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REVIEWS in 
MINERALOGY 

FOREWORD TO VOLUME 15 

MATHEMATICAL CRYSTALLOGRAPHY represents a new direction for 

the Reviews in Mineralogy series. This text book is not a review volume 

in any sense of the term, but in fact it is, as its subtitle suggests, 

"An Introduction to the Mathematical Foundations of Crystallography." 

Written by a mathematician, M.B. Boisen, Jr., and a mineralogist, G.V. 

Gibbs, Volume 15 was carefully prepared and illustrated over a period of 

several years. It contains numerous worked examples, in addition to 

problem sets (many with answers) for the reader to solve. 

The book was first introduced at a Short Course of the same title 

in conjunction with the annual meetings of the Mineralogical Society of 

America and the Geological Society of America at Orlando, Florida, October 

24-27, 1985. Boisen and Gibbs instructed 35 participants with the as¬ 

sistance of Karen L. Geisinger, (Pennsylvania State University), James 

W. Downs (Ohio State University), and Bryan C. Chakoumakos (University 

of New Mexico), who led the computer-based laboratory sessions. 

Paul H. Ribbe 
Series Editor 
Blacksburg, VA 
9/13/85 - a Friday 
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MATHEMATICAL CRYSTALLOGRAPHY 

PREFACE 

This book is written with two goals in mind. The first is to derive 

the 32 crystallographic point groups, the 14 Bravais lattice types and 

the 230 crystallographic space group types. The second is to develop the 

mathematical tools necessary for these derivations in such a manner as 

to lay the mathematical foundation needed to solve numerous basic problems 

in crystallography and to avoid extraneous discourses. To demonstrate 

how these tools can be employed, a large number of examples are solved 

and problems are given. The book is, by and large, self-contained. In 

particular, topics usually omitted from the traditional courses in math¬ 

ematics that are essential to the study of crystallography are discussed. 

For example, the techniques needed to work in vector spaces with non¬ 

cartesian bases are developed. Unlike the traditional group-theoretical 

approach, isomorphism is not the essential ingredient in crystallographic 

classification schemes. Because alternative classification schemes must 

be used, the notions of equivalence relations and classes which are fun¬ 

damental to such schemes are defined, discussed and illustrated. For 

example, we will find that the classification of the crystallographic 

space groups into the traditional 230 types is defined in terms of their 

matrix representations. Therefore, the derivation of these groups from 

the point groups will be conducted using the 37 distinct matrix groups 

rather than the 32 point groups they represent. 

We have been greatly influenced by two beautiful books. Hermann 

Weyl's book entitled Symmetry based on his lectures at Princeton Uni¬ 

versity gives a wonderful development of the point groups as well as an 

elegant exposition of symmetry in art and nature. Fredrik W. H. 

Zachariasen's book entitled Theory of X-ray Diffraction in Crystals 

presents important insights on the derivation of the Bravais lattice types 

and the crystallographic space groups. These two books provided the basis 

for many of the ideas developed in this book. 

The theorems, examples, definitions and corollaries are labelled 

sequentially as a group whereas the problems are labelled separately as 

a group as are the equations. The manner in which these are labelled is 

self-explanatory. For example, T4.15 refers to Theorem (T) 15 in Chapter 

4 while DAl.l refers to Definition (D) 1 in Appendix (A) 1. 

V 



We have strived to write this book so that it is self-teaching. The 

reader is encouraged to attempt to solve the examples before appealing 

to the solution presented and to work all of the problems. 
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EXPLANATION OF SYMBOLS 
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Basic conventions 

DESCRIPTION 

Geometric three-dimensional space. 

A primitive lattice or the basis for a primitive lattice. 

The triple representation of r with respect to the basis D. 

The lattice generated by D. 

The reciprocal lattice of D. 

The 3x3 matrix representation with respect to the basis D of a when a 

is a point isometry and of the linear component of a when a is an 

isometry. 

The set of all Mp(a) where a s C. 

The set of all isometries. 

The set of all translations. 

The basis (t^Co) ,t^(o) ,t^(o)} of S where D = ^ basis for F 

The set of all where a e C. 

The Seitz notation for the 4x4 matrix representation of an isometry. 

The orbit of O under the translations of T. 

The linear component of a. 

The set of A (a) where a z C. 

The set of all translations in C. 

The set of translations associated with the lattice L. 

The trace of the matrix M. 

The determinant of the matrix M. 

The number elements in H. 

The order of the isometry a. 

An nth-turn whose axis is along ua + vb + wc where D = {a,b,c} is a 

given basis. 

An nth-turn screw about the vector ua + vh + wc with a translation of 

mr/n where r is the shortest nonzero vector in the lattice in the 

[uvw] direction. 

The inversion. 

Points in S are denoted by lower case letters, vectors and their 

endpoints by bold-faced lower case letters, lengths of vectors by ital¬ 

ics, sets by capital italics and matrices by capital letters. 
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CHAPTER 1 

MODELING SYMMETRICAL PATTERNS AND GEOMETRIES OF MOLECULES 

AND CRYSTALS 

"When certain causes produce certain effects, the symmetry eiements of 

the causes ought to reappear in the effects produced". -- Pierre Curie 

INTRODUCTION 

Symmetrical Patterns in Molecular Structures: The minimum energy 

principie states that the atoms in an aggregate of matter strive to adopt 

an arrangement wherein the total energy of the resulting configuration 

is minimized. When such a condition is realized, the atoms in the ag¬ 

gregate, whether large or small in number, are characteristically re¬ 

peated at regular intervals in a symmetrical pattern. In recent years, 

molecular orbital methods have had great success in finding minimum total 

energy structures for small aggregates (molecules), using various algo¬ 

rithms for optimizing molecular geometry (cf. Hehre et a!., in press and 

references therein). Not only do these calculations reproduce known mo¬ 

lecular structures within the experimental error, but they also show that 

when the total energy is minimized certain atoms in the molecule are re¬ 

peated at regular intervals in a symmetrical pattern about a point, line 

or a plane. 

(E1.1) Example - Repetition of a pattern at regular intervals about a point 

and a line: Monosilicic acid, H4Si04, is an example of a small molecule 

whose atoms are repeated at regular intervals in a symmetrical pattern 

about a point and a line (Figure 1.1). An optimization of the geometry 

of this molecule using molecular orbital methods shows that its total 

energy is minimized when an SiOH group of the molecule is repeated at 

regular intervals of 90° about a point and at regular intervals of 180° 

about a line to give the molecular structure displayed in Figure 1.1. 

The repetition of the group at regular intervals about a line is called 

rotational symmetry, whereas that about a point is called rotoinversion 

symmetry. Rotations and rotoinversions and how they can be used to define 

the symmetry of this molecule will be examined in Chapters 3 and 4. 
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Figure 1.1 (to the left): A drawing of the molecular structure of monosilicic acid, H^SiOfc, 

as determined in near Hartree-Fock molecular orbital calculations (Gibbs et al., 1981; 

0 Keeffe and Gibbs, 1984). The intermediate-sized sphere centering the molecule represents 

Si, the four largest spheres represent 0, and the smallest spheres represent H. The sizes 

of the spheres in this drawing or in any other drawing in this book are not intended to mimic 

the actual sizes of atoms in molecules or crystals. 

Figure 1.2 (to the right): A drawing of the structure of a tricyclosiloxane molecule com¬ 

posed of three "tetrahedral" Si(0H)2 groups bonded together into a 6-membered ring. The 

large spheres represent 0, the intermediate-sized spheres Si. and the small ones H. The 

structure of the molecule was determined by O'Keeffe and Gibbs (1984), using molecular or¬ 

bital methods. 

(El.2) Example - Repetition of a pattern at regular intervals about lines 

and across planes: Tricyclosiloxane, H6Si303, is an example of a mole¬ 

cule whose atoms are repeated at regular intervals in a symmetric pattern 

about lines and across planes (Figure 1.2). The total energy of this 

molecule is minimized when a "tetrahedral" SiOiHj group is repeated at 

regular intervals about a line to form a planar 6-membered ring of three 

Si and three 0 atoms. Imagine a line drawn perpendicular to the plane 

of the ring and passing through its center. Note that the atoms of the 

molecule are repeated in a symmetrical pattern about this line at regular 

intervals of 120°. Also note that the hydrogen atoms of the molecule are 

repeated across the plane of the ring. The regular repetition of the 

structure across a plane is called reflection symmetry. There are other 

lines and planes in the molecule about which the atoms of the molecule 

are repeated, but a study of these elements will be deferred to Chapter 

5. 
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Symmetrical Patterns in Crystals: When a large aggregate of atoms (typ¬ 

ically ~10*'*) strives to adopt a configuration wherein the total energy 

is minimized, we may again find that some atomic pattern of the aggregate 

is similarly repeated at regular intervals about points and lines or 

across planes. But, unlike a molecule, the pattern may also be repeated 

at regular intervals along straight lines to produce a periodic pattern 

of atoms in three dimensions. Such a three-dimensional aggregate of atoms 

is said to be a crystal or a crystalline solid, whereas the actual atom 

arrangement of the solid is referred to as its crystal structure. In this 

book, we shall only be concerned with ideal crystals. Unlike real crystals 

which contain a variety of flaws and irregularities, ideal crystals are 

envisaged as being perfect in every respect. Also the atoms in such a 

solid are envisaged to repeat indefinitely at regular intervals in three 

dimensions. In addition, the positions of the atoms in such a crystal 

are envisaged to be static and to be specified exactly by a set of atomic 

coordinates. Thus, when we make reference to a crystal or a crystalline 

solid, we shall be referring to an ideal crystal. The repetition of a 

structure at regular intervals along straight lines is called 

translational symmetry, a subject discussed in Chapters 6 and 7. 

(El.3) Example - Repetition of a pattern at regular intervals along a 

straight line: As stated above, a characteristic feature of a crystalline 

solid is that some atomic pattern in a large aggregate of atoms is re¬ 

peated at regular intervals along straight lines. Consider the string 

of silicate tetrahedra in Figure 1.3 isolated from the crystal structure 

of a-quartz, a common mineral of Si02 composition comprising about 12 

percent of the continental crust. Fix your attention on any two adjacent 

tetrahedra in the string and imagine that this pair of tetrahedra is re¬ 

peated at regular intervals indefinitely in the direction of the string. 

Whenever some atomic pattern in a crystal (like the pair of tetrahedra 

in the string) is repeated along some line at regular intervals, it is 

convenient to represent such a periodic pattern by a directed line segment 

(a vector) parallel to the string and whose length equals the repeat unit 

of the pattern. Such a vector (labelled a in this case), drawn next to 

the string of tetrahedra in Figure 1.3, is called a translation vector. 

(El.4) Example - The crystal structure of a-quartz: A drawing of the 

a-quartz crystal structure is presented in Figure 1.4. As observed for 

3 
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Figure 1.3: A string of silicate tetrahedra isolated from the crystal structure of a- 

quartz. Each silicon atom (small sphere) in the string is bonded to four oxygen atoms (large 

spheres) disposed at the corners of a SiOi, silicate tetrahedron. The lines connecting the 

atoms in the string represent the bonds between Si and 0. Direct your attention on any two 

adjacent tetrahedra in the string and note that this pair of tetrahedra is repeated at 

regular intervals so that the repeat unit is given, for example, by the distance between 

Si atoms in alternate silicate tetrahedra. The repeat along the string is represented by 

a parallel vector a whose magnitude, o, equals the repeat unit along the string. The 

ellipses, (...), at both ends of the string indicates that this sequence of silicate 

tetrahedra repeats indefinitely in the direction of the string, even though the sequence 

is terminated in the figure. 

Figure 1.4: The crystal structure of a-quartz projected down a direction in the crystal 

along which the pattern of atoms displayed in the drawing is repeated. The SiO* groups in 

the structure share corners and form spirals of tetrahedra that advance toward the reader 

and that are linked laterally to form a continuous framework of corner silicate tetrahedra. 

The vector a represents the repeat unit of the structure in the direction of a; b represents 
the repeat unit in the direction of b. 
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Figure 1.5: A view of the a-quartz structure tilted about 2° off the viewing direction 

in Figure l.A. The repeat unit along the viewing direction is represented by the vector c 
whose magnitude equals the separation between equivalent atoms in the lines of atoms par¬ 

alleling C. Because crystals consist of periodic three-dimensional patterns of atoms dis¬ 

posed along well-defined lines, whenever a crystal like o-quartz is viewed along one of 

these directions, the arrangement will be simplified by the fact that only the atoms in the 

repeating unit will be seen as in Figure 1.4. Also, the shorter the repeat unit along such 

a viewing direction, the simplier the arrangement because the repeat unit must involve fewer 

atoms. When the crystal is tilted off this direction, then the view becomes much more 

complicated with the uncovering of the many atoms that lie beneath the atoms in the repeating 

unit. Although the repeat pattern of the structure displayed in Figure 1.4 and 1.5 is fi¬ 

nite, the pattern is assumed to continue uninterrupted in the direction of a, b and C in¬ 

definitely in a ideal crystal. 

monosilicic acid, each Si atom in the structure is bonded to four nearest 

neighbor 0 atoms disposed at the corners of a tetrahedron. In addition, 

as each 0 atom is bonded to two nearest neighbor Si atoms, the structure 

can be viewed as a framework structure of corner sharing silicate 

tetrahedra. 

As the structure in Figure 1.4 is viewed down one of the lines along 

which an atomic pattern is repeated, the atoms along this line are one 

on top of the other so that only the atoms in one repeat unit along the 

line are visible. Thus beneath each Si atom displayed in the figure, 

there exists a line of Si atoms equally spaced at regular intervals that 

extends indefinitely. Likewise beneath each oxygen atom in the figure, 

there exists a comparable line of oxygen atoms also equally spaced at the 

same regular intervals. However, when the structure in Figure 1.4 is 

tilted off the viewing direction by about 2°, the repeating pattern of 

atoms along this direction is exposed as in Figure 1.5. By convention. 
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the repeat unit along each of these lines is represented by a parallel 

vector c whose length, c, is equal to the separation (the repeat unit) 

between adjacent atoms in the lines of equivalent Si atoms and 0 atoms 

that parallel the viewing direction. 

Returning to Figure 1.4, note that the tetrahedra running across the 

figure in strings from left to right are exact replicas of the ones com¬ 

prising the string in Figure 1.3. In fact, several such parallel strings 

are displayed in the figure running left to right. In addition, note that 

another such set of strings of tetrahedra runs across the figure 

diagonally from the lower right to the upper left and another runs from 

the lower left to the upper right, both intersecting the first set of 

strings at exactly 120°. As shown in Figure 1.4, the unit repeat along 

the left-to-right trending set of strings is represented by the trans¬ 

lation vector a, whereas that along the diagonal set of strings running 

from the lower right to the upper left is represented by the translation 

vector b. In addition to defining the repeat unit along strings of 

tetrahedra, the pattern at both ends of these vectors is exactly the same 

regardless of their location in the structure provided the vectors have 

not been rotated from their original orientations. This property can be 

illustrated by laying a sheet of tracing paper on Figure 1.4, tracing a 

and b on it and then sliding (translating) the sheet over the figure 

making sure that the vectors on the sheet are kept parallel with those 

on the drawing. Note that the pattern at the end points of both a and 

b is an exact copy of that at their origin regardless of the placement 

of the vectors on the drawing, provided that the vectors on the sheet are 

kept parallel with those on the figure. 

The lengths (magnitudes) o, b and c of the translation vectors D = 

{a,b,c} and the interaxial angles between them denoted a = <(b:C), 3 = 

<(C:a) and JC = <(a;b) can be determined in an X-ray diffraction experiment 

when a crystal or crystal powder is bathed in an X-ray beam and its 

diffraction pattern is recorded on a film or strip chart. By measuring 

the positions of the spots on the film or the peaks on the chart, the 

lengths and the interaxial angles of the translation vectors can be de¬ 

termined . 

A set of X-ray data measured for a powdered a-quartz crystal is given 

in Table A2.2. A least-squares refinement of the data (see EA2.12 and 

PA2.4) shows that a = b = 4.914A, c = 5.409A, a = 3 = 90° and Z = 120° 
_8 

where lA =10 cm. 
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Figure 1.6; A string of silicate tetrahedra isolated from the a-cristobalite structure. 

Figure 1.7; A projection of the a-cristobalite structure viewed down c, the repeat unit 

of the structure perpendicular to the drawing. The structure consists of corner sharing 

silicate tetrahedra that form spirals that are linked laterally into a framework of Si02 

composition. 

(P1.1) Problem: Study the string of silicate tetrahedra in Figure 1.6 

isolated from the structure of a-cristobalite, a rare polymorph of SiOj 

found in highly silicic volcanic rocks such as rhyolite. 

(1) Determine the number of silicate tetrahedra in the repeat unit. 

(2) Draw a translation vector a alongside the string. Examine the 

structure of a-cristobalite displayed in Figure 1.7 where it 

is viewed down an important repeat direction and find two repeat 

directions in the plane that match that in Figure 1.6. Draw 

the vectors a and b to represent the repeat units along these 

directions as was done for the a-quartz structure in Figure 1.4 

and measure the interaxial angle ? = <(a:b). As done in El.4, 
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Figure 1.8 A view of the a-cristobalite structure tilted about 2° off the viewing direction 

in Figure 1.7. 

trace a and b on a sheet of paper and note, as observed for 

the a-quartz structure, that the pattern of atoms in a- 

cristobalite is the same at both ends of a and b as the sheet 

is translated over the drawing. 

An X-ray diffraction study by Pluth et al. (1985) shows 

that a - b = 4.971A and H = 90°. The repeat unit, c, along 

the viewing direction is exposed in Figure 1.8 where the 

structure has been tilted 2°. The study also shows that 

c = 6.928A and a = 3 = 90°. 

A MATHEMATICAL DESCRIPTION OF THE GEOMETRIES 

OF MOLECULES AND CRYSTALS 

It is clear from the discussion, examples and problems presented 

above that there are numerous geometrical features of molecules and 

crystals that must be described in order to understand their atomic pat¬ 

terns and properties. This cannot be done with pictures or illustrations 

alone, because accurate calculations are necessary for a description of 

their symmetry and structure together with their bond lengths and angles. 

To accomplish this we shall create a mathematical model of the real world 

that will enable us to describe all of the geometrical features of a given 

crystal with respect to its natural frame of reference and translation 
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vectors. For example, we have seen in our discussion of the silica 

polymorphs a-quartz and a-cristobalite that ideal crystals have special 

directions along which atoms are repeated over and over again indefinitely 

in periodic patterns. The mathematical model will be "adjustable" in the 

sense that its principle directions can be chosen so that they are along 

special directions of the object under study. We will also see that the 

collection of all the motions that send a crystal into self-coincidence 

will be used to describe its symmetry. The model will be such that even 

very complicated motions can be easily described using matrices. We will 

begin the development of the model by examining the geometry of the real 

world. 

Geometric three-dimensional space: The three-dimensional real world in 

which molecules and crystals actually occur will be called the geometric 

three-dimensional space and will be denoted by S. We will view S as a 

set of points such that the distance between any two points can be cal¬ 

culated, the angle between any two intersecting lines can be measured and 

such that we can tell when two lines are parallel. All that we will add 

to S as we go along is a frame of reference that will enable us to model 

S algebraically. The first step in imposing a frame of reference on S 

is to establish a point o to be the origin. Any point in S can be chosen 

as the origin but, as we shall see later, there are certain simplifi¬ 

cations that arise when the origin is chosen on a point, line or plane 

about which the pattern of a molecule or a crystal is repeated. Once the 

origin is determined, S can be described by the set of all vectors ema¬ 

nating from o to each point in S. Such vectors will be denoted by 

bold-faced letters. The magnitude or length of a vector r is the distance 

from the origin to its end point. The magnitude of r will usually be 

denoted by an italics r or, sometimes, when an ambiguity is possible, by 

||r||. The absolute value of a scalar x will be denoted by |xl. Since 

the vector emanating from o to o is of length zero, it is called the zero 

vector and is denoted 0. For the most part we shall not distinguish be¬ 

tween a vector emanating from the origin and its end point. Consequently, 

unless otherwise stated, we shall let r denote both the vector from the 

origin to the point r and the point as well. 

To impose some organization on this set of vectors, we choose a set 

of three noncoplanar, nonzero vectors D = {a,b,c}. Using the notions 

9 



Figure 1.9 (to the left): The geometric addition of any two vectors rj, t S radiating 

from the origin, 0 of S. Note that Tj and r2 form the sides of a parallelogram and that 

their sum Tj + r2 forms its diagonal. An alternate way of obtaining Ti + r2 is to place a 

parallel copy of at the end point of r2. In this way, the vector sum Ti + r2 is given 

by the vector that radiates from 0 to the end point of the parallel copy of r2. 

Figure 1.10 (to the right): The multiplication of a vector v by scalars 2, 1/3 and - /2 

generates the vectors 2v, (1/3)V and - /2v. We note that every point on a line in S co¬ 

incident with V occurs at the end points of the vectors contained in the set 

(xv I X E R)■ 

of vector addition and scalar multiplication, we shall see that each 

vector in S can be expressed in a compact manner in terms of a, b and 

C. Hence, the placement of the origin and the choice of D - {a,b,c} will 

establish the frame of reference for the model and therefore will be se¬ 

lected to reflect the properties of the crystal under study. To see how 

this is accomplished, we shall explore the important operations of vector 

addition and scalar multiplication defined on S. 

Vector addition and scalar multiplication; The addition operation on S 

is defined by geometric addition. By geometric addition (or vector ad¬ 

dition), we mean that the sum of two vectors rj and r2, denoted by 

rj + r2, is the vector that is the diagonal of a parallelogram constructed 

with sides ri and r2 (Figure 1.9). In addition to the operation of vector 

addition, there is another important operation defined between real num¬ 

bers and vectors in S called scalar multiplication. The set of all real 

numbers (scalars) is denoted by R and consists of the set Z of all in- 
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tegers, the set Q of all quotients alb of integers {b I 0) (Q is called 

the set of rational numbers) and the set of irrational numbers such as 

/2, IT, etc. The set R does not, however, contain numbers involving 

i - If r e S (read "r is an element of the set S") and x z R, then 

xr is defined to be a vector pointing along the same line as r with a 

length |xl times that of r and with direction the same as that of r when 

X > 0 and the opposite of r when x < 0. The multiplication of a scalar 

X times the vector r is what is meant by scalar multiplication. For ex¬ 

ample, if the vector V is multiplied by 2, then the resulting vector 2V 

is a vector in the direction of V that has a length twice that of V while 

(l/3)v is a vector in the direction of V with a length one third that 

of V (Figure 1.10). We define Or to be the zero vector 0. If x is a 

negative number, then xr is a vector pointing in the opposite direction 

from r with a length |x| times that of r. For example, (- /2)w is a 

vector pointing in the opposite direction as V with a length 

|- /2| = /2 times that of V. Thus, given any real number X and any vector 

r E S, scalar multiplication assigns to x and r a uniquely determined 

vector xr £ S. 

Recall that S can be viewed as the set of all vectors emanating from 

a chosen origin 0. If D = {a,b,c} is a set of three noncoplanar vectors 

in S, then for any vector r in S there exists a unique set of real numbers 

X, y and z such that r = xa + yb + zc. An expression like 

xa + yb + zc is called a linear combination of {a,b,c} and the set 

D = {a,b,c} is called a basis. We shall study the nature of bases more 

thoroughly later. Using set notation, these statements about S can be 

written concisely as 

S = {xa + yb + zc | x,y,z e R) . 

This expression is read "S is the set of all vectors xa + yb + zc such 

that X, y and z are elements of R, the real numbers." 

Triples: Since each vector r in S can be expressed uniquely as a linear 

combination r = xa + yb + zc, r can be unambiguously determined with 

respect to the basis D = {a,b,c} by the three scalars x, y and z. When 

we write these scalars in a vertical column enclosed in brackets as 
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X 

y , 

z 

they form a triple. The set of all such triples is denoted by . 

is, 

R^ x,y,z z R) . 

That 

(1.1) 

Hence each vector r in S can be assigned to a unique triple in R^ with 

respect to the basis D. Since this triple representative of r is de¬ 

pendent on which basis D is chosen, we denote it by [r]^. That is 

[r] D 

where D = {a,b,c}. 

X 

y 

z 

if and only if r = xa + yb + zc , 

The decision as to which basis is to be used is usually made by 

taking into account the natural geometry of the crystal. For example, 

if a crystal like a-quartz is to be studied, then it would be convenient 

for each atom in the structure to have a triple that defines its position 

in the crystal relative to three noncoplanar vectors like a, b and c which 

radiate from a common origin, 0, and which lie along well-defined di¬ 

rections along which the structure is repeated in a relatively short in¬ 

terval. When referring to molecular and crystal structures, it is 

customary to speak of the coordinates of a point rather than its triple. 

In this book, we shall use the words "triples" and "coordinates" of a 

point interchangeably. 

Space lattice: If D = {a,b,c} is a set of three noncoplanar nonzero 

vectors in S, then the subset of vectors (points) 

= {ua + vb + wc ! u ,v ,w z Z} 

defines an important set of points called a space lattice. The vectors 

comprising are special in the sense that each is of the form 
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Figure 1.11 (top): The points of the space lattice generated by the vectors D - 

(a.b.c) of o-quartz. The pattern of points in this figure is assumed to continue indefi¬ 

nitely in all directions. 

Figure 1.12 (bottom): A line representation of the space lattice in Figure 1.11 constructed 

by passing lines parallel to a, b and c, respectively, through each point of the figure. 
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ua + vb + wc where u, v and w are integers. A drawing of the space 

lattice associated with the o-quartz structure is displayed in Figure 

1.11. The vectors a, b and c were chosen in this case to be three 

of the shortest repeat units in the structure. The lattice can be seen 

more easily by drawing lines that are parallel to the vectors a, b and 

c, respectively, through each point in the space lattice as shown in 

Figure 1.12. In Figure 1.13, a drawing of the a-quartz structure is 

placed in the lattice. Note how the contents of each of the resulting 

parallelepipeds is exactly the same. This is true regardless of the 

placement of the origin of the lattice in the o-quartz structure, provided 

the orientation of the lattice is not changed. Also the atomic pattern 

at each lattice point in the structure will be exactly the same regardless 

of the choice of the origin. Hence, the whole structure of an a-quartz 

crystal can be constructed by starting with any one of these 

parallelepipeds and by simply repeating it indefinitely over and over 

again to fill space. This illustrates how space lattices enable us to 

give a precise description to a theoretically infinite crystal by the 

contents of a relatively small parallelepiped. Such parallelepipeds are 

called unit cells because they contain at least one complete unit of the 

repeating pattern of the crystal. Hence space lattices provide a natural 

framework for describing the periodic patterns of atoms in a crystal like 

a-quartz. Besides the overall geometry of the crystal, the space lattice 

permits a simple description of other properties of the crystal. For 

example, any line that passes through the origin and another lattice point 

defines a direction (zone) in the crystal along which the structure is 

repeated. Moreover, the distance between the first lattice point en¬ 

countered along this zone measured from 0 defines the repeat unit of the 

structure along this direction in the crystal. Not only do zones parallel 

directions along which the structure of a crystal is repeated, but they 

also parallel the lines along which the faces of such a crystal may 

intersect. 

(El.5) Example - Finding triples (coordiaates) of vectors in the lattice 

of a-quartz: Consider the vectors r, s, t, u, v and w emanating from 

the origin of the space lattice /.^ associated with the a-quartz structure 

(Figure 1.14) and find 

Solution: An examination of Figure 1.14 shows that r = 2a + lb + 2c, 

u = la + 2b + Oc and w = - la — lb - Ic are vectors contained in 

thus 
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Figure 1.13 (top): A drawing of the crystal structure of o-quartz and its lattice repre¬ 

sentation. Note that each parallelepiped of the lattice partitions the a-quartz structure 

into an indefinite number of disjoint identically constituted unit cell volumes each of 

which contains at least one complete and representative unit of the repeating pattern of 

the structure. 

Figure 1.14 (bottom): The space lattice, of a-quartz generated by O = {a,b,c}. A 

vector p is contained in Lp if there exists three integers Pi, P2 and pj such that 

p = Pia + P2b + P3C. Thus, the vectors r,s,>..,w are each contained in because the 

coefficients of each are integers. 
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(PI.2) Problem: (1) Find [s]^, [t]^ and [V]^ for the vectors s, t, 

V e (Figure 1.14) and (2) locate the vectors Pj, Pj, r,. Pi, e that 

satisfy the following equalities: 
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(d) [r,]^ = -1 

1 

Vector Spaces: In our earlier discussion of geometric three-dimensional 

space, S, we defined the sum Pi + Vi of any two vectors Pi, r2 E S (see 

Figure 1.9) and the scalar product xr of any x z R and r e S (see Figure 

1.10). In each case the resulting vector is uniquely determined. The 

algebraic system that is formed using these two operations is an example 

of what is called a vector space. 

In general, a vector space consists of a set of vectors, a set of 

scalars, the two operations of vector addition and scalar multiplication 

and a list of properties that the two operations must satisfy. For our 

vector spaces, the set of scalars will always be taken to be the set of 

real numbers and thus will be real vector spaces. The two operations can 

be defined in various ways. In earlier discussions, we gave a geometric 

definition of these operations. Of course, if vectors do not have a ge¬ 

ometric interpretation, other definitions must be devised. The required 

properties of a vector space are listed in a formal definition given be¬ 

low. Notice that each of these properties- is satisfied by S. 

(D1.6) Definition of a vectop space: Let V denote a nonempty set and let 

R denote the set of real numbers. Consider an operation of vector ad¬ 

dition denoted by + that combines any two elements in V to yield an el¬ 

ement in V, and the operation of scalar multiplication that combines an 
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element in R with an element in V to yield an element in V denoted by 

juxtaposition (i.e., if x z R and r £ V' then the scalar product of x 

with r is denoted xr). Then 1/ is a vector space if for all r, s, t £ 

and X, y t R the following rules hold: 

(1) r+s=s+r (Commutative Law); 

(2) r + (s + t) = (r + s) + t (Associative Law); 

(3) There exists a vector u £ \/ such that V + u = V for all 

V £ (The existence of an identity element u); 

(4) Corresponding to each vector V t V, there exists a vector W 

such that V + w = U where U is the identity element (The ex¬ 

istence of an inverse w for each V £ V/); 

(5) x(r + s) = xr + xs (Left Distributive Law); 

(6) (x + y)r = xr -t- yr (Right Distributive Law); 

(7) (xy)r = x(yr) (Associative Law); 

(8) Ir = r (Unit Element). 

Besides the vector space S of all geometric vectors, there are many 

other important vector spaces. For example, the set R^ defined in (1.1) 

with operations 

Xi X2 Xi + X2 XX 1 

yi + yz = yi + Vi and X Vi - xy-L 

.-^1. .^2. Zi + Z2, Zl_ .XIl_ 

for all X, Xj, yi, Zi, x^, Vz, Z2 t R is a real vector space. Note that 

equality in R^ is defined to be 

Xx X2' 

yi = y2 

.^1. 

if and only if xj = X2, yi - yz, and Zj - Z2. 

(PI.3) Problem: Show that R^ satisfies the properties of D1.6 and 

qualifies as a vector space. 
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Vector Space Bases: We observed that if a, b and c are noncoplanar 

vectors in S, then each vector V e S can be expressed as a linear com¬ 

bination 

V = xa + yb + zc where x,y,z e R . (1.2) 

When each vector in a vector space can be expressed as a linear combina¬ 

tion of a set of vectors, D = {a,b,c}, we say that D spans the vector 

space. 

If V = xa + yb + zc, where a, b, and c are noncoplanar, then the 

distance that V lies from the plane defined by a and b is completely 

determined by z. Hence z is uniquely determined. Similarly, x and y 

are uniquely determined. By uniquely determined we mean that if V = 

x^a + yib + ZjC and V = X2a + y2^ then Xj — Xj, yi = y2 and 

Zi = Z2. If O is a set of vectors in a vector space such that each vector 

that is a linear combination of D can be written in only one way as a 

linear combination of D, then D is said to be linsarly independent. 

Consequently, a set of three noncoplanar vectors D = {a,b,c} both spans 

S and is linearly independent. Any set of vectors in a vector space that 

both spans the vector space and is linearly independent is called a basis 

for the vector space. Thus, any three noncoplanar vectors in S qualifies 

as a basis. However, unless otherwise stated, the bases we use will be 

assumed to be right-handed (see Appendix 4). For example, given O, b, 

c, a, 3 and Z, two choices of {a,b,c} are possible - one left-handed and 

one right-handed. In this book o, b, c, a, &, Z will refer unambiguously 

to the right-handed one. A commonly used basis for S is C = where 

i, j and k are mutually perpendicular unit length vectors. Usually C is 

referred to as a cartesian basis. In vector spaces other than S, it may 

be difficult to visualize the set of vectors that forms a basis. The 

following example illustrates how to determine whether a set of vectors 

in is a basis or not. 

(El.7) Example - A demonstration that a sei of vectors qualifies as a basis 

for R^: Show that the set of vectors 

D = 
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forms a basis for 

Solution: To show that D is a basis, we must show that given any vector 

V £ /? , V can be expressed in exactly one way as a linear combination 

of the vectors in D. Hence, we shall show that there exists a unique 

solution for x, y and z in the equation 

Vi 1' 

V = ^2 = X 1 

0 

1 
I
_

 -
1 

0
 

4-
 

'<
 

1 + z 0 

0
 1 

This equation is equivalent to the system of equations 

X - y = Vi 

X + y = V2 

Z = V3 . 

This system can be written in matrix form (see Appendix 2) as 

'1 -1 o' X V'l 

1 1 0 y = 

0 0 1 z .'^3_ 

(1.3) 

(1.4) 

(1.5) 

Using any of the methods in Appendix 2, it is found that the system has 

the unique solution X = Vi/2 + V^/l, y = -Vi/2 + V^/l, z = V3. Since 

(1.3) has a unique solution for each choice of the vector V, D is a basis 

for . I 

(PI.4) Problem: Let D denote the basis given in El.7. Using the method 

described in the solution to El.7, write 

2' 

-6 

5_ 

as a linear combination of the vectors in D. 
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(PI.5) Problem: Show that 

1 i -1 

D = 1 > -1 9 -1 

1 -1 0 

is a basis of . 

As demonstrated in El.7, to determine whether D = {Vi,V2,...,V^} 

is a basis for one must show that the matrix equation Ax = V has a 

unique solution for all V where the columns of A are the triples [Vi]^, 

[V2]^,...,[V ]^. If n < 3, then A has fewer columns than rows implying 

that for some W t , Ax = V has no solution (see Appendix 2). If 

n > 3, then A has more columns than rows implying that solutions are not 

unique. Hence, unless n = 3 there is no possibility that D is a basis. 

Furthermore, if n = 3, Ax = V has a unique solution if and only if 

det(A) ^ 0 (that is, when A ^ exists (see Appendix 2)). In summary, we 

have the following theorem: 

(T1.8) Theorem: All bases for R^ have 3 vectors. Furthermore, D = 

{Vi,V2,V3} is a basis for R^ if and only if det(A) / 0 where A is the 

3x3 matrix with columns [Vi]^, [Vz]^ and [ V 3 ] . 

The first statement in Theorem T1.8 can be generalized to any vector 

space that has a finite set of vectors as a basis. That is, if V is a 

vector space with a basis consisting of n vectors, then every basis for 

V must have exactly n vectors. In this case we say that the dimension 

of V is n. Hence S and R^ both have dimension 3. 

(PI.6) Problem: Determine which of the following sets of vectors qualify 

as a basis for R^. 

(a) D = 

\ / 
'2' -1' -1' 1 1 1' 0 0 

1 9 -1 9 -1 (b) D = 0 9 1 9 0 

0 0 -1 0 0 _1 

'2 -1' 'o' j 1' -2 'o' 

1 9 1 9 0 (d) D = -1 9 2 9 0 

0 0 L 1 I 0 0 1 
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The one-to-one correspondence between S and : Let D = {a,b,c} de¬ 

note a basis for S and let W denote any vector in S. Then 

Wi 

Wz , 

where the unique representation of w as a linear combination of the 

vectors of D is w = Wja + Wzb + W3C. Hence corresponding to each vector 

in S, there is a unique triple [w]^ in R^. Conversely, each vector in 

R^ is the triple of some linear combination of D and hence gives rise 

to a unique vector in S. Consequently, we have the one-to-one corre¬ 

spondence between 5 and R^ given by 

W^[W]^ > 

or written another way; 

Wia + Wzb + W3C 

This one-to-one correspondence is the fundamental reason why R^ can be 

used to model three-dimensional geometric space S. 

We have already seen that S and R^ are both three-dimensional vector 

spaces. As such, each has a vector addition and scalar product defined 

on it. One important property of the W correspondence is that 

it "preserves" these vector space operations. For example, if U, 

V £ S, then U + V corresponds to [u] D . Hence, to add two vectors 

in S we first find their corresponding triples, add the triples and then 

convert that sum into its corresponding vector in S. This eliminates 

the necessity of using the clumsy parallelogram rule for adding geometric 

vectors. Similarly, if u £ S and x z R, then xu corresponds to 

x[u]^. To formalize and justify these remarks we have the following 

theorem. 

(T1.9) Theorem: Let D = {a,b,c} denote a basis of 5. Then the fol¬ 

lowing two statements are true: 

w. 

lW3J 
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(1) [U + V]^ = [u]^ + [V]^ for all u, V E S; 

(2) X t R and u e S. 

Proof: Let u, v e S. Since D is a basis of S, there exist real numbers 

Ui, U2, U3, V2 and V3 such that u= Uia + t/^b + UsC and V = 

Via + V2b + V3C. Hence 

u + V = (Uia + Uzb + U3C) + (Via + Vjb + V3C) 

= (Ui + Vi)a + (uz + V2)b + (U3 + V3)c . (1.6) 

In /?’ we have 

Ul Vi c + 

_
1

 

U2 

II Q
 

> 

.^3. 

and [u]^ + [v]q = U2 + V2 

Uj + Vj 

But according to equation (1.6), this last triple is also [u + v]^. 

Hence [u + v]^=[u]^+[v]^. c 

(PI.7) Problem: Prove part (2) of T1.9. 

(PI.8) Problem - Calculating vectors in the lattice of a-quartz: In El.5 

we found the triple corresponding to several vectors labeled in Figure 

1.14. Estimate r + u using the parallelogram rule and then determine 

[r + from the figure. Now calculate [r + using Theorem T1.9 

and compare your answers. Use the theorem to calculate each of the fol¬ 

lowing: 

(a) [-r]^ 

(b) [6r + 2u]^ 

(c) [3r - 5u]^ . 

Theorem T1.9 shows that, as vector spaces, S and R^ are identical. 

The mathematical statement of this fact is that S and R^ are isomorphic 

and that the mapping of S to R^ that takes w to [w]^ is an isomorphism. 

If we choose an origin 0 and a basis D = {a,b,c} in S, then as ob¬ 

served earlier the vectors 0, a, b and c are fundamental to establishing 

a frame of reference on S. To find the triples that correspond to these 

vectors, we observe that 0 = Oa + Ob + Oc, a = la + Ob + Oc, b = 

Oa + lb + Oc and c = Oa + Ob + Ic. Hence 
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In particular, the basis of that corresponds to D is 

'l' 

1 
O

 I 
O

 

0 9 1 y 0 

1-
 

o
 

1
-

 
o

 

i_ 

(1.7) 

Consequently, no matter how peculiar the geometric relationship be¬ 

tween a, b and C may be, the corresponding triples in are very simple. 

This simplicity is a great help in conveniently describing features in 

S with respect to the established frame of reference. For example, the 

set of all vectors in the space lattice defined by D is represented in 

R^ as the set of all triples with integer entries. However, caution 

must be exercised when lengths of vectors and angles between vectors are 

considered since, for example, in spite of the great similarity of the 

three vectors in (1.7), their corresponding vectors a, b and c may vary 

greatly in length. We shall discuss how to overcome this problem later 

in the chapter. 

Vectors in S that lie in the direction of a can be written in the 

simple form xa for some X z R. Similarly, vectors along b and c can be 

written in the form yb and zc, respectively, where y, z z R. Since 

D = {a,b,c} forms a basis, any vector V £ S can be written as a linear 

combination V = xa + yb + zc. Hence, geometrically V can be pictured 

as the sum of three vectors each in the direction of a basis vector (see 

Figure 1.15(a)). As the correspondence between S and R^ suggests, we 

can decompose a vector in R^ in a similar manner. Since 

X o' o' 

[xa]^ = 0 

0 

o
 

_
1

 

0 

z 

and since these are scalar multiples of the basis vectors in (1.7), we 

have the correspondence pictured in Figure 1.15(b). 

Coordinate Axes: Let D = {a,b,c} denote a basis for S. As in the case 

of a-quartz, a, b and c will usually be chosen so that each lies in an 
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Figure 1.15. A graphical representation of the basis vectors and coordinate axes in (a) 

geometric space S and (b) R’. In (a), basis vectors a, b and c are directed along coor¬ 

dinate axes X, Y and Z, respectively. In (b), the triple representatives of these vectors 

are displayed with I^lpi ^nd [cj^ placed along X, Y and Z. For each point v E S, 

there exists three real numbers X, y and z such that V can be written as V = 

xa + yb + 2C. Likewise, for each vector v c S, there exists a triple representative of 

V, £ R’ such that 

[v]p = + y[blQ + 2(c]q 

The purpose of this figure is to show the correspondence that exists between vectors 

V E S and [v]q e /?’. No geometrical significance should be attached to Figure 1.15(b) 

other than as a model for Figure 1.15(a). The vectors in S have length and direction and 

an angle can be defined between any two nonzero vectors in S. On the other hand, as R’ 

is just a set of triples, there is no intrinsic meaning to the notions of the length of a 

vector or the angles between vectors in R’. 
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important direction relative to the structure of the crystal under study. 

Since these directions will be important to us, we call the set of all 

points lying along them coordinate axes. For example, the X-axis is 

defined to be the set of points lying on a line passing through 0 and 

including a. That is, the X-axis is the set of vectors {ria \ z R} 

and is shown in Figure 1.15(a). The V-axis is defined to be 

{^2^ I r2 E /?} and the Z-axis is defined to be {r^c | t R). As the 

X-axis consists of the vectors r = Tia + r2b + riC where = 0, 

the triples for the points on the X-axis in R^ are (see Figure 1.15(b)): 

X = { 

ri 

0 

0 

Ti £ R) 

Similarly, the triples for the points on the Y- and Z-axes in R^ are 

V = { 

o' o' 

rz 1 ^2 £ /?} and Z - { 0 

0 fj 

r, E R) 

respectively. By convention, the interaxial angles between these coor¬ 

dinate axes are denoted a = <(y:Z), 3 = <(Z :X) and JT = <(X:y). 

LENGTHS AND ANGLES 

Inner Product: In geometric space S, the length of a given vector or 

the angle between two vectors can actually be measured. However, a vector 

in R^ has no intrinsic length nor is there a natural way to define the 

angle between two vectors in R^ . Since the objective is to model the 

real world by /? *, a method must be devised so that the length of a ge¬ 

ometric vector V and the angle between such vectors can be calculated 

from the coordinates in /?’. Consequently, the lengths assigned to vec¬ 

tors in R^ must be based on information about the geometry of the basis 

D. The necessary information is best described by the inner product (this 

product is also referred to as the dot product). In geometric space, 

the inner product of two vectors V and W is defined to be 

V • W = VWCOS0 , (■ 

where 9 is the angle between V and w such that 0° < 0 S 180° and where 
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V 

Figure 1.16: The projected length of a vector 

V on a unit vector w is given by vcosB, where 

8 = <(V;W). 

V and w denote the magnitudes of V and W, respectively. 

Some useful properties of the inner product include the following. 

For all vectors u, V, w t S and all real numbers r z R: 

(1) V • V S 0 with equality only w'hen V = 0; 

(2) U • (v + W) = (U • V) + (u • W) (Left Distributive Law); 

(3) (u + V) • W = (u • W) + (V • w) (Right Distributive Law); 

(4) u • V = V • u (Commutative Law); 

(5) r(u • V) = (ru) • V = u • (rv) . (1-9) 

If u • V = 0, with u / 0 and v ^ 0, then u and V are perpendicular. 

Also, note that v • V = because cos(0°) = 1. 

Suppose that W is a unit length vector. Then V • W = vcos0 is 

the projection of V onto the direction of W (see Figure 1.16). In general 

(V • W)/W is the projection of V onto the direction of W. 

Metrical Matrix: Suppose that D = {a,b,c} is a basis for S and suppose 

that V, w E 5 such that 

V = Via + V2b + V3C and w = Wia + Wjb + W3C . 

Then V • w can be found as follows 

V • w = (Via + Vjb + V3C) • (wia + Wjb + W3C) 

+ [(Via + Vzb + V3C) • Wia; 1 + [(Via + Vib + V3C) • W2 

Hence, 

+ [(Via + Vjb + V3C) • W3C; 1 

(Property 2 of (1.9)) 

V • w = [(Via) • (wia)] + [iv^b) • (Wia)] + [(V3C) • (Wia)] 

+ [(Via) • (wzb)] + [(Vzb) • (Wjb)] + [(V3C) • (Wzb)] 

+ [(Via) • (W3C)] + [(v^b) • (W3C)] + [(V3C) • (W3C)] 

(Property 3 of (1.9)) 

vw = ^'cose 
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Therefore, 

V • w 

>
 

II (a • a) + 

S
i r-i 

>
 • a) + V'3Wi(C • a) 

+ V1W2 (a • b) + V2W2 (b • b) + V3W2(C • b) 

+ V1W3 (a • c) + V2W3(b • c) + V3W3(C • c) 

(Property 4 of (1.9)) 

(1.10) 

Hence the inner product of any two vectors can be calculated by evaluating 

the inner products of the basis vectors with each other. Equation (1.10) 

is somewhat unwieldy but recasting it in matrix form, it can be simplified 

(see Appendix 2 for matrix review) and written as 

Wja • a W2a • b w 3a • c 

V • w = V1V2V3 ] Wib • a W2b • b w 3b • c i 

WiC • a W2C • b w 3C • c 

which yields 

a • a a • b a • c Wj" 

V * w = V1V2V3 ] b • a b • b b • c W2 (1 

c • a c • b c • c W3 

The 3x3 matrix in (1.11) is called the metrical matrix (also called the 

metric tensor) and is denoted as 

9ii 912 9i3 a • a a • b a • c 

9 21 922 923 = b • a b • b b • c 

921 932 93 3. c • a c • b c • c 

(1.12) 

Note that since the inner product is commutative, G is a symmetric matrix. 

That is, Qj. = g.j for all / and /. With this notation, the inner product 

in (1.11) can be written compactly as 

V • W = [V]^G[w]p , (1.13) 

where [v]^ is the transpose [ViV'2V'3] of ^ special case of the 

inner product is when the basis vectors form a cartesian basis yielding 

i • i i • j i • k '1 0 o' 

G = j * i j • j j • k = 0 1 0 

k • i k • j k • k 0 0 1_ 
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Thus for a cartesian basis C, 

product 

V • 

(1.13) becomes the more familiar 

W = [V]^l3[W]^ = [V]^[W]^ 

inner 

(1.14) 

= [V1V2V3] 

Wi 

W2 

>^3, 

= ViWi + V2W2 + V3W3 . 

(El.10) Example - Calculation of bond lengths and angles for Hi,Si04, a 

molecule with an atom at the origin: A structural analysis of the 

monosilicic acid molecule (Figure 1.1), using molecular orbital methods 

yields the cartesian coordinates of the Si, 0 and H atoms listed in Table 

1.1. Calculate the bond lengths between Si and O3 and between Si and O4 , 

denoted R(Si03) and R(Si04), respectively, and the angle between the Si03 

and Si04 bonds denoted <(03Si04). 

Table 1.1: The atomic coordinates for H4Si04. 

Atom X y z Atom X y z 

Si 0.0 

0
 

0
 0.0 Hi 1.875 -0.237 1.089 

0i 1.281 0.466 0.877 H2 -0.237 -1.875 -1.089 

O2 0.466 -1.281 -0.877 H3 -1.875 0.237 1.089 

O3 -1.281 -0.466 0.877 H4 0.237 1.875 -1.089 

O4 —0.466 1.281 -0.877 

Solution: In this example, the basis vectors are cartesian with unit 

lengths of lA, i.e., ||i|| = ||j || = Ijkl = lA. Because the Si atom was chosen 

at the origin, the distance between Si and O3 is found by evaluating the 

length of the vector r3 = —1.281i — 0.46'6j + 0.877k that radiates from 

Si to O3. Forming the inner product r3 • ts (Equation 1.14), we get 

[r2]^^[r3]c 

[-1.281 -0.466 0.877] 

-1.281 

-0.466 

0.877 

2.621 . 
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By taking the square root of this number, the length of Ts is found, i.e., 

rj = 1.621A and so RCSiOj) = 1.621A. 

To determine 631, = <(03Si04), the angle between the Si03 and Si04 

bonds, we calculate r3 • r,, where 

= -0.466i + 1.281j - 0.877k 

is the vector that radiates from Si to O4 and solve for 634 in (see (1.8)) 

r4 = r^PuCos 3 f OkJ b 3 

Hence 

where 

and 

cose34 = Ps • r4/(^3^u) 4/ 3' 

([f" 31^1^4]^)/(([r3]^[r3]^)^([P4]^[t4]^) ) , 

Icl = [-1.281 -0.466 0.877] 

[r4]c[f‘‘]c = [-0.466 1.281 -0.877] 

—0.466 

1.281 

-0.877 

—0.466 

1.281 

-0.877 

= -0.769A^ , 

= 2.627A^ 

Note that the 

(2.627)^ = 1.621A 

-0.769/((1.621)(l 

bonds is <(03Si04 

distance between 

, which is also 

621)) = -0.293 and 

I = 107.0°. 

Si and O4 is 

equal to . 

the angle between 

equal to Pu - 

Thus, COS034 = 

the Si03 and Si04 

(PI.9) Problem: Calculate R(SiOi) and R(Si02) and <(0iSi02) for H4Si04, 

using the coordinates given in Table 1.1. 

(El.12) Example - A calculation of bond lengths for H6Si303, a molecule 

lacking an atom at the origin: A structure analysis of H6Si303 by O'Keeffe 

and Gibbs (1984) yielded the cartesian coordinates in Table 1.2. In this 

example, we will calculate the SiO bond lengths R(SiiOi) and R(Si20i). 
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Table 1.2: Coordinates of the atoms for tricyclosiloxane, HgSisOj. 

Atom X y z Atom X y z 

Sii 1.7668 0.0 0.0 Hi 2.5940 0.0 1.2098 

Si2 -0.8833 1.5301 0.0 H2 2.5940 0.0 -1.2098 

Si3 -0.8833 -1.5301 0.0 H3 -1.2970 2.2465 1.2098 

0i 0.7456 1.2914 0.0 Hu -1.2970 2.2465 -1.2098 

02 -1.4912 0.0 0.0 Hs -1.2970 -2.2465 1.2098 

03 0.7456 -1.2914 0.0 He -1.2970 -2.2465 -1.2098 

Solution: The length of the SiiOi bond equals the magnitude of a vector 

denoted rj drawn from 0i to Si^. This vector is found by simply sub¬ 

tracting from the vector Vi = 1.7668i (a vector drawn from the origin 0 

to Sii) the vector V2 = 0.7456i + 1.2914j (a vector drawn from 0 to Oj), 

i.e. , 

rj = (1.7668 - 0.7456)i - 1.2914j 

= 1.0212i - 1.2914j . 

Next, evaluating the inner product 

ri • ri = [1.0212 -1.2914 0.0] 

1.0212 

-1.2914 

0.0 

= 2.711A^ 

and taking the square root of the result, we find that R(SiiOi) = 1.646A. 

The distance between Sij and Oj is found by calculating the length of 

r2, a vector that radiates from 0i to Si2. The vector r2 is found by 

subtracting V2 from V3 = -0.8833i + 1.5301j (a vector taken to radiate 

from 0 to Si2); i.e.. 

r2 = (-0.8833 - 0.7456)i + (1.5301 - 1.2914)j 

= -1.6289i + 0.2387j . 

Evaluating (r2 • , we find that R(Si20i) also equals 1.646A. 

If you had difficulty following the vector assignment made in this 

problem, use the coordinates in Table 1.2 and make a careful drawing of 
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Figure 1.17: A drawing of a block of the o-quartz structure. The parallelepiped in the 

drawing outlined by O = {a,b,c} contains a total of three Si atoms and six oxygen atoms 

for a total of three SiOj formula units per unit cell volume. The coordinates of the atoms 

in the unit cell are given in Table 1.3. The oxygen atoms 0,, 0,. 0», 0, are located at 

the end points of r,, r,, r», P5, respectively, and the Si atoms Sii, Sij, Si, are located 

at the end points of r2, Tj and respectively. 

the structure of the molecule viewed down the Z"axis perpendicular to 

the ring. Construct the line segments Vi, Vg and V3 directed from the 

origin, 0, to Sii, Oj and Sij, respectively, and then construct Ti di¬ 

rected from 0i to Sii and Tz directed from 0i to Siz- With this con¬ 

struction, it should be apparent that Tj = Vi - Vj and Tz = V3 - 

(PI.10) Problem: Calculate <(Sii0iSi2), R(Si2H3), R(Si2H4) and 

<(H3Si2H4) for tricyclosiloxane, using the cartesian coordinates given 

in Table 1.2. 

(El. 13) Example - Calculation of bond distances and angles for a-quartz: 

Earlier in this chapter we observed that the atoms in a crystal like o- 

quartz are repeated along numerous directions to form a periodic pattern 

in three dimensions. We also observed that the repeat units along three 

of these directions can be represented by three vectors D = {a,b,c} that 

outline a unit cell that contains at least one complete unit of the re¬ 

peating pattern of the structure (Figure 1.17). A structural analysis 

of a-quartz by Levien et al. (1980) yielded the atomic coordinates of the 
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atoms in one such cell (Table 1.3). We shall now calculate the two bond 

lengths R(SiiOi) and RCSijOi) and the Sii0iSi2 bond angle subtended by 

these two bonds. 

Table 1.3: The coordinates of the atoms in a unit cell of a-quartz. 

Atom X y z Atom X y z 

Sii 0.4699 0.0 0.0 O3 0.8540 0.5859 0.4521 

Si2 0.5301 0.5301 1/3 O4 0.2681 0.4141 0.5479 

Sis 0.0 0.4699 113 O5 0.1460 0.7319 0.8812 

0i 0.4141 0.2681 0.1188 Oe 0.5859 0.8540 0.2145 

O2 0.7319 0.1460 0.7855 

Solution: The coordinates of the atoms in Table 1.3 indicate that Oj 

occurs at the end point of a vector Pj = 0.4141a + 0.2681b + 0.1188c, 

that Sii occurs at the end of r2 = 0.4699a and that Si2 occurs at the end 

of r3 = 0.5301a + 0.5301b + (l/3)c (see Figure 1.17). R(SiiOi) is equal 

to the length of the vector 

r2 - Pi = 0.0558a - 0.2681b - 0.1188c 

and R(Si20i) is equal to the length of the vector 

Pj - Pi = 0.1160a + 0.2620b + 0.2145c . 

To calculate these bond lengths, the metrical matrix must be constructed 

(Equation 1.12). Since a = 3 = 90°, a»C=b»C=C»a=C»b=0. 

Also, since a — b = 4.914A, c = 5.409A and % = 120°, the remaining inner 

products are 

b • a 

a • a 

b • b 

c • c 

a • b = crbcos(120°) = -12.0737 

= 24.1474- 

= 24.1474 

= 29.2573 . 

Hence, the metrical matrix G for a-quartz is 
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G = 

24.1474 -12.0737 0 

-12.0737 24.1474 0 

0 0 29.2573 

When V and w in Equation 1.13 are both replaced by Pj — Pi, we have 

R(SiiOi)^ = (P2 - Pi) • (Pz - Pi) = [Pz - Pi]nG[rz - 

= fO.0558 -0.2681 -0.118810 

= [0.0558 -0.2681 -0.1188] 

0.0558 

-0.2681 

-0.1188 

4.5844 

-7.1476 

-3.4758 

= 2.5850A* , 

and so R(SiiOi) = 1.608A. 

Likewise, replacing V and w in Equation 1.13 by P3 - Pi, we obtain 

R(SizOi)^ = (P3 - Pi) • (r3 - ri) = [P3 - Pi]^G[P3 - Pi] 'D 

= [0.1160 0.2620 0.2145]G 

0.1160 

0.2620 

0.2145 

= 2.595A* , 

and so R(SizOi) = 1.611A. 

To calculate the angle 0 = <(Sii0iSiz), the inner product 

(Pj - Pi) • (P3 — Pi) is required because 

(rz - Ti) • (P3 - Pi) = R(SiiOi)R(Si2Oi)cos0 

Since 

(rz - Pi) • (r3 - Pi) = [Pz - r,]^G[r, - Pi] 

= [0.0558 -0.2681 -0.1188]G 

0.1160 

0.2620 

0.2145 

= -2.087A* , 

COS0 = -2.087/(R(SiiOi)R(SizOi)) = -2.087/((1.608)(1.611)) , 

and 

0 = cos ^[-2.087/((1.608)(1.611))] = 143.7‘ 
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(PI.11) Problem: Find four oxygen atoms in the unit cell of a-quartz 

that are each bonded to Si2, i.e., the four oxygen atoms nearest to Si2. 

Calculate the distances between Si2 and each of these oxygen atoms and 

the six bond angles, <(0Si20), subtended by the bonds of the SiOi, group. 

Note in Figure 1.17, Si2, O3, O4 and Og are located at the end points of 

**3 5 f'yj **4 and Pj, respectively. 

(PI. 12) Problem: Calculate the bridging <(Si304Si2) angle in a-quartz 

(Si3 is located at the end point of rg). 

In the computation of the interatomic separations and angles in o- 

quartz, we note that particular values are encountered again and again. 

This is by no means an accident of nature but a consequence of the fact 

that the atoms in the mineral strive to adopt a minimum energy config¬ 

uration. When this condition is realized, a pattern of atoms is repeated 

at regular intervals in a symmetrical pattern as discussed in the intro¬ 

duction. As a consequence, particular bond lengths and angles in the 

aggregate are repeated as observed not only in the case for a-quartz but 

also for the molecules HitSiOi, and H6Si303. 

(PI.13) Problem: Anorthite is an important feldspar mineral of 

CaAl2Si208 composition found in volcanic ejecta and contact metamorphic 

rocks. Wainwright and Starkey (1971) studied its structure using a 

triclinic basis D = {a,b,c} where a = 8.173A, b = 12.869A and 

c = 14.165A, a = 93.11°, P = 115.91° and 2f = 91.26° and determined that 

an oxygen atom occurs at the end point of Pj, a silicon atom at the end 

point of r2, and an aluminum atom at the end point of r3, where 

Pi = 0.3419a + 0.3587b + 0.1333c , 

r2 = 0.5041a + 0.3204b + 0.1099c , 

r3 = 0.1852a + 0.3775b + 0.1816c . 

Find the lengths of the SiO and AlO bonds, and the SiOAl angle between 

them. 

Cross Product: A second way to multiply vectors is to use the cross 

product. Unlike the inner product which yields a scalar, the cross 

product of two vectors yields a vector. Let V and w denote vectors in 
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S and let 0 denote the angle between them such that 0° < 0 < 180°. Let 

N denote the unit vector perpendicular to V and w so that {V,W,N} forms 

a right-handed system. Then the cross product V X w is defined to be 

V X W = (vwsin0)N . (1.15) 

Since the parallelogram with sides V and w has base v and height wsin0, 

the area of the parallelogram is vwsin0. Hence V X W is a vector whose 

length equals the area of the parallelogram with sides V and W such that 

{V,W,(V X w)} forms a right-handed system. Note that one apparent flaw 

in our definition of the cross product is that if V and W are collinear 

then N is not uniquely defined. However, in this case, sin0 = 0 and so 

(V X W) = 0 and the direction of N is of no importance. The cross 

product has the following properties for all U, V and W s S and for all 

r E R: 

(1) u X (V + w) = (u X V) + (u X w) (Left Distributive Law); 

(2) (u + V) X W = (u X w) + IV X W) (Right Distributive Law); 

(3) (u X V) = -(V X u) (Anticommutative Law); (1.16) 

(4) r (u X V) = (ru) x v = u x (rv) . 

These properties are proved in any standard calculus text. In this sec¬ 

tion, we shall present a method for calculating the cross product V X W 

in the case where V and W are expressed with respect to a cartesian co¬ 

ordinate system C = {i.j.k). This method will not be justified here as 

it is discussed in the standard calculus texts. In Chapter 2 (2.23) we 

shall give a more general formula. If 

V = Vii + V2j + Vsk and w = Wii + W2j + Wsk 

are vectors in S, then 

V2 W2 Vi Wi Vi Wi 

V X w = i - j + 
^3 VV3 V3 W3 V2 VV2 

which in determinant form equals 
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i Vi Wj 

V X w = j Vi W2 

k V's W3 

Since V X w is a vector perpendicular to V and w, the cross product 

can be used to find a vector normal to a face or to a plane of atoms in 

a crystal. 

(El. 14) Example - The tilt angle of a carbonate group in aragonite: The 

carbonate CO3 groups in the mineral aragonite, CaCOj, are arranged in 

corrugated hexagonal close-packed layers perpendicular to c (Villiers, 

1971). The corrugated nature of the layer is related to a tilting of the 

groups out of the layer to accommodate the bonding requirements of the 

Ca atom. The coordinates of the three oxygen atoms comprising a carbonate 

group in one such layer are given in Table 1.4. 

Table 1.4: Coordinates of a carbonate group in aragonite. 

Atom 

0.25 0.7622 -0.0862 

0.25 0.9225 -0.0962 

0.4736 0.6810 -0.0862 

0.0264 0.6810 -0.0862 

Calculate a vector perpendicular to the plane defined by the three oxygen 

atoms of the carbonate group and determine the tilt angle, i.e., the angle 

between the perpendicular to the plane and C given the cell dimensions 

a = 4.96A, b = 7.97A, c = 5.74A, a = & = JT = 90°. 

Solution: Choosing a cartesian basis with i, j, k directed along the co¬ 

ordinate axes X, Y, Z, respectively, we -have that a = oi = 4.96i, b = 

bj = 7.97j, C = ck = 5.74k. Then the vectors Vi and Vj from Oj to O3 

and from O2 to Oj, respectively, defined in terms of a cartesian basis 

are 
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(-0.4472)(4.96i) = -2.218i 

(-0.2236)(4.96i) + (0.2415)(7.97j) + (-0.0100)(5.74k) 

-1.1091i + 1.9248j - 0.0574k . 

Vi = 

V2 = 

Hence, 

V2 X Vi 

i -1.1091-2.218 

j 1.9248 0 

k -0.0574 0 

= 0.1273j + 4.2692k 

is a vector perpendicular to the plane of the three oxygen atoms. To find 

the tilt angle between c and V = V2 X Vi, we evaluate 

cos'^((V • k)/v) = cos’^(0.9996) = 1.7° . 

Hence, the carbonate group is tilted out of the close-packed layer 

1.7°. □ 

(PI.14) Problem: The structure of amphibole is based on double chains 

of corner sharing silicate tetrahedra that are interlocked in layers 

paralleling b and c. The chains are not planar but are curved away from 

the b,c-plane to relieve strain ascribed to a dimensional misfit between 

octahedral and tetrahedral layers. The coordinates of the oxygen atoms 

0^, O5, and Ofi, defining the base of the Si2 tetrahedron of the chain in 

protoamphibole (Gibbs, 1969) are given in Table 1.5. If the chains were 

planar, the plane defined by the three oxygen atoms would be perpendicular 

to a. Calculate the angle between the perpendicular and a to obtain an 

estimate of the angle of misfit given that a = 9.335, b = 17.880, c = 

5.287A, a = B = y = 90°. 

Table 1.5: Coordinates of the oxygen atoms 

comprising the base of a silicate group in protoamphibole. 

Atom X y z 

O4 0.3764 0.2494 0.6873 

O5 0.3479 0.1214 0.4276 

Oe 0.3509 0.1302 0.9311 
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Figure 1.18: A parallelepiped outlined by basis 

vectors D = {a,b,c). The unit vector N is per¬ 

pendicular to b and c and makes an angle of 0 

with a. The height of the parallelepiped is de¬ 

fined by f) = a • N, the scalar component of a 
in the direction of N. 

Triple scalar product: A useful combination of the inner and cross pro¬ 

ducts is the triple scalar product u • (v x w). Let us obtain a formula 

for the product. If u = Uii + 02) + Ujk., V = Vii + V2\ Vsk and 

W = Wji + Wjj + Wsk, then 

u • (V X w) = 

/ V2 W2 V1 Wi Vl Wi \ 
(Uli -F Uzj + Ujk) • 1 i - j + 

\ ^3 W3 V2 W3 V2 W2 / 

V2 W2 Vi Wi Vi Wi 

= Ui - U2 + U3 

V's W3 V2 W3 V2 W2 

This can be written more concisely as 

Ui Vi Wj 

U • (v X w) = U2 V'a W2 

U3 V3 W3 

Thus the triple scalar product is a scalar that equals the determinant 

of the coordinates of three vectors written in terms of a cartesian basis. 

Note that that the columns of the determinant comprise the coordinates 

of U, V and W written in terms of the cartesian basis. 

The triple scalar product has an important geometrical meaning with 

respect to a (right-handed) basis D = {a,b,c}. Consider the height h 

of the end point of the vector a above the base of the parallelepiped 

outlined by a, b and c (Figure 1.18). As the volume v of such a 
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parallelepiped is equal to the area of its base A times its height, h, 

we have that v = hA. Since -4 = |jb X c|| = bcsina and h = a • N where N 

is a unit vector perpendicular to the b, c plane, 

V = a • Nib X cII 

a»||bxc|lN (1-17) 

a • b X c . 

Hence the volume of a parallelepiped with adjacent edges a, b and c is 

given by the triple scalar product a • (b X c). Note that had D been a 

left-handed basis, then a • (b X c) would have been negative and so, in 

that case, v = -a • (b X c). In fact the triple scalar product can be 

used to test whether D is right-handed or left-handed since D is right- 

handed if and only if a • (b x c) > 0. 

We shall now show that a • (b X c) = b • (c X a) = c • (a x b). 

If a = oj + Ozj + Ojk, b = bji + bi'] + bjk and c = Cii + Cjj + Cjk, then 

a (b X c) = 

a I b I c 1 

Q 2 b 2 C 2 

O3 63 C3 

(1.18) 

Using a theorem of determinants which states that an even number of column 

interchanges of a determinant leaves its sign unchanged, we observe that 

both 

bi Cl Ol 

b • (c X a) = bz C2 02 

bi C3 03 

and 

Cl Oi bi 

c • (a X b) = C2 02 b2 

C3 03 bi 

equal a • (b X C). 

(El. 15) Example - Calculation of the unit cell \ 

dimensions of coesite, a polymorph of silica 

are a = 7.135A, b = 12.372A, c = 7 .173A, 3 

et al. , 1977). Find its unit cell volume, V . 
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Solution: We begin by setting up a cartesian basis C = {i,j,l<} that re¬ 

lates in a simple fashion to the basis {a,b,c}. Since b and c are per¬ 

pendicular to one another, we place j along b and k along C. Since a and 

b are perpendicular, a will then lie in the i,k plane. Since P is the 

angle between a and k, we have the following linear combinations: 

a = osinPi + ocosPk 

b = b] 

c = ck . 

The volume of the unit cell is given by the triple scalar product 

V = a • (b X c) 

osin3 0 0 

0 b 0 

ocosp 0 c 

= obcsin^ . 

Using the cell dimension given for coesite, we get 

V = (7.135A)(12.372A)(7.173A)sin(120.36°) = 546.4A" . □ 

(PI.15) Problem: Given the basis vectors for a-quartz, place k along c 

and j along b and show that 

a = (/3o/2)i - (o/2)j 

b = bj 

c = ck . 

Then show that v = (/Jj2)a^c and that the unit volume of a-quartz is 

113.lA^ 
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CHAPTER 2 

SOME GEOMETRICAL ASPECTS OF CRYSTALS 

"Symmetry becomes the norm to which all things approximate; it is the 

fundamental blueprint which nothing is expected to follow to the 

letter." -- M. Senechal 

INTRODUCTION 

It was observed in Chapter 1 that when a large aggregate of atoms 

adopts a structure wherein the total energy is minimized, that the atoms 

in the aggregate are characteristically ordered into a regular and sym¬ 

metric pattern referred to as a crystal. Such crystals occur in nature 

as minerals, constituting the bulk of the rocks of the earth's crust and 

mantle and the metals of the inner core. The mineral grains in these 

systems are intimately and firmly intergrown with surrounding minerals 

and as such, they are almost always irregular in shape and lack faces. 

When conditions are right and minerals are allowed to grow slowly in a 

cavity of a rock or vein, they may form as polyhedra of varying degrees 

of regularity bounded by smooth faces that meet in edges and vertices. 

More than half a century ago. Max von Laue (1912) and his research 

assistants Walter Friedrich and Paul Knipping undertook a series of 

epoch-making diffraction experiments in the Mineralogy Department at the 

University of Munich and found that crystals by virtue of their regular 

“ 8 
and periodic structure and their minute interatomic spacing (~10 cm) 

behave as three-dimensional diffraction gratings for X-rays. The fol¬ 

lowing year W.H. and W.L. Bragg (1913) demonstrated that each potential 

face on such a crystal parallels a stack of planes in the lattice used 

to represent its three dimensional periodic structure. In this chapter, 

the properties of the lattice and its planes together with those of the 

reciprocal lattice will be developed. Theorems will be proved for trans¬ 

forming atomic coordinates, face poles, etc. This will be followed by a 

variety of problems, in addition to solved examples worked out in detail, 

to illustrate the theorems and concepts presented in this chapter and 

Chapter 1. 
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EQUATION OF PLANES AND LATTICE PLANES 

Lattice Planes: A plane passing through any three non-collinear lattice 

points in a lattice is called a lattice plane. Let D — {a,b,c} denote 

a basis for the lattice and let 

p = p-a + pzb + P3C , q = Pia + pjb + q^c , r = + r^b + r^c 

denote lattice vectors radiating from the origin to these points where 

p., q., r. t I. Let P denote the set of lattice points on this plane. 

If we define s = q - p and t = r - p, then a set of lattice points in P 

is given by 

P = {p + ns + mt I n ,m z Z) (2.1) 

This is illustrated in Figure 2.1. From Equation (2.1) we see that there 

are an infinite number of lattice points in such a plane. If 

u = Uia + U2b + U3C, where u. z Z, is any lattice vector whose terminus 

is not on P, then 

U = {u + ns + mt 1 n,m z Z) 

lies on a lattice plane parallel to P passing through the terminus of 

U. Therefore, every lattice point lies on a lattice plane parallel to 

P (Figure 2.1); thus, the whole lattice can be viewed as a stack of 

lattice planes parallel to any given lattice plane. 

The equation of a plane: A method other than (2.1) that can be used to 

describe a plane in S is to locate a vector S perpendicular to the plane 

and a vector p whose terminus is on the plane. Then a vector X will have 

its terminus on the plane (Figure 2.2) if and only if 

s • (X - p) = 0 

or expressed another way. 

s • X = s •' p (2.2) 

Then (2.2) can be expressed as 

[s]^G[x] 
t 

(2.3) 

where G is the metrical matrix for the basis D. 
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Figure 2.1 (to the left): A drawing of two parallel lattice planes in a space lattice L^. 

The end points of the noncollinear vectors p, q and r define the plane 

P = {p + n(q - p) + m(r - p) | n,m t Z) 

of lattice points. The second plane 

t/ = (u + n(q - p) + m(r - p) | n,m t Z) 

parallels P and is located at the end point of the lattice vector u. Note that both P and 

U are planes in Lp that extend indefinitely in two dimensions. 

Figure 2.2 (to the right): A drawing of a lattice plane, P, passing through the end points 

of vectors p and x and a parallel lattice plane passing through the origin, O. A vector 

$ is perpendicular to P only when the inner product of s and the vector (x - p) vanishes 

for all X, p t P. 

Letting [X]^ = [x,y,z]^, multiplying (2.3) out and observing that 

s • p is a scalar, we have the equation 

tiX + t^y + tjZ = w (2.4) 

where tj, t2» ^3* VV e R and x, y and z are indeterminates. Equation (2.4) 

completely describes the plane because a vector 

V = Via + V2b + V3C 

has its terminus on the plane if and only ifx=Vi,y=V2 and z = V3 

satisfies (2.4). 

(E2.1) Example - Verification that the termini of a set of vectors lie on 

a plane: Consider the plane defined by the equation 

(3/2)y + (4/3)y - (2/5)z = 3/2 
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with respect to the D basis and determine which of the following vectors 

have their termini on this plane: 

u = a , 

V = 2a - 3b + 4c , 

W = 225a - 225b + 90c . 

Solution: To determine whether the terminus of U = a is on the plane, 

we note that u = la + Ob + Oc and that so u is on the plane if and only 

if 

(3/2)(l) + (4/3)(0) - (2/5)(0) = 3/2 . 

Since this equality is true, we conclude that the terminus of U lies on 

the plane. Similarly the terminus of V is on the plane if and only if 

(3/2)(2) + (4/3)(-3) - (2/5)(4) = 3/2 . 

In this case, the equality is false and thus the terminus of V is not 

on the plane. The demonstration that W is on the plane is left as an 

exercise for the reader. □ 

Equation (2.4) enables us to easily determine many of the properties 

of the plane it describes. For example, the point at which the plane 

crosses the X-axis is the solution of the form V = Vja + Ob + Oc. Hence, 

setting X = Vi, and y = z = 0 in (2.4), we obtain tiVi = w. If / 0, 

this equation has the solution vv/tj and hence the plane intersects the 

X-axis at (w/ti)a. If ti = 0, then either w = 0, in which case the X-axis 

lies in the plane or w 0, in which case there is no solution and so 

the X-axis parallels the plane and the plane does not intersect the 

X-axis anywhere. A similar analysis holds for the V-axis and the Z-axis. 

Thus the plane tjX + tzV + t^z = w intercepts the X-axis at (w/ti)a, the 

V-axis at (w/tzlb and the Z-axis at (w/talc when tj, and tj are non¬ 

zero. 

Miller Indices: In Appendix 5. lattice planes are discussed and the facts 

we cite here are established. The equation of a lattice plane (2.4) can 

be expressed in the form 

hx + ky + Zz = m , (2.5) 
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where h, k, Z, m t Z, not all of h, k and £ are zero, and the largest 

common integer factor of h, k and £ is 1. Conversely, any such equation 

defines a lattice plane. Note that (2.5) results from (2.3) if 

[S]^ = [hkl]G''^ . 

Hence h, k and £ determine a vector s perpendicular to the plane. Con¬ 

sequently, two equations of the form (2.5) with different m values but 

the same h, k and £ values will define parallel planes. If m = 0, the 

plane passes through the origin. Amongst the lattice planes not passing 

through the origin, the two closest to the origin occur when m = ±1, the 

next two closest when m - ±2, etc. Furthermore, the planes are equally 

spaced. This can be seen by observing that a plane of the form (2.5) 

crosses the X-axis at {m/h)a. (If h = Q, do the same analysis using k 

or £, whichever is not zero). Hence, any two adjacent planes cross the 

X-axis at points a distance of (,l/h)a apart and so they are equally 

spaced. However, note that, unless a is perpendicular to the plane, 

(l//7)o is not the actual distance or d-spacing between the planes. We 

shall calculate this distance at the end of this section. The set of 

three integers denoted by (hkZ) is called the Miller indices of the face 

of the crystal that parallels these planes. By convention Miller indices 

are enclosed between parenthesis and a negative index is denoted by a 

minus sign set over the index. Thus (hkZ) specifies a stack of parallel 

planes whose first plane {m = 1) intercepts X, Y and Z at —a//?, b//f and 

-c/£ (when h, k and £ are nonzero). 

Figure 2.3 shows a stack of planes with indices (312) intercepting 

the parallelepiped (unit cell) outlined by the basis vectors of a-quartz. 

Note that the planes divide a, b and c into 3, 1 and 2 parts, respec¬ 

tively, and that the m = I plane intercepts X, Y, and 1 at a/3, b/1, 

and c/2, respectively. The m = 1 plane with Miller indices (001) par¬ 

allels both the X and Y axis and intercepts Z at c. Likewise, the one 

for (100) parallels Y and Z and intercepts X at a and the one for (010) 

parallels X and Z and intercepts V at b. 

(E2.2) Example - Determination of a, b, c given the indices of a plane 

and its intercepts on X, Y, Z: Suppose a plane in the mineral anorthite 
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Figure 2.3: A stack of parallel lattice planes (lattice points are not shown) with Miller 

indices (312) intercepting the basis vectors D = {a,b,c) outlining a unit cell of the o- 

quartz structure. The equation of each plane in the stack is 3x + y + 2z — m, where 

m t Z. Each plane intercepts the coordinate axes X, Y, Z at ma/3, mb/1, mcflf respec¬ 

tively; The m = 1 plane intercepts X, Y, Z at a/3, b, c/2, the m = —1 plane intercepts 

X, Y, Z at -a/3, -b, -c/2, etc. The separation between each plane in the stack is denoted 

as the rf-spacing of (312). 

(see PI.13) with Miller indices (132) and m = 1 intercepts X at 8.173A, 

Y at 4.290A and 1 at 7.082A. Find the lengths of a, b and c. 

Solution: We are given that ajh = 8.173A, bjk = 4.290A and c/£ = 7.082A 

where h = 1, k = 3 and £ = 2. Thus, the lengths of a, b, and c are a = 

8.173A, b = 3 X 4.290A = 12.87A, and c = 2 x 7.082A = 14.164A. □ 

d-spacings: The d-spacing, the distance between adjacent planes with 

given Miller indices {hkl), is equal to the distance between the origin 

(which lies on the m = 0 plane) and the m = 1 plane. The equation for 

the m = 1 plane is 

hx + ky + iz = 1 . (2.6) 

We can see from (2.3) that the s vector giving rise to (2.6) is such that 

s is perpendicular to the plane and s • p = 1 for any vector p whose 

terminus is on the m = 1 plane. Since 1 = s • p = spcosB where 0 is the 

angle between S and p, and since pcos6 is the projection of p onto S (see 

Chapter 1), we see that 1/5 = pcos0 is the projection of p onto s. But 

the projection of p onto the direction perpendicular to the plane is the 

distance from the origin to the plane. Therefore, 1/5 is the distance 

from the origin to the plane. From (2.3) we can show (details are given 

in Appendix 5) that 
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5* = [hkl]G 

Hence, in summary, S yields (2.6) from (2.3) if and only if 

(1) s is perpendicular to the {hki.) planes, and 

(2.7) 

(2) s • p = 1 for all p whose termini lie on the plane of (2.6). 

Furthermore, in this case the d-spacing for the {hki.) planes is 1/s and 

5^ = [hkl]G 
-1 

(E2.3) Example - Calculation of the d-spacing for a plane in a crystal: 

With the cell dimensions given in PI.13, compute the d-spacing for the 

(312) plane of anorthite. 

Solution: To find the d-spacing of this plane, first we use the cell 

dimensions of anorthite to compute the metrical matrix G for D and then 

we invert it and find 

66.7979 -2.3146 -50.5929' 
-1 

'0.01855 0.00054 0.00470' 

G-^ = -2.3146 165.6112 -9.8993 = 0.00054 0.00607 0.00044 

-50.5924 -9.8993 200.6472_ 0.00470 0.00044 0.00619 

Then we evaluate the product 

s* = [312]G 

'3' 

1 

2 

= 0.2595 . 

Since d = 1/s, we see that the d-spacing of (312) is d - 1.963A. 

RECIPROCAL BASIS VECTORS 

We observed in the last section that each potential face on a crystal 

parallels a stack of equi-spaced parallel lattice planes with a common 

interplanar spacing, d. The Braggs discovered in their pioneering ex- 
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periments on rock salt (NaCl) that X-ray diffraction by such a crystal 

can be considered as reflections from these planes. They also found for 

a given wavelength X that X-ray beams are diffracted from these planes 

by constructive interference, but only at definite angles defined by the 

Bragg equation, n\ = IdsinQ, where n z Z, d is the interplanar spacing, 

and 0 is the reflection angle. Recording these beams on a photographic 

film or with an electronic counting device and measuring the positions 

of each, the directions perpendicular to the planes and the interplanar 

spacings d for the crystal can be measured. From such measurements, the 

cell dimensions of the crystal can be determined icf. PA2.4). 

In the previous section we saw that corresponding to each stack of 

parallel lattice planes in the lattice generated by D = {a,b,c} there 

is a vector s such that when s is substituted into (2.3), we obtain 

hx + ky Iz = I (2.8) 

where (hkl) are the Miller indices of the stack of planes. By (2.7), s 

is perpendicular to the planes and s • p = 1 for any p whose terminus 

is on the plane of (2.8). In general, such an s is not in the lattice 

generated by D. Our goal in this section is to create a reciprocal basis 
^ .tp a. 

D = {a ,b ,c } such that, for any set of Miller indices (hkl), s is 

expressed as 

That is. 

s = ha + kb + He 

[s] D 

h 

k 

I 

(2.9) 

When we find such a basis, we will be able to easily locate and describe 

all of the lattice planes in the lattice generated by D. To discover 

D we first consider the planes (100). In this case, 

f 

0 , 
0 
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and so s = a . Hence we want a to satisfy(2.7)with respect to (100). 

Therefore a is perpendicular to the (100) planes and, since the terminus 

of a is on the plane lx + Oy + Oz = 1, a"» a = 1. Note that the (100) 

planes parallel the plane in which b and c lie. Since b X c is a vector 

perpendicular to the (100) planes, a = r(b x c) for some real number 
Jt. 

r. Using the fact that a'» a = 1, we obtain 

and so 

Consequently, 

By a similar argument. 

r(b X c) • a = 1 , 

r = l/[a • b X c] . 

a" = (b X c)/[a • b x c] 

b" = (c X a)/[a • b x c] 

c" = (a X b)/[a • b x c] 

(P2.1) Problem: Explain why b is perpendicular to the (010) planes and 

b • b = 1. Then show that b = r(a X c) where r z R and that 

b" = (c X a)/[a • b x c] 

(P2.2) Problem: Show, as in P2.1, that 

(a X b)/[a • b X c] 

Note that by the way D was selected, 

* * * 
a»a = b»b = c»c = l , 

and (2.10) 
JL. .U -X. ..U .1. 

a'• b = a'• c = b"» a = b' • c = c'»a=c’»b = 0 . 

Also, note that since a , b and c are perpendicular to the planes (100), 

(010) and (001), respectively, and since these planes do not intersect 
Vv /V ^ 

in parallel lines, a , b , and c are not coplanar. Thus, D qualifies 
^ 

as a basis with a , b , c directed along the coordinate axes X , Y , 

Z , respectively, with interaxial angles a = <(V' :Z ), B = <(Z :X ), 

y" = <(X' :Y ). 
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(T2.4) Theorem: If s satisfies (2.7) for the Miller indices {hkl), then 

~h 

|slo‘= fc . 

I 

Proof; Since s satisifies (2.7), s • p = 1 for all p whose termini are 

on the plane 

hx + ky + Iz = 1 

Assume that h f Q, k i 0 and I i- 0. Recall that this plane crosses the 

X-axis at a//i, the V-axis at b/k and the Z-axis at c/l. Hence, 
JU .u .t. 

s • (a/h) = s • {b/k) = s • {c/l) = 1. Since D = {a ,b ,c } is a basis, 

there exists real numbers tj, t2> ^3 such that 

s = tia" + fzb" + t^c" . (2.11) 

Hence, 
.U .1. JL, 

1 = s • (a//?) = (l//7)(tia*' + tzb" + tjc") • a 

= (l/h)(tia"» a + tzb"* a + tjc"* a) 

= (l//?)(fi) (applying (2.10)) . 

Therefore, = h. Similarly, t2 = k and tj - 1. Therefore, 

and so 

s = ha + /cb + He 

When some of h, k and H are zero, a similar argument can be employed. 

For example, if h = 0 then a parallels the plane and so s • a = 0. But 

s • a = 0 implies that = 0. We took care of the case when two of h, 

k and H are zero when we defined a , b and c . □ 

(P2.3) Problem: In the h ^ 0, k ^ 0 and H / 0 case, show that for (2.11) 
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= k and tj = 1. 

1^0 case, show that 

1^0 case, show that 

Direct and reciprocal lattices: In Chapter 1, we defined a lattice /.^ as 

a subset of points in S such that each vector r E can be expressed 

as an integral combination of D. In the context of D and D , D is 

called the direct basis. Hence is called the direct lattice. With 

•jV 
the introduction of the reciprocal basis D , a second subset of points 

in S 

~ I h,k,l E Z) 

known as the reciprocal lattice can be defined. Because of the orientation 

of the lattice vectors in relative to the planes of L^, the recip¬ 

rocal lattice has found important applications in X-ray crystallography 

in the study of the diffraction symmetry of crystals, crystal structure 

analysis and in solid state chemistry in the study of bonding (Slater, 

1972). When an X-ray beam is diffracted by the structure of a crystal, 

the positions of the diffracted beams forming the diffraction record 

provide a map of the reciprocal lattice of the crystal. By analyzing the 

pattern, not only can the size, shape and orientation of the unit cell 

be found, but also the symmetry, the lattice type and certain space group 

symmetry operations of the crystal may be deduced (Buerger, 1942). 

D and D compared: The relationship between D and D is an important 

one that goes well beyond the task of finding the lattice planes in the 

(P2.4) Problem: In the A? = 0, /c / 0, 

'o' 
[s]^-= k 

H 

(P2.5) Problem: In the h A 0, /c = 0, 

h 

[s]^-= 0 

I 
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lattice generated by D. In this section we shall establish a number of 

results that will prove to be useful when dealing with S described in 

terms of D or D . 

The strategy we employed to solve for fj, t2, and t3 in (2.11) can 

be applied in a more general setting. Let r £ S. Then there exist real 

numbers r^, r^, and r, such that if 

r = Tja + Tzb + TjC , 

then 

r • a" = (ria • a") + (rzb • a") + {r^c • a") 

= r 1 (applying (2.10)) 

Similarly, r • b - and r • c - r^. 

(P2.6) Problem: Show that r • b = Tj and r • c r3. 

Hence, we have the important equation 

r (r • a")a + (r • b")b + (r • c")c (2.12) 

Similarly, 
.t. .t. 

r = (r • a)a'' + (r • b)b" + (r • c)c" . (2.13) 

(P2.7) Problem: Show that (2.13) is a true statement. 

From (2.12) and (2.13), we see that the following theorem is true. 

(T2.5) Theorem: Let D denote a basis and D its reciprocal basis. 

If r E S, then 

*' 
r • a r • a 

[r]^ = r • b and [''Id* r • b 
•u 

r • c r • c 

Suppose that - [Tj, is known and we wish to find 

By (T2.5), [r]^* = [r • a, r • b, r • c]^. But 
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r • a 

Similarly, 

= (Tia + Tzb + TjC) • a 

= ri(a • a) + rjCb • a) + r^ic • a) 

r • b = ri(a • b) + rzCb • b) + rjic • b) 

r • c = ri(a • c) + rjCb • c) + r^ic • c) 

Writing this in matrix form we have 

[r] D" 

a • a 

b • a 

c • a 

a • b 

b • b 

c • b 

a • c 

b • c 

c • c 

ri , 
ri. 

(2.14) 

where we have used the fact that for any two vectors u and V, u • V = 

V • U. The 3x3 matrix in (2.14) is the metrical matrix G for D introduced 

in Chapter 1. Hence, 

'D = G[rl 
(2.15) 

for all r z S. We have found a matrix, G, that allows us to change from 

the notation of one basis, D, to another, D . We shall see later that 

given any two bases Dj and there always exists a matrix T such that 

T[r] [r] 

for all r £ S and we will present a technique for finding T. 

In view of the symmetry of the equation in (2.14) it is reasonable 

to expect that D is the reciprocal basis of D . The following theorem 

shows that this is the case. 

(T2.6) Theorem: If D = {a ,b ,c } is the reciprocal basis with respect 

to D = {a,b,c}, then D is the reciprocal basis with respect to D . 

Proof: Let the reciprocal basis with respect to D be denoted by 

(D")" = {(a")",(b")", (c")"}. Using Equation (2.12) to write (a ) in 

terms of D, we have 

(a*)* = ((a")“» a'‘)a + ((a")"* b“)b + ((a")''» c'')c . (2.16) 
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Since (D ) is the reciprocal basis with respect to D , equations of 

(2.10) yield 

a"» (a")" = 1 

and 

b’ • (a")' = c ’• (a ) =0 

Since the inner product is commutative, (2.16) becomes (a ) = a. Sim¬ 

ilarly (b ) = b and (c ) = c. Hence (D ) = {a,b,c}. □ 

In view of T2.6 and the definition of a reciprocal basis we have 

shown that 

a = (b*'x c )/[a"* (b"x c")] 

b = (c"x a")/[a'‘» (b“x c")] 

c = (a X b')/[a'» (b"x c’)] 

Let H denote the metrical matrix for D . By (2.15), 

(D ) 

for all r £ S. But by T2.6, (D ) = D. Hence 

for all r £ S. Also, by (2.15), G[r]^ = [r]^* for all r £ S where G 

is the metrical matrix for D. Hence [r]^ = G ^[r]^* (see Appendix 2 

for a discussion on the inverse of a matrix and why, since det(G) i 0, 

G ^ exists). Therefore, H[r]^* == G for all r £ S. Since the 

equality holds for all r £ S, H = G Hence we have proved the following 

result. 

(C2.7) Corollary: If G is the metrical matrix for D, then G ^ is the 
/V 

metrical matrix for D . 

The fact that the metrical matrix of D' is the "reciprocal" of the 

metrical matrix of D is consistent with calling D the reciprocal basis 

of [). The metrical matrix of D is denoted G . The complete geometry 

of D is described in terms of that of D in the following theorem. 
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(T2.8) Theorem: Let D = {a,b,c} denote a basis of 5 and let D* = 

{a ,b ,c } denote its reciprocal basis. Then the geometry of D" can be 

written in terms of that of D in the following wdyi 

cosa 

cos3 

cos JC 

a - (bc/y)sina ; 

b = (oc/v)sin& ; 

c = (ob/v)sin2r ; 

(cosPcosJT - cosa)/sin3sin2!' ; 

(cosacosT - cosb)/sinasinX’ ; 

(cosacos& - cos2r)/sinasin3 ; 

where v = a • (b x c). 

Proof: Since ||b x c|| = bcsina and a • (b X c) = v (see (1.15) and 

(1-17)), 

o' = (||b X cl|)/(a • (b X c)) = (foc/v)sina . 

The expressions for b and c can be similarly established. To calculate 

cosa , we shall use the fact that b • c = b c cosa and the vector 

identity (White, 1960, p. 76) 

(X X y) • (z X w) = 
X • Z X • w 

y • z y • w 

Hence 

cosa = (b *0 )/(b c ) = (v^b • c )/( o^bcsinPsiny) 

But 

b" • c“ = (l/v^)(c X a) • (a X b) 

= d/v'^) 

= (o^ be/)(cos3cosy — cosa) 

Substituting (2.19) into (2.18) we obtain 

cosa = (cosbeosJr — cosa)/sin3sin? . 

c • a c • b occosP ebeosa 

= (l/\/d 
a • a a • b o" abcosZ 

(2.17) 

(2.18) 

(2.19) 

The other parts of the theorem are proved in a perfectly similar manner.□ 
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Because of the duality between D and D discussed in T2.6, any ex- 

pression like cosa = (cos^cosy - cosa)/sin3siny can be used to write the 

equality 

Similarly, 

cosa = (cos3 cosy — cosa )/sin3 siny 

and 

cos 3 = (cosa cosy — COS3 )/sina siny 

.U JL. 

cosy = (cosa cos3 — cosy )/sina sin3 

CHANGE OF BASIS 

We learned in Chapter 1 that there are innumerable directions in a 

crystal along which a representative pattern of the structure is repeated 

at regular intervals. Furthermore, not only do these directions define 

a natural coordinate system along which three non-coplanar coordinate 

axes can be placed, but the repeat unit along each of these directions 

defines a natural set of basis vectors D = {a,b,c}. Thus, for a given 

crystal, innumerable sets of axes, basis vectors and planes can be chosen, 

depending on the problem to be studied. In addition, as there are innu¬ 

merable ways of describing such a crystal, it is essential to be able to 

change its geometric framework with respect to the observations being 

made. Moreover, if we wish to study crystal structure relationships 

(Smith, 1982), polymorphism, phase transformations (Hazen and Finger, 

1982) or defects (Lasaga and Kirkpatrick, 1981), it is imperative that 

these features be related to a single set of basis vectors. In partic¬ 

ular, if data are provided by one investigator describing some feature 

of a crystal relative with respect to one basis and if another investi¬ 

gator provides a similar set of data on another such crystal but defined 

with respect to a second basis, it is important to express both data sets 

with respect to a common basis in order to make comparisons and to draw 

conclusions. In other words, we must be able to make a change of basis. 

In the last section we saw how, given a basis D = {a,b,c} and its 

reciprocal basis D — {a ,b ,c }, we can easily translate geometrical 

information given in terms of D into the language of D\ For example, 

if r E S and if we know [r]^, then we can find [r]^* by, see (2.15), 
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where G is the metrical matrix of D. In this section, we will see how 

to translate geometrical information from a basis Dj = {ai,bi,Ci} to a 

basis D2 = {a2>b2,C2}. 

JL, 
Just as in the special case when Di = D and D2 = D , a matrix will 

be found that will convert [r]„ into [r]„ for all r e S and this matrix 
u I U2 

will be used to calculate the metrical matrix of D2 from that of Di. 

(D2.9) Definition: The change of basis matrix from the basis to the 

basis D2 is the matrix T such that 

for all r £ S. 

Since we know what job T is supposed to perform, we can find T by 

observing that 

1
_

 f 1 2 tl3 1' >ii' 

f 2 1 ^22 ^2 3 0 = 
^2 1 

.f3 1 ^33. 0 >3 1. 

>11 f 1 2 tl3 o' f 1 2 

^ 2 1 f 2 2 f 2 3 1 = 
^22 

>31 f 3 2 ^33. 0 _^3 2. 

>11 t 1 2 fl3 '0' >13' 

^2 1 ^22 f 2 3 0 ^2 3 

>3 1 ^3 2 f33. 1_ >3 3. 

Since [Si] 
Di " 

[100] ^ [1 3l = [0 

[3i ] 
D2’ 

T[b, 
D 1 

[bi] 

[a,]D2 = 1st column of T, [b 
^^2 

= 1st column of T 

= 2nd column of T 

= 3rd column of T 

(2. 

and we have 

column of T. Now let r denote an arbitrary vector in S. Since Di is a 

basis, there exists Ti, r2, r, e /? such that r = + r2bi + TjCi. 

By T1.9, we have [r]^ = ri[ai]^ + r2[bi]^ + r3[Ci]^. But then 



T(ri[ai]^^ + r2[bi] IDi '’’[Ci]^ 

^iT[ai]^^ + r2T[bi] IDi '’3T[Ci]^ 

ri[ai]^^ + r2[bi]^ 

[Tjai + r2bi + TjCi 
^2 

[''ID2 • 

Therefore, the fact that T "works" for [3i]f, , and [Ci]^ implies 
L'l Ui Ui 

that it "works" for all [r]„ , r z S. Consequently, we have established 

the following theorem. 

(T2.10) Theorem: The change of basis matrix T from = {ai,bi,Ci} to 

D2 — {32)b2,C2} is 

T = [ai] 
D, 

[bi; 
o, 

[Cl] 
D, 

If T is the change of basis matrix from Di to D2, then it is 

straightforward to show that T ^ exists (since the columns of T are lin¬ 

early independent). Furthermore, by multiplying both sides of 

T[r]^^ = by T we have 

Therefore, T is the change of basis matrix from to Applying 

T2.10 with the roles of Di and Dj switched, we have the following cor¬ 

ollary. 

(C2.11) Corollary: If T is the change of basis matrix from Dj to D2, 

then T ^ is the change of basis matrix from D2 to Di and 

T 
-1 

1^2 ] D, 
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As we shall see in a later section on applications, it is often easy 

to find by inspection the change of basis matrix in one direction, say 

from Di to D^. The change of basis matrix in the other direction is then 

found by inverting the first matrix. 

Now that we have a procedure for finding the change of basis matrix 

from Dj to D^, we need to discover how to find the metrical matrix G2 

of D2 from the metrical matrix Gi of Oj. We begin by obtaining a useful 

'«V «v 
expression for T using the reciprocal bases Di = {ai,bi,Ci} and 

D2 ~ {32>b2,C2}. By T2.5, 

ai • a'j bi • 32 

JL. 

Cl • 32 

3i • bz 

* 

c
r • Cl • b'2 

JU 

ai • C2 [bi • C2_ Cl • C2 

Hence, 

T = 

ai • 32 

JL, 
31 • b'z 

•tp 

3i • C2 

bi • 3 2 

bi • bj 

JL. 
bi • C2 

Cl 

Cl 

32 

. * 

* 

Cl • C2 

(2.21) 

We now have the following equations: 

T[r]^i [r]^^ 

G, rn = r 
D, 

Gi[r]^i 

4\ 

Defining S to be the change of basis matrix from Di to D2, we also have 

S 

These relationships are summarized in the following circuit diagram: 
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According to this diagram, 

Gi j I G2 

[r: 
O, 

SG .T'hrJo^ "<^=['•10, 

1 
for all r £ S. Hence, SGjT = G2 • Consequently we need to calculate 

JL. 
S. By T2.6, D2 is the reciprocal basis of D^- Hence, 

* * *' 
3l • (32) 

JU 

a'i • 32 
JU 

a'i • (b'2)'' II a'i • b2 
~U .U JU 

.a'l • (c'i)" a'i • C2 

Applying this observation to each of the columns of the change of basis 

matrix from Dj to written in the form of (2.21), we obtain 

S = 

ai • 32 

u. 

a'i • b2 

a'i • C2 

bi • 32 

bi • b2 

JU 

b'i • C2 

Cl • 32 

* u 
Cl • b2 

Consider, 

* 
32 • 31 

32 • b'l 

32 • c'l 

u * b2 • 31 

bz • b'i 
JL. 

b2 • c 'i 

* 
C2 • 31 

,* 
C2 • bi 

* 
Cj • Ci_ 

According to the analogous statement to (2.21), is the change of basis 

matrix from D2 to Di. That is, s'" = T Therefore, S = (t'^)^. Since 

(T ^)^ = (T^) we write T Hence we have the following theorem. 

(T2.12) Theorem: Let Di and D2 denote bases, T the change of basis 

matrix from to D2 and let Gi denote the metrical matrix for Dj. Then 
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the relationship between Gj and G2, the metrical matrix for D^, is given 

by 

Gi = T^GjT and Gj = t'^GjT"^ . 

We summarize these results in the following circuit diagram. 

T GjT = Gi ^ .. t G2 = t"^GiT‘^ (2.22) 

□ 

(T2.13) Theorem: Let D = {a,b,c} denote a basis with metrical matrix 

G. Then the volumne v of the parallelpiped outlined by D is such that 

= det(G) 

Proof: Let C denote a cartesian basis and let T denote the change of 

basis matrix from C to D. By (1.18) we know that v = det(M) where 

Note that 

TM = [T[a]^ I T[b]^ 1 T[C]^] 

= [[a]^ I [b]^ 1 [c]^] 

= I3 • 

Hence det(TM) = 1. Therefore, 

1 = det(TM) 

= det(T)det(M) (by (A2.8)) 

= det(T)V . 

Consequently, det(T) = 1/v. Since the metrical matrix for C is I3, by 

T2.12, 

13 = T^GT . 
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Since det(T^) = det(T), 

1 = det(T^)det(G)det(T) 

= (l/v'^)det(G) . 

Therefore, det(G) = v'^. □ 

We are now in a position to show how the cross product is calculated 

when the vectors are expressed with respect to an arbitrary basis D. 

In Chapter 1, we discussed how to calculate V X w with respect to a 

cartesian basis. 

(T2.14) Theorem: Let D - {a,b,c} denote a basis with metrical matrix 

G and let r and s denote vectors in S. Then 

_ A 
r X s = det(G) ^ b G[r]^ G[s]^ 

c I I 

(2.23) 

Proof: Let ri, rj, r,, Si, and Sj £ /? be such that 

it it 

r = rja + rjb + rsC 

and 
>t. ,.1. 

s = Sja + S2b + SjC 

^ •u >1. 

where D = {a ,b ,c } is the reciprocal basis for D. Then 

r X s (ria“ + r^b" + r^c') x (Sja” + s^b" + SjC*) 

it it if 

(^2^3 - r352)(b X c ) + (r35i - riS3)c x a 

it it 

+ (riSi - Sir2)a x b 

where we have used the properties of the cross product discussed in 

Chapter 1. By T2.6, 

r X 5 = v"[(r2S3 - r352)a + (r3Si - r,S3)b + (riSj - Sir^lc] , 

‘V it it 

where v = a • (b" X c"). Hence, 
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r X s 

a 

b 

c 

ri 

r2 

ra 

51 

52 

53 

JU .1. .U i 

By T2.13, (v")^ = det(G''). By C2.7, g' = g' and so 

V'* = (det(G*))^ 

= (det(G'^)^ 

= (det(G))‘" 

thus the theorem is established. □ 

Let D = {a,b,c} denote a basis with metrical matrix G. By T2.13, 

V* = det(G) = 

o" 

obcosy 

occosP 

abcosZ OCC05& 

foccosa 

bccosa c* 

and so we find that 

v = ojbc(l — cos^a — cos^B — cos^Y + 2cosacosBcosy) 

(P2.8) Problem: Show that (v = det(G ) where v is the volume of 
/V ‘V w ^ 

the parallelepiped outlined D = {a ,b ,c } and that 

V = o b c (1 — cos^a — cos^B — cos^JT + 2cosa cosB cosJT ) 
i 

- 1 * 
By C2.7, G is the metrical matrix for D . This reciprocal re¬ 

lationship between the metrical matrices of D and D yields the recip¬ 

rocal volume relationship 

v* = det(G) = l/det(G‘S = 1/v** 

and therefore V = 1/v 

Zones: Suppose the nonparallel lattice planes P1 and P2 have Miller 

indices (bi ii) and (bj ^2 <^2), respectively, then the zone axis de¬ 

fined by them is in the direction of a vector parallel to the intersection 
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of Pi and P2■ Hence if 

>1. 
Si = hia" + Pib + HiC , 

and 
.u »t. 

$2 = + Pab + 1^2^ , 

then the zone axis is in the direction of Si X S2. 

(E2.15) Example - The vector product of two non-collinear reciprocal 
1 

lattice vectors: Show that det(G)^(Si x Sa) is in the direct lattice 

where G is the metrical matrix for D. 

Solution: By T2.14, 

A 
det(G)^(Si X S2) 

a I I 

b G[si]^ G[S2]^ 

c I I 

a hi hi 

~ b /c 1 /c 2 

c H1 ^2 

A 
Hence det(G)^(Si X S2) = ua + vb + wc where 

k 1 ki hi hi hi hi 

u = , V = - , w = 

CSI 2. 1 ^2 k 1 k i 

Since hi, ki, ^1, hi, ki and li are all integers, so are u, v and w. 

A 

Hence det(G)^(Si X S2) £ L^. □ 

The u, V and W in this example define the zone axis. To distinguish 

such a set of integers from a set defining a crystal plane {hkl), the 

integers for the zone are enclosed between a pair of brackets [uvw] . 

(E2.16) Example - Finding a vector perpendicular to the plane defined 

by two non-collinear vectors in a crystal: The lunar mineral 

pyroxferroite (Fe,Ca)Si03 is triclinic with cell dimensions a = 6.621A, 
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b = 7.551A, c = 17.381A, a = 114.27°, g = 82.68°, Z = 94.58° (Burnham, 

1971). Calculate the cross product of the following two vectors 

Viu = -0.0963a + 0.1243b + 0.2018c 

Psu = 0.1084a - 0.0880b + 0.2947c 

to find a vector perpendicular to their plane. 

Solution: Calculating G with the cell dimension of pyroxferroite, we find 

‘43.8376 -3.9922 14.6624 

G = -3.9922 57.0176 -53.9461 

14.6624 -53.9461 302.0992 

and (detG)^ = 785.3466. Hence, 

r34 X Tsu = (785.3466) 

a -1.7589 

b -3.4146 

c 52.8461 

9.4243 

-21.3482 

95.3653 

= 1.0219a + 0.8478b + 0.0888c 

is a vector perpendicular to the plane of r3 4 and Tg,,. 

(P2.9) Problem: Calculate the cross product k X i for 

given that 

and 

k = 0.1166a + 0.0968b + 0.0101c 

i = -0.0286a + 0.0369b + 0.0599c 

pyroxferroite 

APPLICATIONS 

In the previous section, we introduced a method for finding the en¬ 

tries of a transformation matrix T. In practice, however, the entries 

of such a matrix may be found by making a careful drawing of a crystal 

structure or its lattice representation that shows how one set of basis 

vectors is related to another set. Then by examining how the vectors of 

one basis can be expressed as a linear combination of the other, the co¬ 

efficients of the second basis vectors are used as columns in the ma- 
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z, 

Yi, Zi, outline a unit cell of the kyanite structure and D2 = 

{ajjbj.Ci) directed along X^, Y^, Z^, outlines a cell of the cubic 

face-centered array of oxygen atoms. 

trix. This method will be illustrated with an example. Another method 

for finding T is illustrated in EA2.23. 

(E2.17) Example - Determination of the cell dimensions of a subcell of the 

kyanite structure: The oxygen atoms comprising the structure of kyanite, 

Al2Si05, can be viewed as a slightly distorted cubic close-packed face- 

centered structure with Si occupying 10% of the available tetrahedral 

voids and A1 occupying 40% of the available octahedral voids (Taylor and 

Jackson, 1928). Before the structure of this mineral was solved, the 

close-packed nature of the structure was theorized because the dimensions 

of the unit cell of kyanite outlined by the natural basis = 

{aijbi.Ci) are similar to those calculated from a set of basis vectors 

^2 = {32.^202} defining a face-centered subcell of oxygen atoms. 

The relationship between the Dj-basis of the subcell and the D^- 

basis of the kyanite cell is displayed in figure 2.4. Inspection of this 

figure shows that the Di-basis vectors can be written in terms of the 

D2-basis vectors as follows: 

ai = 3/232 - 1/262 + Cj 

bi = 262 

Cj = -32 + C2 . 
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A recent measurement of the cell dimensions of kyanite at 25°C (Winter 

and Ghose, 1979) yielded the values Oi = 7.126A, bi = 7.852A, = 5.572A, 

Oi = 89.99°, = 101.11° and Jfi = 106.03° for Dj. With this information, 

calculate the cell dimensions of the subcell defined by the oxygen atoms 

in kyanite. 

Solution: Using T2.10, we can construct the change of basis matrix 

1 1 3/2 0 -l' 

T = = -1/2 2 0 

1 1 1 0 1 

from D1 to ■ 

Using the cell dimensions for Dj, its metrical matrix Gj is 

Gi = 

50.7799 

■15.4510 

-7.6511 

-15.4510 

61.6539 

0.0076 

-7.6511 

0.0076 

31.0472 

To compute the cell dimensions of the face-centered cell, we need to solve 

for the metrical matrix Gj of D^- According to T2.12, 

Gz = t'^GiT"^ . (2.24) 

Inverting T (see Appendix 2), we find that 

3/2 0 -l' 
-1 

■ 2/5 0 2/5 

-1/2 2 0 = 1/10 1/2 1/10 

1 0 1 -2/5 0 3/5 

Substituting T Gj and T into (2.24) we have 
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'2/5 1/10 -2/5' 50.7799 -15.4510 -7.6511’ ■ 2/5 0 2/5 

G2 = 0 1/2 0 -15.4510 61.6539 0.0076 1/10 1/2 1/10 

.2/5 1/10 3/5 -7.6511 0.0076 ,31.0472 -2/5 0 ' 3/5_ 

1- i 

"14.9205 -0.0090 -0.5580" 
2 

^2 3-2 b2 C-OS 2r2 a2C2COs32 

-0.0090 15.4135 -0.0052 = a2b2Cos2r2 hi 62 C2 COSOt2 

-0^580 -0.0052 15.0106 a2C2Cos32 b2C2C'OSCt2 
2 

C2 J 

Equating the entries of these two matrices and solving for the cell di¬ 

mensions of the face-centered subcell, we find that 02 = 3.8627A, 62 = 

3.9260A, C2 = 3.8743A, 02 = 90.02°, ^2 = 92.14° and = 90.03°. As is 

evident from these results, the departure of the oxygen atoms in kyanite 

from an ideal cubic close packed subcell with = C2 and 

®2 = &2 = ^'2 = 90° is small. □ 

(P2.10) Problem: The crystal structure of the relatively rare mineral 

sapphirine, (AlMg)i, (Al2Si)202 o > can also be described as a slightly dis¬ 

torted cubic close-packed array of oxygen atoms (Moore, 1968). The 

equations that define the basis vectors of the sapphirine structure Dj 

= {ai,bi,Ci} in terms of the face-centered subcell D2 = {a2,b2,C2} are 

ai = 232 + 2b2 

bi = -5/232 + 5/2b2 

Cl = -32 - b2 + 2C2 

(1) Using the cell dimensions Oi = 11.286A, = 14.438A, 

Cl = 9.957A, 3i = 125.4°, and ai = ^i = 90.0°, measured for the 

mineral (Higgins and Ribbe, 1979), show that the metrical ma¬ 

trix defining the geometry of the face-centered subcell is 

G 2 

16.2991 

-0.3774 

-0.1762 

-0.3774 

16.2991 

-0.1762 

-0.1762 

-0.1762 

16.4722 

(2.25 

(2) Evaluate the entries of (2.25) and show that the cell dimensions 

of the subcell are = b^ = 4.037A, C2 = 4.059, 

02 = &2 = 90.62 and ^2 = 91.33. 
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(E2.18) Example - Transforming indices of planes with change of basis: 

The close-packed monolayers of the kyanite structure parallel (111), 

(111), (111) and (111) of its face-centered subcell. Determine the 

indices of these planes in terms of the kyanite basis. 

Solution: We recall that perpendicular to each stack of planes ih2k2ft-2) 

there exists a vector s with the coordinates such that 

[s] * 
D2 

hi 

ki 

li 

■k 

To find the coordinates of this vector in terms of the basis, we use 

the equation (see (2.22)) 

'Di ’ 

(2.26) 

where the components of [s]^* are the indices of the same plane but 

defined in terms of the kyanite basis. Transposing T and substituting 

this result into (2.26), we obtain 

h-i 3/2 -1/2 1' hi ■3/72/2 - ki/2 + ii 

^ 1 0 2 0 k i = 2ki 

-1 0 1 —hi + li 

Replacing {hikili) in succession by (111), (111), (HI) and (111), 

we get (220), (122), (022), and (320). The integers in (220) and 

(022) are reduced to (110) and (011), respectively, because both sets 

contain a common factor of 2. With this reduction, we can conclude that 

the close-packed monolayers of oxygen atoms in kyanite are parallel to 

planes with indices (110), (122), (011) and (320). o 

(P2.n) Problem: The close-packed monolayers of oxygen atoms of the 

sapphirine structure parallel (111), (Ill), (III) and (ill) of its 

face-centered subcell. Show that these monolayers parallel (100), (052), 

(iOl) and (052) of the sapphirine structure. 
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(P2.12) Problem: The crystal structure of tremolite, a calcic amphibole 

of Ca2Mg5 (Sii,0n)2 C0H)2 composition, bears a close structural resemblance 

with that of the calcic pyroxene diopside, CaMgSi206, when viewed down 

[010] with a, c, and 3 being nearly the same in both minerals. However, 

the cell dimensions of the two minerals differ in that the b-cell edge 

of tremolite is double that of diopside. When Warren (1930) solved the 

structure of tremolite, he took advantage of these relationships and de¬ 

rived the basic structural unit (a double chain) in the amphibole struc¬ 

ture by reflecting the diopside structure over a plane perpendicular to 

[010]. In a paper on this choice of basis vectors, Whittaker and Zussman 

(1961) have observed that although Warren's choice, Dj = {ai,bi,Ci}, 

illustrates the relationship to the diopside structure, it does not con¬ 

form with the conventional choice of basis, = {a2,b2,C2}, defined by 

^2 = ai—Cl 

^2 ~ b 1 

C2 = Cl 

(1) Using the cell dimensions (Oi = 9.78A, = 17.8A, Ci = 5.26A. 

Bi = 73.97°, (Xi = = 90°) determined by Warren, show that the 

cell dimensions of the conventional cell are O2 = 9.74A, 62 = 

17.8A, C2 = 5.26A, ^2 = 105.23°, 02 = ^2 = 90°. 

(2) A Ca-rich amphibole like tremolite is commonly exsolved with 

Ca-poor amphibole lamallae developed along (201) of the cell 

adopted by Warren. Show that these lamellae parallel (101) 

of the conventional cell (cf. Ross et al. , 1969). 

(3) Warren's structural analysis of tremolite showed that one of 

the Si atoms in the double chain has coordinates (0.29, 0.08, 

0.01) . Show that the coordinates of this Si atom in the con¬ 

ventional cell are (0.29, 0.08, 0.30)^. 

(E2.19) Example - A calculation of the cell dimensions of kyanite assuming 

its oxygen atoms are cubic close-packed. If we assume that the face- 

centered subcell displayed in Figure 2.4 for kyanite has cubic geometry 
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(i.e., the oxygen atoms in kyanite are ideally cubic close-packed so that 

O2 = ^2 = C2, 02 = &2 = ^2 “ 90°) and the oxygen atoms are in contact 

along the face diagonals of the cell, then O2 = 2/2r(j where ro is the 

effective nonbonded radius of an oxygen atom. If we equate the volume 

of this cell, V = 16/2rci, with that obtained by evaluating the determi- 

O 

nant of G2, then IS/Zxa = 58.719A^. Solving for ro, we get ro = 1.374A. 

Our problem is to determine the cell dimensions of kyanite assuming that 

its oxygen atoms are ideally cubic closest packed each with an effective 

radius of 1.374A. As the cell edge of such a cube is 2/2ro, then its cell 

edges are given by O2 = 2/2 x 1.374A = 3.886A. The metrical matrix for 

this ideal structure with - 3.886A and 02 = &2 ~ ^2 “ 90.0° 

is obtained by evaluating (2.22); 

Gi = T^G2T 

■3/2 -1/2 1' '15.1010 0.0 0.0 3/2 0 -1' 

= 0 2 0 0.0 15.1010 0.0 -1/2 2 0 

-1 0 1 0.0 0.0 15.1010 1 0 1 

52.8535 -15.1010 -7.5505 

= -15.1010 60.4040 0.0 

-78.5505 0.0 30.2020 

Solving Gj for the cell dimensions of the ideal close-packed kyanite 

structure, we obtain Oj = 7.270A, fj 1 = 7.772A, Cj = 5.496A, — 90.0 , 

Pi = 100.89° and JCi = 105.50°. These values show a close correspondence 

with those measured for kyanite (E2.17), indicating the centers of the 

oxygen atoms in the structure define rather well a face-centered cubic 

lattice. ' 

(P2.13) Problem: 

(1) Evaluate the determinant of the metrical matrix G2 for the 

slightly distorted subcell of sapphirine and show that its 

volume is ^2 = 66.125A’. 

(2) Equate the volume obtained in (1) with that of a cubic face- 

centered cell, 16/2^ro, and show that ro = 1.430A. 
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Figure 2.5: A set of direct D = {a,b,c} and 
★ iftr * ft 

reciprocal D = {a ,c } basis vectors each 

radiating from a common origin, 0. The unit 

vector k is directed along Z so that c = ck, i 

is placed in the (a,c)-plane perpendicular to c 

so that a - asin^i + acos^j ^d j is directed 
* * it 

along b so that b = b j. No significance 

should be attached to the relative lengths of the 
ie 

D and D basis vectors. 

_ 

(3) Assuming that the cell edge of the cubic cell is 2/2ro and that 

To = 1.430A, show that the metrical matrix for an ideal close- 

packed sapphirine structure is 

Gi - 

130. .896 0 

0. .0 204 

-65. ,437 0 

0 -65. .448 

525 0. .0 

0 98. , 172 

(4) Calculate the cell dimensions of the sapphirine assuming that 

it consists of a cubic close-packed array of oxygen atoms of 

radius 1.430A. Compare these calculated dimensions (02 = 

11.44A, bj = 14.30A, Cj = 9.91A, 32 = 125.3°, 02=^2= 90°) 

with those given in P2.10. 

A DESCRIPTION OF THE GEOMETRY OF A CRYSTAL IN TERMS OF 

A CARTESIAN BASIS 

It is often useful to define a natural basis D = {a,b,c} of a crystal 

in terms of a cartesian basis. We shall choose the cartesian basis C = 

{i,j,k} such that k is in the direction of c, j is in the direction of 

C X a and i is set perpendicular to the plane of k and j so as to complete 

a right-handed cartesian basis set (Figure 2.5). For this setup of the 

cartesian basis, there must exist real numbers a., such that the natural 

basis D for a crystal can be expressed as 
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a = Oi li + 03 ik 

b — ^12^ ^22i ^32^ 

C = 033k . 

(2.27) 

Note that by the way in which the C-basis (in particular in regard 

to the handedness of D and C) is defined in relation to the D-basis, 

On, O22 and O33 must all be positive. Thus, the change of basis matrix 

A from D to C is given by 

■ On O3 2 0 

A = [3]^ Iblc [clc = 0 O2 2 0 

. O31 O3 2 033_ 

(2.28) 

To find the entries of this matrix, we use the following circuit diagram 

(compare with 2.22) 

A 

^ '■'■c 

and obtain 

:rlo ^ {r|, 

i a' i 
D 

G = A^l3A = A^A . (2.29) 

Expanding (2.29) we have 

0^ abcosZ occosB 

G = abcosZ b^ bccosa = A^A 

OCCOS& bccostt 

r 2 
031 + O33 O33O 32 + O33O32 O3 3O3 3 

2 2 2 
0 3 30 3 2 + O3 3O3 2 O3 2 ^ ^22 ' ^32 O3 2O3 3 

2 
03 1O3 3 O3 3O3 2 O33 

(2.30) 

By equating corresponding elements of (2.30), expressions are found from 

which the a,, entries of A shall be deduced. We begin by observing that 

Ojj = and so O33 = c. Next, replacing O33 in both O32O33 and 033033 

by c, we find that O33 = ocosp and O32 = bcosa. Replacing O33 in 
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2 2 
011 "^031 = by ocos3, we find that Oji = asinP. When Oii, O3j and 

O32 are replaced by osin^, ocos3 and facosa, respectively, and 

(cosJT - cosacosP)/sin3 is replaced by -cos^T sina (T2.8), we find that 
-V 2 2 2 

Oi2 = -bsinacos3 . Finally, replacing Ojj and O32 in O12 + O22 + ^32 

by —bsinacos3 and bcosa, respectively, and simpl ifying, we find that 

O22 - bsinasin& When these results are substituted into (2.28), the 

A matrix becomes 

as inp -bs inacosJT 0 

A 0 bsinasin? 0 (2.31) 

ocos3 bcosa c 

Thus, the vector equations in (2.27) are of the. form 

a = osin^i + acos^k 
.u .u 

b = -bsinacosy i + bsinasiny j + focosak (2.32) 

c = ck 

(P2.14) Problem; The basis vectors D — {a ,b ,c } reciprocal to the 

D-basis are displayed in Figure 2.5. As a", b" and c" parallel b x c, 

C X a and a X b, respectively, b must lie along j and a" must lie in 

the (i,j)-plane, with c adopting a general direction I'elative to the 

C-basis. With this setup of vectors, there must exist six real numbers 

b.. such that 
II 

a" = bill + b2ij 

b = b22j (2.33) 

c ~b33i+b23jtfl32k 

(1) Determine the b., entries of the change of basis matrix B from 

D to C. 

(2) Construct a circuit diagram comparable to the one constructed 

for the transformation G = A^A and show that g" = B^B. 

(3) Equate the entries of the B^B with those of g" and show that 
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B (2.34) 

«V 
a sinT 0 —c cos^sina 

..U .U JU 

a cosY b c cosa 
JU JL. 

0 0 c sina sin3 

and that the b,, entries of (2.33) are of the form 

«V rv "i'x «V 
a = a sin2r i + a cosJT j 

u. .J. 

b“ = b'l (2.35) 
^ ‘V *V /V >v 

c = —c cos^sina i + c cosa j + c sina sinPk 

If the matrix A (2.28) is known, there is no need to construct B 

using equation (2.34) as it can be readily found by inverting A^. This 

is because B[r]^* = and A r e S, and so B = 

, -t 

Calculation of angular coordinates from crystallographic data: When the 
>1. 

D and D basis vectors for a crystal are both expressed as a linear 

combination of a C-basis, it becomes a relatively easy task to calculate 

the angular coordinates of the directional properties of a crystal for 

preparing a stereogram of the data. Not only is the method of 

stereographic projection useful for studying crystallographic point 

groups, but it has also found use in analyzing the angular relationships 

between fault vectors, planes, slip lines, twinned crystals, exsolved 

phases and data from X-ray single crystal photographs (Smith, 1982). 

In the method, a crystal is placed at the center of a unit ball with 

the Z axis directed along the ball's south to north polar axis and with 
..u 

its Y axis directed along an west to east line (cf., Bloss, 1971, Chapter 

4). The orientation of each vector r can then be defined in stereographic 

projection by the angular coordinates 0 and 0. To find these angles for 

r, we consider the unit vector R = r/r. These polar angles are then 

defined as in Figure 2.6 in terms of the coordinate axes of the crystal. 

The angle p is defined to be the angle between R and k, i.e., p = 

<(R:k) and 0 is the angle that the projection of R onto the (i,j)-plane 

makes with j. The components of [R]^ are found by using the relationship 

(2.12) * * * 

R = (R • i )i + (R • j )j + (R • k')k . 
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Figure 2.6: A cartesian set of basis vectors 

enclosed in a unit ball centered at 0 with D and 
* 

D defined as in Figure 2.5. The direction of 

each vector r c S is defined by the angular co¬ 

ordinates ♦ and p. The unit vector R lies along 

r such that R = s^spi + c#spj + cpk where the 

angle ^ is measured in a clockwise direction from 

j in the plane perpendicular to k. 

Since C = C, we have the equality 

R = (R • i)i + (R • j)j + (R • k)k . 

As k is a unit vector, R • k is the projection of R onto k, hence 

R • k = cosp. The projection of R onto the i,k plane has length sinp 

and is positioned at an angle of <f> measured in a clockwise direction from 

j. Hence R • j = sinpcos^ and R • i = sinpsin^. Therefore, 

[R]c 
<p p 

0 P 

c 
p 

(2.36) 

where s = sin^, c. = cos^, etc. 

The strategy for finding (p and p is to calculate [R]^ from the de¬ 

scription of r and then use the Equation (2.36) to solve for the angular 

coordinates, taking into account the octant of R. 

(E2.20) Example - Calculation of angles between zones and face poles: 

Calculate the angular coordinates for the zone [010] and the face pole 

(111) of anorthite and the angle between these two directions (see Smith, 

1982, Figure 4.17 for a stereogram of these data). 
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Solution: As a first step in the calculation of the angular coordinates 

of [010], we note that r = b is along the zone [010]. To find [r]^ we 

construct the A matrix (2.31), using the cell dimensions of anorthite 

provided in (PI.13): 

A = 

7.3513 -0.65437 0 

0 12.833 0 

-3.5716 -0.69886 14.165 

We know that [t*]^ = given that 

so that 

'D 

0 

1 

0 

T], 

-0.65437 

12.833 

-0.69886 

(2.37) 

Thus, the vector b directed along the zone [010] in anorthite can be 

written as a linear combination of the C-basis as 

b = -0.65437i + 12.833j - 0.69886k 

We next convert the components ' 

vector R, equate with (2.36) and 

dividing each component of [f*]^ 

b = 12.869A: 

[R]^ = (12.869)'^ 

f [l*]^ (2.37) into those of the unit 

solve for p and We find [R]^ by 

y its length which, in this case, is 

-0.65437' '-0.05085' 

12.833 = 0.99720 

-0.69886 -0.05431 

Equating [R]^ with (2.36), we get 

s ,s ■-0.05085' 
0 p 

c. s = 0.99720 
0 P 
c -0.05431 

p . 
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from which it follows that c = -0.05431 and p = 93.113°. Also, because 
P 

s.s = -0.05085 and c^s = 0.99720, we can write the ratio 
¥> P 0 p 

sin0sinp 

- = tan0 = —0.05099 

cos(/>sinp 

Taking into account the octant of R, we can conclude that 0 = —2.919°. 

Thus, the angular coordinates of the zone [010] in the anorthite are p = 

93.113° and <!> = -2.919°. 

In the calculation of the angular coordinates for the face pole of 
/V «v 

the (111), we observe that s = a + b + c is perpendicular to this 

plane. To find [s]^ we first compute the entries of (2.34) 

B = 

0.13603 0.0 0.03430 

0.00694 0.07792 0.00559 

0.0 0.0 0.07060 

using the cell dimensions of anorthite. As indicated earlier, B can also 

be found by forming A ^. Because B[s]^* = [s]^ and because we are given 

that 

l' 

1 , 

1 

we have 

[s] C 

0.17033 

0.09045 

0.07060 

(2. 

Dividing [s]^ by its magnitude, we convert (2.38) into the unit vector 

'0.82937' s, s 
0 P 

0.44042 = C,S 
0 P 

0.34377 c 
L P 

from which it follows that the polar angles of the face pole of (111) are 

p = 69.89° and 0 = 62.03°. 

38) 
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Finally, the angle between the normal to (111) and [010] is found 

by forming the inner product between the two unit vectors S and R. That 

is. 
S • R = cos<([010]:(111)) = [S]^G[R]^ 

where G is the metrical matrix for C. Since C is a cartesian basis, 

G = 13. Hence 

S • R = 

= [-0.05805 0.99720 -0.05431] 

0.82937 

0.44042 

0.34377 

= 0.37237 

and <([010]:(111)) =68.14°. t 

(P2.15) Problem: Amblygonite, LiAlFPO^, is a rare mineral that may be 

confused with feldspar but can be distinguished by its cleavage angles. 

Calculate the angle between the (100) and (110) cleavage planes of the 

mineral given its cell dimensions (o = 5.148A, b = 7.215A, c = 5.060A, 

a = 113.97°, 3 = 98.64°, Y = 67.25°) and compare your result with the 

feldspar cleavage angle of about 90°. 

(E2.21) Example - Calculation of interaxial angles and axial ratios from 

goniometric data: Given the goniometric data 

chalcanthite, CuS04*5H20, 

in Table 2.1 for 

.u .u ^ 
(1) Calculate the interaxial angles a , P , Jf and a, 3, JT and the 

axial ratios a' jb', c" jb", ajb, cfb for the reciprocal and 

direct lattices, respectively. 

(2) Calculate a matrix that can be used to find the angular coor¬ 

dinates of the face pole of any plane {hkZ). 

(3) Calculate the angular coordinates of the face pole (021). 

(4) Calculate the angular coordinates of the zone [112]. 

Solution: Using Equation (2.36), unit vectors [S(hkl)]^ perpendicular 

to each (hki) in Table 2.1 are calculated: 
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Table 2.1 Goniometric data for chalcanthite (Fisher, 1952) 

(hkl) 0 
0 

p {hkl) 0 
O 

P 

(100) 100.87 90 (ill) -112.63 37.73 

(010) 0 90 (021) 163.77 47.98 

(001) 76.37 17.76 

[S(lOO)]^ = 

[S(OOl)]^ = 

0.9821' 'o' 

-0.1886 , [S(OIO)]^ = 1 

0.0 0 

'0.2964' '-0.5648' 

0.0719 

0.9523 

, [S(ni)]^ = -0.2355 

0.7909 

The interaxial angles (a = 85.88°, & = 73.89' 3f = 100.87°) of the 

reciprocal lattice are found by evaluating the inner products 

S(OIO) • S(OOl), S(OOl) • S(IOO), S(IOO) • S(OIO) . 

U. JU 

(Remember that a , b and c" are perpendicular to (100), (010) and (001), 

respectively.) Next, evaluating the cross products 

S(OIO) X S(OOl), S(OOl) X S(IOO), S(IOO) X S(OIO) 

and normalizing the resulting vectors, we find the triples for unit vec¬ 

tors R[t/vw] along the zone [uvw] . For [100], [010] and [001] of the 

direct lattice, we get 

R[100]]j^ = 

0.9494' 

0.0 , [R[oio]]^ - 

0.1864' 

0.9736 , [R[001]]^ = 

o' 

0 

-0.2972 -0.1312 1 
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The interaxial angles (a = 97.57°, 3 = 107.29°, Z = 77.43°) of the direct 

lattice are found by evaluating the inner products 

R[010] • R[001], R[001] • R[100], R[100] • R[010] . 

To find the axial ratios a/b and c/b for the direct lattice we find 

an equation for the plane (111) defined in terms of the cartesian basis 

and evaluate its intercepts along the three zones [100], [010] and [001]. 

Replacing ti, and fj of Equation (2.4) by the components of S(lll), 

the equation of a plane not passing through the origin that parallels the 

(111) planes can be written in the form 

-0.5648X - 0.2355y + 0.7909z = 1 . (2.39) 

The intercepts of this plane along the coordinate axes of the direct 

lattice are proportional to -a, -b and C. Hence there exists a real 

number k such that e = —/ca, f = -kb and g = kc are the vectors to the 

plane. Since R[100] is a unit vector in the direction of e, 

-0.9548' '-0.9548e' 

[e]^ - e[R[T00]]^ = e 

o
 

o
 = 0.0 

0.2972 0.2972e 

When [e]^ is inserted into (2.39), we get 

-0.5648(-0.9548e) - 0.2355(0.0) + 0.7909(0.2972e) = 1 . 

Solving for e, we find e = 1.2914. Similarly, using /'[R[010]]^ and 

g[R[001]]^ and (2.39) we find that f = 2.2780 and g = 1.2644. Hence 

a:b:c = e:f:g = 1.2914:2.2780:1.2644 = 0.5669:1:0.5550, where by 

a:b:c - e:f:g, we mean that there exists an h z R such that a = eh, 

b = fh and c = gh. Therefore a/b = 0.5669 and c/b = 0.5550. 
.U -u 

In order to find a :b :C , we note that if D = {a,b,c} and Dj = 

.u .t. .U 

{ai,bi,Ci} are such that a:b:c = ai'.bi'.Ci, then a :b :c = aiibi'.Ci. 

Let ai = 0.5685R [ 100] , bj = R[010] and Ci = 0.5542R [ 001 ] . Then 

a.b-.c = Oi'-biiCi- Hence we will calculate 
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Oi'.bi'.Ci to obtain a :b :c . The metrical matrix Gj for Di can now 

be found since we know Oi = 0.5669, bj = 1, Cj = 0.5550, Oj = 97.57°, 

Pi = 107.29° and = 77.43°. Hence 

Gi = 

0.3214 

0.1234 

-0.0935 

0.1234 

1.0 

-0.0731 

-0.0935 

-0.0731 

0.3080 

Consequently, 

3.5390 -0.3644 0.9879 

-0.3644 1.0552 0.1398 

0.9879 0.1398 3.5796 

*V "sV 
from which it follows that = 1.8812, ibj = 

cii = 85.87, = 73.89, z'l = 100.87. 

1.0272, c'i = 1.8920, 

^ 

Hence a :b :c = 

1.8812:1.0272:1.8920 - 1.8314:1:1.8419 and so a fb = 1.8314 and 

c ' jb' = 1.8419. 

The matrix that enables us to find the angular coordinates of the 

face pole of any plane (h/fH) is the change of basis matrix B from D\ 

to C. The matrix was determined in (2.34). In this case 

B = 

1.8474 

0.3548 

0 

0 

1.0272 

0 

0.5608 

0.1363 

1.8018 

The components of a unit vector R(0,—2,1) that is perpendicular to (021) 

is found by normalizing B[0,-2,l]^. Hence 

[R(0,-2,1)]^ 

0.2084 

-0.7129 

0.6696 

Equating this vector with (2.36) and solving for 0 and p, we get 0 = 

-163.7° and p = 48.0°. 

To determine the angular coordinates of the zone [112], we calculate 
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B 
-t 

= A = 

0.5413 0.1870 0 

0 0.9735 0 

-0.1685 -0.1318 0.5550 

Multiplying [112] by A and normalizing the resulting vector we get 

[R1112]]^ = 

0.4986 

0.6664 

0.5543 

Equating this vector with (2.36), we obtain 0 = 36.8° and p = 56.3°. 

A measurement of the powder diffraction record for chalcanthite 

shows that the cf-spacing of (111) is 4.713A. By the discussion fol- 

low'ing (2.6), and the fact that S(lll) is a unit vector, we know that 

-0.5648X - 0.2355y + 0.7909z = 1 

defines a plane lA from the origin. Hence 

-0.5648X - 0.2355y + 0.7909z = 4.713 

defines a plane 4.713A from the origin. This plane intercepts the coor¬ 

dinate axes of the direct lattice at the termini of -a, -b and c. Re¬ 

placing X, y and z in this equation by o[R(l00)]^, b[R(0l0)]^ and 

c[R(001)]^ in succession and solving for o, b and c, we obtain an esti¬ 

mate of the unit cell edges (o = 6.09A, b = 10.74A, C = 5.96A) for the 

mineral. ^ 

DRAWING CRYSTAL STRUCTURES 

(E2.22) Example - Atomic coordinate transformation for viewing a struc¬ 

ture perpendicular to a plane: The ability to make an accurate drawing 

of a crystal structure viewed perpendicular to a plane or down a line can 

be a valuable aid in understanding the structure of a crystal. In this 

example, we shall derive a matrix for transforming the atomic coordinates 

of pyroxferroite so that its structure can be drawn viewed perpendicular 
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to the plane defined by three of its atoms designated M3, M4 and M5. As 

discussed earlier in E2.16, pyroxferroite, is triclinic with a = 6.621A, 

b = 7.551A, c = 17.381A, a == 114.27°, g = 82.68°, Z = 94.58°. The atomic 

coordinates of selected atoms in the mineral determined by Burnham (1971) 

are given in Table 2.2. 

Table 2.2: Atomic coordinates for selected atoms in pyroxferroite 

Atom X y 2 Atom X y 2 

M3 0.0663 0.4341 0.8963 0(A3) 0.1534 0.5817 0.8123 

M4 0.1626 0.3098 0.6945 0(B3) 0.5460 0.7060 0.7907 

M5 0.2710 0.2218 0.9892 0(C2) 0.2501 0.93b7 0.8214 

Si(31 0.3251 0.7544 0.8398 0(C3) 0.3422 0.8445 0.9417 

Solution: Let rj, r^ and rj denote vectors that radiate from the origin 

to the. positions of M3. M4 and M5, respectively. From Table 2.2, we can 

write 

’0.0663 '0.1626’ ‘0.2710’ 

0.4341 * t ^ ^ 0.3098 0.2218 

0.8963 0.6945^ 0.9892 

Our first job is to define, a unit vector perpendicular to the plane of 

M3, M4 and M5. In this example, k will be taken to be this vector along 

which the structure is to be viewed. Since the end points of r3, r^, rj 

are on the plane, rj^ = - r^ and parallel the plane. 

Hence r = X is perpendicular to the plane and so is in the di¬ 

rection of k. Since 

and 

then 

[ f*3 4 ] ^ [ ^3 ] ^ [ fit ] £) 

-0.0963 

0.1243 

0.2018 

[ f's 4 ] ^ ^ t ^ 

0.1084 

-0.0880 

0.2947 

84 



r = X = det(G) 

a 

b 

c 

G[r34; Q G[r54 D 

= 1.0219a + 0.8478b + 0.0888c 

(see E2.16). Hence, 

k = (i/r)r = 0.1166a + 0.096Sb + 0.0102c 

and so 

'D 

0.1166 

0.0968 

0.0101 

As k is perpendicular to we may choose i 

to 

-0.0298 

|i' 

~ (l/^3<.)f'34 which leads 

0.0385 

0.0625 

Then j is obtained by normalizing k X i which gives (see P2.9) 

[j]^ 

0.0934 

-0.1013 

-0.0034 

As before, we let A denote the change of basis matrix from D zo C. That 

is, A[P]^ = [r]^. Hence, A 

1 
-0.0298 0.0934 0.1166" 

[ilo [j]^ Iklp = 0.0385 -0.1013 0.0968 

i 0.0625 -0.0034 0.0101 

Since we have the coordinates of the atoms with respect to the D basis 

and want them in terms of the C basis, we need to find A. Inverting A , 

we obtain 
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A = 

-0.5454 -1.0530 16.3886 

4.4492 -5.9639 5.7952 

4.8730 4.5082 -0.4536 

Since A[r]^ = we can now transform the coordinates of all the atoms 

in pyroxferroite to construct a drawing of the structure defined in terms 

of a cartesian basis and viewed perpendicular to the plane of M3, M4, M5. 

For example, the atomic coordinates of 0(A3) in the cartesian basis is 

obtained as follows 

-0.5454 -1.0530 16.3886' 0.1534' 12.616' 

4.4492 -5.9639 5.7952 0.5817 1.921 

4.8730 4.5082 -0.4536 0.8123 3.001 

Note that the new coordinates of 0(A3) are also in Angstrom units and that 

the columns of A are the coordinates of the crystallographic basis vectors 

D = {a,b,c} expressed in terms of a cartesian basis, i.e.. 

a = -0.5454i + 4.4492j + 4.8730l< , 

b = -1.0530i - 5.9639j + 4.5082k , 

C = 16.3886i + 5.7952j - 0.4536k . □ 

(P2.16) Problem: Find the Cartesian coordinates of M3, M4 and M5 viewed 

down a line perpendicular to their plane. 

(P2.17) Problem: The crystal structure of monoclinic pyroxene consists 

of chains of tetrahedra and octahedra that span the structure along the 

Z-axis and that interlock in layers paralleling (100). When drawings 

are made of the pyroxene structure, they are usually made in a view down 

a. As a makes an angle of about 70° to the layers, such a view gives a 

distorted appearance to the chains. To avoid this problem, the atomic 

coordinates can be transformed so that the structure is viewed perpen¬ 

dicular to (100), i.e., down a . 

(1) Derive the A-matrix 

A = 

osinP 0 0 

0 b 0 

ocosP 0 c 
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for transforming the atomic coordinates of a raonoclinic crystal 

(o^b^c,o=y= 90° ^ P) to give a view of the structure 
* 

along a . 

Table 2.3: Atomic coordinates of the SiO^ tetrahedron in jadeite. 

Atom X y z 

Si 0.2094 0.4066 0.7723 

0i 0.3910 0.4237 0.8725 

O2 0.1392 0.2370 0.7071 

O3 0.1467 0.4930 0.9942 

O3 0.1467 0.5070 0.4942 

(2) Given the atomic coordinates of a SiO^ tetrahedron in jadeite 

(Table 2.3), a monoclinic pyroxene (o = 9.418A, b = 8.562A, 

c = 5.219A, P = 107.58°) of composition, NaAlSi206 use the A- 

matrix to transform the coordinates for a view of the 

tetrahedron down a . Then make a drawing of the tetrahedron 

using the transformed coordinates. Compare your results with 

a drawing of the jadeite structure prepared by Prewitt and 

Burnham (1966). 

(E2.23) Example - Atomic coordinate transformation for viewing a struc¬ 

ture down a line: In this example, we shall derive a matrix for trans¬ 

forming the atomic coordinates of pyroxferroite for making a drawing of 

the structure viewed along its Si(3)0(A3) bond. 

Solution: The atomic coordinates for Si(3) and 0(A3) (Table 2.2) provide 

the information for writing their respective triples: 

'0.3251' '0.1534' 

rslo = 0.7544 , [ry]o = 0.5817 

0.8398_ 0.8123 

The vector rye = Ty - rg parallels and has the same length as the 

Si(3)0(A3) bond. Since 
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'D 
= r, [rs 'D 

-0.1717 

-0.1727 

-0.0275 ^ 

a unit vector k directed along the bond can be found by dividing each 

of these coordinates by 1.616A, the length of the bond to give 

[k]^ 

-0.1063 

-0.1069 

-0.0170 

Next we will find a vector i perpendicular to k. In general, a nonzero 

vector U is perpendicular to a nonzero vector V if and only if their inner 

product is zero; that is 

[u]^G[v]^ = [0]^ . (2.40) 

Given a nonzero vector u, a nonzero vector V can be chosen perpendicular 

to U by the following procedure. Denoting [tl]^G by [Wj Wj W3 ] , we 

shall choose V so that WiVi + + W3V3 = 0, where [v]^ = 

[ViV2V3]^. If Wi * 0, chose Vi = -W2, V2 = Wi and V3 = 0. If Wj = 

0, choose Vi = 0, V2 = W3 and V3 = -W2. In each case y f 0 (since u 

is not zero) and V satisfies (2.40). In our case where U = k, 

[k]^G = [-0.1063 -0.1069 -0.0170] 43.8376 -3.9922 14.6624 

-3.9922 57.0176 -53.9461 

14.6624 -53.9461 302.0992 

= [-4.4824 -4.7537 -0.9275] = [Wi W2 W3] 

Since Wj / 0, we take V = 4.7537a - 4.4824b. 

i = V/V. That is, 

[ 

0.0990 

-0.0933 

0.0 

Hence, is taken to be 

Since j is the unit vector in the direction of k X i, we have 
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-0.0460 

0.0314 [j]o = 

0.0611 

From [i ] ^) t j 5 and [ k ] ^, we form 

0.0990 -0.0460 -0.1063 

II 

1 <
 -0.0933 0.0314 -0.1069 9 

0.0 0.0611 -0.0170 

where, as before, A[r]^ = [rlc- Inverting A ^, we get 

' 4.7126 -5.7176 6.4863' 

A = -1.2462 -1.3224 16.1080 • (2.41) 

-4.4791 -4.7527 -0.9297 □ 

(P2.18) Problem: (1) Using (2.41) find the cartesian coordinates 

(Table 2.4) for Si(3), 0(A3), 0(B3), 0(C2) and 0(C3) in pyroxferroite. 

Table 2.4: Cartesian coordinates of an SiO^ tetrahedron in pyroxferroite. 

Atom X y z 

Si(3) 2.666 12.125 -5.822 

0(A3) 2.666 12.124 -4.207 

0(B3) 3.665 11.123 -6.536 

0(C2) 1.151 11.681 -6.336 

0(C3) 2.892 13.626 -6.422 

(2) With the cartesian coordinates in Table 2.4, compute the separations 

between Si(3) and 0(A3), 0(B3), 0(C2) and 0(C3) and compare your results 

with those published by Burnham (1971). 

(P2.19) Problem: The basis vectors Di = {ai,bi,Ci} of a rhombohedral 

lattice in the obverse setting are defined in terms of a hexagonal set 

of basis vectors Dj = {aj.bz.c} in Figure 2.7. An examination of this 

figure shows that 
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Figure 2.7: A rhombohedral lattice generated 

by Dj = {ai.bi.C,} and a hexagonal cell outlined 

by Oi = {aj.bi.Cj). The lattice points of the 

rhombohedral lattice occur at 0, 0, 0; 2/3, 1/3, 

1/3 and 1/3, 2/3, 2/3 (obverse setting) with re¬ 

spect to Dj- The reverse setting with lattice 

points at 0, 0, 0; 1/3, 2/3, 1/3 and 1/3, 2/3, 

2/3) is obtained by rotating the lattice points 

of the observe setting 60° about Cj. 

32 — 31 b 1 

b2 = bi — Cl 

C2 = 3i + bj + Cl . 

(1) Show that 

3i = (2/3)32 + (l/3)b2 + (1/3)C2 

bi = -(1/3)32 + (l/3)b2 + (1/3)C2 

Cl = -(1/3)32 - (2/3)b2 + (1/3)C2 . 

(2) Given that = 15.951A and C2 = 7.24A, 02 = &2 “ 90°, 

and “ 120°, show that Oi = bi = Ci = 9.520A and Oi = 3i = 

Yi = 113.80°. 
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CHAPTER 3 

POINT ISOMETRIES - VEHICLES FOR DESCRIBING SYMMETRY 

"In asking what operations will turn a pattern into itself, we are dis¬ 

covering the invisible laws that govern our space." -- J. Bronowski 

INTRODUCTION 

In Chapter 1 we observed that the atoms in the raonosilicic acid 

molecule are repeated at regular intervals about a line and a point. We 

also observed that the atoms in a-quartz are repeated at regular intervals 

along straight lines. In both of these examples, the atoms in each in¬ 

terval are related by the class of distance-preserving mappings known as 

isometries. In this chapter we define the term isometry and show how it 

can be used to describe the symmetry of an object. Two types of point 

isometries, rotations and rotoinversion, will be examined, and we will 

see how matrices can be used to represent these isometries with respect 

to a given basis D of . We shall also see how the external symmetry 

of a crystal like a-quartz can be completely described by a group of these 

isometries and their matrix representations. 

ISOMETRIES 

The mappings of S (see Appendix 1) that will enable us to describe 

symmetry are those that do not distort sizes and shapes of objects. Such 

a mapping is called an isometry and is defined as follows: 

(D3.1) Definition: An isometry is a one-to-one and onto mapping from S 

onto S such that for all U,V £ S, the distance between the end points 

of U and V equals the distance between the end points of a(u) and a(v). 

If, in addition, there exists a point r £ S such that a(r) = r, then a 

is said to be a point isometry. 

The first statement in this definition is described by saying a 

preserves distances" and the second by saying a is a point isometry if 

at least one point in S is fixed by a." As shown by Boisen and Gibbs 
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Figure 3.1: The action of rotating an arbitrary point r e S through a turn angle p about 

an axis 1. (a) The directed line segment i passing through the origin, 0, defines the 

rotation axis of o and r defines a vector emanating from 0 to the arbitrary point r. (b) 

A circle traced by rotating r a full turn about 1. The action of o rotates r onto s such 

that a(r) = s. (c) The plane perpendicular to I on which the turn angle p of o is measured. 

Note that points r and s both lie on the plane and that the point q is where the plane 

intersects i. The turn angle of a is p = <(pqr). 

(1976), there are exactly two classes of point isometries referred to as 

rotations and rotoinversions. 

Rotations: Let a denote a rotation about a line H. Since a simply turns 

space about £, space is neither compressed, extended, nor distorted by 

a. Hence, distances are preserved. Furthermore, each point on the line 

£ is left fixed by a. Therefore, a qualifies as a point isometry. 

In order to describe and compare rotations, we must understand their 

basic properties. The action of a rotation a on S is described in Figure 

3.1. In part (a) of the figure, a straight line £ passing through the 

origin is shown on which a positive direction has been defined by an ar¬ 

row. An arbitrary point in space is depicted by the vector r. When r 

is rotated about £, its end point r traces a circle lying in a plane 

perpendicular to £ as shown in Figure 3.1(b). Hence a maps r to a vector 

s whose end point is also on the circle. We say that s is the image of 

r under a and that £ is the rotation axis of o. The angle through which 

space is rotated by a, measured on the plane containing the circle, is 

called the turn angle of a. In Figure 3.1.(c), q denotes the point at which 

£ passes through this plane. The turn angie of a in this case is defined 

to be p = <(rqs) so that a positive angle is measured in the counter¬ 

clockwise direction when viewed from the positive end of £. If the turn 

angle of a is p°, then p° + (360n)° is an equivalent turn angle of a for 

any integer n. Hence, each rotation has an infinite number of equivalent 

turn angle representatives associated with it (see Appendix 1). The 
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Figure 3.2: The action of each rotation of a 

six-fold axis on an arbitrary point r £ S. The 

point r and its images define a plane perpendic¬ 

ular to t where l(r) = r, 6(r) = s, 6 (r) = w, 

3(r) = t, 3’’(r) = v and 2(r) = u. 

Identity mapping 1, where l(r) = r for all r £ S, is considered to be a 

rotation with turn angle 0° (or any multiple of 360°) and with every line 

in space as its rotation axis. Thus, the identity can be viewed as taking 

place about each line in space simultaneously. 

Suppose p is a turn angle for a rotation a such that p > 0, and 

suppose that p is an integral divisor of 360°, i.e., 360/p is an integer. 

Let n denote the integer 360/p. If the vector r is rotated by a n-times 

in succession, then r will be mapped back onto itself. If n > 1, such 

a rotation is called an nth-turn. When n = 1, the rotation is simply 

the identity. An nth-turn is symbolized by n and has a turn angle of 

360°/n. For example, 3 denotes a third-turn and represents a counter¬ 

clockwise rotation of space through a turn angle of 120° about some axis. 

On the other hand, if the turn angle p of a is clockwise such that 

-360 < p < 0 and n = -360/p is an integer, then o has a turn angle of 

p = —360//7 and is referred to as a negative nth-turn. Such a rotation 

is symbolized by n*^ because, as we shall see later, it is the inverse 

of an nth-turn about the same axis. Thus 3 signifies a negative 

third-turn and represents a clockwise rotation of 120°. In Table 3.1 

several nth turns and negative nth turns are described. In order to avoid 

ambiguities, we shall choose as the preferred turn angle representative 

for any rotation a an angle p such that -180 < p < 180. Hence, the pre¬ 

ferred angle for 3’^ will be -120° and that for 2 will be 180°. Figure 

3.2 shows an arbitrary vector r and its images under several rotations 

each taking place about a common axis i. In this case, the identity maps 

r onto itself, symbolized 1 (r) = r; the sixth-turn maps r onto S, hence 

0(p) = s; the third-turn maps r onto t, hence 3(r) = t, the half-turn maps 

r onto u, hence 2(r) = u; the negative sixth-turn maps r onto w hence 
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Table 3.1: Symbols and names for rotation isometries. 

Turn angle p Symbol Name 

360°(0‘') 1 identity 

18C° 2 half-turn 

120° 3 third-turn 

90° 4 quarter-turn 

72° 5 fifth-turn 

60° 6 sixth-turn 

• • • 

• • • 

• • • 

360°/n n nth-turn 

-120° 3‘^ negative third-turn 

- 90° 4-1 

6-1 

negative quarter-turn 

- 60° negative sixth-turn 

• • • 

• • • 

• « • 

-360°/n n-1 negative nth-turn 

Table 3.2; Symbols and names for rotoinversion isometries. 

Turn angle p Symbol Name 

360°(0°) 1 Inversion 

180° m reflection 

120° 3 third-turn Inversion 

90° 4 quarter-turn Inversion 

72° 5 fifth-turn inversion 

60° 6 sixth-turn inversion 

• • • 

• • • 

• • • 

360°/n n nth-turn inversion 

-120° 3-1 negative third-turn inversion 

- 90° 4-1 negative quarter-turn inversion 

- 60° G-l negative sixth-turn inversion 

• * • 

• • • 

• • • 

-360°/n s-i negative nth-turn inversion 
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6 ^(r) = W, and the negative third-turn maps r onto V, hence 3 ^ (r) = 

V. As we shall see later, these six rotations when taken as a collection 

form an important set of rotations, each of which take place about a 

common axis. This set denoted 6 = {1,6,3,2,3 ^6 contains the ro¬ 

tations of a so-called six-fold axis (also called a hexad axis). 

Orientation Symbols: The symbols for the rotations listed in Table 3.1 

provide information about turn angles but lack information about the 

orientation of their rotation axes. When specifying a non-identity ro¬ 

tation using this symbolism, a description of the orientation of the ro¬ 

tation axis is made in terms of a natural basis, D = {a,b,c}. Following 

Boisen and Gibbs (1976), the zone symbol [uvw] will be attached as a left 

superscript to the rotation symbol to specify the orientation of a vector 

r = ua + vb + wc 

along the positive direction of the rotation axis where U, V and W are 

usuallv integers. Thus, ^ symbolizes an nt/7-turn about an axis 

. [lOOlo ^ [OlO], 
paralleling r = ua + vb + wc. Also, the symbols z, Z and z 

specify half-turns about axes coincident with a, a + b, and b, respec¬ 

tively. Likewise, [^^®l4 specifies a quarter-turn about an axis paral¬ 

leling a, whereas [111]2”1 specifies a negative third-turn about an axis 

coincident with a - b + C. An exception to our rule is when the rotation 

axis points along c. In this case, no orientation symbol is attached to 

the rotation symbol; thus, symbols like 3 and 3 will be used to specify 

a third-turn and a negative third-turn, respectively, about an axis co¬ 

incident with C. Thus, the symbols for all rotations defining a turning 

of space about C will by convention always be written without an orien¬ 

tation symbol. Finally, as any line in space can be selected as the ro¬ 

tation axis of the identity, the symbol 1 will also be written without 

an orientation symbol. 

Compositions of Isometries: Let o and 3 denote mappings from S onto S 

and let r £ S. Then the composition of a and denoted is defined 

to be the mapping 

a&(r) = a(&(r)) . 

That is, to calculate d&(r), we first find ^(r) and then apply a to it. 
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See Appendix 1 for an illustration of this definition. 

(T3.2) Theorem: The composition of two isometries is an isometry. The 

composition of two point isometries leaving a common point fixed is a 

point isometry leaving that point fixed. 

Proof: Suppose a and 3 are isometries. We shall show that a3 is an 

isometry. In Appendix 1, it is shown that since a and 3 are both one- 

to-one and onto mappings, a3 is a one-to-one and onto mapping. Let r £ 

S. Because 3 is distance preserving, ||3(r)|| = ||r||. Also, since a is 

distance preserving, ||a(3(r))|| = !|3(r)|| and so ||a3(r)|| = ||r||. Therefore, 

the composition of two isometries is again an isometry. Suppose a and 3 

are point isometries both leaving the origin 0 fixed. Then 

a3(0) = a(3C0)) = ct(0) = (0) . 

Therefore, a3 must also be a point isometry that leaves 0 fixed. □ 

Rotoinversions: A rotoinversion is a hybrid operation produced by com¬ 

posing a rotation with the inversion. The inversion, denoted by the 

symbol /, maps each vector v £ S onto its negative, -v, i.e., /(v) = -V 

for all V £ S. Since |jv|| = ||-v|| and /(O) = -0 = 0, we see that / is a 

distance preserving mapping that leaves the origin fixed. However, unlike 

a rotation which maps each vector along its axis onto itself, an inversion 

maps exactly one vector in S, namely 0, onto itself. Thus / is not a 

rotation. 

Because the composition of two point isometries leaving a common 

point fixed is a point isometry, the composition of / with any rotation 

whose axis passes through the origin is again a point isometry. Hence, 

every rotoinversion is a point isometry. If n > 1, then n/ is denoted 

n. We denote 1/ simply as /. The names and symbols for some represen- 

tarive rotoinversions are given in Table 3.2. Following Boisen and Gibbs 

(1976), we assign to n, the turn angle and rotation axis of n. The 

orientation symbol for n is taken to be that of n 

a quarter-turn inversion with the axis of its 

Thus, ^ ^4 denotes 

associated quarter-turn 

directed along a and with a turn angle of 90°. Likewise, 

third-turn inversion whose rotation axis parallels c. 
3 denotes a 
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Figure 3.3: The action of a rotoinversion a/ on 

an arbitrary point r e 5 where 0 denotes the 

origin, a is a rotation about t with turn angle 

p and / is the inversion isometry. The vector r 
is mapped onto -r by / (i.e., /(r) = -r) and a 

maps (-r) onto s = a(-r) = a(/(r)) = ai(r). 

Hence, the rotoinversion isometry al maps r onto 

S. The turn angle and the rotation axis of a/ 

are inherited from a. 

Figure 3.4: The action of a reflection isometry 

m = /2 on an arbitrary vector r t S where 0 is 

the origin and m is the mirror plane perpendic¬ 

ular to the rotation axis t of a half-turn 2 over 

which the vector r is reflected. The vector r 
is mapped onto s by 2,S is mapped onto -s by / 

so that /2(r) = -s. Hence /2 is equivalent to 

a reflection m of the vector r directly over the 

plane m onto -s such that m(r) = -s. 

Figure 3.3 shows the effect of a rotoinversion ai on a point r e S 

where a has a turn angle of p°. As the inversion sends r to -r, we observe 

that a/(r) = a(/(r)) = o(-r). Then a rotates -r through a turn angle of 

p mapping —r onto s as shown in Figure 3.3. 

So far we have only considered rotoinversions of the form o/. This 

does not result in loss of generality since, as we shall now show, ia = 

ai for any rotation a. Let V denote a vector in S and let a denote a 

rotation such that a(v) = W. As -V lies on the same line as V, a(-v) 

must lie on the same line as W but point in the opposite direction such 

that a(-V) = -W. Next, multiplying a(v) = W by -1, we observe that 

-a(v) = a(-V). Hence, a/(v) = a(/(v)) = a(-V) = -a(V) = /(a(V)) = 

/a(V). Therefore, ai and ia are the same mapping. Since ai = ia, we say 

that a and / commute. Hence / commutes with all rotations. As we shall 

see later, isometries do not in general commute and the fact that / com¬ 

mutes with each rotation is an important property of /. 

All rotoinversions, with the exception of 2, leave exactly one point 
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Figure 3.5: A collection of vectors that are 

images of an arbitrary vector r e_S under the 
point isometries that comprise a 6 inversion 

axis paralleling 1. 

/(a) 

Figure 3.6: An illustration that an inversion 

isometry /' changes the handedness of a basis from 

right to left. (a) A right-handed basis 

D = {a,b,c} emanating from an origin 0. (b) The 

images of a, b and c, {/(a) ,/(b),((c)) under i. 
(c) The figure in (b) rotated so that /(a) and 

/(b) are parallel to a and b, respectively, in 

(a). Observe that the basis vectors in 

D = {/(a),/(b),/(c)) are left-handed illustrating 

that an inversion isometry changes the handedness 

of a set of basis vectors. 

in S fixed. The 2 operation leaves a plane of points fixed, as illus¬ 

trated in Figure 3.4. Rather than viewing 2 as the composition of 2 and 

/, it is simpler to view the operation as a reflection about the plane 

of points left fixed by 2. By a reflection we mean that each point and 

its image lie on a line perpendicular to the plane such that the plane 

bisects the line segment between them. Because of this fact, 2 is almost 

always referred to as a reflection isometry and is denoted by m. Fur¬ 

thermore, the plane of fixed points is called the mirror plane m. The 

orientation symbol assigned to m is inherited from that of the axis of 

the perpendicular half-turn part of the operation. For example, [210]rT, 

denotes a reflection of space over a mirror plane that is perpendicular 

to 2a + b, whereas m denotes a reflection of space about the plane that 

is perpendicular to c. 

(P3.1) Problem: Determine the names and symbols of the point isometries 

a that map the vector r in Figure 3.5 onto r, s, t, u, v and w, assuming 

that the rotation axis H of a parallels c. 
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Consider the right-handed set of basis vectors D = {a,b,c} displayed 

in Figure 3.6(a). The images of these vectors under the inversion is the 

set D = {/(a), /(b), /(c)} (Figure 3.6(b)). If we orient D with /(a) on 

the left and /(b) on the right, then /(c) will be directed downward (Figure 

3.6(c)). Consequently, the inversion transforms a right-handed basis set 

to a left-handed one (see Appendix 4). Since rotations do not change the 

handedness of a basis, the net effect of a rotoinversion a/ is to change 

the handedness. Hence, all rotoinversions change the handedness of a 

basis. One important consequence of this is that no isometry is both a 

rotation and a rotoinversion. 

(E3.3) Example - The inversion mapping is its own inverse: Show that 

the composition of two successive inversions about a common point is 

equivalent to the identity. 

Solution: Since /(r) = -r for all r £ S, then /(/(r)) = /(-r) = 1(r). 

Hence ii - = ^ . □ 

SYMMETRY ELEMENT 

(D3.4) Definition: The symmetry element of a point isometry a is defined 

to be the set of all points in space left fixed by a, i.e., a point p £ 

S is on the symmetry element of a if a(p) = p. 

Let a denote a rotation other than the identity with a rotation axis 

i. Since each point p along Z is left fixed by a and every other point 

in S is moved, Z is the symmetry element of a. Every point p £ S is fixed 

by the identity, and so S is the symmetry element of the identity. As 

a plane of points is left fixed by a reflection, this plane, referred to 

as the mirror plane, is the symmetry element of the reflection. Because 

all other rotoinversions each fix a single point, the symmetry element 

of these isometries is a point. It should be noted that our definition 

of symmetry element differs somewhat from that used in the ITFC (Hahn, 

1983). 

In general, the type of symmetry element possessed by a point 

isometry a reveals what type of point isometry a is. For example, if 

a(p) = p for all p £ S, then a is the identity. If the symmetry element 

of a is a line Z, then a is a rotation. If the symmetry element of a is 

a plane, then a is a reflection. Finally, if the symmetry element of a 

is a single point, then a is a rotoinversion other than 2. 
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DEFINING SYMMETRY 

The symmetry of an object is often described intuitively by such 

phrases as "the object is well-balanced or well-proportioned" or that "it 

consists of a pattern that is repeated at regular intervals around a 

point, line or plane or along a direction in space." However, these types 

of phrases are too ambiguous for our purposes. By using isometries, we 

can define symmetry with sufficient rigor so as to bring powerful math¬ 

ematical tools to bear on the subject. 

Consider an object in space occupying the subset of points B in S. 

Let a denote an isometry. By a(B) we mean the set consisting of all of 

the images of the points in B. That is, 

a(6) = {a(b) | b e 6} . 

If a(S) = B, then the object has been moved by a such that the object 

after being moved coincides exactly with the object before it was moved. 

That is, a has mapped the object into self-coincidence. When this happens, 

we say that the object is left invariant by o. Note that the statement 

a(S) = B does not imply that a(b) = b for each b £ S. Since, under a, 

each portion of B has been moved to an equivalent portion of S, a de¬ 

scribes something of the symmetrical nature of the object. 

As an example, consider as an object the block of the structure of 

the mineral narsarsukite, Na^TiOjSi^On, displayed in Figure 3.7. The 

large spheres in the drawing represent Ti, the intermediate-sized ones 

represent Si and the small ones, 0 (Peacor and Buerger, 1962). The Na 

atoms were omitted for sake of simplicity. Let ot = 4 denote a quarter- 

turn about an axis perpendicular to the plane of the drawing, passing 

through the center of the block. Let B denote the set of points occupied 

by all the features of the block. Note that 4(6) =6. The fact that 

4(6) - 6 is a mathematical statement of the observation that each feature 

(atoms, bonds, etc.) of the block is repeated at 90° intervals about its 

central point. Note that a half-turn, a negative quarter-turn and, of 

course, the identity about the rotation axis also map 6 onto itself. 

Furthermore, the rotations 1, 4, 2 and 4’’' all taking place about the axis 

perpendicular to the page form a complete list of all of the isometries 

that map^the block into self-coincidence. Hence, the set denoted 4 = 

{1,4,2,4 } completely describes the symmetry of the narsarsukite block. 

The rotations in 4 define a four-fold axis (also called a tetrad axis) 
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Figure 3.7: A drawing of a block of the narsarsukite structure viewed down c. The small 

spheres represent 0, the intermediate-sized ones represent Si and the large ones Ti. The 

symmetry of this block is 

perpendicular to the block. We now define what we mean by the symmetry 

of an object. 

(D3.5) Definition: Let B denote the set of points in S occupied by an 

object in space. The symmetry of the object is the set of all isometries 

a such that a(6) = B. 

(P3.2) Problem: The crystal structure of zussraanite, 

KFe 1 sSi 1 7AIO,,2 (OH) 14 , is based on composite layers of 6- and 12-membered 

rings (Lopes-Vieira and Zussman, 1969). A block of the structure is 

displayed in Figure 3.8 in a view perpendicular to the layers. Find the 

set of isometries that define the symmetry of the zussmanite block, name 

the set and the n-fold axis that is perpendicular to the block. 

LINEAR MAPPINGS 

From D3.1 we see that when a point isometry a maps S to S, a does 

not disrupt the geometric nature of S in the sense that the lengths of 
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Figure 3.8: A drawing of a block of the 

zussmanite structure viewed down c. 

all of the vectors in 5 are left undisturbed. That is, for all r E S, 

l|“(f')ll = lif'll" We shall see that if the origin is on the symmetry element 

of a, then a also leaves the algebraic nature of S undisturbed. That 

is, if r,s £ S and x z R, then 

a(r + s) = a(r) + a(s) 

and 

a(xr) = xa(r) . (3.1) 

Any mapping that preserves the operations of a vector space V in this 

manner is called a linear mapping on V. 

(D3.6) Definition: A mapping a from a vector space V to V is a linear 

mapping if it satisfies (3.1) for all r,s e V and x z R. 

We shall now demonstrate that any rotation whose axis passes through 

the origin is a linear mapping. Let a denote such a rotation and, for 

convenience, let the Z-axis be its rotation axis. Let r and s denote 

vectors as shown in Figure 3.9(a). The sum of r and s is the diagonal 

of the parallelogram outlined by r and s as shown. Since a rotation 

merely turns space about an axis, all sizes and shapes are preserved. 

For example, if a set of points outlines a triangle, then the image of 

that set will outline a triangle of exactly the same size and shape, that 
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Figure 3.9: (a) A coordinate axis Z and vectors 

r, s and r + s where r + s is the diagonal of the 

parallelogram outlined by r and s. (b) The 

action of a rotation a about Z on the 

is, a congruent triangle. Similarly, a parallelogram will map to a 

congruent parallelogram. Consequently, the parallelogram outlined by r 

and s is mapped by a onto a congruent parallelogram outlined by a(r) and 

a(s) as shown in Figure 3.9(b). Since the diagonal of the first 

parallelogram, r + s, maps to the diagonal of the second, o(r) + a(s), 

we have 

a(r + s) = a(r) + a(s) . 

In Figure 3.9(c), a vector r and a scalar multiple xr are shown. Since 

r and xr are in a common direction, their images a(r) and a(xr) are in 

a common direction. Furthermore, since a(r) has the same length as r and 

a(xr) has the same length as xr and since xr is X times as long as r. 
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we have a(xr) is x times as long as a(r). That is, 

a(xr) = xa(r) . 

In summary, we have shown that a rotation of S preserves the two 

operations of a vector space and qualifies as a linear mapping. 

(E3.7) Example - The composition of two linear mappings is a linear 

mapping; Show that the composition of two linear mappings a and B on S 

is a linear mapping. 

Solution: We need to show that a3(r + s) = a3(r) + a&(s) and a3(xr) = 

xaS(r) for all x t R and r,s e S. By definition of composition, 

opCr + s) = a(e(r + s)) . 

Since 3 is a linear mapping, B(r + s) = 3(r) + P(s) and so 

o(e(r + s)) = a(3(r) + 3(S)) . 

Also, since a is a linear mapping. 

a(B(r) + e(s)) = a(e(r)) + a(3(s)) , 

= a3(r) + aP(s) . 

Therefore, a3(r + s) = a3(r) + o3(s). Similarly, 

a3(xr) = a(3(xr)) 

= a(x3(r)) 

= xa(3(r)) 

= xa3(r) 

(definition of composition) , 

(3 is a linear mapping) , 

(a is a linear mapping) , 

(definition of composition) . 

Consequently, we have shown that the composition of two linear mappings 

is a linear mapping. 

(E3.8) Example - The inversion operation is a linear mapping: Show that 

the inversion is a linear mapping. 
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Solution: Since /(r + s) = -(r + s) = -r - s = /(r) + /(s) and /(xr) = 

—xr — x(—r) - x/(r) for all r,s s S and x e /?, we see that i is a linear 

mapping. □ 

(P3.3) Problem. Show' that any rotoinversion that leaves the origin fixed 

is a linear mapping. 

Matrix Representations of Linear Mappings: We are now ready to explore 

how a linear mapping can be represented by a matrix. See Appendix 2 for 

a discussion about matrices. To begin, suppose that D = {a,b,c} is a 

basis of S so that each vector rj e S can be written as a linear combi¬ 

nation of D. That is to say that corresponding to each vector ti, there 

exist three real numbers Xi, and Zj such that rj can be expressed as 

ri = Xia + yib + ZiC . (3.2) 

Next, consider the effect of a linear mapping (for example, any point 

isometry fixing the origin of space) on (3.2) such that a(ri) == rj. As 

the image of rj under a is a vector Tj = a(ri) in S, there must also exist 

three real numbers Xj, 3/2 and Z2 such that the image vector Tj can be 

written as 

Tj = Xja + yjb + Z2C . (3.3) 

Applying the properties of a linear mapping to rj, we have 

a(ri) = a(Xia + yjb + ZjC) 

= a(Xia) + a(yib) + a(ZiC) 

= Xia(a) + yia(b) -1- Zia(c) . (3.4) 

This tells us that if we know a(a), a(b) and 01(c), then a(ri) is com¬ 

pletely determined. In particular, if ot(a), a(b) and a(c) are expressed 

as linear combinations of D, then we can use (3.4) to write a(ri) in that 

form. Thus, if we write a(a), ot(b) and o(c) as linear combinations of 

D, we have the equations 
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a(a) = i^iia + Il2ib + 23 iC 

II 

2
 a
 &i2a + 1122b + II3 2C 

R
 O
 II lli3a + 1^2 3b + 2.3 3C , 

where, of course, the nine coefficients, 1... are real numbers. Next we 
1] 

replace a(a), a(b) and o(C) in (3.4) by these expressions obtaining 

“(ri) = XiCKiia + dzib + HjiC) + yiC^iza + i^22b + ^32C) 

+ 2'23b + <l33C) . 

Collecting the coefficients of a, b and c, we have 

f* 2 = a(ri) = (2.ll>Cl + !ll2yi ^13^l)a + (Ii21-^l ^22yi ^23^l)b 

+ ((l3l>fl + l!'32yi ^33'Zl)C . (3.5) 

As this vector equals r2 in (3.3), we can equate the corresponding coef¬ 

ficients of the vectors a, b and C for r2 to obtain the following set 

of equations: 

X'2 = ^11-^1 + !^12yi + HisZj 

y2 ~ *^21-^1 ®^22yi t 1^23^1 (3.6) 

^2 ~ ^31-^1 l^32yi t 3 3 1 • 

(Recall that two vectors r. = x.a + y.b + z.c and r. = x.a + v.b + z.c are 
I'll I I -^1 I 

equal only if x. = xy. = y. and z. = z..) The set of equations in (3.6) 

can be written in matrix form as 

X2 ^11 ^12 ^13 ><'l 

y2 2.21 222 223 yi 

^2. .^31 232 ®'33. Zi . 

or more briefly as 

’ (3.7) 

where, as usual. 

-X"! Xi' 

[ri]^ = 

1-
 

N
 

V
C

 

1_
_

_
 

and [ri]^ = y-z 

Jr. 
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and we define M^(a) by 

^11 £ 1 2 ^13 

M^(a) = ^2 1 £•2 2 £23 

^3 1 £32 *^33 

In this context, we speak of as be ing 

of a with respect to the basis D. It is important to note the M^(a) can 

be constructed from the coordinates of [a(a)]^, [o(b)]^, and 

by noting that 

[a(c)] 
D 

i 1 Jl 12 *^13 

M^(a) = [«(a)]Q = 
*^2 1 £22 ^2 3 

1 1 .^3 1 £32 *^3 3. 

(3.8) 

since 

[a(a)]^ = 

r 
rH 

1
_

 -
1

 

_1
 1 

W
 

£21 

II 0
 £22 > [a(c)]^ = ^2 3 

1 

m
 £32 -^3 3_ 

Thus, to construct M^(a) for some linear mapping a, we observe that the 

first column of the matrix has as its entries the coefficients of a(a) 

with respect to D, the second has as its entries those of a(b), and third 

has as its entries those of a(c). 

(E3.9) Example - Matrix representation of a half-turn rotation of space 

about Z: Let 2 denote a half-turn rotation about Z defined with respect 

to the basis D = {a,b,c} such that 

2(a) = -la + Ob + ic 

2(b) = Oa -lb + ic 

2(c) = Oa + Ob + Ic . 

With this information, the matrix for the half-turn can be constructed 

by evaluating the columns of 

M^(2) = 

I I 
[2(a)]^ [2(b)]^ [2(c): 

1 I 

107 



Since 

-l' ' 0 'o‘ 

[«(a)]^ = 0 

1 

. [“(b)]^ = -1 

1 

, [a(c)]^ - 0 

1 

we conclude that 

Mo(2) 

-10 0 

0-10 

1 1 1 

To find where the vector r = xa + yb + zc is mapped by 2, we recall 

[2(r); 
D 

so that ,(2) [r [2(r)]^. 

'-1 0 o' X -X 

0-10 y = -y 

1 11 z X + y + z 

from which we conclude that 

2(r) = 2(xa + yb + zc) = -xa - yb + (x + y + z)c . D 

The technique for constructing the change of basis matrices dis¬ 

cussed in Chapter 2 can be used here as an alternative way of approaching 

the construction of M^(a). In Chapter 2 we observed that the product 

of a matrix times the vectors [100]'", [010]^ and [001]^ equals the columns 

of the matrix. Since [a]^ = [100]^ and M^(a)[a]^ = [a(a)]^, we have 

that [a(a)]^ is the first column of M^(a). Similarly, [a(b)]^ and 

[a(c)]^ are the second and third columns of the matrix. 

(P3.4) Problem: Find M^(a) where D = {a,b,c} and a is a quarter-turn 

inversion about the vector a + b - c given that a(a) = 

-a + c, a(b) = -a, and a(c) = -a + b. 

(P3.5) Problem: Find the matrix defining a sixth-turn, 6, about the 

Z-axis with respect to the basis D = {a,b,c}, given that 6(a) = a + b, 

6(b) = —a and 6(c) = c. Also, find the components of the vector 6(r). 

Matrix Representations of Compositions of Linear Mappings. Let a and g 

denote linear mappings on S and let D denote a basis for S. As discussed 
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earlier, af is the mapping defined by oB(r) = a(&(r)) for all r £ S. 
O 

The corresponding statement in the context of R is 

M^(ap)[r]^ = M^(a)(M^(e)[r]^) . 

Since matrix multiplication is associative, 

Mo(a)(M^(3)[r]^) = (M^(a)M^(3)) [r]^ . 

Hence, M^(ap)[r]^ = (M^(a)M^(&)) [r]^ for all r e S and so 

M^(a3) = M^(a)M^(e) . (3.9) 

Therefore, the matrix representation of the composition of two mappings 

is obtained by multiplying the matrix representations of the individual 

mappings (in the same order). For a discussion of matrix multiplication, 

see Appendix 2. 

(E3.10) Example - A matrix representing the composition of half-turn and 

quarter-turn rotations about different but intersecting axes: Let D = 

{a,b,c} denote a basis. Let a denote the half-turn of E3.9 and let B 

denote the quarter-turn inversion of P3.4. Find M^(aP). 

Solution: In E3.9, we found that 

M^(o) 

-10 0 

0-10 

111 

By a similar process, it was shown in P3.4 that 

Hence, 

M^(P) 

-1 -1 -1 

0 0 1 

10 0 

M^(a3) = M^(a)M^(p) = 

111 

0 0-1 

0-10 

(3.10) 

□ 
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(P3.6) Problem: Using M^(a) and M^(&) given in E3.10, find M^(3a). 

Note that aB ^ Ba. 

(P3.7) Problem: Let D = {a,b,c} denote a basis. Find M^(Ba) where a 

is the sixth-turn of P3.5 and B is the half-turn defined by BCa) = —a — 

b, B(b) = b and B(c) = - c. Then find M^(Ba). 

In Appendix 3, methods for analyzing matrix representations of point 

isometries are presented. This appendix should be read before attempting 

to answer the following problems. 

(P3.8) Problem: Determine the symbol for the point isometry represented 

by (3.10) in E3.10. 

(P3.9) Problem: Determine the symbol for Ba of P3.6. 

(P3.10) Problem: Determine the symbol for Bo of P3.7. 

THE CONSTRUCTION OF A SET OF MATRICES DEFINING THE RO¬ 

TATIONS OF 322 

In this section, we shall construct the matrix representations of 

the point isometries that describe the external symmetry of an a-quartz 

crystal, i.e., the point isometries that send such a crystal into self- 

coincidence. An X-ray study of the mineral shows that its rotation axes 

labeled Hj, K.2, £3 and in Figure 3.10 coincide with the vectors a, 

a + b, b and c, respectively. An examination of this figure shows that 

the crystal is sent into self-coincidence by 3 and 3'^ about II4 and by 

[loo]- [no]„ , [oio]_ ^ , 
2. about £3, £2 and £3, respectively. The crystal 

is also mapped into self-coincidence by the identity, 1. Furthermore, 

these are the only isometries that map the a-quartz crystal into self¬ 

coincidence. As the symmetry of an object is defined (D3.5) to be the 

set of all isometries that send it into self-coincidence, the symmetry 

of an a-quartz crystal is the set of rotations {1. 3 3'^ [lOOlo 
[110]- [010]-, ... 

2, 2). We will denote this set of rotations by the symbol 322 

to be consistent with our derivation of the point groups. However, the 

conventional symbol for this set is 32. 

In the previous section we learned how to find the matrix represen¬ 

tation of a point isometry a with respect to a basis D given a(a), a(b) 
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3 

(a) (b) 

Figure 3,10: Drawing of an ideal crystal of a-quartz (a) viewed at an oblique angle to c 

and (b) viewed down c. The rotation axes ti, ly and £* of 

3 are parallel to a, a + b, b, and c, respectively. 

and a(c) in terms of D. Now we shall learn how to find the matrix rep¬ 

resentation of the point isometries that map a crystal like a-quartz into 

self-coincidence from the basic geometric descriptions of these mappings. 

To simplify our view of the geometry, we extract the vectors and the 

hexagon lying in the £i,)l3 plane of the illustration of the a-quartz 

crystal displayed in Figure 3.10. Within this geometrical context, we 

can describe each of the point isometries of 322 and find their matrix 

representations. To facilitate our observations, we have labeled each 

of the vectors emanating to the six corners of the hexagon in Figure 3.11. 

We shall now derive a matrix for each rotation a e 322 by studying the 

action of a on the hexagon and the basis vectors of a-quartz. 

Construction of M^(3): In the construction of M^(3), we examine the 

action of a 120° rotation about an axis coincident with c. By rotating 

the hexagon in Figure 3.12(a) through a turn angle of 120° about c, the 

basis vectors are rotated to the positions that they occupy in the image 

hexagon (Figure 3.12(b)). Thus, the motion of 3 maps a onto b, b onto 

—a — b and c onto c, i.e., 3(a) = b, 3(b) = —a — b and 3(c) = c. With 

these results, we see that M^(3) is 
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c 

Figure 3.11: The basis vectors and the hexagon 

perpendicular to C isolated from the drawing of 

the a-quartz crystal in Figure 3.10(a). The ro¬ 

tations that send the crystal into self¬ 

coincidence permute the vectors {a, a + b, b, 
-a, -a - b, -b}, and permute {c, -c). By exam¬ 

ining how the basis vectors are mapped by a point 

isometry a, the matrix representation of a is 

found by inserting the coefficients of a(a), 
a(b) and a(c) in the first, second and third 

columns of the matrix, respectively. 

1 1 

O
 1 

o
 

1
_

 

«0(3) = [3(a)]^ [3(b)]^ [3(c)]^ II 1-10 

1 1 0 0 1 

Construction of ): This matrix is found by examining where the 

basis vectors in Figure 3.12(a) are sent by -120° rotation about an axis 

coincident with c to the configuration shown in Figure 3.12(b). In this 

case, a is mapped onto -a - b, b is mapped onto a, and c is mapped onto 

itself, i.e., 3'^(a) = -a - b, 3'^(b) = a, and 3"^(c) = c. Hence, 

■ '-1 1 o' 

[3‘\a)]^ [3'’'(b)]^ [S’^c)]^ = -1 0 0 

. 0 0 1 

We also observe that a 120° rotation of space about c is equivalent to 

two successive rotations of 120° (i.e., a positive rotation of 240° is 

equivalent to a negative rotation of 120°) each about the same axis. That 
O _ 1 

is. 33 = 3^ = 3‘^ With this in mind, by (3.9), we expect that when 

M^(3) is multiplied by itself, the matrix M^(3‘^) results: 

0-1 o' 'o -1 o' 

M^(3)M^(3) = 1-10 1-10 

0 0 1 0 0 1 

■-1 1 o' 

= -10 0 

0 0 1 
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This result tells us that the route followed by the basis vectors during 

a rotation (or as a matter of fact by any other point isometry) is ir¬ 

relevant; it is the final positions to which the vectors are sent that 

is important in defining a point isometry and constructing its matrix 

representation. 

Construction of Of all the matrices used to represent an 

isometry, the identity matrix, is the simplest to construct be¬ 

cause the identity maps each vector r £ S (including each of the three 

basis vectors) onto itself. Thus, 

M^d) 

10 0 

0 10 

0 0 1 

where the columns of this matrix are the coefficients of 1(a), 1(b) and 

1(C), respectively (Fig. 3.12(b)). Actually, the identity bears a special 

relation to 3 and 3 ^ in that the combined rotations (120° + (-120°)) 

about the same axis is equivalent to a 0° identity rotation. We can 

verify this result by 

'O -1 0 -1 1 o' 

M^(33'') = M^(3)M^(3'‘') 1-10 -10 0 

rH
 

o
 

o
 

_
1

 0 0 1 

1 

0 

0 

0 0 

1 0 

0 1 

= Md(1) . 

That IS, 33 =1. If a and 3 are two rotations such that a composed with 

3 is equivalent to the identity, i.e., o3 = 1, we speak of 3 as being the 

inverse of a. Thus, in our example, since 33 ^ =1, 3"^ is called the 

inverse of 3. Calculating M^(3 ^3) one finds that 3 ^3 = 1, showing that 

(3 ) - 3. Since {1,3,3 } all take place about a common axis, we call 

such an axis a three-fold axis (also called a triad axis). We use the 

symbol 3 to denote {1,3,3'''} and M^(J) to denote the matrix represent- 
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ations of the rotations in 3. That is, 

'l 0 o' 

1 
O

 

-1 O
 

'-1 1 

1
- 

O
 

0 1 0 > 1 -1 0 -1 0 0 

1-
 

O
 

0 1 

1-
 

O
 

0 1 O
 

0 1 

While the three-fold axis and the elements of 3 are quite distinct ob¬ 

jects, it is customary, nonetheless, to refer to this set of rotations 

as a three-fold axis and to symbolize it in a drawing by an equilateral 

triangle, A . 

Construction of A half-turn, about an axis coinci¬ 

dent with a turns the hexagon in Figure 3.12(a) over and maps a onto it¬ 

self, b onto -a — b and C onto -C as shown in Figure 3.12(b). Inserting 

the coordinates of and into the col¬ 

umns of a matrix, we have 

1 -1 o' 

0-10 

0 0-1 

M^([^°°]2) = 

If two successive half-turns are made about a (p = 180° + 180°), the end 

product would be equivalent to the identity. In terms of matrices, this 

means that 

M^(f^°°^2)M^(t^°°^2) = M^(1) 

which can be checked by performing the multiplication. Thus, we see that 

u [100]- [1001--1 
a half-turn is its own inverse, i.e., 2 = z . The two ro¬ 

tations / and [^^^^2 form a subset denoted = {1,^^^^^2}. As both 

of these rotations take place about a common axis, they constitute a 

two-fold axis (also called a diad axis'). A two-fold axis is often spec¬ 

ified with the symbol ^ . 

Construction of A half-turn, ^^^^^2, about an axis coinci¬ 

dent with a + b turns the hexagon in Figure 3.12(a) over and maps a onto 

b, b onto a and c onto -c (Figure 3.12(b)). The matrix representation 

for this rotation is therefore 

0 1 0 

10 0 

0 0-1 
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z 

Figure 3.13; The symmetry elements of 322. The rotation axes of 322 intersect at the center 

of the unit ball. The 3-fold axis is perpendicular to the plane containing each of the 

2-fold axes. Adjacent 2-fold axes intersect at 60® to one another with paralleling 

Xy making an angle of 60® with respect to X and ^^^^^2 paralleling Y. 

Like the half-turn described in the last section, = 1. As 

and 1 share a common rotation axis, they comprise the rotations 

of a two-fold axis denoted 

Construction of The remaining rotation of 322, turns 

the hexagon in Figure 3.12(a) over and maps a onto -a - b, b onto b and 

C onto —C (Figure 3.12(b)) so that 

-1 0 o' 

-110. 

0 0-1 

This half-turn and the identity comprise the two rotations of the two-fold 

axis, that occur about b. 

In our study of each of the rotations in 322 that send an a-quartz 

crystal into self-coincidence, we found that a three-fold rotation axis 

parallels c, and that two-fold rotation axes parallel a, a + b and b. 

Accordingly, the three-fold axis is perpendicular to the plane containing 

the two-fold axes and each two-fold makes an angle of 60° to the remaining 
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two-folds. These axes are depicted in Figure 3.13 where they intersect 

at an origin located at the center of a unit ball. Such a diagram is 

referred to as a drawing of the symmetry elements of 322. 

Algebraic Properties of 322'. As seen earlier in this chapter, the com¬ 

position of two linear mappings (such as isometries leaving the origin 

3 
fixed) is mimicked with respect to R by multiplying their matrix rep¬ 

resentations with respect to a basis D. In the case of 322, we have found 

all of these matrix representations. Thus, the set of matrices 

M^(J22) = {M^(1), M^(3), M^O'''), 

describes 322 with respect to R just as well as the set of rotations 

322 = {1,3,3‘\ 

describes the set with respect to S. However, working with matrices 

avoids the difficulties encountered in visualizing the effect of a point 

isometry on an object. For example, it is usually difficult to visualize 

the combined affect of two or more successive applications of point 

isometries on S. On the other hand, when these point isometries are 

represented by matrices, their successive application can be analyzed 

through matrix multiplication routinely. This fact enables us to describe 

the algebraic properties of M^(322) with a multiplication table similar 

to the ones used to construct a "times table" in grade school. In the 

construction of this table for M^(322), we start by listing each matrix 

of the set in the first row (called the guide row) above the horizontal 

line and the first column (called the guide column) to the left of the 

vertical line (see Figure 3.14). Each matrix M^(a), in the guide column 

is then multiplied by each matrix M^(&), in the guide row, with the matrix 

from the guide row on the right. The table is completed by entering the 

product M^(a)M^(P) at the intersection of the row headed by M^(a) and 

the column headed by M^(&). For example, when M^(^^^^^2) of the guide 

column is multiplied on the right by M^(^^^^^2) of the guide row, we get 

[100], [110]. 

-
1 

h
-*

 

1 
1—

» 

o
 1-

 
O

 

o
 

1
_

 

II 0-10 10 0 

0 0 -1 0 0 -1 
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Figure 3.14: Group Multiplication Table for Mp(322) 

-1 1 0 

= -100 

0 0 1 

The columns of this matrix, M^(a), show that the rotation a produced by 

the combined action of ^^^2 maps a onto -a — b, b onto a and c 

onto C. As C is left fixed by a (i.e., a(c) = C) , we conclude that a must 

take place about an axis coincident with c. Of the rotations in 322 that 

turn space about c, we observe that the negative third-turn maps a onto 

-a - b, b onto a and c onto c. Thus, ^^^2) = M^(3 

Hence, ^£^(3 must occur at the intersection of the row headed by 

and the column headed by in Figure 3.14. It is 

left to the reader to verify the remaining entries of the table. 

Because matrix multiplication mimics the composition of point 

isometries, we can immediately obtain the multiplication table for the 

point isometries of 322 where the multiplication table is constructed by 

simply dropping the matrix notation M^( ) from the entires of the table 

in Figure 3.14. For example, when the matrix notation is dropped from 

the product ^°^2) = M^(3 ^), we obtain the composition 

[100].[110], _ --1 u. . . . 
L I - i . When this is done for each matrix, we obtain the 

table displayed in Figure 3.15. The relationship between 322 and 

M£j(322) that we have used in this development is described by saying that 
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Figure 3.15: Group Multiplication Table for 322. 

322 1 3 3'^ (IOOI2 [IIOI2 [OIOI2 

1 3 3’^ [IOOI2 [11012 [OIOI2 

3 3 3'^ 1 
[IIOI2 [OIOI2 [IOOI2 

3'^ 3"^ 1 3 [OIOI2 [IOOI2 [IIOI2 

[lOO]^ [10012 [OIOI2 [IIOI2 
1 3“^ 3 

[llOlj [11012 [IOOI2 [OIOI2 
3 1 3'^ 

[01012 [OIOI2 [IIOI2 [IOOI2 
3'^ 3 1 

322 and M^(322) are isomorphic where the isomorphism is the mapping that 

takes each a e 322 to N^(a) in H^(J22). More information on isomorphisms 

can be found in Appendix 8. 

The multiplication table for 322 (above) illustrates several general 

and fundamental properties of the set under composition. An inventory 

of five of these properties is given below: 

(1) Ifa.pE 322, then ap t 322. In other words, the compositions in 

Figure 3.15 are all elements of 322. As this property holds for 

all elements of 322 with respect to composition, we say that 322 

is dosed under the binary operation of composition. 

(2) There exists one row and one column in the table that is an exact 

copy of the guide row and the guide column, respectively. This 

property tells us that 322 contains an identity element (1 in this 

case) with the property that la = a1 = a for all a t 322. 

(3) Each column and row of the table contains the identity element 1 

once and only once. This means that for each element a z 322, there 

exists a corresponding element 3 such that a0 = 3a = 1. We call 3 

the inverse of o, i.e., 3 = a Hence, we can conclude that each 

point isometry a e 322 has a unique inverse denoted by a ^. 

(4) The elements of 322 obey the associative law because they are map¬ 

pings (see Appendix 1). That is, 0(3^) = (03)2!" for all a,3,2!’ £ 

322. 
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(5) The elements of J22 obey the left and right cancellation laws. That 

is, if o,P,y £ 222 such that ap = o^, then & = y (the left cancellation 

law) or if aH = PJf, then a = 3 (the right cancellation law). The 

left cancellation law can be verified by observing that if a3 = aJT, 

then in the a row of the table the same entry would appear in the 

3 column and the Z column. Since in each row of the multiplication 

table no entry is repeated, 3 must equal Z. 

(P3.ll) Problem: Verify that the right cancellation law holds for 322. 

When a set of elements like 322 is closed under some associative 

binary operation, such as composition, with respect to which an identity 

element exists and each element has a unique inverse, the set qualifies 

as an important algebraic structure known as a group. In addition to 

being a group, 322 belongs to a special class of groups known as the point 

groups because each of its elements is a point isometry that leaves the 

origin fixed. The definitions and theorems that provide the underpinnings 

of the group theory used to derive all of the point groups will be dis¬ 

cussed in the following chapters. 

(P3.12) Problem: The symmetry elements of 322 consist of a three-fold 

rotation axis along c, two-fold rotation axes along a, a b and c and 

the identity (see Figure 3.13). The rotations of the three-fold axis are 

3 = {1,3,3‘h, those of the two-folds are = 

{1,[110]2^ and and that of the identity is 7 = {!}. 

Using the multiplication table in Figure 3.15, create a multiplication 

table for each of these sets. 

(P3.13) Problem: Examine each of the multiplication tables completed 

in P3.12 and note that each set is closed under composition, that each 

contains an identity element, 1, and that each element has a unique in¬ 

verse. Also, because composition is associative, we conclude that the 

sets of rotations comprising the symmetry elements of 322 are also point 

groups. It is not uncommon for groups to contain smaller groups imbedded 

in their structures. As we shall learn in the next chapter, such groups 

(called subgroups) play an indispensable role in our development of the 

symmetry groups of crystals. 
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Figure 3.16l The action of each rotation a e 422 on a tetragonal set of basis vectors 

D = {a.b.c} where and a = & = y = 90®. The square in the upper left corner re¬ 

presents the original positions of D with a and b in the plane of the square and c per¬ 

pendicular thereto. The remaining eight squares are the image squares under the rotations 

of 422. 

(P3.14) Problem: Consider the set of eight rotations denoted 

whose symmetry elements leave the origin, 0, fixed. The basis vectors 

D for this problem are such that a — b i c and that a — p — JT — 90 . 

Find the matrix representation, for each point isometry a E 422 

by inspecting where the basis vectors are mapped by a (see Figure 3.16). 

(P3.15) Problem: Create a multiplication table for the matrices of 

422, M^(422), and then for 422 itself. 
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(P3.16) Problem: Enumerate each of n-fold rotation axes in U22 (look 

for a four“fold, four two-fold rotation axes and an identity). Then make 

a drawing of the symmetry elements of 422 like the one prepared for 322 

in Figure 3.13. Enumerate the elements belonging to each n-fold axis 

and the identity and form a multiplication table for each set as in P3.12. 

(P3.17) Problem: The set of rotations described in Figure 3.2 defines 
-1 -1 

a six-fold axis denoted 6 = {1,6,3,2,3 ,6 }. 

(1) Construct a multiplication table for the set 

M^(6) = (M^d), M^(6), M^(3), M^(2), 11^(3’’'), 

given that c parallels the rotation axis and that a and b lie in 

the plane perpendicular to c such that T = 120°. 

(2) Construct a multiplication table for the set 

Mc(5) = (M^d), M^(6), M|^(3), M^(2), M^(3'’'), 

where each matrix in M^(6) is written in terms of a cartesian basis 

C with k parallel to the rotation axis (see Appendix 3). 

(3) Construct a multiplication table for 6 and show that the set is 

closed under composition, that the associative property holds, that 

an identity elements exists and that each element has an inverse and 

that 5 is a group. 

(P3.18) Problem: The set of point isometries described in P3.1 defines 

6 inversion axis denoted 6 - (1,6,3,m,3'\G'h. Construct a multi¬ 

plication table for M^(6). 
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CHAPTER FOUR 

THE MONAXIAL CRYSTALLOGRAPHIC POINT GROUPS 

There are only certain kinds of symmetries which our space can support, 

not only in man made problems, but in regularties which nature herself 

imposes on her fundamental atomic structures-- J. Bronowski 

INTRODUCTION 

In Chapter 3 we discussed two kinds of point isometries referred to 

as rotations and rotoinversions, their matrix representations and how 

they can be assembled into an algebraic system called a group. In this 

chapter we shall give the definition of a group and then deduce some el¬ 

ementary properties of groups that will be used in the derivation of the 

crystallographic point groups. It will be shown that the set of all point 

isometries that leaves some lattice invariant forms a finite group. In 

addition, it will be shown that the turn angle representatives of these 

isometries must be one of the following possibilities: 0°; ±60°; ±90°; 

±120°; 180°. These sets of isometries are called the crystallographic 

point groups. A derivation will be undertaken of the five proper monaxial 

crystallographic point groups and these will in turn be used to derive 

the eight improper monaxial crystallographic point groups. 

ALGEBRAIC CONCEPTS 

We have already seen several examples of groups and binary oper¬ 

ations. In Chapter 3 we observed that 322 and 422 are groups under the 

binary operation of composition. In this section, we shall present a 

formal definition for each of these important concepts. 

Binary Operations: As the definition of a group depends on the notion 

of a binary operation, we begin with its definition. 

(D4.1) Definition: Let T denote a nonempty set (that is, a set containing 

at least one element). A binary operation * on T is a rule that assigns 

to each ordered pair of elements a, b £ T, a uniquely determined element 

in T which we denote by a * b (a * b is read "a star b"). 
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The addition, subtraction and multiplication of integers are well 

known binary operations defined on the set of integers, Z. If, for ex¬ 

ample, one integer is multiplied by another, an integer results. In other 

words, multiplication is a rule that assigns to two integers a third in¬ 

teger in Z that is their product. Also, the addition or subtraction of 

two integers results in an integer. Besides these familiar binary oper¬ 

ations on the integers, we have already encountered several other binary 

operations of interest to our study of crystallography. In Chapter 1, 

we defined geometric addition of vectors on S and a component-wise ad¬ 

dition of triples on . Since both of these operations combine any two 

elements from a given set to yield a uniquely determined element in that 

set, they qualify as binary operations. According to D1.6, a vector space 

requires vector addition as a binary operation that assigns to each pair 

of vectors a third vector that is their vector sum. In Chapter 3, we 

defined the composition of isometries which is a binary operation on the 

set of all isometries such that if a and 3 are isometries, then their 

composition 3oi is an isometry. We also observe that composition is a 

binary operation on 322 by observing that each of the elements within its 

multiplication table (Fig. 3.15) comes from the composition of elements 

taken from the guide row and guide column. Furthermore, each such com¬ 

position yields a unique result. Note that composition is not a binary 

operation on the subset T = {1,^^^2} of 322 since 
[ioo].,[no]_ --1 . . ^ 

^2'- ■'2 = 3 IS not in T. 

(P4.1) Problem: Determine which of the following rules qualify as a 

binary operation on a given set: 

(1) The set E of all even integers under the rule of multiplication. 

(2) The set O of odd integers under the rule of multiplication. 

(3) The set E under the rule of ordinary addition. 

(4) The subset 222 = {1,2,^2,2} of 422 under composition. 

(5) The set Z - {[u,V',w] | u ,v ,W z Z) under component-wise ad¬ 

dition . 

(6) The set of all 3x3 matrices over the reals under matrix multi¬ 

plication (The phrase "over the reals" means that the entries 

of these matrices are real numbers.) 

(7) The set Z of all integers under division. 

(8) The set R — {[x,y,z,w] | \',y,z,w t R) under component-wise 

addition. 
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Groups: A group is an algebraic system consisting of a set of elements, 

a single binary operation and a set of rules that the operation must obey. 

These rules are stated in the following definition. 

(D4.2) Definition: Let C denote a nonempty set and let * denote a binary 

operation defined on C. Then (C,*) forms a group if it obeys the fol¬ 

lowing rules: 

(1) a * b £ C for all a, b £ C (Closure rule) 

(2) a * (b * c) = (a * b) * c for all a, b, c £ C (Associative 

property) 

(3) There exists an element e £ C such that a*e=e*a=a for 

all a £ C (The existence of an identity element, e) 

(4) For each element a £ C, there exists a corresponding element 

b such that a*b=b*a=e (The existence of a unique in¬ 

verse for each element). 

Rule (1) is actually redundant since the definition of a binary op¬ 

eration includes closure. It has been restated here for emphasis. We 

also note that a group (C,*) is not just a set C, but rather it consists 

of three important ingredients: a set of elements C, a binary operation 

* defined on C and a set of rules that must be obeyed. We shall use a 

wide variety of groups to simplify our description and understanding of 

molecules, crystals and crystal structures. Some of the binary operations 

we have already defined together with their respective sets form groups, 

as will be demonstrated in the next few examples. 

(E4.3) Example - (Z,+) is a group: The integers under addition (Z,+) 

form a group under the binary operation of addition. Addition is a binary 

operation on Z because given any pair of integers, addition is a rule 

that assigns to that pair a uniquely determined integer in Z (namely their 

sum). The identity element is 0 and the inverse of a given element a is 

(-1)0. For example, the inverse of 4 is (-1)4 = -4 while the inverse of 

-6 is (-l)(-6) = 6. Also, the addition of integers is associative; for 

example (-1) + (6 + 4) = (—1 +6) +4-8. 

(E4.4) Example - 322 is a group under composition: The set 322 = 

2} forms a group under composition, as was 

shown in Chapter 3. 
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(E4.5) Example: The set P of all integers greater than or equal to zero 

under addition is not a group. Note that addition is a binary operation 

on the set, that the operation is associative and that 0 is the identity 

element in the set. However, there are elements in the set that do not 

have inverses. For example, 4 does not have an additive inverse in P. 

In fact, the only element in P with an inverse is 0. 

(E4.6) Example - (Z,-) is not a group: The set of integers Z under 

subtraction is not a group. Subtraction is a binary operation and there 

appears to be an identity since a - 0 - a for all a t Z. However, the 

definition of an identity element requires that 0 — a = O as well. But 

0 — 4 = -4 / 4 shows that this is not the case. Furthermore, (Z,—) is 

not associative since, for example, 8 - (3 - 2) = 7 while (8 - 3) - 2 = 

3. 

(E4.7) Example - CLi3,R) is a group under matrix multiplication: Show 

that the set of all 3x3 invertible matrices, denoted CZ.(3,P), under ma¬ 

trix multiplication is a group. 

Solution: Since matrix multiplication mimics composition of linear map¬ 

pings and, as shown in Appendix 1, composition of mappings is associative, 

it is reasonable to expect that matrix multiplication is also associative. 

This is true but its proof is tedious and so will be omitted. Let M and 

N denote invertible matrices. That is, and n'^ exist. Then the in¬ 

verse of the product MN is since 

(MN)(N'^m'^) = m(nn‘^)m"^ 

= 

= MM'^ = I3. 

Similarly, (N’^M'^)(MN) = I3. Therefore, (MN)‘^ exists. Consequently, 

CZ.(3,P) is closed under matrix multipli-cation. Since 13'^ = I3, the 

identity matrix is ^in C/.(3,P) and is its identity element. ’ Let 

M t CL(3,P), then M exists. Note that since 

= I3 , 

M is the inverse of Hence, is invertible. Furthermore, the 
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inverse of a matrix with real entries is a matrix with real entries (see 

Appendix 2). We have now shown that all of the rules for a group hold 

for C/.(3,R) under matrix multiplication. ' 

The group CL{3,R) under matrix multiplication is called the general 

linear group of 3x3 matrices over the reals. The word "linear" refers 

to the fact that these matrices mimic linear mappings. 

(P4.2) Problem: Decide which of the following systems are groups: 

(1) The set under component-wise addition; 

(2) The set under component-wise addition; 

(3) The set of all 3x3 matrices over the reals under matrix multi¬ 

plication, assuming that matrix multiplication is associative; 

-1-1 
(4) The set 6 = {1,6,3,2,3 ,6 } under matrix multiplication; 

(5) The set M^(6) = (M^^Cl) ,M(^(6) ,M^(3) ,M^(2) ,M^(3'^) ,M^(6 )} 

under matrix multiplication. 

11111 
(6) The set M^(‘ ^4) 

( “l 0 o’ 'o -1 o’ 0 0 l’ 1 1 l’ 

0 1 0 0 0 -1 -1 -1 -1 -1 0 0 

I 0 0 1_ ) 1 1 1 i 1 0 0 i 0 -1 0 

under matrix multiplication. 

(7) The set 

1 0 o’ 0 1 o’ 0 1 -l’ ’l 0 -l’ 

0 1 0 0 1 -1 1 0 -1 1 0 0 

0 0 5 -1 1 0 ) 0 0 -1 y 1 -1 0 

under matrix multiplication. 

(8) The set R" under component-wise addition. 

Symmetry groups: A set of mappings describing the symmetry of an object 

was defined in D3.5. In the next example, we show that this important 

set of mappings forms a group. 

(E4.8) Example - The set of all isometries that leave an object invariant 

forms a group under composition: Let / denote the set of all isometries 

that map an object B into self-coincidence (By D3.5, these isometries 
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define the symmetry of 6). Show that the set / under composition is a 

group. 

Solution: Let a, 3 t /• Then a3 is an isometry by T3.2. Furthermore, 

a3(S) = a(3(6)) (Definition of composition) 

= a(6) (Since 3(6) = 6) 

= B . 

Hence, a3 t / and / is closed under composition. The associative law 

holds because the elements of / are mappings (see Appendix 1). The 

identity mapping 1 is such that 1(b) = b for all b £ 6 and so 1(6) = 

6. Therefore, 1 e / and since la = a1 = o for all a e /, 1 is the identity 

element of /. Let a e /. Then a ^ is a mapping since a is one-to-one 

and onto. Furthermore 

a'\6) = a‘^(a(6)) = (a‘^a)(6) = 1(6) = 6 . 

Hence, a £ /. Therefore, / is a group under composition. □ 

(P4.3) Problem: Show that the set of all point isometries leaving an 

origin fixed that map an object 6 into self-coincidence forms a group 

under composition. 

The relationship between group theory and study of symmetry is suf¬ 

ficiently important to warrant a special vocabulary of its own. We now 

introduce the vocabulary through a series of definitions. 

(D4.9) Definition: The group C of all point isometries leaving a common 

point fixed and mapping an object 6 into self-coincidence is called the 

point symmetry group of B. In this case we say that C is the point 

symmetry of 6. 

(D4.10) Definition: The group C of all 'isometries mapping an object 6 

into self-coincidence is called the symmetry group of B. In this case, 

we say that C is the symmetry of 6. 

One type of object whose symmetry is of particular interest in our 

study of crystallography is the space lattice L associated with a crystal. 

We shall now focus our attention on those isometries that map such a 
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lattice onto itself. 

(D4.n) Definition: An isometry a is called a crystallographic isometry 

if there exists a space lattice L that is mapped into self-coincidence 

by a. 

(D4.12) Definition: A crystallographic group is a group of isometries 

that map some space lattice L into self-coincidence. 

(D4.13) Definition: A crystallographic point group is a crystallographic 

group G such that each element of C leaves a common point fixed. 

CRYSTALLOGRAPHIC RESTRICTIONS 

Because a crystallographic point group C maps a space lattice 

= {t/ai + vbi + wci I u ,v ,w z Z) 
h' 1 

generated by a basis into self-coincidence, severe restrictions are 

imposed on the turn angles of its isometries and the number of distinct 

elements in C. It is helpful, when analyzing the relationship between 

a point isometry ct and the lattice left invariant by a, if the origin 

of is a point fixed by o. However, as we see in Figure 4.1(a), it 

is sometimes the case that the origin of is not a fixed point of a. 

When this happens, we shall define a new lattice whose origin is any 

chosen point p fixed by a and whose geometry is identical with that of 

(Figure 4.1(b)). In fact, the basis D^ for with origin 0 will 

have the same metrical matrix as the basis D2 for with origin p. 

In order to correctly describe this change of origin, we shall need to 

distinguish between the points in space and the vectors emanating to them 

from an origin since the vector associated with a point is dependent upon 

which origin is used. 

(T4.14) Theorem: If a is a crystallographic isometry that maps the 

lattice Lp. into self-coincidence and if p is a fixed point of a, then 
D1 

there exists a lattice whose origin is p such that a maps into 

self-coincidence. Furthermore, with respect to the origin of the 
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Figure 4.1: (a) A lattice with basis vectors D, = {a,,b,,c,) radiating from an origin 

o,. This lattice is mapped into self-coincidence by a half-turn rotation o about an axis 

that parallels c, and passes through the point p at (i.i.OlV Note that each lattice point 

in including the origin is moved by a. (b): Two interpenetrating lattices and 

where is a parallel copy of displaced to the point p fixed by e. 
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is the set of end points of the vectors set of points 
D 1 

{q + ^2 I ^2 £ ’ 

where q is the vector emanating from p to the origin of L D,- 

Proof: Let Di = {ai,bi,Ci} denote the basis that generates . Note 

that the vectors in Dj emanate from the origin 0 of . Define Dj = 

{a2,b2,C2} to be the set of vectors emanating from p such that 82 is 

parallel to ai and O2 = Oi, b2 is parallel to bi and = bj and C2 is 

parallel to Ci and C2 = Cj. Then the set of end points of the vectors 

in 

= {uai + vbi +wci I u,v,w z Z} 

is described in terms of as 

{q + ua2 + vb2 + WC2 | u ,v ,w z Z} , 

where q is the vector 

= {ua2 + vb2 + WC2 

equals 

emanating from p with terminus 0. If we let 

I u ,V ,W z Z}, then the set of points in 

{q + il2 M2 £ • 

To show that a maps our new lattice Lp into self-coincidence, we shall 

show that if I2 £ then 0(^2) £ Lp^- By adding and subtracting q, 

we have 

0(112) = ®(q + ^2 “ q) • 

Since the origin p is fixed by a, a is a linear mapping with respect to 

the vectors emanating from p, and so 

a(q + !i2 - q) = «(q + >^2) “ • 

Since end points q + £2 and q are both in Lp^, o(q + Hi) and a(q) have 

end points in Lp . Therefore, 

I " 

a(q + i^2) = q + 1^2 and a(q) = q + Hz . 
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! IT 

where I2, I2 £ • Hence, 
U2 

0(^2) = «(q + ^2) - “(ci) 
i tt 

= [q + <^2] - [q - ^2] 

= ^2 - <^2 E . 

Since a is an isometry, the fact that a(L„ ) is a subset of implies 
U2 L) 2 

that a.iL and so '-D2 is mapped into self-coincidence by a. 

Thus, if a lattice is mapped into self-coincidence by a, then the origin 

of the lattice can always be chosen as a fixed point of a. □ 

(T4.15) Theorem: If C is a crystallographic point group, then C has 

a finite number of elements. 

Proof: Let Lq denote the lattice that is mapped into self-coincidence 

by each of the isometries in C. By T4.14, without loss of generality, 

the origin 0 of may be taken to be a common point left fixed by each 

of the isometries in C. Consider a ball centered at 0 with large enough 

radius so that it contains all three basis vectors a, b, c e Lp and let 

a be an element of C. Since ot does not stretch vectors, and since 

“(3)) 01(b) and a(c) must also be vectors in contained 

within the ball. Moreover, inasmuch as the radius of the ball is finite, 

there are only a finite number of lattice points of in the ball 

(Newman, 1972, p.90). Consequently, there are only a finite number of 

choices for a(a), a(b) and a(c). Since a is completely determined by 

{a(a), a(b), a(c)}, we conclude that there is only a finite number of 

distinct point isometries in C that leave invariant. a 

(D4.16) Definition: When a group C is finite, the order of C, denoted 

#(C), is the number of distinct elements in C. 

For example, since 322 consists of 6 elements, we write #(322) = 6. 

(P4.4) Problem: Determine #(422). 

(T4.17) Theorem: Let cx denote a crystallographic point isometry. Then 

the turn angle p associated with a is a multiple of either 60° or 90°. 

132 



Proof: Since a is a crystallographic point isometry, there exists a 

lattice such that a maps Lq into self-coincidence. Let D = {a,b,c} 

denote a basis for L^. Since a(a), cx(b), and a(c) are in 

Lg and so [a(a)]^, [a(b)]^ and [a(c)]^ have integer coordinates. Since 

these triples are the columns of M^(a), all of the entries of M^(a) are 

integers. Consequently, the trace of M^(a) is an integer. By TA3.6, 

tr(M^(a)) = ±(1 + 2cosp) , (4.1) 

where the "+" sign is used when a is a rotation and the sign when a 

is a rotoinversion. The solutions to (4.1) given that 

tr(M^(a)) = N 

for some integer N are enumerated in Table 4.1. Note that since 

Icospl < 1, we have the inequalities 

-1 < 1 + 2cosp < 3 and -3 < -(1 + 2cosp) < 1 . 

An examination of Table 4.1, where those values of N that satisfy 

these inequalities are listed and the corresponding p values are found, 

reveals that p is always either a multiple of 60° or 90°. The point 

isometries associated with each p value is also shown in Table 4.1. n 

Table 4.1: Solutions sets of the turn angles p for any 

crystallographic point isometry a. 

(1 + 2cp) Solutions 
-(1 + 2cp) Solutions 

N cp = (iV - l)/2 
o 

P a N cp = -(N - l)/2 
0 

p a 

-1 -1 180° 2 -3 1 0° i 

0 ±120° 3,3'^ -2 ±60° 
- --1 
6,6 

1 0 ±90° 4,4“^ -1 0 ±90° 4,4''' 

2 ±60° 6,6'^ 0 ±120° 3,3’^ 

3 1 0° 1 1 -1 180° m 
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The 16 isometries found in Table 4.1 will serve as the elements for 

all of the crystallographic point groups. However, before we can conclude 

that such a group G is a bona fida crystallographic point group, we must 

show that there is some lattice that every element of G maps into self¬ 

coincidence. In this chapter and the next we will find all of the finite 

groups that can be constructed from these isometries. In Chapter 6, we 

will find a lattice that is left invariant for each of these groups. 

MONAXIAL ROTATION GROUPS 

The structure of a group C can be better understood by studying 

certain special subsets of C called subgroups. 

(D4.18) Definition: A subset W of a group C is a subgroup of C if, under 

the binary operation of C, /f is a group. 

For example, in Chapter 3, we observed that 322 has several subgroups 

including J 3,3'■'}, and 

2 = {1,^ ^2}. We confirmed that these were subgroups by creating 

their multiplication tables. However, some of the rules defining a group 

are difficult to see directly from such a table. The rule of 

associativity is not readily verifiable from a simple inspection of the 

table. The determination of which element is the identity and which el¬ 

ement is the inverse of a given element can be seen from a table, but it 

is somewhat tedious. Furthermore, if a subset of a group is very large, 

then creating its multiplication table can be impractical. The following 

theorem eliminates most of these difficulties in the case of finite 

groups. 

(T4.19) Theorem: If W is a finite nonempty subset of a group C, then 

H is a subgroup of C if and only if H is closed under the binary operation 

of C. 

We will not prove T4.19 here but its proof can be found in any 

standard modern alegbra text (e.g., Herstein, 1964). 

(E4.20) Example - 222 is a subgroup of 422: Consider the subset 

222 = 
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Figure 4.2: The multiplication table for the 

group 722 under composition. 

222 1 2 [IOOI2 [OIOI2 

1 1 2 [IOOI2 [OIOI2 

2 2 1 [01012 [10012 

[10012 [IOOI2 [OIOI2 1 2 
[01012 [OIOI2 [IOOI2 2 1 

and show that it is a subgroup of 422 (see P3.15). 

Solution To determine whether 222 is a subgroup of 422, we construct the 

multiplication table shown in Figure 4.2. Since we have a nonempty list 

of elements in 222, we know that 222 is a nonempty set. Also, since each 

entry in the table belongs to the set 222, 222 is closed under the binary 

operation (composition) of 422 and so is a subgroup. In other words, if 

/7 is a nonempty subset of a group (C,*), then (H ,*) is a subgroup of C 

if each entry in the multiplication table of H is an element of H. i 

(E4.21) Example: Let K denote a crystallographic point group and let 

D denote a basis. Then the set of matrices 

C = Mp(/<) = {M^(a) \ a z K} 

forms a finite group under matrix multiplication. Since K is a finite 

set (T4.15), then M^(/<') must be a finite group. Let H denote the subset 

of C consisting of all matrices M in C such that det(M) = 1, i.e., M 

represents a rotation isometry. Show that H is closed and therefore a 

group under the binary operation of C. 

Solution: Since ^ z K {it is the identity element of K), then M^(1) = 

I3 £ C. But det(l3) = 1 and so I3 E W. Therefore, H is nonempty. Let 

Ml, £ H. Then M1M2 t C since C is a group and det(MiM2) 

det(Mi)det(M2) = 1 • 1 = 1- Hence, M1M2 £ H and so H is closed under 

the binary operations of C. This result also shows that the composition 

of two proper crystallographic operations is a proper crystallographic 

[ 

operation. 

(P4.5) Problem: Let a and & be elements of a crystallographic point group 

K (E4.21). 

135 



(1) Show that a3 is a proper operation when a and 3 are both im¬ 

proper operations. 

(2) Show that a3 is an improper operation when a is a proper and 3 

is an improper operation. 

(D4.22) Definition: Let g denote an element of the group C under the 

binary operation *. The nth power of g, denoted g^ is defined to be 

g” g * g-*' . .* g (n g's) 

where n is a positive integer. When n = 0, g^ is defined to be the 

identity element of C and when n < 0, g^ is defined to be (g that 

is 

g” = (g'^ * g’^» . g’S S's) 

when n < 0. The usual rules of exponents hold true for the powers of 

an element g £ C including the following: 

Cl) g * g - g for all n, m t Z , 

(2) (g ) = g for all n, m t Z . 

(E4.23) Example: Let C denote a crystallographic point group. Let 

g £ C and define 

H = {g" I n £ Z} , 

then show that H is a subgroup of C. 

Solution: According to T4.19, we need only show that H is closed under 

composition. Let X ,y t H. By the definition of H, there exists integers 

n and m such that x = g” and y = g^. Hence, 

Since n + m is an integer, xy t H. Hence, H is a subgroup of C. i 

(D4.24) Definition: Let (C,*) denote a group and let g £ C. The cyclic 

subgroup of C generated by g, denoted <g>, is defined to be 
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<g> = (g” I n E z) . 

We will now justify calling <g> a subgroup. In (E4.23) we showed 

that when C is a crystallographic point group, then <g> is a subgroup. 

In the next problem, you shall be asked to prove this fact in general. 

(P4.6) Problem; Show that if g e C where C is a group, then <g> is a 

subgroup of C (do not assume that C is finite). 

(D4.25) Definition: Let C denote a group and let g e C. If g^ = e for 

some positive integer / where e is the identity of C, then the smallest 

such positive integer is called the order of g and is denoted o(g). 

Let g E C where C is a group such that there is a positive integer 

i such that g^ = e, the identity element of C. Let k = o(g). Then 

=g> = {g.gSg^ • • • ,g = ©> 

This means that any element of {g^ | n e Z) can be written as g^ where 

-1 k - 1 . 
1 < I < k. For example, g - g since 

k + 1 
and g = g since 

k - I k _ ^ 
gg = g - e 

g^ + 1 = g^g = eg = g 

Furthermore, it is straightforward to show that g,g^,...,g are all 

distinct. That is, if g^ = e for some positive integer /, then #(<g>) = 

o(g). A cyclic subgroup of a crystallographic point group is a set of 

isometries having a common axis. These form such symmetry elements as 

an n-fold rotation axis or rotoinversion axis. 

(E4.26) Example - The elements of <4> = 4: Let C denote the group of 

all point isometries leaving the origin fixed and consider a quarter-turn 

4 E C. Since 4“* = 1 and 1 is the identity element of C, 

<4> = {4,4^4^4'• = 1} . 

We give this cyclic group the symbol 4 and note that the elements of this 

group define a 4-fold axis. Since all of these proper rotations fix the 
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same axis, 4 is an example of a proper monaxial group. By convention, 

4^ is usually written in the equivalent form 4 ^ and 4^ is written as 2 

to conform with the convention adopted with respect to the turn angle in 

Chapter 3. Hence, 

4 = <4> = {1,4,2,4'''} . 

(D4.27) Definition; A group consisting of rotations that fix a common 

axis is called a proper monaxial group. 

A finite proper monaxial group C is cyclic and is generated by the 

rotation in C with the least non-negative turn angle. Thus 4 is the 

generator for 4. If C is a proper monaxial crystallographic point group, 

then by T4.17, a generator for C can be found with a turn angle 0°, 60°, 

90°, 120° or 180°. This can be shown by observing that rotations with 

turn angles greater than 180° generate groups that include rotations with 

turn angles less than 180°. For example, if a is a rotation of 270°, then 

is a rotation of 90°. A complete list of all of the possible proper 

monaxial crystallographic point groups is given below: 

/ = <1> - 1 £ Z} = (1) 

2 = <2> = {2'' 1 £ Z} = {1,2} 

3 = <3> = 1 ^ £ Z} = {1,3,3'''} 

4 = <4> = {4'' 1 V £ Z} = {1,4,2,4''' 

6 = <6> = {6'' 1 £ Z} = {1,6,3,2,3 

We observe that each of these proper monaxial groups define an n-fold 

axis where n = 1, 2, 3, 4 and 6. 

Now that we have all of the possible proper monaxial crystallographic 

point groups, we can use the following theorem to obtain all of the pos¬ 

sible improper monaxial crystallographic point groups. 

(T4.28) Theorem: {The improper point group generating theorem.) If 

/ is an improper crystallographic point group, then there exists a proper 

crystallographic point group C such that either 

/ = C U C/, where / is the inversion (here Gi = 

igi I g £ C}), or 

I - H U (C \ H)i where H is a subgroup of C such that 

(1) 

(2) 
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iKC)/iKH) = 2 (here (C \ H)i = {gi \ g t C and g ^ H}). 

Furthermore, all of the sets constructed from a proper crystallographic 

group C as in (1) or (2) are groups and hence improper crystallographic 

point groups. 

By the symbol "U" used in / = C U C/, we mean the union of the two 

sets C and Ci where the union of two sets A and B, /A U S is defined 

to be the set consisting of all of the elements of A together with all 

of the elements of B. By (C \ H) we mean the set of elements in C but 

not in H. The set (C \ H) is obtained by deleting each element in H 

from C. A subgroup H of C such that iKC)/iKH) = 2 is called a halving 

group of C (since it has half of the elements of C). The proof of T4.28 

is given by Boisen and Gibbs (1976). 

(E4.29) Example; Use T4.28 to find the improper crystallographic point 

groups for the case where C = 4. 

Solution: Applying part (1) of T4.28, we obtain 

C U C/ = 4 U 4/ = {1,4,2,4"’'} U {1,4,2,4"’'}/ 

- {1,4,2,4"\l/,4/,2/,4"’'/} 

= {l,4,2,4"\/,4,m,4"h . 

-I 

This group contains a 4-fold rotation axis, 4 = (1,4,2,4 }, perpendic¬ 

ular to a mirror plane, m = {l,m}, and is consequently designated 4/m 

read "4 upon m". Applying part (2) of T4.28, we note^that H = 2 = 

{1,2} is the only halving group of 4, since both 4 and 4 generate all 

of C. Then 

W U (C \ H)i = 2 U (4 \ 2)1 = {1,2} U ({1,4,2,4 } \ {1,2})/ 

= {1,2} U {4,4"'}/ 

= {l,2,4/,4"’'/} 

= {1,2,4,^’'} . 
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This crystallographic point group is designated 4 because it is the cy¬ 

clic group generated by 4. We also observe that T4.28 states the groups 

constructed using (1) and (2) are improper crystallographic point groups 

and so there is no need to examine whether these groups obey the rules 

of a group. □ 

(E4.30) Example - Derivation of the possible improper point groups based 

on 3: Use T4.28 to find the improper crystallographic point groups for 

the case where C = 3. 

Solution: Applying part (1) of the theorem, we obtain 

3 U 3i = {1,3,3’^ U {/,3,3'’'} 

= {1,3,3'\/,3,3‘''} . 

Since this is a cyclic group generated by 3, the group is denoted by 3 

read "three bar". Since 3 has an odd number of elements, it has no halving 

groups and therefore (2) does not apply. □ 

Note that if C is a proper crystallographic point group, then 

#(C U C/) = 2yKC) and if f/ is a halving group of C, U (C\H)/) = 

y/(C). Furthermore, the nature of C U Cy differs from that of 

H U iC\H)i and C in the sense that C U Ci contains the inversion. The 

reason H U iC\H)i does not contain / is that 1 is not an element of 

C\H. A point group containing i is called a centrosymmetric group. 

Note that when C is monaxial, then C U Ci and W U (C \ H)i are 

also monaxial with the same axis. In the case of C U Ci, we observe that 

if a E C U C/, then either a = g for some g e C or a = g/ for some 

g E C. In either case a and g have the same axis. In the case of 

W U (C \ H)i, if a £ W U (C \ H)i, eithex ot = g for some g t H, im¬ 

plying that a and g have the same axis, or a = g/ where g £ C \ W, again 

implying that a and g have the same axis. Therefore, we see that the 

set of axes in any improper crystallographic point group is the same as 

that of Che proper group from which it is derived. 

(P4.7) Problem: Use T4.28 to find the improper crystallographic point 

groups for the case where G - 2. Show that 
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2 U 2/ = 

(2 U 2/ is denoted by 2 jm'). Show that H = {1} is a halving group of 

2 = {1,2} and that 

/ U (2 \ 7)/ = {l,m} . 

This group is called m because it is a cyclic group generated by m. 

(P4.8) Problem: Use T4.28 to find the improper crystallographic point 

groups for the case C = 7. Show that 

7 U 7/ = {1,7} 

(7 U 7/ is denoted 7). Explain why 7 has no halving group. 

(P4.9) Problem: Use T4.28 to find the improper crystallographic point 

group for the case C = 6. Show that 

6 U 6/ = {^,6,3,2,3'^6■^/,6,3,m,3■^6'^ 

(6 U 6i is called 6/m because it has a 6-fold axis perpendicular to a 

reflection plane). Show that 3 is a halving group of 6 and that 

3 U (6 \ 3)7 = {1,3,3'\6,m,6‘b • 

This group is denoted 6 since it is <6>). 

We have now derived all 13 of the possible monaxial crystallographic 

point groups. These are listed and their derivations summarized in Table 

4.2. 

Matrix representations and basis vectors: In order to obtain a matrix 

representation for each of the point isometries for a given group, we need 

to select a basis for each group. 

To accomplish this, we will define, for each crystallographic point 

group C, a set of bases such that the matrix representations of the 

isometries is the same for any basis in the set and such that the matrices 

are of a simple form. In fact, each entry of the resulting matrices will 

be either 1, 0 or -1. In chapter 6 we will show that every lattice left 

invariant by a point group C will contain a sublattice that has a basis 
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Table 4.2: The 13 monaxial crystallographic point groups and their orders as 

derived from the proper monaxial crystallographic point groups. 

Proper 

Monaxial 

Point Groups 

Halving 

Groups* 

Improper Monaxial Point Groups 

Containing / 

(centrosymmetric) Not Containing / 

G iKG) H C U Gi #(C U C/) fy u (c \ HYi iKH U (G \ H) 

1 1 none 1 2 none 

2 2 1 21m 4 m 2 

3 3 none 3 6 none — 

4 4 2 Him 8 4 4 

5 6 3 S jm 12 6 6 

of the type we define for G in this chapter and the next. Since such a 

sublattice will be called a primitive lattice, we will use the letter P 

to denote these bases. 

We begin by considering the nth-turns of the monaxial 

crystallographic point groups in Table 4.2. In all cases we will assume 

that the bases described are right-handed. 

1 (identity): Since 1 is represented by the identity matrix for every 

basis, any basis can be chosen. 

2 (half-turn). For n > l, we shall choose C to be any nonzero vector in 

the positive direction of the rotation axis. The a and b vectors are 

chosen to be any non-collinear, nonzero vectors in the plane perpendicular 

to c. Since any vector perpendicular to the rotation axis of 2 will be 

mapped to its negative. 

Mp(2) = 

-1 

0 

0 

0 

-1 

0 

0 

0 

1 
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3 (third-turn): As in the case of a half-turn, c is chosen to be a nonzero 

vector in the positive direction of the rotation axis. We then choose a 

to be any nonzero vector perpendicular to c. As 3(a) is not collinear 

with a, we choose b = 3(a). With this choice of basis, we recall from 

our discussion of 322 in Chapter 3 that 3(b) = -a - b and so 

Mp(3) = 

0 

1 

0 

-1 

-1 

0 

0 

0 

1 

(4.1) 

4 (quarter-turn): As before we choose c to be a nonzero vector in the 

positive direction of the rotation axis. Also, we let a be any nonzero 

vector perpendicular to c and let b = 4(a). For this choice of basis, 

we obtain 

Hp(4) = 

0 

1 

0 

-1 

0 

0 

0 

0 

1 

6 (sixth-turn): To keep the number of basis types small, we choose as 

the basis for 6 that which is used for 3, where C is chosen as a nonzero 

vector in the positive direction of the rotation axis of 6. Then 6(a) = 

a + b and 6(b) = —a. Hence, 

Mp(6) = 

1 

1 

0 

-1 

0 

0 

0 

0 

1 

(E4.31) Example: Find Mp(.?) = {Mp(3 ) | /c £ Z} by finding the powers 

After finding Mp(3), of Mp(3) and recognizing that Mp(3^) = (Mp(3))^ 

find 

Mp(5) - Mp(J) U Mp(J)Mp(/) 

Solution: By (4.1), 

Mp(3^) 

o
 

-1 o' 

CM
 

-1 1 o' 

II 1 -1 0 = -1 0 0 

o
 0 1 0 0 1 

= Mp(3‘S ; 
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Mp(l) . 

Hence, 

Mp(3^) 

Mp(3) 

o
 

-1 o' 
3 

'l 0 o' 

1 -1 0 = 0 1 0 

0 0 1_ 

O
 

_
1

 0 1 

1 1 0 o' 'o -1 o' '-1 1 o' 1 

0 1 0 1 -1 0 -1 0 0 

0 0 1 0 0 1 > o
 

0 1_ 

Since Mp(a)Mp(/) - -Mp(a) for any point isometry a, 

-1 Mp(3)Mp(/) = {-M^(1),-M^(3),-Mp(3 ')} . 

Hence 

Mp(3)Mp(/) = 

1 '-1 0 o' 0 1 o' 'l -1 o' 1 
0 -1 0 -1 1 0 1 0 0 

( 0 0 -1 y 0 0 -1 0 0 -1 I 

(4.2) 

(4.3) 

Then Mp(J) consists of the matrices in (4.2) together with those in 

(4.3). 

(P4.10) Problem: Find Hp(n) = {Mp(n^) | /c e Z} for n = 7, 2, 4, 6. 

Then find Mp(n) U Hp(n)Mp(/). For each C = n and each halving group H 

of C that exists, find 

HpiH U (C \ H)i) = MpCAY) U (Mp(C) \ MpCAY) )Mp(/). 

Equivalent Points and Planes: We defined the symmetry group C of an 

object to be the set of all isometries that map the object into self- 

coincidence. Utilizing C we can impose an "equivalence" on the points 

in S. 

(D4.32) Definition: Let C denote a group of isometries. The points x 

and y in S are said to be G-equivalent if. there exists cx e C such that 

a(x) = y. 

In the case where C is the symmetry group of an object B, then the 

intuitive interpretation of C-equivalent points is that if x and y are 

C-quivalent, then the object B appears the same in every respect to a 

person viewing the object from either point x or point y. 
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The notion of C-equivalent points is a generalization of the notion 

of equality. That is, while X and y may be distinct points, the statement 

that they are C-equivalent expresses the idea that in some specific sense 

they are equal. This is similar to our usual handling of fractions in 

arithmetic where we think of the fractions 2/3 and 4/6 as being "equal" 

even though they are clearly not identical. If C-equivalence is to mimic 

equality, we would hope that the basic properties of equality hold. 

(T4.33) Theorem: Let C denote a group of isometries and let X ~ y 

denote "x is C-equivalent to y". Then 

(1) X ~ X for all X £ S (reflexive property) ; 

(2) For all X, y e S, if x ~ y then y ~ X (symmetric property) ; 

(3) For all X, y, z £ S, if X ~ y and y ~ z, then x ~ z (transi¬ 

tive property) . 

Proof: Since C is a group of isometries, 1 £ C. Since l(x) = X for 

all X £ S, we have X ~ X for all X £ S. Let X and y denote elements 

in S such that X ~ y. Then there exists a £ C such that a(x) = y. Since 

C is a group, a ^ £ C. Then 

(a(x)) = a'^(y) 

^cx)(X) = ct'^y) 

1(X) = «’^y) 

X II P
 

1 1—
* 

<
 

Hence y ~ X. Let x,y,z £ S such that x ~ y and y ~ z. Then there exists 

a, P £ C such that a(x) = y and 3(y) = z. Then 

&a(x) = &(o(x)) = &(y) = Z. 

Since C is a group, it is closed and so 3o £ C. Therefore X ~ z. i 

Any relation defined on the elements of a set satisfying the three 

parts of T4.33 is called an equivalence relation. Since equivalence re¬ 

lations are fundamental to any true understanding of the mathematical 

principles of crystallography, we have devoted much of Appendix 7 to this 

concept. Those who are unfamiliar with this concept should read this 

appendix carefully. 
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Equivalence relations organize the set on which they are defined into 

subsets of related elements called equivalence classes. In the case of 

C-equivalent points, if X t S, then the equivalence class of X, denoted 

[X] is 

[X] = {y £ 5 I X ~ y} 

= {y £ 5 I there exists g £ C such that g(x) y} 

= {g(x) i g £ C}. 

Since, in the case of C-quivalence, [x] is the set of images of X under 

C, [x] is called the orbit of X under C and is designated orb^(x). When 

the number of points in orb^(x) equals iKG), then X is called a point 

of general position. Otherwise, x is a point of special position. When X 

is a point of special position, there exists one or more nonidentity el¬ 

ements g £ C such that g(x) = x. Let D denote a basis of S, x be an 

element of S and C be a point group. Then we define 

orb|^,^([x]^) = {[g(x)]^ I g £ C} . 

(E4.34) Example - The symmetry of H^SiO,. is 4: The atomic coordinates 

of HijSiO^, are given in Table 1.1. Show that the coordinates with respect 

to C of the oxygen atoms designated 0^, O2, O3 and O4 are mapped into 

self coincidence by the matrix representations of the monaxial group 

4 where 

= {M(^(1), M^(4), M^(2), Mj^(4‘’')} . 

That is, the four oxygen atoms of the molecule are 4-equivalent. 

Solution: This will be done by showing that 0i is 4 equivalent to each 

of O2, O3, and O4. Since the coordinates of the vector r emanating from 

the origin to Oj given in Table 1.1 are 

[r]^ = [1.281, 0.466, -0.877]^ , 

and since 

'l 0 o' 'l.28l’ 'l.28l' 

0 1 0 0.466 = 0.466 

_0 0 1 0.877 0.877_ 
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0 1 o' 1.281' 

M^(4)[r]j. = -10 0 0.466 

0 0 -1 0.877 

0
 

0
 

1 'l.28l’ 

M^(2)[r]^ = 0-10 0.466 

0 0 1 0.877 

0.466 

-1.281 

-0.877 

-1.281 

-0.466 

0.877 

'0 -1 o' 'l.28l’ -0.466' 

10 0 0.466 = 1.281 

0 0 -1 0.877 -0.877 

we see that the orbit of r is 

orb^ ^(r) = {M^(a)[r]^ | a e 4} 

= M^(4)[r]^, M^(2)[r]^, M^(4■^[r]^^} 

1.281 0.466 -1.281 —0.466 

0.466 -1.281 -0.466 1.281 

0.877 J -0.877 0.877_ i -0.877 

But these are the coordinates of Oj, O2, O3 and O*. Hence 0i is 

4-equivalent to each of the other oxygen atoms. The reader should repeat 

this process for each of the remaining oxygens in the molecule and observe 

that a similar result is obtained. □ 

(P4.ll) Problem: Show that the set of hydrogen atoms designated Hj, H2 , 

H3 and Hi, in Hi,Si04 is mapped into self-conincidence by the elements of 

M^(4). Do this by forming the orbit of where [r]^ is triple of 

the coordinates of one of the hydrogen atoms in Table 1.1. 

(P4.12) Problem: Show that the silicon atom in Hi,Si04 is on a point of 

special position and that its orbit consists of a single point. 

(E4.35) Example: Show that the faces on the crystal in Figure'4.3 are 
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Figure 4.3: A set of faces comprising a trigonal 

dipyramid that are 5-equivalent to (321). 

mapped into self-coincidence by the isometries of the monaxial group 5. 

The natural basis for the crystal is the basis P = {a,b,c} described 

earlier for 6. Recall that the face poles s = /la* + ^b’' + Ic* of a 

crystal are defined in terms of its basis P '. In Appendix 3 it is shown 

that 

Mp*(a) = Mp(a)‘^. 

Solution: This problem will be solved by showing that the image under 

5 of each face pole of the crystal is another of its face poles. That 

is, if [s]p* represents a face pole, then we must show that Mp*(a)[s]p* 

also represents a face pole for each a £ 6. For example, consider the 

face pole [s]p* = (327)^ and note that 

Mp*(1)[s]p* = 

1 0 o' '3' '3' 

0 10 

C
M

 

II 2 

0 0 1 1 
t-H

 1 

0 10 

-1 -1 0 

0 0 -1 

-1 -1 .0 

10 0 

0 0 1 

2 

-5 

-1 

-5 

3 

1 

1 0 o' 

1 
03

 
_

1
 

3‘ 

Hp*(m)[s]p* = 0 1 0 

C
M

 = 2 

0 0 -1 1 

-
1 

rH
 

1 
_

1
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s 

Figure 4.4: A dioptase crystal with a (110) face 

of a hexagonal prism labelled (a), and (021) and 

(131) faces of rhombohedra labelled 5 and X, 

respectively. 

M ’■ (3‘^[s], 

' 0 1 o' 

1
-

 
C

O
 

r C
M

 

L
_

 

O
 

1 1 

2 

II -5 

0 0 1 1 1 

Mp*(6"'')[s] 

1
-

 
o

 1 1 
1
_

 

'3' -5' 

10 0 2 

II 3 

0 0-1 

_
_

j -1 

When these triples are collected together into a set, we have the orbit 

of face poles that are 6-equivalent to (327): 

This collection of equivalent faces is called a crystal face form and is 

designated by placing the indices (hkl) of the representative plane of 

the orbit between braces, {hkl}. Thus, {327} denotes the equivalence 

class of faces on the crystal in Figure 4.3 that are 6-equivalent to 

(327). □ 
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(P4.13) Problem: Figure 4.4 is a drawing of an idealized crystal of 

dioptase, CuSiOj'HjO, showing a (110) face of an hexagonal prism labelled 

a and (021) and (131) faces of rhombohedra labelled s and x, respectively. 

Assuming that the point symmetry of the dioptase crystal is 3, find the 

indices of each of the faces on the crystal that are J-equivalent to 

(110), (021) and (131). Then assign indices to each of the J-equivalent 

faces on the crystal. 

Table 4.3: Coordinates of the atoms comprising an Si04 

group in narsarsukite (Peacor and Buerger, 1962). 

Atom X y z 

Si 0.0118 0.3085 0.1921 

O3 -0.0400 0.3024 0 

O4 0.0488 0.1754 0.2684 

O5 0.1324 0.4023 0.1934 

Oe -0.0977 0.3676 0.3062 

(P4.14) Problem: The symmetry of the atoms about the origin chosen for 

narsarsukite (a = b = 10.727A, c = 7.948A, a = 3 = y = 90°) is 4/m. 

(1) Determine the elements of h^(4/m) and the coordinates of the 

atoms in narsarsukite that are 4/m-equivalent to those in Table 

4.3. 

(2) With atomic coordinates obtained in (1), prepare a drawing of 

the atoms in narsarsukite that are 4//T7-equivalent to those in 

Table 4.3 viewed down the Z-axis. 

(3) As the elements of 4/m are point isometries, the bond lengths 

and angles between the 4/m-equivalent atoms in the narsarsukite 

structure must be identical. Calculate these bond lengths and 

angles and observe that this is indeed the case. 

(P4.15) Problem: Stereoscopic drawings of C-equivalent ellipsoids are 

presented on the next four pages for each of the 13 monaxial 

crystallographic point groups C. Examine these drawings in Figure 4.5 

snd. confirni th6ir point symniGtriGs. 
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Figur* 4.5 (on this and tha following pages): 

Stereoscopic pair plots of C-equivalent ellipsoids for each of the 13 

monaxial crystallographic point groups C. 
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CHAPTER 5 

THE POLYAXIAL CRYSTALLOGRAPHIC POINT GROUPS 

"Much of the importance of groups comes from their connection with 

symmetry, Just as numbers can be used to measure size {_once a unit 

of measurement has been chosen'), groups can be used to measure sym¬ 

metry. With each figure we associate a group, and this group charac¬ 

terizes the symmetry of the figure." -- J. R. Durbin 

INTRODUCTION 

In Chapter 4 we derived all of the possible monaxial crystallographic 

point groups. In this chapter we shall learn how all of the possible 

proper polyaxial point groups are constructed from the proper monaxial 

point groups. Then, using the Improper Point Group Generating Theorem 

(T4.28), we shall derive all of the possible improper polyaxial 

crystallographic point groups. The interaxial angles between the rota¬ 

tion axes of the rotations participating in any one of these groups are 

then determined. As in Chapter 4, a special basis P will be chosen for 

each point group. 

PROPER POLYAXIAL POINT GROUPS 

(D5.1) Definition: Let C denote a proper point group. If C has more 

than one axis associated with its nonidentity rotations, then we call C 

a proper polyaxiai group. 

In our investigation of the polyaxial groups, we will be examining 

combinations of monaxial groups. The task of finding the possible proper 

polyaxial point groups will be considerably more difficult than that of 

finding the monaxial point groups. Our first goal is to establish the 

inequality which will state that three monaxial groups associated with 

nonequivalent pole points with orders Vi, \>z and Vj, respectively, can 

be used to form a proper polyaxial point group only if 

1/Vi + I/V2 + I/V3 > 1 
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Figure 5.1: The set of all pole points belonging to the nonidentity rotations of group 

(see Figure 3.13 for a drawing of rotation axes of the group). The basis vectors a, 

b and c^coincide with the coordinate axes X, Y and Z, respectively, where a = B = 90“ and 

y = 120°. The nonidentity rotations in 3 leave the antipodal points p,, and p„ fixed, 

those in leave p,. and p„ fixed, those in leave p„ and p„ fixed and those 

• 1010]. , 
in 2 leave Pjj and Pj, fixed. 

To facilitate our proof that will establish this inequality, we shall 

consider the surface 6 of a unit ball centered at 0. Any point isometry 

a acting on 8 maps 8 onto itself. In fact, a is completely determined 

by its action on 8 because the effect of a on 8 determines the images 

{“(i) ,a(j) ,a(k)}, where C = is a cartesian basis, which in turn 

completely determines a. A nonidentity proper rotation h about the ro¬ 

tation axis leaves exactly two antipodal points on 8 unmoved. These 

points are precisely the points, on opposite sides of the ball, at which 

I and 8 intersect and are called the pole points belonging to h. If these 

two points are labelled p and q, then they are the only points X on 8 

that satisfy the equality h(x) = x. The set of all pole points belonging 

to the nonidentity rotations in C will be denoted by P(C) and will be 

called the set of pole points belonging to C. Note that C-equivalence 

is an equivalence relation on P(C). Applying C-equivalence to P(C) 

we partition P(C) into its set of equivalence classes. For example, thl 

pole points of 322 

P{322) = (Pi1,Pi2,P2i,P„,P,3,P3,,P3^,P3^) 
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are denoted in Figure 5.1 by p.. where / indicates to which equivalence 

class p.. belongs. We denote the ith equivalence class of pole points 

belonging to C by C.{C). 

(E5.2) Example - The 322-equivalence class of Pn: Find the equivalence 

class under 322-equivalence of Pij shown in Figure 5.1. That is, find 

Ci(322). 

Solution: By definition of an equivalence class, 

[Pii] = {q £ 1 Pii ~ q} 

By definition of 322-equivalence, 

[Pii] = {q £ P{322) I there exists g £ 322 such that g(Pii) - q) 

= {g(Pii) 1 g ^ 

= {1(PiJ,3(p,,),3'\p,,),t^°°l2(p,,),^°’°^2(p,,),t"°^2(p,,)> 

— (PiijPia) 

Hence Ci(322) = {Pii,Pi2) • 

(P5.1) Problem: Verify that C2 (322) = {P21 ,P22)P23} snd €3(322) — 

{P31,P32,P3 3} as shown in Figure 5.1. 

Note that {Cl (322),C2 (322), €3(322)} partitions P(322). That is 

P(322) = €3(322) U C2(322) U 0,(322) 

and 

€.(322) n €.(322) = 0 when i ^ j , 

where 0 is the empty set. Note that #(Ci(322)) = 2, (i(€2(322)) = 3 and 

#(0,(322)) = 3. 

fP5 21 Problem: Draw a diagram showing the rotation axes of #22. Let 

Pii denote a pole point of #, P2i a pole point of 2 and p,, a pole 
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point of Find Ci(<^22), €2(^22) and €3(^22). Note that every 

pole point of 422 is in one of these equivalence classes. 

Now we shall turn our attention to polyaxial rotation groups C and 

the subgroups of C associated with its pole points. 

(D5.3) Definition: Let p denote a pole point belonging to C. Then the 

collection of all rotations of C that have p as a pole point is called 

the stabilizer of p in C and is denoted by . That is 

Cp = {g £ C I g(p) = p) . 

The stabilizer of a pole point p.. is denoted by C... 

(T5.4) Theorem: Let p denote a pole point of C. Then C is a subgroup 

of C. ^ 

Proof: Since C is finite, we need only show that G is closed. Let 

91) 92 £ Cp. Then 

gigaCp) = giCgzCp)) = gi(p) = p . 

Since gigaCp) - p and gjgj E C (C is closed) gjgj z C . Since C 

nonempty, is a subgroup. ^ 

IS 

Since the rotations of leave p fixed, they all have the line i 

containing 0 and p as their rotation axis. Consequently, C is a proper 

monaxial group and therefore isomorphic to one of the cyclic groups listed 

in Table 4.2. 

In the case of 322, 

and 

(322)2, = (322)32 = 

(322)3, = (J22),, = 

(322)22 = (322)33 = 

(322),, = (322),2 = {3,3’\l} 

We observe in this example that two pole points 
are associated with each 
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monaxial group (Figure 5.1). It is also evident that the pole points 

P2i> P22> P23) P3I) P32> ^nd P33 are each associated with the group 2 

where the rotation axes have different orientations. The remaining pole 

points Pii and Pi2 are similarly associated with group 3. 

(T5.5) Theorem: Let C denote a proper crystallographic point group. 

Let p denote a pole point and let q be C-equivalent to p. Then is 

isomorphic to and hence they are both isomorphic to the same proper 

monaxial point group of Table 4.2. 

Proof: Since q is C-equivalent to p, there exists a rotation g e C such 

that g(p) = q. Consider 6:C ^ C defined by 0(h) = ghg . Note that 

g'\q) = p and so ghg'\q) = gh(p) = g(p) = q. Hence 0(h) £ for 

all h = Cp. By EA8.5, 0 is an isomorphism. Since isomorphism defines 

an equivalence relation, and are isomorphic to the same proper 

monaxial point group of Table 4.2. 

(E5.6) Example: Show that (322)22 - {3h3 ^ [ h e (222)2i}- 

Solution: As shown above 

(222)21 = 
[100]^ ^ {1,n00]2} 

and 

(222)22 = 
[0/0]2 . 

Then 

{3h3'^ 1 h E (222)21) = {313‘^ ,3^^°°^23‘h 

* (322)„ . ■ 

(P5.3) Problem: Confirm the results in E5.6 with matrices showing that 

M^((322) 22) = {MQ(3)M^(h)M^(3'S | h e (322)2i} • 

Note that since H^(3'^) = M^(3)'\ the matrices described in P5.3 

for M^((322)2i) are similar (see Appendix 7) to the matrices in 
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M^((322)22)- Hence while P21 and P22 are 222-equivalent under the 

equivalence relation of D4.32, the matrices in M^((222)2i) and 

M^((222)22) are equivalent under the equivalence relation of DAS.3 (see 

also EA7.4). A relation corresponding to similarity can be defined on 

the subgroups of C. This relation is called conjugation. 

(T5.7) Theorem: Let C denote a group. The relation defined on the set 

of subgroups of C defined by 

Hi ~ H2 <=> there exists a g e C such that gHig ^ = H2 , 

where Hi and H2 are subgroups of C, is an equivalence relation. The 

relation ~ is called conjugation and if Hi ~ H2, Hi is said to be 

conjugate to H2 ■ 

The proof of T5.7 is essentially the same as that of EA7.4 where we 

demonstrated that similarity of matrices is an equivalence relation. 

Conjugation and C-equivalence are very closely related concepts. Con¬ 

sider 

r = {Cp I p s PiO) . 

Conjugation is an equivalence relation on T while C-equivalence is an 

equivalence relation on PiG). Furthermore, we have 

where C-equivalence is used on the left and conjugation on the right. 

Consequently, if p is a pole point, then an isomorphic image of C occurs 

about any axis having g(p) as a pole point for each g s C. Suppose we 

have located the position of the axis of one of the rotations of C. Then 

we can find others by mapping the axis under the operations of C. Fur¬ 

thermore, the axes found in this manner will be associated with cyclic 

groups of the same order as the original axis. This observation will be 

extremely important in our construction of the rotation groups. 

(L5.8) Lemma: Let C denote a proper point group such that iiiC) > 1. 

Then 

t 
2iN - 1) = I n.(v. - 1) 

/=1 ' ' 
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where N = #(C), t is the number of equivalence classes of pole points, 

n. = #(C.(C)) and v. = #(C,.)- 

Proof: The basic strategy for establishing this theorem will be to find 

two distinct ways of counting the nonidentity rotations of C. The result 

will be two expressions each equaling twice the number of nonidentity 

rotations of C. This will establish the result since these two equal 

expressions will be precisely those appearing in the equation. We begin 

by taking each pole point p.. in P(C) one at a time and counting the 

number of nonidentity rotations of C leaving Pj. fixed. The sum of these 

numbers taken over all the pole points in PiC) will equal twice the number 

of nonidentity rotations in C because each of these rotations leaves 

exactly two pole points fixed and hence is counted twice. The number of 

nonidentity rotations leaving p.. fixed is iKG..) - 1 = v. - 1. Thus, for 

the pole points in C^.(C) we have 

.r”/(nonidentity rotations leaving fixed's - v^. - 1 

^Knonidentity rotations leaving p.^ fixed) = v^. - 1 

n. 
I 

equations 

#(nonidentity rotations leaving p.^ fixed) - v. - 1 
i 

Summing up these numbers we find that the contribution from C.iC) is 

n fv - 1) for each 1 < / < t. Adding the contribution from each of the 
/ / 

t 

t equivalence classes, we find that the sum is n.(v, - 1). Since 

l\j — 1 is the number of nonidentity rotations in C, it follows that twice 

the number of nonidentity rotations in C is 2(A/ - 1) and so we have es¬ 

tablished that 
t 

2(/V - 1) = I n.(v. - 1) 
/=1 

□ 

From E5.2 and P5.1, we see that = #(Ci(322)) - 2, nj - 

#(C2(J22)) = 3 and = ii^C3 (322)) = 3. Also Vi = #(■?) = 3, Vj = 

^^([^00]2) = 2 and Vj = = 2. Since N = #(222) = 6, we can verify 

L5.8 in this case by observing that 

2(6 - 1) = 2(3 - 1) + 3(2 - 1) + 3(2 - 1) 
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(P5.4) Problem: Using the information you have developed about 422 

(including the solution to P5.2) verify the equation in L5.8 for 422. 

(T5.9) Theorem: Let p and q denote C-equivalent pole points and let 

T denote the set of all elements of C that map p to q. Then T is a left 

coset of C . 
P 

Proof: A discussion of cosets and related topics can be found in Appendix 

7. Since p is C-equivalent to q, there exists g £ C such that g(p) = 

q. We shall show that T = gC^. Let t £ T. By definition of T, 

t(P) = q. Since g(p) = q, we have 

g ^t(p) = g’\q) 

= p • 

Hence g t £ C . Therefore t £ gC . Conversely, suppose h £ gC . 
r P P 

Then h = gk where k £ C . Hence 
P 

h(p) = gk(p) 

= g(p) 

= q . 

Hence h £ T. Consequently T = g*^p- i 

One consequence of T5.9 is that if C is a finite proper point group 

such that #(C) > 1 and p is a pole point of C, then there is a one-to-one 

correspondence between the cosets of C^ and the pole points that are 

C-equivalent to p. Hence, if p e C .{G), then n., which is defined to 

be the number of pole points in C .{G), equals the number of cosets of 

Cp in C. Recall (see the proof of TA7.13) that each coset of C has 

the same number of elements as does C^, that is v. elements. Since the 

cosets of Cp partition C into n. cosets each having v. elements we have 

established that 

#(C) - N - n^.v^. for each 1 < / < f 
(5.1) 

In the case of 322, we observe that since = 2, Oj = n, = 3 and 

Vi = 3, vj = V3 = 2 and that N = 6 = n.v. in all three cases. 
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(P5.5) Problem: Show that n.v. = N for each 1 < / < 3 in the case of 
II 

if22. 

(T5.10) Theorem; Let t denote the number of equivalence classes of pole 

points of a finite proper point group C where N = #(C) > 1. Then t = 2 

or 3 and 

(1) ift=2, Cisa monaxial group and 

(2) if t = 3, C is a polyaxial group such that 

1/vi + l/vz + I/V3 > 1 

and 

#(C) = 2/(l/vi + I/V2 + I/V3 - 1) . 

Proof: By L5.8, we have 

t 
2iN - 1) = Z n.(v. - 1) . (5.2) 

i-1 

and by (5.1), we have N = Dividing the left side of (5.2) by N 

and the right side of (5.2) by we obtain 

t 
2 - 2/N ^ I (1 - 1/v.) . (5.3) 

i=l 

Since v. is the order of the stabilizer of a pole point, v. > 2. 
I ' 

t t t 
z (1 - (1/v.)) > z (1 - i) = z (i) = t/2 . 

i=l i=l i=l 

Also, since A/ > 2, 

2 > 2 - 2/N 

Hence, from (5.3) 

2 > t/2 

Hence A > t. Therefore, t can only equal 1, 2 or 3. We can thus conclude 

that there are no rotation groups having more than 3 equivalence classes 

of pole points. We now examine each of these three cases for the value 

of t. 

Case where f = 1: In this case, Equation (5.3) becomes 

t 1 
2 - 2/N = I (1 - 1/v.) = Z (1 - 1/vi) 

i=l /■=! 

165 



or 1 - 2/A/ = —1/Vi 

The left member of this equation is always nonnegative because A/ > 2, 

but the right member is always negative because Vj ^ 2, which is a con¬ 

tradiction. Therefore, t cannot equal 1, from which we conclude that 

P(C) must contain more than one equivalence class of pole points. 

Case where t = 2: In this case Equation (5.3) becomes 

2 

2 - 1/N = I (1 - 1/v.) = (1 - 1/Vi) + (1 - I/V2) . 

/=1 

By a little algebraic manipultion we find that 

2 = /V/vi + N/Vi . 

From Equation (5.1) we have that N/Vj = n,, and so the above expression 

simplifies to 

2 = rii + Hi 

Because and n2 are positive integers, we conclude that — 1 

is the only possible solution. Hence, for a rotation group with t = 2, 

we have two equivalence classes consisting of one pole point each. Al¬ 

together C has a total of two pole points, which defines one and only 

one rotation axis. Therefore, those groups with two equivalence classes 

of pole points must be the proper monaxial groups given in Table 4.2. 

The number of elements in each of these possible monaxial groups is equal 

to the order of the rotation axis, //(C) = = Vj. 

Case where t = 3: In this case Equation (5.3) expands to 

2 - 2/A/ = (1 - l/vj) + (1 - I/V2) + (1 - I/V3) . 

Rewriting this result we see that 

1 + 2/A/ = 1/vi + I/V2 + I/V3 

Since N > 2, it follows that 1 + 2/N > 1 and so 

(5.4 
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Table 5.1: Possible finite proper polyaxial point groups. 

Symbol for 0
 

It iKCi(C)) #(C,(C)) tKCAC)) Group 

C = V^V^Vs = N/v, = N/v, = W/V, Name 

222 4 2 2 2 

322 6 2 3 3 

‘122 8 2 4 4 

522* 10 2 5 5 

622 12 2 6 6 Dihedral 

n22** 2n 2 n n 

332 12 4 4 6 Tetrahedral 

1*32 24 6 8 12 Octahedral 

532* 60 12 20 30 Icosahedral 

* non-crystallographic 

** non-crystallographic when n > 6. 

The group 332 is usually designated by 23 and the group 532 is usually 

designated by 235. 

1/Vi + I/Vz + I/V3 > 1 (5.5) 

Solving for N in (5.4) we obtain 

#(C) = N ^ 2/(l/vi + I/V2 + I/V3 - 1) • ^ 

Using part (2) of T5.10 where, for convenience, we assume that 

Vj > V2 S V3, we shall construct all of the possible finite proper 

polyaxial point groups. Note that if V3 > 2, then each of the fractions 

1/v. would be less than or equal to 1/3 for each / and so (5.5) would not 

be satisfied. Hence V3 = 2. If V2 > 3, then 1/Vi + l/Vj is less than 

or equal to i and so (5.5) would again not be satisfied. Therefore, 

Vz = 2 or 3. Suppose Vj = V3 =2. Then any value of Vi > 1 would satisfy 

(5.5). These groups, denoted n22 when n = Vi, are called the dihedral 

groups of which there are an infinite number. Using (T5.10) we see that 

#(n22) = 2n . 

If vz = 3 and V3 = 2, then if Vj > 5, (5.5) would not be satisfied. Hence 

the only groups of this type are 332, U32 and 532. All of these possible 

finite proper point groups are recorded Table 5.1. Note that we have 
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b 

Figure 5.2: The orientation of the three mutually perpen¬ 

dicular 2-fold axes in 222. These axes define a natural co¬ 

ordinate system with 2 lying along c, along a and 

^ ^2 along b. Each 2-fold axis is represented by a diad 

symbol. 

Figure 5.3: Multiplication table for Mp(222). 

»p(222) »p0) Mp(2) Mp(t’°°l2) Mp(t°^°l2) 

Mpd) Mp(U Mp(2) »p('"'“l2) 

Mp(2) Mp(2) Mp(1) Mp(t°^°l2) Np(f’°°h) 

Mp(l) MpC2) 

Mp(2) Mp(1) 

yet to show that each of these possibilities actually occurs as a point 

group. 

CONSTRUCTION OF THE DIHEDRAL GROUPS 

In Appendix 6 we proved, for n22, that the n-fold axis is perpen¬ 

dicular to each 2-fold symmetry axis and adjacent 2-fold axes in this 

group must intersect at an angle of 180/n (TA6.1). To confirm that each 

n22 is actually a group, we shall define a basis of S for each, write 

the elements of n22 as described in TA6.1 with respect to this basis and 

then form the multiplication table to check closure. 

The construction of 222: Since the 2-fold axes are mutually perpendic¬ 

ular, we define P = {a,b,c} to be a basis where a, b and c are also mu¬ 

tually perpendicular such that each lies along an axis (see Figure 5.2). 

Hence the metrical matrix G for P is 
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0 

G 

9ii 0 

0 9 22 0 

. 0 0 ^33 

With respect to this choice of basis, the half-turns are denoted ^2, 

2 along a, b, c, respectively. By Table 5.1, 222 can only have 

4 elements and so we conjecture that 

222 ^1,2,[100]2,[010]2^ 

is a group. The matrix representation of each of these can be found em¬ 

ploying the approach used for 322 in Chapter 3. Hence 

Mp(222) = {Mp(1),Mp(2),Mp(f^°°^2),Mp(^°^°l2)} . 

These matrices are described in Table 5.2. To confirm that 222 is a 

group, we form the multiplication table of Mpl.222) shown in Figure 5.3. 

Since no new entries resulted in the formation of the table, Mp(222) is 

closed under matrix multiplication and, since it is finite, it is a group. 

Since the mapping from Mp(222) to 222 that maps Mp(a) to a for each a 

preserves the operation, the multiplication table of 222 under composi¬ 

tion can be obtained by deleting the Mp( ) for each element (Figure 4.2). 

Hence, 222 is a group. 

The construction of 322: As in Chapter 3 (see Figure 3.10), we choose 

P = {a,b,c} where c coincides with the 3-fold axis, a coincides with one 

of the two-fold axes and b = 3(a) (Figure 5.4). Hence the metrical matrix 

G of P is 

G = 

911 fif 11/2 

11 /2 911 

0 

0 

0 0 933 

Since 60 = 180/3, there are two-fold axes at 60° intervals starting with 

the one coinciding with a. Hence, a two-fold axis lies along b. Recall 

that this is the same basis that was used for the monaxial groups 3, 3, 

6, 6 and 6/m. With respect to P, 
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Table 5.2: The nonzero entries of the matrix representations M^fa) for 

rotation isometries a groups 1, 2, 4, 222, 422, 23 and 432 for P - {a,b,c}. 

II II II = 1; £,, = 1,2 = -1 

II 11 1 II : £,2 = 1; £2, = £„ = -1 

= 1; = e,, = -1 Mp(f"’^3) : £2, = 1; 1,2 = ^,2 = -1 

1 II II 11 

rs
 

O
 

O
 M^^[111]3-1^ . ^ j, ^ ^ _j 

: £,, = £., = 1; £„ = 1 : £,i = -1; £,, = £2, = -1 

Mp([°”^2) : e,2 = £„ = !; £,. = -1 H^jni]3-1^ : £„ = 1; £,, = £,j = -1 

^2) ; ^31 = tj2 ~ ^13 “ “1 ^lp(4) : ^21 ~ ^33 ~ 1; *^12 “"1 

1 II II II 

tN
 

'o
 

Mp(4'S : £ij = £,3 = 1; «21 = -1 

1 II II II 

CM
 

O
 

f'lpC^ ^4) ; Kii = JI32 = 1; 2-23 = —1 

^2) : ^21 “ ^12 “ *^33 - —1 : £„ = £„ = 1; £„ = -1 

^2) ^21 ~ ^32 “ *^13 ~ 1 : £2, = £., = 1; £,, = -1 

1 H II II 

0
 

0
 

322 = {1 

In Figures 3.14 and 3.15, the multiplication tables for M^(322) and 

322, respectively, are displayed. From these tables, we observed that 

322 is a group. 

The construction of 422: As in Chapter 4, we choose P = {a,b,c} where 

c coincides with the 4-fold axis, a is along a 2-fold axis and b = 

4(a). The metrical matrix G for P is 

G = 

9ii 

0 

0 

9ii 

0 

0 

. 0 0 5^33 

Since 45 180/4, there are two-fold axes at 45° intervals starting with 

the one coinciding with a. Hence, there is a two-fold axis along b. 

The elements of 422 with respect to P, given in P3.14 are (see Figure 

5.5) 
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Table 5.3: Non-zero entries of the matrix representations Mp(a) and Mp*(a) 

for the rotation isometries a of point groups 3, 6, 322, and G22 for 
* * * * 

P = {a,b,c) and P = (a ,b ,c ). 

Mp(o) 

Mp(l) : 111 = 1^22 = 1122 = 1 Mp(f°’°^2) : £22 = 1; £22 = 2,1 = £22 = -1 

Mp(2) • ^11 = 2-22 “ ^ 
Mp([110]2) . = e,, = £,, = -1 

Mp(t’°°l2) ; e,, = 1; = II22 = 222 = -1 Mp(3) ; £21=2,2=1; 2,2 = 2,2 = -1 

Mp(^^^°b) ; fii = 22, = 1; ^,2 = 2,3 = -1 t'lp(3 ) ^12 — 1133 “ “ ^21 ““1 

Hp(^^’°^2) : 2,1 = 2,2 = 1; 2,2 = -1 Mp(6) ” *^21 “ ^33 ” '^12 — ~1 

Mp(f^^°l2) : 2,2 = 222 = 1; 2,, = 11,2 = -1 Mp(6 ) : 2^12 = 1^22 ” ^33 “ Ij *^2l ““1 

Np*(a) 

Mp*(1) • ^11 ~ ^22 ~~ *^33 “ 1 
Mp*(f°^°^2) : £22 = 1; 2,1 = 2,2 = 2,2 = -1 

Mp*(2) ; 2,, = II22 = -1; 2,2 = 1 Mp,.,([110]2) . £2, = £,2 = 2,3 = -1 

Mp*(^^°°^2) : e., = 1; 2,, = f22 = 2,2 = -1 Mp*(3) ; £23 = 2,2 = 1; 2,, = £,2 = “1 

Mp*(^^’°^2) : £,, = 2,2 = 1; 222 = 2,2 = -1 Mp*(3 ') ; £,2 = 2,2 = 1; £21 = £22 = 

Mp*(^”°^2) : £21 = 2,2 = 1; 2,2 = -1 Mp*(6) : 1^21 ” ^^22 ~ ^33 “ 1* *^12 -"1 

Mp*(^^^°^2) : £21 = 222 = 1; 2,, = £23 = -I Mp^CG • ^11 " ^12 *^33 " ^21 ~ 

Figure 5.4; The orientation of the rotation axes in 322. 

The 3-fold axis of the group is perpendicular to a plane of 

three 2-fold axes with adjacent 2-fold axes in the plane 

intersecting at an angle of 60°. The basis vector c is de¬ 

fined to lie along the 3-fold axis, a is defined to lie along 

one of the 2-fold axes and b is defined to lie along another 

at 120° to a so that b = 3(a). Thus, 3 parallels c, 

parallels a, parallels a + b and parallels b. 

The 3-fold axis is represented by a triad and each 2-fold by 

a diad symbol. 
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Figure 5.5 The orientation of the rotation axes in ^22. 

The 4-fold axis of the group is perpendicular to a plane of 

four 2-fold axes with adjacent 2-fold axes in the plane 

intersecting at 45°. The basis vector a is defined to lie 

along one of the 2-folds and b is defined to lie along another 

at 90° to a so that b = 4(a). Thus, 4 parallels c, 

and are disposed as in 222, parallels a + b 
/”0/, ,, , , 

srid / parallels —a + b. The 4-fold axis is represented 

by a tetrad and each 2-fold by a diad symbol. 

Figure 5.6: The orientation of the rotation axes of group 

622. The 6-fold axis is perpendicular to a plane of six 

2-fold axes with adjacent 2-folds in the plane intersecting 

at 30 The vector c is defined to lie along the 6-fold axes, 

a is defined to lie along one of the 2-folds and b is defined 

as in 322 at 120 to a so that b = 3(a). Hence, 6 parallels 
^ liooj. 1110]. ^ 1010]^ , [2101 
C, 2, 2 and 2 are disnn^eH ac in artA * *9 

parallels 2a + b, parallels a + 2b and 

‘2 are disposed as in 322 and 

^2 paral¬ 

lels -a + b. The 6-fold axis is represented by a hexad and 

the 2-folds by diad symbols. 

422 = {1,4,2,ni0]2 [010]2^ [Tl0]2^ 

The multiplication table for Mp(422) and (422) were found in P3.15. An 

examination of the multiplication table of 422 shows that 422 is closed 

under composition and hence is a group. 

The construction of 522; We choose the basis used for 322 for 522. Since 

30 = 180/6, there are two-fold axes at intervals of 30° starting with the 

one coinciding with a. Thus, there is a two-fold axis along b. The 

elements of 522 (see Figure 5.6) are 

522 = 

(P5.6) Problem: Find all of the matrices in Mp(522). Confirm your re 

suits with those given in Table 5.3. 

(P5.7) Problem: Prepare a multiplication table for Mp(522) and observe 

that Mp(522) is closed under multiplication, demonstrating that 522 is 
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a group. 

(P5.8) Problem: For 522 no basis exists that gives all of the pole points 

and matrices with integer entries. Therefore, a cartesian basis is used 

where k is along the five-fold axis and i is along one of the two-fold 

axes. Find the matrices in M^(522) and form the multiplication table 

showing that M^(522) is closed and hence 522 is a group. 

Note that 522 is not a crystallographic group and hence does not map 

a lattice into self-coincidence. This is why no basis can be found such 

that the representation of the pole points and the matrices of the map¬ 

pings consist entirely of integers. This fact is true for all non- 

crystallographic point groups. In particular, n22 groups with n > 6 are 

all of this type. However, using a cartesian basis as in P5.8, each of 

these can be shown to be groups. 

CONSTRUCTION OF THE CUBIC AXIAL GROUPS 

In the construction of these groups we shall need to map pole points 

using the matrix representation of the constituent rotations. Since the 

pole points are constrained to be on a unit ball, the triple representing 

a given pole point can be somewhat complicated. For example, consider 

the pole point [/3/3,/3/3,/3/3]^. As this pole point lies on the zone 

[111], we shall use [111]^ to represent the pole point to simplify the 

computations. We shall see that each pole can be easily represented in 

this manner. 

(E5.11) Example; Using the zone symbols to represent the pole points 

of 222, form the equivalence classes of pole points with respect to 

222-equivalence. 

Solution: Since 222 has three 2-fold rotation axes, it has six pole 

points. Recall that by the way the basis P - {a,b,c} for 222 was defined, 

the triples for these pole points on the unit ball B are 

{a/o,-a/o,b/b,-b/b,c/c,-c/c} . 

The representatives formed from the zone symbol associated with these pole 
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points are 

{ [3]p> I]p> [^]p> ]p> [*-]p> ]p] } — 

{[ 100]'", [lOO]^, [010]^, [010]^, [001] ^,[001]^} . 

The equivalence class of a given pole point p is the set 

{9(P) I 9 t 222). Starting with [a]p, the equivalence class [a] of a 

is 

[a] = {Mp(g)[a]p | g s 222) = {[aj^.f-aj^} . 

Similarly, 

[b] = {[b]p,[-b]^} 

and 

[C] = ilc]p,[-c]p) . 

This is consistent with the information given in Table 5.1 where we ob¬ 

serve that the pole points of 222 are partitioned into 3 equivalence 

classes with two pole points each. □ 

(P5.9) Problem; Using the zone symbols to represent the pole points of 

322, form the equivalence classes of pole points with respect to 

J22-equivalence. Confirm your answer by referring to Figure 5.1. 

Construction of 332{=23): We shall discover what conditions must be 

satisfied if 332 is to be a group. Once these conditions have been es¬ 

tablished, we shall use them to determine the interaxial angles that must 

occur between the generating rotations and then construct 332 and show 

it is a group. We. begin by noting that if there does not exist two 

third-turns whose composition is a half-turn, then the set of all third 

turns (recall that the inverse third-turn is a third-turn about the other 

end of the axis) together with the identity would be a closed set under 

composition and hence we would have a polyaxial group of the form 333 

which would violate part (2) of T5.10. Hence, there exist two third-turns 

in 332 whose composition is a half-turn. In Appendix 6, we showed (PA6.2 

and PA6.5) that when 33 = 2, then 

<(3:3) = cos ^(1/3) = 70.53°, and 

<(3:2) = cos‘^(^/3) = 54.74° . 
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Figure 5.7: The placement of the generating rotations for 

332^23 given that <(3:3) = cos ^(1/3)=70.53° and <(3:2) = 

cos ^(/3/3)=54.74°. The basis vectors chosen for this group 

are mutually perpendicular with a = & = T = 90° and a - b = 

c. By convention, c is defined to lie along the 2“fold axis, 

a is oriented at angle of cos ^(/3/3) with respect to each 

of the 3-fold axes and b is oriented at an angle of 

cos ^(/3/3) with one of the 3-folds and an angle of 

cos ^ (-/3/3) = 125.3° with respect to the other. For this 

choice of basis, the 2-fold along c is designated 2, the 

3-fold along a + b + c is designated and that along 

u ... ^ a - b + c IS designated ‘ ^3. 

A convenient basis P = {a,b,c} for describing the orientation of these 

axes is the basis whose metrical matrix G is 

G = 

5^11 ^ ^ 

0 9ii 0 

0 0 Qii 

where we orient the two-fold axis along the zone [001], and the three-fold 

axes along the zones [111] nnd [111], The fact that this can be done is 

shown in the next problem. This placement of axes is illustrated in 

Figure 5.7. 

(P5.10) Problem: Show that 

<([111]:[001]) = <( [111]:[001]) = cos ^(/3/3) = 54.74° , 

and that 

<([111] : [111]) = cos ^(1/3) = 70.53°. 

To find the remaining axes belonging to the rotations of 332, we shall 

search for the remaining pole points. Each time we obtain a new pole 

point, the stabilizer of that pole point is determined according to T5.5 

and we add these to our list of elements of 332. By Table 5.1, we know 

that there is a total of 14 pole points, 8 of which are associated with 

3-fold axes and 6 with 2-fold axes. 

To begin with we have the following list representing pole points 

associated with 3-fold axes in Figure 5.7: { [ 111],[ill]}. The matrix 

j-gpj-gsentation of the half-turn about [001] is 
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Mp(2) = 

-10 0 

0-10 

0 0 1 

Hence 

1 -1 1 -1 

Mp(2) 1 

1 

-1 

1 

and Mp(2) -1 

1 

— 1 

1_ 

also represent pole points. By T5.5, these pole points are associated 

with 3-fold axes. It is helpful to note that if [l/vw] represents a pole 

point associated with an n-fold axis, then [Dwy] also represents a pole 

point associated with the n-fold axis. Hence we have found all of the 

8 pole points. Their zone representatives are 

{[111], [111],[111],[111],[111],[111],[111],[111]} 

While [111] and [111] both designate the same axis about which a 3-fold 

takes place, we denote the monaxial group along this direction as 

mil 
3. In general,when possible,we shall choose the zone symbol with a 

positive third component. Hence, we have found the following 3-fold axes: 

[111}^ ^ ^^ [ni]3 [11113-1^ 

To find the 6 pole points associated with the half-turns, we write the 

matrix for ^^^^^3 and apply it to the pole point represented by [001]. 

-
1 

0
 

_
_
i

 

-
1

 
0

 

0 1 

-
1 

0
 

0 = 1 0 0 0 = 0 

1^ 0 1 

0
 1_ 

-
>

 
0

 
_

1 

Applying to this new pole point we obtain [010]. Including 
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[ooi] 

A diagram of the rotation axes for 23. 

the negatives of these, we have the following 6 pole points^ associated 

with the two-fold axes: ... y ir . ■ r • 

1 I 

{[100],[010],[001],[ioo],[Olo],[ooI]} . 

Hence we have the following two fold axes in 332, 

1100]^ ^ 

[010]^ ^ 

2 = {1,2} . 

As predicted in Table 5.1, we have found a total 12 rotations, 3 half¬ 

turns, 8 third-turns or negative third-turns and an identity. Hence 

[llll3,[ill]3-l,[Ul]3,[Ull3-l,[lU]3,llil]3-l) . 

Figure 5.8 shows the placement of the rotation axes of 23 in terms of the 

basis vector P. 
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(P5.ll) Problem: Find Hpi23). Check your results with those given in 

Table 5.2. 

We can show that Mp(2J) is a group, by forming its multiplication 

table and observing closure. This is a tedious but straightforward task 

and when completed will show that 23 = 332 is a group. 

Construction of U32: The strategy for showing that there is a group of 

the form 4J2 will be similar to that followed in the case of 23. Using 

TA6.4 it can be shown that if composition 43 = 3 happens, then 

<(4:3) = 103.84°. However, when the composition 4^3 is formed about the 

same pair of axes intersecting at ~103.84°, the resulting rotation has a 

turn angle of 156.094° which is impossible in 422. Hence, each compo¬ 

sition 43 in 422 must yield either a 4 or a 2. Fixing one quarter-turn 

4, since 422 has 8 third-turns, we obtain 8 rotations of the form 43 using 

the fixed quarter-turn. By the cancellation law these must all be dis¬ 

tinct rotations. Since there are only 6 quarter-turns, some of the 43 

compositions must be half-turns. Let 4 and 3 be such that the composition 

43 = 2. From Appendix 6 we see that 

<(4:3) = cos"^(/3/3) = 54.74° , 

<(4:2) = cos'\/2/2) - 45° , and 

<(3:2) = cos'^(/6/3) = 35.26° . 

There cannot be a quarter-turn along the 2-fold axis since two quarter- 

turns whose axes intersect at a 45° compose to yield a rotation of 

163.158 which does not exist in 422. Using the same basis as in 22, we 

place the 4-fold axis along [001], the 3-fold along [111] and the 2-fold 

along [101]. 

(P5.12) Problem: Show that 

<([001] : [101]) = cos‘\/2/2) = 45° and 

<([101]:[111]) = cos ^(/6/3) = 35.26° 

(P5.13) Problem: Find the 8 pole points belonging to the 3-fold axes. 

(The answer is the same as found for 22 except they all occur in the same 

422-equivalence class). 
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A diagram of the rotation axes of <(32. 

(P5.14) Problem; Show that the zone representations of the pole points 

associated with the 2-fold axes are 

{[101],[Oil],[iol],[oil],[110],[ilO],[iol],[oil],[loi],[Oil],[iioj,[lio]} 

(P5.15) Problem: Show that the zone representations of the pole points 

associated with the 4-fold axes are 

{[001],[100],[010],[ooi],[iooj. [oio]} . 

(P5.16) Problem: Enumerate the rotations in each of the 3-fold axes 

in 

(P5.17) Problem: Enumerate the rotations in each of the 4-fold axes 4, 

[100] ^ and [010]^ in 432. 

(P5.18) Problem: Enumerate the rotations in each of the 2-fold axes, 

[101] ^, [011]^, [101]^, 1011]^, [110]^, [110]^ in 432. 

(P5.19) Problem: Enumerate the rotations in ^32 by collecting together 

the distinct rotations found in P5.16, P5.17, and P5.18. As in the case 

of 23, one need only form a multiplication table for M^(432) and observe 

closure to conclude that 432 is a group. Figure 5.9 shows the rotation 

axes of 432 defined in terms of its basis vectors. 
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Table 5.4: The 32 crystallographic point groups and their orders 

as derived from the proper crystallographic point groups. 

The 11 proper 

crystallographic 

point groups 

Halving 

Groups 

The 21 improper crystallographic 

point groups 

containing / 

(centrosymmetrical) 

Not containing / 

c #(C) H C U Ci iKC U Ci) (H U (C \ H)i) U (C \ H)i) 

1 1 none 7 2 none 

2 2 1 2/m A m 2 

3 3 none 3 6 none — 

4 A 2 A/m 8 4 4 

6 6 3 6/m 12 6 6 
222 A 2 mmm 8 mm2 4 

322 6 3 32/m 12 3 mm 6 
422 8 4 m mmm 16 4 mm 8 

222 U2m 8 
622 12 6 6/ mmm 24 6 mm 12 

322 62m 12 

322 = 23 12 none 2/ml none — 

422 2A 23 ^/m32lm 48 ^3m 24 

The noncrystallographic group 532 ~ 235 will be discussed at the end 

of the chapter. 

CONSTRUCTION OF THE IMPROPER CRYSTALLOGRAPHIC POINT 

GROUPS 

The construction of these groups will be accomplished by applying 

the Improper Point Group Generating Theorem T4.28. In column one of Table 

5.4, each of the proper crystallographic point groups are listed. Part 

(1) of T4.28 yields one centrosymmetric point group C U Ci, listed in 

column 4, from each proper point group C from column 1. The application 

of part (2) of T4.28 requires a list of the halving groups of each proper 

crystallographic point group. Since any subgroup of a crystallographic 

point group IS again a crystallographic point group, these halving groups 

can be found in column one. For example, 322 has 6 elements. Examining 

column two, we see that the group 3 has 3 elements and hence is a candidate 

to be a halving group. Since 3 is a subset of 322, it is a halving group 
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and hence is listed opposite 322 in column 3. Since 23 has 12 elements, 

the candidates for the halving groups of 23 are 322 and 6, both of order 

6. However, neither of these are subsets of 23 and hence 23 has no halving 

groups. A similar analysis of the remaining groups from column one gives 

the results shown in column 3. Applying part (2) of T4.28 to each C with 

halving groups, we obtain the results shown in column 6. 

The name given to each of the improper crystallographic point groups, 

is derived from the names of the resulting monaxial groups that occur 

along the axes of the generators of the possible proper crystallographic 

groups. 

(E5.12) Example: Consider C = 322. Since C U C/ = 322 U 322i 

m) . 

The generators of 322 are 3, In 322 U 322i, the symmetry 

elements lie along the three zones: 

- -1 . --1 
[001] : ({1,3,3 ,/,3,3 } which is the monaxial group 3) , 

[100] : ({1,/, ^^^^^2, which is the monaxial group 2/m) , 

[110] : ({1 ,/, ^^ ^^^2, ^^^m} which is the monaxial group 2/m) 

Hence the full symbol for 322 U 322/ is 3 {2/m'){2/m). The Hermann- 

Mauguin symbol for this group is 3m. This symbol is reasonable since 

the elements of 3 and any of the mirrors generate the remaining elements 

of the group. 

As indicated in Column 3, H = 3 is a halving group of C = 322. 

Hence, we construct 

H U (C \ W)/ = 2 U (222 \ 2)/ 

= {1,3,3'h U {n00]2 [110]2 [010]2^. 

= {1,3,3-\n00],,[110],^[010]^^ _ 
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Along [001], we have 3, perpendicular to [lOOJ and [110] we have planes 

associated with mirror operations m. Hence, the full symbol is 3mm. 

The Hermann-Mauguin symbol is 3m. Note that 3 and either m generates 

the group. □ 

(P5.20) Problem: Find U22 U 422/ and show that its full Hermann-Mauguin 

symbol is /m) {2/m) {2/m). 

(E5.13) Example: Consider C = 422. The halving groups of C are 4 and 

222. Find 222 U (422 \ 222)i and derive its full Hermann-Mauguin symbol. 

Solution: We begin by generating the elements of the set 

222 U (422 \ 222)/ 

(,_2,[iooi,_[oio]2^5_3-ijuo]^_mo]^, , 

As a 4-rotoinversion axis, {1,4,2,4 parallels [001], a 2-fold axis, 

n, 2}, parallels [100] and a mirror plane is perpendicular to [110], 

the Hermann-Mauguin symbol of this group is 42m. □ 

(P5.21) Problem: Construct and determine the full Hermann-Mauguin symbol 

for 4 U (422) \ 4)/. 

(P5.22) Problem: Given that C = 622, show that 

622 U 622/ = 6/mmm 

/,G.3,m.3-'.rhl'O01„_[210J^_[U0]^_ 

juojj [OIO]^ [iioij 

(P5.23) Problem: Given that G = it32, show that 

422 U 422/ = {U/m)3{2/m) 

= mlm = {I,4,2,4'\t^°°]4,[^°°l2,f^°°]4’\t°^°l4 [01012 
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[OlOl^-l [11113 [iii]3-\[nils, nii]3-\[Tills. nn]3-\ 

[11113 [11113-1 [10112 [01112 [10112 [Oil]2 [11012 [11012^ 

[0101^ [0101^^^ 

[111l3[111l3-1 [11113 [11113-1 [11113 [11113-1 [11113^ 

[iiih-i [1011 [0111 [Toil [oiii [1101 [1101 , 
^m> 

Using the procedures followed in the preceeding examples and problems, 

one can construct all of the improper point groups shown in Table 5.4. 

According to T4.28, these are all of the possible improper point groups. 

Hence, in summary, we have found 11 proper crystallographic point groups, 

11 centrosymmetric crystallographic point groups and 10 non- 

centrosymmetric improper crystallographic point groups for a total of 32 

possible crystallographic point groups. 

(P5.24) Problem: Determine the point symmetry G of the tricyclosiloxane 

molecule displayed in Figure 1.2. Find the elements of the set M^(C) 

and show that the coordinates of the atoms in Table 1.2 are permuted 

(interchanged) by the elements of H^(C). Ascertain the atoms in the 

molecule that are C-equivalent to Oi, Hj, and Sij. Determine which of 

the atoms are on special positions. 

(P5.25) Problem: Stereoscopic pair drawings of C-equivalent ellipsoids 

are presented in Figure 5.10 for each of the 19 polyaxial point groups 

C. Study each of these drawings and confirm the point symmetry of each. 

THE CRYSTAL SYSTEMS 

It is customary to organize the 32 crystallographic point groups into 

classes according to geometrical considerations. The geometry involved 

in each point group C is used to determine a natural basis with respect 

to which the matrix representation of the elements of C are simply written 

(so that all of the entries of the matrices are either 0, 1 or -1). In 

toto, we use only 6 different bases. In Table 5.5 the metrical matrix 

for each of these bases is listed together with a list of all of the point 

groups using the basis. This gives rise to the 6 crystal systems whose 
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names are given in column 3. The metrical matrix given in Table 5.5 for 

the monoclinic system is that for the so called first setting where C is 

chosen along the axis of order 2. In the second setting, which is more 

commonly used, b is chosen along the axis of order 2, resulting in the 

metrical matrix 

Figure 5.10: Stereoscopic pair drawings of C-equivalent 

ellipsoids for each of the 19 polyaxial point groups C. 

\1 / 
1 a Q 

2 2 2 

^ \ 

A / ^ / 
h. / 

J 

K 
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Table 5.5: Metrical Matrices for the crystallographic point groups. 

METRICAL MATRICES POINT GROUPS CRYSTAL SYSTEM 

9 n 9\2 912 

912 9x2 9 12 

9 12 9x2 9i3, 

1,1 Triclinic 

1 1 5 1 2 0 

9 1 2 9x2 0 

. 0 0 gjj 

2 ,m,2/m Monoclinic 

9ii 0 0 

0 STjj 0 

0 0 g,3 

222 ,mm2 ,mmm Orthorhombic 

9ii 0 o' 

0 9i 1 0 

0 0 g,. 

^422 ,Umm ,‘t2m 

m mmn\ 

Tetragonal 

911 -9iW2 0 1 

-9ii/2 9ii 0 

0 0 92 2. 

3,3.32,3m,3m 

6,6,6/m ,622,6mm 

62m ,6 /mmm 

Hexagonal 

9,1 0 0 

0 g,, 0 

0 0 g,. 

23,m3,^32 

^3m ,m3m Cubic 

9ii 0 9i3 

0 922 0 

9 13 0 933 

Schoenflies Symbols: Besides the Hermann-Mauguin symbolism for the point 

groups used here, there is another important symbolism, called the 

Schoenflies symbolism, which is widely used by chemists. The equivalence 

between the Schoenflies symbols and the Hermann-Mauguin symbols are given 

in Table 5.6. The proper cyclic groups /,2,...,n are denoted 

^l’^2’''’’^n Schoenflies symbolism whereas the improper cyclic 

groups 7, 3, m, U, 6 are denoted C., C^, 5^, ^2h' • 

The subscript / signifies that the group contains the inversion isometry 

and h signifies that it contains a horizontal mirror plane perpendicular 

to a rotation axis. The subscript 5 stands for the German word Spiegelung 

for reflection and signifies that = m. The improper centrosymmetric 

monaxial groups 2/m, 3/m,...,n/m are symbolized as ^2h’ ^3h’'''’^nh' 
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Table 5.6: Schoenflies (S) and Hermann-Mauguin (HM) 

point group symbols. 

HM S HM S HM s 

1 c, T c. / 
2 C, 21m 

^2H 
m C 

5 

3 C. 3 
^3i 

U C. U/m S/7 4 s* 

6 C. 6/m 
S/, 

6 
S/, 

222 Dt mmm 
^2h mm2 Sv 

32 Di 3m 
^3d 3m s. 

1122 D, ‘t! mmm 
S/, ^2m 

^mm c,. 

622 D, 6/mmm S/, 62m S/, 

23 T m3 s 6 mm 
Ss/ 

1132 0 m3m s ^3m 

235 1 m3 5 
'h 

The improper noncentrosymmetric monaxial groups 2mm{=mm2), 

3mm,...,nmm with vertical mirror planes are symbolized C 
2v ’ 

^3v’ --’^nv- proper dihedral groups 222, 322 {^32), . . . ,n22 are de¬ 

noted D^,D^,...,D^ whereas the improper dihedral groups mmm, 3m, 

^2m, H/mmm, 61 mmm are denoted The sub¬ 

script d denotes the presence of diagonal reflection planes bisecting 

adjacent 2-fold axes. The tetrahedral cubic groups 23, m3, ^3m are 

denoted T, 7^, and the octahedral cubic groups 4J2 and m3m are 

dejioted 0 and O^, respectively. Finally, the icosahedral groups 235 and 

m35 are symbolized as / and Irespectively. 

The icosahedral point groups: These point groups occur when = 5, 

V2 = 3 and vj = 2. Regular icoshedral arrangements are not found as 

crystals because they require a five-fold axis of symmetry, and because 

a set of regular icosahedra cannot be packed together so as to fill space. 

However, the combination of an icosahedral unit as the unit in 

skutterudite, Co,Asij, with interstitial Co atoms can fill space to form 
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a cubic crystal with 2!m2 point symmetry. Also, an icosahedral unit 

dominates in the structure types (allotropes) of crystalline boron where 

Bi2 icosahedra are packed together inefficiently leaving regularly spaced 

voids. Although the B12 groups in boron can be viewed as being close- 

packed, only 37% of space is occupied. On the other hand, evidence for 

icosahedral geometry and cation-anion mixed layer packings has been used 

to explain the "super" dense packing in the glaserite, K3Na(S0i,)2 struc¬ 

ture types (Moore, 1976). The icosahedron also occurs in the world of 

viruses where virus particles pack together with icosahedral point sym¬ 

metry (PA6.4). The recent discovery by Schectmann et al. (1984) that the 

alloy AlgMn yields an electron diffraction record that conforms with 

icosahedral symmetry has added new importance to this type of symmetry. 

Of course, the presence of a five-fold axis of symmetry violates T4.17 

and so the periodicity of the atoms in the alloy cannot be repres- ented 

by a lattice. Until now solids have been classified as either crystalline 

or amorphous. However, the work on AlgHn suggests a new state of matter 

called quasi-crystals. In such substances the atoms are believed to be 

arranged in rows as in a crystal but the spacing within and between these 

rows is believed to exhibit a more complicated rapport. The result is a 

clustering of atoms that is repeated over and over again but at irregular 

Intervals. However, as the directions of the bonds in each cluster is 

maintained as in a crystal, quasi-crystals are believed to exhibit 

orientational rather than translational symmetry. Physicists, material 

scientists and mathematicians are actively studying this new form of 

matter. Some argue that the atoms in such matter are quasiperiodic 

whereas others argue that they exhibit incommensurate ordering. Whatever 

the outcome, it is clearly important that we devote some time to the 

icosahedral groups so that we may gain a better appreciation of substances 

like AlgMn. Finally, the fact that skutterudite crystallizes as a 

pyritohedron, which closely resembles the dual of an icosahedron, and that 

its point symmetry is a subgroup of the icosahedral group, suggests that 

it may have passed through a quasi-crystalline state prior to its final 

Qj-yg2.1 ization, leaving a remnant As32 iscosahedral unit in the struc¬ 

ture . 

(P5.26) Problem: Use TA6.2 to show that the composition of two fifth- 

turns cannot be a half-turn. 
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Figure 5.11: A regular dodecahedron(dual of an icosahedron) 

bounded by 12 pentagonal faces with a cartesian set of basis 

vectors C = The generating rotations of 2J5 are a 

fifth-turn, a third-turn and an half-turn. The rotation axis 

of a fifth turn is perpendicular to each pentagonal face, that 

of a third-turn passes through each corner where three of 

these faces meet and that of a half-turn passes through the 

bisector of each edge. 

(P5.27) Problem: Use TA6.4 to show that if the composition of two 

fifth-turns is a third turn, 55 = 3, then the angle between the fifth-turn 

axes is approximately 63.435°. 

Problem: Use TA6.4 to show that if the composition of two 

fifth-turns is a fifth turn, 55 = 5, then the angle between the fifth-turn 

axes is approximately 116.565°. 

Note that since 63.435° and 116.565° are supplementary angles, the 

results given in P5.27 and P5.28 are compatible. Hence the 532 groups 

must be such that the angle between two of the five-fold axes is 63.435°. 

Let C denote a cartesian coordinate system. We place two five-fold axes 

in the j, k plane such that the angle between them is bisected by k (Figure 

5.11). Hence the angle between k and each of these is 31.718°. Hence 

the unit vectors in the directions of these axes are 

(0, sin(31.718), cos(31.718))^ = (0, .52574, .85065)^ 

and 

(0, sin(-31.718), cos(-31.718))^ = (0, -.52574, .85065)^ 

As will become apparent as we generate the pole point representatives for 

532, certain numbers occur again and again. In order to take advantage 

of these repeating numbers, we define t to be 

T = (1 + /5)/2 = 1.618034 = ctn(31.718) 

the "golden mean". Using t, representatives of the pole points of these 

five-fold axes becomes (O,!,!)"^ and (0,-1,which are at a distance of 
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/l + "t* = 1.902113 units from the origin. One fact that will aid us in 

our calculations is that = t + 1. 

(P5.29) Problem: Confirm that 

T - 1 -T 1 

T 1 T - 1 

-1 T - 1 T 

.309017 -.809017 .500000' 

= .809017 .500000 .309017 

[-.500000 .309017 .809017 

by using the unit vector (0, .52574, .85065)^ and p = 72° in (A3.1). Also 

show that 

[Oil] 
5) = 

T - 

T 

1 

-T -1 

1 1 - T 

1 - T T 

.309017 -.809017 -.500000' 

.809017 .500000 -.309017 

.500000 -.309017 .809017 

by using the unit vector (0, —.52574, .85065)^ and p = 72° in (A3.1). 

(P5.30) Problem: Show that 

= i 

1 - T -T 1 

T -1 1 - I 

1 T - 1 T 

'-.309017 

.809017 

.500000 

-.809017 

-.500000 

.309017 

.500000 

-.309017 

.809017 

For example the (1,2) entry is found as follows: 
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i-12 = -i[(T - 1)(-X) + (-T)(l) + (1 - T)] 

= i[-X^ - T + 1] 

= i[-(x + 1) - X + 1] 

= i[-2x] = -xjl . 

Analyze this matrix and show that 

(P5.31) Problem: Show that 

-1 

X - 1 

X - 1 T 

-X 1 

1 X - 1 

= ^ + ^h) 

-.500000 .309017 .809017 

.309017 -.809017 .500000 

.809017 .500000 .309017 

(P5.32) Problem: Show that 

0 0 1 

10 0 

0 1 0 

Note that M„ ^ ^5) ' ^ = M 
^ O * c 

Setting A = M^( and B = M^([”^l3) and recalling that we 

have already found the pole point representatives [Olx]^ for the 5-folds, 

[1, 0, X + 1]^ and [xxx]^ for the 3-folds and [x,l,x + 1]^ for thi 

2-folds, we can find the remaining pole point representatives in the first 

octant as follows: 

(1) 5-fold pole points: 

{[Olx]^, B(01x]^B ^[Olx]’'} = {[01x]^[x01]^,[l,T,0]^} ; 

(2) 3-fold pole points: 

1% 



(3) 2-fold pole points: 

(A’^t,1,x + 1]^)} 

By applying 

point representatives in the first octant and then including the negatives 

of the resulting representatives, representatives of all of the pole 

points are obtained. One can now find all 60 matrix representatives and 

show that M^(5J2), and hence 532, is a group. Note that since we have 

no proper polyaxial subgroup of 532 of order 30 (note that the dihedral 

group n22 with n = 15 is not a subset of 532). Hence the only improper 

group created from 532 is 

(532) U (532)/ = 53(2/m) 

The ITFC (Hahn, 1983) denotes 532 by 235 and 532/m by m35. 
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CHAPTER 6 

THE BRAVAIS LATTICE TYPES 

For some minutes Alice stood without speaking, looking out in all 

directions over the country - and a most curious country it was. There 

were a number of tiny brooks running straight across it from side to side, 

and the ground between was divided up into squares by a number of 

green hedges that reached from brook to brook. "/ declare, it's marked 

out just like a large chess-board," Alice said at last. "... all over the 

world - if this is the world at all." -- Lewis Carroll 

INTRODUCTION 

In Chapters 4 and 5, all of the possible point groups were found that 

contain isometries with turn angles of multiples of either 60 or 90 . 

To confirm that all of these are crystallographic point groups, a lattice 

must be found for each that is left invariant under the group. In this 

chapter, we not only show that such a lattice exists for each of these 

groups, but also we find a description that includes all such lattices 

for each group. We shall see that the bases chosen in Chapter 5 are 

fundamental to the discovery of these lattices. In toto we shall find 

14 different lattice types. 

Frankenheim (1842), the first to study lattices, concluded in his 

derivation that there are 15 distinct lattice types. Several years later, 

Auguste Bravais (1849) undertook a more rigorous derivation and showed 

that there are only 14 types. These lattices were named the 14 Bravais 

lattice types in his honor. The American Crystallographic Association 

has published an English translation of Bravais' derivation (Bravais, 

1945) that makes interesting reading. However, the strategy followed in 

our derivation of the lattice types is more closely akin to that used by 

Zachariasen (1945) in his beautiful book entitled Theory of X-ray 

Diffraction in Crystals. 

LATTICES 

We recall from Chapter 1 that any basis D = {a,b,c} generates a 

lattice ‘-D where 
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= {ua + vb + wc I u,v,w t Z) 

(T6.1) Theorem: Let Dj = {ai,bi,Ci} and D2 = {a2,b2,C2} denote bases 

of S. Then Dj and D2 generate the same lattice if and only if each vector 

in Di is an integral combination of D2 and each vector in D2 is an in¬ 

tegral combination of D^. That is, if and only if [ai]„ , 
UI U 2 U 2 

[Ci]/-j and [ a 2 ] y-, , [ b 
Di’ 

are all in 1' 

Proof: Suppose . Consider ai. Since aj z Z. _ , a, z L . 
^2 Di Dj 

Hence 3; can be written as an integral combination of the vectors in 

D2. Likewise, bj and Cj can be written as integral combinations of 

vectors in Dj. Similarly 32, b2 and C2 can be written as integral com¬ 

binations of Di. Now suppose each vector in Dj can be written as an 

integral combination of vectors in D2 and vice versa. Let T denote the 

change of basis matrix from to Dj. Then 

T = 

Note that, by assumption, the entries of T are all integers (that is, T 

IS an integral matrix). Let v denote a vector in Z.„ . Then 

^ 1 

[V]^^ s by definition of Hence [v]^^ = T[v]^^ s Z’ and so 

V £ Z.^2- Therefore is a subset of Similarly, since t'^ is 

constructed from fa,!^ fb,! anA 1 -i- ■ 
^ integral matrix 

and so T ^Tv’ 

-D: 

D.. = V 
D, ^ is a subset of Z.„ and so L D, -D, 

(D6.2) Definition; A matrix T all of whose entries are Integers is called 

an integral matrix. If, in addition det(T) = ±1, T is said to be 

unimodular over the integers or, for our purposes, simply unimodular 

If T is integral and det(T) = 1, then T is said to be a proper animodalar 

matrix. 

(P6.1) Problem: Show that the product of two proper unimodular matrices 
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is again a proper unimodular matrix. 

(T6.3) Theorem: Let Di and Dj be bases of S. Then ~ 
Ui U2 

only if the change of basis matrix T from Dj to D2 is a unimodular matrix. 

Furthermore, if ~ then Dj and D2 are of the same handedness if 
U1 U2 

and only if T is a proper unimodular matrix. 

Proof: In the proof of T6.1, we showed that - L p. if and only if 

the change of basis matrix from Dj to Dj is integral and the change of 

basis matrix from D2 to Dj is integral. Hence if L^ , the change 

of basis matrix T from Dj to D2 and the change of basis matrix from D2 

to Di, T are both integral. Hence det(T) and det(T are integers. 

By TA2.24, det(T = l/det(T). Therefore, det(T) = ±1 and so T is 

unimodular. Now suppose the change of basis matrix T from Dj to Dj is 

unimodular, then T ^ is also an integral matrix (TA2.25). Suppose 

Lp = L p. and M is the change of basis matrix from D2 to a right-handed 

cartesian coordinate basis C. Then TM is the change of basis matrix from 

Di to C. Since det(TM) = det(T)det(M), the signs of det(M) and det(TM) 

agree if det(T) > 0 and disagree if det(T) < 0. Since Dj and Dj are of 

the same handedness (see the cross product section of Chapter 1) if and 

only if det(TM) and det(T) agree in sign, we have established the theorem. □ 

(E6.4) Example - When two bases generate the same lattice: Let D = 

{a,b,c} denote a basis of S. Consider 

Di = {b, (l/3)a + (2/3)b + (2/3)c, (2/3)a + (l/3)b + (l/3)c} 

and 

D2 = {(2/3)a + (l/3)b + (l/3)c, -(l/3)a + (l/3)b + (l/3)c, 

-(l/3)a - (2/3)b + (l/3)c} . 

Show that Di and D2 generate the same lattice and are of the same 

handedness. ° 

Solution: Since Di and Dj are both expressed in terms of the basis D, 

we can find the change of basis matrix from Dj to D2 using the following 

circuit diagram. 
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T. I 

[V] D, 

I Tz 

'D ‘D 

have 

diagram, we see that T = Till 

'0 1/3 2/3 

Ti = 1 2/3 1/3 

0 2/3 1/3 

we 

From P2.19, when ID was denoted by ID i and ID2 by ID2 j we see that 

T, = 

1 0 1 

-1 1 1 

0 -1 1 

Hence 

T ^ T2T1 = 

0 1 1 

1 1 0 

-10 0 

Since det(T) - 1 and T is an integral matrix, T is a proper unimodular 

matrix. Hence D, and generate the same lattice and are of the same 

handedness. 

We shall now consider generators of lattices of one-, two- or 

three-dimensions. Let a denote a nonzero vector. Then D = {a> generates 

a one-dimensional lattice Z.^, 

= {ua I u E Z} . 

Next, let a and b denote non-collinear vectors, then D = {a,b} generates 

a two-dimensional lattice 
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= {ua + vb I u ,v t Z) 

Note that the terra "lattice" will be used by us to denote a three- 

diraensional lattice unless otherwise indicated. In any lattice (of di- 

raension 1, 2 or 3) there e.xists shortest nonzero lattice vectors (Newman, 

1972). That is, there exists a lattice vector V whose length is less 

than or equal to the length of every other nonzero vector in the lattice. 

The next theorem uses the existence of these vectors to find a basis for 

the lattice. 

(T6.5) Theorem: Let a denote the shortest vector in a one-dimensional 

lattice L^. Then {a} generates Let a and b be the shortest non- 

collinear vectors in a two-dimensional lattice L^. Then {a,b} generates 

L^. Let a, b and c be the shortest non-coplanar vectors in a three di¬ 

mensional lattice then {a,b,c} generates '-D- 

The proof of this theorem would require a geometric digression that 

we do not have space for in this book. 

We will now consider the situation where one lattice is contained 

in another. 

(D6.G) Definition: Let L denote a lattice. By a sublattice L' of L, 

we mean a subset of L that is a lattice in its own right. 

We will show that every lattice left invariant under a point group 

C has a sublattice of the form Lp where P is a basis of the type defined 

for C in Chapters 4 and 5. Hence we will be searching for lattices 

containing Lp that are also left invariant under C. Suppose ‘-D is a 

lattice such that Lp is contained in As groups, Lp is a normal 

subgroup of Lpj since lattices are abelian groups. Hence L^/Lp is a 

group. We will study the relationship between Lp and by considering 

the elements of Lp^/Lp. Note that if V is a vector in L^ and not in 

Lp, then [V]p must contain fractional coordinates. We can restrict the 

type of fractional coordinates used if we note that Lp/Lp is a subgroup 

of S/Lp and use the equivalence relation associated with this factor 

group. We call this equivalence relation Lp-equivalence and explicitly 

state the relation in the following definition. 

(D6.7) Definition: Let Lp denote a lattice and let V and w denote vectors 
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in S. We define the relation ~ on S by 

V ~ w <=> w - V £ Lp . 

If V ~ W, we say that V is Z.p-equivalent to W. 

See Appendix 7 for a discussion of factor groups and their related 

equivalence relations. Let V £ S and suppose [V]p = [ j ^ 3 ] ^ • Let 

u, be the largest integer such that u. < v.. Consider 

u = UiB + Ujb + U3C and w = (v i - Ui)a + (v 2 - + (y, - t/jlc , 

where P — {a,b,c}. Then u t Lp and V — W = U. Consequently W ~ V. 

By the way the us were defined, [w]p = [WijWz.Wj]'' where 0 < w^. < 1 

for each /. Hence each vector in S is equivalent to a vector whose co¬ 

ordinates with respect to P are greater than or equal to zero and less 

than 1. 

(D6.8) Definition: Let denote a lattice where D = {a,b,c}. Then the 

unit cell L/^ of Lis 

~ ^ ^ I ~ such that 0 < < 1 or / = 1,2,3} 

= {xa + yb + zc i 0 < X < 1, 0 < y < 1, 0 < z < 1} 

Consequently, relative to a lattice each vector in S has an 

equivalent vector in U 

(P6.2) Problem: Show that if [vl = 1 — 13 7 13 3 ivjp, [ ij./, 12.3, 6], then V ~ W where 

[W]^ = [0.3, 0.3, 0]^ £ Up. 

(T6.9) Theorem: Let L denote a lattice and let denote a sublattice 

of L. Each element of the factor group L/L^ has a representatiue in the 

unit cell Up of Lp. 

Proof: The elements of the factor group L/Lp are the 

Lp in L. By EA7.8 we see that the right cosets of L 

equivalence classes of the vectors in L with respect to L 

right cosets of 

in L are the 

pj-equivalence 
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-1 

(when applying EA7.7 recall that the statement "ba " in multiplicative 

notion is "b — a" in additive notation). By the discussion preceding 

T6.9, each vector in L is i.^-equivalent to some vector in (7^. Hence 

each right coset has a representative in U□ 

T6.9 enables us to describe a lattice L in terms of a sublattice 

by listing relatively few vectors with fractional components. 

(E6.10) Example - The two cosets of a body-centered lattice: The body- 

centered lattice L constructed from a lattice D = {a,b,c}, is the 

lattice consisting of two right cosets: 

+ 0 and + (ia + ib + ic) 

Hence the representatives with respect to D of these right cosets are 

[000]^ and Hence 

L = {^la + Hjb + HjC + HfcCia + ^b + ^c) | n ^ ,n2 ,n3 ,n^ z Z) 

(T6.11) Theorem: A lattice L is left invariant under a point group of 

the form C U C/ or /-/ U (C \ /-/)/ (see T4.28) if and only if L is left 

invariant under C. 

Proof: Let L denote a lattice left invariant by C U Ci. Since C is a 

subset of C U Gi, L is invariant under C. Suppose that L is left in¬ 

variant by W U (C \ H)i. Since L is invariant under /, and (C \ H)i, 

it is invariant under each operation in [ (C \ H')i]i = G \ H. Hence L 

is invariant under C = W U (C \ H) . Now suppose that L is invariant 

under C. Then L is invariant under Gi and hence under C U Gi. Since 

(C \ H)i is a subset of Gi and H is a subset of C, L is invariant under 

(C \ /7)/ and H. Hence L is invariant under H U {G \ H)i. c 

(T6.12) Theorem: Let C denote a point group. Then a lattice L is left 

invariant under G if and only if L is left invariant under each of the 

generators of C. 

Proof: Let 592) • • • >9^^ denote the generators of C. If L is invariant 

under C then it is invariant under each of {g^ ,92 > • • ■ >9^} • Now suppose 

is invariant under each of {g^ ,g2> • • • >9^} • g e C. 
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Then g is a finite product (composition) of {g^^,. . • ,9^}, say g = 

where h^. £ {g^, 92. • • • ,9^} • Then 

g(/.) = h^h^...h^(L) 

= h^h^.. .h^ _ ^(L) 

- h^CL) 

= L . : 

Given a point isometry a and a lattice we need a strategy for deter¬ 

mining whether is left invariant under a or not. Note that 

is the lattice generated by a(D) = {a(a),a(b),a(c)} since 

a(t/a + vb + WC) = ua(a) + va(b) + wa(c) . 

Hence = a{Lif and only if D and a(D) generate the same lattice. 

Using T6.1, to show that I-q is left invariant under a, we need only show 

that each vector in D can be expressed as an integral combination of 

a(D) and vice versa. 

(T6.13) Theorem: Let C denote a point group and let D = {a,b,c} denote 

a basis of S. Then is invariant under C if and only if M^(a) is an 

integral matrix for each generator a of C. 

Proof: Recall that 

[«(a)]£, [a(b)]^ [a(c)]^ 

which is the change of basis matrix from a(D) to D. Since we know (see 

CA3.8) that det(M^(a)) = ±1, T6.3 yields the result that = L if 

and only if M^(a) is integral. “(^) ^ 

(E6.14) Example - A lattice left invariant under a point group C: Suppose 

a and 3 are generators for some point group C, D = {a.b.c} denotes a 
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basis for S and a(a) = b, a(b) = -a + c, a(c) = c, &(a) = -b, g(b) = 

-a, and 3(c) = -c. Show that is invariant under C. 

Solution: To show that the lattice is invariant under C, we must show 

that M^(a) and are both unimodular. Since 

H^(a) 

o
 

1
_

 

-1 o' 

o
 

1
_

_
 

-1 o' 

1 0 0 and M^(3) = -1 0 0 

1-
 

o
 

1 1 1
-

 
o

 

0 -i_ 

are both integral and det(M^(a)) = det(Mp,(3)) = +1, we may conclude that D' 
is mapped into self coincidence by each point isometry in C. □ 

(P6.3) Problem: Use T6.13 to show that Lp (for the appropriate choice 

of P) is left invariant by each of the point groups whose generators are 

represented by the matrices in Tables 5.2 and 5.3. 

We have established some results about properties of C that would 

insure that a given lattice is left invariant under C. We now shift the 

emphasis and ask what properties must hold in a lattice L in order for 

it to be left invariant under a given point group C. 

(T6.15) Theorem: Suppose that a is either a half-turn or a third-turn 

whose rotation axis 2. passes through the origin. Let L denote a lattice 

that is left invariant under a. Then there is a nonzero lattice vector 

along 2 and a two-dimensional lattice plane perpendicular to 2 passing 

through the origin. 

The proof of T6.15 is given in Appendix 4. 

A DERIVATION OF THE 14 BRAVAIS LATTICE TYPES 

In this section, we shall consider the proper crystallographic point 

groups. For each such group C, we shall determine the structure of a 

lattice Lp left invariant under C such that any lattice L left invariant 

under C will have a sublattice with the same structure as Lp. For con¬ 

venience we will denote Lp by P. The fact that both the lattice and its 

basis are denoted by P will not cause confusion since the context will 
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always make the meaning of P clear. If L contains P and L ^ P, vie call 

L a centered lattice with respect to P. 

We will now determine the possible lattice types for each of the 

point groups. 

Lattices invariant under 7: All lattices are left invariant under 7 and 

so no conditions beyond those of being a lattice are needed. By conven¬ 

tion the basis P = {a,b,c} for the lattice P is chosen to be such that 

a is the shortest nonzero vector in the lattice, b is the shortest lattice 

vector not collinear with a and c is the shortest lattice vector not 

coplanar with a and b chosen so that the resulting coordinate system is 

right-handed. Since all lattices satisfy the condition for P, no further 

lattices need be sought. Hence there is only one lattice type for 7 which 

is denoted P and is called the primitive lattice type (see Figure 6.1). 

Lattices invariant under 2; As in Chapter 5, for 2 we take the basis 

^ ~ ^3,b,c) such that c is along the 2-fold axis and a and b are per¬ 

pendicular to c so that P is right-handed. Then the lattice P is left 

invariant under 2 because Mp(2) consists only of integral matrices (see 

T6.13 and Table 5.2). 

Let L denote any lattice left invariant under 2. By T6.15, there 

exists a nonzero lattice vector along the 2-fold axis and there is a 

lattice plane passing through the origin perpendicular to the 2-fold axis. 

Let {a,b} denote a basis for the lattice plane perpendicular to the 2-fold 

axis. Since no geometric constraints have been placed on this lattice 

plane, no preference will be given to one basis over another. Let c de¬ 

note the shortest nonzero vector along the two-fold axis so that 

{a,b,c} is a right-handed system. The lattice generated by {a,b,c} is 

of the same type as P described in the previous paragraph. Hence we 

denote both {a,b,c} and the lattice generated by it by P. If P i L , then 

P IS a proper subset of L and so there are vectors in L whose coordinates 

with respect to P are fractional. In order to facilitate the discussion, 

we shall use P-equivalence to discuss the vectors in L. Hence, by T6.9 

each vector in L has a representative whose coordinates f,, and f, with 

respect to P are such that 0 < ^. < l. Suppose f s L such that [f]^ = 
I 

[fiyfzJi] where 0 < f. < 1. Then 

208 



-1 0 0
 

_
_

I
 1

-
 

1 

[2(f)]p = Hp(2)[f]p = 0 -1 0 f2 = -f2 

0 0 1_ /3, 

_
\ 

If e is defined to be e = 2(f) + f, then e E L and 

[e]p = Mp(2)[f]p + [f]p 

Since c is the shortest vector along the two-fold axis in L, e must be 

a multiple of c and so 2f^ z Z. Hence, f3 = 0 or i. Similarly, if we 

define e to be e = f - 2(f), then e z L and [e]p = [2f 3,2f 2,0]^ ■ Since 

{a,b} is a basis for the lattice plane perpendicular to c, we have 2fi, 

2f 2 £ Z. Therefore, f ^ = 0 or \ and f 2 = ^ or ^. We tabulate the various 

combinations of these fractional coordinates in Table 6.1. Those combi¬ 

nations that violate the choice of the basis P are noted as contra¬ 

dictions. By the discussion following D6.6, L/P is a group. Hence, the 

only combination of the four possible fractional vectors that are suitable 

are those that form groups modulo P. Each of these vectors generates a 

cyclic group modulo P as shown below: 

P/P 

1 
'0
 

0
 

0
' 

1 
(
_

1 

A/p 

o' 

0 

0 

o' 

1 
2 

A 
2^ 

B/P 

'o' 

0 

lO 

“l" 
2 

0 

1 
2 

I/p 

"1* 
2 

X 
2 

A 
.2. 

'0 '0' o' 'o' 0' 0 0 1 
2 'o' 'o' 

■ 1* 
2 

0 0 0 0 1 
2 0 0 0 0 0 

0 0 0 0 1 
2_ 0 0 1 

.2_ 0 0^ 

'0' '0^ 'o' 
1 
2 

1 
2 0 f-l-l 

2 
'l“ 

2 'o' 

1 
2 0 0 0 0 X 

2 2 0 

i. 
X 

_2_ o_ 
X 
2 

X 
.2, _0_ 

X 
2_ 0 

No other groups can be formed from the four possible fractional vectors. 

This can be seen by observing that combining any two of the nonzero 

fractional vectors yields an impossible vector. For example, 

(modulo P) 
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which, as noted in Table 6.1, violates the choice of {a, b}. 

Table 6.1: Combinations of fractional coordinates for 2. 

Possible Coordinates Impossible Coordinates Contradictions 

/'i f2 f. f2 f3 

0 0 0 1 2 0 0 choice of a 

0 1 0 1 2 0 choice of b 

2 0 1 0 0 1 2 choice of c 

1 1 1 2 1 5 1 2 0 choice of {a,b} 

(P6.4) Problem: Show that [1,0,-J] and cannot both be in L by 

forming their sum modulo P. Show that [0,1,1] and [1,1,1]^ cannot both 

be in L . 

Consider the lattice A = (P + 0) U (P + [0,1,1]^). If we change 

basis from P = {a,b,c} to P, = {a,,b,,c,} where a^ = b, b, = a and 

Cl = “C, then the change of basis matrix from P to P ^ is 

T = 

0 

1 

0 

1 0 

0 0 

0 -1 

which is a proper unimodular matrix. Hence P, is another basis for the 

lattice P and, furthermore, Pj satisfies the criteria to qualify as a P 

basis. That is, aj and bj forms a basis for the lattice plane perpen¬ 

dicular to the 2-fold axis and Ci is the shortest lattice vector along 

the axis. Since 

-
1

 
O

 

1 

O
 'o' l" 

2 
’l' 
2 

1 0 0 1 
2 = 0 0 

0 0 -1 

-
1

 

_
_
J

 

1 
2 1 

.2, 

(modulo Pj) , 

the A lattice of P is the same set of points as the B lattice of Pj. 

Similarly, it can be shown (see P6.5) that the / lattice also occurs L 

a B lattice with respect to a different allowable basis. Hence if we 

210 



take the A lattice with respect to every allowable basis, we will obtain 

all of B and / lattice types as well. 

(P6.5) Problem: Show that the A lattice with respect to the P basis 

is the / lattice with respect to the P2 = {a2,b2,C2} where 82 =3, b2 = 

a + b, C2 = c. (Hint: Show that P^ is a basis for the lattice P and 

that P2 satisfies the conditions that {82,b2} is a basis for the lattice 

plane perpendicular to the 2-fold a.xis and that C2 is the shortest vector 

along the axis. Then show that P^ is a right-handed basis and that 

t t 
[0,2,2] with respect to P becomes [2,1,1] with respect to P2) ■ 

Hence, we need only use one centering for each basis to obtain all 

possible centered lattices. When c is along the rotation axis, as in our 

case, the ITFC (Hahn, 1983) gives as the first choice [0,^,i]^. Thus we 

obtain the lattice type 

>1 = (P + 0) U (P + ib + ic) 

= {/T7ia + m2b + mjC [ mi,m2,m2 e Z} 

U {mia + rriib + rrijC + (^b + ic) | mj,m2,m3 t Z) 

= {ua + v(ib + ic) + wc \ u ,v ,w z Z) 

Hence a basis for A is D = {a, ib + ic, c}. If ['f]p = [^i,^2>^3] , Fhe 

coset P + f is called a colattice and is denoted by Cpif ^ ,f2 J3) ■ Note 

that if f is not an element of P, then Cp{f y, ,f2 J3) is not a lattice since 

0 is not an element Cpifi,f2 ,f3)■ However, Cpifi,f2,f3) bears a strong 

geometric resemblance to P since it is an image of P displaced by the 

vector f. In the case ot A, A = P Cp(0,i,i). Note that the points 

of Cp(0,i,i) lie in planes perpendicular to the 2-fold axis, located 

halfway between the planes- containing the lattice points of the sublattice 

P. To show that A is invariant under 2, we need to show that M^(2) is 

an integral matrix. Since 

M£,(2) 
-10 0 

0-10 

0 1 1 
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A is invariant under 2. Thus, there are two types of lattices left in¬ 

variant by 2. The first type is called a primitive lattice and is denoted 

by P. Every lattice plane of P perpendicular to the 2-fold axis has a 

lattice point on the axis. The second lattice type denoted by A, is 

called an A-centered lattice. The lattice planes of A perpendicular to 

the 2-fold axis alternate, one having a point on the axis (i.e., in P) 

and the next not on the axis (i.e., in Cp(0,-J,|)). 

(P6.6) Problem: 

(1) Given a basis D - {a,b,c} with b taken along the 2-fold axis 

and a and c perpendicular to b forming a right-handed system, 

show that the lattice generated by D is left invariant under 

1010]^ 

(2) Let L denote any lattice type left invariant by Show 

that the coordinates of the fractional vectors in L with re¬ 

spect to D left invariant by are [0,0,0]^, [i,i,0]^, 

(3) Using the four fractional vectors obtained in the part (2) as 

generators, construct multiplication tables for the L/L^ 

groups for each of the following choices of L: 

^d'^d " no,0,0]^} 

C//-0 = {[0,0,0]^[i,i,0]^} 

AIL^ - {[0,0,0]^[0,i,i]^} 

(4) Show that no groups contain [i,i,0]^ and [0,i,i]^. 

(5) Show that the /^-centered and /-centered lattices with respect 

to D can be realized as C-centered lattices with respect to 

other allowable bases for L^. - When b is chosen to lie along 

the 2-fold axis, the ITFC (Hahn, 1983) gives as the first choice 

[2j2>0] • This results in the lattice type 

C ^ + Q) \J (L^ + (ia + ib)) 

= {f/(ia + |b) + vb + wc I u,v,w t Z) 

with the basis = {^a + ^b, b, c}. Show that C is left in- 
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. [010K 
variant by 2. With the completion of this problem, we may 

conclude that there are two types of lattices left invariant 

by ^ ^2: P and C. The lattice type denoted C is called a 

C-centered lattice type (see Figure 6.1). This setting for the 

one-face centered lattices in the monoclinic systems is the 

choice used in the ITFC (Hahn, 1983). 

Lattices invariant under 3: As in Chapter 5, we choose the basis P = 

{a,b,c) for 3 such that c is in the positive direction of the 3-fold axis, 

a and b are perpendicular to the axis such that <(a:b) = 120° and P forms 

a right-handed system. Since Mp(2) consists of integral matrices, Lp 

is left invariant under 3. Let L denote a lattice left invariant under 

3. By T6.15 all lattices left invariant under 3 have a nonzero lattice 

vector along the three-fold axis and a lattice plane perpendicular to the 

axis passing through the origin. Let a be a lattice vector in the lattice 

plane perpendicular to c of shortest length. Then b = 3(a) is in the 

lattice plane and its length is also the shortest. Hence {a,b} is a basis 

for the lattice plane (T6.5). Let C be the shortest nonzero lattice 

vector along the positive direction of the 3-fold axis. Then P = 

(a,b,c} is a right-handed basis. Hence P is a lattice of the same form 

as the lattice P discussed in the previous paragraph. As in the case 

of 2, we consider the vectors in L under P-equivalence. Hence we seek 

vectors f in L of the form [f]p = [f i ,f 2 ,f 3]^ where 0 < f. < 1. Since L 

is invariant under J, f + 3(f) + 3 (f) is in the lattice, and, (see Table 

5.3) 

[f + 3(f) + 3'‘'(f)]p = [f]p + Mp(3)[f]p + Mp(3'‘')[f]p 

0 

= 0 

Since C is the shortest vector in L along the 3-fold axis, 3f3 must be 

an integer. Hence fj = 0, 1/3 or 2/3. Also f — 3(f) is in L and 

[f - 3(f)]p 

+ fi 

2f 2 ~ f\ 

0 
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Since {a,b} is a basis for the two-dimensional lattice perpendicular to 

the 3-fold axis, f\ ■‘f f2 and 2f2 ~ fi are integers. Hence there exist 

integers u and v such that 

fl+f2=U 

-fi + 2f2 = V . 

Using the technique of Appendix 2, we solve this system by row reducing 

the augmented matrix 

1 1 I u 

-1 2 I V 

obtaining 

1 0 I u - (u + v)/3 

,0 1 I (IV + v)/3 _ . 

Hence fi — u — t/3 and ^2 = t/3 where t = u + v. Since u and V are in¬ 

tegers and 0 < f. < 1, we obtain the three solutions fi = 0,f2 = 0; f-^ = 

1/3) (2 - 2/3; and = 2/3, f2 1/3. All combinations of and /j 

are considered in Table 6.2 where the possible combinations appear on the 

left and impossible combinations together with their contradictions ap¬ 

pear on the right. 

Table 6.2: Combinations of fractional coordinates for 2. 

Possible 

fi 

Coordinates 

f 2 f 2 

1 mpossible Coordinates 

f 1 f 2 f 3 

Contradictions 

0 0 0 1/3 2/3 0 choice of {a,b} 
1/3 2/3 1/3 2/3 1/3 0 choice of {a,b} 
2/3 1/3 1/3 0 0 1/3 choice of c 
1/3 2/3 2/3 0 0 2/3 choice of c 
2/3 1/3 2/3 

We shall now determine the possible factor groups L/P. There are 

three cyclic groups that occur: 
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p/p , R{rev)/P = 

( o' '1/3' 'iji 

0 9 2/3 9 1/3 

0 .1/3 .2/3 

o' IjZ '1/3' j 
Riobv)lP = 0 9 1/3 9 2/3 

0 .1/3. .2/3 1 

By R{rev) and R(obv) we mean the reverse and obverse settings of the 

rhombohedral lattice (see ITFC (Hahn, 1983)). 

(P6.7) Problem: Prepare multiplication tables for each of the sets L 

mod P for P, P(rev') and Riobv) and show that each is closed and therefore 

a factor group. For Riobv) we have 

Riobv) = P U Cp(2/3,l/3,l/3) U Cp(l/3,2/3,2/3) 

= {riia + n^b + HjC | Hi,02,^3 t Z) 

U {mia + mjb + mjC + (2/3)a + (l/3)b + (l/3)c | e Z) 

U {Pja + k^b + kjC + (l/3)a + (2/3)b + (2/3)c | k-,,k^,kj z Z) . 

We shall select a basis for Riobv) by including the two vectors that 

define the colattices and one of the basis vectors for P. We choose 

= {(l/3)a + (2/3)b + (2/3)c, b, (2/3)a + (l/3)b + (l/3)c} and con¬ 

firm in P6.8 that it is a basis. 

(P6.8) Problem: Show that each vector in is in Riobv) and that each 

vector in Riobv) can be expressed as an integral combination of . 

That is show that is a basis for the lattice Riobv). 

(P6.9) Problem: Show that 

{a, (2/3)a + (l/3)b + (l/3)c, (l/3)a + (2/3)b + (2/3)c} 

is not a basis for Riobv) by demonstrating that the vectors are not 

linearly independent. 

The conventional basis for Riobv) is 
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‘^R(obv) " {(2/3)a + (l/3)b + (l/3)c. -(l/3)a + (l/3)b + (l/3)c, 

-(l/3)a - (2/3)b + (l/3)c} (6.1) 

By E6.4, is a lattice equivalent to D^. 

basis for R^obv). Hence, 

Hence , , , is a 
R (obv) 

^^^R(obv)'^ " {3((2/3)a + (l/3)b + (l/3)c), 3(-(l/3)a + (l/3)b + (l/3)c, 

3(-(l/3)a - (2/3)b + (l/3)c} 

{-(l/3)a + (l/3)b + (l/3)c, -(l/3)a - (2/3)b + (l/3)c, 

(2/3)a + (l/3)b + (l/3)c} . 

Since R(obv) is left invariant under 3. Thus, 

R(obv) is left invariant under 3. 

Note that P^ = {a + b, -a, c} is a basis for P, 3(a + b) = -a and 

C is perpendicular to a + b and -a. Hence Pi satisfies all of the ge¬ 

ometric criteria imposed on P. Furthermore with respect to P^ the vectors 

in Rirev) are found, using the change of basis matrix from P to Pj 

0 10 

-1 1 0 

0 0 1 

to be 

( "o' '213 ‘ 1/3 1 
0 > 1/3 > -1/3 

I 0 1/3 2/3 ) 

In the factor group an entry of -1/3 is the same as 2/3 modulo P and so 

R(rev) in this new basis is identical with P(ofov) in the old. Hence 

the two factor groups yield lattices that'are not considered to be dif¬ 

ferent. By convention the obverse setting is used and is called a 

rhombohedral lattice type. Hence there are two lattice types left in¬ 

variant under 3. The lattice type P is called the primitive hexagonal 

lattice type. The centered rhombohedral lattice type is denoted R (see 

Figure 6.1). 
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Lattices invariant under 4: As in Chapter 5, we choose the basis P = 

{a,b,c} for U such that C is along the positive direction along the 4-fold 

axis, a and b are perpendicular to the axis such that <(a:b) = 90° and 

P forms a right-handed coordinate system. Since Mp(4) consists of in¬ 

tegral matrices (Table 5.2), Lp is left invariant under 4. 

Let L denote a lattice left invariant under 4. By T6.15, since 

2 e 4, all lattices left invariant under 4 have a nonzero lattice vector 

along the 4-fold axis and a lattice plane perpendicular to the axis 

passing through 0. Let a be a lattice vector in this lattice plane of 

shortest length. Then b = 4(a) is in the lattice plane and it is also 

the shortest. Hence {a,b} is a basis for the lattice plane (T6.5). Let 

C be the shortest nonzero lattice vector along the positive direction of 

the 4-fold axis. Then {a,b,c} is a right-handed basis. Note that 2 is 

an element of 4. Hence the possible lattice types left invariant under 

4 include P, A, B and / as described for 2. However, the >4-centered 

lattice fails to be invariant under 4 since 4(ib + ic) = —Ja + -Jc would 

also be in A implying that 

(ib + iO - (-ia + 4c) = 4a + 4b 

would also be in A. But 4a + 4b in A would contradict the fact that 

{a,b} is a basis for the lattice plane. Similarly, B is rejected. Hence 

the only possible lattice types are P and / where 

/ = (P + 0) U (P + (4a + 4b + 4c)) 

= {ua + vb + w(4a + 4b + 4c) | u,v,w e Z) . 

(P6.10) Problem; Confirm that Dy = {a, b, 4a + 4b + 4c} is a basis for 

/. 

Note that 

4(Dy) = {b, -a, -4a + 4b + 4c} • 

(P6.11) Problem: Prove that 4(Dy) and Dy generate the same lattice. 

Since the lattice points in the colattice Cp(4,4)4) appear at the 

center of each of the parallelepipeds outlined by the lattice points of 

P, / is called a body-centered lattice type (see Figure 6.1). 
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Lattices invariant under 6: As in Chapter 5, we choose the same basis P 

for 6 as was chosen for 3. That is, P = {a,b,c} where a and b are of 

equal length, <(a:b) = 120°, and c is in the positive direction of the 

6-fold axis. The lattice P is left invariant under 6 because 

6(P) = {a + b, -a, c} 

which is lattice equivalent to P. 

(P6.12) Problem: Show that 6(P) and P are lattice equivalent. 

Let L denote any lattice left invariant under 6. By T6.15, since 

2 £ 6, all lattices left invariant under 6 have a nonzero lattice vector 

along the 6-fold axis and a lattice plane perpendicular to the axis 

passing through 0. Let c be a lattice vector in this lattice plane of 

shortest length. Then b = 3(a) is in the lattice plane and is also the 

shortest. Hence {a,b} is a basis for the lattice plane (T6.5). Let C 

be the shortest nonzero vector in the positive direction of the 5-fold 

axis such that P = {a,b,c} is a right-handed basis. Note that P satisfies 

3II of the conditions for the P used in 2 and in 3. Hence the fractional 

coordinates allowed for vectors in L/P must appear in both Table 6.1 and 

Table 6.2. However, only 0,0,0 appears in both tables. Hence only the 

primitive lattice type P is left invariant under 5 (see Figure 6.1). 

Lattices invariant under 222: As in Chapter 5, we define P = {a,b,c} to 

be along the three 2-fold axes of 222 such that P is a right-handed 

system. Hence a, b and C are mutually perpendicular. Since Mp(222) 

consists of integral matrices, P is left invariant under 222. 

Let L denote any lattice left invariant under 222. By T6.15, there 

exist nonzero lattice vectors along each of the three 2-fold axes. Let 

a, b and C denote the shortest nonzero vectors along each of these three 

axes so that P = {a,b,c> is a right-handed system. Hence P satisfies 

the conditions for P in the previous paragraph and P is contained in L 

and P is invariant under 222. Consider the 2-fold axis along c. By our 

discussion of 2, the only fractional coordinates that can occur in L/P 

are f.= 0, i for each /. As in Table 6.1, the fractional vectors with 

two O’s and one i are impossible by the choice of a, b and c as these 

are the shortest vectors in their directions. However, a and b do not 
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necessarily form a basis for the lattice plane perpendicular to c and so 

the choice is possible for 222. Hence we obtain the same L/P 

groups as in 2 together with 

(P6.13) Problem: Find a basis for C = (P + 0) U (P + (^a + |b)) 

and show that C is invariant under 222. 

In the case of F, 

P = (P + 0) U (P + (ib + ic)) U (P + (ia + iO) U (P + (ia + ib)) 

= {u(ib + ic) + v(ia + ic) + w(ia + ib) | u,v,w e Z} . 

(P6.14) Problem: Confirm that = {^b + jc, ia + jc, ia + jb) is a 

basis for P. 

(P6.15) Problem: Show that P is left invariant under 222. 
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(P6.16) Problem: Show that by a change of basis the A and B lattices 

can be expressed as C lattices 

In summary, there are four lattice types left invariant under 222, 

the primitive lattice type P, the body-centered lattice type /, the all¬ 

face centered lattice type F, and the one-faced centered lattice type C 

(see Figure 6.1). 

The Lattices invariant under 322: In our discussion of 3 we found that 

there are two lattice types left invariant under 3. If we orient c along 

the positive direction of the 3-fold axis and a along one of the 2-fold 

axes, then 3(a) is along another 2-fold axis. With this orientation of 

P = {a,b,c}, P is left invariant under 322 since as was shown in Chapter 

5, Mp(J22) consists of integral matrices. 

(P6.17) Problem: With the orientation of a, b and c as described above, 

show that P(ofav) (see (6.1)) is invariant under 322. (Hint: We already 

showed that R(obv) is invariant under 3. Since 322 is generated by 3 

and you need only show that R(obv) is invariant under 

Hence the types of lattices left invariant under 322 are the same 

as those left invariant under 3. 

THE LATTICES INVARIANT UNDER 422 AND UNDER 622 

(P6.18) Problem: Show that the types of lattices left invariant under 

422 are the same as those left invariant under 4. 

(P6.19) Problem: Show that the types of lattices left invariant under 

622 are the same as those left invariant under 6. 

The lattices invariant under 23 and under 432: Since 222 is a subgroup 

group of 23, the lattices left invariant under 23 must be found amongst 

those left invariant under 222. Since 23 is generated by the elements 

of 222 together with ^ ^3, we need only decide which of the lattices 

invariant under 222 are invariant under ^^^^^3. Let P = {a,b,c} be de¬ 

fined as for 222. Since ^^^^^3(a) = b and ^^^^^3(b) = c, we have a = 

b = c. Hence the basis P for 23 will be such that a, b and c lie along 

perpendicular 2-fold axes and a = b = c. 
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(P6.20) Problem: Show that the lattices P, F and / based on the P for 

23 are left invariant under 23. 

(P6.21) Problem; Show that the lattice C based on the P for 23 is not 

left invariant under 23. 

In view of P6.20 and P6.21, the types of lattices left invariant by 

23 are P, F and /. 

Note that 23 is a subgroup of U32 and that ^32 is generated by the 

elements of 23 together with 4. Hence the types of lattices left invar¬ 

iant under U32 are those left invariant under 23 and 4. 

(P6.22) Problem: Show that the lattices P, F and / based on the P for 

23 are left invariant under 432. 

Diagrams of the three lattice types P, F and / left invariant under 

these cubic groups are given in Figure 6.1. - . 

THE 14 BRAVAIS LATTICE TYPES 

We have seen that corresponding to each of the eleven proper point 

groups from Table 5.4, a set of lattice types that include every lattice 

left invariant under the group can be found. The set of lattice types 

that are associated with a group C forms a crystal system. This clas¬ 

sification scheme leads to the formation of seven crystal systems. With 

the exception of the primitive hexagonal lattice type, no type appears 

in more than one system. Hence of the 15 lattice types listed in column 

2 of Table 6.3, 14 are different. These are called the 14 Bravais 

lattices (Figure 6.1). In column 3 of the table, the metrical matrix for 

the basis P of the primitive lattice P is given. Because the primitive 

lattices of the trigonal and hexagonal systems are the same there are only 

6 different metrical matrices. This is why only 6 different crystal 

systems were considered in Chapter 5 where only the bases were evident. 

Recall that the 21 improper point groups of the form C U Ci and 

H U (C \ H)/ leave the same lattices invariant as their underlying 

proper point group C. Hence we have shown that all 32 of the point groups 

listed in Table 5.4 are indeed crystallographic point groups. 
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Table 6,3: The 14 Bravais lattice types and the metrical 

matrices for the primitive bases. 

Proper Point Bravais Lattice Metricai Matrix Crystal 

Croup C invariant under G for P System 

P 9ll 9 12 9 13 

1 922 923 T riclinic 

933 

P 9ii 0 5fi3 Monoclinic 

922 0 (y unique 

C 933 axis) 

2 

P 911 9 12 0 Monoclinic 

922 0 (Z unique 

B 933 axis) 

P 9ii 0 0 

222 C 922 0 Orthorhombic 

1 933 

F 

P 9ii 0 0 

4,422 9ii 0 T etragonal 

1 
933 

P* 
911 ~'i911 0 

3,32 R 9ii 0 T rigonal 

933 

p* 
- 911 ~2911 0 

6,622 9ii 0 Fiexagonal 

933 

P 9ii 0 0 

23,^32 1 9ii 0 Cubic 

F 9ii 

* These two P lattice types have the same metrical matrix and therefore 

are considered to be identical. 



In determining when two lattice types should be considered the same 

we have given geometrical reasons where possible. Other times we have 

made the decision on conventional grounds. Firm definitions can be made 

based on the form of Mp(C) for the bases P of the various lattices (Brown 

et al. 1978) that lead to the same decisions we have presented here. 

MATRIX GROUPS REPRESENTING THE CRYSTALLOGRAPHIC 

POINT GROUPS 

Thus far, we have found all of the lattice types and all of the point 

groups. In the next chapter we will find that the crystallographic space 

groups can be created by combining a crystallographic point group H (with 

some modifications) with each of the lattice types (viewed as translation 

groups) associated with H. To do this we will need to have the matrix 

representations of each of the point groups with respect to lattice bases. 

In most cases, we will use the basis for the primitive lattice P asso¬ 

ciated with H even when centered lattices are being considered. In Tables 

5.2 and 5.3, we have presented the matrix representations of the indi¬ 

vidual point isometries that compose the point groups with respect to the 

basis P of the primitive lattice. Consequently, for most of the groups, 

H, we can immediately construct Mp(/V) without further work. There are, 

however, groups for which some choices must be made. That is, groups in 

which the placement of the symmetry elements of H with respect to the 

lattice can be made in more than one way. For example, in the group 

322, the 3-fold axis must be along C, but the 2-fold axes can be taken 

such that either {t^^^2,represents the half-turns in 222 

or such that (f210]2 [120]2 [110]2j represents the half-turns. These are 

considered to be different representations of 322 because, as shown below, 

the matrix representations of one cannot be transformed into those of the 

other by a change of basis of the lattice. Consequently, when con¬ 

structing the space groups based on P and 322, we have two distinct cases 

to consider. We denote this fact by calling 322 in the first case 321 

and calling 322 in the second case 312. We can show that there are no 

other ways to place the symmetry elements and still map the lattice into 

se1f-coincidence by observing that (see Figure 3.11) the image of a under 

any of the half-turns must map a into a, a + b, b, -a, -a - b or -b and 

noting that each of these cases occur in either 321 or 312. Since the 

third-turn and any one of the half-turns generate 322, we have exhausted 

all of the possibil- 
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ities. The difficulty of orienting the point group with respect to the 

lattice in more than one way only occurs in the dihedral groups. In Table 

6.4, we have listed each dihedral group with each of the possible orien¬ 

tations relative to the lattice P. The placement of each is determined 

by the orientation symbols used to describe the generators. Consequently 

there are a total of 37 matrix groups representing the 32 crystallographic 

point groups with respect to the appropriate primitive bases. 

If H is a point group, we consider Mi(W) and to be different 

representations if there is no proper unimodular matrix T (the change of 

basis matrix) such that MiCAV) = {TMT ^ | M £ M2(/V)}. We will not give 

a detailed discussion on how to prove that such a matrix does not exist. 

However, we will illustrate a brute force method for doing this. 

(E6.16) Example - Mpi321) and Mp{312) are different matrix represent¬ 

ations for 322: Show that there does not exist a proper unimodular matrix 

T such that Mp( 2)t'^. 

Solution: Suppose T is such a matrix. Then 

-
1

 

1 

^12 “ f 2 2 f 1 3 ^2 3 til + f 1 2 1 2 -tl3 

f 2 1 —t 22 ~^2 3 = 
t2 1 + f 22 —^22 “^2 3 

-f3 1 3 2 -^3 .t3 1 + f 3 2 3 2 ~t 3 3 

which implies that t2i ^22 ~ fi2 — 0 and that 2fj3 — t23- Since t2i ~ 

^22 = ti2 - 0, det(T) = -t23tiit32- Since det(T) = ±1 and tjs. tii, ^32 

are all integers, t23 equals either ±1. But then tu = which contra¬ 

dicts the fact that z Z. ^ 

Note that E6.16 can be used to show that neither nor 

Mp([110] 2) can be transformed into 

3[^10]23‘1 = [110]2 and = 

unimodular matrix T existed such that 

[12012 

2). This is because 

Hence, if a proper 

TMp([110]2)T’^ = Mp([^°°l2) 

then. 
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and so 

(TMp(3))Mp(f^^°]2)(Mp(3)'^T’^ - Mp(f^°°^2) 

(TMp(3))Mp(t^^°l2)(TMp(3))'^ = Mp([^°°l2) . 

Since Mp(3) is a proper unimodular matrix, TMp(3) is also one. But it 

was shown in E6.16 that no such matrix exists. Similarly, no such matrix 

exists from Mp(^^^^^2) to Mp(^^^^^2). Hence we have shown that the two 

matrix representations of 222, Mp(J2/) and Mp(272), are not equivalent. 

Table 6.4: The placements of the generating rotations 

a and 3, of the dihedral groups relative to 

P giving rise to non-equivalent matrix groups. 

H a 3 H a 3 

222 2 [lOO]^ ^22 4 [IOOI2 

mm2 2 
[100] 

4 mm 4 

o
’ 

0
 

321 3 [10012 62m 6 [10012 

312 3 [21012 6m2 6 
[100]^ 

3m1 3 

o
’ 

o
 6 mm 6 

21 m 3 [21012 622 6 [10012 

Im1 3 [10012 'hm2 4 [100]^ 

31m 3 [21012 'h2m 4 [10012 

(P6.23) Problem: Consider the two follow'ing matrix representations that 

can be taken for point group 42m: 

Mp(42m) 

Mp(4m2) 

(Hp(1), Hp('l), Hp(2), HpC4'h, 

{Mp(1), Hp(4). Mp(2), Mp(4‘h. Mp(''°°'m), Hp(['"°'2), 

Show that no change of basis matrix T exists that will transform the ma¬ 

trices of Mp(42m) .into those of Mp(4m2). 
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(P6.24) Problem: Show that no change of basis matrix T exists that will 

transform the matrices of Mp(Jm7) into those of Hpi31m). 

To this point we have only considered the effect of reorienting the 

axes of a point group with respect to the primitive lattice. We will 

explore the effect of these reorientations on the centered lattices in 

the next two problems. 

(P6.25) Problem: Show that 312 does not map R(obv) into self¬ 

coincidence . 

(P6.26) Problem: Show that and U2m map / into self-coincidence. 
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CHAPTER 7 

THE CRYSTALLOGRAPHIC SPACE GROUPS 

With the derivation of the 230 space groups it may be said that the 

probiem of finding the possible symmetry groups of periodic media is 

completely solved." -- W.H. Zachariasen 

INTRODUCTION 

In Chapters 4 and 5 we derived the 32 crystallographic point groups. 

In Chapter 6 we derived the 14 Bravais lattice types. In this Chapter 

we will derive all of the crystallographic space groups and collect them 

into the 230 space group types. This is done by "gluing" the point groups 

to the appropriate lattice groups. We will accomplish this by con¬ 

structing 4x4 matrices which can represent both the point isometries 

and the translations related to the lattices. At the end of Chapter 6 

we found that the 32 point groups are represented by 37 distinct matrix 

groups. It is these matrix groups that we will use in our derivation. 

TRANSLATIONS 

In Chapter 1 we introduced the notion of geometric three-dimensional 

space S. All of our work with S to this point has been done with the 

help of a frame of reference imposed on S by a choice of an origin and 

a basis. In this section we shall view S in a more general context 

without the restriction of a choice of origin and basis. When an origin 

is undefined, there is no natural connection between the points in S and 

a vector space and so, in this case, we will not use boldface letters to 

denote the points in S. However, we assume that certain geometric in¬ 

formation is available in S. For example, the distance between any two 

points in S is determined, angles between lines can be calculated and 

whether two lines are parallel or not can be ascertained. Since distances 

are determined in S, isometries, mappings that preserve distances, are 

defined in S regardless of a choice of origin. An important isometry 

we have yet to discuss is the translation. 

(D7.1) Definition: Let p and q denote points in S. The translation from 
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y=T(x) 
Figure 7.1: A directed line segment from point 

p to q defining a translational isometry t that 

maps each point x e 5 to t(x) = y such that pqyx 

is a parallelogram. 

Figure 7.2: A translation t displaces all points 

in space the same distance along parallel lines. 

Thus, if t(Pi) = Pj, then t displaces to q2 

and ti to rj 

p to q is the mapping x that take: 

the endpoint of the parallel copy 

from p to q positioned at x. That i 

7.1). 

Figure 7.3: A translation t is an isometry since 

if u and v are mapped to t(u) and t(V), then the 

distance between u and V equals that between 

t(u) and t(v) because ut(u)t(v)v is a 

parallelogram. 

; each x e S to x (x) = y, where y is 

of the directed line segment (arrow) 

is a parallelogram (see Figure 

Note that any two points that define the same arrow as do p and q 

can be used to define x. In Figure 7.2, if x is the translation that maps 

Pi to p2, then it also maps q, to q^ and ri to rz and x is defined by any 

one of these pairs. The fact that x is an isometry is verified by ob¬ 

serving that if u, V E S, then ux(u)x(v)v is a parallelogram and so the 

distance between u and v equals that between x (u) and x (v) (see Figure 

7.3). Hence x is an isometry. If Xi and Xj are translations and 

p £ S, then Xj - X2 if and only if Xi(p) = X2(p). Consequently, two 

translations are equal if and only if they agree on any single point in 

S. 
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(T7.2) Theorem: The set of all translations F forms a group under 

composition. 

The proof of this theorem is contained in the next three problems. 

(P7.1) Problem: Show that the composition of two translations Xi fol¬ 

lowed by X2 is a translation. (Hint: Let p and q define Xj and q and r 

define X2. Then for an arbitrary x £ S, X3(x) where X3 = X2Xi is found 

by taking X2(Xi(x)). Hence the triangles pqr and xXi(x)X3(x) are 

congruent. Use this observation to conclude that the arrows pr and xx3(x) 

are of the same length and direction. Hence X3 is the translation from 

p to r.) 

(P7.2) Problem: Show that the identity mapping 1 is the translation from 

p to p and plays the role of the identity element with respect to compo¬ 

sition. 

(P7.3) Problem: Show that the composition of the translation from p to 

q and that from q to p is the identity mapping. 

Since we showed that the composition of mappings is associative in 

Appendix 1, P7.1, P7.2 and P7.3 constitute a proof of T7.2. Note that 

the identity mapping 1 can be viewed as either a null translation (asso¬ 

ciated with an arrow of length 0) or a rotation of 0 . d 

For the remainder of this chapter, we will denote the group of all 

gp^ons by F. While the definition of a translation x does not re 

quire the choice of an origin, x can be more easily described w’ithin the 

framework prov'ided by choosing an origin. Furthermore, within this 

framework, F is closely related to the vector space S of all vectors 

emanating from the origin. Let o denote the origin. Then any point 

t £ S simultaneously defines a vector t in S emanating from o and the 

translation x that maps o to t. In fact, the mapping x can be described 

by 

x(x) = X + t (7.1) 

for all X £ S. Here t = x(0) is called the translational vector associated 

with X. Consequently there is a one-to-one correspondence between F and 
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S where each translation t is associated with its translational vector 

t(o). This close relationship between F and S extends into the algebraic 

nature of these sets as we shall see in the discussion below. 

(E7.3) Example - The composition of two translational isometries: Show 

that if Ti and T2 are translations with translational vectors ti and t^, 

respectively, then 

TiTzCx) = X + (ti + tz) 

for all X £ S. 

Solution: Applying (7.1) twice we have 

TltjCX) = TiCXzCX)) 

= ti(x + tj) 

= (X + tz) + ti 

= X + (ti + tz) for all X £ S . □ 

(P7.4) Problem: Show that if Tj and Xz are translations, then XiXz — 

Tzti. That is, F is commutative under composition. 

(D7.4) Definition: A group C is said to be an abelian group if C is 

commutative, that is, if 

for all a,b £ C. 

ab = ba 

Hence F is an abelian group. 

(P7.5) Problem: Show that the cyclic groups derived in Chapter 4 are 

abelian. 

(P7.6) Problem: Show that 322 is a non-abelian group, i.e., find two 

elements a,3 £ 322 such that ap # 3a. 

(P7.7) Problem: Show that the translational vector for 1 is 0. 

(E7.5) Example: Show that if t is the translational vector for x, then 

-t is the translational vector for x"^. That is 
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-1 
T (X) = X - t for all X £ S (7.2) 

Solution: Let s denote the translational vector for t Then 

-1 
T (X) = X + s for all X £ S 

Hence 

-1 
t(t (X)) = (X + s) + t 

and so 

1 (X) = X + (s + t) 

By P7.7, s + t = 0 and consequently S = -t as desired. 

(E7.6) Example: Show that if ti and are the translational vectors 

for Tj, and respectively, then 

Ti^tzCx) = X + (-3ti + 2t2) 

Solution: By repeated applications of (7.1) and (7.2), we have 

-3 2,, 
Tj T2(X) = Tl TjCtzCx)) 

-3 
= tl t2(x + t2) 

= Ti^(X + 2t2) 

= Tl (X + 2t2 - tl) 

= X + (2t2 - 3ti) 

= X + (-3ti + 2t2) 

Extending the logic used in E7.6, we see that if t is the 

translational vector for t, then for any n £ Z, 

[^(x) = X + nt for all x £ S (7.3) 

We generalize the definition of for the case where r is any real number 

by 

T^(x) = X + rt for all x £ S . (7.4) 

(P7.8) Problem: Using (7.4) show that 

^ for T £ r and r,s £ R 
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for T £ r and r,s z R 

(E7.7) Example: Show that 

(X ) = X 

Solution: By (7.4), we see that if t is the translation vector for x, 

then rt is the translational vector for x . Hence 

(x^)'^(x) = X + 5(rt) 

= X + (rs)t 

rs 
= (X) (X) . 

„ , r,5 rs 
Hence (x ) = x . □ 

(P7.9) Problem: Let Xj, Xj e F and r z R. Show that 

, .r r r 
(TiXz) = X1X2 . 

(Hint: Use E7.3.) 

The results we have established above show that F is a vector space 

where vector "addition" is composition and scalar "multiplication" is 

exponentiation. 

(P7.10) Problem: Rewrite each of the rules in D1.6 replacing r + s by 

the composition rs and the scalar product xr by r^. Observe that we have 

verified all of these rules. 

Let o denote an origin and D = {a,b,c} denote a basis for S. Let 

^y’ ^2 ^ ^ such that a, b. and c are their translational vectors, 

respectively. That is x^(o), x^(o) and x^(o) are the endpoints of a, b 

and c, respectively. If r, s, t z R, then 

= X + ra + sb + tc . (7.5) 

Since D is a basis, every vector in S 'can be written in the form 

ra + 5b + tc and so every translation can be written in the form 

Therefore, Consequently, F = {x^x^x^ I r,s.t e R) 
r s t 

XXX. 
X y 2 

^''x’V’^2^ ^ ^ and so f is a three dimensional vector space. 

Furthermore (7.5) gives the natural correspondence between F and S: 

X 
r s t 

X X 
X y z ra + sb + tc (7.6) 
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which can be used to show that F and S are isomorphic. Note that viewing 

r as a group of mappings on S, 

orbp(o) = S 

Now suppose that D = denotes some basis for F and that 

Oi denotes a point in S. Then the basis of S associated with D and the 

origin Oi is the set of vectors emanating from Oj to T^(oi), t^(oi) and 

T (oi), respectively. We shall denote this basis by 

Dioi) = = 3i, t^Coi) = bi, t^(oi) = Cl) . 

By identifying each x e F with the vector whose endpoint is t(oi) in S, 

we obtain the correspondence in (7.6) between F and the vectors emanating 

from Oi. Similarly, using 

D (02) ~ {t (02) — 32, ^ (02) ~ ^>2, ^ (02) C2} , 
X y ^ 

we obtain the correspondence in (7.6) between F and the vectors emanating 

from 02. The bases D(oi) == {ai,bi,Ci} and D(o2) = {a2,b2,C2} are similar 

in the sense that 82 is a translated parallel copy of ai, b2 is a parallel 

copy of bi and C2 a parallel copy of Cj. In view of (7.6), if x e F, 

then 

[■i:(oi)]^(oj - t^‘^°2)]D(o2 
(7.7) 

Hence corresponding to each translation x and basis D there is a triple 

t z such that t represents the translational vector for x regardless 

of origin. 

Let Di 

point in S. 

= {X 
X 

Then the 

X } and D, denote bases 
z 

change of basis matrix T 

for F. Let Oi denote a 

from Di(oi) to D2(oi) is 

T = 

By (7.7), 

[ty(Ol)]£)2(Oi)" 
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Hence T is also the change of basis matrix from to 02(02). Hence 

we call T the change of basis matrix from Dj to Dj . 

(T7.8) Theorem: Let D = {t } denote a basis for F. 
x’ y’ z 

02 t S and T E r such that t(oi) = 02. Let X, y £ S. Then 

f^^O(Oi) " ^'^^0(02) 

if and only if t(x) = y. 

Proof: Let D(oi) = {ai,bi,Ci} and 0(02) = {22)^2,02} be 

above. Suppose ^ ~ ^^^0(o )‘ there exists p, q, 

that, simultaneously, 

X = paj + pbj + rCi and y = pa2 + qb2 + rc2 

Hence the translation ii - is associated with both X 

in the sense that Ti(oi) = X and 11(02) = y. Then 

t(x) = x(Ti(oi)) 

~ 'ti('r(oi)) (F is abelian) 

~ 1 (02) 

= y • 

Conversely, suppose t(x) = y. Let p, q, r £ « be such that 

X = pai + qbi + rci 

Then (o 1) = X. Hence 

Hence 

y T (X) 

^(tJtV(oi)) 

^^Jt;(x(oi)) (F is abelian) 

y - pa2 + qbj + rc2 , 

and so 

Let Oi, 

defined as 

r z R such 

and y 
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ISOMETRIES 

Thus far we have discussed various types of isometries. We have 

completely characterized the point isometries and found that only ro¬ 

tations and rotoinversions are possible. In the previous section we 

studied translations. We shall now characterize all isometries. 

(T7.9) Theorem: Let a denote an isometry, then a can be expressed as 

a = t3 

where t is a translation and 3 is a point isometry. 

Proof: Let a denote an isometry and let o denote a point in 5. If 

a(o) = o, then a is a point isometry and so, a = lo is in the desired form 

when 1 is the identity mapping (viewed as a translation). Now suppose 

a(o) = p ^ o. Let t be the translation such that t(p) = o. Then ta is 

an isometry such that 

Ta(o) = T(a(o)) 

= (p) 

= o 

Hence ta is a point isometry. Let 3 = xa. Then a = x ^3- Since x is a 

translation, by T7.2, x ^ is a translation and so a is the composition 

of a point isometry followed by a translation. □ 

The proof of T7.9 shows that corresponding to each choice of o, the 

isometry a can be written in the form x3 where 3 is not only a point 

isometry but one that maps o to itself. Hence if we choose a point o to 

be the origin, then a can be written as the composition of a point 

isometry that fixes the origin followed by a translation. If we change 

the origin to another point, then the point isometry used may be differ¬ 

ent. However, for a fixed origin, the translation x and the point 

isometry 3 are unique as we shall show in the following theorem. 

(T7.10) Theorem: Let a denote an isometry and let o denote an origin. 

If a = Xi3i = X232 where 3iCo) == o = 32(0). then Xi = Xj and 3i = 32- 

Proof: Since Xi3i = X232) we have 
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Then 

”^2 '^iPi ~ ^2 

”^2 'fi3i(o) — 32(0) 

-1 . ^ 
tz Ti(o) = o. 

Hence == 1 and so Tj = T2. Furthermore, by the left cancellation 

law, 3i = 32• 1 

(T7.11) Theorem: Let a denote an isometry and let Oj and 02 denote 

points in S. Suppose a = Ti3i where 3i(oi) = Oj. If a = T232 where 

32(02) — O2, then t2 = Tit and 32 ~ 'r3i where t is the translation such 

that t(3i(o2)) = 02. 

Proof: Note that 

t3i(02) = T(3i(02)) = O2 , 

and so t3i is a point isometry. Since TjT ^ is a translation and t3i is 

a point isometry such that a = (Tit'S(T3i), by T7.10, T2 = iit*^ and 

Suppose the origin O is fixed and a is an isometry. Then by T7.10 

there exists a unique translation x and point isometry 3 such that 

3(0) = o and a = t3. We call t the translational component of a and 3 

the linear component of a (since a point isometry is a linear mapping) 

with respect to o. Since o = t3, 

a(r) = T(3(r)) 

where t = x (o) is the translational vector for x. Now suppose a basis 

D = {a,b,c} is chosen. Then 3 can be represented by the 3 x 3 matrix 

M^(3) and the translational vector t of x can be represented as the triple 

[t]^. Creating a 4 x 4 matrix, denoted R^(a) = {M^(3) | [t] }, from 

these in the following manner. 

Ro(a) = {M^(3) I [t]^} 
I 

0 0 0 I 1 

(7.9 
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we obtain a matrix representation for a. In order to accomplish this 

representation, we use 4-tuples, elements of /?“*, to represent the vec¬ 

tors, r in S. The 4-tuples are constructed by putting a dummy 1 in the 

fourth position below 

(E7.12) Example: Verify that R^(a) = {M^(3) 1 represents a = 

where t = x(o) in the sense that 

Solution: Let 

R^(a) 

'D 

■ [r]^- 

1 1 
I 

^12 

_
)

 

(&) = 2-2 1 ^2 2 ^2 3 

.^3 1 2,3 2 ^3 3. 

Then 

*-•
 X 

II Q
 

*
■> ^2 , [r]^ = y 

.^3. z 

I [t]o> 

[r]D 

-
1 

U
) 

_
1

 

X 

2,21 ^22 ^2 3 ^2 y 

2^3 1 ^32 ^33 ^3 z 

0 0 0 1_ _1_ 

2iiX + ^ 12y + 2 1 3 z + 

22 iX + ^22y + 2 2 3 z + ^2 

23 jX + ^3 2y + 2 3 3 z + t3 

1 

2iiX + t-izy + 2.13Z tl' 

221X + 222y ^23^ 
+ 

f 2 

2 3 jX + 23 2y + ^3 3^ t3 

1 q 

239 



■ 

H^(3) [r]^ 

+ 

[t]^ 

1 0 

[^(r)]^ 

+ 

1 0 

[ecr)]^ + [t]^ 

1 

[3(r) + t]^ 

1 

(by (7.8)) 

□ 

In E7.12 we showed that the 4 x 4 matrix given in (7.9) represents 

a where a = t&. The notation {M^(&) | [t]^} is called the Seitz notation 

(Seitz, 1935) for a with respect to O and D. 

(D7.13) Definition; Let a = t3 denote^ an isometry where i is the 

translational component and g is the linear component of a with respect 

to the origin o. Let D denote a basis. Then the matrix R^(a) = 

i ['c(o)]^} is called the 4x4 matrix representation of a with 

respect to D. 

Let o denote a choice of origin and D a basis. If a and Z are 

isometries, then so is aJT and since 

[«(r)]£) 

1 
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a?(r) a(y(r)) 

■ [r]^' / \ 
R^iaZ) = Ko(o)IRo(J) 

1 \ 1 / 
Since matrix multiplication is associative, this equals 

Hence 

R^(a2r) = R^(a)R^(3r) . (7.10) 

The composition aZ can also be viewed in terms of the decomposition 

described in T7.9. Suppose Z = TjPi and a = T2P2J then 

(a2f)(r) — ("t232131) (l") 

= (T232Ti)(3i(r)) 

= (t232)(3i(r) + Ti(o)) 

~ 12 (32 (31 (f*)) + 32('ti(o))) 

= 323i(r) + 32(ti(o)) + 12(0) 

Hence, aJT = t3 where 3 = 323i and x is the translation whose translational 

vector is 32 ("t 1(0)) + 12(0). Therefore, in the Seitz notation, given an 

origin o and a basis D, 

R^iaZ) = {M2M1 I M2ti + t2} , (7.11) 

where Mj = M^(3i), M2 = M^(32), ^1 = [^1(0)]^, t2 = [x2(o)]^. Note that 

ti and t2 are defined here to be vectors in /?’. Since R^(a2r) = 

R^(a)R^(3r), 

{M2 I t2}{Mi I ti) = {M2M1 I M2ti + t2} . (7.12) 

(P7.ll) Problem: Using matrix multiplication, confirm that (7.12) holds 

for any 3x3 matrices Mj and M2 and any two vectors ti and t2 in /?’. 
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Suppose that R ~ 1 Then we can find noting 

that R^jCa = (R^jCot)) ^ and observing that if R^jC® ^) = {N | r} then 

{M I t}{N I r) = {I3 I 0} . 

Hence, by (7.11) 

{MN I Mr + t} = {I3 I 0} . 

Hence N = M ^ and r is such that Mr + t = 0. That is, 

r = -M‘^t . 

Consequently, 

{M I t}'^ = {m'^ I -n~h} . (7.13 

(P7.12) Problem: Use (7.11) to confirm (7.13) by showing that 

{M I t}{M'^ I -m‘H} - {I3 I 0} . 

(P7.13) Problem: Show that 

{M I t}'^ = (m'^ I -M'^t} 

by extending the procedure for calculating the inverse of a 3 x 3 matrix 

given in Appendix 2 to the 4x4 case. 

(T7.14) Theorem: Let / denote the group of all isometries. Then T is 

a normal subgroup of /. 

Proof: Let a t I and t e T. According to the remark following DA7.11, 

we need only show that ato'^ e F. Using the Seitz notation with respect 

to an origin O and a basis D, we can write R^(a) = (M | tj) and R (t) = 

{I3 I t^}. By (7.13), RQ(a’b = {m'^ 1 -M’^i). Hence 

R^(aTa ) {M I t3}{l3 I t^}{M'^ I -m"H,} 

{M I Mti + tiXM'^ I -M’Hi) 
{I3 I Mtz + ti - ti) 
{I3 I Mt^} . (7,14 
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is a translation. Hence ata Therefore ata ^ E P for all a z I and 

I £ r and so r is a normal subgroup of /. □ 

This result says that we can almost commute translations and 

isometries. Since ata ^ £ T where a £ / and t £ F, we have ata ^ = t' 

for some t' £ F. Hence at = t'a. That is, if we start with at we can 

move the translation t to the other side of a if we trade t for a different 

translation t'. This will be used to simplify some of our expressions. 

(T7.15) Theorem: Let a denote an isometry, let o^ and 02 denote points 

in S and let D = {i ,t ,t } denote a basis of F. Then 
X y z 

where 3i and Sj are the linear components of a with respect to Oi and 02, 

respectively. 

Proof: Let {ai,bi,Ci} denote the vectors in D(oi) and {a2,b2,C2} those 

in 0(02). The first column of ^(3i) is t^ 1 1) 1 q(o 1) 

column of ^(^2) is [^2 (^a) • By T7.ll ^2 

and the first 

x3i where 

t(3i(o2)) = 02. Hence 

32(32) ~ t3l(32) 

= t3i(T^(02)) 

= t(3lt_^)(02) 

Since F is a normal subgroup of / there exists a such that 

’ -1 
and = 3iT^3i £ F. Hence 

32(32) = X(t^3i)(02) 

t^(T(3i(o2)) (3 is abelian) 

(since t (3i (02)) - O2) 

3iT^3i^(o2) 
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Also 

&i(t^(oi)) (since 3i fixes Oi) 

3i(ai) . 

Since £ T, there exists p,q,r t R such that 

and so [3i(ai)]D(oi) " ^DCoa) ' column 

of M rR.'i pmiflls that of M_, ,(32). Similarly, the second and third 

columns of equal those of ^^C)(o2) ^ ’ 

□ 

Theorem T7.15 tells us a remarkable fact: the nature of the linear 

component of a is the same regardless of the choice of origin. For ex¬ 

ample, if 3i and 32 denote the linear components of a with respect to Oi 

and 02, respectively, and if 3i is, say, a half-turn about an axis & 

through Oi, then 32 is a half-turn about an axis through Oj where H' 

parallels H. 

Besides being important to our derivation of the crystallographic 

space groups, the next several results will enable us to transfer infor¬ 

mation about a crystal structure that is described in terms of a basis 

Di(oi) to a new basis and origin D^io^). 

(T7.16) Theorem: Let a denote an isometry, let D = ^2^ denote 

a basis for F and let Oi and 02 denote points in S. Then if 

where M is a 3 x 3 matrix and t £ R^, then 

^0(02)''“^ = {M 1 (M - l3)p + t} 

where p - [02]^^^^)- 

Proof: Let 3i and 32 denote the linear components of a with respect tc 

Oi and 02- Since M = M ‘^(o^)(^i)> T7 .15 implies that M = ^(32)- 
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Let Tj and T2 be the translational components of a with respect to Oj and 

02, respectively. Then I 2 (02) ] • By T7.11, 

t2 = Tit ^ where t ^(02) = Bi(o2)- We shall 

translational vector for T2 with respect to Oi. 

translation such that t (oi) = 02. Then 

next determine the 

Let T denote the 
P 

t2 T ,T 
-1 

-1 -1 
Til T T 

P P 

(TiT^ )(T T^) (P is abelian) 

Since x ^x (oi) = &i(o2), [3i(o2)]nc ^ represents the translational 
p t/' (.o 1) 

vector of x ^x with respect to Oi. The translational vector of x , 
p P 

with respect to Oj, is represented by -[02]^,. ■ Since t represents 

the translational vector of Xi, 

tzCoi) = 
f^'(°^)]D(oi) f°"^D(oi) 

D(o,) 

= (M - l3)[o 

+ t 

+ t 

'D(oi) 
+ t 

(M - Iilfo,!,-,. , + t is the translational vector of X2 with respect to 

D(oi). But the translational vector of X2 with respect to DCoz) is then 

also (M - l3)[o2]n,- ^ + t by (7.7). Consequently, 

R_, , (a) = {M I (M - l3)P + t) , 
17 (02 ) 

where p = 

(T7.17) Theorem: Let Di and D2 denote bases for T, o denote the origin, 

T denote the change of basis matrix from to D2 and let r e S. Then, 

using the /?“* representation of r, we have 

{T I [000]^} 

‘"■'d.(o)' 

1 

II 

. 1 

The proof of T7.17 is straightforward and is left to the reader. 
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(T7.18) Theorem; Let D denote a basis for T and let Oj and 02 denote 

points in S. Let p = Then if r £ S, 

N 
0

 

u
 

1
_

 

= {I3 -p) 

1 1 

Again, the proof of this theorem is left to the reader. 

(P7.14) Problem: Show that if we move the origin from Oi to 02 and if 

we then change the basis from Dj to D2, we have 

‘"■>0,(0.) ‘ 

“5
 

0
^ 

_
1 

= {T 1 -Tp} 

1 

1—
 

where T is the change of basis matrix from Di to D^, P = 

r e S. 

(P7.15) Problem: A structural analysis of coesite by Zoltai and Buerger 

(1959) shows it to be monoclinic with space group symmetry B2lb. The 

coordinates of the atoms determined in the analysis (Table 7.1) define a 

framework structure of silicate tetrahedra with double-crankshaft chains 

like those in sanidine, KAlSijOg, a monoclinic feldspar with space group 

symmetry C2/m. The structures differ in that the chains in sanidine are 

related by a mirror plane whereas those in coesite are related by a glide 

plane. Figure 7.4 displays the sanidine structure between 0 and The 

origin Oj and basis vectors Dj = {ai,bi,Ci} define the setting of the 

coesite unit cell and O2 and - {a2,b2,C2} define the setting of the 

sanidine cell. The connection between these cells was established by 

Megaw (1970) who wrote a matrix for transforming the coesite coordinates 

to match those of sanidine. Following a comparison of the resulting co¬ 

ordinates with those of sanidine, she concluded that the coesite structure 

is impossible for KAlSisOg because there are no cavities in it large 

enough to accommodate K. She also concluded that the feldspar structure 

is impossible for coesite because it would require a bridging SiOSi angle 

of 110 , which theoretical evidence indicates is too narrow for stability 

(Gibbs, 1982). 
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to the plane forming a right-handed system) de¬ 

fine the setting defined by Zoltai and Buerger 

(1959) for the coesite unit cell, and Oj and the 

Dj-basis vectors (b2 is perpendicular to the 

plane forming a right-handed system) define the 

setting for the sanidine unit cell. The vector 

d is the change of origin vector. This drawing 

is modified after Megaw (1970). 

Table 7.1: Comparison of the atomic coordinates of coesite and sanidine. 

Zoltai & Buerger 

(1959) 

Atom Xi Vi z, 

Megaw 

(1970) 

Vi Z2 Atom X 

Sanidine 

y Z 

Sii . 1403 .0735 . 1084 .6403 . 1084 .3168 Tz .7089 .1178 .3444 

Sij .5063 .5388 . 1576 .0063 .1576 .2175 Ti .0097 . 1850 ,2233 

0i 0 0 0 -1/2 0 1/4 
°A(2) “ 

.3653 0 .2858 

0, 1/2 3/4 .1166 0 . 1166 0 <
 

o
 0 .1472 0 

0, .7306 .5595 . 1256 .2306 .1256 .4211 
°D 

.1793 .1269 .4025 

0» .3080 .3293 .1030 - -.1920 . 1030 .2287 o
 

03
 

1 

1 .1722 .1469 .2244 

Os .4877 .5274 .2878 - -.0123 .2878 .2103 
°c 

.0341 .3100 .2574 
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(1) Examine the drawing of the double-crankshaft chains in Figure 

7.4 and show that 

b2 = c 1 

c 2 = “b1 

and [02]q^ = lP]p^ - [2,3/4,0]^. 

(2) Formulate the 4x4 transformation matrix 

0 i 

1 0 

0 i 

0 1 

(3) Use the matrix {T [ -Tp} to transform the atomic coordinates 

of coesite (Zoltai and Buerger, 1959) to match those in sanidine 

and compare your results with those obtained by Hegaw (Table 

7.1, Column 3). 

(T7.19) Theorem: Let Dj and denote bases of F, let oi and 02 denote 

points in S and let a denote an isometry. Then 

^02(02)^“^ = {TMT‘^ I T[(M - l3)p + t]} , 

where = {M | t}, T is the change of basis matrix from to 

D, and p = 

Proof: Consider the following circuit diagram where r e S: 

{T -Tp) = 

1 0 

0 0 

1 -1 

0 0 

{T 1 -Tp} . 

-
1

 

"
J

 

0
 

_
1

 

1 1 

{M I t} I 
D2(02)(a) 

{T 1 -Tp) 
U2 C02) 

1 — 1 
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It follows from the circuit diagram that 

, -(a) = {T I -Tp}{M I t}{T | -Tp}‘^ (7.15) 

= {T I -Tp}{M 1 t}{T'^ I p} 

= {TMT‘^ I -Tp + T[t + Mp]} 

= {TMT‘^ I T[(M - l3)P + t]} . □ 

Note that (7.15) expresses the fact that , -.(a) and R^, . ^ (a) 
^ 2 ^^2) ^1 I) 

are similar matrices in the realm of all 4x4 real matrices (see Appendix 

7). 

CRYSTALLOGRAPHIC SPACE GROUPS 

Not all groups of isometries are suitable for describing the symmetry 

of crystals. In Chapter 4, for example, we found the crystallographic 

restrictions that must be imposed on point isometries. In this section 

we study the restrictions that must be imposed on groups of isometries 

that leave the structure of some crystal invariant. The very nature of 

a crystal implies that there is three'dimensional periodicity in the 

structure. This periodicity is described in terms of a crystallographic 

translation group. 

(D7.20) Definition: Let o denote a point in S. A translation group T 

is said to be a crystallographic translation group if and only if orb.^(o) 

is a three-dimensional lattice whose vectors emanate from o. 

Note that, by (7.6), if T is a crystallographic translation group 

and if {a,b,c} is a basis for the lattice orb^(o), then D = 

is a generating set for T where t^(o) = a. ~ ^ ^^(o) = C. That 

is , if 

orb.^(o) = {ua + vb + wc | u ,v ,w t Z) , 

then 

and so 

U V W . T 
orb^(o) = Co) I u,v,w £ Z) , 

T = {X 
U V w 

I T 
X y z 

u ,v,w t Z) 

(D7.21) Definition: A set of translations D = {xi,X2,X3} of a 
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crystallographic translation group T is said to be a generating set of 

T if and only if D is a basis for F and 

-r r U V W , 7-. 
T = {T1T2T3 I U,V,W £ Z} 

Let D = {ti,T2,t3} denote a generating set for the crystallographic 

translation group T and let o t S. Then D(o) is a basis for the lattice 

orb^(o) as shown in the following problem. 

(P7.16) Problem: Let T denote a crystallographic translation group and 

let D = {tj,T2,'C3} be a generating set for T. Show that . is the 
D \ 0) 

orby-(o) where o e S. 

We shall now turn our attention to groups of isometries. 

(P7.17) Problem: Show that if C denotes a group of isometries, then the 

®et T of all of the translational isometries in C is a subgroup of C. 

The subgroup T in P7.17 is called the translation group of C. 

(D7.22) Definition: A group of isometries C is called a crystallographic 

space group if the translation group of C is a crystallographic trans¬ 

lation group. 

(T7.23) Theorem: Let C denote a crystallographic space group. Then 

the translation group of C is a normal subgroup of C. 

(P7.18) Problem: Prove T7.23. (Hint: See the proof of T7.14 where C 

will play the role of / and the translation group of C will play the role 

of r.) 

Let C denote a crystallographic space group and let T denote its 

translation group. If D = is a generating set for T, then, 

as shown in P7.16, is the lattice equal to orb.^(o). If a e C, 

then, by T7.15, the matrix representation for the linear component with 

respect to D(o) is the same for all choices of origin o. Let M^(a) denote 

the 3 X 3 matrix representation of the linear component of a with respect 

to D. Also, let Mq(C) denote the set 

= {M^(a) I a E 0 , 
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where C is any groups of isometries. 

(P7.19) Problem: Let C denote a group of isometries and let D - 

{x ,x ,T } denote a basis for T. Prove that Mp,(C) is a group. (Hint; 
X y z u 

See (7.12) and (7.13)). 

Hence associated with each crystallographic space group G there is 

a group of 3 X 3 matrices ^ lattice ‘-D (o)' 

all possible crystallographic space groups C that share the same asso¬ 

ciated group of 3 X 3 matrices and lattice can be constructed. Before 

we can do this we must learn more about M^(C) and Since Mp(C) 

represents the linear components of the isometries in C, we will study 

these linear components first. 

(D7.24) Definition: Let a denote an isometry and let o £ S denote the 

origin. Then we denote the linear component of a by A^(a). If C is a 

group of isometries, then we define A^(C) to be 

Ao(C) = {A^(a) I a £ C) . 

(P7.20) Problem: Prove that A^(C) is a group. 

By T7.15, note that for any points Oj, O2 t S, A^^(C) and A^^(C) 

are isomorphic since they are both represented by M^(C). Using A^(C), 

we will discover the relationship between M£j(C) and ^Q^Qy 

(J7.25) Theorem: Let C denote a crystallographic space group, D = 

{•[ X T } a generating set for its translation group, and O the origin. 
'' X * y ^ z ^ 
Then A (C) leaves invariant. Hence A (C) is one of the 32 

crystallographic point groups. 

Proof: Recall that if V is a vector in S emanating from O, then 

V £ if and only if t Z\ Let 3 £ A^(C) and V £ ^^(o)' 

Let X denote the translation such that x(o) = V. Then 

'0(0)I “> 

and 
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Hence 

= (I. I (B(v))d(o)> ■ 

Since the translation group 7" of C is a normal subgroup, ^ e 7". 

Hence ^ 3(V) e Hence ^ subset 

of Since 3 is an isometry, ~ ^D(o)’ Hence is 

invariant under A (C). □ 
o ^ 

Note that, in the proof of T7.25, we found that the isometry 3x3 

is associated with the lattice vector ~ ^ ^ ^ ^ D (o) ' 

Hence, the fact that 3x3 ^ t T(C) is equivalent to the fact that 

3(V) E Consequently an abstract approach to the study of space 

groups can be conducted from the point of view of the action of elements 

of C on elements of T (C) where the action is defined by x axo ^ for 

a given a e C. This approach (see Farkas, 1981) has the advantage of 

being origin free and such that the invariance of orbT-,^^(o) under C 
/ (O) 

becomes the normality of 7’(C) in G. In our treatment, howev^er, we will 

continue to distinguish between a crystallographic translation group and 

its associated lattice with respect to an origin. This will enable us 

to relate our results directly to the geometry and symmetry of crystals. 

Theorem T7.25 implies that if C is a crystallographic point group 

and if D is a basis for F, then M^(C) = M^(/V) for some point group H. 

Consequently we will build the crystallographic space groups from the 

matrix representations of the point groups and the lattices that fall 

within the appropriate Bravais lattice types. For each point group, H, 

we use the matrix representation of H with respect to the basis P of the 

primitive lattice belonging to H In Chapter 6 we found that there are 

37 such matrix groups. The point groups for which there are two such 

matrix groups are listed in Table 6.4 where we have symbolized the cor¬ 

responding point groups according to their orientations. We shall refer 

to these groups as the 37 oriented point groups. 

In order to correctly build the space group C from its associated 

oriented point group and lattice, we must know how each fits inside C. 

The next several results will accomplish this for us. 

Suppose C is a crystallographic space group associated with the 

oriented point group H and lattice L. Let {N | t} e ^(C). Then 
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we know that M z Mp(A/). But we know much less about t. If M = I3, we 

know that {M | t) represents an element in T(C) and so t represents a 

vector in L. Furthermore, all of the elements of Rp^^^(C) of the form 

{M 1 t}, where M is fixed, are related in a special way as described by 

the following theorem. 

(T7.26) Theorem: Let C denote a crystallographic space group and let 

M be a matrix in Mpj(C). Let tj £ be such that {M | tj} e 

Then {M ] tj} z if ^nd only if {I3 | tj - tj} E R^ (T (C)) . 

Proof: Suppose {M | tj} e then {M | t2}{M [ ti) ^ £ 

R^(o)(C). But 

{M I tjXM 1 ti}'^ = {M I t2>{M'^ 1 -M'Hi} 

= {I3 I t2 - ti). 

Conversely, if {I3 1 t2 - tj} £ (T(C)), then 

{I3 I t2 - t3}{M I t,} = {M I t2} E Ro(o)CC). C 

Theorem T7.26 tells us that if we are constructing elements in 

Rp^(0)(C) of the form {M | tj} and {M | t2}, then the points represented 

by tj and t2 must be L-equivalent where L - orb.^j.^^ (o). 

(E7.27) Example: Suppose C is a crystallographic space group and that 

A^(C) = 2. Suppose 

»i) = 

-1 0 0 2.5 

010 -1.5 

0 0-1 3 

0 0 0 1 

is in R^(-q)(C) and that 7(0) = P = ^D(o) is a monoclinic primitive 

lattice type in the second setting (Y unique axis - see Table 6.3). Find 

3 ■i o.. Or. cnr'Vi /M ^ t t that is as simple as possible such that 

(C). 

■2) I tj} £ 

Dio) 

Solution: Since P is primitive, H V] pj I VeP} = Z^. Hence, by T7.26, 

|t2} t ^D) if and only if t2 - tj = t where t e . That 

is, any t2 = ti + t where t £ Z^ forms an element Itj} in 
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Since [-2,2,-3]^£ 

This is the simplest form 

(E7.28) Example: Solve E7.27 where 

C-centered lattice type C. 

Z^ I [.5,.5,0]^} E 

for elements of this type. □ 

Lr^, ^ is taken to be a monoclinic 
D(o) 

Solution: Since C is C-centered, 

Hence 

I V E C} = U {Z^ + . 

{N^(t°^°^2) I t^} E C 

if and only if tj = tj + t where t e Z^ or t e Z^ + Since 

[-2.5,1.5,-3]^ = [-3,1,-3]^ E Z’ + [i,i,0]^ | [000]^} e 

^D(o)(C). I 

The next theorem yields more information on what types of elements 

t of can occur in matrices {M | t} in Rd(o)<C>- 

(T7.29) Theorem: Let C denote a crystallographic space group, let hi. 

h 2,. • .,h^ E A^(C) be such that 

hih2...h^ 
" + 1^/c + 2‘ ■ • 

h 
n (7. 

Let D denote a basis fo r r and let o e S. Let M. = 
1 

M^Chp. If 

{Ml 1 ti}>--->{M„ 1 ^ R^Co)^^)’ then there exists {I3 1 S) E 

^D(o) 
(T(C)) such that 

{Ml 1 ti}{M2 i t2}...{M^ 
1 = 

(I. 1 ^ J 
' V + 1^^\ + 2 ^ + 2^ • • 1 ■ (7.17 

(P7.21) Problem: Use T7.26 to prove T7.29-. 

(D7.30) Definition: Let H denote a point group, let T denote a trans¬ 

lation group and let D denote a basis for T. If hi,...,h z H axe such 

that the relation 

h 1 h 2 
I*'* + 2'"^ (7.18) 
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holds and if IL = M^(hp, then we say that are consistent 

with the relation (7.18) with respect to T and D if 

{f'li I I t^} satisfy condition (7.17) for some {I3 | s) £ 

R_(7'). In the case where the relation is in the form hih2...h, - 1, ^ ... . ..y. 

we say that ti,t2,...,t, is consistent with the relation if 

ti ,t2,•..,t^,0 is consistent. That is, if 

{Ml I t3}{M2 I t2}...{M^ I t^} = {I3 1 S}{l3 I 0} = {I3 I s} £ R^(r) 

In the terminology of D7.30, T7.29 says that if the relation (7.18) 

occurs where hi,...,h^ £ A^(C) and if such that 

{n. I t^.} £ where IL = M^(hp, then must be consistent 

with the relation (7.18) with respect to T (G) and D. This result will 

enable us to transfer relations from a point group to its corresponding 

space groups. See Grossman and Magnus (1964) for a discussion of the 

generators and relations approach to group theory. 

By T7.26, we see that each matrix M such that (M [ ti) £ 

Rd( C is a crystallographic space group, is associated with 

a collection of elements of G characterized by 

I {M I t2} {I3 1 t2 - ti) £ r(C)| = 

|{M 1 t2} {I3 I t}{M I ti) = {M I t2} where {I3 1 t) £ T (G)^ 

(7.19 

- R^(7'(C)){M I ti) , 

the right coset of Rq(,T (C)) with respect to {M | t3}. Hence each element 

of A (C) corresponds to a right coset of T (,G') . This correspondence 

yields an isomorphism from A^(C) to C/7’(C). 

(P7.22) Problem: Prove that 6:A^(C) to ^ defined by 

6(3) = R^(T(C)){M 1 t) where M = M^(3) and {M | t) £ R^j^q^CC) is an 

isomorphism (you may choose to skip this problem on first reading). 

Conclude that A^(C) is isomorphic to 0/7(0). 

We are now ready to give a clear statement of how we will construct 

all of the crystallographic space groups 0. Let H denote an oriented 

point group and let L denote a lattice left invariant by H. Let P denote 

that basis for the primitive sublattice of L associated with H and let 

O denote the origin. Then we denote the translation group that corre¬ 

sponds to L by 7”^ . That is 
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Ti_ ^ {X z T \ T(o) E L) (7.20) 

Let Mp(W) = {Mi,M2, . . . ,M^}. Then we seek all possible e 

such that 

RplC) =Rp(7-^)[{Mi I ti},{M2 I t2},...,{M^ I t^}] (7.21) 

for some crystallographic space group C such that 

Rp(7'(C)) - Rp(r^) 

and (7.22) 

Mp(C) - HpiH) . 

By finding all such sets we will find all of the 

crystallographic space groups (through their matrix representations). 

The strategy that we will use to obtain these sets is to determine a 

sufficient number or relations on H so that a set {tjjtz,...,t^} yields 

an Rp^^^(C) if and only if the set is consistent with all of these re¬ 

lations . 

Once all of the crystallographic space groups satisfying (7.22) for 

some choice of H and L are found, we will need to classify them into space 

group types. To do this, many different equivalence relations have been 

employed. Some of these are discussed by Hans Wondratschek in Chapter 8 

of ITFC (Hahn, 1983). We shall use an equivalence relation that gives 

rise to the traditional 230 crystallographic space group types. The basic 

idea behind this relation is relatively simple. Suppose and C2 are 

two crystallographic space groups. If there exist points Oi and O2 and 

generating sets D, and of 7(0,) and T{G^) such that D,(o,) and 

02(02) are both right handed and Ro,(o,)^^i) “‘i 

same set of matrices, then 0, and are equivalent. Hence to show that 

Cl is equivalent to C2 we show that, by a change of origin and generating 

sets, the matrix representation of one can be converted into that of the 

other. In view of T7.16 we have the follow'ing definition. 

(D7.31) Definition: Let C, and C2 denote crystallographic space groups. 

Then Cl is equivalent to C2 if and only if there exists a vector r e 

/?’ and an integral matrix T with det(T) = I such that the matrix rep¬ 

resentations {M I t} of the elements of C, with respect to D, a gener¬ 

ating set for 7(0, become those of C2 by the transformation 
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.-1 
{M I t} {TMT I T[(M - l3)p + t]} . 

When discussing a space group C where orb^-^^-Co) is a centered- 
I 

lattice, we will usually write the matrices representing A^(C) with re¬ 

spect to the basis P of the primitive lattice. However, in order to test 

for equivalence, D7.31 requires that {M | t} be written with respect to 

a basis D that generates 7"(C). While this is a serious problem relative 

to the change of basis matrix T, we need not change to the basis D in 

order to detect equivalence that occurs because of a change of origin as 

the following theorem shows. 

(T7.32) Theorem: Let a and 5 denote isometries, let D and P denote 

bases of F, Oj, o^ e S and T be the change of basis matrix from D to P. 

Then 

if and only if 

Proof: Suppose ^ ^0(03))^“^ = 

where V e S, then .,(3) = {M | [w];-,, } where W is such that 

= <" I » “ “ <" ' '''•dco.)’ ■ 
Hence 

“p(o.)W = I “>* Vco.)"' = 

Then 

(3) = {tmt“^ 1 miT-l - +T[wlo(„^, 

, -1 -1 
= {TMT 

= {tmt‘^ 1 T[(M- + l«l0Co,)l> 

-1 . . 
(Since T [02 1 ^(03) = '^ D(03) ^ 

-1 
= {TMT 1 

The converse is proved in a completely similar fashion. 
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By T7.32, we may use the basis P of the primitive lattice to detect 

equivalence due to change of origin. However, one must change to the 

basis of the lattice under consideration to detect equivalence due to a 

change of basis. 

CRYSTALLOGRAPHIC SPACE GROUP OPERATIONS 

When an oriented point group H and a lattice L are given, to find 

the space groups satisfying (7.22) we must search for sets of elements 

in that are consistent with the relations in H. Let h £ H. Then 

h° ^ = 1 is one relation that is always present. The next theorem gives 

the constraint that is imposed by this relation. 

(T7.33) Theorem: Let h be a point isometry, let T denote a translation 

group and D he a basis for F. Then t is consistent with the relation 

with respect to T and D if and only if {I3 I Nt} e 'RpiT) where 

N = M + +...+ and H = M^(h). 

Proof: Suppose t is consistent with the relation = 1 with respect 

to T. Then {M | t} | s}£ R^(T). But note that 

{M 1 t)^ = {M^ 1 Mt + t) 

{M 1 t}^ = {M^ 1 MH + Mt + t} 

{M I I 

But {M I t} ^ ^ - {I3 I s). Since = I3, t = 

arranging terms, we have 

+...+ Mt + t) . 

and so, by re- 

s = (M + + ... + = Nt 

By reversing this argument the converse is also proved. c 

The constraint described by T7.33 gives rise to two new types of 

isometries. The screw and glide operations. 
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(E7.34) Example: Consider a space group C such that Mp(C) = Mp(4) and 

Rp(7"(C)) = RpCTp). Let P - {a,b,c} denote the basis chosen in Chapter 

6 with c along the axis of 4, a and b perpendicular to c with % = 90° 

such that D is a right-handed system. Then 

M = Mp(4) 

0-10 

10 0 

0 0 1 

Furthermore, 

where N = 

since the lattice type is primitive, {[V]p 1 V £ 

is Then by T7.29 and T7.33, if {M 1 t} £ C, then Nt £ 

M + + M"* . Calculating N we obtain 

N = 

0 0 0 

0 0 0 

0 0 4 

Hence Nt £ implies that 4f3 £ Z Hence to be consistent with 4“* - 1 , t 

must be chosen such that tj =0, i, or 3/4. 

The operations found in E7.34 are {M | [000] }, {M | [0,0,4] }, 

{M I [0,0,i]^} and {M j [0,0,3/4]^} where M= Mp(4). These matrices 

represent quarter~turn screw operations. The translational component 

of each of these is directed along the axis of the rotation which in this 

case is along c. Hence, under {M | [0,0,4] ) a point [xyz] is rotated 

a quarter turn about C and then displaced a distance of C/4 to the point 

+ 2]^. Consequently, this operation is called a quarter-turn 

screw with a screw translation of c/4 and will be denoted 4^ . Since the 

screw translation of {M [ [000]^} is 0, it is merely a quarter-turn and 

will be denoted by the usual symbol 4. The operation {M j [OOi] } maps 

[xyz]^ to [-y,x,i + z]^. Since the screw translation is c/2, this 

quarter-turn screw will be denoted 42- Similarly, {M | [0,0,3/4] } re¬ 

presents a quarter-turn screw denoted 42* In general, we make the nota- 

tional convention that represents an n^^-turn screw about the 

vector ua + vb + wc with a screw translation of mr/n where r is the 

shortest (nonzero) vector in the lattice in the [uvw] direction. The 

symmetry element of a screw operation will be taken to be that of its 

associated rotation. Hence in the case of a primitive cubic lattice. 
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denotes a third-turn screw about [111] with a screw translation 

of 2/3(a + b + c) since a + b + c is the shortest nonzero vector in the 

[111] direction. However, in the body-centered cubic lattice, ^2 

represents a third-turn screw about [111] with a screw translation of 

(2/3)(ia + lb + Ic) = (l/3)a + (l/3)b + (l/3)c since ^a + lb + Ic is the 

shortest nonzero lattice vector in the direction [111]. 

(P7.23) Problem: Show that with respect to the primitive cubic lattice 

ri n 1 
P, the Seitz notation for *■ ■'32 is 

{M I [2/3,2/3,2/3] } , 

nil 
where M = Mp(' '3) and P is the basis for the primitive lattice given 

in Table 6.3. 

mil 
(P7.24) Problem: Find the Seitz notation for ^ ■^3.^ with respect to 

the body-centered cubic lattice / described in Table 6.3. 

(P7.25) Problem: Write the full 4x4 matrix for the screw operations 

discussed in P7.23 and P7.24. 

(P7.26) Problem: Find the Seitz notation for with 

primitive cubic lattice P. 

respect to a 

(P7.27) Problem. Find the Seitz notation for ^ respect to a 

body-centered cubic lattice /. Note that your answer here should be the 

same as in P7.26. 

(P7.28) Problem: Find the Seitz notation for 

primitive hexagonal lattice. 

.j with respect to a 

(E7.35) Example: Consider the space group C of E7.34 based on 4 but 

with a body-centered lattice type /. The basis D is the same here as 

in E7.34 and so M and N are the same. However {[v]^, | v z orb (o)} 
D T{G) 

is now . Since Nt = [0,0,4t3]^, there must exist a V = 

[VjVjVj]^ E and an n e Z such that 

[0,0,4t3]^ = [v-^ViVj]^ + n[i,i,i]^ . 
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Since Vj + = 0 and v^, n t Z, n = 0. Hence 4t3 e Z. Consequently, 

as in E7.34, we obtain only the operation 4, 4i, Ai and 43 for a body- 

centered lattice left invariant under 4. ° 

(E7.36) Example; Consider the space group C based on the point group 

m with lattice type P (in the second setting with Y as the unique axis). 

Then 

1 0 o' 

0-10. 

0 0 1 

Nt = [2ti,0,2t3] E 

and so ti = 0 or i and t3=0ori. If we take i and - 0, then 

a point [x,y,z]^ is reflected across the plane (010) and then translated 

parallel to it a distance of a/2 along [100] . Such an operation is called 

a glide operation, (010) is called the glide plane and a/2 is called the 

glide translation. The reflection plane of the mirror part of the glide 

operation will be taken to be its symmetry element. Because the glide 

translation is along a this glide is called an a-glide denoted by 

In the case where = i, the glide translation is |a + ic 

which again parallels the (010) plane. This type of glide (where the 

glide translation is not in the direction of a basis vector) will be 

called an n-glide. The glide planes that arise in our example are listed 

below (note that a mirror operation is a glide with a 0 glide translation 

modulo the translation group). 

M = = 

Symbol of 

tz Clide Operation Type 

0 0 
[OlOln, reflection 

0 [O'Ola a-glide 

0 i 
[010]^ c-glide 

i i 
[010]^ n-glide 

(P7.29) Problem: Consider the space group C described in E7.36 where 

the lattice type P is taken to be in the first setting (Z the unique 

axis). In this case the mirror plane is perpendicular to c. Show that 
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the following glide operations are possible: m, a, b and n (recall that 

when no orientation symbol is given, [001] is assumed) where the glide 

translation of the n-glide is ja + |b. 

(P7.30) Problem: Show that the glide translations of the glide oper¬ 

ations in P7.29 are unchanged if an /^-centered or a 6-centered lattice 

is used instead of a primitive lattice. Show that, in E7.36, the result 

is unchanged when P is replaced by an /4-centered or C-centered lattice. 

For a beautifully illustrated discussion of space group operations, 

see Bloss (1971) Chapter 7. 

THE CRYSTALLOGR.APHIC SPACE GROUP TYPES DERIVED FROM THE 

ONE-GENERATOR POINT GROUPS 

Given an oriented point group H, a lattice L left invariant under 

H and the basis P for the primitive lattice, the results stated thus far 

give us conditions that must hold for an {M | t) to be in ^p^Q^CC), where 

C is a space group satisfying (7.22). Theorem T7.37 below states nec¬ 

essary and sufficient conditions for a t to be such that {M | t} and 

generate RpiC) for some C satisfying (7.22) when H is a one- 

generator point group. By a one-generator group we mean a cyclic group. 

Such a group H has an element a such that H = {a,, . . . ,a°} These 

groups are 1,2,3, 4, 6, T, m, 3, 4 and 6. 

(T7.37) Theorem: Let L denote a lattice left invariant by the one- 

generator point group H generated by a and let P denote the basis for 

the primitive sublattice of L that is associated with H. Let M = M (a). 

There exists a crystallographic space group C satisfying (7.22) such^that 

each element of Rpj'Q^CC) can be written in the form 

I V}{M I r}^' , 

where (I, I V) e Rp(r^) and 1 < / < 0(a) if and only if r is consistent 

with the relation = 1 with respect to and P. 

Proof: If there is such a crystallographic 
space group C, then, since 
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{M I r} £ ^P(o)*'^^’ T7.29, r must be consistent with the relation 

0,°^°'^ - 1 with respect to T^ and P. Now suppose that r is consistent 

with = 1 with respect to T^ and P. By (D7.30), 

{M I = {l3 I s} . (7.23) 

where {I3 | s) £ RpCT"^). We will use (7.23) to show that the set 

K = Rp(P^){{H 1 r}' I i = l,...,o(a)} 

is closed. Let A = {l3 1 S^XM 1 r}' and B = {I3 I s^XM | r)' be ele¬ 

ments of K where Sj and Sz are triples representing lattice vectors with 

respect to P and where 1 < /,/ < o(a). Then {M | r}' = {m' 1 p} for some 

p £ and so 

{H I r}'{l3 1 Sz) = {m' I p}{l3 I Sz) 

= {m' I p + m'sz) 

= {I3 I m'szXm' I P) 

= {I3 I m'szXM 1 r}' . (7.24) 

Since L is invariant under H, m'sz is a triple representing a lattice 

vector in L with respect to P. Hence 

AB - {I3 I Si}{H I r}'{l3 I SzXM I r}' 

= {I3 1 Si}{l3 I m'szXM I r}'{M 1 r}' = 

= {I3 I Si + m'szXM 1 r}' ^ . 

where {I3 I Si + m'sz) s RpiT,_) ■ If / + M o(a), then {M 1 r}' ^ ^ is 

in {{M I r}' I / = l,...,o(a)} and so then AB is in K. If o(a) < 1 + j, 

then setting k = i + i - o(a) 

{M 1 t}' ^ ' = {M I 1 t}^ . 

By (7.23), we have, 
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AB - {I3 I Si + m'sjXIi I s}{M I r}^ 

= {I3 I SjXM I r}^ , 

where {I3 | S3} t Rp(T(since RpCT”^) is closed) and 1 < k < o(a). 

Hence kB t K. 

(P7.31) Problem: Suppose that A = {I3 | Si}{M | r}' where {I3 | s^} t 

Rp(7”^). Show that 

a‘^ = {I3 I " '(s + Si)}{M I " ' 

by confirming that AA’^ = {I3 | 0). (Hint: use (7.23) to help with the 

simplification). Now show that a'^ is in K. 

Using P7.31, we have completed the proof that K is a group. Hence 

K - Rp(C) for some space group C. Now we need to show that (7.22) is 

satisfied. By the way K was constructed, Mp(C) = Mp(4). To show that 

Rp(7"(C)) = Rp(7'^) we shall show that the only elements of the form 

{I3 I t) in RpiC) are those where t represents a lattice vector in L. 

(P7.32) Problem: Suppose {I3 | t} = 

1 < / < o(a). Show that = I3 and so / = 

{I3 I t) £ Rp(r^) and that Rp(r(C)) = Rp(7'^). 

{73 I Si}{M I r}^' where 

o(a). Then show that 

Since we now have T (C) isomorphic to L, 

is a crystallographic space group. 

we have also shown that C 

D 

(E7.38) Example: Find all of the Cryatallosraphlc space gronp types 0 

such that Mp(C) = Mp(6). 

Solution: From Table 6.3, the only lattice type left invariant under 6 

is the primitive lattice P with basis P such that 

M = Mp(6) = 

1-10 

10 0 

0 0 1 
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Consider {M | r}. By T7.33, we need to find all vectors r such that Nr 

represents a lattice vector. Then by T7.37 we will have found all of the 

crystallographic space groups C that satisfy (7.22) with H — 6 and L - 

P. Since the lattice is primitive 

«p(Tp) = {{I3 1 s) I s E zn. 

Since N = M + + 11“ + , we have 

N = 

0 0 0 

0 0 0 

0 0 6 

and so Nr = [0 0 which implies that brj must be an integer. Hence 

we have the generators 

{M I [ri,r2,0]^}, {M | [Tj,(1/6)]^} , {M 1 [Ti,r2,(1/3)] }, 

{M 1 {M | {r^,r2,(2/3), {M | [r^, (5/6)]^> . 

Since Tj and can take on any values, we have an infinite number of 

crystallographic space groups associated with 6. However many of these 

are equivalent under D7.31. If the origin is shifted from its current 

position to some vector p, then 

{M I r) 

becomes 

But 

{M 1 (M - I3)P + r) 

‘0 -1 o' Pi 

l3)P + r = 1 -1 0 P2 + 

uO 0 0 P3. 

-P2 >1 

= Pi - P2 
+ ^2 

0 r3. 

If we set P2 = ti and Pi - ri Tz, then 
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0 

(M - I3)P + r = 0 

^3. 

Hence by an appropriate choice of origin, each of the generators we have 

found can be written in the form {M | [O.O.rj]^}. For example 

{M I [0,0,1/6]^} is the representative of the infinite number of space 

groups generated by the elements of the form {M | [Tj,r2,1/6]^}. Hence 

every space group C with Mp(C) = Mp(6) is equivalent to one generated 

by one of 

{M I [0,0,0]^}, {M I [0,0,1/6]^}, {M I [0,0,1/3]^}, 

{M I [0,0,{M I [0,0,2/3]^}, {M j [0,0,5/6]^> . 

Since (M - Islp has a zero in the third component, a change of origin 

does not affect the third component of P. Hence the only way two of these 

generators, say 

{M I [0,0,1/6]^} and {M j [0,0,1/3]^} 

can lead to equivalent space groups is if there exists a proper unimodular 

matrix T such that 

{TMT ^ I T[0,0,1/6]^} = {M | [0,0,1/3]^} . 

It can be shown that no such matrix T exists. In fact all six of the 

generators lead to nonequivalent space group types. Hence we have found 

SIX nonequivalent space groups generated by 6, 6i, 62, 63, 6^ and 65, 

respectively. Since these all have the primitive lattice P, they are 

denoted P6, P6,, P62, P6,, P6, and P6,. , 

A brute force technique for showing that the six generators found 

in (E7.38) are nonequivalent can be developed along the lines of the ar¬ 

gument used at the end of Chapter 6. More elegant approaches require the 

development of further algebraic tools. We do not have the space in this 

book to develop those tools. Hence we will leave this detail unexplored. 
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(E7.39) Example: Consider the space group P6i. According to E7.38 and 

T7.37, 

^ / 
RpiP6,) = U Rp(Tp){M 1 r} 

= RpCrp){M 1 r} U RpCrp){M I r)^ U RpiTp){n I r}^ 

U Rp(rp){H 1 r}** U RpCrp){M 1 r}= U RpiTp)[n 1 r}' , 

where M = Mp(6) and r = [0,0,1/6]^. Consequently each element of P6 ^ 

falls in exactly one of the six right cosers: 

Rp(rp){M i [0,0,1/6]^}, Rp(7-p){M^ I [0,0,1/3]^}, RpiTp){n^ \ [0,0,i]^}, 

RpCTpKM'* I [0,0,2/3]^}, RpCrp){M' | [0,0,5/6]^}, RpCPplds I [000]^}, 

where 

-1 

0 

0 

0 

0 

1 

We shall now describe the elements in each of these cosets. For example 

an element in RpiTp)i^^ 1 [0,0,(1/3)]^} is of the form 

'l 0 0 u 'o -1 0 0 “o -1 0 u 

0 1 0 V 1 -1 0 0 1 -1 0 V 

0 0 1 W 0 0 1 1/3 0 0 1 1/3 + W 

0 0 0 1 _0 0 0 1 0 0 0 1 

where u,V ,W t Z since the lattice is primitive. Using the techniques 

for analyzing the matrix representation of a space group operation dis¬ 

cussed by Wondratschek and Neubuser (1967) and Boisen and Gibbs (19/8), 

we find that the matrix in (7.25) defines a third-turn screw operation 

with a screw translation of ((1/3) + w)c occurring about an axis in the 

direction parallel to c passing through the point 

(l/3)(2u - v')a + (l/3)(u + v)b . 

The points of this form that appear in the unit cell are those for 

which 
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0 < (l/3)(2u - u) < 1 and 0 < (l/3)(u + v) < 1 

Adding the corresponding terms of these inequalities we have 

0 < u < 2 . 

Since u is an integer, u can only equal 0 or 1. When U — 0, the ine¬ 

qualities become 0 < -(l/3)v < 1 and 0 < (1/3)v < 1. The first implies 

that V < 0 and the second that v > 0. Hence, when U = 0, v must equal 

0. When tv = 1, a similar analysis shows that v can only be 0 or 1. Hence, 

when tv = 1, V can equal either 0 or 1. Thus, besides the 3^ operation 

located at the origin, there are two others in the unit cell passing 

through the points [1/3,2/3,0] and [2/3,1/3,0]^, respectively. An ele¬ 

ment in the coset Rp(Tp){n‘' j [0,0,2/3]^} is of the form 

0 0 u '-1 1 0 0 ■ -1 1 0 u 

0 1 0 V -1 0 0 0 -1 0 0 V 

0 0 1 w 0 0 1 2/3 0 0 1 2/3 + w 
0 0 0 1_ 0 0 0 1 0 0 0 1 

An analysis of this matrix shows that it defines a negative third-turn 

screw operation (3 occurring about an axis passing through the point 

(l/3)(tv + v)a + (l/3)(2v - tv)b . 

Consequently, besides the (3 operation at the origin, there are two 

others in the unit cell passing through the points [1/3,2/3,0]^ and 

[2/3,1/3,0] , respectively. This is as one would expect, since (3 = 
-I 1 

(3 )2 and this composition does not move the axis of the 3.| operation. 

(P7.33) Problem; Analyze the matrices in each of the remaining cosets 

of P6, and show that the axes are positioned as shown in Figure 7.5. 

(P7.34) Problem: Let x denote the translational isometry defined by 

t(o) = t where t = 2a + 3b + 5c and P = {a,b,c}. Show that 
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Figure 7.5: A diagram of a unit cell containing the screw axes of space group P6i each 

taking place about rotation axes paralleling c. The 6i-screw axis is symbolized by a pronged 

hexad, the 3i-screw axes by pronged triads and the 2,-screw axes by pronged diad symbols. 

Figure 7.G: A diagram showing the composition of the translational isometry T where 

t(o) = 2a + 3b + 5c = t with the rotational screw operations comprising a 6i-screw axis that 

parallels c and passes through the origin. The resulting operations formed by this compo¬ 

sition take place about rotation axes paralleling c and are located on the perpendicular 

bisector of t at a distance of t/2ctn(p/2) from the line from o to t where p is the turn 

angle of the rotational component of the screw operation. 
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10 0 2 

0 10 3 

0 0 15 

0 0 0 1 

Find Rp(ta) for each of the six coset representatives a enumerated in 

E7.39 (For example, find RpCia) where Rp(a) = {N | [0,0,1/6]^}). Observe 

that these axes are located at points along the perpendicular bisector 

of the line segment H from O to t as shown in Figure 7.6. The distance 

of the axis of xa from £ is (t/2)ctn(p/2) where p is the turn angle of 

the linear component of a and t = |lt||. This formula can be derived by 

noting that xa maps the Z axis to the line parallel to the Z axis passing 

through the point t. 

(P7.35) Problem; Consider the space group P62. Then 

6 
Rp(P62) = U Rp(rp){M I r}' 

/= 1 

where M = Mp(6), r = [0,0,1/3]^. Locate all of the axes of elements in 

P62 that pass through the unit cell. Check your answer with that given 

in the ITFC (Hahn, 1983, p. 546). Note that your drawing should not in¬ 

clude those shown in the table for [ri,r2,r3]^ where Ti or Pj are equal 

to 1. 

(P7.36) Problem: Do P7.35 for P63. (In this case r = [0,0,j]^.) 

(D7.40) Definition: Let C denote a crystallographic space group and let 

P denote the basis of the primitive lattice associated with A^(C). Then 

each right coset of Rp(Pp) in Rp(C) has a representative of the form 

{M I r} where r = [ri,r2,r3]^ and 0 < r^. < 1 for each /. Such a repre¬ 

sentative is called a principal representative of G with respect to P. 

(P7.37) Problom. Use (7.24) to prove that Rp(Pp) is a normal subgroup 

of Rp(C). 

(P7.38) Problem: Show that the principal representative defined in D7.40 

exists for each coset of Rp(.Tp) in Rp(C) and that there is only one such 

Rp(0 = 
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representative for each coset. 

(P7.39) Problem: Using E7.39, find the principal representatives of 

P6i, with respect to P, the basis for the primitive lattice associated 

with C. 

(D7.41) Definition: Let C denote a crystallographic space group and let 

[xyz]^ denote a point that is moved by each isometry of C. Then the set 

of images of [xyz]^ under the principal representatives of C with respect 

to P is called the general position of G (cf. Hahn, 1983). The triples 

in the set are called the general equivalent positions of C (Henry and 

Lonsdale, 1952). 

Suppose that we know the triple that is the image of [x,y,z]^ with 

respect to a basis P under an isometry a and wish to find the 4x4 matrix 

representation R of a with respect to P. Suppose V = 

[f lix yy ,1) ,y is the image. Then f .{x ,y ,z) is a 

linear polynomial for each 1 < / < 3 and 

X ^11 ^12 ^13 f 1 X fiix,y,z) 

y — ^2 1 f'22 ^23 ^2 y — 
f2ix,y,z) 

z ^31 ^32 ^33 ^3 z f2ix,y,z) 

1 0 0 0 1 1 1 

Hence we obtain the following set of polynomial identities: 

Tiix + Tijy + TijZ + = /i(x,y,z) 

TziX + r^iy + r^-iZ + t2 = f2ix,y,z) 

TjiX + r32y + rjiZ + = fzix,y,z} . 

Therefore, r.^, r.^, r.^ and t. are the coefficients of f .{x ,y ,z). For 

example, if the image of [x,y,z]^ under a is 

then 

[(3/4) + z,(l/4) - y,(3/4) - X] 

•iiX + Tizy + TisZ + ti = Ox + Oy + Iz + (3/4) 

implying that rii=ri2=0. ^i3=l and ti=3/4. Continuing this reasoning. 
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we see that 

0 013/4 

0-10 1/4 

-100 3/4 

0 0 0 1 _ 

Consequently, the 4x4 representative of a can be found by an inspection 

of the corresponding image of [x,y,z]^. 

RpCo^C®) 

(E7.42) Example; Find the general equivalent positions of P61. 

Solution: In P7.39, the principal representatives of P6i with 

to P are 

where 

{M I [0,0,1/6]^}, I [0,0,1/3]^}, {M^ j 0,0, 

{11“ 1 [0,0,2/3]^}, {M^ I [0,0,5/6]^}, {I, j [000]^}, 

0 

0 

1 

respect 

The images of under these representations are 

[>f - y,x,(l/6) + z]^, [-y,x - y,(l/3) + z]^, [-x,-y,i + z]^, 

[y - x,-x,(2/3) + z]'^, [y,y - x,(5/6) + z]^, [x,y,z]^ . 

These triples are the general equivalent positions of PG^. [ 

(P7.40) Problem: Find the general equivalent positions for P62 and 

P63 . Verify your answers with the results given in (Hahn, 1983). 

(E7.43) Example: Find all of the crystallographic space groups types 

C such that A^(C) is isomorphic to 2. 

Solution: From Table 6.3, the lattice types left invariant under 2 are 

P and C (where we have chosen the setting where V is the unique axis). 

Hence we seek crystallographic space groups C such that Mp(C) = 

Mp(^^^*^^2). With respect to P, we have 
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-10 0 

0 10. 
0 0-1 

We will find the space groups C such that RpCVCC)) = Rp(7'p) first. 

By T7.37, since 

I s} 1 s E Z-| , (7.26) 

we seek those elements of r £ such that Nr £ where 

M = = 

N = M + 

0 0 0 

0 2 0 

0 0 0 

Hence Nr = [0,2r2,0] must be in Z’. Therefore, modulo P, we have the 

generators 

{M I [TijO.ra]^} and {M | , (7.27) 

where Tj, t R. By T7.37, the generators in (7.27) yield all of the 

space groups C that satisfy (7.22) for H = and L = P. 

To find a list of the nonequivalent space groups from all of the 

space groups based on (7.27), we determine the impact of moving the origin 

to p. If this shift is made, {M \ t} becomes 

{M I (M - I3)P + r} = {M I [-2pi,0,-2p3]^ + r] . 

Choosing Pi and Pz so that 2pi = and 2p^ = r^, we see that each of 

the generators in (7.27) is equivalent to either 

{M I [000]'"} or {M I [0,i,0]^} 

It can be shown that these are nonequivalent. Thus we have found two 

crystallographic space group types where Mp(C) = Mp( 2) and 

Rp(r(C)) = Rp(7'p). We call the space group generated by {M 1 [000]^}, 

P2, and that generated by {M | [0,i,0]^}, P21. 

(P7.41) Problem: Consider the space group PZj. Locate all of the sym- 
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metry axes in this space group that pass through the unit cell, find the 

principal representatives of P21 with respect to P, and calculate its 

set of general equivalent positions. Compare your results to those in 

ITFC (Hahn, 1983). 

Continuing with E7.43, we consider the case where the lattice left 

invariant under 2 is taken to be C. Even though the basis of this lattice 

is D = {-ja + fbjb.c}, we continue to write all of our matrices in terms 

of the basis P. Hence 

I s) 

RpCT'c) 

s = m + u[|,i,0] where m £ and tv = 0 or 1 } ■ 

(7.28) 

Consequently, we seek those elements r = [ri,r2,r3]^ £ that satisfy 

the condition that Nr represents a lattice vector. That is, such that 

[0,2r2,0] = m + tv 1 i I 2 j 2 j ' 

where tv = 0 or 1. Then 0 - rrii + where t Z. Hence tv = 0 and so, 

as in the case of P, we have the generators 

(M I [ri,0,r3]^} and {M | [ri,i,r3]^} 

As before, these are equivalent to 

(M 1 [000]^} and (M | [0,i,0]^} , 

respectively. In particular (H | [0,1,0]^} is equivalent to 

i [2.3,0] ) where we have chosen = } and r3 = 0. Note that since 

{M I [3,3,0]^^} = {I3 I I [000]^} , 

and since {I3 | [i,i,0]^> £ Rp(T^), 

Rp(T^){l3 I [000]^} U Rp(r^){M I [000]^} = 

I [000]^} U Rp(r^){M I 

and so {M | [000] } together with Rp(r^) generates the same group of 
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matrices as that generated by {M \ [2,5,0]^} and RpCT”^). 

Hence {M | [000]^} and {M | [0,i,0]^} generate equivalent space 

groups. Consequently we obtain only one space group denoted C2. Hence 

there are three distinct crystallographic space groups based on the 

monoclinic point group They are P2, P2j and C2. □ 

(E7.44) Example: Find the principal coset representatives of C2 with 

respect to the P basis and the set of general equivalent positions of 

C2. 

Solution: By (7.26) and (7.28) we see that 

Rp(Pj^) = Ro(ro){i3 1 [000]^} u Rp(rp){i3 | HA,o]^) 
p'- p py P^ 

- Rp(rp) u Rp(rp) ){i3 I . 

But 

Rp(C2) =Rp(r^){l3 I [000]^ U Rp(7-^){M | [000]^} 

where M = Mp(^^^^^2). Hence 

Rp(C2) = Rp(rp) u Rp(rp){i3 I [iA,0] } {M I [000] } 

u Rp(Tp) u Rp(rp){l3 I [ia,0] } {I3 I [000] } 

= Rp(Tp){M I [000]^} U Rp(rp){M I [i,i,0]^} 

u RpCrp){i3 I [000]^) u Rp(rp){i3 I [i,i,o]}^ . 

The principal coset representatives of C2 with respect to P are 

{M I [000]'"} {M I [i,i,0]^}, {I3 I [000]^}, {I3 1 [i,i,0]^}. Since 

Ml = 

-10 0 

0 10 

0 0-1 

the general equivalent positions for C2 are 

[-x,y,-z]^, [i - xA + y,-z]^Ax>y,^]^ and A + A + y,z]^- 
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(P7.42) Problem: Show that the set of all crystallographic space group 

types C such that A^(C) is isomorphic to 3 consist of P3, P3i, and 

R3. 

Applying the techniques illustrated in this section one can verify 

that the one-generator point groups give rise to the following list of 

30 crystallographic space groups. 

7: PI 

2: P2,P2^,C2 

3: P3,P3^,P3^,R3 

U: PU,PU,,P^,,P4,JU,IU, 

6: P6,P6,,P62,P6,,P6^,P6i 

7: Pi 

m: Pm ,Pc ,Cm ,Cc 

3: P3,R3 

4: PUJU 

6: P6 

THE CRYSTALLOGRAPHIC SPACE GROUP TYPES DERIVED 

FROM THE TWO-GENERATOR POINT GROUPS 

The two generator point groups H contain two elements a and 3 such 

that each element of H is expressed uniquely in the form a where 

1 < / < o(a) and 1 < / < o(3). In order to do this, the elements a and 

3 must be related in a special way. For each point group, we will choose 

a and & such that 

3 = aba (7.29) 

and such that <a> f) — {1}. A listing of the two-generator point 

groups together with their generators is given in Table 7.2. 

(P7.43) Problem: Show that the a and b listed for each of the two- 

generator point groups satisfies (7.29). 

(P7.44) Problem: Show that 

<a> n <b> = {1} 

for each a and b pair given in Table 7.2 where <jr> denotes the cyclic group 

generated by Z. 
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Table 7.2: The two-generator oriented point 

groups and their generators. 

Group a Group c B 

2/m [OlOlj / 31m 3 [2IOI2 

U/m 4 / 422 4 [10012 

6/m 6 / 4mm 4 
[1001^ 

222 2 
[lOO]^ 42m 4 [IOOI2 

mm2 2 
[100]^ 4m2 4 

[100]^ 

321 3 
[10012 622 6 [10012 

312 3 
[21012 6 mm 6 

[1001^ 

3m1 3 62m 6 [10012 

31m 3 
[2101^ 6m2 6 

[1001^ 

3m1 3 
[10012 

(E7.45) Example: Let a and 3 be the generators listed in Table 7.2 for 

a two-generator point group. Show that if 

n.m _ 1 
a P - 1, 

then = 1 and - 1 . 

Solution: Suppose = 1. Then 

But 3^ e <3> and a ^ £ <a>. Since fl ®y P7.44, 

_ 1 Therefore, = 1 becomes a^l = 1 and so = 1 . t 

(P7.45) Problem: Show that, if a'V = where 1 < /, k < o(a) and 

1 < /, m < o(P) then i = k and j = m. Use E7.45 together with the fact 

that ,...,are always distinct elements for any element of 

finite order. 

(E7.46) Example: Use (7.29) to show that 

H = {a^V I />/ £ ^ where 1 < / < o(a) and 1 < /' < o(3)} 

where H is a two-generator point group and a and & is as defined in Table 

7.2. 
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Solution: We begin by showing that 

K = {a I /,/' E Z where 1 < / < o(a) and 1 < / < o(a)} 

is a group. Since K is contained in the finite group H, we need only 

show that K is nonempty and closed under composition. Since a e K, K 

is nonempty. To show that it is closed, we must show that elements like 

(a^3)(a’3^) can be rewritten in the form a . This is accomplished by 

noting that since aga = g, we have ga = a ^g. Hence if we move a g from 

the left side of an a to the right side we must replace a with a This 

is much like what we did in (7.24) to move the translations to the left. 

Hence, 

(a^g)(a^g^) = a^gaaag^ 

= a^a ^gaag^ 

= ot^a ^(x ^gag^ 

= a^a ^gg^ 

= a ^g^ . 

Since a ^ £ <a>, a ^ = a' for some 1 < / < o(a). Similarly g^ = g^' for 

some 1 < /' < o(g). Using this process, any product of the form 
, m„n. . , , j j 
(a g )(a g ) can be written in the form a g' where 1 < / < o(a) and 

1 < /■ < o(g). Hence AC is a subgroup of H (recall that a, g e W) . But, 

by P7.45, the elements in K are all distinct and so #(/<) = o(a)o(g). 

Note that in each case in Table 7.2 (KW) = o(a)o(g) and so H = K. i 

Thsorem. Let L denote a lattice left invariant by the two- 

generator point group H and let a and g be as given in Table 7.2. Let 

P denote the basis for the primitive sublattice of L associated with H. 

Let Ml - Mp(a) and M2 = Mp(g). There exists a crystallographic space 

group C satisfying (7.22) such that each element of Rp^^^(C) can be 

written in the form 

I v}{Mi I r}'{M2 I s}' 

where {I3 | v) e RpiT, 1 < / < o(a) and 1 < / < o(g) if and only if r 

and s are consistent with the relations = 1, = l and g = aga 

with respect to and P. 
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Proof: By T7.29, if such a space group C exists, r and s must be con¬ 

sistent with the relations stated in the theorem. Suppose r and s are 

consistent with the stated relations. Consider 

K = <j{l3 1 v}{Mi 1 r}'{M2 I s}' {I3 I v} £ RpCT"^), 

1 < / < o(a) , 1 < /■ < o(&)I 

To show that K is a group we employ the same process as discussed in the 

solution to E7.46. That is, we can move the elements of RpCT"^) to the 

left and the {Mz 1 s}'s to the right. However, by D7.30, each time we 

apply a relation, an element of Rp(7”^) is created which can then be moved 

(with some modification) to the left. Hence K can be shown to be closed. 

Using the fact that 

(919293) 
-1 -1 -1 -1 

93 92 9i 

and then sorting, as described above, it is straight forward to show that 

each element in K has an inverse in K. Then K is a group. Let C denote 

the group of isometries that are represented by K with respect to P. 

Then 7(0) corresponds to the elements of K of the form {I3 | w}. Con¬ 

sider such an element. Then 

{I3 1 W) = {I3 I v}{Mi I r}'{M2 I s}' 

where {I3 | v} £ Rp(7^), 1 < / < o(a) and I ^ j ^ o(B). Then m'jMz = 

I3. By E7.45, >4 = I3 and = 13 and so / = o(a) and / = o(B). Since 

r and S were chosen to be consistent with a — 1 and B — 1 with 

respect to 7^ and P, we have (D7.30) 

{I3 I W) = {I3 1 V}{l3 I U}{l3 1 X) 

where each of the factors on the right is an element of Rp(7^). Therefore 

{I3 I w) £ Rp(7^) and so Rp(7(C)) - Rp(7^). Also by E7.46, Mp(C) = 

Mp(H). ' 

(E7.48) Example: Let H = 422 and L = P. By Table 7.2, a = 4 and B = 

[lOOJz Let Ml == Mp(4) and M^ = Mp(^'*°°^2). Show that r = [0,0,and 
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s = are consistent with a"* = 1, 3^ = 1 and 3 - a3a. 

Solution: Since o(a) = 4, o(3) = 2, = Mj + Mi + M^ + M^ and Nj == 

M2 + M2. Since 

'0 -1 o' '1 0 o' 

Ml = 1 0 0 and M2 = 0 -1 0 

0 0 1 0 0 -1 

'0 0 o' '2 0 0' 

Ni - 0 0 0 and N2 = 0 0 0 

0 0 4 0 0 0 

Since NiP - [001] and N2S - [100] , by T7.33, r is consistent with a** = 

1 and S is consistent with 3^ = 1 with respect to Tp and P. To show that 

r and s are consistent with 3 = aSa, we calculate the product 

{Ml I [0,0,A]^}{M2 I [i,-i ,0]^}{Mi I [0,0,i]^} = {M^ I [_|,i,o]^} . 

But 

{Mz I [-1,1,0]^} = {I3 I [-1,0,0]^}{M2 I [i,i,0]^} . 

Since {I3 j [-1,0,0] } z RpC^p), r and s are consistent with 3 - a3a with 

respect to Tp and P. By T7.47, the set of matrices of the form 

{I3 I v}{Mi I r)'{H2 I s}/ , 

where V e 1 < i < 4 and 1 <}< 2 represents the elements of a 

crystallographic space group C satisfying (7.22) where L = P and H = 

422. This space group is denoted Pn-^2^2. ^ 

(E7.49) Example: Find all of the space groups C derived from H = 221 

and L = P. Then determine all of the corresponding space group types. 

Solution: By Table 7.2, a = 3 and 3 Then 

Ml = Mp(3) = 

'0 -1 o' 

1 -1 0 and M2 - Mp([^°°]2) = 

’1 -1 o' 

0-10 

0 0 1 
0 0 -1 

280 



We must now find all r and S that are consistent with the relations - 

1, 3^ = 1 and 3 = a3cx. Then Ni = Mj + Mi + Mj and Nj = Mz + Mz are 

0 0 o' '2 -1 0' 

Ni = 0 0 0 and Nz = 0 0 0 

0 0 3 0 0 0 

By T7.33, since the lattice is primitive, Njr = [0,0,3r3]^ £ Z\ Hence 

p = [ri,r2,n/3]^ for some integer n. Since NzS = [25i - S2,0,0] e Z , 

5 = [5j,2Si — 07,53]^ for some integer m. Modulo P, S can be taken to 

be s = [Si, 2s 1, 53]^. To be consistent with 3 = a3a, f* and S must be 

such that 

{Ml I r}{M2 I s)}{Mi I r} = {I3 1 v}{M2 1 S} 

for some {I3 | v} £ Rp(7'p)- Hence 

{M2 1 [ri + Tz - 25i,ri + r^ - 51,53]^} = {I3 I v}{M2 | s} . 

Solving for V, we have 

V 

Pi + r2 ~ 35i 

Pi + Tz - 3Si 

0 

Since the lattice is primitive, V £ Z^ Ti + Tz - 3Si must be an integer 

Hence any choice of ri,r2,5i,S3 £ R and n z Z such that 

+ r. 3Si £ Z (7. 

yields r = [ri,rz,n/3]^ and s = [5i,251,53]^ that are consistent with 

^3 ^ 3^ = 1 and 3 = a3a. Conversely, any r and s that are consistent 

with these relations can be put (modulo P) into this form. By T7.47, 

each space group C that satisfies (7.22) with H = 321 and L = P is re¬ 

presented by a matrix group whose elements are of the form 

{I3 1 v}{Mi 1 r}'{Mz I s}/ , 

where 

and s 

{I3 I V} £ Rp(7‘p), 1 < / < 3 and 1 < /• < 2 for some choice of 

satisfying the conditions associated with (7.30). 

r 

30) 
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We must now determine representatives of the different space group 

types in this collection. If the origin is moved to the vector p, 

{Ml I r) becomes 

{Ml I (Ml - l3)P + r) . (7.31) 

Since (Mi - l3)p = [-pi - Pz.Pi “ 2p2,0]^, to simplify the first two 

components of r, we wish to find p such that ~P\ ~ Pz ~ ”“^i 

Pi — 2p2 = —f'z- Solving this system of equations we find that if Pi = 

(2/3)ri - (l/3)r2 and P2 = (l/3)(ri + r2), then (7.31) becomes 

{Ml 1 [0,0,n/3]^} . 

Moving the origin in this manner changes the value of S as well. However 

the conditions associated w'ith (7.30) must still hold. That is, for our 

new r and s. r = f0.0,n/31^ and s = [Sj,251,53]^ where -3Si £ Z. Hence 

Si = m/3 for some integer m. Therefore, S = [m/3,2m/3,0] ^ for some 

me Z. Note that if a subsequent change of origin is such that 

{Ml I r) becomes 

{Ml I [u,v,n/3]^) , 

then r can still be taken, modulo P, to be [0,0,n/3]^. Hence, if we move 

the origin to a new p, where Pi and Pi are chosen so that -pi - P2 and 

Pi - 2p2 are integers then r is undisturbed. Note that P3 can be any 

value we wish. Under such a change in origin, {M2 1 s) becomes 

{M2 I [-P2,-2p2,-2p3] + [m/3,2m/3,S3]^} • 

Setting P2 = m/3, pj = s-ijl and Pi = -ml3, then -pi — Pz - 0, 

Pi “ 2p2 = -3m/3 £ Z and {M2 1 s) becomes 

{M2 I [0,0,0]h . 

Consequently, we have the following choices of r and S; 

r s 

[000]^ [000]^ 

[0,0,1/3]^ [000]^ 

[0,0,2/3]^ [000]^ . 
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The three pairs of {Mi ] r}, {M^ 1 s} formed using the vectors above lead 

to nonequivalent space groups. The three space groups obtained in this 

manner are denoted P321, P3^21 and P3221, respectively. ^ 

(E7.50) Example: Find the principle representatives of space group 

P3221 and determine its general equivalent positions. 

Solution; According to T7.47 and E7.49 the elements of P3221 are of the 

form 

{I3 I v}{Mi I r}'{M2 I s}' 

where V e Z^, 1 < / < 3, 1 < / < 2 and 

'0 -1 o' 

and Mz = Mp(f^°°^2) = 

’1 

0
 

1-H
 

1 

Ml = Mp(3) - 1 -1 0 0 -1 0 

0 0 1 0 0 -1 

r = [0,0,2/3]^ and s = [0,0,0 ^. Thus, 

P3221 = RpCrp){Mi I [0,0,2/3]^}{M2 | [000]^} 

u RpiTp){nl I [0,0,1/3]^}{M2 I [000]^} 

u Rp(rp){i3 I [ooo]^}{M2 I [000]^} 

u Rp(rp){Mi 1 [0,0,2/3]^}{l3 1 [000]^} 

u Rp(rp){Mi I [0,0,1/3]^}{I3 I [000]^} 

u Rp(rp){i3 I [000]^}{i3 I [000]^} . 

That is, each element in resides in exactly one of the following 

six right cosets: 

Rp(7'p){MiM2 I [0,0,2/3]^}, Rp(Tp){MiM2 [ [0,0,1/3]^} 

Rp(7'p){M2 I [000]^}, RpCrp){Mi I [0,0,2/3]^}, 

Rp(7'p){Mi I [0,0,1/3]^}, RpCrp){l3 1 [000]^} . 

Hence, the principal representatives of PZzZ/ with respect to P are 

{I3 I [000]^}, {Ml 1 [0,0,2/3]^}, {Ml I [0,0,1/3]^} 

{Mz I [000]^}, {MiMz I [0,0,2/3]^}, {MiMz | [0,0,1/3]^} . 
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Since 

0
 1 o' ‘-1 0 0

 
_
1

 

M1M2 = 1 0 0 and MlM2 = -1 1 0 

1
-

 
0

 

0 -1 0 0 -1_ 

the general equivalent positions for P32.21 are 

[x,y,z]^, [-y,x - y, (2/3) + z]^, [y - x, -x, (1/3) + z]^, 

[X - y, -y, -z]^, [y, x, (2/3) - z]^, [-x, y - x, (1/3) - z]^ . c 

(P7.46) Problem: The ITFC (Hahn, 1983) gives the following general 

equivalent positions for : 

[X, y, [-y, X - y, (2/3) + z]^, [y - x, -x, (1/3) + z]^, 

[y,x,-z]^, [X - y, -y, (1/3) - z]^, [-x, y - x, (2/3) - z]^ . 

Show that if we move our origin to p == [0,0,-1/6]^, then {Mi | r) and 

{M2 I s} are changed so that the general equivalent positions as given 

in the ITFC are obtained. 

(P7.47) Problem: Determine the principal representatives of space group 

P^\2i2 (E7.48) and confirm that its general equivalent positions are: 

[x, y, z] , [-y, X, 3 + z] , [-X, -y, ^ + z]^, 

[y, -X, (3/4) + z]^, [i + X, i - y, -z]^, [y - i, i + x, i - z]^, 

[-i - X, y - i, i - z]'", [i - y, - X, (3/4) - z]^ . 

(P7.48) Problem. The ITFC (Hahn, 1983) gives the following general 

equivalent positions for P4i2i2: 

y, ^]^ [-X, -y, i + Z]^ [i - y, ^ X + 

li + y, i - X, (3/4) + z]^, [i - X, i + y, i - Z]^, 

+ X, i - y, (3/4) - z]^, [y, X, -z]^, [-y, -x, i - z]^ . 

Find p such that if our origin is moved to p, these general equivalent 

positions occur. 

(E7.51) Example: An element of the right coset Rp(7'p){M2 | [000]^} of 

P3221 is of the form 
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'1 0 0 u '1 -1 0 o' '1 -1 0 u 

0 1 0 V 0 -1 0 0 0 -1 0 V 

0 0 1 w 0 0 -1 0 0 0 -1 w 

0 0 0 1 0 0 0 1 0 0 0 1 

where, because the lattice is primitive, u, v, w z Z. Analyze the matrix 

on the right, using the techniques discussed by Boisen and Gibbs (1978) 

and determine the name of the space group operation a that it represents 

and a point on its symmetry element. 

Solution: As trCMz) = -1 and detCMz) = +1, we know that the linear part 

of a defines a half-turn. We also know that its rotation axis parallels 

[100]. The translational component, d, of a is found by solving 

2 . , 
d = i Z M'lt = i(Mit + MTt) , 

i=l 

where t = [u,V,w]^ and so 

/ 
'1 -1 o' u '1 0 o' u \ u - Vll 

Q
. II 0-10 V + 0 10 V )- 0 

0 0 -1 w 0 0 1 w / 0 

Hence, a = modulo the translation group when V is odd and a - 

modulo the translation group when V is even. 

The set of points defining the symmetry element of a is found using 

the equation 

t - d = (I3 - Ni)e 

where e = [ei,62,63]^ denotes a point on the rotation axis of a. Thus 

u ■ u - wjl / 1 0 o' '1 -1 o' \ ei 

V - 0 = 
0 1 0 - 0 -1 0 ^2 

w 0 \ 0 0 1_ 0 0 -1 / 

■ v/2 ■ 'o 1 o' e-i 

V = 0 2 0 02 

w 0 0 2 
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With the matrix methods described in Appendix 2, we find that is in- 

determinant, 62 = v/2 and 63 = w/2. Hence, the rotation axes of L 

and both pass through the point (\^/2)b + (w/2)c. For the case 

where v is even and a = 5,70 see that there are exactly two such 

axes in the unit cell passing through the points [0,0,0]^ and [0,0,-1] . 

When v is odd and a = again there are two axes in the unit cell 

passing through the points [0,i,0]^ and [O,-^,-!]^ (Figure 7.7). i 

(P7.49) Problem: Analyze an element from each of the remaining right 

cosets of P3z21 and confirm the symmetry elements displayed in Figure 

7.7. 

(E7.52) Example: The space group symmetry of the a-quartz structure 

displayed in Figure 1.4 is P3221■ As a verification of this observation, 

show that the atomic coordinates of the oxygen atoms in the unit cell 

(Table 1.3) are -equivalent. 

Solution: This will be done by showing that the triple representing Oj 

is -equivalent to those of O2, O3, O4, O5 and Og . Note that the 

basis used in Table 1.3 is D = P. The triple representing Pj radiating 

from the origin to Oj in Table 1.3 is 

[rjp = [0.4141, 0.2681, 0.1188]^ . 

Hence, we have (modulo P) 

1000' 0.4141 ■ 0.4141’ 

Rp( 1 ) 
ri 

= 
0 10 0 0.2681 

= 0.2681 

1 0 0 10 0.1188 0.1188 

0 0 0 1 1 1 

’0-10 o' ’0.414l’ -0.2681’ ’0.7319’ 

= 
1-10 0 0.2681 0.1460 0.1460 

1 0 012/3 0.1188 0.7855 0.7855 

.0 0 0 1 1 1 1 
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(i.l) 

(o.i) 

Figure 7.7 (top); A unit cell displaying the symmetry elements of space group P3^21 viewed 

down c. The rotation axes of the vertical 3,-screw axes are symbolized by pronged triads 

and those of the horizontal 2-fold screw and 2-fold rotation axes are symbolized by 

single-barbed and double-barbed arrows, respectively, paralleling [100], [110] and [010]. 

The numbers enclosed between the parentheses define the Z-coordinates of these axes. For 

example, (0,i) placed at the ends of the two-fold rotation axes paralleling a indicates that 

two such axes occur in the cell, one at a height Z = 0 and the other at height Z = i- 

Figure 7.8 (bottom): A diagram of the symmetry elements of space group P3^21 inserted into 

a unit cell of the a-quartz structure viewed down c. The atoms are labelled as in Table 

1.3. The numbers next to each atom in the cell specify its Z-coordinate. 
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110 o' '0.4141' 

10 0 0 0.2681 

0011/3 0.1188 

0 0 0 1 1 

'-0.1460' '0.8540' 

-0.4141 =r 
0.5859 

0.4521 0.4521 

1 1 

ri 

1 

'1 -1 0 0' '0.414l' 0.1460 '0.1460' 

0 -1 0 0 0.2681 -0.2681 0.7319 

0 0 -1 0 0.1188 -0.1188 0.8812 

0 0 0 1 1 1 1 

Rp(‘°'»l2, 

'01 0 0 '0.414l' -0.2681' 

ri 10 0 0 0.2681 
IZ 

0.4141 

1 00-1 2/3 0.1188 0.5479 

0 0 0 1 1 1 

'-1 0 0 o' '0.414l' '-0.4141' 0.5859" 

-110 0 0.2681 
— 

-0.1460 
— 

0.8540 

0 0 -1 1/3 0.1188 0.2145 0.2145 

0 0 0 1 1 1 1 

Because these are the triples representing Oj, Oj, O3 , O5, 0^ and Og, 

respectively, we may conclude that Oj is ^^22/-equivalent to each of the 

other oxygen atoms in the unit cell. The reader should repeat this 

process for several of the remaining oxygen atoms in the cell and observe 

that a similar result is obtained. 1 

Probism. Show that Sij which is at the end of r2 in the unit 

cell of a-quartz is PJ22/-equivalent to both Si2 and Si, (see Table 1.3). 

Note that Sii resides on the rotation axis of Hence 

maps Sij to itself. As we learned earlier, whenever an atom is mapped 

to itself by at least one operation of the group in addition to the 

identity, we say that the atom is on a special position. Thus, the Si 

atoms in a-quartz are on special positions (each resides on a 2-fold 

axis). As a consequence, there are only three Si atoms in the unit cell. 

On the other hand, because O; is on a general position, there are six 

oxygen 
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atoms in the unit cell. Therefore, the unit cell of a-quartz contains 

three SiO^ formula units. A drawing of the structure of a-quartz and its 

symmetry elements is given in Figure 7.8 (above). 

(P7.51) Problem: Analyze an element from each of the eight right cosets 

of P4i2i2 and construct a diagram of its unit cell showing all its sym¬ 

metry elements viewed down C. 

(P7.52) Problem: In a structural analysis of a-cristobalite, Pluth et 

al (1985) found an oxygen atom at [0.7392, 0.0637, 0.8036] and a Si atom 

at [0.8005, 0.3005, 5/8]^. 

(1) Given that the space group of a-cristobalite is P^i2i2 de¬ 

scribed in E7.48, find the coordinates of the 0 atoms in the 

unit cell that are 12 i2-equivalent. Then find the coordi¬ 

nates of the Si atoms that are P4i2i2-equivalent. 

(2) Make a drawing of the a-cristobalite structure viewed down C 

and compare with that given in Figure 1.7. 

(3) Calculate the SiO bond lengths and SiOSi angles and compare your 

results with those calculated in El.13 for a-quartz. 

(E7.53) Example: Find all of the space groups C such that Mp(C) = 

Mp(2/m) and Rp(r(C)) = Rp(T^). Then determine all of the corresponding 

space group types. 

Solution: By Table 7.2, a = and 8 = /• Hence 

■-1 0 o' 

1 0
 

0
 1 

M. = = 0 10 

0 0 -1 

and M2 = Mp(/) - 0-1 0 

0 0-1 

We now find all r and S that are consistent with the relations a - 1, 

= 1 and 8 = a8a. Since NiP = [0,2r2,0] and the lattice is 

C-centered, [0,2r2,0]^ = [uvw]^ + where u ,v ,w t Z and P = 0 

or 1. Therefore, 0 = u + k/2 which implies that k = 0. Hence Pj = n/2 

for some n t Z. Since NjS = [000]^, no conditions are imposed by 8^ = 

1. To be consistent with 8 = 
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{Ml I r}(M2 I s}{Mi 1 r) - {I3 I v}{M2 I s} . 

where {I3 | v} £ Rp(T^). By taking the product and solving, we find 

that 

[2ri - 2Si, 0, 2r3 - 283]^ = [uvw]^ + , 

where u, v, w £ Z and k - 0 or 1. Since 0 = v + k/2, k = 0. Hence, 

modulo C, r = [Sj + m/2, n/2, S3 + i/2]^ where m, It Z. Hence any 

choice of 5i, S2, S3 t R, m, n, i z Z yields 

r = [5i + m/2, n/2, S3 + i/2]^ and s = [51,52,53]^ (7.32) 

that are consistent with the relations. 

By T7.47, each space group C such that Mp(C) = Mp(2/m) and 

Rp(V(C)) = Rp(r^) is represented by a matrix group whose elements are 

of the form 

{I3 I v){Mi I r)'{M2 I s}/ , 

where {I3 | v} £ RpCT”^), l</<2, l</<2 for some choice of r and 

S satisfying the conditions assiciated with (7.32). 

We now determine the different space group types. Suppose the origin 

is moved to p. Since (M2 - l3)p = [-2pi, - 2p2, - 2p3]^, if we set 

Pi ~ •^1/2 and P2 = S3/2, then {M2 1 s) becomes 

{M2 I [000]^} 

and the conditions in (7.32) yield {Mi | [m/2, n/2, 1/2]^). Since any 

subsequent change of origin so that 

[-2Pi, -2p2, -2p3]^ £ 

where /f = 0 or 1 will leave {M2 i [000]^} unchanged. Since 

(Ml - l3)p = [-2pi, 0, -2p3]*^, setting Pi = m/4, = m/4, p, = 0, 

yields [-2pi, -2p2, -2p3]^ = [-m/2 ,-m/2,0] ^ £ Z^ + k[i,\,Q>]^ where k = 

0 or 1 and changes {Mi j [m/2,n/2,11/2]into {Mi j [0,n/2,e/2]^} . Hence 

it appears that we have four choices for r. Since 

(Ml I [0,^,0]"^}= [{I3 I [-1,0,0]'^}{I3 I [i,i,0]^}J{Mi I [i,0,0]^} , 
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{Ml 1 [0,i,0]^} and (Mi | [i,0,0]^} generate the same matrix group with 

Rp(7^). Since {Mi | [i,0,0]^} is equivalent to {Mi ] [000]^} under the 

change of origin to [4>i)0]^,{Mi 1 [0,i,0] } and {Mi | [000] } generate 

equivalent space groups with Rp(7^). Similarly [O,!,!] and [0,0,-j] 

yield equivalent space groups. Therefore the space group types associated 

with 2/m and C are C2fm (when r = [000]^ and s = [000] ) and C2/c (when 

r = [0,0,i]^ and S = [000]^). ' 

(P7.53) Problem: Find all of the space groups C that satisfy (7.22) with 

H = 222 and L = P. Find one representative from each space group type. 

The following steps may be helpful in your derivation. 

(1) Consult Table 7.2 and let 

-1 0 o' 1 0 

0
 

0 -1 0 and Mz = Mp('-^°°^2) = 0 

f—1 1 0 

0
 

_
1

 

0 1 0 0 -1 

(2) Show that to be consistent with - 1 and 3^-1, 

{Ml 1 r) = {Ml I [ri,r2,m/2]^} 

and 

{Mz 1 s} = {Mz I [n/2,5z,53]^} , 

where m,n z 1. 

(3) Show that to be consistent with 3 = a3a, 2(rz - 5z) £ 7. Hence, 

modulo P, s = [n/2, Tz + P/2, 53]^ where k z 1. Then by T7.47 

the set of all crystallographic space groups C satisfying 

(7.22) with H = 222 and L = P consists of those represented 

by Rn, ,(C) which are generated by RpiTp), {Mi | r) and 
^ P(o) ^ 

{Mz I s} where r = [ri,rz,m/2]^ and s = [n/2, Tz + P/2, S3] 

with Ti, Tz, S3 z R, m, n, k z Z. 

(4) Show that by an appropriate change of origin, {Mi ] r} becomes 

{Ml I [0,0,m/2]^} 
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and {Mj | s} becomes 

{Mz I [n/2,k/2,0]^} 

where k,m,n z 1. 

(5) Note that {Mj | r}{Mi | s} = {M3 | r + MzS} where 

M3 

-10 0 

0 1 0 

0 0-1 

Show that {M2 I [i,0,0]^}{Mi | [000]^} = {M3 | [i,0,0]^} 

(6) Show that if we change the basis using 

T = 

0 

1 

0 

0 l' 

0 0 

1 0 

and subsequently change the origin to p = [0,-:|,0]^, then 

{Ml I [000] }, {M2 I [2j0,0] },{M3 I [2)0,0]^} becomes 

{Ml I [0,i,0]^},{M2 I [000]^},{M3 I [0,i,0]^} . 

Hence the matrix group generated by Rp(r^), {Mi | [000]^} and 

{M2 I [5,0,0]^} is equivalent to the matrix group generated by 

Rp(7'p), {Ml I [0,^,0]^} and {M2 | [000]^} 

(7) Using the matrix T of part 6 and making appropriate origin 

shifts, show that the matrix groups generated by each of the 

following set of generators are equivalent: 

{Ml 1 [000]^}{M2 I [?,0,0]^>, {Ml 1 [000]^}{M2 I [0,i,0]^}, 

and {Ml | [0,0,i]’'}{M2 | [000]^} . 

(8) As in (7), show that the matrix groups generated by the fol¬ 

lowing set of generators are equivalent 
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{Ml I [000]^}{M2[i,h0]^}, (Ml I [0,0J]^}{M2 I [1,0,0]^}, 

and (Ml I [0,0,i]''}{M2[0,i,0]^} . 

(9) The space group generated from 

{Ml 1 [000]'^}{M2 I [000]^} 

is denoted P222 the while one generated from 

{Ml I [0,0a]^}{M2 I [U,0]^} 

is denoted P2i2\2\. That generated according to (7) is denoted 

P222i and that from (8) P2i2i2. ^ 

Applying the methods in this section one can verify that 

the two-generator point groups give rise to the following 116 

space groups; 

2/m: P2/m, P2,/m, C2/m, P2/c, P2jc, C2/c 

li/m: P^/m, P^i/m, P^/n, PHi/n, l^/m, l^tja 

6/m: P6/m, P6^/m 

222: P222, P222,, P2^2^2, P2,2,2,, 

C222i, C222, F222, 

1222, I2,2r2r 

321: P321, P3,21, P3^21, R32 

312: P312, P3i12, P3212 [see P6.2S for why R312 does 

not exist) 

3m1: P3m1, P3c1, R3m, R~3c 

31m: P31m, P31c 

422; P‘122, P‘t2^2, P‘1122, P‘11212, P‘1222, P‘1z2i2, P‘1222, 

P‘12212, /422, /4i22 

622: P622, P6i22, P6^22, P6222, P6^22, P6322 

mm2: Pmm2, Pmc2i, Pcc2, Pma2, Pca2i, Pnc2, Pmn2i, 

Pba2, Pna2i, Pnn2, Cmm2 , Cmc2i, Ccc2, Amm2, 

Abm2, Ama2, Aba2, Fmm2, Fdd2, I mm2, Iba2, 

I^^2 [Note that the A-lattice type 

is equivalent to B but not C.) 

3m1: P3m1, P3c1, R3m, R3c 

31m: P31m, P31c, 
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4mm; Pitmm, PUbm, PU^cm, PU^nm, PUcc, PUnc, PU^mc, 

P^t^bc, lUmm, lUcm, l^imd, lUicd 

6mm: P6mm, P6cc, PS^cm, PS^mc 

U2m: Pii2m, P‘i2c , pif2^m, PU2,c, IU2m, IU2d, 

Um2: Plm2, Plc2, P4b2, PUn2, litm2, IUc2 

6m2: P6m2, P6c2 

62m: P62m, P62c 

(E7.54) Example - Space group symmetry of coesite in the sanidine set¬ 

ting: The space group determined by Zoltai and Buerger (1959) for coesite 

is B2/b (see P7.15) with general equivalent positions 

[y,y,2]^, [i + x,y,i + z]^, [-x,-y,-z]^, 

[i - x,-yA - Z)^, [-x,i - y,z]’^, [i - x,i - yA + z]^, 

[x,i + y,-z]^, [* + + y,i - z]^. 

(1) Find the matrix representation R^, , >,(“) and Seitz's notation 
tz 1 (.o 1) 

of the space group operation a in B2lb that maps the triple 

[x,y,z]'' to [i - x,-y,i - z]^ in the Di(ci) setting. 

Solution: By inspection we see that 

-1 0 0 i 

0-100 

0 0 -1 i 

0 0 0 1 

Casting into Seitz's notation, we get (M | t} where 

’-1 0 o' ■f 

H = 0 -1 0 and t = 0 

0 0 -1 1 12_ 

(2) Find R^^^^^^(a), the matrix representation for a for coesite 

in the 02(02) sanidine setting as described in P7.15 where it 

is shown that 
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‘1 0 o' 
1 

‘2 

T = 0 0 1 and [P]q^ = 3/4 

1 -1 0 0 

Solution; According to (7.15), 

= {TMT"^ I T[(M - l3)p + t]} . 

Using the information provided in part 1, we have 

TMT 

1 0 o' -1 0 0 

0
 

0
 

0 0 1 0-10 0 0 1 

_1 -1 0 0 0-1^ 1 -1 0 

and 

T[(M 

-10 0 

0-1 0 

0 0-1 

1 0 0 

= 0 0 1 

_1 -1 

0
 

1' 
2 2 

II 1 2 

II 1 
2 

1 0 

0 

-1 

0 

0 0 

1 0 

0 1 

1. 
2 

3/4 

0 

(modulo P, which is contained 

in the lattice) 

Hence, 

^^2(02)^“^ 

-1 0 0 i 

0-10 i 

0 0-10 

0 0 0 1 □ 

(P7.54) Problem: Determine the principle representatives, ^02(02)*'“^' 

given in Table 7.3 for the space group of coesite in the 02(03) sanidine 

setting as done in (2) of E7.54. 

(P7 55) Problem: Analyze each of the principle representatives 

R (a) in Table 7.3 and show that the space group of coesite is 
O2 (02) 
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Table 7.3; The principal representatives R (a) of _ , ,(a) and R_ , , 
Oi(oi)' 0,(Oj) 

the space group of coesite in the Zoltai-Buerger setting, D,(o,), 

and the sanidine setting, Djfo,). 

'^0,(0,)^'') Rn (Ol ) Rp fr, (Oa) 

10 0 0 

0 10 0 

0 0 10 

0 0 0 1 

'l 0 0 f 

0 10 0 

0 0 1 i 

0 0 0 1 

-1 0 0 o' 

0-1 0 0 

0 0-10 

. 0 0 0 1 

'-1 oof 

0-1 0 0 

0 0 -1 i 

0 0 0 1 

10 0 0 

0 10 0 

0 0 10 

0 0 0 1 

1 0 0 f 

0 1 0 i 

0 0 1 i 

0 0 0 1 

-1 0 0 0 

0-1 0 0 

0 0 -1 i 

. 0 0 0 1 

■-1 0 0 f 
0-1 Of 

0 0-10 

0 0 0 1 

-1 0 0 0 

0 -1 0 i 

0 0 10 

0 0 0 1 

-1 oof 

0 -1 0 J 

0 0 1 i 

0 0 0 1 

10 0 o' 

0 1 0 i 

0 0-10 

_0 0 0 1 

10 of 

0 1 0 i 

0 0 -I i 

0 0 0 1 

-10 0 0 

0 1 0 0 

0 0-10 

0 0 0 1 

-1 oof 

0 1 0 i 

0 0 -I i 

0 0 0 1 

1 0 0 o' 

0-100 

0 0 1 i 

.0 0 0 1 

1 oof 

0 -1 0 i 

0 0 10 

,0 0 0 1 

12/0 when its structure is described 

sanidine. 
in terms of the D^io^) setting of 

THE CRYSTALLOGRAPHIC SPACE GROUPS BASED ON THE 

THREE-GENERATOR POINT GROUPS 

The strategy for deriving these space groups will be similar to that 

used in the previous section. The first step in the two-generator case 

was to find two generators . and B for the oriented point group H such 

that every element in H can be expressed uniquely in the form Jf! where 

ISIS old) and 1 g / < 0(6). The relations needed to rearrange an ex¬ 

pression. such as .= Bd6><.> into the „'b' form imposed conditions on the 

r and s vectors so that they are consistent with the relations with re- 

spect to the chosen lattice L and P t • s 

, . o(a) oCB') ’ ^ particular, the necessary 

, • .nL ' ^ section, we will 
ermine three generators a. 6, K of H together with relations such that 

every element of H can be expressed uniquely i„ the form nf-/ when 
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Table 7.4: The generators and relations for the 

three-generator oriented point groups. 

Point Croup a 6 y Additional Relations 

mmm 2 [IOOI2 / az = ya.Bf = ye 

tl/mrnm 4 [lOOJj 
/ ay = ya, ey = y& 

6/mmm 6 [100]2 
i oy = yo, py = yp 

23 2 [10012 [111I3 
ya = py, yp = apy 

>132 4 [11012 [111I3 
ya = a’^y', yp = ay* 

‘t3m 4 
[110] [111I3 

Za = a’^y*, yp = ay* 

2/m3 2 [10012 [111I3 
Za = py, yp = apy 

‘f/m32/m 4 [11012 [111I3 ya = o‘^y*, yp = oy* 

1 < / < o(a), 1 < /■ < o(B), 1 < k < o(y). Then r, s and t will be found 

so that they are consistent with these relations on H with respect to L 

and P. A theorem that parallels T7.47 will then guarantee that all space 

groups based on H and L can be found by constructing the matrix groups 

generated by RpCT"^), {Mp(a) | r}, {Mp(&) | s) and {Mp(y) 1 t). The 

relations we will use for H are = 1,3 = l,2r^^=l,3 = a3a 

and two additional relations involving Z. These additional relations 

together with the choices of a, 3 and Z are given for each three-generator 

groups H given in Table 7.4. 

(P7.56) Problem: Verify the relations given in Table 7.4 for each of 

the point groups listed. Also verify that 3 = a3a holds for each. 

(E7.55) Example: Consider H = 23 and let a, 3j Z be as in Table 7.4. 

Write oy^3a in the form a ^'Z where 1 < / < o(a), 1 < / < o(3), 

I < k < o(Z). Explain how any product of a's, 3's and Z's can be written 

in this form. 

Solution: The relations we have to work with are = 1, 3^ = 1, Z^ = 

1 , 3a = a’^3 (from 3 = a3a) , Za = 32" and 2r3 = a31!'. Hence 

aZ^^a = a2('y3“ 

= a2!'a32ra (?r3 = a32^) 

= a3y32'a (^a = PIT) 

= a3a31S’1(^a (15^3 = 

= a3a33r3ir 

= a3a3a3y2r 

= aa ^33^3^11^ 
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= aa ^333(^2' 

= 

= aa ^a 

= a'^3’y^ 

= apy^ . 

r -1 - ^ (a = a) 

As illustrated in this simplification, the relations Ha = 32r and = agy 

enable us to move all of the JT's to the right. The a's and 3's can be 

sorted using 3a = a 3- We then obtain an expression where all of the 

a s are on the left, the 3's are in the middle and the JC's are on the 

right. The relations a — 3^ ~ 1 and ^ are then used for the final 

simplification. Recall that g ~ 9 where n = o(g). This is useful 

in putting a term in the correct form for a relation as was shown in the 

above illustration when a ^ was replaced by a. c 

(P7.57) Problem: Consider H = U/mmm and let a, 3, H be as in Table 

7.4. Write 3fa3Jra^ in the form where 1 < / < o(a), 1 < / < o(3) and 

I < k < o(2f). Explain how any product of a’s, 3’s and ^'s can be so 

written. 

(P7.58) Problem: Consider H = ^Im32lm and let a, 3, JT be as in Table 

7.4. Write 3a"2r=3a in the form a'3^'2r^ where 1 < / < o(a), 1 < / < o(3), 

1 < k < oiH). Explain how any such product can be written in this form. 

In general, the generators a, 3, JT given for the point groups listed 

in Ty)le 7.4 are such that each element of H can be written in the form 

a 3 y where 1 < / < o(a), 1 < / < o(3), I < k < oiH) . 

(E7.56) Example: Let H 
- mmm and let a, 3, Y be as in Table 7.4. Show 

Solution: Since o(a) = o(3) = o(y) = 2, we have 

a'3"jr‘ = m a'3"y2 = 2 

a^3"2f' = / a^3"y" = 1 
□ 
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(P7.59) Problem: Let H = U/mmm and let a, 3, Z be as in Table 7.4. 

Show that each element of H appears exactly once in the list of elements 

of the form where 1 < / < o(a), 1 < } < o(3) 1 < k ^ o(Z) . 

In general, the generators a, 3, Y given for the point groups listed 

in Table 7.4 are such that each element of H appears exactly once in the 

list of elements of the form a where 1 < / < o(a), 1 < / < o(3), 

\ < k < o(y). This fact will be shown in the following problems. 

(P7.60) Problem: For each H in Table 7.4, show that <a> Pi <3> = {1}. 

(P7.61) Problem: For each H in Table 7.4, show that K l^<Z> = {1} where 

K = {a?>' I 1 < / < o(a) and 1 < / ^ o(B)}. Hint; If ^ = / and a and B 

are proper point isometries, use the fact that the set of proper 

isometries is closed. If Z involves a third^turn, check to see if a and 

B are members of a group that does not contain an isometry involving a 

third-turn. 

(P7.62) Problem: Use the result of P7.60 and P7.61 to show that if 

= 1 for any H in Table 7.4, then a^ = 1, B^ = 1 and Z =1. 

(P7.63) Problem: Use P7.62 to show that if 

a Bo = a B 0 , 

where 1 < /, < o(a), 1 < j, m < o(B), 1 < k, n < oiZ), then / = I, j = 

m, k = n. 

(P7.64) Problem: Use P7.63 to show that each element of H can be written 

uniquely in the form a^VV^ where 1 < / < o(a), 1 < / 5 o(B) and 

1 < k < oiZ). (Note that in each case #(/V) = o(a)o(B)o(Jr).) 

cry.57) Theorem: Let L denote a lattice left invariant by the three- 

generator point group H and let a, Z be as given in Table 7.4. Let 

P denote the basis for the primitive sublattice of L associated with H. 

Let Ml = Mp(a), Mj = M^CB) and M3 = MpC^T). There exists a 

crystallographic space group C satisfying (7.22) such that each element 

of Rp(C) can be written in the form 
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{I3 I v}{Mi I r}'{M2 I s}/{M3 I t}^ , 

where {I3 | v} £ Rp(r^), 1 < / < o(a), 1 < / < o(3) and 1 < Ar < o(Jr) if 

and only if r, s, and t are consistent with the relations = 1 

_ 1 vO(y) , „ 
P -1.4 - I, p = a3a and the two relations listed for H in Table 

7.4 with respect to 7”^ and P. 

In view of the examples and problems preceding T7.57. the proof of 

T7.57 is a straightforward extension of the proof given for T7.47. 

(E7.58) Example; Find all crystallographic groups C that satisfy (7.22) 

with H = if32 and L = P. Then determine the different space group types. 

Solution: By Table 7.4, a = 4, 3 = and y = then 

and 

‘0 -1 o' '0 1 o' 

II 

II 

1 0 0 . M2 = Mp(f^^°^2) = 1 0 0 

0 0 1 

0
 0 -1 

M3 = = 

0 0 1 

1 0 0 

0 1 0 

Show that the relation = 4^ = 1 i.pUes that r can be cast in the form 

[ri, r^, k/U] where k t Z; that 3^ = = 1 implies s = [53 ,-53, 

53]" (modulo P); and that . [111133 ^ ^ ^ 

-fi - ^3]^ The relation 3a = a-l3 implies that = m/2 - S3. The re¬ 

lation ra = a implies S3 = P/4 + m/2 - t,. The relation ^3 = a^^ 

implies that r3 = 2^3 + + S3 and that k/2 = m/2 (plus or minus an 

integer). Combining these results, we see that 

r = [^1, t2 - P/4, P/4]^ , 

S = [(3P/4) - t,, f, - 

t = [fi, t,, ~t, - , 
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where ri,ti,t2,53 z R, 2tx + ti + Sj - ri z 1 and k z Z. From these 

choices of r, s and t, using T7.57, all space groups based on U32 and P 

can be constructed. 

Now we wish to determine the space group types represented in this 

set of space groups. We first note that since (M3 — l3)P = 

[—Pi + P3,Pi “ P2)P2 “ Ps]^) if we set Pi = 0, Pz ~ ^2 ^nd P3 = —11, 

then (H3 - l3)p + t - [0,0,0]^. Hence by this change of origin {M3 j t} 

becomes {M3 1 [0,0,0]^}. While this change of origin alters some of the 

entries in r and s, the basic relationship that we discovered earlier 

still must hold. That is, 

f* = [^i> -kjk, kjk,^ and s = [(3/f/4), -3A'/4,S3]'' , 

where S3 - Ti £ Z. Since S3 - Tj e Z, can be taken to be equal to 

S3. Any subsequent change of origin that we will consider will be such 

that t remains [000]^. That is, such that —Pi + Pi,Pi ~~ Pi ^nd P2 “ P3 

are all zero. Hence any change of origin to a p such that pi = Pz - Pi 

will be acceptable. Since 
* 

(M2 - l3)P = [-Pl + P2> Pi - PZ) -2P31^ . 

if we set Pi = P2 = P3 = 5^/2, {M2 | s} becomes {M2 | [3/c/4,-3/f/4,0]^}. 

Since (Ml - l3)P = [“Pi " P2, Pi - P2, 0]^,. and since = 53, when 

Pl = P2 = Pl = -53/2 = '’1/2, {M I r} becomes {Mi 1 [0,-/?/4,/c/4]^}. We 

have listed all of the possible r, S and t vectors for the choices of k 

in Table 7.5, where the space group symbol is listed for each. 

Table 7.5: The space group types based on 472 and P. 

k 
t 

r 
t 

S Space Group Symbol 

0 [000] [000] [000] P472 

1 [0 ,i] [3/4,-3/4,0] [000] P4i72 

2 [o,-i,i] [i,-i,o] [000] P4272 

3 [0,-3/4,3/4] 

0
 

1 [000] P43J2 
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A list of all of the space group types that can be derived from the 

three-generator point groups appears below. Counting the space group 

types found for the one-, two-, and three-generator point groups, we have 

found a total of 230 crystallographic space group types. 

mmm: Pmmm, Pnnn, Pccn, Pban, Pmma, Pnna, Pmna, 

Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmrnn, Pbcn, 

Pbca, Pnma, Cmcm, Cmca, Cmmm, Cccm, Cmma, 

Ccca, Pmmm, Fddd, Immm, Ibam, Ibca, Imma. 

U/mmm: P^/mmm, P4/mcc, PU/nbm, P^/nnc, P^/mbm, PU/mnc, 

P^/nmm, PH/ncc, PH^/mmc, P^f^/rncm, Pi^^/nbc, PH^/nnm, 

Pi^z/mbc, P^2/mnm, PU^/nmc, PU^/ncm, tif/mmm, 14/mcm, 

lUi/amd, l^i/acd. 

6/mmm: P6/mmm, P6/mcc, PGj/mcm, PS^/mmc. 

23: P23, P2,3, 123, 12,3, F23 

2/m3: Pm3, Pa3, Pn3, Im3, Ia3, Fm3, Fd3 

1^32: P432, P4,32, Pit232, P4,32, IU32, IU,32 

F^32, Fit,32 

^3m: P'it3m, P/i3n, mm, md, F^3m, Fii3c 

^/m32/m: Pm3m, Pn3n, Pm3n, Pn3m, Im3m, Ia3d 

Fm3m, Fm3c, Fd3m, Fd3c. 
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APPENDIX 1 

MAPPINGS 

When a cartographer draws a map of an area of the earth's surface, 

he constructs a miniature representation of the area so that each point 

in that area has exactly one point on the map assigned to it by the map¬ 

ping. In its uses in crystallography, the notion of a mapping never 

wanders far from this basic idea of assigning the elements of some object 

with those of a representation or a map of the object. 

(DA1.1) Definition: A mapping a of a set A into a set 6 is a rule which 

assigns to each element a £ A a unique element b in 6. 

To illustrate this definition, possible mappings a between two sets 

A = {31,82,33,34} and B = {bi ,b2 .ba ,b4 ,65} are examined. In each case, 

a set of arrows defines the rule for the mapping o. In Figure Al.l(a), 

a qualifies as a mapping because each element in A has exactly one arrow 

emanating from it. For example, a assigns the element bj to . That 

is, 34 is mapped to bi and b3 is said to be the image of 34 under the 

mapping. As no other arrow emanates from 34, no other element of B is 

assigned to it. The fact that both ai and 34 are mapped to the common 

element hj does not violate the definition of a mapping. On the other 

hand, the two remaining rules described in the figure are not mappings 

since 33 in Figure Al.l(b) does not have an element of B assigned to it 

and 34 in Figure Al.l(c) has two elements of 6 (b3 and bs) assigned to 

it. If a is a mapping from A and B, we write a'.A'^B and if a maps a to 

b, we write a(a) = b. 

So that we may deal effectively with the concept of mappings, we 

require a precise definition of what it means for two mappings to be 

equal. 

(DAI.2) Definition: Let a and 3 denote mappings from A to B. Then a 

and 3 are equal mappings if and only if a(3) = 3(3) for all a £ A. 

While the rules used to define the mappings a and 3 may be quite 

different, if the image of a is the same for both rules for all a £ A, 

then the mappings are considered to be equal. For example, if o is a 

rotation of space of 180° about a line and if 3 is a rotation of 540° about 
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Figure Al.l 

A B 

Figure AI.2 

Figure Al,3 

figure AI.4 
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the same line, then since the final destination of each point in space 

is the same under both rotations, by our definition, the two mappings a 

and P are considered to be equal, i.e., o = &. 

The method for combining operations is called composition. 

(DAI.3) Definition: Let a:A^B and Then the composition of 3 

and a denoted by 3o( is defined by 3ct(a) = 3(oi(3)) as is shown in Figure 

A1.2. 

An example of DAI.3 is the composition of two successive clockwise 

rotations of space a and 3 about the same line. If a denotes a rotation 

of 90° and 3 denotes a rotation of 180°, then the composition 3a of these 

two rotations is a third-turn clockwise rotation of 270° about the same 

axis. 

The composition of two mappings a and 3 is not a commutative opera¬ 

tion. That is, in general a3 ^ 3a. However, the familiar algebraic rules 

of associativity does hold for composition as evinced by the following 

theorem. 

(TA1.4) Theorem: Let a:A-*B, 3:6‘*’C and Z-.C^D, then yC3a) = (Jr3)a. 

Proof: Let a £ A, then by DAI.3 

y(3a)(a) = y(3(a(a))) and 

(2r3)a(a) = y3(a)) = y(3(a(a))). 

Hence by DAI. 2, y(3a) = (2'3)a. This proof is illustrated by Figure A1.3. 

□ 

There are three special kinds of mappings that will be particularly 

of important to us. These are called (1) one-to-one mappings, (2) onto 

mappings and (3) one-to-one and onto mappings. 

(DAI.5) Definition: Let a-.A-^B denote a mapping. 

(1) If each element of B is an image of no more than one element of 

Ay then a is said to be one-to-one. 

(2) If each element in B is the image of at ieast one element of A, then 

a is said to be onto 
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(3) If a is both one-to-one and onto, then a is said to be one-to-one 

and onto. 

Each of these types of mappings is illustrated in Figure A1.4. The 

mapping illustrated by Figure A1.4(a) is one-to-one because each element 

in B has at most one element from A mapped to it, i.e., bj, bj, b3 and 

bs each have one element from A mapped to them whereas b/, has no elements 

from A mapped to it. The mapping in Figure A1.4(b) is onto because each 

element in 8 has one or more elements mapped to it: bj has three elements 

of A {81,33,34} mapped to it and b2 has one element, 82, from A mapped 

to it. Figure A1.4(c) illustrates a one-to-one and onto mapping. In this 

mapping each element in 8 has exactly one element in A mapped to it. 

When the sets are finite, this requires that the number of elements in 

A equal the number of elements in 8. Stated another way, we say that 

the order of A, denoted #C/4), is equal to the order of 8, denoted 

iKB), i.e. , iKA) = #(6). 

When a: A^A is a one-to-one and onto mapping of a set A onto it¬ 

self, then a is called a permutation on A. For example, a rotation of 

geometric space S is a permutation on S. Specifically, S, the identity 

mapping l(r) = (r) for all r e S, is a permutation on S. An important 

property of permutations on a set S is that each permutation a has an 

inverse. 

(DAI .5) Definition: Let a:A^B denote e oapplng. A .applng e:B^A is 

said to be the inverse of a in case 

e(x) = y if and only if a(y) = x 

(TA1.6) Theorem: The mapping a:A->8 has an inverse if and only if a 

is one-to-one and onto. 

We will not give a formal proof of TA1.6. Note, however, that if c 

IS not one-to-one, then some element of B is the image of two or more 

elements of A. Hence, defining B as in DAI.5 would require mapping b 

to more than one element which violates the definition of a mapping. 

Simrlarly, if . is not onto, there exists an element b t 8 that is not 

an image under a and so a B, defined as in DAI.5, would not map b anywhere. 

Conversely, it is straightforward to show that if a is one-to-one and onto 

then Its inverse exists. We denote the inverse of a by a’* 

nie technique for showing that a mapping s:A^B is one-to-one is to 
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assume that 81,32 £ A such that a(ai) = 0(82) and prove that 81 = 82. 

This will show that no two different elements of A map to the same element 

of B. 

(EA1.7) Example: Let aiZ^R be defined by a(z) = 2z. Show that a is 

one-to-one. 

Solution; Let Zi,Z2 £ ^ such that a(Zi) = o(Z2). By the definition of 

a, 2Zi = 2z2. Hence, Zi = Z2, and so a is one-to-one. □ 

Note that the mapping a of EA1.7 is not onto since there does not 

exist an integer z £ Z such that a(z) = 5. The technique for showing 

that a mapping a:A^B is onto is to choose an arbitrary b e B and find 

an element a t A such that a(a) = b. 

(EA2.8) Example: Let a:R^R be defined by a(r) = e where R is the 

set of positive real numbers. Prove that a is onto. 

Solution: Let p £ R^. Then we must find an element r t R such that 
P 

air) = p. By the definition of o, this would mean that e = p. Solving 

this equation we have r = lln(p). Since lln(p) is defined for all positive 

real numbers, r = iln(p) exists, and 

a(r) = a(«n(p)) 

_ g^n(p)) 

= P • 

Hence a is onto. □ 

(PA1.1) Problem: Show that the a defined in EA1.7 is one-to-one. 

(PA1.2) Problem: Show that a:R-*R defined by a(r) = 3r + 5 is one-to-one 

and onto. Find o 
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APPENDIX 2 

MATRIX METHODS 

(DA2.1) Definition: A matrix is a rectangular array of numbers enclosed 

between brackets and arranged in rows and columns as displayed below: 

First row 

nth row 

First mth 

column column 

°11 °12 • ■ ■ °\m 

^21 °22 • ■ ■ °2m 

o , a ^ a 
nl nl nm 

In this matrix, we have n rows and m columns. The number at the intersection 

of the ith row and jth column is referred to as the (/,/')-entry. Note that 

we have denoted it by a... A matrix with n rows and m columns is called an 

n m matrix (read n by m matrix). 

(DA2.2) Definition: Two n X m matrices A and B are said to be equal if a,, 
^ . ‘I = b.. for all 1 < I < n and 1 < j < m. 
n ' 

This definition enables us to solve matrix equations such as 

cp -sp 0 ■ 0 -1 0 

sp cp 0 1 0 0 

0 0 1 0 0 1 

for p where cp = cosp and sp = sinp. In this example, by the definition of 

equality, cp = 0, sp = 1. Hence, p = 90°. In fact, the matrix on the right 

represents a 90° counterclockwise rotation with respect to a cartesian basis 

C = {/',/,/c} about k (see Appendix 3). 
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OPERATIONS 

Two n ^ m matrices A and B can be added according to the following rule: 

A + B = 

‘^ll ‘^12’ • 

°21 °22' 

'^Im 

'°2m 
+ 

^11 ^12‘ 

^21 ^22‘ 

■‘^im 

'^2m 

°nl °n2' 
. .a 

nm 
b b . 
nl n2 ■ nm 

+b 

+b 
11 

21 ^22^^22'■ •‘’2m*'’ 

Im 

2m 

a .+b 
nl nl °n2^^n2' 

.a +b 
nm nm 

If two matrices are not the same size, then no rule of addition is defined 

for them. But when they are the same size, we say that they are conformable 

for addition. A more compact definition for A + B is 

A + B = C where c.. = a.. + b.. . 
II II ij 

(EA2.3) Example: The sum of the following two 2x3 matrices is shown: 

2-14 

3 18 

-5 2 14 

-3 6 4 

-3 1 18 

0 7 12 □ 

If A is an n X m matrix and B is a m x f matrix (that is, A has the 

same number of columns as B has rows), then we can multiply A times B to form 

the product 

m 
AB = C where c,. = Z a.,b, . 

" (<=1 ''' ' 

If A is 3 X 2 and B is 2 x 3, we ha've 

°11 °12 

21 22 
a 

31 32 

^11 ^12 ^13 

^21 ^22 ^23 

a b , ,+o, ..b 
21 a, b +o b 11 11 12 11 12 12 22 

, .,+a^^b 
21 

a„ b +a b 21 11 22 21 12 22 22 
o„,fa ,.+a^^b 

21 a b +0 h 
31 11 32 31 12 32 22 

^1^13^^12^3 

‘^21^13'^°22^23 

°31^13’''‘^32^23 
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If A is n X /n and B is 5 x f where m ^ s, then we cannot form the product 

AB. When m = s, we say that A and B are conformable for multiplication. 

(EA2.4) Example: If C = is a cartesian basis, then the matrices 

cp sp 0 C0 S0 0 

-sp cp 0 and M^(0) = -s0 c0 0 

0 0 1 0 0 1 

describe clockwise rotations of space through an angle of p° and 0° about 

the same vector k (see Appendix 3). Moreover, the product of these two 

matrices M^(0)M^(p) = M^(0p) describes the combined effect of the two ro¬ 

tations both about k through a turn angle of (0+p), that is 

C0 S0 0 cp sp 0 C0Cp-S0Sp C0Sp+S0Cp 0 

M^(0)Mj^(p) = -S0 C0 0 -sp cp 0 = -S0Cp-C0Sp -S0Sp+C0Cp 0 

0 0 1 0 0 1 0 0 1 

cos(0+p) 

-sin(0+p) 

0 

sin(0+p) 0 

cos(0+p) 0 

0 1 □ 

(DA2.5) Definition: The transpose of a matrix A, denoted A^, is formed by 

interchanging the entries of the rows and columns of A. Thus, if Oj, is the 

(/,/■)-entry of A, then a., becomes the (/,/)-entry of A . 

Thus, if A - 

°12 

^21 °'22 

°31 °32 

then A 
t 

°21 ^31 

^12 ^22 ^32 

(PA2.1) Problem: Calculate the matrices (AB)^ and B A given that 

'-1 0 0 0 1 -1 

A = 1 1 0 and B = 0 0 -1 

0 0 -1 1 0 -1 
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Note that (AB)^ = . This is an example of the property that if A and B 

are conformable for multiplication, then (AB)'' = B^A . 

An n X n matrix B is said to be a symmetric matrix if B = B . If A 

and B are symmetric matrices, then (AB)^ = B^A^ = BA. Hence, the product 

of symmetric matrices is symmetric. 

SOLVING SYSTEMS OF LINEAR EQUATIONS 

The system of equations 

o^i^i 

+ 

+ 022*2 

+ . . 

+ . . 

. + a 

. + a 
Im^m 

2m^m 
(A2.1) 

a .X. + a ^x- + 
nl 1 n2 2 

+ a X = b 
nm m n 

can be solved using matrices where the Ojj's and bs are given numbers and 

the X.'s are the unknowns. In solving for the unknowns, we first form the 

augmented matrix 

^1 "l2 • ■ ^Im ^ 

°21 ^22 ■ ■ °2m ' ^2 

°n\ °n2 • • • 

(A2.2) 

We then change this matrix into an equivalent matrix of a simpler form whose 

system of equations can be easily solved. For this to work, it is important 

that the solution set of the changed system be identical with that of the 

original system. As shown in any standard" text on linear algebra, the sol¬ 

ution set of a matrix is unchanged by the following three elementary row 

operations: 

(1) Any two rows of the matrix can be switched; 

(2) Each entry of a given row can be multiplied by a nonzero constant; 

312 



(3) A given row can be replaced by the sum of that row and a multiple of 

another. 

The augmented matrix of the system of linear equations in (A2.1) is 

given in (A2.2). If we apply any one of the three row operations given above 

to this matrix and obtain 

'll ’12 

^21 ^22 

' nl 'n2 

' Im 

'2m 

nm 

then the system of linear equations 

“^ll^l “^12^2 • 

‘^21'^1 ‘^22'^2 • 

+ c 

+ c 
Im^m 

2m^m 

c 
nl 1 ^ "n2^2 ^ 

+ C X = cf 
nm m n 

has precisely the same solution set as the original system. 

Our objective in this procedure is to obtain, through consecutive ap¬ 

plications of row operations, a matrix whose system of equations is easy to 

solve. The simplest system of equations to solve consists of the following 

set of n equations and n unknowns 

ix^ + Ox^ + ... + Ox^ = 

OXf + Ix^ + . . . + Ox^ = 

OXj + OXj + ... + i>„ 

because it has the solution .... x^ ~ ^n' augmented 

matrix for this system is 
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(A2.3 

1 0 ... 0 \ 

0 1 ... 0 i £>2 

0 0 . . . 1 

(EA2.6) Example - Determining whether a set of vectors is a basis: Three 

vectors r, v, s are chosen from the a-quartz lattice whose triples with 

respect to a natural basis D = {a,b,c} are “[2 1 2]^, “ 

[-1 2 2]^ and [s]^ = [2 1 -1]^. Can d be written as a linear combination 

of the set H = {r,v,s} where [d]^ [4 1 3]^ ? Show that any vector [6]^ 

= [e^ ^3]^ can be written as a linear combination of H. Show that H is 

a basis of S. (Bases are discussed in Chapter 1 after equation (1.2).) 

Solution: In order for d to be written as a linear combination of H = 

{r,V,s}, there must exist real numbers X^, and such that 

or equivalently 

XfP + x^v + x^s = d 

D [d] D 

Hence we want to find a solution to the system of equations 

2 '-1 2 4 ■ 

1 

2 

^ ^2 
2 

2 
^^3 

1 

-1 

— 1 

3 

Written in matrix form, we have 

'2-1 2 ■ 
’ ^1" 

' 4 ■ 

1 2 1 
^2 

= 1 

2 2-1 X. 3 

The augmented matrix is 
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2-1 2 I 4 

12 111 

2 2-113 

We shall use the elementary row operations to convert our augmented matrix 

into the form shown in (A2.3). Our first objective is to put a 1 in the (1,1) 

entry of the matrix. In this case we will do this by switching the first 

two rows obtaining the following matrix. 

■ 1 2 111' 

2-1214 

2 2-113 

Our next objective is to put zeros in the remaining entries of the first 

column. This is called "sweeping out the first column.” We accomplish this 

by performing two elementary row operations consecutively. We first replace 

the second row by the sum of it plus (-2) times the first and then we replace 

the third row by the sum of it plus (-2) times the first, obtaining 

■ 1 2 111' 

0-5012 

0-2-311 

The next objective is to put a 1 in the (2,2) entry. This is done by 

multiplying the second row by (-1/5), obtaining 

■ 1 2 11 1 ' 

0 1 01-2/5 

0 -2 -31 1 

To sweep out the second row (putting zero everywhere but in the (2,2) entry), 

we replace the first row by the sum of it plus (-2) times the second and 

replace the third row by the sum of it plus 2 times the second, obtaining 

■ 1 0 11 9/5 ' 

0 1 01-2/5 

0 0 -31 1/5 
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Moving to the third column, we wish to have a 1 in the (3,3) entry which is 

accomplished by multiplying the third row by (-1/3), obtaining 

‘ 1 0 1| 9/5 

0 1 01-2/5 

0 0 11-1/15 

We now sweep out the third column by replacing the first row by the sum of 

it plus to (-1) times the third, obtaining 

1 0 0|28/15 

0 1 01-2/5 

0 0 11-1/15 

Hence, the solution is = 28/15, x^ = -2/5 and x^ = -1/15. Therefore, 

d = (28/15)r + (-2/5)v - (l/15)s . 

To show that e is a linear combination of H where [e]^ = > we 

seek a solution to the system of equations whose augmented matrix is 

2-1 2 1 

1 2 1 1 

.2 2-1 1 e3 

(A2.4) 

Performing the elementary row operations exactly as above, we obtain 

1 0 0 I (4e^-3e2+5e3)/15 

0 1 0 I (-e^+2e2)/5 

.0011 (2e^+6e2-5e3)/15 

(A2.5) 

Given any vector, we can use matrix (A2.5) to find the linear combination 

of H that yields the given vector by simply substituting the coordinates 

of the given vector with respect to D for e^, and e^, respectively. 

Consequently, we have shown that every vector in S can be written as a linear 

combination of H, and so H spans S. Furthermore, since the solution sets 

for (A2.4) and (A2.5) are identical, and since there is only one solution 

to (A2.5), each vector can only be expressed one way as a linear combination 

of H. Therefore, H is a basis. „ 
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(PA2.2) Problem: Starting with the augmented matrix (A2.4) use row oper¬ 

ations to obtain (A2.5). Then use (A2.5) to express the vectors f and t as 

linear combinations of H where [f]^ = [5,1,6]^ and [t]^ = [-4,3,7]^. Con¬ 

firm that you have found the right answer by calculating the appropriate 

linear combinations. 

(PA2.3) Problem: Consider the set of vectors T = {x,y,z} where [x]^ = 

[2 -2 3] , [y]y^ - [4 -3 9] and [z]^ = [20,-17,40]''. Show that [w]^ = 

[2 1 8] can be written as a linear combination of T and that T forms a basis 

for S. 

Answer: llx + 15y -4z = w and the augmented matrix for a linear 

combination equal to an arbitrary vector e == [e^ 

■ 1 0 0 I (33e^+20e2-8e2)/2 ' 

0101 (29e^+20e2-6e2)/2 

.0011 (-9e^-6e2+2e2)/2 

Reduced Row Echelon Matrices: It is not always possible to transform a 

matrix into the ideal form given in(A2.3). For example, suppose after a few 

row operations the following matrix is obtained. 

1 2 -1 I 3 

0 0 4 I 2 

0 0 -1 I 8 

(A2.6) 

A»s there is no row operation that allows us to put a 1 in the (2,2) entry 

without disrupting the first column, we cannot transform this coefficient 

matrix into the identity matrix. Instead, we shall transform it into a more 

general matrix form called the reduced row echelon form. 

(DA2.7) Definition: A matrix is in reduced row echelon form if 

(1) All of the nonzero rows occur above the first occurrence of a row with 

all zeros; 

(2) The first nonzero entry in a row (if there is one) is 1 and, except for 

the first row, appears to the right of the first nonzero entry of the 

previous row; 
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(3) If the first nonzero entry of a given row is in the jth column, then 

every other entry in the }th column must be zero. 

Unlike the form given in (A2.3), any matrix can be placed into reduced 

row echelon form by a sequence of row operations. 

(EA2.8) Example: Place the matrix given in (A2.6) into reduced row echelon 

form and find the solution set. 

Solution: By switching rows 2 and 3 and multiplying the new row 2 by -1, 

the matrix in (A2.6) becomes 

■ 1 2 -1 I 3 ■ 

0011-8 

0 0 4 I 2 

Next, replacing the first row by the sum of itself and 1 times the second 

and the third row by the sum of itself and (-4) times the second, we have 

' 1 2 0 I -5 ■ 

0 0 1 I -8 

0 0 0 I 34 

The system 

^1 
+ 2x 

2 
+ 0X3 = -5 

OXi + ox. + X3 = -8 

+ + 
0X3 = 34 

has no solution since the left side of the third equation will always be 

zero. Hence we may conclude that the original system had no solution. □ 

We will illustrate how solution sets are determined once the augmented 

matrix has been placed into reduced row echelon form in the following three 

examples. 

(EA2.9) Example: Suppose the reduced row echelon matrix is 
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1 0 011/4 

0 1 0 I 1/4 

0 0 1 1-1/4 

then there is exactly one solution: x^ = 1/4, x^ - 1/4, x^ = -1/4. 

(EA2.10) Example: Suppose the reduced row echelon matrix is 

10-11 1/4 

01-11 1/2 

0 0 0 I 3/4 

Since Ox^ + Ox^ + Ox^ - 3/4 is one of the equations and its left side is 

always zero, there is no solution. □ 

(EA2.11) Example: Suppose the reduced row echelon matrix is 

1 2 0 3 0 5 11 

00 14021-3 

0 0 0 0 1 4 16 

0 0 0 0 0 0 1 0 

To find the solution set, first circle the columns of the matrix that have 

the first nonzero entry of some row in it, i.e.. 

2 3 5 1 1 ■ 

0 0 1 4 0 2 1-3 

0 0 0 0 1 4 1 6 

0 0 0 1 0 _ 

The unknowns corresponding to the uncircled columns are ^2’ ^4’ ^6 

Note that given any values for x^, and x^, values can be found for x^, 

x^ so that the system is satisfied. Hence, if we set x^ ~ , x^ 

m and x = n, we obtain the solution set 
6 

X = 1 - 22 - 3m - 5/77 

"2 = 
X^ = -3 -4m - 2n 
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X, = m 
4 

= 6 - 4n 

X, = n. 
O 

So we obtain an infinite number of solutions. d 

The three examples above exhaust the types of solutions possible. The 

three types of solution sets that can occur are (1) a unique solution, (2) 

an infinite number of solutions, or (3) no solution. A more detailed dis¬ 

cussion of solutions of equations can be found in most linear algebra texts 

(e.g., Johnson and Riess, 1980). 

The next example explores how to deal with the situation where a rela¬ 

tively large number of experimental equations determines a relatively small 

number of variables and the best approximate solution is sought. 

(EA2.12) Example - A determination of a crystal's cell dimensions by least- 

squares methods: In this example, we shall consider a set of X-ray 

diffraction data used to construct a set of linear equations that requires 

solution by least-squares methods. The least-squares method is a powerful 

tool devised by Johann Gauss at the age of 18 to find a close fit between a 

set of experimental data and some theoretical model that provides a con¬ 

nection between the data and a set of parameters characterizing the model. 

Because of the relatively large number of linear equations that are typically 

supplied in such an experiment, matrix theory provides a neat and compact 

way of deriving the appropriate least-squares equations. To illustrate the 

use of matrices in the method, we shall analyze a set of measured Q-values 

(Q = 1/d* where d is the interplanar spacing between diffracting planes 

{hkl)) for a crystal called protoamphibole and show by example how the method 

can be used to find a set of reciprocal cell parameters for the crystal that 

provides a close fit between the observed and calculated Q-values. 

The d-spacings and Q-values for planes with indices (hkl) as measured 

for the crystal are given in Table A2.1. We observe that the indices 

{hki,') of these planes must be known before a least-squares analysis can be 

completed, i.e., the diffraction pattern must be indexed. 

A study of the optical properties and the diffraction symmetry of 

protoamphibole indicates that it is orthorhombic which means that a* i b* 

i c* and a* = &* = y* = 90°. Setting Q = Ijd^, we can write (see (2.7) and 

C2.7) . 
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Table A2.1. Selected diffraction data for protoamphibole. 

h k 2 d Q h k 2 d Q 

1 1 0 8.276 0.01460 3 3 0 2.759 0.13137 

0 4 0 4.469 0.05007 1 0 2 2.543 0.15463 

1 3 1 3.645 0.07527 2 6 1 2.268 0.19441 

2 2 1 3.260 0.09409 4 6 1 1.735 0.33220 

3 1 0 3.063 0.10659 5 6 1 1.515 0.43569 

1 5 1 2.822 0.12557 6 6 1 1.334 0.56194 

[h k 2] 

O
 

O
 ■ h 

Q = 0 0 k 

0 0 c*^ 2 

= + l^c*^ . 

Hence, 

Q = HA + KB + LC , 

where H = , K = , L = , A = o*^, B = b*^ and C = c*^. As each 

C?-value, Q^, is a random variable subject to a measurement error, e^, a set 

of n measurements provides the following set of n linear equations; 

C?! = H^A + K^B + L^C + e^ 

Q n 
= HA + KB + LC + t 

n n n n 

With matrix theory, these n equations can be written succinctly as Q = Dv 

+ E where 
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Q = 
■^r 

^2 
, D = 

- - 

^2 ^2 ^2 
, V = 

A 

B and £ = 

1 

Qn H K L 
n n n 

C 

E 
n 

Consistent with Gauss' postulate of minimum variance, we minimize V where 

\/ t V = E £ . 

As Q = Dv + E, we can write the equality 

1/ = E^E = (Q-Dv)^(Q-Dv) 

= (Q^-vV)(Q-Dv) 

= Q^Q - Q^Dv -V^d'^Q + v^D^Dv . 

Since V^D^Q = Q^Dv, 

y = Q^Q - 2Q^Dv + vSSv . 

Without going into the details, it can be shown that when the derivative 

91//9V is equated with zero that 

D^Dv = D^Q . (A2.7) 

Using the data in Table A2.1, we can construct the matrices 

1 1 0 ' 0.01460 

0 16 0 0.05007 

1 9 1 0.07527 

4 4 1 0.09409 

9 1 0 0.10659 

1 25 1 , Q = 0.12557 

9 9 0 ' 0.13137 

1 0 4 0.15463 

4 36 1 0.19441 

16 36 1 0.33220 

25 36 1 0.43569 

36 36 1 0.56194 
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10 149 19 14 16 25 36 

1 16 9 4 1 25 9 0 36 36 36 36 

001101041111 

D^D = 

2375 

3057 

3057 

6245 

91 

182 and D^Q = 

' 40.1030 

61.1703 

91 182 23 2.43769 

Next, we form the normal equations (D^D)v = D^Q 

2375 3057 91 ' A ’ 40.1030 

3057 6245 182 B = 61.1703 

91 182 23 C 2.43769 

The solution of these equations will provide an unbiased set of least-squares 

estimates of A , B and C. As a first step in the solution of these equations 

for A, B and C, we form the augmented matrix 

2375 3057 91 | 40.1030 

3057 6245 182 | 61.1703 

91 182 23 I 2.43769 

Our first objective is to get a 1 in the (1,1) entry. We accomplish this 

by first switching the first and third rows and then multiplying the re¬ 

sulting first row by (1/91), 

1 2 0.252747 | 0.0267878 

3057 6245 182 | 61.1703 

2375 3057 91 | 40.1030 

Now we would like zeros in the remaining entries of the first column. This 

can be accomplished by replacing the second row by the sum of itself and 

(-3057) times the first row and then replacing the third row by the sum of 

itself and (-2375) times the first, 

1 2 0.252747 | 0.0267878 

0 131 -590.64758 | -20.72000 

0 -1693 -509.27412 | -23.518025 
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We next wish to get a 1 at the (2,2) entry. We can accomplish this by 

multiplying the second row by the nonzero constant (1/131), 

1 2 0.252747 | 0.0267878 

0 1 -4.508760 1 -0.158168 

0 -1693 -509.27413 | -23.518025 

Now we want to obtain zeros in the remaining entries of the second columns. 

We do this by replacing the first row by the sum of itself and (-2) times 

the second row and replacing the third row by the sum of itself and 1693 times 

the second row, 

1 0 9.270267 | 0.343124 

0 1 -4.508760 I -0.158168 

0 0 -8142.60481 -291.29645 

Next we want to obtain a 1 in the (3,3) entry. If the third row is multiplied 

by the constant (-1/8142.6048), we obtain 

1 0 9.27067 I 0.343124 ' 

0 1 -4.508760 I -0.158168 

_ 0 0 1 I 0.035774 

To obtain zeros in the remaining entries of the third column of the matrix, 

we replace the second row with the sum of itself and (4.50876) times the 

third row and replace the first row by the sum of itself and (-9.27067) times 

the third row, 

’ 1 0 0 I 0.011475 

0 1 0 I 0.003128 

_ 0 0 1 I 0.035774 

Hence the solution set to the normal equations is 

A = a*^ = 0.011475 

B = b*^ = 0.003128 

C = c** = 0.035774 . 

Since, for a crystal with orthorhombic geometry a = 1/a*, b = 1/b* and c = 

1/c*, we see that a = 9.335A, b = 17.880A and c = 5.287A. □ 
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(PA2.4) Problem: A measurement of the X-ray diffraction powder pattern of 

o-quartz provides the interplanar spacings given in Table A2.2 for the 10 

largest angle reflections observed. Since a-quartz is hexagonal {a* = b* 

* C*, a* = 3* = 90°, y* = 60°), 

Table A2.2, Selected interplanar spacings 

and Q-values for a~ quartz. 

h k 1 d Q h k z d Q 

4 0 4 0.8395 1.41892 2 2 5 0.8115 1.51853 

2 0 6 0.8295 1.45334 3 3 1 0.8096 1.52566 

4 1 3 0.8254 1.46781 4 2 0 0.8041 1.54661 

3 3 0 0.8189 1.49121 3 1 5 0.7971 1.57389 

5 0 2 0.8117 1.51778 4 2 1 0.7952 1.58142 

its reciprocal lattice parameters are related to l/d^ = Q by 

[h k 1] o*^ 0*2/2 0 h ' 

Q = 0*2/2 o** 0 k 

0 0 c*^ z 

Hence 

Therefore, 

= hiha*^ + ka'"^l2) + kiha-^/2 + ka-^) + . 

Q = + hk + . 

HA + LC = Q , 

where H = + hk + k^), L = , A = a*^ and C = c*^. Construct the 

matrices Q, D and using the data in Table A2.2 and show that 

4677 1369 

1369 2901 

and 
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305.00785 

D^Q 

174.72195 

Then solve the normal equations D^Dv = D^Q for the vector 

V 

0.055212 

0.034174 

of the least-squares estimates of A and C and show that cr* = 0.23497 and 

c* = 0.18486. Since for a hexagonal crystal, a = and c = 1/c*, the 

least-squares estimates of the unit cell dimensions of a-quartz are a = 

4.914A and c = 5.409A. 

DETERMINANTS 

Given an n x n matrix A, a number called the determinant of A is as¬ 

signed. The determinant of such a matrix is denoted either as det(A) or |A| . 

We shall first see how to calculate det(A) and then explore how it is ap¬ 

plied. 

The determinant of a 2 x 2 matrix is defined as 

det(A) = 
11 12 

21 “22 

‘'ll‘^22 ~ °12°21 

(EA2.13) Example: Suppose that A = 2 -1 
5 4 

find det(A). 

Solution: det (A) 
2 -1 

5 4 (2)(4) - (-1)(5) = 8 + 5 = 13 . 

The determinant of an n x n matrix A where n > 2 can be expressed in terms 

of determinants of smaller related matrices which can in turn be expressed 

in terms of determinants of smaller matrices until finally det(A) is ex¬ 

pressed in terms of determinants of 2 x 2 matrices. The related matrices 

in this process are called the minors of A. The minor A., of A is the matrix 

formed by deleting the ith row and jth column of A. 
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(EA2.14) Example: If 

A = 

-3 5 14 

2 18 

-2 4 6 

then 
1 8 ' 

, A = 
-3 5 

and A = 
4 6 ’ 23 -2 4 31 1 8 

(DA2.15) Definition: The determinant of an n x n matrix A is defined to 

be 

n . 

det(A) = |A1 = I (-1)^ • 

(EA2.16) Example: If 

a a a ^ 
11 12 13 

°21 °12 °23 > ■yrt 

^^31 °32 ^33 

then 

°22 ^23 ^21 °23 *^21 °22 
o

 

II Ol2 ^^13 

^^32 °33 °31 “^33 °31 °32 

Note that the calculation of the determinant of a 3 x 3 matrix can be ac¬ 

complished by calculating the determinants of three 2x2 matrices. If A 

is a 4 X 4 matrix, then you obtain an expression involving four 3 x 3 ma¬ 

trices, each of which leads to an expression involving three 2x2 matrices. 

Hence, 12 determinants of 2 x 2 matrices would be required. 

(EA2.17) Example: If 

A = 

1 -2 5 

3 18 

-4 5 2 

then 

= (-l)^^^l) 
1 8 
5 2 

+ (-l)^^^-2) 
3 8 

-4 2 
+ (-1)^'^^(5) 

3 1 

-4 5 
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= (1)(2 - 40) - (-2)(6 + 32) + (5)(15 + 4) 

= -38 + 76 + 95 = 133 . 1 

J 

Hence, 1A| = 133. □ 

The definition of a determinant (DA2.15) uses the entries and minors 

of only the first row. However, the determinant can be found by expanding 

about any row: 

n 
|A| = 1 (-1)^ ^a..\k..\ for any 1 < i < n 

or about any column: 

I 
n 

|A| = I i-1)' ^o..|A..| for any 1 < j < n . 
i= I 'I 'I I 

(^A2.18) Example; Using the matrix A of EA2.17, the determinant of A ex¬ 

panded about the third row becomes 

(-l)^^\-4) 
■2 5 

1 8 
+ (-D^'^^S) 1 5 

3 8 

3+3 
+ (-I)-' ■'(2) 

1 -2 

3 1 

= (-4)(-16 - 5) - (5)(8 - 15) + (2)(1 + 6) 

(EA2.19) Example: Expand the A matrix given in EA2.17 about its second 

column: 

|A| (-l)^^^-2) 
3 

-4 (-l)^^^(l) 
1 

-4 (-1) 
3+2 5 

8 

= 133 . □ 

One property of determinants that will be particularly useful to us is 

that if A and B are n x n matrices, then 

det(AB) = det(A) det(B) (A2.8); 

The proof of this fact can be found in any standard linear algebra text i 

(Johnson and Riess, 1981). { 
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In Chapter 1, we showed that for any basis D - {a,b,c}, the volume v 

a • (b X c). One way to calculate v is to form a cartesian basis C and 

find the change of basis matrix A from D to C. That is. 

A = I I 

Then V — a»bxc - det(A). The next example shows how to find the volume 

of the unit cell of one basis knowing the volume of the unit cell of another. 

(EA2.20) Example: Suppose that the vectors of a new basis = {a2>b2,C2} 

is given in terms of an old basis Dj = {ai.bi.Cj} whose unit cell volume 

V1 is known. Show that V2 = Videt(B) where B is the change of basis matrix 

from D2 to Dj. 

Solution: Let C denote a cartesian basis and let A denote the change of basis 

matrix from Dj to C. Then, as noted above, Vi = det(A). Let B denote the 

change of basis matrix from to D^. That is, 

B 

Then 

AB — A[a2]^ I A[b2]^^ | A[C2]^^ 

[32]^ I [ b 2 ] ^ C 

and so AB is the change of basis matrix from D2 to C. Hence 

V2 = det(AB) 

== det(A)det(B) 

= Videt(B) (A2.9) 

D 
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(EA2.21) Example - A unit cell of kyanite contains 20 oxygen atoms; The 

volume of the face-centered sub-cell of the kyanite structure is Vi = 58.719 

a’ (E2.19). Using the definitions of the basis vectors for the kyanite cell 

(E2.17), we can compute the volume of the kyanite cell using (A2.9), that 

is, 

V2 = Vl 

3/2 0 -1 

-1/2 2 0 

1 0 1 

= 58.719 (^(-1) 

= 58.719 X 5 = 

2+2 
(2) 

3/2 

1 

293.60A’ . 

-1 
1 ) 

Hence, the kyanite cell volume is five times larger than that of its face- 

centered subcell. Moreover, as the subcell contains four oxygen atoms per 

volume, the kyanite cell must contain 5 x 4 = 20 oxygen atoms. □ 

The matrix 

INVERSES 

I3 

1 0 

0 1 

0 0 

0 

0 

1 

is called the identity matrix because if A is any 3x3 matrix, then 

0, 1 0 0 a a a 
11 12 13 11 12 13 

^^21 *^22 °23 
0 1 0 

°21 °22 °23 

°31 ^32 °33 
0 0 1 

°31 °32 *^33 
- . 

Similarly, I3A = A. Hence, I3 is called the muitipiicative identity on the 

set of all 3x3 matrices. In general, the n x n matrix whose (/,/)-entry 

equals 0 if / / /' and 1 if / = / is the identity matrix for the set of all n 

X n matrices. 

Let A denote an n x n matrix. If there exists a matrix B such that 

AB = i 
n ’ 

then B is said to be the inverse of A, and we write 

A‘^ = B 
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When A exists, A is said to be invertible. 

Let A denote an invertible matrix. Since 

AA 

10 0 

0 1 0 

0 0 1 

we have the equations 

A (first column of A ) = 

A (second column of A ) = 

A (third column of A ^) = 

where the entries of A ^ are the unknowns. Instead of solving these systems 

of equations individually, we can deal with them all at once in the following 

augmented matrix: 

°11 °12 ‘^13 ' 
1 0 0 

^21 °22 °23 ' 
0 1 0 

°32 ^^33 1 
0 0 1 

matrix can be reduced to a matrix of the 

row operations. 

1 0 0 1 ^12 ^13 

0 1 0 
1 ^1 ^22 ^23 

0 0 1 
1 ^1 ^32 ^33 

then the first column of A is 

11 

21 

31 

, the second is 

12 

22 

32 

, and 
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the third is Therefore, 

b 

b 

b 

13 

23 

33 

A 
-1 

b 

b 

b 

b b 
11 12 13 

b b 
21 22 23 

b b 
31 32 33 

If the A matrix cannot be reduced to 13 using row operations, then A has no 

inverse. Under these circumstances, A is said to be singular and to lack 

an inverse. 

Finding A ^ can be helpful in solving many types of problems. For ex¬ 

ample, the matrix equation 

AB = C 

can be solved for B if A has an inverse by premultiplying both sides of the 

equation by A ^; that is, 

A'^(AB) = a'^c 

(A'^A)B = a'^c 

I B = a'^c 
n 

B = a'^C . 

In our next example, we shall consider the problem of constructing and in¬ 

verting a transformation matrix. 

(EA2.22) Example. The oxygen atoms in the rock-forming mineral 

aenigmatite, NazFesTiSieOj0, can be described as closest-packed defining a 

face-centered subcell with cell dimensions = 4.10A, bi = 4.33A, Cj = 

4.44A, Oj = 103.1°, = 84.8°, JTj = 103.8°. The linear equations that relate 

the observed basis vectors (02 = 9.752A, b^ = 10.406A, C2 = 8.926A, Oj 

= 83.130°, ^2 = 65.587°, IS2 = 64.785°) to those of the distorted subcell 

(Di basis) are 

32 = 2ai - l/2bi - 1/2C3 

bi - 2ai + 2bi (A2.lo) 

C2 = aj + bj + 2Ci . 

With these results, the transformation matrix 
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* 
2 2 1 

[b.lo. 1 = -1/2 2 1 

-1/2 0 2 

can be constructed by simply writing the coordinates of aj, bj and C2 in 

columns. With this matrix, the coordinates of any vector [v]p. can be ex- 
U2 

pressed as a linear combination of [v]^ by the expression (see T2.10), 

= [V]^^ , (A2.11) 

Our problem is to find the matrix T that defines any vector [vj^, as a linear 
b' 1 

combination of [V]^ . If both sides of (A2.11) are premultiplied by T, then 

we have 

This equation defines each vector [v]p, , including the basis vectors, 
U2 

as a linear combination of the Dj basis vectors. In fact, the columns of 

T are the coordinates of aj, bj and Ci in the D2 basis. We now find T. 

We begin by writing the augmented matrix, 

'2 2 1 I 1 0 o' 

-1/2 2 1 I 0 1 0 

-1/2 0 2 I 0 0 1 

To get a 1 in the (l,l)-entry, the first row is multiplied by (1/2), 

'1 1 1/2|1/2 0 o' 

-1/2 2 1 1 0 1 0 

-1/2 0 2 I 0 0 1 

To get zeros in the remaining entries of the first column, we replace the 

second row by the sum of itself and (1/2) times the first and replace the 

third row by the sum of itself and (1/2) times the first. 

'1 11/21 1/2 0 0 ' 

0 5/2 5/4 I 1/4 1 0 

0 1/2 9/4 I 1/4 0 1 
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To get a 1 in the (2,2)-entry, multiply the second row by 2/5. 

1 1 1/2 I 1/2 0 0 

0 1 1/2 I 1/10 2/5 0 

0 1/2 9/4 I 1/4 0 1 

To get zeros in the remaining entries of the second column, replace the first 

row by the sum of itself and (-1) times the second and replace the third by 

the sum of itself and (-1/2) times the second. 

' 1 0 012/5 -2/5 0 

0 1 1/2 I 1/10 2/5 0 

0 0 2 I 1/5 -1/5 1 

To get a 1 in the (3,3) entry, multiply the third row by (-1/2). 

1 0 0 I 2/5 -2/5 0 

0 1 1/2 I 1/10 2/5 0 

0 0 1 I 1/10 -1/10 1/2 

To get a zero at the (2,3) entry, replace the second row by the sum of itself 

and (-1/2) times the third row. 

1 0 0 I 2/5 -2/5 0 

0 1 0 I 1/20 9/20 -1/4 

0 0 1 I 1/10 -1/10 1/2 

■ 2/5 -2/5 0 1 ■ 

T = 1/20 9/20 -1/4 = 1 [bi]^^ 
1 ^^^^502 

1/10 -1/10 1/2 1 . 

Hence, we can write the linear equations 

ai 2/532 + l/20b2 + l/lOCj 

bi = -2/532 + 9/20b2 - I/IOC2 (A2. 

Cl = -l/4b2 + I/2C2 . 

Each of these equations can be checked by replacing aj, bj, and Cj in (A2.10) 
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by the appropriate expressions in (A2.12). 

(EA2.23) Example - Finding a transformation matrix from experimental data: 

We now consider an experimental method for finding a transformation matrix 

T. Suppose that the cell dimensions (Oj = bj = Cj = 7.268 A, Oj = 84.84°, 

= 138.82°, Yi = 109.71°) of hemimorphite, Zn4Si207(0H)2»H20, were deter¬ 

mined in a diffraction experiment in which the indices hikili given in Table 

A2.3 were assigned to the diffraction record. Suppose also that a later 

investigator re-indexed the record with the indices h2k2^2- Find the 

transformation matrix T from D-^ to D2 and the cell dimensions of the basis 

vectors D2 = {a2,b2,C2}. 

Table A2.3. Indexed X-ray (CuKa) 

diffraction record for hemimorphite. 

hi ^ 1 Hi h2 kz 2-2 20(obs) 

0 1 1 1 2 1 26.36° 

1 1 0 2 1 1 28.80° 

1 0 1 1 1 2 37.79° 

Solution: In Chapter 2, we found that perpendicular to each face on a crystal 

there exists a vector We also found that the matrix T transforms 

a vector [s],..,. into [s]_ . Thus, T^ can be used to transform the indices 

of the planes h2k2^2 assigned by the second investigator into those, 

assigned by the first. Since we can select any 

three planes of the first set of indices (provided they are not parallel to 

one another), say (Oil), (HO) and (101) and match them up with those of the 

second set as follows: 
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That is, 

1 1 

1 = 0 

2 1 

1 2 1 

-
1 

0
 

1 1 

2 1 1 

II 1 1 0 

1 1 1 
CM 1 0 1 

Thus, 

'oil' ‘12 1 ' 

1 1 0 2 1 1 

10 1 112 

Using elementary row operations, we find that 

1
_

 

2 1 
-1 

■-1/4 3/4 -1/4 ■ 

CM 1 1 II 3/4 -1/4 -1/4 

1 1 

CM -1/4 -1/4 3/4 _ 

Then we have 

1/2 1/2 -1/2 

-1/2 1/2 1/2 

1/2 -1/2 1/2 

Calculating G2 - T GjT , we get the cell dimensions O2 = 8.368, 62 

= 10.731, C2 = 5.112 A, a2 = ^2 ~ ^2 - 90.00° for hemimorphite with the second 

choice of basis vectors. n 

Table A2.4. Selected indices for the 

diffraction record for coesite. 

hi l<i hz ^2 ^2 

1 1 1 2 0 1 

1 0 0 1 -1 0 

0 1 1 1 1 1 
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(PA2.5) Problem: In a preliminary study of coesite, Si02, its diffraction 

record was indexed with indices hikili and the cell dimensions Oj = bj = 

7.141A, Cl = 7.173A, Oi = 3i = 104.626°, ^i = 120.055°. The pattern was then 

re-indexed with a new set of indices h2l<2^2- With the information in Table 

A2.4, show that the cell dimenions of coesite in the new setting are O2 = 

7.135A, b2 = 12.372A, C2 = 7.173A, 02 = ^2 = 90.0°, ^2 = 120.36°. 

We now discuss a few useful properties involving inverses and determi¬ 

nants . 

(TA2.24) Theorem: Let A denote an n x n invertible matrix. Then, 

det(A'^) = l/det(A) . 

Proof: Since AA'^ = I^, det(AA'^) = det(I^) = 1. By (A2.8), det(AA'^) 

= det(A)det(A ^). Therefore, det(A = l/det(A). □ 

Note that TA2.24 implies that if det(A) =0, it can have no inverse. 

In fact, the converse is also true, and so A has an inverse if and only if 

det(A) / 0. 

(PA2.6) Problem: Given that 

■ 1/2 -1/2 1/2 ■ 
-1 

1 1 0 ' 

T = 1/2 1/2 -1/2 and T = 0 1 1 

-1/2 1/2 1/2 . 1 0 1 

show that det(T) = 0.5 and det(T‘^) = l/det(T) = 2.0 by calculating the de¬ 

terminants for these two matrices. 

(TA2.25) Theorem: Let A denote a matrix consisting entirely of integer 

entries. If det(A) = ±1, then a'^ consists entirely of integer entries. 

Proof: Using the cofactor method of inverting A (see any standard 

linear algebra text), a'^ is written with entries of the form 

(l/det(A))(-l)'''’^det(A^.p where A., is the (/,/) minor. Hence, if det(A) = ±1 

and if A consists entirely of integers, each entry of A ^ is also an integer. □ 
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(PA2.7) Problem: Given that 

T = 

1 0 0 

0 0 1 

0-10 

and det(T) = 1.0, show that consists entirely of integers. 
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APPENDIX 3 

CONSTRUCTION AND INTERPRETATION OF MATRICES REPRESENTING 

POINT ISOMETRIES 

INTRODUCTION 

In this appendix, we show how the matrix representation of a given 

rotation can be created when specific information about the images of the 

basis vectors is not given in a convenient form. We do this first with 

respect to a cartesian basis C and then extend these results to general 

bases. We then turn to the question of interpreting the matrix of an 

unknown rotation or rotoinversion. Again we begin with a cartesian basis 

and then develop a method that works for general bases. Central to the 

appendix is the general cartesian rotation matrix which is presented in 

the first section and is proved at the end of the appendix. 

CONSTRUCTION OF MATRIX REPRESENTATIONS 

Cartesian Bases: The general cartesian rotation matrix 

M^(a) 

ai^(l-cp)+cp 

Z2^l (l"Cp)+<^3Sp 

;l3ill(l-Cp)-|l2Sp 

aia2(l-Cp)-a3Sp 

9,2^ (l"cp)+cp 

Z3I2 (l"CpiSp 

(l-cp)+£2Sp 

£21^3 (l-cp)-fcisp 

^3*(l-cp)+cp 

(A3.1) 

represents a rotation, a, of space through a turn angle of p about the 

unit vector L = Hji + £2) + where C = forms a cartesian basis, 

cp = cosp and sp = sinp. The general cartesian rotoinversion matrix 

M^(a) 

£i^(cp-l)-cp 

£2£i(cp-l)-£3sp 

£3 £ 1(cp-l)+£2sp 

£i£2(cp-l)+£3Sp 

£2^(l-cp)-cp 

£3£2(cp-l)-£isp 

£i£3(cp-l)-£2sp 

£2£3(cp-l)+£isp 

2'3^(cp-l)-cp 

(A3.2) 

represents a rotoinversion, o, of space with the same turn angle p and 

about the same vector L. Note that M^(o) can be obtained by simply 

multiplying (A3.1) by the inversion matrix 
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M^(/) = 

-10 0 

0-10 

0 0-1 

which is tantamount to multiplying each entry of M^(a) by (-1). 

(PA3.1) Problem: Show that the general cartesian rotation matrix becomes 

Mc(a) 

0 0 1 

10 0 

0 10 

when a represents a third turn about the unit vector L = /3/3(i + j + 

k), i.e., Hi = ^2 = 1^3 = /3/3 and p = 120°. It is important to note that 

L must be a vector of unit length in order to apply the general cartesian 

rotation matrix. Since we are dealing with a rotation, the form given 

in (A3.1) should be used to compute the matrix. 

(PA3.2) Problem: Show that the general cartesian rotoinversion matrix 

becomes 

M^(o) 

0-10 

-10 0 

0 0 1 

when 0 represents a half-turn rotoinversion about L = /2/2(i + j). As a 

half-turn rotoinversion is equivalent to a reflection isometry, M^(o) 

can also be viewed as representing a reflection of space over a plane (a 

mirror plane) perpendicular to L. As we are calculating a matrix for a 

rotoinversion, the form given in (A3.2) should be used. 

General Bases: In Chapter 3, we presented a method for constructing the 

matrix representation M^(a) for a point isometry a. In the method, we 

first examined where the natural basis vectors D = {a,b,c} of the system 

are mapped by a, and then we formed M^(a) by setting its three columns 

equal to the coordinate vectors of a(a), a(b) and a(c). We now study a 

method for constructing that does not require such specific in¬ 

formation about a(a), a(b) and a(c). The idea is to translate all of 
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the information about a into a cartesian basis C, find and then 

transform M^(a) into M^(o). 

Suppose a, b, c, a, 3, H are given for the basis D. Then using the 

technique discussed in Chapter 2, we establish a cartesian basis C such 

that the change of basis matrix from D to C is (see equation (2.31)) 

A = 

a sin3 -b sinacosJT* 0 

0 b sinosiny* 0 

a cos3 b cosa c 

(A3.3) 

Suppose we have a vector r along the rotation axis associated with a and 

we know Then, since A[r]^ = [^']^) we can find the direction 

cosines of the rotation axis with respect to C. Using (A3.1) or (A3.2), 

we can then obtain M^(a). We then obtain M^(a) from the following cir¬ 

cuit diagram: 

A 

[r]^ 

A 

[“(r)]^ -^ 

which yields M^(a) = A ^M^(a)A. This technique is illustrated in the 

next example. 

M^(a) t ^ M^(a) 

T 
[«(r)]^ 

(A3.4) 

(EA3.1) Example - Algebraic determination of the matrix representation 

of a point isometry: Spinel, MgAl^O^, which has a face-centered cubic 

structure can be described in terms of a structure with a = b = c = 5.730 

A and o_= 3 = ^ = 60°. As an example, we shall compute the matrix entries 

of M( [111]4) for a quarter-turn about the line a - b + c. 

Solution: Using (A3.3), we have 

A = 

4.962326 1.654109 0.0 

0.0 4.678525 0.0 

2.865 2.865 5.730 

(A3.5) 

341 



Since A[r]^ = we can calculate the components of a vector directed 

along the rotation axis using (A3.5) as follows: 

' 4.962326 1.654109 0.0 1 3.308217 

0.0 4.678525 0.0 -1 = -4.678525 

2.865 2.865 5.730 1 5.730 

Dividing this vector by its length, we obtain the direction cosines 

= 0.40825, I2 - -0.57735 and £3 = 0.70711 of the rotation axis defined 

in terms of C. Substituting these values along with p = 90° into (A3.1), 

we get 

Mc(g) 

0.166667 -0.942809 -0.288675 

0.471405 0.333333 -0.816497 

0.866025 0.0 0.5 

where g is the quarter-turn [111)4 Since M^(g) = A’^M^(g)A, and since 

A 
-1 

0.201518 -0.071248 0.0 

0.0 0.213743 0.0 

-0.100759 -0.071248 0.174520 

M ̂ (g) = 

0-10 

0 0-1 

1 1 1 □ 

INTERPRETATION OF MATRICES REPRESENTING POINT ISOMETRIES 

Cartesian Bases: In the derivation of point groups, we are often con¬ 

fronted with the problem of determining the properties of point 

isometries. For example, suppose that we are given two matrices M^(9) 

^nd M^(0) representing two point isometries 0 and 0 with respect to a 

cartesian basis C and suppose that their product 

11^(0) M^(0) = M^(u) 

represents some point isometry u = 0^. From the matrix of u, we wish to 

determine the properties of w. That is, we need rules that can be applied 

to the matrix to discover (1) whether w is a rotation or rotoinversion. 
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(2) the turn angle p and (3) the direction cosines Hi, Hj and £3 of a unit 

vector L in the positive direction along the axis of w. 

(RA3.2) Rules for interpreting a general cartesian matrix M representing 

some point isometry, u: Let w denote some point isometry and £.. denote 

the (/,/') entry of its matrix representation M. Then 

Hll Hi2 Hi3 

H2I ^22 ^23 

H31 H32 H33 

The properties of w are determined by the following rules: 

M = M^(w) = 

(1) Calculate the determinant of M. If det(M) = +1, w is a rotation. 

If det(M) = -1, u) is a rotoinversion. 

(2) If det(M) = -1, multiply each entry of M by -1 and then go to (3), 

i.e., proceed by analyzing the properties of the rotation part of 

the rotoinversion. 

(3) The turn angle p is given by 

p = cos ^((tr(M) - l)/2) 

where tr(M) = Hii + H22 + ^33 (tr(M) is called the trace of M). 

(4a) If p = 180°, go to step (4b). If not, the direction cosines £3, £2 

and £3 are given by 

(A3.6) 

where the rotation axis of u is along L = £ii + £2] + Hak, £,. are 

the entries of M, and 0 < p < 180°. 

(4b) If p = 180°, then the direction cosines £1, £2, £3 are given by 

Hi = (iCHii + l))" , £2 = ±(i(!i22 + l)) £ 3 — = ±(Kil 3 3 + !))■ (A3.7) 

When £1 / 0, the sign of £2 is chosen to agree with that of £21 and 

that of £3 to agree with £31. When £1 = 0 and £2 ^ 0, choose the 

positive sign for £2 and choose the sign of £3 to agree with £23- 
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If )li = 1^2 = 0. then choose dj to be positive. 

In rule 2, each entry of M was multiplied by -1 when det(M) = -1. 

In this case, u is the rotoinversion /3 where 3 is the rotation whose 

properties were determined in rules 3 and 4. 

(PAS.3) Problem: Examine the matrix representing the composition w = 

00 of the two point isometries 0 and 0 given that 

0
 

0 1 

1 
0

 

-1 

t
-

 
0

 0 0 1 

M^(00) = M^(0)Mj^(0) = 1 0 0 -1 0 0 = 0 -1 0 

0 1 0 0 0 1 -1 0 

-
1

 
0

 

and show that w is an inversion quarter-turn (p = 90°) about the unit 

vector L = - j. 

(PAS.4) Problem: Suppose that the matrix representation of the point 

isometry a is 

M^(a) 

0 0 1 

0-10 

1 0 0 

Show that det(M(a)^)= +1, that the turn angle of a is p = 180° and that 

^1 = '/i> *•2=0 and 2.3 = /J. Hence, a defines a half-turn rotation of 

space about the unit vector, L = /2/2(i + k). 

(PAS.5) Problem: Show that the trace of the general cartesian rotation 

matrix (A3.1) is 2cp + 1. Note that since L = is a unit 

vector written in terms of a cartesian basis, 2i^ + 9.^^ + 1^3^ = 1- 

(PAS.6) Problem: Consider the following equality: 

1
_

 

212 ^13 2i^ (l-cp)+cp 2 122 (1-cp)-23SP 2i23(l-cp)+22Sp 

£-2 1 I22 £-2 3 
= 232 1 (l-Cp)+23Sp 22*(l-cp)+cp 2223(l-cp)-2isp 

£ 3 1 ^3 2 ^33 2321 (1-cp)-22SP 2322 (l-cp)H-2iSp 23*(l-cp)+cp 

Assuming that p 0° and p / 180° (hence sp / 0), evaluate and 

solve for 23 obtaining the direction cosine 
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^2 1 ■ 1^12 

^3 - • 
P 

Similarly evaluate the direction cosines Hj and 9.2 in (A3.6). 

(PAS.7) Problem: Show that when p = 180°, that (A3.1) becomes 

H12 £ 13 22i3-1 22i22 22i2, 

*^2 1 2.2 2 ^2 3 = 2222i 2223-1 2222, 

^31 2 3 2 £33 22,21 22,22 22,3-1 

Verify the equations given in (A3.7). 

General bases: Before we can present rules for interpreting a from 

M^(a), we need to establish what the matrix representations of a with 

respect to different bases have in common. 

Let a denote an isometry that fixes the origin. Then for each basis, 

D, a matrix M^(a) representing a exists. Since there are an infinite 

number of bases, there are an infinite number of distinct matrices re¬ 

presenting a. However, the matrices in the class of all matrices re¬ 

presenting a share certain important properties. For example, we shall 

show in this section that if Dj and D2 are two bases, then 

tr(M^^(a)) = tr(M^^(a)) 

and 

det(MQ^(a)) = det(M^^(a)) . 

Consider the following circuit diagram where Dj and D2 are bases 

and T is the change of basis matrix from and Dj . 

T 

[''Id, 

t 
[a(v)]^^ [a(V)] 

D2 

From the circuit diagram we see that 
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(DAS.3) Definition: If A and B are n x n matrices such that there exists 

an invertible matrix T such that 

A = TBT’^ , 

then we say A is similar to B. 

By the above discussion we have the following theorem. 

(TA3.4) Theorem: If Di and D2 are bases and a is an isometry, then 

Mp. (o) is similar to Mp, (a). 
U2 c' 1 

In fact, two matrices A and B represent the same isometry if and only 

if A is similar to B. 

(TA3.5) Theorem: If matrix A is similar to matrix B, then tr(A) = tr(B) 

Proof: Since A is similar to B, there exists an invertible matrix 

T such that 

A = TBT’^ . 

Hence tr(A) and tr(TBT ) are equal. By the result proved later in Lemma 

LAS.8, tr(MN) = tr(NM) for any two matrices M and N. Therefore, 

tr(TBT'^) = tr((TB)T‘^) 

= tr((BT)T’^) 

= tr(B(TT'^)) 

= tr(B) . 

Consequently, tr(A) = tr(B). □ 

(TA3.6) Theorem: If a is a point isometry with turn angle p and D is 

a basis, then 

(i) if a is a rotation, tr(M^(a)) = 1 + 2 cosp 

or 

(ii) if a is a rotoinversion, tr(M^(a)) = -(1 + 2cp) . 

Proof. Assume a is a rotation and let C denote a cartesian basis. 
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Then M^(a) is given by (A3.1). Evaluating the trace of this matrix, we 

have 

tr(Mc(a)) = £i^(l-cp) + cp + £2*(l-cp) + cp + il3^(l-cp) + cp 

= (i-cp) + 3cp 

= (1-cp) + 3cp (since = 1) 

= 1 + 2cp . 

Let D denote any basis. By theorem TA3.4, M^(a) is similar to M^(a). 

By theorem TAB.5, 

tr(M^(a)) = tr(M^(a)) 

=1+2 cosp . □ 

(PAS.8) Problem: Show that part (ii) of theorem TA3.6 is true. 

(TA3.7) Theorem: If A is similar to B, then 

det(A) = det(B) . 

Proof: Since A and B are similar, there exists an invertible matrix 

T such that 

A = TBT"^ . 

In Appendix 2, we showed that det(MN) = det(M) det(N) for matrices M and 

N and that det(M = l/det(M) for an invertible matrix M. Hence 

det(A) = det(TBT'^) 

= det(T) det(B) det(T'^) 

= det(B) det(T) det(T‘^) 

= det(B) . D 

(PAS.9) Problem: Use theorem TA3.7 to show that if Di and are bases 

and a is an isometry leaving the origin fixed, then det(M^ (a)) = 

det(M^^(a)) . 

(CAS.8) Corollary: If M is the matrix representation of a point isometry 

o, then a is a rotation if and only if det(M) = +1 and a is a rotoinversion 

if and only if det(M) = -1. 

(PAS.10) Problem: Prove CA3.8. 
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Given the matrix representation of a point isometry a, we can de¬ 

termine its turn angle by TA3.6 and whether it is a rotation or 

rotoinversion by CAS.8. What remains is to find the axis associated with 

a and to determine which is its positive end. Note that if r is along 

the axis of a, then o(r) = r. In matrix terms, we have 

[M^(a)] [r]^ = [r]^ (AS.8) 

Since l3[r]^ [r]^, we can substitute this result into (AS.8) obtaining 

[M^(a)][r]^ = l3[r]^ . 

Then 

([M£5(a)] - l3)[r]^ = [0]^ (AS.9) 

where = [lli^2^3] are the components of a vector along the rotation 

axis of a. The equations given in (AS.9) form a system of linear 

equations that can be solved using techniques presented in Appendix 2. 

In linear algebra, this procedure is called finding the eigenvectors of 

M(a)^ associated with the eigenvalue 1. 

Now that we can find the axis, we need to determine its positive end. 

Without loss of generality, we can do this for rotations since if a is a 

rotoinversion, ia is a rotation with the same axis. Hence, if M^(a) has 

determinant -1, we multiply each of the elements of M^(a) by -1 and then 

apply the following theorem. 

(TA3.9) Theorem: Let a denote a rotation with turn angle 0° < p < 180° 

and let D denote a basis (as usual, right handed) for which we are given 

M^(a) 

11 ^ X 2 ^13 

2 1 ^22 ^2 3 

3 1 ^3 2 ^3 3 

Let r denote a nonzero vector along the axis SL of a for which we are given 

u,v,w such that [r]^ = [uvw]^ Then r is directed in the positive di¬ 

rection of Z (with the choice 0° < p < 180°) if and only if in the case 

(a) when V = w = 0, 
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u H, 

W 1: 

> 0 , 

or (b) otherwise 

w 

> 0 

The proof of TA3.9 is given at the end of this Appendix. We now 

present an example that will illustrate our approach. 

(EA3.10) Example - Determination of the properties of a point isometry: 

Determine the properties of the point isometry a given that its matrix 

representation 

M^Ca) 

0 0-1 

-10 0 

111 

is defined in terms of some general bases D - {a,b,c}. 

Solution: In determining the properties of a, we begin by evaluating the 

determinant of the matrix. As 

det M^(a) (-l)^'^^-l) 

-1 0 

1 1 

+ 1 , 

we conclude that a is a rotation isometry. Next, the trace of M^(a) = 

1 is equated with 2cp + 1 from which it follows that cp = 0. Thus, the 

turn angle is taken to be 90° and a is taken to be a quarter turn, 

The rotation axis of the quarter turn is provided by replacing M^(a) in 

(A3.8) by s^d solving for the vectors along the axis [Hi,1^2 >^3]^: 

/ -
1

 
0

 

0 1 1 0 0 \ 

1 

0
 

_
1

 

-1 0 0 - 0 1 0 £2 = 0 

\ 1 1 1 0 0 1 / . . 0 
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1 0
 

-
1

 0
 

1
_

 

-1 -1 0 £2 

II 0 

1 10 . . 1 0
 

t_
 

The augmented matrix for this system of equations is 

‘-1 0 -1 I 0 ■ 

-1 -1 0 I 0 

1 1 0 I 0 

When this matrix is transformed into reduced row echelon form by elemen¬ 

tary row operations, it becomes 

' 1 0 1 I 0 ‘ 

0 1 -1 I 0 

0 0 0 I 0 

In this example, since ^3 can take on any value, we equate II3 with some 

scalar x and then solve for y and z; fcj = -x, II2 = x and = x. Hence, 

the rotation axis of a is 

H = {-xa + xb + xcjx t R) = {x(-a + b + c)|x e R) = {xr|x e R) 

where r = -a + b + c. About one end of 2., a is a quarter turn and about 

the other it is a negative quarter turn. We now wish to determine whether 

r is directed toward the end of 2 about which a is a quarter turn. This 

is accomplished by applying the rules described in theorem TA3.9. Because 

r = -a + b + c, = [-111] = [t/vw]^, v 0, we apply rule (a) of 

the theorem and observe that 

22 1 ^ -1 1 

^31 VV 1 1 

Hence, r is not directed in the positive direction when a is taken to be 

a quarter turn. However, a is a quarter turn about 2 when the positive 
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direction of the axis is taken tobet=a - b - c. Hence, a [111I4 

□ 

(PAS. 11) Problem: Suppose for the spinel crystal described in EA3.1 that 

represents a quarter-turn rotation about the vector a + b - c and 

M^(a) represents a quarter-turn rotation about a - b + c. Show that 

= &o, represented by the product 

1-
 

f—1 1 0
 

0
 

1
_

 

0
 

1 0
 

1
_

 
M^(y) = M^(B) M^(a) = 111 0 0-1 

0-1 0 111 

'-1 -1 -1 

= 10 0 > 

0 0 1 

. [111]o 
IS S. 

(LA3.11) Lemma: Let A and B denote n x n matrices. Then 

tr(AB) = tr(BA) . 

Proof: Since 

(/,/) term of AB = Z a..b.. 

/ = 1 
II P 

and since the trace of AB is the sum of the (/,/) terms, 

n n 
1 

/ = 1 
( 1 
/ = ! 

II //■' 

n n 
Z 

/ = ! 

( 1 
i = l 

a..b 
II /r 

n n 
Z 

/ = ! 

( 1 
i = l 

II 11' 

n 
= ((/'./) term of BA) 

/=1 

= tr(BA) . 

351 



PROOFS OF (A3.1), (A3.2) AND TA3 .9 

Proof of (A3.1) and (A3.2): To facilitate the derivation, we shall use 

two cartesian bases Ci = and C2 = {i2)j2jk2}. Suppose that 

(A3.1) and (A3.2) are both defined in terms of the Cj basis (see Figure 

A3.1(a) where the unit vector L is shown about which the rotation a takes 

place). A second cartesian basis C2 is illustrated in Figure A3.1(b) 

with k2 = L. The matrix representation of a with respect to C2 can be 

easily calculated from the information in Figure A3.1(c) to be 

Mc2(“) = 

cp -sp 0 

sp cp 0 

0 0 1 

Let A denote a change of basis matrix such that A[v]^ = 

deriving the general cartesian rotation matrix, we consider 

circuit diagram: 

[V]c2- In 

the following 

A 

[a(v)]c^ - 

By inspecting the diagram, we see that (a) = a’^M^ (a)A. Since Cj 
O 1 C 2 

* * 
and C2 are cartesian bases, Ci = Cj and C2 = C2 and so by (2.22) A = 

A . Hence A = A^. Upon expansion, these matrices become 

M^^(a) = 

^11 ^12 ^13 

*^21 ^22 ^2 3 

^31 ^32 ^33 

Oil O21 O31 cp -sp 0 Oil O12 Ol3 

012 022 032 sp cp 0 O21 O2 2 O2 3 

Oi3 O23 O33 0 0 1 O31 O32 O33 

(A3.10) 
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where i... is the (/,/)-entry of (a). When the three matrices on the 

right are multiplied together, we get nine linear equations which we 

equate with the nine entries of M— (a). 
^ i 

Since A is the change of basis matrix from Cj to the first column 

of A is [ii]^ . Hence, O31 = ii*k2, the direction cosine of the angle 

between and k2 = L. That is, O3j = Hj. Similarly, as the second and 

third columns of A are [ji]^ and [ki]„ , respectively, O32 = i-z and O33 

= Z3. We shall use this information to determine the entries of (a) 
^ i 

in terms of sp, cp, Hj, II2, and £3. From (A3.10), we have 

*^11 Oii^Cp + 021^Cp + O31* 

= (Oil* + 02i*)cp + O31* . 

Since the (l,l)-entry of A^A is On* + O21* + O31* and since A^A = I3, 

we get the equality On* + O21* + O31* = 1. Hence, On* + O21* = 1 - 

O31*. Because O31 = £1, we have 

By similar arguments. 

^11 = l^i*(l - cp) + cp . 

£22 = ^z*(l - cp) + cp , 

^33 = ^3*(1 - cp) + cp . 

The strategy used to derive the off-diagonal entries of (A3.1) re¬ 

quires a knowledge of several other properties of A. As the two cartesian 

basis sets Ci and C2 are both right-handed, both outline a unit volume 

V = det(A) = det(A^) = 1. Using the cofactor method, A ^ is 
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Oil O2 1 O3 1 

-1 . t 
A = A = Ol 2 O2 2 O3 2 

. Ol3 O2 3 O33 

O2 2O3 3 - O2 3O3 2 Ol3O3 2 - 012033 Ol2O2 3 - O2 2O13 

= 
O3 1O2 3 - O2 1O3 3 Ol1O3 3 ■ O31O13 O2lOi3 - 0 1 1O2 3 

O2 1O3 2 - C73 1O2 2 O3lO12 - Oli03 2 011O2 2 - Ol2O21 

From this matrix equality, we obtain the following three identities: 

3 1 

II = Ol2O2 3 - O2 2O13 , 

3 2 

II = O2lOi3 - Ol 102 3 , 

3 3 = 1^3 = Ol1O22 - 012O21 . (A3.11) 

Returning to (A3.10) and recalling that, since A^A = I3, O11O12 + 021022 

= -O31O3 2 , 

1^12 - (O11O12 + 02l022)cp + (O21O12 - Oii022)sp + O31O32 

= (-03i032)Cp + (-£3)sp + O31O32 

— (“2'l2’2)Cp ” i^lSp + ^i!^2 

= £1^2(1 ■ Cp) - !l3Sp . 

Similarly, the remaining 1.. entries can be found using (A3.10), (A3.11) 

and the equality A^A = I3. The final matrix is shown in (A3.1). 

Because a rotoinversion is the composition of an inversion and a 

rotation, it follows, as observed earlier, that (A3.2) can be obtained 

from (A3.1) by multiplying each of its entries by -1. □ 

Discussion and proof of theorem TA3.9: Let a denote a rotation with 

turn angle p about an axis 1. From one end of the axis, a is viewed as 

a rotation of p degrees (where a positive angle viewed down the positive 

end of ^ is counterclockwise). From the other end, a is viewed as a ro¬ 

tation of 360-p°. Hence, if the orientation of the axis can be determined 

for angles 0 < p < 180°, then the rotation is completely determined. Note 

that if p 0 , then ct is the identity map and so it makes no sense to 

orient the axis. If p — 180 , then a is a half turn about either end 

of ^ and so there is no preferred positive end of the axis. Hence we shall 
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need a procedure for orienting the axis only when 0° < p < 180°. Suppose 

we have H = {xrjx z R} and we wish to determine whether r is directed 

toward the positive end of i or not. If r is so directed and if t is any 

vector not along H, then, since 0° < p < 180°, {t, a(t), r} form a 

right-handed system. Suppose we know M^(a) with respect to some right- 

handed coordinate system with basis D = {a,b,c}. Then the determinant 

of the matrix that changes the basis from {t, a(t), r} to D must be pos¬ 

itive. Since the change of basis matrix is 

T = [«(t)]^ I [r]^ 

we have the result that r is in the positive direction along I if and only 

det(T) > 0. By judiciously choosing t we can simplify the calculation 

of det(T). If a is not along I, let t = a. Then 

T = 

1 H11 u 

0 Hz 1 V 

0 £31 w 

where [ £ n , II2 1. 31 ] ^ is the first column of (hence [a(a)]^) and 

[uvw]^ = 

det(T) 

£21 V 

£31 w 

If a is directed along £, then v = w = 0. In this case b cannot be along 

the axis because a is not the identity, hence at least one of £32 or £32 

is nonzero. Letting t = b, we have 

T = 

0 £12 u 

1 ^22 ^ 

0 JI32 vv 

where [ £ 12 . 2 > 3 2 ] is the second column of Hence 
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APPENDIX 4 

POTPOURRI 

HANDEDNESS OF BASES 

Let D = {u,v, w} denote a basis of S. A geometrical definition for 

the handedness of D is illustrated in Figure A4.1. If the basis is viewed 

so that the first two vectors, u and V in this case, are directed toward 

the viewer with u on the left and V on the right (Figure A4.1(a)), then 

(1) if the third vector W is directed upward, D is right-handed (Figure 

A4.1(b)), or 

(2) if W is directed downward, D is left-handed (Figure A4.1(c)). 

Note that by referring to u as the first vector, V as the second 

and so forth, we are assuming that D is an ordered set. If, for example, 

we switched the order of U and V, the handedness of the basis would 

change. However, by convention, the unordered set symbolism {...} is 

normally used to denote bases. 

To use vector analysis to determine the handedness of O, we observe 

that {u,v,u X v} always forms a right-handed system. Hence the question 

becomes "is W on the same side of the plane of u and V as is U x v or 

not?" If it is, then D is right-handed; if not, then D is left-handed. 

If w is on the same side of the plane as u x v then the projection of 

W onto U X V will be positive (Figure A4.2(a)); otherwise, it will be 

negative (Figure A4.2(b)). The projection of W onto U x v is 

W • (U X V) 

U X V 

0 

u w 

V 

(a) (b) 

Figure A4.1. 

(0 
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as was shown in Chapter 1. Since ||u x v|| > 0, we have the following 

rules: 

(1) If w • (u X V) > 0, then D is right-handed. 

(2) If w • (u X V) < 0, then D is left-handed. 

Note that in Chapter 1, we showed that the volume of the parallelepiped 

outlined by the basis vectors D = {a,b,c} is a • (b x c). This would 

have been incorrect if D had been a left-handed basis since, in that case, 

a • (b X c) < 0. However, throughout the book our bases, unless otherwise 

indicated, are assumed to be right-handed. 

DISCUSSION AND PROOF OF T6.15 

Let L denote a lattice left invariant under a proper rotation a of 

finite order o(a). Let 2. denote the rotation axis of a and let Q denote 

the plane perpendicular to I passing through the origin. 

(TA4.1) Theorem: Let v e S and let 

W = a(V) + a^Cv) + ... + o°*'“^(v). 

Then 

V, (1) V is on 2 if and only if a(v) = 

(2) W is on 2, 

(3) VeQif and only if w = 0. 
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The proof of (1) follows directly from the definition of a rotation 

axis. 

(PA4.1) Probiem: Establish part (2) of TA4.1 by applying part (1) to 

w. 

(PA4.2) Problem: Establish part (3) to TA4.1 by observing that if d 

is the distance from Q to V, then d is the distance from Q to a (w) for 

all /, and so the distance from Q to w is do(a). d 

The proof of T6.15 will be conducted through the following discussion 

and problems. 

Since Z. is a three-dimensional lattice, there must exist a vector 

V £ A that is not in Q. By TA4.1 part (2), W = a(v) + ... + a°‘'“^(V) 

is on H. By part (3), W / 0. Furthermore, since L is left invariant 

under a, a'(v) is in L for all / and so W £ L. Hence, we have found a 

nonzero vector W in L on H as required. 

The fact that there is a two-dimensional lattice plane perpendicular 

to I passing through the origin (that is, in Q) will now be established. 

Since L is three dimensional, nonzero lattice vectors Vi and can be 

found such that Vj is not along I and such that Vj is not in the plane 

of i and Vi. Let Ui = Vi - a(Vi) and Uj = Vz - aCVj). 

(PA4.3) Problem: Suppose a is a half-turn. Prove each of the following 

statements: 

(1) Uj £ <3 (use part (3) of TA4.1). 

(2) Ui is not on £ (assume it is, apply part (1) of TA4.1, show that 

this implies that Vi is along £, which is a contradiction). 

(3) Conclude that Ui and Uz are nonzero vectors in Q. 

(4) Show that Uj and Uz are not collinear (assume Uj = 5Uz for some 

s z R, show that Vi - 5Vz = oi(Vi - 5Vz) and so Vi - sVj is along 

£. This implies that Vz is in the plane of Vi and Z, a contra¬ 

diction) . 

(5) Conclude that there is a lattice plane of L lying in Q. 

(PA4.4) Problem: Repeat PA4.3 where a is a third-turn. Note that in 

the second step of PA4.3, you may also need to appeal to part (2) of TA4.1. 
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APPENDIX 5 

SOME PROPERTIES OF LATTICE PLANES 

All of the equations and vectors in this appendix are written in 

terms of a basis D = {a,b,c} for S. 

(TA5.1) Theorem: Let P denote a lattice plane. Then there exists in¬ 

tegers h, k, i, m such that 

hx + ky + iz - m 

is the equation for P. 

Proof: According to the material in Chapter 2, an equation for P 

is of the form 

tjX + t^y + tjZ = w 

where ti,f2,t3,w z R. If w 0, then we have 

(ti/w)x + (t2/w)y + (fj/wlz = 1 . 

Setting V. — t./w for the case where w / 0 and Vj — t. for the case where 

W = 0, this equation can be written as 

ViX + VzV + VjZ = w (A5.1) 

where w = 1 or 0. Since P is a lattice plane, there must exist three 

lattice vectors p = PiS + Pzb + p^c, q = PiS + ^ ~ 

r2b + r^c whose end points are lattice points on P where Pj, Pj, f'j are 

all integers. As the end points of these vectors are on P, they satisfy 

(A5.1). Hence 

ViPi + V2P2 + V'sPs = w 

ViPi + V2'72 + = w 

ViPi + Viri + Vjri = w 
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We now solve this system of equations for Vi, and V3 using the row 

operations described in Appendix 2. Since each row operation consists 

of only additions, subtractions, multiplications or divisions, the sol¬ 

ution to this system must be rational numbers (recall that p,, q,, r, and 

w are all integers). Hence, Vi, V2 and V3 are rational numbers. 

Multiplying (A5.1) on both sides by each of the denominators of Vi, Vz 

and Vj and simplifying, this equation can be written in the form 

hx + ky + Zz = m 

where h,k,Z,m z Z . □ 

(EA5.2) Example: Find the equation of the plane P passing through the 

end points of p = 2a - 3b + c, q = -a + b -2c and r = -3a + 2b + 3c with 

vv = 1. 

Solution: Since the end points of these vectors lie on P, their coeffi¬ 

cients must satisfy the equation 

ViX + VzV + V3Z = 1 . 

Hence we have the three equations 

Vi(2) + Vi(-3) + V3(l) = 1 

V'i(-l) + Vi(l) + V'3(-2) = 1 

V'lC-S) + Vi(2) + V3(3) = 1 

which can be rewritten in the form of the augmented matrix 

'2-3 1 I 1 ■ 

-1 1 -2 I 1 

-3 2 3 I 1 

Using Gauss-Jordan elimination (see Append^ix 2), we obtain the solution 

set Vi = -23112, Vz = -7/4 and V3 = -5/12. For this reason, the equation 

becomes 

-23/12 X - Ilk y - 5/12 z = 1 . 
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Multiplying both sides of the equation by each of the denominators of 

Vi, Vz and V3 and then simplifying, we get 

-23x - 21y - 5z = 12 

as the equation of P where h = -23, k = -21 and £ = -5. Thus the equation 

can be written in the form of (A5.1) where h,k,l and m are all integers. 

Later we shall learn that P is parallel to the plane 

-23x - 21y - 5z = 1 

which intercepts the X-axis at (-l/23)a, the V-axis at (-l/21)b and the 

Z-axis at (-l/5)c and that P is the twelfth plane in the (23,21,5) stack 

measured from the origin. ° 

If we had tried to find the equation of a plane passing through the 

points p, q and r with w = 0, we would have found that Vi = Vz-v-i- 

0 which yields the equation Ox + Oy + Oz = 0 of all space. The only time 

three points will determine a plane whose equation has w = 0 is when that 

plane passes through the origin. 

(TA5.3) Theorem: The equation 

hx + ky + Iz = 0 (A5.2) 

where h,k,l are integers but not all equal to zero is the equation of a 

lattice plane passing through the origin. 

Proof; We begin by assuming that at least one of the coefficients of 

(A5.2) is nonzero. Without loss of generality, we shall assume that I / 

0. In our proof of the theorem, we shall show that the plane contains 

the end points of three lattice vectors, that these points are 

noncollinear and that the plane passes through the origin. Consider the 

lattice vectors p = Oa + Ob + Oc, q = Oa - ib + /cc and r = -da + Ob + 

he. Since the coefficients of these vectors satisfy (A5.2), we can 

conclude that the end points of these vectors are on the plane. Also, 

as the end point of the zero vector p is on (A5.2), the plane must pass 

through the origin. Finally, we show that p, q and r are noncollinear. 
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We do this by showing that (q - p) and (r - p) are not multiples of each 

other. Since 

[q - Pl/p = [q]^ - [P]^ = , 

[r - P][) = [r]^ - [p]^ = [-ll,0,/7]^ 

and H ^ 0, we see that (q - p) and (r - p) are not multiples of each other.□ 

The definition of a lattice plane given in Chapter 2 states that we 

need to locate three noncollinear lattice points on a plane to conclude 

that the plane is a lattice plane. However, in the special case where 

the equation for the plane can be written as hx + ky + Zz = m where 

h,k,Z,m E Z, much less needs to be shown. The next theorem shows that 

we need only locate one lattice point on the plane. 

(TA5.4) Theorem: If the plane with equation 

hx + ky + Zz = m (A5.3) 

with h,k,Z,m e Z, not all h,k,Z equal to zero, has at least one lattice 

point on it, then it is a lattice plane. 

Proof: Clearly if no lattice points satisfy the equation, then it is not 

the equation of a lattice plane. On the other hand, suppose that the 

coefficients of the vector p = pja + p^b + pjC satisfies the equation. 

By the previous theorem, hx + ky + Zz = 0 is a lattice plane which we 

shall label Q. Let q = pja + Pjb + q^c be a lattice vector whose end 

point is on Q and consider 

P + q = (Pi + C7i)a + (p2 + q^)b + (Pj + q^)c . 

Then 

hiPi + qfi) + k(Pi + q^) + Zip^ + Pj) = 

A?Pi + /cp2 + Ipi + hqi + kpi + Ipi = m + 0 = m . 

Hence, p + q is on the plane defined by (A5.3) for all q on Q. Therefore, 

(A5.3) defines a lattice plane. □ 
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(TA5.5) Theorem: The equation 

hx + ky + Iz = 1 , (A5.4) 

where h^kyl are nonzero integers is the equation of a lattice plane if 

and only if h, k and Z have no common integer factor larger than one (that 

is, there does not exist some integer t > 1 such that h = trii, k = tn2, 

i = tnj where ni,n2,n3 z Z). 

Proof: Suppose there exists an integer t > 1 that is an integer factor 

of h, k and Z. Then there exists integers Oj, and n-^ such that h = 

k = Pit and Z = n^t. But then (A5.4) becomes 

n^tx + n^ty + n-^tz = 1 , 

which yields 

HiX + n^y + n^z = 1/t . 

But if integers are substituted for X, y and z on the left, we would have 

an integer on the left and a non-integer 1/t on the right (since t > 1). 

Hence, in this case, because there are no integer solutions to (A5.4), 

it does not define a lattice plane. 

Now suppose there does not exist an integer greater than one that 

is an integral divisor of h, k and Z. Note that this does not say that 

these integers are pairwise coprime. Let t denote the greatest common 

divisor of h and k. Then Z is relatively prime (i.e., 1 is the greatest 

common divisor) to t since otherwise t would be greater than one and be 

a common divisor of h, k and Z. Since Z and f are relatively prime, by 

the euclidean algorithm (see any standard algebra text), there exist in¬ 

tegers iDi, 1712 such that 

rriit + m2Z = 1 . 

Since t is the greatest common divisor of h and k, by the euclidean al 

gorithm, there exist integers Hi and n2 such that 

nih + n2k = t . 
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Hence, 

rriiinih + n^k) + = 1 . 

Therefore, 

h(mini) + kim^ni) + = 1 . 

For this reason, [/Hinj, min2, ^72]^ represents a lattice point at the 

end of the vector miHia + mi/72b + m2C = p that satisfies (A5.4). Thus, 

by TA5.4, (A5.4) is the equation of a lattice plane. □ 

(TA5.6) Theorem: The equation 

hx + ky + Oz = 1 

where h,k e Z with h f 0 and A' / 0 is the equation of a lattice plane 

if and only if h and k are relatively prime. 

Proof: Suppose that h and k are not relatively prime. Then there exists 

an integer t > 1 such that h = tn and k - tm for some n.m £ Z. Hence, 

we can write the equation 

tinx + my) = 1 

and 

nx + my = 1/t . 

Since 1/t is not an integer, this equation can have no integral solutions. 

Hence, the equation does not define a lattice plane. Next, suppose that 

h and k are relatively prime. Then by the euclidean algorithm, there 

exist integers n and m such that 

hn + km = 1 . 

Hence, [n,m,0]^ represents a lattice point satisfying the equation, and 

by TA5.4, it is the equation of a lattice plane. □ 
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(TA5.7) Theorem: The equation 

hx + Oy + Oz = 1 

where h z Z and A) / 0 is the equation of a lattice plane if and only if 

A7 = ±1. 

Proof: Suppose that A? / ±1, then \h\ >1 and so 1/A? is not an integer. 

But any solution is of the form [1/h ,n ,m]^ and so no lattice points 

satisfy the equation. We next suppose that A? = ±1. Then p = A7a + Ob + 

Oc is a vector whose coefficients satisfy the equation. By TA5.4, this 

is the equation of a lattice plane. ° 

(TA5.8) Theorem: The equation 

hx + ky + iz = n (A5.5) 

where h,k,i.,n z Z with h,k,l not all zero, n > 0 is the equation of a 

lattice plane if and only if n is a multiple of the largest common factor 

of h, k and I. 

Proof: First we shall establish that hx + ky + Iz = t defines a lattice 

plane where t denotes the largest common factor of h, k and Then Hj 

= h/t, Hz = k/t and n, = l/t are integers such that the largest common 

factor of Hi, tli and is 1. Hence by TA5.5 , TA5.6 and TA5.7 

riiX + HzV + rijZ = 1 (A5.6) 

is the equation of a lattice plane. Let pjB + Pzb + PsC be a vector whose 

coefficients satisfy (A5.6). Hence 

riiPi + HiPi + n^Pi = 1 . 

Therefore, 

tPiPi + tPiPz + triiPi - t 

and so 
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hpi + kpi + Zpi = t . 

Consequently, the end point of p is a lattice point on the plane defined 

by 

hx + ky + Iz = t (A5.7) 

and so, by TA5.4, it is a lattice plane. 

Next, suppose that n is a multiple of t, say n = st where s t Z. 

Since the end point of the lattice vector p is on the plane of (A5.7), 

sihpi + kpi + Zpj) = st = n . 

Hence, 

/7(spi) + kispi) + iispj) = n . 

Therefore, [spi,sp2,sp3represents a lattice point on the plane defined 

by (A5.5). 

Now suppose that (A5.5) defines a lattice plane, and let t denote 

the largest common factor of h, k and 1. Again, let ni,n2,n3 z Z he 

such that h = Hit, k = Hit and £ = n^t. Then (AS.7) becomes 

riitx + Pity + Pjtz = n . 

Therefore, we have 

PiX + Hjy + rijZ = n/t . 

Since (AS.7) defines a lattice plane, there exist integer solutions to 

this equation (for X, y and z). Hence, n/t must be an integer, and so 

t is a factor of n. □ 

(TA5.9) Theorem: The distance between the origin and the plane defined 

by 

hx + ky + Iz = 1 
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where G is the metrical matrix for D is l/i[hk!L]G'^[hkl]^)^^^ 

{a,b,c}. Furthermore, the distance between the origin and hx + ky + Iz 

= n is n/ilhki]G'^[hkl]^)^^^. 

Proof: In Chapter 2, we found that associated with the plane is a vector 

s such that p is on the plane if and only if p • s = 1. It is shown that 

the distance from the origin to the plane is 1/5 and that 

[S]^ = [hkl]G'^ . 

Using the procedures described in Chapter 1, we see that 

= i[hkl]G'^)Gi[hkZ]G'^)^ 

= ([/7A:!1]g'^)G(g"^[A7;cII]^) 

= {[hkZ]G'^[hki]‘^) . 

Since the distance d between the origin and the plane equals 1/s, we have 

d = l/i[hkl]G'^[hkl]^)^^^ . 

The proof that the distance from 0 to the plane hx + ky + Iz = n is equal 

to n/i[hkt.]G ^ [hkl]^)^^'^ is left to the reader. □ 

(TA5.10) Theorem: Let Q denote a lattice plane and let P denote a 

lattice plane that is closest to the origin of those that are parallel 

to Q and do not pass through the origin. Then there is an equation for 

P of the form 

hx + ky + iz = 1 

where h,k,i e Z. 

Proof: By our earlier discussions, we know that there exist integers 

Hi, nj and m > 0 such that 

n^x + n^y + n^z = m . 
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By TA5.8, the largest common factor t of rii, and rij must be a factor 

of m. Hence, setting h = rii/t, k = n^/t, £ = Oj/t and n = m/t, we obtain 

the equation for P 

hx + ky + Hz = n 

where the largest common factor of h, k and £ is 1. By TA5.5, TA5.6 and 

TA5.7, 

hx + ky + Zz = 1 

is the equation of a lattice plane N. If n f 1, P would be further from 

the origin than N which contradicts the choice of P. Hence, n = 1. □ 

(TA5.11) Theorem: Let P denote any lattice plane. Then there exist 

integers h,k,l,m such that the largest common integer factor of h, k 

and £ is 1 and 

hx + ky + Zz = m 

is the equation for P. 

Proof: By TA5.8, an equation exists of the form 

riiX + Hjy + Hjz = n 

where the largest integer factor of Hj, and n^, denoted by t, is a 

factor of n. Hence, letting h = n-^/t, k = nj/t and £ = rij/t, we obtain 

an equation of the desired form. □ 
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APPENDIX 6 

INTERSECTION ANGLES BETWEEN ROTATION AXES 

In Chapter 5 we showed that there are only six possible proper polyaxial 

crystallographic point groups. Four of these groups (222, 322, 422, 622) 

are referred to as the dihedral groups, and the remaining two (23 = 332, 

432) are referred to as cubic axial groups. We shall now consider a method 

for finding the intersection angles among the rotation axes of both of these 

two types of groups. Not only can the methods developed in this appendix 

be used to find the intersection angles of the polyaxial crystallographic 

groups, but they can also be used to find the intersection angles for the 

noncrystallographic rotation groups. 

Dihedral groups: We begin by considering the intersection angles that must 

exist for a dihedral group Vi22. According to Table 5.1, there are precisely 

two pole points which we denote Pii and Pi2 in the equivalence class 

Ci(vj22) belonging to the Vi-fold axes of this group. Hence, there is ex¬ 

actly one Vi-fold axis, and so Pn and Pi2 are antipodal points. We now 

need to determine the angle between the Vi-fold axis and the rotation axis 

of a, one of the half-turns, whose pole points are not in Ci(Vi22). If 

“(Pii) “ Pii> then a must take place about the Vi-fold axis, and its pole 

points are in Ci(vi22). Hence, the other possibility is that a must permute 

the pole points of Ci(vi22) such that a(pji) = Pia- this case, let p 

denote a pole point for a. Since a is a point isometry, the distance between 

p and Pii must be the same as that between p (= a(p)) and Pi2 (= a(Pii)). 

Thus, p must lie on a plane perpendicular to the Vi-axis which passes through 

the origin and pierces the unit ball at p j i and Pi2- Therefore, the rotation 

axis of the half-turn lies in a plane perpendicular to the Vj-axis. A sim¬ 

ilar argument shows that the two-fold axes associated with the remaining pole 

points in C2(vi22) and C3(vi22) are also perpendicular to the Vj-fold axis. 

Thus, the Vj two-fold axes associated with each pole point in C2(vi22) and 

C3(vi22) are all perpendicular to the Vi-fold axis. The only angles left 

to determine are those between these two-fold axes. 

We continue by defining a cartesian coordinate system C such that k 

is directed along the Vj-fold axis and i is along the axis of one of the 

half-turns a. Let p denote the turn angle of the generating rotation Vi of 
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the monoaxial group defining the Vi-fold axis. Then the matrix represen¬ 

tation of the composition Vja with respect to C is given by 

M^(Via) 

>
 

II 

1) Me (a) 

cp -sp 0 1 0 0 

= sp cp 0 0 -1 0 

0 0 1 0 0 -1 

cp sp 0 

= sp -cp 0 

0 0-1 

Applying the rules for analyzing a symmetric general cartesian rotation ma¬ 

trix (A3.4), we have 

2 ^ 

and Uj = 0 . 

By the half-angle formulae and the sign convention of the direction cosines 

set forth in (A3.4), we obtain 

Zr = cos(p/2), ^2 = sin(p/2) = cos((90-p)/2) and H, = 0. 

Hence, the rotation axis of v^ot makes an angle of p/2 with respect to that 

of a. Repeating this process by applying Vi to VjO and so forth until we 

obtain a, we find that two-fold axes occur at intervals of p/2, thus gener¬ 

ating all of the Vi two-fold axes. Note that since p = 360/Vi, the angle 

between adjacent two-fold axes is ISO/vj. These results are summarized in 

the following theorem. 

(TA6.1) Theorem: The Vj-fold rotation axis of a dihedral Vi22 group is 

perpendicular to each half-turn axis (except those contained in Vj). Fur¬ 

thermore, if Oj and 02 are adjacent half-turns not contained in Vj, then 

their rotation axes intersect at an angle of 180/vi. 

In the case of 422, for example, the angle between adjacent two-fold 

axes in the plane perpendicular to the four-fold axis is 180/4 = 45°. 
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(PA6.1) Problem: Determine the angle between adjacent txro-fold axes in the 

plane perpendicular to the Vi-fold for the dihedral groups 222, 322 and 

422. 

Cubic axial groups: As noted above, there are two possible cubic axial 

crystallographic proper point groups, 4J2 and 332 (= 23). Both of these are 

of the form ViV22. In Chapter 5 it is shown that 43 = 2 occurs in 452 and 

33 = 2 occurs in 332. We are left with the problem of determining the angles 

between the Vj-fold axis and the Vj-fold axis in both of these cases. A 

special case of a theorem which will be stated here but proved later in this 

section is of particular importance in resolving this problem. 

(TA6.2) Theorem: Given that the composition of rotations Vi and is a 

half-turn, the intersection angle <Vi:V2 between the axes of Vi and is 

<(vi:V2) = cos ^(ctn(180/v1) ctn(180/v2)) . 

(EA6.3) Example: In the case of 452, we have Vj = 4, V2 = 5, and the 

composition 43 = 2. Hence, by Theorem TA6.2, the angle <(4:3) is 

<(4:3) = cos ^(ctn(45°) ctn(60°)) = cos ^(l//3) = 54.74°. 

(PAG.2) Problem: In the case of 552, find <(3:3). (Answer: cos ^(1/3) = 

70.53°.) 

(PAG.3) Problem: Consider the case of V1V22 where V2 “ ^ 3nd show that 

<(Vi:2) = 90°. Hence, as observed in TA6.1, we see that the composition of 

Vj and 2 is a half-turn only when the rotation axis of the half-turn is 

perpendicular to the rotation axis of Vj. 

(PAG.4) Problem: A study of the herpes virus with the electron microscope 

indicates that the virus forms as a small particle with icosahedral 552 ro¬ 

tational symmetry. Determine the angle between the generating fifth-turn 

and third-turn, <(5:3), of the five- and three-fold axes of such a particle 

assuming that 53 = 2 (see R.W. Horne and P. Wildy, 1961). (Answer: 37.377°.) 

Now that we have determined the angle between the Vi and V2 axes so that 

V1V2 is a half-turn, we can calculate the relative position of the two-fold 
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axis using matrices. In the case of U32, orient a cartesian basis C such 

that k is along the four-fold axis and i is in the plane of k and the 

three-fold axis where the angle between the four-fold and three-fold axes 

is cos ^(l//3). Then the direction cosines 

[ 1 > ^2 > 3 ] 

of these two axes with respect to C are [001]^ for the four-fold and [/2//3, 

0, l//3]^ for the three-fold. Using the general cartesian rotation matrix 

(see Appendix 3), we have 

M^(4) 

Me (3) 

0 -1 0 

1 0 0 

0 0 1 

1/2 -1/2 

1/2 -1/2 

/2/2 /2/2 

-/2/2 

-/2/2 

0 

Hence 

Me(2) = Me(43) = Me(4) Me (3) = 

-1/2 1/2 /2/2 

1/2 -1/2 -/2/2 

/2/2 /2'/2 0 

Applying (A3.4) to this matrix, we see that the triple of a unit vector along 

the two-fold axis is 

[V]e = [1/2, 1/2, /2/2]^. 

Hence the angle between the four-fold axis and the two-fold axis can be found 

by taking the inner product of V with [001]^ and solving for the angle. 

Since the inner product is /2/2, we have <(4:2) = cos'^(/2/2) = 45°. The 

angle between the three-fold axis and the two-fold axis is found by forming 

the inner product of [v]^ and [/2//3, 0, I'/ZS]^, the unit vector along the 

three-fold axis): 

<(3:2) = cos ^((/2//3)(1/2) + (l/ZS)(/2/2)) = 35.26 . 
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(PAG.5) Problem: For 332, let a and 3 denote two third-turns such that a& 

= 2. Define a Cartesian basis C with k along the rotation axis of a and i 

in the plane of k and the rotation axis of Find M^(a) and M^(&) and then 

calculate M^(2). Analyze M^(2) to determine <a:2 and <3:2. 

Answer: The axis of a is along [001]^ and that of 3 is along the unit vector 

[V]^ = [/8/3 0 1/3]^. Hence 

'-1/2 -/3/2 0 5/6 -/3/6 /2/3 

M^(a) = /3/2 -1/2 

0 0 

0 

1 

and = /3/6 -1/2 

/2/3 /6/3 

-/6/3 

-1/3 

The product of these two matrices is 

Me (2) 

-2/3 1//3 /2/3 

1//3 0 /6/3 

/2/3 /6/3 -1/3 

Using the techniques presented in Appendix 3, we found that the unit vector 

along the two-fold axis is ~ [l/v^j l/v^j l/v^] • Consequently, <a:2 

= <3:2 = cos'^(l/v/3) = 54.74°. 

(PAG.6) Problem: In Problem PA6.4, we found that for 532, the angle between 

a five-fold axis and a three-fold axis such that 53 = 2 is 37.377°. Using 

this information and the general cartesian rotation matrix (Appendix 3), find 

(1) M-(2), (2) the unit vector V along the two-fold axis, (3) <(5:2) and 

<(3:2). 

Answers: 

Mc(2) 

-0.638197 0.262866 0.723607 

0.262866 -0.809017 0.525731 

0.723607 0.525731 0.447214 

V = 0.425321 + 0.30902j + 0.85065k , 

<(5:2) = 31.717° and <(3:2) = 20.905° . 
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Theorem TA6.2 is a special case of Euler's theorem which we now are 

ready to state and prove. The proof of Euler's theorem is just a gener¬ 

alization of the technique used to find, for example, <(4:3) in 4J2. 

(TA6.4) Theorem (Euler): Let Oj, 02) “3 denote nonidentity rotations with 

turn angles pi,p2,p3 about axes passing through the origin such that aia2 = 

cLj. Then the angle <(01:012) between the rotation axes of Oi and 02 is given 

by 

cos<(ai;a2) = [cos(pi/2) cos(p2/2) ± cos(P3/2)]/(sin(pi/2) sin(p2/2)) . 

P roof: A cartesian coordinate system is chosen such that k is directed in 

the positive direction of the Oi axis and i is in the plane of k and the 02 

axis. The unit vectors along the axes of Oj and 02 are [001]^ and [sin0, 

0, cos0]^ where 0 = <(01:02). Then the matrix representations are given by 

Equation (A3.1) of Appendix 3 as 

cpi -spi 0 

spi cpi 0 

0 0 1 

M^(02) 

S0^(1-CP2)+CP2 

C0Sp2 

S0C0(1-CP2) 

-C0Sp2 S0C0(l-Cp2) 

Cp2 -S0Sp2 

S0Sp2 C0^(1-Cp2)+Cp2 

Hence, the matrix representation for 03 is 

11^(03) = M(-(ai) M^(a2) = 

(cpiS0*(1-CP2)+CP1CP2-SP1SP2C0) (-C0CpiSp2-SpiCp2) (CpiS0C0(1-Cp2)+S0SpiSp2) 

(spiS0^(l-cp2)+sp1CP2+CP1SP2C0) (-Sp1Sp2C0+Cp1Cp2) (Sp1S0C0(1-Cp2)"Cp1Sp2S0) 

(S0C0(1-CP2)) (SP2S0) (C0^(1-CP2)+CP2) 

(A6.1 

But by rule 3 of RA3.1 in Appendix 3, the trace of >1^(03) must equal 1 + 

2cosp3. Hence, equating 1 + 2cosp3 with the trace of the matrix in (A6.1), 

we obtain 

1 + 2cp3 = CpiS0^ - CpiCp2S0^ + CpiCp2 - SpiSp2C0 

- SpiSp2C0 + CP1CP2 + C0* - CP2C0^ + Cp2 . 

376 



Collecting terms, this expression becomes 

1 + 2cosp3 = (1 - cospi)(l - cosp2)cos*^ 

- 2sinpjsinpjcos^ + (1 + cospi)(l + cosp2) - 1 . (A6.2) 

Since 2cos^(a/2) = 1 + cosa and 2sin^(a/2) = 1 - cosa, (A6.2) can be rewritten 

as 

4sin^ (p i/2)sin^ (p2/2)cos^0 + (-2sinp isinp2 )cos(/i 

+ 4cos^(pi/2)cos^(P2/2) - 4cos^(p3/2) = 0 . 

Setting a = 4sin^(pi/2)sin^(P2/2), b - -2sinpisinp2, and c 

4cos^(pi/2)cos^(P2/2) - 4cos^(P3/2), we can use the quadratic formula, 

-b ± ib^ - Uac)^ 
COS0 = - 

la 

to find COS0. Using the identity sin^p2 = 4sin^(p2/2)cos*(P2/2), the formula 

becomes 

2sinpisinp2 ± (64sin^(p i/2)sin^(p2/2)cos*(p3/2) 

(8sin*(pi/2)sin^(P2/2)) 

2sinpisinp2 ± 8sin(p1/2)sin(p2/2)cos(p3/2) 

8sin^(pi/2)sin^(P2/2) 

Next, recalling that sinpi = 2cos(pi/2)sin(pi/2), etc., we get 

cos^ = 

and 

(8sin(pi/2)sin(p2/2))(cos(pi/2)cos(p2/2) ± cos(p3/2)) 

(8sin(p3/2)sin(p2/2))(sin(p3/2)sin(p2/2)) 

cos(pi/2)cos(p2/2) ± cos(p3/2) 

cos<(ai:a2) = cos0 = 
sin(pi/2)sin(p2/2) 

Proof of Theorem TA6.2; Applying Euler's theorem to the case where p3 - 

180°, we have 

cos<(oj:a2) = cos(pi/2)cos(P2/2)/sin(pi/2)sin(p2/2) 

= ctn(pi/2)ctn(p2/2) 

= Ctn(180/Vi)ctn(180/V2) 

377 



since = 360/p . . 

(PA6.G) Problem: Let a and 3 denote third-turns about the vectors 

[V]^ = (-1//3, -1//3, l//3)^ and [w]^ = (1//3, 1//3, l//3)^), respectively. 

(1) 

(2) 

(3) 

Show that the intersection angle between the axes of these two rotations 

is <(a:3) = cos'\-l/3) = 109.47°. 

Evaluate the product = M^(a)M^(3) and show that Z = 

Show that <(a:Jr) = <(3:2r) = cos'^(l/3) = 70.53°. 
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APPENDIX 7 

EQUIVALENCE RELATIONS, COSETS AND FACTOR GROUPS 

Equivalence Relations: In the section "Equivalent Points and Planes" in 

Chapter 4, the notion of C-equivalence was defined. This notion is an 

example of a binary relation defined on a set. Such a relation on a set 

T is a rule that determines for each pair of elements x and y whether x 

is related to y (x ~ y) or not (x ~ y). Let K denote the set of all 

crystals and define crystal X to be related to crystal y if and only if 

the density (mass per unit volume) of x, denoted p(x), is greater than 

p(y). Written another way, 

X ~ y <=> p(x) > p(y) . 

Then ~ is a binary relation. Note that unless p(x) = p(y), we cannot 

have both x ~ y and y ~ x. In T4.33, three properties of C-equivalence 

were established. These three properties constitute the definition of 

an equivalence relation defined below. 

(DA7.1) Definition: A binary relation ~ defined on a set T is an 

equivalence relation if the following three properties are satisfied: 

(1) X ~ X for all X t T {reflexive property); 

(2) For all x,y z T, if x ~ y, then y ~ x {symmetric property); 

(3) For all x,y,z z T, if x ~ y and y ~ z, then x ~ z {transitive 

property). 

Besides C-equivalence, there are many important equivalence re¬ 

lations in the study of crystallography. For example, on the set of all 

crystals K, define X ~ y if and only if x has the same crystal structure 

as y (that is, x and y are isostructural) is an equivalence relation. 

We shall now examine several other examples which will illustrate the 

notion. 

(EA7.2) Example: Show that the relation defined on the set of all turn 

angles T defined by 

0 ~ 0 <=> 0 = 0 + 360°m for some m z Z 

is an equivalence relation. 
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Solution: Since 8=0+ 360°(0) and 0 £ Z, 0 ~ 0 and so ~ is reflexive. 

Now suppose that 0 ~ 0. Then there exists an integer m such that 0 = ^ 

+ 36007. Hence 0 = 0 +360(-m). Since m t 1, we have -m t Z and so 0 ~ 

0. Hence ~ is symmetric. Finally, suppose 0 ~ 0 and 0 ~ p. Then there 

exist integers m-i and m2 such that 0 = 0 + 360/77i and 0 = p + 360072. 

Hence, 0 = (p + 36O072) + 360o7i = p + 360(o7i + 072). Since 07i,072 £ Z, 

mi + m2 t Z and so 0 ~ p. Hence ~ is transitive. n 

The manner in which turn angles are related in EA7.2 is a special 

case of an important concept in mathematics known as modular arithmetic 

which wil be introduced in the following definition. 

(DAT.3) Definition: Let n denote an integer. Given two integers a and 

b, we say a is congruent to b modulo n if and only if there exists an 

integer m such that a = b + nm. In this case we write a = b modulo n. 

In EA7.2, 0, 0, and 360 play the roles of a, b and n, respectively. 

Hence, the equivalence relation of this example can be restated as 0 ~ 0 

<=> 0=0 modulo 360. 

(PA7.1) Problem: Let n denote an integer. Prove that 

a ~ b <=> a ^ b modulo n 

is an equivalence relation. 

Hint: Adapt the solution to EA7.2 where n replaces 360. 

(EA7.4) Example: Let M denote the set of all n x n matrices with real 

entries. Define ~ on Af by 

A ~ B <=> there exists ? z M such that PAP ^ = B . 

In Appendix 3 we called two matrices such that A ~ B similar matrices. 

Show that ~ is an equivalence relation on M. 

Solution: Let A t M. Then I A I ^ = A where I is the n x n identity 

matrix. Hence, A ~ A and so ~ is reflexive. Let A,B £ M such that A ~ 

B. Then there exists ? z M such that PAP ^= B. Hence, A = P ^BP = 

(P ^)B(P Since P ^ £ M, B ~ A. Hence, ~ is symmetric. Let A,B,C 

£ M such that A ~ B and B ~ C. Then there exist matrices, P,Q in M such 

that PAP ^ = B and QBQ ^ = C. Hence, substituting for B 
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Q(PAP’^)Q’^ = c 

(QP)A(P’^Q'^ = c . 

But p'^q'^ (QP) and so 

(QP)A(QP)‘^ = C 

where PQ e M. Hence, A ~ C, and so ~ is transitive. 

(PA7.2) Problem: Let M denote the set of all n x n matrices with real 

entries. Define ~ on M by 

A ~ B <=> there exists an invertible matrix P such that P^AP = B . 

Show that ~ is an equivalence relation on M. 

Hint; Recall that (P = (P^) ^ and (PQ) = Q P . 

The following example enables us to study a lattice extending infi¬ 

nitely in all directions by considering only a finite portion of the 

lattice. 

(PA7.3) Problem: Let D = {a,b,c} denote a basis for S and let L denote 

the lattice generated by D. That is, 

L = {t/a + vb + wc 1 u,v,w z Z} . 

Define ~ on S by 

X ~ y <=> y-x e L . 

show that ~ is an equivalence relation. 

Hint; The necessary facts about L are listed below for each part 

of the proof: 

Reflexive: 

Symmetric: 

Transitive: 

0 e L 

If V £ /-, then -V £ /- 

If u,v £ L, then u + V £ /. . 
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Equivalence Classes: Let T denote a set on which the equivalence re¬ 

lation ~ has been defined. Then, in a natural way, ~ partitions T into 

disjoint sets. These sets are called equivalence classes. 

(DA7.5) Definition: Let T denote a set on which the equivalence relation 

~ is defined. Let t t T. Then the equivalence class of t is denoted by 

[t] and is defined to be 

[t] = {x z T \ t ~ x} . 

Given an equivalence relation ~ on T, then the set of all equivalence 

classes has two very important properties. First, T is the union of all 

of the equivalence classes. Second, two equivalence classes are either 

exactly the same set or completely disjoint. Proof of these facts can 

be found in many modern algebra texts (e.g., see Durbin, 1981). Moreover, 

if E denotes an equivalence class, then any element of E is said to be 

a representative of E. 

(EA7.6) Example: Let C denote a group of isometries. In T4.33, it was 

shown that C-equivalence is an equivalence relation of S. Let r e S, 

then 

[r] = {X £ S I r ~ X} 

= {g(r) I g £ C} 

= Orbg(r) . 

Hence, the set of equivalence classes of the C-equivalence relation on 

S is the set of all orbits of points in S under C. In practice, to find 

the orbits of a point r, we define a basis D and determine the matrix 

representations of the isometries in C, M^(C). Then the triples in 

that represent the points in Orb_(r) are o 

~ I a £ C} . 

(PA7.4) Problem: Find p(r) for each of the following choices 

of r. (See Chapter 5 for Mp(722).) 
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(1) [r]p = [111] 

(2) [r]p = [001] 

(3) [r]p = [100] 

(4) [r]p = [110] 

(5) [r]p = [000] 

(PA7.5) Problem: Consider the equivalence relation of EA7.2. List six 

elements of each of the following equivalence classes: 

(1) [45] (4) [-72] 

(2) [72] (5) [-3826] 

(3) [4358] 

In Chapter 3 we decided that the preferred turn angle 0 for a given 

rotation should be selected such that -180 < 0 < 180. The reason that 

we can always do this is that each equivalence class of the relation in 

EA7.2 has a representative in this range. 

(PA7.6) Problem: For each of the following turn angles 0 , find the 

representative 0 of [0] such that -180 <05 180. 

(1) 810 (2) -240 

(3) 240 (4) 2589 

(PA7.7) Problem: List six elements of [5] using the equivalence relation 

"modulo n" defined in DA7.3 for each of the following values of n 

(1) n = 2 (2) n = 4 

(3) n = 10 (4) n = 1 . 

Answer: When n = 2 , then 5, 7, -13, 19, 1 and 21 are all elements of 

[5]. This can be seen through the following equations: 

5=5 + 2(0) 

5 = 7 + 2(-l) 

5 = - 13 + 2(9) 

5 = 19 + 2(-7), etc. 
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(PA7.8) Problem: Using the equivalence relation defined in EA7.4, find 

two matrices that are similar to each of the following matrices: 

-
1

 
o

 

0 1 1 1 1 

1 0 0 (2) 0 -1 0 

f o
 

1 0 0 0 -1 

Solution: To solve this problem we need only find a 3 x 3 invertible 

matrix P and form PAP Recall that a matrix P is invertible if and only 

if det(P) i 0. For example, if 

P = 

2/3 -1/3 -1/3 

1/3 1/3 2/3 

1/3 1/3 1/3 

then 

2/3 -1/3 -1/3 ' 0 0 1 ' ' 1 0 1 ' 

1/3 1/3 -2/3 10 0 -111 

1/3 1/3 1/3 0 10 0-1 1 

0-10 

1-10 

0 0 1 

is related to A. The reader should finish the problem in a similar 

fashion for the other choice of A. The matrix A in this example repres¬ 

ents a third-turn about [111] for a crystal with basis Dj, the matrix P 

is the change of basis matrix from a Dj to a Dj basis, and B represents 

the same third-turn but about [001] of the Dj-basis of the crystal. 

(EA7.7) Example: Using the relation ~ defined in PA7.2, find a matrix 

that is related to 

Solution: Let 

A = 

291.829 0 0 

0 94.829 0 

0 0 87.142 
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p = 

1/2 0 0 

-1/2 1 0 

0 0 1 

then 

1/2 -1/2 0 ■ 291.829 0 0 '1/20 o' 

B = 0 10 0 94.829 0 -1/2 1 0 

0 0 1 0 0 87.142 _ 0 0 1 

96.664 -47.414 0 

= -47.414 94.829 0 

0 0 87.142 

(PA7.8) Problem: Find another matrix related to the matrix A of EA7.7, 

using the relation given in PA7.2 . 

The matrix A given in EA7.7 is the metrical matrix for the C-centered 

orthorhombic unit cell of low cordierite. The matrix P of the solution 

is the change of basis matrix from a pseudo-hexagonal primitive cell basis 

to the orthorhombic basis. Hence according to T2.12 the matrix B = P AP 

is the metrical matrix for the pseudo-hexagonal basis. In analyzing B, 

we find that pseudo-hexagonal basis {a,b,c} is such that a - 9.832A, b 

= 9.738A, C == 9.335A, a = & = 90° and JT = 119.68°, which is close to being 

hexagonal. In fact, any basis D = {a,b,c} could be chosen, the change 

of basis matrix from D to the orthorhombic basis could be found and used 

for P to yield B = P^AP, the metrical matrix for D. Hence the equivalence 

class of A with respect to this equivalence relation is the set of all 

metrical matrices. 

(PA7.9) Problem: Define a basis D - {a,b,c} in terms of the orthorhombic 

basis of low cordierite. Find P, the change of basis matrix from D to 

the orthorhombic basis, and calculate the metrical matrix B = P AP for 

D. Calculate a, b, c, a, P, H. 

Cosets: We shall now study an equivalence relation on a group C whose 

equivalence classes, called left or right cosets, are indispensable to 

our development of the crystallographic groups. 
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(EA7.8) Example: Let C denote a group and let H denote a subgroup of 

C. Define ~ on C by 

a ~ b <=> ba ^ z H . 

Show that ~ is an equivalence relation. 

Solution: Let a z C. Then aa ^ = e where e is the identity element of 

C. But the identity of H is the same as that of C (see Durbin, 1981), 

and so aa ^ z H. Hence a ~ a. Let a,b z C such that a ~ b. Then ba ^ 

E H. Since /7 is a group (ba ^ e H. But (ba ^ = of? ^ and so 

ab ^ z H. Hence b ~ a. Let a,b,c z C such that a ~ b and b ~ c. Then 

ba z H and cb z H. Since H is closed under the binary operation 

of C, (cb ^)(bo z H. But (cb ^)(ba = ca ^. Hence a ~ c. 

Therefore ~ is an equivalence relation. □ 

Let C denote a group, H a subgroup of C and a z C. Then the 

equivalence class of a with respect to the equivalence relation of Ek7.7 

has a simple form: 

[a] = [fa E C I o ~ fa} 

= {fa E C I fao ^ E H) 

= {fa E C I ba ^ = h for some h z H) 

= [b z C \ b = ha for some h z H} 

= {ha \ h z H} . 

(DA7.8) Definition: Let C denote a group, H a subgroup of C and a e 

C. Then the right coset of H in C determined by a, denoted Ha, is 

Ha = {ha \ h z H) . 

Hence the equivalence classes of a with respect to the relation of 

EA7.7 are the right cosets of W in C determined by o. 

(EA7.9) Example: Let C = 322, H = 3 = {1,3,3 ^}. Find the right coset 

3g for each g e 322. 

Solution: 
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31 = {1,3,3‘hl = {1,3,3’^ 

73 = {1,3, .3'^}3 = {3,3'\l} 

II 

1 CO
 

<o ,3,3'h3 = {3'\l ,3) 

jt'OOh = {1,3,3' 1^[100]2 ^ [110] 
^ / 

O
 

O
 

N)
 

jlllOlj , {1,3,3' lj[110]2 ^ [010] 
^ / 

[10012, 

3[0'0l2 = {1,3,3' 1^[010]2 ^ ,[01012, [100] 
^ t [11012, 

Note that we only have two distinct right cosets since 31 - 33 - 33 
^[100]2 ^ j[010]2 ^ j[no]2 

-1 
and 

□ 

(PA7.10) Problem: Let C 

coset for each g £ 422. 

422, W V 4 {1,4,2,4 Find the right 

(PA7.11) Problem: Let C denote a group and let H denote a subgroup of 

C. Define ~ on C by 

a ~ b <=> a z H . 

Show that ~ is an equivalence relation. 

Hint: The proof will be similar to that given in EA7.7. 

(PA7.12) Problem: Using the relation of PA7.11, show that if o £ C, 

then [o] = {ah \ h z H). 

(DA7.10) Definition: Let C denote a group, H a subgroup of C, a z C. 

Then the left coset of H in C determined by a, denoted aH, is 

ah = {ah \ h z H}. 

(PA7.13) Problem: Let C = 322 and W = 3 = {1,3,3 b. Find the left 

coset g3 for each g £ 322. 

Note that the left cosets of H calculated in PA7.13 are such that 
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g/-/ = Hg (see EA7.9) for all g £ C. When this happens the subgroup is 

said to be a normal subgroup. 

(DA7.n) Definition; A subgroup H of a group C is said to be normal if 

gH = Hg for all g £ C. 

It is straightforward to show that H is a normal subgroup of C if 

and only if ghg ^ t H for all g £ C and h t H. 

(EA7.12) Example: Let C = 322 and H = Find the 

left and right cosets g^^^^^2 and ^^^^^2g for each g £ 322. 

Solution: Let g = 3. Then 

3/^00;^ = and = {3,^°^°^2> . 

The reader can find the remaining left and right cosets. 

Note that in EA7.12, we have shown that is not a normal sub¬ 

group of 322. 

(PA7.14) Problem: Let C = 422. Show that 4 is a normal subgroup of 

422 while is not. 

('I”A7.13) Theorem (Lagrange). Let C denote a finite group and H a 

subgroup of C. Then is an integer. This integer is the number 

of distinct cosets of H in C and is called the index of H in C. 

Proof: Denote the distinct elements of H by W = {hj, h,, .... h }. 
m 

Then Ha = {hja, hja, ..., h^a}. Since there are m terms in the list 

for Ha, Ha has at most m elements. To see that these m elements are 

distinct, suppose, h^.a = h^a. By the cancellation law, = h,, implying 

that / — /'. Hence ?/(/7a) = 4(/4) for all a £ C. Recall that the right 

cosets are equivalence classes of the equivalence relation given in EA7.7. 

Hence by the discussion following DA7.5, C is the union of the distinct 

^^sht cosets of H, and these cosets are disjoint. Choosing one repre¬ 

sentative a from each coset, we have 

C = UAVa . 
oeC 
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Since the right cosets are disjoint, 

iK'JHa) = I iKHa) . 
atC azG 

Assuming there are n such right cosets, and since iKHa) = iKH), we have 

n 
I iKHa) = niKH) . 

/=! 

Therefore, 

#(C) = niKH) . 

Hence iKG)/iKH) equals the integer n where n is the number of right 

cosets of W in C. ° 

Note that Lagrange's Theorem does not require that H be a normal 

subgroup. Theorem T4.28 presented a method for constructing improper 

crystallographic point groups from a given proper crystallographic point 

group C by using the halving groups of C. Lagrange's Theorem tells us 

that if #(C) is even, then there may be subgroups of C of order #(C)/2. 

However, Lagrange's Theorem does not guarantee the existence of such a 

subgroup. In fact, in Chapter 5 we will find that the tetrahedral point 

group 23 has order 12 but no subgroups of order 6. Likewise, the 

icosahedral group 235 of order 60 has no subgroup of order 30. 

Factor Groups: Let C denote a group and let H denote a subgroup of C. 

Under some conditions the right cosets of H in C can be made into a group 

under the operation 

/<'L = {k!i| k t K and i z L) (A7.1) 

where K and L are right cosets of H in C. When the right cosets form 

a group, it is called a factor group and is denoted C/H (read "C mod 

H"). 

(EA7.14) Example: Let C = 322 and H = 3. Show that the right cosets 

of H under the operation described in (A7.1) is a group. 

Solution: The right cosets of 3 are {1,3,3 } and 

^[100]2 [010]2,[110]2), Forming the products we have 
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= {inoO]2 ^[01012 .,[110]2 3[100]2 3[010]2 3[110]2 3-1[100]2^ 

3-1[010]2 3-1[110]2^ 

^ J100]2 [010]2 [110]2^ 

Similarly, 

{1,3,3''){1,3,3'’) = {1,3,3'') 

,[100)j [OIOI2 [110]2,„ 3 3-lj , ,[100)3 [010]j [110)2, 

,[100)2 [010)2 [110)2„[100)2 [010)2 [110)2, = {1,3,3'') . 

Denoting the two right cosets by 3 and we can use the results 

above to form the multiplication table shown in Figure A7.1. We can see 

from the table that these right cosets form the factor group 32213. Note 

that 3 is the identity element of 32213. 

322/3 3 3[100]2 

3 

3)100)2 

3 

3[100)2 

31100)2 

3 

Figure A7.1 

(PA7.15) Problem: Let G = 422 and H = U. Show that the right cosets 

of H under the operation described in (A7.1) is a group. 

(EA7.15) Example: Let C = 322 and H = 

right cosets of H fail to form a group under the operation described in 

(A7.1). 

Solution: Consider the right cosets {3,[°^°^2} and Then 

^3 [010]2j^3-1 [11012^ = (1,[°'°l2,n00]2 3^ 
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which is not even a right coset! Therefore, the operation described in 

(A7.1) is not a binary operation on this set of right cosets. o 

(PA7.16) Problem: Let C = 422 and H = Show that the set of 

right cosets of H fail to form a group under the operation described in 

(A7.1). 

The condition that guarantees that the set of right cosets of H will 

form a group under the operation described in (A7.1) is that H he a normal 

subgroup of C. Suppose /7 is a normal subgroup of C. Then which coset 

must HaHb be? Since 1, the identity element, is in H, lalb = ab £ 

HaHb. Therefore, HaHb must be the coset of Hab. Consequently, we get 

the following theorem. 

(TA7.16) Theorem: Let H denote a normal subgroup of C. Then the set 

of right cosets of H in C form a group, denoted G/H, called the factor 

group of C and H, under the operation 

HaHb = Hab . 

If C is finite, then iHG/H) = iKG)/iKH). 

(EA7.17) Example: Let C = 3 and H = 7 = {1,/}. Find the right and 

left cosets of 7 in 3 and show that 7 is a normal subgroup of 3. Using 

the operation defined in TA7.16, show that 3/7 is a group and form its 

multiplication table. 

Solution: The right and left cosets are as follows: 

71 = 7/ = l7 = i1 = {1 ,/} 

73 = 73 = 37 = 37 = {3,3} 

73'^ = 73'^ = 3'^7 = 37 = {3'\3'^} . 

Since we can see that each of the right costs of 7 is also a left coset 

of 7, we conclude that 7 is a normal subgroup of 3. To construct the 

group 3/7 we need a list of the right cosets. Each of the right cosets 

has two equally valid names corresponding to the two elements (repres- 
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entations) in each coset. For example, we could call the coset {3,3} 

either /3 or 73. It makes no difference which of the equivalent names 

is chosen. To form our table we choose 71 , 73, 73 ^ to represent 

the cosets. We apply the binary operation HaHb = Hab to form the mul¬ 

tiplication. A problem occurs, however, since 

(73) (73'^) = 733'^ = Ji 

and 7/ is not in our chosen list. However, Ji equals 71 which is in 

our list. Hence we record 71 in the table corresponding to the product 

(73)(73"^). The table is shown in Figure A7.2. By inspection we can 

see that 3/1 is a group. 

3/J 71 73 73’^ 

71 71 73 

1 C
O

 

73 12 73'^ 71 

1 C
O

 73'^ 71 73 

Figure A7.2 

In the course of the last example, we found that it is convenient 

to exchange one representative of a right coset for another. This is 

similar to the way in which we add fractions. For example, if we were 

asked to calculate the sum 2/3 + 4/5 , we would exchange each of these 

fractions for other equivalent fractions so as to facilitate the addition. 

In this case, if we exchange 10/15 for 2/3 and 12/15 for 4/5, we obtain 

10/15 + 12/15 which can be easily calculated to be 22/15. Note that the 

set of fractions equivalent to any given fraction is an equivalence class 

under the equivalence relation on {a/b | a,b z Z, b i 0} defined by 

a/b ~ c/d <=> ad = be . (A7.2) 

The fact that the addition of rational numbers is such that the substi¬ 

tution of equivalent fractions is an addition problem yields equivalent 

sums is described by rational addition is well defined with respect to 
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the equivalence relation (A7.2)." Hence TA7.16 says that coset multi¬ 

plication is well defined on C with respect to the equivalence relation 

of EA7.7. 

(PA7.17) Problem: Let C = 4/m and H = 1 = {1,/}. Show that 7 is a 

normal subgroup of 4/m and that (4m)/7 is a group and construct its 

multiplication table using the representations 741, 744, 742 and 744 
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APPENDIX 8 

ISOMORPHISMS 

In Chapter 3 we observed that 272 and M^(322) are isomorphic and 

that the mapping such that a ->■ H^(a) for each a z 322 is an isomorphism. 

In this Appendix we shall give definitions of these notions and explore 

their implications. 

(DA8.1) Definition: Let C and H denote groups and let 6 denote a mapping 

from G to H. If 9 is one-to-one and onto and if 

0(gi92) = 6(91)0(92) for all gi.gj e G , 

then 0 is called an isomorphism. 

Note that in the expression 6(gig2) = 6(9i)0(92)) the binary oper¬ 

ation on the left between gi and gz is that of C while the binary oper¬ 

ation on the right between 0(gi) and 0(g2) is that of H. 

(EA8.2) Example: Let C denote a group of isometries and let D denote 

a basis. Show that 0:C -*■ M^(C) defined by 

0(a) = M^(a) 

is an isomorphism from C to M^(C). 

Solution: In (3.9) we showed that 

M^(a&) = M^(a)M^(0) . 

Hence 

0(a&) = 0(a)0(3) . 

Furthermore, since each isometry has exactly one matrix representation 

with respect to a basis D, 0 is one-to-one. Since M^^CC) contains only 

the matrix representations of elements of C, 0 is onto. Hence C and 

M^(C) are isomorphic groups. ° 
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(PA8.1) Problem: Independently verify the result given in Example EA8.2 

for 322 and 422 by comparing the multiplication tables of C and M^(C) 

for each as discussed in Chapter 3. 

The proof of the following theorem can be found in Durbin (1979, p. 

81). 

(TA8.3) Theorem: The relation ~ defined on the set of all groups of 

isometries by 

C ~ H <=> C is isomorphic to H 

is an equivalence relation. 

In many developments of algebra, any two groups that are isomorphic 

are considered to be indistinguishable. That is, the equivalence relation 

of TA8.3 is taken to be an equality. However, in our application of group 

theory to crystallography it will be necessary to distinguish between 

certain isomorphic groups. For example, 2 and m are isomorphic groups, 

yet the way in which their elements transform space is quite different. 

Moreover, the shape of an object with symmetry 2 is different from one 

of symmetry m. 

(PA8.2) Problem: Show that 4 and 4 are isomorphic groups. 

Let 6 denote an isomorphism from the group C to the group H and let 

g e C. Then, by DA8.1, 

e(g^) = 0(gg) = 9(g)0(g) = [SCg)]^ . 

Applying this idea n times we obtain 

0(g") = [0(g)]” . 

This fact and some other important properties are stated in the following 

theorem. 

(TA8.4) Theorem: Let C and H denote isomorphic groups and let 0 denote 

the isomorphism from C to H. Then the following statements hold where 

g E C. 
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(1) 0(e(^) = where and are the identities of C and H, re¬ 

spectively . 

(2) 0(g’^ = [6(9)]'^ 

(3) If C = <g> (the cyclic group generated by g), then H is cyclic and 

H = <0(g)>. 

(4) If C is finite, then so is H and (/(C) = iKH). 

We shall not give a formal proof of this theorem. See Durbin (1979) 

for a discussion of these properties. Note that part (4) follows from 

the fact that 0 is one-to-one and onto and remarks made in Appendix 1. 

(EA8.5) Example: Let H denote a subgroup of C, let g £ C and T = 

(ghg'^jh £ H} . Show that T is a subgroup of C and that H is isomorphic 

to T. 

Solution: Since H is a subgroup, it is nonempty and hence T is nonempty. 

Let ti,t2 £ T. Then there exist elements hi,h2 £ H such that tj - 

ghig'^ and t2 = gh2g Hence ^ 

tit2 = (ghig“^)(gh2g ^) 

= ghi(g’^g)h2g ^ 

= ghih2g ^ . 

Since H is a subgroup, it is closed and so hih2 £ H. Therefore, tit2 £ 

T. Let t £ 7". Then there exists h £ W such that ghg = t. Then S 

gh ^g ^ £ 7", since h ^ £ 77, and 

ts = (ghg'^)(gh ^g ^) 

= e , 

where e is the identity of C. Hence t ^ = S £ 7". Therefore, T is a 

subgroup of C. To show that H is isomorphic to 7, we must find a can¬ 

didate for the isomorphism. Looking at the way T is defined, it is na¬ 

tural to try the mapping 0 defined by 

0(h) = ghg"^ . 
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We first must show that 0 is one-to-one. Suppose hi and h2 are elements 

of H such that 0(hi) = BCh^). Then 

ghig'^ = ghjg'^ . 

By the right and left cancellation laws, hi = h2 Hence 0 is one-to-one. 

Note that, by the definition of T, 0 is onto. Finally, 

0(hih2) = ghihzg"^ 

= ghieh2g ^ (where e is the identify of C) 

= ghi(g'^g)h2g‘^ 

= (ghig'^)(gh2g’^) 

= e(hi)0(h2) 

Hence 0 is an isomorphism. □ 

An application of the result discussed in EA8.5 is to T5.5 where we 

prove that is isomorphic to when p and q are C-equivalent. In 

particular, if p and q are C-equivalent, then #(C ) = (KG ) and each 
p q 

is isomorphic to a cyclic group of the same order. 
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INDEX A 
o-cristobalite (see crlstobalite) 
a-quartz (see quartz) 
A-centered lattice 212 
a-glide 261 
abelian group 232 
aenigmatite 332 
AleMn 193 
amblygonite 79 
amphibole 37, 70 
angle of misfit 37 
angles between zones and face 

poles 76-83 
anorthite, 34, 45, 76-79 
antipodal points 371 
aragonite 36 
associative law 17, 25, 305 
augumented matrix 312-314, 316-317, 

323, 331, 333, 350, 362 
axial ratio 79-83 

B . 
basis 18, 20, 141-149, 201-202, 250, \ 

314, 316, 330, 340, 357 
binary operation 119, 123-124, 136, 

391, 395 
binary relation 379 
body-centered cubic lattice 260 
body-centered lattice (see /-centered 

lattice) 
bond length and angle 

calculation 29-30, 33 
boron 193 
Bragg equation 48 
Bravais lattice types 199, 218-219, 

223-225, 252 

c 
C-centered 289 
C-centered lattice 212-213, 221, 254 
c-glide 261 
cancellation law 398 
cartesian basis 18, 61, 72-75, 329, 

339, 344, 352 
cell dimensions 320 
centered-lattice 257 
centrosymmetric group 140 
chalcanthite 79-83 
change of basis matrix 57, 61, 66-67, 

235-236, 245-246, 246-249, 257, 335, 
329, 341, 353, 385 

change of basis 258, 292 
change of origin 244, 246-249, 256, 

258, 265-266, 273, 284, 291, 301 
clockwise rotations 311 
closest-packed 66, 68, 332 
coesite 39, 246-248, 294-296, 336 
cofactor method 337, 353 
colattice 211 
commutative law 17, 232, 305 

compositions 95-96, 104, 108-109, 127, 
206, 232, 237, 278, 305 

conformable for addition 310 
conformable for multiplication 311 
conjugation 162 
consistent with a rotation 255, 

258-259, 263, 278-281, 291, 296-297, 
300 

coordinate 12 
coordinate axes 23 
cordierite 385 
cosets 164, 204-205, 255, 267-268, 

270, 283-284, 289, 385 
cristobalite 7, 389 
cross product 34, 62-65, 80, 85 
crystal 3 
crystal face form 149 
crystal structure drawing 83-85, 87-89 
crystal structure 379 
crystal systems 183, 224 
crystalline solid 3 
crystallographic group 129 
crystallographic isometry 129 
crystallographic point group 129, 252 
crystallographic restrictions 129-134 
crystallographic space group 250-253, 

255-256 
crystallographic translation 

group 249-250 
cubic axial groups 173-179, 371, 373 
cyclic group 136-137, 276, 397-398 

D 
c/-spacing 46-47, 320, 369 
determinant 326-328, 343, 349, 355 
diffraction data for 

protoamphibole 321 
diffraction data for quartz 325 
diffraction experiment 335 
dihedral groups 167-173, 227, 371 
dimension of a vector space 20 
diopside 70 
dioptase 149-150 
direct basis 51 
direct lattice 51 
direction cosines 343, 372-373 
distributive laws 17, 26, 35 
dodecahedron 194 
dot product (see inner product) 
drawing crystal structures 83-85, 

87-89 

E 
eigenvectors 348 
elementary row operations 312, 331 
equal mappings 303 
equal matrices 309 
equation of a plane 2, 81, 362-363 
equivalence class 146, 160, 165, 174, 

382-383, 385, 392 
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equivalence relation 145-146, 162, 

203-204, 256-257, 265, 371, 379, 

384-385, 396 

equivalent planes 144, 147-150 

equivalent points 144 

euclidean algorithm 365-366 

Euler's theorem 376-377 

F 
face poles 69, 147-149 

face-centered cubic structure 341 

face-centered lattice 221 

factor group 389, 390-391 

feldspar 246-248 

form 149 

G 
C-equivalent 144-155, 158-164, 

185-191, 379, 398 

CL{3,R) 126 

general bases 345 

general cartesian rotation matrix 339, 
352 

general cartesian rotoinversion 

matrix 339, 344 

general equivalent positions 272, 

274-275, 284, 294 

general linear group 127 

general position 146, 271 

generators 203, 205-206, 227, 250-251, 

255-256, 265-266, 273-274, 277, 292, 
298-299 

geometric three-dimensional space 9, 

11, 21 229 

glaserite 193 

glide operation 261 

glide plane 261 

glide translation 261 

golden mean 194 

goniometric data 79-83 

group of isometries 382, 395 

groups 120, 125-128 

guide column 117 

guide row 117 

H 
H4Si04 1, 28, 146-147 

H6Si303 2, 29, 183 

halving group 139, 389 

handedness of the basis 18, 35, 39, 

99, 201, 256, 259, 355, 357 

hemimorphite 335-336 

Hermann-Manguin symbols 191-192 

herpes virus 373 

I 
/-centered lattice 212, 217 

icosahedral group 389 

icosahedral point groups 192-197 

icosahedral rotational symmetry 373 

ideal crystal 3 

identity matrix 317, 330, 380 

identity 17, 94, 99, 231, 306, 354, 

386 

image 92, 303, 306 

improper point group generating 

theorem 138 

improper point groups 180-184 

index 388 

indices 335, 337 

inner product 25, 80 

integer matrix 337 

integral matrix 200-202, 206, 217, 256 

interaxial angles 6, 25, 49, 56 

intersection angles 371, 373, 378 

invariant 100 

inverse 306, 330, 332 

inversion matrix 339 

inversion 96, 99, 104 

invertible matrix 331, 337, 346-347, 

381 

invertible 384 

isometry 91, 229-230, 237, 345-346 

isomorphism 22, 161-162, 251, 255, 

264, 272, 276, 395, 398 

isostructural 379 

J 
jadeite 27 

K 
kyanite 66-68, 70-71, 330 

L 
/--equivalent 251-253 

Lagrange's Theorem 389 

lattice 12-16, 358-359 

lattice plane 2, 207, 359, 361, 

364-366 

lattice points 361, 364 

lattice vectors 14-16, 363 

least-squares estimates 323, 326 

least-squares method 320 

left cancellation law 120,238 

left coset 387 

linear combination 11, 314, 316-317, 
333 

linear component 238, 250-251 

linear equations 312, 321, 332, 334 

linear mappings 101-102 

linearly independent 18 

M 
mapping 303, 395, 397 

matrix addition 310 

matrix equality 354 

matrix equations 309 

matrix groups 225 

matrix multiplication 310 
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208-213 matrix representations 105-107, 

141-144, 105-107, 170-171, 225-228, 

256 

matrix 309 

measurement error 321 

metric tensor (see metrical matrix) 

metrical matrix 26, 27, 42, 54, 63 

68, 73, 191, 224, 369, 385 

Miller indices 44-46 , 48, , 50, 59, 63 

69 

minimum variance 322 

minors 326 

mirror plane 98, 261, 340 

modular arithmetic 380 

monaxial point groups 142, 151-155, 

165 

monaxial rotation groups 134 

monosilicic acid (see H SiO ) 

multiplication table 117, 209, 212, 

221, 390 

multiplicative identity 330 

N \ 
n-glide 261 

nxm matrix 309 

nth-tuin screw 

nth-tnrn 93 

narsarsukite 100-101, 150 

non-abelian group 232 

nonbonded radius of oxygen 71 

noncrystallographic rotation 

groups 371 

normal equations 323-324, 326 

normal subgroup 242-243, 250, 252, 

270, 388, 391 

normality 252 

0 
obverse setting 89, 215-216 

one dimensional lattice 203 

one-generator point groups 276 

one-to-one and onto mappings 305-306, 

395 

one-to-one mappings 305 

onto mappings 305 

orbit 146, 149, 249 

order 137, 306, 389 

orientation symbols 95 

oriented point groups 225-228, 252, 

255, 258 

P 
pairwise coprime 365 

parallelogram rule 10, 21, 22 

permutation 306 

point groups 120, 128, 151-155, 180, 

252 

1_ 138, 142, 180, 208 

1 141-142, 180 

2 138, 140-142, 180, 

253-254 

m 141, 261 

3_ 138, 140, 142, 180, 213-216 

3 140, 142, 180 

4 101-102, 137-139, 142, 180 

4 139-140, 142, 146-147, 180, 217- 

6 93-95, 122, 127, 138, 142, 180, 

_ 220, 264 

6 122, 141-142, 147-149 

mmm 180 

mm2 180 

2/m 140-141 , 180 

2/m3 180 

2/m35 197, 180 

222 124, 134-135, 

173-174, 180, 220 

23 167-169, 174-178, 180, 223 

235 167, 180, 192-197 

227 

rim 227 

32/m 180-181 

3mmi=3m) 181-182 

3m1 227 

31m 227 

312 227-228 

321 111 
322(=32) 110-120, 125, 132, 134, 

158-165, 167, 169-171, 222, 

_ 215-211 _ 
Um2 (see 42m) 

42/n 180, 182, 111-lli, 

U3m 180 

4/m 139, 150 

4/mmm 180, 182 

U/m32/m 180, 182-183 

4mm 

422 121-122, 124, 132, 134, 167, 

170-172, 180, 222, 227 

432 167, 178-180, 223 

522 167, 173 

532 (see 235) 
Im2 221 
62m 180, 227 

6/m 141-142, 180 

6/mmm 180, 182 

6mm 180, 227 

622 167, 172, 180, 222, 227 

point isometry 91, 258, 340, 342-344, 

349, 371 

point of general position 146 

point of special position 146 

point symmetry 128 

pole points 158-168, 173-179, 371 

polyaxial crystallographic groups 371 

polyaxial point groups 157-168 

positions 271 

primitive hexagonal lattice type 208, 

216, 253, 255, 260 
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principal representative of C with re¬ 

spect to P 270 

principal representatives 271-272, 

283-284, 295 

proper monaxial group 138 

proper point groups 224 

proper polyaxial point groups 157 

proper unimodular matrix 200, 210, 266 

protoamphibole 37, 320 

pyritohedron 193 

pyroxene 70, 86 

pyroxferroite 64-65 

Q 
C?-values 320 

quadratic formula 377 

quarter-turn screw operations 259 

quartz 3, 6, 14, 22, 31, 40, 45, 111, 

286, 288-289, 314, 325 

quasi-crystals 193 

R 
random variable 321 

rational numbers 362 

reciprocal basis 48, 54, 325 

reduced row echelon matrices 317-318, 

350 

reflection isometry 340 

reflection 98-99 

reflexive property 45, 379 

relations 255, 258, 263, 279, 281, 

296-298, 300, 379 

relatively prime 366 

reverse setting 90, 215-216 

rhombohedral lattice type 89-90, 

215-216, 228 

right cancellation law 120 

right coset 386 

rotation axis 92, 207, 341, 349-350, 

355, 358-359, 371-372 

rotation isometry 94-95, 303, 339, 

342-344, 346-347, 349, 352, 354 

rotoinversion 94, 96-99, 105 

row operation 317, 362 

s 
sanidine 246-248, 294 

sapphirine 68-69, 71-72 

scalar 9 

scalar multiplication 10, 11, 23 

Schoenflies symbols 191-192 

screw and glide operations 258 

screw translation 259 

Seitz notation 240-241, 260, 294 

self-coincidence 100 

similar matrices 380 

similar 346, 384 

singular 332 

skutterudite 192-193 

solution set 312, 316, 324 

space lattice 12 

spans 18, 316 

spinel 341, 351 

stabilizer 160 

stereogram 75 

subgroup 120, 134-135, 250, 386 

sublattice 203, 278, 299 

super dense packings 193 

symmetric matrix 27, 312 

symmetric property 145, 379 

symmetry element 99, 259 

symmetry 100-101, 128 

system of linear equations 313 

T 
third-turn screw operation 267 

three types of solution sets 320 

three-dimensinal lattice 203 

three-generator point groups 296-297 

tilt angle 36 

trace 343-344, 347, 349 

transformation matrix (see change of 

basis matrix) 

transitive property 145, 379 

translation group 231, 242-243, 

249-252, 254-255, 258 

translation vector 3, 6 

translational component 238, 259, 285 

translational isometry 268 

translations 229-237 

transpose of a matrix 311 

tremolite 70 

tricyclosiloxane (see HgSiaOa) 

triple scalar product 38 

triple 12, 14, 21, 23 

turn angle 92, 311, 343, 346, 354, 

371, 379, 383 

two-dimensional lattice 203 

two-generator point groups 276-278, 

293, 296 

u 
unimodular over the integers 200 

unit cell volume 39, 40, 63, 329 

unit cell 14, 288, 330 

V 
vector addition 10 

vector space 16-17 

viruses 193 

volume (see triple scalar product) 

z 
zone symbols 14, 63-64, 173, 179 
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