition to G appears in the corresponding energy expression. 

An important aspect of eqn (9.42) is that the dislocation energy is 
proportional to the square of Burgers vector magnitude b. As a conse- 
quence, for a dislocation with a large value of b it is energetically more 
favourable to separate into several dislocations characterized by b values as 
small as possible (i.e. equivalent to a lattice spacing). Partial dislocations 
(cf. p. 634 below) arise from splitting of a normal dislocation so as to attain 
Burgers vectors shorter than a lattice spacing, in association with a stacking 
fault. 

Motion and interaction of dislocations 
An important feature of dislocations is that they can move through the 
crystal, as a consequence of applied stress, of thermal effects, and of change 
of point defect distribution. The simplest kind of motion is the conservative 
glide, which is equivalent to a shift of the dislocation line in a direction lying 
within the slip plane. This corresponds to displacing the strained part of the 
crystal by a glide on that plane. 

In a pure edge or screw dislocation, the straight dislocation line (of length 
1) moves in a direction perpendicular to itself on the glide plane, covering a 
distance x. Thus the final result of the process would be that the line 
emerges on the crystal surface with disappearance of the defect (Fig. 9.17), 
and with an overall slip of a crystal portion by the length b of the Burgers 
vector. Therefore, the glide process can be considered to be driven either by 
a force F' applied to the moving portion of the crystal through the distance 
b, or by a force F applied to the moving dislocation through the distance x. 
The former one is evidently equal to tlx, the product of stress (=force per 
unit surface) by the area; the latter can be derived by equating the work 
performed by the two forces: 

W = tlxb = Fx, 

whence: 
F = zbl. 

So the force per unit length experienced by a dislocation when an external 
stress z is applied to the crystal is simply the product of stress by the length 
of Burgers vector. 

If two screw dislocations are close enough to each other, the stress 
z, = GbI2nr associated with one of them will act on the other as if it were 
an external stress. Thus r in this case is equal to the distance d between the 
two dislocations, and substituting the expression for t into (9.43) a formula 
is derived for the force per unit length between the two line defects: 

Using the G and b values assumed in the numerical example on p. 632, the 
interaction force per unit length between two dislocations at a distance of 
100 A turns out to be 0.04 N m-'. It should be noticed that the force (9.44) 
decays very slowly with distance, according to the l l d  dependence, so that 
the interaction between dislocations is quite long range. 



634 1 Michele Catti 

A kind of non-conservative motion of dislocations, which must be 
thermally activated, is the climb. This is typical of edge dislocations, when 
the line moves in a direction normal to the slip plane. Such a process is due 
to a condensation of vacancies or interstitials along the dislocation line. In 
the first case the extra lattice half-plane is eroded, with climbing of the line 
on the same side with respect to the slip plane. In the second case the 
half-plane is extended beyond the slip plane, and the dislocation line climbs 
on the other side of that plane. 

Evidently, a dislocation line cannot end within the crystal: it either forms 
a closed loop, or joins another dislocation, or ends on the crystal surface. 
Thus in general a network of dislocations (Frank net) is present in the 
crystal, with its extremities ending on the surface. When three or more 
dislocations meet in a point (a node of the network), then the sum of their 
Burgers vectors can be easily proved to be zero; this result is formally 
analogous to Kirchhoff's law of electrical networks. A global property 
characterizing the network of linear defects in the crystal is the dislocation 
density N, defined either as number of dislocations intersecting a unit area, 
or as total length of dislocations per unit volume; in both cases the quantity 
N is measured in units of cm-'. 

Partial dislocations 
A peculiar type of linear defect is observed in crystals showing layer 
structures, and is closely connected with stacking faults (p. 625). Let us 
consider the close-packed cubic structure: atomic layers (Fig. 9.10) are 
represented by (111) lattice planes (i.e. the system of symmetry equivalent 
planes ( I l l ) ,  ( l l ? ) ,  (1?1), ( i l l ) ) ,  and clearly most processes of plastic glide 
related to formation of dislocations occur on these layers. The shortest 
lattice vector on the (111) plane, a[li0]/2, is the most probable Burgers 
vector for dislocations in this case. Similarly, in a general layer structure the 
layer plane is preferred as slip plane for formation of dislocations. However, 
we have learnt (p. 626) that a slip on these layers by a suitable vector, 
different from a lattice vector, may give rise to a stacking fault. In the FCC 
structure such a vector is typically a[112]/6, translating for instance a B 
layer into a C position, while the whole stack above the slip plane follows it 
(cf. Fig. 9.13(a)). Now if the glide process occurs not on the whole plane 
area, but just on a part of it, then at the border between slipped and 
unslipped portions a linear defect arises. This is called partial dislocation, 
or Shockley partial: it is quite equal to a normal dislocation, except for its 
Burgers vector not being a lattice vector. Thus a stacking fault not 
extending through the whole crystal is bounded by a partial dislocation. If 
the fault occupies a ribbon on the slip plane, then its boundary is formed by 
two partial dislocations, one for each side. In this case the Burgers vectors 
of the two partials have as sum a lattice vector, which is the Burgers vector 
of the unit dislocation sum of the two partials themselves. Let us consider 
an ordinary dislocation with Burgers vector a[li0]/2 on the slip plane (111) 
of an FCC structure (cf. Fig. 9.10); it can be decomposed into two partials 
separated by a stacking fault according to the following relation between the 
corresponding Burgers vectors: 
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It should be stressed that the vector on the left-hand side of the equality is a 
latttice vector, while those on the right-hand side are not; this is consistent 
with the characters of unit and partial dislocations, respectively. The driving 
force of the above dislocation reaction is the minimization of the dislocation 
energy (9.42), brought about by a decrease of the Burgers vector b. 

Small-angle grain boundaries 
- 

In a densely pressed or sintered polycrystalline sample, the different 
crystallites (also called grains) usually have different orientations which may 
be quite random in some cases. Their interfaces are known as grain 
boundaries, and can be considered to be extended surface defects of the 
solid specimen. However, even a single crystal is normally divided into a 
mosaic of crystallites, which are only slightly misoriented with respect to 
one another. So in this case we speak of small-angle grain boundaries for 
the surfaces separating the crystallites. Two parts of a crystal with slightly 
different orientations, separated by a small-angle grain boundary, are 
sketched in Fig. 9.25. The wedge-shaped gap in between tends to be filled 
by portions of lattice planes, giving rise to an array of edge dislocations 
(points P, Q, R) on the surface of the grain boundary. Let 3 be the small 
angle between the surface lattice planes of two adjacent crystallites. The 
points P and R are separated by a distance blsin (312) = 2b13, so that the 
spacing between adjacent dislocations P and Q is simply b lq .  For a very 
small ?) value of 0.1" (= 0.0017 rad) and a Burgers vector of 2.5 x 10-lo m, 
the distance between edge dislocations at the grain boundary turns out to be 
1430 A. 

Point defects 

Besides vacancies and interstitials (intrinsic defects), which have already M 
been mentioned on p. 622, a third kind of point defects should be Fig.9.25. small-anglegrain boundary,showing 
considered. These are impurities, and correspond to substitution of an atom the array of edge dislocations at the interface. 

at a regular lattice site by another atom of a different chemical species 
(extrinsic defect). All such types of point defects are usually observed in 
ionic, covalent, and metal crystals. If the crystal is not monoatomic, it is 
necessary to distinguish between stoichiometric and non-stoichiometric 
compounds. In the first case the defect concentrations of different atomic 
species are related by the constraint of constant ratios between numbers of 
atoms, while this does not occur for non-stoichiometric crystals. Further- 
more, in ionic solids the numbers of point defects concerning anions and 
cations are always constrained by the need for electroneutrality. We shall 
examine stoichiometric ionic crystals in more detail. 

A single vacancy, either cationic or anionic, would violate the crystal 
electroneutrality; thus it must be associated with another vacancy of 
opposite sign, or to an interstitial of the same sign. In the former case we 
have a pair of vacancies of different signs called Schottky defect: in the 
latter one, a vacancy + interstitial pair (Frenkel defect) is observed. Also an 
ionic impurity with different charge with respect to the substituted ion 
introduces an electric unbalance and has then to be compensated by a 
vacancy or an interstitial of the same sign. For instance, a M2+ impurity in a 
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sublattice of A' cations would be accompanied by a vacancy of A+, while a 
A' impurity in a matrix of M2' would require an additional A' interstitial. 

Let us consider the class of alkali and silver halides AX with the NaCl 
type structure. In alkali halides the predominant defects are Schottky 
defects: pairs of A+ and X- vacancies, corresponding to empty sites in the 
two FCC sublattices forming the structure (Fig. 9.26(a)). The missing ions 
have migrated to the external surface of the crystal, or to internal surfaces 
(e.g. grain boundaries in polycrystals) or to extended defects (dislocations, 
stacking faults). Every vacancy is characterized by a relative electric charge 
(called effective charge), which is evidently equal in absolute value and 
opposite in sign to the charge of the missing ion. Thus a vacancy of Na' 
bears an effective charge of -1, and a vacancy of C1- a charge of + l ;  the 
symbols V i  and V; are used, respectively, so that a Schottky defect is 
denoted by the pair V, + V;. The space distribution of positive and 
negative vacancies should not be random, in principle, but is conditioned by 
the mutual electrostatic interaction. Vacancies of opposite signs attract each 
other, favouring the formation of pairs in adjacent positions, or of clusters 
of vacancies with peculiar configurations. However, this tendency increases 
with the concentration of defects, so that for very high dilution of vacancies 
in the crystal their interaction can be often neglected to a first 

fk\ approximation. 

Fig. 9.26. A Schottky defect (pair of cationic 
anionic vacancies) (a) and a Frenkel defect 
(vacancy + interstitial) (b) in the NaCl type 
structure. 

In silver halides AgX, Frenkel defects involving cations are dominant. An 
and Ag+ ion leaves its regular lattice position, corresponding to an octahedral 

hole in the FCC sublattice of X- anions, and occupies an interstitial position 
in a tetrahedral hole (Fig. 9.26(b)). In a sense, the presence of Frenkel 
defects in this case suggests an incipient transformation of the NaCl type 
structure into that of ZnS type, where coordination environments of both 
cations and anions are tetrahedral instead of octahedral. Similarly to 
vacancies, interstitial defects are characterized by an effective charge, 
relative to the regular structure: this is simply equal to the charge of the 
interstitial ion itself, and the defect is denoted by the atomic symbol with 
the i subscript (i.e. Ag?). A Frenkel defect in the AgX halide is symbolized 
by the pair Vi,  + Ag:. 

Thermal distribution of defects 

An important question which should be asked is: why do intrinsic point 
defects form, and which physical variables control their concentration? To 
give an answer, the problem has to be tackled from a thermodynamic point 
of view. The formation at constant pressure of a single vacancy in a 
monoatomic crystal requires a change of enthalpy AH, necessary to remove 
the atom from its lattice site and to bring it to the crystal surface. On the 
other hand, a disorder arises in the crystal due to the random position of the 
vacancy in the lattice. Let N be the number of atomic sites per unit volume, 
and n, the number of vacancies per unit volume in the crystal. As the 
number of ways of distributing the n, defects over the N sites is 
w = N ! / [ ( N  - n,)!n,!], the corresponding increase of configurational en- 
tropy brought about by this disorder is 



Physical properties of crystals 1 637 

The Stirling approximation for the natural logarithm of the factorial 
(log N! = N log N - N) was used; k is Boltzmann's constant. The change of 
Gibbs free energy of the crystal due to the formation of n, vacancies 
includes the enthalpic and entropic effects, according to AG = AH - 
TAS = nvAHv - TAS. At a given temperature T, equilibrium is attained 
when n, is such to make AG a minimum: 

By solving this equation with respect to n,, we obtain the result 
log [n,l(N - n,)] = -AH,lkT; remembering that n, << N (so that N - n, = 
N), the formula relating the equilibrium concentration of vacancies to 
temperature is derived: 

n, = N exp (-AH,/kT). (9.45) 

If the crystal is ionic, the number of cationic vacancies must be equal to the 
number of the anionic ones. Thus it can be easily shown that the 
concentration of Schottky defects as a function of temperature is the 
following: 

n, = N exp (-AHJ2kT). (9.46) 

In the case of Frenkel defects, the corresponding distribution is: 

nF = VNN, exp (-AHF12kT), (9.47) 

where Ni is the number of available interstitial sites per unit volume. 
It should be stressed that the relationships (9.49, (9.46) and (9.47) were 

derived under some simplifying assumptions, the most important of which 
are: 

1. Defects do not interact with one another, and then are distributed in a 
perfectly random way. This holds to a first approximation only when the 
concentration of electrically charged defects is very small. 

2. The contribution to entropy due to atomic vibrations and the depend- 
ence of defect enthalpy on temperature can be neglected. Such an 
approximation is valid for temperatures which are not very high. 

The key significance of the above equations is that formation of intrinsic 
point defects is brought about by an entropy increase, and that their 
concentration changes with temperature according to an exponential law. 

Diffusion 

One of the fundamental phenomena made possible by point defects in 
crystals is the mobility of atoms and ions in the solid state. The process 
concerning mass transport by purely thermal activation, with absence of 
electric fields, is called diffusion. It is governed by Fick's laws, the second of 
which is the following: 

where c is the concentration of the diffusing atomic species at time t and at 
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position x along the diffusion direction in the crystal. By integrating the 
differential equation (9.48) the theoretical concentration profile c (x ,  t )  with 
respect to space and time is obtained. Measurements based on radioactive 
tracers or electron microprobe can give an experimental concentration 
profile: by comparison with the theoretical one, the diffusion coefficient D is 
derived. If the whole procedure is repeated at different temperatures, the 
quantity D can be shown to depend on temperature according to the 
Arrhenius law: 

D = Do exp (-HaIkT), (9.49) 

where Do is a constant factor and Ha is the activation enthalpy of the 
process. 

From an atomistic point of view, diffusion consists of thermally activated 
jumps of atoms or ions from regular lattice positions into empty neighbour- 
ing sites (vacancies). The quantity Ha represents the enthalpy needed by the 
atom to overcome the potential barrier between starting and ending sites. 
Let jumps occur in a random way, n, be the total number of vacancies per 
unit volume, and a the distance between regular site and vacancy; then the 
following expression can be proved to hold for the quantity Do of equation 
(9.49): 

v is the frequency of vibration of the atom attempting to hop, which is 
proportional to the probability of jumping into a neighbouring vacancy; g  is 
a geometrical factor depending on the detailed crystal structure (for a 
primitive cubic lattice, g  = 116). Therefore, Do and the diffusion coefficient 
D are proportional to the concentration of vacancies n,. 

log D A However, the diffusion coefficient D as a function of temperature shows a 
more complex experimental behaviour (Fig. 9.27). Two regions, of high and \ low temperature respectively, can be distinguished: these are characterized 
by quite different slopes of log D versus 1IT. Moreover, in the low- 
temperature region the observed straight line may be shifted up or down by 
changing the crystal sample of. the same substance. The explanation is 
related to the presence of impurities of aliovalent ions, which, as mentioned 

m t r ~ n s ~ c  , \ on p. 635, give rise to vacancies distinct from those due to thermal disorder. 
reg1on 1 lmpur~ ty  

1 \, region For instance, crystals of NaCl can contain small, different quantities of 
" divalent impurities (e.g. ~ n ' +  ions) substituting Na+ cations: then for each 

1 / T  
Mn2+ impurity a vacancy VNa is created in order to keep the electroneutra- 

Fig. 9.27. Arrhenius plot Of log lity. The number of these vacancies is independent of temperature, changes 
versus 1/T, showing the impurity and intrinsic 
regions characterizing diffusion in crystals. from sample to sample, and at low temperature is much larger than that of 

thermal (intrinsic) vacancies. Thus at low temperature (impurity region) the 
quantity n, of eqn (9.50) represents essentially the number of vacancies due 
to impurities and is a constant; the slope of the straight line log D versus 
1 /T is simply Ha, according to (9.49). At high temperature, on the other 
hand, intrinsic vacancies outnumber extrinsic ones (intrinsic region), and 
expression (9.46) for the thermal distribution of Schottky defects must 
replace n, in equation (9.50) for Do. The result obtained for the diffusion 
coefficient D is: 

D = g v a 2 ~  exp (- Ha + k y / 2 ) .  
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Therefore, in the intrinsic region the slope of the line log D versus 1 /T 
equals (Ha+ AHJ2)Ik instead of Halk, and is then larger than the 
corresponding one in the impurity region. 

Ionic conductivity 

Alternatively to the thermally activated process (diffusion), ionic transport 
in crystals is driven by an applied electric field. In this case electric 
conduction based on migration of ions rather than electrons occurs; 
however, the atomistic mechanism always relies upon the presence of point 
defects, just as for diffusion. Generally, the relevant contribution to 
conductivity is given either by cations (e.g. alkali or silver ions) or by anions 
(halide or oxide ions). In either case the conductivity a is proportional to 
the number of charge carriers per unit volume, n, and to the mobility of the 
migrating ion, p (e is the electron charge); for cations: 

By considering the equilibrium condition between the field-induced drift 
current and the opposing diffusion current due to the concentration 
gradient, a very important relationship between mobility and diffusion 
coefficient (Nernst-Einstein equation) can be derived: 

This equation provides a link between the phenomena of diffusion and of 
ionic conductivity. By substitution into (9.52) one obtains: 

If the process occurs in the intrinsic (high-temperature) region of Fig. 9.27, 
where the number of Schottky defects follows Boltzmann's thermal dis- 
tribution (9.46), then eqn (9.51) holds for D and can be substituted into 
(9.54), yielding: 

On the other hand, eqn (9.54) holds in the low-temperature impurity 
region, where the number of vacancies in the expression (9.50) for Do is 
independent of temperature. 

From an experimental point of view, it is much easier to perform 
measurements of electrical conductivity than of diffusion coefficients. Hence 
the importance of this technique for studying the energetics of point defects 
appears clearly: by plotting log a T  against 1 / T  for an ionic crystal, one 
obtains diagrams quite similar to that of Fig. 9.27, showing two straight lines 
with different slopes for the intrinsic and impurity regions. On the basis of 
eqns (9.55) and (9.54), these slopes are equal to (Ha + AHJ2)lk and to 
Halk, respectively. Thus it is possible to derive from these measurements 
both the activation enthalpy Ha for hopping of ions into vacancies, and the 
formation enthalpy of Schottky defects AH,. Results of experiments on 
NaCl give values of 0.68(1) eV for Ha, and 2.30(1) eV for AH,. 
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Appendix 

9.A Properties of second-rank tensors 
Second-rank tensors represent physical laws of linear type in crystalline 
media. A very important class is that of symmetrical second-rank tensors, 
which are characterized by the property yj, = yij for all their components in 
any reference basis. Antisymmetrical tensors, on the other hand, follow the 
rule yji = -yi,, implying that diagonal components are zero (yii = 0). It may 
be shown easily that any tensor can be written as the sum of a symmetrical 
plus an antisymmetrical tensor. Symmetrical tensors are associated to the 
quadratic form: 

a 

which is also the equation of a general second-order surface (a quadric); this 
surface is obviously invariant with respect to a change of reference basis, 
and is thus a correct geometrical representation of the symmetrical tensor y. 

Eigenvalues and eigenvectors 
In order to study the features of the representation quadric (9.A.1), the 
equation Y = AX, or 

yX = AX, (9.A.2) 

should be considered. The solutions of this equation are X vectors which are 
transformed by action of the tensor y into parallel vectors AX; so the 
corresponding directions define axes of isotropy in the crystal. Such 
solutions are called eigenvectors, and the corresponding A values are the 
eigenvalues of the tensor. It is important to stress that eigenvalues (scalars) 
and eigenvectors (vectors) are invariant quantities which do not depend on 
the reference basis; only their components do. The matrix equation (9.A.2) 
is equivalent to a system of three homogeneous linear equations in the 
unknowns XI ,  X,, X3 which admits non-zero solutions if and only if the 
determinant of coefficients is zero: 

det (y - Al) = 0. (9.A.3) 

By calculating the determinant explicitly, an equation of third degree in the 
unknown A is obtained; it can be proved that all its three roots are real 
because y is symmetrical. By substitution of each real eigenvalue A,, A2, A3 
into (9.A.2) the corresponding eigenvectors XI, X2, X3 can be found. One 
of the three linear equations implicit in (9.A.2) has to be rejected, because 
it is linearly dependent on the other two (cf. eqn (9.A.3)); therefore only 
directions and relative (not absolute) moduli of eigenvectors can be 
determined. It can be demonstrated that if all three eigenvalues are 
different, then the eigenvectors are unique and orthogonal to one another; 
otherwise, they may not be unique but can always be chosen to be 
orthogonal. It is also convenient to normalize the eigenvectors, so that the 
normalized components QLh are dimensionless quantities which obey the 
orthonormality condition: 

3 

C. Qih Qjh = dij, 
h=l 
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where the first subscript is the identity number of the eigenvector, and the 
second one specifies the Cartesian component. 

It is very useful to change the reference basis from the original one to that 
formed by the three normalized eigenvectors Q,, Q2, Q3, and to find out 
the representation of tensor y in the new basis. The transformation matrix 
Q has rows given by the components Qij of each eigenvector: 

By applying the tensorial transformation rule (9.6), we obtain: 

taking into account (9.A.2) and (9.A.3). This means that the representation 
of tensor y in the basis of its eigenvectors is a diagonal matrix whose 
non-zero components are just the eigenvalues A,, h2, hg . The eigenvalues 
take the names of principal components (yl = dl, y2 = A,, y3 = S), and the 
directions of the eigenvectors are called principal axes (or principal 
directions) of tensor y; this is represented with respect to the basis of its 
eigenvectors by the matrix: 

Along the principal directions the crystal behaves isotropically, i.e. each 
eigenvector Xi is transformed by tensor y into a parallel vector k; according 
to =yiXi ,  which is the equivalent of (9.A.2). 

Representation surfaces and their properties 
With respect to a general basis, the action of tensor y is expressed as: 

while in the basis of eigenvectors the correspondent relation is simply: 

Y;: = yiXi. (9.A.6) 

In the latter basis, the equation of the representation quadric (9.A.1) 
becomes: 

From the general features of second-order surfaces and their equations, it 
turns out that if all eigenvalues are positive then (9.A.7) is the equation of 
an ellipsoid; if only one is negative, the surface is a hyperboloid of one 
sheet; if two eigenvalues are negative, we have a hyperboloid of two sheets, 
and if all of them are negative, an imaginary ellipsoid is obtained 
(Fig. 9.A.1). Of course in the latter case one usually considers as repre- 
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Fig. 9.A.1. Representation surfaces of second- 
rank tensors: ellipsoid, hyperboloid of one and 
two sheets. 

sentative surface the real ellipsoid of equation 

Let us consider now the case of all eigenvalues positive. Then by writing 
equation (9.A.7) as EL, (xi/aJ2 = 1, it turns out that the semi-axes of the 
representation ellipsoid have lengths given by ai = l /vy i ,  i.e. they are equal 
to the inverse square root of principal tensor components. The symmetry 
axes of the quadric correspond to the principal directions of the tensor. 

We want now to derive an expression for the component y, of tensor y 
along a given direction characterized by direction cosines 4, 12, l3  (then I is 
the unit vector parallel to that direction). Such a component is defined as 
the projection onto I of the Y vector corresponding to a X vector parallel to 
1, divided by the modulus X :  y, = Y .  IIX. With respect to a general 
Cartesian basis, by applying the usual formula of scalar product and taking 
into account (9.A.5) one obtains: 

With reference to the basis of eigenvectors of y, a simpler expression is 
derived: 

A geometrical interpretation of the quantity y, can be obtained by 
considering the equation of the representation surface of y (9.A.1), and by 
substituting xi = xli. The equation becomes: 

where of course x represents the length of a radius vector joining the origin 
to a general point on the quadric surface. Because of (9.A.8), it follows that 
x = llvy,, i.e. the radius vector of the representation quadric has a length 
equal to the inverse square root of the tensor component along the same 
direction. 
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absolute configuration 97,374-5, 489 
conventions of 591 
determination of 545 

absolute structure 374 
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coefficient 233, 241 
correction 304 
edge 241 
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mass 241, 299 

acentric distribution 321-2 
alamosite 652 
albite 418 
allostery 572 
amides, amidines 516, 528 
amino acids 573 

conventions 591 
formulas 592, 593 

amorphous solids, scattering from 201, 212 
anatase 436 
angular overlap model (AOM) 500 
angular probability functions 404 
anilines 516 
anisotropic thermal motion 367, 368 
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alpha-anomalous synthesis 545 
beta-anomalous synthesis 545 
-difference Patterson synthesis 544 
scattering 165, 320,374, 544, 545, 587 

anti-fluorite structure 439 
apophyllite 455 
area detectors 281 
Arndt-Wonacott rotation camera 261 
Arrhenius law 638 
asymmetric unit 24 
atom-atom potentials 474, 476 
atomic scattering factor 

for electrons 195 
for neutrons 198 
for X-rays 147 

Aufbau principle 404 

background 266,280,282 
balanced filters 242 
barycentre principle 414 
basis and cross magnitudes 343-6 
bayerite 440 
benitoite 454 
Bent's rule 504 
benzophenone, (C6H5)&O 618 
Bessel functions 353, 387 
best plane 74 
beta structures 576 

turns 577 
Bijvoet pairs 544 
body-centred cubic (BCC) 432 
bond angle calculation 120-4 

distances (table) 503 
length calculation 120-4 
number conservation rule 514 
valence 436 

Born-exponent (n) 411 
Born-Haber cycle 413 
Bragg's law 154,243,284, 291 

reflection intensity 163 
branched fundamental anions (br f.  a.) 424 
branchedness (B) 448 
Bravais lattices 18-22 

law 15 
brightness 238 
brilliance 238 
Brookhaven protein data bank 535,585 
brookite 434, 436 
brucite 439 
Buerger precession camera, see camera, precession 
Burgers circuit 629 
Burgers vector 629-34 
bunches 240 
bunsenite 438 
bystromite 439 

C(sp2)-N(sp3) fragment 516-20 
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cadmium complexes 514 
calcium carbonate (calcite) CaCO, 618 
calcium sulphate (anhydrite) CaS0, 617, 618 
calcium sulphate dihydrate (gypsum) CaSO, . H,O, 618 
Cambridge Structural  ata abase 380,467 
camera 

Arndt-Wonacott rotation 261 
cylindrical film rotation 247 
Debye-Scherrer 289 
Gandolfi 293 
Guinier 292 
precession 254 
Seeman-Bohlin 292 
Weissenberg 247 

carobbite 438 
Cartesian frames 600 
cassiterite 439 
central limit theorem 375-6, 385, 387 
centric distribution 321-2 
charge assisted hydrogen bond (CAHB) 471 
charge transfer 472 
chemical bond 499-506 
chirality 488 
chirality parameter 375 
chloromagnesite 439 
close-packed structure 

cubic 625 
hexagonal 626 

closest packing 429 
Cochran distribution 340, 361, 387 
cohesion energy (E) 410 
coincidence site lattice 81 
collimators 244 
colour symmetry 59 
combined figure of merit (CFOM) 340,361,387, 356-8, 

364-5 
complement structure 388 
completing the structure 365-6 
compliance coefficients 614 
Compton scattering 144, 185 
computer graphics 562 
configuration 484, 486 
conformation 484,490 
conformational interconversion 512, 516-20 
conformers 490 
conjugate classes 48 
conjugate gradient 590 
consistent field 507 
constitution 484, 486 
convergence map 363 
convergence procedure 352-4, 358,363 

convolution 181 
cooperativity 572 
coordination number (CN) 425,459 
coordination polyhedron 425 
coquimbite 463 
correlation coefficient 370 
correlation matrix 370 
correlative methods 511 
corundum 440 
cosets 48 
covalent bond 409 
cristobalite 456 
critical 

energy 236 
wavelength 236 

cross-over 542 
crystal field splitting (A) 414 
crystal field stabilization energy (CFSE) 415 
crystal field theory (CFT) 414, 500 
crystal forces and molecular geometry 483 
crystal packing 472 
crystal size 304 
crystal systems 17 
crystallization 536 
crystallochemical formula 437 
cubic closest packing (CCP) 429 
Curie groups 603 
cyclohexane 491 

data collection techniques 
for polycrystalline materials 287 
for single crystals 245 

data reduction 301 
Debye formula 207 
Debye-Scherrer camera 289 
decay, see radiation damage 308 
defect 

enthalpy 636, 637 
entropy 636,637 
extended defects 622 
free energy 637 
line defects 622, 628 
planar defects 622,625-7 
point defects 622,635-7 

defect structure 437 
densitometers 271 
densitometry 268 
density of protein crystals 538 
diagonal plot 578 
diastereoisomers 486 
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dielectric constant 475 
dielectric impermeability 607 
dielectric permittivity 606 
dielectric susceptibility 606 
difference 

Fourier 366-7,551,571 
Patterson 541 

diffraction by a crystal 151, 161 
diffractions cones 287 
diffractometer 

Bragg-Brentano 295 
four circle 274 
geometry 273 
Seeman-Bohlin 296 
single crystal 273 

diffusion 637-8 
diffusion coefficient 638 
P-diketone enols 521-6 
dimensionality (D) 450 
dipolar energy 477 
dipolar forces 469 
dipole moment 474 
Dirac delta function 173 
direct methods 321,335-65, 390-1, 560 
directions, indexing of 7, 22 
Dirichlet region, see Wigner-Seitz cell 
dislocation 622, 628-34 

climb 634 
density 634 
edge dislocation 629 
energy 632 
motion 633 
partial dislocation 634 
screw dislocation 629 

disorder 373 
dynamic 373 
static 373 
substitutional 373 

disordered structures in proteins 583 
dispersion energy 473 
dispersion forces 469 
displacement-shift-complete lattice 82 
disulphide bridges 577 
divergence map 363 
DNA, hydrogen bonding in 529 
donor-acceptor interactions 472 
dynamic range 272,284 
dynamic theory of diffraction 162, 191 

eakerite 453 

effective charge (ZeE) 419 
electron affinity (EA) 406 
electron density 

atomicity of 335-6 
interpretation 562 
mapping 216 
positivity of 335, 339-40, 384 

electron density function 88-90, 131, 169-71 
electron microscopy 623,627, 628 
electron scattering 195 
electronegativity (EN) 406 
electro-optical effect 608 
electrostatic bond strength (s,) 433 
electrostatic energy 475, 477, 509 
E-maps 356-68,360, 365 
emittance 238 
enamines 516 
enantiomers 486 
enantiomorph, choice of 545 
enantiomorph, fixing 346-8,350-1 
energy 

critical 236 
dispersive methods 238 

enstatite 452, 454 
entalpy (AH3 413 
entropy 479 
equivalent reflections 157 
errors, treatment of 

in protein crystallography 546 
etching 624 
Eulerian 

cradle 274 
rotation angles 72, 556 

Ewald sphere 154,246,287 
exchange energy 474 
exchange forces 468 
exposure 271 
extended Hiickel theory 500 
extinction 

primary 164 
secondary 97, 164 

fast Fourier transform 131 
fayalite 444 
ferroelectricity 607 
festoons 252 
Fibonacci series 225,389 
Fick's law 637 
figures of merit 355-6, 360-5,548, 550 
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film 
exposure 271 
speed 271 

filtering 551 
filters 241 
first coordination shell 425 
first order phase transition 448 
fluorite 438 
flux spectral 235 
force field 481, 507, 509 (table) 
Z, formulae 346 
forsterite 444 
Fourier 

best 548 
difference- 551, 571 
maps 88-90,131,169-71,216,562-71 
most probable 548 
transform 175 

Fourier recycling 329, 365-6 
frames 286 
Frank net 634 
free energy 478 
Frenkel defect 635-7 
Friedel's law 155, 544 
frontier orbitals theory 500 

Gandolfi camera 293 
gases scattering by 201, 208 
generator (symmetry) 35, 46 
generators (of X-ray) 

conventional 229 
rotating-anode 231 
sealed tube 231 

geometrical isomers 488, 490 
Gibbs free energy 410 
gibbsite 440 
glaucochroite 444 
glide planes 11, 30 

detection of 159 
glycoproteins 582 
goniometer k (kappa) 275 
goodness-of-fit measure 98, 370 
grain boundaries 635 
group theory 45, 492 
Guinier camera 292 

haematite 440 
half spot, see partially recorded reflections 262 
halite 413, 422,438 

Hamilton test 103 
Hamilton weighted residual, 371 
hard sphere model 500 
Harker and Kasper inequalities 335 
Harker diagrams 544 
Harker lines 328,330 
Harker sections 328-33 
heat of formation (AHf) 413 
heavy-atom 

derivatives 536 
method 328-35,541 
parameters, refinement of 549 

helices 574 
Helmholtz free energy (F) 410 
heteropolar covalent bond 409 
hexacelsian 455 
hexagonal closest packing (HCP) 429 
hexagonal indices 22 
higher invariants 338 
holography 395-7 
homometric sets 319-20 
Hiickel theory 500 
Hund first rule 416 
hybrid branched complex anions (hB c.a.) 449 
hybrid orbitals 502,504, 506 
hybridization index 505 
hydrogen bond 409,470-2,477,513,521-9 

ideal chemical formula 437 
ideal structures 437 
ilmenite 441 
ilvaite 454, 460 
image-seeking functions 380 
imaging plate 283 
impurities 635, 638-9 
indexing 

precession photographs 254 
rotation photographs 267 
Weissenberg photographs 252 

initial structural model 320, 328 
insertion devices 238 
integrated diffraction intensities 163 
intensity measurements 268, 271 
intensity statistics 321-4, 375-7 
intermolecular forces 468-78 
internal energy (E) 410,479 
interstitial 622, 627, 635, 636 
intrinsic region 638, 639 
inverse spinel 437, 442 
inversion axes 5 
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inversion parameter (i) 443 
ionic bond 409 
ionic conductivity 639 
ionic crystals 409 
ionic mobility 639 
ionic radius 418 
ionization energy (IE) 406 
isomerism 486-90 
isometric transformations 2, 35 
isomorphism 540 

ideal 541 
lack of 540,546 

isomorphous 
derivative 538 
difference-Patterson 541 
preparation 538 
replacement 320, 540-87 

isotropic thermal parameter 148, 368-9 

Jahn-Teller effect 500 
jakobsite 444 

k (alpha) lines 231,233,242 
k (beta) lines 231,233,242 
k parameter 238 
Karle recycling 365 
keto-en01 tautomerism 486-521 
kirschsteinite 444 
knebelite 444 
krauskopfite 454 

lack of closure 546,549 
Lagrangian strain tensors 610 
Lang method 624 
lattice energy (UL) 410,468,478,480-2 
lattice frames 600 
lattice function 174 
lattices 6, 18-22 
Laue classes 17 

determination of 156 
Laue condition 151 

method 246 
lawrencite 439 
layer groups 57 
layer line screen 249,256 
least-squares 

constrained 92, 104,564,568 
method 9O-lO9,367-74 

plane 74 
refinement 94 
restrained 107, 364,564,568 
weighting functions 369 

ligand field theory 500 
lime 438 
limiting sphere 154 
line group 30 
linkedness (L), 448 
liquids, scattering from 201, 212 
lithium tantalate, LiTaO, 607 
London forces 469 
loop branched anions (IB) 449 
Lorentz correction 301 
low temperature measurements 310 
lunes 261 

madelung constant (A,) 412, 413, 443 
magic integers 361,363, 388-90 
magnesioferrite 444 
magnesium oxide (periclase), MgO 618 
magnetite 437, 444 
manganosite 438 
maximum entropy 560 
maximum-filling principle 424 
maximum-multiplicity principle 416 
membrane proteins 536 
merohedral twinning 85, 373 
metallic bond 409 
metric matrix 61 
mica 612,627, 628 
microcline 448 
microdensitometers 271 
Miller indices 8 
minimum function 381, 383 
MIR technique 543 
mirrors 245 
mixed-branched complex anions (olB c. a.  ) , 4 9  
model building 562 
modulated structures 191, 221 
modulus difference squared synthesis 541 
molecular crystals 409, 466 
molecular dynamics 

in refinement 117,569 
molecular hermeneutics 51 1 
molecular mechanics 506-1 1 
molecular replacement 384, 552 
molecular structure 466 
monochromatization of X-rays 241 
monochromators, crystals 243 
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monopolar energy 477 
monopolar forces 469 
monticellite 444 
mosaic 162 
Moseley's law 231 
mother liquid 536 
movements 2,36-41 
multiple diffraction 191, 351 
multiplicity 288 
multiplicity (M) 449 
multisolution methods 352, 360-5, 389, 390-3 
multiwire proportional counter 282 
muscovite 455, 612, 627, 628 

naphthalene C,,H, 618 
naphthylamines 516 
narsarsukite 455 
negative quartets 343, 356, 362 
negative triplets 356, 362 
neighbourhood principle 343 
Nernst-Einstein equation 639 
neutron scattering 198 
Newmann's principle 14, 603, 616 
nibrucite 439 
Niggli reduced cell 77 
non-bonded energy 469,474,508 
non-linear optics 608 
non-molecular crystals 409 
normal spinel 437,442,443 
normalization 351, 361 
normalized structure factors 321-4,326, 340, 351, 

356-7,361 
nucleophilic addition 514, 515 
number of anion types (N,,) 448 
number of molecules in unit cell 312 

occupancy 437 
octahedral site stabilization energy (OSSE) 417 
olivine 418, 428, 444, 454 
omega 

scan 278 
2-theta scan 278 

omit maps 572 
open-branched anions (oB)  449 
optical density 269 
optical indicatrix 15, 608 
optical isomers 488 
orientation matrix 276 

origin fixing 329, 334, 346-51,358, 362-3, 379-80, 383 
orthoclase 456 
oscillation method 259 
out-of-plane deformation 508, 517 

packing coefficient (c,) 429,456 
packing, in protein crystals 548 
pairing energy 416 
parameter-shift method 392 
partially recorded reflections 262 
partial structure recycling 365 
Patterson 

atomic superposition 381 
function 182,320,324-35,377-84,541 
group 328 
sharpening 326 
superposition methods 335, 377-84 
vector methods 335, 377-84 
vector multiplicity 325 

Pauli principle 404 
Pauling's bond number 503, 513, 516 
Pauling's rules 433 

first 433 
second 433,443,447,456 
third 435, 454 
fourth 436 
fifth 436, 455 

PDB 535, 585 
PEG 537,538 
periclase 438, 460 
permissible origins 338, 347-50 
periodic table of the elements 407 
periodicity of the chain or ring (P or Pr) 450 
perovskite 441,445, 461 
phase 

combined 562, 571 
permutation 352,360-1,362, 364 
problem 169, 319,540 
refinement 365-75,549 

phasing magnitudes 343-6 
phasing power 550 
phasing shell 

first 344-6 
second 345-6 

phenakite 428 
phlogopite 446 
photographs 

oscillation 267 
precession 254 
rotation 247 
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upper level 257,252 
Weissenberg 248 
zero level 248, 256 

piezoelectricity 16, 619-22 
pixels 269,286 
plane groups 30 
planes, indexing of 8, 22 
point groups 11, 16 
polar angles 73,556 
polarizability 474 
polarization 423, 443, 605 

correction 303 
factor 143 
of synchrotron radiation 240 

polycrystalline materials 287 
polymorphism 482 
polypeptide chain 573, 577 
portlandite 439 
position sensitive detectors 282 

curved 297 
potential energy hypersurface 481, 485, 510,512, 519, 

525 
powder diffraction 109,287 
powder diffraction file 297 
precession camera 254 
precipitants 537, 538 
primitive cell 6 
primitivity condition 348 
probability distributions 321-2, 340-6, 375-6, 385-7, 

547,560,571 
product function 380-1 
profile fitting 112,273,280,286 
proportional counter 

multiwire 282 
protein 

classification 585 
crystallization 536 
crystals 536 
domains 578,585 
globular 535 
hydrogen bonding in 529 
structure 572 
subunits 578 

pseudorotation 491 
pseudotranslational symmetry 351,371, 387-8 
puckering coordinates 495, 498 
pyrochromite 439 
pyroelectricity 11, 606, 607 
pyrolusite 439 
pyrope 462 
pyroxmangite 454 

Q translation function 588 
quadratic forms 75 
qualitative molecular orbital theory (QMOT) 500 
quantum-chemical methods 499 
quantum numbers 403 
quartet invariants 338, 343-5,346, 356, 362, 392 
quasicrystals 223 
quaternary structure, in proteins 578 

R factor 312, 320, 368-71,369,572 
Cullis 550 
Kraut 550 
modulus 550 

racemates 489 
radial density distribution 180 
radial probability function 404 
radiation damage corrections 308 
radius of gyration 214 
radius ratio rule 425 
Ramachandran plot 577 
random phases 391-3 
reaction pathways 512-16,519, 526 
real-space filtering 551 
reciprocal lattice 63 
reduction of data, see data reduction 301 
refinement 94,104,107,365-75 

constrained 105, 106,564,568 
by molecular dynamics 569 
in protein crystallography 562 
in real space 564 
restrained 107, 564,568 
rigid-body 105, 569 
strategy 570 

reflecting sphere, see Ewald sphere 
reflections, partially recorded 262 
refraction indices 608 
relative scaling 310 
reliability index, see R index 312 
Renninger effect 191 
representation 

first 344-6, 362 
second 36-61, 361 

representation theory 342-6, 361 
repulsion energy 474 
repulsion forces 468 
resonance 503 
resonance assisted H-bonding (RAHB) 472, 521-9 
restraints 

geometrical 107,565 
on phases 567 
with potential energy 568 
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rhodonite 454 
Rietveld refinement 109-17 
ring conformations 490-9 
rod groups 56 
Ross filters see balanced filters 242 
rotamers 490 
rotating-anode generators 231 
rotation 2, 36, 69 
rotation camera 247,261 
rotation functions 383,552, 553,558 
rotation matrix 555 
rotation method 

with area detectors 286 
cylindrical film 247 
geometry 261 
for macromolecular crystallography 259 

roto-inversion 5, 35 
roto-reflection 5, 35 
rutile 434, 436,438, 460 

salting-in 537 
salting-out 537 
sanidine 448 
Sayre equation 336,340, 355 
scacchite 439 
scattering 

by amorphous solids 201,212 
by gases 201,208 
by liquids 201,212 
electron 195 
neutron 198 
X-ray 146 

scattering factor 
for atomic electrons 146 
for atoms 147 
for molecules 150 

scaling 310 
scanner, see densitometer 271 
Schottky defect 635-7,639 
screening effect (S) 419 
screw axes 

definition of 10 
detection of 159 

sealed tube generators 231 
second coordination shell 425 
second-order phase transition 448 
secondary structures, in proteins 574 
Seeman-Bohlin 

camera 292 
diffractometer 296 

self 
-rotation 556, 558 
-translation 558 

sellaite 439 
semi-invariant (s. s .) 

modulus 339 
one-phase 339,345-6,352-3,355-6,361,363 
two-phase 346, 350, 355-6, 361-3 
vector 339 

series truncation error 170, 366 
shattuckite 452 
sillimani te 455 
silver halide 636 
Sim weights 366,393-4 
simulated annealing 570 
single crystals 

data collection methods for 245 
SIR technique 542 
slip plane 628, 629, 634 
small angle scattering 213 
soaking 539,540 
sodalite 433 
sodium chloride, NaCl605,636, 638 
solvent 

calculation of 538 
in protein crystals 536, 538 
structure of 583 

space groups 22 
determination of 161 

spectral 
brightness 238 
flux 235 

spectrochemical series 415 
sphere of reflection 245, 287 
spherical polar angles 73, 556 
spinel(s) 428, 437,442, 462 
stacking fault 622,625-8 

deformation 626 
extrinsic 627 
grow 627 
twin boundary 627 

standard deviation 98, 122,271,273, 280 
starting set of phases 352-4, 358, 360-3 
stationary picture method 286 
steacyte 454 
stereochemistry 484-99 
stereographic projection 40-1 
stiffness coefficients 614 
stishovite 439 
stokesite 454 
storage ring 235 
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strain 609-11 
stress 613 
stretching-bending energy 507 
stretching factor (f,) 452 
structural chemistry 468 
structural crystallography 466 
structure correlation method 512 
structure factor 87, 152 
structure invariants (s.i.) 337-9 
structures 

&Bod 428 
A,B,X, 441 
MX 437 
MX2 438 
MX3 440 
M2X 438 
M2X3 440 

subgroups 47,49,51 
sublattices 80 
sublimation enthalpy 579 
substructure 388 
substructure reflections 388 
sum function 381, 383 
supergroups 51 
superlattices 80 
superstructure reflections 388 
sylvine 438 
symbolic addition methods 352, 358-60 
symmetry 

axes 3, 10, 32 
classes 11, 16 
colour 57 
generalization of 55 
generators 46 
groups 45 
planes 5,32 

symmorphic space groups 25 
synchrotron radiation 234 
&-synthesis 394-6 
P-synthesis 394-5 
2F,-F, synthesis 395 
zl-synthesis 395 
systematic absences 159 
systems 17 

T translation function 557, 589 
tangent formula 342,363-4, 392 
tangent refinement 363-4 
tapiolite 439 
taramellite 454 

tautomerism 486 
television detectors 283 
temperature factor 149, 186-90 
tensors 601,602,640-2 

eigenvalues 640, 641 
eigenvectors 640, 641 
representation surfaces 641, 642 

tephroite 444 
terminated anions ( t )  450 
tertiary structure, in proteins 578 
TH translation function 589 
thenardite 428 
thermal expansion 611 
thermal motion 76, 148, 583 

analysis of 117 
thermodynamics of molecular crystals 478-80 
thiathiophthenes 513 
Thomson scattering 142 
three-centre-four-electron systems 512-14 
time resolved experiments 241,247 
tin complexes 515 
torsion angles 73 
torsion energy 508 
tourmaline 454 
transformations 

basis 65, 128 
isometric 35 
orthonormalizing 68 

translation function 552, 556, 588 
transmission factor 305, 306 
tremolite 455 
trevorite 444 
trial and error methods 320 
tridimite 456 
triiodide ion 513 
triplet invariants 338, 340-6, 350-3, 355-6, 362, 385-7, 

390-3 
triplets 

setting-up of 351-2 
twins 83, 133 
twinning 373 

u parameter 443 
unbranched fundamental anions (uB f.a.) 449 
undulators 238 
unit cell 7 
unit cell parameters 

from the orientation matrix 276 
from a precession photograph 259 
from a rotation photograph 248 
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unitary structure factor 321, 347 

vacancies 622, 627,635, 636 
valence bond (VB) 499,502-6 
valence shell electron pair repulsion (VSEPR) 499, 501 
van der Waals 

forces 409 
radius 466,574 
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